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ABSTRACT 

 

Ellipsometry is an extremely powerful tool for the study the optical properties of 

materials with high optical data precision in measurement. Being accurate, fast and 

non-destructive in data acquisition and characterization of the samples, ellipsometry 

has been widely applied especially in the scientific research labs and microelectronic 

industry with continuous efforts and progress made by developing different 

theoretical models and experimental techniques.     

In this work, an ellipsometer using a fixed phase retarder and a rotating polarizer and 

analyzer at any speed ratio is presented. Muller formalism is employed to extract 

Stokes parameters from which the intensity received by the detector is obtained. A 

comparison between different configurations is held regarding the effect of the noise 

on the results extracted from each one and the uncertainties in the ellipsometric 

parameters as functions of the uncertainties of the Fourier coefficients.  

Moreover, a set of ellipsometric configurations using a rotating polarizer, 

compensator, and analyzer at any speed ratio is studied. All configurations are applied 

to bulk c-Si and GaAs to calculate the real and imaginary parts of the refractive index 

of the samples. The comparison among different configurations reveals that rotating 

compensator-analyzer configuration corresponds to the minimum error in the 

calculated optical parameters.  
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CHAPTER ONE 

INTRODUCTION 

Ellipsometers have been widely used in thin film characterization. They have shown a 

high degree of accuracy. An ellipsometer measures the change in the polarization state of 

incident light. If linearly polarized light of known orientation is reflected from a surface, 

then the reflected light will be elliptically polarized. The shape and orientation of the 

ellipse depends on the angle of incidence, the direction of the polarized incident light, and 

the reflection properties of the surface. In this chapter, an introduction to electromagnetic 

theory and principles of ellipsometry are presented.   

 

1.1 Historical Review: 

The history of ellipsometry began in 1887 when Drude derived the equations of 

ellipsometry. Since then, ellipsometry has attracted researchers and scientists. Until the 

early 1970s, ellipsometry measurements were time consuming. In 1975, the automation 

of spectroscopic ellipsometry measurement was achieved by Aspenes et al. [14]. This 

breakthrough in the field improved the measurement time as well as the measurement 

precision. In 1984, real time monitoring ellipsometry was constructed [15]. Since then, 

different ellipsometric configurations have been studied in the literature. The speed ratio 

with which the optical elements rotate was the main difference among these structures. 

The most common configuration was the rotating analyzer ellipsometer (RAE) [16]. In 

such a model, the polarizer angle P is fixed while the analyzer angle A rotates at an 

angular speed ω. In terms of A = ωt, the intensity of light emerging from the analyzer can 

be written as one dc and two ac components from which the ellipsometric parameters ψ 

and Δ are extracted. The RAE has the advantage of simple system design but it involves 

the dc component which causes a serious problem. The reduction of the dc background 

requires particular techniques and the calibration of such system is also time consuming.   
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Rotating polarizer and analyzer ellipsometer (RPAE) has also been proposed in different 

forms. The speed ratio, with which the optical elements rotate, was the main difference 

among these structures.  

Azzam [17] suggested synchronously rotating both the polarizer and the analyzer with the 

ratio 1:3. In his work, the intensity of light reaching the detector includes four cosine and 

four sine terms. His system suffers a lack of clear explanation of each coefficient and it's 

relation to the ellipsometric parameters ψ and Δ [18]. 

In 1987, a rotating polarizer and analyzer RPA spectroscopic ellipsometer was proposed 

and constructed [18]. In the design, the polarizer and the analyzer rotate with a speed 

ratio 1:2. The final light intensity then contains three cosine terms from which ψ and Δ 

are calculated. In this design, the errors arising from the phase shift and dc background 

are eliminated.  

An improved RPA spectroscopic ellipsometer was proposed [19,20] with the speed ratio 

still being 1:2 but with the incident angle being fully variable. Moreover, a fixed polarizer 

was placed in the optical path to eliminate the source polarization effect. The final light 

intensity thus contains four AC components. The optical constants and the ellipsometric 

parameters were obtained by calculating any one of the two sets of AC signals. 

Rotating compensator ellipsometers have been also proposed [21-23]. Systematic error 

sources for the rotating-compensator ellipsometer are discussed [22]. Starting from a 

general formalism, they derived explicit first-order expressions for the errors δψ and δΔ 

caused by azimuthal errors and residual ellipticity introduced by imperfect polarizers or 

compensators and windows.  

A spectroscopic ellipsometer in which the polarizer and the analyzer are rotating 

synchronously in opposite directions at the same speed was proposed [24]. The light 

intensity involves four components, one dc and three cosine terms, with frequencies of 

2ω, 4ω, and 6ω. The main advantage of the proposed ellipsometer is that: it is feasible to 

extract the ellipsometric parameters ψ and Δ from the even Fourier coefficients without 

relying on the dc component which is considered to be a serious problem in a rotating-

analyzer or -polarizer ellipsometer. This allows measurements in semi-dark room without 
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worrying about stray light problems, dark currents in detectors, and long term 

fluctuations in light sources. The calculations of the optical parameters of c-Si, Au, and 

GaAs are in excellent agreement with the published data.  

Moreover, a spectroscopic ellipsometer in which the polarizer and the analyzer are 

rotating synchronously in the same direction with the same angular speed was also 

investigated [25]. The results from the simulated spectra of the complex refractive index 

of c-Si, and Au were presented. The noise effect on the proposed ellipsometer was 

simulated and plotted for the two samples.  

The full description of a scanning ellipsometer that incorporates the rotation of two 

polarizing elements simultaneously with a speed ratio 1:2 was presented theoretically in 

details [26] and constructed experimentally [27]. The ideal Fourier spectrum of this 

signal includes nine coefficients from which five are even and the rest are odd. All of 

these coefficients contain valuable information about the physical properties of the 

studied sample. Therefore, it is feasible to extract the ellipsometric parameters ψ and Δ as 

well as the optical parameters of the sample using any set containing three different 

coefficients.  

Recently, a spectroscopic ellipsometer was presented in whcih the polarizer and the 

analyzer are rotating synchronously in the same direction at a speed ratio 1:3 [28]. The 

light intensity received by the detector contains six components, one dc and five AC, with 

frequencies of 2ω, 4ω, 6ω, 8ω, and 10ω, respectively. One can independently extract the 

ellipsometric parameters ψ and Δ as well as the optical constants using any of six 

different sets of the Fourier coefficients. A comparison among these sets shows that the 

sets containing the coefficients (a1, a2, a3) and (a1, a2, a4) correspond to the minimum 

percent error in the calculation of the real and imaginary parts of the dielectric function. 

The results from the calculated spectra of the complex refractive index of c-Si, ZnSe, and 

GaP show a remarkable consistency with published data.   

The proposed structures in Refs [24], [25], and [28] were tested only for bulk samples. 

The theoretical characterization of 100 nm SiO2 thin film using spectroscopic rotating 

polarizer analyzer ellipsometer (RPAE) with speed ratios 1:-1 [29], 1:1 [30], and 1:3 [31] 
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was investigated. The proposed sample consists of air (ambient)/SiO2 (thin film)/Si 

(substrate). The ellipsometric parameters ψ and Δ are calculated when a clean signal is 

received by the detector and when a hypothetical noise is imposed on this signal. The 

film thickness and the optical constants of the film are calculated from the noisy signal in 

the spectrum range 200–800 nm. The results are compared with the proposed thickness 

and with the published values for SiO2 optical constants.    

Different types of spectroscopic ellipsometric structures concerning the effect of the 

noise on the optical parameters extracted from these systems were studied [32]. The 

comparison involves the rotating analyzer spectroscopic ellipsometer and the rotating 

polarizer and analyzer spectroscopic ellipsometer in which the polarizer and the analyzer 

rotate with different speed ratios. All systems under comparison are investigated for c-Si 

and GaAs samples for a noisy signal. The percent error in the real and imaginary parts of 

the refractive index of the samples is calculated and plotted with energy in the range 1.5-

3 eV photon energy. The results reveal that the rotating polarizer and analyzer 

spectroscopic ellipsometer in which the polarizer and the analyzer rotate with a ratio 1:1 

corresponds to the minimum error.      

 

1.2. Theoretical Background 

 

A brief review of the interaction of the electric and magnetic fields with any linear 

isotropic homogeneous medium will be presented. Moreover, the boundary conditions, 

Maxwell equations, and the wave equation will be reviewed. The propagation of 

monochromatic plane waves will be reviewed. Reflection of p- and s-polarizations from a 

bulk material as well as reflection from different structures will be discussed. Jones 

calculus and many different polarizing elements are presented at the end of this chapter. 

 

1.3. Electric Field And Electric Displacement 

 

For a polarized dielectric material of electric polarization P (permanent or induced), the 

macroscopic field vector D is given by [13] 
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D = 0 E + P                                                     (1.1) 

 

where D is called the electric displacement and 0 is the electric permittivity of vacuum. 

In many dielectric media the polarization occurs in response to the applied field. For a 

linear and isotropic dielectric medium, the polarization is given by 

 

EP e 0                                                       (1.2) 

 

The constant e is a scalar quantity called the electric susceptibility. The electric field 

and the electric displacement are related by [13] 

 

EED )1(0 e                                                (1.3) 

 

where   is the electric permittivity of the medium. The ratio 0  is known as the 

relative complex dielectric constant (permittivity) of the medium and is given by [13] 

 

21

0

1 



 ier                                           (1.4) 

 

where 1  and 2  are the real and imaginary parts of the relative complex dielectric 

function of the medium, respectively. The dielectric loss in an absorbing medium is due 

to the imaginary part 2 . 

 

1.4 Boundary Conditions 

The boundary conditions on both E and D can be found by applying the integral form of 

Gauss's law, namely [13] 
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 
s v

dvd sD. .                                                   (1.5) 

 

The integration is carried out onto a small pillbox constructed at the interface between 1 

and 2 media yielding to 

 

 nn DD 12 ,                                                   (1.6) 

 

 where   is the surface density of the external charge at the interface while Dn1 and D2n 

are the normal electric field density in 1 and 2 media, respectively. 

Therefore, the normal components of D is discontinuous and this discontinuity is given 

by the surface density of the external charge on the interface. 

The boundary conditions on E can be found by applying Stoke’s theorem on the equation 

0E   (static case) to give 

 

tt EE 12  .                                                        (1.7) 

 

Thus, the tangential components of the electric filed is continuous at the interface. 

 

1.4.1 Boundary Conditions For B and H 

 

By using a similar argument as before, the normal components of the magnetic field B is 

continuous at the interface that is 

  

nn BB 12  ,                                                        (1.8) 

 

and the tangential component of H is discontinuous namely 
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s1t2t jHH  ,                                                    (1.9) 

 

where sj  is the surface current density at the interface.  

 

1.4 Maxwell’s Equations 

 

The electric field vectors E and D together with the magnetic field vectors B and H 

classically describe an electromagnetic wave. These vectors are related by Maxwell’s 

equations, which are fully describe the propagation of the electromagnetic radiation in 

any medium. The differential form of the time varying of Maxwell’s equations is [13] 

 

t




B
E .                                                    (1.10) 

 

t




D
JH ,                                                 (1.11) 

 

 D ,                                                      (1.12) 

 

0B  .                                                        (1.13) 

 

For linear and isotropic medium the following relations are valid [13] 

 

EJ )( ,                                                     (1.14) 

 

ED )( ,                                                     (1.15) 

and  

HB )( .                                                     (1.16) 
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1.5 The Wave Equation 

The wave equation is one of the most important consequences of Maxwell’s equations. A 

closer look at the first two Maxwell’s equations reveals that they are a set of coupled 

partial differential equations. Taking the curl of equations (1.10) and (1.11), then 

assuming that the medium is linear, homogenous and isotropic and the gradient of the 

scalars ,  and  vanish, again substituting equations (1.10) and (1.11) into the obtained 

two equations and using 0 B  and 0 E  for a source free medium gives the final 

form of the wave equations for both E and B namely 

 

0
E

E 





2

2
2

t
 ,                                       (1.17) 

 

0
B

B
2

2 





2t
ε .                                       (1.18) 

 

The phase velocity in a non-conducting medium is given by 

 

)()(

1
)(


 phV ,                                           (1.19) 

 

and for free space 

    

00

1


 cVph .                                               (1.20) 

 

The x-component of the electric field the y-component of the magnetic field are given by 

 

)(
),( 0

kzti
eEtzEx





,                                         (1.21) 
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)(
),( 0

kzti
eEtzH y









.                                     (1.22) 

 

Eqns. (1.21) and (1.22) are necessary when talking about the reflection of monochromatic 

waves from dielectric interfaces.  

