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Abstract 

The dynamic shear viscosity of a binary liquid mixture of water and phenol 

has been measured at different temperatures (               ) and 

different concentrations (0.00% up to 100.00% by weight of phenol) by 

using glass capillary viscometer and Brookfield viscometer model DV-I+. 

The critical temperature and critical concentration have been determined to 

be 67.0   and 33.90% by weight of phenol respectively. The mode 

coupling theory (MCT) has been used to calculate the value of background 

viscosity (noncritical part of shear viscosity)          cP, the Debye 

momentum cutoff              and the MCT constant A = 0.050. The 

intermolecular force range L of water and phenol molecules in a binary 

mixture has been calculated to be 11.17  , this large value indicates that the 

mutual force between binary mixture molecules considered as a week 

attractive force. The critical amplitude of specific heat at constant pressure 

at critical concentration and above critical temperature     has been found 

to be       
 

    
 by using the two scale factor university.  

 

 



1 

Chapter One 

Introduction 

A mixture is combination of two or more different materials that are mixed 

but are not combined chemically. Most substances in nature are mixtures of 

pure elements such as air, natural gas, gasoline, seawater, etc. The reason 

for this widespread occurrence is that there is a natural tendency for 

entropy to increase in the mixing process which leads to minimize the 

energy.  

1.1 Binary Liquid Mixtures 

A binary liquid mixture is a system consisting of two liquid substances. 

Pair of liquid are classified as completely immiscible such as benzene and 

water, completely miscible in all proportions like ethanol and water, or as 

partially miscible as diethyl ether and water (Narayanan, 2004: Connors, 

2003: Verma et al, 2005). 

The phase behavior of a binary system is described by a phase diagram as 

shown in Fig.(1.1(a,b)). The most difference between the phase behavior of 

a pure material and a binary mixture is in the characteristics of the phase 

diagram itself. For a pure material, there is a single vapor pressure curve 

represents the vapor – liquid equilibrium phase, whereas for a binary 

mixture, there is a broad region (phase envelope, saturation envelope or 

two – phase region) in which the two phases coexist in equilibrium 

(Dandekar, 2013; Putnis,1992) . 

 

 



2 
 

 

(a)       (b) 

Fig.(1.1): The phase diagram of (a) pure liquid (b) binary liquid mixture 

 

The components of mixture become completely miscible above a certain 

temperature and concentration which is called critical temperature    and 

critical concentration    (Acree, 1984; Kittany, 2014). Any infinitesimal 

change in some thermodynamic parameter such as temperature, 

concentration and specific heat near the critical point will lead to separate 

the mixture to two distinct liquid phases. 

There are two types of liquid-liquid critical points as shown in Fig. (1.2), 

these points are (Habdas, 1999; Stenland, 1995): 

 Upper critical point: it is a maximum value of temperature at which 

the components of mixture become miscible. In the most cases, the 

mixture will be homogenous above the critical points (   and   ). 

 Lower critical point: at which the components of mixture are 

miscible at lower temperature and separable at higher temperature.  

 

𝑋𝑐 

Critical point 

Concentration  
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Fig.(1.2): Phase diagrams of different types of binary mixtures of limited miscibility 

with: (a) lower critical point (b)  upper critical point (c) closed coexistence curve (d) 

two-phase region separated by a one-phase region (Habdas, 1999)      
          

The importance of liquid mixture viscosity in chemical process design 

makes it one of the most measured transport properties. Viscosity of binary 

liquid mixture has direct effect on heat transfer coefficient, which is 

important for heat exchangers and various other heat transfer 

considerations. 

Viscosity data is essential for calculating the critical point at which the 

binary mixture becomes one phase (homogenous). Also, it is used to 

measure and calculate some parameters like background shear viscosity, 

Debye momentum cutoff, and adiabatic coupling constant, isobaric thermal 

expansion coefficient. These parameters play an important role in chemical 

and pharmaceutical industry.    
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1.2 Literature Review 

Studying the thermodynamic and transport properties of binary liquid 

mixtures near the critical points where homogenous mixture could be 

obtained become an important issue in these days. As for example, 

Krishnan who measured the critical points of some binary liquid mixtures, 

reported that the critical temperature and concentration of water-isobutryic 

acid are 50% by weight of water and 25.5 , for phenol-water are 34% by 

weight of phenol and 69   and for water-triethyl amine are 70% by weight 

of water and 19  (Krishana, 1935). 

Katti and Chaudhri measured the viscosity as a function of composition of 

binary mixtures of benzyl acetate with dioxane, aniline and meta-cresol. 

The value of interaction energy has also been calculated for each of the 

mixtures (Katti and Chaudhri, 1964).  

In addition, Pusey and Goldburg measured the intensity and spectral width 

of light scattered by a critical mixture of phenol and water as a function of 

temperature above and below the critical temperature   . The diffusion 

constant D and correlation length    and Fixman term     
  have been 

calculated above critical temperature (Pusey and Goldburg, 1969).   

Ansimore and his group measured the specific heat      (where p is the 

pressure and x is the concentration) of a binary mixture of methanol and 

cyclohexane near the critical point. It is found that for          

       the specific heat given by the formula            . In 

addition the mean range of the intermolecular force has been calculated to 
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be      this value is close to that obtained from light scattering 

experiment (Ansimore et al, 1972). 

Felix and Hyskens measured the dynamic viscosity of phenol and amine 

mixture. They found that the mixing of amines with phenol brings about a 

spectacular increase of viscosity which is in some case becomes more than 

a hundred times greater than that of pure liquid compounds, the high value 

of viscosity of this mixture is thus related to the presence of ions (Felix and 

Hyskens, 1975).   

Sound wave absorption and dispersion near critical point in critical binary 

mixture have been studied numerically by using framework of the Kawaski 

mode coupling theory. They showed that the existing mode coupling 

approach breaks down over a wide range of temperatures and frequencies 

(Harada et al, 1980).  

Ohta and Kawaski studied the dynamic critical exponents of classical 

liquids by using mode coupling theory. They conclude that shear viscosity 

for the spatial dimensionality between two and four exhibits the weak 

power law divergence at critical point (Ohta and Kawaski, 1976: Ohta, 

1980). 

 The critical behavior of ultrasonic attenuation for triethylamine and water 

binary mixture has been studied by using the dynamic scaling theory. The 

experimental values of  
 

  
             has been compared to the calculated 

value based on the dynamic scaling theory at critical temperature. The 

value of 
 

  
            yield a straight line as predicted by theory. In 
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addition the adiabatic coupling constant has been calculated and compared 

to the experimental value (Fast and Yun, 1985).  

P'pein and his group studied the refractive index in a critical binary mixture 

of triethylamine and water. They found that the critical anomaly in the 

refractive index includes an intrinsic effect opposite in sign to the density 

contribution (P'pein et al, 1988). 

Ultrasonic velocity, absorption and shear viscosity have been measured as a 

function of concentration and temperature for a binary solution of 

polyvinylpyrrolidone and water. The result shows that the velocity increase 

non linearly with a temperature and linearly with concentration. Also, the 

viscosity values increase monotonically with concentration and decrease 

with temperature (Spikler et al, 1989). 

Kinematic viscosities and densities of 68 linear, branched, cyclic and 

aromatic hydrocarbons binary liquid systems have been measured at 298.15 

K over the entire composition rang. The McAllister model has been used to 

fit experimental values of kinematic viscosities (Chevaller et al, 1990).   

The refractive index, density, turbidity and specific heat for a mixture of 

triethylamine and water at critical concentration have been measured. The 

values of the correlation length and osmotic compressibility amplitudes 

have been calculated. The universal amplitude combinations   
       

     and   
    

             have been determined, this value agree 

with the two scale factor universality (Zalczer and Beysens, 1990).  

Abdelraziq and his group measured the ultrasonic velocity and absorptions 

at the critical concentration as a function of frequency and temperature for 
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a carbon tetrachloride and coconut oil mixture. The result  indicates that the 

absorption coefficient  at critical concentration increases as the critical 

temperature is approached from high temperature region for all 

frequencies, and it decreases at critical temperature and concentration with 

increasing frequency (Abdelraziq et al, 1992). 

Esquivel-Sirvent and his group studied the absorption and velocity of 

ultrasound in binary mixture of poly (ethylene glycol) and water, they 

found that the ultrasonic absorption decreases with increasing temperature 

at given concentration and increases with increasing concentration at given 

temperature. Velocity increases with increasing temperature and increasing 

concentration, the shear viscosity is decreasing with temperature but 

increasing with concentration (Esquivel-Sirvent, 1993). 

Kob and Andersen tested the mode coupling theory for a supercooled 

binary Lennard-Jones mixture, and calculated the Van Hove, correlation 

function (Kob and Andersen, 1995), intermediate scattering function and 

dynamic susceptility (Kob and Andersen, 1995). 

