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Abstract 
 

During the last few years, several investigations and studies have been 

carried out on both nonlinear behavior of electromagnetic waves and nonlinear 

magnetostatic surface waves. Recently, new artificial left handed materials 

(LHMs) have been fabricated, where both permittivity and permeability are 

negative. 

These materials (LHM’s) have become important, because of its 

scattering to the electromagnetic radiation in a unique manner and some useful 

applications, for example, uses in the cellular communications industry, 

antennas, filtering, and other electromagnetic devices are of great importance. 

In this dissertation we investigate the properties of the dispersion of 

nonlinear magnetostatic surface waves in LHM / ferrite structure. Maxwell’s 

equations and the boundary conditions have been used to derive the dispersion  

relation. 

Numerical and analytical approaches are implemented in order to find out 

the characteristics of the nonlinear magnetostatic surface waves. The guiding 

structure we considered consists of a linear gyromagnetic ferrite and left-handed 

material. Numerical results are also illustrated. Obtained results could be used in 

designing some future electromagnetic devices. 



 IV 

Introduction 
 

Vector Veselago in his paper [1] published in 1968, postulated a material 

in which both permittivity and permeability had negative real values, and he 

showed theoretically that in such a medium, which he called “Left-Handed 

(LH)” medium, the wave vector is antiparallel to the usual right-handed cross 

product of the electric and magnetic fields, implying effectively negative 

refractive index for such a medium. 

Smith and his colleagues [2] in recent years have constructed a composite 

medium with such features in the microwave regime, by arranging arrays of 

small metallic wires and split ring resonator and have shown the anomalous 

“negative” refraction predicted by Veselago. 

Various features of this class of metamaterials, also known as “double 

negative (DNG)” media, and many ideas and suggestions for their potential 

applications are now being studied by many researchers [1-12]. 

In this thesis, the nonlinear magnetostatic surface waves propagating 

along two various media containing a linear ferrite substrate and a left-handed 

material cover have been studied. Maxwell’s equations and the boundary 

conditions have been used to derive the dispersion equation. The outline of this 

thesis is classified into four chapters. 

Chapter 1 describes an introductory development of both the nonlinear 

magnetostatic surface waves propagation along layered structures, and the 

important properties and characteristics of LHM's. 

Chapter 2 presents TE surface waves along a single interface of semi-

infinite linear ferrite (εf = 1) and vacuum with (ε0 = µ0 = 1). The dispersion 

relation has been solved to find out the nonreciprocal nature of the propagation. 



 V 

Chapter 3 examines the behavior of nonlinear magnetostatic surface 

waves on two layers containing ferrite (YIG) and left-handed material. 

Chapter 4 includes analytical and numerical solution of the dispersion 

relation which was derived in the previous chapter. 
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1.1  Historical development 

Magnetostatic surface wave technology is widely used in practical 

sophisticated devices for direct signal processing, such as bandpass filters, 

resonators filters, oscillators, and circulators. Magnetostatic surface wave, 

whose wavenumber lies in the range between electromagnetic waves and 

exchange spin waves, was first considered theoretically (Damon and Esbach 

1961) in a gyromagnetic ferrite slab [Yttrium Iron Garnet (YIG)] magnetized in 

the plane of its faces, propagating in a direction transverse to the applied static 

magnetic field [12]. 

Magnetostatic surface waves on different magnetic layered structures 

have been investigated in the voigt geometry by several researchers (Lax and 

Button 1962, Sodha and Srivastava 1981) [13]. 

Shabat [13] has computed the dispersion relation of strongly nonlinear 

magnetostatic surface waves in a grounded ferrite (YIG) film bounded by a 

nonlinear dielectric cover. It is found that the dispersion can be tuned and 

controlled by selecting the film thickness in both directions of propagation, 

where non-reciprocity is obtained. The effect of applied magnetization is also 

discussed. 

The general dispersion relation for strongly nonlinear magnetostatic 

surface waves in a gyromagnetic (YIG) film is also analyzed theoretically by 

Shabat [14] and calculated for different values of the cover-film interface 

nonlinearity. The difference between the phase constants for forward and 

backward propagation direction against the film thickness has also been 

computed at different values of the signal operating frequency. It has been found 

that the differential phase constant or the non-reciprocity can be minimized for 

the smaller operating frequencies and relatively thick films. 
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1.2  Nonlinear electromagnetic waves 

There is a considerable interest in the exact properties of strong 

electromagnetic waves propagating in layered structures in which one or more 

medium is nonlinear. Many weakly nonlinear guided wave optical devices have 

been proposed. This is based upon the concept that the intensity of the nonlinear 

guided or surface waves controls only the propagation wave index [15-17]. 

Bordman et al [18-19] have extended the study of the properties of strong 

nonlinear surface waves from infrared to down to microwave frequencies. They 

derived an exact theory of electromagnetic waves propagating along a single 

interface between a linear ferromagnetic substrate and a strongly nonlinear 

artificial paramagnetic cladding. The main conclusion is that both TE and TM 

waves can propagate even if such propagation is forbidden in the linear, low-

power limit. 

At the present time, little seems to be known about solutions of Maxwell’s 

equations that describe the propagation of surface or guided waves in nonlinear 

structures that involve linear gyromagnetic media. In addition, almost all of the 

exact studies of TE and TM nonlinear surface waves or polaritons have been 

based on frequency-independent dielectric constants and attention has focused 

upon the infrared region of the spectrum [19, 22]. 

As a background in this chapter, we are going to review few important 

works which concerns with magnetostatic surface waves, LHM and a ferrite 

(YIG). 

1.3 Strongly nonlinear magnetostatic surface waves in a grounded ferrite 

film 

Shabat [14] has investigated theoretically the new strongly nonlinear 

magnetostatic surface waves in the Voigt configuration for a YIG substrate and 

nonlinear dielectric cover. The nonlinearity of the dielectric cover is much 

stronger than the weak nonlinearity of the YIG substrate, so that the weak 
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nonlinearity of YIG can simply be neglected and the magnetostatic 

approximation will also be used. Waves will be in a direction transverse to the 

applied magnetic field. The properties of the dispersion of nonlinear 

magnetostatic surface waves in a grounded ferrite film were investigated. The 

new approach might be integrated and extended to study the amplification of 

nonlinear magnetostatic surface waves though their interaction with drifting 

carriers of the semiconductor. 

The ferrite occupies the region dz ≤≤0  which is grounded at z = 0, 

bounded by the nonlinear cover of the space dz ≥ . We present the dispersion 

equation for stationary TE waves propagating in the x-direction with 

propagation wave in the form exp [i(kx–2πft)]. The magnetic permeability 

tensor of the gyromagnetic ferrite (YIG) substrate is described as: 

( )
















−
=

xxxz

B

xzxx

µµ
µ

µµ
ωµ

0
00

0

    (1.1a) 

Where: 

( )








−

−+
= 22

0

2
00

ωω
ωωωω

µµ m
Bxx ,    22

0 ωω
ωω

µµ
−

= m
Bxz i   (1.1b) 

 

and µB is the usual Polder tensor elements, 

ω is the angular frequency of the supported wave, 

ω0 =  γµ0H0 , ωm =  γµ0M0 , H0 is the applied magnetic field, 

γ =  1.76×1011 S-1T-1 is the gyromagnetic ratio, 

M0 is the dc saturation magnetization of the magnetic insulator and µB has been 

introduced as the background, optical magnon permeability. 