 

1.6. Refractive Index And Dispersion Relations For A Dielectric Medium 

The refractive index of any medium is the ratio of the speed of light in vacuum c to the 

phase velocity of light in that medium. The complex refractive index is described by [13] 

 

iknN                                                        (1.23) 

 

where n is the index of refraction and k is the extinction coefficient. From the definition 

of the refractive index are obtains 

 

)(
)(




phV

c
N  .                                                 (1.24) 

 

Substituting eqn. (1.19) and eqn. (1.20) into the last equation gives, 

 

00

)()(

)(
)(






 

phV

c
N ,                                       (1.25) 

or 

)()()(  rrN  .                                            (1.26) 

 

Assuming a non-magnetic medium i.e., 1r , eqn. (1.26) becomes 
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)()()()()()( 11  iiknN r                    (1.27) 

 

The index of refraction and the extinction coefficients can be written in terms of the real 

and complex parts of the dielectric function as 

 

 
2

)()()(
)( 1

2

1
2

2

2

1 



n                                (1.28) 

 

 
2

)()()(
)( 1

2

1
2

2

2

1 



k                                  (1.29) 

 

1.7 Cauchy Relation 

The refractive index can be written in terms of the wavelength as [13]  

 

...)(
4

4

2

2
0 




NN
Nn                                           (1.30) 

 

This relation is called Cauchy relation. The parameters N0, N2, and N4 are the Cauchy 

parameters. The Cauchy relation is used to describe the normal dispersion of dielectric 

materials in the visible spectrum. 

 

1.8 Oblique Reflection Of Plane Polarized Monochromatic Wave At A Dielectric, 

Metallic and Semiconductor Interfaces 

 

1.8.1 Terms And Definitions 

 

Plane Of Incidence 

The plane of incidence is defined as the plane normal to the surface and contains both the 

incident and the reflected beams as shown in figure 1. 
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Figure 1.1. Plane of incidence. 

 

p-polarization  

If the direction of vibration of the electric field vector is parallel to the plane of incidence, 

the polarized light is called p-polarized. 

s-polarization  

If the direction of vibration of the electric field vector is normal to the plane of incidence, 

the polarized light is called s-polarized (s stands for the German word ”senkrecht”, 

meaning “perpendicular”). 

 

1.8.2 Reflection of p-linearly Polarized Light 

 

 Consider a p-polarized plane wave is incident on the interface between two semi-infinite 

dielectric media 0 and 1 with parameters 0 , 0 , and 1 , 1 , respectively, at an angle of 

incidence 0  as shown in figure 1.2 below. 
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Figure 1.2. Oblique reflection of P-polarized light. 

 

The incident electric and magnetic fields are given by 

 

)]cos()sin([
)ˆ)sin(ˆ)[(cos( 000

000




zxik
eEi


 kiE ,            (1.31) 

 

jH ˆ
)]cos()sin([

0

000
0



 zxik
eE

i



 ,                              (1.32) 

 

where 
0

0

0



   is the wave impedance of medium 0 and 000 k . 

The reflected electric and magnetic fields are given by [13] 

 

                             
)]cos()sin([

]ˆ)sin(ˆ)[cos( 0
0

rr
rrpr

zxik
ekirE





E ,                (1.33) 
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jH ˆ
)]cos()sin([

0

0
0



 rr
p

r

zxik
erE



 .                              (1.34) 

 

The transmitted fields are 

 

)]cos()sin([
)ˆ)sin(ˆ)[(cos( 111

110




zxik
etE pt


 kiE ,                (1.35) 

 

jH ˆ

)]cos()sin([
1

1

11

0



 zxik
etE p

t



 ,                            (1.36) 

 

where 
1

1
1




   and 111 k . 

 

The boundary conditions assumed no charges or currents at the interface lead to [13] 

 

)sin(
)cos(

)sin(
)cos(

)sin(
)cos( 1

1
000

0
r

p
r

rp

xik
et

xik
er

xik
e

















,      (1.37) 

and 

)sin()sin(1)sin(1
1

1

0

0

00

0

rpr
p

xik
e

txik
er

xik
e




















.                  (1.38) 

 

If the solution is to be valid for any value of x then the exponents on both sides of eqn. 

(1.37) and eqn. (1.38) should be equal. The following results are obtained [13] 

 

      r 0                                                           (1.39) 

and  

 

)sin()sin( 1100  kk                                            (1.40) 
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Relation (1.40) is known as Snell’s law. 

Snell’s law in terms of the refractive indices can be obtained using the relations 

k  and rn  which gives 

 

)sin()sin( 111000                                        (1.41) 

 

If the media are non-magnetic that is 01   , then 

 

)sin()sin( 1100  nn                                             (1.42) 

 

The p-polarization reflection coefficient is given by [13] 

 

 

)cos()cos(

)cos()cos(

)cos()cos(

)cos()cos(

1

1

1
0

0

0

1

1

1
0

0

0

1100

1100


































pr

  .                              (1.43) 

 

This is the most general form of the p-reflection coefficient for the reflection at the 

interface of two dielectric media in terms of the electric permittivity and the magnetic 

permeability. It can be written in terms of the refractive indices for non-magnetic media 

as [13] 

 

)cos()cos(

)cos()cos(

1001

1001





NN

NN
rp




 .                                           (1.44) 
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On the other hand, the p-polarization transmission coefficient is [13] 

 

)cos()cos(

)cos(2

1001

00





NN

N
t p


 .                                         (1.45) 

 

1.8.3 Reflection Of  s–linearly Polarized Light 

 

Using a similar discussion for the s-polarization, the reflection and transmission 

coefficients are given by [13] 

 

)cos()cos(

)cos()cos(

)cos()cos(

)cos()cos(

1

0

0

0

1

1

1

0

0

0

1

1

1001

1001


































sr

  .                               (1.46) 

 

In terms of the refractive indices for non-magnetic media eqn. (1.46) becomes 

 

)cos()cos(

)cos()cos(

1100

1100





NN

NN
rs




 .                                       (1.47) 

 

The s- polarization transmission coefficient 

  

)cos()cos(

)cos(2

1100

00





NN

N
ts


                                      (1.48) 

 

The p as well as the s reflection coefficients can be written in polar form as [13] 

 

)exp( ppp rir  ,                                             (1.49) 
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)exp( sss rir  .                                               (1.50) 

 

where p and s are the amplitudes of the p and s reflection coefficients respectively and 

pr  is the phase shift of the electric field parallel to the plane of incidence upon reflection 

from the sample and sr  is the same but for s polarized light. 

 

1.8.4 Reflection From A Dielectric Interface 

It is known that the reflection coefficients  (magnitudes and phases) are functions of the 

angle of incidence [13]. The magnitude of the p-reflection coefficient rp at a dielectric 

interface between two media with indices of refraction n1 and n0 goes to zero at a certain 

angle of incidence called the Brewster’s angle B as shown in figure 1.3. The value of 

this angle in terms  of the refractive indices is given by [13] 

 

0

1)tan(
n

n
B                                                       (1.51) 

 

At this angle B  the p-component is totally refracted into the second medium while the 

reflected wave is purely s-polarized. On the other hand, the magnitude of the s-

polarization reflection coefficient is greater than zero for all angles of incidence. The 

phases of the reflection coefficients are affected by changing the angle of incidence.  

For a dielectric interface the value of sr  remains constant at  for all angles of incidence 

but pr  jumps from 2  to   at the Brewster’s angle. 
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Figure 1.3. The intensity reflectance pR and sR of air/glass interface at =5461 Å, N=1.5 

and B =56.31 degrees. 

 

1.8.5 Reflection From An Absorbing Material 

The expressions for the p and s reflection coefficients from an absorbing material are the 

same as above. The p-reflection coefficient does not go to zero as the angle of incidence 

is changed. Instead, the reflectance rp goes to minimum at a certain angle called the 

pseudo-Brewster angle p  as shown in figure 1.4. The value of this minimum depends on 

the extinction coefficient k. The following diagram shows this behavior for the air/gold 

interface. 
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Figure 1.4. The intensity reflectance pR and sR of air/gold interface at  =4400 Å, 

         n=1.577-1.912i and the pseudo-Brewster’s angle p = 66 degrees. 

 

1.9 Reflection And Transmission Of Polarized Light By A Single Film 

 

Consider a film with parallel–plane boundaries and with thickness d on top of a substrate. 

Assume that the ambient, the film and the substrate are isotropic and homogeneous with 

indices of refraction 0N , 1N and 2N respectively as shown in figure 1.5. If a plane wave is 

incident at the 0-1 interface at an angle 0 , then part will be reflected and the other part 

will be refracted into the film. This part will suffer multiple internal reflection between 

the 1-2 and 1-0 interfaces. A phase change of  [13] 

 

)cos(2 11 


 N
d

 .                                          (1.52) 

 

 is added when light travels between the interfaces [13]. 
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Figure 1.5. Multiple reflection and transmission in a parallel plate. 

  

 

The total reflection coefficient of this system is given by [13] 

 

)2exp(1

)2exp(

1201

1201





irr

irr
r




 .                                           (1.53) 

 

Similarly, the transmission coefficient is [13] 

 

)2exp(1

)2exp(

1201

1201





irr
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


 .                                           (1.54) 

 

For p and s polarization, we have 

 

)2exp(1

)2exp(

1201
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  where   

 

pr01 = 
)cos()cos(

)cos()cos(
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)cos()cos(

)cos(2

1001

00





NN

N


 pt12 = 

)cos()cos(

)cos(2

2112

11





NN

N


        (1.61) 
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)cos()cos(
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
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)cos()cos(

)cos(2
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The angles 0, 1 and 2 are related by Snell's law 

 

N0 sin(0) = N1 sin (1) = N2 sin(2).                              (1.63) 

 

1.10. Introduction To Ellipsometry 

The basic principles of ellipsometry have been established more than 100 years ago, but 

it has not become of high importance in science and technology until the 1990s because 

of its versatile applications in material characterization and thin film technology [1-12]. 
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At the beginning, ellipsometers were single wavelength instruments. With the emergence 

of spectroscopic ellipsometry, the ellipsometry technique became of high importance to 

wide research areas from semiconductors to organic materials. Ellipsometers may, in 

general, contain light sources, polarizers, analyzers, depolarizers, compensators, samples 

to be studied, detectors, etc. When a sample is to be studied, it is located in the light path 

and the beam reflected or transmitted from the sample is collected and analyzed.  

An ellipsometer measures the change in the polarization state of incident light. If linearly 

polarized light of known orientation is reflected from a surface, then the reflected light 

will be elliptically polarized. The shape and orientation of the ellipse depends on the 

angle of incidence, the direction of the polarized incident light, and the reflection 

properties of the surface. The two parameters ψ (the ratio of reflection coefficients) and Δ 

(phase change between p- and s-polarized lights) are determined in one single 

ellipsometric measurement. This makes it possible to obtain both the real and imaginary 

parts of the complex dielectric function of a homogeneous material. For a reflecting 

surface, the forms of Δ and ψ are given by [13].   

 

                                           sp     and  
s

p

r

r
tan ,                                           (1.64) 

 

where p and s are the phase changes for the p and the s components of polarized light 

and rp and rs are the complex Fresnel reflection coefficients for the p and s components 

which may be written as [13]   
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Ellipsometry allows for the determination of the complex reflectance ratio ρ of a surface. 

This quantity is defined as the ratio of p and s reflection coefficients, rp and rs 

respectively. Commonly, the reflectance ratio is expressed in terms of ψ and Δ as [13]  

 

                                                ie
r

r

s

p
)tan( .                                                        (1.66) 

 

The expressions for rp and rs for a single interface between medium 0 (ambient), with a 

complex refractive index N0, and medium 1 (substrate), with a complex refractive index 

N1 are given by Eq. (1.44) and Eq. (1.47).   

 

1.11 Jones Formalism 

 

A matrix representation called the Jones matrix allows the mathematical description of 

optical components. If we apply the Jones formalism, we can express variations in 

polarized light from matrix calculation, even when there are many optical elements in the 

structure. The Jones matrix is also utilized when we describe ellipsometry measurement 

mathematically. On the other hand, the Jones vector is used when we express states of 

polarization including linear and elliptical polarizations [13]. 

