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 إقرار

 

  : أنا الموقع أدناه مقدم الرسالة التي تحمل العنوان   
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  الة ككل ، أو أي جزء منھا لم یقدم من قبل لنیل أیة درجھ أو لقبحیثما ورد ، وأن ھذه الرس لیھإ     

  .بحثیھ أخرى أو تعلیمیةعلمي أو بحثي لدى أي مؤسسھ     
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XO (X=Be, Zn) compounds under high pressure 

By 

Omar Mahmood A. Isleem 

Supervised by 

Dr. Mohammed Abu Ja'far 

Abstract 

 

The structural phase transformations of semiconductors under high pressure 

have recently attracted a lot of attention. Experimental studies in this field are 

very difficult  and expensive, the computational physics programs make these 

studies very easy, very accurate and  inexpensive. The computational 

approach enables us to know the atomic structures of materials, the electronic 

properties and give the chance to modify the bonding between atoms to 

create novel materials with predetermined properties.  In the present study  

the Full-Potential Linearized Augmented Plane-Wave (FP-LAPW) (which is 

included in a computer code WIEN2K) method depending on the Density 

Functional Theory (DFT) were used  to investigate the structural phase 

transformations of BeO and ZnO compounds under high pressure. In these 

calculations, the local density approximation(LDA), the gradient generalized 

approximation (GGA) and  the modified Wu- Cohen-GGA approximation for 

the exchange correlation potential have been used. For BeO the equations of 

state (EOS’s) of wurtzite(WZ), zinc-blende(ZB) and rock salt (RS) have been 

calculated. From these (EOS’s) the transition under high pressure is occurred 

from wurtzite  to rock salt  and from zinc-blende to rock salt structures, the 

transition pressure and the structural properties have also been calculated. 

The energy band gap for all phases of BeO have been calculated and a large 

band gap was found to be  (6 ~ 8 eV) which is  indicating that BeO is a good 

insulator. 
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The same work was done for ZnO using the same method and the same 

approximations. A number of transition  phases is predicted for ZnO, wurtzite 

to rock salt, wurtzite to cesium chloride, zinc-blende to rock salt, zinc-blende 

to cesium-chloride and rock salt to cesium-chloride. The transition pressure 

for each case was calculated. The structural properties have also been 

calculated and finally the energy band gap for each phase was investigated. 

 

 Small energy band gap  (0.3 ~1.5eV) is found, which means that ZnO 

behaves as  a semiconductor.  

The most important results of this study are: 

1- The present calculations agree very well with the available 

experimental data and the other theoretical calculations. 

2- The transition from structure to another is possible under high 

pressure. 

3- BeO behave as an insulator in all its structures. 

4- Wurtzite found to be the ground state for BeO compound at zero 

temperature. 

5- ZnO behave as a semiconductor in all its structures except in cesium-

chloride structure it behaves as a semi-metal. 
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Chapter One 

Introduction 

 

The structural phase transformation of semiconductors under high pressure 

have recently attracted a lot of attention [1].  Recent experiments performed 

by using image-plate angle dispersive X-ray techniques for many II-VI, III-

V and group-IV semiconductors have significantly altered the understanding 

of their structural systematic from the view that had been widely accepted[2] .  

Experimental findings as well as numerous possibilities for industrial 

applications initiated a number of theoretical studies of structural [3] and 

electronic [4] properties of II-VI compounds.  II-VI, III-V and group-IV 

wide-gap semiconductor materials are very important because of their opto-

electronic technological applications as a commercial short wavelength light-

emitting diode[5], laser diode candidate by p-type doping with nitrogen, 

transparent conductors, solar cells, high-density optical memory, visual display 

[6]. This importance is due to the d-electrons in the valance  

band in hybridization which tends to:  1- open a gap at the band crossing; 

2- make angular momentum labelling no longer suitable [7]. The large 

variation of fundamental band gap (0-4eV.) for these compounds yields a 

great flexibility for producing new II-VI and III-V compounds(super-

lattices, hetero structures and alloys) with the desirable properties to satisfy 

the increasing demand for such materials in various device applications as 

opto-electronic devices operating in the visible-light region [8]. The alkali 

oxides play a vital role as supports in catalysis [9] and the properties of 

insulating refractory oxides at high pressure are important in both ceramic and 

materials science [10].  Beryllium Oxide BeO compound is of particular 

importance because of its high thermal conductivity and low electrical 

conductivity [11]. 
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 2
  

BeO is unique for oxides as it combines excellent electrical insulating 

properties with high thermal conductivity. It is also corrosion resistant. The 

high toxicity of the beryllium oxide powders when inhaled, and the high 

cost of the raw material, has limited its use to applications that exploit its 

singular properties.  BeO is extracted from the naturally occurring minerals 

beryl1 and bertrandite2, and produced as a powder by the thermal 

decomposition of Be(OH)2. Powders are commercially available at purity 

levels of greater than 99%. Components can be made as near net shapes by 

most of the commonly used fabrication methods, for example pressing, slip 

casting3 or extruding4 the powder.  Sintering5 is carried out in the range 1600- 

1800C. High density components (<5%porosity6) can be easily made with 

commercially pure powders. Near theoretical density (<1% porosity) can be 

achieved using high purity materials and hot pressing in graphite dies. BeO is 

one of the most expensive raw materials used in ceramics. The expense is 

linked in part to the precautions to avoid the toxic effects of the powder when 

handling during fabrication. Inhalation of fine particles of beryllium oxide 

results in respiratory disease, with the severity related to the length of  

 

 
                                                
1 Beryl (3BeO·Al2O3·6SiO2 which is known since ancient times as the gemstones) 
2Bertrandite is a beryllium sorosilicate hydroxide mineral with composition: 
Be4Si2O7(OH)2. Bertrandite  is a colorless to pale yellow orthorhombic mineral with a 
hardness of 6-7 
3 Slip-casting is a technique for the mass-production of pottery, especially for shapes 
not easily made on  a wheel.[ Slip in a ceramic is made by mixing clays and other 
minerals with water]. 
4 Extrusion is a manufacturing process used to create long objects of a fixed cross-
sectional profile. 
5 Sintering is a method for making objects from powder, by heating the material (below 
its melting point-  solid stage sintering) until its particles adhere to each other. Sintering 
is traditionally used for  Manufacturing ceramic objects, and has also found uses in such 
fields as powder metallurgy. 
6 Porosity is a measure of the void spaces in a material, and is measured as a fraction, 
between 0–1, or as  a percentage between 0–100%. The term porosity is used in multiple 
fields including manufacturing,  earth sciences and construction 
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 3
exposure.  BeO has an outstanding combination of physical and chemical 

properties and it forms above (600 C). Apart from reactivity with water 

vapour at high temperature (1000 C), it is one of the most chemically stable 

oxides, resisting both carbon reduction and molten metal attack at high 

temperatures. Points worth noting about its properties include thermal 

conductivity is extremely high in comparison with other ceramics, 

particularly below300C. For comparison the thermal conductivity of 

beryllium oxide at room temperature is 300 W.m-1K-1, Copper 300 W.m-1K-1 

and Alumina is 35 W.m-1K-1.  Electrical resistively is high.  BeO is classed as 

an electrical insulator. Mechanical strength is normally lower than alumina, 

but can reach acceptable levels through control of the fabrication process. 

BeO has good thermal shock resistance if the component has good strength 

due to the high thermal conductivity. Beryllium oxide has lower density than 

Aluminium oxide; 3010kg.m-3 and 3970kg.m-3 respectively. The thermal 

expansion of BeO is similar to the other oxides [12]. 

  

As a low-Z oxide and the lightest II-VI compound, BeO is also important from 

a more fundamental point of view [13]. BeO crystallizes in the hexagonal 

wurtzite (WZ) structure with the polar space group p63mc According to the 

Phillips-ionicity fi argument [14], the tetrahedral compounds with fi > 0.35 

will transform into an ionic six-fold rock-salt (RS) structure under pressure.  

Since the Phillips ionicity of BeO is 0.602,  a phase transition from WZ to 

RS is expected at high pressure [15]. During the last two decades, a few 

theoretical calculations and experiments have been performed to investigate the 

pressure induced phase transition in BeO. However a significant discrepancy 

exists in the magnitude of the transition pressure.  Earlier first-principles 

pseudo potential calculation predicted the WZ-RS transition at 22 GPa. The  

same transition was found at 40 GPa [13] by the potential-induced-breathing  
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 4
PIB method. Recently similar calculations predicted that the WZ 

first transformed into the zincblende ZB and then into the RS [11].  In the 

first work, Van Camp and Van Doren employed soft nonlocal pseudo- 

potentials to predict the WZ-ZB-RS transitions at 74 and 137 GPa [16].  In 

the second work Boettger and Wills found the corresponding transitions at 

63-76 and 95 GPa, respectively by an all-electron and full-potential 

electronic-structure calculation [17].  In the last work Park et al. obtained 

91GPa and 147 GPa for the transient pres-sure using a first-principles soft 

nonlocal pseudo potential method within the generalized-gradient 

approximation [18].  In order to explore whether the phase transition sequence 

is WZ-ZB-RS, not only the free energy of these phases but also the transitional 

barriers should be investigated. A large transitional barrier might impede a 

transition at the equilibrium pressure, leading to a hysteresis between the 

forward and backward transforms even preventing a transition [19]. BeO is 

special in this class of materials in that it crystallizes in the hexagonal 

wurtzite structure while the other earth alkali oxides crystallize in the cubic 

sodium chloride structure. This indicates that the BeO chemical bond is not 

exclusively ionic but has also some covalent character [10]. BeO is of 

technological importance, e.g., as catalyst, for semiconductor devices and as 

moderator in nuclear reactors. For semiconductor device applications an 

understanding of the geometric and electronic properties of bulk BeO and its 

surfaces is highly desirable. As to more complex structures, very recently 

graphitic BeO nano films have been shown to be useful as precursors in the 

growth of wurtzite films [20], and be useful as precursors in the growth of 

wurtzite films [20] and BeO nanotubes have been investigated [21] as well.  

The electronic structure of bulk BeO has been studied previously in 

experiment and by first-principles calculations employing the standard local 

density approximation LDA [22] generalized gradient approximation GGA  

[22], and Hartree-Fock HF [22] calculations.   

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com


 5
 

While LDA and GGA calculations yield a band gap that is significantly too 

small, HF calculations often yield too large band gaps and valence-band 

widths. The structure of BeO has been studied by Chang and Cohen [15] as 

well as by Van Camp et al,[16] employing LDA total energy minimization. 

Both studies show that the ground state  of BeO is the wurtzite structure.  

Zinc oxide is a chemical compound with the formula ZnO. It is nearly 

insoluble in water but soluble in acids and alkalis. It occurs as white 

hexagonal crystals or a white powder commonly known as zinc white. Zinc 

oxide occurs in nature as the mineral zincite 7[23]. Crystalline zinc oxide 

exhibits the piezoelectric8 effect and is thermo-chromic9, changing from 

white to yellow when heated. ZnO is a semiconductor with a direct band 

gap energy of 3.37 eV at room temperature. The most common applications 

are in laser diodes and light emitting diodes since it has an exciton and 

biexciton energies of 60 meV and 15 meV, respectively. It is expected that 

this exciton properties of ZnO will be improved further by epitaxy. Zinc 

oxide plays an important role in a very wide range of applications varying 

from tyres to ceramics, from pharmaceuticals to agriculture, and from paints 

to chemicals [24]. The biggest use of zinc oxide is in glass and ceramics, 

where the main role is as a fluxing agent in the preparation of frits and 

enamels for ceramic wall and floor tiles, or of enamels for sanitary and  

tableware ceramic objects. Thin-film solar cells, LCD and flat panel 

displays are typical applications of this material. Appropriately doped ZnO 

may be transparent and conductive, and can therefore be used as a 

transparent electrode. Indium tin oxide (ITO) is another transparent  

                                                
7 Zincite is the mineral form of zinc oxide (ZnO), It has a hexagonal crystal structure 
and color that depends on impurities 
8 Piezoelectricity is the ability of some materials (notably crystals and certain ceramics) 
to generate an electric potential in response to applied mechanical stress. This may take 
the form of a separation of electric charge across the crystal lattice. 
9 Thermo-chromism is the ability of substance to change color due to a change in 
temperature 
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conducting oxide often used in microelectronics. ZnO has also been 

considered for spintronics10 applications because of theoretical predictions 

of room temperature ferromagnetism [23].  

 

Unsubstantiated reports of ferromagnetism have been made, but presence of 

dilute magnetic semiconductors remains unanswered question in physics. 

ZnO compound also found to be crystallized in the wurtizte-type where its 

valence bands consists of extended O 2p and Zn 4s orbital's, and rather 

localized Zn 3d and O 2s orbitals [25]. ZnO compound is the object of 

quickly growing attention in the last few years to owing to its potential 

application in ultraviolet opto-electronic devices technology since the 

material is optically transparent and can be doped with both electrons and 

holes . High pressure studies are very efficient tool in understanding the  

electronic structure of semiconductors compounds like ZnO [25].The band 

structure of ZnO has been studied theoretically by several investigators [26].  

Density-functional theory (DFT) provides a foundation for modern 

electronic structure calculations, and the local-density approximation (LDA) 

and the generalized gradient approximation (GGA) are an efficient ways to 

calculate the ground-state of material [27]. Time-dependent (DFT) can in 

principle describe the exited state [28].  In this study we are going to use the 

full-potential linearized augmented plane wave (FP-LAPW),WIEN2K 

computer code [29],within the (LDA),(GGA) and the improved Wu–GGA,  

By the (FP-LAPW), program, WIEN2K, the Kohn-Sham equation can be 

solved, in (FP-LAPW) method, the wave function is expanded in atomic 

orbitals in spherical regions around the atomic positions while in the region 

between the spheres, it is expanded in plane waves. The wave functions and  

                                                
10 Spintronics (a neologism for "spin-based electronics"), also known as magneto 
electronics, is an emerging technology which exploits the quantum spin states of 
electrons as well as making use of their charge state 
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their derivatives are made continuous at the boundary of the spheres. The 

 FP-LAPW method places no restrictions on the form of crystalline 

potential and is known to yield reliable structural parameters for 

semiconductors, metals, and insulators.  WIEN2K [29]  allows us to perform 

electronic structure calculations of solids using (DFT) [30], and it is based 

on(FP-LAPW) one among the most accurate schemes for band structure 

calculation.  The purpose of this study is to:  

1- calculate the structural parameters of the zinc-blende(ZB), rock-salt(RS), 

and wurtzite (W) phases of BeO compound 

2- calculate the structural parameters of the ZB, RS, and W phases of ZnO 

compound  

3- determine the equations of state of ZB, RS, W and CsCl phases of BeO and 

ZnO by calculating the total energy at different volumes and fitting the 

calculated values to Murnaghan’s EO'S [31].  

4-determine the transition pressure of W to RS, ZB to RS and W to ZB 

structural phases transformations for BeO and ZnO.  

5-determine the band structure of ZB, RS, W and CsCl phases of BeO and 

ZnO.  