The ferrite has also a dielectric constant εf . The dielectric function of the 

nonlinear dielectric cover is assumed to be Kerr-like and isotropic, it depends on 

the electric field and can be written as for TE waves, 2
2 y

NL Eαεε += , where the ε2 
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is the linear part of the dielectric function and α the nonlinearity coefficient. The 

conventional magnetostatic potential Ψ from Maxwell’s equation [14], 

Ψ∇=H        (1.2a) 

( ) ( )[ ]ftkxikzA π2expsinh −=Ψ     (1.2b) 

For the TE magnetostatic waves in a YIG can be written as: 
( ) Ψ= ikhx
1         (1.2c) 

( ) ( ) ( )[ ]ftkxikzikAhz π2expcosh1 −−=    (1.2d) 

( ) ( )zxxxxzy hh
k
fe µµ
µπ

+−= 01 2
    (1.2e) 

The field components of the wave in the nonlinear cover can be obtained: 

( )( ) ( )[ ]02

2
2/1

0

2

cosh
21

zzk
k

k
zEy −







=

α    (1.3a) 

Where k0 =  2πf / c and z0 is a constant to be determined from the boundary 

conditions, and: 

( )( ) ( )[ ] ( )( )zEzzk
f

kzh yx
2

02
0

22 tanh
2

−−=
µπ   (1.3b) 

( )( ) ( )( )zE
f
kzh yz

2

0

2

2 µπ
−=     (1.3c) 

Applying the boundary conditions, the complete dispersion equation is found to 

be:  

( ) 






 +−
=

vxx

xzxx Skdzk
µµ

µµ cothtanh 02    (1.4a) 

Where ( ) 1,1,22 =±=−= SSxxxzxxv µµµµ stands for the propagation of the waves 

in forward direction, and 1−=S  for the propagation of the waves in backward 

direction. In terms of the interface nonlinearity, the dispersion equation is 

written as: 
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( ) 






 +−
−=

vxx

xzxx
y

SkddE
µµ

µµα coth1
2

2
  (1.4b) 

Where ( ) ( )dEy
22α  is the interface nonlinearity at z =  d. In the linear limit, we 

get [14]: 

( )[ ] ( )[ ]
( )[ ] ( )[ ]xzxxxzxx

xzxxxzxxkd

SS
SSe

µµµµ
µµµµ

−−+−
++−+

=−

11
112

  (1.4c) 

The dispersion relation or the propagation characteristics are shown in 

Fig.(1.1) for different values of the film thickness. All of the dispersion curves 

shift to the left rapidly for higher values of the film thickness in both directions 

and after a while shift to the right for the backward wave direction. The fast shift 

is due to the effect of the nonlinearity of the cover, which did not happen in the 

linear case. 

 
 

 

 

Fig. (1.1): Computed dispersion case in a) forward and b) backward wave direction at 6.0)()2/( 2 =dE yα , 

05.000 =Hµ  T, 25.1=Bµ , 1750.000 =Mµ T, 25.2,1 2 == εε f
, 111076.1 ×=γ rad s-1 T-1 , (1)  

d =    0.5, (2) 2, (3) 5, and (4) 10 µm 
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1.4  Nonlinear magnetostatic surface waves in a gyromagnetic film 

The purpose is to report in detail the approach and the results of a new 

type of strongly nonlinear magnetostatic surface wave in a YIG film, bounded 

by a nonlinear cover and a dielectric substrate [13]. The numerical results for the 

strongly nonlinear magnetostatic surface waves in a YIG film are also presented 

and discussed, especially the dispersion characteristics and the difference 

between the phase constants of the wave propagation in the two directions. It has 

been shown that the non-reciprocity can be minimized for smaller operating 

frequencies and relatively thick films. These calculations might be useful and 

important for accurate modeling of future magnetostatic surface wave device 

performance. 

The geometry and coordinate system used is as shown in Fig.(1.2), and 

the magnetic permeability tensor of the gyromagnetic ferrite (YIG) substrate is 

as described before. The ferrite has also a dielectric constant εf. The dielectric 

function of the nonlinear dielectric cover is assumed to be Kerr-like and 

isotropic, it depends on the electric field and can be written as for TE waves, 
2

3 y
NL Eαεε += , where the ε3 is the linear part of the dielectric function and α is 

the nonlinear coefficient. 

 

 

 

 

 

 

 

 

 

 

Fig. (1.2): Coordinate system for a ferrite (YIG) film bounded by a nonlinear cover and a     

dielectric substrate, the applied magnetic field is in the y-axis. 

Dielectric substrate 

d     Ferromagnetic 

Nonlinear cover 

X 

Z 

(3) 

(1) 

(2) 
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The important restrictions and assumptions made in the analysis are listed below 

[13]: 

(1) The magnetostatic approximation 0=×∇ H  is employed in the 

gyromagnetic and substrate media, and the magnetostatic range is 

imposed where ck ω≥ . 

(2) Nonlinear effect in the gyromagnetic film is neglected compared with the 

dominant nonlinear effects in the cover medium. 

(3) The magnetostatic approximation 0=×∇ H  is not employed in the 

nonlinear medium, because the electric field in Maxwell’s equations 

cannot be ignored and therefore the magnetostatic approximation is not 

valid, but the magnetostatic range can be applied. 

We seek solution of Maxwell’s equations for the TE (s-polarized) waves in the 

three layers taking into account the above restrictions and assumptions. 

In a linear dielectric substrate, Ψ can be written as: 
( ) ( ) ( )[ ]ftkxikza π2expexp1
1 −=Ψ      (1.5a)  

Where a1 is an amplitude coefficient determined from the boundary condition 
( ) ( )11 Ψ= ikhx         (1.5b) 

( ) ( )11 Ψ= ikhz         (1.5c) 

( ) ( )101
zy h

k
e ωµ

=         (1.5d) 

and in the yttrium iron garnet film, 
( ) ( ) ( )[ ] ( )[ ]ftkxikzbkza π2expexpexp 22
2 −−+=Ψ    (1.6a)  

( ) ( )22 Ψ= ikhx        (1.6b) 
( ) ( ) ( )[ ] ( )[ ]ftkxikzbkzaikhz π2expexpexp 22
2 −−−−=    (1.6c) 

( ) ( ) ( )( )2202
zxxxxzy hh

k
e µµ

ωµ
+−=       (1.6d) 
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Where a2 and b2 are amplitude coefficients determined from boundary 

conditions. From Maxwell’s equations for the nonlinear dielectric cover, we get:  

