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Abstract

An adaptive concurrent multiscale methodology (ACM2) is introduced to enable strong in-

teraction between both macroscopic and microscopic deformation fields. The method is

formulated in finite element framework and is based on the balance between two sources of

error, namely, numerical and homogenization errors. In finite element framework, the first

type of error dictates element refinement in regions that are characterized by high defor-

mation gradient, to improve the accuracy of numerical solution. In contrary, the second

type of error indicates that the refining procedure should not exceed a critical level, that is

determined by the size of the unit cell and represents the scale of material’s microstructure.

The method then aims at embedding unit cells in continuum region and through appropriate

boundary conditions couple the deformation field in both regions. Upon this, the method

is able to adequately combine different descriptions of material to assure accuracy with low

computational cost. We will then show that our computational technique, in conjunction

with the extended finite element method, is ideal to study the strong interactions between a

macroscopic crack and the microstructure of heterogeneous media. In particular, the method

enables an explicit description of micro-structural features near the crack tip, while a compu-

tationally inexpensive coarse scale continuum description is used in the rest of the domain.

The present work also aim at investigating several examples of crack propagation in materi-

als with random microstructures, and discussing the potential of the multiscale technique in

relating microstructural details to material strength and toughness, and capturing the size

effect.
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Chapter 1

Introduction

In solid mechanics the size effect problem is defined as the effect of the characteristic

size of structure on the mechanical properties and fracture behavior of heterogeneous mate-

rial, such as material nominal strength, when geometrically similar structures with different

sizes are compared. Understanding this problem is crucial for optimized design of large scale

structures, such as reinforced structural concrete elements, concrete dams, ships made by

composites or even in higher scale geotechnical structures such as tunnels. The size effect

was first reported in the pioneering work of Griffith. In [108], Griffith performed several ex-

periments on cylindrical glass specimens and observed that the nominal strength for slender

specimens is higher than the nominal strength for bulk specimens. At early stage this prob-

lem was related, by scientists, to the stochastic accumulation of defects in the microstructure

of glass. Therefore, this problem was considered as a probabilistic problem which is strongly

related to the type of distribution of weak-links in the materials microstructure which had to

be addressed by statisticians. Numerous studies were then focused on describing the problem

using statistical models. The finishing touch of statistical theory of size effect is the work of

Weibul in [123, 126, 125, 124]. Based on experimental observation, Weibul concluded that

the size effect is highly dependent on the tail distribution of low strength values which is not

adequately represented by existing distribution functions. He then proposed the Weibul dis-

tribution function to tackle the short coming of standard distribution functions. Although

the size effect problem attracted mechanicians later, application of statistical theories for
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steel and ceramic has continued so far [98, 105, 107].

In general, the size effect problem is known to be a scaling problem which is funda-

mental to every physical system. In fluid mechanics, the scaling problem can be addressed

by power law. For solids, however, the power law fails to predict the size effect due to the

presence of characteristic length that is associated with the material microstructure. To

explain this, let us consider a structure with characteristic size D. In [104], it is shown that

the response of structure (such as nominal strength of material or deflection of a point on

the structure), Y , can be written in terms of the size of the structure as Y = f(D). Trivially,

for a geometrically similar structure of size D′, this function is written as Y ′ = f(D′). Since

no characteristic length exists in the definition of response function, the scaling reads:

Y ′

Y
=
f(D′)

f(D)
= f

(
D′

D

)
(1.1)

Power law, then proposes that the one and only one solution for this functional equation

is:

Y = f(D) = (D/c1)s (1.2)

Where c1 is a constant that has the unit of a length and s is another constant which

is defined based on failure criteria. For example, in elasticity or theory of plasticity the fail-

ure of structure is formulated in terms of mechanical parameters, such as failure envelopes

based on stress criteria. This means that failure in solid mechanics does not depend on the

characteristic size of the structure, i.e. s = 0 in (1.2).

Let us now investigate the value of s predicted by linear elastic fracture mechanics

(LEFM) theory. In this theory it is assumed that the material is linear, elastic and the size

of the fracture process zone (FPZ) in front of the crack is negligible compared to the size of
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physical domain. Also, the LEFM predicts a singular stress field at the crack tip which is

characterized by the stress intensity factor, K. In the literature [109], it is shown that the

stress intensity factor can be written as:

K = σ
√
aπ.f(

a

D
) (1.3)

Where σ is the far field stress, a is the crack length, D is the characteristic size of the

structure and f is a function which depends on the geometry of specimen and is defined either

analytically or numerically. Based on this theory the structure fails when the magnitude of

stress intensity factor reaches the material’s critical stress intensity factor. Let us now

consider two geometrically similar specimens with different characteristic size, W1 and W2.

Using above formula one can show that σN2 /σ
N
1 = λ−

1
2 , where λ = D2/D1, that is in

(1.2) the unknown power is s = −1
2
. Variations of log(σN) versus log(λ) based plasticity

(strength) and LEFM theories are shown in Fig.1.1a, with straight lines. In addition, this

figure qualitatively shows the extensive experimental test data reported by Walsh [121, 122].

As shown in this figure when the characteristic size of structure is relatively small, compared

to the characteristic length of material’s microstructure, the prediction of plasticity theory

and experimental test data are in good agreement. LEFM theory, on the other hand, is valid

when the structure size is relatively large. Nevertheless, the behavior of material between

these to length scales follows a trend that is best described by a smooth transition between

the prediction of plasticity and LEFM theories. In [114], Leicester showed that optimum

value for s in (1.2) is equal to 1
2
, but his model fits only a certain part of experimental data.

To better understand this phenomenon it is helpful to cite a basic idea of nonlinear fracture

mechanics. Based on experimental observations a structure fails when a macroscopic crack is

formed, due to accumulation of damage at the lower length scales, and started to propagate

unstably. In fact, this theory suggests that a fracture process zone (FPZ) exists in front of

the propagating crack tip, and its relative size, compared to the characteristic size of the
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Figure 1.1: (a) Size effect on the nominal stress predicted by LEFM, plasticity and Crack
band theory, (b) Dugdale and Barenblatt models used in Hillerborg [117].

structure, defines the behavior of material.

The nonlinear fracture mechanics, then, assumes that the width of the FPZ is constant

and proposes to define the length of the FPZ by equating the stored strain energy and the

energy that is released due to the unstable crack propagation. Following this idea, for the

first time, Irwin showed that for every material there exists a characteristic length l0 which

is written as:

l0 =
EGf

σ2
0

(1.4)

where σ0 is nominal stress, Gf is fracture energy per unit length of crack and E is

the elastic modulus. Many theories were then derived based on this concept. For example,

Dugdale [106] and Barenblatt [100, 99] formulated two different models inspired by plastic

FPZ model. In these models the fracture process zone is replaced by a cohesive crack. The

crack is characterized by a stress-displacement relation which defines the acting stress along

its faces, and its length can be calculated following the aforementioned concept. Fig. 1.1b,

shows the variation of the acting stress along the faces of the cohesive crack, which represents

the FPZ, in these models.
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Nevertheless, the capstone for modeling the size effect problem was laid by the crack

band theory in [112, 113, 115, 103, 102, 101, 104]. The underlying concepts of this method

can be explained by understanding the real nature of the fracture of quasi brittle materials.

For this we focus on the failure of a structure, that is characterized by a preexisting crack.

We also assume this structure is made of normal strength concrete, which is known as a quasi

brittle material, and extensively used in real structures (e.g. dams). Also the structure is

under monotonically increasing loading until it reaches failure. Basically, prior to the failure

some micro cracks emerge in the FPZ, in front of the crack, in order to release the stored

elastic energy. Also, when the driving force becomes more pronounced existing micro cracks

tend to deform, new micro cracks are introduces in this zone, and eventually the micro cracks

link and form macro cracks. To represent this procedure, the crack band theory suggests

the material in the FPZ follows a bilinear stress-strain behavior with post peak softening,

as shown in Fig. 1.2a, while material elsewhere is linear elastic. Then, assuming the width

of FPZ is a material constant, it is possible to calculate energy release rate per unit crack

growth, Gf . This entity of quasi brittle materials is defined empirically, e.g. for concrete

wc = 3da, where da is maximum aggregate size. In addition, crack propagation results in

relaxation of strain energy in some part of the structure. Knowing the geometry of such

region one can write the dissipated strain energy, U(a), in terms of the crack length, a. The

derivative of U(a) with respect to the crack length, a, then defines the energy release rate per

unit of newly created crack in macroscopic domain. Therefore, the crack starts to propagate

when Gf = ∂U/∂a. After some basic calculations in [112, 113, 115, 103, 102, 101, 104] it is

shown that the size effect follows the following:

σN = B

(
1 +

D

D0

) 1
2

+ σR (1.5)

where, B is a constant that depends on geometry and applied loading, D is size of

structure, D0 is a constant, with length dimension, which represents the size at which transi-
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tion from strength theory to LEFM takes place and σR is the residual stress in the fractures

region due to existing reinforcement such as fiber in composites or steel bars in structural

concrete. For plain concrete σR = 0.

Figure 1.2: (a) Smeared crack model with softening behavior used in crack band theory, (b)
approximate zone of stress relief due to fracture.

The soundness of the crack band theory was evaluated by dimensional analysis in [102]

and the numerical results, obtained from finite element models based on this theory, was

shown to be in great agreement with lab results. However, the accuracy of these numerical

results is highly dependent on the accuracy of expensive laboratory experiments. For exam-

ple the values of Gf , f
′
c and Et, which are necessary to describe the materials constitutive

relation in the FPZ (as shown in Fig. 1.2a), are derived from expensive experimental test

data. Similarly, the crack band width, wc, in this method is defined empirically. A numerical

model based on the crack band theory, despite being a beneficial tool for investigating the

size effect problem, does not reflect any information about the effect of microstructural prop-

erties of materials on their macroscopic behavior, since this theory relies on the continuum

description of material inside the FPZ. Fully microstructured models are suitable for this
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purpose since they aim at accurately modeling each and every microstructural element, but

are not computationally tractable for large scale structures. An appropriate solution for this

issue can be found under the umbrella of concurrent multiscale methods. These methods

propose to adequately combine different descriptions of a material in a single model to ensure

the accuracy and the computational efficiency of the numerical result.

The main purpose of this dissertation is to introduce a novel multiscale approach,

ACM2, in order to accurately model the fracture of materials. This method also aim at

reconciling the concepts of damage mechanics, related to the microstructure of the mate-

rial, and fracture mechanics, corresponding to the macroscopic level. This method is based

on adaptively refining finite element mesh to transit from macroscopic scale to microscopic

scale description of a material and consequently splitting the computational domain into

two domains with different descriptions of the material. The method also proposes to apply

necessary coupling conditions between these two domains to concurrently solve for defor-

mation field in both domains. By combining these concepts, the method is then capable of

detecting the FPZ accurately. Based on these features the method is shown to be a suitable

numerical tool for obtaining the associated resistance curve and capturing the size effect of

microscopically heterogeneous material. The structure of this dissertation is as follows.

Chapter two introduces the underlying ideas of the adaptive concurrent multiscale

method, ACM2, for elasticity problems. Our analysis starts from the idea that numerical

simulations must ensures that numerical accuracy is maximum while the error from homog-

enization is minimum. While the first usually implies that element size must be refined,

the second implies that elements may not be smaller than the Unit Cells of the microstruc-

ture. To accommodate these two conditions, a finite element method is introduced such that

continuum elements can be replaced by explicit RVEs through properly defined macromicro

kinetic conditions reminiscent to those used in classical homogenization. When combined



8

with adaptive refinement, the methodology provides a flexible numerical method in which

both continuum and microstructural descriptions can naturally coexist within a single sim-

ulation. We show, through various examples that the proposed framework addresses the

important issue of reaching the optimal modeling accuracy for a minimal computational cost.

Chapter three shows that this method, in conjunction with the extended finite element

method, is ideal to study the strong interactions between a crack and the microstructure

of heterogeneous media. In particular, the method enables an explicit description of mi-

crostructural features near the crack tip, while a computationally inexpensive coarse scale

continuum description is used in the rest of the domain. We illustrate the method with

several examples showing its accuracy and relatively low computational cost and discuss its

potential in relating microstructure to the fracture toughness of a diversity of heterogeneous

media.

In chapter four we recapitulate the ACM2 in conjunction with new concepts to handle

the situation in which the microstructural components of a material interact with a propa-

gating crack. This chapter also presents several examples of crack propagation in materials

with random microstructures and discuss the potential of the multiscale technique in relating

microstructural details to material strength and toughness. Next, in chapter five we focus on

the size effect problem and aim to illustrate how the proposed method captures the size effect

on the nominal strength of a heterogeneous material. Concluding remarks and suggestions

for future studies are also discussed in chapter 6. It is also worth mentioning that chapters

two to four include the three published journal papers that have arisen from this work. The

list of these papers is as follows:

• chapter two: Vernerey, F.J., and Kabiri, M. (2012). An adaptive concurrent multi-

scale method for microstructured elastic solids, Computer Methods in Applied
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Mechanics and Engineering, 241-244, pp. 52-64.

• chapter three: Kabiri, M. and Vernerey, F. J. (2013). An XFEM based multiscale ap-

proach to fracture of heterogeneous media, International Journal of Multiscale

Computational Engineering, 11(6), pp 565-580.

• chapter four: Vernerey, F. J., and Kabiri, M (2014). Adaptive Concurrent Multiscale

Model for Fracture and Crack Propagation in Heterogeneous Media, Computer

Methods in Applied Mechanics and Engineering, 276, pp. 566588.



Chapter 2

An adaptive concurrent multiscale method for microstructured elastic solids

Franck J. Vernerey and Mirmohammadreza Kabiri

Department of Civil, Environmental and Architectural Engineering,

University of Colorado, Boulder, USA

2.1 abstract

The present paper introduces a concurrent adaptive multiscale methodology for elastic-

ity problems in which macroscopic deformation strongly interact with microscopic deforma-

tion fields at the scale of the microstructure. This situation occurs in a variety of important

situations such as ductile fracture, shear bending and when sharp discontinuities are present

in the material domain. Our analysis starts from the idea that numerical simulations must

ensure that numerical accuracy is maximum while the error from homogenization is mini-

mum. While the first usually implies that element size must be refined, the second implies

that elements may not be smaller than the representative volume elements (RVEs) of the

microstructure. To accommodate these two conditions, a finite element method is introduced

such that continuum elements can be replaced by explicit RVEs through properly defined

macro-micro kinetic conditions reminiscent to those used in classical homogenization. When

combined with adaptive refinement, the methodology provides a flexible numerical method

in which both continuum and microstructural descriptions can naturally coexist within a sin-

gle simulation. We show, through various examples that the proposed framework addresses
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the important issue of reaching the optimal modeling accuracy for a minimal computational

cost.

Keywords: concurrent multiscale method, microstructured material, homogenization,

strain localization.

2.2 Introduction

Understanding how the macroscopic behavior of materials depend on their underlying

microstructure has been a classical research issue in materials science but is also becoming

a key question in biology and medicine. The link between structure and properties is in-

deed a central feature of the development of fracture resistant and multifunctional materials

[53, 47] and holds the key to our understanding of how biological tissues respond, evolve

and remodel [49, 48, 43]. A number of methodologies have been introduced to address

this problem, most of which can be gathered under the umbrella of homogenization theory

[81, 70, 67, 68, 97, 155, 30]. In this context, macroscopic behavior is cast in terms of a con-

stitutive relation that is derived via appropriate average of the microstructure behavior in a

representative volume element (or RVE) [11, 52, 40, 28]. The RVE, commonly defined as the

smallest material volume that is statistically representative of the microstructure, therefore

holds a central role in homogenization. Indeed, its size must always be significantly smaller

than the characteristic length scale of the macroscopic problem for continuum assumptions

to be valid. As such, continuum theories are usually not capable of accurately capturing ma-

terial’s behavior in situation where highly heterogeneous deformation fields are observed. In

elasticity, this typically occurs in the presence of stress concentrations due to the presence of

sharp corners, inclusions or defects whose sizes are comparable to the material’s microstruc-

ture. In these cases, continuum theory can predict neither the local stress fluctuations at the

material’s scale (which usually are key to damage nucleation), nor the possible size effects

exhibited by the microstructure (such as those observed in cellular materials [2]). Beyond
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the elastic range, highly heterogeneous deformation are omnipresent in situations such as in

fracture [26], shear banding [20, 166], and indentation [24, 35]. In an effort to improve the

predictability of continuum formulation to small scale problems, a number of extensions have

been introduced to capture material’s size effects and higher deformation modes [35, 32, 23].

This included higher order continuum theories such as the theory of Cosserat [135, 139, 148],

the micromorphic theory [186, 187, 188], the strain-gradient theory [7, 146, 147] as well as

non-local formulations in which the material response of a material point depends on its

neighbors [3, 4, 5].

Although the above formulations have significantly improved our understanding of

small scale material response [188], they are still based on continuum assumptions that im-

plicitly assume a scale separation between the macroscopic problem and the deformation of

the RVE. In fact, when the wave length of a macroscopic deformation field is at the same

order as that characteristic size of the microstructure, it can be argued that the global mate-

rial response becomes less important than its local response. In this case, the local response

is affected by the stochasticity of the microstructure and a deterministic continuum frame-

work is no longer applicable. This raises an important issue in multiscale modeling. On the

one hand, the above considerations imply that a small scale material description (including

microstructural details) is necessary in problems that display highly heterogeneous macro-

scopic deformation. On the other hand, such a refined description in macroscale domains

often leads to an intractable computational problem. An optimal solution is therefore found

in methods that can adequately couple a fine material description in regions of highly lo-

calized deformation and a coarse description in regions of homogeneous deformation. This

idea was used in concurrent methods such as the bridging scale method [166, 156, 189, 132]

in which a microscopic region (near a crack tip for instance) can be determined a priori.

Such methods are then able to couple continuum models (such as finite element) and small

scale material descriptions (such as molecular dynamics). A recurrent problem, however,
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is that the small scale region cannot, in general, be determined before hand. In this con-

text, Ghosh et al.[150, 149, 160, 169, 168] introduced a concurrent multiscale method using

Voronoi cell finite element method (VCFEM), which is based on adaptively refining mesh

on three different levels of subdomains with various resolutions. The first level is a conven-

tional displacement based finite element model based on constitutive moduli obtained from

homogenization of microstructural parameters. The second level is an intermediate level

used for switching between macro and micro description models, with higher computational

demand compared to the two other levels. The third level subdomain, where damage evolu-

tion initiates and periodic boundary condition assumptions for microstructural RVE fail, a

detailed microstructural model is formulated using VCFEM. This method addresses damage

evolution in composites and heterogeneous materials in an accurate and efficient way.

In the present work, we introduce a novel adaptive multiscale method whose fundamental

basis rests on the minimization of both numerical error and homogenization error. The

numerical error typically arises from the fact that numerical approximations (provided by

shape functions in finite elements) introduce a difference between computational and exact

solutions in continuum mechanics. While this error is known to decrease with element size,

excessive element refinement may lead to a situation in which element size becomes compara-

ble to that of the microstructure. In this case, we show that additional refinement can induce

significant errors in the continuum approximation of the material response. To address this

issue, we introduce a numerical method in which elements, once they reach a critical size,

can be replaced by explicit RVEs that coexist with a macroscopic continuum description.

Upon combining this method with conventional adaptive refinement techniques, we obtain

a computational formulation that possesses two major advantages. First, it maintains a rel-

atively low computational cost since a coarse scale continuum description is used in regions

of homogeneous deformation. Second, it provides a refined description of the microstructure

in regions of heterogeneous deformation and does not violate the fundamental assumptions
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of continuum theories. In addition, the method provides a flexible framework, based on only

two levels of material description, in which the location and size of the microscopic domain

does not need to be predetermined and can eventually evolve with material deformation.

The paper is organized as follows. In the next section (section 2), we provide an analysis of

two different types of errors that may arise in a finite element analysis and derive a criterion

that governs the allowable element size. In section 4 we then introduce a bridging scale

method in order to enable RVEs to coexist with a surrounding macroscopic finite element

mesh. In the 4th section we combine the embedded RVE method with adaptive refinement

in order to derive the final form of the proposed method. A few examples are then discussed

to assess the efficiency and accuracy of the framework. Section 5 finally provides a summary

of the work and suggests few improvements and extensions for the future.

2.3 Error in homogenization theory and finite elements

One of the principal objectives of multiscale methods is to ensure that modeling ac-

curacy is maximum while the computational cost is minimum. A low computational cost

can usually be obtained by using a coarse-grained homogenized continuum model such that

unnecessary “fine scale” degrees of freedom are appropriately smeared out. Such an ap-

proach, however can introduce some inaccuracies in the solution, especially when the typical

wave length of deformation is on the order of characteristic length of the microstructure. In

fact, modeling accuracy might be dictated by several factors. On the one hand, numerical

discretization error arises from the fact that the approximation provided by finite elements

does not exactly capture the exact continuum fields such as displacement, strains or stresses

in most situations. On the other hand, a so-called homogenization error may arise from the

fact that continuum theories can only describe an average material response, which may not

be enough in certain cases. We see in this section that these two types of errors lead, in

certain situations, to very inappropriate solutions if continuum theories are solely used.
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Figure 2.1: Continuum macrostructure and heterogeneous microstructure associated with the
point located at position x.

2.3.1 Homogenization error

Let us first assess the homogenization error that can result from the use of coarse grain

continuum formulations. We base our arguments on classical first-order continuum theories,

i.e., the stored energy in an elastic body exclusively depends on the first gradient of the

displacement fields. While this may seem restrictive, the arguments presented in this section

may be extended to high-order theories if needed.

Consider a macroscopic elastic body that is contained in a closed domain Ω and delimited

by a boundary Γ. Refering to a Cartesian coordinate system with coordinates {xi}, i =

1, 2, 3, the state of a material point P , located at position x can usually be described in

terms of continuum quantities such as the displacement field u(x), the strain field ε(x)

or the stress field σ(x). From a multiple-scale view point, these macroscopic quantities

are interpreted as averages over a material domain that is small relative to macroscopic

dimensions. As depicted in Fig. (1), this domain is often denoted as the representative

volume element (or RVE) and traditionally defined as the smallest material domain that

statistically describes the material’s microstructure. For simplicity, we represent such an

RVE as a square domain Ω̂ with side length of L̂, delimited by a boundary Γ̂ and in which

the highly fluctuating microscopic displacement, strain and stress fields are represented by
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û, ε̂ and σ̂, respectively. Relationships between macro and micro quantities (represented by

� here) are then established in terms of the average operation:

〈�〉 =
1

|Ω̂|

∫
Ω̂

� dΩ̂. (2.1)

In particular, for a first-order continuum theory and small displacement assumptions, an

infinitesimal change in macroscale elastic energy δW is related to its microscopic counterpart

through the Hill-Mandel condition [87, 72]:

δW = 〈σ̂ : δε̂〉 (2.2)

where δε̂ = {∇δû}s and the superscript s is used to denote the symmetric part of the second-

order tensor. Consistent with a first-order theory, we assume that the displacement field in

the RVE can be given by the expansion:

û (ξ) = û (0) + 〈∇̂û〉 · ξ +
1

2
ξ · 〈∇̂∇̂û〉 · ξ + ûf (ξ). (2.3)

Here, ξ is a nondimensional local coordinate defined as ξ = (y − x) /L̂ and the vector y is

the position vector in a coordinate system whose origin is the geometric center of the RVE.