 

1.11.1 Jones Vector 

Consider an electromagnetic wave propagates in the z-direction and the two components 

of E are given by [13] 

 

                                                                   )exp( xoxx iEE  ,                                      (1.67)       

 

                                                                  )exp( yoyy iEE  .                                      (1.68) 
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Where Eox and Eoy  are the x and y components of electric field amplitude and the vector 

),( tzE  may be written in terms of xE  and yE in a column matrix  as follows 

 

                                                                         









y

x

E

E
tzE ),( .                                     (1.69) 

 

From Eq. (1.69) we can find the intensity as follow  

 

                                               **),(),( yyxx EEEEtzEtzEI                                    (1.70) 

 

Where ),( tzE  is the transposed matrix of ),( tzE . 

For example, linearly polarized light parallel to the x- and y-directions are expressed by 
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The Jones vector that describes linearly polarized light oriented at +45  is written as, 
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On the other hand, right circular polarization RE  , and left circular polarization LE is 

written as  
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The matrix that describes the elliptic polarized light can be written as 
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1.11.2 Jones Matrices Of  Optical Elements  

 

The Jones matrix consists of  a 22 square matrix. The optical elements to be considered 

as polarizer (analyzer) P(A), compensator (retarder) (C) and sample (B) are discussed in 

details as follows: 

 

The Polarizer (Analyzer) 

 

 A polarizer is generally placed in front of the light source and is utilized to extract 

linearly polarized light from unpolarized light. On the other hand, an analyzer is placed in 

front of a light detector and the state of polarization is determined from the intensity of 

light transmitted through the analyzer. [13] 

 

                                                    









00

01
PA                                                          (1.75) 

 

The Compensator (Retarder) 

 

 A compensator (or retarder) is generally placed behind a polarizer or in front of an 

analyzer and is often employed to convert linear polarization to circular polarization and 

vice versa. The compensator generates a phase difference between the electric field 

vectors Ex and Ey. which is given by [13] 
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where d is the thickness of the compensator and ne and no are respectively its 

extraordinary and ordinary refractive indices. The matrix of compensator (or retarder) is 

given by [13],  

  

                                                  
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




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 ie
C
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01
                                                             (1.77) 

 

An Isotropic Sample  

 

The matrix of an isotropic sample can be written as [13]   
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B                                            (1.78) 

  

The samples that are used in the next chapters are considered to be isotropic. 

 

The Rotation Matrix  

 

The rotation matrix )(R  is given by [13], 
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)(
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R                                             (1.79) 

Where   is the rotation angle. 
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1.12 Stokes Vector And Mueller Formalism  

1.12.1 Stokes Vector 

Jones vector is the most common method for describing polarized light. Unpolarized or 

partially polarized light can not be expressed by using Jones vector. In order to describe 

unpolarized or partially polarized light, Stokes parameters are usually used. These 

parameters are able to describe all types of polarizations. For an isotropic sample, a 

significant roughness of the surface induces depolarization and cross-polarization 

phenomena which affect the ellipsometric measurements. In these cases, the Jones 

formalism and the Jones matrix associated can not describe correctly the sample [13]. It 

is necessary to use the Mueller-stokes formalism. In actual ellipsometry measurement, 

Stokes parameters can be measured. In the Stokes vector representation, the optical 

elements are described by the so called Mueller matrix [13].  The Stokes-vector consists 

of four elements, S0, S1, S2, and S3, which can be expressed in terms of the intensities as,    

 

                                                         yx IIS 0 ,                                                         (1.80) 

   

                                                        yx IIS 1 ,                                                          (1.81) 

 

                                                        45452   IIS ,                                                     (1.82) 

  

                                                        LR IIS 3 ,                                                         (1.83) 

 

                                                       2
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2

2

1

2

0 SSSS  ,                                                 (1.84) 

where S0 is the total intensity of the light beam. Eq. (1.84) represents a sphere of three 

dimension 1S , 2S and 3S with radius 0S  this sphere called a Pioncare sphere . The 

parameters Ix, Iy, and I±45 describe the intensities transmitted by a linear polarizer with its 

transmission axis in the x-, y-, ±π/4-directions, respectively. On the other hand, IR and IL 
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are the intensities transmitted by a polarizer which transmits right handed and left handed 

circular polarized light, respectively.  

The stokes vector is given by [13] 
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S                                                                      (1.85) 

The normalized Stokes vector assigns 0S  to be 1 for various polarizations. For example, 

the linear polarization in the x direction is represented by 0S = 1S =1, while the linear 

polarization in the y direction is denoted by 0S  = 1 and 1S  =−1. The Stokes vector for 

elliptical polarization is expressed by using the  ,  coordinate system given by Eq. 

(1.86) can be expressed as [13] 
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 The unpolarized light using Stokes vector is given by 
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1.12.2 Mueller Formalism 

The effect of an optical element on the polarization state of light is usually described by a 

4 × 4 Muller matrix. In the following, we express these matrices associated with the 

optical elements employed in the proposed ellipsometric structure [13].  
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 The rotation matrix with an angle α, R(α) is given by   
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The matrix of an ideal fixed polarizer or analyzer P or A is 
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The matrix of an ideal fixed compensator C is 
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The matrix of an ideal sample B is 
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An Example  

a) Using Mueller Formalism 

If the unpolarized light incident on a polarizer with angle   then we get a linear 

polarization with angle   by the multiplication of matrices as follows: we begin from 

right,  the matrix of unpolarized light inS  multiplied by the polarizer matrix (P) 

multiplied by the rotation matrix R( ) and multiplied by P to get by detector the output 

Stokes vector outS   

 

                                                       inout SPRPS )(                                                  (1.92)  
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The detected intensity is obtained from the first element of the Stokes vector outS , namely 

0S  then 

                                                           )(cos
2

1 2

0  SI                                             (1.95) 

Relation (1.95) is known as Malus’s law, which is illustrated in Figure (1.6) shows the 

intensity as a function of rotation angle of the polarizer.  
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Figure. 1.6.  The calculated intensity as a function of rotation angle of the polarizer. 

 

b) Using Jones Formalism 

We can find the same result using Jones formalism by the same way as follows,  
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The intensity given by multiplying the output transposed matrix outL   by outL  is  

                                                         outout LLI                                                            (1.97) 
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CHAPTER TWO 

A Spectroscopic Ellipsometer Using Rotating Polarizer And Analyzer 

At A Speed Ratio 1:1 And A Fixed Compensator 

 

 

                                                                                                                        

 

                                                            

 

 

 

 

Figure 2.1 Optical configuration of ellipsometry, rotating polarizer and analyzer with 

speed  ratio 1:1 

 

In this chapter a rotating polarizer and analyzer ellipsometer at a speed ratio 1:1 with a 

fixed compensator placed just after the rotating polarizer is proposed. The calculations of 

the optical properties of c-Si, SiO2, and GaAs reveal a substantial decrease in the absolute 

error due to the fixed compensator. The uncertainties in the ellipsometric parameters as 

functions of the uncertainties of the Fourier coefficients are presented in details.  

 

2.1. Rotating Polarizer And Analyzer Ellipsometer With A Fixed Compensator  

The azimuth angle of the rotating polarizer is assumed to be tP    and that of the 

rotating analyzer is assumed to have the form tA   . The fast axis of the compensator 

is assumed to have an angle c with the p-polarization. In the rotating polarizer-analyzer 

configuration, and using the matrices in Eqs. (1.88-1.91), the Stokes vector of the 

detected light is given by 

 

                  iPPccAA SPRPRRCRBRARS )()()()()()(              (2.1)                     

Light source 

Fixed polarizer 

Rotating polarizer 

sample 

Fixed compensator 

Rotating analyzer 

detector 
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where T

iS ]0,0,0,1[ . The product of all matrices in the right hand side of Eq. (2.1) 

yields a four-element column vector which is denoted by S. The vector S represents the 

total effect the incident light undergoes as a result of crossing the elements of the 

proposed structure. The elements of the vector S are called Stokes parameters S0, S1, S2, 

and S3.    

Two special cases of the orientation of the fixed compensator will be considered. 

 

 

2.1.1 Case I: 0c   

After performing the product of matrices given by Eq. (2.1) and rearranging the result, 

the elements S0, S1, S2, and S3 are found to have the forms 
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                                                  )2cos(01 tSS  ,                                                    (2.3)  

  

                                                  )2sin(02 tSS  ,                                                    (2.4) 
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                       03 S .                                                                    (2.5) 

 

The detected light intensity is given as 

 

                                                       0SI                                                                   (2.6)      

 

The Fourier transform of the detected intensity generates a DC term and three AC terms 

which may be written as   

 

                                          



3

1

0 )2cos()(
n

n tnaatI  .                                           (2.7) 

 

The coefficients a0, a1, a2, and a3 are given by   
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4
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Solving the last three equations for   and    in terms of 1a , 2a  and 3a , we get, 
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As expected, the comparison between Eqs. (2.12) and (2.13) with the corresponding ones 

in [25]  reveals that the fixed compensator has no impact on ψ but it shifts the phase 

change Δ by an angle  .  

With the above expressions, it is now possible to investigate the uncertainties δψ and δΔ 

in ψ and Δ, respectively, as functions of system parameters and the uncertainties of the 

Fourier coefficients. The uncertainties δψ and δΔ represent the  fluctuations of ψ and Δ 

about their ideal values. In practical applications δψ and δΔ are not of highly interest but 

the uncertainties of sample parameters, such as the layer thicknesses and the index of 

refraction that are calculated from ψ and Δ. However, investigation at the sample-

parameter level is unrealistic due to the huge number of possible sample configurations 

[21]. Thus, the uncertainty is usually addressed as δψ and δΔ or in some cases as 

 iei ]tan)(tan[  . The use of δΔ overestimates the importance of Δ, which 

becomes particularly apparent as either rp or rs approaches zero. At rp or rs = 0, Δ is 

completely indeterminate [21]. However, this indeterminate in Δ does not map over into a 

total uncertainty in the parameters of the sample parameters. Concerning δρ, it has two 

disadvantages. First, it does not reveal the individual contribution of δψ and δΔ. Second, 

it diverges as ψ = 0
o
. To calculate δψ and δΔ, Eqs. (2.12) and (2.13) are differentiated 

with respect aj (j = 1, 2, 3) while keeping the other coefficients as constants, which gives 

that 
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2.1.2 Case II: 45c   

The light intensity given by Eq. (2.2) is derived based on considering the offset angle of 

the compensator is set to zero. On the other hand, if we assume c =45 then another set of 

three AC terms emerge in addition to a1, a2 and a3 and Eq. (2.1) reads  
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Only three coefficients are required to calculate the ellipsometric parameters. 

Considering again a1, a2 and a3 and solving Eqs. (2.21), (2.22), and (2.23),   and   will 

be given by 
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Comparing Eqs. (2.12) and (2.13) with Eqs. (2.27) and (2.28) shows that   does not 

depend on c  but   does.  

Differentiating Eqs. (2.27) and (2.28) with respect aj (j = 1, 2, 3) while keeping the other 

coefficients as constants yields the uncertainties   and δΔ. The same results for δψ, as 
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those appearing in Eqs. (2.14)-(2.16), are obtained. but for δΔ the following results are 

obtained.   
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where  
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2.2. Results And Discussions  

A sample, consisting of one interface separating a semi-infinite air layer of refractive 

index N0 as an ambient and a bulk c-Si material of refractive index N1, is considered.                                             

The incidence angle is taken to be 70
o
. Phase retarders mainly made from a CaCO3 

crystal (calcite) are rarely used as compensator. This is because the value of oe nn   is 

quite large in calcite. Therefore, the thickness required for making a compensator 

becomes too thin. Thus, in spectroscopic ellipsometry measurement, compensators made 
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from MgF2 and mica have been employed [13]. In particular, MgF2 (transmission 

wavelength > 120 nm) shows superior light transmittance in the UV region, compared 

with mica (transmission wavelength > 290 nm). In recent years, therefore, MgF2 

compensators have been used widely. Consequently, A zero-order MgF2 compensator 

centered at 4 eV is considered. The extraordinary and ordinary refractive indices of the 

compensator are taken from Palik [35].   

Fourier transform of the generated signal was taken to extract the coefficients a0 through 

a3. Eqs. (2.12) and (2.13) are used to calculate the ellipsometric parameters ψ and Δ in 

the photon energy range 1.5 – 6 eV. These values of the ellipsometric parameters 

correspond to the clean signal without considering any noise. In practical situations, 

random fluctuations in the recorded signal appear due to the noise. In order to simulate 

real signals, noise was generated using MathCAD code and was superimposed on the 

clean signal according to the following equation 

 

                                  max0001.0)2/)(()2/)(( IeerndIccrndInoise  ,             (2.34) 

 

where MathCAD's rnd(c) function produces uniform random noise in the range from 0 to 

c and rnd(e) function produces uniform random noise in the range from 0 to e. Figure 1 

shows the noise superimposed on the clean signal. In the simulation, we take c = e = 1. 