 Abdelraziq studied the ultrasonic absorption as a function of temperature 

and frequency for a binary mixture of cyclohexane and aniline. The results 

of the absorption coefficient for the critical concentration increase as the 

critical temperature is approached from high temperature region for all 

frequencies (Abderaziq, 1996). The heat capacity of trithylamine and water 

binary mixture has been measured near its lower critical point by using a 

scanning, adiabatic calorimeter. The critical exponent   was determined to 
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be            , consistent with theoretical predictions (Flewelling et al, 

1996).     

The dynamic shear viscosity as a function of molar composition and 

temperature of a binary mixture of aniline-cyclohexane has been reported. 

The results are analyzed in terms of the mode coupling theory. The needed 

dependence of the correlation length on   and t is established using a 

scaling equation of state. The agreement between experiments and theory is 

quite good (D'Arrigo et al, 1997). 

The shear viscosity as a function of temperature near the critical 

temperature and concentration of a binary mixture of nitrobenzene and n-

heptane have been measured and analyzed by using mode coupling theory. 

The Debye momentum cutoff    was determined to be        (Abdelraziq 

et al, 1997). The critical amplitudes of the thermal expansion, the specific 

heat and the adiabatic coupling constant have been calculated by using two 

scale factor universality. The experimental values of 
 

  
 (where    is the 

absorption at critical concentration above the critical temperature) for this 

mixture are compared to the scaling function       and show a good 

agreement with theory. In addition the velocity of this system at critical 

concentration and above critical temperature has been studied; the result 

indicates that the velocity decrease linearly with increasing temperature 

(Abdelraziq et al, 1990).  

The ultrasonic absorption at 5, 7, 10, 15, 21 and 25 MHz, above critical 

temperature for a binary mixture of perfluomethyl - cyclohexane and 

carbon tetrachloride have been measured and analyzed by using the 
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dynamic scaling theory. The values of  
 

  
            show good agreement 

with a theory (Abdelraziq, 2000). 

The experimental values 
        

          
 (where,          is the attenuation per 

wavelength at critical concentration,      is the sound velocity and A(T) is 

the critical amplitude)  from mode coupling theory of aniline and 

cyclohexane binary mixture have been compared with the theoretical 

expressions given by Fixman, Kawasaki, Mistura and Chaban. The 

experimental data at low reduced frequency has been found to agree well 

with the Hornowski's model of A(T). However, for the large values of 

reduced frequency (       the mode coupling theory of Kawaski and 

Shiwa still show poor agreement with the measured data. The correlation 

length               , the adiabatic coupling constant g =   0.15 and 

diffusion coefficient                

 
 of a binary mixture of aniline 

and cyclohexane have been calculated by Abdelraziq (Abdelraziq,  2001). 

The mass density   and speed of sound have been measured for six  binary 

mixtures containing n-alkane at temperature 298.15K. The values of excess 

molar volumes (  ) and deviation in isentropic compressibilities (     

have been calculated by Vyas and Nauliyal. They found that the devation in 

isentropic compressibility is negative for all six binary mixtures, while the 

excess molar volumes exhibit inversion in sign in one binary mixture (n-

heptane + n-hexane) and remaining in the other mixtures (n-heptane + 

toluene, cyclohexane + n-heptane, cyclohexan + n-hexane, toluene + n-

hexane and n-decane + n-hexane) (Vyas and Noutiyal, 2002).  Wahab and 

his group measured the excess mole volumes of a binary mixtures of 
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                       or                             

as a function of mole fraction of            at temperature 303.15K 

(Wahab et  al, 2002). 

The shear viscosity, mutual diffusion coefficient and ultrasonic attenuation 

spectra from 100KHz to 500KHz have been measured at different 

temperatures for the ethylamic and water mixture. The adiabatic coupling 

constant for this mixture has been derived from the amplitude of the 

Bhattacharge-Ferrell term in the ultrasonicspectra (g = 0.19 ) and a 

thermodynamic relation(g = 0.98). This difference in the g values is taken 

as an indication of the limitations of the Bhattacharjee–Ferrell model 

(Brhrends et al, 2002). 

Shear viscosity coefficients of a binary mixture of nitroethan and 3-

metheylpentane have been measured. The noncritical part of viscosity 

             Debye momentum cutoff              the 

intermolecular force range L=10.65    and the constant A = 0.054 in the 

mode coupling theory have been determined by. Our values of    and A 

are in good agreement with the literature values (Abdelraziq, 2002).  

The universal quantity     of some binary liquid mixtures (Nitrobenzene + 

n-heptane, Nitroethane + isooctane, Methanol + n-heptane …) has been 

calculated by Abdelraziq. The results indicates that the value of      

              is agrees with the theoretical value of      
 

  
     for 

n = 1 and d = 3 (Abdelraziq, 2003). 

Iwanowski's group measured the ultrasonic attenuation spectra, shear 

viscosity and mutual diffusion coefficient for a binary mixture of n - 
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pentanol and nitromethane at different temperature near the critical point. 

The relaxation rate of order parameter fluctuation shows power law 

behavior as theoretically predicted. The adiabatic constant g = 0.03 has 

been calculated (Iwanowski et al, 2004). 

Ultrasonic velocity has been studied at frequency 2MHz by using 

ultrasonic pulse echo system. The values of internal pressure, molar free 

volume and dielectric constant have been calculated. It is found that there is 

a linear relation between ultrasonic velocity and acidity constant (Nayakula 

et al, 2005). Chen and his team studied the UV-V spectra of probe phenol 

blue in     + ethanol and     + n-pentane binary mixtures at temperature 

308.1K and different pressures (Chen et al, 2005).  

The ultrasonic absorption and velocity of a binary mixtures of benzene-

coconut oil and hexan -  ,  - dichloroethyl ether have been measured as a 

function of temperature. The ultrasonic absorption at 5, 7, 10, 15, 21 and 25 

MHz and above critical temperature    is analyzed by the dynamic scaling 

theory of Ferrell and Bhattacharjee. The results indicates that ultrasonic 

absorption of these binary mixtures exhibit strong temperature and 

frequency dependence near   . Also, ultrasonic velocity behaves as a 

linearly decreasing with increasing temperature above critical temperature 

(Abdelraziq, 2005). 

The density and viscosity of a binary mixtures of water and three ionic 

liquids (1-ethyl-3-methylimidazolium ethylsulfate, 1-ethyl-3-

methylimidazolium trifluoracetate and 1-ethyl-3-methylimidazolium 

trifluoromethane sulfonate) have been measured at atmospheric pressure 
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and temperature from 278.15K  to 348.15K. The temperature dependence 

of density and viscosity for these mixtures described by an empirical 

second order polynomial and by the Vogel-Fulcher-Tammann equation, 

respectively (Rodriguez and Brennecke, 2006). 

Iwanowski and his group studied the acoustical attenuation spectrometry, 

dynamic light scattering, shear viscosity, density and heat capacity for 

methanol and n-hexane mixture (Iwanowski et al, 2006). The fluctuation 

correlation length, relaxation rate of fluctuation and universal critical 

exponents have been calculated for critical system of 3-methyl pentane, 

nitroethane and cyclohexane (Iwanowski et al, 2008). 

Toumi and his group measured the shear viscosity and the electrical 

conductivity in the vicinity and far from the critical temperature for the 

binary mixture of triethylamine and water with an ionic impurity 

(      ions) at various concentrations. They found that the electrical 

conductivity exhibits a monotonous deviation from the Vogel-Fulcher-

Tammann (VFT) behavior at temperature range              

(Toumi et al, 2011). 

The densities and viscosity correlations for four pure ionic liquids (1-butyl-

3-methylimidazolium thiocyanate, 1-butyl-4-methylpridinium thiocyanate, 

1-butyl-1-methylprrolidinium thiocyanate and 1-butyl-1-

methylpiperidinium thiocyanate) and their mixtures with water have been 

measured at temperatures from 298.15K up to 348.15K and ambient 

pressure. The result of the correlations with the second order polynomials, 

Redlich-Kister equation, and Vogel-Fulcher-Tammann (VFT) equation of 
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density, viscosity, excess molar volume and viscosity deviation are with 

very low standard deviations (Domanska and Krolikowaska, 2012). 

Srilakshmi and his group measured the density, speed of sound and 

viscosity for a binary mixture containing o-anisidine and amyl acetate at 

temperatures 303.15K, 308.15K, 313.15K and 318.15K at atmospheric 

pressure. The adiabatic compressibility ( ), free volume (V), free length 

(   , internal pressure and their excess values have been calculated. They 

found that there exist strong molecular interactions between o-anisidine and 

amyl acetate (Srilakshmi et al, 2014). 

 Qasem modified the analytic function of Fixman's theory to get a good 

agreement with the experimental behavior of the binary liquid mixtures at 

critical concentration and above critical temperature. This modification of 

Fixman's scaling function depends on the ratio of heat capacities at constant 

pressure and volume (Qasem, 2014; Qasem and Abdelraziq, 2014). 

The dynamic shear viscosity at different temperature and concentration of a 

binary mixture of methanol and cyclohexane has been measured by Omar. 

