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Summary

Acute respiratory failure due to infection, trauma, and major surgery is one of

the most common problems encountered in intensive care units and mechanical ven-

tilation is the mainstay of supportive therapy for such patients. This dissertation

develops an analysis and control synthesis framework for a pressure-limited respira-

tor and lung mechanics system using compartment models. Specifically, a general

mathematical model is developed for the dynamic behavior of a multicompartment

respiratory system. Then, based on this multicompartment model, an optimal res-

piratory pattern is characterized using classical calculus of variations minimization

techniques for inspiratory and expiratory breathing cycles. Furthermore, model pre-

dictive controller frameworks are designed to track the given optimal respiratory air

flow pattern while satisfying control input amplitude and rate constrains.

Numerous mathematical models of respiratory function that have been presented

in the medical and scientific literature have typically viewed the lungs as a single

compartment characterized by its compliance (the ratio of compartment volume to

pressure) and the resistance to airflow into the compartment. However, the lungs

are comprised of many subunits, or compartments, that differ in their capacities for

gas exchange. In this dissertation, we develop a general mathematical model for the

dynamic behavior of a multicompartment respiratory system in response to an ar-

bitrary applied inspiratory pressure. Specifically, we use compartmental dynamical

system theory and Poincaré maps to model and analyze the dynamics of a pressure-

x



limited respirator and lung mechanics system, and show that the periodic orbit gen-

erated by this system is globally asymptotically stable. Furthermore, we show that

the individual compartmental volumes, and hence the total lung volume, converge

to steady-state end-inspiratory and end-expiratory values. In addition, we develop

a model reference direct adaptive controller framework for the multicompartmental

model of a pressure-limited respirator and lung mechanics system where the plant

and reference model involve switching and time-varying dynamics. We then apply

the proposed adaptive feedback controller framework to stabilize a given limit cycle

corresponding to a clinically plausible respiratory pattern.

The prediction of the optimal respiratory airflow pattern is critical for the me-

chanical ventilation to ensure adequate ventilation and adequate oxygenation. In

this dissertation, we develop optimal respiratory airflow patterns using a nonlinear

multicompartment model for a lung mechanics system. Specifically, we use classical

calculus of variations minimization techniques to derive an optimal airflow pattern

for inspiratory and expiratory breathing cycles. The physiological interpretation of

the optimality criteria used involve the minimization of work of breathing and lung

volume acceleration for the inspiratory phase, and the minimization of the elastic po-

tential energy and rapid airflow rate changes for the expiratory phase. Furthermore,

we numerically integrate the resulting nonlinear two-point boundary value problems

to determine the optimal airflow patterns over the inspiratory and expiratory breath-

ing cycles.

The goal of mechanical ventilation is to ensure adequate ventilation, which in-

volves a magnitude of gas exchange that leads to the desired blood level of carbon

dioxide, and adequate oxygenation, which involves a blood concentration of oxygen

that will ensure organ function. In this dissertation, first, we develop a model pre-

dictive controller for a time-varying, linear periodic multicompartment respiratory

xi



system. Specifically, for a given periodic reference volume pattern, we design a track-

ing controller using a framework that merges repetitive control and model predictive

control. In particular, the periodic multicompartment model is transformed into a

lifted run-to-run invariant model and a model predictive controller with nonnegative

control input constraints is designed. The proposed tracking control framework is

applied to a two-compartment lung mechanics model to demonstrate the efficacy of

the proposed approach.

Finally, we develop a model predictive controller based on a nonlinear multicom-

partment lung mechanics model with the aim to automatically adjust the pressure

generated by mechanical ventilation such that the system output tracks a given clin-

ically plausible breathing pattern. Specifically, we formulate a quadratic optimal

control problem subject to control input amplitude and rate constraints that min-

imizes the deviation of the multicompartment respiratory system output from the

given reference volume pattern. Then, we derive the predictive control law by mini-

mizing a performance criterion involving the prediction of the future system response

over a prescribed time step. The derived optimal control law is given by an explicit

form, and thus, avoids an online optimization and reduces the computational effort.

xii



Chapter 1

Introduction

The lungs are particularly vulnerable to acute critical illness. Respiratory failure

can result not only from primary lung pathology, such as pneumonia, but also as

a secondary consequence of heart failure or inflammatory illness, such as sepsis or

trauma. When this occurs, it is essential to support patients while the fundamental

disease process is addressed. For example, a patient with pneumonia may require me-

chanical ventilation while the pneumonia is being treated with antibiotics, which will

eventually effectively cure the disease. Since the lungs are vulnerable to critical illness

and respiratory failure is common, support of patients with mechanical ventilation is

very common in the intensive care unit.

The goal of mechanical ventilation is to ensure adequate ventilation, which involves

a magnitude of gas exchange that leads to the desired blood level of carbon dioxide

(CO2), and adequate oxygenation, which involves a blood concentration of oxygen

that ensures organ function. Achieving these goals is complicated by the fact that

mechanical ventilation can actually cause acute lung injury, either by inflating the

lungs to excessive volumes or by using excessive pressures to inflate the lungs. The

challenge to mechanical ventilation is to produce the desired blood levels of CO2 and

oxygen without causing further acute lung injury.

The earliest primary modes of ventilation can be classified, approximately, as
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volume-controlled or pressure-controlled [65]. In volume-controlled ventilation, the

lungs are inflated (by the mechanical ventilator) to a specified volume and then al-

lowed to passively deflate to the baseline volume. The mechanical ventilator con-

trols the volume of each breath and the number of breaths per minute. In pressure-

controlled ventilation, the lungs are inflated to a given peak pressure. The ventilator

controls this peak pressure as well as the number of breaths per minute. In early ven-

tilation technology, negative pressure ventilation was employed, wherein a patient’s

thoracic area is enclosed in an airtight chamber and the volume of the chamber is ex-

panded, inflating the patient’s lungs. Such ventilator devices include tank ventilators,

jacket ventilators, and cuirassess [54].

The primary determinant of the level of CO2 in the blood is minute ventilation,

which is defined as the tidal volume (the volume of each breath) multiplied by the

number of breaths per minute [45,69]. With volume-controlled ventilation, both tidal

volume and the number of breaths are determined by the machine (the ventilator), and

typically, the tidal volumes and breaths per minute are selected by the clinician caring

for the patient. In pressure-controlled ventilation, the tidal volume is not directly

controlled. The ventilator determines the pressure that inflates the lungs and the tidal

volume is proportional to this driving pressure and the compliance or stiffness, of the

lungs. Consequently, the minute ventilation is not directly controlled by the ventilator

and any change in lung compliance (such as improvement or deterioration in the

underlying lung pathology) can result in changes in tidal volume, minute ventilation,

and ultimately, the blood concentration of CO2.

With the increasing availability of microchip technology, it has been possible to

design mechanical ventilators that have control algorithms which are more sophis-

ticated than simple volume or pressure control. Examples are proportional-assist

ventilation [73,74], adaptive support ventilation [37], SmartCare ventilation [15], and

2



neutrally adjusted ventilation [59]. In proportional-assist ventilation, the ventilator

measures the patients volume and rate of inspiratory gas flow, and then applies pres-

sure support in proportion to the patients inspiratory effort [72]. In this mode of

ventilation, inspired oxygen and positive end-expiratory pressure are manually ad-

justed by the clinician.

In adaptive support ventilation, tidal volume and respiratory rate are automati-

cally adjusted [63]. In particular, the patients respiratory pattern is measured point-

wise in time and fed back to the controller to provide the required (target) tidal

volume and patient respiratory rate. Adaptive support ventilation does not pro-

vide continuous control of minute ventilation, positive end-expiratory pressure, and

inspired oxygen, these parameters need to be adjusted manually.

SmartCare ventilation monitors tidal volume, respiratory rate, and end-tidal pres-

sure of CO2 to maintain the patient in a respiratory “comfort” zone by automatically

adjusting the level of pressure support [8, 39]. SmartCare ventilators do not account

for patient respiratory variations and do not generally guarantee adequate minute ven-

tilation during weaning. In addition, positive end-expiratory pressure and inspired

oxygen need to be manually adjusted.

Neurally adjusted ventilation is fundamentally different from the aforementioned

automatic ventilation technologies in the sense that it uses the patients respiratory

neural drive as a measurement signal to the ventilator [30]. In this mode of ventilation,

rather than controlling pressure, the patients respiratory neural drive signal to the

diaphragmatic electromyogram is controlled using electrodes placed on an esophageal

catheter [3]. Even though this approach has been shown to be effective in some recent

clinical studies [4, 50], its effectiveness is affected if the patient is highly sedated. In

addition, as in the aforementioned ventilator technologies, positive end-expiratory

pressure and inspired oxygen need to be manually controlled.
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The common theme in modern ventilation control algorithms is the use of pressure-

limited ventilation while also guaranteeing adequate minute ventilation. One of the

challenges in the design of efficient control algorithms is that the fundamental physi-

ological variables defining lung function, i.e., the resistance to gas flow and the com-

pliance of the lung units, are not constant but rather vary with lung volume. For

example, the compliance is strictly defined as dV/dP , where V is the lung unit vol-

ume and P is the pressure driving inflation. More simply, lung volume is a nonlinear

function of driving pressure. In addition, these physiological variables vary from pa-

tient to patient, as well as within the same patient under different conditions, making

it very challenging to develop models and effective control law architectures for active

mechanical ventilations.

1.1. Brief Outline of the Dissertation

In this dissertation, we develop mathematical modeling and control design meth-

ods for a pressure-limited respirator and lung mechanics system. The contents of the

dissertation are as follows. In Chapter 2 we develop a general mathematical model

for the dynamic behavior of a multicompartment respiratory system in response to an

arbitrary applied inspiratory pressure. Specifically, we use compartmental dynamical

system theory and Poincaré maps to model and analyze the dynamics of a pressure-

limited respirator and lung mechanics system. Then, we present a model reference

direct adaptive controller framework for the multicompartmental model of a pressure-

limited respirator and lung mechanics system where the plant and reference model

involve switching and time-varying dynamics.

In Chapter 3, we use classical calculus of variations minimization techniques to

characterize optimal respiratory airflow patterns using a nonlinear multicompartment

model for a lung mechanics system. In Chapter 4, we consider a model predictive

4



controller framework for a time-varying, linear periodic multicompartment respiratory

system such that for a given periodic reference volume pattern, a tracking controller

is designed using a framework that merges repetitive control and model predictive

control. Then, in Chapter 5, we develop a predictive tracking controller for a nonlinear

multicompartment lung mechanics model by minimizing a quadratic performance

criterion involving a prediction of the system response over a prescribed time step.

Specifically, the proposed tracking control framework is applied to a lung mechanics

model with nonlinear compliances. Finally, in Chapter 6, we discuss ongoing research

and future extensions of the research.
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Chapter 2

Limit Cycle Stability Analysis and Adaptive

Control of a Multicompartment Model

for a Pressure-Limited Respirator

and Lung Mechanics System

2.1. Introduction

Acute respiratory failure due to infection, trauma, and major surgery is one of the

most common problems encountered in intensive care units and mechanical ventila-

tion is the mainstay of supportive therapy for such patients. Numerous mathematical

models of respiratory function have been developed in the hope of better understand-

ing pulmonary function and the process of mechanical ventilation [2, 9, 17, 44, 67].

However, the models that have been presented in the medical and scientific liter-

ature have typically assumed homogenous lung function. For example, in analogy

to a simple electrical circuit, the most common model has assumed that the lungs

can be viewed as a single compartment characterized by its compliance (the ratio of

compartment volume to pressure) and the resistance to air flow into the compart-

ment [9, 44,67].

While a few investigators have considered two compartment models, reflecting the

fact that there are two lungs (right and left), there has been little interest in more

detailed models [13,29,58]. However, the lungs, especially diseased lungs, are hetero-
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geneous, both functionally and anatomically, and are comprised of many subunits,

or compartments, that differ in their capacities for gas exchange. Realistic models

should take this heterogeneity into account. While more sophisticated models entail

greater complexity, since the models are readily presented in the context of dynami-

cal systems theory, sophisticated mathematical tools can be applied to their analysis.

Compartmental lung models are described by a state vector, whose components are

the volumes of the individual compartments. One interesting and important question

is the stability, in the sense of dynamical systems theory, of the model.

For a simple one compartment model, it is easy to demonstrate that the model ex-

hibits an asymptotically stable limit cycle behavior. And indeed, in clinical practice it

appears that the total lung volume converges to the steady-state end-inspiratory and

end-expiratory values after the institution of mechanical ventilation. However, a more

subtle question for a multicompartment lung model is whether the volumes in the in-

dividual compartments could be unstable, even when the total volume of the lung

(the sum of all the compartment volumes) converges to a steady-state value. That

is, Is it possible that individual compartment volumes oscillate or even demonstrate

chaotic behavior while the total lung volume is stable?

This question has interesting clinical implications as there is also heterogeneity in

the amount of blood flowing to individual subunits of the lung. If there is significant

disparity in the ratio of ventilation (reflected in the compartment volume) to blood

flow, gas exchange is impaired, resulting in decreases in the oxygen or increases in

the carbon dioxide content of blood, which is a serious clinical problem. Instability of

the compartment volumes could be reflected in unstable measures of basic pulmonary

function, such as oxygen or carbon dioxide levels in the blood. In this chapter, we

first develop a generalized multicompartment lung model and subsequently analyze

its stability properties. Specifically, we use compartmental dynamical system theory
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and Poincaré maps to model and analyze the dynamics of a pressure-limited respira-

tor and lung mechanics system, and show that the periodic orbit generated by this

system is globally asymptotically stable. Furthermore, we show that the individual

compartmental volumes, and hence the total lung volume, converge to steady-state

end-inspiratory and end-expiratory values.

As noted above, mechanical ventilation of a patient with respiratory failure is

one of the most common life-saving procedures performed in the intensive care unit.

However, mechanical ventilation is physically uncomfortable due to the noxious inter-

face between the ventilator and patient, and mechanical ventilation evokes substantial

anxiety on the part of the patient. This will often be manifested by the patient “fight-

ing the ventilator.” In this situation, there is dyssynchrony between the ventilatory

effort of the patient and the ventilator. The patient will attempt to exhale at the

time the ventilator is trying to expand the lungs or the patient will try to inhale when

the ventilator is decreasing airway pressure to allow an exhalation.

When patient-ventilator dyssynchrony occurs, at the very least there is excessive

work of breathing with subsequent ventilatory muscle fatigue and in the worst case,

elevated airway pressures that can actually rupture lung tissue. In this situation, it is a

very common clinical practice to sedate patients to minimize “fighting the ventilator.”

Sedative-hypnotic agents act on the central nervous system to ameliorate the anxiety

and discomfort associated with mechanical ventilation and facilitate patient-ventilator

synchrony.

Using the multicompartmental model of a pressure-limited respirator and lung me-

chanics systems developed in the first part of the chapter, we also develop an adaptive

feedback controller for addressing this dyssynchrony for intensive care unite sedation.

In particular, we develop a model reference direct adaptive controller framework where

the plant and reference model involve switching and time-varying dynamics. Then,

8



we apply the proposed adaptive framework to the multicompartmental model of a

pressure-limited respirator and lung mechanics system. Specifically, we develop an

adaptive feedback controller that stabilizes a given limit cycle corresponding to a clin-

ically plausible breathing pattern. Finally, we apply the proposed adaptive control

framework to a mechanical ventilation model to quantify patient-ventilator dyssyn-

chrony for intensive care unit sedation.

2.2. Notation and Mathematical Preliminaries

In this section, we introduce notation, several definitions, and some key results

that are necessary for developing the main results of this dissertation. Specifically,

Rn denotes the set of n × 1 real column vectors and Rn×m denotes the set of n ×

m real matrices, for x ∈ Rn we write x ≥≥ 0 (resp., x >> 0) to indicate that

every component of x is nonnegative (resp., positive). In this case, we say that x is

nonnegative or positive, respectively. Likewise, A ∈ Rn×m is nonnegative1 or positive

if every entry of A is nonnegative or positive, respectively, which is written as A ≥≥ 0

or A >> 0, respectively.

Furthermore, for A ∈ Rn×n we write A ≥ 0 (resp., A > 0) to indicate that A

is a nonnegative-definite (resp., positive-definite) matrix. In addition, (·)T denotes

transpose, (·)−1 denotes inverse, “⊗” denotes the Kronecker product, (·)′ to denote

Frèchet derivative, ∥ · ∥2 denotes the Euclidian norm, ∥ · ∥Q denotes the weighted

Euclidian norm, that is, ∥z∥2Q , zTQz, z ∈ Rn, spec(A) denotes the spectrum of the

square matrix A, ρ(A) denotes the spectral radius of A, dim S denotes the dimension

of the set S ⊆ Rn, and N (A) denotes the null space of A, 0m denotes the zeros vector

of order m, that is, 0m = [0, . . . , 0]T, Z+ denotes the set of positive integers, and R+

1In this proposal it is important to distinguish between a square nonnegative (resp., positive)
matrix and a nonnegative-definite (resp., positive-definite) matrix.
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denotes the set of positive real numbers. Let Rn

+ and Rn
+ denote the nonnegative and

positive orthants of Rn, that is, if x ∈ Rn, then x ∈ Rn

+ and x ∈ Rn
+ are equivalent,

respectively, to x ≥≥ 0 and x >> 0. Finally, let en ∈ Rn denotes the ones vector of

order n, that is, en = [1, · · · , 1]T; if the order of en is clear from context we simply

write e for en.

The following definitions introduce the notions of essentially nonnegative, com-

partmental, and strictly ultrametric matrices.

Definition 2.1 [20]. Let A ∈ Rn×n. A is essentially nonnegative if A(i,j) ≥ 0,

i, j = 1, . . . , n, i ̸= j. A is compartmental if A is essentially nonnegative and ATe ≤≤

0.

Definition 2.2 [46]. Let A ∈ Rn×n be such that A ≥≥ 0. A is strictly ultrametric

if A is symmetric, A(i,i) > max{A(i,k) : k = 1, . . . , n, k ̸= i}, i = 1, . . . , n, and A(i,j) ≥

min{A(i,k), A(k,j)}, k = 1, . . . , n, i, j = 1, . . . , n, i ̸= j.

The following lemmas and propositions are key in establishing the main results of

this chapter.

Lemma 2.1 [20]. Let A ∈ Rn×n. Then A is essentially nonnegative if and only if

eAt is nonnegative for all t ≥ 0.

Proposition 2.1. The following statements hold:

i) Let λ1, λ2 ≥ 0 be such that λ1 + λ2 > 0 and let A1, A2 ∈ Rn×n be strictly

ultrametric. Then λ1A1 + λ2A2 is strictly ultrametric.

ii) Let x ∈ Rn be such that xi = 0 or 1, i = 1, . . . , n, and let P ∈ Rn×n be a positive

diagonal matrix. Then P + xxT is a strictly ultrametric matrix.
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Proof. Statement i) is a direct consequence of Definition 2.2. To show ii) let

A , P + xxT and note that A is symmetric and

A(i,j) =

{
P(i,i) + x2i , if i = j,
xixj, if i ̸= j.

Hence, if xi = 0, then max{A(i,k) : k = 1, . . . , n, k ̸= i} = 0, i = 1, . . . , n, which implies

that A(i,i) = P(i,i) > max{A(i,k) : k = 1, . . . , n, k ̸= i}, i = 1, . . . , n. Alternatively, if

xi = 1, then A(i,i) = P(i,i) + 1 > max{xk : k = 1, . . . , n, k ̸= i}, i = 1, . . . , n.

Furthermore, for i ̸= j, A(i,j) = xixj and

min{A(i,k), A(k,j)} =

{
0, if xixj = 0,
xk, otherwise.

In either case, A(i,j) ≥ min{A(i,k), A(k,j)}, k = 1, . . . , n, i, j = 1, . . . , n, i ̸= j, which

implies that A is strictly ultrametric.

Lemma 2.2 [46]. Let A ∈ Rn×n be such that A ≥≥ 0. If A is strictly ultrametric,

then −A−1 is essentially nonnegative and A−1e ≥≥ 0.

Proposition 2.2. Let A ∈ Rn×n and assume that there exists an n × n matrix

P > 0 such that

ATP + PA < 0. (2.1)

Then eA
T
PeA < P.

Proof. Define R , −(ATP + PA) > 0 and note that (2.1) implies

P =

∫ ∞

0

eA
TtReAtdt. (2.2)

Next, pre- and post- multiplying (2.2) by eA
T
and eA, respectively, yields

eA
T
PeA =

∫ ∞

0

eA
T(t+1)ReA(t+1)dt

=

∫ ∞

1

eA
TtReAtdt

11



=

∫ ∞

0

eA
TtReAt −

∫ 1

0

eA
TtReAtdt

= P −
∫ 1

0

eA
TtReAtdt

< P,

which proves the result.

Remark 2.1. It is well known that A is Hurwitz if and only if eA is Schur. Hence,

it follows from Proposition 2.2 that the Lyapunov function V (x) = xTPx can be used

to establish the stability of both A and eA.

Next, we analyze the stability of periodic orbits using Poincaré maps [19, 70]. To

state Poincaré’s theorem, consider the nonlinear periodic dynamical system

ẋ(t) = f(t, x(t)), x(0) = x0, t ∈ Ix0 , (2.3)

where x(t) ∈ D ⊆ Rn, t ∈ Ix0 , is the system state vector, D is an open set, f :

[0,∞) × D → Rn satisfies f(t, x) = f(t + T, x), x ∈ D, t ≥ 0, for some T > 0, and

Ix0 = [0, τx0), 0 < τx0 ≤ ∞, is the maximal interval of existence for the solution x(·)

of (2.3). A continuously differentiable function x : Ix0 → D is said to be a solution

to (2.3) on the interval Ix0 ⊆ [0,∞) with initial condition x(0) = x0 if x(t) satisfies

(2.3) for all t ∈ Ix0 . It is assumed that f(·, ·) is such that the solution to (2.3) is

unique for every initial condition in D and jointly continuous in t and x0. A sufficient

condition ensuring this is Lipschitz continuity of f(t, ·) : D → Rn for all t ∈ [0, t1] and

continuity of f(·, x) : [0, t1] → Rn for all x ∈ D. Here, we assume that all solutions to

(2.3) are bounded over Ix0 , and hence, by the Peano-Cauchy theorem can be extended

to infinity.

Next, we introduce the notions of periodic solutions and periodic orbits for (2.3).

For the next definition, we denote the solution x(·) to (2.3) with initial conditon

12



x0 ∈ D by s(t, x0).
2

Definition 2.3. A solution s(t, x0) of (2.3) is periodic if there exists a finite time

T > 0 such that s(t + T, x0) = s(t, x0) for all t ≥ 0. A set O ⊂ D is a periodic orbit

of (2.3) if O = {x ∈ D : x = s(t, x0), 0 ≤ t ≤ T} for some periodic solution s(t, x0) of

(2.3).

