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Impacts of Climate Change on Hydrologic Processes in the Colorado River Basin 

Thesis directed by Professor Balaji Rajagopalan 

 

The clear evidence of human-induced hydroclimatic shifts in the western U.S., and 

especially within the Colorado River Basin (CRB), has motivated the research community to 

pursue reliable estimates of future climate change impacts on hydrological processes. Although 

the large body of literature in this field shows consensus on the future drying of the CRB, there 

are large uncertainties in the magnitude of hydrologic changes because of differences in 

experimental approaches. Hence, this work focuses on the effects of methodological choices, in 

particular those related to hydrologic modeling, on the portrayal of climate change impacts at 

three catchments located in the headwaters of the CRB. 

A commentary on the current development of complex process-based hydrologic models is 

first presented. It is argued that the relatively poor performance of such models may occur due to 

restrictions on their ability to refine their portrayal of physical processes, and improving 

hydrological models requires integrating the strengths of prior knowledge of hydrologic 

processes with the strengths of data driven inference. An assessment of the effects of hydrologic 

model choice and parameter calibration on projected hydrologic changes follows. Here, it is 

demonstrated that the subjective selection of model structures may introduce large uncertainties 

to hydrologic projections. Based on this, the third part of this study compares the effects of 

hydrologic model choice and parameter estimation strategies on projected climate change 

impacts. The main finding here is that the choice of parameter estimation methods can provide 

similar or larger uncertainties in some hydrologic processes when compared to uncertainties 
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coming from model choice. The fourth component of this study evaluates the effects of regional 

climate model (RCM) configuration and forcing scaling on projected hydrologic changes. The 

results illustrate the implications of RCM configuration on projected changes of the water cycle, 

and provide an integrated view of the interplay between forcings and hydrologic model 

structures in the portrayal of climate change impacts. Finally, a commentary on the main results 

of this study and possible ways to move forward is provided. It is asserted that a greater role of 

expert knowledge is required to improve model selection and parameter estimation, and also for 

incorporating non-stationarity in climate change impact studies. 
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CHAPTER 1:  Introduction 

1.1 Background 

Given the strong evidence of ongoing intensification of the water cycle from regional to 

continental scales (e.g. Huntington 2006), most key questions facing humanity in regards of 

climate projections for the 21
st
 century are water-related (Lall 2014). According to the 

Intergovernmental Panel on Climate Change (IPCC 2013), the nature, extent and timing of 

climate change impacts on water resources are expected to vary regionally, depending on the 

mitigation and adaptation capabilities of different social and environmental systems. 

During the last decade, several studies conducted over the western United States have 

detected consistent trends in hydroclimatic variables such as temperature, precipitation, snow 

water equivalent, soil moisture and runoff (e.g. Barnett et al. 2005; Regonda et al. 2005; Mote et 

al. 2005; Stewart et al. 2004, 2005; Knowles et al. 2006; Hamlet et al. 2007; Cayan et al. 2010). 

Even more, it has been found that a substantial portion of these trends is human-induced (Barnett 

et al. 2008; Pierce et al. 2008; Das et al. 2009; Hidalgo et al. 2009), increasing concern about the 

consequences of anthropogenic warming on water supply over this region, which relies heavily 

on snow accumulation during winter. Within this large domain, the situation of the Colorado 

River basin (CRB) – a major basin that spans seven states in the U.S. and two states in Mexico – 

is critical, as the system is already over-allocated (Bureau of Reclamation 2012) and future 

warming might increase the probability of supply and demand imbalances (McCabe and Wolock 

2007). 

The vulnerability of the CRB reservoir system storage to changes in runoff has raised the 

interest of the research community to better understand the implications of precipitation and 

temperature changes on hydrologic processes, which are augmented by the semi-arid nature of 
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the basin (Loaiciga et al. 1996). A growing body of literature on this topic (recently reviewed by 

Vano et al. 2014) shows an overall consensus about future drying of this region. For example, 

Figure 1.1 displays projected variations in precipitation minus evapotranspiration (P –E) reported 

by Seager et al. (2012) for the headwaters of the Colorado River basin under a severe emission 

scenario (Meinshausen et al. 2011), where most simulations project a decrease in P−E for 

upcoming two-decade periods, and intensified drying as the 21
st
 century advances. Furthermore, 

runoff changes in the CRB are expected to be induced by the combined effects of (i) decreased 

snowpack in winter – resulting from the increased rain to snow ratio –, (ii) earlier runoff peaks 

due to rising temperature in spring, and (iii) precipitation change in summer (Gao et al. 2011). 

Hence, a better comprehension of hydrologic sensitivities to climate change in the CRB is 

critical to develop adaptation strategies for an already stressed water supply system. 

 

Figure 1.1: The difference in P−E relative to 1951–2000 for two-decade periods of the present century for the 

Colorado River headwaters region (37°–42° N, 112°–106° W). The vertical axis refers to the individual global 

climate models. Black dots show the change in P−E for the five two-decade periods for the individual 

continuous runs with the model. The red dots show the ensemble mean change for each model. For models 

with single continuous runs only the red dot is plotted. The twenty-first-century projections use the 

Representative Concentration Pathway (RCP) 8.5 emission scenario (from Seager et al. 2012). 
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1.2 Motivation 

In spite of the general agreement regarding future drying of the CRB, there are 

considerable discrepancies among studies in terms of the magnitude of projected hydrologic 

changes. For instance, while Hoerling and Eischeid (2007) reported a 45 % decline in runoff at 

Lees Ferry by mid-century, Christensen and Lettenmaier (2007) projected a decrease of 6 % for 

the same period. Likewise, many more examples showing divergent results and conclusions can 

be found in the literature (e.g. Milly et al. 2005; Christensen et al. 2004; Ray et al. 2008; 

Hoerling et al. 2009; Rasmussen et al. 2011, 2014; Harding et al. 2012; Vano et al. 2012; Ficklin 

et al. 2013; Vano and Lettenmaier 2014), suggesting that the large uncertainty in hydrologic 

projections arise from differences in methodological choices (Vano et al. 2014). 

To deal with the above problem, many authors have relied on the ‘cascade of uncertainty’ 

paradigm (e.g. Wilby and Dessai 2010), which attempts to quantify the uncertainty at each step 

of the modeling process, including (Figure 1.2): (i) choice of greenhouse gas emission scenarios, 

(ii) choice of climate model(s), (iii) choice of climate model initial conditions, (iv) choice of 

meteorological forcing downscaling methods, (v) choice of hydrological model structures, and 

(vi) choice of hydrological model parameter sets. Although this approach has demonstrated 

practical utility for quantifying the overall uncertainty and its main contributors (e.g. Wilby and 

Harris 2006; Chen et al. 2011), it typically relies on statistical methods to estimate climate 

change impacts at local scales, giving much less attention to uncertainties derived from 

hydrological modeling (Bastola et al. 2011). This is problematic because the choice of a 

hydrologic model structure (Vano et al. 2012) and parameter values (Wilby 2005) –commonly 

based on pragmatic considerations – have been proven to be very important for hydrologic 

change assessment. More worrisome, despite outstanding advances in the development of 
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process-based hydrologic models (e.g. Abbott et al. 1986; Wigmosta et al. 1994; VanderKwaak 

and Loague 2001; Ivanov et al. 2004; Maxwell and Miller 2005; Rigon et al. 2006; Qu and Duffy 

2007; Lawrence et al. 2011; Niu et al. 2011) that have been later used in the assessment of 

climate change impacts, there is still limited understanding of their shortcomings and relative 

importance compared to parameter identification strategies, especially in terms of individual 

hydrologic processes (e.g. evapotranspiration, generation of surface flow and baseflow, 

snowpack). 

 

Figure 1.2: Representation of the “cascade of uncertainty” paradigm. The diagram illustrates the key 

methodological choices for the assessment of change impacts, and how their uncertainties combine to 

generate a final projected envelope. 
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Therefore, a better understanding of uncertainties in hydrologic modeling decisions is 

critical to advance model predictive capabilities under a changing climate. The ultimate goal of 

this doctoral research is to provide a suite of best practices for the assessment of climate change 

impacts on hydrologic processes, which will be the result from addressing the following 

questions: 

1. In spite of their complexity and physical realism, distributed process-based models 

perform similarly to, or only slightly better than, traditional bucket-style rainfall-runoff 

models (Reed et al. 2004; Smith et al. 2012). What are the main a priori constraints of 

complex process-based models that currently contribute to their relatively poor 

performance? 

2. What are the effects of model structure selection and parameter calibration on the 

portrayal of climate change impacts? 

3. How does the subjective choice of hydrologic models and parameter identification 

strategies affect projected changes in water balance and hydrological processes, and how 

do these effects compare? 

4. How do the configuration of regional climate models (RCM) and forcing scaling affect 

model fidelity and projected hydrologic changes? 

5. Moving forward, how can we improve our understanding of hydrologic sensitivity to 

climate variability and change? 

1.3 Outline 

Chapter 2 provides a detailed description of the material and methods used in this research. 

Specifically, a characterization of the case study basins selected, meteorological forcing datasets, 

hydrologic model structures and signature measures of hydrologic behavior is provided. 
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Chapter 3 addresses Question 1 in the form of commentary, where it is suggested that 

hydrologists and land-surface modelers may be unnecessarily constraining the behavioral agility 

of very complex physics-based models. It is argued that the relatively poor performance of such 

models can occur due to restrictions on their ability to refine their portrayal of physical 

processes, in part because of strong a-priori constraints in: (i) the representation of spatial 

variability and hydrologic connectivity, (ii) the choice of model parameterizations, and (iii) the 

choice of model parameter values. A specific example of problems associated with strong a-

priori constraints on parameters in a land surface model is provided. Finally, some directions for 

accelerating progress in the development of hydrologic modeling frameworks are proposed and 

discussed. 

Chapter 4 examines the role of hydrologic model selection and parameter calibration on 

the assessment of climate change impacts to address Question 2. To this end, model performance 

and projected hydrologic changes obtained through four different hydrologic model structures 

are compared before (i.e., using default parameters) and after calibration with the Shuffled 

Complex Evolution algorithm (SCE-UA; Duan et al. 1992, 1993). Hydrologic changes are 

examined via a climate change scenario where the NCAR Community Climate System Model 

Version 3 (CCSM3 ; Collins et al. 2006) change signal is used to perturb the boundary conditions 

of the Weather Research and Forecasting (WRF ; Skamarock et al. 2008) regional climate model 

configured at 4-km resolution. Inter-model differences in the portrayal of climate change impacts 

are discussed in terms of annual water balance, monthly changes in specific variables and 

signature measures of hydrologic behavior. 

Chapter 5 addresses Question 3 by examining the relative importance of hydrologic model 

choice and parameter estimation strategies on projected changes in annual water balance, 
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monthly simulated processes and signature measures of hydrologic behavior. To this end, 

hydrologic changes obtained with the model structures described in Chapter 2, whose parameters 

were obtained using a common calibration strategy, are compared with those coming from 

parameter sets identified using multiple options for different calibration decisions (objective 

function, multiple local optima and calibration forcing dataset), using a unique model structure. 

The results presented in this study prompt the need to incorporate uncertainty in model structure 

and model parameters to avoid an over-confident portrayal of climate change impacts. 

Chapter 6 examines and compares the effects of regional climate model (RCM) 

configuration and output re-scaling on the portrayal of climate change impacts (Question 4). 

Specifically, it is assessed how the above decisions affect: (i) historical performance in terms of 

hydrologic signature measures, and (ii) hydrologic changes due to a climate perturbation, with 

focus on the annual water balance and catchment processes. Meteorological forcings for current 

and a modified climate scenario are obtained at three spatial resolutions (4-, 12- and 36-km) from 

dynamical downscaling with the WRF regional climate model, and hydrologic changes are 

computed using four hydrologic model structures and two sets of hydrologic model parameters 

(the same included in Chapter 4). This study provides an integrated portrait of the effects that 

meteorological forcing datasets, model structures and model parameters have on hydrologic 

change projections. 

Finally, Chapter 7 addresses Question 5 by providing a brief overview of the existing 

paradigms used in the evaluation of climate change impacts, a summary of the main findings of 

previous chapters, and some recommendations for moving towards a process-based assessment 

of the sensitivity of hydrologic processes to climate variability and change. 
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CHAPTER 2:  Material and methods 

2.1 Study area 

The importance of the CRB for water management and decision making, together with 

strong evidence of a hydroclimatic shift over the past decades (Miller and Piechota 2008, 2011), 

has motivated several studies to generate streamflow projections under different future climate 

scenarios over the area (e.g. Milly et al. 2005; Christensen and Lettenmaier 2007; Hoerling et al. 

2009; Bureau of Reclamation 2012). Much of the water for this region comes from the high-

elevation area – the Colorado Headwaters – that works as a natural reservoir during the winter, 

storing precipitation as snowpack and glaciers. Given the strategic relevance of this sub-domain, 

we select three basins in the Colorado Headwaters Region – Yampa River at Steamboat Springs, 

East River at Almont and Animas River at Durango – whose location and elevation ranges are 

shown in Figure 2.1. These catchments have been included in many past climate change studies 

(e.g. Wilby et al. 1999; Sankarasubramanian and Vogel 2002; Mastin et al. 2011; Milly and 

Dunne 2011) and, because of their relatively small size compared to the CRB, they offer a 

unique opportunity to perform extensive analysis involving thousands of model runs (e.g. 

sensitivity analysis and hydrologic model calibration), to evaluate different approaches in climate 

change impact assessment, and also to provide detailed understanding of physical processes in 

the headwaters of the CRB. 

Table 2.1 summarizes the main hydroclimatic characteristics of the three basins for which 

historical data are available, over an 8-year period (Oct/2000 - Sep/2008). Mean basin 

precipitation ranges between 700 mm/year to 900 mm/year, while mean basin elevation is above 

2500 m.a.s.l. Among these basins, the East River at Almont has the largest runoff ratio (0.42), 

and the Yampa at Steamboat Springs has the lowest runoff ratio (0.32, with the lowest runoff and 
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precipitation amounts). The land surface of the Yampa and Animas River basins is 

predominantly covered by deciduous forests (26 % at Yampa and 23 % at Animas) and 

evergreen forests (37 % at Yampa and 39 % at Animas), while the land surface of the East River 

basin is mainly covered by evergreen forests (29 %) and grassland/herbaceous (26 %). 

 

 

Figure 2.1: Location of the basins of interest. 
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Table 2.1: Three study watersheds' characteristics. Hydrologic variables correspond to the period Oct/2000-

Sep/2008. P, R, PE, RR and DI denote basin-averaged mean annual values of precipitation, runoff, potential 

evapotranspiration, runoff ratio and dryness index, respectively. 

    Mean Mean Mean Mean Mean Mean 

Location Area basin annual Precipitation annual annual annual 

    elevation runoff from WRF PE* RE DI 

  (km²) (m.a.s.l.) (mm/yr) (mm/yr) (mm/yr) (R/P) (PE/P) 

Yampa at Steamboat Springs 1468 2674 228 717 953 0.32 1.33 

East at Almont 748 3127 327 782 757 0.42 0.97 

Animas at Durango 1819 3098 365 883 885 0.41 1.00 

*PE obtained from PRMS by using a Jensen-Haise formulation (Jensen et al. 1969) 

2.2 Meteorological forcings 

We use dynamically downscaled climate datasets obtained with the Weather Research and 

Forecasting (WRF) regional climate model (Skamarock et al. 2008) to force hydrologic 

simulations and compute hydrologic changes due to a climate perturbation. These datasets 

consist of historical (control run, CTRL) and pseudo global warming (PGW) outputs at three 

different horizontal resolutions (4-, 12- and 36-km). Specifications of these WRF simulations are 

fully described in Rasmussen et al. (2014), but briefly reviewed below. The initial and 3-hourly 

lateral boundary conditions were taken from the North American Regional Reanalysis (NARR; 

Mesinger et al. 2006) coarse resolution dataset (~32 km). The model physics options used in that 

study included the Noah Land Surface Model (Noah-LSM) version 3.2 with upgraded snow 

physics (Chen and Dudhia 2001; Barlage et al. 2010), the Thompson mixed-phase cloud 

microphysics scheme (Thompson et al. 2008), the Yonsei University planetary boundary layer 

(Hong et al. 2006) and the Community Atmosphere Model’s (CAM) longwave and shortwave 

radiation schemes (Collins et al. 2006). Because the use of an horizontal grid spacing of 6 km or 

less is able to accurately estimate vertical motions driven by topography (Ikeda et al. 2010; 

Rasmussen et al. 2011), a convective parameterization was included for the 12- and 36-km 
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simulations – using the Betts-Miller-Janjić scheme (Janjić 1994)–  but not for the 4-km 

simulation (Rasmussen et al. 2014). 

The PGW approach (Schär et al. 1996; Hara et al. 2008; Kawase et al. 2009; Rasmussen et 

al. 2011) consists of adding a mean climate perturbation to the initial and 3-hourly boundary 

conditions, here taken from NARR.  The climate perturbation used was based on expected 

changes from the NCAR CCSM3 model forced by the A1B scenario. This perturbation is 

generated by subtracting the current 10-yr (1995-2005) monthly climatology from a future 10-yr 

(2045-2055) monthly climatology.  

Meteorological data from WRF simulations is available for all horizontal resolutions at 

hourly time steps, for both historical and modified climatic conditions. The output variables and 

temporal disaggregation used depend on specific hydrologic model requirements (Table 2.2). 

2.3 Hydrologic models 

To explore the effects of the choice of hydrologic model structure, we choose four 

hydrologic/land surface models: the US Geological Survey's Precipitation Runoff Modeling 

System (PRMS; Leavesley et al. 1983; Leavesley and Stannard 1995), the Variable Infiltration 

Capacity  model (VIC; Wood et al. 1992; Liang et al. 1994, 1996) the Noah Land Surface Model 

(Noah-LSM; Ek 2003; Mitchell et al. 2004) and the Noah Land Surface Model with Multiple 

Parameterizations (Noah-MP; Niu et al. 2011; Yang et al. 2011). Our choice is based on the fact 

that the four models cover different degrees of complexity in terms of conceptualization of 

vegetation, soil and seasonal snowpack (see Figure 2.2 and Table 2.3 for further details), and 

also have different parameterizations for some hydrologic processes (e.g. different model 

equations for canopy storage, baseflow, etc.). Additionally, these hydrologic model structures 

have been used in several research studies (e.g. Wilby et al. 1999; Haddeland et al. 2002; Hay et 
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al. 2002; Hay and Clark 2003; Christensen and Lettenmaier 2007; Barlage et al. 2010; Yang et 

al. 2011; Cai et al. 2014). Our experimental design considers a hydrologic model spatial 

resolution identical to that used in the 4-km WRF simulations performed by Rasmussen et al. 