Considering higher values for c and e will increase the noise level.  

The first term in the right hand side of Eq. (2.34) represents the random noise recorded by 

the detector due to the thermal fluctuations of the light source after passing through the 

system, the second corresponds to Johnson noise and shot noise encountered in the 

detector and readout electronics, and the third term represents the dc offset due to long 

time drifts.  
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Figure 2.2. Noise superimposed on the clean signal.   

 

This noise is added to the pure signal. Fourier transform of the noisy signal is taken to 

extract the new coefficients a0 through a3 in the presence of the noise. Eqs. (2.12) and 

(2.13) are used again to calculate the ellipsometric parameters ψ and Δ for the noisy 

signal in the same photon energy range.  

To calculate the complex refractive index of the sample, the well known equation is used 

[13]  
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 tan , 21  ir  , iknN   , 22

1 kn  , and nk22  . 

 

The calculated and the published [35] values of n and k for c-Si are plotted in Fig. 2.2. 

The points in Fig. 2.2 represent the calculated real and imaginary parts of the refractive 
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index of c-Si using the noisy signal for c = 0
o
. To show the noise effect on the results 

obtained from the structure without a fixed compensator and those obtained from the 

present structure with a fixed compensator, the matrix of the compensator in the above 

mathematical argument is replaced with a unit matrix and n and k for c-Si are calculated 

again. The absolute error in n and k relative to the published values [35] are then 

calculated for both structures. Figure 2.3 shows the absolute error in n of c-Si as a 

function of energy in the photon energy range 1.5 to 6 eV for the proposed ellipsometric 

structure without and with a compensator for c = 0
o
 and c = 45

o
 whereas Fig. 2.4 

shows the same for the extinction factor k. Generally, the absolute error in n is very small 

in the presence and absence of the compensator with a little preference to the structure 

comprising the compensator for c = 0
o
. The most striking feature for the structure 

including the compensator can be obviously seen in Fig. 2.4. The absolute error in k is 

relatively high for the structure without the compensator. This error can be drastically 

reduced with the introduction of a compensator between the rotating polarizer and the 

sample.  

Moreover, the proposed structure is tested for two additional samples; namely silicon 

dioxide (SiO2) and gallium arsenide (GaAs). The calculated and published values of the 

refractive index of SiO2 using the proposed ellipsometric structure are plotted in Fig. 2.5. 

In Fig. 2.6, the absolute error in n of SiO2 as a function of energy is plotted for the 

proposed structure without and with a compensator for c = 0
o
. In both ellipsometric 

configurations, the absolute error in n is very small with a clear preference to the 

structure including the compensator. On the other hand, the calculated and published 

values of n and k of GaAs are shown in Fig. 2.7. Figures 2.8 and 2.9 show, respectively, 

the absolute error in n and k of GaAs versus the energy. The reduction in the absolute 

error in the presence of the compensator is obvious for the three samples.    
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Figure. 2.3. The real and the imaginary parts of the refractive index of c-Si in the photon 

range 1.5 to 6 eV. Lines: accepted values, Points: calculated values.  
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Figure. 2.4. Absolute error in the real part of the refractive index of c-Si in the photon 

range 1.5 to 6 eV.  
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Figure. 2.5. Absolute error in the imaginary part of the refractive index of c-Si in the 

photon range 1.5 to 3 eV.  
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Figure. 2.6. The real part of the refractive index of SiO2 in the photon range 1.5 to 6 eV. 

Lines: accepted values, Points: calculated values.  
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Figure. 2.7. Absolute error in the real part of the refractive index of SiO2 in the photon 

range 1.5 to 6 eV.  
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Figure 2.8. The real and imaginary parts of the refractive index of GaAs in the photon 

range 1.5 to 6 eV. Lines: accepted values, Points: calculated values.  
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Figure 2.9. Absolute error in the real part of the refractive index of GaAs in the photon 

range 1.5 to 6 eV.  
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Figure 2.10. Absolute error in imaginary part of the refractive index of GaAs in the 

photon range 1.5 to 3 eV.  
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The uncertainty of ψ to the coefficients a1, a2, and a3 is shown in Fig. 2.10 for c-Si in the 

photon energy range 1.5-6 eV for two values of c . The ellipsometric parameter ψ 

exhibits a little sensitivity to the uncertainties of the Fourier coefficients with a relatively 

high sensitivity of ψ at low energies compared to the high energy region. Moreover, ψ is 

less sensitive to a2 compared to a1 and a3. On the other hand, this uncertainty is 

independent on the value of the compensator offset c . Moreover, if Fig. 2.10 shows that 

this sensitivity is also independent of the presence compensator.  The uncertainty of ψ is 

the same regardless of the presence of the compensator. Figures 2.11 and 2.12 show the 

uncertainty of Δ to the coefficients a1, a2, and a3 for c = 0
o
 and c = 45

o
, respectively. 

The ellipsometric parameter Δ exhibits a high sensitivity to the uncertainties of the 

Fourier coefficients compared to ψ. This sensitivity of Δ is much higher at low energies 

compared to the high energy region. Moreover, Δ is very sensitive to a1 and a2 with an 

important feature: the sensitivity to a2 is positive whereas it is negative to a1. This effect 

has the advantage of reducing the whole sensitivity of Δ. This can be attributed to the fact 

that the total change in Δ is given by the sum of all partial changes due to the change in 

aj, that is, 3

3

2

2

1

1

da
a

da
a

da
a

d













 . The effect of the value of the compensator 

offset is very crucial in the uncertainty of Δ. Fig. 2.12, Δ exhibits much higher 

uncertainty than that in Fig. 2.11.  
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Figure 2.11. The uncertainty of ψ to a1, a2 and a3 of c-Si in the photon range 1.5 to 6 eV. 

Lines represent the case when c = 0
o
 while points represent the case when c = 45

o
.  
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Figure 2.12. The uncertainty of Δ to a1, a2 and a3 of c-Si in the photon range 1.5 to 6 eV 

for c = 0
o
.   
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Figure 2.13. The uncertainty of Δ to a1, a2 and a3 of c-Si in the photon range 1.5 to 6 eV 

for c = 45
o
.   

 

As mentioned in the section 2.1, extracting the ellipsometric parameters ψ and Δ from the 

AC Fourier coefficients without relying on the DC component is considered one of the 

significant advantages of the of  proposed ellipsometer. It is worth to investigate the 

effect of the DC term by considering a set of three coefficients including a0. Solving Eqs. 

(2.8), (2.10), and (2.11) for   and    in terms of 0a , 2a  and 3a , gives 
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To calculate δψ and δΔ, Eqs. (2.36) and (2.37) are differentiated with respect aj while 

keeping the other coefficients as constants.these uncertainties are given by   

 

            




















)cot()tan(

2

)cos(
1

)cos()sin()sin(2

1

0


a

,                      (2.38) 

 

         


















)cot()tan(3

2

)cos(
1

)cos()sin()sin(2

1

2


a

,                    (2.39) 

 

                           )tan()cos(
)cos()sin()sin(

2

3












a
,                                 (2.40) 

 

                               
 

)(cos4

)tan()cot(

)(tan1

1
22

0 





 








a
,                                       (2.41) 

 

                             
 

)(cos4

)tan(3)cot(

)(tan1

1
22

2 





 








a
,                                      (2.42) 

 

                              
)sin()cos(

1

)(tan1

2
2

3 










a
.                                             (2.43) 

 

The uncertainty of ψ to the coefficients a0, a2, and a3 is shown in Fig. 2.13 for c-Si in the 

photon energy range 1.5-6 eV. In analogous to Fig. 2.10, the ellipsometric parameter ψ 

exhibits a little sensitivity to the uncertainties of the Fourier coefficients with a relatively 

high sensitivity of ψ at low energies compared to the high energy region. The advantage 

of excluding the DC term when calculating the ellipsometric parameters is obviously seen 

in the uncertainty of Δ. Figure 2.14 shows the uncertainty of Δ to the coefficients a0, a2, 

and a3 for c = 0
o
. Compared to Fig. 2.11, the ellipsometric parameter Δ exhibits a much 
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higher sensitivity to the uncertainties of the Fourier coefficients when the DC term is 

considered in the set from which   and    are calculated.  
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Figure 2.14. The uncertainty of ψ to a0, a2 and a3 of c-Si in the photon range 1.5 to 6 eV 

for c = 0
o
 .  
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Figure 2.15. The uncertainty of Δ to a0, a2 and a3 of c-Si in the photon range 1.5 to 6 eV 

for c = 0
o
 .  

 

So far the proposed structure has been applied to bulk samples. It is instructive to check 

the feasibility of it for thin film characterization. The characterization of 10 nm SiO2 thin 

film using the proposed structure with and without a compensator is presented 

theoretically. a structure consisting of air (ambient)/SiO2 (thin film)/c-Si (substrate) is 

assumed. The SiO2 film is assumed to have a refractive index N1 and is sandwiched 

between an ambient (air) of refractive index N0 and a Si substrate of refractive index N2. 

The Fresnel reflection coefficients of the system are given by [13]  
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Where j stands for s in s-polarization and for p in p-polarization. The coefficients r01j and 

r12j are given by  
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The angle   is given by 

                                      





)cos(2 11Nd
 ,                                                         (2.49) 

 

Where θ1 and θ2 are the refraction angles in the sample and the substrate, respectively. 

 

The ellipsometric parameters ψ and Δ are calculated in the presence and in the absence of 

a compensator. TFCompanion software (TFCompanion-optical metrology software 

obtained from Semiconsoft,Inc, USA) is then used to analyze the results and to extract 

the thickness and the refractive index of the sample. The film thickness and the optical 

constants of the film are calculated for the noisy signal in the spectrum range 200–900 

nm. The results are compared with the proposed thickness and with the accepted values 

for SiO2 optical constants. The calculated thickness obtained from TFCompanion 

software was 10 ± 0.8974 nm in the presence of a compensator and 10 ± 0.9195 in the 

absence of a compensator. Moreover, the spectroscopic calculations of the refractive 

index of the SiO2 film in the spectral range 200 nm to 900 nm are shown in Fig. 2.15. The 

preference of the structure comprising the compensator over the other one is obvious.  
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Figure 2.16. The refractive index of SiO2 thin film in the range 200 to 900 nm. Lines 
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CHAPTER THREE 

Ellipsometric Configurations Using A Fixed Compensator And  

A Rotating Polarizer And Analyzer At Any Speed Ratio 

 

 

 

                                                                                N                                        

 

                                                            

 

 

 

 

 

Figure 3.1 Optical configuration of ellipsometry, rotating polarizer analyzer with speed           

ratio 1:N 

 

In this chapter an ellipsometer using a compensator and a rotating polarizer and analyzer 

at a speed ratio 1:N will be presented. Different ellipsometric configurations are 

presented by assuming N = 1, 2, and 3. Moreover, two values of the offset angle of the 

retarder are considered for each ellipsometric configuration. Muller formalism is 

employed to extract Stokes parameters from which the intensity received by the detector 

is obtained. The optical properties of c-Si are calculated using all configurations. A 

comparison between different configurations is held regarding the effect of the noise on 

the results extracted from each one and the uncertainties in the ellipsometric parameters 

as functions of the uncertainties of the Fourier coefficients. It is found that the alignment 

of the compensator has a crucial impact on the results and the ellipsometric configuration 

with a speed ratio 1:1 has a preference over other configurations. 
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3.1. Rotating Polarizer And Analyzer Elliupsometer With A Speed Ratio 1 : N And 

A Fixed Compensator  With o

c 0  And o

c 45          

In the ellipsometric configurations under study, the compensator is assumed to be fixed 

with its fast axis makes an angle c with the p-polarization. Two different orientations of 

the fixed phase retarder, namely c = 0
o
 and c = 45

o
, will be considered. For each 

orientation, many ellipsometric configurations by assuming different speed ratios for the 

rotating elements will be studied. The azimuth angle of the rotating polarizer is assumed 

to be   tP  and that of the rotating analyzer is assumed to have the 

form   tNA , where N is an integer,   and   are, respectively, the initial azimuth 

angles of the polarizer and analyzer. On the other hand, the azimuth angle of the fixed 

polarizer is assumed to be  .     