Furthermore, the local gradient operator is defined as ∇̂ = ∂/∂ξ and the quantity ûf (ξ)

describes the fluctuating component of the displacement that is not captured by the series

expansion. Now realising that the average fields at the microscale are equal to the macroscale

fields, we obtain:

〈∇̂û〉 = L̂∇u and 〈∇̂∇̂û〉 = L̂2∇∇u. (2.4)

Using this approximation in (2.3) and subsequently in (2.2) leads to the following expression

of the macroscopic elastic energy:

δW = σ : δε+ τ
...
(
L̂∇∇δu

)
+ 〈σ̂ : ∇̂δuf〉 (2.5)

where the macro-stress is logically given by σ = 〈σ̂〉 and the stress-couple τ is introduced

as τ = 〈σ̂⊗ ξ〉. Since first-order theories only express the elastic energy in terms of the first
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term on the right hand-side, it remains valid only if the last two terms are sufficiently small

to be neglected. As will be discussed in section 2.4.1.2, the last term identically vanishes by

enforcing proper boundary conditions in the RVE. The middle term, however, can only be

neglected if

τ
...
(
L̂∇∇δu

)
<< σ : δε. (2.6)

The couple stress τ is a bounded quantity [30] that can only remain within the same order

of magnitude as the macrostress σ. Furthermore, since the strain is typically on the order

of (but less than) unity, the above condition can be rewritten in terms of a conditions on the

second displacement gradient as follows:

eh = L̂||∇∇u|| << 1 (2.7)

where the L2 norm of the second displacement gradient is written in indicial notation as

||∇∇u|| =
√
ui,jkui,jk. Here, we introduced a homogenization error quantity eh that must

remain small everywhere in Ω for first-order theory to remain valid.

2.3.2 Discretization error

As discussed previously, the discretization error is measured by the difference between

the exact continuum solution and the solution provided by the numerical scheme (finite

elements in our case). In the present work, we are particularly interested in the error in strain

fields (or displacement gradient) in individual elements. In this context, let us consider that

the body Ω is decomposed in a number of finite elements and define Ωe the physical domain

associated with an arbitrary element e. The discretization error ed in this element may then

be written in terms of the difference between the exact solution of the displacement gradient

ui,j and that provided by the finite element approximation uhi,j as follows [138]:

ed =

(∫
Ωe

(
ui,j − uhi,j

) (
ui,j − uhi,j

)
dΩe

)1/2

, (2.8)

where the Einstein convention related to summations on repeated indices is applied. To

assess this quantity, it is useful to introduce a local Cartesian coordinate system zi with
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origin in the geometric center of the element, in which the exact displacement field can be

written in term of a Taylor series expansion as:

ui(z) = ūi + χijzj +
1

2
Hijkzjzk +O(z3), (2.9)

where ū is a displacement vector at z = 0, χ is interpreted as the deformation gradient

tensor and H is a third-order tensor representing the second displacement gradient in the

element. Further, for first-order continua, it is sufficient to consider linear (or bi-linear)

two-dimensional elements in which the displacement uh can be written as a function of z as:

uhi (x) = ūhi + χhijxj. (2.10)

Here, the superscript h denotes the numerical solution. Note that for four nodes finite

element, the approximate displacement also contains some bi-linear terms, but this does

not affect the remainder of the derivations. The difference between exact and approximate

displacement therefore reads:

ui(z)− uhi (z) = ei +Bijzj +
1

2
Hijkzjzk, (2.11)

where e = ū− ūh and B = χ−χh. The above equation is representative of a family of conics

with center zc [138]. Furthermore, it can be shown that the error in displacement shown in

(2.11) identically vanishes at nodal locations and takes a maximum value at the center zc of

the cone. One can further find that [138], under an appropriate change of coordinate, (2.11)

can be rewritten in terms of the error ε at the center of the cone and new coordinates z̄ that

have their origin at zc, in the form:

ui(z)− uhi (z) = εi −
1

2
Hijkz̄j z̄k. (2.12)

For the sake of simplicity, let us evaluate the error in a square element, whose size h is given

by the length of its side. In this case, the center of the cone coincides with the geometric

center of the element, i.e., z = z̄. Substituting (2.12) in (2.8) then leads to:

e2
d = HijmHijn

∫
Ωe

zmzndΩ =
h2

12
HijkHijk. (2.13)
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Recognizing that the tensor H is a measure of the second displacement gradient ∇∇u in the

element, the discretization error can finally be written as:

ed = hc||∇∇u|| (2.14)

where c = 1/
√

12 and the L2 norm || · || was defined in the previous section. This result

shows, as discussed in [96], that the discretization error can be written in terms of the

second displacement gradient and is a decreasing function of the element size h. This is a

particularly useful result as the evolution of both discretization and homogenization errors

may now be assessed in terms of element size. For instance, let us consider a situation

in which the norm of the second displacement gradient ||∇∇u|| is fixed and we wish to

investigate the gain in accuracy by decreasing the element size h. Using (3.2) and (4.2), it is

possible to plot both homogenization and discretization errors as a function of h as illustrated

in Fig. 2.2a. By defining the total error e as the maximum of eh and ed, it becomes clear

that the error decreases linearly with element size as long as h > L̂/c. However, further

refinement (h < L̂/c) ceases to improve the accuracy of the solution as the homogenization

error becomes dominant.

Figure 2.2: (a) Evolution of error measures with element size when the quantity ||∇∇u||
is fixed. (b) critical element size in terms of the norm of the second displacement gradient
||∇∇u||
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2.3.3 Limits of the continuum based finite element method

From the above analysis, it can be seen that, in order to be accurate, a solution must

ensure that both the homogenization error eh and the discretization error ed are significantly

smaller than unity. Practically, we can therefore define maximum allowable errors emaxh and

emaxd such that the solution is satisfactory if:

eh < emaxh and ed < emaxd . (2.15)

We note here that the quantity emaxh measures the difference between the typical length scale

associated with strain gradient and the size of RVEs. To ensure that we do not violate

the assumptions of continuum mechanics, a guideline would consist of choosing emaxh such

that ||∇∇u|| remains smaller than 1% of 1/L̂, i.e. emaxh is less than 0.01. In contrast, the

discretization error measures the difference between the finite element approximation and

the analytical solution. The choice of emaxd is therefore an important indicator of numerical

accuracy. In the present study, we choose emaxd = 0.01, i.e. the numerical solution is always

at least 99% accurate. Since the discretization error decreases with element size, according

to (4.2), classical refinement techniques can be used such that the size of elements is smaller

than a critical size hc defined as:

hc =
emaxd

c||∇∇u||
(2.16)

As a result, it can be seen that as the second gradient of deformation increases, the element

size should inversely decrease in the fashion exhibited in Fig. 2.2b. Now enforcing the

condition on homogenization error in the form L̂||∇∇u|| < emaxh and using (2.16), one

obtains the following condition on the element size hc:

hc >
emaxd

c(emaxh )
L̂. (2.17)

This enforces a strong condition on the critical element size so that the assumptions of first-

order continuum theory are satisfied. As depicted in Fig. 2.2b, an element’s size reaches

a critical value hc = L̂(emaxd /c(emaxh )) when the second displacement gradient is such that
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||∇∇u|| = emaxh /L̂. This result is important as it implies that in certain cases, the variation

of strain is so large that the validity of the continuum theory fails regardless of the size of

elements. To better understand this, let us consider the case in which the relation between

the maximum discretization and homogenization errors is emaxd = c(emaxh ). In this case, (5.5)

states that continuum assumptions are violated if the element size is smaller than the size

L̂ of the RVE. One can interpret this as follows. When the element size is larger than that

of the RVE, they can be considered as appropriate domains on which homogenized material

response can be used. However, as they become smaller than the RVE, the average material

response is no longer valid and elements should be replaced by a more accurate description

of the material’s structure. To address this issue, we next introduce a computational method

that naturally substitutes continuum elements by RVE when the minimum element size is

such that it violates homogenization theory. The method guarantees that both discretization

and homogenization errors converge to small values, regardless of the second displacement

gradients.

2.4 Finite element with embedded RVE

As discussed above, when the size of elements becomes close to that of the RVEs, the

validity of homogenized constitutive relation breaks down. Relying on the error criterion

deduced above, we derive a numerical approach in which finite elements can be replaced by

RVEs in the case when element size becomes critical (h = hc). This idea is depicted in Fig.

(3), in which the cases of a single embedded RVE and a patch of embedded RVEs are shown.

A potential issue with this method is that RVEs and macroscale elements are representative

of a material at very different resolutions and the bridging between macroscopic forces and

displacements and their microscopic counterparts is usually subjected to debates. This

section addresses this issue by introducing three possible types of macro-micro conditions.
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Figure 2.3: Illustration of embedded RVE in a macroscopic finite element mesh; (a) case of
a single embedded RVE and (b) case of a patch of embedded RVEs.

2.4.1 Multiscale RVE-FEM bridging method

To appropriately bridge the mechanics of an embeded RVE to the surrounding macro-

scopic elements, it is first useful to derive a relationship between the kinematics at the

macroscopic (continuum element) and microscopic (RVE) level. This is the object of this

subsection.

2.4.1.1 Macro-micro kinematic

Let us consider an initially rectangular shaped RVE on which a macroscopic finite

element is superposed (Fig. (3)a). The micro-macro kinematic compatibility conditions

then imposes that the deformation of the element is “in average” the same as that of the

RVE. To investigate the mathematical consequence of such a statement, let us first write the

microscopic displacement in the RVE as follows:

u(ξ) =
∑
I

N I(ξ)UI + uf (ξ) (2.18)

where N I is the macroscale shape function associated with node I and uf (ξ) is an arbitrary

fluctuation field. The displacement gradient in the element may then be written in terms of

the differential operator ∇̂ as:

∇̂u(ξ) =
∑
I

BI(ξ)UI + ∇̂uf (ξ) (2.19)
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where we introduced the derivatives of shape functions as BI = ∂N I/∂ξ. The average

displacement gradient in the RVE can then be written as:

〈∇̂u〉 =
∑
I

〈BI〉UI + 〈∇̂uf〉 (2.20)

where the average deformation of the element is given by the first term on the right hand

side. Thus, the compatibility of RVE and element deformation implies that the gradient of

fluctuation fields must vanish, in average, in the RVE. This yields:

〈∇̂uf〉 =
1

|Ω̂|

∫
Γ̂

û⊗ n dΩ̂ = 0 (2.21)

where n is the unit normal vector to the boundary of the RVE and we applied the divergence

theorem to obtain the surface integral. The above equation is important as it gives a condi-

tion on the fluctuating displacement on the edge of the RVE; it will prove useful in deriving

coupling conditions between macroscale and microscale as discussed in the next sections.

2.4.1.2 Relationship between macroscopic and microscopic forces

Let us now assess the relationship between macroscopic nodal forces and microscopic

RVE surface forces. In this context, it is useful to first write the variation of energy in an

RVE as:

δŵ =

∫
Ω̂

σ̂ : δε̂dΩ̂ =

∫
Γ̂

t̂ · δûdΓ̂ (2.22)

where t̂ is the Cauchy stress vector on the RVE boundary. Assuming that the variation of

energy, associated with the fluctuation field, vanishes globally [155], i.e.,∫
Γ̂

t̂ · δufdΓ̂ = 0, (2.23)

one can substitute (2.18) in (3.8) and find the traditional expression for the energy of a

macroscopic element:

δŵ =
∑
I

f I · δUI (2.24)
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where the macroscopic nodal forces are related to the traction forces t̂ on the micro-macro

boundary by:

f I =
∑
I

∫
Γ̂

N I t̂dΓ̂. (2.25)

It should be noted that the magnitude and distribution of t̂ depends on the type of displace-

ment fluctuations on Γ̂. We next review three type of conditions on fluctuation fields that

find their analogue in traditional computational homogenization.

2.4.2 Types of macro-micro coupling assumptions

2.4.2.1 Strong displacement coupling

The simplest way of verifying (3.7) consists of enforcing the fluctuation fields ũ to

identically vanish at every point on the RVE boundary. Setting ũ = 0 in (2.18) yields the

following relationship between micro and macro displacement:

u(ξ) =
∑
I

N I(ξ)UI , ξ ∈ Γ̂. (2.26)

This condition clearly enforces the microscopic displacement to precisely follow the macro-

scopic displacement variation interpolated by the macroscopic shape functions. From a

numerical view point, the above constraints can typically be enforced with the Lagrange

multiplier method, in which two constraints (represented by a vector c) are enforced at ev-

ery microscopic node that belongs to the micro-macro boundary. This therefore leads to a

system of equations of 2Nm where Nm is the number of microscopic nodes on the macro-

micro boundary. More precisely, considering a microscopic node n on Γ̂, the constraint cn is

given by:

cn = un −
∑
I

N I(ξn)UI = 0 (2.27)

where ξn is the location of node n in the local coordinate system of the RVE. This con-

straint is associated with a Lagrange multiplier λn that can be identified as the microscopic

traction force at node n. Fig. (4)a illustrates the deformation of adjacent microscopic RVE



25

and macroscopic element resulting from a strong displacement crouping. Note that no small

scale fluctuations are allowed on the edge of the RVE; this coupling may thus be compared

to Dirichlet-type boundary conditions in classical homogenisation, which are known to over-

estimate the stiffness of the RVE.

Figure 2.4: Representation of the three types of micro-macro boundary coupling constraints;
(a) strong displacement coupling, (b) weak displacement coupling and (c) quasi-periodic
boundary coupling.

2.4.2.2 Weak displacement coupling

A way to remove some of the contraints on the RVE is to apply the so-called weak

displacement coupling. In this case, we seek to minimize the effect of fluctuating fields

on each boundary of the RVE. Denoting each of the four boundaries by the parameter α

(α = T,B,R, L for the top, bottom, right and left boundaries, respectively), an error measure

can be defined for each boundary as:

e =

∫
Γ̂α

(
u(ξ)−

∑
I

N I(ξ)UI

)
dΓ̂ α = T,B,R, L. (2.28)

To enforce that (3.7) is weakly satisfied, we minimize the error of each boundary with respect

to the macroscopic displacements. This leads to the following system:

gI
(
UJ ,uk

)
=

∂e

∂UI
= 0 ∀I, J ∈ Γ̂ (2.29)
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where uk is the displacement of microscopic node k that belongs to the micro-macro bound-

ary. It can therefore be noticed that the weak coupling leads to the application of 2N

equations, where N is the number of macroscopic nodes on boundaries Γ̂α (N=3 in the il-

lustration in Fig. (4)b). Enforcing those constraints via the Lagrange multiplier method

leads to the definition of 2N multipliers λI , which can be interpreted as macroscopic nodal

forces. This usually represents a significant decrease in the number of contraints compared

to the strong displacement coupling conditions. Consequences of the weak conditions are

depicted in Fig. (4)b, in which the microscopic deformation displays fluctuations on the RVE

edge although the RVE conform to the deformation of surrounding elements in an average

fashion. This situation may thus be thought as analogue to the case of Neumann boundary

conditions in classical homogenization.

Figure 2.5: Algorithm used in the adaptive multiscale method.

2.4.2.3 Quasi-periodic boundary coupling

This condition is based upon the assumption of the periodicity of the microstructure

and aims to dictate a periodic deformation of RVE while conforming to the surrounding

macroscopic continuum. In the case of an initially rectangular RVE considered in this study,

it is possible to define two corresponding points on opposite boundaries denoted by Γ̂T
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and Γ̂B for top and bottom RVE boundaries and Γ̂L and Γ̂R for left and right boundaries,

respectively. Further introducing the outward unit normal vectors to these boundaries by

nT , nB, nL and nR, one can show that (3.7) is verified if:

ũB(ξ) = ũT (ξ) and ũR(η) = ũL(η) (2.30)

where ξ and η are the local RVE coordinates shown in Fig. (1). This automatically implies

from (2.18) that:

δuT (ξ)− δuB(ξ) =
∑
I

N I(ξ, 1)δUI
T −

∑
I

N I(ξ,−1)δUI
B (2.31)

δuR(η)− δuL(η) =
∑
I

N I(1, η)δUI
R −

∑
I

N I(−1, η)δUI
L. (2.32)

Enforcing these constraints leads to the introduction of Lagrange multipliers for each pair

of nodes on corresponding boundaries. These multipliers have the physical meaning of trac-

tion forces and can be used to find the macroscopic forces via (3.10). This type of periodic

boundary coupling not only preserves micro structural periodic behavior, which is expected

for all periodic materials, but also results in a more physically sound solution compared

to other conditions. Using linear quadrilateral elements for continuum modeling of struc-

ture, this formulation by itself leads to both periodicity in deformed state and conformity

of macro-micro displacement. However, for higher order elements (i.e., quadratic elements),

this formulation does not fully ensure conformity of deformation between RVE and macro-

elements. To resolve this issue, periodic boundary coupling conditions can be enforced in

combination with weak displacement coupling condition on one of two opposite boundaries

(Γ̂T and Γ̂R, for instance). As depicted schematically in Fig. (4)c, such coupling conditions

lead to quasi-periodic deformed state, which allows fluctuation of micro displacement and

conformity between RVE and adjacent elements. Note that when large strain and rotation

gradient exits, RVEs lose their rectangular shapes and become non-periodic. This is the rea-

son why the term “quasi”-periodic conditions is used. Finally, it is important to mention that
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since adjacent RVEs share the same microscopic nodes, no Lagrange multipliers are needed

for coupling their displacement. The Lagrange multipliers are only used to enforce kinematic

constraints between microscopic and macroscopic nodes on the continuum-microstructural

boundary.

2.5 Adaptive multiscale method: computational aspects and examples

This section now introduces a multiple scale algorithm that combines the concepts of em-

bedded RVEs discussed above and that of adaptive element refinement. Given a specific

elasticity problem, the methodology’s objective is to minimize discetization error via refine-

ment, and to provide maximum accuracy in terms of material modeling by embedding RVEs

when the critical element size is reached. The method is based on the algorithm presented in

Fig. 5. The numerical method is based on rectangular quadratic (nine-node) finite elements

Figure 2.6: Illustration of hanging nodes between elements of different sizes

in order to facilitate the calculation of the discretization error defined in (4.2). In particular,

the second gradient of a displacement field in point x in a quadratic element can be written

as a 6× 1 matrix as:

∇∇u(x) = [
∂2ux
∂x2

∂2ux
∂x∂y

∂2ux
∂y2

∂2uy
∂x2

∂2uy
∂x∂y

∂2uy
∂y2

]T =
9∑
I=1

GI(x)uI (2.33)
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Where uI = [uIx u
I
y]
T is nodal displacement vectors at node I and GI(x) is a matrix given

by:

GI(x) =

∂2NI(x)
∂x2

∂2NI(x)
∂x∂y

∂2NI(x)
∂y2 0 0 0

0 0 0 ∂2NI(x)
∂x2

∂2NI(x)
∂x∂y

∂2NI(x)
∂y2 .


T

(2.34)

With this notation, it is straightforward to show that the L2 norm of second gradient of

displacement in a quadratic element takes the form:

‖∇∇u(x)‖2 =

(
9∑
I=1

(
uI
(
x))T

(∫
Ω

(
GI(x)

)T
GI(x)dΩ

)
uI(x)

)1/2

. (2.35)

Finite element refinement then consists of subdividing elements that display large error mea-

sures into four sub-elements. This technique is known to introduce hanging nodes that are

present in small elements but are non-existent in adjacent elements of larger size (Fig. 6).

To solve this discrepancy, large elements, such as that depicted on the right of Fig. 6, are

enriched with addition shape functions associated with the hanging node in a way that con-

ventional conditions on shape functions (continuity and partition of unity) are satisfied. The

form of the new shape function, presented in the appendix, ensures that a force equilibrium

is appropriately enforced between elements of different sizes.

Upon convergence of the multiscale algorithm, the computational problem reduces, for a

linear elastic material undergoing small deformation, into a linear system of the form:
KM 0 ITMm

0 Km ITmM

IMm ImM 0




uM

um

λ

 =


fM

fm

c

 (2.36)

where subscript M and m represent “macro” continuum elements and the “micro” embed-

ded RVEs, respectively, while K, u and f are used to represent stiffness matrices, nodal

displacement vector and external force vector, respectively. In addition, the symbol λ rep-

resents Lagrange multipliers that enforce the macro-micro conditions c = 0 derived in the

section 2.4.2. We note that the stiffness matrix is decomposed into different parts: the first
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diagonal block KM represents the macroscopic stiffness associated with continuum elements

and the second diagonal block Km represents the stiffness arising from the presence of RVEs.

Displacements at macro and micro levels are then coupled via the presence of interaction

matrices IMm and ImM that represent the derivative of the macro-micro constraints c with

respect to macro and micro displacements, respectively. It can generally be observed that

the system is clearly decoupled into a macroscopic problem (continuum elements), a micro-

scopic problem (RVE) and their interactions. Finally, we note that for consistency between

micro and macroscales, the constitutive relation at the continuum scale is ultimately derived

from a first order computational homogenization procedure (Fig. 5). For instance, in the

present study, an isotropic, linear elastic constitutive relation is obtained by relating the

average RVE strain to the average RVE stress after subjecting the RVE domain to appro-

priate boundary conditions. For more information on this method, the reader is referred to

[186]. We next illustrate the features of the method and assess its performance in terms of

accuracy and cost by considering a few examples. We mostly concentrate on macroscopic

elasticity problems for which the material is described at the microscale by a voided linear

elastic microstructure. The distribution of voids in the RVE is chosen such that the overall

response remains isotropic.

2.5.1 Example 1: Effect of micro-macro coupling constraints

The first example aims at investigating the role of using different micro-macro con-

straints on the deformation of embedded RVEs. As such, we consider a purely academic

problem of a square domain, discretized with eight microscopic elements that possesses an

embedded RVE in its center. The domain is then subjected to inhomogeneous deformation

through the application of displacement boundary conditions depicted in Fig. 7. The de-

formation of the embedded RVE is then assessed for the three types of boundary coupling

conditions introduced in the previous section.

Regardless of the coupling conditions, it can be seen that the RVE globally displays significant
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Figure 2.7: (a) Single RVE embedded in a continuum region (b) brute force approach (c)
strong displacement coupling, (d) weak displacement coupling and (e) quasi-periodic boundary
coupling (f) shear strain field obtained from brute force approach.

bending modes. This implies that the norm of the second displacement gradients ||∇∇u||

is not negligible and first-order theory cannot accurately describe the mechanical response

of the composite. In addition, we note that the type of micro-macro constraints have a

strong effect on the fluctuating strain fields in the RVE. Strong displacement coupling tends

to attenuate strain concentrations near the RVE boundary while the weak displacement

coupling allow very large fluctuations. The term “quasi-periodic boundary coupling” is also

justified in this example, as seen in Fig. 7, the microscopic displacement fields are periodic
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across the RVE, while the global RVE deformation is not. We note that the latter constraint

provides a better estimation of micro-deformation, as it implicitly assumes that the adjacent

macroscopic elements possess a microstructure with the same arrangement as that in the

RVE. Furthermore, it is well known from traditional computational homogenization that

periodic boundary conditions gives the best estimation of the material behavior. We therefore

choose this type of coupling in the next examples. For further validation, we compared

the strain fields obtained from these three micro-macro constraints with numerical results

obtained from a “brute force” approach that consists of using a microstructural description

in the entire macroscopic domain. This strategy is expected to be highly accurate but its

computational cost is often relatively high, if not intractable, for large problems. As shown

in Fig. 7f, the strain and deformation fields obtained from the brute force approach are in

best agreement with results obtained after applying the quasi-periodic boundary coupling

on the embedded RVE.

