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ABSTRACT OF THESIS 

 

EXAMINING MEMORY CONSOLIDATION AND RECONSOLIDATION IN AN 

APPETITIVE PAVLOVIAN TASK 

 

 Memory plays an important role in defining how one behaves. The 

neurobiological mechanisms of memory have been studied extensively in animal models 

and the NMDA glutamate receptor has been identified to play an important role in the 

consolidation and reconsolidation of appetitive memories. Certain memories, depending 

on what was learned, can function differently and can be more difficult to disrupt based 

on a number of factors. Currently, no study has examined whether or not a reward-

predictive stimulus attributed with incentive value is more difficult to disrupt than a 

stimulus that functions as a general reward-predictor. To determine the role of the 

NMDA receptor on memory consolidation with different functioning reward-predictive 

stimuli rats underwent a Pavlovian conditioned approach, where a post-session NMDA 

receptor antagonist was administered daily. Furthermore, to determine the role of the 

NMDA receptor on memory reconsolidation, another set of rats were trained on a 

Pavlovian conditioned approach task, after training was complete rats were presented 

with a reward-predictive stimuli followed by an administration of a NMDA receptor 

antagonist and then re-tested. 
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CHAPTER 1: Introduction 

Background 

Every day people experience different events, whether it is meeting someone new, 

going to a familiar coffee shop, or just sitting at home watching a rerun on television. 

Some of these experiences are more easily remembered than others. For example, 

accidentally bumping into a random stranger and getting pushed over is most likely more 

memorable than accidentally bumping into a random stranger and just saying “sorry”. 

These experiences all form a person’s memory, and memories shape an individual’s 

character and personality. With memory playing such a large role in defining how one 

behaves and acts, it is not surprising that it is a heavily studied topic in many fields such 

as psychology, biology, and neuroscience. 

Memory Formation 

 In psychology, memory has been studied for decades and many different aspects 

of it have been revealed. How someone forgets overtime (Ebbinghaus, 1913), the amount 

of information that can be stored in the short term (Miller, 1956), and how information 

learned in one setting can be more easily recalled in the same setting (Godden & 

Baddeley, 1975) are just a few of the aspects of memory that have been uncovered. 

Through these experiments, theories of how memories are formed and used have been 

described as well. These models for memory formation and use can differ from one 

another. For example, one model by Atkinson and Shiffrin (1968) suggests that 

information is taken into short-term storage and through rehearsal it ends up in a long-

term storage, while another model by Baddeley and Hitch (1974) suggests that memory is 
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constantly active, receiving inputs from the senses, and can be manipulated when active. 

While the specifics in how memory is formed and maintained are still being debated, the 

general theory is that memories are encoded, stored, and once stored become retrievable. 

 Interestingly, around the same time that psychological models for memory started 

developing, the biological mechanisms that drive memory formation were also being 

studied. One of the biological mechanisms that was discovered, and is still heavily 

studied today is long-term potentiation (LTP). LTP is derived from Hebbian theory, 

which is the idea that connections between neurons are strengthened upon repeated and 

persistent communication (Hebb, 1949). While LTP essentially emphasizes the same 

concepts as Hebbian theory, it goes on to further hypothesize that new connections, 

including more dendritic growth, can drive neural plasticity that could underlie learning 

and memory (Lynch, 2004). Furthermore, it has been shown that glutamate, the major 

excitatory neurotransmitter in the central nervous system, plays a large role in LTP, 

especially α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-

methyl-D-aspartate (NMDA) receptor signaling. Briefly, NMDA receptor activation 

allows for Ca
2+

 to enter the neuron where it then activates calmodulin-dependent protein 

kinase II (CaMKII). Following activation of CaMKII, various signaling cascades (e.g. 

CREB and Zif268 (Abel & Lattal, 2001; Tronson & Taylor, 2007)) promote an increase 

in the number of AMPA receptors expressed on the cell membrane, thus allowing more 

Na
+
 to enter the neuron which then allows for further membrane depolarization and 

subsequent action potential (Malenka & Nicoll, 1999). This process is believed to be the 

underlying mechanism that drives synaptic plasticity and the consolidation of a memory. 

It has been shown that NMDA antagonism results in the blockade of learning and 
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memory in a variety of behavioral tasks, including fear conditioning, spatial learning, 

working memory, and instrumental learning (Riedel et al. 2003; Kelley, 2004). There is 

also evidence that NMDA signaling mediates basic Pavlovian conditioning. In a study by 

Di Ciano and colleagues (2001), it was demonstrated that pre-session microinfusions of 

the NMDA antagonist AP-5 into the nucleus accumbens core disrupted the acquisition of 

Pavlovian conditioning. However, microinfusions of AP-5 into the nucleus accumbens 

core did not affect any of the previously learned Pavlovian associations, indicating that 

once memory is consolidated, it is believed to be stable (McGaugh, 2000).  

Once a memory becomes stable, this does not mean that it cannot be modified. 

After a memory is consolidated and stable, through rehearsal or repetition it can be 

strengthened or even updated to include new information (Bandura et al., 1974; Morris & 

Jones, 1990). This process of strengthening or updating memory with use is called 

reconsolidation. During memory reconsolidation, it is theorized that memories are 

destabilized at retrieval and require restabilization in order to be stored again, thus 

suggesting that memories become active and labile during retrieval (Lewis, 1979; Nader, 

2003). During memory reactivation, induction of memory retrieval where the memory 

becomes destabilized for use, it has been hypothesized that memory can be disrupted and 

can lead to an alteration in the memory itself, leaving open the possibility that memory 

for something as simple as light predicting food, a shock, or drug can be changed or even 

erased. The clinical implications for memory reconsolidation have drawn a large amount 

of attention within the past decade, with studies examining both aversive and appetitive 

memories believed to play a role in various psychopathologies, like anxiety, post-

traumatic stress, and substance abuse disorders. 
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Neurobiological Mechanisms of Memory Reconsolidation 

 Currently, studies examining memory reconsolidation follow the basic paradigm 

of reactivating a memory, by presenting some cue associated with the memory, and 

causing some disruption, usually with a protein synthesis inhibitor or a receptor 

antagonist, immediately after retrieval and then re-testing the memory at a later date. For 

example, in a study by Schafe & LeDoux (2000) rats were conditioned to a tone that 

predicted shock, leading to a freezing response at the sound of the tone. Rats were then 

exposed briefly to the tone under extinction, thus reactivating the memory. Immediately 

following the memory reactivation rats were treated with saline or the protein synthesis 

inhibitor anisomycin. The following test, under extinction, demonstrated that rats treated 

with anisomycin showed less freezing than saline treated animals toward the tone, 

suggesting an alteration in the tone memory. However, protein synthesis occurs as a 

result of various intracellular cascades and could be elicited by a number of other 

different events, making it difficult to determine the specific pathways that are involved 

with memory reconsolidation. Determining the neurotransmitter receptor systems related 

to the reconsolidation process can result in understanding more specific signaling 

pathways involved. Interestingly, the molecular targets used in memory reconsolidation 

most commonly involve the NMDA receptor and the β-adrenergic receptor (Debiec & 

LeDoux, 2004; Lee & Everitt, 2008). Using the β-adrenergic receptor antagonist 

propranolol, instead of a protein synthesis inhibitor Debiec & LeDoux (2004) obtained 

similar results to Schafe & LeDoux (2000), namely propranolol treatment immediately 

after memory reactivation prevented reconsolidation of a stimulus predictive of shock 
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and reduced freezing during tests. Another study by Flint and colleagues (2013) 

examined the role of the NMDA receptor by using a passive avoidance paradigm. Rats 

started on one side of a two-chamber compartment, where a door opened allowing access 

into a different compartment. If rats crossed over to the other compartment, the door 

would close and the rats were shocked. Rats quickly developed an aversion to the shock 

compartment and refused to cross over when the door was open. Following this, animals 

were briefly placed into the side paired with shock and administered MK-801, a NMDA 

receptor antagonist, immediately afterwards. On the following day, animals underwent 

the passive avoidance task and it was found that rats treated with MK-801 after the 

reactivation task explored the compartment that had previously been paired with shock, 

thus demonstrating a disruption in the memory. 