 

Using the matrices in Eqs (1.88-1.91) into Eq. 3.1, the Stokes vector of the detected light 

of the proposed structure is given by 

 

      iPPccAA SRPRRPRRCRLRARS )()()()()()()()(    .    (3.1)                     

 

where T

iS ]0,0,0,1[ and S is a four-element column vector containing the Stokes 

parameters S0, S1, S2, and S3.   

 

3.2. Rotating Polarizer And Analyzer Ellipsometer With A Speed Ratio 1 : N And A 

Fixed Compensator With o

c 0   

After performing the product of matrices given by Eq. (3.1) and assuming that tP    

and tNA    ( 0 , 0 and 0  ) and after rearranging the result, Stokes-vector 

elements, S0, S1, S2, and S3 are obtained. The intensity of the light received by the detector 

is given by S0 and is found to be   
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        (3.2) 

                              

The Fourier transform of the detected intensity generates the DC term and N+2 AC terms 

which may be written   

 

                                          
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Special cases can be obtained by letting N = 1, 2, … . In the following subsections, three 

special cases in which N = 1, 2, and 3 will be addressed. For each ellipsometric 

configuration, we find the Fourier coefficients, then calculate the ellipsometric 

parameters (ψ and Δ) in terms of these coefficients, and the uncertainty in the 

ellipsometric parameters as a function of the uncertainties in the Fourier coefficient.  

 

3.2.1. Rotating Polarizer And Analyzer Ellipsometer With A Speed Ratio 1:1 

(
o

c 0 )  

a RPAE with a speed ratio 1:1 is considered. Setting N = 1 into Eq. (3.2) and comparing 

it with Eq. (3.3), the coefficients a0, a1, a2, and a3 are given by   
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Solving the last three equations for   and    in terms of AC terms 1a , 2a  and 3a  

yields  
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It is significant to study the fluctuations of ψ and Δ about their ideal values. Since the 

sample parameters, layer thicknesses and the index of refraction, are calculated from ψ 
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and Δ, these fluctuations lead to the uncertainties of the sample parameters. The 

uncertainties δψ and δΔ in ψ and Δ, respectively, as functions the uncertainties of the 

Fourier coefficients are obtained by differentiating Eqs. (3.10) and (3.11) with respect aj 

(j = 1, 2, 3) while keeping the other coefficients as constants, we obtain.  
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3.2.2. Rotating Polarizer And Analyzer Ellipsometer With A Speed Ratio 1:2 

(
o

c 0 ) 

Another ellipsometric configuration can be obtained by letting N = 2 into Eq. (3.2). In 

this case, the DC term and four AC terms may be written as  
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   and    may be evaluated in terms of any set of coefficients set comprising three 

Fourier terms. Consequently, excluding the DC term, three sets: ( 1a , 2a , 3a ), ( 1a , 3a , 4a ), 

and ( 2a , 3a , 4a ) are available. These three sets are shown below  

 

Case I: Extracting   and     using the set ( 1a , 2a , 3a )  

 

                                   
4

)sin( 31 aa 
 ,                                                              (3.23) 

 

                                  
2

22
)cos( 321 aaa 
 ,                                                    (3.24) 

 

                                  
321

31

244
)tan(

aaa

aa




 ,                                                  (3.25) 



 

59 

 

                                  
)cos()sin(4

3
)cos( 31




aa 
 .                                               (3.26) 

 

Case II: Extracting   and     using the set ( 1a , 2a , 4a ) 
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Case III: Extracting   and     using the set ( 2a , 3a , 4a )  
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The uncertainties δψ and δΔ are here calculated for the first set only and can be done for 

the other sets in a similar manner. Differentiating Eqs. (3.25) and (3.26) with respect aj (j 

= 1, 2, 3) while keeping the other coefficients as constants gives,  
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where 
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3.2.3. Rotating Polarizer And Analyzer Ellipsometer With A Speed Ratio 1:3 

( o

c 0 )   

In the third case, an ellipsometric configuration in which the polarizer and the analyzer 

rotate at a speed ratio 1:3 is assumed. Setting N = 3 into Eq. (3.2) and Eq. (3.3) to find the 

intensity and the Fourier coefficients of this configuration, gives 
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In analogy to the 1:2 configuration, many sets are available from which the ellipsometric 

parameters can be obtained. When the speed ratio is 1:3, six sets can be taken without 

considering the DC term. Some of these cases are listed below  
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Case I: obtaining   and     using the set ( 1a , 2a , 3a )  
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Case II: obtaining   and    using the set ( 1a , 2a , 4a )  
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Case III: obtaining   and    using the set ( 1a , 2a , 5a )  
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Case IV: obtaining   and    using the set ( 2a , 3a , 4a )  

 

                                      432 222)sin( aaa  ,                                              (3.62) 

 

                                      432 6106)cos( aaa  ,                                           (3.63) 

 

                                      
432

432

6106

222
)tan(

aaa

aaa




 ,                                            (3.64) 

 

                                       
)cos()sin(

22
)cos( 32




aa 
 .                                            (3.65) 

 



 

64 

 

Differentiating Eqs. (3.52) and (3.53) with respect aj (j = 1, 2, 3) while keeping the other 

coefficients as constants gives the uncertainties in δψ and δΔ as follows,  
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where  
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                                        3213 424 aaaA  ,                                                   (3.74) 

 

                                        324 44 aaA  .                                                               (3.75) 

 

3.3 Rotating Polarizer And Analyzer Ellipsometer With A Speed Ratio 1 : N And A 

Fixed Compensator With o

c 45   

The orientation of the compensator is a key parameter in the results extracted from the 

proposed ellipsometric configurations. To introduce this point in this study, we assume 

another orientation for the compensator for which o

c 45  is assumed. The product of 

matrices given by Eq. (3.1) is performed again with o

c 45 . Stokes-vector elements, S0 

through S3, are then obtained as mentioned before. The detected intensity is given by S0.  
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The Fourier transform of the detected intensity generates the DC term, (N+2) cosine AC 

terms, and (N+2) sine AC terms which may be written   
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The following subsections show three special cases in which N = 1, 2, and 3.  
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3.3.1 Rotating Polarizer And Analyzer Ellipsometer With A Speed Ratio 1:1 

( o

c 45 )   

First consider the case that N = 1 in Eqs. (3.76) and (3.77). The comparison between the 

results gives the coefficients 1a , 2a , 3a , 1b , 2b , 3b  as    
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As mentioned above, only three coefficients are needed to calculate the ellipsometric 

parameters. If a1, a2 and a3 are considered and Eqs. (3.78), (3.79), and (3.80) are solved, 

  and   are then given by 
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The comparison of Eqs. (3.84) and (3.85) with Eqs. (3.10) and (3.11), illustrates the 

independence of   and the dependence of   on c . As a result, the uncertainty   is 

still given by Eqs. (3.12), (3.13), and (3.14) whereas   is given by 
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Where T and R are given by:  
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3.3.2 Rotating Polarizer And Analyzer Ellipsometer With A Speed Ratio 1:2 

( o

c 45 )   

Letting N = 2 into Eq. (3.76) and comparing with Eq. (3.77), gives one DC term and eight 

AC terms. The AC terms are 
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A large number of three-term sets can be obtained to extract the ellipsometric parameters. 

The first set including ( 1a , 2a , 3a ) will be only considered. Solving Eqs. (3.91), (3.92), 

and (3.93) for   and  , gives  
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Differentiating the last two equations to find the uncertainty in the ellipsometric 

parameters due to the uncertainty in the Fourier coefficients, yields  
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3.3.3 Rotating Polarizer And Analyzer Ellipsometer With A Speed Ratio 1:3 

( o

c 45 )   

The last case to be considered here is the configuration with N = 3. Following the same 

methodology as above, the AC Fourier coefficients are found to be     
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The first set including the coefficients ( 1a , 2a , 3a ) is only considered.   and   are 

calculated as   
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Finally, the uncertainties in the ellipsometric parameters are given by 
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3.4. Results And Discussion  

3.4.1 The Noise Effect 

The applicability of the proposed structure is tested numerically in this section by 

considering a sample of  one interface separating a semi-infinite air layer of refractive 

index N0 and a bulk c-Si material of refractive index N1. The angle of incidence is taken 

to be 70
o 

which is a common angle used in spectroscopic ellipsometry. The real and 

imaginary parts of the refractive index of c-Si are taken from Ref. [35]. Phase retarders 

made from MgF2 are extensively used in ellipsometric measurements. A zero order MgF2 

compensator centered at 4 eV is considered.    

The general approach used to obtain the ellipsometric coefficients is as follows: The 

Fresnel reflection coefficients are calculated to the assumed one-interface structure. All 

of the matrices given by Eqs. (1.88) – (1.91) are then calculated. From the product of 

these matrices the intensity received by the detector, which is the element S0 of the 

product vector is calculated. The Fourier transform of the signal is taken in order to 

extract the Fourier coefficients.  The ellipsometric parameters ψ and Δ are then calculated 

in the photon energy range 1.5–6 eV using the Fourier coefficients. These values of the 

ellipsometric parameters correspond to the clean signal without considering any noise. 

Such a case with no noise is not realistic case. In real situations, random fluctuations in 

the recorded signal appear due to the noise from many sources. To simulate reality, noise 

was generated using a MathCAD code and was superimposed on the clean signal 

according to the eqn. (2.34) 

This noise is then added to the pure signal. Fourier transform of the noisy signal is taken 

to extract the new coefficients a0 through an in the presence of the noise.  

To calculate the complex refractive index of the sample, Eq. (2.35) can be used. 
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The calculated values of the real (n) and imaginary (k) parts of the refractive index of c-

Si, obtained from ellipsometric configuration, are plotted in Fig. 3.2 along with the 

published values [35]. The points in Fig. 3.2 represent the calculated n and k of c-Si using 

the noisy signal. These points are calculated using any configuration of the six 

ellipsometric configurations mentioned above. The difference between them is not 

obviously seen in this figure. To differentiate between them, the percent error in the 

calculated values of n and k for each ellipsometric configuration is calculated.   

The percent error in the calculated values of n for c-Si is shown in Fig. 3.3 using the set 

containing (a1, a2, a3). The figure shows the error arising from calculating n using six 

different structures which are 1:1, 1:2 and 1:3 with c equal to either 0
o
 or 45

o
. The 

fluctuations shown in the figure are due to the noise imposed on the clean signal as 

mentioned before. As can be seen from the figure, the percent error in n has small values 

(of order10
-2

) for all ellipsometric configurations with a clear preference of structures 

having o

c 0  over those with o

c 45 . The percent error in n at high energies is 

relatively high (for all ellipsometric configurations) compared to the low energy region 

due to the relatively small value of n at high energies.   

Figure 3.4 shows the percent error in k in the photon energy range 1.5 to 3 eV. The range 

from 3 to 6 eV is not plotted because the error in k almost goes to zero in this region. The 

percent error in k is much higher than that in n in the low energy region. That is the 

imaginary part k is much sensitive to the noise imposed on the signal. Generally, the 

percent error is considerable for k because it has a small value (0.019) at a wavelength of 

632.8 nm. The figure shows clearly a considerable preference of the ellipsometric 

configurations having o

c 0  over those with o

c 45 . Moreover, for the same c , the 

structure with the speed ratio 1:1 has much less percent error compared to the structures 

having speed ratios 1:2 and 1:3. This result is compatible with results obtained in ref [32].    
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Figure 3.2. The real and the imaginary parts of the refractive index of c-Si in the photon 

energy range 1.5 to 6 eV. Lines: accepted values, Points: calculated values.  
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Figure 3.3. The percent error in the real part of the refractive index of c-Si in the photon 

energy range 1.5 to 6 eV.  
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Figure 3.4. The percent error in the imaginary part of the refractive index of c-Si in the 

photon energy range 1.5 to 3 eV.     

 

3.4.2 Uncertainty In ψ And Δ   

The attention to the uncertainties δψ and δΔ in ψ and Δ, respectively, as functions of the 

uncertainties of the Fourier coefficients will be discussed. Figure 3.5 shows δψ versus the 

photon energy in the spectral range 1.5 to 6 eV for the six ellipsometric configurations 

under study. Generally, the sensitivity exhibited by ψ to the uncertainties of the Fourier 

coefficients is not considerable for all ellipsometric structures. Compared to the 

sensitivity in the high energy region, a relatively high sensitivity of ψ at low energies is 

observed in the figure. As can be seen from the figure, the uncertainty of ψ does not 

depend on the c . A little dependence of δψ on the speed ratio, at which the polarizer and 

the analyzer rotate, can be seen. The 1:3 configuration has the highest sensitivity.   