Next, we introduce the notions of Lyapunov and asymptotic stability of a periodic

orbit of the nonlinear dynamical system (2.3). For this definition, dist(p,M) denotes

the smallest distance from a point p to any point in the set M, that is, dist(p,M) ,

infx∈M ∥p− x∥.

Definition 2.4. A periodic orbit O of (2.3) is Lyapunov stable if, for all ε > 0,

there exists δ = δ(ε) > 0 such that if dist(x0,O) < δ, then dist(s(t, x0),O) < ε, t ≥ 0.

A periodic orbit O is asymptotically stable if O is Lyapunov stable and there exists

ε > 0 such that if dist(x0,O) < ε, then dist(s(t, x0),O) → 0 as t→ ∞.

To proceed, we assume that for the point p ∈ D, the dynamical system (2.3) has

a periodic solution s(t, p), t ≥ 0, with period T > 0 that generates the periodic orbit

O , {x ∈ D : x = s(t, p), 0 ≤ t ≤ T}. Next, let U ⊂ D be a neighborhood of the

point p and define the Poincaré return map P : U → D by

P (x) , s(T, x), x ∈ U . (2.4)

Furthermore, define the discrete-time dynamical system given by

z(k + 1) = P (z(k)), z(0) ∈ U , k ∈ Z+, (2.5)

2Note that since (2.3) is a time-varying dynamical system it is typical to denote its solution as
ŝ(t, t0, x0) to indicate the dependence on both the initial time t0 and the initial state x0. In this

section, we assume that t0 = 0 and define s(t, x0)
△
= ŝ(t, 0, x0).

13



where Z+ denotes the set of nonnegative integers. Clearly x = p is a fixed point of

(2.5) since p = s(T, p) = P (p).

Theorem 2.1. Consider the nonlinear periodic dynamical system (2.3) with the

Poincaré map defined by (2.4). Assume that the point p ∈ D generates the periodic

orbit O , {x ∈ D : x = s(t, p), 0 ≤ t ≤ T}, where s(t, p), t ≥ 0, is the periodic

solution with period T . Then the following statements hold:

i) p ∈ D is a Lyapunov stable fixed point of (2.5) if and only if the periodic orbit

O generated by p is Lyapunov stable.

ii) p ∈ D is an asymptotically stable fixed point of (2.5) if and only if the periodic

orbit O generated by p is asymptotically stable.

Proof. Define x1(t)
△
= x(t) and x2(t)

△
= t, and note that the solution x(t), t ≥ 0,

to the nonlinear periodic dynamical system (2.3) can be equivalently characterized

by the solution x1(t), t ≥ 0, to the nonlinear autonomous dynamical system

ẋ1(t) = f(x2(t), x1(t)), x1(0) = x0, t ≥ 0, (2.6)

x2(t) = t mod T, x2(0) = 0. (2.7)

Since p ∈ D generates a periodic solution to (2.3) it follows that the point [p, 0]T ∈

D × [0, T ] generates a periodic solution to (2.6) and (2.7). Next, it can be shown

that the map P : U → D given by (2.4) is a Poincaré map for (2.6) and (2.7)

(see [70, p. 127] for details). Now, the result is a direct consequence of the standard

Poincaré theorem [19].

Finally, in this chapter, we develop a multicompartment lung model based on a

directed tree architecture. The following definitions are necessary for the main results

of this chapter.
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Definition 2.5 [64]. A weighted directed graph G is a triple (V , E ,W ), where

V = {v1, v2, . . . , vN} is the set of vertices, E = {e1, e2, . . . , eM} ⊆ V × V is the

set of edges, and W ∈ RN×N is the weighted adjacency matrix. Every edge el ∈ E

corresponds to an ordered pair of vertices (vi, vj) ∈ V × V , where vi and vj are the

initial and terminal vertices of the edge el. In this case, el is incident into vj and

incident out of vi. The adjacency matrix W is such that W(i,j) > 0, i, j = 1, . . . , N,

if (vi, vj) ∈ E , and W(i,j) = 0 otherwise. The in-degree di(vi) of vi is the number of

edges incident into vi and the out-degree do(vj) of vj is the number of edges incident

out of vj. A directed path from vi1 to vik is a set of distinct vertices {vi1 , vi2 , . . . , vik}

such that (vij , vij+1
) ∈ E , j = 1, . . . , k − 1. A vertex vi is a root of G if, for every

vj ̸= vi, there exist directed paths from vi to vj. G is connected if, for every pair of

vi, vj ∈ V , there exists vk ∈ V such that there are directed paths from vk to vi and vk

to vj. A vertex vi ∈ V is a leaf of G if do(vi) = 0.

Definition 2.6 [64]. A weighted directed graph G is a weighted directed tree if G

is connected and there exists a vertex vi ∈ V such that di(vi) = 0 and di(vj) = 1, vj ∈

V \ {vi}.

Remark 2.2. Note that if G is a weighted directed tree, then there exists exactly

one root vi ∈ V and exactly one directed path from vi to vj for all vj ∈ V \ {vi}.

See [64] for details.

2.3. Compartmental Modeling of Lung Dynamics: Dichotomy
Architecture

In this section, we develop a general mathematical model for the dynamic be-

havior of a multicompartment respiratory system in response to an arbitrary applied

inspiratory pressure. Here, we assume that the bronchial tree has a dichotomy ar-
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chitecture [68], that is, in every generation each airway unit branches in two airway

units of the subsequent generation. First, however, we start by considering a single-

compartment lung model as shown in Figure 2.1. In this model, the lungs are repre-

' $

� �
c

R

papp

Figure 2.1: Single-compartment lung model.

sented as a single lung unit with compliance c connected to a pressure source by an

airway unit with resistance (to air flow) of R. At time t = 0, an arbitrary pressure

pin(t) is applied to the opening of the parent airway, where pin(t) is determined by

the mechanical ventilator. A typical choice for pin(t) is pin(t) = αt+ β, where α and

β are positive constants. This pressure is applied to the airway opening over the time

interval 0 ≤ t ≤ Tin, which is the inspiratory part of the breathing cycle. At time

t = Tin, the applied airway pressure is released and expiration takes place passively,

that is, the external pressure is only the atmospheric pressure pex(t) during the time

interval Tin ≤ t ≤ Tin + Tex, where Tex is the duration of expiration.

The state equation for inspiration (inflation of lung) is given by

Rinẋ(t) +
1

c
x(t) = pin(t), x(0) = xin0 , 0 ≤ t ≤ Tin, (2.8)

where x(t) ∈ R, t ≥ 0, is the lung volume, Rin ∈ R is the resistance to air flow during

the inspiration period, xin0 ∈ R is the lung volume at the start of the inspiration and

serves as the system initial condition. We assume that expiration is passive (due to

elastic stretch of lung unit). During the expiration process, the state equation is given
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by

Rexẋ(t) +
1

c
x(t) = pex(t), x(Tin) = xex0 , Tin ≤ t ≤ Tin + Tex, (2.9)

where x(t) ∈ R, t ≥ 0, is the lung volume, Rex ∈ R is the resistance to air flow during

the expiration period, and xex0 ∈ R is the lung volume at the start of expiration.

Next, we develop the state equations for inspiration and expiration for a 2n-

compartment model, where n ≥ 0. In this model, the lungs are represented as 2n

lung units which are connected to the pressure source by n generations of airway

units, where each airway is divided into two airways of the subsequent generation

leading to 2n compartments (see Figure 2.2 for a four-compartment model).
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Figure 2.2: Four-compartment lung model.

Let ci, i = 1, 2, . . . , 2n, denote the compliance of each compartment and let Rin
j,i

(resp., Rex
j,i), i = 1, 2, . . . , 2j, j = 0, . . . , n, denote the resistance (to air flow) of the i-

th airway in the j-th generation during the inspiration (resp., expiration) period with

Rin
01 (resp., Rex

01) denoting the inspiration (resp., expiration) of the parent (i.e., 0-th

generation) airway. As in the single-compartment model we assume that a pressure

of pin(t) is applied during inspiration. Next, let xi, i = 1, 2, . . . , 2n, denote the lung
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volume in the i-th compartment so that the state equations for inspiration are given

by

Rin
n,iẋi(t) +

1

ci
xi(t) +

n−1∑
j=0

Rin
j,kj

kj2
n−j∑

l=(kj−1)2n−j+1

ẋl(t) = pin(t),

xi(0) = xini0, 0 ≤ t ≤ Tin, i = 1, 2, . . . , 2n, (2.10)

where

kj =

⌊
kj+1 − 1

2

⌋
+ 1, j = 0, . . . , n− 1, kn = i, (2.11)

and ⌊q⌋ denotes the floor function which gives the largest integer less than or equal

to the positive number q.

To further elucidate the inspiration state equation for a 2n-compartment model,

consider the four-compartment model shown in Figure 2.2 corresponding to a two

generation lung model. Let xi, i = 1, 2, 3, 4, denote the compartmental volumes.

Now, the pressure 1
ci
xi(t) due to the compliance in i-th compartment will be equal to

the difference between the external pressure applied and the resistance to air flow at

every airway in the path leading from the pressure source to the i-th compartment.

In particular, for i = 3 (see Figure 2.2),

1

c3
x3(t) = pin(t)−Rin

0,1[ẋ1(t) + ẋ2(t) + ẋ3(t) + ẋ4(t)]−Rin
1,2[ẋ3(t) + ẋ4(t)]−Rin

2,3ẋ3(t),

or, equivalently,

Rin
2,3ẋ3(t) +Rin

1,2[ẋ3(t) + ẋ4(t)] +Rin
0,1[ẋ1(t) + ẋ2(t) + ẋ3(t) + ẋ4(t)] +

1

c3
x3(t) = pin(t).

Next, we consider the state equation for the expiration process. As in the single-

compartment model we assume that the expiration process is passive and the external

pressure applied is pex(t). Following an identical procedure as in the inspiration case,

we obtain the state equation for expiration as

Rex
n,iẋi(t) +

n−1∑
j=0

Rex
j,kj

kj2
n−j∑

l=(kj−1)2n−j+1

ẋl(t) +
1

ci
xi(t) = pex(t),
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xi(Tin) = xexi0 , Tin ≤ t ≤ Tex + Tin, i = 1, 2, . . . , 2n, (2.12)

where kj satisfies (3.5).

2.4. State Space Multicompartment Lung Model

In this section, we rewrite the state equations (3.3) and (3.6) for inspiration and

expiration, respectively, as a switched dynamical system. To describe the dynamics

of the multicompartment lung model in terms of a state space model, define the

state vector x , [x1, x2, · · · , x2n ]T, where xi denotes the lung volume of the i-th

compartment. Now, the state equation (3.3) for inspiration can be rewritten as

Rinẋ(t) + Cx(t) = pin(t)e, x(0) = xin0 , 0 ≤ t ≤ Tin, (2.13)

where C , diag[ 1
c1
, · · · , 1

c2n
] and

Rin ,
n∑

j=0

2j∑
k=1

Rin
j,k Zj,k Z

T
j,k, (2.14)

where Zj,k ∈ R2n is such that the l-th element of Zj,k is 1 for all l = (k − 1)2n−j +

1, (k − 1)2n−j + 2, . . . , k2n−j, k = 1, . . . , 2j, j = 0, 1, . . . , n, and zero elsewhere.

Similarly, the state equation (3.6) for expiration can be rewritten as

Rexẋ(t) + Cx(t) = pex(t)e, x(Tin) = xex0 , Tin ≤ t ≤ Tex + Tin, (2.15)

where

Rex ,
n∑

j=0

2j∑
k=1

Rex
j,k Zj,k Z

T
j,k. (2.16)

Note that if Rin and Rex are invertible, then (2.13) and (2.15) can be equivalently

written as

ẋ(t) = Ainx(t) +Binpin(t), x(0) = xin0 , 0 ≤ t ≤ Tin, (2.17)

ẋ(t) = Aexx(t) + Bexpex(t), x(Tin) = xex0 , Tin ≤ t ≤ Tex + Tin, (2.18)
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where Ain
△
= −R−1

in C, Bin
△
= R−1

in e, Aex
△
= −R−1

ex C, and Bex , R−1
ex e.

The following proposition states and proves several important properties of Rin,

Rex, Ain, and Aex that are essential for the main results of this section.

Proposition 2.3. Consider the dynamical system (2.13) and (2.15). Then the

following statements hold:

i) Rin > 0 and Rex > 0.

ii) AT
inC + CAin < 0.

iii) AT
exC + CAex < 0.

iv) Rin and Rex are strictly ultrametric.

v) Ain and Aex are compartmental and Hurwitz, and Bin ≥≥ 0 and Bex ≥≥ 0.

Proof. Statement i) follows from (2.14) by noting

Rin ≥
2n∑
k=1

Rin
n,k Zn,k Z

T
n,k = diag[Rin

n,1, · · · , Rin
n,2n ] > 0,

since the l-th element of Zn,k is 1 if l = k and zero otherwise. Similarly, it can be

shown that Rex > 0.

Statements ii) and iii) follow immediately by noting that

AT
inC + CAin = −2CR−1

in C < 0

and

AT
exC + CAex = −2CR−1

ex C < 0.

To show iv), define

Rin
j

△
= εRin

n +
2j∑
k=1

Rin
j,kZj,kZ

T
j,k, j = 1, . . . , n− 1,
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where Rin
n

△
= diag[Rin

n,1, · · · , Rin
n,2n ] and ε =

1
n−1

. Note that it follows from Proposition

2.1 that, for each j ∈ {1, · · · , n}, Rin
j is strictly ultrametric, and hence, Rin =

∑n
j=1R

in
j

is strictly ultrametric. Similarly, it can be shown that Rex is strictly ultrametric.

Finally, to show v) note that since Rin and Rex are strictly ultrametric it follows

from Lemma 2.2 that Bin = R−1
in e ≥≥ 0, Bex = R−1

ex e ≥≥ 0, and −R−1
in and −R−1

ex are

essentially nonnegative. Hence, since C is a positive diagonal matrix, Ain and Aex

are essentially nonnegative. Now, since R−1
in e ≥≥ 0 and R−1

ex e ≥≥ 0 it follows that

AT
ine = −CR−1

in e ≤≤ 0 and AT
exe = −CR−1

ex e ≤≤ 0, which implies that Ain and Aex

are compartmental and, by ii) and iii), Ain and Aex are Hurwitz.

Remark 2.3. It follows from Proposition 2.3 that Rin and Rex are invertible.

Hence, Ain and Aex are well defined, which implies that the state equations for inspi-

ration and expiration given by (2.17) and (2.18), respectively, are well defined.

In this chapter, we assume that the inspiration process starts from a given initial

state xin0 followed by the expiration process where its initial state will be the final

state of the inspiration. An inspiration followed by the expiration is called a single

breathing cycle. We assume that each breathing cycle is followed by another breathing

cycle where the initial condition for the latter breathing cycle is the final state of the

former breathing cycle. Furthermore, we assume that the duration of inspiration is

Tin and that of expiration is Tex so that the total duration of a breathing cycle is

Tin + Tex. It is clear that this process generates a periodic dynamical system with a

period T , Tin + Tex. Furthermore, the system dynamics switch from inspiration to

expiration and back to inspiration. Hence, the dynamics for a breathing cycle can be

characterized by the periodic switched dynamical system G given by

ẋ(t) = A(t)x(t) +B(t)u(t), x(0) = xin0 , t ≥ 0, (2.19)
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where

A(t) = A(t+ T ), u(t) = u(t+ T ), t ≥ 0, (2.20)

A(t) =

{
Ain, 0 ≤ t < Tin,
Aex, Tin ≤ t < T,

(2.21)

B(t) =

{
Bin, 0 ≤ t < Tin,
Bex, Tin ≤ t < T,

(2.22)

u(t) =

{
pin(t), 0 ≤ t < Tin,
pex(t), Tin ≤ t < T.

(2.23)

The following result shows that the solution to the switched dynamical system

(2.19) is nonnegative, that is, for every xin0 ∈ R2n

+ , the solution x(t), t ≥ 0, to (2.19)

satisfies x(t) ≥≥ 0, t ≥ 0.

Theorem 2.2. Consider the switched dynamical system (2.19) where xin0 ≥≥ 0.

Then x(t) ≥≥ 0, t ≥ 0, where x(t) denotes the solution to (2.19).

Proof. Note that the solution to (2.19) over the time interval [0, T ] is given by

x(t) =

{
eAintxin0 +

∫ t

0
eAin (t−τ)Binpin(τ)dτ, 0 ≤ t ≤ Tin,

eAex(t−Tin)xex0 +
∫ t

Tin
eAex(t−τ)Bexpex(τ)dτ, Tin ≤ t ≤ T,

(2.24)

where xex0 = x(Tin). Now, since Ain and Aex are essentially nonnegative (by Propo-

sition 2.3), it follows from Lemma 2.1 that eAint ≥≥ 0 and eAext ≥≥ 0 for all t ≥ 0.

Hence, x(t) ≥≥ 0, 0 ≤ t ≤ T . Now, the nonnegativity of x(t) for all t ≥ 0 follows by

mathematical induction.

2.5. Limit Cycle Analysis of the Multicompartment Lung
Model

In this section, we characterize and analyze the stability of periodic orbits of the

switched dynamical system G given by (2.19). First, note that it follows from (2.24)

that

xex0 = x(Tin) = Γinx
in
0 + θ, (2.25)
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where

Γin , eAinTin , (2.26)

θ , eAinTin

∫ Tin

0

e−AintBinpin(t)dt. (2.27)

Furthermore, note that

x(T ) = Γexx
ex
0 + δ, (2.28)

where

Γex , eAexTex , (2.29)

δ , eAexT

∫ T

Tin

e−AextBexpex(t)dt. (2.30)

Next, let xinm denote the initial condition for the m-th inspiration (and hence the

m-th breathing cycle) and let xexm denote the initial condition for the m-th expiration,

that is, xinm = x(mT ) and xexm = x(mT + Tin), m = 0, 1, . . .. Hence, it follows from

(2.25) and (2.28) that

xin1 = Γeix
in
0 + Γexθ + δ, (2.31)

where Γei
△
= ΓexΓin. Similarly, it can be shown that

xex1 = Γiex
ex
0 + Γinδ + θ, (2.32)

where Γie
△
= ΓinΓex. More generally,

xinm+1 = Γeix
in
m + Γexθ + δ, m = 0, 1, . . . , (2.33)

xexm+1 = Γiex
ex
m + Γinδ + θ, m = 0, 1, . . . . (2.34)

The following proposition states and proves two key properties for Γei and Γie

which are useful in characterizing a periodic orbit for the switched dynamical system

G.
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Proposition 2.4. The following statements hold:

i) ΓT
exCΓex < C and ΓT

inCΓin < C.

ii) ΓT
eiCΓei < C and ΓT

ieCΓie < C.

Proof. It follows from Proposition 2.3 that

Tin(A
T
inC + CAin) < 0,

Tex(A
T
exC + CAex) < 0.

Hence, it follows from Proposition 2.2 that

eA
T
inTinCeAinTin < C,

eA
T
exTexCeAexTex < C,

which proves i).

To prove ii), pre- and post- multiply the first inequality of i) by ΓT
in and Γin,

respectively, to obtain

ΓT
inΓ

T
exCΓexΓin ≤ ΓT

inCΓin < C,

where the last inequality follows from i). This establishes the first inequality of ii).

The second inequality follows in an identical manner.

For the next result, define x̂in
△
= (I−Γei)

−1(Γexθ+δ) and x̂ex
△
= (I−Γie)

−1(Γinδ+θ).

Proposition 2.5. Consider the switched dynamical system G given by (2.19).

Then, for every xin0 ∈ R2n

+ , the following statements hold:

i) limm→∞ xinm = x̂in and limm→∞ xexm = x̂ex.

24



ii) For every t ∈ [0, Tin],

lim
m→∞

x(t+mT ) = eAintx̂in +

∫ t

0

eAin(t−τ)Binpin(τ)dτ,

and, for every t ∈ [Tin, T ],

lim
m→∞

x(t+mT + Tin) = eAextx̂ex +

∫ t

0

eAex(t−τ)Bexpex(τ + Tin)dτ.

Proof. It follows from ii) of Proposition 2.4 that Γei and Γie are Schur, and hence,

limm→∞ Γm
ei = 0 and limm→∞ Γm

ie = 0. Furthermore, (I − Γei)
−1 and (I − Γie)

−1 exist

and are given by

(I − Γei)
−1 =

∞∑
j=0

Γj
ei, (I − Γie)

−1 =
∞∑
j=0

Γj
ie.

Next, it follows from (2.33) and (2.34) that

xinm = Γm
eix

in
0 +

m−1∑
j=0

Γj
ei(Γexθ + δ),

xexm = Γm
iex

ex
0 +

m−1∑
j=0

Γj
ie(Γinδ + θ),

which, by taking limits, yields i). Now, ii) follows from i) and (2.24).

Remark 2.4. It follows from Proposition 2.5 that the individual compartmental

volumes, and hence the total volume, converge to the steady-state end-inspiratory and

end-expiratory values of (I − Γei)
−1(Γexθ + δ) and (I − Γie)

−1(Γinδ + θ), respectively.

Next, let x̂
△
= (I − Γei)

−1(Γexθ + δ) and define the orbit

Ox̂
△
= {x ∈ R2n

+ : x = s(t, x̂), where s(t, x̂) is the solution to (2.19)}. (2.35)

With xin0 = x̂ note that xinm = x̂, m = 1, 2, . . ., or, equivalently, x(mT ) = x̂, m =

1, 2, . . ., which implies that Ox̂ is a periodic orbit of (2.19). The following theorem

presents one of the main results of this section.
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Theorem 2.3. Consider the switched dynamical system G given by (2.19). Then

the periodic orbit Ox̂ of G generated by x(0) = x̂ = (I − Γei)
−1(Γexθ + δ) is globally

asymptotically stable.

Proof. Note that for the periodic orbit Ox̂ generated by the point x̂ = (I −

Γei)
−1(Γexθ + δ), the Poincaré map is given by

z(k + 1) = s(T, z(k)) = Γeiz(k) + Γexθ + δ, z(0) = xin0 , k ∈ Z+. (2.36)

Since Γei is Schur (by Proposition 2.4) it follows that x̂ is an asymptotically stable

fixed point of (2.36). Hence, it follows from Theorem 2.1 that Ox̂ is asymptotically

stable.

Next, let ε > 0 be such that dist(s(t, x0),Ox̂) → 0 for all x0 ∈ D and dist(x0,Ox̂) <

ε. (The existence of such an ε is guaranteed since Ox̂ is asymptotically stable.)