 While the studies above examined aversive memories in rodent models, human 

studies have also examined how memory reconsolidation can be used to treat aversive 

memories. A study by van Stegeren and colleagues (1998) found that negative and 

upsetting emotional memories could be disrupted by administrating propranolol after 

reactivation. Another study by Saladin and colleagues (2013) used a similar method to 

examine the role of the β-adrenergic receptor on both negative and positive emotional 

memories. In that study, individuals with post-traumatic stress disorder (PTSD) went 

through an emotional recall task where stressful memories and alcohol-related memories 

were reactivated. Afterwards, patients were given a treatment of propranolol. 

Interestingly, it was found that the aversive stressful memories were disrupted, whereas 

appetitive alcohol-related memories were not altered.  
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Divergence between the role of β-adrenergic receptor and glutamatergic receptor 

signaling in aversive and appetitive memory reconsolidation has been found in the rodent 

literature as well. β-adrenergic receptor signaling is more specific to aversive memories, 

while glutamatergic signaling seems to be involved in both aversive and appetitive 

memories. For example, Milton and colleagues (2012) trained rats in a Pavlovian 

conditioning paradigm for an ethanol reward and then tested them for Pavlovian 

instrumental transfer, where the presence of the previously conditioned stimulus for 

ethanol modulates some ongoing operant responding. Animals that had memories 

reactivated and then disrupted with MK-801 for the conditioned stimulus associated with 

ethanol showed decreased rates of alcohol-related responding during the Pavlovian 

instrumental transfer, while animals treated with propranolol did not. Collectively, these 

results suggest that both glutamatergic and β-adrenergic receptor blockade can affect 

emotional memory reconsolidation, specifically with conditioned fear memories (Debiec 

& LeDoux, 2004), however appetitive memories seem to be affected more specifically by 

NMDA receptor antagonism (Lee & Everitt, 2008; Milton & Everitt, 2010). 

Drug Memories and Memory Reconsolidation 

One type of appetitive memory that has recently been a target for memory 

reconsolidation is drug-related memory. Most drug-related memories are elicited by 

stimuli that are consistently and contiguously paired with the direct effects of drugs of 

abuse (e.g. drug paraphernalia). These stimuli can come to influence and impel abuse-

related behavior through associative processes (Hogarth et al. 2010). Furthermore, 

stimulus control over abuse-related behavior is long lasting where months and years after 

long periods of abstinence relapse can occur (Ciccocioppo et al. 2001; Grimm et al., 
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2011). In a series of studies by Lee and colleagues (2006), abuse-related behavior such as 

cocaine seeking and cue-induced cocaine seeking were examined. Animals were trained 

to press a lever that produced a light paired with a cocaine infusion. Following cocaine 

self-administration, animals were presented with the reward-predictive light and 

underwent a disruption in memory reconsolidation with Zif268 antisense 

oligodeoxynucleotides that knocked down the immediate-early gene transcript Zif268, 

thus preventing protein synthesis. Further testing demonstrated that animals that had their 

memory disrupted showed subsequent decreases in cue-maintained cocaine seeking. 

While this study used a protein knock down procedure, another study by von der Goltz 

and colleagues (2009) demonstrated similar results showing memory disruption for cue-

induced alcohol-seeking using MK-801. Additionally, using MK-801 to disrupt memory 

reconsolidation to a cocaine cue also reduces cocaine-related responding in Pavlovian 

instrumental transfer (Lee & Everitt, 2008). With a growing body of evidence beginning 

to reveal a large overlap between basic learning and memory processes and substance-

abuse disorders, including a relationship between stimulus-reward learning and abuse-

related behavior, using memory reconsolidation to disrupt the reward-predictive 

association of stimuli could be one method for treating abuse-like behavior (Torregrossa 

& Taylor, 2011; Everitt & Robbins, 2005). 

Reward-Predictive Stimuli and Memory 

Stimulus-reward learning occurs when an otherwise neutral stimulus is paired 

with a reward. The cue, a conditioned stimulus (CS), becomes a predictor of the reward, 

an unconditioned stimulus (US). Through repeated pairings of the CS and US, stimuli 

that have been paired with reward can influence a number of behavior. For example, 
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reward-predictive stimuli can act as conditioned reinforcers, facilitating novel operant 

responses to earn access to the stimuli alone (Mackintosh, 1974; Williams, 1994; Shahan, 

2010). Reward predictive stimuli have also been shown to elicit different conditioned 

responses, like compelling an individual to approach and interact with the stimulus (sign-

tracking; Brown & Jenkins, 1968; Hearst & Jenkins, 1974) or compelling an individual to 

approach the location of forthcoming reinforcement delivery (goal-tracking; Boakes, 

1977). Currently, an increasing number of studies have used a Pavlovian conditioned 

approach (PCA) task, where a single lever located next to a food receptacle reliably 

predicts a non-contingent food reward to elicit sign-tracking or goal-tracking responses 

from an animal. Animals that sign-track are theorized to have attributed “incentive 

salience” or value to the lever that is above and beyond the predictive nature of the CS 

(Saunders & Robinson, 2010). This is reflected by the gnawing, chewing, and grabbing 

responses to the lever, where these conditioned responses seem to reflect the 

unconditioned responses that the food US elicits (Brown & Jenkins, 1968; Boakes, 1977). 

Furthermore, this attribution of “incentive salience” has been supported by the fact that 

the lever CS serves as a more robust conditioned reinforcer in animals that sign-track 

versus those that goal track to a lever CS (Robinson et al., 2009). Contrary to sign-

trackers, goal-trackers are theorized to not have attributed incentive value to the lever 

stimulus, instead directing responding to the food receptacle. Furthermore, both sign-

tracking and goal-tracking responses are learned, as non-paired presentation of the lever 

and food results in the lack of both sign-tracking and goal-tracking responses (Chang et 

al., 2012). Collectively, the evidence above suggests that something different is learned 

about reward-associated stimuli that elicit a sign-tracking response versus those that elicit 
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a goal-tracking response. Thus, individual differences in the propensity to sign-tracking 

may be reflective of differential learning about reward-associated stimuli and may 

underlie differential vulnerability to the reinforcing effects of drugs of abuse and their 

associated cues (Clark et al., 2012). 

The differences in conditioned approach behavior towards a CS have recently 

gained increasing interest in the field of reward and motivation related to abuse-like 

behavior. Differential abuse-like behavior are seen in animals that have a propensity to 

sign-track during PCA training. Animals that sign-track have been shown to be more 

sensitive to cocaine and alcohol reinforcement (Beckmann et al. 2011; Saunders & 

Robinson 2011; Anderson et al. 2011) and have enhanced reinstatement of cocaine-

seeking behavior by priming injections of cocaine or cocaine-associated cues (Saunders 

& Robinson 2010). Additionally, sign tracking during PCA also is relate to other risk 

factors known to predict vulnerability to abuse-related behavior, like novelty seeking 

(Beckmann et al. 2011) and impulsivity (Tomie et al. 1998; Flagel et al. 2010). 

It has been hypothesized that different neurobehavioral valuation systems, or the 

associate processes that are involved in learning about the function of a Pavlovian 

conditioned stimulus (Toates, 1997; Boakes, 1977), may underlie the different 

conditioned response topographies exhibited by sign- and goal-tracking behavior, and the 

propensity for these different valuation systems to govern stimulus-reward learning may 

play a role in individual differences of substance abuse vulnerability (Clark et al., 2012). 

However, little is known about the proposed different neurobehavioral valuation systems 

and how one valuation system may come to govern a stimulus-reward relationship over a 

different valuation system. Furthermore, it is not known whether or not these two 
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different stimulus-reward learning processes reflected in sign- and goal-tracking behavior 

are mediated by different memory profiles. 