This thesis is organized as follows: 

 In chapter 2 we describe the Density Functional Theory, chapter 3 contains 

the method we used in the calculations. In chapter 4 , we display the 

computational details. Finally, in chapter 5 we report  and discuss our 

results and we give a summery of our main results and conclusion. 
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Chapter Two 

Density Functional Theory (DFT) 

 

2.1 Introduction 

As a result of recent successes in describing and predicting properties of 

materials, atomistic simulations in general and electronic structure calculations 

in particular have become increasingly important in the fields of physics and 

chemistry over the past decade, especially with the advent of present-day, high-

performance computers. Assuming knowledge of the types of atoms 

comprising any given material, a computational approach enables us to 

answer two basic questions:  

• What is the atomic structure of the material? 

• What are its electronic properties?  

Besides this, it would be nice to get the answer to another question:  

• How can we modify the bonding between atoms or the material chemical 

content to create novel materials with predetermined properties [32]?  

A number of methods have been developed to derive answers to these questions.  

These methods for computing the structure and properties of materials can 

conditionally be divided into two classes:  those that do not use any 

empirically or experimentally derived quantities, and those that do.  The 

former are often called ab-initio, or first principles methods like density 

functional theory (DFT), while the latter are called empirical or semi-

empirical like empirical tight binding (ETB). The ab-initio methods are 

particularly useful in predicting the properties of new materials and for 

predicting trends across a wide range of materials. 

 

The calculation of the energy levels of electrons in solids, that is the 

determination of the energy bands, is a central theoretical problem of solid state  
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physics. Knowledge of these energies and of electron wave function is 

required, in principle, for any calculation of more directly observable 

properties including electrical and thermal conductivities, optical dielectric 

function, vibrational spectra and soon. In practice, phenomenological models 

are often employed which apparently do not require such specific information; 

however, it means a task for fundamental theory to account for the values 

obtained for the parameters of such a model. The parameters of the considered 

models are the functions of the crystal potential which can, in principle, be 

determined from the results of a sufficiently complete energy band calculation. 

In the present work, the sufficiently complete energy band structure and 

structural properties (lattice parameters, cohesive energy, bulk modulus, 

transition volume, etc.) of compounds, such as BeO, and ZnO have been 

obtained by the combination of first principle and empirical calculations 

based on density functional and tight binding theories, respectively, this 

chapter will start outlining the aspects of the density functional theory in 

details [34]. 

 

A solid is a collection of heavy, positively charged particles (nuclei) and 

lighter, negatively charged particles (electrons) [35].  If we have N nuclei 

and each has Z electrons, then we are dealing with a problem of N+ZN 

electromagnetically interacting particles.  This is a many-body problem, and 

because the particles are so light, quantum mechanics is needed: a quantum 

many body problem. In principle, to study the materials and their properties, 

the theorist has to solve the time independent Schrödinger equation. 

                                                                                                 (2.1) 

Here,  is the wave function of all participating particles and  is the exact 

many-particle Hamiltonian for this system: 
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             +                                                                (2.2)                                  

 

The mass of the nucleus at Ri is Mi, the electrons have mass me and are at ri. 

The first term is the kinetic energy operator for the nuclei (Tn), the second for 

the electrons (Te). The last three terms describe the Coulomb interaction 

between electrons and nuclei (Ven), between electrons and other electrons 

(Vee), and between nuclei and other nuclei (Vnn). It is out of question to solve this 

problem exactly. In order to find acceptable approximate eigen states, we will 

need to make approximations at 3 different levels [36]. 

 

2.2  Level 1: The Born-Oppenheimer approximation  

The nuclei are much heavier and therefore much slower than the electrons.  

We can hence ‘freeze’ them at fixed positions and assume the electrons to be 

in instantaneous equilibrium with them. In other words: only the electrons 

are kept as players in our many body problem [36]. 

 

The nuclei are deprived from this status, and reduced to a given source of 

positive charge, they become ‘external’ to the electron cloud. After having 

applied this approximation, we are left with a collection of NZ interacting 

negative particles, moving in the (now external or given) potential of the 

nuclei. 

  

What are the consequences of the Born-Oppenheimer approximation on the 

Hamiltonian (equation 2.2)? The nuclei do not move any more, their kinetic 

energy is zero and the first term disappears. The last term reduces to a  
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ˆ 

 

constant. We are left with the kinetic energy of the electron gas, the potential 

energy due to electron-electron interactions and the potential energy of the 

electrons in the (now external) potential of the nuclei. We write this formally 

as:  

                                                                                                                 (2.3) 

It is interesting to note here that the kinetic and electron-electron terms of 2.3 

depend only on the fact that we are dealing with a many-electron system (and 

not with a many-proton system for instance, where the strong nuclear force 

would play a role). They are independent of the particular kind of many-

electron system [35]. This part is universal System-specific information 

(which nuclei, and on which positions) is given entirely by  .  

 

2.3Level 2: Density Functional Theory 

The quantum many body problem obtained after the first level approximation 

(Born-Oppenheimer) is much simpler than the original one, but still far too 

difficult to solve. Several methods exist to reduce equation 2.2 to an 

approximate but tractable form. A historically very important one is the 

Hartree-Fock method (HF), described in many condensed matter textbooks. It 

performs very well for atoms and molecules, and is therefore used a lot in 

quantum chemistry. For solids it is less accurate, however.  We will not treat 

HF, but explain a more modern and probably also more powerful method: 

Density Functional Theory (DFT)[37]. Although its history goes back to the 

early thirties of the 20th century, DFT has been formally established in 1964 

by two theorems due to Hohenberg and Kohn. 

 

2.3.1  The Theorems of Hohenberg and Kohn  

The traditional formulation of the two theorems of  Hohenberg and Kohn is 

as follows:  
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First theorem: There is a one-to-one correspondence between the ground-state 

density ρ(r) of a many-electron system (atom, molecule, solid) and the external 

potential Vext . An immediate consequence is that the ground-state expectation 

value of any observable  is a unique functional of the exact ground-state 

electron density:  

                                            <Ψ| | Ψ > = O[ρ]                                         (2.4) 

 

Second theorem: For  being the Hamiltonian , the ground state total 

energy functional    H[ρ]≡EVext[ρ]is of the form 

 

                                                 (2.5) 

                                 = FHK[ρ]  +                                      (2.6) 

 

where the Hohenberg-Kohn density functional FHK [ρ] is universal for any 

many-electron system. EVext
 [ρ] reaches its minimal value (equal to the 

ground-state total energy) for the ground state density corresponding to Vext. 

We do not prove these theorems here, but ponder a few implications of the 

three keywords invariability (one-to-one correspondence ρ ↔ Vext) [38], 

universality and variational access (minimal value). 

 

Invariability: the one-to-one correspondence between ground-state density 

and external potential is intriguing. It is obvious that a given many-electron 

system has a unique external potential, which by the Hamiltonian (Eq. 2.3) 

and the Schrödinger equation yields a unique ground-state many particle 

wave function. From this wave function, the corresponding electron density 

is easily found. An external potential hence leads in a well-defined way to 

a unique ground-state density corresponding to it. But intuitively it looks 
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like the density contains less information than the wave function. If this 

would be true, it would not be possible to find a unique external potential 

if only a ground-state density is given. The first theorem of Hohenberg 

and Kohn tells exactly that this is possible. The density contains as much 

information as the wave function does (i.e. everything you could possibly 

know about an atom, molecule or solid). All observable quantities can be 

retrieved therefore in a unique way from the density only( i.e. they can be 

written as functionals of the density). 

 

Universality (the universality of FHK[ρ]): Equation (2.6) is easily written 

down by using the density operator, and supposing the ground-state density 

is known, the contribution to the total energy from the external potential 

can be exactly calculated. An explicit expression for the Hohenberg-Kohn 

functional, FHK, is not known. But anyway, because FHK does not contain 

information on the nuclei and their position, it is a universal functional for 

any many-electron system. This means that in principle an expression for 

FHK[ρ] exists which can be used for every atom, molecule or solid which 

can be imagined. 

 

Variational access: the second theorem makes it possible to use the variational 

principle of Rayleigh-Ritz in order to find the ground-state density. Out of the 

infinite number of possible densities, the one which minimizes EVext
 [ρ] is the 

ground-state density corresponding to the external potential Vext (r).  Of course, 

this can be done only if (an approximation to) FHK[ρ] is known. But having 

found ρ, all knowledge about the system is within reach [35]. It is useful to 

stress the meaning of the energy functional EVext [ρ] once more.  When it is 

evaluated for the density ρ corresponding to the particular Vext  for this solid, it 

gives the ground state energy. When it is evaluated for any other density  
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however, the resulting number has no physical meaning [40]!  

 

2.3.2  The Kohn-Sham equations  

The equations of Kohn and Sham, published in 1965[3], turn DFT into a 

practical tool [5]. They are a practical procedure to obtain the ground state 

density. Let us first rewrite the Hohenberg-Kohn theorem. The correlation 

energy is defined as this part of the total energy which is present in the exact 

solution, but absent in the Hartree-Fock solution [38]. The total energy 

functional Ee[ρ]and EHF [ρ] corresponding to the exact and Hartree-Fock 

Hamiltonians respectively, are: 

 

                                                                                       (2.7) 

                                                                      (2.8) 

Here T and V are the exact kinetic and electron-electron potential energy 

functionals, T0 is the functional for the kinetic energy of a non-interacting 

electron gas, VH stands for the Hartree contribution and Vx for the exchange 

contribution. By subtracting 2.7 from 2.8, the functional for the correlation 

contribution appears to be:  

                        Ve = T - T0                                                                                  (2.9) 

The exchange contribution to the total energy is defined as the part which is 

present in the Hartree-Fock solution, but absent in the Hartree solution.  

Obviously, with the Hartree functional given by  

                           EH
   =  T0

   +  VH                                                                (2.10) 

it can be defined as  

                          Vx = V −  VH                                                                                            (2.11) 

With this knowledge, we can rewrite the Hohenberg-Kohn functional in the 

following way:  
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                  FHK  = T + V + T0 − T0  

                             =  T0  + V  +       

                             =  T0  + V  +  Vc   +  VH  − VH  

                             =  T0  + VH  + Vc  + ( )  

                             =  T0  + VH  +  ( )  

Here Vxc is the exchange-correlation energy functional. We don’t know it 

formally, as it contains the difficult exchange and correlation contributions 

only.  If we assume for a while that we do know Vxc [41], we can write 

explicitly the energy functional:  

        EVext
 [ρ] =  T0 [ρ] + VH [ρ] + Vxc [ρ] + Vext [ρ]                           (2.12) 

One could use now the second Hohenberg-Kohn theorem to find the ground 

state density, but then we would have won nothing by our transformation. 

Instead, you can interpret the above expression also as the energy functional 

of a non-interacting classical electron gas, subject to two external potentials: 

one due to the nuclei, and one due to exchange and correlation effects. The 

corresponding Hamiltonian - called the Kohn-Sham Hamiltonian - is  

               HKS=T0 +  VˆH  + Vˆxc   + Vˆext                                          (2.13) 

                    =                        (2.14) 

Where the exchange-correlation potential is given by the functional derivative 

                                                                                                      (2.15)                                                    

The theorem of Kohn and Sham can now be formulated as follows: 

The exact ground-state density  of an N-electron system is  

                  

                                                         (2.16)                   

where the single-particle wave functions are the N lowest-energy 

solutions of the Kohn Sham equation 
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                                                                                           (2.17)  

And now we did won a lot. To find the ground-state density, we don’t need to 

use the second Hohenberg-Kohn theorem any more, but we can rely on solving 

familiar Schrödinger-like non-interacting single-particle equations. The 

alternative of using the regular Schrödinger equation, would have led to a far 

more difficult system of coupled differential equations [42], because of the 

electron-electron interaction.  

 

Be aware that the single-particle wave functions φi are not the wave functions 

of electrons! They describe mathematical quasi-particles, without a direct 

physical meaning. Only the overall density of these quasi-particles is 

guaranteed to be equal to the true electron density. Also the single-particle 

energies are not single-electron energies. 

 

Both the Hartree operator VH  and the exchange-correlation operator Vxc  

depend on the density , which in turn depends on the   which are 

being searched.  This means we are dealing with a self-consistency problem: 

the solutions ( ) determine the original equation (VH and Vxc in HKS ), and the 

equation cannot be written down and solved before its solution is known. An 

iterative procedure is needed to escape from this paradox (see fig.  2.1). Some 

starting density ρ0 is guessed, and a Hamiltonian HKS1 [43] is constructed with 

it. The eigen value problem is solved, and results in a set of φ1 from which a 

density ρ1 can be derived. Most probably ρ0 will differ from ρ1.  Now ρ1 is 

used to construct HKS2, which will yield a ρ2, etc. The procedure can be set up 

in such a way that this series will converge to a density ρf which generates a 

HKSf which yields as solution again ρf :  this final density is then consistent 

with the Hamiltonian. 
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Figure (2.1):  Flow chart for the nth  iteration in the self consistent procedure to solve 

Hartree-Fock or Kohn-Sham equations.  

 

2.3.3 The exchange-correlation functional  

The Kohn-Sham scheme described above was exact: apart from the preceding 

Born-Oppenheimer approximation, no other approximations were made. But we  
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neglected so far the fact that we do not know the exchange-correlation 

functional [44]. It is here that approximations enter our theory.  

 

A widely used approximation-called the Local Density Approximation 

(LDA) – is to postulate that the exchange-correlation functional has the 

following form: 

                                                             (2.18) 

The function (not:  functional) (ρ) for the homogeneous electron gas, (The 

homogeneous electron gas, uniform electron gas l is an imaginary solid where all 

nuclear charge is homogeneously smeared out over space. This material is 

completely isotropic, and identical on every length scale. Therefore the electron 

density is constant: ρ = N/V, with N the number of electrons in the material, and 

V its volume. The parameter ρ is the only thing we need to specify a particular 

homogeneous electron gas completely. If the electrons do not interact, we are in 

the case of the free electron gas, which can be solved analytically in a 

straightforward way. The problem is much more difficult for an interacting 

electron gas. Here numerical calculations for the total energy are possible by 

quantum Monte-Carlo. Subtracting the non-interacting kinetic energy and the 

Hartree energy gives a numerical result for the exchange-correlation energy. If 

this is done for several densities ρ the function (ρ) is obtained. Note 

that (ρ) is a function of ρ, not a functional) and is numerically known. 

 

  This postulate is somehow reasonable: it means that the exchange-correlation 

energy due to a particular density  could be found by dividing the material in 

infinitesimally small volumes with a constant density [45]. Each such volume 

contributes to the total exchange correlation energy by an amount equal to the 

exchange correlation energy of an identical volume filled with a homogeneous  
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electron gas, which has the same overall density as the original material has in 

this volume (see Fig. 2.2). No law of nature guarantees that the true Exc  is of 

this form, it is only a reasonable guess.  By construction, LDA is expected 

to perform well for systems with a slowly varying density.  But rather 

surprisingly, it appears to be very accurate in many other (realistic) cases too. 

 

A next logical step to improve on LDA, is to make the exchange-correlation 

contribution of every infinitesimal volume not only dependent on the local 

density in that volume, but also on the density in the neighbouring volumes. In 

other words, the gradient of the density will play a role. This approximation is 

therefore called the Generalized Gradient Approximation (GGA) [46]. 