(2014), though simulation time steps, forcing variables and land cover data used for a priori 

parameter estimates vary depending on specific model requirements (see Table 2.2 for further 

details). 

Table 2.2: Summary of data sources and simulation setup used in this study 

Model Vegetation data Soil data Forcing variables* Spatial/temporal 

        discretization 

PRMS USGS 1-km gridded 

vegetation type and 

density data (USDA 

1992)  

State soils geographic 

(STATSGO) 1-km 

gridded soils data 

(USDA 1994) 

Daily precipitation; 

maximum and minimum 

daily temperature. 

4 km and Δt = 24 h 

VIC UMD 1-km Global 

Land Cover 

Classification (Hansen 

et al. 2000) 

State soils geographic 

(STATSGO) 1-km 

gridded soils data 

(USDA 1994) 

Precipitation, 

temperature, shortwave 

and longwave radiation, 

wind speed, relative 

humidity and air 

pressure. 

4 km and Δt = 1 h 

Noah-LSM 

and  

Noah-MP 

National Land Cover 

Data Base, 2006 (Fry 

et al. 2011). 

State soils geographic 

(STATSGO) 1-km 

gridded soils data 

(USDA 1994) 

Precipitation, 

temperature, shortwave 

and longwave radiation, 

wind speed, relative 

humidity and air 

pressure. 

4 km and Δt = 1 h 

*Air temperature at 2 m and wind speed at 10 m are used for hydrologic simulations. 

 

In this study we use a single suite of physics options for Noah-MP, including a Ball-

Berry type model for canopy stomatal resistance, the Community Land Model (CLM; Oleson et 

al. 2010) soil stress function to control stomatal resistance, the SIMTOP model for runoff and 

groundwater (Niu et al. 2005), a Monin-Obukhov similarity theory-based drag coefficient, 

supercooled liquid water and frozen soil permeability based on Niu and Yang (2006), a two-

stream radiation transfer scheme applied only to the vegetated fraction, a snow surface albedo 

parameterization based on the Canadian Land Surface Scheme (CLASS; Verseghy 1991), 
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partitioning of precipitation into snowfall and rainfall based on Jordan (1991) and a Noah-type 

lower boundary of soil temperature. Readers are referred to Niu et al. (2011) for a full 

description of each model component. 

 

 

Figure 2.2: Comparison of model architectures used in this study: Precipitation Runoff Modeling System 

(PRMS), Variable Infiltration Capacity (VIC), Noah Land Surface Model (Noah-LSM) and Noah Land 

Surface Model with Multiple Parameterization Options (Noah-MP). 
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Table 2.3: Overview of hydrologic model components used in this study 

Model Snow accumulation Canopy Moisture in the soil Baseflow 

  and melt storage column/surface runoff   

          

PRMS 2-layer energy/mass 

balance model. Snowpack 

energy balance is 

computed every 12 hours. 

Precipitation can be intercepted by and evaporated 

from the plant canopy. Precipitation that is not 

intercepted by the canopy layer (throughfall) is 

distributed to the watershed land surface. Interception 

of precipitation by the plant canopy is computed 

during a time step as a function of plant-cover density 

and the storage available on the predominant plant-

cover type in each HRU. 

Surface runoff and 

infiltration are computed 

using a non-linear variable-

source-area method 

allowing for cascade flow. 

The groundwater zone is 
conceptualized as a linear 
reservoir (ie. baseflow is 
computed as a linear 
function of groundwater 
storage). 

VIC 2-layer energy/mass 

balance model. 

Water enters 1-layer canopy reservoir, and can leave 

as canopy evaporation, transpiration or throughfall. 

Canopy throughfall occurs when additional 

precipitation exceeds the storage capacity of the 

canopy. Different vegetation classes are allowed 

within a unique grid cell via a 'mosaic' approach, 

where energy and water balance terms are computed 

independently for each coverage class (vegetation and 

bare soil). 

An infiltration capacity 

function is defined. Vertical 

movement of moisture 

through soil follows 1-D 

Richards equation. 

Defined as a function of the 
soil moisture in the third 
layer (Arno formulation). 
The function is linear 
below a soil moisture 
threshold, and becomes 
nonlinear above that 
threshold. 

Noah-LSM 1-layer energy/mass 

balance model that 

simulates snow 

accumulation, 

sublimation, melting and 

heat exchange at snow-

atmosphere and snow-soil 

interfaces. 

One canopy layer, simple canopy resistance. Simple 

Jarvis type of canopy resistance function, single 

linearized energy balance equation representing 

combined ground/vegetation surface, considering 

seasonal LAI and green vegetation fraction. 

Surface runoff is computed 

as the difference between 

throughfall and a maximum 

infiltration rate. Vertical 

movement of moisture 

through soil layers follows 

1-D Richards equation. 

Computed as the product 
of a scaling factor between 
0 and 1 and the hydraulic 
conductivity of the bottom 
layer. 

Noah-MP 3-layer energy/mass 

balance model that 

represents percolation, 

retention and refreezing 

of meltwater within the 

snowpack. 

Snow interception includes loading/unloading, 

melt/refreeze capabilities, and sublimation of canopy-

intercepted snow, along with detailed representation of 

transmission and attenuation of radiation through the 

canopy, within- and below-canopy turbulence, and 

different options to represent the biophysical controls 

on transpiration.  

Surface runoff is an 

exponential function of 

depth to water table. 

Vertical movement of 

moisture through soil layers 

follows 1-D Richards 

equation. 

Baseflow is parameterized 
as an exponential decaying 
function of the water table 
level (SIMTOP). 
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2.4 Signature measures of hydrologic behavior 

We use six hydrologic signature measures (Yilmaz et al. 2008; Stewart et al. 2005) to 

quantify model fidelity and projected changes in catchment behavior. These metrics are intended 

to represent different hydrologic processes from overall precipitation partitioning into ET and 

runoff to vertical redistribution of excess precipitation via percolation. All the signatures are 

derived based on daily runoff time series. The notation, short description, mathematical 

formulation and physical process associated with each signature measure are detailed in Table 

2.4. Similar diagnostic evaluation metrics have been used in past studies with multiple purposes, 

such as model evaluation (e.g. Herbst et al. 2009; Majone et al. 2012; Pfannerstill et al. 2014), 

catchment classification (e.g. Oudin et al. 2010; Ley et al. 2011; Sawicz et al. 2011; Carrillo et 

al. 2011), sensitivity analysis (e.g. van Werkhoven et al. 2008; Wagener et al. 2009b), hydrologic 

model structure identification (e.g. Hartmann et al. 2013; Hrachowitz et al. 2014), analysis of 

spatial distribution of hydrologic processes (e.g. McMillan et al. 2014) and the choice of realistic 

model parameter values in terms of process representations (e.g. Pokhrel and Gupta 2009; van 

Werkhoven et al. 2009; Kollat et al. 2012; Pokhrel et al. 2012). 

Table 2.4: Signature measures used to evaluate projected changes in catchment behavior 

Notation Short description Equation Hydrologic process 

RR Runoff Ratio /RR R P   Overall water balance (ET processes). 

FMS FDC Mid-segment Slope 
1 2

1 2

log( ) log( )m mQ Q
FMS

m m





  

Variability, or flashiness, of the flow 

magnitudes. 

FHV 
FDC High-segment 

Volume  
1

H

h

h

FHV Q


  
Measure of the catchment response to 

high rainfall/snowmelt events. 

FLV 
FDC Low-segment 

Volume 
 

1

log( ) log( )
L

l L

l

FLV Q Q


   
Measure of the long-term baseflow 

processes 

FMM FDC Median (log(FDC))FMM median  Measure of mid-range flows. 

CTR Center Time of Runoff  1

1

N

i ii

N

ii

t Q
CTR

Q









 Seasonality of runoff. 

R: basin-averaged mean annual runoff. 

P: basin-averaged mean annual precipitation. 
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Qm1: flow with exceedance probability of m1 = 0.2. 

Qm2: flow with exceedance probability of m2 = 0.7. 

h = 1, 2,...,H are the flow indices into the array of flows with exceedance probabilities lower than 

0.02. 

l = 1,2,...,L is the index into the array of flow values located within the low-flow segment (0.7-

1.0 exceedance probabilities), being L the index for minimum flow. 

N: total number of days in a water year. 
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CHAPTER 3:  Are we unnecessarily constraining the agility of complex process-based 

models? 

3.1 Introduction 

The hydrologic community has made substantial investments in the development of 

complex physics-based models that provide detailed representations of the dominant physical 

processes and their interactions (e.g. Abbott et al., 1986; Wigmosta et al., 1994; VanderKwaak 

and Loague, 2001; Ivanov et al., 2004; Maxwell and Miller, 2005; Rigon et al., 2006; Qu and 

Duffy, 2007; Lawrence et al., 2011; Niu et al., 2011). In spite of their complexity and physical 

realism, distributed process-based models perform similarly to, or only slightly better than, 

traditional bucket-style rainfall-runoff models (e.g., Reed et al., 2004; Smith et al., 2012). In this 

commentary we discuss some issues that can result in relatively low performance of complex 

models, illustrate some of these shortcomings through an example application, and make 

practical recommendations that should lead to improved physics-based model simulations. 

3.2 On the need for model agility 

Over the last four decades, a number of important issues related to process representation 

and model performance have been widely discussed (Freeze and Harlan, 1969; Bergstrom, 1991; 

Blöschl and Sivapalan, 1995; Beven, 2000, 2002, 2006; Sivapalan et al., 2003; Kirchner, 2006; 

Clark et al., 2008, 2011; Gupta et al., 2008, 2012; Wagener et al., 2009a; Beven and Cloke, 

2012). A fundamental challenge is developing models that represent how the spatial variability in 

hydro-meteorological fields, topography, vegetation and soils combines to produce fluxes of 

energy and water at catchment, regional and global scales (e.g., Reggiani et al., 1999; Beven, 

2002; Kollet et al., 2010). Meeting this challenge requires extensive evaluation and refinement of 
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model representations of hydrological processes (Beven 2002; Clark et al. 2011a), in particular 

those related to representing fluxes of water and energy at the spatial scale of the model 

discretization (Samaniego et al. 2010). 

However, a factor that complicates the problem of evaluating and refining the behavior of 

process-based models is that many of them have fixed representations of spatial variability (e.g., 

a single spatial resolution and configuration, parameter look-up tables with limited number of 

soil and vegetation classes), fixed representations of model physics (e.g., a single set of process 

representations), and fixed (hard-coded) model parameter values.  Such strong a-priori 

constraints arguably reflect over-confidence in the spatio-temporal representation of physics-

based equations describing complex systems, which are heterogeneous across different spatial 

scales and often poorly characterized by direct measurement (Kirchner 2006), resulting in 

models with insufficient ability to adequately simulate the heterogeneity of biophysical and 

hydrological processes.  

In view of such problems, we believe that hydrologic and land surface modeling systems 

should be agile (i.e., have the capability to adjust model equations and parameters to faithfully 

represent observed processes), in order to enable testing multiple hypotheses of hydrologic 

behavior (Clark et al. 2011a). Specifically, modeling frameworks should be agile enough to 

support at least the following key aspects: (i) the capability to modify the representation of 

spatial variability and hydrologic connectivity (e.g., support different spatial resolutions, grid cell 

versus hydrologic response units, mosaic versus semi-tile approach to represent sub-grid 

heterogeneity), (ii) the capability to modify model parameterizations for individual processes 

(e.g., different soil stress functions for evapotranspiration, non-linear reservoir versus multiple 

parallel reservoirs for baseflow), and (iii) the capability to modify model parameter values. 
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Furthermore, these features should be extensible to facilitate iterative improvements in the 

representation of complex systems (i.e., model reconfiguration) as new data that might support 

new hypotheses becomes available ( Son and Sivapalan, 2007; Fenicia et al., 2008; Clark et al., 

2011). 

The need for model agility is increasingly recognized, and many modeling frameworks are 

now available that facilitate experimenting with competing modeling alternatives (Clark et al. 

2011a). For instance, Pomeroy et al. (2007) developed the Cold Regions Hydrologic Model 

(CRHM) to experiment with different alternative representations of cold region processes; Clark 

et al. (2008) developed the Framework for Understanding Structural Errors (FUSE) to test 

different parameterizations of soil hydrology used in traditional bucket-style rainfall-runoff 

models; Niu et al. (2011) developed the Noah-MP model with the aim to experiment with several 

model parameterizations of biophysical and hydrological processes used in land-surface models; 

Essery et al. (2013) developed the Joint UK Land Environment Simulator (JULES) Investigation 

Model (JIM) to test different options to simulate snow processes. Nevertheless, these modeling 

frameworks lack an integrated supporting system for experimenting with different 

representations of spatial variability, a broad range of physics parameterizations (i.e., they are all 

somewhat limited in scope), and different model parameter values. For example, FUSE includes 

only simple parameterizations of soil hydrology, and is focused on spatially lumped structures; 

JIM is restricted to snowpack processes; and Noah-MP is limited to a semi-tile grid structure.  

We believe that modeling systems addressing at least the three requirements proposed above 

(capability to modify spatial variability and hydrologic connectivity, capability to modify model 

parameterizations of individual processes and capability to modify model parameter values) will 
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provide a robust framework for the assessment of differences among process representations in 

existing hydrological models, and to accelerate future model development and improvement. 

3.3 An example of unnecessary constraints in a complex process-based model: Treating 

uncertain model parameters as physical constants 

Somewhat paradoxically, many physics-based models set uncertain model parameters to 

fixed values. For example, transfer functions that link measurable properties of the landscape 

(e.g., clay and sand contents, percent of organic matter) with model parameters (e.g., soil 

porosity, saturated soil hydraulic conductivity) typically include fixed coefficients. These 

coefficients should ideally be described by a sampling distribution, as they are commonly 

obtained through statistical analysis of data samples taken for a given region and spatial domain. 

Similarly, ‘observable’ model parameters (e.g., saturated hydraulic conductivity, soil porosity, 

vegetation height) are defined as single values for each model element. This is problematic 

because such parameters are difficult to define precisely given large within-element spatial 

heterogeneity and errors associated with direct and indirect measurement techniques. More 

worrisome, many of the functional ‘free’ parameters (e.g., coefficients in conceptual baseflow 

and surface runoff parameterizations) are hard-coded as spatially constant values. Setting model 

parameters to fixed values effectively treats them as physical constants, neglecting the large 

uncertainty in their estimates and the large impact that they have on model predictions. 

In this section we provide an example of the impact of fixed model parameters through 

analysis of the Noah Land Surface Model with Multiple Parameterization Options  

(Noah-MP; Niu et al., 2011). We discuss the existence of hard-coded model parameters, and 

demonstrate how hydrological simulations can be very sensitive to their values. 
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3.3.1 Hard-coded model parameters 

Although Noah-MP has look-up tables to define soil and vegetation parameter values for 

different soil and land cover types, it incorporates several hard-coded parameters for snow and 

runoff processes. This is a typical problem in many complex physics based models, such as the 

Variable Infiltration Capacity model (VIC; Wood et al., 1992; Liang et al., 1994, 1996) and the 

Community Land Model (CLM; Oleson et al., 2010). Many other examples can be found in the 

literature, including models that have hard-wired constants based on limited experimental data.  

As an example, Figure 3.1 displays a section of code wherein Noah-MP developers have 

commented that several snow and runoff parameters could be treated as “adjustable”; however, 

adjusting these parameters requires manual alteration of the appropriate lines of code and 

subsequent recompiling of the model subroutine before a new parameter trial can be conducted. 

This severely constrains the ability to conduct extensive sensitivity analysis and/or parameter 

estimation. Similarly, hard-coded parameters can be found in the CLASS snow albedo 

parameterization (Figure 3.2), where minimum and maximum snow albedo have been set to 0.55 

and 0.84 respectively (dimensionless units), and time decay in snow albedo has been set to 0.01 

(units of h
-1

). One would expect these hard-coded parameters to vary regionally and seasonally, 

and there is no apparent justification for setting the parameter values to globally fixed constants 

when, in fact, they are subject to large estimation and scaling uncertainties, and therefore more 

appropriately described by probability density functions. 
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Figure 3.1: Section of the source code of Noah-MP containing some fixed runoff and snow model parameters. 

 

 

Figure 3.2: Section of the source code of Noah-MP containing the snow albedo CLASS parameterization. 

3.3.2 Model performance and parameter sensitivity 

In this example, we configure Noah-MP to simulate runoff in three headwater catchments 

in the Colorado River basin: the Yampa River at Steamboat Springs (1468 km
2
), the East River 

at Almont (748 km
2
) and the Animas River at Durango (1819 km

2
). The predominant land 
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surface cover of these basins is deciduous and evergreen forest, while the hydrology is mainly 

dominated by snow processes. All hydrologic model simulations were forced using hourly 

reanalysis outputs from the Weather Research and Forecasting (WRF) model (Skamarock et al. 

2008), using the 4-km simulations described by Rasmussen et al. (2014).  

The period for hydrologic model simulations is October 2000 through September 2008 

(hourly time steps), and the first two years are used as a warm-up period (so that analysis is 

restricted to October 2002 through September 2008). No horizontal routing of surface overland 

flow, subsurface flow, or channel flow is performed; instead, basin-average runoff is computed 

as the average of the 1D (vertical) 4-km model grid cells. Finally, model outputs are aggregated 

to daily time steps to compute evaluation metrics. 

Figure 3.3a displays scatter plots with runoff model simulations versus observations 

(period Oct/2002 – Sep/2008) at the three basins of interest, using default parameter values. The 

RMSE values and Nash-Sutcliffe efficiencies indicate that model performance is quite poor, 

especially at the East River and Animas River basins, and that parameter calibration is a 

necessary step to improve model fidelity. This point seems obvious for the hydrologic 

community (especially for applied hydrologists relying on traditional bucket-style rainfall-runoff 

models), where tremendous advances have been achieved in terms of parameter estimation 

methods (e.g., Duan et al., 1992; Gupta et al., 1998; Yapo et al., 1998; Vrugt et al., 2003a, 

2003b, 2006; Pokhrel et al., 2012), sensitivity analysis (e.g. Tang et al., 2007; van Werkhoven et 

al., 2008; Foglia et al., 2009; Wagener et al., 2009b; Göhler et al., 2013; Rakovec et al., 2014), 

ensemble simulation and verification (e.g., Carpenter and Georgakakos, 2004; De Lannoy et al., 

2006; Pauwels and De Lannoy, 2009) and parameter uncertainty quantification (e.g. Beven and 

Binley, 1992; Uhlenbrook et al., 1999; Vrugt et al., 2005; Kavetski et al., 2006a, 2006b; Kuczera 
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et al., 2006; Thyer et al., 2009).  However, use of these techniques is less common in the land 

surface community, where most attention has been focused on improving process 

parameterizations, typically using fixed parameter values obtained from the literature.  