2.5.2 Example 2: Three-point bending test of a porous elastic beam

The next example illustrates how the combination of finite element adaptivity and the

concept of embedded RVE provides an efficient and accurate method to describe problems

that are sensitive to multiple length scales. We thus consider a rectangular beam, in plane

stress conditions, of length L and thickness L/3 subjected to three-point bending conditions.

More precisely, the beam is supported by two rigid supports of finite-length and subjected to

a distributed vertical load p on its top (Fig. 8). At the microscopic level, the beam is then

represented by a porous linear elastic microstructure represented by the RVE depicted on the

right of Fig. 8, for which the matrix is made of rubber with Young’s modulus E = 10MPa

and Poisson’s ratio ν = 0.3. continuum elements is obtained from first order computa-

tional homogenization. For this material, under the plane strain condition, the homogenized

Young’s modulus and Poisson’s ratio are E = 4.71MPa and ν = 0.338, respectively.
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Figure 2.8: Three point bending test. In this simulation, L = 6 and p = 100KN/m

Figure 2.9: Results comparison from microscale (left) and the brute force (right) approaches.
Comparisons are provided for L/L̂ = 24 (top) and L/L̂ = 48 (bottom)

This problem is of particular interest as the existence of fixed supports with sharp angles

introduces a singular strain field in their neighborhood. This implies that continuum as-

sumptions (for first-order model) are not valid in a small region surrounding the supports,

which motivates the use of the proposed multiscale model. We particularly aim to assess the

performance of the multiscale framework by measuring computational accuracy and cost for

different ratios of material and macroscopic length-scales. On the one hand, cost is measured

by the computational time for a specific simulation on a single CPU computer. On the other

hand, accuracy is evaluated by comparing the local strain fields near the fixed supports to
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those predicted by a brute force approach.

In this context, Fig. 9 depicts simulation results of the half-beam deflection and the asso-

ciated microscopic deformation near the support for different situations. In the first case,

for a ratio L̂/L of the RVE size and the beam length equal to 24, as little as two levels of

refinements are needed to converge to the final solution. The final solution shows that four

RVEs are needed to accurately capture the microstropic strain fields near the supports and

the comparison with strain fields computed from a brute force approach are excellent. In

the second case, we considered a small microstructure, for which the ratio L̂/L is 48. Here,

three levels of refinement were necessary to reach the final solution which displays seven

RVEs split in two regions around the support’s two corners. Once again, the local strain

prediction from the multiscale method are showing very good agreement with those obtained

from the brute force approach. Computational cost comparisons are then given in Fig. 10b

for cases in which L/L̂ = 12, 24, 48 and 96, respectively. The graph clearly shows that gain

in computation time increases drastically as the scale separation between the macroscopic

problem and the microstructure becomes more pronounced. This saving is attributed to the

fact that the multiscale method only needs an accurate description in critical regions (where

large strain gradients exist). As a result, an accurate solution can be obtained for problems

that show a very large scale separation such as shown in Fig. 10a in which L/L̂ = 768. In

this case, the corresponding brute simulation was not tractable with a single CPU computer

while a converged multiscale solution was obtained after seven stages of refinement.

2.5.3 Example 3: Stress concentration near a corner

The last example treats another classical elasticity problem that contains a singularity

in its solution. Consider the square domain shown in Fig. 11a, subjected to a vertical

distributed loading on its top and bottom boundaries. Assume that this solid is represented,

at the microscale, by an elastic material that consists of a periodic distribution of small
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Figure 2.10: (a) Beam deflection and microscopic strains in critical regions when L/L̂ =
768 in which the very large strain gradient near the support’s angles is clearly visible. (b)
Computational costs of the brute force and multiscale approaches for different values of L/L̂

square shaped voids of volume fraction 25 % . Material’s elastic properties are the same as

those used in the previous example. Using symmetry arguments, the domain is then reduced

to a quarter of its size (Fig. 11b) with adequate displacement boundary conditions. The

presence of a sharp corner induces increasingly large strain gradient as one approaches it;

this implies that first continuum theories are limited in providing an accurate solution in

this area. In Fig. 12, we present simulation results in the case where the size L̂ of the

Figure 2.11: (a) Original benchmark problem and its reduction using symmetry arguments
(b). At the microscale, we consider a periodic microstructure represented by the RVE shown
in (c)

microstructure is 32 times and 2048 times smaller than the macroscale domain (represented
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by L), respectively. For both cases, we start from an initial mesh that comprises three square

elements of size L/2. As expected, since the solution exhibits large strain gradients near the

corner, adaptive refinement occurs in this region. When the size of element is equal to L̂,

RVEs are naturally embedded in the macroscale, leading to the microscale regions shown in

the figure.

Figure 2.12: εxx over RVE elements for (a) L/L̂ = 32 (b) L/L̂ = 2048.

Similarly to the previous example, we assessed the efficiency of the method by measuring

computational time for different values of L/L̂ ranging from 4 to 256 and compared it to brute

force simulations when possible. Once again, the trend showed that brute force simulation

time exponentially increases with L/L̂ while the cost of the multiscale simulation remains

affordable for very large values of L/L̂ . We also assessed accuracy by computing a local

strain value near the corner (see Fig. 13) with both brute force and the multiscale method.

As shown in Fig. 14, we obtained an excellent match between the two solutions, confirming

that accuracy is maintained despite the lower computational cost.
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Figure 2.13: Comparison between Brute Force approach (BF) and Adaptive Multiscale method
(AM) computational cost.

2.6 Summary and perspectives

In summary, this paper introduced an adaptive multiscale framework that is based on

the following idea. The reduction of discretization error by adaptive refinement may lead to

a situation in which element size become comparable to the microstructure length-scale (or

RVE size). In this condition, we showed that the solution induces a finite homogenization

error that tends to increase as refinement proceeds. Based on this concept, we introduced an

adaptive concurrent multiscale method in which below a certain size, continuum elements

are replaced by explicit RVEs. In this context, we derived a set of bridging scale conditions,

consistent with traditional homogenization theory that naturally enable RVE to coexist with

surrounding larger continuum elements. By adequately combining the concept of adaptive

refinement and that of embedded RVEs, we then introduced a flexible concurrent multiscale

framwork in which one can obtain optimal macroscale and microscale accuracy with minimal

computational cost.

Although the efficiency of the method was demonstrated with several examples, it still, at

this point, suffers from few limitations. First, due to their inherent periodicity, RVEs must

originally possess a rectangular shape, which in turn enforces that the macroscopic finite el-
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ement mesh should be regular and rectangular. While this feature is usually not convenient

when modeling domains that possess curved boundaries and internal interfaces, this limita-

tion can be addressed by invoking flexible formulations that describe interfaces independent

from discretization. An example of such a formulation is provided by the extended finite

element method [33]. Second, the present work focussed on the case of small deformation,

linear elastic problems, which is usually restrictive for most real-life applications. In fact, the

proposed framework can naturally be extended to describe nonlinear material behaviors and

finite strains, such as observed during plastic deformation, damage and fracture [186, 27].

In particular, the adaptive multiscale method provides an ideal platform on which to study

the phenomenon of ductile fracture, in which large scale features and local deformation

mechanisms in the process zone must be modeled with maximum precision [188, 187]. The

potential of the method is therefore significant as it will, by enabling simulations of ductile

fracture at multiple scales, relate macroscopic fracture toughness to the nature of a mate-

rial’s microstructures; this capability is crucial for the development of future high-toughness

materials.
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Figure 2.14: Comparison between the brute force approach (BF) and the adaptive multiscale
method (AM) accuracy for four different ratios of L/L̂. Results are displayed for (a) the
tensile strain in the y-direction (b) the shear strain.
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3.1 abstract

This paper introduces a concurrent adaptive multiscale methodology in which both

macroscopic and microscopic deformation fields strongly interact. The method is based

on the balance between numerical and homogenization error; while the first type of error

states that elements should be refined in regions of high deformation gradients, the second

implies that elements size may not be smaller than a threshold determined by the size

of the representative volume element (RVE). In this context, we introduce a multiscale

method in which RVEs can be embedded in continuum region through appropriate macro-

micro boundary coupling conditions. By combining the idea of adaptive refinement with

the embedded RVE method, the methodology ensures that appropriate descriptions of the

material are used adequately, regardless of the severity of deformations. We show that this

method, in conjunction with the extended finite element method, is ideal to study the strong

interactions between a crack and the microstructure of heterogeneous media. In particular,

the method enables an explicit description of microstructural features near the crack tip

while a computationally inexpensive coarse scale continuum description is used in the rest
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of the domain. We illustrate the method with several examples showing its accuracy and

relatively low computational cost and discuss its potential in relating microstructure to the

fracture toughness of a diversity of heterogeneous media.

Keywords: concurrent multiscale method, adaptive refinement, macro-micro coupling.

3.2 Introduction

The relation between microstructural properties and material toughness plays a key

role in designing stronger materials and predicting material failure. While quantifying this

relation by experiment may prove challenging, theoretical and computational approaches are

particularly useful in this regard. Many authors have been investigating this problem within

the framework of homogenization theory [81, 70, 67, 68, 97, 155, 73], in which macroscopic

material behavior is cast in terms of a constitutive relation derived by means of appropriate

averaging over microstructural representative volume element (RVE). Higher order contin-

uum theories such as micromorphic theories [188, 186, 187, 170, 71, 80], micro-continuum

models [184, 181], Cosserat theory [135, 139, 148] or strain gradient theories [147, 146, 140]

have been introduced by extending these formulations in order to make them capable of

capturing size effects when inhomogeneous strains are present. However, when the inhomo-

geneity of macroscopic deformation is severe, it can be argued that the local microstructural

response becomes more important than the homogenized material response. In this situation,

coarse scale continuum theories fail to predict local material behavior and a microstructural

description often becomes the most adequate strategy to assess the response. An obstacle

to this strategy is, however, that microstructural descriptions are often not tractable over

large (macro) computational domain. This challenge motivated the development of methods

that aim at coupling microstructural material description (in regions with high heterogene-

ity of deformation) and continuum description of materials (where the deformation field is

homogeneous and continuum theories are valid)[165, 154]. For instance, a class of concurrent

multiscale methods [166, 156, 189, 132] was introduced based on the idea that a microscopic
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region can be determined a priori (such as around a crack tip) and can be coupled with a

coarse grained continuum region. Using a similar idea, Ghosh et al. [150, 149, 160, 169, 168]

introduced a method based on Voronoi Cell Finite Element Method (VCFEM) to deal with

problems in which the micro region can not be defined a priori and is determined by adap-

tively refining the description in critical regions.

In a previous study [185] we introduced a novel adaptive concurrent multiscale method,

based on the idea that modeling error, arising from two sources, should be minimized.

The first source of error, known as discretization error, is defined as the difference between

computational and exact solutions. The second type arises from imprecision in continuum

assumptions and is known as the homogenization error. While the first type of error decreases

with mesh refinement, it can be shown that at a certain point, further decrease of element

size cause a significant rise in homogenization error. This argument is based on the fact

that continuum description is only valid as long as the element size is larger than a critical

size, which is based on the characteristic length scale of the material’s microstructure. In

this context, the proposed method aims at replacing continuum elements of critical size

with a microscopic description of material in the form of RVE. In this way, the method

enables both continuum and explicit microstructural descriptions to coexist within a single

simulation. In addition, since a coarse continuum description is only used for regions of

homogeneous deformations, the method ensures a low computational cost and provides highly

accurate results in regions of heterogeneous deformation without violating the fundamental

assumptions of continuum theories.

In the present work, we take advantage of the Extended Finite Element Method

(XFEM) and extend the above formulation in order to obtain a multiscale solution for elastic-

ity problems containing displacement discontinuities such as cracks in heterogeneous media.

In next section we summarize the adaptive concurrent multiscale method and provide a brief

description of error analysis and the method for bridging continuum and microstructural de-

scriptions. Section 3 then provides a reformulation of the methodology in conjunction with
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the XFEM framework, which allows us to consider the problem of fracture in heterogeneous

media. A few examples are then investigated in section 5 before a discussion and suggestions

for future studies are given in section 6.

3.3 General adaptive multiscale methodology

Two basic attributes of multiscale methodologies are to preserve low computational

cost while predicting accurate material behavior in regions of highly localized strain. In

the finite element framework, low computational cost can typically be obtained via local

mesh refinement. Such a strategy may, however, introduce significant modeling error as the

element size reaches critical value. In such a situation, continuum elements may typically be

replaced by an explicit microstructural description of material [185]. The ideas underlying

the concept are discussed next.

Figure 3.1: Continuum macro structure and heterogeneous micro structure of a point x.

3.3.1 Discretization and homogenization error

3.3.1.1 Homogenization error

The fact that continuum theories are based on constitutive relations that are driven

from homogenization poses a restriction on the size of continuum elements. The so-called

homogenization error plays key role on this restriction. To illustrate this idea, let us con-

sider a material domain Ω delimited by the boundary Γ and consider a material point P
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with coordinates x (Fig. 3.1). The macroscopic state of the material in this point can then

be quantified by quantities that are averaged over the representative volume element (RVE),

including the displacement vector, u, the strain tensor, ε and the stress tensor σ . Consider-

ing the RVE as a square domain ( Fig. 3.1) with side length L̂, a non-dimensional Cartesian

coordinate, ξ, can be introduced to characerize the fluctuating microscopic displacement,

strain and stress û, ε̂ and σ̂, respectively. The Hill-Mandel condition [87, 72] then states

that the variation of macroscopic elastic energy can be written in terms of microscopic fields

through the relation δW = 〈σ̂ : δε̂〉 where 〈·〉 denotes the average operation over the RVE.

After performing a linear expansion of the microscopic strain field, it can be found that:

δW = σ : δε+ τ
...
(
L̂∇∇δu

)
+ 〈σ̂ : ∇̂δuf〉, (3.1)

where τ = 〈σ̂⊗ ξ〉 is the stress-couple, uf is the micro fluctuating displacement field and ∇̂

is the gradient operator in the non-dimensional coordinate system. For a first order theory,

only the first term in right-hand side is considered, and the second and third terms are

assumed to be negligible. While the last term often vanishes by enforcing specific boundary

conditions on the RVE (as seen later in this paper), first order theory assumes the following

condition on the second term:

eh = L̂||∇∇δu|| << 1 (3.2)

where || · || is the L2 norm which is defined as ||u|| = √ui,jui,j in indicial notation. We call

eh as the “homogenization error” in the remaining of the paper.

3.3.1.2 Discretization error

Discretization error is commonly defined as the difference between numerical solution

obtained by finite element discretization and an exact continuum solution. It is often suitable

to define the discretization error, ed over the element domain Ωe as the second norm of

difference between exact and numerical strain fields solutions. For simplicity, we opt to asses

this type of error over a square element with side length h and in which a local coordinate
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Figure 3.2: Refined mesh with embedded RVEs. Irregular nodes appear on the borders of
refined and unrefined elements.

system z̄ can be introduced with origin at the geometrical center of the domain. Expanding

the exact and numerical displacement field about z̄ = 0, it can be shown that the error in

displacement can be written [138, 96]:

ui(z̄)− uhi (z̄) = εi −
1

2
Hijkz̄j z̄k, (3.3)

where superscript h refers to the numerical solution, the error in the origin is defined as εi

and Hijk is a third order tensor interpreted as the second gradient of the exact displacement.

Taking the norm of equation (3.3), one can obtain [96]:

ed = hc||∇∇u|| (3.4)

where c = 1/
√

12 and || · || is the L2 norm. Let us now take the two error definitions (3.2) and

(3.4) as a vehicle to explain the key concept of our concurrent multiscale method. On the

one hand, equation (3.4) states that for the discretization error to be less than emaxd , the size

of elements should verify h < ed/c||∇∇u||. On the other hand, since the homogenization

error should be less than allowable tolerance, emaxh , it can be shown that the refined element
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size, h, in the continuum region should satisfy:

h >
emaxd

emaxh

L̂. (3.5)

For instance, in the particular case where emaxd = emaxh , (3.5) implies that if the element

size reaches to that of the RVE, subsequent refinement will induce a non-negligible homog-

enization error in the element. In this case, we argue that a continuum description is not

appropriate and elements must be replaced by a finer, microstructural description provided

by the RVE. The following section discusses various techniques to bridge microstructural

and continuum descriptions when this situation arises.

3.3.2 Embedded RVE formulation

The previous section implies that continuum and microstructural descriptions often

should coexist within a single simulation (Fig. 3.2). This can be done by introducing macro-

micro kinematics, force conditions and appropriate boundary conditions at the boundary

between these domains associated with two different descriptions. This can be done by

introducing appropriate boundary conditions on the boundary between macro and micro

domains which satisfies kinematic and force conditions on this boundary.

3.3.2.1 Macro-micro kinematics

Macro-micro compatibility conditions state that, in an average sense, the macro de-

formation of an individual element must conform with that of the RVE that replaces it.

The strain in a continuum element 〈∇u〉s is written in terms of nodal macro displacement

vectors, U and the micro displacement fluctuation field, ũ as:

〈∇u〉s =
∑
I

〈BI〉UI + 〈∇ũ〉s, (3.6)

where a superscript s indicates the symmetric part of a tensor, the matrix BI contains the

gradient of element shape functions and 〈·〉 is the average operator over domain Ω̂. Since
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the average deformation field of an element and RVE should conform, the second term in

(3.6) vanishes and by using the divergence theorem, we obtain:

〈∇ũ〉 =
1

|Ω̂|

∫
Γ̂

ũ⊗ n dΩ̂ = 0, (3.7)

where n is the unit normal vector to the boundary Γ̂ of the RVE (Fig. 3.1). Equation (3.7)

is known as kinematic coupling condition.

3.3.2.2 Force balance between macro and micro descriptions

In order to build conditions between nodal forces at continuum and microstructural

descriptions, we write the variation of elastic energy as:

δW =

∫
Ω

σ : δεdΩ̂ =

∫
Γ

t · δudΓ̂ (3.8)

Taking advantage from the fact that the elastic energy arising from fluctuating fields vanishes

[155], it is straightforward to show that the variation in elastic energy becomes:

δW =
∑
I

f I · δUI , (3.9)

where the macroscopic nodal forces are related to the traction forces t̂ on the macro-micro

boundary by:

f I =
∑
I

∫
Γ̂

N I t̃dΓ̂. (3.10)

Note that the distribution of surface traction t̂ over the RVE boundaries is dictated by the

type of boundary conditions. While the variety of boundary conditions can be introduced (as

discussed in [185]) , we here focus on the simplest of all, known as the strong displacement

coupling. This type of boundary condition is written as:

u(ξ) =
∑
I

N I(ξ)UI , ξ ∈ Γ̂. (3.11)

in which N I are the finite element shape functions. This set of boundary condition is

formulated to strongly verify (3.7) by prescribing micro nodes on RVE edges to follows

adjacent macro element’s displacement.
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3.4 XFEM based adaptive multiscale method

The XFEM was first introduced by Moës et al. [129] in order to avoid remeshing

continuum domain for propagating crack. This method is based on enriching the ordinary

finite element basis with singular functions, which covers the singular displacement field

around the crack tip, and smooth Heaviside functions for elements along the crack surface.

Based on this concept, we show how the above adaptive multiscale method can be naturally

extended to predict materials behavior in the presence of the highly localized deformation

fields near the tip of a crack.

3.4.1 Crack definition and numerical approximation using XFEM

In the context of XFEM, the geometry of a line discontinuity can be defined by the zero

level of a level-set function φ. While this method was first used to model closed boundaries,

Stolarska et al. [78] generalized it for the modeling of open boundaries such as cracks and

open interfaces. In this formulation, a crack surface Γc is defined by two level set functions,

specifying whether a point is below or above the crack and whether a point is in front or in

the wake of the crack tip. The standard XFEM approximation of a function u(x) over an

element domain is then written as:

u(x) =
∑
I∈SI

NI(x)uI +
∑

I∈SIenr
NI(x)ψ(x)aI , (3.12)

in which the first term on the right hand-side is the standard finite element approximation

and SI is the set of all the nodes in the element domain. The second term is the enriched part

of approximation, with ψ be an appropriate enrichment function of node I ∈ SIenr and SIenr

is the enriched subset of I. Finally, uI and aI are the nodal coefficients of standard finite

element and the enriched degrees of freedom. For split elements, the function ψ captures the
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discontinuity of the displacement field inside the element as:

ψ(x) = H(φ(x)) =

0 for φ(x) ≤ 0

1 for φ(x) > 0
(3.13)

where H is the Heaviside function. In addition, to capture the singular strain field around

the crack tip, four different enrichment functions are used on each node of the crack tip

element, which are:

ψ(r, θ) =

{√
rsin(

θ

2
),
√
rcos(

θ

2
),
√
rsin(θ)sin(

θ

2
),
√
rsin(θ)cos(

θ

2
),

}
(3.14)

where r is the distance of the point to the crack tip and θ is the angle between the tangent

to the crack tip and the line that connects the point x to the crack tip. It should be noted

that for θ = ±π, the first term in (3.14) also captures the discontinuity in the displacement

field along the crack surface in the element.