Although GGA performs in general slightly better than LDA, there are a few 

draw backs. There is only one LDA exchange-correlation functional, because 

there is a unique definition for . But there is some freedom to incorporate the 

density gradient, and therefore several versions of GGA exist.  Moreover, in 

practice one often fits a candidate GGA-functional with (hopefully only a 

few) free parameters to a large set of experimental data on atoms and 

molecules.  The best values for these parameters are fixed then, and the 

functional is ready to be used routinely in solids. Therefore such a GGA-

calculation is strictly spoken not an ab-initio calculation, as some 

experimental information is used.  Nevertheless, there exist GGA’s that are 

parameter free [42]. 
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Figure (2.2): Illustration of the idea behind the LDA postulate. Every 

infinitesimally small volume of the material contributes to the exchange-

correlation energy with an amount equal to the contribution of a homogeneous 

electron as that occupies that same infinitesimally small volume, and that has 

the same (overall) charge density as the charged density of the original 

material in that volume. The horizontal axis is proportional to the density of 

the homogeneous electron gas. The vertical axis displays the exchange-

correlation energy of the homogeneous electron gas.   
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2.3.3 Level 3: Solving the equations 

Irrespective whether one has used HF or DFT as level 2 approximation, one 

ends up with an infinite set of one-electron equations of the following type: 

(2.19) 

(m is an integer number that counts the members of the set). We call Hsp the 

single-particle Hamiltonian. For HF, Vα is the exchange operator[47].  The  

are true one-electron (or single-particle) orbital’s for HF. Exchange is treated 

exactly, but correlation effects are not included at all. They can be added only 

in elaborations on the HF-method. For DFT, Vα is the exchange correlation 

operator, in the LDA, GGA or another approximation.  Exchange and 

correlation are both treated, but both approximately. 

 

The   are mathematical single-particle orbitals. The similarity between the 

Hartree-Fock and Kohn-Sham equations means that the same mathematical 

techniques can be used to solve them.  ‘Solving’ in most methods means that 

we want to find the coefficients   needed to express   in a given basis 

set  :  

                                                                                         (2.20) 

The wave functions belong to a function space which has an infinite 

dimension, P is therefore in principle infinite. In practice one works with a 

limited set of basis functions [48]. Such a limited basis will never be able to 

describe  exactly, but one could try to find a basis that can generate a 

function that is ‘close’ to . Having chosen a basis (and hence a finite 

value for P ) we realize that we can tackle the equations 2.19 as an eigen value 

problem. For a given m, substitute equation 2.20 in 2.19, and left-multiply 

with  (I = 1. . . P), this leads to 
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      (2.21)         

We recognize here the matrix elements of the single-particle Hamiltonian in 

the basis states, and the overlap matrix elements Sij. Diagonalization of 

the Hamiltonian matrix will lead to P eigen values and P sets of 

coefficients that express each of the P eigen functions in basis. The larger P, 

the better the approximation of the eigen function, but the more time-

consuming the diagonalization of the matrix in equation 2.21[49].   

 

2.4 The Local Spin Density Approximation (LSDA) 

The local-density approximation (LDA) is an approximation of the 

exchange-correlation (XC) energy functional in density functional theory 

(DFT) by taking the XC energy of an electron in a homogeneous electron 

gas of a density equal to the density at the electron in the system being 

calculated (which in general is inhomogeneous). This approximation was 

applied to DFT by Kohn and Sham in an early paper.[50] The Hohenberg-

Kohn theorem states that the energy of the ground state of a system of 

electrons is a functional of the electronic density, in particular the exchange 

and correlation energy is also a functional of the density (this energy can be 

seen as the quantum part of the electron-electron interaction). This XC 

functional is not known exactly and must be approximated [51]. LDA is the 

simplest approximation for this functional, it is local in the sense that the 

electron exchange and correlation energy at any point in space is a function 

of the electron density at that point only[53]. The LDA functional assumes 

that the per-electron exchange-correlation energy at every point in space is 

equal to the per-electron exchange-correlation energy of a homogeneous  
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electron gas[50]. The XC correlation functional is the sum of a correlation 

functional and an exchange functional [50] 

        Exc=Ex +Ec                                                                                  (2.22) 

LDA uses the exchange for the uniform electron gas of a density equal to 

the density at the point where the exchange is to be evaluated, 

                                                (2.23) 

in SI units where is the electron density per unit volume at the point and is 

the charge of an electron[54]. 

 

2.5 Generalized Gradient Approximation (GGA) 

Many modern codes using DFT now use more advanced approximations to 

improve accuracy for certain physical properties. The DFT calculations in 

this study have been made using the Generalized Gradient Approximation 

(GGA) [49]. As stated above, the LDA uses the exchange-correlation 

energy for the uniform electron gas at every point in the system regardless 

of the homogeneity of the real charge density. For non uniform charge 

densities the exchange-correlation energy can deviate significantly from the 

uniform result. This deviation can be expressed in terms of the gradient and 

higher spatial derivatives of the total charge density. The GGA uses the 

gradient of the charge density to correct for this deviation. For systems 

where the charge density is slowly varying, the GGA has proved to be an 

improvement over LDA. Generalized gradient approximations (GGA’s) 

seek to improve upon the accuracy of the local-spin-density (LSD) 

approximation in electronic-structure calculations. Perdew and et al,[46] 

have developed a GGA based on real-space cut-off of the spurious long-

range components of the second-order gradient expansion for the 

exchange-correlation hole. We have found that this density functional 

performs well in numerical tests for a variety of systems: (1) Total energies  
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of 30 atoms are highly accurate. (2) Ionization energies and electron 

affinities are improved in a statistical sense, although significant inter 

configurationally and interterm errors remain. (3) Accurate atomization 

energies are found for seven hydrocarbon molecules, with a rms error per 

bond of 0.1 eV, compared with 0.7 eV for the LSD approximation and 2.4 

eV for the Hartree-Fock approximation. (4) For atoms and molecules, there 

is a cancellation of error between density functionals for exchange and 

correlation, which is most striking whenever the Hartree-Fock result is 

furthest from experiment. (5) The surprising LSD underestimation of the 

lattice constants of Li and Na by 3–4 % is corrected, and the magnetic 

ground state of solid Fe is restored. (6) The work function, surface energy 

(neglecting the long-range contribution), and curvature energy of a metallic 

surface are all slightly reduced in comparison with LSD. Taking account of 

the positive long-range contribution, we find surface and curvature energies 

in good agreement with experimental or exact values. Finally, a way is 

found to visualize and understand the non locality of exchange and 

correlation, its origins, and its physical effects. Functionals that include the 

gradient of the charge density are collectively known as generalized 

gradient approximations (GGA). These functionals are the work horse of 

the current density functionals theory. In practice,  is usually split into 

its exchange and correlation contributions.  

                                                                          (2.24) 

The exchange part can be written 

                                              (2.25)    

And this can be reduced for spin  as: 

                                                                                   (2.26)                

Where  is a local inhomogeneity parameter. 
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Chapter Three 

Methodology 

3.1 Introduction 

The full-potential Linearized augmented plane wave (FLAPW) method has 

emerged as a widely used very robust and precise state of the art ab-initio 

electronic structure technique with reasonable computational efficiency to 

simulate the electronic properties of materials on the basis of density 

functional theory (DFT). Due to the high precision it is widely accepted that 

it provides the density functional answer to the problem. The shape of the 

charge density, the one-electron potential and the wave function is taken 

into account with high accuracy. The FLAPW method is an all-electron 

algorithm which is universally applicable to all atoms of the periodic table,  

in particular to transition metals and rare-earths and to multi-atomic 

systems with compact as well as open structures [55].  Due to the all-

electron nature of the method, magnetism is included rigorously and nuclear 

quantities e.g. isomer shift, hyperfine field, electric field gradient (EFG), and 

core level shift are calculated routinely. Also open structures such as 

surfaces, clusters, organic and inorganic molecules as well as wires can be 

treated without problems. The capability of calculating atomic forces 

exerted on the atoms opens the path to structure optimization. 

  

This chapter starts with an introduction of the APW-like and LAPW +Lo 

concepts to solve the Kohn-Sham equation for a periodic solid. Then, the 

concepts of FLAPW method and the Muffin Tin Approximation with full 

potential are described. Last the WIEN2K program and some of its 

applications are shown. 
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3.2The Augmented Plane Wave (APW) method 

In order to study the region near the nucleus (hyperfine fields for instance, or 

core level excitations) we have to search a basis set that help us without 

introducing pseudo-potential, such a basis set must be efficient. The first 

example of this will be the Augmented Plane Wave (APW) basis set. Right 

from the beginning it has to be said that the APW-method itself is of no 

practical use any more today. But for didactical reasons it is advantageous to 

discuss APW first, before going to its successors, LAPW and APW+Lo. The 

ideas that lead to the APW basis set are very similar to what made us to 

introduce the pseudo potential.  In the region far away from the nuclei, the 

electrons are more or less ‘free’. Free electrons are described by plane 

waves[56]. Close to the nuclei, the electrons behave quite as they were in a free 

atom, and they could be described more efficiently by atomic like functions. 

Space is therefore divided now in two regions:  around each atom[57]  a sphere 

with radius Rα is drawn (call it Sα ). Such a sphere is often called a muffin tin 

sphere, the part of space occupied by the spheres is the muffin tin region.  The 

remaining space outside the spheres is called the interstitial region(call it 

I).One augmented plane wave(APW) used in the expansion of  is  defined as 

     (3.6) 

The symbols   and keep their usual meaning, V  is the volume of the 

unit cell. Note that the APW basis set is k -dependent, as was the plane wave 

basis set. The position inside the spheres is given with respect to the centre of 

each sphere by  (see fig 3.1).  

 

The length of   is r ′, and the angles θ′ and φ′ specifying the direction of  in 

spherical coordinates, are indicated as . The are spherical harmonics, the  
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Figure (3.1):  Division of a unit cell in muffin tin regions and the 

interstitial region,  for a case with two atoms 

 

are yet undetermined parameters as is E even it has dimension of  

 

 

 

 

 

 

 

 

 

 

energy. The are solutions to the radial part of the Schrödinger equation 

for a free atom α, and this at the energy E .  For a true free atom, the 

boundary condition that should vanish for r→∞, limits the number 

of energies E for which a solution can be found. But as this boundary 

condition does not apply here, we can find a numerical solution for any E. 

Hence, the   themselves do not correspond to something physical, but that 

doesn’t harm: they are only part of a basis function, not of the searched 

eigen function itself. And because they are close to how the actual eigen 

function will look like in that region of the crystal, they will do their job as 

basis function very efficiently. If an eigen function would be discontinuous, 

its kinetic energy would not be well-defined. Such a situation can therefore 

never happen, and we have to require that the plane wave outside the sphere 

matches the function inside the sphere over the complete surface of the 

sphere (in value, not in slope). That seems a weird thing to do: a plane wave is 

oscillating and has a unique direction built in, how can it match another 

function based on spherical harmonics over the entire surface of a sphere? 
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 To see how this is possible, we expand the plane wave in spherical harmonics 

about the origin of the sphere of atom α: 

  (3.7) 

 is the Bessel function of order l, at the sphere boundaries (where 

, which defines  ) to be equal to the lm-part of  Eq.3.6 easily yields: 

                                      (3.8)  

At some choosing value ℓmax and treating the above equation at the 

boundaries of the sphere it will be clear that the muffin tin radii for different 

atoms should not be too different: if they were, a value for ℓmax that is suitable 

for each atom would not exist.  So we can visualize the meaning of a single 

APW  : it is an oscillating function that runs through the unit cell, 

whenever it encounters an atom on its path, the simple oscillating behavior is 

changed into something more complex inside the muffin tin sphere of that 

atom. At first sight it looks like we can now use the APW's as a basis set, and 

proceed in the same way as for the plane wave basis set in order to determine 

the coefficients  in the expansion of the searched eigen-function. However 

this does not work. We did not settle the parameter E yet. It turns out that in 

order to describe an eigen state  accurately with APW's, one has to 

set E equal to the eigen value (or band energy)   of that state. But this is 

exactly what we are trying to determine! We are hence forced to start with 

a guessed value for  and take this as E. Now we can determine the 

APW's, and construct the Hamiltonian matrix elements and overlap matrix 

(the APW's are not orthogonal)[58]. The secular equation is determined, 

and our guessed  should be a root of it. Usually it is not, hence we have 

to try a second guess. Due to this new E,  the APW's have to be determined 

again, and similarly for all matrix elements. With the help of root  
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determination algorithms, this guessing continues until a root say  is 

found. And then the whole procedure starts over for , etc.. In practice, 

Kmax ≈ 3:5 au-1 is needed for sufficient accuracy. This is less than the 

typical value of 5.5 for plane waves and pseudo-potentials. As seen before, 

the basis set size can be estimated to be about P = 131 for APW, compared 

to roughly P=270 for plane waves. The calculation time (mainly 

determined by matrix diagonalization) scales with the third power of the 

basis set size, which would suggest APW to be 10 times faster than pseudo-

potentials. However, with a plane wave basis set, P eigen values are found 

by a single diagonalization, while with APW one diagonalization is needed 

for every eigen value. This makes the APW method inherently slow, much 

slower than the pseudo-potential method. 

 

3.3 The LAPW method  

3.3.1The regular LAPW method 

The problem with the APW method was that the have to be 

constructed at the -yet unknown- eigen energy E =  of the searched eigen 

state.  It would be helpful if we were able to recover  on the fly from 

known quantities. That is exactly what the Linearized Augmented Plane 

Wave method enables us to do. If we have calculated  at some energy E0, 

we could make a Taylor expansion to find it at energies not far away from it: 

(3.9) 

Substituting the first two terms of the expansion in the APW for a fixed E0 

gives the definition of an LAPW. This has a price: the energy difference 

is unknown and hence a yet undetermined has to be 
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introduced 

:    (3.10) 

In order to determine both  and  , we will require that the 

function in the sphere matches the plane wave both in value and in slope at 

the sphere boundary. This can be done by using an expression similar to 

equation 3.2 and its radial derivative. This results in a 2 ×  2 system from 

which both coefficients can be solved. Equation 3.10 is not the final 

definition of an LAPW yet. Imagine we want to describe an eigen state  

that has predominantly p-character (  = 1) for atom . This means that in its 

expansion in LAPW's, the  are large. It is therefore advantageous to 

choose E0 near the centre of the p-band. In this way, the  term 

in equation 3.9 will remain small, and cutting after the linear term is 

certainly allowed. We can repeat this argument for every physically 

important (s-,p-, d- and f-states, i.e. up to 3) and for every atom. As a 

result, we should not choose one universal E0, but a set of well-chosen  up 

 to 3 . For higher , a fixed value can be kept. The final definition of 

an LAPW is then 

 
With the  being fixed, the basis functions can be calculated once and for 

all. The same procedure as used for the plane wave basis set can now be 

applied. One diagonalization will yield P different band energies for this . 

The accuracy of a plane wave basis set was determined by Kmax . For the 

APW or LAPW basis set, it is not incorrect to use the same criterion.  
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However, a better quantity to judge the accuracy here is the product 

Kmax between the smallest muffin tin radius and Kmax . This can be 

understood as follows. If the smallest muffin tin radius is increased, the 

closest point a plane wave can come to a nucleus moves farther away from 

the nucleus. The part of the wave function that need not to be described 

with plane waves any more, in general will have displayed the steepest 

behaviour, steeper than anywhere else in the interstitial region (it was 

closest to the nucleus). Less plane waves are needed to describe the 

remaining, smoother parts of the wave function. Kmax can be reduced, and a 

good rule of thumb is that the product  Kmax should remain constant in 

order to have comparable accuracy. Reducing Kmax means reducing the 

size of the matrices, and because matrix diagonalization is very expensive, 

a larger can significantly reduce the computation time.  can't be 

too large on the other hand, as the spherical harmonics are not suited to 

describe the wave functions in the region far away from the nuclei. 

