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ABSTRACT OF THESIS 

 

EFFECT OF SOCIAL PEERS ON RISKY DECISION MAKING IN MALE SPRAGUE 
DAWLEY RATS 

 

Adolescence is a time associated with increased risk taking and peer relations.  
Research has shown that adolescents are more vulnerable to peer pressure compared to 
adults, leading to exacerbated risk taking.  Preclinical research suggests that these findings 
may also be applicable to adolescent rodents, which find social interaction rewarding and 
are prone to risky behavior. There is, however, little research on the effect of social 
interaction on rodent models of risky decision-making.  This thesis utilized social 
chambers, which consisted of adjacent operant chambers separated by wire mesh. 
Adolescent rats performed a risky decision-making task in which they had a choice 
between a small and large reward (associated with a mild footshock, which increased in 
probability across the session).  Experiment 1 determined if the presence of peer altered 
performance on the task after stability.  Experiment 2 determined if the presence of a peer 
altered performance on the task during acquisition.  Results of Experiment 1 revealed no 
significant changes.  Results from Experiment 2 revealed a significant increase in 
preference for the risky reward in the group of rats that had daily exposure to a social peer.  
These results provide evidence that social influence on risk taking can be modeled in 
rodents. 
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CHAPTER 1 

Introduction 

Adolescence is a time associated with maturation of both neuronal and peripheral 

body systems.  During this age period, peer interactions are typically extensive due to 

school and extracurricular activities.  These peer interactions also are apparent with crimes 

and antisocial behaviors committed by adolescents, which typically occur in a group setting 

(McCord et al., 2005).   This contrasts with adults, who often act alone. It is unknown, 

however, why there are age differences related to crimes.  One possibility is that because 

adolescents are in the presence of peers more often than adults, they are simply showing 

increased odds that if they commit a crime, it will be within a group context.  

The phenomenon of social facilitation of disruptive behaviors is not solely 

associated with crimes such as robbery, destruction of property, or vandalism.  In 

particular, the initiation of drug use during adolescence also generally happens in a group 

setting.  Research has found that for most drugs, initiation of use begins around age 18 

(being a little younger for nicotine and a little older for prescription opiates) and 

discontinuation often occurs around age 21 (Kandel et al., 1984).  These findings confirm 

that while most adolescents experiment with illicit substances, relatively few continue use 

to the point where a substance use disorder becomes manifest.  Therefore, the focus of 

research on drug use should not be exclusively on targeting the elimination of initiation of 

use, but rather finding risk factors that are associated with those persons who go on to 

develop substance use disorders. 

The purpose of the current thesis was to evaluate whether or not social risk taking 

can be modeled in rodents, both before and after acquisition of behavior, and observe 
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whether or not behavioral changes in rodents mimic those seen in humans following peer 

interaction. 

Sensation and Novelty Seeking 

Human and animal research has begun to determine individual differences in 

behavioral and personality traits are correlated with substance abuse later in life.  Among 

the various individual difference traits used to predict drug use, sensation seeking or 

novelty seeking has been shown to be one of the most reliable predictors in both humans 

and animals (Zuckerman, 1986; Franques, 2003; Belin et al., 2011; Marusich et al., 2011; 

Gancarz et al., 2011).   

In humans, sensation seeking is measured via a paper survey called the Sensation 

Seeking Scale, with a large number of items that include information about thrill and 

adventure seeking, experience seeking, disinhibition, and boredom susceptibility.  Those 

individuals who rank higher on these traits are also more likely to be current drug users 

(Zuckerman, 1986).  A newer survey has also been created to assess sensation seeking, 

namely the UPPS, which measures urgency (U), premeditation (P), perseverance (P), and 

sensation seeking (S) (Whiteside et al., 2005).  This scale is commonly used and involves 

choosing an answer that most accurately matches how you act in situations on a Likert 

scale.  In a study that compared performance on a gambling task to levels of sensation 

seeking and urgency (as measured by the UPPS), it was found that there was a link between 

sensation seeking and urgency to disadvantageous decisions during the gambling task 

(Bayard et al., 2011).   

To test for sensation seeking or novelty seeking in rats, the experimenter places the 

animal into a large, novel, chamber and measures the amount of horizontal movement for 
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a set period of time (Jodogne et al., 1994).  Alternatively, novelty seeking may be tested in 

a conditioned place preference (CPP) chamber, which is made up of 3 separate 

compartments that can be blocked off from one another and differ in appearance.  On the 

first three sessions, the animal is confined to one end compartment of the chamber for a set 

period of time (typically 30 minutes).  On the next session, the animal is allowed to explore 

all of the compartments.  The measurement of novelty seeking is defined by the percentage 

of time spent in the novel compartment compared to the total time.  If the animal is high in 

novelty seeking, they will spend more than 50% of their time in the novel chamber.  

Spending time exploring novel environments is predictive of increased rates of acquisition 

of stimulant self-administration in drug naïve rats compared to their low novelty- or 

sensation-seeking cohorts (Belin, 2011; Gancarz, 2011). 

Impulsivity 

Delay Discounting 

A commonly used task for measuring impulsive behavior in both humans and 

animals is the delay-discounting task.  In humans, delay discounting is measured by asking 

participants to choose between the possibility of receiving a set amount of money after a 

set delay, compared to a lesser amount of money immediately.  The amount of time the 

participant would have to wait steadily increases until they reach a break point, which is 

defined as having no preference between the money available after the delay, and the 

amount that would be available immediately (Reynolds, 2006).  Regular use of nicotine, 

cocaine, marijuana, and alcohol are all associated with steeper discounting than controls 

(Businelle et al., 2010; Washio et al., 2011; Peters et al., 2013; Andrade et al., 2013).  