Sign-tracking vs. Goal-tracking – Memory Function 

As outlined previously, through a PCA procedure, animals can be either identified 

as sign- or goal-trackers. In a study by Blaiss and Janak (2007), a light and tone CS+ was 

predictive of a sucrose solution reward and entries into the port of reward delivery was 

measured (goal-tracking). In that study, both consolidation and reconsolidation were 

examined, where one group of animals were treated every post-session during acquisition 

and another group of animals underwent a disruption of memory reconsolidation post-

session using amphetamine or anisomycin. The results of this experiment demonstrated 

that animals treated with amphetamine or anisomycin during acquisition, post-session, 

showed either enhanced or impaired learning of the PCA task, respectively. In contrast, 

animals treated with amphetamine or anisomycin during memory reconsolidation showed 

no effect on goal-tracking. While these results suggest that there is a difference in 

consolidation and reconsolidation of a Pavlovian memory, the experiment only examined 

goal-tracking. In most PCA tasks, only a single response type, sign- or goal-tracking can 

be obtained within an animal, thus making it difficult to examine the possible different 

valuation systems. 

A novel method to examine possible differences in valuation systems and 

memory profiles underlying stimulus-reward learning was developed by Beckmann and 

Chow (2014). This procedure, a 2-conditioned stimulus Pavlovian conditioned approach 

(2-CS PCA) task, uses two different and independent stimuli to elicit exclusive sign-
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tracking or goal-tracking responses within an animal. By using a lever or tone that 

predicts a non-contingent sucrose pellet reward, exclusive sign-tracking or goal-tracking 

is obtained to the lever CS and tone CS, respectively. While animals can exhibit both 

sign- and goal-tracking to the lever CS (Flagel et al., 2009), animals under the 2-CS PCA 

procedure tend to exhibit sign-tracking behavior. On the contrary, tones tend to elicit 

exclusive goal-tracking behavior, unless food is made contingent upon a sign-tracking 

response (Cleland & Davey, 1983; Holland, 1977; Harrison, 1979). Further examination 

using reversal learning, omission contingencies, extinction, conditioned reinforcement, 

and choice following training on the 2-CS PCA, has indicated that sign-tracking 

responses to a lever stimulus are more persistent than goal-tracking responses to a tone, 

and that the lever CS has more value relative to the tone CS. Thus, the results from this 

procedure suggest that the lever stimulus gains incentive value above and beyond the 

normal reward-predictive value, while the tone stimulus does not. Furthermore, it is 

believed that the neurobehavioral systems governing the differences in learning about a 

lever and tone CS might reflect different memory profiles, where memories of the lever 

CS are more resistant to disruption due to the value associated with it. This suggests that 

the strength of the lever stimulus memory could be different than that of the tone. 

Similarly, drug memories are strong and long lasting, and can be triggered by a number 

of environmental stimuli after long periods of abstinence (Volkow et al., 2008; Grimm & 

Shaham, 2002). Collectively, the results above suggest that similar memory processes 

may mediate the relationship between sign-tracking and abuse-related behavior. 

Statement of Hypothesis 
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The goal of the following experiments was to use the 2-CS PCA task in order  to 

examine i) the role of NMDA receptors on the consolidation of reward-predictive stimuli, 

and ii) the differential reconsolidation of a reward-predictive stimulus that has gained 

incentive value (lever) relative to one that has not (tone). It was hypothesized that 

through the blockade of NMDA receptors during acquisition of each relationship learning 

would be impaired to the lever CS, a stimulus attributed with incentive value, and the 

tone CS. It was also hypothesized that, relative to a tone CS, a lever CS that has been 

attributed with incentive value would require greater reconsolidation inhibition to alter 

the existing memory. 
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CHAPTER 2: Main Experiments 

 Through associative learning reward-predictive stimuli can influence behavior, 

however the way that a reward-predictive stimuli is learned and functions for an 

individual can differ (Toates, 1997; Boakes, 1977). Studies using a PCA task have shown 

that individuals that have a propensity to sign-track are prone to abuse-like behaviors 

(Tomie et al. 1998; Flagel et al. 2010; Beckmann et al. 2011). Furthermore, stimuli that 

elicit sign-tracking behavior have also been shown to serve as more robust conditioned 

reinforcers, take longer to extinguish, and can bias choice in probabilistic discounting 

(Beckmann & Chow, 2014). Additionally, these differences in conditioned responses to 

stimuli are hypothesized to be governed by different neurobehavioral valuation systems 

(Clark et al., 2012) which in turn could be driven by different memory processes as well. 

In order to study these differences in memory reflected in sign- and goal-tracking 

responses the 2-CS PCA task was utilized to investigate these valuation systems. The 

goal of the following experiments was to use the 2-CS PCA task in order to examine the 

role of NMDA receptors on the consolidation of reward-predictive stimuli, and the 

differential reconsolidation of a reward-predictive stimulus. 

Experiment 1: Consolidation 

Methods 

Subjects 

 Twelve male Sprague-Dawley rats (Harlan Inc.; Indianapolis, IN, USA), 

weighing approximately 250-275 g at the beginning of experimentation, were used. Rats 

were individually housed in a temperature-controlled environment with a 12:12 hr 
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light:dark cycle, with lights on at 0600 h. The rats were first acclimated to the colony 

environment and handled daily for one week prior to experimentation. All 

experimentation was conducted during the light phase. All rats had ad libitum access to 

food and water in their home cage. All experimental protocols were conducted according 

to the 2010 NIH Guide for the Care and Use of Laboratory Animals (8
th

 edition) and 

were approved by the Institutional Animal Care and Use Committee at the University of 

Kentucky. 

Apparatus 

Experiments were conducted in operant conditioning chambers (ENV-008, MED 

Associates, St. Albans, VT) that were enclosed within sound-attenuating compartments 

(ENV-018M, MED Associates). Each chamber was connected to a personal computer 

interface (SG-502, MED Associates), and all chambers were operated using MED-PC. 

Within each operant chamber, a 5.1 x 5.1 cm recessed food receptacle (ENV-200R2MA) 

outfitted with a head-entry detector (ENV-254-CB) was located on the front response 

panel of the chamber, two retractable response levers were mounted on either side of the 

food receptacle (ENV-122CM; 6 cm above metal rod floor), two white cue lights (ENV-

221M) were mounted at 4.1 cm and 8.2 cm above each response lever, and a tone 

generator (ENV-223 HAM) was located above the top left cue light. The back response 

panel was outfitted with a single retractable response lever (ENV-122CM; directly 

opposite of the food receptacle); two nosepoke response lights (ENV-114BM; 6 cm 

above metal rod floor and directly opposite to front response levers) were mounted on 

either side of the retractable response lever, and a house-light (ENV-227M) was located 
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12 cm above the response lever. Food pellets (45-mg Noyes Precision Pellets; Research 

Diets, Inc., New Brunswick, NJ) were delivered via a dispenser (ENV-203M-45). 

Drug 

 (+)-MK-801 hydrogen maleate was purchased from Sigma-Aldrich (St. Louis, 

MO, USA) and mixed in sterile saline (0.9% NaCl). MK-801 is a NMDA receptor 

antagonist and was selected due to its effects on learning and memory (Riedel et al., 

2003; Wegener et al., 2011). Furthermore, the dose of MK-801 (0.1 mg/kg) used in this 

experiment was selected due to its pharmacokinetic effects in relation to behavior and the 

formation of memory as seen in previous research (Wozniak et al., 1990; Wegener et al., 

2011; Lee & Everitt, 2008; Milton et al., 2012). While MK-801 is specific to the NMDA 

glutamate receptor, there has been some evidence that MK-801 can bind non-specifically 

to nicotinic acetylcholine receptors and inhibit monoamine transporters, however the 

studies examining MK-801 on these other systems were done in vitro (Ramoa et al., 

1990; Iravani et al., 1999; Gainetdinov et al., 2001). Both nicotinic acetylcholine 

receptors and monoamines, such as serotonin and dopamine, have been reported to have 

some effect on memory formation (Felix & Levin, 1997; Aleisa et al., 2006; Gonzalez-

Burgos & Feria-Velasco, 2008; Buhot et al., 2000; Sherry et al., 2005; Tronson & Taylor 

2007), thus making it a possibility that MK-801 may have an effect on some other 

system. In addition, AP-5, a more selective NMDA receptor antagonist could be used, 

however due to its inability to pass the blood brain barrier (Morris, 1989) a specific brain 

region would be required. Some areas of specific interest that could be telling about 

incentive valuation of reward-predictive stimuli may include the nucleus accumbens core 
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or nucleus accumbens shell (Saunders & Robinson, 2012; Chang et al., 2012), however 

these studies examined the role of dopamine and not glutamate. 