The phase change Δ is much sensitive to the uncertainty in the Fourier coefficients than 

ψ. Figure 3.6 shows the uncertainty of Δ with respect to the uncertainty of the Fourier 

coefficients versus the photon energy for the six ellipsometric configurations under study. 

Many interesting features can be seen in the figure. First, in analogy to δψ, at low 

energies, where c-Si is essentially transparent, the sensitivity of Δ is high compared to the 

high-energy region. Second, there is a strong dependence of δΔ on c .  The phase 
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change Δ is much sensitive to the uncertainty in the Fourier coefficients when o

c 45  

than the case when o

c 0 . For o

c 45 , the sensitivity of Δ exceeds 400 for some 

cases whereas it does not exceed 5 for all configurations when o

c 0 .  This enhances 

the conclusion mentioned above that there is a considerable preference of the 

ellipsometric configurations having o

c 0  over those with o

c 45 . Third, the 

sensitivity of Δ to the coefficient a2 has the lowest values for most cases. Fourth, the 

maximum sensitivity can be seen in the ellipsometric configuration with speed ratio 1:3 

for o

c 45 .      
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Figure 3.5. The variation in   for all structures versus the photon energy frm 1.5 to 6 

(eV)   
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Figure 3.6. The variation in   for all structures versus the photon energy from 1.5 to 6 

(eV).    

 

3.4.3 Offset Error  

In reality, random and systematic errors are the main error sources affecting ellipsometric 

measurements. Random errors are attributed to random or statistical processes but 

systematic errors result from the experimental setup errors. In ellipsometric 

measurements, random errors could be due to thermally generated noise in electronic 

elements. This type of error can be significantly reduced by signal averaging of multiple 

identical runs and by calculating the mean and the standard deviation. On the other hand, 

systematic errors can be reduced by careful calibration of high quality optical element 

setup. Some sources of systematic errors are due to the azimuthally misalignment of 

optical elements with respect to the plane of incidence, sample mispositioning, beam 

deviation, and collimation errors [24]. Other sources of systematic error could be the light 

wavelength and the angle of incidence. Therefore, it is very important to mention 

systematic errors in the proposed structures. For the verification process, we will assume 

misalignment of the fixed polarizer, rotating polarizer, and rotating analyzer. The effect 

of these misalignments on ψ, Δ, n, and k will be investigated. We will restrict the 

following calculations to the case 0c .  Figure 3.7 shows the percent error in ψ, Δ, n, 



 

81 

 

and k for the three ellipsometric configurations at 0c  as a function of the error of the 

fixed polarizer azimuth angle θ, varied from −0.2◦ to 0.2◦ in steps of 0.01
o
; while keeping 

the two other variables (τ and α) equal to zero. As can be seen from the figure, the impact 

of these errors on ψ, Δ, and n is not significant for small misalignment in θ. On the other 

hand, it is relatively considerable for k for the ellipsometric configuration of ratio 1:3. 

The figure also reveals that the ellipsometric configuration with the speed ratio 1:2 has 

the lowest impact on the parameters under investigation. On the other hand, the 

ellipsometric configuration with the speed ratio 1:3 has the highest impact on these 

parameters.  

In analogy to Fig. 3.7, Fig. 3.8 shows the percent error in ψ, Δ, n, and k for the three 

ellipsometric configurations as a function of the error of the rotating analyzer initial 

azimuth angle α, varied from −0.2◦ to 0.2◦ in steps of 0.01◦; while keeping the two other 

variables (τ and θ) equal to zero. The figure reveals the same observations that have been 

seen in Fig. 3.7. Any misalignment in the rotating analyzer azimuth angle has a neglected 

impact on ψ, Δ, and n and a relatively considerable impact on k. The structure with the 

speed ratio 1:2 corresponds to the minimum percent error in these parameters among all 

structures whereas the maximum error is accompanied with the structure having the 

speed ratio 1:3.          

The percent error in ψ, Δ, n, and k for the three ellipsometric configurations as a function 

of the error of the rotating polarizer initial azimuth angle τ is plotted in Fig. 3.9. The same 

comments that have been extracted from Figs. 3.7 and 3.8 can also be seen in Fig. 3.9. 
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Figure 3.7. Percent error in n, k, ψ, and Δ for c-Si sample at λ=632.8 nm as a function of 

the error in θ while keeping the two other variables (τ and α) equal to zero. (1) 1:1, (2) 

1:2, and (3) 1:3.  
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Figure 3.8. Percent error in n, k, ψ, and Δ for c-Si sample at λ=632.8 nm as a function of 

the error in α while keeping the two other variables (τ and θ) equal to zero. (1) 1:1, (2) 

1:2, and (3) 1:3.  

 

 

 



 

84 

 

-0.2 0.0 0.2

0

2

4

6

8

(3)

(2)

 

 

E
rr

o
r 

in
 n

 x
1

0
-3

(1)

-0.2 0.0 0.2
-0.6

0.0

0.6

1.2

1.8

(1)

(3)

(2)

(1)

E
rr

o
r 

in
 k

 

 

-0.2 0.0 0.2
-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5
(1)

(3)

(2)

 

 

E
rr

o
r 

in
 
x

1
0

-2

offset in 

-0.2 0.0 0.2

-8

-4

0

(3)

(2)

offset in 

E
rr

o
r 

in
 
x

1
0

-3
 

 

 

 

Figure 3.9. Percent error in n, k, ψ, and Δ for c-Si sample at λ=632.8 nm as a function of 

the error in τ while keeping the two other variables (θ and α) equal to zero. (1) 1:1, (2) 

1:2, and (3) 1:3.  
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CHAPTER FOUR 

Rotating Compensator Ellipsometric Configurations 

 

In this chapter, a set of an ellipsometric configurations using a rotating polarizer, 

compensator, and analyzer at a speed ratio of N1ω:N2ω:N3ω, respectively are proposed 

theoretically. Different ellipsometric configurations can be obtained by giving different 

integers to N1, N2, and N3. All configurations are applied to bulk c-Si and GaAs to 

calculate the real and imaginary parts of the refractive index of the samples. The accuracy 

of all ellipsometric configurations is investigated when a hypothetical noise is present and 

with small misalignments in the optical elements. Moreover, the uncertainties in the 

ellipsometric parameters as functions of the uncertainties of the Fourier coefficients are 

studied. The comparison among different configurations reveals that rotating 

compensator-analyzer configuration corresponds to the minimum error in the calculated 

optical parameters. 

 

 

 

 

                                                                                3N                                        

 

                                   2N           1N  

 

 

 

 

Figure 4.1 Optical configuration of ellipsometry, rotating polarizer, compensator and 

analyzer with speed  ratio N1 :N2 :N3. 
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4.1. Rotating Polarizer, Compensator And Analyzer Ellipsometer At Any Speed 

Ratio   

In this section, a general ellipsometric structure in which three elements are rotating is 

proposed. The speed ratio at which the polarizer, compensator, and analyzer rotate is 

N1ω:N2ω:N3ω, respectively. The approach has the advantage that the equations of any 

ellipsometric configuration can be obtained just by substituting for N1, N2, and N3. Six 

examples are obtained by assigning N1, N2, and N3 some specific values thus, six different 

ellipsometric configurations will be studied and compared.  

 

 The proposed structure consists of a rotating polarizer, rotating compensator and rotating 

analyzer with angles   PNp 1 ,   PNc 2 , and   PNA 3 , where tP  , 

and γ, κ, and α are the initial azimuth angles of the optical elements at t = 0. The Stokes 

vector of the detected light is given by 

 

                  iPPccAA SPRPRRCRBRARS )()()()()()(   ,          (4.1)                     

 

where S is a four-element column vector containing Stokes parameters S0 through S3 , and 

T

iS ]0,0,0,1[ . 

 

Using the matrices in Eqs. (1.88-1.91) and after performing the product of these matrices 

given by Eq. (4.1) and rearranging the result, the detected light intensity can be found 

from So which is the first component of the column vector S. To simplify the result, the 

following notation is considered   
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In term of these coefficients, the general equation of the detected light intensity can be 

written as   
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Eq. (4.13) gives a general expression for the intensity received by the detector of the 

proposed structure. We will consider two cases. In the first case, both the compensator 

and the analyzer are rotated whereas the polarizer is fixed. In the second case, the 

compensator and the polarizer are rotated whereas the analyzer is fixed. In each case, 

three ellipsometric configurations are investigated by considering different speed ratios of 

the rotating elements. Section 4 covers the first case and section 5 presents the second 

one. 

 

4.2. Rotating Compensator Analyzer Ellipsometer With A Fixed Polarizer    

In this case, 1N  is set to be zero while 2N and 3N  could be any integer. Also, 0 , 

12 N  and 3N =1, 2 or 3 is assumed. Three different ellipsometric configurations are 
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then obtained. For each configuration, the Fourier transform of the intensity is used to 

deduce the Fourier coefficients and the ellipsometric parameters.    

 

4.2.1. Rotating Compensator  Analyzer Ellipsometer With A Speed Ratio 1 : 1  

In the first configuration, the following parameters and assumed N1 = 0, 0 ,  = 0, 

 = 0 and 132  NN . Substituting these values into Eq. (4.13) and taking the Fourier 

transform of the result gives   
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where 0a  and na  are the Fourier coefficients which are given by    
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Note that the intensity contains three AC Fourier coefficients 1a , 2a  and 3a  in addition to 

a DC term 0a . The intensity is symmetric since )2sin( tn  terms are missing. That is, the 

intensity has cosine terms only. Solving Eqs. (4.16-4.18) for tan(ψ) and cos(Δ) gives  
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It is worth to investigate the uncertainties   and )cos(  in the ellipsometric 

parameters   and   due to the fluctuations in the Fourier coefficients. The uncertainties 

  and )cos(  are calculated by differentiating Eq. (4.21) and Eq. (4.22) as follows   
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4.2.2 Rotating  Compensator Analyzer Ellipsometer With A Speed Ratio 1 : 2  

In the second configuration, the following values 0 ,  = 0,  = 0,  N1 = 0, 12 N  

and 23 N  are assumed. The Fourier transformation of Eq. (4.13) contains one DC and 

four AC coefficients. It is given by 
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 From these Fourier coefficients we can derive   and   can be derived as follows  

 

                                
4

)cos(22
)tan(

2

2






a

a 
 ,                                               (4.35) 

 

                                      
D

a )cos(12
)cos( 4 
  ,                                            (4.36) 

where 

                      

2

4

2

2

1

)cos(1

)cos(12

)(cos1
))cos(1( 
























aa
D .                       (4.37) 

 

Differentiation of Eqs. (4.35) and (4.36) to get    and )cos( as follows 
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4.2.3 Rotating Compensator Analyzer Ellipsometer With A Speed Ratio 1 : 3  

Another ellipsometric configuration can be obtained by letting 12 N  and 33 N  

provided that 01  N , = 0 and  = 0. When these values are inserted into Eq. (4.13), 

the Fourier transformation is found to have five AC terms in addition to one DC term. It 

is given by 

 

                                 



5

1

0 )2cos()(
n

n tnaatI  ,                                                  (4.43) 

where  

 

                                    )cos()2cos()2cos(20  a ,                                      (4.44) 

 

                   
2

)cos()cos()2sin(

2

)cos()2sin(

2

)cos(

2

1
1

 



a ,                   (4.45) 

 

                       )sin()sin()2sin()cos()2cos()2cos(2  a ,                   (4.46) 

 

                                        )2cos(2)cos(13  a ,                                             (4.47) 

 

                                       )sin()sin()2sin(4  a ,                                            (4.48) 

and  



 

94 

 

                 
2

)cos()cos()2sin(

2

)cos()2sin(

2

)cos(

2

1
5

 



a .                   (4.49) 

 

The ellipsometric parameters    and   can be derived from these coefficients, as 

follows      
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Moreover, the uncertainties of    and   are given by, 

 

                                   5

5

3

3

1

1

a
a

a
a

a
a















  ,                                         (4.54) 

 

                         5

5

3

3

1

1

)cos()cos()cos(
)cos( a

a
a

a
a

a
























 ,                  (4.55) 

where 

 

                     



















)tan(

)cos(1

)cos(3
)cot(

)(cos8

1

)(tan1

1
22

1











a
 ,              (4.56) 



 

95 

 

 

                            )tan()cot(
)(cos8

1

)(tan1

1
22

3














a
,                           (4.57) 

 

                     



















)tan(

)cos(1

)cos(3
)cot(

)(cos8

1

)(tan1

1
22

5











a
,               (4.58) 

                               

          
  

EEa 4

)cos()cot()cos(1)tan())cos(3(1)cos(

1






 
,               (4.59) 

 

                     
 

Ea 4

)cos()cot()tan())cos(1()cos(

3






 
,                           (4.60) 

 

          
  

EEa 4

)cos()cot()cos(1)tan())cos(3(1)cos(

5









 
,              (4.61) 

and  

                                 )cos()sin()cos(12 E .                                              (4.62) 

 

4.3. Rotating Polarizer Compensator Ellipsometer With A Fixed Analyzer  

In the second case, the analyzer is fixed while both the compensator and polarizer are 

rotated with different ratios. To achieve this, 03 N  and 
4


   are assumed while 1N  

and 2N  may take any integral values to obtain different ellipsometric configurations as 

will be shown in the following subsections. 