However, it is not clear if this change in discounting precedes or results from drug use. 
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In preclinical models, the animal is given the choice to respond for a small reward, 

which is delivered immediately preceding a response, or a large reward, which is delivered 

after a set amount of time elapses preceding a response (Cardinal, 2006).  The question that 

this task asks is whether the animal is willing to wait for a reward of greater magnitude.  

Larger discounting rates (choosing the small reward over the large reward) are associated 

with higher rates of drug use. For example, Marusich and Bardo (2009) found that rats that 

were highly impulsive on the delay discounting task self-administered more 

methylphenidate at low doses than rats that were low in impulsivity.  Furthermore, it has 

also been shown that impulsive rats will show greater escalation of cocaine self-

administration compared to non-impulsive rats when tested on a 6-hr long-access paradigm 

(Anker et al., 2009).  Not are individual differences in delay discounting associated with 

subsequent stimulant self-administration, chronic drug use can increase impulsive choice.  

For example, research has shown that pre-exposure to stimulants (particularly 

amphetamine and cocaine) causes increased discounting in this task, indicating that rats 

with a history of stimulant exposure become more impulsive than rats with no drug 

exposure (Mendez et al., 2010; Gipson and Bardo, 2009).  Thus, there is a reciprocal 

relationship between impulsive choice and stimulant use. 

Cued Go/No Go Task 

Another human task designed to measure impulsivity is the cued go/no go task 

(Fillmore, 2003).  This task has a “go” cue that is associated with the requirement for the 

participant to make a response 80% of the time and a “no go” cue that is associated with 

the need for a participant to withhold a response 80% of the time.  This means that on 20% 

of trials in which a “go” cue is shown, it will be followed by a “no go” target, and the 
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participant needs to withhold a response.  Based on the data from these trials, researchers 

are able to sort participants into high or low impulsivity groups, with those who are unable 

to inhibit responding falling into the high impulsivity group.  Individuals who are 

dependent on substances such as cocaine and methamphetamine are highly impulsive based 

on results of this task (Pike et al., 2013).  That is, cocaine users who are given a cocaine 

image for a “go” signal have much higher rates of inhibitory failures than participants who 

are either assigned a neutral “go” signal or non-cocaine users who are assigned a cocaine 

“go” signal.  Alcohol has also been shown to affect performance on this task.  Participants 

who received a moderate dose of alcohol before completing the task had significantly 

higher rates of inhibitory failures compared to participants who received a placebo drink 

(Weafer and Fillmore, 2012). 

Risk Taking 

Iowa Gambling Task 

In humans, risk taking is assessed using the Iowa Gambling Task (Bechara et al., 

1998), which is now generally performed on a computer.  The participant is shown 4 decks 

of cards and is told that each deck contains cards that are worth money, and some that take 

money away, with the goal of gaining as much money as possible.  What they are not told 

is that 2 decks contain cards that give high gains, but also high losses, and the other 2 decks 

contain cards that give lower gains, but also lower losses.  The most efficient way to 

maximize winnings is to pick from the 2 decks with the smaller gains.  Cocaine dependent 

individuals perform poorly on the Iowa Gambling Task, preferring to choose from the two 

disadvantageous decks more often than the two advantageous ones (Vadhan et al., 2009; 

Kjome et al., 2010).  Disadvantageous choices in this task have also been associated with 
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social dysfunction (Cunha et al., 2011), suggesting real world validity of this task.  Due to 

methodological barriers, the Iowa Gambling task is not used in preclinical models of risk-

taking. 

Probabilistic Discounting Task 

Preclinical models use adaptations of clinical tasks in order to test behaviors of 

interest.  One task often used to measure risk taking in animals is the probabilistic 

discounting task, which is functionally similar to the Iowa Gambling Task in humans.  This 

task allows animals to choose between a small, safe reward, where a single food pellet is 

delivered immediately following a response, or a large, risky reward, where the probability 

of multiple food pellets delivered immediately following a response decreases across a 

session (Cardinal, 2006).  Unlike delay discounting, which measures the willingness to 

wait for a guaranteed reward, the probabilistic discounting task measures risk taking that 

is more closely associated with gambling behavior.  Studies have shown that stimulants 

(particularly amphetamine and cocaine) increase risk taking in the probabilistic discounting 

task (Floresco and Whelan, 2009; Mendez et al., 2010).  Chronic experimenter-

administered amphetamine also increases choice of the large, risky reward compared to 

baseline behavior in the same animals.  Similarly, chronic self-administration of cocaine 

also increases the choice of the large, risky reward compared to drug-naïve animals.   

Risky Decision Making Task 

Real life gambling is associated with both rewarding gains and aversive losses 

when making a risky choice.  Unfortunately, the probabilistic discounting task does not 

utilize aversive stimuli directly.  Thus, a new preclinical task has been designed that adds 

an aversive stimulus to the risky option, namely the risky decision making task, developed 
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by Setlow and colleagues (Simon and Setlow, 2009).  In this task, rats are given a choice 

between a small, safe reward of a single food pellet that is delivered immediately following 

a response, and a large, risky reward of three food pellets that are delivered immediately 

following a response; however, the large reward is also associated with a mild footshock, 

with the probability of the shock increasing across the session by block.   

Performance on the risky decision making task is altered by a variety of drugs of 

abuse.  Acute administration of morphine or diazepam increases choice of the large, risky 

reward, whereas acute administration of nicotine or amphetamine decreases risky choice 

(Mitchell et al., 2011).  Similar to the probabilistic discounting task, chronic experimenter-

administered cocaine exposure increases choice of the large, risky reward compared to drug 

naïve animals (Simon et al., 2009). 