Now, it follows from i) of Proposition 2.5 that there exists m ∈ Z+ such that

dist(s(mT, xin0 ),Ox̂) ≤ ∥s(mT, xin0 )− x̂∥ < ε. Hence,

lim
t→∞

dist(s(t, xin0 ),Ox̂) = lim
t→∞

dist(s(t−mT, s(mT, xin0 )),Ox̂) = 0,

establishing global asymptotic stability of Ox̂.

Remark 2.5. Note that Theorem 2.3 is valid for arbitrary nonnegative func-

tions (possibly discontinuous) pin(t) and pex(t) as long as
∫ Tin

0
e−AintBinpin(t)dt and∫ T

Tin
e−AextBexpex(t)dt are finite. In the case where pin(t) = αt + β and pex(t) = γ for

some positive constants α, β, and γ, θ and δ are given by

θ = A−2
in [(αI + βAin)(e

AinTin − I)− αAinTin]Bin,

δ = γA−1
ex (e

AexTex − I)Bex.

The following result provides a generalization to Theorem 2.3.
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Theorem 2.4. Consider the switched dynamical system G given by (2.19). Let

x(t) and y(t), t ≥ 0, denote the solutions to (2.19) with initial conditions x(0) ∈ R2n

+

and y(0) = x̂. Then, x(t) → y(t) as t→ ∞.

Proof. Let e(t) , x(t)− y(t) so that

ė(t) = A(t)e(t), e(0) = x(0)− x̂, t ≥ 0. (2.37)

Now, consider the Lyapunov function candidate V : R2n → R given by V (e) = eTCe

so that the Lyapunov derivative of V (e) along the trajectories of (2.37) is given by

V̇ (e(t)) = eT(t)[AT(t)C + CA(t)]e(t)

≤ max{−2eT(t)CR−1
in Ce(t),−2eT(t)CR−1

ex Ce(t)}

≤ −2ηeT(t)e(t), t ≥ 0,

where η , min{λmin(CR
−1
in C), λmin(CR

−1
ex C)}, which implies that e(t) → 0 as t→ ∞.

Remark 2.6. Note that Theorem 2.4 shows that the periodic solution given by

Ox̂ is globally asymptotically stable (in the sense of stability of motion), and hence,

Ox̂ is orbitally stable strengthening the conclusion of Theorem 2.3.

Remark 2.7. Note that the error dynamics e(t), t ≥ 0, given by (2.37) is a

switched dynamical system where each of the switched systems is a linear dynamical

system, and V (e) = eTCe is a common Lyapunov function for both linear systems.

2.6. A Regular Dichotomy Model

In this section, we present results for a special class of models with a dichotomy

architecture. Specifically, we assume that the bronchial tree has a regular dichotomy
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structure [68], that is, for a given branch generation all airflow resistances at the air-

way units are equal, and hence, for an n-generation model (2n-compartment model),

Rin
j,k = R̂in

j and Rex
j,k = R̂ex

j , k = 1, 2, . . . , 2j, j = 0, 1, . . . , n, where R̂in
j > 0 and

R̂ex
j > 0, j = 0, . . . , n. Furthermore, we assume that ck = ĉ, k = 1, . . . , 2n, that is, the

compliance of each compartment is equal. In this case, it can be shown that C = 1
ĉ
I2n

and

Rin =
n∑

j=0

R̂in
j

(
I2j ⊗ e2n−jeT2n−j

)
, (2.38)

Rex =
n∑

j=0

R̂ex
j

(
I2j ⊗ e2n−jeT2n−j

)
, (2.39)

so that Ain = −1
ĉ
R−1

in , Bin = R−1
in e, Aex = −1

ĉ
R−1

ex , and Bex = R−1
ex e. Furthermore, note

that Rine = 2nR̂ine and Rexe = 2nR̂exe, where R̂in ,
∑n

j=0

R̂in
j

2j
and R̂ex ,

∑n
j=0

R̂ex
j

2j
,

so that Bin = 1

2nR̂in
e, Bex =

1

2nR̂ex
e, and

eAin(Tin−t)Bin =
1

2nR̂in

e
− (Tin−t)

ĉ2nR̂in e. (2.40)

Hence,

θ =
e
− Tin

ĉ2nR̂in

2nR̂in

∫ Tin

0

e
t

ĉ2nR̂in papp(t)dt e. (2.41)

Now, using (2.41) it can be shown that x̂in is of the form γe, where γ > 0, and hence,

the limit cycle Ox̂ ⊂ {γe : γ ≥ 0}. Thus, it follows that the limiting behavior of a

regular dichotomy lung model exhibits equipartioning of the total volume, that is,

xi(t) → xj(t) as t→ ∞ for all i, j = 1, 2, . . . , 2n.

Next, we provide a relation between m-generation and n-generation regular di-

chotomy models, where m < n. Let R̂in
m,j and R̂ex

m,j denote the resistances to airflow

at a j-th generation airway unit, let ĉm denote the compliance of each compartment,

and let xmi denote the i-th compartmental volume in an m-generation model. Here,

we assume that

xmi =
L∑

j=1

xn(i−1)L+j, i = 1, . . . ,M, (2.42)
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where L , 2n−m and M , 2m, that is, each compartment of m-generation model is

equivalent to L compartments of the n-generation model so that the total volumes in

both models are equal. Note that (2.42) may be written as

xm = (IM ⊗ eTL)x
n, (2.43)

where xm = [xm1 , . . . , x
m
M ] and xn = [xn1 , . . . , x

n
N ], and where N , 2n.

Now, consider the n-generation state equation for inspiration given by

Rn
inẋ

n(t) +
1

ĉn
xn(t) = pin(t)eN , xn(0) = xnin,0, 0 ≤ t ≤ Tin, (2.44)

where

Rn
in =

n∑
j=0

R̂in
n,j(I2j ⊗ e2n−jeT2n−j). (2.45)

In this case, it can be shown that

(IM ⊗ eTL)(I2j ⊗ e2n−jeT2n−j) =

{
2L(I2j ⊗ e2m−jeT2m−j), j < m
2n−j(IM ⊗ eTL), j ≥ m.

(2.46)

Now, pre-multiplying (2.45) by (IM ⊗ eTL) and using (2.43) and (2.46) yields

m−1∑
j=0

2LR̂in
n,j(I2j ⊗ e2n−jeT2n−j)ẋn(t) +

n∑
j=m

2n−jR̂in
n,jẋ

m(t) +
1

ĉn
xm(t) = 2Lpin(t)eM .

(2.47)

Next, note that (I2j ⊗ e2m−jeT2n−j)ẋn(t) = (I2j ⊗ e2m−jeT2m−j)ẋm(t) so that (2.47)

can be written as

m−1∑
j=0

R̂in
n,j(I2j ⊗e2m−jeT2m−j)ẋm(t)+

n∑
j=m

2m−jR̂in
n,jẋ

m(t)+
1

2Lĉn
xm(t) = pin(t)eM . (2.48)

Comparing (2.48) with the m-generation model given by

Rm
in ẋ

m(t) +
1

ĉm
xm(t) = pin(t)eM , (2.49)

yields ĉm = 2n−mĉn and

Rm
in =

m−1∑
j=0

R̂in
n,j(I2j ⊗ e2m−jeT2m−j) +

n∑
j=m

2m−jR̂in
n,jIM ,
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or, equivalently,

R̂in
m,j = R̂in

n,j, j = 0, 1, . . . ,m− 1, (2.50)

R̂in
m,m =

n∑
j=m

R̂in
n,j

2j−m
. (2.51)

Similarly, it can be shown that

R̂ex
m,j = R̂ex

n,j, j = 0, 1, . . . ,m− 1, (2.52)

R̂ex
m,m =

n∑
j=m

R̂ex
n,j

2j−m
. (2.53)

2.7. A General Tree Structure Model

In this section, we extend the model presented in Sections 2.3–2.5 to the case where

the bronchial tree has a general tree architecture [27,28,34]. The general tree structure

includes the regular and irregular dichotomy [68]. Specifically, let the bronchial tree be

represented by a weighted directed tree G = (V , E , R), where each vertex corresponds

to a branching point of an airway unit or the terminal compartment (alveolus) of

the lung. In this case, the trachea corresponds to the root v1 of the tree and all the

alveoli correspond to the leaves of the tree. Every edge, (vl, vm) ∈ E corresponds to

an airway unit and R(l,m), the weight of the edge, corresponds to the resistance of the

airway unit; we use R(l,m) = Rin
l,m and R(l,m) = Rex

l,m for resistance during inspiration

and expiration, respectively.

Let L , {vi ∈ V : vi is a leaf of G} and let the number of leaves of G (or,

equivalently, compartments of the lung) be n so that L = {vi1 , vi2 , . . . , vin}, where

ik ∈ {1, 2, . . . , N}, k = 1, 2, . . . , n, and N is the number of vertices of the graph.

To develop the dynamical model for the inspiration process, let ck, k = 1, 2, . . . , n,

denote the compliance of each compartment, and let xk, k = 1, 2, . . . , n, denote the

lung volume in the k-th compartment so that the state equations for inspiration are
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given by

1

ck
xk(t) +

∑
(vl,vm)∈Pk

Rin
l,m

∑
vij∈Ll,m

ẋj(t) = pin(t), xi(0) = xink0, 0 ≤ t ≤ Tin,

k = 1, 2, . . . , n, (2.54)

where

Pk , {(vl, vm) ∈ E : (vl, vm) belongs to the directed path from the root of G to vik}

(2.55)

and, for each l,m ∈ {1, . . . , N} such that (vl, vm) ∈ E ,

Ll,m , {vik ∈ L : there exits a directed path from vm to vik , k = 1, . . . , n}. (2.56)

Next, let x , [x1, . . . , xn]
T so that (2.54) can be written as

Rinẋ(t) + Cx(t) = pin(t)e, x(0) = xin0 , 0 ≤ t ≤ Tin,

where C , diag[ 1
c1
, . . . , 1

cn
] and

Rin =
∑

(vl,vm)∈E

Rin
l,mZl,mZ

T
l,m, (2.57)

where Zl,m ∈ Rn is such that the k-th eletment of Zl,m is 1 if vik ∈ Ll,m and 0

otherwise.

An identical procedure yields the state equations for expiration given by

Rexẋ(t) + Cx(t) = pex(t)e, x(Tin) = xex0 , Tin ≤ t ≤ T, (2.58)

where

Rex =
∑

(vl,vm)∈E

Rex
l,mZl,mZ

T
l,m. (2.59)

Note that it can be easily shown that Rin > 0 and Rex > 0 and it follows from (2.57),

(2.59), and Proposition 2.1 that Rin and Rex are strictly ultrametric. Hence, for a
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Figure 2.3: Five-compartment tree structure model.

general tree structure model all of the results of Sections 2.4 and 2.5 are valid with

Rin and Rex given by (2.57) and (2.59), respectively.

To illustrate the general tree structure lung model, consider the five-compartment

model shown in Figure 2.3. Here, the bronchial tree is represented by a weighted

directed tree G = (V , E , R) consisting of nine nodes V = {v1, v2, . . . , v9} and eight

edges E = {(v1, v2), (v2, v3), (v2, v4), (v3, v5), (v3, v6), (v3, v7), (v4, v8), (v4, v9)}. In this

case, the set of leaves L = {v5, v6, . . . , v9} corresponds to the five compartments of the

lung. Let vik = vk+4, k = 1, . . . , 5. Now, the pressure 1
ck
xk(t) due to the compliance

in k-th compartment will be equal to the difference between the external pressure

applied and the resistance to air flow at every airway in the path leading from the

pressure source (the root v1) to the k-th compartment. In particular, for k = 3 (see

Figure 2.3),

1

c3
x3(t) = pin(t)−Rin

1,2[ẋ1(t) + ẋ2(t) + ẋ3(t) + ẋ4(t) + ẋ5(t)]

−Rin
2,3[ẋ1(t) + ẋ2(t) + ẋ3(t)]−Rin

3,7ẋ3(t),
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or, equivalently,

1

c3
x3(t) +

∑
(vl,vm)∈P3

Rin
l,m

∑
vij∈Ll,m

ẋj(t) = pin(t), (2.60)

where

P3 = {(v1, v2), (v2, v3), (v3, v7)},

L1,2 = {v5, v6, v7, v8, v9},

L2,3 = {v5, v6, v7},

L3,7 = {v7}.

2.8. Direct Adaptive Control for Switched Linear
Time-Varying Systems

In this section, we consider the problem of adaptive tracking of uncertain lin-

ear time-varying switching systems. Specifically, consider the controlled uncertain

switched linear time-varying system G given by

ẋp(t) = Ap(t)xp(t) +Bp(t)u(t), xp(0) = xp0, t ≥ 0, (2.61)

where xp(t) ∈ Rn, t ≥ 0, is the state vector, u(t) ∈ Rp, t ≥ 0, is the control input,

and Ap(t) ∈ Rn×n, t ≥ 0, and Bp(t) ∈ Rn×p, t ≥ 0, are unknown time-varying matri-

ces. The control input u(·) in (2.61) is restricted to the class of admissible controls

consisting of measurable functions such that u(t) ∈ Rp, t ≥ 0. Furthermore, for the

uncertain linear time-varying system G, we assume that Ap(·) and Bp(·) are piecewise

continuous functions and we assume that the required properties for the existence and

uniqueness of solutions are satisfied; that is, Ap(·), Bp(·), and u(·) satisfy sufficient

regularity conditions such that (2.61) has a unique solution forward in time.

Next, consider a reference model given by

ẋm(t) = Am(t)xm(t) +Bm(t)r(t), xm(0) = xm0, t ≥ 0, (2.62)
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where xm(t) ∈ Rn, t ≥ 0, is the state vector, r(t) ∈ Rp, t ≥ 0, is the reference input,

and Am(t) ∈ Rn×n, t ≥ 0, and Bm(t) ∈ Rn×p, t ≥ 0, are known matrices. Moreover,

let Am(t), t ≥ 0, satisfy

AT
m(t)Cm + CmAm(t) ≤ −εmI, t ≥ 0, (2.63)

where εm > 0 and Cm ∈ Rn×n is positive definite. Furthermore, we assume that Am(·)

and Bm(·) are piecewise continuous and are such that (2.62) has a unique solution for

all t ≥ 0 and xm(t) is uniformly bounded for all xm0 ∈ Rn and t ≥ 0.

For the next result, we assume that there exist a positive-definite matrixQ∗ ∈ Rp×p

and a matrix Θ∗ ∈ Rp×n such that the compatibility conditions

Bp(t)Q
∗ = Bm(t), t ≥ 0, (2.64)

Ap(t) +Bp(t)Θ
∗ = Am(t), t ≥ 0, (2.65)

are satisfied.

Theorem 2.5. Consider the uncertain linear time-varying system G given by

(2.61) and the reference model given by (2.62), and assume the compatibility condi-

tions (2.64) and (2.65) hold. Then the adaptive feedback control law

u(t) = Θ(t)xp(t) +Q(t)r(t), (2.66)

where Θ(t) ∈ Rp×n, t ≥ 0, and Q(t) ∈ Rp×p, t ≥ 0, with updated laws

Θ̇(t) = −BT
m(t)Cme(t)x

T
p (t)ΓΘ, Θ(0) = Θ0, t ≥ 0, (2.67)

Q̇(t) = −BT
m(t)Cme(t)r

T(t)ΓQ, Q(0) = Q0, (2.68)

where ΓΘ ∈ Rn×n and ΓQ ∈ Rp×p are positive definite and e(t) , xp(t) − xm(t),

guarantees that the solution (xp(t),Θ(t), Q(t)) of the closed-loop system given by

(2.61), (2.62), (2.66), (2.67), and (2.68) is uniformly bounded for all (xp0,Θ0, Q0) ∈

Rn × Rp×n × Rp×p and t ≥ 0, and xp(t) → xm(t) as t→ ∞.
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Proof. Note that with u(t), t ≥ 0, given by (2.66) it follows from (2.61) that

ẋp(t) = Ap(t)xp(t) +Bp(t)Θ(t)xp(t) +Bp(t)Q(t)r(t), xp(0) = xp0, t ≥ 0, (2.69)

or, equivalently, using (2.64) and (2.65),

ẋp(t) = Ap(t)xp(t) +Bp(t)[Θ
∗ +Θ(t)−Θ∗]xp(t) + Bp(t)[Q

∗ +Q(t)−Q∗]r(t)

= [Ap(t) + Bp(t)Θ
∗]xp(t) + Bp(t)[Θ(t)−Θ∗]xp(t) +Bp(t)Q

∗r(t)

+Bp(t)[Q(t)−Q∗]r(t)

= Am(t)xp(t) +Bm(t)r(t) +Bp(t)[Θ(t)−Θ∗]xp(t) +Bp(t)[Q(t)−Q∗]r(t)

= Am(t)xp(t) +Bm(t)r(t) +Bp(t)Φ
T(t)xp(t) + BpΨ

T(t)(t)r(t),

xp(0) = x0, t ≥ 0, (2.70)

where ΦT(t) , Θ(t) − Θ∗ and ΨT(t) , Q(t) − Q∗. Now, it follows from (2.62) and

(2.70) that

ė(t) = Am(t)e(t) + Bp(t)Φ
T(t)xp(t) +Bp(t)Ψ

T(t)r(t), e(0) = xp0 − xm0,

t ≥ 0. (2.71)

To show uniform boundedness of the closed-loop system (2.67), (2.68), and (2.71)

consider the continuously differentiable function

V (e,Φ,Ψ) = eTCme+ tr Γ−1
Q ΨQ∗−1ΨT + tr Γ−1

Θ ΦQ∗−1ΦT, (2.72)

and note that V (0, 0, 0) = 0. Since Cm,ΓQ,ΓΘ, andQ
∗ are positive definite, V (e,Ψ,Φ)

> 0 for all (e,Φ,Ψ) ̸= (0, 0, 0). In addition, V (e,Φ,Ψ) is radially unbounded. Now,

using (2.67) and (2.68), it follows that the derivative of V (·, ·, ·) along the closed-loop

system trajectories is given by

V̇ (e(t),Φ(t),Ψ(t)) = eT(t)[AT
m(t)Cm + CmAm(t)]e(t) + 2eT(t)CmBp(t)Φ

T(t)xp(t)
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+2eT(t)CmBp(t)Ψ
T(t)r(t) + 2tr Γ−1

Θ Φ(t)Q∗−1Φ̇T(t)

+2tr Γ−1
Q Ψ(t)Q∗−1Ψ̇T(t)

= eT(t)[AT
m(t)Cm + CmAm(t)]e(t) + 2eT(t)CmBp(t)Φ

T(t)xp(t)

+2eT(t)CmBp(t)Ψ
T(t)r(t)− 2tr Ψ(t)Q∗−1BT

m(t)Cme(t)r
T(t)

−2tr Φ(t)Q∗−1BT
m(t)Cme(t)x

T
p (t)

= eT(t)[AT
m(t)Cm + CmAm(t)]e(t)

≤ −εmeT(t)e(t), t ≥ 0. (2.73)

Hence, it follows from Corollary 2.4 of [21, pp. 68] that (e(t),Φ(t),Ψ(t)) is uniformly

bounded for all t ≥ 0, and hence, (xp(t),Θ(t), Q(t)) is uniformly bounded for all

(xp0,Θ0, Q0) ∈ R2n × Rp×2n × Rp×p and t ≥ 0.

Finally, with W1(e,Φ,Ψ) = W2(e,Φ,Ψ) = V (e,Φ,Ψ) and W (e,Φ,Ψ) = εme
Te,

it follows from Theorem 2.5 of [21] that (e(t),Φ(t),Ψ(t)) → R as t → ∞, where

R , {(e,Φ,Ψ) : W (e,Φ,Ψ) = 0} = {(e,Φ,Ψ) : e = 0}. In particular, note that

Ẇ (e(t),Φ(t),Ψ(t)) = 2εme
Tė = 2εme

T(t)[Am(t)e(t) +Bp(t)Φ
T(t)xp(t)

+Bp(t)Ψ
T(t)r(t)] (2.74)

is bounded for all t ≥ 0, and hence, all conditions of Theorem 2.5 of [21, pp. 54] are

satisfied proving that e(t) → 0 or, equivalently, xp(t) → xm(t) as t→ ∞.

Remark 2.8. Although the form of the adaptive control law given in Theorem

2.5 is identical to that of the standard model reference adaptive controllers provided in

the literature (see, for example, [51]), the dynamics of system considered in Theorem

2.5 are not Lipschitz continuous, and hence, standard proofs involving Barbalat’s

lemma do not hold. Consequently, Theorem 2.5 requires the more general result

given by Theorem 2.5 of [21].
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Remark 2.9. It is important to note that the adaptive laws (2.67) and (2.68)

do not require explicit knowledge of Q∗ or Θ∗. Furthermore, no specific structure

on the uncertain dynamics Ap(·) and Bp(·) is required as long as the compatibility

conditions (2.64) and (2.65) are satisfied.

2.9. Direct Adaptive Control for the Compartment Lung
Model

In this section, we demonstrate the utility of the proposed direct adaptive control

framework for the multicompartmental lung model developed in Section 2.4. First,

we choose the reference model (2.62) to correspond to a respiratory system producing

a plausible breathing pattern. Specifically, let Am(t) = −R−1
m (t)Cm and Bm(t) =

R−1
m (t)e, where

Rm(t) =

{
Rin m, 0 ≤ t < Tin,
Rex m, Tin ≤ t < T,

(2.75)

and where Rm(t) = Rm(t + T ), t > T . Here, Rin m, Rex m, Cm, and r(t) are chosen

appropriately to obtain the desirable breathing pattern. It follows from Theorem 2.3

that xm(t) converges to a stable limit cycle, and hence, xm(t), t ≥ 0, is uniformly

bounded.

Next, we assume that the switched linear time-varying system (2.61) is such that

Ap(t) = −R−1
p (t)Cp and Bp(t) = R−1

p (t)e, where

Rp(t) =

{
Rin p, 0 ≤ t < Tin,
Rex p, Tin ≤ t < T,

(2.76)

and where Rp(t) = Rp(t+ T ), t > T, so that (2.61) has the form of a lung mechanics

model. Here, we assume that Rin p, Rex p, and Cp are unknown and we use Theorem

2.5 to design an adaptive controller u(t), t ≥ 0, such that xp(t) → xm(t) as t→ ∞.

In order to apply Theorem 2.5, we need to show that the compatibility conditions

(2.64) and (2.65) hold. The following proposition provides sufficient conditions under
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which (2.64) and (2.65) hold for the compartmental lung model. Note that in this

case p = 1.

Proposition 2.6. Let W
△
= Rin pR

−1
in m. Assume that the following conditions

hold:

i) Rin pR
−1
in m = Rex pR

−1
ex m.

ii) There exists a positive scalar Q∗ such that We = Q∗e.

iii) There exists Θ∗ ∈ R1×2n such that Cp =WCm + eΘ∗.

Then (2.64) and (2.65) hold.