Procedure 

Magazine Shaping 

 During the last two days of acclimation to the colony, immediately after animals 

were handled, 10 to 15 food pellets (45-mg Noyes Precision Pellets; Research Diets, Inc., 

New Brunswick, NJ, USA) were dropped into their home cages. Following the week of 

habituation, animals were trained to retrieve food pellets from the food receptacle for two 

consecutive days. Animals were placed in the operant chambers and given 40 minutes to 

retrieve and consume 16 food pellets, delivered on a 60s fixed time schedule. 

2-CS PCA Task 

 Following magazine shaping, 2-CS PCA training commenced. During each 

training session, a single response lever adjacent to the food receptacle (counterbalanced 

for side) was inserted into the chamber or a 40 KHz tone was presented for 8s. 

Immediately after lever retraction or tone cessation, a food pellet was non-contingently 

delivered into the receptacle. Stimulus presentations were separated by a 90s variable 

time inter-trial-interval (ITI), ranging from 12s to 286s (Fleshler & Hoffman, 1962) that 

began immediately after pellet delivery. Each session consisted of 32 total trials, 

comprised of 16 lever insertions and 16 tone presentations in a pseudorandom order, 

where no more than four presentations of the same stimulus occurred consecutively. 

Sign-tracking (ST) responses were recorded as lever presses, while goal-tracking (GT) 

responses were recorded as breaks of a photo beam within the food receptacle during 
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stimulus presentation. Head entries into the food receptacle during the ITI period were 

recorded as GT-ITI. Additionally, head entries into the food receptacle during the 8s 

period before each trial (8s pre-CS) were recorded. 

Memory Consolidation 

 During the 14 days of 2-CS PCA training, animals (n=12) were given a post-

session treatment MK-801 (0.1 mg/kg i.p.; Lee & Everitt, 2008; Flint et al., 2013) or 

saline immediately following completion of the last trial. 

Analysis 

 Linear mixed effects modeling, with sessions (continuous) and stimulus (nominal: 

tone vs. lever) as within-subject factors and treatment (nominal: saline vs. MK-801) as a 

between-subject factor, was used to analyze rates of responding (sign-tracking, goal-

tracking, and 8s pre-CS) and the probability difference score (the probability of making a 

sign-tracking response minus the probability of making a goal-tracking response) during 

the acquisition of the 2-CS PCA task with post-session treatments. In addition, another 

linear mixed effects modeling with sessions (continuous), and response type (nominal: 

sign-tracking vs. goal-tracking) as within-subject factors, was used to analyze rates of 

sign-tracking to the lever and goal-tracking to the tone. 

Results 

 Figure 1 illustrates the post-session treatments on response rates for sign-tracking 

(1A), goal-tracking (1B), and the 8s pre-CS period (1C) to the two stimuli, as well as the 

probability difference score (1D). Linear mixed effects modeling indicated a significant 
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main effect of session on sign-tracking [F(1,10) = 6.88, p < 0.05] and goal-tracking 

[F(1,10) = 16.68, p < 0.05] rates, indicating an increase in rates over session. A main 

effect of stimulus on sign-tracking [F(1,10) = 27.52, p < 0.05] and goal-tracking [F(1,10) 

= 8.25, p < 0.05] rates were also obtained, indicating differences in response types across 

the two stimuli, where a lever CS produced sign-tracking and a tone CS produced goal-

tracking. A significant main effect of stimulus on the probability difference score 

[F(1,10) = 38.58, p < 0.05] revealed that the likelihood of obtaining a sign- or goal-

tracking response depended on the stimulus presented, again indicating that the lever 

produced sign-tracking and the tone produced goal-tracking. A significant main effect of 

post-session treatment on sign-tracking rates [F(1,10) = 16.91, p < 0.05], indicated 

animals treated with saline sign-tracked and those treated with MK-801 did not. 

 Furthermore, linear mixed effects modeling revealed a significant session x 

treatment interaction on sign-tracking rates [F(1,10) = 7.05, p < 0.05], indicating that 

post-session treatments of MK-801 prevented sign-tracking through the training period 

while post-session saline did not. A significant interaction of session x stimulus was 

revealed for sign-tracking [F(1,10) = 6.88, p < 0.05] and goal-tracking [F(1,10) = 14.30, 

p < 0.05], revealing that the sign-tracking rates were lever specific and goal-tracking rates 

were tone specific. Additionally, a significant interaction of session x stimulus for the 

probability difference score [F(1,10) = 17.77, p < 0.05] also indicated the specificity of 

sign- and goal-tracking to the lever CS and tone CS, respectively. Linear mixed effects 

modeling revealed significant interactions of treatment x stimulus for sign-tracking 

[F(1,10) = 16.91, p < 0.05] and goal-tracking [F(1,10) = 6.32, p < 0.05] rates, 

demonstrating that the saline treatments elicited sign-tracking to the lever CS and goal-
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tracking to the tone CS, while post-session MK-801 treatments impeded both sign- and 

goal-tracking rates. Furthermore, a significant interaction of treatment x stimulus on the 

probability difference score [F(1,10) = 21.96, p < 0.05] indicated that the likelihood of 

getting a sign- or goal-tracking response to the two stimuli depended on the post-session 

treatment. 

 Finally, linear mixed effects modeling revealed a significant interaction of session 

x stimulus x treatment on sign-tracking [F(1,10) = 7.05, p < 0.05] and goal-tracking 

[F(1,10) = 9.71, p < 0.05] rates. Thus, post-session treatments of saline resulted in 

exclusive sign-tracking to the lever CS and exclusive goal-tracking to the tone CS over 

the training period, while post-session MK-801 treatments produced almost no sign-

tracking to the lever CS and minimal goal-tracking to the lever CS and tone CS over the 

training sessions. In an addition, there was a significant interaction of session x stimulus 

x treatment on the difference in response probability score [F(1,10) = 18.00, p < 0.05], 

suggesting that animals treated with saline were more likely to sign-track to the lever and 

goal-track to the tone over sessions, while animals that received MK-801 post-session 

treatments were less likely to sign- or goal-track to either stimulus. Finally, linear mixed 

effects revealed no significant effects or interactions for the 8s pre-CS rates [p > 0.05] 

indicating no differences in responding during this period. 

 Additionally, there were no significant differences between sign-tracking and 

goal-tracking response rates to the lever and tone, respectively [F(1,5) = 1.19, p > 0.05]. 
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Experiment 2: Memory Reconsolidation 

Methods 

Subjects 

 Twenty-four male Sprague-Dawley rats (Harlan Inc.; Indianapolis, IN, USA), 

weighing approximately 250-275 g at the beginning of experimentation, were used. Rats 

were individually housed in a temperature-controlled environment with a 12:12 hr 

light:dark cycle, with lights on at 0600 h. The rats were first acclimated to the colony 

environment and handled daily for one week prior to experimentation. All 

experimentation was conducted during the light phase. All rats had ad libitum access to 

food and water in their home cage. All experimental protocols were conducted according 

to the 2010 NIH Guide for the Care and Use of Laboratory Animals (8
th

 edition) and 

were approved by the Institutional Animal Care and Use Committee at the University of 

Kentucky. 