00HiE
z y ωµ=

∂
∂

−        (1.7a) 

zy HkE 0ωµ−=        (1.7b) 

y
NL

xz EiH
z

ikH εωε0−=
∂
∂

+−      (1.7c) 

Eliminating Hx and Hz from Eq's.(1.7a) and (1.7b) and using Eq.(1.7c) give the 

result: 

( ) ( ) ( ) ( ) 032
03

2
0

2
2

2

=+−−
∂
∂ zEkzEkkzE
z yyy αε    (1.8a) 

Consider the wave vector in the magnetostatic range as ( ) 2/1
3εω ck ≥ ; so 

( ) ( ) ( ) 03
2

2
2

2

2

=+−
∂

∂
zE

c
zEk

z
zE

yy
y α

ω
    (1.8b) 

The solution of the wave equations (1.8b), which falls to zero as z goes to 

infinity 

( )( ) ( )[ ]0

21

0

3

cosh
21

zzk
k

k
zEy −







=

α
     (1.8c) 

( )( ) ( )[ ] ( )( )zEzzkkzh yx
3

0
0

3 tanh −−=
ωµ

     (1.8d) 

( ) ( )( )zEkzh yz
3

0

3

ωµ
=        (1.8e) 

Applying the boundary conditions, the complete dispersion equation is found to 

be [13]: 

( ) ( )[ ] ( )[ ]
( )[ ] ( )[ ]xzxxxzxx

xzxxxzxx

SSu
SSukd
µµµµ
µµµµ

−−+−
++−+

=−
11
112exp   (1.9a) 

 

Where ( )[ ]0tanh zdku −=  varies from zero to unity, according to the 

values of the cover-film interface nonlinearity. Noting that the reversal of the 
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sign of µxz changes the dispersion relation, this implies that the dispersion 

relation of the nonlinear magnetostatic surface waves exhibits the non-

reciprocity phenomenon. 

In the linear limit u =  1 or α =  0, we get the dispersion equation 

( ) ( )[ ] ( )[ ]
( )[ ] ( )[ ]xzxxxzxx

xzxxxzxx

SS
SSukd
µµµµ
µµµµ

−−+−
++−+

=−
11
112exp    (1.9b) 

This is the dispersion equation for magnetostatic surface waves in a single 

ferrite (YIG) film derived by Damon and Eshbach (1961) and Sodha and 

Srivastava (1981), as mentioned in [13]. 

 
 

 

 

The propagation characteristics of strongly nonlinear magnetostatic 

guided by a YIG film is computed by solving eq.(1.9a) for different values of 

the nonlinear terms u shown in Fig.(1.3). Curve (1) represents the linear 

dispersion relation of the magnetostatic surface waves, as the linear terms equals 

unity. 

The differential phase constant or the phase shift Δβ between the counter-

propagation waves is calculated from eq.(1.9a) as[13]: 

( )[ ] ( )[ ]
( )[ ] ( )[ ]








−−−−
−+−+

=±
xzxxxzxx

xzxxxzxx

SSu
SSu

dk µµµµ
µµµµ

β
11
11ln

2
1

0
  (1.9c)  

Where 0kk±± =β and +− −=∆ βββ  

Fig. (1.3): Computed dispersion curves for several values of the nonlinear term u (d =  1 cm; µ0H0 =  0.1 T;  

µB =  1; µ0M0 =  0.1750 T; εf =  1; γ =  2.7 MHz Oe-1): curve 1, u =  1; curve 2, u =  (0.9)1/2; curve 3, 

u =  (0.7)1/2; curve 4, u =  (0.5)1/2. 
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Fig. (1.4) shows the differential phase constant or the phase shift Δβ of the 

wave propagation in the positive and negative x-directions (forward and 

backward) against the film thickness of the YIG film for different values of 

signal operating frequency. 
 

1.5  Conclusions 

For 0≤vµ  which is the region of interest, the frequency lies within the 

range from ( )mfff +00  to mff +0 . The dispersion curve in the forward wave 

direction originates at the point ( )mffff += 001  and terminates at 

202 mfff += . While the dispersion curve in the backward wave direction 

originates at f1 and terminates at f3 =  f0 + fm , where f1 , f2 and f3 have the same 

values as for the linear propagation characteristics of the waves. 

All of the dispersion curves [14] shift to the left rapidly for higher values 

of the film thickness in both directions and after a while shift to the right for the 

backward wave direction. The fast shift is due to the effect of the nonlinearity of 

the cover, which did not happen in the linear case. Both figures (1.3) and (1.4) 

show the nonreciprocal behavior, which is very important if one wants to design 

Fig. (1.4): Computed difference between the phase constants for wave propagation in the two directions  

(u =  0.7; d =  1 cm; µB =  1; µ0H0 =  0.1 T; µ0M0 =  0.1750 T; εf =  1; γ =  2.7 MHz Oe-1): curve 1,  

f =  4.7 GHz; curve 2, f =  4.8 GHz; curve 3, f =  4.9 GHz. 
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microwave devices as isolators, switches, and oscillators or for use in 

microwave signal processing technology. 

It is shown [13] that the three-layer structure exhibits minimum non-

reciprocity in the propagation constant that is Δβ becomes a minimum, when the 

structure has thicker film and a smaller operating frequency, especially near the 

resonance frequency f1 . This means that the value of the non-reciprocity can be 

tuned and controlled by adjusting the signal operating frequency and the YIG 

film thickness. 

 

1.6  Development of (LHM's)      

Left-handed materials (LHM's) with negative both magnetic permeability 

(µ) and dielectric permittivity (ε) have recently attracted a great deal of attention 

because of their promise for its applications in different fields. So, these 

materials have a negative refractive index, which implies that the phase and 

group velocities of the propagating electromagnetic wave oppose each other. 

This property of these LHM's is responsible for their anomalous physical 

behavior. Since materials with negative refractive index do not naturally occurs, 

they have to be artificially constructed in the form of metal rods and split-ring 

resonators [3]. 

Theoretical studies on electrodynamics of media with negative 

permittivity (ε) and negative permeability (µ) are back to the 1940s – 1960s. 

The spin-wave modes of magnetized thin film also analyzed by Damon 

and Eshbach in 1961 [12], where a tangentially-magnetized film is known to 

exhibit backward wave behavior within a range of angles around the direction of 

the bias field. 

Earlier in 2000, Shelby et al. [4] announced that they had developed a 

left-handed material for the first time, using the array of wires and split-ring 

resonator as described by Veselago [1]. That is a beam incident on a left-handed 
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material (LHM) from an ordinary right-handed medium (RHM) was shown to 

refract to the same side of the normal as the incident beam. 

Pendry predicted [5], at radio frequencies, an array of parallel wires 

would behave like a material with negative permittivity (ε), and an array of C-

shaped circuits known as split-ring resonators would behave like a material with 

negative permeability. By constructing an array consisting of both wires and 

split-ring resonators, the group created a “material” with negative (µ,ε) at 

frequencies around 10 GHz. 