Proof. The proof follows by noting that i) and ii) imply (2.64) holds, while i)

and iii) imply (2.65) holds.

Remark 2.10. In the absence of switching, conditions ii) and iii) are standard

for model reference adaptive control [51]. Condition i) is an additional condition that

ensures Theorem 2.5 holds for the switching periodic lung mechanics model.

2.10. Numerical Simulations of a Four-Compartment Model

In this section, we numerically integrate (2.19) to illustrate convergence of the

trajectories to a stable limit cycle. Here, we assume that the bronchial tree has a

regular dichotomy (see Section 2.6). Anatomically the human lung has around 24

generations of airway units. A typical value for lung compliance is 0.1 ℓ/cm H2O,

that is, ĉ0 = 0.1 ℓ/cm H2O. (Note that respiratory pressure is measured in terms of

centimeters of water pressure.) The airway resistance varies with the branch genera-

tion and typical values can be found in [26]. Furthermore, the expiratory resistances
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will be higher than the inspiratory resistance by a factor of 2 to 3. Here, we assume

that the factor is 2.5. Now, based on the values for the 24-generation model and using

(2.50)–(2.53) we can obtain m-generation models for all m = 0, . . . , 23.

Figures 2.4 and 2.5 provide the time responses of the compartmental volumes of a

1-generation and 2-generation lung models, respectively, where we assumed that the

applied pressure pin(t) = 20t + 5 cm H2O, pex(t) = 0 cm H2O, the inspiration time

Tin = 1 sec, the expiration time Tex = 2 sec, and the initial total volume xtot(0) =

0.25 ℓ. Figures 2.4 and 2.5 clearly show that the states of the 1-generation and 2-

generation models converge to limit cycles. Furthermore, after an initial transient

behavior, the steady-state volume in the lung is uniformly distributed over all the

compartments, that is, the steady-state value of the volume in each compartment

is equal (in both the 1-generation and 2-generation models). Finally, Figure 2.6

shows the phase portrait (x1(t) versus x2(t)) of the 1-generation model showing the

asymptotic convergence of the state to a limit cycle.
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Figure 2.4: Compartmental volumes versus time: 1-generation model.
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Figure 2.5: Compartmental volumes versus time: 2-generation model.
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Figure 2.6: x1(t) versus x2(t): 1-generation model.

Finally, we illustrative the adaptive controller framework of Section 2.8 on our

four-compartment lung mechanics model. The reference model is assumed to corre-
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spond to a bronchial tree which has a regular dichotomy architecture (see Section

2.6). Furthermore, we choose a reference model so that all the conditions of Propo-

sition 2.6, and hence, the compatibility conditions of Theorem 2.5 are satisfied. In

addition, we let Θ0 = [75, 75, 75, 75] and Q0 = 5. Note that no explicit knowledge of

the plant model is needed to generate the adaptive control input u(t), t ≥ 0, given

by (2.66) and the update laws given by (2.67) and (2.68). Figure 2.7 shows the error

xp(t)−xm(t) versus time t, verifying that xp(t) → xm(t) as t→ ∞. Here, we assumed

that the applied pressure for the reference model is r(t) = sin(20t) + 5 cm H2O and

the inspiration time is Tin = 1 sec and the expiration time is Tex = 2 sec. Figures 2.8

and 2.9 show the controlled phase portrait.
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Chapter 3

Optimal Determination of Respiratory Airflow

Patterns using a Nonlinear Multicompartment

Model for a Lung Mechanics System

3.1. Introduction

Early work on the optimality of respiratory control mechanisms using simple ho-

mogenous lung models dealt with the frequency of breathing. In particular, the

authors in [53,56,71] predicted the frequency of breathing by using a minimum work-

rate criterion. This work involves a static optimization problem and assumes that

the airflow pattern is a fixed sinusoidal function. The authors in [22, 71] developed

optimality criteria for the prediction of the respiratory airflow pattern with fixed in-

spiratory and expiratory phases of a breathing cycle. These results were extended

in [23] by considering a two-level hierarchical model for the control of breathing, in

which the higher-level criterion determines values for the overall control variables

of the optimal airflow pattern derived from the lower-level criteria, and the lower-

level criteria determine the airflow pattern with the respiratory parameters chosen by

minimizing the higher-level criterion.

Although the problem for identifying optimal respiratory patterns has been ad-

dressed in the literature (see [22,23,53,56,71] and the references therein), the models

on which these respiratory control mechanisms have been identified are predicated on
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a single compartment lung model with constant respiratory parameters. However, as

discussed in Chapter 2, the lungs, especially diseased lungs, are heterogeneous, both

functionally and anatomically, and are comprised of many subunits, or compartments,

that differ in their capacities for gas exchange. Realistic models should take this het-

erogeneity into account. In addition, the resistance to gas flow and the compliance

of the lung units are not constant but rather vary with lung volume. This is particu-

larly true for compliance. While more sophisticated models entail greater complexity,

since the models are readily presented in the context of dynamical systems theory,

sophisticated mathematical tools can be applied to their analysis. Compartmental

lung models are described by a state vector, whose components are the volumes of

the individual compartments.

A key question that arises in the consideration of nonlinear multicompartment

models is whether or not experimental data support a complex model. This question

can be addressed by considering an analogy to pharmakonetics. Specifically, the ear-

liest pharmacokinetic models were typically one compartment models. This reflected

the challenges of sampling and drug assay. These models were adequate for quanti-

fying drug disposition on a long time scale. For example, simple one-compartment

models were adequate in describing the total clearance or volume of distribution.

However, for even open-loop control of drug concentrations the one compartment

model was inadequate. More complex models (two- and three-compartment models)

were needed that accounted for distribution as well as elimination processes (see [1]

and the references therein).

Similarly, for adaptive control of mechanical ventilation, that is, more advanced

controller architectures than simple volume- or pressure-controlled ventilation, more

elaborate models are needed, especially when accounting for nonlinear compliance and

resistance and lung heterogeneity [10]. In the case of pharmacokinetics, the control

44



algorithm can only be as complex as the data supports. This is also true for control

of mechanical ventilation. Flow and pressure patterns in the airway are not simple

waveforms, although clinicians to date have modeled them as such. There is consid-

erable information embedded in these waveforms. The purpose of our work in this

chapter is to provide a mathematically rigorous and general framework developing

optimal determination of respiratory airflow patterns using a nonlinear multicom-

partment model for a lung mechanics system. It is a an easy task to simplify this

framework to be congruent with the granularity of the data. The reverse process,

however, is not possible without the development of a general framework.

In this chapter, we extend the work of [22, 71] to develop optimal3 respiratory

airflow patterns using a nonlinear multicompartment model for a lung mechanics sys-

tem. First, we extend the linear multicompartment lung model given in Chapter 2

(see also [10]) to address system model nonlinearities. Then, we extend the perfor-

mance functionals developed in [22, 71] for the inspiratory and expiratory breathing

cycles to derive an optimal airflow pattern using classical calculus of variations tech-

niques. In particular, the physiological interpretation of the optimality criteria involve

the minimization of work of breathing and lung volume acceleration for the inspira-

tory breathing phase, and the minimization of the elastic potential energy and rapid

airflow rate changes for the expiratory breathing phase. Finally, we numerically in-

tegrate the resulting nonlinear two-point boundary value problems to determine the

optimal airflow patterns over the inspiratory and expiratory breathing cycles.

3The usage of the word optimal throughout the chapter refers to an optimal solution of the
calculus of variations problems addressed in this chapter and not an optimal breathing pattern in
the sense of respiratory physiology.
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Figure 3.1: Single-compartment lung model.

3.2. A Nonlinear Multicompartment Model for Respiratory
Dynamics

In this section, we extend the linear multicompartment lung model given in Section

2.3 to develop a nonlinear model for the dynamic behavior of a multicompartment

respiratory system in response to an arbitrary applied inspiratory pressure. Here,

we assume that the bronchial tree has a dichotomy architecture [68]; that is, in

every generation each airway unit branches into two airway units of the subsequent

generation. In addition, we assume that the lung compliance is a nonlinear function

of lung volume.

First, for simplicity of exposition, we consider a single-compartment lung model

as shown in Figure 3.1. In this model, the lungs are represented as a single lung

unit with nonlinear compliance c(x) connected to a pressure source by an airway unit

with resistance (to air flow) of R. At time t = 0, a driving pressure pin(t) is applied

to the opening of the parent airway, where pin(t) is generated by the respiratory

muscles or a mechanical ventilator. This pressure is applied over the time interval

0 ≤ t ≤ Tin, which is the inspiratory part of the breathing cycle. At time t = Tin,

the applied airway pressure is released and expiration takes place passively, that is,

the external pressure is only the atmospheric pressure pex(t) during the time interval

Tin ≤ t ≤ Tin + Tex, where Tex is the duration of expiration.
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The state equation for inspiration (inflation of lung) is given by

Rinẋ(t) +
1

cin(x)
x(t) = pin(t), x(0) = xin0 , 0 ≤ t ≤ Tin, (3.1)

where x(t) ∈ R, t ≥ 0, is the lung volume, Rin ∈ R is the resistance to air flow

during the inspiration period, cin : R → R+ is a nonlinear function defining the lung

compliance at inspiration, xin0 ∈ R+ is the lung volume at the start of the inspiration

and serves as the system initial condition. Equation (3.1) is simply a pressure balance

equation where the driving pressure pin(t), 0 ≤ t ≤ Tin, applied to the compartment

is proportional to the volume of the compartment via the compliance and the rate of

change of the compartmental volume via the resistance. We assume that expiration

is passive due to the elastic stretch of the lung unit. During the expiration process,

the state equation is given by

Rexẋ(t) +
1

cex(x)
x(t) = pex(t), x(Tin) = xex0 , Tin ≤ t ≤ Tin + Tex, (3.2)

where x(t) ∈ R, t ≥ 0, is the lung volume, Rex ∈ R is the resistance to air flow

during the expiration period, cex : R → R+ is a nonlinear function defining the lung

compliance at expiration, and xex0 ∈ R+ is the lung volume at the start of expiration.

Next, we develop the state equations for inspiration and expiration for a 2n-

compartment model, where n ≥ 0. In this model, the lungs are represented as 2n

lung units which are connected to the pressure source by n generations of airway

units, where each airway is divided into two airways of the subsequent generation

leading to 2n compartments (see Figure 3.2 for a four-compartment model).

Let xi, i = 1, 2, . . . , 2n, denote the lung volume in the ith compartment, cini (xi)

(resp., cexi (xi)), i = 1, 2, . . . , 2n, denote the compliance at inspiration (resp., expira-

tion) of each compartment as a nonlinear function of the volume of ith compartment,

and let Rin
j,i (resp., R

ex
j,i), i = 1, 2, . . . , 2j, j = 0, . . . , n, denote the resistance (to air

flow) of the ith airway in the jth generation during the inspiration (resp., expiration)
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Figure 3.2: Four-compartment lung model.

period with Rin
01 (resp., R

ex
01) denoting the inspiration (resp., expiration) of the parent

(i.e., 0th generation) airway. As in the single-compartment model we assume that a

pressure of pin(t), t ≥ 0, is generated (by the inspiratory muscles) or applied (by a

mechanical ventilator) during inspiration.

Now, the state equations for inspiration are given by

Rin
n,iẋi(t) +

1

cini (xi(t))
xi(t) +

n−1∑
j=0

Rin
j,kj

kj2
n−j∑

l=(kj−1)2n−j+1

ẋl(t) = pin(t),

xi(0) = xini0, 0 ≤ t ≤ Tin, i = 1, 2, . . . , 2n, (3.3)

where cini (xi), i = 1, 2, . . . , 2n, are nonlinear functions of xi, i = 1, 2, . . . , 2n, given by

([14])

cini (xi) ,


aini1 + bini1xi, if 0 ≤ xi ≤ xini1 ,

aini2 , if xini1 ≤ xi ≤ xini2 ,

aini3 + bini3xi, if x
in
i2
≤ xi ≤ VT,

i = 1, . . . , 2n, (3.4)

where ainij , j = 1, 2, 3, and binij , j = 1, 3, are model parameters with bini1 > 0 and bini3 < 0,

xinij , j = 1, 2, are volume ranges wherein the compliance is constant, VT denotes tidal
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volume, and

kj =

⌊
kj+1 − 1

2

⌋
+ 1, j = 0, . . . , n− 1, kn = i, (3.5)

where ⌊q⌋ denotes the floor function which gives the largest integer less than or equal

to the positive number q. Figure 3.3 shows a typical piecewise linear compliance

function for inspiration. A similar compliance representation holds for expiration

which is also shown in Figure 3.3.
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x
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Figure 3.3: Typical inspiration and expiration compliance functions as function of
compartmental volumes.

To further elucidate the inspiration state equation for a 2n-compartment model,

consider the four-compartment model shown in Figure 3.2 corresponding to a two

generation lung model. Let xi, i = 1, 2, 3, 4, denote the compartmental volumes.

Now, the pressure 1
cini (xi(t))

xi(t) due to the compliance in ith compartment will be

equal to the difference between the driving pressure and the resistance to air flow at

every airway in the path leading from the pressure source to the ith compartment.
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In particular, for i = 3 (see Figure 3.2),

1

cin3 (x3(t))
x3(t) = pin(t)−Rin

0,1[ẋ1(t) + ẋ2(t) + ẋ3(t) + ẋ4(t)]−Rin
1,2[ẋ3(t) + ẋ4(t)]

−Rin
2,3ẋ3(t),

or, equivalently,

Rin
2,3ẋ3(t) +Rin

1,2[ẋ3(t) + ẋ4(t)] +Rin
0,1[ẋ1(t) + ẋ2(t) + ẋ3(t) + ẋ4(t)]

+
1

cin3 (x3(t))
x3(t) = pin(t).

Next, we consider the state equation for the expiration process. As in the single-

compartment model we assume that the expiration process is passive and the external

pressure applied is pex(t), t ≥ 0. Following an identical procedure as in the inspiration

case, we obtain the state equation for expiration as

Rex
n,iẋi(t) +

n−1∑
j=0

Rex
j,kj

kj2
n−j∑

l=(kj−1)2n−j+1

ẋl(t) +
1

cexi (xi(t))
xi(t) = pex(t),

xi(Tin) = xexi0 , Tin ≤ t ≤ Tex + Tin, i = 1, 2, . . . , 2n, (3.6)

where

cexi (xi) ,


aexi1 + bexi1 xi, if 0 ≤ xi ≤ xexi1 ,

aexi2 , if xexi1 ≤ xi ≤ xexi2 ,

aexi3 + bexi3 xi, if x
ex
i2

≤ xi ≤ VT,

i = 1, . . . , 2n, (3.7)

aexij , j = 1, 2, 3, and bexij , j = 1, 3, are model parameters with bexi1 > 0 and bexi3 < 0, xexij ,

j = 1, 2, are volume ranges wherein the compliance is constant, and kj is given by

(3.5).

Next, we provide a smooth (i.e., C∞) characterization of the nonlinear compliance

using sigmoidal functions [16]. Specifically, for inspiration, cini (xi) can be approxi-

mated as

cini (xi) ≈ aini2

(
S
(β)
a,b (xi)− S

(β)
c,d (xi)

)
, i = 1, . . . , 2n, (3.8)
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where a = −aini1
bini1

, b =
aini2
bini1

+a, c = −aini3
bini3

, d =
aini2
bini3

+c, S
(β)
a,b (xi) , 1

b−a
ln

(
σ
(−β)
b (xi)

σ
(−β)
a (xi)

)1/β

with

σ
(−β)
b (xi) , 1

1+e−β(xi−a) , and β > 0 is an approximation parameter. Figure 3.4 shows

the smoothed approximation of the piecewise linear compliance function cini (xi). A

similar approximation holds for cexi (xi) which is also shown in Figure 3.4.

xi

c
in i

(x
i
)

xi

c
in i

(x
i
)

xini1 xini2

xexi1 xexi2

Figure 3.4: Original and the smoothed compliance functions, β = 30.

Finally, we rewrite the state equations (3.3) and (3.6) for inspiration and expi-

ration, respectively, in vector-matrix state space form. Specifically, define the state

vector x , [x1, x2, . . . , x2n ]
T, where xi denotes the lung volume of the ith compart-

ment. Now, the state equation (3.3) for inspiration can be rewritten as

Rinẋ(t) + Cin(x(t))x(t) = pin(t)e, x(0) = xin0 , 0 ≤ t ≤ Tin, (3.9)

where e , [1, . . . , 1]T denotes the ones vector of order 2n, Cin(x) is a diagonal matrix
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function given by

Cin(x) , diag

[
1

cin1 (x1)
, . . . ,

1

cin2n(x2n)

]
(3.10)

and

Rin ,
n∑

j=0

2j∑
k=1

Rin
j,kZj,kZ

T
j,k, (3.11)

where Zj,k ∈ R2n is such that the l-th element of Zj,k is 1 for all l = (k − 1)2n−j +

1, (k − 1)2n−j + 2, . . . , k2n−j, k = 1, . . . , 2j, j = 0, 1, . . . , n, and zero elsewhere.

Similarly, the state equation (3.6) for expiration can be rewritten as

Rexẋ(t) + Cex(x(t))x(t) = pex(t)e, x(Tin) = xex0 , Tin ≤ t ≤ Tex + Tin, (3.12)

where

Cex(x) , diag

[
1

cex1 (x1)
, · · · , 1

cex2n(x2n)

]
, (3.13)

and

Rex ,
n∑

j=0

2j∑
k=1

Rex
j,k Zj,k Z

T
j,k. (3.14)

Finally, it follows from Proposition 2.3 in Section 2 that Rin and Rex are positive-

definite and, hence, Rin and Rex are invertible matrices.

3.3. Optimal Determination of Inspiratory and Expiratory
Airflow in Breathing

In this section, we use the respiratory dynamical system characterized by (5.32)

and (5.35) to develop an optimal model for predicting airflow patterns in breathing.

The optimization criteria used allows for the minimization of oxygen expenditure of

the respiratory muscles as well as rapid changes in the lung volume flow rate. The
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oxygen consumption of the lung muscles is mainly due to the work carried out by the

respiratory muscles to overcome the resistive forces and stretch the lung and chest

wall. In [69], this work is defined as PV , where P is the pressure driving inflation and

V is the lung unit volume. The efficiency of gas exchange in the lungs is related to

the volume acceleration, since rapid changes in lung volume can cause discomfort and

inefficacy of muscular contraction and control. Moreover, high volume acceleration

can result in overexpansion of the lung resulting in lung tissue rupture as well as

excessive work of breathing with subsequent ventilatory muscle fatigue.

In the ensuing discussion, we assume that the inspiration process starts from a

given initial state xin0 and is followed by the expiration process where its initial state

will be the final state of the inspiration. An inspiration followed by an expiration is

called a single breathing cycle. Furthermore, we assume that each breathing cycle is

followed by another breathing cycle where the initial condition for the latter breathing

cycle is the final state of the former breathing cycle. Since the respiratory process is

periodic, we need only focus on one breathing cycle.

The next result gives the optimal solution x∗(t), 0 ≤ t ≤ Tin, for the inspiratory

airflow breathing pattern using classical calculus of variations techniques.

Theorem 3.1. Consider the system model for inspiration given by (5.32). Let

the optimal air volume x∗(t), 0 ≤ t ≤ Tin, be given by the solution to the minimization

problem

Jin(x) =

∫ Tin

0

[
ẍT(t)ẍ(t) + α1pin(t)e

Tẋ(t)
]
dt, α1 ≥ 0, (3.15)

subject to the natural boundary conditions

x(0) = V0, ẋ(0) = 0, (3.16)

x(Tin) = V0 + VT, ẋ(Tin) = 0, (3.17)
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where V0 ∈ R2n is the end expiratory volume and VT ∈ R2n is the tidal volume. If

α1 > 0, then x∗(t), 0 ≤ t ≤ Tin, is given by

x∗(t) = d1 + d2t+ exp(
√
α1R

1/2
in t)d3 + exp(−

√
α1R

1/2
in t)d4, t ≥ 0, (3.18)

and if α1 = 0, then

x∗(t) = d1 + d2t+ d3t
2 + d4t

3, t ≥ 0, (3.19)

where d1, d2, d3, and d4 ∈ R2n are constant vectors determined by the boundary

conditions (3.16) and (3.17), and R
1/2
in denotes the (unique) positive-definite square

root of Rin.

Proof. First, note that pin(t)e, 0 ≤ t ≤ Tin, in (3.15) can be eliminated using the

state equation (5.32). Thus, the integrand of the performance criterion (3.15) can be

written as

Lin(x(t), ẋ(t), ẍ(t)) = ẍT(t)ẍ(t) + α1 [Rinẋ(t) + Cin(x(t))x(t)]
T ẋ(t)

= ẍT(t)ẍ(t) + α1

[
ẋT(t)Rinẋ(t) + xT(t)Cin(x)ẋ(t)

]
, α1 ≥ 0. (3.20)

The first variation of the performance criterion Jin(x) is given by

δJin(x
∗, δx) =

∫ Tin

0

δLin(x
∗(t), ẋ∗(t), ẍ∗(t))dt

=

∫ Tin

0

{(
∂Lin

∂x

)
δx(t) +

(
∂Lin

∂ẋ

)
δẋ(t) +

(
∂Lin

∂ẍ

)
δẍ(t)

}
dt

=

[
∂Lin

∂ẍ
δẋ+

(
∂Lin

∂ẋ
− d

dt

∂Lin

∂ẍ

)
δx

]Tin

0

+

∫ Tin

0

{(
∂Lin

∂x

)
− d

dt

(
∂Lin

∂ẋ

)
+

d2

dt2

(
∂Lin

∂ẍ

)}
δx(t)dt. (3.21)

Using the boundary conditions (3.16) and (3.17) it follows that δx(0) = δx(Tin) =

δẋ(0) = δẋ(Tin) = 0. Now, since Tin is fixed, it follows from the fundamental theorem

of the calculus of variations that the variation of Jin(x) must vanish on x∗; that is,
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the extremals optimizing the performance criterion Jin(x) satisfy the Euler-Lagrange

equation (
∂Lin

∂x

)T

− d

dt

(
∂Lin

∂ẋ

)T

+
d2

dt2

(
∂Lin

∂ẍ

)T

= 0. (3.22)

Next, using Cin(x) given by (5.33),(
∂Lin

∂x

)T

= α1Cin(x(t))ẋ(t) + α1C
′
in(x(t))Ẋ(t)x(t), 0 ≤ t ≤ Tin, (3.23)(

∂Lin

∂ẋ

)T

= 2α1Rinẋ(t) + α1Cin(x(t))x(t), 0 ≤ t ≤ Tin, (3.24)(
∂Lin

∂ẍ

)T

= 2ẍ(t), 0 ≤ t ≤ Tin, (3.25)

where C ′
in(x(t)) , diag

[
∂
∂xi

(
1

cini (xi(t))

)]
and Ẋ(t) , diag [ẋi(t)] , i = 1, . . . , 2n. Thus,

(3.22) yields the fourth-order differential equation

x(4)(t)− α1Rinx
(2)(t) = 0, 0 ≤ t ≤ Tin, (3.26)

where x(n)(t) , dnx(t)
dtn

, with boundary conditions given in (3.16) and (3.17). Now,

using standard analysis techniques, the solution x(t), 0 ≤ t ≤ Tin, to (3.26) satisfies

(3.18) if α1 > 0 and (3.19) if α1 = 0.