3.4.2 Error and refinement

Error and refinement criteria follows a similar approach as that described in section 2, with

the difference that the element are now characterized with additional degrees of freedom

when split by a crack. The calculation of the discretization error is then performed by using

9-node quadrilateral elements in which second gradients of displacement are calculated as

follows:

∇∇u(x) =
9∑
I=1

GI(x)uI +
nenr∑
I=1

Genr
I (x)aI . (3.15)

Here, uI and aI are respectively the nodal displacement and the nodal enrichment vectors

and nenr is the number of enriched nodes in element. G and Genr are the second derivative

of the finite element and XFEM shape functions defined by:

GI(x) =

∂2NI(x)
∂x2

∂2NI(x)
∂y2

∂2NI(x)
∂x∂y

0 0 0

0 0 0 ∂2NI(x)
∂x2

∂2NI(x)
∂y2

∂2NI(x)
∂x∂y


T

. (3.16)
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Genr
I (x) =

∂2Nenr
I (x)

∂x2

∂2Nenr
I (x)

∂y2

∂2Nenr
I (x)

∂x∂y
0 0 0

0 0 0
∂2Nenr

I (x)

∂x2

∂2Nenr
I (x)

∂y2

∂2Nenr
I (x)

∂x∂y


T

. (3.17)

Note that due to the singular strain fields near the crack tip strain gradients, and thus the

discretization error become infinite at the tip. This implies that the element containing

the crack tip is always subjected to refinement, which indicates that (3.15) need not to be

calculated for tip elements. However, for split elements (3.17) is written as:

∂N enr
I (x)

∂xi
=
∂NI(x)

∂xi
(H(φ1(x))−H(φ1(xI))) +NI(x)δ (φ1(x)) , (3.18)

where δ is the Dirac-delta function and φ1 is the signed distance function from the crack

surface, Γc. The second term in (3.18) vanishes over the element but takes an infinite value

on the crack surface. Since the methodology is based on decreasing the discretization error

within the continuum region, this term is not considered in the error evaluation Accordingly

the second gradient of shape functions can be written as:

∂2N enr
I (x)

∂xi∂xj
=
∂2NI(x)

∂xi∂xj
(H(φ1(x))−H(φ1(xI))) . (3.19)

The L2 norm of displacement defined in (3.4) is then written as:

‖∇∇u(x)‖2 =

(
9∑
I=1

(uI)
T

(∫
Ω

(GI(x))T GI(x)dΩ

)
uI

)1/2

+

(
9∑
I=1

(aI)
T

(∫
Ω−Γc

(Genr
I (x))T Genr

I (x)dΩ

)
aI

)1/2

. (3.20)

For a split element, (3.20) takes a different value on the two subdomains separated by the

crack. In this study, the largest of the two value is used as the discretization error measure

of the element. The local mesh refinement then consists of dividing elements into four sub

elements, an operation that usually introduces irregular nodes on the edge of surrounding

non-refined elements (Fig. 3.2). Following the method introduced in [65] this irregularity is

addressed through the definition of new sets of shape functions that enable a smooth tran-

sition of continuum fields between element while satisfying the conformity of displacement

as well as the partition of unity.
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3.4.3 Embedded RVE formulation in XFEM framework

Let us now discuss the issue of the bridging scale method between macroscale and

microstructural descriptions in the XFEM framework.

3.4.3.1 Kinematics of macro-micro coupling

We first consider that the RVE is a computational domain that can be superimposed

on a continuum (macro) element. The micro displacement fields in the RVE can be written

in terms of nodal displacement vector U, the enriched nodal value vector of a and the micro

fluctuation field ũf as:

ũ(ξ) =
∑
i∈I

Ni(ξ)Ui +
∑
i∈Ienr

N enr
i (ξ)ai + ũf (ξ). (3.21)

The gradient of micro displacement is then:

∇ũ(ξ) =
∑
i∈I

Bi(ξ)Ui +
∑
i∈Ienr

Benr
i (ξ)ai +∇ũf (ξ), (3.22)

where ∇ is the differential operator with respect to ξ while B and Benr denote the gradient

of regular and enriched shape functions, respectively. In order to substitute a continuum

element by an RVE, the macro-micro kinematic conditions dictate that “in average” the

deformation of the RVE is equal to that of the macro element. One can therefore write the

average displacement field of micro displacement as:

〈∇ũ〉 =
∑
i∈I

〈Bi〉Ui +
∑
i∈Ienr

〈Benr
i 〉 ai +

〈
∇ũf

〉
, (3.23)

where 〈·〉 is the average operator over the element. For a macro element the average dis-

placement is defined by first two terms in the right hand side of (3.23) which means
〈
∇ũf

〉
should vanish over the element. Using the divergence theorem it can be shown that (3.7)

again verifies the macro-micro kinematic condition. By taking similar arguments as in sec-

tion 3.3.2.2, one can show the validity of (3.9). However, it should be noted that since the

XFEM shape functions vanish on the edges of elements, no enriched counterpart of micro

traction distribution appears in the definition of macroscopic force.
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3.4.3.2 Macro-micro coupling assumption

A simple way of verifying (3.7) is to impose a condition that leads to zero fluctuation

field along the RVE boundaries. This, in other words implies that ũ = 0 on the border

between micro and macro domains. This is equilvalent to write:

u(ξ) =
∑
i∈I

Ni(ξ)Ui +
∑
i∈Ienr

N enr
i (ξ)ai ξ ∈ Γ̂, (3.24)

on a boundary Γ̂ of an RVE. This equation is similar as (3.11) in with additional terms

appear to account for the contribution of the discontinuous part of the solution at the

macroscopic level. Similar to the strong coupling introduced previously, this type of condition

strongly enforces the micro-nodes to follow the macroscopic displacement field variation on

the macro-micro boundary. Figure 3.3 schematically depicts the distributions of macroscopic

and microscopic displacements along the macro-micro boundary in two different cases.

Figure 3.3: Representation of macro-micro boundary coupling constraints; (a) without crack
(b) when a crack is present.

3.5 Computational aspects

In this section, we introduce the multiple scale algorithm that combines adaptive re-

finement and embedded RVE. The algorithm of methodology is shown in Fig. 3.4. It should
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be noted that in this work, an incremental approach is taken but we do not consider crack

propagation. Furthermore, from a numerical view point, the constraints introduced in section

Figure 3.4: Algorithm of the method.

3.4.3.2 can be enforced by the Lagrange Multipliers Method. Typically, at every microscopic

node on the edge Γ̂, a pair of constraints are defined as:

cn = un −
∑
i∈IΓ̂

Ni(ξn)Ui −
∑
i∈Ienr

Γ̂

N enr
i (ξn)ai, (3.25)

where IΓ̂ is the set of nodes on boundary, Ienr
Γ̂

is the enriched set of nodes on the boundary

and n is the micro-nodes number which varies from 1 to the total number of micro-nodes

on boundaries of RVEs (Nm). In this method, each constraint equation cn is associated

with a Lagrange multiplier λn which can be interpreted as the microscopic tractions on the

boundaries of RVE. The objective of the method is then to solve the linear system of equation
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Figure 3.5: Procedure involved in substituting macro elements by RVEs during incremental
loading, (a) Continuum elements with high error measure, (b) Internal force on the bor-
der between two patches of RVEs is not balanced, (c) Final equilibrium is obtained solving
Kmum = −f intm .

of the form: 
KM 0 ITMm

0 Km ITmM

IMm ImM 0



δuM

δum

λ

 =


δfM

δfm

c

 , (3.26)

in which KM is the stiffness matrix associated with continuum degrees of freedom (includ-

ing standard and enriched degrees of freedom) while Km is the stiffness matrix associated

with microscopic nodal degrees of freedom. Similarly, δuM and δfM are respectively, the

incremental displacement and force vectors, associated with standard and enriched contin-

uum degrees of freedom and δum and δfm are the incremental microscopic displacement and

force vectors. The vector λ represents the Lagrange multipliers that enforces the constraints

c = 0. Note that the global stiffness matrix is decomposed in two different parts, namely

macro and micro degrees of freedom. Interactions between these two components appear

through the interaction matrices, IMm and ImM defined as the derivatives of the constraints

with respect to macro and micro displacements.

On the final note, we wish to discuss some important points pertaining to the incremental
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refinement procedure. For this, let us consider that after N load increments, a particular

element e (in a deformed state) is characterized with a large computational error (both

discretization and homogenization) and must undergo a transition to the RVE description.

A challenge in this situation is that the embedded RVE must be inserted in a deformed

state. This issue may be addressed in the following manner: First, the nodal displacements

of the macro element are extracted and imposed on the RVE, independently of the global

simulation. A macroscopically conforming RVE deformation can then be obtained through

the strong coupling boundary condition developed in 3.4.3.2. This deformed RVE may then

substitute the continuum element, as part of the refinement procedure. While the displace-

ments are conforming, we note that this operation introduces unbalanced internal forces,

f intm , on the border between the new patch of RVEs and patch of RVEs before refinement (as

shown in Fig. 3.5b). These forces, however vanish after solving the global force equilibrium

Kmum = −f intm . This procedure is shown schematically in Fig. 3.5.

A similar problem arise when deformed split elements have to be divided into four subdo-

mains. In this case, it is particularly useful to establish the relation between enriched degrees

of freedom, a, and the crack opening δc in the RVE through the formula:

δc =
9∑
i=1

Niai, (3.27)

where δc is the crack opening, Ni are the standard finite element shape functions and ai

are the values of enriched degrees of freedom. As shown in Fig. 3.6 and based on (4.21),

values of new enriched degrees of freedom can be obtained by interpolating enriched degrees

of freedom in larger element.

3.6 Numerical examples

We now aim to illustrate the method by considering two examples focusing on the

problem of fracture of heterogeneous media in the elastic regime. We concentrate on a

particular type of foam-like material in which the microstructure consists of micro-truss
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Figure 3.6: (a) Variation of nodal enrichment values over split element and (b) variation of
nodal enrichment values over refined element.

structure with characteristic length of L̂ as depicted in Fig. 3.7b.

Figure 3.7: (a) Plate with an edge crack under mode I loading. In this problem the initial
finite element mesh consists of square elements of size h = 0.25L and L = 3, H = 5.5,
δy = 0.1 and (b) microstructure RVE.

Example 1: Edge crack under mode I loading

In the first example, we aim to show how combining the adaptive multiscale approach

and the XFEM leads to an effective and accurate method to describe the fracture behavior

of material at multiple length scales. We consider the classical fracture mechanics problem

that consists of a rectangular plate of size L×H with a preexisting edge crack under mode I

loading in plane strain condition. For all simulation, we start from a very coarse initial mesh
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that is refined until both discretization and homogenization errors are below the acceptable

criterion. The boundary conditions consist of fixed vertical displacements on the bottom

of the plate while an incremental vertical displacement is imposed on the top boundary via

5 increments of 0.02L. At the microscopic level, truss elements have a Young’s modulus

E = 0.1Mpa and a cross sectional area A = 0.01Lt where Lt is the length of a truss. The

RVE (of size L̂) shown in Fig. 3.8 illustrates the truss layout in the microstructure. At

the micro scale, the crack is defined by a levelset function and the Heaviside enrichment

function described in Sec. 3.4.1. The crack at this length scale is accounted by deleting

trusses whenever they intersect with the crack path. The linear elastic constitutive relation

at the continuum level is obtained by a priori performing RVE based first order computational

homogenization as described in [186]. Briefly, the method consists of subjecting the RVE to

three different modes of deformation and deriving the corresponding average traction forces

on the RVE boundary. These forces are then used to obtain the continuum stress via a proper

averaging operation; this enable the determination of the linear elastic matrix used at the

continuum level. Based on linear elastic fracture mechanics (LEFM) solution, the strain

field in the vicinity of the crack tip is singular. This means that continuum assumptions for

heterogeneous media are not valid in this region and an explicit microstructural description is

necessary. In addition, since the boundary conditions are applied in an incremental manner,

the size of the process zone grows as the applied displacement increases. In this context, the

results for two different ratio of L/L̂ are shown in Fig. 3.8. For each simulation, the vertical

strain field, εyy, is depicted at the end of third and fifth load increments. For the case where,

L/L̂ = 32 three levels of refinement are necessary to obtain a converged solution. In the case

where the ratio L/L̂ is 512, six levels of refinement are necessary. It should be noted that

in the second situation, as the number of increment increases from three to five, the number

of RVEs in the vicinity of the crack tip increases such that the RVE patch defines the crack

process zone. This does not occur in the first case since RVEs occupy a larger region in front

of the crack tip.
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Figure 3.8: εyy at the end of load increment 3(left) and 5(right) for two different cases of

(a) L/L̂ = 32 and (b) L/L̂ = 512.

Since in practice crack propagation in foam materials is initiated by the rupture of truss

elements at the micro-scale, we illustrate the accuracy of the method by comparing the

maximum tensile strain in the micro elements obtained from our method and those obtained

from a “brute force” computational approach. In the latter, a microstructural material

representation (micro-truss elements) is used for the entire computational domain. Fig. 3.10

shows an excellent agreement between the two simulations, which confirms the adequacy of

macro-micro conditions at the edge of RVEs. To show the efficiency of the method, we also

compared the total computational time needed for both methods on a single CPU machine.

As shown in Fig 3.9 the difference between computational costs of the two approaches increase
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Figure 3.9: Computational cost for brute force and multiscale approaches.

drastically as the microstructural size decreases to the ratio L/L̂ of 16, after which the brute

force analysis is no longer tractable.

Figure 3.10: (a) maximum tensile strain comparison (b) Strain in micro elements for brute
force simulation (left) and multiscale simulation (right) for L/L̂ = 16.
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Example 2: Inclined crack under mixed mode loading condition

In the second example, we consider another classical LEFM problem that consists of a

plate containing an inclined edge crack, and subjected to mixed mode boundary conditions

as depicted in Fig. 3.11a. The material properties and domain dimensions are the same as

in the previous example and it is assumed that the truss microstructure contains a periodic

distribution of voids (of volume fraction 45%) as shown in Fig. 3.11b. The initial mesh is

Figure 3.11: (a) Plate with an inclined edge crack under mixed mode loading. In this problem
L = 3, H = 5.5, δx = δy = 0.01 and (b) RVE with a void size ratio of 45%.

comprised of 6× 22 elements of size L/12. Refinement is performed in the vicinity of crack

tip, where the singular strain field exists, up to the level in that the smallest element size is

equal to the RVE size, L̂. The simulation is performed for L/L̂ = 128 requiring five levels

of refinements. The horizontal strain fields, εxx in the macroscopic domain at the end of

second and fourth load increments are shown in Fig. 3.12. It should be noted that due

to the presence of crack, the strain range in the microscopic truss elements are drastically

different than that of continuum elements. The strain distribution in the micro trusses is

shown in Fig. 3.13 in which the potential crack growth path can be evaluated by identifying

the truss element with the highest tensile strain (around voids intersected by the crack).

Future studies will account for failure of these elements by introducing relevant instability

mechanisms which arise from both geometrical and material origins. On the one hand,
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Figure 3.12: (a) horizontal strain, εxx, in continuum domain and longitudinal strain in micro
elements at the end of second and fourth increment for (a) L/L̂ ratio of 64 and (b) L/L̂
ratio of 128.

Figure 3.13: Longitudinal strain in the micro domain.

the tensile failure of trusses can be described with softening damage/plasticity model that

captures the necking instability and rupture. On the other hand, compressive failure can

be accounted by incorporating buckling instabilities. Ultimately, incorporating the above

mechanisms will allow us to establish a bridge between the microstructure of materials and

their fracture behavior (onset of crack growth, crack path, energy dissipation and fracture

toughness).
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3.7 Conclusion:

The present paper introduced an adaptive multiscale method for fracture in heteroge-

neous media by invoking concepts of the adaptive refinement, the embedded RVE method

and the extended finite element method. The underlying idea of the methodology is to reduce

discretization error by local mesh refinement up the level at which continuum assumptions

are valid. Once the critical limit of refinement is reached, the strategy consists of replac-

ing continuum elements by RVEs. In this context, a set of bridging scale conditions was

introduced in order to enable RVEs to naturally coexist with a surrounding region of large

continuum elements. By appropriately combining local refinement and RVE embedding and

XFEM enrichment functions, the method ensures a low computational cost while a highly

accurate description of the microscopic processes occurring ahead of a crack tip is possible.

The efficiency of the method is demonstrated in the first example where microscopic strain

field could accurately be predicted when the specimen was subjected to macroscopic bound-

ary conditions. The second example clearly shows the potential of the method by predicting

the heterogeneous deformation in void materials. The present work focused on small de-

formation, linear elastic problems where crack propagation is not permitted. However, this

paper lays a strong foundation to investigate more complex problems in which damage and

plasticity governs fracture behavior. Further works will therefore consist of extending the

method to describe nonlinear material behavior, interstitial fluid flow in cracks[183, 182],

nanoscale microstructural effects [142], plastic deformation in order to quantify the relation

between microstructure and macroscopic toughness in a diversity of materials.
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4.1 abstract

We introduce an adaptive concurrent multiscale methodology (ACM2) to handle situ-

ations in which both macroscopic and microscopic deformation fields strongly interact near

the tip of a crack. The method is based on the balance between numerical and homogeniza-

tion error; while the first type of error states that elements should be refined in regions of

high deformation gradients, the second implies that element size may not be smaller than a

threshold determined by the size of the unit cell representing the material’s microstructure.

In this context, we build a finite element framework in which unit cells can be embedded in

continuum region through appropriate macro-micro boundary coupling conditions. By com-

bining the idea of adaptive refinement with the embedded unit cell technique, the methodol-

ogy ensures that appropriate descriptions of the material are used adequately, regardless of

the severity of deformations. We will then show that our computational technique, in con-

junction with the extended finite element method, is ideal to study the strong interactions

between a crack and the microstructure of heterogeneous media. In particular, it enables an
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explicit description of microstructural features near the crack tip, while a computationally

inexpensive coarse scale continuum description is used in the rest of the domain. The paper

presents several examples of crack propagation in materials with random microstructures

and discuss the potential of the multiscale technique in relating microstructural details to

material strength and toughness.

4.2 Introduction

Today’s technological advances in micro- and nanofabrication will soon enable the de-

sign of new materials that are sustainable, durable and multifunctional through a careful

control of their micro-architecture. Proof-of-concepts have already been provided by a num-

ber of biological materials that, due to their highly organized microstructure, overwhelmingly

exhibit a high fracture toughness, despite their weak building blocks [141, 158]. Fracture

resistance is also particularly desirable for next generation of synthetic materials. However,

unlike biological materials, they do not benefit from the efficient, but lengthy evolution pro-

cess to optimize their properties. The development of man-made materials must therefore

rely on the use of rational design and mathematical modeling to accurately describe ma-

terial failure and subsequently predict microstructures that can resist failure the most. So

far, research efforts have been hindered by the fact that fracture mechanics in heterogeneous

media typically involve two distinct and separate length-scales. On the one hand, the growth

of a ductile crack occurs via the evolution of damage ahead of the crack tip, in a relatively

small region, known as the process zone [188, 128]. In this region, materials usually exhibit

a complex behavior involving inelasticity, damage and eventually a strain-softening response

that may induce size effects [128, 157]. A micromechanical modeling approach [162] is often

necessary to accurately capture these mechanisms and their effects on fracture resistance.

On the other hand, fracture initiation and propagation highly depends on macroscopic load-

ing, geometry and macroscopic material features. At this level, a continuum description

is usually preferred due to its ability to describe uniform material deformation and its low
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computational cost. Because of this scale separation, theoretical studies on the role of mi-

croscopic damage on fracture properties have been limited to either unrealistically small

domains or overly restrictive assumptions. Instances include the studies of ductile crack

growth in metallic alloys [170, 164, 187], or numerical predictions of the fracture resistance

of biological silica-based composites [172], to name a few.

From a theoretical and computational viewpoint, a number of alternative strategies have

been proposed to address the multiscale dilemma. For instance, a potential solution was

provided by the development of higher order continuum theories such as micromorphic the-

ories [188, 186, 187], micro-continuum models [184, 181], Cosserat theory [135, 139, 148]

or strain gradient theories [147, 146, 140] in order to capture microstructural size effects

when the material deformation becomes inhomogeneous. These methods have been partic-

ularly successful when the displacement fields are nonuniform, but smooth, such as during

plasticity and the early stages of material’s failure. However, when the deformation fields

become strongly non-uniform and non-smooth, the very validity of continuum assumptions

becomes questionable and new approaches must be considered. In this context, the use of

microstructural descriptions provide a clear solution but they often involve computational

problems that are intractable over domains of realistic size. This has motivated the de-

velopment of multiscale methods that can bridge microstructural material descriptions (in

regions in which highly heterogeneous deformation occurs) and the continuum description

(where the deformation field is homogeneous)[165, 154]. For instance, a class of concurrent

multiscale methods [166, 156, 189, 132] was introduced based on the idea that a microscopic

region can be determined a priori (such as around a crack tip) and coupled with a coarse

grained continuum region via appropriately designed bridging scale conditions. Using a sim-

ilar idea, Ghosh et al. [150, 149, 160, 169, 168] introduced a method based on Voronoi Cell

Finite Element Method (VCFEM) to deal with problems in which the microscopic region

is not a priori determined but is informed by the nature of the numerical solution. Fi-
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nally, we have previously introduced a finite element based Adaptive Concurrent Multiscale

Method (ACM2) that provided a dual (micro-macro) description of an elasticity problem

by adaptively splitting a physical domain into a microstructural component (with refined

description) and macroscopic continuum component [185]. The adaptivity of the method

relied on the idea that element refinement should result from two kinds of approximation er-

rors: discretization and homogenization. This led to the idea that continuum finite element

description can only be refined up to a certain level after which elements must be replaced

by a more refined microstructural description provided by so-called unit cells.

Despite the number of powerful methods, establishing a relationship between mi-

crostructure and the mechanisms of damage evolution and crack propagation still remains

a challenge. We therefore propose to extend the concepts behind the ACM2 to address this

shortcoming. The contributions of this paper are several folds. First, we present a method

for which a crack is naturally accounted for at both micro and macro scales by coupling the

aforementioned multiscale technique with the extended finite element method. Second, be-

cause strain and rotation fields are often large in the vicinity of the tip of a loaded crack, we

present an iterative nonlinear formulation of the ACM2 for finite deformation and nonlinear

material response. Third and finally, we account for damage nucleation and evolution in the

crack tip region by modeling the microscopic material response with a lattice model. This

feature is critical to capture the phenomenon of crack propagation in heterogeneous materi-

als. We show, via a variety of examples, that the ACM2 enables both continuum and explicit

microstructural descriptions to coexist within a single simulation and therefore ensures a low

computational cost and provides highly accurate results. From a more theoretical viewpoint,

the approach addresses the well known issues associated with strain softening and localiza-

tion by automatically refining the description and therefore capturing microstructural size

effects within regions of localized deformations. By doing so, the method also has the poten-

tial to reconcile concepts from damage mechanics (which considers microscopic phenomenon
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only) to those from fracture mechanics (which is inherently macroscopic). We particularly

illustrate this point by demonstrating, through a simple example, that it is possible to estab-

lish a relationship between microstructure and the overall mechanics of a crack, represented

by the resistance curve. In other words, the proposed study provides a tool that, in the long

term, can lead to the computational design of material’s microstructures with optimized

fracture resistance capabilities.

The paper is organized as follows. In the next section, we provide an overview of the

ACM2 to study fracture and briefly recapitulate the error analysis, refinement techniques

and bridging scale coupling conditions. In section 3, we focus on the case of multiscale linear

elastic fracture with finite deformation and perform a number of studies to illustrate the be-

havior and performance (accuracy and efficiency) of the ACM2. Section 4 then concentrates

on the case of damage and crack propagation in heterogeneous microstructures. A summary

of the paper’s contributions is finally provided in section 5 along with concluding remarks.

4.3 Multiscale adaptive formulation to model fracture in heterogeneous

media

The general idea behind the ACM2 is to provide both a microscopic description (in

the process zone) and a macroscopic description (further from the crack tip) adaptively as

fracture proceeds. The strategy relies on a combination of finite element analysis, adaptive

refinement and unit cell modeling for periodic microstructures. Before we give further de-

tails, let us first describe the general idea behind the proposed method. Referring to Fig.

4.1a, let us consider a macroscopic domain characterized by presence of a preexisting crack,

represented by a surface Γc. The material in this domain is assumed to be heterogeneous at

the microscale with a periodic structure that is represented by the unit cell of side length L̂.