1.6.1 What is LHM's? 

In general, materials have two parameters, permeability (µ) and 

permittivity (ε) that determine how the material will interact with 

electromagnetic radiation, which includes light, microwaves, radio waves, even 

x-ray. A Left-Handed material is a material whose permeability and permittivity 

are simultaneously negative (ε < 0, µ < 0), (i.e., E×H lies along the direction of – 

k for propagating plane waves) [3]. 

The general form of the negative effective permeability, µeff (ω) and 

effective permittivity εeff (ω) has been studied by Pendry et al. [6-7] and 

described as: 

( )
Γ+−

−=
ωωω

ω
ωµ

i
F

eff 2
0

2

2

1        (1.10a) 

Where, ω0 is the resonance frequency, Γ is the damping parameter and F is 

constant. 

And ( )
Γ+−

−
−=

ωωω
ωω

ωε
i

p
eff 2

0
2

2
0

2

1      (1.10b) 

Where, ωp is the plasma frequency, ω0 is the resonance frequency and Γ is the 

damping parameter. 

More evidently, it has been found in LHM’s the wave vector of a 

monochromatic plane wave is reversed in comparison with what it should have 
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been for RHM. That means that if the vector E is along x-axis and the vector B 

is along y-axis, in the RHM the electromagnetic wave will propagate along z-

axis, while in LHM the wave propagate along – z-axis. Figs. (1.5a, 1.5b) 

respectively show this propagation. 

In addition, index of refraction n being negative tells that the direction of 

energy propagation is opposite to the direction of plane wave motion. 

 
 

 

 
 

 

 

Fig. (1.5a) 

Fig. (1.5 b) 
 

Figs. (1.5a), (1.5b): shows the propagation of wave vector along RHM's and 
LHM's respectively   
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1.6.2 Fabrication of LHM’s 

Until now the theoretists did not find a natural material characterized by 

negative permeability (µ) and negative permittivity (ε), but these materials are 

fabricated [2], and named artificial materials. 

For example, photonic crystals and metamaterials are currently being 

investigated for such left handedness of EM wave, while a few other artificial 

materials are feasible. 

I) Photonic crystal 

Photonic crystal is an array of either dielectric or metallic rods or holes in 

a dielectric medium. The photonic crystal can be designed to possess left-handed 

behavior in a chosen frequency of interest, for example optical to microwave 

frequencies. Fig. (1.5c) show the formation of fabricated photonic crystal. 

 

 
 

 

 

II) Metamaterials 

This material was fabricated by interleaving split ring resonator (SRR) 

and metallic wire strips (WS) [3-4]. Using lithography techniques to produce 

arrays of split ring resonators (SRR) on one side and wire strips (WS) on the 

other side should result in an effective negative permeability and negative 

Fig. (1.5 c): shows the fabricated photonic crystal. 
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permittivity material. This material has negative index. Fig. (1.5d) show the 

picture of fabricated of metamaterial. 

 

 
 

 

1.6.3 Application of LHM’s 

Every one believes that when one creates a new material that scatters 

electromagnetic radiation in a unique manner, some useful purpose will be 

found. For example, uses in the cellar communications industry, where novel 

filters, antennas, and other electromagnetic devices are of great importance. 

1.7  M.S.S.W’s and LHM’s 

In this thesis, we investigate the properties of the dispersion of nonlinear 

magnetostatic surface waves between two media, one of which is left-handed 

(LHM) with both (µ < 0, ε < 0) and the other is a gyromagnetic (ferrite) 

medium. We investigate theoretically the behavior of magnetostatic surface 

waves on left-handed materials. We derive the dispersion equation and solve it 

numerically. 

Finally, we hope the obtained results could be used in future work in 

opto-microwaves technology.  

Fig. (1.5 d): shows the fabricated metamaterial.(SRR) 
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2.1 Introduction 

In this chapter we give a survey to the work of R. F. Wallis [23] on semi-

infinite magnetic media, since he considered the surface polaritons as TE-

modes. We follow his mathematical approach and derive all the obtained 

dispersion relations. We make a numerical computation in order to calculate the 

propagation characteristic of the nonlinear dispersion equation. Also we discuss 

the case of surface polaritons on ferromagnetic metals, which have a dielectric 

tensor function of the general form of equation (2.40). The first-layer structure 

exhibits the non-reciprocity, while the other is not. 

2.2 Case one: vacuum / ferrite media 

2.2.1 Theory and dispersion relations 

Fig. (2.1) shows the coordinate system used. We assume that the space 

above the medium to be vacuum (ε0 =  µ0 =  1) and a semi-infinite medium 

characterized by a gyromagnetic permeability tensor as a ferrite (YIG). 
  

 

 

 

 

 

 

 
 

Fig. (2.1): Coordinate system for a single interface between a vacuum and a linear 

ferromagnetic. 

 

Only TE-modes are going to be considered and propagate along x-axis with 

wave number (K) and angular frequency ω. The gyromagnetic ferrite substrate 

in this case has magnetic permeability tensor as: 

Linear ferrite 
(semi-infinite) 

εf =  1 

vacuum 
ε0 =  µ0 =  1 

medium (2) 

medium (1) 
X 

Y 
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( )















=

zz

yyyx

xyxx

µ
µµ
µµ

ωµ
00

0
0

        (2.1) 

We consider a single domain ferromagnetic insulator magnetized along 

ẑ+ axis by an external static magnetic field H0. So, this field may be zero and we 

take µxx and µzz to be real, and µxy to be pure imaginary. Also, we take µv(ω), the 

Voigt configuration magnetic permeability function given by: 

( )
xx

xy
xxv µ

µ
µωµ

2

+=         (2.1a)  

2.2.2 The electric and magnetic field components 

I) For the vacuum cover: medium 2 

In this case, Maxwell’s equations lead to a wave equation and divergence 

equation as shown: 

0. 2
2 =−∇∇−∇ H

c
HH &&µ

      (2.2) 

0. =∇ Hµ         (2.3) 

Now, we can consider that the surface polariton will be a TE mode with 
zE ˆ//  (Hz = 0) and attenuating exponentially away from the surface. 

( ) ( ) ( )tiyikxHH ωα −−= expexpexp 00  y > 0  (2.4) 

( ) ( ) ( )tiyikxHH ωα −= expexpexp 11   y < 0  (2.5) 

Where ω, k, α0, α1 are all constrained to be real, and the subscripts 0 and 1 refer 

to the vacuum and medium respectively. 

Substituting Eq. (2.4) in Eq. (2.2), we get: 

0. 2

2

22

2

2

2

2

2

=
∂
∂

−∇∇−







∂
∂

+
∂
∂

+
∂
∂ H

tc
HH

zyx
µ

    (2.6) 

0. =∇∇ H         (2.7) 

( ) 02

2
02

0
2 =++− H

c
Hk ωµ

α      (2.8) 
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Where, µ0 for vacuum =  1, then: 

02

2
2
0

2 =







++− H

c
k ω

α       (2.9) 

Which this leads to the first dispersion relation, 

02
0

2
2

2

=+− α
ω k
c        (2.10) 

II) For the ferrite substrate: medium 1 

The ferrite has a permeability tensor as shown in Eq's. (2.1) and (2.1a). 