 

 

Figure 3.3: Model streamflow simulations versus observations for the period Oct/2002 - Sep/2008 using (a) 

default parameter values (top row), and (b) calibrated values for six originally hard-coded parameters: f, 

Rsb,max, λm, ms, αmin and κ.  (bottom row). The solid line is the 1:1 line, and the dotted line is the linear 

regression. In all panels, r
2
, RMSE and NSE denote coefficient of determination, root mean squared error 

and Nash-Sutcliffe efficiency, respectively. 

 

With the aim to identify which parameters have the largest impact on model predictions, 

we use the Distributed Evaluation of Local Sensitivity Analysis (DELSA) method (Rakovec et 

al. 2014) to evaluate the sensitivity of a suite of metrics (Table 3.1) to variations in the model 
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parameters (Table 3.2). All parameters listed in Table 3.2 can be considered ‘observable’ (i.e., a 

priori values can be specified by direct measurement or using indirect procedures), except the 

following (i.e., ‘free’ model parameters): empirical canopy wind parameter (wrp), runoff decay 

factor (f), baseflow coefficient (Rsb,max), maximum surface saturated fraction (Fsat), exponent 

used in the curves for the melting season (ms) and the exponent in snow decay albedo 

relationship (κ). From these free parameters, five of them were originally hard-coded (f, Rsb,max, 

Fsat, ms and κ). It is noteworthy that this DELSA application required modification of the source 

code in order to ‘uncover’ all runoff and snow parameters (i.e., increase model agility), whose 

values were originally hard-coded. 

 

Table 3.1: Objective functions included in DELSA 
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Table 3.2: Parameters of Noah-MP considered in this example application. The parameter ranges investigated (columns 5 and 6) were selected based on 

literature review of the different model components. The explanation of ranges in multipliers (if the parameter is spatially distributed in the basin) or 

raw values (if the parameter is spatially uniform) is provided in the ‘Comment’ column, together with the associated references. 

Parameter Description Units Distributed* Range Comment 

        min max   

  Soil parametersa           

b Clapp-Hornberger b parameter - yes 0.42 1.84 Multipliers obtained from b exponent values in the range 2 - 15 (Cosby et al. 1984). 

θsat porosity m3 m-3 yes 0.88 1.14 Multipliers obtained from porosity values in the range 0.35 - 0.53  (Cosby et al. 1984), 

porosity constrained to be larger than field capacity. 

Ψsat saturated soil matric potential m m-1 yes 0.15 2.20 Multipliers obtained from saturated matric potential ranging from 0.02 to 0.78 (Cosby et al. 

1984). 

Ksat saturated soil hydraulic conductivity  m s-1 yes 0.20 9.56 Multipliers obtained from range 5×10-7 – 5×10-5 for ksat (Cosby et al. 1984). 

kqtz soil quartz content - yes 0.29 1.37 

Multipliers obtained from range 0.1-0.82 for quartz content (Hogue et al. 2005; Rosero et al. 

2010). 

  Vegetation parametersa           

z0,veg momentum roughness length m yes 0.17 2.39 Multipliers obtained from range 0.01-2.6 m (Dorman and Sellers 1989; Xia et al. 2012a). 

ρL leaf reflectance - yes 0.90 1.10 Multipliers based on average standard deviations reported by Asner et al. [1998]. 

ρS stem reflectance - yes 0.90 1.10 Multipliers based on average standard deviations reported by Asner et al. [1998]. 

τL leaf transmittance - yes 0.90 1.10 Arbitrary ±10 % multipliers, constrained by variations in leaf reflectance (ρ + τ ≤ 1). 

τS stem transmittance - yes 0.90 1.10 Arbitrary ±10 % multipliers, constrained by variations in leaf reflectance (ρ + τ ≤ 1). 

χL leaf/stem orientation index - yes 0.50 1.67 Multipliers defined such that max. absolute orientation index is 0.5 (Prihodko et al. 2008). 

wrp empirical canopy wind parameter m-1 no 0.18 10 Obtained from Goudriaan [1977]. 

Tmin minimum temperature for photosynthesis K yes 1.00 1.03 Multipliers obtained from range 265-281 °K (Sacks et al. 2007). 

Vmax,25 maximum rate of carboxylation at 25° C μmol(CO2) m-2 s-1 yes 0.65 1.35 Multipliers obtained from standard deviations reported by (Kattge et al. 2009). 

mps slope of conductance-to-photosynthesis relationship - yes 0.67 1.33 Multipliers obtained from the slope range 4 - 12 (Sellers et al. 1996; Wolf et al. 2006). 

SAIfw monthly stem area index, one sided (fall/winter) m2 m-2 yes 0.10 2.14 Multipliers obtained from stem area index range 0.01 - 3.0 (Otto et al. 2011). 

SAIss monthly stem area index, one sided (spring/summer) m2 m-2 yes 0.10 1.88 Multipliers obtained from stem area index range 0.01 - 3.0 (Otto et al. 2011). 

LAIfw monthly leaf area index, one sided (fall/winter) m2 m-2 yes 0.10 3.18 Multipliers obtained from leaf area index range 0.01-7 (Myneni et al. 1997; Dorman and 

Sellers 1989; Hastie et al. 2002). 

LAIss monthly leaf area index, one sided (spring/summer) m2 m-2 yes 0.10 1.27 Multipliers obtained from leaf area index range 0.01-7 (Myneni et al. 1997; Dorman and 

Sellers 1989; Hastie et al. 2002). 

  Runoff parametersb     

  

  

f runoff decay factor  m-1 no 1.0 10 Based values reported in Beven [1997]. 

Rsb,max baseflow coefficient mm s-1 no 0.5 8 Based on Niu et al. [2005]. 

λm grid cell mean topographic index - no 7.35 13.65 Variations up to 30 % from the default hard-coded value (10.35). 

Fsat maximum surface saturated fraction - no 0.29 0.46 Based on Niu et al. [2005]. 

  Snow parametersb     

  

  

ms exponent used in the curves for the melting season - no 0.5 3 Based on range in Niu and Yang [2007]. 

z0,sno snow surface roughness length m no 0.0001 0.01 Based on range suggested by Marks and Dozier [1992] and Reba et al. [2012]. 

θlwc liquid water holding capacity for snowpack m3 m-3  no 0.01 0.08 Based on ranges in Amorocho and Espildora [1966] and Anderson [1973]. 

SWEnew new snow mass to fully cover old snow mm no 0.5 5 Minimum is 50 % of default value; maximum obtained from Xia et al. [2012]. 

αmin minimum snow albedo - no 0.45 0.65 Based on Aguado [1985] and Dirmhirn and Eaton [1975]. 

αmax maximum snow albedo - no 0.70 0.95 Based on Aguado [1985] and Essery and Etchevers [2004]. 

κ exponent in snow decay albedo relationship h-1 no 0.001 0.1 Based on Essery and Etchevers [2004]. 

*If the parameter is distributed, its sensitivity is analyzed on the basis of its multipliers. Although description and units refer to actual parameters in Noah-MP, parameter values in bold represent the multiplier 

values (instead of actual parameters). 
aExposed to users 
bHard-coded parameters 
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The results in Figure 3.4 demonstrate very high sensitivity for model parameters that 

were originally hard-coded. Specifically, RMSE is most sensitive to the monthly leaf area index 

for spring/summer (LAIss), the runoff decay factor (f), the exponent used in the snow depletion 

curves for the melting season (ms) and the exponent in the snow decay albedo relationship (κ). In 

the case of the runoff ratio (%BiasRR), the most sensitive parameter is f, followed by the Clapp-

Hornberger b parameter, the saturated hydraulic conductivity (Ksat), the slope of conductance-to-

photosynthesis relationship (mps) and LAIss. When looking at variations in flashiness of runoff 

(%BiasFMS), the most sensitive parameters are f and κ, followed by the Clapp-Hornberger b 

parameter and the empirical canopy wind parameter (wrp). Finally, the sensitivity in runoff 

seasonality (%BiasCTR) is mostly explained by variations of ms, κ and the minimum snow 

albedo, αmin (i.e., snow parameters). The reader can also note that, among free parameters, 

relative differences in sensitivities between formerly hard-coded parameters and those exposed 

depend on the metric examined. For instance – when looking at RMSE – f, ms and κ (originally 

hard-coded) are the most sensitive free parameters, followed by wrp and Rsb,max which have 

similar sensitivity. Nevertheless, wrp becomes the second most sensitive free parameter (after f) 

when the objective criterion is %BiasRR. Overall, the most sensitive parameters are those that 

were formerly hard-coded – this result holds for all basins and all objective functions. 
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Figure 3.4: 90 % quantiles of the full frequency distribution of local first order sensitivity indices for several 

objective functions: root mean squared error (RMSE), percent bias in runoff ratio (%BiasRR), percent bias 

in flashiness of runoff (%BiasFMS) and percent bias in runoff seasonality (%BiasCTR). The uncertainty 

estimates are obtained by bootstrapping (resampled 1000 times). The vertical bold line in the boxplot is the 

median, the body of a boxplot shows the interquantile range (Q75–Q25) and the whiskers represent the 

sample minima and sample maxima. In DELSA, the assessment of parameter sensitivity is based on local 

gradients of the model performance index with respect to model parameters at multiple points throughout 

the parameter space. DELSA indices scale between 0 and 1, and larger values are associated with very 

sensitive parameters. 
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In summary, the response to high-intensity precipitation events, flashiness of runoff and 

seasonality are highly sensitive to variations of snow and runoff parameters (all of them 

originally hard-coded), while soil and vegetation parameters become more relevant when 

evaluating model behavior in terms of evapotranspiration processes. This suggests that 

calibration efforts aimed to improve model fidelity should include some of the hard-coded 

parameters in Table 3.2. To test this idea, we perform a simple calibration experiment aimed to 

adjust six runoff and snow parameters (f, Rsb,max, λm, ms, αmin and κ) using the Shuffled Complex 

Evolution (SCE-UA) algorithm (Duan et al., 1992, 1993), by minimizing the root mean squared 

error between observed and simulated daily streamflow (RMSE) for the period October 1, 2002 

to September 30, 2008. These parameters were selected because they showed the largest 

sensitivities for RMSE among formerly hard-coded parameters. The results displayed in Figure 

3.3b clearly demonstrate how the inclusion of these parameters in the calibration process 

improves model accuracy (e.g., higher NSE and r
2
, and lower RMSE). 

3.3.3 The physical basis of hard-coded parameters 

Complex models represent physical processes at a fine level of granularity (i.e., detail), 

and, as such, it is possible to impose much stronger a-priori constraints on model behavior in 

comparison to simpler, conceptual models. Noah-MP explicitly simulates all energy fluxes at the 

snow surface, as opposed to more parsimonious temperature-index models that represent 

snowmelt as an empirical function of temperature.  Process-based models can therefore simulate 

accelerated snow melt during rain-on-snow events when turbulent heat fluxes are an important 

component of the snow-surface energy balance (e.g., Marks et al. 1999), whereas such processes 

are poorly represented in the temperature-index snow models as the empirical relationships 

between temperature and snow melt are applied consistently to all snow melt events. While the 
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temperature-index snow models may have fewer parameters, their values can be difficult to 

constrain correctly because the empirical functions implicitly represent a wide range of physical 

processes. 

Although the strong physical basis of more complex process-based models provides 

powerful justification for their widespread use, it is important to recognize that empirical 

functions are widely used in such models at a much finer level of granularity. For example, 

consider the albedo decay parameterization from the source code illustrated in Figure 3.2, noting 

that the albedo decay parameter (κ) is one of the most sensitive model parameters for the criteria 

examined here (Figure 3.4). The physical processes affecting decreases in snow albedo over time 

include rounding and growth of the snow grains, deposition of dust on the snow surface, among 

others. These physical processes are included in some models (e.g., Jordan 1991; Flanner et al. 

2007), but in Noah-MP the albedo decay rate is set to be constant over time. The lumping of 

multiple physical processes into a single albedo decay parameter is hence very similar to the 

lumping of all snow-surface energy fluxes into a single empirical temperature-melt expression, 

and there is no physical basis to treat time decay in snow albedo as a fixed constant in both space 

and time. This is a common problem, since other more flexible albedo parameterizations 

reported in the literature (e.g., Yang et al. 1997) also lack a proper justification for fixing 

parameters defining the albedo decay rate.  

This specific and compelling example underscores a fundamental issue in process-based 

modeling: it is important to carefully specify the uncertainty of the different model parameters 

and process parameterizations (Montanari and Koutsoyiannis 2012), and retain the flexibility to 

adjust the model parameters to suit different hydroclimatic regimes. Because most physical 

processes are parameterized to some extent, treating uncertain model parameters as fixed 
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physical constants can unnecessarily constrain the agility of process-based models and severely 

limit their applicability to scales and locations for which these “parameters” have not been tuned. 

Furthermore, the reasons for imposing hard wired parameters may be obvious to the original 

model developers (e.g., related to the lack of measurements at the spatial scales of application, or 

the need to impose boundaries for some coefficients), these reasons may be less obvious to future 

model developers and users. Exposing parameter values to users is, in our opinion, a transparent 

and informative practice that supports future model development and improvement. Further, it is 

naive to believe that these hard-coded numerical values (e.g., the value 0.55 in the equation of 

Figure 3.2) can be denoted by precise values instead of probability density functions, considering 

that they have been either specified based on order-of-magnitude considerations or estimated via 

statistical analysis. 

Moreover, ignoring the spatial scales for which physically-based equations describing 

fluxes of water and energy were derived (e.g., Richards’ equation) and the spatial scale at which 

the empirical parameterizations were originally estimated (e.g., the Clapp-Hornberger pedo-

transfer-functions or the saturated soil hydraulic conductivity in Table 3.2) will induce large 

uncertainties due to inappropriate scaling or averaging procedures, which in turn will propagate 

into model states and fluxes. Hydrologic theory (e.g., Darcy’s law) developed at the scale of 

laboratory experiments (0.01–0.1 m) may be appropriate for predictions at the point scale, but 

may need to be modified for applications at larger scales (e.g., hillslope, catchment and beyond) 

due to effects of non-linearities, heterogeneities of landscape properties (e.g., vegetation, soils) 

and preferential flow of water through the soil matrix (Beven 2002). For instance, although the 

Clapp-Hornberger b parameter (as defined in Table 3.2) appears to be valid for a grid whose area 

is either 1 m
2
 or 100 km

2
 (i.e., it is implied to be quasi-scale invariant), it depends on the soil 
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texture (Clapp and Hornberger 1978), implying that the equations at which this parameter 

appears should be estimated at a scale for which the soil texture can be assumed quasi-

homogeneous but still with some degree of uncertainty. Since a cell of 10 km
2
 will contain many 

kinds of soil types, a scaling procedure should be performed to estimate the “effective” soil 

saturated hydraulic conductivity that best represents the sub-grid variability of soil within the 

given cell (Samaniego et al. 2010). 

3.4 Where to from here? 

Our call for increased agility of process-based models contributes to the debate on the 

“correct” approach to modeling (e.g. Freeze and Harlan, 1969; Beven, 2002; Reggiani and 

Schellekens, 2003; Loague and VanderKwaak, 2004). “Physics-based” models reflect a high 

level of confidence in the spatio-temporal representativity of physics-based equations describing 

complex systems, encoding very strong a-priori assumptions regarding individual processes (e.g. 

Abbott et al., 1986; Wigmosta et al., 1994; VanderKwaak and Loague, 2001; Ivanov et al., 2004; 

Maxwell and Miller, 2005; Rigon et al., 2006; Qu and Duffy, 2007; Lawrence et al., 2011; Niu et 

al., 2011), which hinder the representation of hydrologic process idiosyncrasies in specific 

catchments. By contrast, “conceptual” models begin with limited a-priori assumptions and infer 

knowledge through interpretation of how catchments respond to external forcing (e.g. Burnash et 

al., 1973; Lindström et al., 1997; Perrin et al., 2003; Fenicia et al., 2011), but are typically highly 

parameterized and do not explicitly represent many of the dominant physical processes necessary 

to reasonably simulate hydrological processes under changing hydroclimatic and land use 

conditions. The relative strengths of the so-called “physics-based” and “conceptual” modeling 

philosophies are therefore in their respective reliance on prior knowledge and data-based 
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inference. A key challenge in moving forward is to integrate these strengths to improve model 

representation of hydrological processes. 

Finding a good balance between strong prior knowledge and data-based inference requires 

stepping back from specific model equations and examining the major decisions in the 

development of process-based hydrological models: (1) what schemes should we use to represent 

spatial variability and hydrologic connectivity throughout the model domain; (2) what 

parameterizations should we use to simulate the fluxes of water and energy at the spatial scale of 

the model discretization; and (3) what values should we use for the model parameters. When 

viewed from this perspective, there is no real distinction between physics-based and conceptual 

models: there is a continuum of modeling approaches (Gupta et al. 2012), with inter-model 

differences simply defined by decisions on which processes are represented explicitly, the spatial 

resolution used to simulate them, and the methods used to estimate model parameter values. The 

fundamental question follows from the key challenge just expressed: How can we integrate our 

understanding of environmental physics with the available data to both define the structure of a 

hydrological model and define suitable values for model parameters? 

In our opinion, improving hydrological models requires developing effective methods to 

define and discriminate among competing modeling options, including both model structure and 

model parameters. This involves both (1) increasing the physical realism of traditional rainfall-

runoff models and reducing the reliance on traditional model calibration methods that are 

plagued by compensatory errors and unrealistic hydrologic process simulations; and (2) 

increasing the agility of physically-motivated modeling systems to better suit local conditions. 

Modeling advances require explicitly simulating all dominant biophysical and hydrological 

processes, and focusing attention on detailed process-based evaluation of the suitability of 
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different methods to represent spatial variability and hydrological connectivity, different scale-

appropriate flux parameterizations, and different approaches to estimate model parameter values. 