Apparatus 

Experiments were conducted in operant conditioning chambers (ENV-008, MED 

Associates, St. Albans, VT) that were enclosed within sound-attenuating compartments 

(ENV-018M, MED Associates). Each chamber was connected to a personal computer 

interface (SG-502, MED Associates), and all chambers were operated using MED-PC. 

Within each operant chamber, a 5.1 x 5.1 cm recessed food receptacle (ENV-200R2MA) 

outfitted with a head-entry detector (ENV-254-CB) was located on the front response 

panel of the chamber, two retractable response levers were mounted on either side of the 

food receptacle (ENV-122CM; 6 cm above metal rod floor), two white cue lights (ENV-
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221M) were mounted at 4.1 cm and 8.2 cm above each response lever, and a tone 

generator (ENV-223 HAM) was located above the top left cue light. The back response 

panel was outfitted with a single retractable response lever (ENV-122CM; directly 

opposite of the food receptacle); two nosepoke response lights (ENV-114BM; 6 cm 

above metal rod floor and directly opposite to front response levers) were mounted on 

either side of the retractable response lever, and a house-light (ENV-227M) was located 

12 cm above the response lever. Food pellets (45-mg Noyes Precision Pellets; Research 

Diets, Inc., New Brunswick, NJ) were delivered via a dispenser (ENV-203M-45). 

Drug 

 (+)-MK-801 hydrogen maleate was purchased from Sigma-Aldrich (St. Louis, 

MO, USA) and mixed in sterile saline (0.9% NaCl). 

Procedure 

Magazine Shaping 

 During the last two days of acclimation to the colony, immediately after animals 

were handled, 10 to 15 food pellets (45-mg Noyes Precision Pellets; Research Diets, Inc., 

New Brunswick, NJ, USA) were dropped into their home cages. Following the week of 

habituation, animals were trained to retrieve food pellets from the food receptacle for two 

consecutive days. Animals were placed in the operant chambers and given 40 minutes to 

retrieve and consume 16 food pellets, delivered on a 60s fixed time schedule. 

2-CS PCA Task 
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 Following magazine shaping, 2-CS PCA training commenced. During each 

training session, a single response lever adjacent to the food receptacle (counterbalanced 

for side) was inserted into the chamber or a 40 KHz tone was presented for 8s. 

Immediately after lever retraction or tone cessation, a food pellet was non-contingently 

delivered into the receptacle. Stimulus presentations were separated by a 90s variable 

time inter-trial-interval (ITI), ranging from 12s to 286s (Fleshler & Hoffman, 1962) that 

began immediately after pellet delivery. Each session consisted of 32 total trials, 

comprised of 16 lever insertions and 16 tone presentations in a pseudorandom order, 

where no more than four presentations of the same stimulus occurred consecutively. 

Sign-tracking (ST) responses were recorded as lever presses, while goal-tracking (GT) 

responses were recorded as breaks of a photo beam within the food receptacle during 

stimulus presentation. Head entries into the food receptacle during the ITI period were 

recorded as GT-ITI. Additionally, head entries into the food receptacle during the 8s 

period before each trial (8s pre-CS) were recorded. 

Memory Reconsolidation 

Following 14 days of 2-CS PCA training animals (n=24) were matched for 

performance, based on sign- and goal-tracking rates, and divided into four groups (n = 

6/group; lever+saline, tone+saline, lever+MK-801, and tone+MK-801). All animals were 

placed into the operant chambers and given a single presentation of either the previously 

conditioned lever CS or tone CS after a 90s fixed time (FT) – ITI. Following the 

presentation of the single stimulus animals were taken out and immediately given either 

an injection of saline or MK-801 (0.1 mg/kg i.p.) and returned to the colony. On the 

following day animals were tested on the 2-CS PCA task under extinction. 
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Analysis 

 Linear mixed effects modeling, with sessions (continuous) and stimulus (nominal: 

tone vs. lever) as within-subject factors and treatment (nominal: saline vs. MK-801) and 

CS presented (nominal: tone vs. lever) as between-subject factors, were used to determine 

if there were any differences in sign-tracking and goal-tracking rates of the matched 

groups. In addition, another linear mixed effects modeling with sessions (continuous), 

and response type (nominal: sign-tracking vs. goal-tracking) as within-subject factors was 

used to analyze rates of sign-tracking to the lever and goal-tracking to the tone. 

 Finally a linear mixed effects model, with block (continuous: 4 trials per block of 

each stimulus type) and stimulus (nominal: tone vs. lever) as within-subject factors and 

treatment (nominal: saline vs. MK-801) and CS presented (nominal: tone vs. lever) as 

between-subject factors, was used to examine the effects of the reconsolidation treatment 

on sign-tracking and goal-tracking response rates and sign-tracking and goal-tracking 

probability. Furthermore, another linear mixed effects modeling with block (continuous) 

and response type (nominal: sign-tracking vs. goal-tracking) as within-subject factors and 

treatment (nominal: saline vs. MK-801) and CS presented (nominal: tone vs lever) as a 

between-subject factors, was used to analyze response rates and response probability for 

sign-tracking to the lever and goal-tracking to the tone. 
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Results 

Figure 2 illustrates the sign-tracking (2A) and goal-tracking (2B) rates of the 

matched groups. Linear mixed effects modeling revealed a significant main effect of 

session on sign-tracking [F(1,20) = 7.82, p < 0.05] and goal-tracking [F(1,20) = 38.39, p 

< 0.05], with rates indicating that both sign- and goal-tracking rates increased over the 

training period. Linear mixed effects modeling revealed there was a significant main 

effect of stimulus on sign-tracking [F(1,20) = 143.52, p < 0.05] and goal-tracking 

[F(1,20) = 69.40, p < 0.05] rates, where the lever CS elicited sign-tracking and the tone 

CS elicited goal-tracking. Additionally there was a significant between stimulus x session 

interaction on sign-tracking [F(1,20) = 7.82, p < 0.05] and goal-tracking [F(1,20) = 

53.29, p < 0.05] rates, suggesting that sign-tracking and goal-tracking responses to the 

lever CS and tone CS, respectively, increased over session. Furthermore, there was no 

significant interaction of treatment x CS presented x stimulus x session on sign-tracking 

[F(1,20) = 0.00, p > 0.05] or goal-tracking [F(1,20) = 0.04, p > 0.05] rates. Collectively, 

these results indicate no differences in the matched groups and that animals were 

exclusively sign-tracking to the lever CS and exclusively goal-tracking to the tone CS. 

Additionally, there were no differences in sign-tracking rates to the lever CS and goal-

tracking rates to the tone CS [F(1,23) = 3.01, p > 0.05]. 

 Figure 3 shows sign-tracking (3A) and goal-tracking (3B) rates, as well as sign-

tracking (3C) and goal-tracking (3D) probabilities across the four blocks of trials during 

the test. Linear mixed effects modeling revealed a significant main effect of block on 

sign-tracking rates [F(1,20) = 34.00, p < 0.05] and probability [F(1,20) = 22.62, p < 

0.05], as well as goal-tracking rates [F(1,20) = 36.50, p < 0.05] and probability [F(1,20) 
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= 83.50, p < 0.05], indicating that both sign- and goal-tracking response rates and 

probabilities decreased over the four trial blocks. Linear mixed effects modeling also 

revealed a significant main effect of stimulus on sign-tracking rates [F(1,20) = 111.43, p 

< 0.05] and probability [F(1,20) = 305.32, p < 0.05], as well as goal-tracking rates 

[F(1,20) = 49.74, p < 0.05] and probability [F(1,20) = 70.31, p < 0.05]. These results 

indicate that the sign-tracking responses were made to the lever CS and goal-tracking 

responses were made to the tone CS. Furthermore, linear mixed effects modeling 

revealed a significant interaction of block x stimulus on sign-tracking rates [F(1,20) = 

34.00, p < 0.05] and probability [F(1,20) = 22.62, p < 0.05], as well as goal-tracking rates 

[F(1,20) = 32.01, p < 0.05] and probability [F(1,20) = 46.91, p < 0.05], indicating that 

that sign-tracking and goal-tracking response rates decreased over the four trial blocks. 