Compared to a plane wave basis set, the LAPW basis set can be much 

smaller. The required Kmax turns out to be Kmax = 4au-1, depending 

on the desired accuracy. This yields P  195 as basis set size, compared to 

P  270 for plane waves. The calculation time (mainly determined by 

matrix diagonalization) scales with the third power of the basis set size, 

which makes LAPW in this respect about 2 to 3 times faster than plane 

waves. There are other aspects however that slow down LAPW[59], such 

that in the end it is comparable in speed with plane waves. 

 

3.3.2 LAPW with Local Orbital (LAPW+LO) 

It was not explicitly stated so far which electron states are calculated with 

the LAPW method. Does it make sense to calculate the 1s orbital of Fe in 
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bcc-Fe? No, because this electron is extremely well bound to the nucleus 

(-514 Ry), and will behave almost exactly as if it were in a free Fe atom. 

Such a state is called a core state. The criterion for a core state is that it 

does not participate directly in chemical bonding with other atoms. 

Therefore, it must be contained entirely in the muffin tin sphere. States that 

leak out of the muffin tin sphere, are called valence states. Valence states 

participate in chemical bonds, and these states are treated by LAPW. Core 

states are treated as in free atoms, but subject to the potential due to the 

valence states. When applying this definition, it frequently happens that 

states with the same ℓ but a different principal quantum number n are both 

valence states. For instance, due to hybridization, Fe in bcc-Fe will have a 

non-negligible amount of 4p-character in its valence states that are about 

0.2 Ry below the Fermi level. But the 3p-states that are 4.3 Ry below the 

Fermi level are not entirely confined in the core too. Such low-lying 

valence states are called semi-core states. It is not clear how should 

be chosen: close to 3p, close to 4p, at an intermediate value,: : :? None of 

the choices is optimal. This dilemma is solved by adding another type of 

basis function to the LAPW basis set, called a local orbital (LO). A local 

orbital is defined as: 

  

A local orbital is defined for a particular and m, and for a particular atom  

spheres of other atoms, hence its name local orbital. In the muffin tin 

sphere of atom α, the same  and  as in the LAPW 

basis set are used, with as linearization energy  a value suitable for the 

highest of the two valence states (4p in our example)[60]. The lower 

valence state-that is much more free-atom-like-is sharply peaked at an 

energy . A single radial function  at that same energy will be  
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sufficient to describe it. Local orbitals are not connected to plane 

waves in the interstitial region, they have hence no - or -dependence. 

The three coefficients  m are determined by requiring that 

the LO is normalized, and has zero value and zero slope at the muffin tin 

boundary (= it does not leak out of the muffin tin sphere).Adding local 

orbitals increases the LAPW basis set size. If for each atom local orbitals 

for p- and d-states are added, the basis set increases with 3+5=8 functions 

per atom [61] in the unit cell. This number is rather small compared to 

typical LAPW basis set sizes of a few hundred functions. The slightly 

increased computational time is a small price to be paid for the much better 

accuracy that local orbitals offer, and therefore they are always used.[62]. 

 

3.4 The FLAPW Method  

One among the most accurate schemes for solving the Kohn–Sham 

equations is the full-potential Linearized-augmented-plane wave(FP-

LAPW) method suggested by Andersen[63] on which WIEN code is based. 

Full-potential LAPW method (FLAPW)[24, 12] combines the choice of the 

LAPW basis set with the treatment of the full-potential and charge density 

without any shape approximations in the interstitial region and inside the 

muffin-tins. This generalization is achieved by relaxing the constant 

interstitial potential and the spherical muffin-tin approximation  

due to the inclusion of a warped interstitial  (where  are all 

reciprocal lattice vectors up to the largest value of Kmax) and the non-

spherical terms inside the muffin-tin spheres: 

                  (3.12) 

This method became possible with the development of a technique for 

obtaining the Coulomb potential for a general periodic charge density 
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 without shape-approximations and with the inclusion of the Hamiltonian 

matrix elements due to the warped interstitial and non-spherical terms of 

the potential. The charge density n is represented analogously to Eq. (3.12), 

just exchanging by V.  

 

3.5 WIEN2K code 

 The program package WIEN2k allows performing electronic structure 

calculations of solids using density functional theory (DFT). It is based on 

the full-potential (linearized) augmented plane-wave ((L)APW) + local 

orbitals (lo) method, one among the most accurate schemes for band 

structure calculations. In DFT the local (spin) density approximation 

(LDA) or the improved version of the generalized gradient approximation 

(GGA) can be used. WIEN2k is an all-electron scheme including 

relativistic effects and has many features.  

 

3.6 Computational considerations 

In the newest version WIEN2k [64] the alternative basis set (APW+lo) is 

used inside the atomic spheres for the chemically important orbitals, 

whereas LAPW is used for the others [65, 60]. In addition new algorithms 

for the computer intensive general eigen solver were implemented. The 

combination of algorithmic developments and increased computer power 

has led to a significant improvement in the possibilities of simulating 

relatively large systems on moderate computer hardware. Now, PCs or a 

cluster of PCs can be used efficiently instead of the powerful workstations 

or supercomputers that were needed about a decade ago. Several 

considerations are essential for a modern computer code and were made in 

the development of the new WIEN2k package [65]: Accuracy: extremely 

important in the present case. It is achieved by the well-balanced basis set,  

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com


 35
 

which contains numerical radial functions that are recalculated in each 

iteration cycle. Thus these functions adapt to effects due to charge transfer 

or hybridization, are accurate near the nucleus and satisfy the cusp 

condition. The PW convergence can be essentially controlled by one 

parameter, namely the cut-off energy corresponding to the highest PW 

component. There is no dependence on selecting atomic orbitals or pseudo-

potentials. It is a full-potential and all electron method. Relativistic effects 

(including spin orbit coupling) can be treated with a quality comparable to 

solving Dirac’s equation. All atoms in the periodic table can be handled. 

Efficiency and good performance should be as high as possible. The new 

mixed basis APW+Lo/LAPW optimally satisfies this criterion. The smaller 

matrix size helps to save computer time and thus larger systems can be 

studied. The scaling is less than N3: Parallelization: the program can run in 

parallel, either in a coarse grain version where each k-point is computed on 

a single processor, or—if the memory requirement is larger than that 

available on a single CPU—in a fine grain scheme that requires special 

attention for the eigen solver, the most time consuming part. Both options, 

full and iterative diagonalization, are implemented to (automatically) select 

the most efficient routines. Architecture: the hardware in terms of processor 

speed, memory access and communication is crucial. Depending on the 

given architecture, optimized algorithms and libraries are used during 

installation of the program package. Portability requires the use of 

standards as far as possible, such as FORTRAN90, MPI, BLAS (level 3), 

SCALAPACK, etc. User friendliness is achieved by a web based graphical 

user interface (GUI), called w2web. The program package provides an 

automatic choice of default options and is complemented by an extensive 

User’s Guide.  
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3.7 Applications of WIEN2k 

3.7.1. Systems 

The problems considered so far in QM calculations using the LAPW 

method (employed in various versions of the WIEN2K code) have covered 

a wide spectrum, including in particular insulators, semiconductors, 

(transition) metals up to f -electron systems or inter metallic compounds. 

The band structure can directly be compared to experiment in weakly 

correlated cases. However, the electronic structure of highly correlated 

systems such as the high Tc superconductors or the often-discussed late 

transition metal oxides would require treatments beyond LDA or GGA. In 

some solids magnetism plays an important role and as long as the magnetic 

moments are ordered in a collinear arrangement (e.g., Ferro-, ferri- or 

antiferromagnets) a proper description is relatively easy. Recently an 

extension to non-collinear magnetic systems (e.g., canted spins or spin 

spirals) has been provided.  

 

3.7.2 Band structure and density of states (DOS) 

In solid state physics, the electronic band structure (or simply band 

structure) of a solid describes ranges of energy that an electron is 

"forbidden" or "allowed" to have. It is due to the diffraction of the quantum 

mechanical electron waves in the periodic crystal lattice. The band 

structure of a material determines several characteristics, in particular its 

electronic and optical properties. The density of states (DOS) of a system 

describes the number of states at each energy level that are available to be 

occupied. A high DOS at a specific energy level means that there are many 

states available for occupation. A DOS of zero means that no states can be 

occupied at that energy level. The energy band structure and the 

corresponding density of states are the dominant quantities that determine  
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the electronic structure of a system. Their inspection provides information 

about the electric property (metal, insulator or semiconductor) and gives 

insight into the chemical bonding. By looking at site decomposed partial 

densities of states one can find a hint for the strength of interactions 

between the orbitals of the constituting atoms. The band structure is useful 

e.g., in connection with photoelectron spectra [66]. A three-dimensional 

band mapping is possible by angle-dependent very-low-energy diffraction 

and photoemission. 

3.7.3. Electron densities  

Electron density is the measure of the probability of an electron being 

present at a specific location. In molecules, regions of electron density are 

usually found around the atom, and its bonds. The electron density is the 

key quantity in DFT. By taking its Fourier transform the static structure 

factors can easily be obtained, which can be compared with the X-ray 

diffraction measurements. The comparison , however, is delicate, since the 

experiments are taken at finite temperature and must be corrected for 

thermal smearing, absorption and extinction. Determining the static 

structure factors from the experimental data requires a model in order to 

allow a comparison with theory [67]. 

 

3.7.4. Total energy and phase transitions 

With the total energy the relative stability of different phases can be 

computed. In such a case it is advisable to keep as many parameters 

constant as possible in order to have a cancellation of systematic errors. 

These parameters can be, for example, the size of the atomic spheres, the 

plane-wave cut-off, the k-mesh, the DFT functional [68], the treatment of 

relativity, etc. Energy differences are often rather small and thus a 

consistent treatment of the systems to be compared will help to minimize  
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these computational effects. A few examples can be found in applications 

to metals [69], an insulatorCaCl2 [70] or a defect structure [71]. In each of 

these cases a new interpretation for the interplay between the structure of a 

solid and the electronic structure is given. 

3.7.5. Forces and structure optimization 

Closely related to the total energy is the structure optimization that is often 

needed in this context. In cases where the atoms occupy general positions 

that are not fixed by the crystal symmetry, the knowledge of the forces 

acting on the atoms helps to optimize the structure parameters. Forces can 

be computed in WIEN2k and are crucial for such optimizations [45]. 

 

3.7.6 Equilibrium volume and bulk modulus 

A series of total energy calculations as a function of volume can be fitted to 

an equation of states according to Murnaghan's equation: 

         

The equilibrium volume  and the bulk modulus can be calculated from the 

above equation by plotting total energy versus volume . 
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Chapter Four 

Crystal Structure 

 

4.1 Introduction  

This is the story of how materials are made up from atoms. There are  

about 100 kinds of atoms in all the Universe, and whether these atoms form 

trees or tyres, ashes or animals, water or the air we breathe, depends on 

how they are put together. The same atoms are used again and again. 

Structure determines not only the appearance of materials, but also their 

properties. When an electrical insulator can become a superconductor, we 

begin to understand how important it is to understand the structure of 

materials [72].  Every year we are making rapid progress in developing 

new tools to understand structure; X-rays and accelerators, electron 

microscopes and nuclear reactors are among many physical and chemical 

techniques. One of the most important tools is of course the computer, both 

for calculating structures and visualizing them. Combining computers with 

communication means that the secrets of structure, and the beauty of 

structure, can be revealed to everyone.  

 

4.2 crystal structure 

In mineralogy and crystallography, a crystal structure is a unique 

arrangement of atoms in a crystal. A crystal structure is composed of a 

motif, a set of atoms arranged in a particular way, and a lattice. Motifs are 

located upon the points of a lattice, which is an array of points repeating 

periodically in three dimensions. The points can be thought of as forming 

identical tiny boxes, called unit cells, that fill the space of the lattice. The 

lengths of the edges of a unit cell and the angles between them are called the 

lattice parameters. The symmetry properties of the crystal are embodied in  

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com


 40
 

its space group [73]. A crystal's structure and symmetry play a role in 

determining many of its properties, such as cleavage[73], electronic band 

structure, and optical properties. 

 

4.2.1 How do Atoms Pack Together? 

The crystal structures of many metals can be described by close-packing of 

spheres (atoms). Similarly, many simple oxides to be discussed later can 

conveniently be considered to consist of close-packing of oxygen ions 

while the metal ions occupy voids in the close-packed structures. Let us 

therefore briefly discuss close-packing of spheres (atoms or ions). Consider 

an atom as a small hard sphere and make a layer of identical atoms so that 

the empty space between the atoms is minimum (layer A). Let us now add 

a second layer (B) such that the atoms in this second layer sit in one set of 

the hollows of the first layer. When we add a third layer of spheres, the 

spheres can be placed in two different positions: the spheres in the third 

layer can be placed directly over the spheres in layer A, and if we continue 

this stacking, the stacking sequence becomes ABABAB... as illustrated in  

figure (4-1-a)[74]. This type of close-packed stacking is called hexagonal 

close packing (hcp) of the spheres because it gives crystal structures with 

hexagonal symmetry. The third layer (layer C) could alternatively be 

placed such that the spheres in this layer will not be directly over either the 

atoms in the A or B layers, see  figure (4-1-b). The stacking sequence is 

now ABCABC... and this close packing is known as cubic close packing 

(ccp) as this gives rise to a cubic (face-centered) crystal structure. The 

following figure shows how the two close-packed structures appear when 

their hexagonal and face-centered cubic unit cells are emphasized. 
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Figure(4.1) ABABAB…(hcp) close-packing (a) and ABCABC…(fcc) close-packing (b) of spheres. From 
Shriver and Atkins; Inorganic Chemistry. 

Figure(4.2) Schematic views of the hcp (a) and fcc (b) structure types. From 
Shriver and Atkins; Inorganic Chemistry. 
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Less close-packed arrangements 

Some metals and ionic compounds choose for various reasons to arrange 

themselves in less close-packed structures, as exemplified in the following 

two figures. 

 
 

 
 

 

4.2.2 Unit Cell 

The crystal structure of a material or the arrangement of atoms in a crystal 

can be described in terms of its unit cell. The unit cell is a tiny box 

containing one or more motifs, a spatial arrangement of atoms. The units 

cells stacked in three-dimensional space describe the bulk arrangement of  

Figure (4.3) Body-centered cubic (bcc) packing of spheres 

Figure (4.4) Simple  cubic (sc) packing of spheres. 
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atoms of the crystal [75]. The unit cell is given by its lattice parameters, the 

length of the cell edges and the angles between them, while the positions of 

the atoms inside the unit cell are described by the set of atomic positions 

(xi,yi,zi) measured from a lattice point. Although there are an infinite 

number of ways to specify a unit cell, for each crystal structure there is a 

conventional unit cell, which is chosen to display the full symmetry of the 

crystal. However, the conventional unit cell is not always the smallest 

possible choice. A primitive unit cell of a particular crystal structure is the 

smallest possible volume one can construct with the arrangement of atoms 

in the crystal such that, when stacked, completely fills the space. This 

primitive unit cell does not always display all the symmetries inherent in 

the crystal. A Wigner-Seitz cell is a particular kind of primitive cell which 

has the same symmetry as the lattice. In a unit cell each atom has an 

identical environment when stacked in three-dimensional space. In a 

primitive cell, each atom may not have the same environment. There are 

only seven possible crystal systems that atoms can pack together to produce 

an infinite 3D space lattice in such a way that each lattice point has an 

identical environment to that around every other lattice point. 