Fig. 4.1b shows an example of such a unit cell for a microstructure that possesses a pseudo-

random distribution of voids and inclusion. We note that there are no restrictions on the

size of the unit cell, as long as it is significantly smaller than the macroscopic domain. The
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proposed method can thus be used for a variety of heterogeneous materials with inclusions

and voids (for instance, steel, concrete, bone) or periodic molecular and atomic structures

(crystalline solids). To preserve the mutiscale requirement (low computational cost and high

accuracy [143]), the ACM2 consists of discretizing the macroscopic domain with coarse finite

elements and adaptively refining the mesh in the neighborhood of the crack tip (Fig. 4.1c),

where the deformation is highly inhomogeneous. As the size of elements become compara-

ble to the size of a unit cells, however, the ACM2 proposes a strategy in which continuum

elements are replaced by unit cells (Fig. 4.1d).

Figure 4.1: (a) Macroscopic domain with a preexisting crack, Γc, which is modeled as a
line of displacement discontinuity. (b) Schematic of a unit cell of length L̂ representing the
material’s microstructure. (c) Illustration of macroscale refinement around the crack tip to
reduce numerical error. (d) Continuum elements are replaced with unit cells in the region of
high strain gradients.

A consequence of this operation is that the computational domain is split into two subdo-

mains, namely, the macro- and the micro-domain. The material description in the macro-

domain is provided by a pure continuum approach for which the constitutive relation can be

derived by performing first order homogenization on the unit cell (Fig. 4.1b) [144]. At the mi-

croscale, the domain consists of a “patch” of connected unit cells, which provides an explicit

microscopic description without a need for homogenization [185, 174, 180, 134, 131, 167].
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This feature is critical as classical homogenization procedures are known to be inaccurate

in the regime of material’s failure and localization. For clarity, the details of the refinement

strategy and the micro-macro transition are left to the next section. It is clear, however,

that the framework involves a concurrent technique that is reminiscent of the bridging scale

method [189, 166, 156]. It can however be distinguished from it in three significant aspects:

(a) the microscopic domain is not a priori determined and is computed from an adaptive

refinement strategy, (b) the ACM2 is developed for quasi-static problems and differs in the

treatment of the bridging scale boundary conditions and (c) the ACM2 is suitable for all

micro-domains characterized by continuum, discrete or molecular structures.

4.3.1 Crack description at the macro and micro-scales

The co-existence of macroscopic and microscopic material descriptions calls for a sim-

ilar definition of a crack at two levels. At the macroscale, it can be represented by a di-

mensionless surface Γc across which displacement fields are discontinuous. Although this

representation does not cause any major issues with regular finite elements [173], it is not

the case for the ACM2. Indeed, the nature of the multiscale refinement requires a regular

and uniform discretization, made of rectangular finite elements and unit cells [185]. This

condition is restrictive to the modeling of curved cracks as they cannot follow element bound-

aries. The extended finite element method (X-FEM) [159] provides a natural solution to this

shortcoming since it enables a discretization-free description of a crack at the expense of

adding discontinuous degrees of freedom to elements that are cut by the surface Γc. In such

elements, the discontinuous displacement is traditionally written as:

u(x) =
∑
I∈SI

N I(x)uI +
∑

I∈SIenr
N I(x) (H(x)−H(xI)) aI . (4.1)

where superscript I denotes node number, u and a are the continuous and discontinuous

displacement degrees of freedom, respectively, N are the conventional shape functions for a

two-dimensional element and H is the Heaviside function [159, 129]. In addition, SI and
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SIenr are sets of ordinary and enriched nodes, respectively.

At the microscale, a crack (particularly near its tip) often takes the form of a region of

finite width in which various complex processes, such as crack bridging [133, 137, 136, 179],

micro-cracking [177, 153] or necking between coalescing voids [178, 176, 175], take place.

Its simplistic approximation into a line of discontinuity is therefore unsuitable at this level.

The presented method has the advantage of addressing this issue by representing the crack

tip region within a structurally refined domain (Fig. 4.1.d) which naturally lends itself to

capturing the transition between the macro- and microscopic description of a crack. Mi-

croscopically, a crack tip can therefore be modeled in various ways, according to its nature

and history, including a micro-notch of finite radius, the presence of a dense distribution of

microcracks or even a region of diffused damage. In the present study, we limit ourselves

to the first situation as it provides a fairly accurate representation of a ductile crack in a

porous matrix [170]. We note that the different resolution used to describe a crack at the

micro and macro-scales results in an apparent mismatch between the crack surfaces at the

micro-macro boundary (Fig. 6). While this issue does not affect the results reported in this

paper, it can potentially be solved by assigning an initial opening to the macroscopic crack

in the stress-free state.

4.3.2 Adaptivity and multi-scale refinement

While details of the adaptive multiscale refinement procedure have been discussed in a pre-

vious paper [152], we give here a brief summary of the method.

a- Discretization error. Traditionally, FEM refinement strategies aim at minimizing

the discretization error which is defined the difference between the approximate numerical

solution and the exact solution of the elasticity problem. In [138] a classical discretization

error for triangular finite element was introduced. Taking the same approach in [185] we

have shown that the discretization error over an square-shaped, two-dimensional element
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can be expressed with the simple expression:

ed =
h√
12
||∇∇u(x)|| (4.2)

where ed is the discretization error, h is the side length of the element, u(x) is displacement

field in the element. Furthermore, the symbols ∇ and || · || denote the gradient and L2 norm

operators, respectively. Refinement strategies aim at computing the value of (4.2) over all

macroscopic elements and propose to refine the size of elements when this error measure

becomes larger than a given tolerance emaxd . While it is satisfying in most situations, this

strategy does not converge for problems admitting singular strain fields, as observed in

fracture mechanics. Indeed, if strain gradients are singular, it is clear that the discretization

error (4.2) will tend to infinity, regardless of the element size.

b- Homogenization error. To address the above shortcoming, another type of error

measure, denoted as “homogenization error” must be invoked.

At the continuum level, the introduction of constitutive relations relies upon the con-

cept of homogenization, in which appropriate averaging operations over a representative

volume element (RVE) are performed. Since these operations are only valid when macro-

scopic deformations vary uniformly over the RVE, sharp localization events may sometimes

be incompatible with continuum assumptions. The Homogenization error aims at quantify-

ing the loss of accuracy provided by continuum models when the deformation field deviates

from uniformity. The continuum approximation (for traditional Cauchy materials) is based

on the concept of first order homogenization, which itself relies on a truncated Taylor series

that is accurate where second displacement gradients are relatively small compared to lead-

ing order terms. We have shown in [185] that the homogenization error eh over an element

can thus be written in terms of the norm of the second displacement gradient as:

eh = L̂||∇∇u|| (4.3)
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where we had defined L̂ as the side length of the unit cell (Fig. 4.1b). It should also

be noted that despite the similarity in their expressions, ed and eh are representative of two

fundamentally different sources of errors. On the one hand, the former represents an error

source that is purely numerical and arises from the approximate nature of the finite element

solution. On the other hand, the latter quantifies the error that originates from continuum

assumptions and therefore finds its source within the concept of homogenization and the

representative volume element (or unit cell).

c- Multiscale refinement procedure. For maximum accuracy, a numerical solution must

ensure that both the homogenization error eh and the discretization error ed remain small

compared to unity. Practically, we can therefore define maximum allowable errors emaxh and

emaxd such that the solution is satisfactory if eh < emaxh and ed < emaxd for all macroscopic

elements. A discussion on the meaning and acceptable values for these criteria is provided

in [185]. Combining these requirements with (4.2) and (4.3), it can be shown that there

exists a critical element size hc, below which any further refinement will only increase the

discretization error. This critical size is given by:

hc = αL̂, where α =

√
12emaxd

emaxh

. (4.4)

One can generally interpret this result as follows; when elements are significantly larger

than the unit cell and the deformation field is uniform, a homogenized material response is

appropriate to represent their mechanical response. However, as their size becomes compa-

rable or smaller than the size of a unit cell, it is no longer appropriate to use a macroscale,

homogenized response and elements should be replaced by a more accurate, microstructural

description. This is accomplished by substituting these elements by explicit unit cells that

concurrently exist within the macroscale FEM description (Fig. 4.1d).
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Figure 4.2: (a) Microscopic domain, made of a patch of unit cells, in the vicinity of a
crack tip. (b) Schematic of a unit cell on the macro-micro boundary and illustration of the
displacement fields when quasi-periodic boundary coupling conditions are applied, (c) The
periodicity of unit cell deformation is not respected when it is intersected by a crack. Strong
boundary coupling conditions are therefore applied on this type of unit cells.

4.3.3 Macro-micro coupling

Let us now discuss the conditions to be enforced at the boundary between macroscopic

and microscopic domains. In [185], we have introduced three types of displacement coupling

conditions (namely strong coupling, weak coupling and quasi-periodic boundary coupling)

that are reminiscent of the different types of boundary conditions that can be applied to

a representative volume element during computational homogenization [155]. We have also

shown that quasi-periodic boundary coupling provided the most accurate prediction of the

microscopic strain in unit cells by allowing realistic fluctuation fields on its boundaries [185].

In the context of fracture, however, such boundary coupling cannot always be applied as

discussed below. A mixed approach using both strong displacement and quasi-periodic

conditions is therefore taken.

a- Quasi-periodic boundary coupling. As depicted in Fig. 4.2, this coupling condition

enforces two constraints: First, the microscopic displacement on the boundary Γ̂ between

the unit cell and the macroscopic domain follows on average, the macroscopic displacement.



74

This requirement can be enforced with the least-square method for which the error function

e, can be expressed as the difference between macro and micro-displacements on Γ̂. The

error function is then written as:

e =

(
nnode∑
i=1

(
u(ξi)−N j(ξi)U

j
)2

)1/2

, ξ ∈ Γ̂ (4.5)

where U and u denote macroscopic and microscopic nodal displacements, respectively, ξ

denotes the local coordinates of a point in the unit cell as shown in Fig. 4.2 and nnode

represents the number of microscopic nodes on Γ̂. The conformity between macro and micro-

displacements on Γ̂ is then ensured by minimizing this error, or equivalently, by enforcing

that its derivative with respect to macroscopic nodal displacement vanish. This leads to

constraints functions cMLS of the form:

cMLS =
∂e

∂U
= 0 =⇒

nnode∑
i=1

(
Nk(ξi)U

k − u(ξi)
)

= 0 (no sum on k) (4.6)

Second, to ensures that the fluctuation fields on the microscopic domain are represented

accurately, additional constraints should be added to specify that unit cells that belong to

the boundary Γ̂ deform in a quasi-periodic fashion. This leads to the following requirements

[185]:

cBT = [uT (ξ)− uB(ξ)]−

[∑
I

N I(ξ, 1)UI
T −

∑
I

N I(ξ,−1)UI
B

]
= 0

cLR = [uR(η)− uL(η)]−

[∑
I

N I(1, η)UI
R −

∑
I

N I(−1, η)UI
L

]
= 0 (4.7)

where subscripts B, L, T and R denote bottom, left, top and right boundaries of a unit

cell, respectively. A consequence of these conditions is thus that unit cells display similar

fluctuation fields on opposite boundaries while the conformity between macroscopic and

microscopic displacement fields is ensured in an average sense (Fig. 4.2). These features

stem from our assumptions of the periodicity of the microstructure.



75

b- Strong boundary coupling. Although the quasi periodic boundary coupling conditions

can be applied on almost any unit cell at the micro-macro boundaries, an exception must

be made for those that are located on the crack path (Fig. 4.2c). Indeed, unlike the

microstructure, a crack is not periodically present in all unit cells; this implies that the

application of periodic coupling likely leads to a very inaccurate approximation of fluctuation

fields on Γ̂. In this situation, we therefore propose to apply the so-called strong coupling

conditions in the form:

cSC = u(ξ)−
∑
I∈SI

N I(ξ)UI −
∑

I∈SIenr
N I(ξ)ψ(ξ)aI = 0 (4.8)

where SI and SIenr are the set of all ordinary and enriched nodes, respectively, on the

boundary Γ̂ and aI denotes the enriched nodal degrees of freedom corresponding to the

macro nodes appearing in (4.8). It is important to note that this requirement ensures that

macro and micro-displacement conform exactly on Γ̂ as depicted in Fig. 4.2c.

4.4 Modeling of elastic cracks in heterogeneous media

The objective of this section is to establish the basis of the ACM2 for fracture mechanics

and microstructural damage. The formulation is first introduced in the context of elastic

fracture for two reasons. First, it will enable us to discuss the implementation of the method

in the presence of a crack without the complexity of damage evolution. Second, the case of

nonlinear finite deformation and the associated iterative procedure can be introduced in a

simple situation. In the following examples, the material is assumed to be elastic, periodic

and porous with a representative unit cell containing two voids of radius L̂/6 centered at

coordinates (±L̂/10,±L̂/10) with respect to the center of the domain (Fig. 4.3a). The

matrix material is modeled as a Saint Venant-Kirchhoff model that relates the microscopic

(second Piola-Kirchhoff) stress S̃ to the microscopic Green-Lagrange strain Ẽ via elastic
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constants λ̃ and µ̃ as:

S̃ = λ̃ · tr(Ẽ)1 + 2µ̃Ẽ, and Ẽ =
1

2

(
∇ũ + (∇ũ)T + (∇ũ)T · ∇ũ

)
. (4.9)

We note that this model is merely an extension of a linear, isotropic elastic material to the

range of large deformations. At the macroscale, we then assume that the material retains

the characteristics of a Saint Venant-Kirchhoff material and compute the associated elastic

constants λ̄ and µ̄ via a first order computational homogenization procedure prior to the

multiscale analysis (Fig. 4.3) [186] We note that these constants are determined once and

are used at the entire macroscopic domain.

Figure 4.3: (a) Macroscopic domain and associated unit cell for a porous and periodic
medium. The relationship between matrix elastic properties and macroscopic elastic proper-
ties is derived by computationally performing a first order homogenization [144] procedure
on the unit cell. (b) The algorithm of nested iterations for the nonlinear elasticity problem.

4.4.1 Numerical problem

Numerically, the multiscale method relies on a nonlinear algorithm with two-level

nested iterations (Fig. 4.3b). On the one hand, the “inner” level of iterations seeks to

determine the nonlinear elastic solution of the two-scale problem. On the other hand, the
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“outer” level analyses the converged elastic solution, computes the two types of error defined

in section 4.3.2 for macroscopic elements and refines the description accordingly. We discuss

here each of these numerical aspects in further details.

a- Finite elasticity problem and macro-micro constraints. Let us consider a physical

domain with an embedded crack and a numerical FEM discretization that is split into a

macroscale and a microscale domain as represented in Fig. 4.3a. Consistent with this do-

main decomposition, we introduce three types of degrees of freedom: the macroscopic nodal

displacements ū, the microscopic nodal displacements ũ and a set of Lagrange-multipliers,

denoted as λ that are used to enforce constraints at the micro-macro boundary. The energy

W c of the system can then be written:

W c(ū, ũ,λ) = W (ū, ũ) + λTc(ū, ũ) (4.10)

where W is the total energy in the absence of constraints and the constraints c are written

in terms of the various conditions developed in section 4.3.3:

c(ū, ũ) = [cLS cBT cLR cSC ]. (4.11)

It is furthermore convenient to decompose the functional W c into a macroscopic component

W̄ which is only a function of the macroscopic displacements and a microscopic component

W̃ , written in terms of microscopic displacements only. Further splitting these energies

into components (W̄ int and W̃ int) from internal forces and components (W̄ ext and W̃ ext)

associated with the work of external forces, we write:

W (ū, ũ) = W̄ int(ū) + W̃ int(ũ)− W̄ ext(ū)− W̃ ext(ũ). (4.12)

Recognizing that the solution of the multiscale elasticity problem is found by minimizing the

constrained energy W c, the governing equations are obtained by stating that the gradient

of (4.10) with respect to the independent variables, ū, ũ and λ must vanish. This condition
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yields:

W c
,ū = f̄ int − f̄ ext + λTc,ū = 0,

W c
,ũ = f̃ int − f̃ ext + λTc,ũ = 0,

W c
,λ̄ = c(ū, ũ) = 0 (4.13)

where the subscripts denotes partial derivatives and f̄ int = W̄ int
,ū , f̄ ext = W̄ ext

,ū , f̃ int = W̃ int
,ũ and

f̃ ext = W̃ ext
,ũ are the internal and external forces at the macro and microscale, respectively.

Within the total Lagrangian formulation, these forces can be expressed in terms of the

macroscopic and microscopic stresses S̄ and S̃ as

f̄ int =

∫
Ω̄0

BT
0 {S̄}dΩ̄0 and f̃ int =

∫
Ω̃0

BT
0 {S̃}dΩ̃0

f̄ ext =

∫
Γ̄0

Nt̄dΓ̄0 and f̃ ext =

∫
Γ̄0

Nt̃dΓ̃0 (4.14)

in which Ω̄0 and Ω̃0 are respectively the macroscopic and microscopic element domains in

the reference configuration, while Γ̄0 and Γ̃0 denote element edges that belong to the domain

boundary Γ. In addition, the matrix N contains the finite element shape functions and B0

is the matrix containing their derivative. Details on these standard notations can be found

in [130]. The final system of nonlinear equations (4.13) can then be solved numerically via

the Newton-Raphson method relying on the following linearized form:

r̄ + λT Ḡ + K̄δū + ḠT δλ = 0

r̃ + λT G̃ + K̃δũ + G̃T δλ = 0

c + Ḡδū + G̃δũ = 0 (4.15)

where the residual functions are defined by r̄ = f̄ int− f̄ ext and r̃ = f̃ int− f̃ ext, the interaction

matrices were introduced as Ḡ = c,ū and G̃ = c,ũ and the macroscopic and microscopic

tangent matrices take the form K̄ = r̄,ū and K̃ = r̃,ũ. For finite deformation elasticity, the

stiffness matrices can generally be decomposed into a material and a geometrical compo-

nent; for the sake of clarity, we show the detailed expressions in Appendix I. It is finally
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important to note that we implicitly used the fact that the second derivatives of constraint

functions with respect to displacement fields ū and ũ identically vanish. The incremen-

tal numerical formulation therefore consists of finding the ith increment in nodal quantities

(i)∆ = [(i+1)δū (i+1)δũ (i+1)δλ] by solving the matrix equation:
(i)K̄ 0 (i)ḠT

0 (i)K̃ (i)G̃T

(i)Ḡ (i)G̃ 0




(i+1)δū

(i+1)δũ

(i+1)δλ

 =


−(i)r̄−(i) λT (i)Ḡ

−(i)r̃−(i) λT (i)G̃

−(i)c

 (4.16)

This form clearly shows the decomposition of the problem into a macroscale component

(matrix K̄), a microscale component (matrix K̃) and interaction matrices Ḡ and G̃ enforcing

the coupling conditions between the macro and micro-domains.

b- Multiscale refinement. Based on the computed elastic solution, the discretization and

homogenization errors defined in (4.2) and (4.3) are calculated in all macroscopic elements

and compared to tolerance values. Elements that exhibit large errors are subsequently split

into four smaller elements following a technique discussed in [185]. This refinement procedure

continues until elements reach the critical size hc expressed in (5.5), after which it is replaced

by a unit cell. While the initial discretization is usually at the macroscale, it should be noted

that an exception should be made in the case of fracture. Indeed, in the presence of a crack,

the LEFM solution predicts singular strain fields varying with r−1/2 (r being the distance

from crack tip) around the crack tip. This implies that both error measures (ed and eh)

will automatically exceed their tolerance in the crack tip region as the strain gradients

diverge. Based on this argument, the initial FEM discretization automatically includes a

unit cell into the macroscopic element that contains the crack tip as shown in Fig. 4.4.

Furthermore, since the periodic assumptions corresponding to the unit cell located at the

crack tip is violated by the presence of crack (as discussed in section 4.3.3), the method aims

at inserting adjacent unit cells on which periodic coupling conditions are acceptable. This

procedure is schematically illustrated for two different cases (horizontal and inclined crack)
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in Fig. 4.4.

Figure 4.4: The periodicity of unit cells near a crack tip can be preserved by adding additional
adjacent cells. Different numbers and placements of such cells are considered for (a) straight
crack and (b) inclined cracks.

4.4.2 Efficiency analysis: ACM2 versus brute force analysis

Let us first assess the efficiency of the proposed method compared to a fully microstruc-

tured analysis. For this we consider a rectangular plate of size L×D with a horizontal edge

crack, as shown in Fig. 4.5. Over the bottom edge, motion is prescribed in both direc-

tions while over the top edge, displacements are held fixed in the horizontal direction and

prescribed with a value of δy = 0.001×D in the vertical direction. The material’s microstruc-

ture is assumed to be periodic and voided with the relative porosity of 0.0873 as shown by

the unit cell (of side length L̂) in Fig. 4.5. For simplicity, the voids are assumed to have

a circular cross-section with a diameter L̂
3

and located at the center of the unit cell. For

the computations, the lamé constants of the microscopic matrix material are taken to be

λ̃ = µ̃ = 7×106 and µ̃ = 4.017×106. The macroscopic material properties, derived from the

first order homogenization, are then found to be λ̄ = 6.0544×106 and µ̃ = 5.6528×106. Our

numerical approach was then tested in two ways. First, the numerical accuracy was investi-

gated by comparing the stress components σxx and σyy at similar points in front of crack tip

for all simulations (Fig. 4.5). Second, numerical efficiency was measured by computing the
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variation in computational cost obtained from the ACM2 and brute force (BF) simulations

(or direct numerical simulation), for L/L̂ equal to 32, 64 and 128. It should be noted here

that brute force simulations provide an expensive solution technique since a refined finite

element mesh is used in the entire domain, irrespectively of the location of the crack. They

however provide a good reference to assess the relative cost of our multiscale method for

different values of L/L̂. The gain in computational cost for each pair of simulation is then

assessed by showing the ratio nBFdof/n
ACM2

dof , in which nBFdof and nACM
2

dof are the numbers of

degrees of freedom in BF analysis and ACM2 analysis, respectively. From this figure one can

observe that the computational efficiency of the proposed method increases exponentially as

the characteristic length of the microstructure decreases, while the numerical results are in

good agreement with the BF analysis.

Figure 4.5: (a) Geometry of the problem and the microscopic unit cell. (b) Comparison of
the near crack tip stress fields obtained from ACM2 and BF analysis. (c) Computational
gain versus L̂. (d) σxx field obtained from ACM2 (left) and BF (right) over entire domain
and around crack tip.
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4.4.3 Optimum refinement criteria and computational cost: case of an edge

crack

We now propose to assess the accuracy and the computational efficiency of the ACM2

while varying the refinement criteria by considering the case of a single edge crack that co-

exists with the periodic microstructure whose associated unit cell is depicted in Fig. 4.3a.