Remark 3.1. The vectors d1, d2, d3, and d4 in Theorem 4.1 can be uniquely de-

termined using the four boundary conditions given by (3.16) and (3.17). Specifically,

if α1 = 0, it can be shown that d1 = V0, d2 = 0, d3 =
3
T 2
in
VT, and d4 = − 2

T 3
in
VT. Hence,

in this case, ẋ(t) = d2 + 2d3t + 3d4t
2 = 6t

T 2
in
VT(1 − t

Tin
) ≥≥ 0, 0 ≤ t ≤ Tin, which

implies that the solution x∗(t), 0 ≤ t ≤ Tin, to (3.26) is increasing during inspiration,

and hence, V0i ≤ x∗i (t) ≤ V0i + VTi
, i = 1, . . . , 2n, where V0i , xi(t), and VTi

are the

ith components of V0, x(t), and VT, respectively. A similar result holds for the case

where α1 > 0.
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For the optimal breathing pattern problem in Theorem 3.1, we assume that the

respiratory parameters, that is, the tidal volume VT and the inspiratory period Tin,

are given. In fact, all these parameters adjust ventilation in such a way that the

chemical state of the blood is stabilized. The ventilatory demand is the input to

the system controlling respiratory muscles. The muscle control system selects the

breathing cycle pattern under varying metabolic and environmental conditions to

generate a proper airflow pattern. And the ventilatory demand can be satisfied by

this airflow pattern. Hence, there must exist interactions between the airflow pattern

and the overall respiratory parameters.

For example, to identify the inspiratory parameters, the authors in [24] proposed

a two-level hierarchical optimization problem with the higher level estimating inspira-

tory parameters and the lower level controlling the breathing. However, to understand

the interaction between the higher level and lower level, we need to model the chem-

ical state of the blood. This is further discussed in Chapter 6. In this chapter, we

only focus on solving the optimal breathing pattern for a given set of respiratory

parameters.

Next, we give the optimal solution x∗(t), Tin ≤ t ≤ Tin + Tex, for the expiratory

airflow breathing pattern.

Theorem 3.2. Consider the system model for expiration given by (5.35). Let the

optimal solution x∗(t), Tin ≤ t ≤ Tin+Tex, be given by the solution to the minimization

problem

Jex(x) =

∫ Tin+Tex

Tin

[
ẍT(t)ẍ(t) + α2p

2
ex(t)e

Te
]
dt, α2 ≥ 0, (3.27)

subject to the natural boundary conditions

x(Tin) = V0 + VT, ẋ(Tin) = 0, (3.28)

x(Tin + Tex) = V0, ẋ(Tin + Tex) = 0. (3.29)
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If α2 > 0, then x∗(t), Tin ≤ t ≤ Tin + Tex, satisfies

x(4)(t)− α2R
2
exx

(2)(t) + α2C
2
ex(x)x(t) + α2 [Cex(x)Rexẋ(t)−RexCex(x)ẋ(t)

+X(t)C ′
ex(x)Rexẋ(t)−RexC

′
ex(x)X(t)ẋ(t) +X(t)C ′

ex(x)Cex(x)x(t)] = 0, (3.30)

where X(t) , diag[xi(t)] and C
′
ex(x) , diag[ ∂

∂xi

(
1

cexi (xi)

)
], i = 1, . . . , 2n, and if α2 = 0,

then

x∗(t) = d1 + d2t+ d3t
2 + d4t

3, t ≥ 0, (3.31)

where d1, d2, d3, and d4 ∈ R2n are constant vectors determined by the four boundary

conditions (3.28) and (3.29).

Proof. Using (5.35), the integrand of the performance criterion (3.27) can be

written as

Lex(x(t), ẋ(t), ẍ(t))

= ẍT(t)ẍ(t) + α2 (pex(t)e)
T (pex(t)e)

= ẍT(t)ẍ(t) + α2 [Rexẋ(t) + Cex(x(t))x(t)]
T [Rexẋ(t) + Cex(x(t))x(t)]

= ẍT(t)ẍ(t) + α2

[
ẋT(t)R2

exẋ(t) + xT(t)C2
ex(x(t))x(t)

+2ẋT(t)RexCex(x(t))x(t)
]
, α2 > 0. (3.32)

Thus, the variation of Jex(x) on an extremal solution gives

δJex(x
∗, δx) =

∫ Tin+Tex

Tin

δLex(x
∗(t), ẋ∗(t), ẍ∗(t))dt

=

∫ Tin+Tex

Tin

{(
∂Lex

∂x

)
δx(t) +

(
∂Lex

∂ẋ

)
δẋ(t) +

(
∂Lex

∂ẍ

)
δẍ(t)

}
dt

=

[
∂Lex

∂ẍ
δẋ+

(
∂Lex

∂ẋ
− d

dt

∂Lex

∂ẍ

)
δx

]Tin+Tex

Tin

+

∫ Tin+Tex

Tin

{(
∂Lex

∂x

)
− d

dt

(
∂Lex

∂ẋ

)
+

d2

dt2

(
∂Lex

∂ẍ

)}
δx(t)dt

= 0. (3.33)
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Using the boundary conditions (3.28) and (3.29) it follows that δx(Tin) = δx(Tin +

Tex) = δẋ(Tin) = δẋ(Tin+Tex) = 0. Hence, the extremals optimizing the performance

criterion Jex(x) satisfy the Euler-Lagrange equation(
∂Lex

∂x

)T

− d

dt

(
∂Lex

∂ẋ

)T

+
d2

dt2

(
∂Lex

∂ẍ

)T

= 0. (3.34)

Now, using Cex(x) given by (5.36),(
∂Lex

∂x

)T

= α2

[
2C2

ex(x(t))x(t) + 2Cex(x(t))Rexẋ(t) + 2X(t)C ′
ex(x(t))Rexẋ(t)

+2X(t)C ′
ex(x(t))Cex(x(t))x(t)] , Tin ≤ t ≤ Tin + Tex, (3.35)(

∂Lex

∂ẋ

)T

= α2

[
2R2

exẋ(t) + 2RexCex(x(t))x(t)
]
, Tin ≤ t ≤ Tin + Tex, (3.36)(

∂Lex

∂ẍ

)T

= 2ẍ(t), Tin ≤ t ≤ Tin + Tex, (3.37)

which yields (3.30). Finally, in the case where α2 = 0, (3.30) collapses to x(4)(t) =

0, Tin ≤ t ≤ Tin + Tex, which satisfies (3.31).

Remark 3.2. In the case where α2 = 0, the vectors d1, d2, d3, and d4 in Theorem

3.2 can be uniquely determined using the four boundary conditions (3.28) and (3.29).

In particular, d1 = V0+VT+3βT 2
inTexVT+2βT 3

inVT, d2 = −β(6T 2
inVT+6TexTinVT), d3 =

β(3TexVT+6TinVT), and d4 = −2βVT, where β = 1/(3T 3
ex+12T 2

exTin+12TexT
2
in+4T 3

in).

Hence, ẋ(t) = d2 +2d3t+3d4t
2 = −6βVTt(Tin + Tex − t)− 6βVTt(t− Tin) ≤≤ 0, Tin ≤

t ≤ Tin + Tex, which implies that the solution x∗(t), Tin ≤ t ≤ Tin + Tex, is decreasing

during expiration, and hence, V0i ≤ x∗i (t) ≤ V0i + VTi
, i = 1, . . . , 2n. The case where

α2 > 0 involves the solution to (3.30), and hence, we have been unable to show that

x∗(t), Tin ≤ t ≤ Tin + Tex, is decreasing during expiration analytically. However, this

has been verified numerically.

The physiological interpretations of the performance criteria for inspiration and

expiration used in Theorem 3.1 and 3.2 are slightly different. In particular, the
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inspiratory criterion Jin(x) involves a weighted sum of squares of the lung volume

acceleration and the mechanical work performed by the inspiratory muscles. Alter-

natively, during the expiratory phase the respiratory muscles remain active in the

beginning of expiration since they continue their action by opposing expiration, and

hence, consume oxygen thereby performing negative work. Thus, mechanical work

alone is not a satisfactory criterion for describing control of breathing at rest. As

in [24], we assume that oxygen consumption of expiration correlates with the integral

square of the driving pressure. This assumption is supported in [49] which shows

that an index of average respiratory pressure can predict the total oxygen cost of

breathing. Hence, instead of mechanical work, we use the integral square of the ap-

plied pressure in the expiratory criterion Jex(x), which corresponds to minimizing the

mean standard potential energy in the lung.

It can be seen that the optimal solutions x∗(t), t ≥ 0, depend on the variables

Tin, Tex, V0, and VT through the boundary conditions. Moreover, the nonlinearities in

(3.30) are due to nonlinearities in the lung compliance Cex(x), which make analytical

solutions to (3.30) difficult to obtain. It is interesting to note that although the

optimal solutions x∗(t), Tin ≤ t ≤ Tin + Tex, to (3.30) during the expiration phase

depend on the nonlinear compliance of Cex(x), the optimal solutions x∗(t), 0 ≤ t ≤

Tin, to (3.26) during the inspiration phase are independent of the nonlinear system

compliance Cin(x). In the case where n = 0 (i.e., a single lung compartment model),

x(t) ∈ R, Rex ∈ R, and Cex(x) = Cex is a constant, (3.30) reduces to

x(4)(t)− α2R
2
exx

(2)(t) + α2C
2
exx(t) = 0. (3.38)

This case is extensively discussed in [24] wherein the authors characterize four different

solutions to (3.38) corresponding to α2 = 0, 0 < α2 < 4C2
ex/R

4
ex, α2 = 4C2

ex/R
4
ex, and

α2 > 4C2
ex/R

4
ex.
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3.4. Numerical Determination of Optimal Volume Trajecto-
ries

The optimal volume trajectories formulated in Section 4.3 result in two-point

nonlinear boundary-value problems. Numerical methods for solving such problems

include shooting methods [32] and steepest descent methods [33]. In this section, we

use the collocation method implemented by bvp4c in MATLABr [57] to numerically

integrate the differential equations (3.26) and (3.30) to obtain the optimal volume

trajectory x∗(t), t ≥ 0.

For our simulations we first consider a two-compartment lung model and use the

values for the lung compliance found in [14]. In particular, we set aini1 = 0.018 ℓ/cm

H2O, bini1 = 0.0233, aini2 = 0.025 ℓ/cm H2O, aini3 = 0.2532 ℓ/cm H2O, bini3 = −0.01,

xini1 = 0.3 ℓ, xini2 = 0.48 ℓ, aexi1 = 0.02 ℓ/cm H2O, bexi1 = 0.078, aexi2 = 0.038 ℓ/cm H2O,

aexi3 = 0.1025 ℓ/cm H2O, bexi3 = −0.15, xexi1 = 0.23 ℓ, xexi2 = 0.43 ℓ, i = 1, 2. Here,

we assume that the bronchial tree has a dichotomy structure (see Section 3.2). The

airway resistance varies with the branch generation and typical values can be found

in [26]. Furthermore, the expiratory resistance will be higher than the inspiratory

resistance by a factor 2 to 3. Here, we assume that the factor is 2.5.

For our simulation we assume that the inspiration time Tin = 2 sec and the

expiration time Tex = 3 sec. The two weighting parameters α1 and α2 differ from

person to person. Nominal values for the weighting parameters are α1 = 2.0l/sec3

cm H2O and α2 = 0.1l2/sec4 cm H2O, which correspond to spontaneous breathing at

rest [24]. Figure 3.5 shows the optimal air volume eTx∗(t), t ≥ 0, and the optimal

airflow rate eTẋ∗(t), t ≥ 0, given by the two-point nonlinear boundary-value problems

(3.22) and (3.34). Note that the airflow curve for inspiration is symmetric since the

nonlinearities in Cin(x) do not appear in (3.26). However, x∗(t), t ≥ 0, obtained using
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(3.30) during expiration involves Cex(x), and hence, the airflow curve is asymmetric.

Figure 3.6 shows the sensitivity of the optimal volume and airflow rate patterns to

changes in the parameters α1 and α2. As can be seen from the figure, the inspiratory

airflow rate is symmetric and the maximum value of the airflow rate decreases as

a function of increasing α1. Furthermore, the asymmetric pattern of the expiratory

airflow rate reflects the fact that the minimum value becomes steeper with increasing

α2. Specifically, if we set the weighting parameter α2 = 0, it follows from (3.30)

that the airflow curve for the expiration is given by a parabolic arc. The airflow pat-

terns in Figure 3.6 exhibit typical respiratory characteristics observed in spontaneous

breathing, that is, the inspiratory airflow rate curve is relatively flat and the expira-

tory airflow rate waveform is asymmetric with an initial trough, and quite similar to

“real” airflow signals [55].
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Figure 3.5: Volume and airflow rate patterns for the total lung compartments.

Figure 3.7 shows the driving pressure generated by the respiratory muscles using

the optimal air volume eTx∗(t), t ≥ 0. Figure 3.8 compares the optimal air volume

trajectory eTx∗(t), t ≥ 0, with a non-optimal air volume trajectory eTx(t), t ≥ 0,
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Figure 3.6: Volume and airflow rate patterns for different α1’s and α2’s.

generated by the linear pressure pin(t) = 20t + 5 cm H2O, t ∈ [0, Tin], and pex(t) = 0

cm H2O, t ∈ [Tin, Tin + Tex], [10]. Note that eTx∗(t), t ≥ 0, switches between the end

expiratory level eTV0 = 0.2l and the tidal volume eTVT1 = 1.2l. Figure 3.9 shows the

phase portrait of the optimal trajectories x∗1(t) and x
∗
2(t), and suboptimal trajectories

x1(t) and x2(t). Note that both sets of trajectories asymptotically converge to a limit

cycle, with the optimal solutions satisfying the boundary conditions given in (3.16),

(3.17), (3.28), and (3.29). Figure 3.10 compares the value of the total performance

criterion generated by the optimal air volume with the value of the total performance

criterion generated by the nonoptimal air volume.

Figure 3.11 shows the optimal air volume trajectories for a four-compartment

model with each air volume trajectory satisfying the boundary conditions given in

(3.16), (3.17), (3.28), and (3.29). For this simulation, the compliance parameters are

taken to be identical to those used for the two-compartment model with i = 1, 2, 3, 4,

and the values for airway resistances are generated using the results of [26].
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Figure 3.7: Pressure generated by optimal solution.

Finally, instead of characterizing the optimal airflow in breathing for the inspira-

tory and expiratory phases separately, we formulate a single optimization criterion

J (x) for an entire breathing cycle. Specifically, we assume that the volume at the

end of the inspiratory phase is unknown. Thus, considering the system models for

inspiration given by (5.32) and expiration given by (5.35), we solve for the optimal

air volume x∗(t), 0 ≤ t ≤ Tin+Tex, by minimizing the following performance criterion

J (x) given by

J (x) =

∫ Tin

0

[ẍT(t)ẍ(t) + α1pin(t)e
Tẋ(t)]dt+

∫ Tin+Tex

Tin

[ẍT(t)ẍ(t) + α2p
2
ex(t)e

Te]dt,

+
1

2
(x(Tin)− V0 − VT )

T(x(Tin)− V0 − VT ), α1 ≥ 0, α2 ≥ 0, (3.39)

subject to the natural boundary conditions

x(0) = V0, ẋ(0) = 0, (3.40)

ẋ(Tin) = 0, (3.41)

x(Tin + Tex) = V0, ẋ(Tin + Tex) = 0. (3.42)
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Figure 3.8: Optimal volume eTx∗(t) and nonoptimal volume eTx(t) versus time.
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Figure 3.9: Phase portrait for x∗1(t) versus x
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Figure 3.10: Performance criterion comparison versus time.
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Figure 3.11: Optimal volume x∗(t) versus time for a four-compartmental model.
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Thus, the first variation of J (x) on an extremal solution gives

δJ (x∗, δx) =

∫ Tin

0

δLin(x
∗(t), ẋ∗(t), ẍ∗(t))dt+

∫ Tin+Tex

Tin

δLex(x
∗(t), ẋ∗(t), ẍ∗(t))dt

+(x(Tin)− V0 − VT )
Tδx(Tin)

=

∫ Tin

0

{(
∂Lin

∂x

)
δx(t) +

(
∂Lin

∂ẋ

)
δẋ(t) +

(
∂Lin

∂ẍ

)
δẍ(t)

}
dt

+

∫ Tin+Tex

Tin

{(
∂Lex

∂x

)
δx(t) +

(
∂Lex

∂ẋ

)
δẋ(t) +

(
∂Lex

∂ẍ

)
δẍ(t)

}
dt

+(x(Tin)− V0 − VT )
Tδx(Tin)

=

[
∂Lin

∂ẍ
δẋ+

(
∂Lin

∂ẋ
− d

dt

∂Lin

∂ẍ

)
δx

]Tin

0

+

∫ Tin

0

{(
∂Lin

∂x

)
− d

dt

(
∂Lin

∂ẋ

)
+

d2

dt2

(
∂Lin

∂ẍ

)}
δx(t)dt+

[
∂Lex

∂ẍ
δẋ+

(
∂Lex

∂ẋ
− d

dt

∂Lex

∂ẍ

)
δx

]Tin+Tex

Tin

+

∫ Tin+Tex

Tin

{(
∂Lex

∂x

)
− d

dt

(
∂Lex

∂ẋ

)
+

d2

dt2

(
∂Lex

∂ẍ

)}
δx(t)dt

+(x(Tin)− V0 − VT )
Tδx(Tin)

= 0, (3.43)

where Lin(x, ẋ, ẍ) is given by (3.20) and Lex(x, ẋ, ẍ) is given by (3.32). Using the

boundary conditions (3.40)–(3.42), it follows that δx(0) = δẋ(0) = δẋ(Tin) = δx(Tin+

Tex) = δ̇x(Tin + Tex) = 0. Hence, the extremals optimizing the performance criterion

J (x) satisfy the Euler-Lagrange equations given by(
∂Lin

∂x

)T

− d

dt

(
∂Lin

∂ẋ

)T

+
d2

dt2

(
∂Lin

∂ẍ

)T

= 0, 0 ≤ t ≤ Tin, (3.44)(
∂Lex

∂x

)T

− d

dt

(
∂Lex

∂ẋ

)T

+
d2

dt2

(
∂Lex

∂ẍ

)T

= 0, Tin ≤ t ≤ Tin + Tex, (3.45)

and the algebraic equation at the end of inspiration given by

[α1Cin(x(Tin))− 2α2RexCex(x(Tin)) + I2n ]x(Tin) = V0 + VT . (3.46)

Hence, it follows from (3.44)–(3.46) that α1 and α2 effect the breathing patterns

for inspiratory and expiratory phases simultaneously. If we set α1 = 1 and let α2

vary, Figure 3.12 shows that the changes of α2 effect both inspiratory and expiratory

phases.
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Figure 3.12: Volume and airflow rate patterns for different α2’s.
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Chapter 4

Model Predictive Control for a Multicompartment

Respiratory System

4.1. Introduction

Since respiratory control involves numerous state and control constraints such as

air volume capacity constraints in the lungs and constraints on the sign and range of

the input pressure, model predictive control is well suited for addressing mechanical

ventilation control. Model predictive control is a control methodology in which an

optimal control problem is solved over a receding horizon [48]. In particular, at each

sampling time, an open-loop optimal control problem is solved over a finite horizon m

to generate a sequence of optimal control actions u∗ = {u∗(0), . . . ,u∗(m−1)} based on

the current system states. Next, the first control action u∗(0) in the generated control

action sequence u∗ is implemented over a given sampling interval. This procedure is

then repeated over the next sampling time. A key advantage of this type of control

architecture is its ability to address control and state constraints.

In this chapter, we design a model predictive controller for a multicompartment

respiratory system. The dynamics of the respiratory system are characterized by a

linear periodic system. For a given periodic reference volume pattern, the goal of the

controller is to asymptotically track the target reference. Although model predictive
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control can handel periodic and time-varying systems, it can be cumbersome or at

least not straightforward to use if the system is time-varying or periodic. In contrast,

repetitive control [25] has been proposed to address tracking control problems in-

volving periodic reference trajectories by transforming a periodic system into a lifted

run-to-run invariant system. In this section, we merge model predictive control with

repetitive control to address a tracking control problem involving a periodic system

with nonnegative control input constraints. Specifically, we formulate a finite-time

optimal control problem subject to nonnegative control input constraints that min-

imizes the deviation of the multicompartment respiratory system output from the

given reference volume pattern. Then, we numerically compute the resulting con-

strained optimal control to generate an optimal control sequence, a system output

trajectory, and the system states that guarantee asymptotic tracking of the target

reference trajectory.

4.2. A Multicompartment Model for Respiratory Dynamics

In this section, we use the general mathematical model for capturing the dynamic

behavior of a multicompartment respiratory system in response to an arbitrary ap-

plied inspiratory pressure developed in Section 2.5 of Chapter 2 and the optimal

respiratory airflow pattern for the lung mechanics system defined in Chapter 3 to

design a tracking controller using a model predictive controller framework.

Recall that the dynamics for a breathing cycle for a multicompartment lung model

can be characterized by the periodic switched dynamical system given by (2.19). In

order to account for a continuous transition of the lung resistance and compliance

parameters between the inspiration and expiration phase, consider the bounded con-
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tinuous periodic function θ(t), t ≥ 0, given by

θ(t) ,


1, 0 ≤ t ≤ Tin − εin,
1
εin
(Tin − t), Tin − εin ≤ t ≤ Tin,

0, Tin ≤ t ≤ Tin + Tex − εex,
1
εex

(t+ εex − Tin − Tex), Tin + Tex − εex ≤ t ≤ Tin + Tex,

(4.1)

where εin > 0 and εex > 0 are sufficiently small constants representing the transition

times from inspiration to expiration and vice versa, respectively, and θ(t) = θ(t +

Tin + Tex) for all t ≥ 0. Now, the dynamics for a breathing cycle characterized by the

periodic dynamical system (2.19) can be written as

ẋ(t) = Ac(t)x(t) + Bc(t)u(t), x(0) = xin0 , t ≥ 0, (4.2)

y(t) = eTx(t), (4.3)

where the output (4.3) gives the total compartment lung volume, Ac(t) , θ(t)Ain +

(1− θ(t))Aex, and Bc(t) , θ(t)Bin + (1− θ(t))Bex. Note that Ac(t) = Ac(t+ T ) and

Bc(t) = Bc(t+ T ) for all t ≥ 0, and hence, Ac(·) and Bc(·) are periodic.