Implementing this vision requires effective methods for a controlled and systematic approach to 

model development and improvement (Clark et al. 2011a; Gupta et al. 2012), obtained by 

incorporating multiple modeling options into agile physics-based modeling frameworks and by 

applying a process-based philosophy for model evaluation and diagnosis. 

Further, achieving this vision requires reconciling more agile models with the available 

data in order to identify suitable model structures and model parameter values. A useful solution 

to this problem can be found in the ‘diagnostic approach’ for model evaluation, based on 

confronting information contained in the data with the information provided by models (Gupta et 

al. 2008), and in the use of probabilistic representation of process parameterization equations 

(Bulygina and Gupta 2011). The diagnostic approach has proved to be useful for finding optimal 

parameter sets that provide a more realistic representation of catchment processes (e.g., Pokhrel 

and Gupta, 2009; van Werkhoven et al., 2009; Kollat et al., 2012; Pokhrel et al., 2012). The 

combined use of a diagnostic evaluation approach with inverse estimation and data assimilation 

methods (see Liu and Gupta, 2007 and Gupta et al., 2012 for an overview of techniques) can 

reduce the dimensionality of the model evaluation problem (e.g., focus on a subset of processes), 

and facilitate the reconfiguration of agile models (e.g., refinement of model equations, state and 

parameter updating) using information extracted from new datasets. 

3.5 Concluding remarks 

In this commentary we argue that the relatively poor performance of very complex 

physics-based hydrologic models can originate from unnecessary constraints that make it 

difficult to experiment with different kinds of spatial variability and process parameterizations.  
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As in the example presented here, it is typical for parameters in complex models to be specified 

using values reported in the literature, often based on limited data or order-of-magnitude 

considerations. This practice constrains our abilities to conduct extensive analysis and limits our 

opportunities to improve model fidelity and characterizing model uncertainty. 

In view of this, we encourage an expanded and more comprehensive evaluation of critical 

modeling assumptions, building on the advances in multiple hypothesis modeling methodologies 

(e.g. Pomeroy et al., 2007; Clark et al., 2008, 2011; Fenicia et al., 2011; Niu et al., 2011; Essery 

et al., 2013). Future modeling systems should incorporate the capability to modify 

representations of spatial variability and hydrologic connectivity, individual process 

representations, numerical schemes, and couplings with other model components (e.g., 

atmosphere, sediment transport). Ongoing development of more agile versions of Noah-MP is 

just one example of active research in this area. Moreover, model reconfiguration capabilities 

should be able to cater to variable data availability (e.g., more complex model structures and 

meaningful specification of parameter values as more information is available) and integrate 

mechanisms for uncertainty quantification and analysis (e.g., ensemble generation, data 

assimilation, statistical post-processing and visualization). Such capabilities are necessary to 

facilitate diagnosis of model adequacy problems, refine model representations of natural 

processes, understand the major sources of uncertainty in model simulations, and identify critical 

areas for future research. 

Finally, future research should also investigate robust physically-based scaling theories 

that can explain, and hence simulate, the heterogeneity of biophysical and hydrologic processes 

across multiple spatial scales. Progress in this direction will facilitate improved predictions of 

water and energy fluxes across different scales and locations, while constituting a necessary step 
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towards addressing the grand challenge of hyper-resolution large-scale modeling proposed by 

Wood et al. (2011). 
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CHAPTER 4:  Effects of hydrologic model choice and calibration on the portrayal of 

climate change impacts 

4.1 Introduction 

There is now general agreement in the scientific community that the rising levels of carbon 

dioxide in the atmosphere are modifying historical climate conditions (IPCC 2013). One of the 

most relevant impacts of future climate change on society is changes in regional water 

availability for municipal, industrial, mining, irrigation, hydropower generation and other 

activities (Xu 1999; Brekke et al. 2009; Wagener et al. 2010). This situation is particularly 

critical for the Colorado River Basin (CRB) due to the susceptibility of runoff variations due to 

changes in precipitation and temperature, which stem from changes in evapotranspiration 

processes and snowpack accumulation/melt patterns (Christensen and Lettenmaier 2007). This 

vulnerability, together with the importance of the CRB for water resources supply for the 

growing regions of western and southwestern US, has motivated many climate change studies in 

this area, based on different modeling approaches and, therefore, resulting in a diverse set of 

conclusions (Milly et al. 2005; Christensen and Lettenmaier 2007; Hoerling and Eischeid 2007; 

Ray et al. 2008; Hoerling et al. 2009; Rasmussen et al. 2011, 2014; Miller et al. 2011, 2012; 

Vano et al. 2012, 2014). 

The large uncertainty in estimates of hydrologic changes (i.e. changes in hydrologic 

variables obtained from hydrologic models) due to climate perturbation is not surprising for the 

hydrologic research community. In recent decades, many sources of uncertainty for quantifying 

climate change impacts on water resources have been identified (Chen et al. 2011), including: (1) 

selection of greenhouse gas emission scenarios, (2) choice of climate model(s), (3) specification 

of climate model initial conditions, (4) choice of meteorological forcing downscaling methods, 
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(5) selection of hydrological model structures and (6) choice of hydrological model parameter 

sets. Understanding risks associated with climate change requires estimating the uncertainty at 

each step of the modeling process (Xu 1999; Bergström et al. 2001; Wilby 2005; Wilby and 

Harris 2006; Graham et al. 2007; Chen et al. 2011; Vano et al. 2014). Among these elements, the 

choices of climate model (Murphy et al. 2004) and downscaling methods (Gutmann et al. 2012, 

2014) have received significant attention, because recent studies have found that these are the 

main contributors to overall uncertainty (Wilby and Harris 2006; Chen et al. 2011). 

Although a considerable number of past studies focused on the treatment of uncertainty in 

climate change projections, only a few have focused on hydrologic model structures and 

parameter uncertainty. For instance, Wilby (2005) explored parameter stability and identifiability 

using two hydrologic model structures, finding that (i) transferability of model parameters 

between wet and dry periods depends on the representativeness of the training period, and that 

(ii) model structure uncertainty on projected streamflow can be comparable to the uncertainty 

due to choice of emission scenario when the simplest model (low flows period) is considered. 

Jones et al. (2006) applied three different models in 22 Australian catchments covering a wide 

range of climates, and demonstrated that runoff variations due to changes in rainfall and 

evapotranspiration are clearly model dependent. Jiang et al. (2007) compared outputs from six 

hydrological models for mean annual and monthly changes in hydrologic variables due to 

perturbations of precipitation and temperature, finding that (i) differences across models depend 

on the climate scenario, the season and the variable of interest, and (ii) models without 

thresholds in soil moisture have larger differences in projected changes in soil storage. Poulin et 

al. (2011) used two different hydrological models to compare the effects of model structure 

against parameter equifinality on the uncertainty of hydrologic simulations, finding that model 
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structure uncertainty dominates. More recently, Miller et al. (2012) found that hydrologic model 

choice has a large effect on the portrayal of climate change impact in the San Juan River basin. 

Vano et al. (2012) evaluated hydrologic changes due to perturbed climate scenarios using six 

hydrologic/land surface models in the CRB, demonstrating large inter-model differences in 

runoff changes due to shifts in precipitation and temperature. Surfleet et al. (2012) compared a 

large-scale approach, a basin scale-approach and a site-specific approach in the Santiam River 

Basin (USA), showing that differences in the portrayal of climate change impacts can be 

attributed to scale and the ability of the models to capture local hydrological processes. 

Despite the increasing awareness of the implications of hydrologic model structures on the 

estimation of climate change impacts on hydrology, the effects of model representation of 

specific processes (e.g. evapotranspiration, snow accumulation and ablation, percolation) on the 

overall hydrologic model response still remains unclear. In view of this, the main goal of this 

chapter is to compare hydrologic changes obtained with different hydrologic model structures in 

terms of annual water balance, monthly simulated processes (e.g. ET, snowpack, soil moisture) 

and signature measures of hydrologic behavior (e.g. runoff seasonality, long-term baseflow), for 

uncalibrated and calibrated model simulations. 

4.2 Approach 

4.2.1 Meteorological forcings 

Meteorological data from WRF simulations is available at hourly time steps and a 4 km-

resolution for both historical and PGW conditions during the period October/2000 - 

September/2008. The variables and temporal disaggregation used depend on specific hydrologic 

model requirements (further details in Chapter 2). Figure 4.1 includes basin-averaged monthly 

precipitation and temperature from WRF for current and future climate scenarios over the period 
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October/2002 – September/2008. Note that PGW simulations reflect increases in precipitation 

during fall/winter and the beginning of spring, and a decrease in precipitation during summer 

over all basins. On the other hand, the increase in temperature tends to be uniform throughout the 

year in all basins. These signals in precipitation and temperature changes are present at each 

individual water year (not shown here), although monthly precipitation amounts can vary at the 

basins of interest from year to year. 

 

 

Figure 4.1: Basin-averaged monthly precipitation (top panel) and temperature (bottom panel) values for 

CTRL (dashed lines) and PGW (solid lines) WRF outputs used in this study (period Oct/2002 - Sep/2008). 
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The single choice of GCM, emission scenario and the time period over which the climate 

perturbation was obtained is certainly an important limitation for this study, since they affect the 

magnitude and direction of climatic shifts. Indeed, Vano et al. (2014) demonstrated the large 

effects of these decisions on long-term runoff projections over the upper CRB, including results 

from 19 GCMs and three emission scenarios (A2, A1B and B1) obtained by Seager et al. (2007) 

and Christensen and Lettenmaier (2007). However, they also noted that higher future greenhouse 

gas emissions broadly translate to a warmer and, in most cases, drier climate, implying that a 

general decrease in runoff should be expected in this region. Although high-resolution climate 

models limit the number of scenarios that can be analyzed, they offer a more realistic 

representation of climate features that strongly depend on terrain complexity (Rasmussen et al. 

2011, 2014), providing better meteorological fields for the assessment of climate change impacts 

on hydrology. 

4.2.2 Hydrologic/land surface models 

We choose four hydrologic/land surface models: the US Geological Survey's 

Precipitation Runoff Modeling System (PRMS; Leavesley et al. 1983; Leavesley and Stannard 

1995), the Variable Infiltration Capacity  model (VIC; Wood et al. 1992; Liang et al. 1994, 1996) 

the Noah Land Surface Model (Noah-LSM; Ek 2003; Mitchell et al. 2004) and the Noah Land 

Surface Model with Multiple Parameterizations (Noah-MP; Niu et al. 2011; Yang et al. 2011). 

Further details on inter-model differences, information requirements and model setup are 

included in Chapter 2. 
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4.2.3 Experimental setup 

All model simulations are carried out for the period between October 1, 2000 and 

September 30, 2008, using the first two years to initialize model states.  As done for many past 

large scale (i.e., continental to global scale) hydrologic modeling experiments (e.g. Mitchell et al. 

2004; Gerten et al. 2004; Xia et al. 2012b), we first compute hydrologic changes using default 

parameter values obtained from the information sources described in Table 2.2. Therefore, a 

comparison of hydrologic change estimates obtained from uncalibrated (i.e. use of default 

parameters) and calibrated model simulations will provide a comprehensive assessment of the 

caveats behind traditional methodologies used for climate change impact evaluation. 

We calibrate all the models for all basins with the Shuffled Complex Evolution (SCE-

UA) algorithm (Duan et al. 1992, 1993) by minimizing the root mean square error between 

observed and simulated daily streamflow for the period between October 1, 2002 and September 

30, 2008. Given the short length of WRF reanalysis datasets and that our main priority is to 

analyze hydrologic change signals, we decided to perform calibration and compute hydrologic 

changes over the entire period Oct/2002 – Sep/2008 instead of splitting it into calibration and 

validation datasets. In this study, runoff from hydrologic model simulations is obtained as the 

sum of surface runoff and baseflow, including also interflow if the model is PRMS. 

PRMS does not have an explicit river network routing scheme for streamflow; instead, it 

has a cascade module used to define connections for routing flow from upslope to downslope 

hydrologic response units and stream segments and among ground-water reservoirs (Markstrom 

et al. 2008). In VIC, Noah-LSM and Noah-MP, no horizontal routing of surface overland flow, 

subsurface flow, or channel flow is performed. Instead, basin-average runoff is taken as the 

average of the 1D (vertical) 4-km model grid cells’ runoff. During the calibration process, we 
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preserve the spatial variability of a priori model parameters (in case they are spatially distributed) 

through the adjustment of multiplier values that are applied for each parameter within the entire 

watershed. We adjust only those parameter multipliers identified as the most sensitive after 

performing a Distributed Evaluation of Local Sensitivity Analysis (DELSA; Rakovec et al. 

2014). The reader is referred to Appendix A for a list with the parameters included in the 

calibration of each model. 

Once the calibration process is finished, hydrologic changes are computed for the period 

Oct/2002 - Sep/2008 by forcing the models with the same meteorological datasets used for 

uncalibrated simulations. 

4.3 Results and discussion 

4.3.1 Model performance 

Figure 4.2 summarizes model performance for the period October/2002 - 

September/2008 in terms of mean annual streamflow, monthly streamflow and flow duration 

curves, for both uncalibrated and calibrated simulations. None of the hydrologic model structures 

considered in this study are able to reproduce seasonal runoff patterns or flow duration curves 

using default parameter values (Figure 4.2a). Although this is not surprising and has been widely 

reported in the literature, many studies that seek to characterize the water balance at the 

continental scale make use of non-calibrated or semi-calibrated land surface models (e.g. 

Mitchell et al. 2004; Xia et al. 2012b). Importantly, the inclusion of a 'classic' calibration process 

based on the minimization of the root mean square error (RMSE) between simulated and 

observed total runoff still leaves inconsistencies across different model structures (Figure 4.2b).  

Some models show large errors in mean annual runoff or seasonal runoff patterns even after 

calibration, and the FDC is not accurately represented by any model, particularly for low-flows. 
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Figure 4.2: Historical streamflow simulation outputs for the period Oct/2002 - Sep/2008 for all basins: mean 

annual streamflow for all water years (top), mean monthly flows (middle) and flow duration curves (bottom). 

 

In order to assess how much model performance improves functional catchment behavior 

through a traditional single-objective calibration strategy, we analyze the differences between 

simulated and observed values of signature measures of hydrologic behavior for both 

uncalibrated and calibrated model simulations (Figure 4.3). Parameter adjustment clearly 

improves the simulation of those signatures whose formulations are closer to the objective 

function used for calibration (in this case RMSE, which gives more relative importance to high 

flows). Consequently, calibration results in smaller inter-model differences in the runoff ratio 

(RR), the response to large precipitation events (FHV) and mid-range flows (FMM). On the 

other hand, inter-model differences in the runoff seasonality (CTR), the flashiness of runoff 

(FMS) and baseflow processes (FLV) are still pronounced after model calibration. Examples of 

this are Noah-MP and VIC at Yampa when looking at FMS, or Noah-LSM at East and PRMS at 



     

45 

 

Animas when evaluating baseflow processes (FLV), where calibration has actually degraded the 

signature measures. While a different objective function (e.g. based on the log of the flows) 

might improve other metrics (e.g. FLV), no single metric is likely to capture all catchment 

behaviors. 
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Figure 4.3: Difference between simulated (CTRL) and observed (Obs) signature measures of hydrologic 

behavior (period Oct/2002 - Sep/2008) obtained from uncalibrated (left panel) and calibrated (right panel) 

model runs.  
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4.3.2 Changes in annual water balance 

To what extent does parameter calibration decrease the uncertainty in projected changes 

in the overall water balance? To provide an initial answer to this question, we first analyze both 

uncalibrated and calibrated hydrologic model outputs in the Runoff-ET space for a single climate 

scenario. In Figure 4.4, the diagonal lines represent basin-averaged mean annual precipitation for 

current and future climate scenarios over a 6-year average period (Oct/2002 - Sep/2008). The 

intersection of these lines with the x-axis indicates that all precipitation becomes runoff, while 

the intersection with the y-axis indicates that the system converts all precipitation into ET. In the 

same figure, different symbols represent outputs coming from different hydrologic model 

structures for current climate (unfilled) and future climate (solid). A symbol located exactly on 

the diagonal lines represents a simulation with negligible changes in storage over the 6-year 

simulation period, whereas symbols located below the 1:1 line denote increases in storage, and 

those above denote decreases in storage. Inter-model differences in precipitation partitioning are 

represented by the distance between different symbols (unfilled or solid), while the distance 

between a particular symbol (e.g. star for Noah-MP) for current (unfilled) and future (solid) 

climate scenarios represents the hydrologic change signal. 

The results obtained from uncalibrated simulations (Figure 4.4a) indicate that inter-model 

differences are much larger than the magnitude of hydrologic change signals. Furthermore, all 

the models have the same hydrologic change signal direction (increase in ET and decrease or 

negligible change in mean annual runoff) with the exception of Noah-LSM, which projects 

increases in both runoff and ET (Figure 4.5a). As expected, inter-model differences in runoff 

(Figure 4.4b) decrease considerably (i.e. less variability along the x-axis) and the direction of 

hydrologic change signal (Figure 4.5b) is more consistent across models (i.e. less runoff and 



     

48 

 

more ET for future climate scenario) after calibration, with the exceptions of VIC at Yampa and 

PRMS at East. Noah-MP stands out from the rest of the models since the direction and 

magnitude of the signal is not substantially altered after the calibration (compare panels (a) and 

(b) in Figure 4.5). On the other hand, considerable shifts in projected runoff changes are obtained 

after calibrating PRMS at East (from -11 mm/year to 6 mm/year), VIC at Yampa (from -7 

mm/year to 4 mm/year) and Noah-LSM at all basins (from 8 mm/year to -21 mm/year at Yampa, 

from 6 mm/year to -21 mm/year at East, and from 12 mm/year to -13 mm/year at Animas). 

Moreover, an important result from Figure 4.4b is that inter-model differences in precipitation 

partitioning into runoff and ET are still comparable or even larger than the magnitude of 

hydrologic change signal, even after model calibration. 

 

 

Figure 4.4: Partitioning of current (CTRL) and future (PGW) basin-averaged mean annual precipitation 

(diagonal, mm/year) into basin-averaged mean annual runoff (x axis, mm/year) and evapotranspiration (y 

axis, mm/year) across different model structures and basins for the period Oct/2002 - Sep/2008. Results are 

displayed for (a) uncalibrated model simulations and (b) calibrated model simulations. 
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Table 4.1: Values of fractional change [(PGW - current climate)/current climate] in basin-averaged total accumulated precipitation, peak SWE, 

accumulated ET, accumulated surface runoff, accumulated baseflow and accumulated total runoff (sum of surface runoff and baseflow, including 

interflow if the model is PRMS) averaged for an average water year (Oct/2002-Sep/2008) obtained from both uncalibrated and calibrated model 

simulations. Also included are the changes in dates of maximum SWE for each basin/model, where the values represent control minus PGW dates of 

maximum SWE. 