 

4.2.3 Classification of crystals by symmetry 

The defining property of a crystal is its inherent symmetry, by which we 

mean that under certain operations the crystal remains unchanged. For 

example, rotating the crystal 180 degrees about a certain axis may result in 

an atomic configuration which is identical to the original configuration. The 

crystal is then said to have a twofold rotational symmetry about this axis. In 

addition to rotational symmetries like this, a crystal may have symmetries in 

the form of mirror planes and translational symmetries, and also the so-

called compound symmetries which are a combination of translation and  
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rotation/mirror symmetries [76]. A full classification of a crystal is achieved 

when all of these inherent symmetries of the crystal are identified. 

4.2.4 Crystal system 

The crystal systems are a grouping of crystal structures according to the 

axial system used to describe their lattice. Each crystal system consists of a 

set of three axes in a particular geometrical arrangement [77]. There are 

seven unique crystal systems. The simplest and most symmetric, the cubic 

(or isometric) system, has the symmetry of a cube, that is, it exhibits  

threefold rotational axes oriented at 109.5 degrees (the tetrahedral angle) 

with respect to each other. These  threefold axes lie along the body diagonals 

of the cube. This definition of a cubic is correct, although many textbooks 

incorrectly state that a cube is defined by three mutually perpendicular axes 

of equal length – if this were true there would be far more than 14 Bravais 

lattices. The other six systems, in order of decreasing symmetry, are 

hexagonal, tetragonal, rhombohedral (also known as trigonal), 

orthorhombic, monoclinic and triclinic. Some crystallographers consider the 

hexagonal crystal system not to be its own crystal system, but instead a part 

of the trigonal crystal system. The crystal system and Bravais lattice of a 

crystal describe the (purely) translational symmetry of the crystal. 

 

4.2.5 The Bravais lattices 

When the crystal systems are combined with the various possible lattice 

centerings, we arrive at the Bravais lattices. They describe the geometric 

arrangement of the lattice points, and thereby the translational symmetry of 

the crystal. In three dimensions, there are 14 unique Bravais lattices which 

are distinct from one another in the translational symmetry they contain. All 

crystalline materials recognized until now fit in one of these arrangements 

[78]. The Bravais lattices are sometimes referred to as space lattices. The  
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crystal structure consists of the same group of atoms, the basis, positioned 

around each and every lattice point. This group of atoms therefore repeats 

indefinitely in three dimensions according to the arrangement of one of the 

14 Bravais lattices. The characteristic rotation and mirror symmetries of the 

group of atoms, or unit cell, is described by its crystallographic point group. 

 

4.2.6 Point and space groups 

The crystallographic point group or crystal class is the mathematical group 

comprising the symmetry operations that leave at least one point unmoved 

and that leave the appearance of the crystal structure unchanged [79]. These 

symmetry operations can include reflection, which reflects the structure 

across a reflection plane, rotation, which rotates the structure a specified 

portion of a circle about a rotation axis, inversion which changes the sign of 

the coordinate of each point with respect to a centre of symmetry or 

inversion point and improper rotation, which consists of a rotation about an 

axis followed by an inversion. Rotation axes (proper and improper), 

reflection planes, and centres of symmetry are collectively called symmetry 

elements. There are 32 possible crystal classes. Each one can be classified 

into one of the seven crystal systems. The space group of the crystal 

structure is composed of the translational symmetry operations in addition to 

the operations of the point group. These include pure translations which 

move a point along a vector, screw axis, which rotate a point around an axis 

while translating parallel to the axis, and glide planes, which reflect a point 

through a plane while translating it parallel to the plane. There are 230 

distinct space groups. 

 

4.3 Some simple structures for oxides and other ionic compounds 

The structures of ionic compounds can often be seen as close-packing  

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com


 46
 

of the large anions, while the normally smaller cations occupy the 

interstitial voids [78]. (Note that once the structure is established, the 

interstices occupied by cations are not any longer considered interstitial; 

they are part of the ideal (reference) structure.).  In judging the packing of 

ions it is useful to recall some important principles of ionic  radii;  the  

size  of  the  elements increase  down a group of the periodic table 

(resulting  from the  larger  orbital  of  the  outermost shell). Further, the 

size of the elements as a rule of thumb decreases from left to right through a 

period of the periodic table (resulting from increased nuclear charge). 

Finally, and most importantly in this context: Negatively charged ions 

(anions) are much larger than their neutral atoms and positively charged 

ions (cations) are much smaller than their neutral atoms. One may also  

recall  that  the  effective  size  increases  with  the  coordination  number.  

In the following we look at some example structures possessed by oxides. 

 

4.3.1 The Rock Salt (NaCl) structure  

The ionic radius of the sodium ion is 1.16 angstroms and that of the 

chloride ion is 1.67 angstroms. The ratio of radii for the cation and anion is 

thus r+/r- = 1.16/1.67 = 0.695.With a radius ratio of 0.695, the cubic holes 

are too large (rhole/r = 0.732) to be suitable. The sodium ions will prefer to 

occupy octahedral holes in a closest-packed structure [79]. As it happens, 

the chloride ions in NaCl pack in a cubic closest-packed structure. 

 

 

 
Figure (4.5) The rock salt (RS) structure. 

It is clear that the lattice of NaCl is a face-centered cubic (fcc), the basis 

consists of one Na atom and one Cl atom separated by one-half the body  
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diagonal of a unit cell[80]. There are four units of NaCl in each unit 

cube, the basis, Na at (0,0,0) and   Cl  at (0.5, 0.5, 0.5), the space group 

is Fm_3m with number 225 and the primitive  s vectors for (RS) are :  

 zayaa ˆ
2

ˆ
21 +=

r
        zaxaa ˆ

2
ˆ

22 +=
r

            yaxaa ˆ
223 +=

rr
                (4.1) 

In our study Be, Zn will be placed at the position of Na and O will be 

placed at the position of Cl.          

  

 
Figure(4.6)  BeO(a) and ZnO(b)compounds  in the rock salt structure(RS) 

 

4.3.2 The zinc blende (ZB) structures  

This structure is named after different mineral forms of zinc sulphide 

(ZnS). The zinc blende structure can be considered as a cubic close-packing 

of sulphide ions with the zinc ions occupying every other tetrahedral 

void. Each zinc ion is thus tetrahedrally coordinated by four sulphide ions 

and vice versa, also we can say that each Zn atom is placed on one fcc lattice 

and each S atom on other fcc lattice as illustrated in figure (4-7a,b) for BeO 

and for ZnO. In this structure the basis: Zn at: (0,0,0) and  S at: 

(0.25,0.25,0.25) [80], the space group is F43_m with number 216 and the  

Primitive vector of (ZB) are:  
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   zayaa ˆ
2

ˆ
21 +=

r
          zaxaa ˆ

2
ˆ

22 +=
r

              yaxaa rr

2
ˆ

23 +=                      (4.1)                        

 

 

 

 
  Figure(4.7) BeO(a) and ZnO(b) compound in the zinc-blende structure(ZB) 
4.3.3 The wurtzite (W) structure 

Zinc sulfide crystallizes in two different forms: Wurtzite and Zinc Blende. 

The ionic radius of the Zn+2 ion is 0.74 angstroms and that of S-2 ion is 1.70 

angstroms. The ratio of radii for the cation and anion is thus r+/r- = 

0.74/1.70 = 0.44[81]. With a radius ratio of 0.44, one might expect the 

zinc(II) ions to occupy octahedral holes; however, the value of 0.44 is only 

slightly larger than rhole/r = 0.414 for an octahedral hole. In this case, the 

zinc(II) ions occupy tetrahedral holes. If the sulfide ions originally adopt a 

hexagonal closest-packed structure, the ZnS crystal is Wurtzite. If the 

sulfide ions originally adopt a cubic closest-packed structure, the ZnS 

crystal is Zinc Blende. In the wurtzite structure the basis: Zn at (1/3, 2/3 , 

0) and S at: (1/3, 2/3, u) where u =3/8  with 38=ac , the space group is 

P63-mc with number 186and the primitive vectors are 

   yaxaa ˆ
2
3ˆ

21 +=
r           yaxaa ˆ

2
3ˆ

22 +=
r          zca ˆ3 =

r
                             (4.3) 
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 BeO and ZnO adopt the wurtzite structure as shown in figure (4.8a,b).  

                                                                                                                                 

                               

                                                                                                                          
       Figure(4.8): BeO (a) and ZnO(b)compounds in the wurtzite structure(W). 

 

 

4.3.4 Cesium Chloride structure (CsCl) 

The ionic radius of the cesium ion is 1.88 angstroms and that of the 

chloride ion is 1.67 angstroms. In this case the cation is the larger ion, and 

the ratio of radii for the anion and cation is r-/r+ = 1.67/1.88 = 0.888[9]. 

With a radius ratio of 0.888, the smaller ion is expected to prefer a cubic 

hole. In this structure there is only one molecule per primitive cell (figure 

(4.9)), with basis  Cs at (0, 0, 0) at the corners  and Cl at  (0.5, 0.5, 0.5) 

body-centered positions[10]. In this structure each atom may be viewed as 

at the center of a cube of atoms of the opposite kind, so the number of 

nearest neighbors or coordination number is eight, the space group for this 

structure is pm_3m with number of 221[79] , the primitive vectors are: 

xaa ˆ1 =
r

                      yaa ˆ2 =
r

                     zaa ˆ3 =
r

                              (4.4) 

ZnO adopt this structure but BeO compound don’t. 
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Figure.(4.9) the cesium chloride structure (CsCl) 

4.4 Computational details  

The structural phase transition of BeO and ZnO have been investigated 

under high pressure with  full-potential linear augmented wave (FL-APW) , 

WIEN2K computer code[82] within the local density approximation(LDA), 

generalized gradient approximation (GGA) and Cohen-Wu (which is a GGA 

improved). The FP-LAPW results for the crystal change density were 

obtained with LDA which proposed by Perdew and Wang[80], GGA which 

proposed by Perdew and his co-workers[83] and Cohen-Wu which proposed 

by  Walter Kohen. The FP-LAPW method was used to calculate the 

electronic structure and the total energy of BeO and ZnO in the wurtzite, 

zinc-blende and rocksalt phases. This method has been successfully applied 

to study structural phases transitions of certain semiconductors [84,85]. The 

Zn 3d (Be doesn’t has 3d) orbital is treated as part of the valence state, which 

increases the number of plane waves in the basis set, in order to decrease the 

structural properties of ZnO accurately. The FP-LAPW program, WIEN2K, 

was used to solve the Kohn-Sham equations. In FP-LAPW method, the wave  

function is expanded in atomic orbitals in spherical regions around the  
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atomic positions while in the regions between the spheres, it is expanded in 

plane wave. The wave functions and their derivatives are made continuous at 

the boundary of the sphere. The FP-LAPW places no restrictions on the form 

of crystalline potential and is known to yield reliable structural parameter for 

semiconductors, metals, and insulators. Relativistic effect is included in the 

calculations. Spin-orbit effects are not included in the calculations. Plane 

cut-off was chosen (by test, see tables 1-5 in next chapter) from the 

condition RmtKmax= 8 for LDA, RmtKmax=9 for GGA and RmtKmax=9 for 

Cohen-Wu calculations, where Kmax is the plane wave cut-off and Rmt is the 

atomic sphere radius (muffin-tin radius). A sufficiently dense k-point grid 

was used to achieve a good and very close convergence of total energy. For 

BeO we used Kpoint =3000 with reduced K=165 and matrix =12x12x9for 

wurtzite and kpoint =9361 with reduced k=506 and matrix =21x21x21 for both 

zinc-blende and rock salt structures, while for ZnO Kpoint =6000 with 

reduced k=624 and matrix of (22x22x12) for wurtzite and Kpoint=9500 with 

reduced k=286 and matrix =21x21x21 . 

 

 A highly efficient and accurate tetrahedron integration scheme is used for 

the k-space integration. The calculated bulk properties are obtained by fitting 

the calculated total energy to the Murnaghan’s equation of state [87]. In 

order to keep the same degree of convergence for all the lattice constants 

studied, we kept the values of the sphere radii constant over all the range of 

lattice spacing considered. For BeO compound we have considered Rmt  

(Be)=1.41 and Rmt(O)=1.41Angestrom, also for ZnO  we considered 

Rmt(Zn)=1.82A, Rmt(O)=1.62A for wurtzite, ZB and RS structures. The Zn 

3d electrons are treated as part of the valence band since they are relatively 

high in energy even though they continue a well localized and narrow band.  

FP-LAPW schemes make no shape approximation to the potential and the 
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charge density. In addition to obtain a good agreement with  the 

experiment. This makes the calculations much easier to converge; even we 

need a large value for RmtKmax in order to have reasonable number of plane 

waves to describe 3d state correctly. The lattice harmonics (angular 

momenta) up to l=10 are used for the expansion inside the muffin-tin spheres 

for the development of the wave function of the charge density and potential. 

The ground state properties are obtained by minimization of the total energy  

with respect to the volume of the unit cell. In the zinc blende and rock salt 

structures, the volume is directly related to the lattice constant(a), while for 

the wurtzite structure this minimization are performed using three 

independent parameters, lattice constants(a&c), and the internal cell 

parameter(u). Equilibrium values were found by calculating total energies 

for asset of values of the c/a ratio and the volume per unit cell to determine 

the optimum value of u. The equilibrium value and bulk modulus were 

determined by calculating total energies for asset of volumes and fitting 

these to the Murnaghan’s equation of state [88]. We calculate the total 

energy for 7 different values of c/a and find the energy minimum by fitting 

the resulting values to a parabola. Freezing a0 and c/a0 at the best values just 

found, we vary the parameter u and find the new minimum of the total 

energy. Finally, with c/a and u fixed at their optimized values, we vary a0 

and calculate the total energy for 7 different volumes, which we fit again by 

Murnaghan’s equation of state [82]. 

 

The k-integration over the Brillouin zone is performed with the Monk horst-

pack[83]scheme. The number of sampling k-point in the irreducible 

Brillouin zone is 624, 506 and 506 for wurtzite, zinc-blende, and rock salt 

structures respectively, which correspond to 21x21x21 k-point meshes for 

zinc-blende and rock salt phases and 22x22x12 k-point meshes for the 

wurtzite phase. 
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Chapter Five 
Results, Discussions and Conclusion 

 
5.1 Introduction  
   BeO compound is very important to be studied under high pressure 

because it posses both ionic and covalent bonds and because of  its role in 

fabrication  as a catalyst, moderator and other applications. ZnO compound 

also is very important to be studied under high pressure because of the role 

that the d-electrons play in hybridization, covalent bonds, polarity and 

narrow energy band gap where few valence electrons will gain enough 

energy to make transition (easy transition from the valence band to the 

conduction band)[89]. 