More interestingly, this task predicts self-administration of cocaine, both in 

adolescent and adult rats (Mitchell et al., 2013).  Rats inclined to choose the risky option 

more, regardless of the probability of shock are also more likely to self-administer cocaine 

at higher rates compared to their more risk adverse cohorts.  The self-administration of 

cocaine, in turn, leads to choice of the risky reward more often in an intake-dependent 

manner.  This suggests that not only does risk taking behavior lead to higher rates of drug 

use, but also that any drug use will lead to an increase in risk taking behavior, which can 

lead to a vicious escalation of drug use. 

Social Influence on Behavior 

Among the various tasks mentioned above, almost all have been conducted in a 

context where there is only one human or rat participant.  Significantly less work has 

focused on the effects of peer influences.  Since problem behaviors typically occur in a 
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group setting, especially among adolescents, it is important to know the effects that cohorts 

have on decision-making. 

Social Influences in Risk Taking 

The field of social psychology has contributed to our understanding of social risk 

taking.  This work has shown that adolescents are more vulnerable to peer pressure and 

advice compared to adults (Gardner and Steinberg, 2005).  In addition, peers typically 

advise friends to make riskier decisions than they would choose for themselves 

(Beisswanger et al., 2003).  This latter finding appears to be true for only relationship and 

social situations, and does not generalize to risky decisions about financial situations (Stone 

et al., 2002). 

Recent work by Gardner and Steinberg (2005) has shown that younger individuals 

exhibit more risk taking than older individuals, and this risk behavior is exacerbated when 

in a social setting among peers. In that study, examination of gender differences showed 

that males give greater weight to benefits of a risky decision and less weight to the negative 

consequences compared to females, suggesting that males are more likely to engage in 

these risky behaviors.  When asked about the same risk taking situations in a group setting, 

males further increased the perceived weight of the benefits as compared to the negative 

consequences.  When ethnicity is taken into account, non-white adults were slightly more 

risky than white adults, while white adolescents were slightly more risky than non-white 

adolescents when tested individually.  For the adolescents in a peer setting, increased risk 

preference was seen in the non-white participants more than the white participants. 
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Rewarding Properties of Social Interaction 

Preclinical research has suggested that social interaction during the adolescent 

period is a rewarding event.  Douglas and colleagues (2004) investigated the rewarding 

properties of social interactions in both adolescent and adult male and female rats that were 

housed in either individual or pair-housed conditions.  Testing for social place preference 

was conducted in a CPP chamber, where two main compartments were attached with a 

third, smaller compartment.  Rats were exposed to each end of the compartment on 

alternating days, with a social partner placed in one compartment and no partner placed in 

the opposite compartment. On the test session, individual rats were then allowed access to 

all three compartments and the duration in each compartment was recorded. 

Results from that study showed that the rewarding effect of social interaction was 

dependent not only on gender, but also the housing condition of the subjects (Douglas et 

al., 2004).   Adolescents that were in isolated conditions found social interaction rewarding, 

especially in males.  In contrast, animals that were in social housing did not find social 

interaction rewarding, although adolescents eventually began to show a preference for the 

chamber previously paired with a partner following multiple test sessions.  Interestingly, if 

a socially housed animal was paired with an animal that was housed in isolation, the 

socially housed animal found the interaction aversive; this effect was stronger for the 

adolescent than the adult rats. 

In a recent CPP study from our laboratory (Yates et al., 2013), it was found that 

adolescent male rats preferred a compartment previously paired with an age- and sex-

matched conspecific relative to a compartment paired with amphetamine.  This effect was 

not seen in adolescent females, who showed no preference for either compartment. In 
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addition, adult rats of either gender showed preference for the amphetamine compartment 

compared to the social-paired compartment. 

Social Influence on Drug Use 

Research shows that members of various social groups will either reinforce or 

punish the use of drugs based on the norms that have been decided upon by that group 

(Kandel, 1986).  In fact, the easiest way to predict whether or not an adolescent will initiate 

drug use is whether or not their friends use drugs (Bahr et al., 2005).  Within most social 

groups, the status of the leader is a critical determinant of substance use norms within the 

group (Jones et al., 2007).  However, while group affiliation can determine drug use norms 

for individual members, there is also evidence that individuals who possess traits that 

increase risk for drug use will seek each other out in order to form peer clusters (Donohew 

et al., 1999), thus suggesting that predisposing individual differences in biological risk may 

precede peer group identification.  In this regard, preclinical research may be useful for 

assessing social x biological interactions involved in drug use. 

Many studies are able to relate social housing to drug use. For example, animals 

reared in an enriched environment self-administer drugs at lower rates than rats that are 

reared in an isolated environment (Alvers et al., 2012; Puhl et al., 2012).  However, this 

demonstration may not have much real world application in the setting of drug use because 

those rats were tested for self-administration in a non-social condition (operant 

conditioning chamber), whereas substance use in humans typically occurs in a group 

setting.  Therefore, it is necessary to look into the intricate dynamics of self-administration 

in a social context in rats as well. 
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Until recently, there has been little work examining drug-taking behavior in 

laboratory animals while in a social group.  Since intravenous drug self-administration 

requires a catheter attached to an infusion system, placing two catheterized rats into the 

same operant chamber is not practical from a logistical point of view.  In addition, even 

with orally administered drugs, putting two rats into an operant chamber simultaneously 

would lead to responses made by both individuals, with no accountability for which rat was 

making each response. To avoid these logistical problems, a novel apparatus has been 

devised that consists of two standard operant chambers, connected by removing one side 

on each and replacing it with wire mesh (Smith, 2012).  This allows the animals to have 

limited tactile, olfactory, auditory, and visual contact with one another, but prevents one 

rat from interfering with the responses made by the other.  Thus, these social chambers 

allow for two animals to run at the same time and allow the experimenter to collect data 

from the influence of social interaction during task performance. 