Variable Yampa East Animas 

  PRMS VIC 

Noah-

LSM 

Noah-

MP Mean PRMS VIC 

Noah-

LSM 

Noah-

MP Mean PRMS VIC 

Noah-

LSM 

Noah-

MP Mean 

Total precipitation 0.02 0.02 0.02 0.02 - 0.02 0.02 0.02 0.02 - 0.03 0.03 0.03 0.03 - 

Max SWE                               

    uncalibrated -0.12 -0.08 -0.12 -0.09 -0.10 -0.10 -0.10 -0.14 -0.09 -0.11 -0.12 -0.14 -0.14 -0.10 -0.12 

    calibrated -0.16 -0.10 -0.11 -0.12 -0.12 -0.19 -0.04 -0.09 -0.04 -0.09 -0.22 -0.06 -0.08 -0.06 -0.11 

Date of max SWE                               

    uncalibrated 25 32 7 13 19.25 18 13 3 12 11.50 12 31 46 31 30.00 

    calibrated 25 2 7 0 8.50 25 4 4 6 9.75 12 1 5 0 4.50 

Evapotranspiration                               

    uncalibrated 0.04 0.07 0.01 0.10 0.05 0.07 0.09 0.01 0.13 0.07 0.07 0.06 0.01 0.12 0.06 

    calibrated 0.04 0.04 0.08 0.11 0.07 0.02 0.06 0.07 0.10 0.06 0.07 0.06 0.06 0.09 0.07 

Baseflow                               

    uncalibrated 0.03 -0.04 0.08 -0.08 0.00 -0.02 -0.05 0.05 -0.04 -0.02 -0.03 0.00 0.07 -0.04 0.00 

    calibrated -0.04 0.01 -0.08 -0.08 -0.05 0.01 -0.03 -0.04 -0.05 -0.03 -0.11 -0.02 -0.03 -0.04 -0.05 

Surface runoff                               

    uncalibrated -0.01 0.01 0.14 -0.12 0.01 -0.03 0.00 -0.01 -0.15 -0.05 -0.01 0.01 -0.01 -0.12 -0.03 

    calibrated 0.03 0.02 -0.08 -0.24 -0.07 0.03 -0.01 -0.14 -0.14 -0.07 0.01 0.00 -0.06 -0.09 -0.03 

Total runoff                               

    uncalibrated 0.00 -0.02 0.09 -0.10 -0.01 -0.03 -0.04 0.04 -0.09 -0.03 -0.02 0.00 0.06 -0.08 -0.01 

    calibrated 0.00 0.01 -0.08 -0.13 -0.05 0.02 -0.03 -0.06 -0.09 -0.04 -0.03 -0.02 -0.04 -0.05 -0.03 
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Figure 4.5: Projected changes in basin-averaged mean annual runoff (x axis, mm/year) and 

evapotranspiration (y axis, mm/year) across different model structures and basins for the period Oct/2002 - 

Sep/2008. Results are displayed for (a) uncalibrated model simulations and (b) calibrated model simulations. 

 

Table 4.1 summarizes fractional hydrologic changes on an annual basis for both 

uncalibrated and calibrated model simulations over a 6-year average period (Oct/2002 - 

Sep/2008). A suite of different variables is included in order to illustrate how model structure 

selection and parameter calibration may affect the direction and magnitude of projected changes 

on hydrologic systems. For instance, in the East River basin, the magnitude of fractional changes 

in maximum SWE increases with PRMS (from -0.10 to -0.19) and decrease with Noah-MP (from 

-0.09 to -0.04) after the calibration process. Another example is given by baseflow at the Yampa 

River basin: fractional changes switch from positive to negative values after calibrating PRMS 

(from 0.03 to -0.04) and Noah-LSM (0.08 to -0.08), but they shift from negative (-0.04) to 

positive (0.01) values if the model selected is VIC. Similarly, Table 4.1 illustrates the effects of 

calibration on fractional changes in total runoff (e.g. PRMS at East, VIC at Yampa, Noah-LSM 

at all basins), capturing (although in different units) the results from Figure 4.5 previously 

discussed. The key result from Table 4.1 is that the inter-model differences in the hydrologic 

impacts of the CCSM-WRF climate scenario vary substantially across models (i.e., the 



     

51 

 

differences in the columns of Table 4.1 for each basin), and the inter-model differences are larger 

than the mean multi-model change signal for most metrics. 

4.3.3 Monthly changes 

Figure 4.6 shows mean monthly runoff values obtained from all models for both 

uncalibrated and calibrated simulations over a 6-year average period (Oct/2002 - Sep/2008). As 

expected, the use of default parameters (Figure 4.6a) translates into very different catchment 

responses under current and future climate scenarios, and these differences are also reflected in 

projected monthly changes (PGW - CTRL). The largest and smallest changes in runoff are 

obtained from VIC and Noah-LSM, respectively, and the seasonality of these shifts differs 

substantially across models. For instance, the Noah-LSM simulates increases in runoff during 

February-April, extending to May for the Yampa River basin, and a decrease during May-June, 

while Noah-MP generates an increase in runoff during March-May, and a decrease during June-

September (Figure 4.6a). Much more consistent results across models are obtained when 

parameter calibration is performed (Figure 4.6b), and this is reflected in both the magnitude and 

seasonality of runoff variations. A key question that follows from here is whether inter-model 

similarities in runoff changes are due to inter-model agreement in changes of other water 

storages and fluxes. 
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Figure 4.6: Current (CTRL), future (PGW) and changes (PGW - CTRL) in basin-averaged monthly runoff 

for uncalibrated (left panel) and calibrated (right panel) model simulations over a six-average water year 

(Oct/2002 - Sep/2008). The back lines in the CTRL panels represent historical observations. 

 

With the aim to explore possible reasons for the (mis)match in projected runoff changes 

among different model structures, we analyze monthly changes in model states and fluxes 

obtained from both uncalibrated and calibrated runs (Figure 4.7). The variables included in this 

analysis are ET, snow water equivalent (SWE), soil moisture, baseflow and surface runoff. To 

improve consistency in the comparison across models, we consider only the top two soil layers 

for the computation of soil moisture storage with VIC, Noah-LSM and Noah-MP, and the 

addition of interflow to surface runoff for PRMS. The panels in Figure 4.7a show large 

differences in changes for ET, baseflow and surface runoff among models, while more consistent 

results in terms of seasonal cycles and amplitude are obtained for snowpack (except Noah-LSM) 

and soil moisture. However, inter-model differences of soil moisture and surface runoff are 

preserved or emphasized after the calibration process (Figure 4.7b). Furthermore, one can infer 

from the results displayed in Figure 4.6b and Figure 4.7b that the same runoff changes might be 

obtained using different hydrologic models due to very different mechanisms; i.e., internal 
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compensations of model structures and model parameter errors are adjusted through calibration 

in a way that allows similar responses from different watershed models. The clearest example in 

this case study is observed in the East River Basin, where monthly changes in runoff are very 

similar (Figure 4.6b); nevertheless, VIC compensates very large variations in soil moisture with 

other variables such as ET and baseflow, and PRMS does the same with large variations in ET, 

SWE and surface runoff. 

 

Figure 4.7: Monthly changes (PGW - CTRL) in basin-averaged fluxes and states (mm) for uncalibrated (left 

panel) and calibrated (right panel) model simulations over a six-average water year (Oct/2002 - Sep/2008). 

4.3.4 Projected changes in catchment behavior 

Finally, we compare the effects of model choice and parameter adjustment on projected 

changes in hydrologic signatures. Figure 4.8 illustrates differences between future (PGW) and 

current (CTRL) signature measures of hydrologic behavior for all (defined in Table 2.4) 
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models/basins, computed from both uncalibrated (left panel) and calibrated (right panel) model 

runs. The main result from Figure 4.8 is that calibration helps to decrease the uncertainty 

associated with model choice in projected changes of those signatures closely related with the 

objective function selected. Clear examples of this are runoff ratio (RR, except at Yampa), 

response to large precipitation events (FHV) and mid-range flow levels (FMM). However, the 

uncertainty due to model structure increases for some signatures and basins (e.g. runoff 

seasonality – CTR – at Yampa and East, flashiness of runoff – FMS – at Yampa, and baseflow 

processes – FLV – at Yampa and Animas). Moreover, different hydrologic model structures can 

provide opposite changes (signal) of some signature metrics even after calibration (e.g. FLV and 

FMS). 

It is interesting to see that for both uncalibrated and calibrated model outputs, the only 

consistent signal obtained with all models is a negative change in runoff seasonality (CTR), 

which is directly related with an expected decrease in snowpack under the PGW scenario (i.e. 

shorter accumulation season and earlier melt season). For the case of calibrated model 

simulations, a general reduction of high flow volumes (FHV) occurs regardless of the model 

choice (except PRMS at Yampa). The results in Figure 4.8 illustrate the strong interplay between 

model structure and model parameters, and suggest the following hypothesis: different 

calibration approaches may lead to very different answers from those displayed in the right panel 

of Figure 4.8 or, put differently, that subjective decisions on configuring and calibrating 

hydrologic models may have unexpected and underappreciated impacts on the portrayal of 

climate change impacts. Current work is focused on this problem in order to get a better 

comprehension of uncertainties introduced by model structure selection and different parameter 

estimation strategies. 
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Figure 4.8: Impact of climate change on signature measures of hydrologic behavior for both uncalibrated (left 

panel) and calibrated (right panel) model simulations over a six-average water year (Oct/2002 - Sep/2008). 
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4.4 Conclusions 

This study aims to improve our understanding of the effects of hydrologic model choice on 

the portrayal of climate change impacts. Specifically, we assess the effects of model structure 

selection on: (1) historical performance in terms of hydrologic signature measures, and (2) 

hydrologic changes due to a climate perturbation, with focus on the overall water balance and 

catchment processes. Because several efforts aimed to characterize future changes on the 

hydrology at the continental or global scales have made use of hydrologic/land surface models 

with little or no calibration, we include in our analysis a comparison between uncalibrated and 

calibrated model outputs. Our main findings are: 

 Inter-model differences in portrayal of climate change impacts are substantial, even after 

calibration. These differences reflect on projected changes in overall water balance, 

monthly changes in individual simulated processes and signature measures of hydrologic 

behavior. 

 In this chapter, better values for specific process evaluation metrics (i.e. signature 

measures) were obtained over the historical period Oct/2002 - Sep/2008 only if their 

mathematical formulation was close to the root mean square error between simulated and 

observed runoff (i.e. the calibration objective function). 

 Consequently, single-objective calibration procedures constrain inter-model differences 

in climate change impacts for hydrologic metrics that are closely related to the objective 

function. In this study, calibration improved inter-model agreement on future projected 

changes of runoff ratio (except at Yampa River basin), response to large precipitation 

events and mid-range flow levels. However, inter-model agreement decreased when 
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evaluating the change of other metrics related with flashiness of runoff and baseflow 

processes. 

 Although traditional calibration methods certainly improve inter-model agreement in 

projected changes of the overall water balance (i.e. partitioning of precipitation into ET 

and runoff), inter-model differences in the runoff-ET space are comparable and even 

larger than the hydrologic change signal for the scenario examined here. 

 Single-objective calibration approaches aimed to reduce errors in runoff simulations do 

not necessarily enhance inter-model agreement in projected changes of some 

hydrological processes such as ET or snowpack. Moreover, identical changes in runoff 

might be obtained with different hydrologic model structures for very different reasons, 

indicating that the calibration process is compensating structural and parameter errors to 

give us “good” runoff simulations, but not to correctly reproduce catchment processes. 

The main conclusion from this study is that subjective decisions in the selection of 

hydrologic model structures and parameters have large effects on the portrayal of climate change 

impacts. Moreover, these effects may directly impact adaptation strategies. For instance, the 

diversity of projected changes in runoff amounts and timing affects reservoir operations such as 

release schedules and magnitudes (Miller et al. 2012); uncertainty in responses to large 

precipitation events propagates to flood frequency estimates, which are required for design and 

safety assessment of infrastructure (Raff et al. 2009); uncertainties in ET projections relate with 

irrigation demands, and should therefore be considered in agricultural adaptation plans; and the 

diverse responses obtained in terms of long-term baseflow may impact future drought risk 

evaluation (Wilby and Harris 2006) and policies related with minimum instream flow 

requirements (Vano et al. 2014). 
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The implication of our findings is that previous studies evaluating the impacts of climate 

change on water resources may be over-confident. Moving forward, it is necessary to have a 

much more comprehensive assessment of the myriad of uncertainties in climate risk assessments; 

in particular, to improve characterization of uncertainties in hydrologic modeling applications. 
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CHAPTER 5:  Implications of subjective hydrologic model choice and parameter 

identification strategies on the assessment of climate change impacts 

5.1 Introduction 

Significant trends in hydrologic variables such as snowpack, runoff, and intensity of 

extreme hydrologic events (e.g. floods and droughts) have been observed in the last century (e.g. 

Mote et al. 2005; Regonda et al. 2005; Stewart et al. 2005; Huntington 2006; Hamlet et al. 2007). 

Such long-term hydrologic shifts relate to changes in the intensification of water cycles 

associated with a warming climate (e.g. Trenberth 1999). Because of this, there is increasing 

awareness in the scientific community of the potential effects that changes in precipitation and 

temperature will have on water resources (IPCC 2013), and water managers have been 

confronting the task of projecting future changes in hydrology to better enable long-term 

planning for water resource management. 

Quantitative assessment of climate change impacts on the hydrologic cycle (hereafter 

referred as hydrologic change) has been a remarkable challenge, especially if one considers the 

full range of uncertainties involved (e.g. Bergström et al. 2001; Graham et al. 2007; Brekke et al. 

2009; Ludwig et al. 2009; Najafi et al. 2011; Majone et al. 2012; Steinschneider et al. 2012; 

Surfleet and Tullos 2013; Vano et al. 2014). One approach for addressing this problem has been 

the development and application of the ‘cascade of uncertainty’ paradigm, which attempts to 

quantify the uncertainty at every step in the modeling process (Chen et al. 2011), including: (1) 

selection of greenhouse gas emission scenarios, (2) choice of climate model(s), (3) specification 

of climate model initial conditions, (4) choice of meteorological forcing downscaling methods, 

(5) selection of hydrological model structures and (6) choice of hydrological model parameter 

sets. Recent studies have demonstrated that among these decisions the choice of global climate 
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model (GCM) and downscaling methods are the main contributors to overall uncertainty (e.g. 

Wilby and Harris 2006; Chen et al. 2011), motivating a detailed examination of different options 

for these methodological decisions (e.g. see Murphy et al. 2004 for GCMs and Gutmann et al. 

2012, 2014 for statistical downscaling). 

Although the selection of an appropriate hydrologic model structure and the identifiability 

of hydrologic parameter values are essential to advance our understanding of catchment 

processes (Son and Sivapalan 2007), uncertainties associated with these components have 

traditionally been given less attention in climate change impact studies (Bastola et al. 2011; 

Vano et al. 2012). The choice of a model structure, which in many cases relies on pragmatic 

considerations, involves several decisions: (i) what physical processes are included, (ii) which 

parameterizations are used for individual processes, (iii) how are these processes coupled to 

obtain the system response, and (iv) what numerical method(s) are used to solve model 

equations. In addition, parameter identification requires the following decisions: (i) defining a 

priori values for model parameters (especially relevant for distributed models), (ii) the choice of 

which model parameters to adjust (if any), and (iii) choices related to which calibration strategy 

to implement (e.g. calibration algorithm, objective function, training period, and forcing 

datasets). Of course, choosing differently across these options may affect the portrayal of climate 

change impacts. For instance, the selection of a specific model structure can lead to missing 

physical processes or the use of inappropriate parameterizations for the catchment(s) of interest. 

Similarly, parameter estimation strategies may affect the simulation of hydrologic processes, and 

can also compensate model structural errors – i.e. different models may provide the same 

answers for the wrong reasons. 
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In recent years, the hydrologic community has redirected efforts to better understand the 

effects of hydrologic modeling approaches on the assessment of climate change impacts. While 

some studies have looked at the implications of model choice (e.g. Boorman and Sefton 1997; 

Jones et al. 2006; Jiang et al. 2007; Ludwig et al. 2009; Bae et al. 2011; Miller et al. 2012; Vano 

et al. 2012; Surfleet et al. 2012), others have focused on the effects of parameter values (e.g. 

Cameron et al. 1999; Wilby 2005; Steele-Dunne et al. 2008; Surfleet and Tullos 2013). A third 

group of studies has included the combined effects of both sources of uncertainty, but using 

different experimental designs. For instance, Kay et al. (2009) addressed structural uncertainty 

by including two hydrologic models, and parameter uncertainty by calibrating several times 

using slightly different datasets (i.e. dropping one year at a time), finding that uncertainty due to 

different GCMs dominates over other sources of uncertainty, and that the relative importance of 

model structure and parameter values was catchment-dependent. Prudhomme and Davies (2009a, 

b) analyzed hydrologic modeling uncertainty by including two model structures and near-optimal 

parameter sets, with the result that GCM uncertainty was larger than the uncertainty from 

downscaling methods, which is itself larger than hydrologic uncertainty. Bastola et al. (2011) 

analyzed the role of hydrologic model uncertainty (structure and parameters) using a multi-

model approach based on the Generalized Likelihood Uncertainty Estimation (GLUE; Beven and 

Binley 1992) framework and Bayesian Model Averaging (BMA; Raftery et al. 2005), concluding 

that hydrologic model uncertainties are ‘remarkably high’ when compared to other sources. 

Najafi et al. (2011) included four hydrologic model structures (three lumped and one 

distributed), representing parameter uncertainty with three objective functions for model 

calibration, and found that differences in projections depend directly on the choice of model 

structure. They also suggested that differences in model behavior over different seasons are 
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explained by differences in model states (e.g. soil moisture). Poulin et al. (2011) used two 

different hydrological models to compare the effects of model structure against parameter 

equifinality on the uncertainty of hydrologic simulations, finding that model structure uncertainty 

dominates. Finally, Mendoza et al. (2015a) examined hydrologic changes due to modified 

climate using four process-based hydrologic/land-surface models over three Colorado Headwater 

basins, concluding that while traditional single-objective calibration strategies may lead to 

similar simulations of streamflow from different models, this can be for very different reasons, 

leaving substantial uncertainty in how different climate scenarios will affect changes in 

hydrologic processes that are poorly constrained during model calibration. 