Using Maxwell’s equation we get: 

( )HiE ωµωµ0=×∇       (2.11) 

( )EiH f ωεωε 0−=×∇       (2.12) 

From Eq. (2.11), we have: 


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∂
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0 y

x

zz

yyxy

xyxx
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E
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ik

kji

µ
µµ
µµ

ωµ   (2.13) 

Then the electric and magnetic field components, 

( )yxyxxx
z HHi

y
E

µµωµ +=
∂

∂
0      (2.14) 

( )yxxxxyz HHiikE µµωµ +−=− 0      (2.15) 

Similarly, from Eq. (2.12), we have:  
















−=

∂
∂

z

fo

yx
E
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HH
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ik

kji

0
0

ˆ

0

0

ˆˆˆ

εωε      (2.16) 

Then, 

zf
x

y Ei
y

HikH εωε 0−=
∂

∂
−      (2.17) 
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Multiplying Eq. (2.14) by µxx and Eq. (2.15) by µxz, then Eq. (2.14) and Eq. 

(2.15) become: 

( )yxyxxxxx
z

xx HHHi
y

E
µµωµµ +=

∂
∂ 2

0     (2.18) 

( )yxyxxxxyzxy HHHiEik µµωµµ += 2
0     (2.19) 

By adding Eq. (2.18) and Eq. (2.19), we get: 

( ) xxyxxzxy
z

xx HiEik
y

E 22
0 µµωµµµ +=+

∂
∂

    (2.20) 

Then we have: 

xvz
xx

xyz HiEik
y

E
µωµ

µ
µ

0=+
∂

∂
     (2.21) 

Where, ( ) xxxyxxv µµµµ 22 +=        (2.21a) 

In the same way, multiplying Eq. (2.14) by µxz and Eq. (2.15) by ( xxµ− ), we get, 

( )yxyxxyxx
z

xy HHi
y

E 2
0 µµµωµµ +=

∂
∂

    (2.22) 

( )yxxxxyxxzxx HHiEik 2
0 µµµωµµ +−=−     (2.23) 

By adding Eq. (2.22) to Eq. (2.23), we get: 

( ) yxyxxzxx
z

xy HiEik
y

E 22
0 µµωµµµ +=−

∂
∂

   

 (2.24) 

By both sides by µxx, we obtain: 

yvz
z

xx

xy HiikE
y

E
µωµ

µ
µ

0=−
∂

∂
    

 (2.25) 

Where, ( ) xxxyxxv µµµµ 22 +=        (2.25a) 

Differentiate Eq. (2.21) with respect to y gives, 

y
Hi

y
Eik

y
E x

v
z

xx

xyy

∂
∂

=
∂

∂
+

∂
∂

µωµ
µ
µ

02

2

     (2.26) 

But from Eq. (2.17) and Eq. (2.25), we have respectively, 

dividing  
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zfy
x EiikH

y
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y
xy

xx
vz

xy

xxy HiEik
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E
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µωµ
µ
µ

0+=
∂

∂
     (2.28) 

Substitute both Eq's. (2.27) and (2.28) in Eq. (2.26), we obtain: 

( )zfyvy
xy

xx
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xy

xx

xx

xyy EiikHiHHiEikik
y
E

εωεµωµ
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µωµ
µ
µ

µ
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zfvyvyvz
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E

εεµµωµωµµωµ 00
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=+−
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z EEk
y
E

εεµµω       (2.30) 

( ) 000
22

2

2

=−−
∂

∂
zfv

z Ek
y
E

εµεµω        (2.31) 

Let 002
1

εµ=
c

  and  εf =  1         (2.31a) 

Substitute Eq. (2.31a) in Eq. (2.31), we get: 

02

2
2

2

2

=







−−

∂
∂

zv
z E
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ω

     (2.32) 

Let vc
k µ

ω
α 2

2
22

1 −=       (2.32a) 

With ( ) xxxyxxv µµµµ 22 +=      (2.32b) 

Finally, we get on the differential equation in terms of Ez,  

02
12

2

=+
∂

∂
z

z E
y
E α         (2.33) 

The solutions of Eq. (2.33) for the field components Hx(y), Hy(y), Ez(y) are: 
y

z eEE 1
0

α−=        (2.34) 

( ) z
vxx

xyxx
x E

i
ikk

yH 
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
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 +−
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µµωµ
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1
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( ) z
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 +
−=

µµωµ
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Where E0 is the total electrical field in region (1). 

From equation (2.32a), we can get the second dispersion relation, 

02
1

2
2

2

=+− αµω k
c v         (2.37) 

Where, xxxyxxv µµµµ 2+= is the permeability for propagation in the Voigt 

configuration. 

Substitute both Eq's. (2.4) and (2.5) into Eq. (2.3), and applying the normal 

boundary conditions on B and H and solving simultaneously, we obtain a 

relationship between α0 and α1 which is named the third dispersion relation as: 

xx

xy
v ik

µ

µ
µαα −−= 01       (2.38) 

Finally, by solving both Eq's. (2.10), (2.37), and (2.38) simultaneously, we end 

up with the complete dispersion relation: 

( )( ) ( )[ ]
( ) 
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
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
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−−±+−−
=

22
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41
12211

xyvxx

vxxxxxyxyxxvxxv ick
µµµ

µµµµµµµµµ
ω

  (2.39) 

In general, Eq. (2.39) has two physical solutions for ω(k). The first solution 

shows the nonreciprocal propagation as shown in Fig. (2.3) and the other is 

unexpected, because there is no propagation in its case. 

2.3 Case two: surface polaritons on ferromagnetic metals 

In case one, we have treated the case where gyrodielectric medium       

ε(ω) = 1. But in the second case we consider the dielectric tensor function of the 

general form, such ferromagnetic metal as: 
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      (2.40) 
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Since, for isotropic medium the only component of ε(ω) which enters into 

the magnetic dipole surface polariton in Fig. (2.1) is εzz [23]. 

In particular, we consider the surface polariton is TE mode as in Eq's. 

(2.4) and (2.5) of the case one, with zE ˆ//  and therefore only εzz component 

couples to E. We follows our analysis such as in the previous treatment (case 

one), then we get anomalous dispersion relations like Eq. (2.37). 

02
1

2
2

2

=+− αεµ
ω k
c zzv         (2.41) 

Hence, we get the complete surface polariton dispersion relation which is given 

by: 

( )( ) ( ){ }[ ]
( ) 


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
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With ( ) 

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





−= 2

2

0 1
ω
ω

εωε p
zz        (2.41a) 

Where ωp is the screened plasma frequency, ε0 is the high frequency electric 

dipole excitations, and: 
2/1

0
*

24








=

ε
π

ω
m

ne
p        (2.42b) 

Where m* denotes the effective mass of electron. 

Finally, we notice that Eq. (2.42) is similar to Eq. (2.39) but the difference 

is the presence of εzz, εxx, εv instead of µzz, µxy, µv respectively. 