The adiabatic coupling constant g =       , the isobaric thermal expansion 

coefficient              and diffusion coefficient D =     

           have been calculated by using the dynamic scaling theory 

(Omar, 2014; Omar and Abdelraziq, 2014).  

The Debye momentum cutoff of the critical binary mixture of carbon 

tetrachloride and coconut oil has been studied by Kittany, the result was 

             The noncritical part of the dynamic shear viscosity 
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          , the mode coupling theory universal constant A = 0.054 have 

been measured (Kittany, 2014). 

The critical temperature and critical concentration of benzene and coconut 

oil binary mixture have been measured by Abdo. The Debye momentum 

cutoff             , the noncritical part of shear viscosity    

       , the constant A = 0.052 ± 0.003, the correlation length    

      and the intermolecular force rang L = 9.90 have been measured by 

using the mode coupling theory. The intermolecular forces between 

molecules are weak because the value of viscosity is very small (Abdo, 

2014; Abdo and Abdelraziq, 2014). 

1.3 Objectives and Motivations 

The knowledge of thermodynamic parameters and transport properties of 

binary liquid mixtures are interest as they control the field of technological 

application. 

Namely, the binary liquid mixture of phenol and water play vital role in 

chemical industry and chemical research. There are rarely published 

research articles about its physical and thermodynamics properties of this 

mixture. Thus, we are motivated to study the dynamic shear viscosity, 

critical behavior and mode coupling parameters for the mixture of water 

and phenol.  

The main aims of this thesis are: 

 To study the concentration and temperature dependence viscosity 

of binary mixture of water and phenol. 
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 To determine the critical temperature (  ) and critical 

concentration      . 

 To calculate the noncritical part of the measured shear viscosity 

  , Debye momentum cutoff    (Debye parameter), the 

intermolecular force rang L and the constant A by using mode 

coupling approach. 

 To calculate the critical amplitude of specific heat at constant 

pressure     . 

1.4 Organization of the Thesis 

This thesis is divided into five main chapters: 

 Chapter One contains brief introduction to binary liquid mixtures, 

previous studies which are focusing on the properties of binary 

mixture, motivation and objectives of this research. 

 Chapter Two discusses the theory of viscosity for pure liquids and 

binary liquid mixtures, temperature and concentration dependence 

viscosity, and mode coupling theory. 

 Chapter Three has a brief description of the methodology of the 

experiment, the characteristics of sample, experiment apparatus, 

procedure and statistical analysis. 

 Chapter Four reports the result and the relative discussion of the 

measured data, determining the critical points and calculating the 

mode coupling theory (MCT) parameters. 

 Chapter Five lists the concluding remarks about the water and 

phenol binary mixture. 
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Chapter Two  

Theory  

2.1 Introduction 

The viscosity is an important internal property for all fluids; it can be used 

to determine the quality and stability of food system. It is defined as the 

resistance of fluid to flow, this resistance is due to intermolecular friction 

when layers fluids slide by one another (Latini et al, 2006; Pal Arya, 2001). 

In order to clarify the concept of dynamic viscosity, we consider a layer of 

fluid flow between two infinite, horizontal, parallel plates separated by a 

distance h (Fig. (2.1)). The lower layer is fixed while the upper one pulled 

by an external force to move with constant velocity  . This force distorted 

the fluids motion from its original   shape (a b c d) to another shape (a 

      . The force needed to move the upper plate is proportional to the 

area of plate A and the velocity  , and inversly proportional to the distance 

that seperates the plates h, it can be described in the following 

mathematical form (Serway and Vuille, 2001; Totten, 2006; Grot and 

Antonsson, 2009): 

      
 

 
                                                              (2.1) 

Where   is the dynamic viscosity, 
 

 
 is the rate of shear deformation (shear 

velocity). 

The differential form of equation (2.1) is called the Newton's law of 

viscosity 

 

 
    

  

  
                                             (2.2) 
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Where  
 

 
   is the shearing stress (N/  ) and 

  

  
 is the velocity gradient 

or deformation rate (1/s). 

 

 

Fig. (2.1): Fluid flow between two horizontal, parallel plates separated by a distance h 
  

The ratio of dynamic shear viscosity (absolute viscosity) to density of fluid 

at same temperature and pressure is called kinematic viscosity (Liptak, 

1994; Wang et al, 2009; Shashi Meron, 2005). 

  
 

 
                                                          (2.3) 

Where   is the kinematic viscosity in Stoke,   is the absolute viscosity in 

Poise and   is the density in 
 

   
. 

According to equation (2.2) the fluid can be divided into two categories:  

 Newtonian Fluid: the viscosity of these fluids remains constant at 

given temperature. It is independent of shear stress or rate, as shown 

in Fig. (2.2) which represent the linear relationship between shear 

stress and shear rate (Mcketta, 1990; Hartnett et al, 1996). 
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(a)       (b) 

Fig. (2.2): (a) The linear relationship between shear stress and shear rate 

                  (b) The relationship between viscosity and shear  rate  

  

 Non-Newtonian Fluid: in this type of fluids the viscosity at given 

temperature depends on the shear rate, the viscosity may increase or 

decrease depending on the type of fluid (Mcketta, 1990; Berk, 2013;  

Hartnett et al, 1996 ). The non-Newtonian fluids are divided into two 

group: 

(I) Time Independent: the viscosity of fluid does not change as 

a function of time, like psuedoplastic and dilatants fluid. 

(II)  Time Dependent: the viscosity of fluid changes with time 

when measure at a specific shear rate, like thixotropic whose 

viscosity decreases with time at constant shear rate and 

rheopectic material in which the viscosity increases with time 

as shown in Fig. (2.3) (Mcketta, 1992). 
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Fig. (2.3): Viscosity as a function of time for thixotropic and rheopectic materials 

       

2.2 Pure Liquids – Viscosity Theories  

The viscosity of pure fluid is affected by many factors such as temperature, 

pressure, concentration, particle size, attractive force, catalyst, molecular 

weight, shear rate and storage age (Lide, 2005). 

The relationship between dynamic shear viscosity and temperature is fitted 

with Arrhenius-type equation. 

    
  
                                      (2.4) 

Where   is the dynamic shear viscosity (Pa.s), A is a constant (Pa.s),    is 

the activation energy (J/mol), T is the absolute temperature (K) and R is the 

gas constant (J/mol.K) (Fasina and Colley, 2008; Giap, 2010). 

Due to the complex nature of liquids, there is no comprehensive theory to 

describe the viscosity of liquids. Theoretical methods of calculating liquid 

viscosity and molecular dynamic approaches give the result in large 

deviations from the measured data. While, the empirical and semi-

empirical theories provide good results (Viswanath, 2007). 
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Andrade suggested the existence of a linear relation (two-constants 

equation) between the logarithm of dynamic viscosity and the reciprocal of 

absolute temperature. 

       
 

 
                                                      (2.5) 

where   is the dynamic viscosity, A and B are constants determined 

empirically at temperature above the boiling point and T is the absolute 

temperature  (Cheremisinoff, 1996).  

2.3 Dynamic Viscosity of Binary Mixtures 

 The behavior of the viscosity for binary liquid mixtures is like the 

pure liquids except at critical point. Many properties of systems close to 

critical point follow the power laws, so their thermodynamic properties 

diverge or vanish at the critical point. 

There are some models that predict the behavior of viscosity of binary 

liquid mixtures around the critical point such as the mode coupling theory, 

a renormalization group theory and dynamic scaling theory.  

2.3.1 Renormalization Group Theory (RGT) 

The renormalization group theory developed by Wilson (Wilson, 1975). It 

is designed to deal with the fluctuations of all wavelength scales, and to 

predict non-classical critical exponents and universal features near the 

critical point (Ramana and Menon, 2012: Fisher, 1975). 

The basis of this theory is to describe the behavior of ultrasonic attenuation 

in order to calculate the bulk shear viscosity. The expression of sound 
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attenuation coefficient per wavelength at critical concentration (        ) 

can be written as the following equation shows (Kroll and Ruhland, 1981) 

        

     
                                                           (2.6) 

Where          is the sound attenuation coefficient per wavelength at 

critical concentration, u( ) is the velocity of sound wave, H is the critical 

amplitude,       is the scaling function and    
 

  
is the reduced 

frequency, such that    
  

 
 is the characteristic frequency of order 

parameter fluctuations. 

The characteristic frequency    can be written as: 

   
   

     
      

                                                     (2.7)   

Where    is the correlation length at critical point,    is the Boltzmann's 

constant, z and   are critical exponent and t is the reduced temperature. 

The critical amplitude H in equation (2.6) is given by: 

  
  

   
 

          
  

  

                                                             (2.8)  

Where           
    

  
  

      ,   
 ,   

  and   
  are non-universal 

constant and    is critical exponent equals to 0.11. 