 However, linear mixed effects modeling revealed no significant interaction of 

treatment x CS presented x stimulus x block on sign-tracking [F(1,20) = 0.89, p > 0.05] 

or goal-tracking [F(1,20) = 0.08, p > 0.05] rates or sign-tracking [F(1,20) = 0.97, p > 

0.05] or goal-tracking [F(1,20) = 0.00, p > 0.05] probabilities, suggesting that the 

reconsolidation treatment on the lever CS and tone CS had no effect. However, there was 

a main effect of response type in the sign-tracking and goal-tracking rates [F(1,20) = 

26.52, p < 0.05] and probability [F(1,20) = 69.78, p < 0.05] thus indicating that goal-

tracking extinguishes faster than sign-tracking. 

Discussion: Experiment 1 and 2 

The results using a 2-CS PCA procedure demonstrated that there was a disruption 

in learning of the reward-predictive stimuli of animals treated with MK-801 post-session. 
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Animals that were treated with MK-801 post-session showed no sign-tracking or goal-

tracking responding to the lever CS. On the contrary, saline treated animals showed 

learning and elicited exclusive sign-tracking and goal-tracking responding to the lever CS 

and tone CS, respectively. Collectively, these results indicate that the NMDA receptor 

plays a role in the consolidation of learning as seen in other experiments (Alaghband & 

Marshall, 2012; McLamb et al., 1990; de Lima et al., 2005). 

Results from the second experiment again indicated that animals showed explicit 

sign-tracking and goal-tracking to the lever CS and tone CS, respectively. However, there 

was no effect of the reconsolidation manipulation on the lever stimulus in both 

conditions. However, across blocks there was a decrease in the rate of responding to tone 

overall in both conditions. Relative to sign-tracking to the lever, extinction rates for goal-

tracking to the tone were higher for both saline and MK-801 treated animals, suggesting a 

difference in the persistence of the two different stimulus memories, with the lever CS 

memory being stronger than the tone CS. 

 The strength of a memory plays a large role in the effects of altering a memory 

during reconsolidation (Lee et al., 2006). From the results collected in the preliminary 

experiment, alternative methods may be required to further examine these differences in 

memory strength. Some of these methods may include increasing the length or the 

number of the reactivation trials, since memory reactivation might require some “warm-

up” (Tronson & Taylor, 2007). For example, a study by Alaghband and Marshall (2013) 

used cocaine conditioned place preference (CPP) and multiple reactivation sessions 

during the reconsolidation phase to understand how the strength of some memories 

requires more disruption. In the CPP experiment, rats were conditioned with cocaine in 
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one context and then tested for their preference. Following preference conditioning, 

animals were treated with MK-801 after a reactivation test, where they were placed in the 

cocaine context briefly. It was found that the initial test did not have an effect on 

preference scores. However, reactivating and retreating with MK-801 seemed to have an 

effect in reducing cocaine CPP. The results of this experiment suggest that something like 

cocaine CPP might create a strong memory between cocaine and the CPP context and 

that repeated memory disruption is required to abolish the drug memory. 
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CHAPTER 3: Revisiting Reconsolidation 

Results from Experiment 2: Memory Reconsolidation indicated that the single 

stimulus presentation followed by a treatment of MK-801 (0.1 mg/kg) or saline did not 

differ on subsequent responding thus suggesting the manipulation used did not have an 

effect. In order to further investigate this idea of reconsolidation and memories associated 

with a conditioned stimuli more presentations to elicit a stronger reactivation was used in 

attempts to examine memory strength in a reconsolidation paradigm. It was hypothesized 

that presenting animals with more than one presentation of the lever CS or tone CS 

should allow for reactivation and a disruption in the reconsolidation of the stimulus 

memory, where animals presented with the lever CS and treated with MK-801 should 

show less responding during the test day than animals presented with the tone CS or 

treated with saline. Similar effects were expected with animals presented with the tone 

CS and treated with MK-801 as well, where the responding to the tone CS should be 

lower than animals presented with the lever CS or treated with saline. Furthermore, it was 

also hypothesized that, relative to a tone CS, a lever CS that has been attributed with 

incentive value should be harder to disrupt. 

Experiment 3: Reconsolidation – Multiple Stimulus Presentations 

Methods 

Subjects 

 Twenty-four male Sprague-Dawley rats (Harlan Inc.; Indianapolis, IN, USA), 

weighing approximately 250-275 g at the beginning of experimentation, were used. Rats 

were individually housed in a temperature-controlled environment with a 12:12 hr 
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light:dark cycle, with lights on at 0600 h. The rats were first acclimated to the colony 

environment and handled daily for one week prior to experimentation. All 

experimentation was conducted during the light phase. All rats had ad libitum access to 

food and water in their home cage. All experimental protocols were conducted according 

to the 2010 NIH Guide for the Care and Use of Laboratory Animals (8
th

 edition) and 

were approved by the Institutional Animal Care and Use Committee at the University of 

Kentucky. 

Apparatus 

Experiments were conducted in operant conditioning chambers (ENV-008, MED 

Associates, St. Albans, VT) that were enclosed within sound-attenuating compartments 

(ENV-018M, MED Associates). Each chamber was connected to a personal computer 

interface (SG-502, MED Associates), and all chambers were operated using MED-PC. 

Within each operant chamber, a 5.1 x 5.1 cm recessed food receptacle (ENV-200R2MA) 

outfitted with a head-entry detector (ENV-254-CB) was located on the front response 

panel of the chamber, two retractable response levers were mounted on either side of the 

food receptacle (ENV-122CM; 6 cm above metal rod floor), two white cue lights (ENV-

221M) were mounted at 4.1 cm and 8.2 cm above each response lever, and a tone 

generator (ENV-223 HAM) was located above the top left cue light. The back response 

panel was outfitted with a single retractable response lever (ENV-122CM; directly 

opposite of the food receptacle); two nosepoke response lights (ENV-114BM; 6 cm 

above metal rod floor and directly opposite to front response levers) were mounted on 

either side of the retractable response lever, and a house-light (ENV-227M) was located 
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12 cm above the response lever. Food pellets (45-mg Noyes Precision Pellets; Research 

Diets, Inc., New Brunswick, NJ) were delivered via a dispenser (ENV-203M-45). 

Drug 

 (+)-MK-801 hydrogen maleate was purchased from Sigma-Aldrich (St. Louis, 

MO, USA) and mixed in sterile saline (0.9% NaCl).  

Procedure 

Magazine Shaping 

 During the last two days of acclimation to the colony, immediately after animals 

were handled, 10 to 15 food pellets (45-mg Noyes Precision Pellets; Research Diets, Inc., 

New Brunswick, NJ, USA) were dropped into their home cages. Following the week of 

habituation, animals were trained to retrieve food pellets from the food receptacle for two 

consecutive days. Animals were placed in the operant chambers and given 40 minutes to 

retrieve and consume 16 food pellets, delivered on a 60s fixed time schedule. 

2-CS PCA Task 

 Following magazine shaping, 2-CS PCA training commenced. During each 

training session, a single response lever adjacent to the food receptacle (counterbalanced 

for side) was inserted into the chamber or a 40 KHz tone was presented for 8s. 

Immediately after lever retraction or tone cessation, a food pellet was non-contingently 

delivered into the receptacle. Stimulus presentations were separated by a 90s variable 

time inter-trial-interval (ITI), ranging from 12s to 286s (Fleshler & Hoffman, 1962) that 

began immediately after pellet delivery. Each session consisted of 32 total trials, 



31 
 

comprised of 16 lever insertions and 16 tone presentations in a pseudorandom order, 

where no more than four presentations of the same stimulus occurred consecutively. 

Sign-tracking (ST) responses were recorded as lever presses, while goal-tracking (GT) 

responses were recorded as breaks of a photo beam within the food receptacle during 

stimulus presentation. Head entries into the food receptacle during the ITI period were 

recorded as GT-ITI. Additionally, head entries into the food receptacle during the 8s 

period before each trial (8s pre-CS) were recorded. 