Next, using a zero-order hold with a sampling time σ > 0, (4.2) and (4.3) can be

discretized as

xk(τ + 1) = A(τ)xk(τ) +B(τ)uk(τ), xk(0) = xin0,k, k ∈ Z+, τ = 0, . . . , N − 1,(4.4)

yk(τ) = eTxk(τ), (4.5)

where k is a run index over the periods, τ is the time step within one period, and A(τ)

and B(τ) are discretized versions of Ac(τσ) and Bc(τσ). Here, each period is assumed

to be divided into N = Tin+Tex

σ
equally spaced sample intervals. Furthermore, since

the system dynamics transition from inspiration to expiration and back to inspiration,

a transition from the end of an expiration phase to the beginning of an inspiration

phase can be expressed by

xk+1(0) = xk(N) = A(N − 1)xk(N − 1) +B(N − 1)uk(N − 1), k ∈ Z+. (4.6)
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Next, grouping the system variables for one period into vectors as

yk ,

 yk(0)
...

yk(N − 1)

 , uk ,

 uk(0)
...

uk(N − 1)

 , (4.7)

and using (4.6), a lifted run-to-run invariant system model is given by

xk+1(0) = Φxk(0) + Γuk, k ∈ Z+, (4.8)

yk = Πxk(0) +Guk, (4.9)

where Φ , A(N − 1)A(N − 2) · · ·A(0), Π ,


eT

eTA(0)
...

eTA(N − 2) · · ·A(0)

,
Γ ,

[
(A(N − 1) · · ·A(1)B(0)), (A(N − 1) · · ·A(2)B(1)), . . . , B(N − 1)

]
,

G ,


0 0 . . . 0 0

eTB(0) 0 . . . 0 0
eTA(1)B(0) eTB(1) . . . 0 0

...
... . . . 0 0

eTA(N − 2) · · ·A(1)B(0) . . . . . . eTB(N − 2) 0

 .

4.3. Model Predictive Tracking Control

In this section, we develop a model predictive controller based on the lifted run-

to-run invariant system dynamics model (4.8) and (4.9). The goal of this controller

is to track a given reference volume pattern while enforcing a given set of control

constraints. A reference volume pattern rc(t), t ≥ 0, can be identified by a clinician

or by solving a lung mechanics optimal respiratory trajectory generation problem as

in [40] and Section 3. In Section 2.5, it was shown that the steady stable total lung

volume eTx(t), t ≥ 0, for a pressure-limited respiratory system is a stable limit cycle.

As discussed in Section 4.1, model predictive control is an optimal control method-

ology which can effectively handle state and control constraints. However, model pre-

dictive control can be cumbersome to use when the reference trajectory or the system
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dynamics are time-varying or periodic. Repetitive control [25] has been proposed

to solve tracking control problems with periodic reference trajectories or rejection of

cyclic disturbances. Specifically, instead of considering the periodic system (4.4) and

(4.5) directly, the system is transformed into a lifted run-to-run invariant model as

in (4.8) and (4.9). However, repetitive control has limitations in handling system

state and control constraints. To address this, the authors in [38] develop a repeti-

tive model predictive control framework that combines model predictive control and

repetitive control.

The basic idea of repetitive model predictive control is to store the changes of

the system controls, outputs, and states between two consecutive periods and use

them to compute the control input actions for the next period. Specifically, define

∆uk , uk − uk−1, ∆yk , yk − yk−1, and ∆xk(0) , xk(0) − xk−1(0), k ∈ Z+. Then,

it follows from (4.8) and (4.9) that

∆xk+1(0) = Φ∆xk(0) + Γ∆uk, ∆x1(0) = xin1 (0)− xin0 (0), k ∈ Z+, (4.10)

∆yk = Π∆xk(0) +G∆uk. (4.11)

Next, define the grouped reference signals over one period by r , [r(0), . . . , r(N − 1)]T,

where r(·) denotes the discretized reference signal, and define the deviation between

the grouped output vector at the k-th run and the grouped reference signals by

ẽk , yk − r. Then, a lifted system dynamics model follows from (4.10) and (4.11) as[
∆xk+1(0)

ẽk

]
=

[
Φ 02n×N

Π IN

]
︸ ︷︷ ︸

Φ

[
∆xk(0)
ẽk−1

]
+

[
Γ
G

]
︸ ︷︷ ︸

Γ

∆uk, k ∈ Z+, (4.12)

where the error vector over the k-th run is given by

ẽk =
[
Π IN

]︸ ︷︷ ︸
Π

[
∆xk(0)
ẽk−1

]
+G∆uk, k ∈ Z+. (4.13)
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Defining zk ,
[
∆xk(0)
ẽk−1

]
, it follows from (4.12) and (4.13) that

zk+1 = Φzk + Γ∆uk, z1 =

[
∆x1(0)
ẽ0

]
, k ∈ Z+, (4.14)

ẽk = Πzk +G∆uk. (4.15)

Note that it follows from (4.14) and (4.15) that the reference trajectory has been

embedded into the system dynamics through the lifted form. Hence, for a given

periodic reference trajectory rc(t), 0 ∈ [0, Tin + Tex], a tracking control problem can

be solved as a regulator control problem. The following proposition characterizes an

important stability property of the lifted system matrix Φ.

Proposition 4.1. Consider the lifted run-to-run invariant system dynamics (4.14).

Then the lifted system matrix Φ is Lyapunov stable.

Proof. Since Φ =

[
Φ 02n×N

Π IN

]
is lower block triangular, it follows that spec(Φ) =

spec(Φ) ∪ {1}, where Φ = A(N − 1)A(N − 2) · · ·A(0) and A(τ) = eAc(τσ)σ, τ =

0, . . . , N − 1. Since Ac(τσ) is a convex combination of Ain and Aex, it follows from ii)

and iii) of Proposition 2.3 in Section 2 that AT
c (τσ)C+CAc(τσ) < 0, τ ∈ {0, . . . , N−

1}. Hence, it follows from Proposition 2.2 in Section 2.2 that eA
T
c (τσ)CeAc(τσ) < C

or, equivalently, AT(τ)CA(τ) < C, τ ∈ {0, . . . , N − 1}. Next, note that ΦTCΦ =

AT(0) · · ·AT(N − 1)CA(N − 1) · · ·A(0) < C, where C is a positive-definite diag-

onal matrix. Hence, Φ is Schur stable, that is, ρ(Φ) < 1. Moreover, since dim

N (Φ − I2n+N) = N , it follows 1 is a semisimple eigenvalue. Thus, Φ is Lyapunov

stable.

To achieve asymptotic tracking at each run k, that is, ∥yk(τ)− r(τ)∥Q(τ) → ∞ as

k → ∞ with Q(τ) ∈ R+, τ = 0, . . . , N − 1, we minimize the performance criterion

min
∆uk+i,i=0,...,p−1

p−1∑
i=0

∥ẽk+i|k∥2Q + ∥∆uk+i∥2R, (4.16)
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where p ≥ 1 is the length of a prediction horizon, ẽk+i|k denotes the estimated error

vector at the k + i-th run based on information at run k, Q ∈ RN×N ,Q ≥ 0, and

R ∈ RN×N ,R > 0. Here, ∆uk+i captures the change of the control input vector

between the k + i-th run and the k + i − 1-th run. Penalizing ∆uk+i in mechanical

ventilation control is critical since rapid changes in the driving input pressure may

cause discomfort and inefficacy of muscular lung contraction and control. Substituting

ẽk+i|k with the predicted form of (4.15), the performance criterion (4.16) becomes

min
∆uk+i,i=0,...,p−1

p−1∑
i=0

∥∥∥∥[ zk+i|k
∆uk+i

]∥∥∥∥2

Q

, (4.17)

where

Q ,
[

Π
T
QΠ Π

T
QG

GTQΠ GTQG+R

]
.

Finally, since the control horizon m may be different from the prediction horizon

p, that is, m ≤ p, an alternative form for the performance criterion (4.17) that can

be considered is

min
∆uk+i,i=0,...,m−1

m−1∑
i=0

∥∥∥∥[ zk+i|k
∆uk+i

]∥∥∥∥2

Q

+ ∥zk+m|k∥2P , (4.18)

where P ∈ R(2n+N)×(2n+N) and P > 0. In model predictive control, the terminal

weighting matrix P is usually used to improve performance and stability [11,48].

Next, we constrain the control input to be nonnegative and amplitude bounded,

that is, 0m ≤≤ uk ≤≤ umax, where umax = emumax, umax ∈ R+, and k ∈ Z+. Since

the performance criterion (4.18) is in the form of ∆uk and uk = ∆uk + uk−1, this

constraint can be written as

M∆uk ≤≤
[
umax − uk−1

uk−1

]
, (4.19)

where M ,
[

I
−I

]
. Thus, at the k-th run the constrained optimal control problem

74



is given by

min
∆uk+i,i=0,...,m−1

m−1∑
i=0

∥∥∥∥[ zk+i|k
∆uk+i

]∥∥∥∥2

Q

+ ∥zk+m|k∥2P (4.20)

subject to

M∆uk+i ≤≤
[
umax − uk+i−1

uk+i−1

]
, (4.21)

zk+i+1|k = Φzk+i|k + Γ∆uk+i, (4.22)

zk|k =

[
∆xk(0)
ẽk−1

]
. (4.23)

The following theorem gives a method for choosing the weighting matrix P for the

optimal control problem (4.20)–(4.23).

Theorem 4.1. Consider the constrained optimal control problem (4.20)–(4.23).

Let the weighting matrices P and Q be such that

Φ
T
PΦ + Π

T
QΠ ≤ P. (4.24)

If there exists an optimal solution to the finite horizon optimal control problem (4.20)–

(4.23), then limk→∞ ∥ẽk∥2Q = 0.

Proof. First, assume ∆uk+i = 0N , i ≥ m, and note ∆uk+i = 0, i ≥ m, satisfies

(4.21), and hence, is feasible. In this case, the error dynamics (4.15) and system

dynamics (4.22) are homogenous and are given by, respectively,

ẽk+i|k = Πzk+i|k, zk+i+1|k = Φzk+i|k, i ≥ m. (4.25)

Next, assume that at the k-th run there exists a sequence of optimal solutions to the

optimal control problem (4.20)–(4.23) given by

∆u∗
k =

{
∆u∗

k,∆u∗
k+1, . . . ,∆u∗

k+m−1

}
. (4.26)
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The error and state vectors that evolve from the optimal control sequence are given

by

e∗k =
{
ẽ∗k|k, ẽ

∗
k+1|k, . . . , ẽ

∗
k+m−1|k

}
, (4.27)

z∗k =
{
z∗k+1|k, z

∗
k+2|k, . . . , z

∗
k+m|k

}
. (4.28)

Substituting the optimal solutions (4.26)–(4.28) into (4.20), the optimal value of the

performance criterion at run k is given by

V ∗
k =

m−1∑
i=0

∥∥∥∥[ z∗k+i|k
∆u∗

k+i

]∥∥∥∥2

Q

+ ∥z∗k+m|k∥2P

=
m−1∑
i=0

∥ẽ∗k+i|k∥2Q + ∥∆u∗
k+i∥2R + ∥z∗k+m∥2P . (4.29)

Next, at the k + 1-th run consider the control sequence

∆uk+1 =
{
∆u∗

k+1,∆u∗
k+2, . . . ,∆u∗

k+m−1, 0
}
. (4.30)

Since ∆uk+i = 0, i ≥ m, is feasible and all the other elements of ∆uk+1 are obtained

from the previous optimal solution ∆u∗
k, it follows that ∆uk+1 is a feasible sequence

of control inputs. Thus, using (4.25) the corresponding error and state sequences at

run k + 1 are

ek+1 =
{
ẽ∗k+1|k, ẽ

∗
k+2|k, . . . , ẽ

∗
k+m−1|k,Πz

∗
k+m|k

}
, (4.31)

zk+1 =
{
z∗k+2|k, z

∗
k+3|k, . . . , z

∗
k+m|k,Φz

∗
k+m|k

}
. (4.32)

Now, the value of the performance criterion (4.20) at run k + 1 is given by

Vk+1 =
m−1∑
i=1

∥ẽ∗k+i|k∥2Q + ∥∆u∗
k+i∥2R + ∥Πz∗k+m|k∥2Q + ∥Φz∗k+m|k∥2P

= V ∗
k − ∥ẽ∗k|k∥2Q − ∥∆u∗

k∥2R + ∥z∗k+m|k∥2P + ∥Πz∗k+m|k∥2Q + ∥Φz∗k+m|k∥2P

= V ∗
k − ∥ẽ∗k|k∥2Q − ∥∆u∗

k∥2R + z∗Tk+m|k

[
Φ

T
PΦ + Π

T
QΠ− P

]
z∗k+m|k, (4.33)
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and hence, the optimal value V ∗
k+1 of the performance criterion at run k + 1 satisfies

V ∗
k+1 ≤ Vk+1 = V ∗

k − ∥ẽ∗k|k∥2Q − ∥∆u∗
k∥2R

+z∗Tk+m|k

[
Φ

T
PΦ + Π

T
QΠ− P

]
z∗k+m|k. (4.34)

Finally, note that at the k-th run the model predictive control problem only applies

the first element ∆u∗
k in the control sequence ∆u∗

k to the system. Thus, ẽ∗k|k is the

deviation vector between the system outputs and the reference signals over the k-th

run, which implies that ẽ∗k|k = ẽk. Now, using inequality (4.24) it follows from (4.34)

that

V ∗
k+1 ≤ V ∗

k − ∥ẽk∥2Q, k ∈ Z+. (4.35)

Summing the inequalities (4.35) over k ∈ Z+, it follows that
∑∞

k=0 ∥ẽk∥2Q ≤ V ∗
0 −V ∗

∞,

which implies that
∑∞

k=0 ∥ẽk∥2Q is finite. Hence, it follows from the discrete-time

version of Barbalat’s lemma [19, p. 782] that limk→∞ ∥ẽk∥2Q = 0.

Remark 4.1. Theorem 4.1 shows that limk→∞ ∥ẽk∥2Q = 0. Since Q ∈ RN×N

and Q ≥ 0, a Schur decomposition [6] of Q gives Q = SΛQS
T, where S ∈ RN×N

is orthogonal and ΛQ ∈ RN×N is a nonnegative-definite diagonal matrix. Hence,

∥yk(τ)− r(τ)∥Q(τ) → 0 as k → ∞, where Q(τ) = ΛQ,τ , τ = 0, . . . , N − 1, is the τ -th

diagonal entry of ΛQ.

Remark 4.2. It is not easy to solve inequality (4.24) directly. However, since

by Proposition 4.1 Φ is Lyapunov stable, it follows that if λ ∈ spec(Φ), then either

|λ| < 1, or |λ| = 1 and λ is semisimple. Now, it follows from the real Jordan

decomposition [6] that there exists an invertible matrix V ∈ R(2n+N)×(2n+N) such

that Φ = V JV −1, where

J =

[
Ja 0
0 Js

]
77



with Ja ∈ R2n×2n such that ρ(Ja) < 1 and Js ∈ RN×N being diagonal such that |λ| =

1, λ ∈ spec(Js). Hence, forming V T(4.24)V , it follows that JTP̂ J + (ΠV )TQ(ΠV ) ≤

P̂ , where P̂ , V TPV . Now, choosing Ra ∈ R2n×2n such that Ra > 0, it follows from

converse Lyapunov theory that there exists a positive-definite matrix P1 ∈ R2n×2n

satisfying JT
a P1Ja+Ra = P1. Moreover, note that JT

s Js = IN . Thus, J
TP̂ J +R = P̂ ,

where

P̂ =

[
P1 0
0 IN

]
, R =

[
Ra 0
0 0

]
,

and hence, P = V −TP̂ V −1. Finally, choosing Q ∈ RN×N such that Q ≥ 0, we can

guarantee that 0 ≤ (ΠV )TQ(ΠV ) ≤ R by solving a feasibility linear matrix inequality

problem.

Remark 4.3. If P is chosen such that

∥zk+m|k∥2P =
∞∑

i=m

∥∥∥∥[ zk+i|k
∆uk+i

]∥∥∥∥2

Q

and no constraints are posed, then the optimal control problem (4.20)–(4.23) becomes

an infinite horizon linear quadratic regulation problem. In this case, a closed-form

solution of ∆u∗
k can be obtained by solving an algebraic Riccati equation.

4.4. Illustrative Numerical Example

In this section, we use the model predictive control results developed in Section 4.3

to obtain a tracking controller for a multi-compartment respiratory system. Here, we

consider a two-compartment lung model. Specifically, we assume that the bronchial

tree has a dichotomy structure (see Section 4.2). The airway resistance varies with

the branch generation and typical values can be found in [26]. Furthermore, the

expiratory resistance will be higher than the inspiratory resistance by a factor of 2

to 3. Here, we assume that the factor is 2. Specifically, we choose the values of
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the resistances to be Rin
0,1 = 9 cm H2O/l/sec, Rin

1,1 = 16 cm H2O/l/sec, Rin
1,2 = 16

cm H2O/l/sec, Rex
0,1 = 18 cm H2O/l/sec, Rex

1,1 = 32 cm H2O/l/sec, and Rex
1,2 = 32

cm H2O/l/sec. A typical value for the lung compliance is 0.1 l/cm H2O. (Note that

respiratory pressure is measured in terms of centimeters of water pressure.) The

inspiration time is Tin = 2 sec and the expiration time is Tex = 3 sec. To discretize

the system, a sampling time of σ = 1 sec is chosen. Thus, each period is divided into

N = 5 equally spaced sample intervals.

The model predictive controller is computed by using the Multi-Parameteric Tool-

box [36]. Specifically, we use the repetitive control framework developed in Section

4.3 for achieving periodic tracking by transferring the periodic system dynamics into

a lifted run-to-run invariant system. Consequently, on-line computation is reduced

to an off-line evaluation of the control laws generated by an explicit model predictive

control algorithm; see [5] for details.

The computation is composed of three phases; the design phase, the modification

phase, and the computation phase. In the design phase, we choose the control horizon

to be m = 3 and the constraints of the control input to be 0 cm H2O ≤ u ≤

15 cm H2O [66]. Since the multi-parameteric approach suffers from the curse of

dimensionality, in the modification phase we set the control constraint (4.21) only

on the first control vector, as it is the first control vector that will be applied to the

system. The weighting matrix P is computed by solving a discrete-time Lyapunov

equation and Q is computed through a feasibility linear matrix inequality problem

using the technique outlined in Remark 4.2. However, the choices of P and Q are not

unique and can be tuned to achieve a desired performance. The weighting matrix R is

set to be R = diag[0.1, 0.1, 0.1, 0.1, 0.1]. The control input vector is computed at the

computation phase based on the information at the k-th run. For our simulation, we

assume that the initial values ∆x1(0) = [0.1, 0.2]T l and ẽ0 = [0.1, 0.2, 0.1, 0.3, 0.1]T l.
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For our simulation, a reference trajectory rc(t), 0 ≤ t ≤ Tin + Tex, is chosen from

the solution of an optimal airflow pattern problem in [40]. Figure 4.1 shows the

optimal driving pressure u∗(t), t ≥ 0, which satisfies the nonnegativity constraints.

Figure 4.2 shows the optimal driving pressure u∗(t), t ≥ 0, when constraints are not

enforced on the system input. It can be seen that u∗(t), t ≥ 0, computed for the

constrained system satisfies the constraints, whereas u∗(t), t ≥ 0, computed without

considering the input constraints can yield a negative control signal which violates

the physical conditions for most mechanical ventilators. Figure 4.3 shows the input

pressure generated by the adaptive controller given in [10]. It can be seen that the

input pressure generated by the adaptive controller of [10] violates the given input

constraints.

Figure 4.4 shows the total lung compartment volume versus the reference lung

volume for the constrained system, whereas Figure 4.5 shows the total lung compart-

ment volume for the unconstrained system. Note that the controller drives the total

lung compartment volume to the reference trajectory asymptotically, even though for

the constrained case the tracking takes more runs. Figure 4.6 shows the evolution

of the total lung compartment volume using the adaptive controller given in [10].

Note that over the first period the tracking errors are larger, however, steady state

tracking is achieved faster. Figure 9 compares the values of the total performance

criterion in (4.18) using the proposed model predictive controller and the adaptive

feedback controller developed in Section 2.9 of Chapter 2. Finally, Figure 4.8 shows

the evolution of the air volume in each lung compartment for the constrained system.
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Figure 4.1: The control input for the constrained system.
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Figure 4.2: The control input for the unconstrained system.
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Figure 4.3: Input pressure using the adaptive controller of [10].
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Figure 4.4: The total lung volume from the constrained system.
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Figure 4.5: The total lung volume from the unconstrained system.
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Figure 4.6: The total lung volume using the adaptive controller of [10].
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Figure 4.7: Performance criterion comparison versus time.
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Figure 4.8: The evolution of the air volume in each compartment for the constrained
system.
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Chapter 5

Predictive Tracking Control for a

Multicompartment Respiratory

System with Amplitude and

Rate Input Constraints

5.1. Introduction

Modern ventilation control algorithms have been used to provide several ventila-

tion modes rather than simple volume or pressure control ventilation [15, 37, 59, 74].

Specifically, in Chapter 2 we developed a model reference direct adaptive control

framework for a multicompartment model of a pressure-limited respiratory and lung

mechanics system. In Chapter 4, a model predictive controller is designed to address

control constraints on the sign and range of the input pressure in the respiratory con-

trol. This algorithm is based on a time-varying, linear periodic multicompartment

lung model. However, realistic lung models should consider the fact that the lungs,

especially diseased lungs, are heterogeneous, both functionally and anatomically, and

are comprised of many subunits, or compartments, that differ in their capacities for

gas exchange. This is particularly true for the compliance of the lung units, which

are not constant but rather vary with lung volume.

In this chapter, we develop a model predictive controller based on a nonlinear

multicompartment lung mechanics model with the aim to automatically adjust the
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pressure generated by mechanical ventilation such that the system output tracks a

given clinically plausible breathing pattern. In general, a model predictive control

law is computed by an online optimization problem, and hence, when the system

model involves nonlinearities, the model predictive controller requires considerable

computational effort. However, for systems with stable zero dynamics, it has been

possible to use short prediction horizon times to accurately predict the future system

response using a given system model [60,62]. In this chapter, we formulate a quadratic

optimal control problem subject to control input amplitude and rate constraints that

minimizes the deviation of the multicompartment respiratory system output from

the given reference volume pattern. Then, we derive the predictive control law by

minimizing a performance criterion involving the prediction of the future system

response over a prescribed time step. The derived optimal control law is given by an

explicit form, and thus, avoids an online optimization.