To further illustrate the flexibility of the method, we consider two situations: (a) the case

of a horizontal, straight crack whose direction is in line with the mesh and (b) the case of

an inclined crack. For all simulations, the microscopic lamé constants are λ̃ = µ̃ = 7 × 106

Pa and the macroscopic lamé constant, derived from the first order homogenization, are

λ̄ = 6.778× 106 and µ̃ = 4.017× 106.

a- Horizontal crack. Let us consider a semi-infinite crack in an infinite domain under

mode I loading (opening) conditions. Numerically, the associated far displacement fields

u, can be represented by the Linear Elastic Fracture Mechanics (LEFM) solution around a

crack as [188]:

u1 =
KI

2µ̄

√
r

2π
cos(

θ

2
)

[
κ− 1 + 2 sin2(

θ

2
)

]
u2 =

KI

2µ̄

√
r

2π
sin(

θ

2
)

[
κ+ 1− 2 cos2(

θ

2
)

]
(4.17)

where r and θ are polar coordinates in a system centered at the crack tip, µ̄ is the macroscale

shear modulus, κ = 4 − 3µ̄ for plane strain condition and KI is the mode I stress intensity

factor. These displacements are applied as boundary conditions on a rectangular domain

of size 512L̂ × 896L̂ as depicted in Fig.(5)a. At the micro-level, the unit cell domain is

discretized with a structured mesh possessing 21× 21 quadrilateral 4-node elements, which

ensured a precise description of the local stress and strain field around the crack tip. We

also found that denser discretization did not affect the multiscale refinement, but it involved

a rise in computational time to reach a very similar results. Also, the two voids are modeled

with the X-FEM formulation following the approach described in [142].
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Figure 4.6: (a) Rectangular domain with a horizontal edge crack under a mode I displacement
“K-field” .(b) Variation of the approximation error defined in (4.18) and computational cost
for different values of 1/emaxd . Corresponding refinement levels and associated von-Mises
(normalized by shear modulus µ) stresses are also depicted.

Since fracture is strongly affected by the magnitude of the strains in the immediate vicinity

of the tip, it is critical to accurately capture displacement fields in this region. We propose

here to explore the role of the error criterion on model accuracy by numerically subjecting

a preexisting crack to a constant driving force KI (KI = 5× 105) and assessing the change

in local displacement field with emaxd . We then argue that the value of (emaxd ) that leads to

a negligible change in local displacement field is satisfactory. To identify this value, we thus

introduce a measure eα of the change in local displacement fields as follows:

eα =

∫
ΩT

||uα − uα−1||dΩ (4.18)

where ΩT denotes the unit cell that contains the crack tip. We then plot this measure in

terms of the discretization error in Fig. 4.6b. The computational cost of the method is

further estimated by the number of degrees of freedom (size of the solution vector) necessary

to obtain a fully converged and refined solution. Fig. 4.6b thus shows (a) the drop in error
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eα and (b) the increase in computational cost resulting from decreasing the tolerance emaxd .

The figure also displays the microscopic regions for each values of emaxd and the associated

von-Mises stress fields. It can clearly be seen that decreasing the error tolerance provides a

more accurate solution at the expense of computation cost. Interestingly, the accuracy seems

to follow a bi-linear relationship. For a value of emaxd greater than 1%, we observe a large

gain in accuracy for relatively small changes in the tolerance. However, when emaxd becomes

smaller than 1%, the gain in accuracy is not as sharp. This feature may be explained by

the fact that at the critical value emaxd ≈ 1%, the crack tip region (where the strain are the

most inhomogeneous) becomes entirely surrounded by unit cells. Further refinement results

in adding unit cells further from the crack, which only contributes mildly to the overall

accuracy. On the other hand, an important increase in computational cost is observed when

emaxd becomes larger than 1%. It, therefore, seems like an optimum value of the discretization

error, which provide high accuracy and low computation cost, is emaxd ≈ 1%.

Figure 4.7: (a) Comparison of the computational cost between the ACM2 and the brute
force approach, for different ratios l/L̂. The computational gains are significant when the
characteristic length-scale L̂ of the material becomes small compared to the application length-
scale l. (b) Magnification of the microscopic region and associated fluctuation fields on the
microscopic boundary.

A study of computational cost (Fig. 6a) is then performed by calculating the total number
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of degrees of freedom necessary to obtain an accurate solution using two strategies: (a) the

ACM2 and (b) an equivalent direct numerical simulation (DNS) strategy, where a refined

(microscopic) description is used in the entire macroscopic domain. Comparing the cost as-

sociated with the two methods, Fig. 6a clearly shows that the gain in computation cost with

ACM2 increases drastically as the scale separation l/L̂, between the macroscopic problem

and the microstructure becomes more pronounced. These large computational gains are pos-

sible thanks to the reduced number of embedded unit cells necessary to obtain an accurate

solution, a feature that is partly due to the applications of quasi-periodic boundary coupling.

Indeed, the existence of displacement fluctuations on the macro-micro boundary (Fig. 6b)

largely contributes to the accuracy of the microscale solution, even for small microscopic

domains.

b- Inclined crack. To explore the behavior of the method when a crack is not in line with

the mesh, let us now consider an edge crack with an inclination θ (θ = 51◦ degrees here)

in a rectangular domain of size 512L̂ × 896L̂ as shown in Fig.(6)a. Mixed mode loading

conditions are then provided by constraining the motion of the bottom boundary in both

vertical and horizontal directions and applying a positive vertical displacement δy = 0.64L̂

to the top boundary. Fig. 4.6b depicts the contours of von-Mises stresses in both domains

in the vicinity of crack tip region and depicts the change in accuracy with changes in error

tolerance (emaxd )i. Once again, we clearly see an optimal value of the error, which is estimated

to be 0.004. This value is fairly consistent with that derived in the previous example, which

confirms the flexibility of the method, regardless of crack orientation.

4.4.4 Evolution of the refined region during incremental loading: case of

double edge cracks

This section discusses the adaptivity of the refined microscopic region when a domain is

subjected to incremental loading. In this part we assume that the material remains in elastic
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Figure 4.8: (a) A rectangular domain with an inclined edge crack under mixed mode loading
conditions. (b) Variation of the approximation error defined in (4.18) and computational
cost for different values of 1/emaxd . Corresponding refinement levels and associated von-Mises
(normalized by shear modulus µ) stresses are also depicted.

regime after deformation. While not necessary in the case of elasticity, incremental loading

becomes a requirement when the material response becomes history-dependent such as dur-

ing plasticity and damage evolution. The problem of interest here consists of a rectangular

domain of size 128L̂× 224L̂ containing two parallel horizontal edge cracks that are offset by

a small distance 2h, as depicted in Fig. 4.9a. The plate is then subjected to an incremental

tensile vertical displacement and a fixed horizontal displacement on top and bottom bound-

aries. Increasing the macroscopic stretch results in the rise of the strain gradients around

the two crack tips; this leads to a local mesh refinement over this region and the evolution

of the resulting microscopic domain as loading increases (Fig. 4.9b). It can be observed that

for large enough deformations, the microscopic region around the two cracks coalesce into

single region. To illustrate the refinement procedure, we show in Fig. 4.9c the number of

new unit cells added to the microscopic region for each of the four loading increments. One
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can observe that most of the unit cells are added to the system during second and third

loading increment. This can be explained by the fact that increasing δy from 0.16L̂ to 0.32L̂

induces highly heterogeneous deformations in the continuum region between the two crack

tips which triggers a localized macro-micro refinement in this region (Fig. 4.9d). After this

point however, increasing the loading magnitude only results in little refinement since the

critical region (between crack tips) is already in the microscopic domain.

Let us now investigate the convergence of multiscale refinement procedure described in sec-

tion 4.4.1. For each loading increment, the ACM2 aims at solving the elasticity problem and

at refining continuum elements that display an excessive error. For each of the four loading

increments, the refinement is performed until the error in all continuum elements is below

the given tolerance. In this context, Fig. 4.9d and Fig. 4.9e show the number of continuum

elements that are replaced with new unit cells at each refinement iteration and the associ-

ated arrangement of unit cells at each iteration during the second increment, respectively.

We observe that the number of newly embedded unit cells decreases with iteration number,

showing good convergence. It is also noted that the large number of iterations (6 and 5,

respectively) needed for convergence at the second and third increments are due to the fact

that large incremental displacements are applied. In practice, an optimal increment size must

therefore be determined to limit the number of iterations and thus minimize computational

cost.

4.5 Modeling localized damage and crack propagation in heterogeneous

media

Modeling the physics of ductile crack deformation and propagation has always been a

challenging computational problem due to its multiscale nature. Two routes can usually be

taken. On the one hand, nonlinear fracture mechanics is able to relate crack propagation

to concepts such as fracture energy, the resistance curve and fracture toughness, but it has

been difficult to understand how microstructure affect these properties. On the other hand,
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Figure 4.9: (a) Rectangular plate with double edge cracks. (b) Initial and final discretization
of the domain. (c) Number of new unit cells added for each macroscopic increment. (d)
von-Misses stress field (normalized by shear modulus µ) over crack tip region at the end of
each increment. (e) Number of unit cells added to the microscopic domain at each refinement
iteration for different loading increments. The evolution of the microscopic domain during
the second loading increment is also displayed.

the field of damage mechanics, by taking a microstructural approach, has been successful at

relating microstructural features to damage nucleation and evolution. However, the relation-

ship between these models and fracture properties is still unclear. In this section, we address

this issue by exploring the behavior of the presented multiscale model when the material is
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capable of undergoing damage nucleation and evolution. For this, we consider a periodic and

porous microstructure whose geometry was described earlier (Fig. 4.3.a) but for which the

matrix material exhibits an elastic-brittle behavior, that can be computationally captured

with a lattice model [163, 171]. It is important here to note that such a lattice model is

chosen for its simplicity of implementation and relevance to the problem of microstructural

fracture. It is not, however, a requirement of the proposed multiscale model, in which any

microscale model (atomistic, molecular dynamics or refined continuum models) could be

utilized. Fig. 4.10 describes the lattice damage model considered in our study, including

the mechanical response of individual one-dimensional elements, their organization and the

influence of microscopic damage on the macro-scale. As depicted in Fig. 4.10a, the physical

state of a lattice member is represented by two quantities: (a) its level of damage D and (b)

its level of tensile stress σ. The damage D varies between 0 (when no damage is present)

to the unity (when the material is totally damaged). For a brittle material, we introduce a

simple law governing its evolution:

D = 0 if ε < εc and D = 1 if ε > εc (4.19)

where εc is the critical tensile strain in the element. We note that once D has taken the

value of one, it may not return to 0, regardless of the strain value. The uniaxial stress σ is

then calculated with Hooke’s law in the form:

σ = E(1−D)ε (4.20)

where E is the Young’s modulus of the element. This relation clearly shows that the load

carrying capacity of an element is totally lost once it is damaged (D=1). In practice, this

implies that the element can be eliminated from the problem. Using first order numerical

homogenization techniques [186], we also show the pre- and post-peak tensile behavior of the

unit cell; one can distinguish three characteristic in the macroscopic response: (a) a linear

elastic region before damage occurs, (b) a maximum stress occurring at a critical strain
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value approximately equal to 10−4 and (c) a strain-softening region that is associated with

a redistribution of damage at the microscale.

Figure 4.10: (a) Unit cell of voided microstructure with a brittle matrix represented by a
lattice model, (b) the stress strain relation and damage measure D for a lattice element, (c)
The macroscopic behavior of the material under tension displaying a strain-softening region.

It is well known in the damage mechanics literature that the strain softening response is

associated to damage localization at the macroscale [166]. In other words, the post peak

response does not represent the behavior of the material as a whole, but only in a localized

region characterized by high strain gradients. This observation implies that homogenization

is only valid before the material reaches the maximum stress or displays large strain gradients.

The proposed multiscale method provides a perfect alternative for this issue since it bypasses

the need for homogenization in these situations. The extension of our method to history-

dependent damage model however requires an incremental procedure that is described next.
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4.5.1 Incremental and adaptive formulation for history dependent material

behaviors

The numerical approach relies on a nested iterative strategy as discussed in section

4.4.1. There are however two main differences in the implementation due to the inelastic

response of the material. The first difference appears in the inner iterative loop to compute

the displacement fields. The second difference is in the multiscale refinement techniques.the

generality of the results proved

a- Predictor-corrector incremental procedure. Damage nucleation and growth are

phenomena can be characterized by their nonlinear behavior and dependency on the history

of prior events. For this reason, an incremental approach is critical to accurately follow the

loading path and the evolution of damage at every moment during the deformation history.

Several numerical strategies can be taken towards this goal. On the one hand, explicit incre-

mental methods have been attractive due to their simple implementation; they are however

known to require excessively small increments which drastically increase computational cost

[127]. On the other hand, fully implicit methods (such as the Newton-Raphson and the

arc-length methods [130]) can address this problem but often exhibit stability issues, espe-

cially in the context of the present strain softening material response [127]. We take here a

different strategy by presenting a semi-implicit predictor-corrector approach, whose salient

features can be explained as follows. Consider an initial material state, denoted by index i for

which the displacement of nodes and damage in lattice elements are respectively represented

by vectors ui and Di. Starting from this state, an incremental boundary condition ∆ū is

applied and a solution is sought in the form ui+1 and Di+1. To determine this solution, an

iterative scheme is performed in two steps. (a) predictor step: an elastic prediction of the

displacement fields ūi+1
p is determined by assuming that all existing lattice elements behave

in an elastic manner (D=0). (b) corrector step: The uniaxial strain ε in lattice elements

is evaluated and the previous solution is corrected by assigning a damage D = 1 to elements
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Figure 4.11: Algorithm of the incremental formulation for multiscale refiement and damage
evolution in brittle materials.

exceeding the critical strain εc. A new elastic solution (predictor) is then recomputed from

the newly determined damaged state and subsequently modified via the corrector step. This

iterative process continues until the elastic predictor solution converges; i.e., all undamaged

elements display a sub-critical strain level.

b- Multiscale refinement in the deformed configuration We now discuss some impor-

tant points pertaining to the incremental refinement procedure. For this, let us consider that

after N load increments, a macroscopic element e (in a deformed state) is characterized with

a large computational error (both discretization and homogenization) and must undergo a

transition to the unit cell description. A challenge in this situation is that the embedded

unit cells must be inserted in a deformed state. This issue may be addressed in the follow-

ing manner [152]. First, the nodal displacements of the macro-element are extracted and

imposed on the unit cell, independent of the global simulation. A macroscopically conform-

ing unit cell deformation can then be obtained through quasi-periodic boundary conditions

developed in section 4.3.3. This deformed unit cell may then substitute the continuum ele-



93

ment, as part of the refinement procedure. It is important to note that upon substitution

of unit cells in the macroscopic domain, the force equilibrium at the boundary between the

new and the pre-existing unit cells is not satisfied. This issue can be addressed by solving

an intermediate elastic problem to cause forces to relax and meet global equilibrium. The

details of this procedure were discussed in [152]. In addition, when the macroscopic element

undergoing the transition to the microscale intersects with the crack patch, it is particularly

useful to establish the relation between enriched degrees of freedom, a (at the macroscale)

and the crack opening δc (in the unit cell) through the formula:

δc =
9∑
i=1

Niai, (4.21)

where δc is the crack opening, Ni are the standard finite element shape functions and ai are

the values of enriched degrees of freedom. This equation follows from the X-FEM approxi-

mation of displacement fields in a macroscopic element introduced in (4.8). For more details,

readers are reffed to [152].

4.5.2 Computational investigation of the role of microstructure in material

toughness

The performance and predictions of the multiscale methodology are now investigated

for crack propagation. Similar to the model introduced in section 4.4.3a, we consider here

a single horizontal edge crack in an infinite domain, subjected to mode I (crack opening)

conditions. Once again, the infinite domain is represented by a rectangular domain with

dimension that are significantly larger than the size of a unit cell and subjected to incre-

mental displacement boundary conditions that mimic the displacement fields around a crack

predicted by LEFM and presented in (4.17) (Fig. 4.12a). These boundary conditions are

applied incrementally by increasing the value of the stress intensity factor by amounts ∆KI

until it reaches its final value Kf
I . We also note that, although the coordinate of the crack

tip changes during propagation, it is negligible compared to the size of the macroscopic do-
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main. Consequently, we assume changes in the radial distance r appearing in (4.17) can be

neglected throughout all simulations.

Figure 4.12: (a) Rectangular domain with an edge crack subjected to displacement K-fields
(mode I). (b) Longitudinal strain, ε̃, for lattice elements at the microscale and strain in yy
direction at the macroscale for the different stages of crack growth shown in the R-curve. (c)

Resistance curves for different increment size ∆Ko
I = ∆KI/σc

√
L̂.

Fig. 4.12b shows the evolution of the local damage and the overall crack propagation for four

distinct values of the stress intensity factor shown by circles in Fig. 4.12c. It is clear here that

as the crack advances, the large strain gradients associated with the crack tip move to the

right, inducing a refinement of the material description (to the microscopic level) ahead of

the crack. It is therefore possible, with the proposed method, to investigate the mechanisms

of crack growth over relatively long distances without knowing the crack path a priori. For

such simulations, however, one sees that the size of the microscopic domain increases with

crack growth, rendering the method computationally costly. This aspect can be addressed

in future studies by noticing that strain gradients become small in the wake of the crack. In

other words, it is potentially possible to incorporate a “coarsening” algorithm that can revert

the microscopic domains to macrocopic elements in the wake of a crack. Such simulations

would thus only contain a microscopic region at the crack tip, regardless of the extent of crack
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growth. The effect of increment size on model predictions was investigated by plotting the

resistance curve (or R-curve), representing the crack extension δ with respect to the applied

KI field (Fig. 4.12c), for different values of ∆KI . As expected, we notice that refining the

increment size improves the model’s accuracy until an optimal value ∆Ko
I = ∆KI/σc

√
L̂ is

reached. This value is used for the remaining simulations presented in this paper.

Interestingly, the simulations predict a rising R-curve, in spite of the fact that the matrix

material is brittle. This implies that the presence of voids in a brittle matrix has the capacity

to change the material behavior from brittle to fracture resistant. To better understand the

mechanisms at play, we show in Fig. 4.12c, the relationship between the R-curve and the state

of microstructural damage ahead of the tip. We observe three interesting features: (a) the

crack propagates in a step-by-step fashion by linking individual voids, (b) crack propagation

between two adjacent voids occurs in an unstable brittle manner, i.e., it propagates without

increasing its driving force and (c) the associated zig-zag pattern of the crack results in an

increasing resistance of the material to crack propagation. These phenomena are responsible

for both the overall rise of the R-curve as well as its discontinuous, stair-case aspect. To

further investigate the effects of the microtructure on fracture toughness, we then propose

to assess the R-curve for materials distinguished by three types of unit cells (Fig. 4.13a):

(a) a matrix with large voids (volume fraction = 17.5%), (b) a matrix with small voids

(volume fraction = 4.4%) and (c) a matrix with no voids. Fig. 4.13 shows the damage and

stresses in the evolving microscopic domain at various stages of crack growth. As expected,

the material without voids exhibits brittle, unstable fracture, typically characterized by a

straight and smooth crack pattern and a flat R-curve. When small voids are present, we

observe that the crack path is originally deflected by voids, a phenomenon that contributes

to increasing the slope of the R-curve. Eventually, the slope decreases and fracture switches

to brittle behavior. This transition can be observed on the microstructural level as the crack

path becomes smoother and only connects to voids that are present in its trajectory. Finally,
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the material with larger voids displays a similar trend but is able to deflect the crack for a

longer period. This phenomenon arises from the fact that microstructural voids display larger

mechanical interactions amongst themselves and with the crack at larger volume fraction.

Ultimately this contributes to delaying the onset of unstable crack propagation and thus

increasing toughness.

Figure 4.13: (a) Crack growth pattern and longitudinal strain at the microscale for three
different voided microstructures and (b) associated resistance curves.

4.5.3 Crack interactions and microstructural effects

This final example aims at illustrating the potential of the ACM2 in predicting crack

growth in mixed mode conditions and capturing the interaction mechanisms between mul-

tiple growing cracks. For this, we consider the problem of two horizontal edge cracks in a
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rectangular domain, whose geometry is depicted in Fig. 4.9. Boundary conditions then con-

sist of applying a vertical displacement on both top and bottom boundaries (Fig. 4.9) in an

incremental manner with increment size |∆y|. We investigate here a material whose matrix

behavior follows the brittle constitutive relation introduced in (4.19) and more specifically

examine two types of microstructures: (a) a matrix with no voids and (b) a porous material

with larger voids (as shown in Fig. 4.10).

Figure 4.14: Crack growth pattern, tensile (vertical) component of macroscopic strain fields
and lattice strain in the microscopic domain, for (a) a material with no voids and (b) a
voided material. (c) Initial and final discretizations. (d) and (e): Imposed displacement, δ,
versus crack growth, a, and the error measure defined in (4.22) for different increment size.
Plots in (d) are for a matrix with no voids and plots in (e) are for a voided matrix.
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Before we analyze the model’s predictions, it is first important to present a study of

the effect of incremental size on the accuracy of the solution provided by the quasi-explicit

framework presented in section 4.5.1. To achieve this, we first characterized the macroscopic

behavior of the system by evaluating the variation of crack growth a with an increase in

external loading magnitude δ, producing a curve shown in Fig. 4.14. We then measured

the convergence of the solution by evaluating how this curve changed as the size of the

incremental loading |∆y| was refined. More specifically, we introduced an error measure ei,

in the form:

ei =

∫ af

0

(δi(a)− δi+1(a))da (4.22)

where the index i = 1 : 4 denotes the increment size ranging from 100, 200, 400, 500 and 1000,

respectively, and af is the final crack length. The curve of variations in e with increment

size (Fig. 4.14d and e), exhibits fast convergence and displays a relatively small error if 400

increments is chosen, regardless of the microstructure considered. This value was therefore

used for our study.

Let us now focus on the model’s predictions. Fig. 4.14 illustrates the crack growth pattern

and the contours of microscopic longitudinal strain (in lattice elements) and macroscopic

tensile strain εyy (in 2D continuum elements) around the crack tips. We observe that for

small applied loads, the microscopic regions remain centered around the tip of each crack but

do not connect into a single region. However, as the loading increases, crack growth induces

an enlargement of the refined regions, which eventually connect as cracks become closer

to one-another. It is interesting to note that the crack growth prediction in the uniformly

brittle matrix is in excellent agreement with other (macroscopic) numerical studies on brittle

materials [161]. For the alternate microstructure, however, the crack progression is affected

by a variety of features including macroscopic loading conditions, the presence of adjacent

cracks and the existence of micro-voids. As observed earlier, the presence of voids tend to

delay the propagation of the crack by decreasing the stress intensity factor and by deflecting
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the trajectory of the crack.

4.6 Summary and concluding remarks

To recapitulate, we introduced an adaptive concurrent multiscale method (ACM2) to

model fracture and crack propagation in heterogeneous media. This class of phenomena

have been challenging to model since their behavior depends on both macroscopic loading

and microscopic damage mechanisms occurring in the crack process zone. The traditional

large scale separation between these levels necessitates the introduction of new classes of

multiscale approach that can maximize modeling accuracy (at both macro and micro-scales)

while minimizing the computational demand. The proposed ACM2 addresses this need by

relying on a few important concepts:

• Multiscale adaptive refinement. To minimize the approximation error arising

from discretization and homogenization procedures, an adaptive technique is pre-

sented which does not only refine macroscopic elements, but also substitutes them

by a more detailed microstructural description (the unit cell) when they reach a crit-

ical size. This feature endows the ACM2 with the capability to automatically detect

and refine the material description based on the heterogeneity of the deformation.