Using these social chambers, Smith (2012) assessed peer influences on cocaine 

self-administration.  Rats lived in the chambers throughout the experiment, with one rat in 

each chamber.  Half of the rats were paired with a partner that also had access to cocaine, 

and the other half had a non-drug paired partner.  Results showed that self-administration 

was facilitated in rats if both partners had access to cocaine, but was inhibited if only one 

had access.  These findings indicate that it is not simply the presence of a peer that is 

important for initial acquisition of drug self-administration, but that the peer must also have 

access to the drug for use to occur.   

In another experiment using a social chamber apparatus, Gipson et al. (2011) first 

trained rats to self-administer amphetamine in the absence of any social partner.  After 
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stable responding was established, a novel same-sex partner was introduced into the 

adjacent chamber during the self-administration session; the social partner did not have 

access to drug.  Results showed that amphetamine self-administration of the trained rat was 

increased in the presence of the partner, but that this social facilitation did not occur past 

the first self-administration session.  Importantly, social facilitation of responding for 

sucrose pellets did not occur, indicating that the effect was specific to amphetamine.  

Overall, these findings parallel the human literature showing an increase in drug use in the 

presence of peers and further suggest that animal models may be useful for studying social 

influences on drug use. 

Statement of Hypothesis 

Based on the existing literature, a next logical step in the field of social drug abuse 

research is to compare behavior on risk taking tasks in an isolated and social situation.  In 

this study, we made use of the social chamber and trained one animal on the risky decision 

making task.  Following acquisition, we then introduced an age, weight, and gender 

matched social peer in the adjacent chamber to assess the changes in risk taking behavior.  

It was hypothesized that animals would increase risk taking when in the presence of an 

age- and weight-matched conspecific.  Furthermore, acquisition of risk taking in 

adolescence is also a question of interest.  Therefore, in a second experiment, we introduced 

a social peer during every session of the risky decision making task, and compared risk-

taking behavior of these animals to controls, which did not have exposure to a social peer.  

As with the first experiment, it was predicted that the presence of a social peer would 

increase risk taking. 
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CHAPTER 2 

Methods 

Subjects 

In total, 48 male Sprague-Dawley rats were used for two experiments (n=12 for 

Experiment 1, with n=12 social peer cage mates; n=16 for Experiment 2, with n=8 social 

peer cage mates). Animals arrived from Harlan Industries (Indianapolis, IN) on postnatal 

day (PND) 21.  Upon arrival, rats were pair housed in a colony room that was on a 12-hr 

light-dark cycle, and all experimentation occurred in the light cycle.  During behavioral 

testing, rats were maintained at 85% of their free-feeding weight, but had free access to 

water in their home cage.  All animals were cared for in accordance with the National 

Institutes of Health Guide for the Care and Use of Laboratory Animals, and the Institutional 

Animal Care and Use Committee at the University of Kentucky approved experimental 

protocols. 

Apparatus 

 A custom built social operant chamber (see Figure 2.1), made up of two connected 

standard operant chambers, was used (Med Associates, St. Albans, VT).  The front and 

back walls of the operant chambers were made of aluminum, outside walls were made of 

Plexiglas, and the partition was a wire screen panel.  A wire screen allowed for visual, 

auditory, olfactory, and limited tactile contact between partners, but prevented rats from 

interfering with the levers in the adjacent chamber.  The entire apparatus measured 69.8 

cm x 53.3 cm x 60.9 cm (length x width x height).  Each individual chamber measured 34.9 

cm long.  The responder chamber included a food receptacle, located in the bottom-center 

of the front wall and two retractable response levers that were located on the front wall, 
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one on either side of the food receptacle.  There were three 28-V white cue lights located 

on the front wall, one 6 cm over each retractable lever, and the third over the food 

receptacle.  A houselight was mounted on the back wall of each chamber.  The adjacent 

chamber for the social peer was identical, except the levers were retracted.  Each of the 

floor grids were equipped with a harness that was connected to a Smartctrl interface (Med 

Associates, St. Albans, VT) which allowed for the delivery of shock, of which the intensity 

and duration could be controlled.  All programs were controlled and recorded by a 

computer interface using Med-PC software. 

Shaping 

 Shaping procedures for the responder rat followed those used previously (Cardinal 

et al. 2000; Simon et al. 2007, 2009; Mitchell et al. 2011).  Following magazine training, 

rats were trained to press a single lever (either the left or the right, counterbalanced across 

groups; the other lever was retracted during this phase of training) to receive a single food 

pellet.  After reaching a criterion of 50 lever presses in 30 min, rats were then trained on 

the opposite lever under the same criterion.  This was followed by further shaping sessions 

in which both levers were retracted and rats were shaped to nose poke into the food 

receptacle during simultaneous illumination of the cue light above the food receptacle and 

house lights.  When a nose poke occurred, a single lever was extended (left or right), and 

a lever press resulted in immediate delivery of a single food pellet.  Immediately following 

the lever press, the receptacle light was extinguished and the lever was retracted.  Rats were 

trained to a criterion of 30 presses on each lever within 60 min. 
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Risky Decision-Making Task (RDMT) 

Testing procedures followed Simon et al. (2009) and Mitchell et al. (2011).  