2.3.2 Dynamic Scaling Theory (DST) 

The dynamic scaling theory was suggested by Ferrell and Bhattacharjee  

(Ferrell and Bhattarjee, 1981). Then, it was generalized for magnetic 

systems by Halperin and Hohenberg (Hohenberg and Halperin, 1969; 
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Hohenberg and Halperin, 1977). It deals with a scaling function that 

determined directly from acoustical spectrometry. 

Dynamic scaling theory is a theory of critical attenuation in binary liquid 

mixtures based on the frequency-dependent specific heat concept. It 

predicts a linear relationship between 
 

  
        above the critical point, 

as shown in the following equation (Iwanowski, 2007; Abdelraziq, 2000):  

          

  
 [

             

       
     

(
   

  
)

  

  
]  

 (  
  

  
)

 
  

  
             (2.9) 

Where 
          

  
 is the critical absorption at critical temperature and critical 

concentration,      is the sound velocity,      is the critical amplitude  of 

specific heat at constant pressure,   (  ) is the specific heat at a 

characteristic reduced temperature,    and    are critical exponents equals 

to 0.11 and 1.9 respectively,   
 

  
  

     is dimensionless scaling factor of 

order unity and 
  

  
 is the classical absorption.  

The specific heat at constant pressure of binary mixture of critical 

composition is given by: 

       
   

                                              (2.10) 

Where     is the background specific heat at constant pressure. 

The adiabatic coupling constant g is a dimensionless parameter depends on 

the pressure, temperature and thermal expansion. It was introduced by 

Ferrell and Bhattachariee and is given by: 

               
   

  
 

   

   
                                               (2.11) 
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                                                       (2.12) 

Where    is the mass density at critical point,    is the isobaric thermal 

expansion coefficient given by: 

         
                                                           (2.13)  

Where     and     are the critical and background terms of isobaric 

thermal expansion coefficient.  

The critical term of absorption coefficient             can be written as a 

function of reduced frequency 

           

            
 

 

  
                                      (2.14) 

Where             is the critical term of absorption coefficient at critical 

concentration and temperature T,              is the critical term of 

absorption coefficient at critical concentration and critical temperature, 

      is the theoretical scaling function and    is the dimensionless 

reduce frequency which given as: 

   
 

  
 

   

     
                                                         (2.15) 

Where     =     is the angular frequency,    is a characteristic 

temperature dependent relaxation rate given by
 

                      =  
   

       = 
    

       
     =                      (2.16) 
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2.3.3 Mode-Coupling Theory (MCT) 

The mode coupling theory has been developed by Kawasaki (Kawasaki, 

1970), Perl and Ferrell (Perl and Ferrell, 1972). It is used to explain the 

experimental behavior of binary mixtures at critical concentration and 

above critical temperature. 

This theory applied when the modes of one fluid perturbed by the modes of 

the other, these perturbations lead to coupling and exchange of energy. The 

basic idea is that nonlinear couplings between the slow dynamical modes 

can lead to divergences in kinetic coefficients like viscosity (Kittany, 

2014).  

The mode-coupling theory predicts a critical anomaly of shear viscosity 

coefficient (Abdelraziq, 2002).  

    

 
 

  

 
                                            (2.17) 

Where    is the noncritical part of measured shear viscosity (The 

background viscosity), A is constant, A = 
 

    
         (D’Arrigo et al, 

1977),    is the Debye momentum cutoff and   is the correlation length. 

The background viscosity (  ) is used to dissipate the long wavelength 

modes of motion, this damping can be attributed to a dispersion medium 

(Robert, 2008). At critical concentration, the dynamic shear viscosity   as a 

function of reduce temperature can be written as a power law (Kawasaki, 

1976): 

                                                            (2.18) 
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Where        are critical exponents,     = 0.04, t is the reduced 

temperature   
    

 
  (Klein and Woermann, 1978; Abdelraziq, 2002). 

The correlation length (   is a measure of the range through which 

fluctuations in one region of space are correlated with those in the other 

region (Sessoms et al, 2009). It is related to critical temperature as the 

following equation shows (Chang et al, 1971; Abdelraziq, 2002): 

                                                               (2.19)  

Where the    is the critical amplitude of the correlation length of the 

concentration fluctuations, t is the reduced temperature and   is critical 

exponent and it is equal to 0.64. 

The intermolecular force range is responsible for the mechanism of 

momentum and energy transfers between molecules in dense fluid and in 

particular in liquids (Byung, 2006). It is represented as a function of 

correlation length around the critical point (Klein and Woermann, 1978): 

           
      ⁄

                                        (2.20) 

Where L is the intermolecular force,    is the critical temperature for binary 

system (K) and    is critical exponent (       . 

2.4 Molecular Vibration Modes 

Molecules are made of atoms connected by chemical binds (distance 

between atoms) is not fixed. These atoms are in periodic motion while the 

molecule as a whole has constant translational and rotational motion this 

periodic motion known as molecular vibration which can be considered 
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like motion of particles connected by spring (harmonic oscillator) 

(Guozhen, 2008; Dresselhaus et al, 2008). 

A nonlinear molecule with N atoms has 3N-6 degree of freedom for 

vibrations of 3N-6 modes, 6 correspond to degrees of freedom for 

translation and rotation of the center of mass, which have no or very small 

restoring force. Any atomic motion of the molecule can be expressed by a 

linear combination of these 3N-6 independent, orthogonal vibrations called 

normal modes. A linear molecule has 3N-5 normal modes, since we need to 

subtract three translational and two rotational degrees of freedom, as 

rotation about the molecular axis doesn't change in motion. For example, 

water (     has 3(3) – 6 = 3 normal modes, and HCN has 3(3) – 5 = 4 

normal modes (Jorio et al, 2011; Lewars, 2010). 

Vibrations divided into two basic categories (Serdyuk et al, 2007): 

 Stretching vibration: which involves a continuous change in 

interatomic distance along the axis of the bound between atoms 

(change in the length of bond). 

 Bending vibration: which represented the change in the angle 

between two bonds. It classifies into four types: scissoring, rocking, 

wagging and twisting vibrations. The stretching and bending 

vibrations modes are illustrated in Fig.(2.4).    
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Fig.(2.4): Types of molecular vibration. Note that (+) the motion towered the reader and 

(-) motion away from the reader    
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Chapter Three 

Methodology 

The samples of a binary liquid mixture have been prepared from phenol 

and pure water with different concentration (0.00%, 10.17%, 20.80%, 

30.20%, 31.80%, 32.90%, 33.90%, 35.00%, 37.10%, 40.20%, 49.80%, 

59.79%, 70.40%, 79.77%, 89.90%and 100.00% by weight of phenol). The 

dynamic shear viscosity for each sample has been measured at temperature 

range from 32.0   up to 75.0   by using glass capillary viscometer and 

Brookfield viscometer model DV-I+. 

3.1 The Samples 

3.1.1 The Characteristics of Phenol and Water Materials  

 Phenol: it is an organic compound with molecular formula       . 

It consists of phenyl group (      and hydroxyl group (    as 

shown in Fig. (3.1). Phenol is soluble in water with rate 84.2 g 

phenol in 1000 ml water (Ahluwalia and Raghav, 1997; Mishra et 

al, 2013). Phenol (carbolic acid) is the simplest aromatic alcohol 

and it can act in intermolecular interactions as both proton donor 

and proton acceptor (Gor et al, 2011).  

 

Fig. (3.1): Chemical structure of phenol. 
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 Distilled water: is a chemical compound with chemical formula    . 

Water is a colorless liquid material at standard temperature and 

pressure (Manaha, 2002). Some physical and chemical properties of 

water and phenol are given in table (3.1). 

Table (3.1): Physical and chemical properties of water and phenol. 

Property Phenol Water 

Chemical Formula            

Physical State Solid Crystalline Liquid 

Color White Colorless 

Solubility in water Soluble in water ____ 

Melting point 40.5  0  

Boiling point 181.7  100  

Density 1.07 g/    1 g/    

Dynamic viscosity 

(at 27 ) 

8.56 cP 0.89 Cp 

Dynamic viscosity 

(at 20 ) 

12.72 cP 1.0028 cP 

Purity 99.5-100% 100% 

3.1.2 The Characteristics of Phenol and Water Binary Mixture 

In an aqueous solution, phenol is easily hydrated and forms the phenol-

water complex. The hydrogen bonded of phenol with water is very 

complex; there are three configurations of the phenol-water mixture (Dai, 

1995; Gor et al, 2011; Kryachko and Nakatsuji, 2002): 

(I) With the hydrogen bonding between the phenol hydrogen from 

hydroxyl group and the water oxygen (PW1). 

(II) With the hydrogen bonding between the phenol oxygen and the 

water hydrogen (PW2). 
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(III) With water molecule above and in the center of the benzene ring 

(PW3). These three complexes are presented in Fig.(3.2). 

 

 

Fig.(3.2): (a) Phenol molecules (b) PW1 complex (c) PW2 complex (d) PW3 complex 

There is a strong anharmonic coupling between the hydrogen bonded OH 

stretching and bending modes in water and phenol complex (Yamamoto et 

at, 2003). 