• Domain coupling conditions that enable the incorporation of unit cells

into macroscopic FEM simulations. A set of coupling conditions are introduced

at the boundary between unit cells and macroscopic elements, enabling the existence

of microscopic fluctuations at the edge of the microscopic domain. These conditions

are critical to circumvent the appearance of an artificially stiff boundary at the limit

between micro- and macro-scale.

• Coupling with the extended finite element method (X-FEM) to model

fracture. We used the X-FEM enrichment functions to naturally enable the tran-
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sition between the discontinuous displacement fields along a macroscopic crack and

their more complex form at the microscale.

The combination of these features enables a dual description of fracture in the form of a

detailed microstructural modeling of a material in the complex and highly heterogeneous

process zone ahead of the crack and a coarse grained continuum description in regions that

undergo homogeneous deformation. The paper also introduced a nonlinear finite deformation

formulation of the mechanical problem in order to investigate, with high accuracy, the large

deformations arising in the neighborhood of a loaded cracks. The proposed strategy is

based on a nested incremental procedure that alternates between finding a solution for the

mechanical problem and minimizing the approximation error via multiscale refinement. We

showed, through examples, that adaptivity is critical in the context of fracture as it enables

the microscopic domain to naturally evolve with material’s deformation and damage. We

finally presented a number of examples that illustrated the accuracy, the computational cost

and the ability of ACM2 to capture crack growth in different microstructures. Although

the paper did not aim at predicting the behavior of real materials, the generality of the

results proved that the method can be later used to capture realistic material behavior

such as nanoscale effects [188], plastic deformation [145] and the effects of interstitial fluid

flow in cracks [183, 182], for instance. Furthermore, while not addressed in our study, the

problem of crack nucleation in a macroscopic specimen could be implemented using global

microstructural statistical information and the associated stress/strain at nucleation. Such

methods have been investigated in [151], for instance.

Besides the numerical aspect, it is worth mentioning that the development of methods such

as the ACM2 is an important step toward reconciling the fields of damage and fracture

mechanics, which have been traditionally separated by their disparate length-scales. More

particularly, since the explicit microstructure is considered ahead of a crack, the existence

of a complex process zone and the associated size effects can be accurately captured. Such
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methods may therefore provide a better understanding of fracture size effects in ductile and

quasi-brittle materials in a near future. To illustrate this point, we presented examples of

a porous material whose matrix was represented with a lattice model characterized by a

simplistic damage model. We have shown that the ACM2 was capable of predicting the

fracture resistance curve associated with these materials and thus predict fracture toughness

based on microstructural arguments. It should be noted, however, that the assumption of

structural periodicity may be unrealistic at this point and that the extension to the concept of

”Representative Volume Element” for fully random microstructures is still an open question.

Nevertheless, with further developments, this class of methods can potentially be used to

investigate and optimize the effect of microstructure on fracture toughness, which, in the

longer term should make “in-silico” material design a reality.



Chapter 5

ACM2 for size effect problem in microstructured material

5.1 Introduction

Understanding the mechanical behavior of materials during fracture is vital for ex-

plaining the observed size effect problem and also necessary to formulate an appropriate

numerical framework. In this part we aim to mainly focus on the behavior of structural

materials such as concrete. The fracture process and failure of concrete strongly depends

on its internal structure. In fact, at the nanoscale failure of the mortar matrix is associated

with voids and fine particles and at the microscopic length scale, it is generally accepted that

fracture of concrete is due to the micro-cracking process. At this length scale, prior to failure

micro cracks form in the region ahead of the crack tip, that is known as fracture process

zone (FPZ), and from this point, the material dissipates its internal strain energy that is

induced by external loading via two mechanisms. One possible scenario is to dissipate energy

through new micro cracking procedure, and the other possible mechanism is deformation or

propagation of existing micro cracks. As a result micro cracks link together to form macro

cracks in the FPZ during the failure of the material. By increasing the external loading this

procedure continues until one or more macro cracks become unstable and tend to propagate

without increasing the external loading.

Transition between micro cracking and macro cracking involves different damage pro-

cesses, and controls the fracture behavior of concrete. It is important to understand such
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Figure 5.1: (a) Micro cracks spread and form macro cracks in composite material, (b) de-
flection and penetration of cracks when impinging to an aggregate.

mechanisms in order to design an appropriate numerical model. In microscopic scale (which

refers to the length scale that material heterogeneities reside) concrete should be seen as a

three phase material which consists of mortar, aggregate and the bond between mortar and

aggregate. Prior to the failure of the material, at this length scale the micro cracking could

happen in each phase individually, as shown in Fig. 5.1a. In the internal structure of normal

strength concrete, which is is known as quasi brittle material and mostly used in structural

elements, the mortar aggregate bond is known to be the ”weakest link”. This attribute

strongly affects the size of FPZ and crack propagating path as discussed in the following.

Due to relatively weak bond between mortar and aggregate in this type of concrete micro

cracking occur over a relatively large region ahead of the crack tip. Based on the same reason

when a propagating crack impinges an aggregate instead of cracking the aggregate the crack

links to the micro cracks that already exist in the interfacial zone. That is, the crack finds its

propagating path by deflecting around the aggregate and therefore, takes a zig-zag pattern

to propagate. These two characteristics of normal strength concrete explain its quasi brittle

behavior. On the other hand, in high strength concrete the mortar-aggregate interface is

much stronger than the aggregate and also the mortar material. Therefore, a propagating

crack will intersect everything on its path and tend to propagate on a straight path which
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results in brittle fracture.

The objective of this discussion is to highlight the effect of the microstructural prop-

erties of materials, especially concrete-like material, on their overall fracture behavior. Typ-

ically, concrete-like material are characterized by a nonlinear response with a softening post

peak behavior. To investigate this behavior we aim to model the failure of a concrete-like

heterogeneous material that consists of mortar, aggregate and interface phases. The ma-

terial is also assumed to be periodic at the micosopic level and its basic building blocks is

represented by a unit cell of side length L̂. The geometry and configuration of aggregates

are shown in Fig. 5.2a. Both mortar and aggregate material are modeled by a lattice that

consists of beam elements with the pattern that is shown in Fig. 5.2a. The fracture of

each phase could then be modeled as follows; For each phase the physical state of individual

lattice elements is described by the quantity of damage D, as:

D = 0 if σeff < σc and D = 1 if σeff > σc (5.1)

where σeff denotes the effective tensile stress and σc is maximum allowable tensile stress.

For beam element σeff is written as:

σeff =
N

A
+ α
|M |
W

, 0 < α < 1. (5.2)

whereN , M andW are respectively, tensile force, bending moment and cross section modulus

of individual beam elements (Fig. 5.2b). Also, α is a coefficient that limits the effect of

bending on the damage index. Fig. 5.2b shows the load carrying capacity and damage

index of individual elements. In addition, the mortar-aggregate interface, is modeled via

zero thickness interface elements, the geometry of which is shown in Fig.5.2c. The interface

elements are characterized by linear stress-displacement relation in normal and tangential

directions as shown in Fig. 5.2c. The physical state of each interface element can also be
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Figure 5.2: (a) Unit cell of three phase material consists of brittle matrices and interface.
The mortar and aggregate material are represented by lattice model that is characterized by
brittle fracture shown in (b). The mortar-aggregate interface is represented by zero thickness
elements with stress displacement relation shown in (c). (d) The macroscopic behavior of
the material under tension displaying a strain-softening region.

described as:

D = 0 if
(
∆un < ∆unc , ∆ut < ∆utc

)
and D = 1 if

(
∆un > ∆unc or ∆ut > ∆utc

)
(5.3)

Where ∆un and ∆ut define opening of interface element in normal and tangential di-

rections. Also ∆un and ∆ut are critical opening of interface when the bonding between

mortar and aggregates fails. One should note that once D = 1 for any individual element,

the load carrying capacity of such element vanishes and it may not be returned to 0. This

is equivalent to eliminating that element from the lattice structure. It may not return to
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D = 0 and load carrying capacity of element vanishes. This is equivalent to eliminating

these elements from lattice structure that represents damage nucleation and crack propaga-

tion. The macroscopic stress strain response of this unit cell is also shown in Fig. 5.2.d.

Based on this figure, nucleation of damage starts when E11/εc ≈ 0.45. Prior to this point

the macroscopic response is linear and elastic. After this point the micro cracking procedure

continues. As a result the material responds nonlinearly until it reaches to its ultimate load

carrying capacity. At this time the macro cracks have already formed inside the unit cell

and propagate until the material fail to response to external loading. In this example it is

also shown how the weak link interface can deflect the crack propagation path.

Understanding the failure mechanism at this length scale in quasi-brittle material, such

as concrete, also helps to explain the observed size effect phenomenon. As discussed in (1.4)

the size effect problem is related to the existing characteristic length that is associated to the

size of FPZ. In fact, the size of heterogeneities such as aggregate size in concrete, controls

the FPZ size. For instance, it is well known that the width of FPZ in concrete is equal

to 3dA, where dA is the average aggregate size [110]. This has been verified by abundant

experimental test results in the literature. One may note that when the specimen’s size is

large compared to the internal heterogeneities, the FPZ occupies a relatively small region in

front of the crack tip. This is in good agreement with the LEFM assumption that the FPZ is

infinitesimally small and attached to the crack tip. Therefore, when the structure size is very

large compared to the aggregates size the nominal strength follows the rule that is proposed

by LEFM and the material’s response is brittle. On the other hand, when the structure

size is comparable to the aggregates size, the FPZ occupies a relatively large region which

violates the LEFM assumption. In fact, for such structure the micro cracks extend into a

relatively large domain which is in good agreement with the assumptions of plasticity theory

and justifies the ductile behavior of material. Finally, when the structure size is nor large

neither small, compared to the size of the aggregates, the material shows a quasi-brittle be-
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havior and its nominal strength follows the function that is previously shown in Chapter one.

The main purpose of this chapter is to study the size effect problem in concrete-like

heterogeneous material by means of ACM2. The suitability and accuracy of the method for

investigating such problems has been illustrated in previous chapters. In the next section

we recapitulate the basic formulation of the method. Next we demonstrate the size effect

problem via a numerical example. We also discuss about the potential of the method for

future research in last section.

5.2 Recapitulation of ACM2 and stress driven refinement

The main idea underlying the ACM2 is to split the material domain into two regions

with different resolution of description, namely, macroscopic(continuum) and microscopic

(lattice, continuum or molecular dynamic or etc) domains. Formulated in a finite element

framework, this method combines adaptive refinement and embedded unit cell concepts to

satisfy the efficiency and the accuracy of numerical model. In this section we aim to recapit-

ulate these concepts briefly and introduce a new idea for transition from macroscopic scale

to microscopic scale. For this let us consider a three point bending specimen with a crack

in the middle of the specimen, Fig. 5.3a. The material is assumed to be heterogeneous and

periodic at the microscopic scale. For simplicity, it is assumed that a symmetric unit cell

with a circular inclusion, with 15% volume fraction, at its center with side length of L̂ = 1
16

represent the building blocks of material in the microscopic scale, Fig. 5.3b. The ACM2

suggests that the continuum assumption is valid and accurate in regions far from ahead of

the crack tip and for such material the constitutive relation can be found by performing

first order homogenization technique. The method then proposes to embed the unit cells in

the fracture process zone to accurately capture the heterogeneous deformation field in the

microscopic scale.
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In this method the transition from continuum approximation to the exact microscopic

description of material relies on evaluating certain types of error in element level and sub-

sequently refining the finite element mesh if certain condition is met [185, 152, 119]. If

the refinement is not possible, that is the finite element side length has reached a certain

length, the method proposes to replace the finite element with a unit cell. The basic idea

of this procedure is built upon the fact that two types of error exist in any finite element

model that is based on continuum description of material. The first type of error, known

as discretization error ed, defines the difference between exact and approximate numerical

solution. In [185], it is shown that ed directly depends on the size of an element and second

gradient of deformation field over its domain, ‖∇∇u‖, i.e. ed ∝ h‖∇∇u‖. Based on this

definition when the deformation field is highly heterogeneous, the finite element size should

be small enough to preserve numerical accuracy. Accordingly, when a sharp discontinuity

such as a crack tip exists, since the second gradient of the displacement field is singular, the

finite element size should asymptotically reach to zero at the crack tip. A disparity then

arises since, the continuum assumption, for a microstructurally heterogeneous material, is

not valid at every length scales based on following explanations. A continuum assumption

for material is based on a constitutive relation that is derived from homogenization theory.

A homogenized model relies on the truncated Taylor series of strain energy approximation.

Therefore, when the deformation gradient field deviates from unity, that is the higher order

strain terms become comparable to the first order strain term, the accuracy of the contin-

uum approximation becomes questionable. The homogenization error eh, quantifies the loss

of accuracy of continuum theory for such material. In [185] it is shown that eh depends on

characteristic length of material micro structure, the side length of unit cell element L̂ which

is also related to the size of material heterogeneities, and second gradient of displacement,

∇∇u, i.e. eh ∝ L̂‖∇∇u‖. By defining maximum allowable discretization and homogeniza-

tion errors emaxd and emaxh , one can calculate the critical continuum element size as below
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[185]:

hc = αL̂, where α =

√
12emaxd

emaxh

. (5.4)

Figure 5.3: (a) The symmetric unit cell and applied loading (b) configuration of localized
damage at when unit cell has completely lost the load carrying capacity for different stress
states, (c) the macroscopic volumetric and von-misses stress versus macroscopic strain.

One can then interpret the above discussion as follows; once an element size becomes

equal or less than critical element size, as a result of local mesh refinement, the continuum

assumption is not valid and the element should be replaced by a unit cell. Consequently,

the material domain consists of unit cells that are embedded in macroscopic finite elements

region. The issue here is that the unit cells and macro scale elements represent the material at

two different length scales and appropriate coupling conditions should be formulated. These

conditions should satisfy the kinematic and force equilibrium between two domains. Readers

are referred to [185, 119] for details of possible coupling conditions and pros and cons of each

of them. In previous chapters, a detailed discussion about the numerical implementation

including elastic crack model, iterative solution associated with finite deformation model and

most importantly modeling localized damage and crack propagation for history dependent
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material is given. In this part we would like to introduce a new refinement criteria which

plays an important role in the accuracy of local mesh refinement and transition between

continuum and exact description of the material. As discussed above, in ACM2 the local

mesh refinement is based on evaluating the discretization error, ‖∇∇u‖, over a macroscopic

element domain and comparing it to a critical value to ensure numerical accuracy. However,

this type of error only quantifies the accuracy of the numerical methodology and does not

guarantee the soundness and validity of continuum assumption. In addition, defining the

maximum allowable discretization error is not a trivial work as shown in previous chapter.

Let us consider a unit cell of a heterogeneous material with side length of L̂. Based on

homogenization theory this unit cell can be replaced by a continuum element of the same

size if the deformation field over the continuum domain is uniform. However, it should be

noted that there are some situations that the material undergoes uniform displacement but

the continuum assumption could not be valid due to the nucleation of localized damage

in the microstructure of the material. Some examples of this situation are shown in Fig.

5.3 where the unit cell is superimposed on a continuum element and a deformation field

such that ‖∇∇u‖ = 0, is applied on it. The deformation is applied in an incremental

manner through 1000 increments. Fig. 5.3c shows the variation of macroscopic volumetric

and deviatoric components of 2nd Piola-Kirchhoff stress tensor versus the xx component of

Green-Lagrange strain tensor for each case. For each case the material response has three

important characteristic: 1) initially the material is linear, 2) after first damage nucleation at

the microscopic level the material responses non-linearly until it reaches to its maximum load

carrying capacity, 3) post peak softening softening behavior that is due to the unstable crack

propagation before failure. These examples clearly shows that the continuum assumption

cannot be valid if the stress state in an element is beyond a critical value. An appropriate

criteria might be written in the form of stress envelope that defines all possible stress states

that result in nucleation of damage in microstructure. To obtain such envelope we propose to

perform several different case that satisfies ‖∇∇u‖ = 0 and find out the (σdev, σvol) pair that
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shows the initiation of crack nucleation in the microstructure. The failure envelope is then

defined by interpolating a function from these sampling point in (σdev, σvol) plane. Fig.5.4a

shows these values for the simulations in Fig. 5.3b and c. For this material we found:

f(σvol, σdev) =
1.504

2.306
σvol + σdev − 1.504× 1012 (5.5)

This envelope can then be used as a criteria for refining macroscopic elements as follows: once

the stress state at any sampling point over the continuum element domain, such as integration

points, meets the failure criteria (that is f(σsdev, σ
s
vol) ≥ 0) the constitutive relation derived

from first order homogenization theory loses its validity, and therefore, the element should

be refined or replaced by a unit cell, if its side length is equal to that of unit cell. It should

also be noted that for material with random heterogeneities such as concrete, it is possible

to define several unit cells with random distribution of heterogeneities and derive the failure

envelope f1, f2, ... that shows the micro damage nucleation for each case. The final failure

envelope f , can then be defined by averaging out these functions. This is shown schematically

in Fig. 5.4.

Figure 5.4: (a) The failure envelope for symmetric unit cell shown in Fig 4, (b) For material
with random heterogeneities, the failure envelope is the average of different unit cells failure
envelope.
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5.3 Numerical simulation

In this section we use the proposed methodology as a tool to investigate the effect of

macroscopic structure’s size on the fracture of a material. Here we consider a microstruc-

turally heterogeneous material that consists of three different phases including mortar, ag-

gregate and interface between mortar and aggregate. For simplicity we also assume that the

material is periodic, in the microscopic length scale, and a unit cell of side length L̂ = 1
16

representing the material’s microstructure is shown in Fig. 5.6. A lattice model is used to

describe the material structure at this length scale. Each unit cell consists of two aggregates

that are equal in size that are centered at (+0.16L̂,−0.25L̂) and (−0.20L̂,+0.25L̂). Both

aggregates are elliptical with major and minor axis of 0.25 × L̂ and 0.13 × L̂ with volume

fraction of 0.15%. At mesocopic scale a lattice based model is used to describe the material.

The mortar and aggregate material are represented by microscopic beam elements with the

properties given in Fig. 5.6. Also zero thickness interface elements were used to model the

mortar aggregate interface zone. The location of interface is defined by means of level set

method. To model damage nucleation and crack propagation we utilized the damage model

described in Fig. 5.6 with σc = 1011, α = 0.5 for beam elements and ∆uc = ∆ut = L̂/60

for interface elements. On macroscopic scale the material is continuum and its lame con-

stants derived from the first order homogenization technique are equal to λ̃ = 3.3× 1011 and

µ̃ = 8.86× 1010.

5.3.1 Accuracy of the method:

Let us first asses the accuracy of the proposed method for predicting crack propagation

path and estimating ultimate load carrying capacity of a structure compared to a fully

microstructured analysis (BF). For this we consider a three point bending specimen of size

(8L̂ × 4L̂) that is constrained at the bottom corners and a concentrated load is applied at

the middle of the top edge in downward direction, FIg. 5.5a. The plate is also characterized
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with a vertical crack of length 2× L̂ that is located with a tiny offset of δoffset = 10−5 from

the symmetry line. This offset is chosen to prevent intersecting the crack and macroscopic

elements nodes, which is crucial in XFEM framework. The external load is applied trough

300000 predictor-editor loading increments that is explained in details in [119]. Fig. 5.6

shows formation and evolution of localized damage until the ultimate load carrying capacity

is reached for both simulations at different stages of simulation. Both methods predict that

the nucleation of damage, on the mesoscopic scale from the tip of the preexisting crack, takes

place at 262, 500th increment. At this load increment the predictor-editor solution method

is enabled to capture the correct crack propagation path and as a result the crack continues

to propagate until failure of the structure is reached without any change at the macroscopic

force. This implies that the material cannot resist to the propagation of the crack after its

initiation which means that the material is brittle such as its mesoscopic scale constituents

matrix material, inclusions and interface between matrix and inclusions. It is also obvious

from this The relation between the material resistance and the situation of damage that is

known as R-curve is shown in Fig. 5.7a with solid line.

Figure 5.5: (a) Three point bending specimen characterized by a vertical crack on the sym-
metry line, (b) Unit cell representing the microstructure of the material, (c) The geometry
of the process zone in front of the crack tip.

During the cracking procedure, the localized damage first inclines toward the inclusion

ahead of the preexisting crack tip and links to the interface zone around it. As shown in Fig

5.6c, micro cracks also initiate around the other inclusion and link to the crack at next step.
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After this point the crack tends to branch into two parts and propagates to eventually reach

to the top edge of the specimen that results in the failure of the structure. Obviously this

propagation pattern is due to the presence of heterogeneities on the mesoscopic scale which

enables material to dissipate the external energy in a larger area that is called process zone.

It is important to note that although the material shows brittle behavior, the non-straight

propagation pattern as well as crack branching are characteristics of ductile material. This

illustrates the capability of material to alter its behavior from brittle to ductile, if certain

conditions are met.

Figure 5.6: Initiation and propagation of crack in point bending specimen predicted by: (a)
brute force analysis and (b) ACM2, (c) damage distribution in microscale near the crack tip.

Let us now asses the efficiency of the ACM2 method. For this we define the compu-

tational gain as the ratio of the number of degrees of freedom in a BF analysis to that of

ACM2 analysis, nBFdof/n
ACM2

dof . Approximately this ratio is equal to nBFuc /n
ACM2

uc , where nBFuc

and nACM
2

uc are number of unit cells that exist in a BF and ACM2 analysis, respectively.
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For this example, the computational gain of the ACM2 method is equal to 11/27 ≈ 2.45,

which means that the ACM2 reproduces exactly the results obtained by BF analysis but

at approximately 2.5 times lower cost. Let us now asses how the numerical efficiency will

change for larger specimens. Based on crack band theory [101], for a concrete-like hetero-

geneous material the width of the crack band, where the micro mechanisms that lead to

the failure of material takes place, is limited to 3da, da being the average aggregate size. In

the context of ACM2, the microscopic domain will then looks like a strip of size 3L̂ × lpz,

where lpz is the length of process zone ahead of the preexisting crack and is equal to D/2.

Therefore, for any ACM2 simulation the computational cost could roughly be approximated

by 3D/2L̂. In addition, the computational cost for each BF analysis is approximately equal

to LD/L̂2. The efficiency of the method based on above definition is then equal to 3L̂/2L.

When the structure’s size becomes very large compared to the characteristic length of the

mesostructure, that is when L̂/L << 1, the tractability of the BF analysis becomes ques-

tionable. However, the ACM2 method reproduces the same results by incorporating just

a tiny fraction of the BF simulation computational cost. This feature enables us to study

the size effect problem at a reasonable cost when the structure size is much larger than the

heterogeneities characteristic length.

5.3.2 Size effect on the strength of the material:

The main objective of this example is to illustrate the effect of structure size on the

nominal strength of a heterogeneous material. For this we consider three structures with

similar geometry (Fig. 5.7) and different sizes consisting 4L̂L̂, 6L̂L̂ and 8L̂L̂. The material

is assumed to be periodic and heterogeneous on the mesoscopic level with properties that is

described in previous example. For each case the external load is applied through 300, 000

increments. The variation of external load versus crack length (R-curve) are shown for each

simulation in Fig. 5.7a. The ultimate load carrying capacity PN , which is the maximum

value of each R-curve, is reached when the crack unstably grows without any change in
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external loading. The nominal strength of the material is then defined as σN = PN

D
. Fig.