5.2. Notation and Mathematical Preliminaries

In this section, we introduce notations, several definitions, and some key results

that are necessary for developing the main results of this chapter. Specifically, we

write (·)(r) to denote the rth time derivative of (·), LfV (x) to denote the Lie derivative

of a scalar function V (x) along the vector field of f(x), L0
fV (x) to denote the zeroth-

order Lie derivative, that is, L0
fV (x) , V (x), and L

(r)
f V (x) to denote the rth-order

Lie derivative, that is, L
(r)
f V (x) , Lf (L

(r−1)
f V (x)), LgL

(r)
f V (x) to denote the Lie

derivative of a scalar function L
(r)
f V (x) with respect to vector field g(x). Finally, we

write λmin(·) (resp., λmax(·)) to denote the minimum (resp., maximum) eigenvalue of

a Hermitian matrix, σmin(·) to denote the minimum singular value of a matrix, and

mod(·, ·) for the modulo operator, that is, mod(t, T ) , t− ⌊ t
T
⌋T , where ⌊q⌋ denotes

the floor function which gives the largest integer less than or equal to the positive
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number q.

The following definitions introduce the notions of nonnegative functions and es-

sentially nonnegative vector fields [20].

Definition 5.1. Let T > 0. A real function u : [0, T ] → Rm is a nonnegative

(resp., positive) function if u(t) ≥≥ 0 (resp., u(t) >> 0) on the interval [0, T ].

Definition 5.2. Let f = [f1, . . . , fn]
T : D ⊆ Rn

+ → Rn. Then f is essentially

nonnegative if fi(x) ≥ 0 for all i = 1, . . . , n and x ∈ Rn

+ such that xi = 0, i = 1, . . . , n,

where xi denotes the ith component of x.

It follows from Definition 5.2 that if f(x) = Ax, where A ∈ Rn×n, then f is

essentially nonnegative if and only if A is essentially nonnegative, that is, A(i,j) ≥

0, i, j = 1, . . . , n, i ̸= j, where A(i,j) denotes the (i, j)th entry of A.

In this chapter, we consider controlled switched nonlinear dynamical systems Gp

of the form

ẋ(t) = fp(x(t)) +Gp(x(t))u(t), x(0) = x0, t ≥ 0 (5.1)

y(t) = h(x(t)), (5.2)

where x(t) ∈ Rn, t ≥ 0, is the state vector, u(t) ∈ Rm, t ≥ 0, is the control input,

y(t) ∈ Rm, t ≥ 0, is the system output, p is a switching signal taking values in a finite

index set P = {1, . . . , q}, and, for every p ∈ P , fp : Rn → Rn and Gp : Rn → Rn×m

are Lipschitz continuous functions, and h : Rn → Rm is a continuous output function.

The family of nonlinear dynamical systems (5.1) and (5.2) can be written as the

switched dynamical systems Gσ given by

ẋ(t) = fσ(t)(x(t)) +Gσ(t)(x(t))u(t), σ(·) ∈ Σ, x(0) = x0, t ≥ 0, (5.3)

y(t) = h(x(t)), (5.4)
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where x(t) ∈ Rn, t ≥ 0, fσ : Rn → Rn, Gσ : Rn → Rn×m, σ : [0,∞) → P is a

piecewise constant switching signal, and Σ denotes the set of switching signals. The

switching signal σ effectively switches the right-hand side of (5.3) by selecting different

subsystems from the parameterized family {fp(x) + Gp(x)u : p ∈ P}. We denote by

ti, i = 1, 2, . . . , the consecutive discontinuities of σ which we call the switching times

of (5.3). Our convention here is that σ(·) is left-continuous, that is, σ(t−) = σ(t),

where σ(t−) , limh→0−(t+ h).

The pair (x, σ) : [0,∞)×Σ → Rn is a solution to the switched dynamical system

(5.3) if x(·) is absolutely continuous and satisfies (5.3) for almost all t ≥ 0. Here, we

assume that if there are infinitely many switching times, then there exists τ > 0 such

that for every T ≥ 0 there exists a positive integer i such that ti+1−τ ≥ ti ≥ T . When

t ∈ [tk, tk+1), σ(t) = ik, that is, the ikth subsystem is active. Hence, the trajectory

x(t) of the switched dynamical system (5.3) is defined as the trajectory xik(t) of the

ikth subsystem when t ∈ [tk, tk+1).

The following definition and proposition are needed for the main results of this

chapter.

Definition 5.3. The switched nonlinear dynamical system given by (5.1) is non-

negative if for every x(0) ∈ Rn

+ and u(t) ≥≥ 0, t ≥ 0, the solution x(t), t ≥ 0, to (5.3)

is nonnegative.

Proposition 5.1. Consider the switched nonlinear dynamical system given by

(5.1). If fp : Rn → Rn, p ∈ P , is essentially nonnegative and Gp(x) ≥≥ 0 for all

x ∈ Rn

+ and p ∈ P , then (5.1) is nonnegative.

Proof. The proof is similar to the proof of Proposition 4.3 of [20].

It follows from Proposition 5.1 that if fp(·), p ∈ P , is essentially nonnegative, then
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a nonnegative input signal Gp(x)u, p ∈ P , is sufficient to guarantee the nonnegativity

of the state of (5.3).

5.3. Predictive Output Tracking Control Problem

In this section, we consider the problem of characterizing a predictive constrained

output feedback control law for nonlinear essentially nonnegative dynamical systems

to track a given output reference trajectory. Specifically, we consider a controlled

switched nonlinear dynamical system Gp given by (5.1) and (5.2), where, for p ∈

P , fp(·) is essentially nonnegative, Gp(·) is nonnegative, and h(·) is nonnegative.

Moreover, we assume that fp(·), Gp(·), and h(·) are smooth (at least Cn mappings)

and the control input u(·) is restricted to a class of admissible controls consisting of

absolutely continuous functions such that u(t) ∈ U , t ≥ 0, where U is defined by

U , {u(t) ∈ Rm : 0m ≤≤ u(t) ≤≤ eu, ev ≤≤ u̇(t) ≤≤ ev, a.e. t ≥ 0}, (5.5)

where u, v, and v are given input amplitude and rate constraint bounds.

Note that since the control input u(·) is restricted to be nonnegative, it follows

from Proposition 5.1 that x(t) ≥≥ 0 for all x(0) ∈ Rn

+ and t ≥ 0. For a mechanical

ventilation problem, the input rate constraint ev ≤≤ u̇(t) ≤≤ ev for almost every

t ≥ 0 is critical since rapid changes in the driving input pressure may cause discomfort

and inefficacy of muscular lung contraction and control.

Defining v(t) , u̇(t) for almost every t ≥ 0 and z(t) , [xT(t), uT(t)]T, t ≥ 0, it

follows that the augmented nonlinear dynamical system Ĝp given by

ż(t) = f̂p(z(t)) +
m∑
i=1

ĝivi(t), z(0) = [xT(0), uT(0)]T, p ∈ P , a.e. t ≥ 0, (5.6)

y(t) = ĥ(z(t)), (5.7)

where f̂p(z) = [(fp(x) + Gp(x)u)
T, 0Tm]

T, ĝi ∈ Rn+m, i = 1, . . . ,m, is such that the
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(n+i)th component is 1 and zero elsewhere and ĥ(z(t)) = h(x(t)), subsumes (5.3) and

(5.4). Note that it follows from (5.5) that ev ≤≤ v(t) ≤≤ ev, t ≥ 0. Furthermore, for

a sufficiently small time δ > 0, it follows using a first-order Talyor series expansion

that

ui(t+ δ) ≈ ui(t) + δvi(t), i = 1, . . . ,m, t ≥ 0, (5.8)

where ui(t), t ≥ 0, denotes the ith component of u(t), t ≥ 0. Since u(t + δ) ∈ U , it

follows from (5.5) that vi(t) satisfies −ui(t)
δ

≤ vi(t) ≤ u−ui(t)
δ

, i = 1, . . . ,m. Hence,

v(t) ∈ Vt, t ≥ 0, where

Vt , {v(t) ∈ Rm : vi,min(t) ≤ vi(t) ≤ vi,max(t), t ≥ 0, i = 1, . . . ,m}, (5.9)

vi,min(t) , max{v, −ui(t)
δ

+ ε}, vi,max(t) , min{v, u−ui(t)
δ

− ε}, and ε > 0 is a small

positive scalar.

Next, we assume that Ĝp, for every p ∈ P , has a (vector) relative degree r ,

{r1, . . . , rm}, where ri denotes the relative degree of Ĝp with respect to the output

yi, i = 1, . . . ,m. Thus, the rth derivative of y(t), t ≥ 0, is given by

y(r)p (t) = ap(z(t)) +Dp(z(t))v(t), p ∈ P , a.e. t ≥ 0, (5.10)

where ap(z) = [L
(r1)

f̂p
ĥ1(z), . . . , L

(rm)

f̂p
ĥm(z)]

T and Dp(z) ∈ Rm×m is a matrix function

whose ith row is given byDip(z) = [Lĝ1L
(ri−1)

f̂p
ĥi(z), . . . , LĝmL

(ri−1)

f̂p
ĥi(z)], i = 1, . . . ,m.

The following two assumptions are needed for the main results of this section.

Assumption 5.1. For p ∈ P , i) Dp(z) is nonsingular for all z ∈ Rn

+ × U and ii)

the zero dynamics of Ĝp are uniformly asymptotically stable.

Part i) of Assumption 5.1 guarantees that the system Ĝp is input-output feedback

linearizable for every p ∈ P , whereas ii) ensures that the internal dynamics of Ĝp

remain asymptotically stable for every p ∈ P when the system output y(t), t ≥ 0, is

set to reference signal yr(t), t ≥ 0.
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Assumption 5.2. For a given bounded reference input yr(t), t ≥ 0, y
(1)
r,i (t), . . . ,

y
(ri)
r,i (t), i = 1, . . . ,m, are bounded, where yr,i(t) is the ith element of yr(t), and there

exists xr(t) ∈ Rn

+ and ur(t) ∈ Rm

+ , t ≥ 0, satisfying (5.3) and (5.4) with yr(t) =

h(xr(t)).

To achieve asymptotic tracking, we design a control law such that the system

error e(t) , y(t) − yr(t), t ≥ 0, is bounded and converges to zero asymptotically.

Specifically, using the approach given in [60], we define a vector function ϕp(t) ,

[ϕ1p(t), . . . , ϕmp(t)]
T, p ∈ P for almost every t ≥ 0, where

ϕip(t) = e
(ri−1)
ip

(t) + αi,ri−1e
(ri−2)
ip

(t) + · · ·+ αi,1ei(t) + αi,0

∫ t

0

ei(τ)dτ,

i = 1, . . . ,m, (5.11)

ei(t) = yi(t) − yr,i(t), and the coefficients αi,j > 0, j = 0, . . . ri − 1, are chosen such

that the polynomial

sri + αi,ri−1s
ri−1 + · · ·+ αi,1s+ αi,0, i = 1, . . . ,m, (5.12)

is Hurwitz. Differentiating (5.11) with respect to time yields, for almost every t ≥ 0,

ϕ̇ip(t) = e
(ri)
ip

(t) + αi,ri−1e
(ri−1)
ip

(t) + · · ·+ αi,1ėip(t) + αi,0ei(t), p ∈ P ,

i = 1, . . . ,m. (5.13)

Thus, it follows from (5.10) and (5.13) that

ϕ̇p(t) = y(r)p (t)− y(r)r (t) + ψp(t)

= ap(z(t)) +Dp(z(t))v(t)− y(r)r (t) + ψp(t), p ∈ P , a.e. t ≥ 0, (5.14)

where ψp(t) = [ψT
1p(t), . . . , ψ

T
mp

(t)]T with ψip(t) = αi,ri−1e
(ri−1)
ip

(t) + · · · + αi,1ėip(t) +

αi,0ei(t), i = 1, . . . ,m, and y
(r)
r (t) = [y

(r1)
r,1 (t), . . . , y

(rm)
r,m (t)]T. Now, for sufficiently small

τ > 0, it follows from (5.14), using a first-order Talyor series expansion, that

ϕp(t+ τ) ≈ ϕp(t) + τ ϕ̇p(t) = ϕp(t) + τ [ap(z(t)) +Dp(z(t))v(t)− y(r)r (t) + ψp(t)],

p ∈ P , a.e. t ≥ 0. (5.15)
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Next, we use model predictive control to design a tracking controller for the dy-

namical system Ĝp. As discussed in [62], model predictive control involves the pre-

diction of the future system response using a given system dynamics model and the

calculation of a sequence of controller actions obtained by minimizing a given per-

formance index. In the model predictive control literature [11,48], a large prediction

horizon has been used to address stability and unstable zero dynamics. However,

large prediction horizons degrade system robustness and require significant online

computational effort. For systems with stable zero dynamics, it has been shown

in [42,60,62] that it is possible to use short prediction horizons to accurately predict

the future system response using a given system dynamics model. As shown below,

such a prediction equation with an appropriate reference trajectory yields a model

predictive control law whose implementation does not require an online optimization.

Since the switching signal σ: [0,∞) → P is piecewise constant, there exists p ∈ P

such that σ(t) = p for a given time t ≥ 0. To develop a model predictive controller

for (5.3) and (5.4) at a given t ≥ 0, consider the minimization problem

min
v(t)∈Vt

Jp(v(t)) =
1

2
ϕT
p (t+ τ)Qϕp(t+ τ) +

1

2
vT(t)Rv(t), (5.16)

where Q > 0, Q ∈ Rm×m, and R ≥ 0, R ∈ Rm×m. Note that the first quadratic

term in the performance criterion (5.16) captures a weighted least squares measure of

the predicted tracking errors, as well as their derivatives and integrals, whereas the

second quadratic term in (5.16) penalizes the control rate. Next, note that v(t) ∈ Vt

can be rewritten as

Av(t)− b(t) ≤ 0, t ≥ 0, (5.17)
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where

A =


1 0 . . . 0
−1 0 . . . 0
...

...
...

...
0 0 . . . 1
0 0 . . . −1

 , b(t) =


v1,max(t)
−v1,min(t)

...
vm,max(t)
−vm,min(t)

 .

The constrained optimization problem given by (5.16) and (5.17) can be solved

using Lagrange multiplier methods [33]. Specifically, introducing the Lagrange mul-

tiplier λ = [λ1, λ̂1, . . . , λm, λ̂m]
T ∈ R2m and forming the Lagrangian

L(Jp(v), λ) = Jp(v) + λT(Av − b), (5.18)

it follows from the Kuhn-Tucker necessary conditions [33] for optimality that, for

t ≥ 0,

∂

∂v

(
Jp(v(t)) + λT(Av(t)− b(t))

)
= 0, p ∈ P , (5.19)

λT(Av(t)− b(t)) = 0, (5.20)

λi = 0, vi(t) < vi,max(t), λ̂i = 0, vi(t) > vi,min(t), i = 1, . . . ,m, (5.21)

λi ≥ 0, vi(t) = vi,max(t), λ̂i ≥ 0, vi(t) = vi,min(t), i = 1, . . . ,m. (5.22)

Next, using (5.15) and (5.16), (5.19) can be rewritten as

(
τ 2DT

p (ẑ(t))QDp(ẑ(t)) +R
)
v(t) + τDT

p (ẑ(t))Q
(
ϕp(t) + τ [ap(ẑ(t))− y(r)r (t) + ψ(t)]

)
+ATλ = 0, p ∈ P , a.e. t ≥ 0, (5.23)

where ẑ(t) denotes the prediction of z(t) at time t ≥ 0. In order to solve (5.19)–(5.22),

we use the numerical iterative approach developed in [42]. First, however, we define

the saturation map S : Rm → Rm as S(v) , [s1(v1), . . . , sm(vm)]
T, where

si(vi) =


vi,max, vi ≥ vi,max,
vi, vi,min < vi < vi,max,

vi,min, vi ≤ vi,min,
i = 1, . . . ,m. (5.24)
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The optimal controller v∗(t), t ≥ 0, satisfying the necessary conditions (5.19)–(5.22)

is given by the following theorem. For the statement of this theorem define Γp(ẑ) ,

τ 2DT
p (ẑ)QDp(ẑ)+R and βp , (

∑m
i=1

∑m
j=1 Γ

2
(i,j)p

(ẑ))−1/2, where Γ(i,j)p(ẑ) denotes the

(i, j)th entry of Γp(ẑ).

Theorem 5.1. For t ≥ 0 such that µ({t ∈ [0,∞) : v(t) = u̇(t)}) ̸= 0, where µ(·)

denotes the Lebesgue measure in R+, and every v0 ∈ Vt, consider the unbounded

sequence {vk}∞k=0 generated by

vk+1 = S
(
βp[τD

T
p (ẑ)Q(τ [y

(r)
r − ap(ẑ)− ψp]− ϕp)]− [βp(τ

2DT
p (ẑ)QDp(ẑ) +R)

−Im]vk) , T (vk). (5.25)

Then, for sufficiently small τ > 0, there exists a unique optimal controller v∗(t) such

that T (v∗(t)) = v∗(t) and, for every v0 ∈ Vt, the sequence {vk}∞k=0 converges to v
∗(t).

Proof. First, we show that for a fixed time t ≥ 0 such that µ({t ∈ [0,∞) : v(t) =

u̇(t)}) ̸= 0, the optimal control v∗(t) satisfying (5.19)–(5.22) is a fixed point of (5.25).

If vi,min(t) < v∗i (t) < vi,max(t) for a fixed t ≥ 0 and i = 1, . . . ,m, then it follows from

(5.21)–(5.23) that

(
τ 2DT

p (ẑ(t))QDp(ẑ(t)) +R
)
v(t) + τDT

p (ẑ(t))Q
(
ϕp(t) + τ [ap(ẑ(t))− y(r)r (t)

+ψp(t)]) = 0.

In this case, (5.25) becomes T (v∗(t)) = v∗(t). If, alternatively, v∗i (t) = vi,max(t), for a

fixed t ≥ 0 and every i ∈ {1, . . . ,m}, then, by (5.21) and (5.22), λi ≥ 0 and λ̂i = 0,

which implies that (ATλ)i = λi− λ̂i = λi. Thus, the ith component of (5.23) satisfies

(
τ 2DT

p (ẑ(t))QDp(ẑ(t)) +R)v(t) + τDT
p (ẑ(t))Q(ϕp(t) + τ [ap(ẑ(t))− y(r)r (t)

+ψp(t)])i = −λi,
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and hence, since λi ≥ 0, the ith component of the right-hand side of (5.25) becomes

si (βpλi + v∗i (t)) = si (βpλi + vi,max(t)) = vi,max(t) = v∗i (t). (5.26)

Analogously, if v∗i (t) = vi,min(t) for a fixed t ≥ 0 and every i ∈ {1, . . . ,m}, then a

similar argument as given above yields

si(−βpλ̂i + v∗i (t)) = si(−βpλ̂i + vi,min(t)) = vi,min(t) = v∗i (t),

since λ̂i ≥ 0. Hence, v∗(t) is a fixed point of (5.25).

Next, we show that T (·) is a contraction mapping. To show this, define

ηp(v) , βp[τD
T
p (ẑ)Q(τ [y

(r)
r − ap(ẑ)− ψp]− ϕp)]− [βp(τ

2DT
p (ẑ)QDp(ẑ) +R)− Im]v.

Then, for p ∈ P and every v, r ∈ Rm,

∥T (v)− T (r)∥ ≤ ∥ηp(v)− ηp(r)∥

= ∥ − [βp(τ
2DT

p (ẑ)QDp(ẑ) +R)− Im](v − r)∥

≤ ∥Im − βp(τ
2DT

p (ẑ)QDp(ẑ) +R)∥∥v − r∥

≤ λmax(Im − βp(τ
2DT

p (ẑ)QDp(ẑ) +R))∥v − r∥

= α∥v − r∥. (5.27)

Now, since βp = (
∑m

i=1

∑m
j=1 Γ

2
(i,j)p

(ẑ))−1/2 = ∥Γp(ẑ)∥−1
F , where ∥ · ∥F is the Frobenius

norm, it follows that βp = (σ2
1(Γp(ẑ))+ . . .+ σ2

m(Γp(ẑ)))
−1/2, where σi(Γp(ẑ)) denotes

the ith singular value of Γp(ẑ). Moreover, since Γp(ẑ) is positive definite, it follows

that

α = 1− βpλmin(Γp(ẑ)) = 1− βpσmin(Γp(ẑ)) < 1. (5.28)

Hence, T : Rm → Rm is a contraction mapping. Now, since Rm with spacial norm

∥ · ∥q, q ∈ [1,∞], is a complete space, it follows from the Banach fixed point theorem
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[19, p.68] that there exists a unique v∗ ∈ Rm such that T (v∗) = v∗, and the sequence

{vk}∞k=0 ⊆ Vt ∈ Rm converges to v∗. Furthermore, since Vt is closed, it follows from

the Proposition 2.9 in [19, p.29] that v∗ ∈ Vt. Since v
∗ is unique, v∗ = v∗(t).

If for almost every t ≥ 0, v∗(t) satisfying (5.25) is such that vi,min(t) < v∗i (t) <

vi,max(t), i = 1, . . . ,m, then the optimal control law v∗(t) collapses to

v∗(t) = (τ 2DT
p (ẑ(t))QDp(ẑ(t)) +R)−1τDT

p (ẑ(t))Q[τ(y
(r)
r (t)− ap(ẑ(t))− ψp(t))

−ϕp(t)], p ∈ P , a.e. t ≥ 0. (5.29)

If, in addition, in this case the weighting matrix R = 0m×m, then substituting (5.29)

into (5.14) yields

ϕ̇p(t) = −1

τ
ϕp(t), p ∈ P , a.e. t ≥ 0, (5.30)

Hence, ϕp(t) → 0 as t → ∞ almost everywhere. Now, (5.30) implies ϕ̇p(t) → 0 as

t→ ∞. Furthermore, in this case substituting (5.30) into (5.13) yields

e
(ri)
ip

(t) + (αi,ri−1 +
1

τ
)e

(ri−1)
ip

(t) + . . .+ (αi,0 +
1

τ
αi,1)eip(t) +

1

τ
αi,0

∫ t

0

ei(τ)dτ = 0,

i = 1, . . . ,m, p ∈ P , a.e. t ≥ 0. (5.31)

Thus, since αi,j, j = 0, . . . , ri − 1, are chosen such that (5.12) is Hurwitz, ei(t) → 0

as t→ ∞, i ∈ {1, . . . ,m}.

Proposition 5.2. If 0 ≤≤ u(0) ≤≤ eu and v∗(t) satisfying (5.25) is such that

T (v∗(t)) = v∗(t), then u∗(t) ∈ U for all t ≥ 0.