3.2 Experimental Apparatus 

3.2.1 Viscosity Apparatus 

 A Brookfield Viscometer Model DV-I+: 

It was used to measure the dynamic viscosity from 100 up to 

        cP with accuracy     (Fig. (3.3(a)). It consists of a set 

of seven spindles (RVSPINDLE SET) and UL-ADAPTER. The 

rotational speeds of the spindles are divided into two set. The first is: 
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0.0, 0.3, 0.6, 1.5, 3, 6, 12, 30, 60RPM and the second set is: 0.0, 0.5, 

1, 2, 2.5, 4, 5, 10, 20, 50, 100 RPM (Brookfield manual, 1999). 

 Glass Capillary Viscometer:  

It is used to calculate the viscosity of liquid sample by measuring the 

time required for the level of liquid to drop from one mark to the 

other (Fig. (3.3 b)), according to the following equation (Viswanath, 

2007; Troy and Beringer, 2006): 

          (3.1) 

Where    is the dynamic viscosity. K is constant of the viscometer 

(       ,   is the density of liquid (mg      and t is the flow 

time (s). 

 

 

(a) (b) 

Fig. (3.3): (a) A Brookfield Viscometer Model DV-I+ 

                 (b) Glass Capillary Viscometer 
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3.2.2 Density Apparatus 

The densities of the pure liquids of water and phenol have been measured 

by using the following instruments: 

1. The 10 ml pycnometer (density bottle), it is shown in Fig.(3.4.a). 

2. HX-Z analytical balance: it used to measure the mass of liquids with 

accuracy   . It is shown in Fig.(3.4.b). 

 

 

(a)                                             (b)           

 Fig. (3.4): (a) The 10ml pycnometer (b) The HX-Z analytical balance 

The density of a binary mixture of water and phenol has been measured at 

different temperature for each concentration. 

3.2.3 Temperature Apparatus 

 Digital Prima long Thermometer:  

It is used to measure the temperature of the samples with accuracy 

   , the range of the temperature from -50  up to 200  (Fig. 

(3.5.a)). 

 Julabo F25-MV Refrigerated and Heating Circulator: 

It is used to control the temperature of the samples with accuracy 

    (Fig.(3.5.b)). 
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(a)                                 (b) 

Fig. (3.5): (a) The Digital Prima Long Thermometer  

                 (b) The Julabo F25-MV Refrigerated and Heating  Circulator 

3.3 Procedure  

3.3.1 Samples Preparation 

The samples of a binary mixture of water and phenol have been prepared 

according to the following equation: 

    
   

  
      

      

           
                   (3.3) 

Where     is the concentration by weight of phenol,     is the mass of 

phenol,     is the total mass,     the density of phenol,      is the volume 

of phenol,    is the density of water and     is the volume of water. 

Fig.(3.6) shows the water and phenol samples at different concentrations  

(30.20% and 33.90% by weight of phenol) and different temperatures (75.0 

  and 50.0  ) respectively. 
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(a)                                    (b) 

Fig.(3.6):Water and phenol mixture (a) at   = 30.20% by weight of    phenol and T= 

75.0   (b) at   = 33.90% by weight of phenol and T =  50.0    

3.3.2 Density Measurements 

The density of pure liquids water and phenol at room temperature was 

measured by using the pycnometer. The mass of pycnometer when it is 

empty and filled with liquids is measured by using HX-Z analytical 

balance. The density was calculated from the next equation: 

  
     

 
                                                       (3.2) 

where    is the mass of empty pycnometer in gm,    the mass of filled 

pycnometer in gm and V is the volume of liquid in    . 

The measured densities for distilled water is 0.9987 gm/    and phenol is 

1.1437 gm/   .  
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3.3.3 Viscosity Measurements
1
 

The Brookfield viscometer model DV-I+ was used to measure the viscosity 

of pure phenol. The sample was put in the jacket of the viscometer; the 

spindle/speed (a spindle at specific speed) was set at 100 rpm. 

The viscosities of the other samples have been measured by using glass 

capillary viscometer. The time required for the level of liquid to drop 

between two mark points has been measured by using stopwatch. The 

viscosity at each temperature was calculated by using this formula 

(Generalic, 2014): 

   
      

    
                                                            (3.4) 

Where the    is the viscosity of the sample,    is the density of the sample, 

   the average flow time of sample,    is the viscosity of water,    is the 

density of the water and    is the average flow time of water. 

3.4 Statistical Analysis 

The measured data were tabulated and statistically analyzed by using 

computer software program (Microsoft excel). The relationship between 

viscosity and temperature of a binary mixture of water and phenol for each 

concentration was discussed. 

The coefficient of determination    was calculated for each curve, which 

measures the strength of correlation between the viscosity of a binary 

mixture of water and phenol and the temperature.   

                                                           
1
 Each measured datum of the shear viscosity of water and phenol samples represents 

the average of three measurements 
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Chapter Four 

Result  

The dynamic shear viscosities for a binary mixture of water and phenol are 

measured at different temperatures                and different 

concentrations 0.00%, 10.17%, 20.80%, 30.20%, 31.80%, 32.90%, 

33.90%, 35.00%, 37.10%, 40.20%, 49.80%, 59.79%, 70.40%, 79.77%, 

89.90% and 100.00% by weight of phenol. 

4.1 Viscosity – Temperature Dependence 

4.1.1 Viscosity of Pure Liquids 

 The values of dynamic shear viscosity and the natural logarithm of 

the dynamic shear viscosity of pure water and phenol are calculated in 

Table (4.1). 
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Table (4.1): The reciprocal of the absolute temperature and the natural 

logarithm of the dynamic shear viscosity of the pure water and phenol 

T( )  

 
          

                                  

32.0 3.277 0.765 - 0.267 Solid - 

40.0 3.193 0.653 - 0.426 4.280 1.454 

45.0 3.143 0.596 - 0.517 3.678 1.302 

50.0 3.094 0.547 - 0.603 3.291 1.191 

55.0 3.047 0.504 - 0.685 2.934 1.076 

57.0 3.028 0.489 - 0.715 2.681 0.986 

58.0 3.019 0.481 - 0.731 2.705 0.995 

59.0 3.010 0.474 - 0.746 2.735 1.006 

60.0 3.001 0.467 - 0.761 2.537 0.931 

61.0 2.992 0.460 - 0.776 2.459 0.900 

62.0 2.983 0.453 - 0.791 2.421 0.884 

63.0 2.974 0.447 - 0.805 2.288 0.827 

64.0 2.966 0.440 - 0.820  2.170 0.774 

65.0 2.957 0.434 - 0.834  1.849 0.614 

66.0 2.948 0.428 - 0.848 1.822 0.599 

67.0 2.939 0.422 - 0.862 1.790 0.582 

68.0 2.931 0.416 - 0.877 1.719 0.542 

69.0 2.922 0.410 - 0.891 1.693 0.526 

70.0 2.914 0.404 - 0.906 1.779 0.576 

75.0 2.872 0.378 - 0.972 1.604 0.473 

*    the dynamic shear viscosity of distilled water. 

*     the dynamic shear viscosity of pure phenol. 

 

The dynamic shear viscosity of pure materials of water and phenol as a 

function of temperature are plotted in Fig. (4.1). 
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Fig. (4.1): The dynamic shear viscosity of water and phenol as a function of  

temperature  

The data which is presented in table (4.1) and related result in Fig.(4.1) 

indicate that there is inversely relationship between dynamic shear 

viscosity and temperature for both of  water and phenol liquids. The values 

of the dynamic shear viscosity and the mass density for phenol liquid are 

higher than the values of pure water, the measured values of the mass 

density for pure water, pure phenol and all different concentration samples 

is calculated and reported in table (A.2) in appendix A.  

Fig.(4.2) shows dependency of the natural logarithm of dynamic shear 

viscosity on the reciprocal of the absolute temperature for water and phenol 

liquids. The numerical value of the constants A and B in equation (2.5) 

[       
 

 
] are determined by fitting a linear relation between        and 

 

 
. 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

30 40 50 60 70

η (x=0.00%) η (x=100.00%) 

     

η
 𝑐
𝑃

  



39 

 

Fig. (4.2): The logarithm of the dynamic shear viscosity as a function of the reciprocal 

of absolute temperature for water and phenol 

The plots show that        - 
 

    
 linearly depend for pure phenol liquid at 

         . The mathematical relationships can be presented by,   

  (   )            

 
                                 (4.1) 

Where A = - 9.939 and B =            . The correlation coefficient 

          . 

The linear relation between        and  
 

    
 for distilled water is described 

as: 

                 

 
                                     (4.2) 
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Where A = - 5.955 and B =            . The correlation coefficient 

          . 

In equations (4.1) and (4.2),    and     are the dynamic shear viscosity for 

water and phenol respectively and T(K) is the absolute temperature. 

These analysis shows that the dynamic shear viscosity of water and phenol 

exponentially increase with increasing temperature.  