Sessions were 60 min in duration and consisted of five blocks of 14 or 18 trials each.  Each 

40-s trial began with a 10-s illumination of both the food receptacle light and house lights.  

A nose poke into the food receptacle extinguished the receptacle light and triggered 

extension of either a single lever (forced choice trials) or of both levers simultaneously 

(choice trials).  If rats failed to nose poke within the 10-s time window, the lights were 

extinguished and the trial was scored as an omission. 

 A press on one lever (either left or right, balanced across animals) resulted in one 

food pellet (the small, safe reward) delivered immediately following the lever press.  A 

press on the other lever resulted in immediate delivery of three food pellets (the large, risky 

reward).  However, selection of this lever was also accompanied immediately by a possible 

1-s footshock contingent on a preset probability specific to each trial block.  The large 

reward was delivered following every choice of the large reward lever, regardless of 

whether or not the footshock occurred.  The probability of footshock accompanying the 

large reward was set at 0% during the first trial block.  In subsequent trial blocks, the 

probability of footshock increased to 25%, 50%, 75%, and 100%.  The intensity of the 

footshock began at 0.15 micro-amps and was increased by 0.05 micro-amps following 

tolerance, ending at 0.3 micro-amps for Experiment 1 and 0.25 micro-amps for Experiment 

2; all data were collected at the highest shock values for each experiment.  Each trial block 

began with forced choice trials (4 trials during the 0- and 100% probability blocks, and 8 

trials during all other blocks) in which only a single lever was extended and which was 

used to establish the punishment contingencies in effect for that block (four for each lever), 
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followed by 10 choice trials (St. Onge and Floresco 2009).  Once either lever was pressed, 

both levers were immediately retracted.  Food delivery was accompanied by re-

illumination of both the food receptacle and house lights, which were extinguished upon 

entry to the food receptacle to collect the food or after 10 s, whichever occurred sooner.  

Fewer forced choice trials were used during the first and last blocks (where there was no 

probability of shock, or where shock would always occur) in an attempt to decrease satiety 

in adolescent animals.  On the forced choice trials (in which only one lever was present) 

the probability of shock following a press on the large reward lever was dependent across 

the four trials in each block.  For example, in the 25% risk block, one and only one of the 

four forced choice trials (randomly selected) always resulted in shock, and in the 75% risk 

block, three and only three of the four forced choice trials always resulted in shock.  In 

contrast, the probability of shock on the free choice trials (in which both levers are present) 

was entirely independent, such that the probability of shock on each trial was the same, 

irrespective of shock delivery on previous trials in that block. 

Experiment 1: Influence of social peer after acquisition of RDMT 

 Following stability of behavior in the RDMT in rats trained without a social peer 

in the adjacent compartment, a social peer (the cage mate of the responder rat) was placed 

into the adjacent chamber throughout the session.  Each subject was exposed to a social 

peer on three different sessions.  There were four sessions between pairings, where the 

subjects were alone in the social chamber to ensure that behavior returned to baseline 

responding.  Before test sessions with a social peer, animals were placed into the operant 

chambers (social peer followed by the responding rat) and allowed to acclimate for 2 min 

prior to starting the task, in an effort to decrease omissions due to distraction. 
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Experiment 2: Influence of social peer during acquisition of RDMT 

 Following shaping procedures, half of the rats (n=8) performed in the RDMT alone, 

while the other half of the rats (n=8) were paired with a social peer (the cage mate of the 

responder rat) during every session.  As with Experiment 1, social peers were always 

placed into the operant chambers prior to the responding rat, and animals were allowed to 

acclimate for 2 min before the session began. 

Data Analysis 

Statistical analyses were conducted in SPSS 22.0.  Stable behavior was defined by 

the absence of a main effect of session, the absence of an interaction between session and 

trial block, and the presence of a main effect of trial block over five consecutive sessions, 

using a two-way repeated measures ANOVA (Winstanley et al. 2006; Simon et al. 2009, 

2010).  The effects of partner manipulations were assessed using two-way ANOVA.  In 

each experiment, a median-split was used to categorize rats into high and low responders, 

as this procedure is commonly used in preclinical research (e.g. Piazza et al. 1989).  In all 

cases, p-values less than 0.05 were considered significant. 

 

Results 

Experiment 1:  Influence of a social peer after acquisition of RDMT 

 Results revealed no significant effect of social peer presence (see Figure 2.2).  Rats 

were then assigned to a “high risk taker” or “low risk taker” group, based on a median split 

(see Figure 2.3).  A 2-way ANOVA revealed a significant main effect of block (F(4,40) = 

75.84, p < 0.001), significant main effect of risk group (F(1,10) = 50.03, p < 0.001), and a 

significant block x group interaction (F(4,40) = 4.675, p = 0.003).  Tukey’s t-tests revealed 
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significant differences at the 25% (t(10) = 3.104, p = 0.011), 50% (t(10) = 5.625, p < 0.001), 

75% (t(10) = 2.667, p = 0.024), and 100% (t(10) = 3.094, p = 0.011) risk blocks.  Further 

analysis with a 2-way ANOVA comparing the effect of the presence of a social peer on 

risk taking within the high risk takers and low risk takers revealed no significant changes 

in either group (see Figure 2.4). 