In summary, previous contributions have clearly shown that the specific approach used for 

hydrologic modeling can affect the conclusions of climate change impact assessments. However, 

there is still limited knowledge about the interplay of hydrologic model choice and parameter 

identification strategies, especially in terms of individual hydrologic processes (e.g. 

evapotranspiration, generation of surface flow and baseflow, snowpack). This study builds on the 

previous work by Mendoza et al. (2015a) to further examine how hydrologic modeling strategies 

affect quantitative assessment of hydrologic changes. In particular, this chapter addresses the 

following two questions: 

1. How do our hydrologic modeling decisions affect projected changes in the annual water 

balance (i.e. partitioning of precipitation into evapotranspiration and runoff) and 

hydrologic processes under a climate-changed future scenario? 

2. What is the relative importance of model structure choice and parameter estimation 

strategies on the evaluation of climate change impacts?  
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To answer these questions, we assess and compare the implications of four hydrologic 

modeling decisions on the portrayal of climate change impacts: (i) choice of model structure, (ii) 

choice of objective function for model calibration, (iii) choice of multiple local optimal 

parameter sets, and (iv) choice of forcing dataset used for model calibration. The remainder of 

this chapter is organized as follows: the approach is described in Section 5.2; results and 

discussion are presented in Section 5.3, and the main conclusions are summarized in Section 5.4. 

5.2 Approach 

5.2.1 Climate change datasets 

Meteorological data from WRF simulations is available at hourly time steps and a 4 km-

resolution for both historical and PGW conditions during the period October/2000 - 

September/2008. The variables and temporal disaggregation used depend on specific hydrologic 

model requirements (further details in Chapter 2). Figure 4.1 includes basin-averaged monthly 

precipitation and temperature from WRF for current and future climate scenarios over the period 

October/2002 – September/2008. Note that PGW simulations reflect increases in precipitation 

during fall/winter and the beginning of spring, and a decrease in precipitation during summer 

over all basins. On the other hand, the increase in temperature tends to be uniform throughout the 

year in all basins. These signals in precipitation and temperature changes are present at each 

individual water year (not shown here), although monthly precipitation amounts can vary at the 

basins of interest from year to year. 
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5.2.2 Hydrologic modeling experiments 

Table 5.1 provides a summary with hydrologic modeling experiments and the different 

options explored for each modeling decision. The following aspects are common for all the 

experiments: 

 Hydrologic model simulations are carried out for the period between October 1, 2000 and 

September 30, 2008, using the first two years to initialize model states. 

 Calibration objective functions and signature measures of hydrologic behavior are 

computed from daily time series of observed and simulated streamflow. 

 Hydrologic changes are computed for the period Oct/2002 - Sep/2008 by forcing the 

model(s) with WRF datasets for the current and future climate scenarios. 

A detailed description of the experimental design is provided in the following sub-sections. 

 

Table 5.1: Summary of hydrologic modeling experiments; options explored in each experiment are in bold. 

Experiment Modeling decision Options 

    

Model structure Objective function Optimum Forcing calibration 

dataset 

a Model structure PRMS, VIC, 

Noah-LSM and 

Noah-MP 

RMSE Global Rasmussen et al. (2014) 

b Objective function PRMS RMSE, LRMSE, 

KGE, LKGE 

Global Rasmussen et al. (2014) 

c Multiple local optima PRMS RMSE Local Rasmussen et al. (2014) 

d Forcing calibration 

data 

PRMS RMSE Global Maurer et al. (2002), Xia 

et al. (2012) and 

Rasmussen et al. (2014) 

 

5.2.2.1 Model structure 

We first focus on the following question: given a single parameter estimation strategy, 

what are the effects of model choice on the portrayal of climate change impacts? To find 

answers, we include the following hydrologic/land surface models: the US Geological Survey's 
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Precipitation Runoff Modeling System (PRMS; Leavesley et al. 1983; Leavesley and Stannard 

1995), the Variable Infiltration Capacity model (VIC; Wood et al. 1992; Liang et al. 1994, 1996) 

the Noah Land Surface Model (Noah-LSM; Ek 2003; Mitchell et al. 2004) and the Noah Land 

Surface Model with Multiple Parameterizations (Noah-MP; Niu et al. 2011; Yang et al. 2011). 

Further details on inter-model differences, information requirements and model setup are 

included in Chapter 2. 

5.2.2.2 Parameter identification strategy 

In order to compare the uncertainty due to multiple model structures with the uncertainty 

arising from the choice of parameter estimation methods, we turn our attention to the following 

question: given a single model structure, what are the effects of parameter identification 

strategies on the portrayal of climate change impacts? Hence, we compute hydrologic changes 

using a fixed model structure with parameter sets obtained from: (i) different objective functions, 

(ii) multiple local optimal parameter sets, and (iii) different calibration forcing datasets. For these 

experiments, we use PRMS because of its very low computational cost compared to the rest of 

the hydrologic/land surface models in Figure 2.2. As with the calibrations performed for the 

other models, we use the SCE-UA algorithm including the parameters listed in Table A.1. The 

options considered for each calibration decision are detailed below. 

5.2.2.2.1 Objective functions 

In order to explore the implications of the choice of objective function on hydrologic 

changes in a controlled way, calibration simulations are forced with historical verification WRF 

outputs. The first objective function included here is RMSE, which is a standard metric that 

emphasizes high flows: 
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     Equation 5.1 

Note that the formulation of RMSE is closely related to the Nash-Sutcliffe efficiency 

(NSE, introduced by Nash and Sutcliffe 1970), which is one of the most utilized indices in 

hydrology. Indeed, the minimization of RMSE is equivalent to the maximization of NSE. The 

second objective function selected is the root mean squared error computed with flows in 

logarithmic space, which emphasizes low flows: 
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The third metric considered here is the Kling-Gupta efficiency (KGE, proposed by Gupta 

et al. 2009), which is an explicit function of errors in: (i) mean flow values (i.e. flow volumes), 

(ii) variance of streamflow time series, and (iii) correlation between simulations and observations 

(i.e. timing and shape of the hydrograph). The Kling-Gupta efficiency is given by: 

     
2 2 2

1 1 1 1KGE r           Equation 5.3 

where r is the linear correlation coefficient between simulated and observed streamflow time 

series, α is a measure of relative variability and β represents the bias between observations and 

simulations. The mathematical expressions for α and β are: 

/sim obs         Equation 5.4 

/sim obs         Equation 5.5 

where μsim (μobs) and σsim (σobs) denote the mean and the standard deviation of simulated 

(observed) flows. 

In Equation 5.3, simulated and observed time series are in raw space. Therefore, the last 

objective function included in this analysis is the Kling-Gupta efficiency computed with flows in 
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log space, which is denoted by LKGE hereinafter. Because optimal parameter values found via 

minimization of RMSE (or NSE) may differ from those obtained by maximizing KGE (Gupta et 

al. 2009), we might expect that LRMSE or LKGE can lead to different optimal parameter sets. 

5.2.2.2.2 Multiple local optima 

Typically, the parameter set used for evaluating climate change impacts comes from a 

global single-objective optimization procedure applied over a historical period. However, it is 

likely that there are many local optimal regions in the parameter space, each one associated with 

a different hydrologic behavior in terms of the simulation of individual processes (e.g. snow 

accumulation and ablation, evapotranspiration, percolation, etc.). Moreover, the corresponding 

local optimal parameter sets can have a very similar performance in terms of the specific model 

evaluation metric selected for calibration. 

To evaluate the effects of choosing any of these parameter sets on hydrologic change 

estimates, we identified local optimal regions in the parameter space by examining the evolution 

of SCE-UA outputs obtained from the minimization of RMSE using historical WRF outputs as 

meteorological forcings. The SCE-UA outputs contain information of Nc×(2×Npar+1) parameter 

sets for each loop within the optimization process, being Nc = 10 the number of complexes (i.e. 

groups of parameter sets) and Npar = 8 the number of parameters included for calibration. Local 

optimal regions are identified by performing k-means cluster analysis (MacQueen 1967) over all 

parameter sets included in loops where complexes have still not merged. The loop that most 

clearly shows different parameter regions is selected to extract the local optimal parameter sets, 

which are those that have associated the minimum RMSE within each cluster. In this analysis, 

we identified five clusters to better illustrate different hydrologic behaviors coming from similar 

RMSE values. 
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5.2.2.2.3 Forcing calibration data 

Some studies have given special attention to the implications of climate data selection on 

the response of hydrologic systems, concluding that existing differences in precipitation, 

temperature, radiation and other variables may have large effects on hydrologic model 

simulations (e.g. Wayand et al. 2013; Mizukami et al. 2014) and model calibration (e.g. Elsner et 

al. 2014). Therefore, our final experiment is aimed to quantify the implications of the forcing 

dataset used for parameter calibration on the evaluation of climate change impacts. For this 

experiment, we selected two types of retrospective climate datasets – observation based and re-

analysis based climate datasets – that can be used for calibration. We compare hydrologic 

changes obtained with parameters calibrated using historical runs from Rasmussen et al. (2014) 

with those obtained with PRMS parameters calibrated with the datasets generated by Maurer et 

al. (2002) and Xia et al. (2012). Below are brief descriptions of these two additional climate 

datasets. 

The Maurer et al. (2002) forcing dataset consists of four daily variables – precipitation, 

minimum and maximum temperature (Tmin and Tmax), and wind speed – as a gridded product 

derived (excepting wind speed) from observations and interpolated to the 1/8° grids using a 

consistent set of stations (Maurer et al. 2002). The dataset covers the conterminous United States 

and portions of Canada and Mexico from 1950 through the present. Maurer et al. (2002) is used 

as a forcing input for a great variety of hydrologic studies of climate change impacts (e.g. 

Steinschneider et al. 2012; Miller et al. 2012). 

In the Xia et al. (2012) dataset, the precipitation data is a merged product of the 

NOAA/Climate Prediction Center (CPC) analysis of daily gauge precipitation, a national mosaic 

4-km NOAA/National Weather Service (NWS) Stage II radar, 8-km hourly precipitation 
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analyses using the NOAA/Climate Prediction Center morphing technique (CMORPH; Joyce et 

al. 2004), and output from the North American Regional Reanalysis (NARR; Mesinger et al. 

2006). CPC PRISM-adjusted gauge-only daily precipitation analyses are temporally 

disaggregated into hourly fields by multiplying daily CPC precipitation by hourly disaggregation 

weights derived from the national mosaic of 4-km Stage II radar and 8-km hourly CMORPH 

precipitation analyses. The mosaic of the Stage II product is interpolated to 1/8° grids. All the 

rest of the variables are generated from the NARR dataset using spatial and temporal 

disaggregation with the vertical adjustment methods described by Cosgrove et al. (2003). 

Because the horizontal grid spacing in Rasmussen et al. (2014) is finer than that in 

Maurer et al. (2002) and Xia et al. (2012), we keep the basin grid size in the hydrologic models is 

as in Rasmussen et al. (2014) when using these two datasets, with meteorological forcings 

assigned to each basin grid cell with the nearest-neighbor interpolation method. For the 

remainder of this chapter, the results obtained with parameter sets calibrated with forcing 

datasets from Maurer et al. (2002), Xia et al. (2012) and Rasmussen et al. (2014) will be referred 

as M02, X12 and R14, respectively. 

5.3 Results and discussion 

5.3.1 Changes in annual water balance 

We first analyze the effects of hydrologic modeling decisions on projected changes in 

annual water balance (i.e. partitioning of precipitation into ET and runoff). In Figure 5.1, the 

diagonal lines represent basin-averaged mean annual precipitation for current and future climate 

scenarios over a 6-year average period (Oct/2002 - Sep/2008). The intersection of these lines 

with the x-axis indicates that all precipitation becomes runoff, while the intersection with the y-

axis indicates that the system converts all precipitation into ET. Each panel represents a 
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particular experiment, with different symbols representing outputs from different modeling 

options for current climate (unfilled symbols, forced with WRF-CTRL) and future climate (filled 

symbols, forced with WRF-PGW). A symbol located exactly on the diagonal lines represents a 

simulation with no change in storage over the analysis period (i.e. P = ET + R), while deviations 

from the 1:1 line reflect a change in basin storage over the analysis period (i.e. increases in 

storage for symbols located below the 1:1 line, and decreases for symbols located above). Inter-

option differences (e.g., objective function choices) in precipitation partitioning are represented 

by the distance between different symbol types; and the distance between unfilled (current 

climate) and solid (future climate) symbols having the same type (e.g. star for Noah-MP in 

Figure 5.1a) represents the hydrologic change signal. 

Figure 5.1a shows that given a unique parameter estimation strategy, inter-model 

differences (i.e. discrepancies between hydrologic models) in the partitioning of precipitation 

into ET and runoff are larger than climate change impacts. Moreover, inter-option differences are 

also larger than the magnitude of hydrologic change signal when looking at the choice of 

objective function (Figure 5.1b) and forcing calibration dataset (Figure 5.1d). In general, the 

uncertainty introduced by these parameter estimation choices overwhelms the uncertainty 

provided by model choice in the runoff-ET space. Furthermore, some options for a particular 

modeling decision expand the uncertainty ranges considerably (e.g. calibration with LKGE at the 

East River basin – shown in Figure 5.1b – focuses on matching low flows, resulting in very high 

runoff simulations, and therefore very high runoff ratios for both current and future climate 

scenarios). Finally, the different local optima in the parameter space (Figure 5.1c) have the 

smallest effect on the overall water balance because all these parameter sets have a similar 
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RMSE for runoff simulations over the calibration period, and hence are expected to reproduce 

similar annual runoff volumes. 

Figure 5.2 directly compares projected changes in the partitioning of basin-averaged 

mean annual precipitation into runoff and ET for all hydrologic modeling experiments. In each 

panel, the dispersion of symbols with the same color across the ΔRunoff – ΔET space (with Δ 

representing the difference between future and current climate scenarios) represents the 

uncertainty introduced by a particular modeling decision at a specific basin. The results in Figure 

5.2 reveal that all modeling decisions introduce considerable uncertainty around projected 

changes in mean annual runoff and mean annual ET. Furthermore, the direction of the signal is 

only preserved in all basins when considering multiple local optimal parameter sets (Figure 

5.2c), although the magnitude of the signal changes considerably at the Animas River basin. 

Indeed, the points defining local optimal parameters for Animas (not shown) are quite separated, 

compared to East and Yampa, in the parameter plane defined by the two most sensitive PRMS 

parameters – snarea_curve (parameter defining the snow/area depletion curves) and 

pref_flow_den (parameter defining the preferential flow) – which explains a larger dispersion in 

hydrologic changes. When looking at the effects of model choice (Figure 5.2a), one can note that 

all models – except VIC at Yampa River basin and PRMS at East River basin – project an 

increase of ET and decrease of runoff. In the case of objective function (Figure 5.2b), however, 

the only basin for which a consistent signal direction is obtained with all options is Animas. It 

can also be noted that all parameter sets obtained with different forcing datasets (Figure 5.2d) 

project increases in ET and decreases in future runoff, except in the case of R14 for the East 

River basin. 
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Figure 5.1: Partitioning of current (CTRL) and future (PGW) basin-averaged mean annual precipitation 

(diagonal, mm/year) into basin-averaged mean annual runoff (x axis, mm/year) and evapotranspiration (y 

axis, mm/year) across different model structures and basins for the period Oct/2002 - Sep/2008. Results 

illustrate the uncertainty coming from: (a) choice of model structure, (b) selection of objective function used 

for calibration, (c) multiple local optimal parameters, and (d) choice of dataset used for calibration. 
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Figure 5.2: Projected changes in basin-averaged mean annual runoff (x axis, mm/year) and 

evapotranspiration (y axis, mm/year) across different model structures and basins for the period Oct/2002 - 

Sep/2008. Results illustrate the uncertainty coming from: (a) choice of model structure, (b) selection of 

objective function used for calibration, (c) multiple local optimal parameters, and (d) choice of dataset used 

for calibration. 

 

Figure 5.2 also shows that the uncertainty in projected changes introduced by model 

choice (Figure 5.2a) is larger in the Yampa and East basins than in the Animas; however, 

parameter estimation decisions introduce more uncertainty in projected changes at Animas than 

in the Yampa or East basins (compare Figure 5.2b, 5.2c and 5.2d). In other words, the relative 

effects of modeling decisions on the magnitude of the signal appear to be basin-dependent, 

which is in agreement with other studies (e.g. Prudhomme and Davies 2009b; Addor et al. 2014). 

One possible explanation could be differences in hydrologic and physiographic catchment 
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properties. For instance, the Animas River basin has a much larger response to high 

precipitation/snowmelt events, which explains why the choice of PRMS parameters– previously 

selected for their high sensitivity to RMSE (i.e. high flows) – has a larger relative effect on 

hydrologic changes than the other catchments. In terms of physical properties, the Yampa and 

East River basins have smaller areas, lower mean slope, smaller elevation range and a flashier 

response (not shown). However, it is important to note that although previous studies have tried 

to link the hydrologic response with catchment characteristics using very large samples (e.g. 

Oudin et al. 2010; Köplin et al. 2012), they have found that still a considerable fraction of basins 

shows no overlap between physiographic and hydrological similarity. 

5.3.2 Monthly changes 

This section examines how hydrologic changes due to climate perturbation vary 

seasonally. Figure 5.3 illustrates the effects of hydrologic modeling decisions on projected 

changes in basin-averaged monthly runoff. In this plot, the spread in the curves representing 

different options for a given decision – each in a column in Figure 5.3 – is an indicator of the 

uncertainty introduced by that specific modeling choice. Figure 5.3 shows that the choices of 

model structure, objective function and forcing calibration dataset introduce considerable 

uncertainty, particularly during the melt season, and that all options for modeling decisions are 

consistent in terms of the seasonality (timing and largest/lower amounts) of projected runoff 

changes, except the choice of the model forcing dataset (Figure 5.3d). The large uncertainty 

introduced by forcing calibration dataset is in agreement with previous studies showing how the 

method used to generate meteorological fields heavily affects hydrologic simulations (Wayand et 

al. 2013; Elsner et al. 2014; Mizukami et al. 2014). The choice of multiple local optimal 
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parameter sets (Figure 5.3c) introduces little uncertainty in simulations of monthly runoff 

changes. 