 

5.2 BeO compound  

The main aim of studying this compound is to investigate the stability of its 

wurtzite structure, we also studied the zinc-blende and the rocksalt 

structures and the transition pressure from W to RS, and from ZB to RS 

structures, we also calculated the structural parameter  and the energy band 

gap for each phase by using the FLAPW method depending on the density 

functional theory. In the beginning of this study we made many tests to find 

the suitable Rkmax, the suitable number of Kpoints, u and the c/a for wurtzite. 

 

5.2.1 General considerations 

5.2.1.1Finding Rkmax  

R is the average value of the Rmt for all atomic spheres taken in account and 

Kmax is the maximum value for the K vector in the reciprocal lattice. 

Tables(5.1) and (5.2) show the tests done for choosing Rkmax, where we 

took the same number of Kpoints, the same Rmt for all structures and the 

lattice parameters were fixed through the test for each phase[90]. We run  
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self-consistency cycle (SCF) and take the total energy for each run, we look 

for the minimum energy. From table(1) and table(2) we found that the best 

Rkmax is 8 for LDA, 9 for GGA and 9 for Wu-Cohen. 

  
 Table(5.1): Test to find Rkmax for RS,ZB structures by LDA and GGA approximations 

No. RKmax Etot (total energy( no. Rkmax Etot (total energy 

1 6 -179.04204 1 6 -180.215100 

2 6.5 -179.045149 2 6.5 -180.256032 

3 7 -179.068125 3 7 -180.297453 

4 7.5 -179.088066 4 7.5 -180.301256 

5 8 -179.132574 5 8 -180.307832 

6 8.5 -179.132563 6 8.5 -180.309897 

7 9 -179.132573 7 9 -180.315603 

8 9.5 -179.131443 8 9.5 -180.312175 

9 10 -179.120276 9 10 -180.301901 

 

 

Table (5.2) :Test to find Rkmax for W structure by LDA, GGA and Cohen-Wu methods  
LDA  GGA  Wu-Cohen 

No. RKmax Etot No. RKmax Etot No. RKmax Etot 

1 6 -358.221489 1 6 -360.621548 1 6 -359.402984 

2 6.5 -358.222134 2 6.5 -360.630115 2 6.5 -359.487634 

3 7 -358.223011 3 7 -360.630879 3 7 -359.511237 

4 7.5 -358.223328 4 7.5 -360.631011 4 7.5 -359.599845 

5 8 -358.223527 5 8 -360.631332 5 8 -359.689756 

6 8.5 -358.223512 6 8.5 -360.631511 6 8.5 -359.887435 

7 9 -358.223436 7 9 -360.631612 7 9 -359.97995 

8 9.5 -358.223357 8 9.5 -360.631600 8 9.5 -359.97243 

9 10 -358.222518 9 10 -360.631421 9 10 -359.965314 
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5.2.1.2 How to select RMT radii: 

Rmt is the atomic sphere radius( muffin-tin-radius)for atoms under study, 

the WIEN2k code can set this Rmt automatically ( by default 2a.u.)but it is 

recommended to set Rmt and NOT use the default, taking the following 

consideration into account: 

   1- Choose the radii as large as possible, this will save computer time. 

   2- Choosing them smaller will make the calculations more expensive 

    (you will need more plane waves), but a little bit more accurate (PW's 

    are   better basis functions, reduced linearization error).  

  3- If core charge leaks out of the spheres (check :NEC01 in case.scf 

   Whether too much charge is missing) you can increase the sphere of the 

     atom  where the core charge leaks out. 

  4-Do not make your Rmt's too different!!! (even when geometry would  

    allow), but atoms with d or (f) states may be 10-15% larger. 

 5-Identical atoms (elements) should have identical RMT's. For BeO    

compound we choose Rmt =1.41a.u for both atoms by doing reduction of   

   10% of the default value. 

  

5.2.1.3 Choice of the k-point mesh  

 For a periodic system, integrals in real space over the (infinitely extended) 

system are replaced by integrals over the (finite) first Brillouin zone in 

reciprocal space, by virtue of Bloch's theorem. In WIEN2K code, such 

integrals are performed by summing the function values of the integrand 

(for instance: the charge density) at a finite number of points in the 

Brillouin zone, called the k-point mesh.  Choosing a sufficiently dense 

mesh of integration points is crucial for the convergence of the results, and 

is therefore one of the major objectives when performing convergence 

tests. Here it should be noted that there is no variational principle 

governing the convergence with respect to the k-point mesh. This means  
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that the total energy does not necessarily show a monotonous 

behaviour when the density of the k-point mesh is increased[91]. 

 

Monkhorst-Pack mesh                                                                           

In order to facilitate the choice of k-points, the WIEN2K package offers the 

possibility to choose k-points according to the scheme proposed by 

Monkhorst and Pack [91]. This essentially means that the sampling k-points 

are distributed homogeneously in the Brillouin zone, with rows or columns 

of k-points running parallel to the reciprocal lattice vectors that span the 

Brillouin zone. 

 

The concept of equivalent k-points                  

In comparing different structures, if the two structures have the same unit 

cell, the comparison should always be done using the same k-point set, so 

that possible errors from a non-converged k-point sampling tend to cancel 

out. A similar strategy can also be applied when comparing structures with 

different unit cells. We refer to this concept here as 'equivalent k-point 

sampling': The structure with a large unit cell has a smaller Brillouin zone 

associated with it. The k-points sampling along this smaller Brillouin zone 

should be chosen as a subset of the k-mesh in the larger Brillouin zone.  

 

Reduced k-points and symmetry                                     

Apart from the translational symmetry of the Bravais lattice, the crystal 

structure under investigation may often have additional point group 

symmetries. These can be used to reduce the number of k-points which are 

needed in the actual calculation substantially. To perform the integrals in 

the Brillouin zone , it is sufficient to sample the contribution from a subset  

of non-symmetry-equivalent k-points only. Therefore the integrand (e.g. 

the charge density) is calculated only at these points. The integrand with 
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the full symmetry can be recovered from its representation by non-

symmetry-equivalent k-points whenever this is required [91]. 

 

 Add inversion to K mesh 

We have to add inversion to K-mesh in all cases except when you do spin 

Polarized (magnetic) calculations WITH spin-orbit coupling (this breaks 

time-inversion symmetry and thus one must not add inversion symmetry 

(eigen-values at +k and -k may be different)[91]. 

 

Shift the k-mesh:  

Shifting of k mesh means that it will add (x,x,x) to all generated k-points, 

thus shifting them from high symmetry points (lines) to more "general" 

points with a higher weight. By this procedure (known also as "special k-

point methods") one generates an equally "dense" mesh, but with less basis 

points. Usually a shift is recommended: When we are interested in "gaps" 

of semiconductors, they are often located at Gamma or X (or at some other 

BZ-border point). With shifted meshes we will NOT have those high-

symmetry points in our mesh, thus the gap may seem to be smaller/larger 

than expected. 

 

 Tests for ZB with GGA, RS with LDA and Wurtzite with Wu-Cohen 

methods were done to choose the best K-points as seen in tables 

(3),(4)and(5), running (scf) and looking for the minimum energy . It is clear 

that best k-points for ZB and RS is 9261 with 286 reduced K-points and 

matrix (21×21×21), while for wurtzite is 6300 with 364 reduced K-point 

and matrix (22×22×12). 
 

 

 

 

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com


 58
             

            Table (5.3): Choosing best k-point for ZB structure by GGA method 

no. K-point Kreduced Matrix Etotal (RY) 
1 729 35 9×9×9 -180.315603 
2 1000 47 10×10×10 -180.315601 
3 1331 56 11×11×11 -180.315602 
4 1728 72 12×12×12 -180.315603 
5 2744 104 14×14×14 -180.315602 
6 3375 120 15×15×15 -180.315601 
7 4096 145 16×16×16 -180.315601 
8 4913 165 17×17×17 -180.315602 
9 5832 195 18×18×18 -180.315602 
10 6859 220 19×19×19 -180.315602 
11 8000 256 20×20×20 -180.315602 
12 9261 286 21×21×21 -180.315606 
13 10648 328 22×22×22 -180.315603 
14 12167 364 23×23×23 -180.315602 

            

 

 

Table (5.4):Choosing K-point for RS structure by LDA method 

no. Kpoint Kreduced Matrix Etotal (RY) 
1 729 35 9×9×9 -179.048047 
2 1000 47 10×10×10 -179.048044 
3 1331 56 11×11×11 -179.048048 
4 1728 72 12×12×12 -179.048046 
5 2744 104 14×14×14 -179.048046 
6 3775 120 15×15×15 -179.048048 
7 4096 145 16×16×16 -179.048045 
8 4913 165 17×17×17 -179.048048 
9 5832 195 18×18×18 -179.048045 
10 6859 220 19×19×19 -179.048047 
11 8000 256 20×20×20 -179.048047 
12 9261 286 21×21×21 -179.048068 
13 10648 328 22×22×22 -179.048046 
14 12167 364 23×23×23 -179.048047 
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              Table (5.5):Choosing K-point for wurtzite structure by Wu-Cohen 

no. Kpoint Kreduced Matrix Etotal (RY) 
1 430 60 9*9*5 -359.818812 
2 900 96 11*11*6 -359.951678 
3 1200 147 13*13*7 -359.967980 
4 1800 192 14*14*8 -359.974941 
5 2300 240 16*16*8 -359.978093 
6 2800 297 17*17*9 -359.979431 
7 3200 333 18*18*9 -359.979991 
8 3800 400 19*19*10 -359.980250 
9 4500 440 20*20*10 -359.980376 
10 5500 528 21*21*11 -359.980437 
11 6000 624 22*22*12 -359.980479 
12 6700 672 23*23*12 -359.818812 
13 7500 732 24*24*12 -359.951678 
14 8000 793 24*24*13 -359.967980 
15 8500 845 25*25*13 -359.974941 

 

                 

5.2.1.4 Optimization 

Most of the more complicated structures have free internal structural 

parameters, which can either be taken from experiment or optimized using 

the calculated forces on the nuclei.  

 

Some suggestions about how to optimize a structure in WIEN2K: 

a) Start  calculation by generating struct.file with arbitrary parameters. 

b)Initialize your file by introducing Rkmax , Gmax and number of k-points. 

c) Run lapw and SCF cycle. 

d)Choose optimize(v, c/a) job, then x-optimize and choose vary volume 

with constant a, b, c  for optimizing volume to find lattice parameters or 

vary c/a with constant volume  for determining the ratio of c/a of wurtzite 

structure, in both cases we have to enter values like( -15.-10,-5,0,5,10,15)%  

e)After running optimize-job we plot energy curve versus volume or c/a. 
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5.2.1.4.1 Wurtzite structure 

In this study c/a ratio was found by taking 7 values (-8,-4,-2,0,2,4,8%), for 

each value  writing down a, c, c/a  and run SCF to find minimum energy  as 

shown in Tables (5.6, 5.7, 5.8), fitting these data to a Fortran program 

called polyfit and then getting the best value for c/a, this was done for LDA 

(c/a=1.626), GGA(c/a=1.6311), and Wu-Cohen(c/a=1.6319 methods. 

   For LDA Rmt =1.41a.u.for Be and O, Rkmax=8 ,Gmax=14, K-point=6300 
Table(5.6): Finding c/a by LDA method 

no. Percent a=b (a.u) C (a.u) c/a Etotal (RY) 

1 -8.0 5.30435 7.93945 1.4967809 -358.205777 
2 -4.0 5.22963 8.16794 1.5618581 -358.214231 
3 -2.0 5.19381 8.28099 1.5943960 -358.216161 
4 0.0 5.15895 8.39328 1.6269357 -358.216710 
5 2.0 5.12501 8.50482 1.6594738 -358.215975 
6 4.0 5.09195 8.61564 1.6920119 -358.214038 
7 8.0 5.02829 8.83516 1.7570904 -358.206902 

 

For GGA Rmt =1.41a.u.for Be and O, Rkmax=9, Gmax=16 ,Kpoint=6300 
Table(5.7) Finding c/a by GGA method 

Tries Percent a=b (a.u) C (a.u) c/a Etotal (RY) 
1 -8 5.30435 7.90561 1.4904013 -360.618841 
2 -4 5.22963 8.13313 1.5552018 -360.628237 
3 -2 5.19381 8.24570 1.5876014 -360.630527 
4 0 5.15895 8.35751 1.6200021 -360.631368 
5 2 5.12501 8.46857 1.6524007 -360.630865 
6 4 5.09195 8.57891 1.6847986 -360.629107 
7 8 5.02829 8.79750 1.7496008 -360.622160 

 

For Wu-Cohen Rmt =1.41a.u.for Be and O, Rkmax=9, Gmax=16 ,Kpoint=6300 

Table(5.8) Finding c/a by Wu-Cohen method  

no. ratio a c c/a Etot 
1 -8 5.29443 7.75739 1.46520 -359.967289 
2 -4 5.25578 7.87189 1.49776 -359.976761 
3 -2 5.18174 8.09844 1.56288 -359.979707 
4 0 5.11171 8.32187 1.62800 -359.977024 
5 4 5.04532 8.54233 1.69312 -359.969511 
6 8 4.98224 8.75998 1.75824 -359.964114 
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Secondly the u value which controls the position of the atom in the unit cell 

is founded, taking  different values of u , running SCF calculation and 

writing down the total energy for each value as shown in Table(5.9). This is 

also done for LDA (u=0.378), GGA & Wu-Cohen (u=0.377). 
Table(5.9):Finding u by LDA method 

no. U Etotal (RY) no. U Etotal(RY) no. U Etotal (RY) 

1 0.357 -358.20393 10 0.366 -358.20857 17 0.375 -358.21041 

2 0.358 -358.20462 11 0.367 -358.20891 18 0.376 -358.21046 

3 0.359 -358.20524 12 0.368 -358.2092 19 0.377 -358.21049 

4 0.36 -358.20581 13 0.369 -358.20947 20 0.378 -358.2105 

5 0.361 -358.20638 14 0.370 -358.2097 21 0.379 -358.21048 

6 0.362 -358.2069 15 0.371 -358.2099 22 0.38 -358.21043 

7 0.363 358.20737 16 0.372 -358.21007 23 0.381 -358.21036 

8 0.364 -358.20781 15 0.373 -358.21021 24 0.382 -358.21027 

9 0.365 -358.20821 16 0.374 -358.21033 25 0.383 -358.21015 

 

Table(5.10): Finding u by GGA method 

no. U Etotal (RY) no. u Etotal (RY) 

1 0.367 -360.626868 8 0.3900 -360.632090 
2 0.369 -360.627383 9 0.3800 -360.632037 
3 0.372 -360.632034 10 0.3820 -360.631856 
4 0.374 -360.631933 11 0.3840 -360.631576 
5 0.376 -360.631723 12 0.3860 -360.631577 
6 0.377 -360.632113 13 0.3880 -360.631118 
7 0.378 -360.632115 14 0.3900 -360.630578 

 

After finding c/a and u,  a and c will be found by optimizing job, choosing 

optimization vary volume with constant a= b, c and use 7 values for 

optimization (-15,-10,-5,0,5,10,15%) and looking  for the minimum energy, 

fitting the results with the Murnaghan’s equation and plotting the energy 

versus volume, the values of minimum volume, bulk modulus, its first 

derivative with respect to volume  and minimum energy can be obtain from 

the graph. (the same way for LDA, GGA, Wu-Cohen) 

The volume of the unit cell for wurtzite(hcp)  caV 2

2
3

=                          (1) 

by rewriting this equation   )(
2
3 3 acaV =                                                 (2) 
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31

)(3
2









=

ac
Va                                                    (3)   

                                                           

 

 
                          Figure(5.1) Energy vs. volume for ZB of BeO by GGA method 

we can find a., substituting the volume (V) from the graph and c/a in 

equation (3)   

1-For LDA, V= 180.3017(a.u)3, c/a=1.626, a.=5.04022a.u. =2.6675A 

2- For GGA,  V=189.7111(a.u)3, c/a=1.6311, a.=5121a.u. =2.709A 

3-For Wu-Cohen, V=185.7742(a.u)3, c/a=1.6319, a.=5.085a.u.=2.6905A 

 
             Table(5.11):Structural parameters for wurtzite structure 

method 

a.(A) c/a u volume       
V0 (A.)3 

B(GPa) a 
B' Emin(RY/mol) present other Present other present other present other 

LDA 2.6675 2.65 1.626 1.624 0.378 0.378 26.72 232.6 224 3.7 -358.22 
GGA 2.709 2.703 1.6311 1.635 0.377 0.377 28.11 207.8 203 3.8 -360.62 
Cohen 2.6905 2.698 1.6319 1.633 0.376   27.53 216.8 239 3.8 -359.98 
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5.2.1.4.2 Zinc-blende structure(ZB) 

The same way of calculation is used in (ZB) structure to find the lattice 

parameters, for this structure the Rmt=1.41a.u. ,the number of K-point is 

9261 with reduced Kpoint= 286 and matrix of 21×21×21, the Be atom set at 

(0,0,0), while O atom sets at (1/4,1/4,1/4) positions, for LDA Rkmax=8 

,Gmax=14, while for GGA and Wu-Cohen Rkmax=9, Gmax=16 . 