Experiment 2:  Influence of social peer during acquisition of RDMT 

 Results of a 2-way ANOVA revealed a significant main effect of block (F(4,56) = 

13.98, p < 0.001) and significant main of group (F(1,14) = 6.228, p = 0.015), such that rats 

that were paired with a social peer showed greater preference for the large, risky reward 

than rats in the control group (see Figure 2.5).  There was, however, no significant block x 

group interaction.  Rats were then divided into “high risk takers” and “low risk takers” 

within their groups based on a median split, as Experiment 1.  A 3-way ANOVA revealed 

a significant block x group x risk interaction (F(4,48) = 6.647, p = 0.002).  In the control 

group, there was a significant main effect of block (F(4,24) = 18.85, p < 0.001), significant 

main effect of risk group (F(1,6) = 58.03, p < 0.001), and significant block x risk-group 

interaction (F(4,24) = 5.402, p = 0.002), such that rats in the high risk taking group showed 

greater preference for the large, risky reward than rats in the low risk taking group (see 

Figure 2.6).  Tukey’s t-tests revealed significant differences between risk groups at the 

25% (t(6) = 3.364, p = 0.015), 50% (t(6) = 4.434, p = 0.004), 75% (t(6) = 5.459, p = 0.002), 

and 100% (t(6) = 2.474, p = 0.048) risk blocks.  In the social group, there was a significant 

main effect of block (F(4,24) = 28.48, p < 0.001), a significant main effect of risk group 

(F(1,6) = 10.16, p = 0.003), and significant block x risk-group interaction (F(4,24) = 5.674, 

p = 0.002), such that rats in the high risk taking group showed greater preference for the 
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large, risky reward than rats in the low risk taking group (see Figure 2.7).  Tukey’s t-tests 

only revealed a significant difference at the 100% risk block (t(6) = 7.798, p < 0.001).  

When comparing high and low risk takers across the control and social groups, there were 

no significant differences between the high risk-takers in the control group compared to 

the social group.  When comparing low risk-takers, however, there was a significant main 

effect of block (F(4,24) = 33.59, p < 0.001), a significant main effect of group (F(1,6) = 

24.88, p < 0.001), and a significant block*group interaction (F(4,24) = 3.766, p = 0.0134), 

such that that low risk taking rats in the social group showed a greater preference for the 

large, risky reward than low risk taking rats in the control group (see Figure 2.8).  Tukey’s 

t-tests revealed a significant difference at the 25% (t(6) = 3.481, p = 0.013) and 50% (t(6) 

= 3.563, p = 0.012) risk blocks. 

 

Figure 2.1.  Representation of social chamber used in both experiments.  Two operant 

chambers were separated by a wire mesh barrier.  Floor grid equipped with shock was 

only connected to the compartment where responding rats were placed. 
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Figure 2.2.  Choice of the large, risky reward across blocks 1-5 in all rats in Experiment 

1 in which the baseline was compared to the average of three test sessions with a social 

peer.  Analysis revealed no significant difference between baseline and behavior 

following introduction of a social peer. 

 

 

Figure 2.3.  Rats in Experiment 1 divided into high and low risk-takers, based on a median-

split.  Choice of large, risky lever across blocks 1-5.  *Significant difference compared to 

low risk takers at the same probability, p < 0.05 
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Figure 2.4.  Comparing effect of social peers on high and low risk takers in Experiment 1 

as choice of the large, risky reward changes across blocks 1-5.  Analysis revealed no 

significant differences in behavior following introduction of a social peer in either the high 

or low risk takers. 

 

Figure 2.5.  Average choice of large, risky lever across blocks 1-5 in all rats in Experiment 

2 in which control (no social peer) and social peer groups were compared.  Analysis 

revealed a significant main effect of group, such that rats in the social group showed 

increased preference for the large, risky reward compared to controls (p = 0.015). 
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Figure 2.6.  Control group of Experiment 2 divided into high and low risk takers.  

*Significant difference from low risk takers at same probability of shock, p < 0.05 

 

 

Figure 2.7.  Social group of Experiment 2 divided into high and low risk takers.  

*Significant difference from low risk takers at the same probability of shock, p < 0.05 
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Figure 2.8.  Comparison of high and low risk takers in the control and social groups from 

Experiment 2. *Significant difference from control low risk takers at same probability of 

shock, p < 0.05  
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CHAPTER 3 

Discussion 

 This thesis provides evidence that a social peer can have influence risky decision-

making, given the appropriate social conditions.  Although periodic exposure to a social 

peer did not have an effect on risky behavior that was already established, daily exposure 

to the same social peer during acquisition lead to an increase in preference of the large, 

risky reward compared to controls.    

 In Experiment 1, acute, intermittent exposure to a social peer had no significant 

effect on risky decision-making.  Although significant differences were found between 

animals labeled as “high” and “low” risk takers, this was due to the arbitrary median-split 

approach, and thus it was to be expected.  Even within the two risk-taking groups, social 

peer exposure had no differentiating effects.  Given that responder rats were cage mates 

with the social peer they were exposed to during test sessions, it is possible that there was 

not enough novelty in the peer manipulation to lead to behavioral changes in responder rats 

tested after performance was stable. 

 In contrast, in Experiment 2, repeated, daily exposure to a social peer during the 

acquisition phase led to a significant increase in risk-taking behavior.  Rats that were 

exposed to a social peer (their cage mate) during every session of the risky decision-making 

task showed a significantly higher preference for the large, risky reward, compared to 

controls, which were not exposed to a social peer.  Furthermore, when rats in both groups 

were subdivided into “high” and “low” risk-takers, controls showed significant differences 

in their choice of the large, risky reward in all risk blocks except when there was a 0% 

chance of punishment.  This finding contrasts to rats in the social group, who only showed 

24 
 



significant differences in preference for the large, risky reward at the 100% risk block.  