 

Figure 5.3: Projected changes (PGW - CTRL) in basin-averaged monthly runoff over a six-average water 

year (Oct/2002 - Sep/2008). Results illustrate the uncertainty coming from: (a) choice of model structure, (b) 

selection of objective function used for calibration, (c) multiple local optimal parameters, and (d) choice of 

dataset used for calibration. 

A natural question from here is how the effects of modeling decisions compare to each 

other when examining other hydrologic processes. To address this question, we analyze 

projected monthly changes in model states and fluxes obtained from different options for each 

modeling choice. Figures 5.4–5.6 illustrate monthly changes in ET, snow water equivalent 

(SWE), and soil moisture, respectively, due to a climate perturbation. To improve consistency in 

the comparison across model structures (experiment (a) in Table 5.1), we consider only the top 

two soil layers for the computation of soil moisture storage with VIC, Noah-LSM and Noah-MP 

(see Figure 2.2). 
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Figure 5.4: Same as in Figure 5.3, but for evapotranspiration (ET). 

 

 

Figure 5.5: Same as in Figure 5.3, but for snow water equivalent (SWE). 
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Figure 5.6: Same as in Figure 5.3, but for soil moisture. 

 

Figure 5.4 shows that the choices of model structure – source of discrepancies in terms of 

canopy conceptualization and potential evapotranspiration (PET) formulations – and objective 

function – which controls the simulation of the overall water balance (Figure 5.1) – introduce 

large uncertainties in ET variations at all basins. The selection of multiple local optimal 

parameter sets mainly affects outputs at the Yampa River basin due to larger discrepancies in 

local optimal jh_coef values, which control PET (not shown), while forcing calibration data 

mostly affects the East and Animas River basins, which is consistent with the results displayed in 

Figure 5.2d. Although Yampa exhibits large difference in monthly runoff changes between R14 

and the other two datasets (See Figure 5.3d), all the calibration datasets produce similar ET 

changes. This might be due to difference in hydroclimatic conditions between Yampa and the 

other two basins indicated by already higher dryness index in Yampa than the other basins in 

current climate scenarios (see Table 2.1). There are a number of reasons causing different water 
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balance changes seen in East and Animas. For example, large difference in ET change between 

X12 and M02 seen in Animas is likely to be caused by larger inter-forcing differences between 

M02 and X12 in high elevation especially in shortwave radiation, affecting the simulation of ET 

processes (Mizukami et al. 2014). 

For SWE (Figure 5.5), a larger uncertainty in monthly changes is produced by model 

choice in all basins when comparing with parameter calibration choices (contrast column one 

with the others). From the inter-model comparison, PRMS produces the largest reduction of 

SWE under warming climate among the four models in all basins. Also note that bounds of 

uncertainty due to any calibration choice do not include other model traces of hydrologic change 

signal, indicating that, at least for SWE, model choice is more important than parameter 

estimation strategies explored through PRMS. Nevertheless, it should be noted that parameter 

sensitivity in PRMS is dominated by and pref_flow_den (i.e. parameter defining the preferential 

flow, Table A.1), while for the rest of the models snow parameters produced the largest 

variations in RMSE (not shown), which explains the smaller relative effect of calibration 

strategies compared to model structure. Additionally, monthly changes are quite consistent 

among different objective functions and multiple local optimal parameter sets, and the choice of 

forcing calibration dataset also produces uncertainty in monthly SWE changes, although to a 

lesser degree in comparison to model choice. 

These seasonal characteristics in hydrologic changes are modified when analyzing effects 

of modeling decisions on soil moisture (Figure 5.6), as all of them produce considerable 

uncertainty, with the choice of model structure and objective function emerging as the decisions 

that introduce the most uncertainty in model simulations. In contrast to the SWE results, the 

choice of calibration options leads to a similar spread in monthly changes to that obtained from 
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model choice. This is again related to the parameters considered for calibration in PRMS (Table 

A.1), as pref_flow_den – which is the most sensitive parameter to RMSE – controls the fluxes of 

water throughout the soil column, specifically between preferential flow and gravity reservoirs. 

5.3.3 Projected changes in catchment behavior 

Finally, we compare the implications of modeling decisions on projected changes in 

signature measures of hydrologic behavior (defined in Table 2.4). Figure 5.7 displays differences 

between future (WRF-PGW) and current (WRF-CTRL) signature measures of hydrologic 

behavior for all basins, computed from different options for the following hydrologic modeling 

decisions: (a) choice of model structure, (b) selection of objective function used for calibration, 

(c) multiple local optimal parameters, and (d) choice of dataset used for calibration. 

The results displayed in Figure 5.7 illustrate that the choice of model structure has the 

largest effect on projected changes of runoff ratio (RR) at Yampa and East River basins, while 

parameter estimation decisions provide more uncertainty for projected changes in RR at the 

Animas River basin. In the case of runoff seasonality (CTR), the largest uncertainty in 

projections comes from the choice of model structure, followed by forcing calibration data. 

When the analysis focuses on flashiness of runoff (FMS), the largest source of uncertainty is also 

model structure, followed by the choice of objective function and forcing calibration datasets. 

The relative importance of modeling decisions on changes in high flow volumes (FHV) is basin-

dependent; for instance, while objective function has the largest effect at Yampa, the choice of 

forcing dataset is the most relevant source of uncertainty at Animas. One can also note that all 

modeling decisions introduce comparable uncertainties when examining low flows (FLV) and 

mid-range flow levels (FMM), although the VIC response is an outlier in the set of FLV 

projections at the Yampa River basin. 
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Figure 5.7: Projected changes in signature measures of hydrologic behavior over a six-average water year 

(Oct/2002 - Sep/2008). Results illustrate the uncertainty coming from: (a) choice of model structure, (b) 

selection of objective function used for calibration, (c) multiple local optimal parameters, and (d) choice of 

dataset used for calibration. 
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Overall, model choice has a larger implication on projected changes in runoff seasonality 

(CTR) and flashiness of runoff (FMS), while parameter estimation strategy has larger effects on 

high flow volumes (FHV), which is related with the large first order DELSA sensitivities 

obtained for the PRMS parameter pref_flow_den. Also, the relative importance of model choice 

versus parameter estimation decisions on projected changes in runoff ratio (RR) was found to be 

basin-dependent. Moreover, Figure 5.7 shows that, regardless of the uncertainty introduced, all 

modeling decisions examined here project earlier runoff volumes (CTR) in all basins. On the 

other hand, the choice of multiple options for a particular decision may switch the sign in 

projections for the rest of the signature measures analyzed. 

In summary, these results show that uncertainties of climate change impacts on runoff 

characteristics must be carefully considered when performing particular hydrologic assessments. 

For example, depending on selection of models and calibration options, projected impacts on 

floods and droughts can be very different, with potential implications for water resources 

planning. 

5.4 Conclusions 

This chapter examines the implications of hydrologic modeling decisions on the portrayal 

of climate change impacts. Specifically, we analyze the relative effects of model structure choice 

and parameter estimation strategies on: (1) projected changes in the annual water balance, (2) 

projected changes in monthly-averaged model states and fluxes, and (3) projected changes in 

signature measures of catchment behavior. To this end, we compare hydrologic changes coming 

from four different model structures (PRMS, VIC, Noah and Noah-MP), for which parameters 

have been obtained using a common calibration strategy, with hydrologic changes coming from a 

single model structure (PRMS), with parameter sets identified using multiple options for 
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different calibration decisions (objective function, multiple local optima and calibration forcing 

dataset). In all experiments, the same current and future climate datasets were used to compute 

hydrologic changes. For the climate change scenario and basins examined here, the main 

findings of this study are: 

 When comparing the effects of modeling decisions on the partitioning of precipitation 

into ET and runoff, the uncertainty introduced by the choice of objective function and 

forcing calibration data can be comparable or larger than that introduced by hydrologic 

model choice. 

 Choices over model structure and parameter estimation strategy have large effects on the 

direction and magnitude of projected changes in annual water balance, although the 

direction of the signal was preserved across multiple local optimal parameter sets. 

Additionally, the relative effects of model structure and parameters were basin-

dependent. 

 Choices of model structure, objective function, and forcing calibration datasets introduce 

considerable uncertainty in monthly runoff changes. Moreover, uncertainty coming from 

parameter identification strategies may overwhelm that provided by model choice (e.g. 

forcing calibration at Yampa, objective function at East). 

 Although model choice has a large effect on monthly changes of hydrologic processes for 

the climate scenario examined here, the choice of strategy for parameter estimation in a 

single model structure (PRMS) can introduce similar or larger uncertainties for some 

processes (e.g. ET at East River basin). 

 In our experimental setup, the relative effect of modeling decisions on projected 

variations in hydrologic signature measures depends on the metric analyzed. While model 
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structure choice introduced the largest uncertainty in projections of runoff seasonality 

(CTR) and flashiness of runoff (FMS), parameter estimation decisions were more 

relevant for changes in high flow volumes (FHV). The relative effects of model choice 

and parameter estimation methods on projected changes in runoff ratio (RR) were found 

to be basin-dependent. All modeling decisions analyzed here had an important effect on 

baseflow (FLV) and mid-range flow levels (FMM). 

 Parameter sets with similar performance scores, but located in different regions within 

the parameter space, may provide an opposite signal when projecting future catchment 

behavior (e.g. FHV, FLV and FMM at Yampa, FMS and FLV at East, FLV and FMM at 

Animas). 

The main finding of this study is that decisions over configuring and calibrating 

hydrologic models can have pronounced effects on the portrayal of climate change impacts. 

Moreover, uncertainties associated with calibration decisions may overwhelm those coming from 

model choice, indicating that careful attention should be paid to parameter estimation strategies 

regardless of the hydrologic model structure selected. Finally, the results obtained here suggest 

that parameter uncertainty should be properly addressed in climate change studies, even if 

multiple hydrologic model structures are included, in order to avoid an over-confident portrayal 

of climate change impacts. 
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CHAPTER 6:  Effects of regional climate model configuration and forcing scaling on 

projected hydrologic changes 

6.1 Introduction 

The strong evidence of ongoing hydroclimatic shifts in the Western United States (Barnett 

et al. 2005; Regonda et al. 2005; Mote et al. 2005; Stewart et al. 2005; Knowles et al. 2006; 

Hamlet et al. 2007) and their potential impacts on water availability – which relies heavily on 

snowpack accumulation during winter – remains a subject of active debate in the research 

community. Within this region, the Colorado River basin (CRB) constitutes one of the major 

water sources for consumption, irrigation and hydropower, among other uses, draining parts of 

seven states and Mexico, and covering the needs of over 30 million people. Given its strategic 

relevance, several studies have been conducted with the aim to quantify the effects that changes 

in precipitation and temperature might have on the hydrology of this area (e.g. Milly et al. 2005; 

Christensen and Lettenmaier 2007; Hoerling and Eischeid 2007; Ray et al. 2008; Hoerling et al. 

2009; Rasmussen et al. 2011, 2014; Miller et al. 2011, 2012; Vano et al. 2012, 2014). Although 

there is general agreement on the broad picture (i.e. future drying due to the transition to a more 

arid climate), the wide range of magnitudes in hydrologic projections reflect the tremendous 

effects that methodological choices (e.g. emission scenario, global climate model, downscaling 

techniques, hydrologic models) may have on the portrayal of climate change impacts, making it 

very difficult for water managers the planning and implementation of adaptation strategies for 

design and safety of infrastructure (Raff et al. 2009), reservoir operation (Miller et al. 2012) or 

policies for instream flow requirements (Vano et al. 2014). 

Despite the fact that the literature is quite rich in examples reflecting the increasing 

awareness for uncertainty characterization and quantification in the assessment of climate change 
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impacts (Bergström et al. 2001; Wilby and Harris 2006; Graham et al. 2007; Brekke et al. 2009; 

Ludwig et al. 2009; Chen et al. 2011; Najafi et al. 2011; Majone et al. 2012; Steinschneider et al. 

2012; Surfleet and Tullos 2013; Vano et al. 2014), uncertainties associated with hydrologic 

modeling have traditionally been given less attention (Bastola et al. 2011). Among these, initial 

conditions (typically specified or estimated from observations), inputs (i.e. meteorological 

forcings), model structure and parameters have been highlighted as major error sources (Zehe 

and Blöschl 2004; Liu and Gupta 2007). In recent years, there has been a proliferation of climate 

change impact studies aimed to understand the role that the choice of hydrologic model 

structures (e.g. Boorman and Sefton 1997; Jones et al. 2006; Jiang et al. 2007; Ludwig et al. 

2009; Bae et al. 2011; Miller et al. 2012; Vano et al. 2012; Surfleet et al. 2012), hydrologic 

parameter values (e.g. Cameron et al. 1999; Wilby 2005; Steele-Dunne et al. 2008; Surfleet and 

Tullos 2013), or the combination that both (e.g. Kay et al. 2009; Prudhomme and Davies 

2009a,b; Bastola et al. 2011; Najafi et al. 2011; Poulin et al. 2011; Mendoza et al. 2015a) play on 

the overall uncertainty in hydrologic projections under modified climate scenarios.  

Nevertheless, the interaction between meteorological input data, hydrologic model 

structures and parameters in hydrologic change estimates still remains unclear. Indeed, most 

studies looking at the effects of forcing data configuration (e.g. in-situ observations, empirical 

methods, numerical simulations or combinations of them) on hydrologic model simulations have 

been conducted on a retrospective basis (Flerchinger et al. 2009; Materia et al. 2010; Haddeland 

et al. 2012; Mo et al. 2012; Wagner et al. 2012; Bohn et al. 2013; Wayand et al. 2013; Elsner et 

al. 2014; Mizukami et al. 2014; Raleigh et al. 2014), with general agreement about the primary 

roles that precipitation, temperature and radiation estimates play in simulating hydrologic 

processes over mountainous regions. A second group of studies has put detail on the effects that 
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spatial resolution of meteorological forcings may have on hydrologic simulations (e.g. Yang et 

al. 2003; Liang et al. 2004; Shrestha et al. 2006, 2007; Vano et al. 2014), which is particularly 

critical when driving distributed hydrologic models. For instance, Shrestha et al. (2006, 2007) 

tested input forcing datasets with different spatial resolutions on a distributed hydrological model 

with fixed grid size and a fixed distribution of parameter values in space, concluding that a finer 

resolution in meteorological fields leads to better model performance. This conclusion seems to 

be particularly relevant for hydrologic modeling in high mountain regions (Hoerling et al. 2009), 

where the spatial resolution at which meteorological data is available may have enormous effects 

on the simulation of snowpack processes (Haddeland et al. 2012). 

In this line, recent studies conducted in the Colorado Headwaters Region (Ikeda et al. 

2010; Rasmussen et al. 2011, 2014) have explored the effects of forcing configuration using a 

dynamical downscaling technique. Specifically, they showed that the use of horizontal grid 

spacing of 6 km or less in a regional climate model (RCM) allows the accurate estimation of 

vertical motions driven by topography without the need to include a convective parameterization 

scheme, improving the representation of seasonal snowfall and snowpack. Moreover, Rasmussen 

et al. (2011, 2014) demonstrated the utility of the pseudo global warming (PGW) approach 

(Schär et al. 1996; Hara et al. 2008; Kawase et al. 2009) for quantifying climate change impacts 

on hydrology via coupled high-resolution land-atmosphere simulations. More recently, Mendoza 

et al. (2015a) examined hydrologic changes due to modified climate with four process-based 

hydrologic/land-surface models over three Colorado Headwater basins, using the 4-km WRF 

outputs obtained by Rasmussen et al. (2014) to force hydrologic simulations under current and 

modified climatic conditions. 
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This chapter builds on the previous work by Rasmussen et al. (2014) and Mendoza et al. 

(2015a) to examine how the configuration of forcing datasets generated from RCM simulations 

and the re-scaling of RCM outputs affect hydrologic change estimates. In particular, these effects 

are analyzed for: (i) historical simulation of signature measures of hydrologic behavior (e.g. 

runoff ratio, seasonality, log-term baseflow), and (ii) projected hydrologic change in terms of 

annual water balance and hydrologic signature measures. In order to characterize the interplay 

between forcing datasets and model structures, we include in our analyses four different 

hydrologic/land surface models (PRMS, VIC, Noah and Noah-MP). The remaining of this 

chapter is organized as follows: the approach is described in Section 6.2; results and discussion 

are presented in Section 6.3, and the main conclusions are summarized in Section 6.4. 

6.2 Approach 

6.2.1 Meteorological forcings 

Meteorological data from WRF simulations is available at hourly time steps and three 

different configurations (4-, 12-, and 36-km resolutions), for both historical and PGW conditions 

during the period October/2000 - September/2008. The variables and temporal disaggregation 

used depend on specific hydrologic model requirements (further details in Chapter 2). 

In this chapter, WRF outputs are used to compare the effects that three different RCM 

configurations (specifically, grid size and convective parameterization) may have on hydrologic 

simulations performed using different hydrologic model structures. To compare the effects of 

WRF configuration – referred as experiment 1 – with those from re-scaling high-resolution 

outputs, we create two additional forcing datasets by re-gridding WRF outputs obtained at 4-km 

to the 12- and 36-km grid cells used by Rasmussen et al. (2014) – referred as experiment 2. This 

is done in two steps: (1) identification of all the 4-km grid points contained in WRF grid cells at 
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12- and 36-km resolutions, and (2) computation of the new forcing data by spatially averaging 

the 4-km points contained in the 12- and 36-km grid cells. 

 

Figure 6.1: Basin-averaged monthly precipitation values for current (CTRL, dashed lines) and future (PGW, 

solid lines) WRF outputs used in (a) experiment 1 (effects of WRF configuration) and (b) experiment 2 

(effects of spatial aggregation), for period Oct/2002 - Sep/2008. 

 

Figure 6.1 includes basin-averaged monthly precipitation values computed from: (a) 

WRF outputs obtained by Rasmussen et al. (2014) with three different configurations (4-, 12- 

and 36-km), and (b) 4-km WRF outputs, re-scaled to 12- and 36-km horizontal resolutions. 