 

4.3.1 Rotating Polarizer Compensator Ellipsometer With A Speed Ratio 1 : 1  

In the first configuration, 121  NN ,  = 0 and  = 0 are assumed. Substituting these 

values into Eq. (4.13) and taking the Fourier transform of the results gives the following 

expression for the intensity     
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For this ellipsometric configuration,    and   are given in terms of Fourier coefficients 

as 
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The last two equations are differentiated to get    and )cos( as follows 
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4.3.2 Rotating Polarizer  Compensator Ellipsometer With A Speed Ratio 1 : 2  

In the second configuration, the following values are assumed 11 N  and 22 N ,   = 0, 

  = 0 and 4/  . The Fourier transformation of Eq. (4.13) contains one DC and eight 

AC coefficients. It is given by  
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 Using Eqs. (4.82-4.84),   and   can be found in terms of AC Fourier coefficients 1a , 

2a  and 3a  such that 
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As mentioned above,    and )cos( can be obtained by differentiating Eqs. (4.92) 
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4.4.3 Rotating Polarizer Compensator Ellipsometer With A Speed Ratio 1 : 3  

Another ellipsometric configuration can be obtained letting 11 N  and 32 N  provided 

that 03 N ,   = 0,   = 0 and 4/  . This represents a rotating polarizer  

compensator ellipsometer with a speed ratio 1:3. When these values are inserted into Eq. 

(4.13) the Fourier transformation is found to has twelve AC terms in addition to a DC 

term, then    
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 Solving Eqs. (4.105), (4.109) and (4.115) for   and   in terms of 1a , 5a , and 5b , yields      
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   and )cos( are now given as follows   
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4.5. Results And Discussion  

Two cases have been discussed: rotating compensator analyzer with fixed polarizer 

ellipsometer (RCAE) and rotating polarizer and compensator with fixed analyzer 

ellipsometer (RPCE). For each case three different speed ratios for the rotating optical 

elements are assumed. In this section, the results obtained when applying these 

configurations to c-Si and GaAs samples will be presented. A sample consisting of one 

interface separating a semi-infinite air layer of refractive index N0 as an ambient and a 
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bulk c-Si material of refractive index N1 will be assumed. The incidence angle is taken to 

be θ0 = 70
o
. The most common compensators are usually made from CaCO3 crystal 

(calcite), MgF2, and mica. CaCO3 compensators are rarely used because the value of 

oe nn   is relatively large. In spectroscopic ellipsometry MgF2 and mica are commonly 

used. A MgF2 compensator with retardance of 2/  at 4 eV will be assumed. The 

extraordinary and ordinary refractive indices of the compensator are taken from Ref. [35].   

Based on Eq. (4.13), simulated light signals are generated. Fourier transform of the 

generated signal is taken to extract the Fourier coefficients using the equations derived 

above for each ellipsometric configuration. The ellipsometric parameters ψ and Δ in the 

photon energy range 1.5–6 eV are then derived using  Eqs. (4.21) and (4.22) for RCAE 

with speed ratio 1:1, Eqs. (4.35) and (4.36) for RCAE with speed ratio 1:2, Eqs. (4.52) 

and (4.53) for RCAE with speed ratio 1:3, Eqs. (4.71) and (4.72) for RPCE with speed 

ratio 1:1, Eqs. (4.92) and (4.93) for RPCE with speed ratio 1:2, and Eqs. (4.119) and 

(4.120) for RPCE with speed ratio 1:3. These values of the ellipsometric parameters 

correspond to the clean signal without considering any noise. In practical situations, 

random fluctuations in the recorded signal appear due to the noise from many sources. to 

simulate reality, a random noise generated using a MathCAD code was superimposed on 

the clean signal according to the eqn. (2.34) 

This noise is added to the pure signal. Fourier transform of the noisy signal is taken to 

extract the new Fourier coefficients in the presence of the noise. The same equations are 

then used to calculate the ellipsometric parameters ψ and Δ for the noisy signal in the 

same photon energy range. To calculate the complex refractive index of the sample, we 

use Eq. (2.35). 

 

4.5.1 n And k Of  c-Si And GaAs 

The calculated values of n and k for c-Si and GaAs are plotted in Fig. 4.2 and Fig. 4.3, 

respectively along with the published values [35]. The points in Fig. 4.2 and Fig. 4.3 

represent the calculated real and imaginary parts of the refractive index of c-Si and GaAs 

for the noisy signal using RCAE with speed ratio 1:1. If another ellipsometric 
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configuration is used the difference among them can not be obviously observed in this 

figure. To differentiate among them, the percent error in the calculated values of n and k 

for each ellipsometric configuration is calculated. 
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Figure 4.2. The real and the imaginary parts of the refractive index of c-Si in the photon  

energy range 1.5 to 6 eV. Lines: accepted values, Points: calculated values.  
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Figure 4.3. The real and the imaginary parts of the refractive index of GaAs in the photon 

energy range 1.5 to 6 eV. Lines: accepted values, Points: calculated values.  

 

4.5.2 Percent Error In n And k Of c-Si And GaAs 

The percent error in the calculated values of n has been calculated for the two samples (c-

Si, GaAs) as shown in Figs. 4.4 and 4.5 for all ellipsometric configurations which are 

rotating polarizer and compensator with fixed analyzer (RPCE) using different speed 

ratios as well as rotating compensator and analyzer with fixed polarizer (RCAE) using 

different speed ratios. It should be emphasized that the fluctuations shown in the two 

figures are due to the noise imposed on the clean signal as mentioned before. Generally, 

the percent error in n for the two samples is low (of order 10
-2

) for all ellipsometric 

configurations. As a result the comparison between them concerning the percent error in 

n is not of high significance.   

Figures 4.6 and 4.7 show the percent error in k for the two samples. As can be seen from 

the figures, the percent error in k is much higher than that in n. Moreover, this percent 

error in k is crucially dependent on the ellipsometric configuration used. The two figures 

show that the RCAE with speed ratio 1:2 correspond to the minimum percent error in k. 
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For c-Si sample, the percent error ranges from -0.1% to 0.08% as shown in Fig. 4.6 

whereas it ranges between ± 0.02% for GaAs sample as shown in Fig. 4.7. We can 

conclude that the RCAE with speed ratio 1:2 has a preference among other 

configurations. It is worth to mention that these values of n and k where calculated using 

a set of AC Fourier coefficients without depending on the DC coefficient. If the DC term 

is considered in the calculations, the percent error in n and k would be much higher [24, 

25].  
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Figure 4.4. Percent error in the real part of the refractive index of c-Si for all the 

ellipsometric configurations.  
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Figure 4.5. Percent error in the real part of the refractive index of GaAs for all the 

ellipsometric configurations. 
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Figure 4.6. Percent error in the imaginary part of  the refractive index of C-Si for all the 

ellipsometric configurations in the range 1.5eV to 3eV.     
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Figure 4.7. Percent error in the imaginary part of the refractive index of GaAs in the 

photon range 1.5 to 3 eV for all the ellipsometric configurations. 
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4.5.3 Uncertainties   And    

In this subsection, the uncertainties )cos(  and   in   and )cos( as functions of 

the uncertainties of the Fourier coefficients are invistigated. )cos(  and   represent 

the fluctuations of )cos( and   about their ideal values. The uncertainties )cos(  and 

  for c-Si sample for the six configurations are plotted in Figs. 4.8, 4.9, 4.10 and 4.11. 

Figure 4.8 shows )cos( for the RCAE with speed ratios 1:1, 1:2 and 1:3.  The first 

three panels in the figure show )cos(  due to the uncertainty of the Fourier coefficients 

for each ellipsometric configuration. For example the first panel (upper left) shows 

)cos(  due to the uncertainty of a1 and a3 using the RCAE with a speed ratio 1:1. The 

fourth panel shows the total variation in )cos(  due to simultaneous uncertainty in all 

Fourier coefficients. From the figure, it is clear that structure has lowest uncertainty is 1:2 

and this is in agreement with conclusion mentioned in the previous subsection. In similar 

manner, Fig. 4.9 shows the uncertainty in )cos( of the RPCE with speed ratios 1:1, 1:2 

and 1:3. Comparing the two figures (4.8 and 4.9), the RCAE with the speed ration 1:2 is 

still the best structure due to the minimum percent error obtained with this configuration.  

The uncertainty in   for the RPCE with different speed ratios is shown in Fig. 4.10 

whereas it is shown in Fig. 4.11 for RCAE. As can be seen from the two figures, the 

ellipsometric parameter   is less sensitive to the uncertainty in the Fourier coefficients 

than Δ. Moreover, the sensitivity of  to the uncertainty in the Fourier coefficients is 

high in the low energy region compared to the low energy region for all ellipsometric 

configurations. Figure 4.11 reveals that RCAE with the speed ration 1:2 is still the best 

structure due to the low sensitivity of this configuration compared to other 

configurations.  
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Figure 4.8. )cos(  with respect to Fourier coefficients in different RCAE structures.  
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Figure 4.9. )cos(  with respect to Fourier coefficients in different RPCE structures.  
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Figure 4.10.   with respect to Fourier coefficients in RPCE structure with speed ratios 

1:1, 1:2 and 1:3. 
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Figure 4.11.   with respect to Fourier coefficients in RCAE structure with speed ratios 

1:1, 1:2 and 1:3. 
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4.5.4 Misalignment Of The Optical Elements 

In practical situations, alignment of the optical elements with respect to the plane of 

incidence is not easy. Azimuthal misalignment of optical elements is considered one of 

the most affecting sources of systematic errors. It is very important to mention systematic 

error sources in such a structure. Sample mispositioning, beam deviation, collimation 

errors, and azimuthal misalignment of optical elements are the usual sources of 

systematic errors. Thus, it is important for the verification process to have some 

quantities for determination of the accuracy of the simulated data as a result of 

misalignment of the polarizer, and rotating compensator. The parameters to be checked 

are the ellipsometric parameters ψ and Δ as well as the real and imaginary parts of 

refractive index n and k. 

Figures 4.12 and 4.13 show the percent error in ψ, Δ, n, and k for RCAE and RPCE 

respectively as a function of the error in the polarizer azimuth angle   varied from -0.1° 

to 0.1° in steps of 0.01° while keeping the other variables equal to zero. Each figure 

shows the three ellipsometric configurations with the speed ratios 1:1, 1:2, and 1:3. As 

can be seen from the figures, the impact of misalignment of the rotating polarizer on ψ, Δ 

and n is not significant for small misalignment. On the other hand, it is considerable for k 

especially for RPCE with the speed ratio 1:3.  

Similarly, Figs. 4.14 and 4.15 show the error in the same parameters for RPCE and 

RCAE for three speed ratios as a function of the error in the rotating compensator 

azimuth angle   varied from -0.1° to 0.1° in steps of 0.01° while keeping the other 

variables equal to zero. Almost the same conclusions drawn from Figs. 4.12 and 4.13 can 

describe Figs. 4.14 and 4.15.  The impact of misalignment of the rotating compensator on 

ψ, Δ and n is not considerable whereas it is relatively high for k especially for RPCE with 

the speed ratio 1:3.         
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Figure 4.12. Percent error in n, k, ψ, and Δ for c-Si sample at λ=632.8 nm as a function of 

the error in γ while keeping the two other variables (κ and α) equal to zero. The figure 

represents RCAE with speed ratio (1) 1:1, (2) 1:2, and (3) 1:3.   
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Figure 4.13. Percent error in n, k, ψ, and Δ for c-Si sample at λ=632.8 nm as a function of 

the error in γ while keeping the two other variables (κ and α) equal to zero. The figure 

represents RPCE with speed ratio (1) 1:1, (2) 1:2, and (3) 1:3.   
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the error in κ while keeping the two other variables (γ and α) equal to zero. The figure 

represents RPCE with speed ratio (1) 1:1, (2) 1:2, and (3) 1:3.   
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Figure 4.15. Percent error in n, k, ψ, and Δ for c-Si sample at λ=632.8 nm as a function of 

the error in κ while keeping the two other variables (γ and α) equal to zero. The figure 

represents RCAE with speed ratio (1) 1:1, (2) 1:2, and (3) 1:3.  
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Finally, it is worth to compare the best configuration in this study which is RCAE at a 

speed ratio 1:2 with the well known rotating compensator ellipsometer RCE [21]. The 

ellipsometric parameters of the RCE configuration can be obtained by setting N1=45, 

N2=1 and N3 = 0 in Eq. (4.13), then ψ and Δ can be written as 

 

                                      
2

2

2

2

2

4
)tan(

ba

a


                                                           (4.129 ) 

and 

                                     
2

2

2

1

2

42
)cos(

bb

b


                                                          ( 4.130) 

 

Fig. (4.16) shows the variation of ψ with respect to Fourier coefficients for RCE and 

RCAE at a speed ratio 1:2. the figure shows that the sensitivity of ψ in the case of RCAE 

is much less than that in case of RCE especially for photon energies above 3.3eV.   