4.1.2 Viscosity of Binary Liquid Mixture Samples 

The results of the dynamic shear viscosities of a binary mixture of water 

and phenol at different temperatures and concentrations are given in Table 

(A.1). 

The behavior of the dynamic shear viscosities of water – phenol samples 

are presented in Fig.(4.3), Fig.(4.4) and Fig.(4.5). The dynamic shear 

viscosity for all samples decreases as the temperature increase. There are 

some fluctuations of viscosity values at certain temperatures due to 

contamination of viscometer and air bubbles that leads to increase the 

measured flow time and the viscosity value.  

The one phase solution (homogenous solution) of water and phenol mixture 

is observed experimentally at concentration equals to 33.90% by weight of 

phenol. 

 



41 

 

Fig. (4.3): The dynamic shear viscosity of water-phenol mixture as a function of 

temperature at concentrations 10.17%, 20.80%, 30.20% and 40.20% by weight of 

phenol  

     

 

Fig. (4.4): The dynamic shear viscosity of water-phenol mixture as a function of 

temperature at concentrations 31.80%, 32.90%, 33.90%, 35.00% and 37.10% by weight 

of phenol  

0

0.5

1

1.5

2

2.5

40 45 50 55 60 65 70 75 80

η (x=30.2%) η (x=10.17%) η (x=20.80%) η (x=40.20%) 

0

0.5

1

1.5

2

2.5

3

40 45 50 55 60 65 70 75 80

η(x=31.80%) η(x=32.90%) η(x=33.90%)

η(x=35.00%) η(x=37.10%)

     

η
 𝑐
𝑃

  

     

𝛈
 𝒄
𝑷

  



42 

 

Fig. (4.5): The dynamic shear viscosity of water-phenol mixture as a function of 

temperature at concentrations 49.80%, 59.79% 70.40%, 79.77% and 89.90% by weight 

of phenol . 

The anomaly behavior was noticed in Fig.(4.4) and more clear in  Fig.(4.6) 

which represented the relationship between dynamic shear viscosity and 

temperature at concentrations 32.90%,  33.90% and 35.00% by weight of 

phenol and temperature range from 60   up to 75  . 
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Fig. (4.6): The dynamic shear viscosity of water - phenol mixture as a          function 

of temperature at concentrations 32.90%, 33.90%           and 35.00% by weight of 

phenol  

Fig.(4.4) and Fig.(4.6) show anomaly at concentration 33.90% by weight of 

phenol and temperature 67 , this point is considered to be a critical point 

where water and phenol liquids become one solution (one phase). 

The critical concentration and critical temperature of a binary mixture of 

water and phenol were measured experimentally by Krishnan (Krishnan, 

1935) and determined to be 34% by weight of phenol and 69   

respectively. Our values of the critical points agree with the Krishnan 

measured values.  

Our result was also in good agreement with Howell (             

      by weight of phenol) and Campbell (                   by 
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weight of phenol) experimental results of critical temperature and critical 

concentration (Howell, 1932; Campbell and Campbell, 1937).  

The characteristic thermal energy (kT) is equal to the phonon vibration 

energy (ћ ) thus during thermal transport, the phonon frequency is  

  
  

 
             . 

4.2 Kinematic Viscosity near Critical Point 

The measured values of the mass density, kinematic and dynamic shear 

viscosity of a binary mixture of water and phenol at the critical 

concentration and around critical temperature are given in Table (4.2). 

Table (4.2): The measured mass density, dynamic and kinematic shear 

viscosity for a binary mixture of water and phenol at critical 

concentration at different temperatures 
T(   60.0 61.0 62.0 63.0 64.0 65.0 66.0 67.0 68.0 69.0 

      1.393 1.329 1.235 1.115 0.955 1.070 1.090 1.108 0.991 0.731 

  
  

   
  

0.9519 0.9438 0.9333 0.9225 0.9137 0.9180 0.9208 0.8952 0.8973 0.9260 

       1.463 1.408 1.324 1.208 1.045 1.166 1.184 1.238 1.104 0.790 

The measured mass density (Table 4.2) of water-phenol sample at critical 

concentration (         by weight of phenol) decreases as the 

temperature increases because the average kinetic energy of water-phenol 

molecules increases with temperature. At temperatures above 66.0   there 

is anomaly behavior. 

The kinematic and dynamic shear viscosities of a binary mixture of water 

and phenol have been plotted as a function of temperature at critical 

concentration (          by weight of phenol) as shown in Fig.(4.7). 
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Fig. (4.7): The dynamic and kinematic shear viscosity of water-phenol  mixture as a 

function of temperature at critical concentration  

The kinematic shear viscosity curve (Fig.(4.7)) shows anomalous behavior 

around the critical point. The value of kinematic shear viscosity at critical 

point (   1.238 cSt) is higher than the value of the dynamic shear 

viscosity (   1.108 cP). 

4.3 Viscosity – Concentration Dependence 

The dynamic shear viscosities of water and phenol binary mixture as a 

function of concentration have been plotted in Fig. (4.8) for six different 

temperatures 32  , 40 , 50 , 55 , 60  and 67 . 
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Fig. (4.8): The dynamic shear viscosity of water-phenol mixture as a function of 

concentration at temperatures 32.0, 40.0, 50.0,   55.0, 60.0 and 67.0   

In general, the dynamic shear viscosity   of a binary mixture of water and 

phenol increases as the concentration (by weight of phenol) increases, 

except in the region around the critical concentration (        by weight 

of phenol) there is anomaly behavior. 

4.4 The Mode - Coupling Theory 

The mode-coupling theory of Kawasaki, Perl and Ferrell (Kawasaki, 1970; 

Perl and Ferrell, 1972) can be used to determine the background viscosity 

  , the constant A, Debye momentum cutoff    and the intermolecular 

force range L at critical concentration and above critical temperature. 

4.4.1 The Background Viscosity    

The measured data of the dynamic shear viscosity at critical concentration  

          and above critical temperature             are given 

in Table (4.3). 
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Table (4.3): The dynamic shear viscosity measurements at critical 

concentration and above critical temperature  

T(   T(K) T       ln (t) ln (   

67.2 340.35 0.000588 0.928 -7.43882 -0.07383 

67.4 340.55 0.001176 0.911 -6.74568 -0.09316 

67.6 340.75 0.001764 0.900 -6.34021 -0.10427 

67.8 340.95 0.002352 0.889 -6.05253 -0.11716 

68.4 341.55 0.004116 0.862 -5.49291 -0.14770 

68.7 341.85 0.004998 0.847 -5.29876 -0.16591 

The linear relationship between the natural logarithmic of dynamic shear 

viscosity        and the natural logarithmic of reduced temperature ln (t) 

has been represented in Fig. (4.9). 

 

 

        Fig.(4.9): ln(ƞ) Vs. ln(t)  

According to the equation          , the natural logarithmic of dynamic 

shear viscosity can be written as the follows: 

                                                   (4.3) 
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By comparing equation (4.3) with the result in Fig.(4.9), the value of 

critical exponents constant      is presented by the slope of the curve 

which equal to 0.042. It is consistent with the theoretical value (    

      (Klein and Woermann, 1978). The intercept of the curve represented 

the natural logarithmic of the background viscosity                , the 

value of the background viscosity (noncritical part of the measured shear 

viscosity) equals to 0.684 cP. This means that above         cP the long 

wavelength modes was dissipate (page 29). 

The power law of the dynamic shear viscosity equation (2.7) and the 

theoretical value of critical exponent are used to calculated the background 

viscosity by plotting   Vs.       , as shown in Fig.(4.10). 

 

 

Fig.(4.10): The measured dynamic shear viscosity at critical concentration and above 

critical temperature Vs.        
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The linear relationship between   and        has been represented in 

Fig.(4.10). The value of the background viscosity of a binary mixture of 

water and phenol has been calculated from the slope            , this 

value is much close to the    value  which equals to 0.684cP that found by 

using Fig.(4.9).  

4.4.2 The Constant A 

The value of constant A at critical concentration and above critical 

temperature can be determined by using the mode coupling theory of 

Kawasaki, Peral and Ferrell, equation (2.6). 

Where 
  

 
 is the relative anomalous shear viscosity,    is the Debye 

momentum cutoff and   is the average correlation length of the 

concentration fluctuations which is given by the power law, equation 2.8: 

(        , with     being the correlation length and equals to 2.2   for 

water and phenol binary mixture (Abdelraziq, 2015). 