Wallis [23] said that the bulk propagation in the case of ferromagnetic 

metals does not occur when εzz(ω) and µ(ω) are both positive, while when εzz(ω) 

and µv(ω) are both negative the propagation occurs under appropriate parameters 

for a ferromagnetic metal. 

Furthermore, the general electrodynamics of bulk polaritons in a medium 

with simultaneously negative values of ε (ω) and µ(ω) will be discuss in the next 

chapter as discussed by Veselago (1968) [1-12]. 

(2.42) 
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2.4 Conclusions 

A complete dispersion relation is derived [Eq. (2.39)] in the case one 

between a surface polaritons on a semi-infinite medium, where only one 

boundary (ferrite / vacuum) and another anomalous dispersion equation is 

derived also [Eq. (2.42)] between ferromagnetic metal and vacuum. 

After numerical analysis using software program [24], and for 0≤vµ , 

which is the region of interest as in Fig. (2.2), where the frequency lies within 

the range 3.5 GHz and 5.5 GHz. The dispersion curves (a) forward, (b) 

backward in Fig. (2.3) which are the relation between the frequency f (Hz) and 

the wave vector k (m-1). Also, Fig. (2.3) shows both wave propagation backward 

and forward for 1±=S  respectively. This propagation represents the 

nonreciprocal behavior. 

While in case two the non-reciprocity does not occur between 

ferromagnetic metal and vacuum [23]. 

 

  

 

 

 

 

 

 

 

 

 

 

  

 

 

Fig. (2.2): shows the effective permeability µυ as a function of frequency  f .  µ0H0 = 0.05 T, µB = 1.25,  
µ0M0 = 0.1750 T, γ = 1.76 ×1011 rad s-1 T-1 

µυ 

 

f (GHz) 
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Fig. (2.3): shows the computed dispersion curves in (a) forward, (b) backward and (c) both wave 
propagation.  µ0H0 = 0.5 T, µB = 1.25,  µ0M0 = 0.1750 T, γ = 1.76 ×1011 rad s-1 T-1 
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3.1 Introduction  

The nonlinear magnetostatic surface waves that propagate along the 

planner interfaces between different media, in cases where at least one of the 

media is LHM, have attracted much attention in recent years [8]. The general 

theory for two media has been investigated [23], and the dispersion relation is 

derived and analyzed numerically between ferrite-vacuum media. In this 

chapter, we derive a new-exact analytical dispersion relation of magnetostatic 

surface waves. These waves are considered to propagate in layered structure 

containing a semi-infinite linear (ferrite substrate) and a left handed material. 

The left handed material characterized by [7]: 

( )
2

2 2
0

1eff
Fω

µ ω
ω ω

= −
−  ,    ( ) 2

2

1
ω
ω

ωε ep
eff −=    (3.1) 

Where F =  0.56 , ω0 / 2π =  4 GHz , and ωep / 2π =  10 GHz 

3.2 Theory and dispersion relations 

The guiding structure that considered consists of a linear semi-infinite 

ferrite substrate assumed to be YIG, and a left-handed material with ε < 0 , µ < 0 

cladding in constant everywhere on the z = 0 plane. We consider TE s-polarized 

waves that propagate in the x-direction with wave number k and angular 

frequency ω. The applied magnetic field is normal to the wave propagation and 

the z-axis is perpendicular to the plan separating the structure layers as shown in 

Fig. (3.1). 

 

 

 

 

 

 

 

 

Linear ferrite cladding 
(semi-infinite) 

L.H.M. cover 
(µ,ε) < 0 

X 

Z 

(2) 

(1) 

Fig. (3.1): Coordinate system for the single interface between LHM and a linear ferrite  cladding, 

the applied magnetic field is in the Y-direction. 
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3.2.1 For the ferrite substrate 

The magnetostatic potential Ψ of the magnetostatic surface waves in the 

YIG film is written [8] as: 
( ) ( ) ( )tkxiekxA ω−=Ψ exp1

      (3.2)     

The relevant component of the magnetic fields for the TE magnetostatic 

waves in the YIG can be written after considering the phase difference as: 

( ) ( ) ( )tkxi
x ekzikAh ω−= exp1

      (3.2a) 

( ) ( ) ( )tkxi
z ekzikAh ω−−= exp1

      (3.2b) 

( ) ( ) ( )( )1101
zxxxxzy hhS

k
e µµ

ωµ
+−=       (3.2c) 

Where 1±=S , S = 1  stands for the propagation of the waves in forward 

direction, and S = -1 for the backward direction. 

3.2.2 The electric and magnetic field components in LHM 

Using Maxwell Equations, we get: 

( )HiE eff ωµωµ0=×∇       (3.3)     

( )EiH eff ωεωε 0=×∇       (3.4)     

Where the effective permeability and the effective permittivity both are 

less than zero. 

Considering the electric and magnetic field of TE wave propagation in the 

x-direction can be written as: 

( ) ( )[ ]ctzikEE y −= β0exp0,,0      (3.5) 

( ) ( )[ ]ctzikHHH zx −= β0exp,0,      (3.6) 

Where 
0k

k=β  is the complex effective wave index constant, k0 is the wave 

number of free space, and c is the velocity of light in free space. 

The complex effective wave index constant can be written as: 
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( ) ( )βββ ImRe i+=       (3.7) 

Where Re(β) is the reduced phase constant, and Im (β) is the reduced attenuation 

constant. 

From Eq. (3.3) we get: 
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kji
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00
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0 ωµωµ     (3.8) 

The components of the electric field and magnetic field are: 

xeff
y Hi

z
E

µωµ0=
∂
∂−

      (3.9) 

From Eq. (3.9), we get: 

z
EiH y

eff
x ∂

∂
=

µωµ0
       (3.9a) 

Similarly, 

zeffy HiikE µωµ0=       (3.10) 

From Eq. (3.10), we get: 

y
eff

z EkH
µωµ0

=        (3.10a) 

Applying Eq. (3.4) then the components of magnetic field is: 

( )0

ˆˆ ˆ
0

0
00

eff y

x z

i j k

ik i E
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H H

ωε ε ω

 
  

∂    = −   ∂      
 

    (3.11) 

From Eq. (3.11) we get: 

( ) yeff
z

z Ei
z

HikH ωεωε0−=







∂
∂

−−      (3.12) 

0
z

z eff y
HikH i E
z

ωε ε
∂

− + = −
∂

     (3.13) 

Substitute both Eq's. (3.9a) and (3.10a) in Eq. (3.13) respectively, we obtain: 
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Multiplying Eq. (3.14) by ωµ0µeff, we get: 

yeffeff
y

y E
z
E

Ek εµµεω 00
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2

2
2 −=

∂
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000
22
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=+−
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yeffeffy

y EEk
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E

εµεµω  

( ) 000
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But 2

2
2
0 c

k ω
=   where, 002

1
µε=

c
     (3.15a) 

And k =  k0β         (3.15b) 

Substitute both Eq's. (3.15a) and (3.15b) in Eq. (3.15), we obtain: 