When comparing high and low risk-takers across groups, there were no significant 

differences between high risk-takers in the control and social groups.  There were, 

however, significant differences between the low risk-takers, such that animals in the social 

group showed a greater preference for the large, risky reward at both the 25- and 50% risk 

blocks.  This latter finding suggests that social peers have a greater influence on rats that 

are predisposed to be low in risk-taking.  It is possible, however, that differences were not 

found between the high risk taking groups because of a ceiling effect, such that animals 

could not choose the large, risky lever more than 10 out of 10 times within each free-choice 

trial block, leaving no possibility of showing further increases in risk-taking behavior. 

 There is abundant literature from humans to support the findings of Experiment 2.  

Beisswanger and colleagues (2003) have found that peers typically advise friends to make 

riskier decisions than they would choose for themselves.  Encouraging risk-taking was 

more prevalent for social and relationship situations, but was not commonly found with 

financial decisions.  Items included on surveys that participants commonly said they would 

encourage a friend to do included: (1) introducing themselves to an attractive member of 

the opposite sex, (2) giving someone attractive their phone number, (3) going home with a 

member of the opposite sex after a party, and (4) moving in with a significant other.   

 In another study, social influence on risk-taking was evaluated using a computer 

task called “Chicken,” in which the participants were controlling when a car going along a 

course should stop (Gardner and Steinberg, 2005).  In the task, subjects gained points based 

on the distance their car traveled.  However, if a brick wall appeared in front of their car, 

causing a crash, the subject lost all points for that trial.  In this task, adolescents were 
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significantly more risky than adults, such that they would allow the car to travel further 

before stopping it.  Furthermore, adolescents were more influenced by social peers to travel 

further along the course than adults, who showed no significant increases in risk taking in 

the presence of peers.  Importantly, all participants in the study knew the other members 

of the group to which they were assigned prior to participating.  This may be an important 

factor for enhancing the effect of social influence, as friends tend to pressure others more 

than acquaintances (McPhee, 1996).   

 In animal research (particularly rodents), prosocial interactions typically involve 

the presentation of familiar peers in order to avoid aggressive fighting.  In particular, adult 

males are more likely to engage in aggressive behavior towards novel males.  In the absence 

of aggressive fighting, adolescent rodents find social interaction to be highly rewarding 

(Calcagnetti et al., 1992; Douglas, 2004).  Thus, the novelty associated with an unknown 

social peer may confound data collected, particularly if behavioral changes following 

repeated prosocial interaction is the measure of interest. 

 In humans, social interaction has been associated with increased endogenous opioid 

release.  Using positron emission tomography (PET), it has been shown that social 

acceptance leads to an increase in mu-opioid receptor activation (i.e. reduced receptor 

availability) in the amygdala and anterior insula, which are areas associated with emotional 

regulation and awareness (Hsu et al., 2013).  There are also decreases in mu-opioid 

activation in both the thalamus and subgenual anterior cingulate cortex, areas associated 

with mood (particularly sadness) and memory.  Interestingly, the dorsal anterior cingulate 

cortex and anterior insula also have implications in the expression of physical pain.  

Activation of these regions due to physical pain can be dampened with social support, 
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which also leads to a reported decrease in pain scale ratings (Eisenberger, 2012).  

Conversely, social rejection leads to increased mu-opioid receptor activation in the ventral 

striatum, amygdala, thalamus, and periaqueductal gray; all areas associated with emotion 

and pain (Hsu et al., 2013).  These increases in activation of these areas caused by social 

rejection have also been show to increase sensitivity to physical pain (Eisenberger, 2012). 

Additional work in humans has shown that individuals high in impulsivity have 

increased numbers of mu-opioid receptors, particularly in the anterior cingulate cortex, 

thalamus, and amygdala (Love et al., 2009).  These individuals also show an increased 

endogenous opioid response to stress.  It is possible that endogenous opioid release 

following stress, including stress caused by social rejection, may be an adaptive way the 

brain decreases pain associated with emotional changes.  Alternatively, it is possible that 

release of endogenous opioids following positive social interaction has evolved to allow 

humans to form bonds, which allows for the continuation of the species.  Further work is 

needed to determine if these opioid-mediated changes in social influence demonstrated in 

humans involve homologous brain structures in rats.   

 Some evidence suggests that mu-opioid receptors also appear to play an important 

role in adolescent play behavior in rats.  Adolescent rats given a systemic injection of 

morphine, a mu-opioid receptor agonist, exhibit an increase in the number of vocalizations 

evoked in response to the vocalizations emitted from another rat (Wöhr and Schwarting, 

2009).  An infusion of morphine into the nucleus accumbens of adolescent male rats also 

leads to an increase in pinning and pouncing, which are commonly associated with 

important developmental play behaviors (Trezza et al., 2011).  Conversely, systemic 

administration of naloxone, a mu-opioid receptor antagonist, decreases vocalizations, and 
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micro-infusion of naloxone into the nucleus accumbens decreases play behavior.  

Furthermore, these social behaviors seem to be selectively mediated by the mu-opioid 

receptor, as infusions into the nucleus accumbens of other opioid receptor agonists (i.e. 

gamma and/or kappa) yield no change in social interactions. 

 It is well established that opioids have analgesic properties.  This includes the class 

of endogenous opioids known as endomorphins, which are selective for the mu-opioid 

receptor. Endomorphin-1 is thought to inhibit GABA neurotransmission in the 

periaqueductal gray, which allows for the serotonin system to have an exaggerated effect 

(Chen et al., 2015).  Because of the location of the periaqueductal gray in the midbrain, it 

is a main center for pain signals entering and leaving the brainstem, and therefore, central 

nervous system to the peripheral nervous system.  In fact, research on the placebo effect 

has even shown that these endogenous opioid systems are effective enough to alleviate 

physical pain (Abhishek and Doherty, 2013; Colloca and Grillon, 2014).  Thus, alleviation 

of pain may be an additional factor for engaging in social activity. 