Proof. The control rate constraint ev ≤≤ v∗(t) ≤≤ ev, t ≥ 0, is automatically

satisfied since (5.17) and (5.24) hold. Now, to show that the amplitude constraint

0m ≤≤ u∗(t) ≤≤ eu, t ≥ 0, holds, suppose that at some time t1 ≥ 0, u∗i (t1) = 0

for i ∈ {1, . . . ,m}. Then, it follows from the definition of vi,min(t) that v∗i (t1) ≥

95



vi,min(t1) > −u∗
i (t1)

δ
= 0. Thus, u∗i (t) is strictly increasing, and hence, u∗i (t) > 0 for

t ≥ t1. Similarly, suppose that for some t2 ≥ 0, u∗i (t2) = u for i ∈ {1, . . . ,m}.

Then, v∗i (t2) ≤ vi,max(t2) <
u−u∗

i (t2)

δ
= 0. Thus, u∗i (t) is strictly decreasing, and hence,

u∗i (t) < u for t ≥ t2. Hence, u
∗(t) ∈ U for all t ≥ 0.

A block diagram of the constrained tracking control architecture given in Theorem

5.1 is shown in Figure 5.1.

First time
N

Y

t = t+ τ

Initialize
e(t), ẑ(t)

v∗(t), (5.25)

Model System
(5.6), (5.7) (5.3), (5.4)

t ≤ s ≤ t+ τY

N
e(s)

t ≤ s ≤ t+ τ
Y

N

yr(s)−y(s)ẑ(s)

Figure 5.1: Block diagram of the constrained tracking control architecture.

5.4. Nonlinear Multicompartment Lung Model

In this section, we use the nonlinear model developed in Section 3.2 of Chapter

3 to characterize the dynamic behavior of a multicompartment respiratory system

in response to an arbitrary applied inspiratory pressure. Here, we still assume that
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the bronchial tree has a dichotomy architecture [68]; that is, in every generation each

airway unit branches into two airway units of the subsequent generation. In addition,

we assume that the lung compliance is a nonlinear function of lung volume.

Specifically, we provide a smooth characterization of the nonlinear compliance us-

ing the cubic spline data interpolation method [7]. Figure 5.2 shows the smoothed

approximation of the piecewise linear compliance function cini (xi). A similar approx-

imation holds for cexi (xi) which is also shown in Figure 5.2.
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x
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x
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Figure 5.2: Original and the smooth compliance functions.

5.5. Tracking Control for Pressure-Limited Mechanical Ven-
tilation

In this section, we use the constrained tracking control framework developed in

Section 5.3 to design a predictive output tracking controller for the nonlinear multi-
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compartmental lung mechanics model given in Section 5.4. The goal of this controller

is to track a given clinically plausible volume pattern while satisfying a given set of

amplitude and rate input constraints. First, however, we rewrite the state equations

(3.3) and (3.6) for inspiration and expiration, respectively, into vector-matrix state

space form. Specifically, define the state vector x , [x1, x2, . . . , x2n ]
T, where xi de-

notes the lung volume of the ith compartment. Now, the state equation (3.3) for

inspiration can be rewritten as

Rinẋ(t) + Cin(x(t))x(t) = papp(t)e, x(0) = xin0 , 0 ≤ t ≤ Tin, (5.32)

where Cin(x) is a diagonal matrix function given by

Cin(x) , diag

[
1

cin1 (x1)
, . . . ,

1

cin2n(x2n)

]
(5.33)

and

Rin ,
n∑

j=0

2j∑
k=1

Rin
j,kZj,kZ

T
j,k, (5.34)

where Zj,k ∈ R2n is such that the l-th component of Zj,k is 1 for all l = (k− 1)2n−j +

1, (k − 1)2n−j + 2, . . . , k2n−j, k = 1, . . . , 2j, j = 0, 1, . . . , n, and zero elsewhere.

Similarly, the state equation (3.6) for expiration can be rewritten as

Rexẋ(t) + Cex(x(t))x(t) = papp(t)e, x(Tin) = xex0 , Tin ≤ t ≤ Tex + Tin, (5.35)

where

Cex(x) , diag

[
1

cex1 (x1)
, . . . ,

1

cex2n(x2n)

]
, (5.36)

and

Rex ,
n∑

j=0

2j∑
k=1

Rex
j,k Zj,k Z

T
j,k. (5.37)
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Furthermore, it follows from Proposition 4.1 of [10] that Rin and Rex are positive-

definite and, hence, Rin and Rex are invertible matrices. Hence, (5.32) and (5.35) can

be rewritten as

ẋ(t) = Ain(x(t))x(t) + Binu(t), x(0) = xin0 , 0 ≤ t ≤ Tin, (5.38)

ẋ(t) = Aex(x(t))x(t) +Bexu(t), x(Tin) = xex0 , Tin ≤ t ≤ Tex + Tin, (5.39)

where Ain(x) = −R−1
in Cin(x), Bin = R−1

in e, Aex(x) = −R−1
ex Cex(x), and Bex = R−1

ex e.

In this chapter, we assume that the inspiration process starts from a given initial

state xin0 followed by the expiration process where its initial state will be the final state

of the inspiration. An inspiration followed by the expiration is called a single breathing

cycle. We assume that each breathing cycle is followed by another breathing cycle

where the initial condition for the latter breathing cycle is the final state of the former

breathing cycle. Furthermore, we assume that the duration of inspiration is Tin and

that of expiration is Tex, so that the total duration of a breathing cycle is T , Tin+Tex.

Moreover, the system dynamics switches from inspiration to expiration and back to

inspiration. Hence, the dynamics for the breathing process can be characterized by a

set of switched dynamical systems as

ẋ(t) = fσ(t)(x(t)) +Gσ(t)(x(t))u(t), x(0) = xin0 , t ≥ 0, (5.40)

y(t) = eTx(t). (5.41)

Here, we define the switching signal σ(t) ∈ {1, 2}, such that

σ(t) =

{
1, if 0 ≤ mod(t, T ) < Tin,
2, if Tin ≤ mod(t, T ) < T,

(5.42)

and the switching system functions by

f1(x) = Ain(x)x, G1(x) = Bin, (5.43)

f2(x) = Aex(x)x, G2(x) = Bex. (5.44)
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Note that since, by Proposition 4.1 of [10], −R−1
in and −R−1

ex are essentially non-

negative, and Cin(x) and Cex(x) are diagonal, it follows that Ain(x) and Aex(x) are

essentially nonnegative. Thus, fσ(x) in (5.40) is essentially nonnegative. Moreover,

it is also given in Proposition 4.1 of [10] that Bin ≥≥ 0 and Bex ≥≥ 0. Thus,

Gσ(x) ≥≥ 0.

Next, the prediction time horizon τ in the performance criterion (5.16) is chosen

such that

mod(Tin, τ) = mod(Tex, τ) = 0.

Thus, one period is divided into N = T
τ

equally spaced intervals with each time

interval given by

iτ ≤ mod(t, T ) < (i+ 1)τ, i ∈ {0, . . . , N − 1}.

In this case, the switching signal σ(t), t ≥ 0 in (5.42) can be rewritten as

σ(t) =

{
1, if iτ ≤ mod(t, T ) < (i+ 1)τ and (i+ 1)τ ≤ Tin,
2, if iτ ≤ mod(t, T ) < (i+ 1)τ and iτ ≥ Tin,

(5.45)

where i ∈ {0, . . . , N − 1}. Thus, (5.40) and (5.41), with the switching signal (5.45),

are in the form of (5.3) and (5.4).

As in Section 5.3, introducing u̇(t) = v(t) for almost every t ≥ 0 and states z(t) =

[xT(t), uT(t)]T, t ≥ 0, it follows that the augmented nonlinear system dynamics (5.6)

and (5.7) is satisfied with

f̂p(z) =

[
fp(x) +Gp(x)u(t)

0

]
, ĝ =

[
02n
1

]
, ĥ(z) = [eT 0]z, p ∈ {1, 2} = P .

Now, the time derivatives of the output are given by

ẏp(t) = eTfp(x(t)) + eTGp(x(t))u(t), (5.46)

ÿp(t) = ap(z(t)) +Dp(z(t))v(t), a.e. t ≥ 0, (5.47)
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where

ap(z(t)) =

{
eTȦin(x(t))x(t) + eTA2

in(x(t))x(t) + eTAin(x(t))Binu(t), p = 1,

eTȦex(x(t))x(t) + eTA2
ex(x(t))x(t) + eTAex(x(t))Bexu(t), p = 2,

Dp(z(t)) =

{
eTBin, p = 1,
eTBex, p = 2.

Since D1(z(t)) = eTR−1
in e > 0 and D2(z(t)) = eTR−1

ex e > 0, i) of Assumption 5.1 is

satisfied. To characterize the system zero dynamics, define

Z∗
p ,

{
z =

[
x
u

]
∈ R2n

+ × U : eTx = 0 and eTfp(x) + eTGp(x)u = 0

}
=

{
z =

[
x
u

]
∈ R2n

+ × U : x = 02n , u = 0

}
. (5.48)

Thus, ii) in Assumption 5.1 is automatically satisfied. Now, it follows from (5.47)

that the system has relative degree two, that is, r = 2, and hence, by (5.11),

ϕp(t) = ėp(t) + 2e(t) +

∫ t

0

e(τ)dτ, p ∈ P , a.e. t ≥ 0. (5.49)

Hence, ψp(t) = 2ėp(t) + e(t), p ∈ P , a.e. t ≥ 0.

For our simulation, we consider a two-compartment lung model and use the values

for lung resistance and compliance found in [14]. In particular, we set aini1 = 0.018 ℓ/cm

H2O, bini1 = 0.0233, aini2 = 0.025 ℓ/cm H2O, aini3 = 0.2532 ℓ/cm H2O, bini3 = −0.01,

xini1 = 0.3 ℓ, xini2 = 0.48 ℓ, aexi1 = 0.02 ℓ/cm H2O, bexi1 = 0.078, aexi2 = 0.038 ℓ/cm H2O,

aexi3 = 0.1025 ℓ/cm H2O, bexi3 = −0.15, xexi1 = 0.23 ℓ, xexi2 = 0.43 ℓ, i = 1, 2. Here,

we assume that the bronchial tree has a dichotomy structure (see Section 5.4). The

airway resistance varies with the branch generation and typical values can be found

in [26]. Furthermore, the expiratory resistance will be higher than the inspiratory

resistance by a factor 2 to 3. Here, we assume that the factor is 2.5. The initial

conditions are set as x0 = [0.01, 0.05]T and u0 = 0. The prediction time steps τ and

δ are both set to be 0.1. We choose the control input constraints to be u = 0 cm H2O

and u = 25 cm H2O, and the control rate constraints to be v = −100 cm H2O/sec and
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v = 50 cm H2O/sec. Finally, we set Q = 100 and R = 0. Note that since R = 0, the

optimal performance criterion (5.16) becomes J∗
p (v(t)) =

1
2
ϕ∗T

p (t+τ)Qϕ
∗
p(t+τ), p ∈ P

for almost every t ≥ 0. Since J∗
p (v(t)) is strictly convex and Vt is convex, it follows

that there exist an optimal control v∗(t) and J∗
p (v(t)) < ∞ at every fixed t ≥ 0

and p ∈ P . Thus, ϕ∗
p(t), p ∈ P , for almost every t ≥ 0, is bounded. Furthermore,

since (5.11) is Hurwitz, the tracking error e∗(t) is bounded for almost every t ≥ 0.

Specifically, if the optimal control rate v∗(t), t ≥ 0, satisfies v < v∗(t) < v, t ≥ 0, then

it follows from Section 5.3 that the tracking error e∗(t) asymptotically converges to

zero for almost every t ≥ 0.

First, we use a reference trajectory rc(t), 0 ≤ t ≤ Tin + Tex, generated from the

solution of an optimal airflow pattern problem given in [41]. Figure 5.3 shows that

optimal driving pressure u∗(t), t ≥ 0, which satisfies the input amplitude constrains.

Figure 5.4 shows the optimal control rate v∗(t), t ≥ 0, which satisfies the input rate

constraints. Figure 5.7 shows the total lung compartment volume versus the reference

lung volume. In Figure 5.7, we can see that there exists a bounded trajectory tracking

error. This is because the reference trajectory given in [41] is generated by a driving

pressure with peak values greater than u. Thus, the control input u∗(t) and the

control rate v∗(t), t ≥ 0 are both saturated over certain time intervals as shown in

Figure 5.3 and Figure 5.4, respectively.

Next, we change the control input constraints to u = 0 cm H2O and u = 35 cm

H2O, and the control rate constraints to v = −100 cm H2O/sec and v = 100 cm

H2O/sec. Figures 5.5 and 5.6 show that the optimal control input u∗(t), t ≥ 0, and

the control rate v∗(t), t ≥ 0, satisfy the amplitude and rate constraints and are not

saturated. Figure 5.8 shows that controller drives the total lung compartment volume

to the reference trajectory asymptotically, which agrees with the analysis in Section

5.3.
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Figure 5.3: The constrained control in-
put u∗(t) versus time (saturated).
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Figure 5.4: The constrained control rate
v∗(t) versus time (saturated).
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Figure 5.5: The constrained control in-
put u∗(t) versus time (non-saturated).
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Figure 5.6: The constrained control rate
v∗(t) versus time (non-saturated).
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Figure 5.7: The output for the total lung
volume driven by saturated controller.
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Figure 5.8: The output for the total
lung volume driven by non-saturated con-
troller.
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Chapter 6

Conclusion and Ongoing Research

6.1. Conclusion

In this dissertation we developed an analysis and control synthesis framework for

a pressure-limited respirator and lung mechanics system using a multicompartment

model. Respiratory failure, the inadequate exchange of carbon dioxide and oxygen

by the lungs, is a common clinical problem in critical care medicine, and patients

with respiratory failure frequently require support with mechanical ventilation while

the underlying cause is identified and treated. At its simplest, mechanical ventilation

is accomplished by the application of cyclically varying positive gas pressure to the

trachea. In the absence of patient respiratory effort, it is commonly observed that

the lung volumes at end-inspiration and end-expiration rapidly converge to stable

steady-state values. However, this does not guarantee that the lungs, viewed as a

dynamical system, are stable. Anatomically the lungs are a tree-like structure with

repetitive branching into smaller and smaller airways, culminating in the functional

units of gas exchange, the alveoli. Stability of end-inspiratory and end-expiratory

lung volume does not guarantee that the volumes of individual functional units (the

alveoli) are stable.

In this dissertation, we developed a general mathematical model to analyze the
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behavior of a multicompartment respirator and lung mechanics system. In particular,

we used compartmental dynamical system theory and Poincaré maps to show that a

general multicompartment dichotomous lung model converges to a stable limit cycle.

Furthermore, we extended the analysis to models with a general tree architecture

using graph theory. This extension is particularly important since the anatomy of

the lungs is significantly more complex than a regular dichotomous model. Then,

we developed an adaptive control framework for the multicompartmental model of a

pressure-limited respirator and lung mechanics system. Specifically, we developed a

model reference direct adaptive controller framework where the plant and reference

models involve switching and time-varying dynamics. Next, we applied the proposed

adaptive feedback controller framework to stabilize a given limit cycle corresponding

to a clinically plausible respiratory pattern.

Furthermore, we developed an optimal respiratory air flow pattern using a non-

linear multicompartment model for a lung mechanics system. The determination of

the optimal air volume trajectories are derived using classical calculus of variations

techniques and involve optimization criteria that account for oxygen expenditure of

the respiratory lung muscles, lung volume acceleration, and elastic potential energy

of the lung. Since sedation in intensive care units is often administered to prevent

the patient from fighting the ventilator, it seems plausible to use respiratory parame-

ters as a performance variable for closed-loop control. Calculation of patient work of

breathing requires measurement of a patient-generated pressure/volume loop or work

of breathing. Since work of breathing can be measured using a commercially avail-

able esophageal balloon [31], work of breathing can serve as a performance variable

for closed-loop control of sedation. Furthermore, patient-ventilator dyssynchrony can

be identified by analysis of pressure/flow wave forms [52].

Closed-loop control algorithms can use either work-of-breathing as measured by an
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esophageal balloon or patient respiratory rate as a performance variable for closed-

loop control of sedation. The need for optimal control algorithms is necessary for

achieving a target performance value while satisfying certain constraints. For exam-

ple, we could seek to design a control algorithm that seeks to minimize the patient

respiratory rate (above the set ventilator rate) but which does not result in hypoten-

sion. This requires the development of a constrained optimal control framework that

seeks to minimize a given performance measure (e.g., patient respiratory rate) within

a class of fixed-architecture controllers satisfying internal controller constraints (e.g.,

controller order, control signal nonnegativity, etc.) as well as system constraints (e.g.,

blood pressure, system state nonnegativity, etc.). To this end, in this dissertation, we

considered a model predictive controller for a multicompartment respiratory system

to guarantee asymptotic tracking for a given periodic reference lung volume pattern.

Specifically, since both the reference trajectory and system dynamics are periodic,

we merged the features of repetitive control and model predictive control to achieve

periodic tracking in the face of system input constraints.

Finally, to account for the fact that the compliance of the lung units vary with lung

volume, we designed a predictive tracking controller for a nonlinear multicompart-

ment respiratory system to track a given reference lung volume pattern that accounts

for amplitude and rate control constraints. The predictive control law is derived by

minimizing a quadratic performance criterion involving a prediction of the system

response over a prescribed time step. This proposed approach gives an explicit form

of the control law, and thus, avoids online optimization.

6.2. Recommendations for Future Research

Floquet theory has a wide range of uses in studying linear systems with periodic

coefficients. Thus, as an alternative to the framework in Chapter 2, we can use

106



Floquet theory for the stability analysis of the breathing limit cycle generated by the

switched linear dynamical system (2.19). In addition, Floquet theory can be used

to analyze the stability of the nonlinear multicompartment respiratory system given

by (5.38) and (5.39). Specifically, if we linearize the nonlinear system model (5.38)

and (5.39) about a periodic limit cycle, then, extended Floquet theory [61] can be

used to analyze the stability of the first variation of the system states using Floquet

multipliers.

To see this, we consider the nonlinear multicompartment system model given by

ẋ(t) = f(x(t), u(t)), x(0) = x0, 0 ≤ t ≤ T, (6.1)

where

f(x(t), u(t)) =

{
Ain(x(t))x(t) +Binu(t), 0 ≤ t ≤ Tin
Aex(x(t))x(t) +Bexu(t), Tin ≤ t ≤ T

. (6.2)

Now, let xr(t), t ≥ 0, denote a stable limit cycle generated by the switched linear

system (2.19) with a given periodic input ur(t), t ≥ 0, and let u(t) = ur(t), t ≥ 0.

Then, it follows from a first-order Taylor expansion that

ẋr(t) + δx(t) = f(xr(t), ur(t)) +
∂f(x(t), u(t))

∂x
|xr(t),ur(t)δx(t). (6.3)

Since xr(t) and ur(t) satisfy the linear system model (2.19), it follows that the first

variation δx(t), t ≥ 0, satisfies

δẋ(t) = A(t)δx(t) + g(t), (6.4)

where A(t) = ∂f(x(t),u(t))
∂x

|xr(t),ur(t) and g(t) = f(xr(t), ur(t)) − ẋr(t). Since xr(t) and

ur(t) are both periodic, A(t+ T ) = A(t) and g(t+ T ) = g(t).

Next, it follows from Theorem 4.1 in [61] that the solution δx(t) at nT given by

δx(nT ) = Xn(T )x(0) + [Xn(T ) + . . .+X2(T ) +X(T )]

∫ T

0

X−1(τ)g(τ)dτ, (6.5)
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where X(T ) is a monodromy matrix calculated from the homogenous portion of the

differential equation (6.4), that is, δẋ(t) = A(t)δx, with initial conditions X(0) = In.

The eigenvalues of X(T ) are known as Floquet multipliers, which determine the

stability of the solution δx(t), t ≥ 0. Specifically, if the radius of Floquet multipliers

are less than one, that is, ρ(X(T )) < 1, it can be shown that

lim
n→∞

δx(nT ) = [I −X(T )]−1X(T )

∫ T

0

X−1(τ)g(τ)dτ. (6.6)

Thus, the stability of the solution to the nonlinear system model (6.1) depends on the

monodromy matrix. However, the monodromy matrix X(T ) has to be determined

numerically. These ideas can be further explored as a viable direction for future

research.

The model predictive control frameworks presented in Chapters 4 and 5 of this

dissertation are based on a nominal lung mechanics model. However, physiological

variables vary from patient to patient, as well as within the same patient under dif-

ferent conditions, making it very challenging to develop models and effective control

law architectures for active mechanical ventilation. Adaptive control [35, 51] has fo-

cused on achieving system stability and performance without excessive reliance on

system models. In future research, we propose to extend the nonlinear model predic-

tive control framework developed in Chapter 5 to address system uncertainty. While

there exist some results on linear adaptive model predictive control [12,18], very few

adaptive model predictive control frameworks have been developed for nonlinear sys-

tems [47]. Specifically, one possible approach for mechanical ventilation control is to

extend the single-step-ahead scheme developed in Chapter 5, such that the compu-

tational effort will be reduced for a nonlinear lung mechanics system. In addition,

a system parametric identification mechanism needs to be added to the architecture

such that the controller can be tuned online (see Figure 6.1). Furthermore, robust

stability conditions need to be developed to guarantee that the system tracking errors
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Figure 6.1: Adaptive model predictive control framework.
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Figure 6.2: A respiratory system model.

converge asymptotically over a prescribed system uncertainty envelope.

Another area related to this research is that the human respiratory system is

composed of three components; namely, ventilation, gas exchange at the lungs and

the cells, and the transport of gases in the blood [43]. Specifically, as stated in

Chapter 3, respiration is regulated by three chemical factors; carbon dioxide CO2,

oxygen O2, and the pH value. Any changes in these three chemical factors can

result in the changes in ventilation. For example, an increase in partial arterial
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pressure of carbon dioxide pCO2 causes increased rate and depth of ventilation, thus

increasing alveolar ventilation and removing CO2 from the blood. Hence, to achieve

better ventilation control, in future research, we propose to investigate the interactions

between ventilation control and the aforementioned chemical factors for respiratory

regulation.

Moreover, the process of ventilation is controlled by the central nervous system,

which is a network of neurons in the brain stem. By monitoring the level of the

three chemical factors CO2, O2, and pH through chemoreceptors, the central nervous

system automatically generates rhythmic cycles of neuronal fires to stimulate respi-

ratory activity. Thus, to better understand the mechanism for ventilation control, in

future research we propose to build a more general mathematical respiratory system

model (see Figure 6.2) that describes the interactions between respiratory parameter

regulation in the central nervous system and muscle control in the lung mechanics sys-

tem. This model can greatly benefit the study of the interaction between ventilation

control and sedation control for the patients in intensive care units.
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