The values of the anomalous shear viscosity and the average correlation 

length of a binary mixture of water and phenol have been calculated at 

critical concentration and above critical temperature; the results are given 

in Table (4.4).  
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Table (4.4): The dynamic shear viscosity measurements and the 

logarithm of the average correlation length at critical  concentration 

and above critical temperature 
T( ) T(K) t   ln( )     

 
 

67.2 340.35 0.000588 257.0589 5.549305 0.928 0.263 

67.4 340.55 0.001176 164.9580 5.105691 0.911 0.248 

67.6 340.75 0.001764 127.2550 4.846193 0.900 0.240 

67.8 340.95 0.002352 105.8557 4.662077 0.889 0.230 

68.4 341.55 0.004116 73.98946 4.303923 0.862 0.206 

68.7 341.85 0.004998 65.34381 4.179663 0.847 0.191 

 

 

Fig.(4.11): The anomalous shear viscosity at critical concentration and above critical 

temperature Vs. the logarithmic of average correlation length 

 

Fig.(4.11) shows the linear relationship between the anomalous shear 

viscosity and the logarithmic of the average correlation length with slope 

equals to A value, which is 0.050.  
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The value of the MCT constant A was calculated for many different binary 

liquid mixtures, for example, Swinney and Henry, D'Arrigo and his team 

and Abdelraziq group determined the value of A experimentally as 0.054, 

0,056 and 0,058 respectively (Swinney and Henry, 1973; D'Arrigo et al, 

1979; Abdelraziq et al, 1996). 

The measured value of the MCT constant A is in a good agreement with 

the theoretical value which equals to 0.054 (D'Arrigo et al, 1997). The 

value of the constant A doesn’t depend on the type of mixtures. 

4.4.3 Debye Momentum Cutoff    

The value of Debye momentum cutoff (the upper cutoff wave length)    

can be calculated by using the intercept of Fig. (4.11) and the measured 

value of the MCT constant A. By using equation (2.6), the value of    is 

0.7866    , this mean that all modes with momentum value greater than 

0.7866     are not allowed. Above this value the mixture will lose its 

properties and separated into multiphase mixture. 

Determining Debye momentum cutoff of water-phenol binary mixture 

supports the MCT of the critical viscosity. 

4.4.4 The Intermolecular Force Range L (Debye Parameter)  

The intermolecular force range L (Debye parameter) has been determined 

by using equation (2.9): (           
       

 , where    is the correlation 

length equals to 2.2 Å (Abdelraziq, 2015),    (= 340.15 K) is the critical 

temperature of a binary mixture of water and phenol and   is the critical 

exponent (      ). 
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Substituting the values of   ,    and   in equation (2.9), L value is found to 

be         . The large value of the Debye parameter L indicates that the 

mutual forces between water and phenol molecules in a binary mixture 

considered as a weak attractive force.  

The origin of this force is due to interaction between positive and negative 

ions in addition similar type of ions that cause columbic type force. 

Particularly there exist attractive columbic forces between phenol hydrogen 

and water oxygen also between phenol oxygen and water hydrogen that are 

clearly mention in section 3.1.2.    

4.5 Two-Scale-Factor Universality 

 Specific heat capacity at constant pressure at critical temperature can be 

calculated by using the two scale factor universality (Hohenberg et al, 

1976). 

       
     

  
 

 

                                                   (4.3) 

Where    is the universal quantity,   is the critical exponent equals to 0.11, 

   is the mass density at the critical temperature (          
  

   
 for 

binary mixture of water and phenol, calculated in this work),    = 1.3806 

         is the Boltzmann's constant, d = 3 is the dimension and    is the 

correlation length equals to 2.2     for water – phenol binary mixture. 

 Substituting all the previous parameters in equation (4.3). The value of 

specific heat at constant pressure at critical temperature equals to 259.16 
 

    
 . 
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Chapter Five 

Discussion   

The critical temperature and critical concentration of a binary liquid 

mixture of water and phenol were measured, the results were           

and           by weight of phenol, these measured values of critical 

points are agreed with Howell, Krishnan and Campbell experimental 

results (Howell, 1932; Krishnan, 1935; Campbell and Campbell, 1937). 

The background shear viscosity    for a binary liquid mixture of water and 

phenol around critical points was calculated to be 0.684 cP . This value is 

larger than the background shear viscosity of nitroethane-3-methylpentane 

(             (Abdelraziq, 2002), and it is smaller than the values of the 

background viscosity of     -coconut oil (            (Kittany, 2014), 

benzene-coconut oil (            (Abdo, 2014) and nitrobenzene-n-

heptane (           (Abdelraziq et al, 1997) binary mixtures. The 

difference in     value are due to the physical properties (density, viscosity 

and intermolecular force) of each binary mixture. 

The value of the MCT constant A at critical concentration and above 

critical temperature was found to be 0.050 which is in a good agreement 

with the theoretical value (A = 0.054) and it doesn’t depend on the type of 

mixture. The Debye momentum cutoff was calculated to be 0.7866     , 

the values of background shear viscosity, Debye momentum cutoff and the 

constant A for some binary mixtures are shown in table (5.1). 

 The intermolecular force range L (Debye parameter) was calculated to be 

11.17  . This large value indicates that the mutual force between water and 

phenol molecules in a binary mixture considered as a week attractive force. 
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Table (5.1): The measured values of background shear viscosity and 

Debye momentum cutoff of some binary liquid mixtures 

Binary liquid 

mixture 

Background 

viscosity (    

Debye 

momentum 

cutoff (    

Intermolecular 

force range (L) 

Constant 

A 

Water – phenol 0.684 cP 0.7866     11.17   0.0500 

     - coconut 

oil 

2.590 cP 0.1260     5.50   0.0538 

benzene - 

coconut oil 

1.300 cP 0.3580     9.90   0.0520 

Nitroethane - 3-

methylpentane 

0.358 cP 2.0000    9.30   0.054 

nitrobenzene - 

n-heptane 

0.700 cP 0.2750     10.65   0.058 

The measured and calculated parameters for water and phenol binary 

mixture which are found in this research and other works are summarized 

in table (5.2). 

Table (5.2): Summary of the measured results in this work and 

previous works  

Parameter This work Previous works 
   ( ) 67. 0       

      

      

   0.3390         

        

        

   (cP) 0.684  - 

   (   ) 0.7866  - 

L ( )       - 

    (
 

    
) 259.16 - 

A 0.050 - 

Where, 
(a)

:( Krishnan, 1935), 
 (b)

: (Howell, 1932), 
(c)

:( Campbelland 

Campbell,1937).                                  
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Chapter Six 

Conclusions and Future Work 

The dynamic shear viscosity around critical points (at critical concentration 

and above critical temperature) of a binary mixture of water and phenol 

was studied by using the mode coupling theory. 

The inversely relationships between dynamic shear viscosity and 

temperature for water and phenol samples of different concentrations were 

studied. The anomalous behavior of the dynamic shear viscosity for this 

binary liquid mixture was detected at temperature equals to 67.0   and 

concentration equals to 33.90% by weight of phenol. 

The values of the background viscosity   , the intermolecular force range 

and the MCT constant A were determined for water and phenol binary 

mixture the results were 0.684 cP, 11.17    and 0.050   0.005 respectively.  

The Debye momentum cutoff was found to be 0.7866    , this mean that 

all modes with momentum value greater than 0.7866     are not allowed 

and above this value the mixture will lose its properties and separated into 

multiphase mixture. 

The critical amplitude of specific heat at constant pressure was calculated 

using the two scale factor universality, the result was             
 

    
. 

As a future work, the thermal expansion coefficient, heat capacity at 

constant pressure, refractive index and susceptibility for a binary mixture of 

water and phenol can be measured at critical concentration and above 

critical temperature. In addition, the dynamic shear viscosity of different 

types of binary liquid mixtures can be measured around critical point, it can 
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be used to find the MCT parameters (the background viscosity   , the 

constant A, Debye momentum cutoff    and the intermolecular force range 

L or Debye parameter).     
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Appendix A 

The measured data of the dynamic shear viscosity and the mass density of a 

water and phenol samples at different concentrations (from 0.00% to 

100.00% by weight of phenol) and different temperatures (      

   ) are listed in tables (A.1) and (A.2) 
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Table (A.1): The dynamic shear viscosity measurements for a binary mixture of water and phenol at different temperatures 

and concentrations  
T 

(   
      
0.00% 

      
10.17% 

      
20.80% 

      
30.20% 

      
31.80% 

      
32.90% 

      
33.90% 

      
35.00% 

      
37.10% 

      
40.20% 

      
49.80% 

      
59.79% 

      
70.40% 

      
79.77% 

      
89.90% 

      
100.0% 

32 0.765 0.871 0.995 1.875 2.204 2.625 2.504 3.330 3.095 2.255 2.648 3.396 3.157 3.317 3.334 Solid* 

40 0.653 0.806 0.839 2.147 1.959 2.058 2.285 2.758 2.460 1.879 2.070 2.600 2.502 2.735 2.614 4.280 
45 0.596 1.074 1.139 3.549 2.940 2.830 2.950 3.684 3.306 2.794 2.848 3.994 3.391 3.671 3.534 3.678 
50 0.547 0.644 0.711 1.832 1.758 1.617 1.750 2.008 1.948 1.586 1.724 2.359 2.029 2.211 2.037 4.937 

55 0.504 0.605 0.638 1.664 1.487 1.463 1.537 1.923 1.738 1.418 1.568 1.979 1.876 2.104 1.938 2.934 
57 0.489 0.569 0.604 1.408 1.413 1.351 1.467 1.722 1.757 1.340 1.463 1.896 1.863 2.025 1.859 2.681 