( ) 02
0

22
02

2

=−−
∂

∂
yeffeff

y Ekk
z
E

εµβ       (3.16) 

Let ( )2 2 2
1 0 eff effk k β µ ε= −       (3.16a) 

Finally, we get a second differential equation on the form:  

02
12

2

=−
∂

∂
y

y Ek
z
E

        (3.17) 

The solution of Eq. (3.17) decays exponentially towards infinity and it becomes: 
zk

y AeE 1=          (3.18) 

Where, A is a constant and effeffkk εµβ −= 2
01      (3.18a) 

The relevant components of magnetic fields and the electric field in LHM have 

the form: 

( ) ( )txkizk

eff
x eeiBkH ω

µωµ
−= 11

0

12
       (3.19) 

( ) ( )txkizk

eff
z eeAkH ω

µωµ
−= 11

0

12
      (3.20) 
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( )txkizk
y eBeE ω−= 112

       (3.21) 

With 2
1 0 eff effk k β µ ε= −       (3.21a) 

But for TE-waves it can be shown that [22] there is a 
2
π  phase difference 

between Hx and Hz. It is converted to redefine the field components as: 

Hx =  hx , Hz =  ihz and Ey =  iey , so the field components can be written in the left 

handed material cover as: 

( ) ( )txkizk

eff
x eeiBkH ω

µωµ
−= 11

0

12
      (3.22) 

( ) ( )txkizk

eff
z eeiBkH ω

µωµ
−= 11

0

12
      (3.23) 

( )txkizk
y eiBeE ω−= 11         (3.24) 

3.3 Boundary conditions 

Applying the boundary conditions for the continuity of tangential H at z =  

0 and from Eq. (3.2a) and Eq. (3.22), we get:  
( ) ( )21

xx Hh =          (3.25) 

( ) ( )txkizk

eff

tkxikz eeiBkeikAe ωω

µωµ
−− = 11

0

1
   

at z =  0 

Then, we have: 

( ) ( )txki

eff

tkxi eBkkAe ωω

µωµ
−− = 1

0

1       (3.26) 

The second boundary condition yields, 
( ) ( )21

yy Ee =         (3.27) 

at z = 0 

( ) ( ) ( )txkizktkxikz
xxxz eiBeeeSAi ωωµµωµ −− =+− 11

0  

Then we get: 
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( ) ( ) ( )txkitkxi
xxxz BeeSA ωωµµωµ −− =+− 1

0     (3.28) 

Dividing Eq. (3.26) by Eq. (3.28) we obtain: 
( )

( ) ( )

( )

( )txki
eff

txki

tkxi
xxxz

tkxi

Be
eBk

eSA
kAe

ω

ω

ω

ω

µωµµµωµ −

−

−

−

=
+− 1

1

0

1

0
 

Simplify the above equation, we get: 

( ) effxxxz

k
S

k
µµµ

1=
+−

 

 Then, 

( )xxxz
eff

S
k
k

µµ
µ

+
−

=
1

1
       (3.29) 

With,  

effeffkk µεβ −= 2
1       (3.29a) 

k =  k0 β        (3.29b) 

Substitute Eq's. (3.29a) and (3.29b) in Eq. (3.2a) we obtain: 

( )xxxz
effeffeff

S
k

k
µµ

µµεβ

β
+

−
=

1
2

0

0  

( )xxxz
eff

effeff S µµ
µ

µεβ
β +

−
−= 2

2

 

By squaring both sides then, 

( )2
22

2
2

xxxz
eff

effeff

eff

S µµ
µ

µε
µ
β

β +









−=  

( )2
22

22 1
xxxz

eff

eff

eff

S µµ
µβ

ε

µ
ββ +










−=  

( ) ( )
2

2

2

2

1
βµ

µµε
µ

µµ

eff

xxxzeff

eff

xxxz SS +
−

+
=  

( ) ( ) 12

2
2

2 −
+

=+
eff

xxxz
xxxz

eff

eff SS
µ

µµ
µµ

µβ
ε

 



Chapter 3                 Nonlinear magnetostatic surface waves in a LHM 
 

 - 31 - 

( )
( ) ( )222

2

2
1

xxxzeff

eff

xxxzeffeff

xxxzeff

SS
S

µµε

µ

µµµε

µµµ

β +
−

+

+
=  

( )22
11

xxxzeff

eff

effeff S µµε

µ
µεβ +

−=  

( )
( )2

22

2
1

xxxzeffeff

effxxxz

S
S

µµµε

µµµ

β +

−+
=  

Finally, 

( ) ( )
( ) ( ) 2

2

effxxxzxxxz

xxxzxxxzeffeff

SS
SS

µµµµµ

µµµµµε
β

−++

++
=     (3.30) 

This is the required general dispersion relation which defines the 

propagation of the magnetostatic surface waves between ferrite cladding and 

left-handed material. It has two solutions for ω(k), one represents a physical 

solution and other is unacceptable. However, Eq. (3.30) is numerically analyzed 

by using software program and plotting dispersion curves (a) forward (b) 

backward, which are the relation between ω(k) and β. 
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4.1 Data and calculations  

In the previous chapter we got on a dispersion relation that represents the 

guiding structure between a linear semi-infinite ferrite substrate assumed to be 

YIG, and a left-handed material cladding. Hence, in order to make a numerical 

analysis we need some computations concerns with the two media. 

Firstly, for the data parameters of linear ferrite (YIG), we used the data 

given by Shabat [13] as µ0 H0 = 0.1 T , µB =  1.25 , µ0 M0 =  0.1750 T , 

γ =  1.76 × 1011 rad S-1 T-1 to compute both components µxx and µxz of 

permeability tensor media. 

 Secondly, with respect to left-handed material, we used the data given by 

Ruppin [7] as 10
2

=
π

ωp GHz for calculating the effective permittivity εeff, 

4
2

0 =
π

ω
GHz and the constant F =  0.56 for calculating the effective permeability 

µeff. 

4.2 Numerical results and discussion 

In the region of interest, where we deal with magnetostatic surface waves, 

for 0≤vµ ,we took the frequency in the range from ( )mfff +00  to ( )20 mff +  and 

upon the previous data it was 4.6 GHz to 5.8 GHz. Since, 1±=S , where 1=S  for 

the propagation in the forward direction, and 1S = −  for the backward direction. 

Hence, we noticed that the derived nonlinear dispersion equation (3.30) 

has two different solutions, depending upon the direction of propagation or the 

direction of external applied magnetic field. One solution is acceptable and other 

represents a non-physical solution for ω(k). 

Numerical computations were carried out considering the same 

parameters were taken with respect to the substrate (YIG) and LHM-cladding. 

We noticed that the only solution exists in the region 4<f<6 (GHz), where the 
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refractive index is expected to take a negative value and both the permittivity 

and the permeability have negative values (ε <0, μ<0). 