    
                       Figure(5.2) Energy vs. volume for ZB of BeO by LDA method 

The volume of the unit cell for ZB(fcc) is 
4

3aV =                                    (4) 

 And can be rewritten for a.,  [ ] 31.4Va =                                            (5) 

Using equation(5) and substitute V from the graphs we get a. , 

1- for LDA, V=89.967(a.u)3 ,    a. = 7.11a.u. =3.7639 A 

2- for GGA, V =94.8352(a.u)3,  a.= 7.239a.u. =3.8306A 

3-for Cohen  V=92.7613(a.u)3,   a. = 7.186a.u. = 3.8025A 
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Table(5.12) Structural parameters for ZB structure 

method 

a. (A) V0 (A)3 B(GPa) a 

B' E(RY/mol.) present other present other present 
LDA 3.7639 3.737 89.967 231.5 224 3.748 -179.1109 
GGA 3.8306 3.810 94.835 207.5 201 3.666 -180.3156 
Cohen 3.8025  3.8 92.761 215.2 228 3.828 -179.9893 

(a) reference[92] 

5.2.1.4.3 Rocksalt structure (RS) 

The way of calculations and initial values are the same as in ZB structure 

the  different only in the positions of the atoms where Be at (0,0,0) and O at 

(1/2,1/2,1/2). 

 
                Figure(5.3) Energy vs. volume for RS of BeO by Wu-Cohen method 

Since RS is fcc the volume of the unit cell as in equation(4) and a. can be 

found from equation(5), for fcc   the lattice constants are equal  a=b=c  

1- for LDA,          V=77.9951(a.u)3,   a.=6.7823a.u. =3.5890A 

2-for GGA,          V=82.2512(a.u)3,    a.=6.9035a.u. =3.6531A 

3-for Wu-Cohen,  V=80.3778(a.u)3,   a.=6.8506a.u. =3.6252A 
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          Table(5.13) Structural parameters for RS structure 

method 

a.(A) V0 (A)3 B(GPa) a 

B' E(RY/mol.) present other present other present 
LDA 3.5890 3.577 77.995 263.1 264 3.522 -179.0479 
GGA 3.6531 3.648 82.251 231.8 231 3.587 -180.2453 
Cohen 3.6252   80.378 248 262 3.684 -179.9263 
      a) reference[92]               

5.2.1.5 Transition phases 

The forces that act on the nuclei  causes optimization of the unit cells 

which means that the lattice parameters change into new values and this 

causes the  structure to come into new structure, this happen at embedded 

pressure with certain values called the transition pressure, here we are 

seeking the transition pressure by the equation: 

                            
V
EP t ∆

∆
−=                                                                         (6) 

Fig(4) shows the EOS for both WZ &RS structures using LDA method. 

The  transition pressure was found to be 90.3 GPa and the transition 

volume was found to be 69.6a.u. (10.3A) 

 
Figure(5.4) Total energy vs. volume for W ,  RS of BeO by LDA method  
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Figure(5.5) shows the EOS for WZ & RS structures using GGA method. 

The transition pressure was found to be 93.65 GPa and the transition 

volume was 72.9a.u3 = (10.8A)3. 

 
Figure(5.5) Total energy vs. volume for  W, RS of BeO by GGA method  

 

Fig(5.6) also shows the EOS for both WZ & RS structures but by using the 

Wu=Cohen method. The transition pressure was found to be 118.2 GPa 

while the transition volume was found to be 70.7a.u3 = (10.48A3). 
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Figure(5.6) Total energy vs. volume for  W, RS of BeO by  Wu-Cohen method  

 

Fig(5.7) shows the EOS for ZB & RS structures by using LDA method. 

The transition pressure was found to be 133.96GPa and the transition 

volume was 71.17a.u3=(10.55A3). 

 
Figure(5.7) Total energy vs. volume for  ZB,RS of BeO by LDA method  

 

Fig(5.8) shows the EOS for ZB & RS structures by using GGA method. 

The transition pressure was found to be 146.47 GPa and the transition 

volume was 70.6a.u3=(10.47A3). 
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Figure (5.8) Total energy vs. volume for  ZB, RS of BeO by GGA method 

 

Figure (5.9) shows the EOS for ZB & RS structures by using Wu-Cohen 

method The transition pressure was found to be 140.45GPa and the 

transition volume was found to be 71.96a.u3=(10.66A3). 

 
Figure (5.9) Total energy vs. volume for  ZB,RS of BeO by Wu-Cohen method 
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         Table(5.14):Shows all the transition pressure and volume for BeO structures 

structure method 
Pt(GPa) Vt(a.u.)3 

present cal. other cal.b present cal other cal.b 

W-RS 

LDA 90.3 93.8 69.6 69.98 
GGA 93.65 95.4 72.9 70.2 
Wu-Cohen 118.2   70.7   

            

ZB-RS 

LDA 133.96 126.5 71.17 70.04 
GGA 146.47 147.1 70.6 69.74 
Wu-Cohen 140.45   71.69   

         (a) reference[93] 

Using a Fortran program called polyfit and the graphic program called 

grace we get all the figures in this study. Figures (5.10) and (5.11) shows 

that the green curve (wurtzite structure) is the  basic one and the other 

curves (for ZB & RS structures) lay over it, and this mean that the wurtzite 

structure is the ground state for BeO and it crystallizes in wurtzite at room 

temperature, also the table(5.11) shows that it has minimum binding 

energy. 
  

  
Figure(5.10) Total energy vs. volume for  W,ZB & RS  of BeO  by LDA method 
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 Figure(5.11) Total energy vs. volume for  W,ZB and RS of BeO by Wu-Cohen method 

 

Transition  from W to ZB couldn't be calculated as shown in figure (5.12) 

and (5.13) since the curves laid over each other. 
 

 
Figure (5.12) Total energy vs. volume for  W and ZB of BeO by LDA method 

 

 

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com


 71
 

 
 

Figure(5.13) Total energy vs. volume for  W and ZB of BeO by Wu-Cohen method  

 

5.2.1.6 Band structure 

Using WIEN2K code which depends on FLAPW  it was very easy to  study 

the band structure and calculate the band gap for each structure of BeO 

compound, band gap is very important because by calculating it we can 

determine whether the compound is metal, semiconductor or insulator. 

After the optimization job and calculating the structural parameters, we use 

the  exact structural parameters to calculate the band structure, going to 

generate structure file and initialize calculation, then run  SCF calculation 

and after that choose band structure form the task f the WIEN2K, edit the 

Fermi energy,  run the spaghetti  lapw and then plot the band structure to 

get  a graph showing the nature of the band gap and the width of the bands 

for any structure as shown in figures(5.14),(5.15),(5.16) and(5.17). 
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            Figure (5.14) The band structure for wurtzite by LDA and GGA methods 

 

 
             Figure(5.15)  The band structure for rocksalt  by LDA and GGA methods 
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       Figure (5.16) The band structure for RS by Wu-Cohen  and ZB by LDA methods 

                    

 
              Figure (5.17) The band structure for ZB by GGA and Cohen methods 

 

Browsing the spaghetti it will be very easy to calculate the band gap for 

each structure, the energy band gap for wurtzite was found   to be 7.74 eV  
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for the LDA calculations, 7.211eV for GGA and 7.45eV for Cohen 

calculations corresponds to indirect transition at the Г point. For zinc-blende, 

the energy band gap was found  to be 6.736eV for LDA , 6.854ev for GGA 

and 6.747eV for Cohen calculations corresponding for indirect transition at 

the Г point. Finally for the rocksalt, the energy band gap was found to be 

8.36eV for LDA, 8.047eV for GGA and 8.177eV for Cohen calculations 

corresponding also to indirect transition at the Г point. 

 
                    Table(5.15): The band gap for BeO compound  (b) reference[93] 

Structure method 
present 

cal.  other cal.b 
experimental result 

Wurtzite (W) 

LDA 8.356 

8.05 
  

GGA 8.047 

7-10eV 

Cohen 8.177 

rocksalt (RS) 

LDA 6.736 

6.88 
  

GGA 6.854 

Cohen 6.747 

Zincblende 
(ZB) 

LDA 7.75 7.54 
 

  
GGA 7.211 
Cohen 7.45 
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5.3 ZnO compound 

For this compound the same procedures have been done as for the 

compound (BeO), the lattice constant for each structure of this compound 

which (RS, ZB, CsCl, and W),  the transition pressure from phase to phase 

and the energy band gap for each structure have been calculated to 

determine whether this compound is a metal , semi-metal, semiconductor 

or insulator by the LDA, GGA, and Wu-Cohen approximations. As done 

before I found the suitable number of K-points by, suitable Rkmax by test, 

for LDA Rkmax found to be 8, for GGA and Wu-Cohen it was found to be 

9, and the suitable k-point = 9261 with reduced kpoint =286 and matrix= 

21x21x21 for RS, ZB, and CsCl while for W Kpoint =6000 with reduced 

k=624 and matrix= 22x22x12. 

 

5.3.1 Optimization 

The same procedures are used for BeO will be used here for ZnO, we are 

going to find best u, c/a and lattice parameter a and c for wurtzite, zinc-

blende ,rock-salt  and cesium-chloride structures. In this study,Rmt=1.77a.u. 

for Zn and 1.59a.u. for O , Rkmax=8 for LDA and 9 for GGA and Wu-

Cohen,  Gmax =14 for LDA, 16 for  GGA and Wu-Cohen in all structures. 

 

5.3.1.1 Wurtzite Structure 

For this structure u was found to be 0.38 by LDA, 0.382 by GGA and 0.379 

by Wu-Cohen method, table(16) shows the structural parameters, 

optimized volume, bulk modulus and minimum energy for this structure. 
Table(5.16): The structural parameters for W structure.        (c) reference[94]  

Emin (RY) 
B' B (GPa) 

V0 (A.)3 
  a=b (A) 

method  Othersc  found Othersc  Found c/a other found 
-7473.166345   4.9971   164.4 307.1138 1.63 

3.29 
3.18 LDA 

-7485.627888  5.01 4.4818  162 128.66 333.7014 1.618 3.28 GGA 
-7483.379513   4.6725   146.294 318.9665 1.631 3.22 Cohen 

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com


 76
 

5.3.1.2 Zinc-blende Structure 

Table(17) shows the lattice parameters, optimized volume, bulk and 

minimum energy also other calculations for this structure. 

                Table(5.17):Structural parameters for ZB structure.    (c) reference[94] 

Emin (RY) 
B' B (GPa) 

V0 (A.)3 

a=b=c (A) 

method 
 present otherc  present  otherc  present 

-3736.5824 4.9376   164.581 153.334   4.496 LDA 
-3742.8143 4.8165  170.4 128.751 166.848  4.614 4.624 GGA 
-3741.6894 4.8773   147.193 159.37   4.554 Cohen 

 

5.3.1.3 Rock-salt Structure 

Table(18) shows the lattice parameters, optimized volume, bulk and 

minimum energy also other calculations for this structure.  

 
Table(5.18):Structural parameters for RS structure. (c) reference[94], (d) reference[95] 

Emin (RY) 
B' B (GPa) 

V0 (A.)3 

a=b=c (A) 
method  present  otherd  Present  otherc  Present 

-3736.5681 4.5846   202.561 126.218   4.2136 LDA 

-3742.7939 4.2612  260 159.946 137.648  4.28 4.3372 GGA 

-3741.6743 4.5458   182.229 131.267   4.269 Cohen 
 

5.3.1.4 Cesium-chloride Structure 

Table(5.19) shows the lattice parameters, optimized volume, bulk and 

minimum energy also other calculations for this structure 
 

Table(5.19): Structural parameters for CsCl structure. (d)reference[95] 

Emin (RY) 

B' B (GPa) 

V0 (A.)3 

a=b=c (A) 

method  present  otherd  Present  otherc  Present 
-

3736.4811 4.4771   195.9 120.333   4.147 LDA 
-

3742.7073 3.5696 185.6 127.5 129.198  4.21 4.2653 GGA 

-3741.589 4.8572   176.5 124.978   4.1997 Cohen 
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5.3.2 Transition phases 

Figure(5.18) shows the EOS for both WZ & RS structures using LDA 

method. The transition pressure was found to be 9.97GPa and the transition 

volume was found to be 148.85a.u.(22.06A) 

 
Figure(5.18) Total energy vs. volume for W,RS of ZnO by LDA method 

 

Fig(5.19) shows EOS for both WZ & RS structures using GGA method. 

The transition pressure was found to be 11.632 GPa and the transition 

volume was found to be 152.1(a.u)3=(22.54A3). 

 

Fig(5.20) shows EOS for both WZ & RS structures using Wu-Cohen 

method. The transition pressure was found to be 10.97 GPa and the 

transition volume was found to be152.054(a.u)3=(22.53A3). 
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Figure(5.19 Total energy vs. volume for W,RS of ZnO by GGA method 

 

Figure(5.20) Total energy vs. volume for W,RS of ZnO by Wu-Cohen method  

 

Fig(5.21) shows EO'S for both W & CsCl structures using LDA method. 

The transition pressure was found to be 54.87Gpa and the transition 

volume was found to be 131.89(a.u)3=(19.54A3) 
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Figure (5.21) Total energy vs. volume for W, CsCl of ZnO by LDA method. 

 

Figure (5.22)shows EO'S for both WZ & CsCl structures using GGA 

method. The transition pressure was found to be 52.63 GPa and the 

transition volume was found to be 134.641(a.u)3=(19.95A3). 