Moreover, figure 4.17 shows the variation of )cos(  due to the uncertainty in all Fourier 

coefficients for RCE and RCAE at a speed ratio 1 : 2. The sensitivity of )cos(  in the 

case of RCAE is significantly less than that in the case of RCE especially for photon 

energies below 4eV. Therefore the preference of RCAE at a speed ratio 1 : 2  over  the 

RCE is clear in the two figures.    
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Figure 4.16.   with respect to the Fourier coefficients for RCE and RCAE at a speed 

ratio 1:2 for c-Si sample at 70
o
 angle of incidence.  
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Figure 4.17. )cos(  with respect to the Fourier coefficients for RCE and RCAE at a 

speed ratio 1:2 for c-Si sample at 70
o
 angle of incidence.   
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CHAPTER FIVE 

Characterization Of SiO2 And Poly (9-Vinylcarbazole)  Thin Films 

 

In this chapter, a homemade rotating polarizer and analyzer spectroscopic is used to 

characterize some samples. In this system, the polarizer and the analyzer rotate in same 

directions with the same angular speed. The transmission axes of the two elements are 

rotated using microstepping motors. Commercial software for thin film analysis 

(TFCompanion-optical metrology software) obtained from Semiconsoft,Inc is used to 

analyze the experimental results. The results reveal a high accuracy device for thin film 

characterization.    

 

5.1 Mathematical Treatment   

A well-collimated beam of monochromatic unpolarized light is assumed to emerge 

through a fixed polarizer, a rotating polarizer, then is reflected from a sample, and finally 

is collected by a detector through the projection of a rotating analyzer. The analytical 

treatment of the proposed rotating polarizer and analyzer ellipsometer is similar to that 

presented in chapters 2, 3 and 4. For the sake of clarity, we here point out a part of this 

treatment. The intensity received by the detector can be written as [36] 

 

                       ]6cos4cos2cos1[)( 3210 tatataItI   ,                              (5.1) 

 

where I0 is the average irradiance and ω is the mechanical angular speed of the rotating 

elements. The coefficients a1, a2, a3, are the Fourier coefficients. The ellipsometric 

parameters ψ and Δ can be determined using the Fourier coefficients as follows  
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5.2 Poly (9-Vinylcarbazole) , PVK   

Carbazole is an aromatic tricyclic compound which was discovered  in 1872 by Graebe 

and Glaser from the coal tar [37]. A high number of carbazole  monomers linked together 

will form poly(vinylcarbazole) compound. The chemical structure of carbazole  is 

illustrated in  Fig. 5.1(a).  Pure carbazole is a white crystalline organic material which has 

melting point of 246 
0
C

, 
and 167.2 g/mole molecular weight. Carbazole has high boiling 

point compared with many of organic materials [37]. It is an electroluminescent material. 

Carbazole emits strong fluorescence and long phosphorescence by exciting with enough 

energy (ultraviolet) [38].   

N

H

 

(a) 

N

CH CH2 n

 

 

(b) 

Figure 5.1. The structure of, (a) Carbazole (b) and Poly(9-vinylcarbazole). 

 

Poly(9-vinylcarbazole) (PVK) is tricyclic organic polymeric material which is transparent 

plastic material. The softening point of PVK is nearly  a 175 
0
C and glass transition 

temperature (Tg) is at 211
0
C. The chemical structure of PVK is illustrated in Fig. 5.4(c). 

the solubility of PVK is very strong in alcohol, ether and  THF.  Usually PVK films are 

deposited by spin coating. It has good optical properties, PVK has a strong 

photoconductive and electroluminescence properties. It has a high refractive index ~1.69 

in the visible region. Electrically, PVK is an insulator in dark but under the ultraviolet 
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radiation, it exhibits electro-conductivity. Commercially PVK is used as a paper 

capacitor, in OLEDs, data storage, sensors and transistors. In OLEDs, PVK is used as a 

hole transport material[37]. 

 

5.3. Experimental And Results  

PVK with an average molecular weight of 11×10
5
 was weighted by using a sensitive 

electrical balance ( model N3. ESJ182-4 ) with a resolution of 10
-4

 gm. The PVK was 

dissolved in a proper amount of mixed solvents such as toluene and tetrahydrofuran 

(THF). A homogenous solution was then obtained. To construct a single layer of PVK 

thin film, 10 gm PVK + 5 ml THF +1 ml Toul.  of the solution were placed on the 

cleaned Si substrate. Inclined coating method was used to form the film. The film 

thickness was increased by increasing the concentration amount of the PVK on a constant 

volume of mixed solvents and vice versa.  

A homemade ellipsometer [36] was used to characterize samples. Measurements were 

taken at 70° angle of incidence. Three samples have been studied. The first one is a step-

wafer (Si-SiO2-step-wafer) 500 mm diameter. The following is the detailed data given in 

the calibration datasheet for this sample at the wavelength of 633 nm. For SiO2 sample 

(S1), ψ = 24.5
o
, Δ = 91.3

o
, thickness = 506.93 nm, and n = 1.459. The second and third 

samples where two thin PVK films deposited on Si substrate. Figures 5.2, 5.3 and 5.4 

show the ellipsometry spectra obtained with the ellipsometer for S1 whereas Figs. 5.5,5.6 

and 5.7 show the same parameters for S2 and Figs. 5.8,5.9 and 5.10 show the same 

parameters for S3. Discrete Fourier analysis was performed to deduce the normalized 

Fourier coefficients for each photon energy and then the ellipsometric parameters (ψ and 

Δ) were obtained using Eqs. (5.2) and (5.3). TFCompanion software is then used to 

analyze the results and to extract the thickness and the refractive index of the samples. 

TFCompanion is a powerful software for thin film analysis and metrology applications. 

The optical measurements are indirect in that they are measuring optical response of the 

physical properties not the properties themselves. One needs to solve an “inverse 

problem” in order to find the value of actual physical properties. The “inverse problem” 
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is solved numerically by finding the best fit between measured and calculated data. 

Physical properties are inferred from the model that gives the best fit. General solution is 

achieved by numerical methods of minimizing the difference between measured (target) 

data and simulated data, using selected optical model of the filmstack. Selected 

parameters of the filmstack are adjusted until the minimum error is achieved. 

TFCompanion uses modified Marquardt-Levenberg minimization that gives fast and 

robust convergence.  

Our model of the samples consists of ambient-SiO2-Si and ambient-PVK-Si. Since SiO2 

and PVK are dielectric materials with smooth dispersion, Cauchy approximation has been 

used to represent this dispersion.     

Solid lines in Figs. 5.2-5.10 represent the calculated ellipsometric parameters using Eqs. 

(5.2) and (5.3) whereas circles represent the experimental data in the range 300 nm to 830 

nm. The measured thickness obtained from TFCompanion software was 506.93±0.43 nm 

for S1, 94.48±0.745 nm for S2 and  35.33±0.00068 nm for S3. Moreover, the 

spectroscopic measurements of the refractive index of the SiO2 and PVK films in the 

spectral range 300 nm to 830 nm are shown in Figs. 5.2,5.5 and 5.8 for S1, S2 and S3, 

respectively. As can be seen from the figures, at λ = 633 nm, the measured index was 

1.459 with percent error of 0.05% for S1, 1.683 with a percent error of 1.5% for S2 and 

1.71 with percent error 0.0013% for S3.  

 

The following table shows the values of oN , 2N  and 4N in Cauchy relation described in 

section 1.7 for SiO2  film on Si wafer and two samples with different thickness of PVK  

film on Si substrate. 
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Table 5.1. Cauchy coefficients of the samples  

sample 
oN  2N  4N  

SiO2 film on Si wafer        

(500 nm) S1 

1.451 0.0033 5105 

 

The first sample of 

PVK  film on Si wafer (94.48 

nm) S2 

1.681 -0.0081 0.003

67   

The second sample of PVK  

film on Si wafer (35.33) S3 

1.979 -0.1625 0.021

96   
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Figure 5.2. ψ of SiO2 thin film on silicon wafer (S1) as a function of wavelength.  
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Figure 5.3. Δ of SiO2 thin film on silicon wafer (S1) as a function of wavelength.  
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Figure 5.4. Refractive index of SiO2 thin film on silicon wafer (S1) as a function of 

wavelength.  
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Figure 5.5. ψ of PVK thin film on silicon wafer (S2) as a function of wavelength.  
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Figure 5.6. Δ of PVK thin film on silicon wafer (S2) as a function of wavelength.  
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Figure 5.7. Refractive index of PVK thin film on silicon wafer (S2) as a function of 

wavelength .  
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Figure 5.8. ψ of PVK thin film on silicon wafer (S3) as a function of wavelength.  
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Figure 5.9. Δ of PVK thin film on silicon wafer (S3) as a function of wavelength.  
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Figure 5.10. Refractive index of PVK thin film on silicon wafer (S3) as a function of 

wavelength.  

 



 

126 

 

CONCLUSIONS 

 

Principles to electromagnetic theory and ellipsometry are presented in chapter one.  

A rotating polarizer and analyzer spectroscopic ellipsometer using a fixed compensator 

has been proposed in chapter two. The feasibility of the proposed ellipsometric structure 

has been demonstrated theoretically for three samples; c-Si, SiO2, and GaAs. Moreover, it 

is also has been tested for thin film characterization. Two compensator alignments have 

been assumed and discussed; when its fast axis makes angles 0
o
 and 45

o
 with the p-

polarization. 

A rotating polarizer-analyzer ellipsometer using a compensator is proposed in chapter 

three. Based on the speed ratio at which the polarizer and the analyzer rotate, different 

ellipsometric configurations are presented and compared. Moreover, two different 

alignments for the compensator are considered for each ellipsometric configuration. All 

configurations are applied to a bulk c-Si to extract the optical parameters.  

In chapter four, two ellipsometeric structures which are rotating polarizer compensator 

(RPCE) and rotating compensator analyzer (RCAE) are presented. For each structure, we 

assumed three different configurations were assumed by considering different speed 

ratios.  

In chapter five, a homemade rotating polarizer and analyzer spectroscopic ellipsometer 

was used to measure three different samples. The three ellipsometry samples were 

prepared, and then investigated at 632.8 nm as well as in the spectral range 300 nm to 

830 nm. 

The following conclusion have been found,  

1) In all chapters, the uncertainties in the ellipsometric parameters due to the 

uncertainties of the Fourier coefficients have been derived and plotted. Moreover, 

The percent errors for noise effects and misalignment of the optical elements were 

investigated. 

2) In chapter 2, 3 and 4, a comparison between different configurations is held 

regarding the effect of a hypothetical noise on the results. 
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3) In chapter 2, it is found that the worst offset angle of the compensator at 45
o
 and 

the best at 0
o
. 

4) In chapter 3, The results revealed that the ellipsometric configuration with a speed 

ratio 1:1 has a preference over other configurations.   

5) In chapter 4, a general equation of the intensity for a rotating polarizer, 

compensator and analyzer ellipsometer with any speed ratio N1ω:N2ω:N3ω, is 

found. 

6) A RCAE with a speed ratio 1 : 2 corresponds  the minimum error in the calculated 

optical parameters in chapter 4 and all chapters.  

7) A comparison between the well known rotating compensator ellipsometry (RCE) 

and RCAE at a speed ratio 1 : 2 reveals that RCAE has a preference over RCE. 

8) In chapter 5, the results reveal high accuracy and the percent errors in all 

measured parameters are in the accepted range. 
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