5.7b shows the variation of the nominal strength versus the characteristic length of the

specimen, D. This graph is in good agreement with experimental data reported in [101],

that is the nominal strength of the material degenerates by increasing the characteristic

length of the structure.

For each structure Fig.5.8 shows the formation and evolution of the damage in different

stages that are shown with red circle in Fig. 5.7.

Figure 5.7: (a) R-curve of the material for different cases, (b) Variation of nominal strength
versus the characteristic size of structure (D).

For the smallest specimen the evolution of damage is shown in different stages in

Fig. 5.6. For the two other cases, Fig. 5.8 shows the microscopic damage situation at

different stages that are shown with red circles in Fig. 5.7a. The materials R-curve for

the small specimen is a step function, that is by reaching the ultimate load capacity the

driving force is enough to initiate damage nucleation and propagation until the structure

fails. As discussed in previous examples this means that the material is brittle such as its

constituents, matrix material, inclusions and the interface between these two phases. The

R-curve for the second specimen is the same as the first one but it should be noted that for

this case the nominal strength is different than that of the first case since the size of structure

is different. Interestingly, the R-curve for the third specimen is a stair-step type function
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which is a prominent characteristic of ductile failure. In this case, to locally dissipate energy,

in each step the crack propagates in a brittle manner until the material gains resistance

against driving force or the ultimate failure is reached. This phenomena is again due to the

presence of heterogeneities on the mesoscopic scale which ensures that the crack propagates

in a ”zig-zag“ pattern also by linking to aggregates interfacial zones and going around the

aggregates in order to raise the resistance of material against crack driving force. However,

it should be noted that this characteristic of material is enabled when the structure is large

enough. This example clearly illustrates how the behavior of material fracture could transit

from brittle to ductile failure by varying the size of the structure. It should also be noted

that since the strength of interfacial zone is lower than that of inclusions or mortar material,

when the crack impinges an inclusion it tends to link to the interfacial zone rather than

penetrating into it. In fact, the property of the interfacial zone plays and important role on

the overall behavior of the material.

Figure 5.8: The initiation and propagation of crack for two different size: (a) 6L̂L̂, (b) 8L̂L̂.
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5.4 Summary and concluding remarks

The main idea of this chapter was to propose a suitable numerical framework to model

the fracture of material in order to study the well known size effect problem. The key chal-

lenge here is that the size effect problem is due to the presence of a characteristic length

that is associated with the internal heterogeneities of the material which reside in a length

scale that is very small compared to the physical domain size. Therefore, a suitable nu-

merical method should be able to precisely model the microstructures of the material while

maintaining the computational efficiency. To do so, we recapitulated the basic concepts

of the ACM2 and explained how the combination of these concepts provide a framework

that aims at efficiently and accurately modeling the fracture process zone which is essential

for capturing the size effect problem. Basically, this method relies on two main concepts,

namely, the adaptive refinement and the domain coupling method. The adaptive refinement

is responsible for accurate description of the material when the deformation field is highly

heterogeneous. In fact, this concept proposes to refine the mesh to improve the numerical

solution and when the mesh size becomes comparable to that of the unit cell this method

proposes to replace the continuum elements with the unit cells. In this paper we also pro-

posed a new method for adaptive refinement. In this method a failure envelope is derived

based on the homogenized behavior of the material which is useful for precisely predicting

the initiation of the damage at the microscopic scale. The adaptive refinement procedure

was then modified such that when the size of a finite element becomes comparable to that

of unit cell, ans the failure envelope on any sampling point (such as gauss points) becomes

negative, the element should be replaced by a unit cell to precisely capture the damage

nucleation that takes place on the microscopic length scale. As a consequence of applying

this concept the computational domain is split into two domains with different resolution of

material description, the macroscopic domain, which is based on the continuum description

of the material and the microscopic domain that consists of unit cells which explicitly carry
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the information of the microscopic structure of the material. The second concept then deals

with the coupling of these two different domains. This concept actually guarantees force

and displacement equilibrium at the boundary between two domains. Among all coupling

methods, the quasi-periodic coupling method is shown to be the most accurate and permits

the existence of fluctuating field on the boundary between the macroscopic and microscopic

domains which prevents emerging an artificial boundary in this region. In this paper we

also discussed about the nonlinear finite element formulation as well as a nested incremental

solution approach to accurately model the large deformation in front of a loaded crack.

In this paper we mainly focused on the fracture of a specific type of microscopically

heterogeneous material, that is reminiscent of concrete-like composites, which is associated

with a simple damage model that describes the failure of material on the microscopic length

scale. The accuracy and the efficiency of the method was illustrated through the first exam-

ple. Next, we modeled the fracture of similar structures with different sizes and showed the

capability of the method to capture the associated resistance curve of the material for each

case. We then showed how the method achieves to capture the size effect phenomena that

naturally exists for concrete-like materials. It should also be noted that although the mate-

rial in this paper is not real and the assumption that the material is periodic at microscopic

scale is very simplistic, the generality of method to predict the fracture behavior of material

is not questionable. Nevertheless, by further improvement such as extending the simplistic

linear damage models to realistic nonlinear models or considering a weibul distribution of

microstructural material properties, the method has the capacity to be used as an efficient

tool to design and optimize the material microstructure to build structures with higher safety

at lower cost.



Chapter 6

Summary, concluding remarks and suggestion for future works

In summary, this thesis presented a new class of numerical multiscale methodology to

precisely model the fracture of materials based on their microstructure. In reality the frac-

ture of material is a multiscale procedure that is triggered by the nucleation of damage at

the lower length scale. Based on this fact formulating an efficient method to precisely model

the this phenomenon has always been a challenging issue. On the one hand, fully microstruc-

tural description of material for a macroscopic problem is not computationally tractable. On

the other hand, macroscopic models based on coarse-grained continuum description of ma-

terial are not accurate enough when the deformation field is highly heterogeneous. Despite

many improvements such as theory of cosserat, micromorphics and non-local formulation,

these methods are not capable of modeling the materials local response when the deforma-

tion field is highly heterogeneous. This is due to the fact that these methods are based

on the concept of separation of scales upon which the macroscopic behavior is obtained by

averaging the microscopic response on a representative volume element. To overcome these

obstacles concurrent multiscale methods, which rely on enabling coexistence of different de-

scriptions of material at various length scales. To achieve high accuracy while maintaining

low computational cost these methods propose to split the macroscopic problem into differ-

ent domains with different resolution of solution in each domain. Bridging scale methods,

for example, aim at defining the microscopic domain a priori, such that the fracture process

zone is captured at the microscopic level, while other parts of structures are modeled on
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macroscopic length scale. VCFEM based concurrent multiscale method is another technique

in which the microscopic domain, which is detected automatically, coexist with the macro-

scopic domain and a transition domain that provides proper coupling of macroscopic and

microscopic domains. Our methods contribution is however, many folds that are described

in the following.

In the second chapter, under the assumption of finite elasticity, the formulation of

the method was developed for elasticity problem based on few concepts. The first concept

is adaptive refinement that is responsible for detecting numerical and modeling errors and

improving the solution by either refining the finite element mesh or replacing macroscopic

description of material by its exact microscopic definition. Based on the definition of dis-

cretization error, at the macroscopic level the finite element solution lacks accuracy when

the deformation field is highly heterogeneous. When this condition is met, such as in the

vicinity of sharp corners or crack tips, the adaptive refinement then proposes to locally refine

the finite element mesh to improve the accuracy of the numerical model. However, the mesh

refinement at the macroscopic level induces another type of error, homogenization error.

Based on homogenization theory, under certain circumstances, at the macroscopic level a

continuum model is sufficient to describe a microstructurally heterogeneous material. The

constitutive relation of such model is then derived by averaging out the response of the mate-

rial microstructure over a certain domain, that is called unit cell. In fact, the homogenization

error quantifies the lack of preciseness of continuum model. In order to ensure that this type

of error does not exceed its maximum allowable value the size of continuum(macroscopic)

elements should not be smaller than a certain size. The adaptive refinement, then proposes

to replace the finite elements by explicit unit cells if their size, as result of refinement, be-

come equal or smaller than the critical size. Consequently, the computational domain is

split into two parts; 1) A macroscopic domain with continuum description of material. 2) A

microscopic domain that is automatically captured and explicitly describes the material at

the microscopic level. The challenge here was to formulate proper bridging methods between
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the macroscopic and microscopic domains which should satisfy the kinematic condition be-

tween the two domains. Next we proposed three different types of coupling methods that

satisfy the above mentioned condition in different senses. The first coupling method, aims

at strongly satisfying the kinematic condition. In other words, after deformation the mi-

croscopic nodes on the edge of microscopic domain, are bond to their neighbor points in

the macroscopic domain before and after deformation. In contrary, to weakly satisfy the

coupling condition, the second coupling condition is being formulated based on least-square

averaging technique. After applying this coupling condition, the microscopic nodes on the

edge between two domains, follow the deformation of adjacent macroscopic edge in average

sense, that is they are freely fluctuate around the exact macroscopic deformation field along

this edge. Finally we introduced the quasi-periodic boundary coupling method that com-

bines the constrains that are introduced in second method and a set of extra constrains to

enforce the periodic boundary condition. In this method after deformation the microscopic

nodes follow the macroscopic deformation in average sense but the overall deformation field

is periodic. Compared to the weak coupling method in this method the fluctuation fields are

more constrained and the microscopic nodes smoothly fluctuate on the edge of microscopic

domain. Although, all methods satisfy the required kinematic conditions, we illustrated that

the quasi-periodic boundary coupling method reproduces the exact same results as if the en-

tire domain was modeled at microscopic level. The ACM2 then combines these concepts to

assure exact numerical results while preserving the computational cost low.

In chapter three, in order to study fracture of microscopically heterogeneous material

we take the advantage of XFEM and extended our multiscale formulation to obtain solution

for elasticity problems that contain displacement discontinuity such as cracks. For this we

reformulated our coupling condition, to account for preexisting cracks and discussed the

details about implementing different coupling conditions and incremental loading procedure

that is vital for modeling crack propagation. Although this chapter was limited to the small

strains theory and linear elasticity assumptions, it lays ground for more complex problems
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that were introduced in next chapter.

To reconcile the concepts of damage mechanics to those of fracture mechanics, an effi-

cient approach should be able to account for macroscopic loading while accurately modeling

the fracture process zone in front of the crack. This includes modeling finite deformation

field in front of the loaded crack tip as well as damage models that describe the failure of

the material in the microscopic level. In chapter four, we introduced a nonlinear finite strain

formulation of the method, in order to accurately model the large deformation and rotations

that exist in front of a loaded crack. We also presented examples of heterogeneous materi-

als whose matrix were described with lattice model and characterized by a simple damage

model. In addition, the aforementioned incremental procedure was improved to accurately

capture the damage propagation by incorporating a predictor-corrector algorithm. We illus-

trated that our method was capable of predicting the resistance curve associated with these

materials. Indeed, the dual description of the material in this method provides a ground

to describe the fracture in two forms: a) a detailed microstructured form, in the process

zone where the deformation is highly heterogeneous and b) coarse grained continuum form,

where the deformation field is homogeneous. Accuracy and efficiency of the method were

also discussed in through several examples. We also illustrated how the adaptivity is critical

for reducing computational cost in the case of evolving fracture. In addition, we investi-

gated the effect of micro structural properties, void volume fraction in the case of porous

heterogeneous material, on the fracture resistance curve of the material. We demonstrated

that increasing the volume fraction of the voids results in the rise of associated R-curve and

eventually delaying the unstable crack growth and rendering its matrix brittle material to

microscopically ductile behavior. This chapter, clearly shows the most important application

of the presented method that is to formulate a relation between the material microstructural

properties on the macroscopic fracture behavior.

Due to the well known size effect problem, it is generally accepted that the behavior of a

material in large scale might be different than its behavior in small scales, when the material is
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microscopically heterogeneous. Predicting the size effect problem and quantifying a relation

between the properties of the materials microstructure on the size effect problem is not

possible experimentally and should be carried out through numerical modeling and computer

simulation. Among all theories the crack band theory has been successfully formulated to

model and capture this effect based on continuum description of material. The key concept

in this method is that the fracture process zone is a priori introduced to the model and the

material in this region is modeled based on a softening constitutive model that represents its

failure. In chapter four, we discussed about the mechanical aspect of the size effect problem

and the underlying concepts of the crack band theory for concrete. We then described a

heterogeneous concrete-like material that consists of three phases in the mesoscopic scale

which is characterized by simplistic damage models to describe the failure of each phase.

Through an example, we showed how the proposed method aims at predicting the size effect

on the martial nominal strength. Although the material in this part was not realistic and

the microscopic damage models were based on very simplistic assumptions, the generality

of results and the efficiency of the method is not questionable. In this chapter we also

improved the adaptive refinement procedure to accurately capture the fracture process zone.

This method is based on introducing a failure envelope for material, that is derived by

performing damage analysis on materials unit cell and indicates nucleation of the damage at

microscopic scale. This method then proposes to replace the continuum description of the

material by its exact microscopic description when the macroscopic stress state meets the

criteria defined by material’s failure envelope.

In general, this dissertation proposed a new class of multiscale method that is based

on accurately modeling the process zone in front of the crack tip and concurrently describes

the material at different length scales. The main contributions of this method, can be

summarized as follows:

• An adaptive refinement concept that is responsible for automatic detection of the
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fracture process zone in front of preexisting crack or evolving localized damage.

• A macro micro coupling methods that ensure proper interaction of the different de-

scriptions of material. These conditions allow fluctuation of the microscopic field on

the edge of microscopic domain that is essential to circumvent the effect of artificial

boundaries. Also these coupling conditions are such that any microscopic model,

such as atomistic, continuum or lattice could be utilized in the model.

• The XFEM concept was invoked to model the fracture and the discontinuous dis-

placement field along cracks in each domains.

Beside developing the formulation of the method, this dissertation also presented some

examples that shows the method is a useful tool to investigate the relation between the

microscopic features of materials and the overall macroscopic behavior. By further devel-

opment the method can be used to investigate and optimize the microstructure to design

material with high fracture resistance capacity. Some suggestions are as follows:

• Mesh coarsening algorithm that can revert the microscopic to macroscopic domain

in the wake of crack. When crack propagation is modeled this feature will improve

the computational efficiency of the method, since it proposes to have the microsopic

domain just at the crack tip.

• Extension of the concept of periodic structure to that of random structures to mimic

more realistic material.

• Random distribution of material properties at the microscopic level, in order to

mimic a real material for which the fracture behavior is governed with random

distribution of the weak links at the microscopic level, such as concrete. The general

behavior of such material can then be derived based on monte carlo simulations and

averaging out the results.
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[55] N. Moës J. Dolbow T. Belytschko. A finite element method for crack growth without
remeshing. International Journal for Numerical Methods in Engineering, 46:131150,
1999.

[56] T. Belytschko and S.P. Xiao. Coupling methods for continuum model with molecular
model. International Journal of Multiscale Engineering, 1(1):115–126, 2003.

[57] E. Cosserat and F. Cosserat. Theorie des corps deformables. Hermann, Paris, 1909.

[58] E. F. DAzevedo. Optimal triangular mesh generation by coordinate transformation.
SIAM Journal on Scientific Computing, 12(4):755–786, 1991.

[59] R. de Borst. Simulation of strain localization: a reappraisal of the cosserat continuum.
Engineering Computations, 8(4):317–332, 1991.

[60] R. de Borst. On gradient-enhanced coupled plastic damage theories.
COMPUTATIONAL MECHANICS New Trends and Applications, 1998.

[61] M. Farsad, F. J. Vernerey, and H. S. Park. An extended finite element/level set method
to study surface effects on the mechanical behavior and properties of nanomaterials.
International Journal for Numerical Methods in Engineering, 84(12):1466–1489, 2010.

[62] N.A. Fleck and J.W. Hutchinson. A phenomenological theory for strain gradient effects
in plasticity. Journal of the Mechanics and Physics of Solids, 41(12):1825–1857, 1993.

[63] N.A. Fleck, G.M. Muller, M.F. Ashby, and J.W. Hutchinson. Strain gradient plasticity:
theory and experiment. Acta Metallurgica et Materialia, 42(2):475–487, 1994.

[64] S. Forest and K. Sab. Cosserat overall modeling of heterogeneous materials. Mechanics
research communications, 25(4):449–454, 1998.

[65] T.P. Fries, A. Byfut, A. Alizada1, K.W. Cheng, and A. Schröer. Hanging nodes and
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Appendix A

Element subdivision and shape functions

As depicted in Fig. 6, local mesh refinement causes the appearance of so-called “ir-

regular nodes” (or “hanging nodes”) [65] on the boundaries between refined and unrefined

domains. Subsequently, unrefined elements, which hold these types of nodes, are known as

“irregular elements”. Two different approaches have been introduced in literature [65] in

order to deal with this kind of irregularity:

Figure A.1: (a) 1-irregular mesh, (b) possible hanging nodes positions in an irregular element

1) Constrained approximation: In this method [1], no degrees of freedom are associated

with hanging nodes and the stiffness matrix is assembled using the standard shape
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functions. However, since standard shape functions do not satisfy conformity of

displacement on the element’s boundaries, it is assumed that the displacement of such

nodes is the average of two adjacent regular nodes. Therefore, a pair of constraints

are applied on each hanging node to enforce that their displacement remains in

between adjacent regular nodes. These constraints can be applied by means of the

Lagrange-Multipliers method or by multiplying the global stiffness matrix by a so-

called connectivity matrix.

2) Conforming shape functions : This method [22] consists of assembling the global

stiffness matrix by introducing new shape functions, which satisfy both partition of

unity and conformity of displacement on the edges of irregular elements.

Since in our method, the macro-micro bridging is accomplished by constraining micro nodes

to macro nodes, for the ease of implementation, we adopted the second approach. We also

restricted ourself to 1-irregular mesh (the definition for which can be found in [65]). As

shown in Fig. 15b, for the case of 1-irregular mesh, the method permits the incorporation of

two additional hanging nodes on each edge of 9-node quadrilateral irregular element. Sbaraj

and Dokainsh [41] presented an approach to formulate new shape functions for transition

quadrilateral finite element for mesh grading. Following a similar approach, we introduced

new sets of shape functions for 9-node quadrilateral elements. In what follows, shape func-

tions are defined on quadrilateral 9-node parent element defined be Ω∗ (Fig. 15). In order to

satisfy the conformity of displacement, shape functions associated with all possible hanging

nodes, (Fig. 15b), for all ξ, η ∈ Ω∗, can be written as:
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Figure A.2: An irregular element with four hanging nodes on two edges and associated shape
functions.

N∗10 = (−4ξ(1 + ξ).H(−ξ)).(−0.5η(1− η))

N∗11 = (+4ξ(1− ξ).H(+ξ)).(−0.5η(1− η))

N∗12 = (+0.5ξ(1 + ξ)).(−4η(1 + η).H(−η))

N∗13 = (+0.5ξ(1 + ξ)).(+4η(1− η).H(+η))

N∗14 = (+4ξ(1− ξ).H(+ξ)).(+0.5η(1 + η))

N∗15 = (−4ξ(1 + ξ).H(−ξ)).(+0.5η(1 + η))

N∗16 = (−0.5ξ(1− ξ)).(+4η(1− η).H(+η))

N∗17 = (−0.5ξ(1− ξ)).(−4η(1 + η).H(−η)).

(A.1)

In this definition H is heaviside function defined by:
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H(χ) =

+1 for χ > 0

0 for χ < 0
(A.2)

Once an irregular node i (i = 10, 11, .., 17) (Fig. 15b) exists, it takes the value N∗i in (A.1),

otherwise, it vanishes for all ξ, η ∈ Ω∗. In addition, the standard quadratic shape functions,

Ni (i = 1, 2, ..., 9), are modified as:

N∗1 = N1 − 0.375(N∗10 +N∗17) + 0.125(N∗11 +N∗16)

N∗2 = N2 − 0.375(N∗11 +N∗12) + 0.125(N∗10 +N∗13)

N∗3 = N3 − 0.375(N∗13 +N∗14) + 0.125(N∗12 +N∗15)

N∗4 = N4 − 0.375(N∗15 +N∗16) + 0.125(N∗14 +N∗17)

N∗5 = N5 − 0.75(N∗10 +N∗11)

N∗6 = N6 − 0.75(N∗12 +N∗13)

N∗7 = N7 − 0.75(N∗14 +N∗15)

N∗8 = N8 − 0.75(N∗16 +N∗17)

N∗9 = N9

(A.3)

This method satisfies both the partition of unity and conformity of displacement between

adjacent elements. Fig. 16 shows an irregular element with four hanging nodes, and some

of its shape functions.



Appendix B

Total Lagrangian formulation

In this appendix, we provide details on the material and geometrical stiffness matrices

in the Total-Lagrangian framework presented in section 4.4.1. We expressed the internal

force vectors as:

f int =

∫
Ω0

BT
0 {S}dΩ0 Ω0 ∈ Ω, (B.1)

in which the superscripts˜and¯are dropped for simplicity. The matrix B0 in this formula is

equal to:

B0 =
[
B1

0 B2
0 ... Bnne

0

]
(B.2)

where

BI
0 =


∂NI

∂x
F11

∂NI

∂x
F21

∂NI

∂y
F12

∂NI

∂y
F22

∂NI

∂x
F12 + ∂NI

∂y
F11

∂NI

∂x
F22 + ∂NI

∂y
F21

 I = 1, 2, ..., nne, (B.3)

where nne denotes the number of nodes in each element of the macro- or micro-domains and

F = ∂u/∂x is the deformation gradient tensor. The matrix B0 consists of the derivatives of

shape functions and the deformation gradient which reflects the effect of deformation in the

stiffness of the domain. In this context one can show that:

∂f int

∂u
= K = Kmat + Kgeo, (B.4)
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in which Kmat and Kgeo are the so-called material and geometrical tangent matrices, respec-

tively. The material stiffness matrix for an element is written as:

Kmat =

∫
Ωe

BT
LCBLdΩe, (B.5)

where BL is the matrix containing shape functions derivatives, Ωe denotes the domain oc-

cupied by the element and C denoted the material’s stiffness (or elasticity matrix). For the

Saint Venant-Kirchhoff material considered in this paper, this matrix has the form (in Voigt

notation):

C =
∂S

∂E
=


λ+ 2µ λ 0

λ λ+ 2µ 0

0 0 2µ

 . (B.6)

In addition the geometric (nonlinear) stiffness of an element is written as:

Kgeo =

∫
Ωe

BT
NLSBNLdΩe (B.7)

where BNL is:

BNL =
[
B1
NL B2

NL ... Bnne
NL

]
. (B.8)

and where for each node I = 1, 2 ... nne, we have:

BI
NL =


∂NI

∂x
∂uIx
∂x

∂NI

∂x

∂uIy
∂x

∂NI

∂y
∂uIx
∂y

∂NI

∂y

∂uIy
∂y

∂NI

∂y
∂uIx
∂x

+ ∂NI

∂x
∂uIx
∂y

∂NI

∂y

∂uIy
∂x

+ ∂NI

∂x

∂uIy
∂y

 , (B.9)

where uIx and uIy denote the x and y components of deformation field at node I, respectively.
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