 
Figure (5.22) Total energy vs. volume for W, CsCl of ZnO by GGA method  
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Figure (5.23) shows EOS for both WZ & CsCl structures using Wu-Cohen 

method. The transition pressure was found to be 53.26 GPa and the 

transition volume was found to be 128.55(a.u)3=(19.04A3) 

. 
Figure (5.23 Total energy vs. volume for W, CsCl of ZnO by Wu-Cohen method  

 

Figures (5.24),(5.25)and (5.26) shows EOS for both ZB & RS structures 

using LDA, GGA and Wu-Cohen methods. The transition pressure was 

found to be 13.07 GPa, 10.898 GPa and 5.72 GPa and the transition volume 

was found to be 150.59(a.u)3=(22.31A3), 158.37(a.u)3=(23.47A3) and 

151.18(a.u)3=(22.4A3) respectively. 
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Figure (5.24) Total energy vs. volume for ZB, RS of ZnO by LDA method  

 
 Figure (5.25) Total energy vs. volume for ZB, RS of ZnO by  GGA method  

 
Figure (5.26 Total energy vs. volume for ZB, RS of ZnO by Wu-Cohen method  
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Figures (5.27), (5.28) and (5.29) shows the EO'S for both ZB & CsCl 

structures using LDA, GGA and Wu-Cohen methods. The transition 

pressure was found to be 51.96 GPa, 44.04GPa and 48.85 GPa 

respectively, where the transition volume was found to be 

132.76(a.u)3=(19.67A3),137.47(a.u)3=(20.37A3)and 33.34(a.u)3=(19.76A3).                         

 
 Figure (5.27 Total energy vs. volume for ZB, CsCl of ZnO by LDA method. 

                 

 
Figure (5.28) Total energy vs. volume for ZB, CsCl of ZnO by GGA method. 
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Figure (5.29) Total energy vs. volume for ZB, CsCl of ZnO by Wu-Cohen method. 

The last phase transition from RS to CsCl  structures as shown in 

figures(5.30), (5.31) and (5.32) using LDA, GGA and Wu-Cohen methods. 

The transition pressure was found to be 137.86Gpa, 117.37Gpa and 

191.15Gparespectively,where the transition volume was found to be  

86.89(a.u)3=(12.87A3), 95.896(a.u)3=(14.2A3) and 91.13(a.u)3=(13.5A3) 

respectively. 

 
Figure (5.30) Total energy vs. volume for RS, CsCl of ZnO by LDA method. 
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Figure (5.31) Total energy vs. volume for RS, CsCl of ZnO by GGA method. 

 

 
Figure (5.32) Total energy vs. volume for RS, CsCl of ZnO by Wu-Cohen method. 
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Table(5.20): shows the transition pressure & volume for all phases 
Vt(A3) Pt (GPa) 

Method Structure Otherc present Otherd present 

  
22.8  

  

22.06   
9.5  

  

9.97 LDA 

W-RS 
22.54 11.632 GGA 
22.53 10.97 Cohen 

20.5 
  
  

19.54   
51.4  

  

54.87 LDA 

W-CsCl 
19.95 52.63 GGA 
19.04 53.26 Cohen 

22.03  
  
  

22.31 14.05  
  
  

13.07 LDA 

ZB-RS 
23.47 10.898 GGA 
22.4 5.72 Cohen 

21.092 

19.67   
 50.3 

  

51.96 LDA 

ZB-CsCl 
20.37 44.04 GGA 
19.76 48.85 Cohen 

  
18.2  

  

12.87   
154.7  

  

137.86 LDA 

RS-CsCl 
14.2 117.37 GGA 
13.5 191.15 Cohen 

           (a) reference[94], (d) reference[95] 

Figure (5.33), figure (5. 34) and fig(5.35) show the four structure together 

on laid on one graph using LDA, GGA and Wu-Cohen methods . These 

graphs also show that the ZnO compound can be found in  WZ  structure at 

ground state and no transition from WZ to ZB could be calculated, also the 

graphs show that  the wurtzite structure is the ground state. 

   
Figure (5.33) Total energy vs. volume for W,ZB, RS and CsCl of ZnO by LDA method. 

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com


 86
 

 

 
(5.34) Total energy vs. volume for W,ZB, RS and CsCl of ZnO by GGA method. 

 

 

 
(5.35) Total energy vs. volume for W,ZB, RS and CsCl of ZnO by  Wu-Cohen method. 
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5.3.3 Band structure 

The same way was done for BeO compound will be done for ZnO where  

the energy gap was calculated for all structures using all methods (LDA, 

GGA and Wu-Cohen). Fig(36), fig(37), fig(38) and fig(39) show the 

energy band gap for WZ, ZB, RS and CsCl structure 

 

 

 

 

 

 

 

 
Figure(5.36) ZnO band structure of W by LDA, GGA and Wu-Cohen method 

 

 

                      

 
Figure (5.37) ZnO band structure of ZB by LDA, GGA and Wu-Cohen method  
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Figure (5.38) ZnO band structure of RS by LDA, GGA and Wu-Cohen method.  

 

 

 
Figure (5.39) ZnO band structure of CsCl by LDA, GGA and Wu-Cohen method. 
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Figure (5.36) shows the energy band gap for W structure and it found to be 

0.79659 eV by LDA, 0.75716eV by GGA and 0.69006 eV by Cohen  

calculations which correspond direct transition at Г point. Figure (5.37) 

shows the energy band gap for ZB which found to be 0.71671eV by LDA, 

0.65801eV by GGA and 0.61331eV by Wu-Cohen calculation which 

correspond to direct transition at Г point  too. Figure (5.38) shows the energy 

gap for RS and found to be 1.13737eV by LDA, 0.75755eV by GGA and 

0.89867eV by Cohen calculations which correspond to indirect transition at 

Г point. Fig(39) shows energy band gap for CsCl structure which is found to 

be 1.14287eV for LDA, 0.31864eV for GGA and 0.37643eV for Cohen 

calculations which correspond to direct transition at  Г point as  shown in 

Table (5.21). 
           Table(5.21) The energy band gap for all ZnO structures. 

energy band gap(eV) 
Method Structure Other e Present 

  
  
  
  
  
  

0.15 – 3.5  
  
  
  
  
  

0.79659 LDA 

WZ 
0.75716 GGA 
0.69006 Cohen 
0.71671 LDA 

ZB 
0.65801 GGA 
0.61331 Cohen 
1.13737 LDA 

RS 
0.75755 GGA 
0.89867 Cohen 
1.14287 LDA 

CsCl 
0.31864 GGA 
0.37643 Cohen 

                          (e)reference[96] 
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5.4 Conclusion 

The study of BeO and ZnO compounds shows  the importance of these 

compounds, it gives a good understanding  about the stability, electronic 

structure and phase transition of these two compounds. 

 

In this study the  Full-Potential Augmented plane Wave (FPLAPW) 

method with LDA, GGA and Wu-Cohen approximations  is used to 

investigate the structural properties and  stability of the WZ, ZB, and RS 

phases of BeO compound and the WZ, ZB, RS, and CsCl phases for ZnO 

compound.  FPLAPW method is also used to calculate the equation of state 

(EOS’s) of  WZ, ZB, RS structures for both BeO and ZnO compounds 

where CsCl structure for ZnO compound. From these (EOS’s) the lattice 

parameter a, the bulk modulus B, the pressure derivative B`, the 

equilibrium volume of the crystal v0 and the transition pressure have been 

investigated. Also the energy band gap was calculated using the same 

method for all structures mentioned above. The main results and conclusion 

of this study can be summarized as follows: 

1- The calculated structural parameters (a, B, B`) using FP-LAPW 

method are found to be in good agreement with the available 

experimental data and other theoretical results. 

2- The phase transition for BeO compound occur from WZ to RS and 

from ZB to RS. The transition pressure from WZ to RS was found to 

be 90.3, 93.65 , 118.2Gpa and the transition pressure  from ZB to RS 

was found to be 133.96, 146.47, 140.45 GPa for LDA, GGA and 

Wu-Cohen approximations respectively. 

3- For ZnO the phase transition occur from WZ to RS, from WZ to 

CsCl, from ZB to RS, from ZB to CsCl and from RS to CsCl, the 

transition pressure was found to be 9.97, 11.632, 10.97 GPa from 

WZ to RS, 54.87, 52.63, 53.26 GPa from WZ to CsCl, 13.07,  
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10.898, 5.72 GPa from ZB to RS, 51.96, 44.04, 48.85GPa from ZB 

to CsCl and 137.86, 117.37, 191.15GPa from RS to CsCl using 

LDA, GGA and Wu-Cohen approximations respectively. 

4- The energy band gap for BeO compound  was calculated for WZ, ZB 

and RS structures and found to be 7.75eV, 7.211eV, 7.45eV for WZ, 

6.736eV, 6.854eV, 6,747eV for ZB and 8.356eV, 8.047eV, 8.177eV 

for RS using LDA, GGA and Wu-Cohen approximations 

respectively. 

5- For ZnO compound the energy band gap was calculated for WZ, ZB, 

RS and CsCl structures and was found to be 0.797eV, 0.757eV, 

0.69eV for WZ, 0.717eV, 0.66eV, 0.613eV for ZB, 1.14eV, 0.76eV, 

0.9eV for RS and 1.43eV, 0.319eV, 0.376eV for CsCl structures 

using LDA, GGA, Wu-Cohen approximations respectively. 

6- This study shows that BeO compound is insulator since it has  a 

large band gap in all its phases (WZ, ZB, RS). 

7- BeO compound can be found in WZ or ZB structures as a ground 

state and originally in WZ structure since this structure has  a 

minimum  binding energy and RS is unstable since it exists at high 

pressure. 

8- ZnO behaves as semiconductor in the wurtzite and zinc-blende since 

it has a large energy gap in all their structures. For rock-salt it has  

energy band gap about 1.14eV, 0.76eV, 0.9 eV by LDA, GGA and 

Wu-Cohen approximations which lead to non-metallic behaviour. 

For CsCl structure the energy gap by LDA is 1.14eV which lead to 

non-metallic behaviour, while by  GGA and Wu-Cohen 

approximations its about 0.3 eV which lead to metallic behaviour. 
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             الوطنیةجامعھ النجاح 

 كلیھ الدراســـات العلیا
 
 
 
 
 
 
 

  تحت ضغط مرتفع  BeOو    ZnOمركبي دراسة 
 
 
 
 
 

 إعداد
  

محمود اسعد اسلیم عمر  
 
 

 إشراف
 

جعفر محمد أبو. د  
 
 
 
 
 
 
 

  
 بكلیةقدمت ھذه الاطروحھ استكمالا لمتطلبات درجھ الماجستیر في الفیزیاء 

  .في نابلس، فلسطین الوطنیةي جامعھ النجاح ف االعلیالدراسات 
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ب 

  
  ضغط مرتفع تأثيرتحت   BeOو  ZnOمركبي دراسة 

  إعداد
  عمر محمود اسعد اسليم

  إشراف
  محمد أبو جعفر. د

  
  الملخص

  
 إلىضغط مرتفع من تركيب  تأثيرتتحدث هذه الاطروحه عن تحول بعض المركبات تحت   
الاخيره نظرا  الفترةت جذبت اهتمام الكثير من العلماء في الموصلا أشباه دراسة أن، حيث آخر

 العملية الدراسةوحيث . في المجال الصناعي والالكتروني  والتطبيقية العملية لأهميتها
جهد كبير وزمن  إلىوتحتاج  والتقنية المالية الناحيةفي هذا المجال مكلفه جدا من  والتجريبية

ظهور  إلى أدى والسريعة الضخمةتطور الحاسبات طويل للحصول على نتائج فان ظهور و
تسهيل الدراسات وتوفير الجهد والمال  إلى أدىمما  المحاكاةحسابيه تعتمد نظم  أساليبوتطوير 

المواد التي  طبيعةوالوقت في الحصول على نتائج جيده في مجال التركيب الالكتروني ومعرفه 
لتطوير الروابط بين  ألفرصه وإعطاءوني لها معرفه التركيب الالكتر ناحيةنتعامل معها من 

وتحديد طاقه  الطاقةمواد مثاليه بصفات محدده سابقا والتمكن من حساب مستويات  لإنتاجالمواد 
  .عازل أوشبه موصل  أوما كان موصل  إذاالمركب  طبيعةوالتي تحدد   الفجوة

  
ت ولكن في هذه الاطروحه تم ظهرت  لمعالجه مثل هذه الحسابات والدراسا الأساليبالعديد من 

والذي يعمل تحت   الخطية المستويةالجهد المزيد والتام ذو الموجات  أسلوبالاعتماد على 
الشحنات  كثافةوالذي يعتمد بدوره على نظريه توزيع  (WIEN2K)برنامج حاسوب يسمى  

-Wu) ,(GGA) , (LDA) تقريبي مثل  أسلوبمن  أكثروالتي يستخدم فيها  تالقذراداخل 

Cohen) . مركب  دراسةفيBeO  مثل  الممكنةلكل التراكيب  ألحالهتم حساب معادله
wurtzite (W), rocksalt (RS) ،zincblende (ZB)     لكل تركيب  ألبلوره أبعادوتم تحديد

وحساب الحجم والضغط الذي تتكون عنده كل بلوره ومن ثم تم حساب الضغط الانتقالي والذي 
 أو (RS)تركيب إلى (W)مثل الانتقال من تركيب  آخرتركيب  إلى دموجو تركيبيتحول عنده 

لكل تركيب من  الفجوةحساب طاقه  أيضاوتم (RS) تركيب  إلى(ZB)الانتقال من تركيب 
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ج 
هذا  أنمما يعني  ( 6eV~8)تتراوح ما بين    الفجوةطاقه  إنحيث وجد  المذكورةالتراكيب 

  .يبهالمركب هو عازل في جميع حالاته وتراك
  

تم استخدامه لتحديد الانتقال التركيبي   الأسلوبونفس  ZnOمركب  دراسةتم  الطريقةبنفس 
تركيب  إلى (W)ومن تركيب  (RS)تركيب  إلى (W)وحساب الضغط الانتقالي من تركيب 

(CsCl)  ومن تركيب(ZB) تركيب  إلى(RS)  ومن تركيب(ZB) تركيب  إلى(CsCl) 
لكل من التراكيب  ألحالهمعادله  حساب، وقد تم  (CsCl)ركيب ت إلى (RS)من تركيب وأخيرا
طاقه  أنلكل تركيب حيث تبين  الفجوةفي كل حاله وحساب طاقه  ألبلوره أبعادوتم تحديد  السابقة
مما يعني آن هذا المركب هو شبه موصل في  (0.3eV~1.5)لهذا المركب تتراوح من  الفجوة

  .جميع تراكيبه
  

  :التاليةاستطعنا الحصول على النتائج  السابقة الدراسةمن 
  النظرية السابقةالحسابات التي حصلنا عليها تتطابق بشكل كبير مع الحسابات   إن - ١

  .والتجريبية
 .ممكن تحت ضغط مناسب ومعين أخر إلىالانتقال التركيبي من تركيب  إن - ٢

 .يسلك سلوك العوازل في جميع تراكيبه BeOمركب  - ٣

 .الغرفة حرارةعن درجه  BeOوالطبيعي لمركب  ساسيالأهو التركيب  (W)تركيب  - ٤

٥ -  ZnO  في حاله كلوريد السيزيوم فهو  إلاالموصلات في جميع تراكيبه  أشباهله سلوك
  .شبه معدن

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com


 

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com