 Based on the extensive literature implicating endogenous opioid systems in social 

interaction, it is possible that rats in the social group had elevated levels of endogenous 

opioids while performing the risky decision-making task.  Because of this socially 

mediated endogenous opioid release, these animals may have had a higher tolerance to the 

aversive effects of a mild footshock.  This tolerance then lead to an increased preference 

for the large, risky lever in the social group, compared to controls. 

 In addition to endogenous opioids, the monoamine system is also heavily involved 

in reward and social behavior.  Dopamine is commonly studied with regard to its role in 

reward, impulsivity, and risk taking.  Mitchell et al. (2013) found a relationship between 
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dopamine transporters and performance on the RDMT, such that male adolescent rats with 

lower striatal D2 receptor mRNA expression showed a higher preference for the large, risky 

reward.  Others have also shown a correlation between increases in impulsivity and 

decreases in dopamine function (Diergaarde et al., 2008; Yates et al., 2014).  Further 

research has shown that serotonin is also involved in impulsive action, but with the opposite 

relationship.  Winstanley et al. (2006) discovered that there is an increase in mPFC 

serotonin levels during a delay-discounting task.  Recent research has also found that 

adolescent male rats show increases in DOPAC levels following social interaction (Weiss 

et al., in press).  The same lab also found that, following social interaction, levels of 5-

HIAA in the striatum were increased.  Alternatively, mice with deficiencies in brain 

serotonin show deficits in social communication (Beis et al., 2015). 

 Although both experiments involved the introduction of a social peer during the 

risky decision-making task, it is apparent that only daily exposure early in acquisition leads 

to increases in risk-taking.  There are a few possible reasons for the differential effect of 

social influence between Experiments 1 and 2.  One possibility is that this task may not be 

very sensitive to the effects of acute manipulations.  In previous work conducted with the 

RDMT and with stimulants, chronic self-administration of cocaine led to a significant 

increase in preference for the large, risky reward (Mitchell et al., 2014). Conversely, 

administration of an acute dose of amphetamine prior to the session led to a decrease in 

preference for the large, risky reward (Mitchell et al., 2011).  These results suggest that this 

particular task is sensitive to differences in acute compared to chronic exposure, 

particularly with drugs, and this sensitivity may extend to behavioral manipulations as well. 
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 An alternative possibility for the difference between the results obtained in 

Experiments 1 and 2 relates to selection and socialization theories.  In humans, selection 

theory states that individuals seek out peers whose ideals and behaviors are similar to their 

own.  Socialization theory, on the other hand, states that we alter our behavior, and possibly 

our ethics, based on the social group that we are associated with.  With this latter theory, 

the more time an individual spends with a social peer, the more influence that peer has on 

behavior.  Extending this theory to rats, it may be that repeated exposure to the peer may 

have enhanced the effect of social influence.  Interestingly, in humans, socialization theory 

seems to be the more accurate predictor of risk-taking, particularly drug use, compared to 

selection theory (Simons-Morton and Chen, 2006).   

 Finally, a third possible reason why the effects of social exposure differed between 

Experiments 1 and 2 related to the time at which the peer was introduced.  In Experiment 

1, the peer was introduced after acquiring the RDMT, whereas in Experiment 2 the peer 

was introduced at the beginning of the RDMT.  Perhaps after the task is well-learned to 

stability, as in Experiment 1, the effect of social influence is minimized.  Conversely, when 

the task is not yet learned, as in Experiment 2, the ability of social influence is more 

pronounced in altering performance.  This may be due, in part, to the face that cage mates 

were used as social peers.  Rats in Experiment 1 had extensive interaction with their social 

peer in the home cage, but very little interaction with the social peer during the specific 

context where risky decision-making was being measured. 

Finally, future research is needed to better understand the differences in responding 

following both daily and intermittent interaction with a social peer during the RDMT.  As 

for the differences observed between the social and control groups in Experiment 2, if 
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endogenous opioids are responsible for this effect, administration of naloxone prior to the 

session may be hypothesized to eliminate the differences in risk-taking.  Furthermore, to 

the extent that socialization theory is accurate, using social peers that are not cage mates 

with the responding rat, or even using a novel rat every session, may lead to a decrease in 

risk-taking behavior.  

Sex differences should also be explored in further research.  Although females were 

not used in this study because they are less risky than males (Fattore et al., 2014; Weafer 

and de Wit, 2014) and do not find social interaction as rewarding as males (Douglas et al., 

2004; Yates et al., 2013), it is still an important and relevant research question. 

Taken together, these results are in keeping with previous clinical data on the 

effects that social peers have on risk-taking behavior.  Repeated exposure to a familiar 

social peer led to significant increases in preference for the large, risky reward.  However, 

these results are dependent on the amount of exposure, such that intermittent exposure to a 

social peer did not lead to these same increases in risk-taking, which is supportive of 

clinical research that has shown friends (or those persons whom people choose to spend a 

significant amount of time with) are more influential on behavior than acquaintances.  As 

such, this thesis provides evidence that it is possible to model social risk taking behavior 

in rodents.  This thesis also provides evidence that low risk takers are more heavily 

influenced by social interaction than high-risk takers, which could have implications for 

in-school programs that normally focus on high-risk children and adolescents.  Further 

research should now be conducted to investigate the neurobiological mechanisms by which 

these behavioral changes take place. 
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