Moreover, Fig.(4.1) shows the linear dispersion curves which is the 

variation of the frequency with the wave index are display the (i) expected 

reciprocal behavior, which is important in microwave signal processing 

technology, (ii) since the propagation characteristics both forwards to the right 

and symmetrical (β>0). So, this back to the derived quadratic dispersion 

equation (3.30), (iii) the frequency is decreasing with increasing the wave 

number k and this happen only in the propagation of TE-magnetostatic surface 

waves.  

Also, we increase the value of the applied external magnetic field μoHo by 

0.52T, 0.55T and 0.6T respectively. Its seen that the propagation of TE-

magnetostatic surface waves disappeared in the proposed region and this back to 

the change of the permeability tensor components μxx, μxz in our derived 

dispersion relation (3.30). So, this make the guiding structure loses its LHM-

characteristics in the region 4 < f < 6 (GHz). 

Similarly, we increase the values of the plasma frequency ωp greater than 

10
2

p GHz
ω

π
=  and the value of resonance frequency ωo greater than 4

2
o GHzω

π
= with 

F(constant)=0.6 in calculating μeff, εeff respectively, it noticed that the 

propagation of TE-magnetostatic surface waves disappeared in the proposed 

region. 

In general, due to the above discussion we conclude that the guiding 

structure have only a particular range which is the guiding structure transmit a 

TE-magnetostatic surface waves as shown in fig.(4.1). 

Finally, we examined the behavior of magnetostatic surface waves outside 

the proposed region which is , where the refractive index is expected to take a 

non-negative value in this interval considering the region of the interest 0vµ < . 

We noticed that there are two special cases which is: 



Chapter 4                                                                   Numerical Analysis  
 

 - 34 - 

Case I: 

 In the region f<4(GHz) where 0vµ > and 0ε < , the LHM medium is 

transparent medium  and the guiding structure becomes a metallic fig.(4.2a) 

[23]. 

 On the other hand we increased the applied external magnetic field μoHo 

for both forward and backward wave propagation by the values 0.2T and 0.3T, 

we noticed that the propagation in the forward direction began to decrease as 

shown in fig.(4.2b) and fig.(4.2c) respectively. 

Case II: 

In the region f >6 (GHz) where ( 0vµ > , 0ε > ), we noticed that there are 

two ranges: 

Firstly, in the range 6 < f < 10 (GHz), there is no physical solution for the 

dispersion equation (3.30). 

Secondly, however after the frequency of 10 GHz, the physical solutions 

are starting to appear and the guiding structure becomes a dielectric as shown in 

fig.(4.3a). 

Similarly, we increased the applied external magnetic field μoHo for both 

forward and backward wave propagation in this region by the values 0.2T and 

0.3T. It is seen that the propagation in the forward direction began to disappear 

as seen in fig.(4.3b) and fig.(4.3c) respectively. 

 
 

4.3 Conclusions 

The dispersion propagation characteristics of nonlinear magnetostatic 

surface waves through various waveguide structures containing linear ferrite 

(YIG) and (LHM) layers are investigated.  

Moreover, the dispersion relations for electromagnetic waves are derived 

for each waveguide structures by using Maxwell’s equations and the boundary 

conditions. Both figures show the nonreciprocal behavior in the graphs. 
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In addition, in the region for f < 4 GHz , the guiding structure behaves as 

a metal, while in the region f  ≥  10 GHz behaves as a dielectric. 

Finally, the study of nonlinear optical effects in various waveguide 

structures containing YIG with LHM media is considered a key problem of the 

simulation of a number of opto-microwave electronic devices. So, it is hoped 

that this work will act as a motivation for future studies in this area.   
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(a) 

(b) 

(c) 
Fig. (4.1): shows the computed dispersion curves in (a) forward, (b) backward and (c) both wave 

propagation.  µ0H0 = 0.05 T, µB = 1.25,  µ0M0 = 0.1750 T, γ = 1.76 ×1011 rad s-1 T-1, 

GHzp 10
2

=
π

ω , GHz4
2

0 =
π

ω , F  = 0.56 
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f (GHz) 

S = 1 

β 

f (GHz) 

S = -1 
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f (GHz) 

S = 1 

S = -1 
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Fig. (4.2): shows the Guiding structure considered as a metal in all regions in case ( f < 4 GHz ), 
µ0H0 = 0.05 T, 0.2T, 0.3T,  µB = 1.25,  µ0M0 = 0.1750 T, γ = 1.76 ×1011 rad s-1 T-1, 

GHzp 10
2

=
π

ω , GHz4
2

0 =
π

ω , F  = 0.56 

(a) 
β 

f (GHz) 

S = 1 

S = - 1 

β 

f (GHz) 

(b) 

S = 1 

S = -1 

β 

f (GHz) 

(c) 

S = 1 

S = - 1 
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(a) 

Fig. (4.3): shows the Guiding structure considered as a dielectric in all regions in case ( f > 6 GHz ), 
µ0H0 = 0.05 T, 0.2 T, 0.3 T, µB = 1.25,  µ0M0 = 0.1750 T, γ = 1.76 ×1011 rad s-1 T-1, 

GHzp 10
2

=
π

ω , GHz4
2

0 =
π

ω , F  = 0.56 

β 

f (GHz) 

S = 1 

S = - 1 

β 

f (GHz) 

(b) 

S = 1 S = - 1 

β 

f (GHz) 

(c) 

S = - 1 
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  الملخص العربي

  
  أثر الموجات الاستاتیة المغناطیسیة الغیر خطیة

   السماحیة و النفاذیة السالبة معاًعلى مواد ذات 
  

وج ود العدی د م ن الدراس ات ح ول انت شار الموج ات        ،  الماض یة من الملاحظ خلال السنوات القلیل ة   

الغی ر خطی ة عب ر رق ائق     الكھرومغناطیسیة غیر الخطی ة وك ذلك الموج ات الاس تاتیة المغناطی سیة          

  . ذات السماحیة و النفاذیة السالبة معاLHM'sًمن مواد تسمى 

كم  ا أن اكت  شاف ھ  ذه الم  واد و اس  تخدامھا ف  ي بع  ض التطبیق  ات العملی  ة مث  ل ص  ناعة الات  صالات   

 وبع ض الأجھ زة الكھرومغناطی سیة البالغ ة الأھمی ة ل ھ         Filteringالھوائی ات و التنقی ة   ، الخلوی ة 

  .الأثر الكبیر في إثارة اھتمام الباحثین بھذا المجال

لق  د قمن  ا بدراس  ة تحلیلی  ة لمعرف  ة خ  صائص وممی  زات و ت  شتت الموج  ات الاس  تاتیة المغناطی  سیة    

فری ت  خلال طبقت ین م ن م ادة ال    ) nonlinear magnetostatic surface waves(الغیر خطیة 

)YIG (    و الأخرى مادة)LHM (     بخصائصھا المعروفة عن طریق استخدام معادلات ماك سویل ،

لتحدی د ثاب ت   ) dispersion equation(والشروط الحدی ة واش تقاق معادل ة الخ صائص والت شتت      

  .الانتشار المركب بطریقة التحلیل العددي