Memory Reconsolidation – Multiple Presentations 

Following 14 days of 2-CS PCA training animals (n=24) were matched for 

performance, based on sign- and goal-tracking rates, and divided into four groups (n = 

6/group; lever+saline, tone+saline, lever+MK-801, and tone+MK-801). All animals were 

placed into the operant chambers and given four presentations of either the previously 

conditioned lever CS or tone CS with a 90s FT-ITI. Following the presentations of the 

stimulus animals were taken out and immediately given either an injection of saline or 

MK-801 (0.1 mg/kg i.p.) and returned to the colony. On the following day animals were 

tested on the 2-CS PCA task under extinction. 

Analysis 

 Linear mixed effects modeling, with sessions (continuous) and stimulus (nominal: 

tone vs. lever) as within-subject factors and treatment (nominal: saline vs. MK-801) and 

CS presented (nominal: tone vs. lever) as between-subject factors, were used to determine 

if there were any differences in sign-tracking and goal-tracking rates of the matched 

groups. In addition, another linear mixed effects modeling with sessions (continuous), 
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and response type (nominal: sign-tracking vs. goal-tracking) as within-subject factors was 

used to analyze rates of sign-tracking to the lever and goal-tracking to the tone. 

 Finally a linear mixed effects model, with block (continuous: 4 trials per block of 

each stimulus type) and stimulus (nominal: tone vs. lever) as within-subject factors and 

treatment (nominal: saline vs. MK-801) and CS presented (nominal: tone vs. lever) as 

between-subject factors, was used to examine the effects of the reconsolidation treatment 

on sign-tracking and goal-tracking response rates and sign-tracking and goal-tracking 

probability. Furthermore, another linear mixed effects modeling with block (continuous), 

stimulus (nominal: tone vs. lever), response type (nominal: sign-tracking vs. goal-

tracking) as within-subject factors and treatment (nominal: saline vs. MK-801) and CS 

presented (nominal: tone vs lever) as a between-subject factors, was used to analyze 

response rates and response probability for sign-tracking to the lever and goal-tracking to 

the tone. 

Results 

Figure 4 illustrates the sign-tracking (4A) and goal-tracking (4B) rates of the 

matched groups. Linear mixed effects modeling revealed a significant main effect of 

session on sign-tracking [F(1,20) = 35.52, p < 0.05] and goal-tracking [F(1,20) = 12.44, p 

< 0.05], with rates indicating that both sign- and goal-tracking rates increased over the 

training period. Linear mixed effects modeling revealed there was a significant main 

effect of stimulus on sign-tracking [F(1,20) = 50.58, p < 0.05] and goal-tracking [F(1,20) 

= 20.37, p < 0.05] rates, where the lever CS elicited sign-tracking and the tone CS 

elicited goal-tracking. Additionally there was a significant between stimulus x session 
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interaction on sign-tracking [F(1,20) = 35.52, p < 0.05] and goal-tracking [F(1,20) = 

28.27, p < 0.05] rates, suggesting that sign-tracking and goal-tracking responses to the 

lever CS and tone CS, respectively, increased over session. Furthermore, there was no 

significant interaction of treatment x CS presented x stimulus x session on sign-tracking 

[F(1,20) = 0.21, p > 0.05] or goal-tracking [F(1,20) = 0.00, p > 0.05] rates. Collectively, 

these results indicate no differences in the matched groups and that animals were 

exclusively sign-tracking to the lever CS and exclusively goal-tracking to the tone CS. 

Additionally, there were differences in sign-tracking rates to the lever CS and goal-

tracking rates to the tone CS [F(1,23) = 5.03, p < 0.05]. 

 Figure 5 shows sign-tracking (5A) and goal-tracking (5B) rates, as well as sign-

tracking (5C) and goal-tracking (5D) probabilities across the four blocks of trials during 

the test. Linear mixed effects modeling revealed a significant main effect of block on 

sign-tracking rates [F(1,20) = 33.08, p < 0.05] and probability [F(1,20) = 11.85, p < 

0.05], as well as goal-tracking rates [F(1,20) = 19.35, p < 0.05] and probability [F(1,20) 

= 50.20, p < 0.05], indicating that both sign- and goal-tracking response rates and 

probabilities decreased over the four trial blocks. Linear mixed effects modeling also 

revealed a significant main effect of stimulus on sign-tracking rates [F(1,20) = 52.87, p < 

0.05] and probability [F(1,20) = 129.15, p < 0.05], as well as goal-tracking rates [F(1,20) 

= 25.38, p < 0.05] and probability [F(1,20) = 49.02, p < 0.05]. These results indicate that 

the sign-tracking responses were made to the lever CS and goal-tracking responses were 

made to the tone CS. Furthermore, linear mixed effects modeling revealed a significant 

interaction of block x stimulus on sign-tracking rates [F(1,20) = 33.08, p < 0.05] and 

probability [F(1,20) = 11.85, p < 0.05], as well as goal-tracking rates [F(1,20) = 12.55, p 
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< 0.05] and probability [F(1,20) = 15.42, p < 0.05], indicating that that sign-tracking and 

goal-tracking response rates decreased over the four trial blocks. 

 However, linear mixed effects modeling revealed no significant interaction of 

treatment x CS presented x stimulus x block on sign-tracking [F(1,20) = 0.35, p > 0.05] 

or goal-tracking [F(1,20) = 0.05, p > 0.05] rates or sign-tracking [F(1,20) = 0.02, p > 

0.05] or goal-tracking [F(1,20) = 0.01, p > 0.05] probabilities, suggesting that the 

reconsolidation treatment on the lever CS and tone CS had no effect. 

The results from the third experiment again indicated that animals showed explicit 

sign-tracking and goal-tracking to the lever CS and tone CS, respectively. However, there 

was no effect of the reconsolidation manipulation on the lever stimulus in both conditions 

despite the multiple presentations of the lever CS or tone CS. Furthermore, there were no 

differences in the response type on sign-tracking and goal-tracking rates, but a main 

effect of response type on probability [F(1,20) = 8.99, p > 0.05] suggesting that the 

likelihood of a obtaining a goal-tracking response decreased quicker than sign-tracking. 

Discussion 

The results reported in these three experiments reveal a number of interesting 

aspects regarding memory consolidation and memory reconsolidation on a PCA task. In 

the first experiment it was found that NMDA receptor blockade can prevent the 

consolidation of a lever CS and tone CS memory. Results from the second experiment 

demonstrated that the administration of MK-801 post reactivation of a single presentation 

of the previously conditioned stimuli did not have any effect on subsequent tests, 

suggesting that memory reconsolidation of these conditioned stimuli was not disrupted. 
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To follow up on the lack of an effect, experiment 3 examined the idea of a needing 

greater a greater number of presentations to reactivate a PCA memory. The results of 

experiment 3, where four presentations of the previously conditioned were presented and 

then MK-801 was administered, again demonstrated no disruption following the memory 

reconsolidation manipulation. Overall, these data suggest that basic stimulus- reward 

learning and the attribution of incentive value can be prevented by the administration of 

MK-801 post-session. Furthermore, based on the methods used, the administration of 

MK-801 after a reactivation session, where one or four presentations of a targeted 

stimulus was presented, demonstrated there were no effects in disrupting memory 

reconsolidation. 