58 0.481 1.015 1.071 2.433 2.390 2.399 2.608 3.128 3.052 2.344 2.700 3.292 3.175 3.637 3.307 2.705 
59 0.474 0.558 0.592 1.306 1.335 1.255 1.319 1.698 1.592 1.249 1.421 1.775 1.736 1.909 1.815 4.968 

60 0.467 0.559 0.574 1.374 1.318 1.256 1.393 1.747 1.536 1.283 1.343 1.703 1.720 1.857 1.182 2.537 
61 0.460 0.538 0.557 1.251 1.291 1.206 1.329 1.605 1.407 1.150 1.268 1.641 1.726 1.909 1.801 2.459 
62 0.453 0.533 0.540 1.136 1.232 1.172 1.235 1.535 1.540 1.156 1.241 1.588 1.636 1.781 1.768 2.421 

63 0.447 0.508 0.538 0.900 1.181 1.113 1.115 1.409 1.386 1.037 1.174 1.498 1.611 1.596 1.649 2.288 
64 0.440 0.432 0.460 0.952 1.010 0.934 0.955 1.199 1.253 0.875 0.983 1.294 1.243 1.380 1.357 2.170 

65 0.434 0.426 0.466 0.855 0.981 0.876 1.070 1.046 1.163 0.948 0.980 1.244 1.165 1.212 1.343 1.849 
66 0.428 0.415 0.468 0.735 0.970 0.888 1.090 0.973 1.228 0.908 0.931 1.215 1.142 1.203 1.149 1.822 
67 0.422 0.407 0.451 0.644 0.940 0.900 1.108 0.970 1.141 0.851 0.906 1.201 1.120 1.172 1.123 1.790 

68 0.416 0.402 0.445 0.664 0.924 0.889 0.991 0.871 1.075 0.834 0.895 1.160 1.116 1.163 1.088 1.719 
69 0.410 0.400 0.376 0.567 0.878 0.903 0.731 0.857 1.104 0.843 0.856 1.177 1.103 1.168 1.074 1.693 

70 0.404 0.369 0.383 0.548 0.847 0.708 0.757 0.814 1.000 0.829 0.804 1.090 1.000 1.052 1.018 1.779 
75 0.378 0.353 0.375 0.505 0.720 0.589 0.681 0.708 0.885 0.750 0.714 1.012 0.888 0.925 0.946 1.604 

* Concentration by weight of phenol 

* phenol viscosities measured above T=40 , under this temperature the liquid phenol becomes solid   
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Table (A.2): The mass density measurements for a binary mixture of water and phenol at different temperatures and      

concentrations  

T (   
  

  

    0.

00% 

  
  

    10.

17% 

  
  

    20.

80% 

  
  

    30

.20% 

  
  

    31

.80% 

  
  

    32

.90% 

  
  

    33

.90% 

  
  

    35

.00% 

  
  

    37

.10% 

  
  

    40

.20% 

  
  

    49

.80% 

  
  

    59

.79% 

  
  

    70

.40% 

  
  

    79

.77% 

  
  

    89

.90% 

  
  

    100

.0% 
32 0.9950 0.9811 0.9123 0.9640 0.9882 0.9441 0.9414 1.0490 0.9518 0.9454 0.9817 0.9877 0.9963 1.0378 1.0347 Solid* 

40 0.9921 0.9810 0.9070 0.9639 0.9870 0.9420 0.9493 1.0571 0.9510 0.9462 0.9920 0.9807 0.9959 1.0368 1.0315 1.0440 

45 0.9910 0.9801 0.9139 0.9691 0.9840 0.9546 0.9559 1.0814 0.9536 0.9386 0.9986 0.9792 0.9935 1.0357 1.0294 1.0530 

50 0.9880 0.9770 0.9210 0.9650 0.9839 0.9524 0.9610 1.0721 0.9606 0.9593 1.0253 1.0158 0.9890 1.0322 1.0284 1.0534 

55 0.9851 1.0008 0.9427 0.9580 0.9820 0.9464 0.9524 1.0740 0.9539 0.9602 1.0193 1.0151 1.0061 1.0281 1.0317 1.0527 

57 0.9847 0.9670 0.9236 0.9653 0.9914 0.9410 0.9876 1.0531 0.9601 0.9658 0.9667 1.0161 1.0059 1.0250 1.0352 1.0521 

58 0.9842 0.9783 0.9481 0.9707 0.9510 0.9563 1.0065 1.0611 0.9545 0.9555 1.0079 1.0108 0.9978 1.0174 1.0293 1.0514 

59 0.9837 0.9752 0.9477 0.9650 1.000 0.9364 0.9531 1.0795 0.9504 0.9554 0.9980 1.0027 0.9928 1.0223 1.0335 1.0552 

60 0.9832 0.9880 0.9303 0.9786 0.9950 0.9452 0.9519 1.0680 0.9559 0.9542 0.9869 0.9900 0.9972 1.0169 1.0316 1.0242 

61 0.9826 0.9805 0.9322 0.9775 0.9920 0.9375 0.9438 1.0555 0.9491 0.9471 0.9871 0.9814 1.0045 1.0769 1.0355 1.0229 

62 0.9821 0.9770 0.9229 0.9712 0.9840 0.9386 0.9333 1.0555 0.9384 0.9591 0.9921 0.9718 1.0095 1.0312 1.0343 1.0317 

63 0.9816 0.9758 0.9488 0.9710 0.9890 0.9469 0.9225 1.0555 0.9566 0.9451 0.9865 0.9686 1.0126 1.0238 1.0327 1.0305 

64 0.9810 0.9708 0.9565 0.9820 0.9860 0.9445 0.9137 1.0555 0.9629 0.9495 0.9748 0.9725 1.0001 1.0226 1.0338 1.0295 

65 0.9805 0.9775 0.9648 0.9726 0.9610 0.8975 0.9180 0.9368 0.9543 0.9558 0.9889 0.9607 0.9913 1.0168 1.0324 1.0294 

66 0.9800 0.9878 0.9741 0.9828 0.9860 0.9471 0.9208 0.9368 0.9370 0.9478 0.9750 0.9667 1.0017 1.0175 1.0301 1.0285 

67 0.9790 0.9860 0.9452 0.9750 0.9890 0.9318 0.8952 0.9368 0.9396 0.9378 0.9760 0.9700 0.9935 1.0117 1.0341 1.0374 

68 0.9789 0.9830 0.9660 0.9676 0.9920 0.9257 0.8973 0.9368 0.9462 0.9331 0.9666 0.9640 1.0012 1.0206 1.0274 1.0367 

69 0.9780 0.9804 0.8884 0.9621 0.9850 0.9215 0.9260 0.9368 0.9253 0.9301 0.9786 0.9738 1.0003 1.0114 1.0286 1.0357 

70 0.9777 0.9243 0.9430 0.9448 0.9750 0.8542 0.9549 0.9325 0.9290 0.9364 0.9825 0.9612 0.9993 1.0164 1.0275 1.0493 

75 0.9748 0.9860 0.9521 0.9478 0.9690 0.8912 0.9520 0.9435 0.9510 0.9390 0.9648 0.9835 0.9977 1.0183 1.0261 1.0484 

* phenol viscosities measured above T=40 , under this temperature the liquid phenol becomes solid 
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  ب
 لمخميط الثنائي لمماء والفينول في نظرية الزدواجاعتماد المزوجة عمى التركيز و درجة الحرارة 

 إعداد
 شادية )محمد سعيد( صالح عميات 

 إشراف
 أ.د. عصام راشد عبد الرازق

 د. محمد أبو جعفر
 

 الممخص
( عند       ( و الفينول )   الثنائي الماء ) لمخميطجة و في هذا البحث تم قياس معامل المز 

 إلى%0.00و تراكيز مختمفة )من (               )درجات حرارة مختمفة 
 glass capillaryمن وزن الفينول( باستخدام مقياس المزوجة الزجاجي الشعري ) 100.00%

viscometer ( و مقياس المزوجة الرقمي )Brookfield viscometer model DV-I+).  لقد
من وزن   %33.90و    67.0الحرجة و التركيز الحرج  وكانت النتيجة درجة الحرارة تم تحديد 

لحساب قيم كل من معامل المزوجة  MCT))الازدواج الفينول عمى التوالي. وقد استخدمت نظرية 
         cP  والثابت                , قطع زخم ديبايA  وكان  الازدواجفي نظرية

. وقد تم حساب قوى الربط بين جزيئات الماء و الفينول في المخموط الثنائي و 0.050يساوي 
, هذه القيمة الكبيرة تشير الى أن القوى المتبادلة بين جزيئات    L = 11.17كانت النتيجة 

الخميط الثنائي هي قوى تجاذب ضعيفة. تم قياس السعة الحرجة لمحرارة النوعية عند ثبوت الضغط 
          الحرج وحول درجة الحرارة الحرجة  وعند التركيز
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