The first set of data fits with literature demonstrating that the administration of 

MK-801 post-session can disrupt Pavlovian learning, more specifically PCA (Bevins & 

Bardo, 1999; Blaiss & Janak, 2007). However, the data concerning memory 

reconsolidation prompts discussion about the protocols used. First, when presenting a 

previously conditioned stimulus, whether it an aversive or appetitive CS-US pairing, 

during the reactivation phase raises the issue of when does reactivation become extinction 

learning and whether or not these two processes are dissociable (de la Fuente et al., 

2011). If reactivating a memory is extinction learning, than the disruption of the memory 

during reconsolidation should prevent extinction learning. However, a recent study by 

Merlo and colleagues (2014) examined how the gradual increase in presentations of a 

previously conditioned fear stimulus can affect the behavioral and molecular transitions 

between reconsolidation and extinction. The results of the aforementioned study 

demonstrated that by increasing the number of CS presentations during reactivation a 
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gradual shift towards extinction learning occurs. Furthermore, this shift from reactivation 

to extinction is associated with an increase in calcineurin, a protein phosphatase linked to 

the consolidation of fear memory (Ikegami & Inokuchi, 2000). While this is an example 

of reactivation versus extinction in aversive conditioning, the data suggests that too many 

presentations of the conditioned stimulus during reactivation could lead to extinction 

learning. While, there was no molecular data collected in this present study, the similar 

results from one presentation versus four presentations, where both saline and MK-801 

treated rats extinguished at similar rates, suggest that there was no blockade of any 

possible extinction learning. 

Interestingly, present results from the attempt to disrupt memory reconsolidation 

relate to the results that Blaiss and Janak (2007) found, where goal-tracking responses to 

a tone and light CS+ combination for a sucrose solution were unaltered by post-session 

treatments of anisomycin. While, this study had a tone CS to elicit goal-tracking, the 

administration of MK-801 post-session did not have any effect, similar to the effects 

observed herein. However, a recent study by Reichelt and Lee (2013) did demonstrate a 

disruption of memory reconsolidation in goal-tracking behavior. In this particular study, 

rats were had to discriminate a CS+ tone from a CS- tone for three sucrose pellets over 

three, six, or twelve days of training with 10 presentations each followed by a 

reactivation, during which three presentations of the CS+ were presented. It was found 

that at three days, when treatments were administered prior to reactivation sessions, 

saline-treated animals were unable to discriminate the CS+ and CS- thus suggesting that 

extinction learning occurred during the reactivation session. However, MK-801 treated 

animals following the three days of CS+ and CS- discrimination task were still able to 
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make the distinction, suggesting that MK-801 prevented the CS+ from undergoing 

extinction learning during the reactivation task. However, at six days it was found that 

discrimination for CS+ and CS- was only impaired in the drug treated animals, 

suggesting goal-tracking memories were disrupted. Finally, following the twelve days of 

training, it was shown that the pre-session administration of MK-801 during the 

reactivation session had no effect on the CS+ and CS- discrimination task. One thing to 

note in the study by Reichelt and Lee (2013) is that pre-session administration of MK-

801 was used instead of the typical post-session administration that has been 

demonstrated to work in other Pavlovian conditioning paradigms (Kelley et al., 2007; 

Sadler et al., 2007; Milton et al., 2008). Another difference between the present study and 

Reichelt and Lee (2013) is that 60 pairings of each conditioned stimulus (CS+ and CS-) 

were presented during the initial training, with 3 presentations during reactivation; in 

contrast, in the present study there was greater initial conditioning of two appetitive 

stimuli, where there were 224 pairings of each stimulus, with 1 or 4 presentations of each 

during reactivation. Thus, the resistance of sign- and goal-tracking to a lever CS and tone 

CS, respectively, to the disruption in reconsolidation herein supports the possibility of 

enhanced memory strength for each stimulus. 

 Memory strength has been shown to be correlated with the extent of training. In 

aversive learning, it has been shown that the number CS-US pairings of a fear stimulus 

can affect the number of CS presentations required during reactivation to disrupt 

memory. Furthermore, the number of reactivation presentations might not have any effect 

when the number of conditioned responses elicited by the CS-US pairings reach an 

asymptote, where the memory is, in a sense, fully consolidated, and where training 
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beyond that could lead to over-training (Di Ciano et al., 2001; Wang et al., 2009). 

Moreover, following over-training, an extended period of abstinence from CS-US 

training (30 days; Wang et al., 2009) was required in order to disrupt memory 

reconsolidation. While there has been little study in over-trained appetitive memories, 

strong appetitive memories for cocaine-associated cues can be disrupted (Lee et al., 

2006). Within the 2-CS model, the lever CS associated with sign-tracking is theoretically 

representative of a strong appetitive memory, where the incentive value attributed to it 

can influence the memory formed and make it stronger to start off with. However, when 

the lever CS and tone CS, a stimulus absent of incentive value, underwent disruption 

during memory reconsolidation, neither stimulus showed any evidence of memory 

disruption. This suggests that it is quite possible that in the present study, the strength of 

the Pavlovian memories could be resistant to memory destabilization due to an over-

training effect. 

Overall, the present study demonstrated the importance of the NMDA receptor in 

the consolidation of reward-associated stimuli, where both general stimulus-reward 

learning and stimulus-reward learning with attribution of value were impeded. While, the 

results for the attempts to modulate a pre-existing memory did not show any significant 

effects, it is clear that the methods to successfully modify a PCA memory require a lot 

more consideration. The concept that over-training could be influencing the results seen 

during the attempt to disrupt memory reconsolidation for both the lever CS and tone CS 

provokes thought about the different neurobehavioral mechanisms that drive sign- and 

goal-tracking. Stimulus-response (S-R) relationships have been proposed to drive sign-

tracking repertoires, while learned action-outcome (A-O) relationships have been 
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proposed to drive goal-tracking repertoires (Clark et al., 2012; Dezfouli & Balleine, 

2012). These proposed mechanisms suggest sign-tracking should be more habit-like, 

while the goal-tracking is more goal-directed (Dayan & Berridge, 2014). With sign-

tracking being habit-like, it has been hypothesized and demonstrated that sign-tracking 

behavior is less sensitive to changes in the CS-US relationship, where under extinction 

conditions or the application of an omission contingency sign-tracking behavior 

continues to persist longer than goal-tracking behavior which is goal-directed, making it 

more malleable and sensitive to changes in contingency (Beckmann & Chow, submitted). 

If sign-tracking repertoires are reflective of a habit-like learning system, and goal-

tracking is not, than theoretically the formation of these memories could also differ in the 

time it takes for the two response types to become over-trained. 

Collectively, the data from the present study and the discussion mentioned above 

suggest that memory profiles behind sign-tracking and goal-tracking repertoires could be 

different. However, current procedures used for training the different stimuli could 

influence the overall memory. In all, different procedural methods could provide insight 

into whether or not stimuli attributed with incentive value have different memory profiles 

than normal reward-predictive stimuli. 
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Figure 2.1 

Mean (± SEM) response rate (responses/second; r/s) for (A) sign-tracking, (B) goal-

tracking, (C) goal-tracking 8s before the presentation of a stimulus, and (D) difference in 

response probability, where 1.00 guarantees a sign-tracking response every trial and -1.00 

guarantees a goal-tracking response every trial. 
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Figure 2.2 

Mean (± SEM) response rate (responses/second; r/s) for (A) sign-tracking and (B) goal-

tracking for the matched groups. 
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Figure 2.3 

Mean (± SEM) response rate (responses/second; r/s) for (A) sign-tracking and (B) goal-

tracking and mean (± SEM) probability of obtaining a response for (C) sign-tracking and 

(D) goal-tracking. (CS: Lever vs. Tone) indicates the stimulus being responded on, while 

(Treatment: Saline vs. MK-801 + Lever vs. Tone) indicates what stimulus and drug were 

used during the memory reconsolidation manipulation. 
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Figure 3.1 

Mean (± SEM) response rate (responses/second; r/s) for (A) sign-tracking and (B) goal-

tracking for the matched groups. 
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Figure 3.2 

Mean (± SEM) response rate (responses/second; r/s) for (A) sign-tracking and (B) goal-

tracking and mean (± SEM) probability of obtaining a response for (C) sign-tracking and 

(D) goal-tracking. (CS: Lever vs. Tone) indicates the stimulus being responded on, while 

(Treatment: Saline vs. MK-801 + Lever vs. Tone) indicates what stimulus and drug were 

used during the memory reconsolidation manipulation. 
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