These results correspond to the period October/2002 – September/2008, for current and future 

climate scenarios. It can be noted that discrepancies in WRF configuration (i.e. differences in 

model grid size and convective parameterization) affect precipitation amounts heavily (Figure 
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6.1a). Indeed, 4-km WRF simulations generate much more precipitation in all basins, especially 

during summer, followed by 12- and 36-km. Moreover, PGW simulations project a decrease in 

precipitation over fall/winter at all basins regardless of the configuration used, and a general 

increase during summer months. On the other hand, scaling effects (Figure 6.1b) on monthly 

precipitation amounts are minor compared to those coming from WRF configuration. At the 

Yampa and East River basins, smaller monthly precipitation amounts are obtained during 

October-March for coarser gridded datasets (i.e. 12- and 36-km), and 36-km datasets provide 

more precipitation during February-April at the Animas River basin. 

 

Figure 6.2: Same as in Figure 6.1, but for basin-averaged monthly temperature. 

Figure 6.2 displays basin-averaged monthly temperatures computed for experiments 1 

(Figure 6.2a) and 2 (Figure 6.2b). There are not substantial differences across different WRF 

configurations, although 4-km WRF simulations provide higher temperature for both CTRL and 
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PGW scenarios during December-March. Finally, it can be noted that scaling impacts on basin-

averaged monthly temperatures are minimal. 

6.2.2 Hydrologic/land surface models 

To explore the interaction between meteorological datasets obtained from WRF and the 

selection of hydrologic model structure, we choose four hydrologic/land surface models: the US 

Geological Survey's Precipitation Runoff Modeling System (PRMS; Leavesley et al. 1983; 

Leavesley and Stannard 1995), the Variable Infiltration Capacity  model (VIC; Wood et al. 1992; 

Liang et al. 1994, 1996) the Noah Land Surface Model (Noah-LSM; Ek 2003; Mitchell et al. 

2004) and the Noah Land Surface Model with Multiple Parameterizations (Noah-MP; Niu et al. 

2011; Yang et al. 2011). Further details on inter-model differences, information requirements 

and model setup are included in Chapter 2. 

6.2.3 Experimental design 

In order to assess the effects of WRF configuration and spatial scaling on the portrayal of 

climate change impacts, we force hydrologic model simulations under historical (CTRL) and 

modified climate (PGW) scenarios for the following cases: 

 Experiment 1: hydrologic model simulations are conducted using 4-km, 12-km and 36-

km WRF outputs obtained by Rasmussen et al. (2014). 

 Experiment 2: hydrologic model simulations are conducted using 4-km WRF outputs, 

and two additional datasets obtained from re-scaling 4-km outputs to the original 12- and 

36-km WRF grid cells used by Rasmussen et al. (2014). 

All model simulations are carried out for the period between October 1, 2000 and 

September 30, 2008, using the first two years as warming up to initialize model states.  We 
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compute hydrologic changes using the same parameter sets obtained by Mendoza et al. (2015a), 

i.e. calibrated by minimizing the root mean squared error (RMSE) between observed and 

simulated daily streamflow (period October 1, 2002 to September 30, 2008) with the Shuffled 

Complex Evolution (SCE-UA) algorithm (Duan et al., 1992, 1993), using 4-km resolution WRF 

historical datasets. 

The purpose of these experiments is to examine the implications of forcing datasets 

developed at different spatial resolutions. Therefore, we decide to fix the spatial resolution of 

hydrological models (grid size) to 4-km – identical to the grid used in the 4-km WRF simulations 

performed by Rasmussen et al. (2014) – to isolate effects of forcing configuration. Hence, when 

hydrologic model simulations are forced with 12- and 36-km meteorological datasets, 

meteorological variables are distributed to hydrologic model grid cells using a nearest neighbor 

interpolation method as in Shrestha et al. (2006). Hydrologic changes are computed for the 

period Oct/2002 - Sep/2008 by forcing all hydrologic models with the same current and future 

WRF datasets. 

6.3 Results and discussion 

6.3.1 Model performance 

We first analyze how hydrologic model performance is affected by WRF configuration 

(Figure 6.3a) and forcing re-scaling (Figure 6.3b) over the period October/2002 - 

September/2008. Hence, model fidelity (i.e. accuracy in process representation) is assessed by 

computing differences between simulated (control, CTRL) and observed (Obs) values of 

signature measures of hydrologic behavior. The suite of metrics include the runoff ratio (RR), 

center of time of runoff (CTR), flashiness of runoff (FMS), and low flow volumes (FLV). In 

Figure 6.3, each evaluation metric is displayed in a different row, hydrologic model structures 
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are represented by different symbols, and different colors depict different WRF configurations 

(Figure 6.3a) or spatial forcing resolutions (Figure 6.3b). Therefore, differences between 

symbols holding different colors indicate the magnitudes of effects of RCM configuration and/or 

scaling on hydrologic model fidelity.  

The results from experiment 1 (Figure 6.3a) show that decreased precipitation amounts 

obtained with coarser resolutions (12- and 36-km) in WRF (see Figure 6.1a) translate into a 

degradation in simulated runoff ratios (RR) at all basins. When looking at the center of time of 

runoff (CTR), however, there is no dependence between the selected WRF configuration (i.e. 

coarser resolution) and performance, although the use of 12- and 36-km WRF outputs clearly 

introduce more uncertainty in the multi-model ensemble when comparing to 4-km WRF 

simulations. The latter effect can also be observed when looking at model fidelity in terms of 

flashiness of runoff (FMS) and long-term baseflow (FLV). Note that the FLV result obtained 

from VIC and 36-km WRF for the Yampa River basin (i.e. blue triangle) has been omitted in 

Figure 6.3a to allow a better visualization and comparison between experiments 1 and 2 (since 

CTRL – Obs > 2000 log(m³/s)). With the exception of runoff ratio (RR), 

enhancement/degradation in performance obtained from switching WRF configurations depends 

on model/basin. 

As shown in Figure 6.3b, the effects of forcing scaling on model fidelity exhibit similar 

pattern to those from WRF configuration but generally at a much smaller degree for runoff ratio 

(RR), flashiness of runoff (FMS), and baseflow processes (FLV) throughout all models and 

basins. However, the representation of runoff seasonality (CTR) is still considerably affected in 

some models/basins (e.g. Noah-LSM and Noah-MP at Yampa and East, PRMS at East). This 

might be attributed to the smoothing effect of spatial aggregation on high precipitation/snowmelt 
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events simulated by 4-km WRF simulations, affecting the historical simulation of high daily 

runoff events and therefore the computation of center of timing (CTR). 

 

 

Figure 6.3: Difference between simulated (CTRL) and observed (Obs) signature measures of hydrologic 

behavior (period Oct/2002 - Sep/2008) obtained from various hydrologic model structures (i.e. different 

symbols) and forcing datasets (i.e. different colors). Results are displayed for (a) experiment 1 (effects of 

WRF configuration) and (b) experiment 2 (effects of spatial aggregation). 
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Figure 6.4 illustrates how hydrologic signature measures obtained from coarse resolution 

datasets (12- and 36-km) compare with those computed using high-resolution WRF outputs 

under current climate. The results obtained in experiments 1 and 2 are displayed in Figures 6.4a 

and 6.4b, respectively, where each column represents a specific signature measure, and each row 

contains signature measures computed with 12- and 36-km grid spacing, versus metrics obtained 

with 4-km WRF datasets (i.e. baseline dataset). Results from experiment 1 (Figure 6.4a) 

demonstrate that while the use of 12- and 36-km WRF outputs has large effects on the simulation 

of runoff ratio (RR), the implications on other metrics depend on the model structure and/or the 

basin analyzed. For example, 12-km WRF datasets translate into increases in the center of time 

of runoff (CTR) when using PRMS, and decreases in the same metric if the model is Noah-MP. 

Similar effects are observed if hydrologic simulations are forced with 36-km WRF outputs. The 

effects of WRF configuration on flashiness of runoff (FMS) and long-term baseflow (FLV) tend 

to be basin-dependent for each model with the exception of VIC, for which larger signature 

values are simulated in all basins – especially Yampa – when using 12- and 36-km WRF outputs.     

The results displayed in Figure 6.4b show that the effects of re-scaling forcing datasets 

are less pronounced than those from WRF configuration, but still important for some signature 

measures. Overall, re-gridding 4-km WRF outputs to 12- and 36-km horizontal resolutions 

generates a reduction in simulated runoff ratio (RR) and center of time of runoff (CTR). Scaling 

effects translate into very small decreases in flashiness of runoff (FMS) across models/basins 

with a few exceptions (Yampa when forcing VIC with 12-km and 36-km datasets, and East when 

forcing VIC with 36-km WRF). Finally, scaling effects on long-term baseflow (FLV) are more 

pronounced when the forcing grid size is 36-km, translating into increases in FLV with VIC and 

Noah-LSM, and decreases of the same metric with PRMS and Noah-MP at all basins. 
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Figure 6.4: Impact of (a) WRF configuration (experiment 1) and (b) spatial aggregation of WRF 4-km 

resolution datasets on simulated hydrologic signature measures. Each column contains results for a specific 

metric, while different rows contain outputs from 12-km and 36-km (y axis) versus model outputs using WRF 

datasets with 4 km horizontal grid space (x axis). In each panel, different letters represent basins and 

different colors depict results from various hydrologic models (see legend for details). 
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6.3.2 Changes in annual water balance 

In this section, we analyze and compare the effects of WRF configuration (experiment 1) 

and spatial forcing aggregation (experiment 2) on the partitioning of precipitation into ET and 

runoff under current and future climate scenarios. In each panel of Figure 6.5, the diagonal lines 

represent basin-averaged mean annual precipitation for current and future climate scenarios over 

a 6-year average period (Oct/2002 - Sep/2008). The intersection of these lines with the x-axis 

indicates that all precipitation becomes runoff, while the intersection with the y-axis indicates 

that the system converts all precipitation into ET. In each panel, different symbols depict outputs 

coming from different hydrologic model structures for current climate (unfilled) and future 

climate (solid) and color differentiate the spatial resolutions. A symbol located exactly on the 

diagonal lines represents a simulation with negligible changes in storage over the 6-year 

simulation period (i.e. P = ET + R), whereas symbols located below the 1:1 line denote increases 

in storage, and those above denote decreases in storage. Inter-model differences in precipitation 

partitioning are represented by the distance between different symbols (unfilled or solid), while 

the distance between a particular symbol (e.g. star for Noah-MP) for current (unfilled) and future 

(solid) climate scenarios represents the hydrologic change signal. It should be noted that 

uncertainty arising from model choice is represented by the dispersion of symbols holding the 

same color around the precipitation (diagonal) line.  

The results obtained from experiment 1 (Figure 6.5a) show that 4-km WRF simulations 

generate the largest precipitation amounts under current (CTRL) and future (PGW) climate 

scenarios at all basins, followed by 12- and 36-km WRF outputs. Inter-model differences in the 

partitioning of precipitation into runoff and ET are still considerable after calibration (Mendoza 

et al. 2015a) and tend to increase when hydrologic simulations are forced with 12- and 36-km 
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WRF datasets. On the other hand, the effects of forcing re-scaling (Figure 6.5b) on basin-

averaged annual precipitation are reduced compared to those of WRF configuration. 

Interestingly, forcing re-scaling can increase inter-model differences (i.e. larger dispersion of 

symbols when 4-km WRF are re-gridded to 12- and 36-km grid spacing) in precipitation 

partitioning under current and future climate (e.g. Yampa River basin). 

 

Figure 6.5: Partitioning of current (CTRL) and future (PGW) basin-averaged mean annual precipitation 

(diagonal, mm/year) into basin-averaged mean annual runoff (x axis, mm/year) and evapotranspiration (y 

axis, mm/year) obtained from various model structures (i.e. different symbols) and forcing datasets (i.e. 

different colors) for the period Oct/2002 - Sep/2008. Results are displayed for (a) experiment 1 (effects of 

WRF configuration) and (b) experiment 2 (effects of spatial forcing aggregation). 
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How do WRF configuration and forcing re-scaling affect the portrayal of climate change 

impacts in annual water balance? To answer this question, we compute projected changes in 

basin-averaged mean annual runoff and ET (Figure 6.6) for each basin (displayed in different 

columns). In each panel, the dispersion of the same symbol (e.g. triangle for VIC) holding 

different colors across the ΔRunoff – ΔET space (with Δ representing the difference between 

future and current climate scenarios) represents the uncertainty introduced by the choice of WRF 

configuration (Figure 6.6a) or spatial resolution in forcing datasets (Figure 6.6b). Similarly, the 

dispersion of different symbols holding the same color (e.g. red for 4-km WRF datasets) 

illustrates the uncertainty associated with hydrologic model choice. 

Figure 6.6a reveals that the choice of WRF configuration has large effects on hydrologic 

changes projected through different hydrologic model structures. These effects are reflected in 

the magnitude (i.e. distance from each symbol to the point ΔRunoff = 0 mm/yr, ΔET = 0 mm/yr) 

and direction (i.e. quadrant in which symbols are located, indicating increase/decrease of runoff 

and ET) of projected changes in mean annual runoff and mean annual ET obtained with each 

hydrologic model. Moreover, the dispersion provided by different WRF configurations through a 

single model structure may be comparable or even larger than that obtained from multiple model 

structures forced with a unique WRF dataset (e.g. PRMS and Noah-MP simulations at East with 

calibrated hydrologic model simulations forced with 12-km WRF datasets). 

The comparison between Figures 6.6a and 6.6b highlights that the effects of forcing 

scaling on projected changes in the annual water balance are smaller than those coming from 

WRF configuration. Indeed, the direction of hydrologic change is mostly preserved when forcing 

the same hydrologic model with re-scaled datasets (Figure 6.6b). In opposition to the results 

obtained from experiment 1, the uncertainty provided by model choice forced by any re-scaled 
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dataset is much larger than the uncertainty provided by the choice of dataset throughout a unique 

hydrologic model structure. Additionally, re-scaling forcing inputs to coarser resolutions can 

enhance inter-model differences (i.e. dispersion of symbols holding the same color) in 

hydrologic change. 

 

 

Figure 6.6: Projected changes in basin-averaged mean annual runoff (x axis, mm/year) and 

evapotranspiration (y axis, mm/year) obtained from various model structures (i.e. different symbols) and 

forcing datasets (i.e. different colors) for the period Oct/2002 - Sep/2008. Results are displayed for (a) 

experiment 1 (effects of WRF configuration) and (b) experiment 2 (effects of spatial forcing aggregation). 
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6.3.3 Projected changes in catchment behavior 

Finally, we compare the effects of WRF configuration and forcing re-scaling on projected 

changes in hydrologic signature measures across multiple model structures (Figure 6.7). The 

results from experiment 1 (Figure 6.7a) show that the only consistent projection obtained with all 

WRF configurations is a decrease in the center of time of runoff (CTR), or earlier annual peak 

flow, under the future climate scenario, although the magnitudes obtained can be different 

depending on the hydrologic model selected. On the other hand, the use of coarser grid sizes (i.e. 

12- and 36-km) and a convective parameterization in WRF generally translate into increased 

projected changes (i.e. PGW – CTRL) in runoff ratio (RR), which sometimes produce a switch in 

the sign (i.e. from negative to positive values) of projected variations. When looking at flashiness 

of runoff (FMS), the effects of WRF configuration on projected changes obtained with a specific 

hydrologic model structure depend on the basin analyzed. For example, the choice of WRF 

configuration has little effects on projected changes in FMS obtained with Noah-LSM at Yampa, 

Noah-MP at East and PRMS at Animas, but large implications in projections for the rest of 

models/basins. The results for low flow volumes (FLV) show that WRF configuration mostly 

affects the direction and magnitude of projections obtained with VIC, especially at the Yampa 

River basin.  

According to Figure 6.7b, while the effects of forcing re-scaling on projected changes in 

runoff ratio (RR) are smaller than those from WRF configuration (Figure 6.7a), they can still 

switch the sign (e.g. VIC simulations at the Yampa River basin) and magnitude of projections. 

Although forcing scaling has very minor effects on changes in runoff seasonality (CTR) across 

all models, it might affect both the magnitude and direction of projections in flashiness of runoff, 

or FMS (e.g. VIC and Noah-MP at the Yampa and East River basins). Finally, scaling effects on 



     

101 

 

projected changes in low flow volumes (FLV) are generally smaller than those from WRF 

configuration, and are mostly reflected in VIC simulations. 

 

 

Figure 6.7: Difference between future (PGW) and current (CTRL) simulated signature measures of 

hydrologic behavior, obtained from various hydrologic model structures (i.e. different symbols) and forcing 

datasets (i.e. different colors)  over a six-average water year (Oct/2002 - Sep/2008). Results are displayed for 

(a) experiment 1 (effects of WRF configuration) and (b) experiment 2 (effects of spatial forcing aggregation). 
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6.4 Conclusions 

We investigated the implications that regional climate model (RCM) configuration and 

output re-scaling may have on the portrayal of climate change impacts. Specifically, we assessed 

the effects of the above decisions on: (i) historical performance in terms of hydrologic signature 

measures, and (ii) hydrologic changes due to a climate perturbation, with focus on the annual 

water balance and catchment processes. The analyses were conducted in three catchments 

located in the headwaters of the Colorado River basin. To explore the interplay between forcing 

effects and hydrologic model choice, we include four model structures, whose parameters were 

calibrated against observed runoff using 4-km WRF historical datasets (Mendoza et al. 2015a). 

As illustrated by Rasmussen et al. (2014), the choice of WRF configuration (i.e. model 

grid size and inclusion of convective parameterization) has large effects on simulated 

precipitation amounts. Specifically, the use of 12- and 36-km grid spacing and a convective 

parameterization results in the underestimation of basin-averaged annual precipitation totals with 

respect to 4-km WRF simulations. Therefore, it was found that WRF configuration has larger 

effects on the historical simulation of hydrologic signature measures in comparison to those 

provided by forcing re-scaling. However, re-scaling effects on runoff seasonality (CTR) are still 

considerable due to the attenuation of local high precipitation/snowmelt events. 

The water balance analysis revealed that WRF configuration has tremendous effects on the 

portrayal of hydrologic change at an annual basis (i.e. variations in mean annual runoff and ET), 

regardless of the hydrologic model structure selected. Moreover, the effects of WRF 

configuration on hydrologic change may overwhelm the uncertainty from model choice, which 

surpasses the uncertainty from re-scaled forcings. It was also found that re-scaling forcing 
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datasets to coarser resolutions may augment inter-model differences in precipitation partitioning 

and projected changes in runoff and ET. 

Forcing scaling effects on projected changes in hydrologic signature measures were found 

to be generally smaller than those coming from WRF configuration. However, the use of coarser 

forcing resolutions may translate into a switch in the sign of changes projected by a particular 

hydrologic model structure (e.g. runoff ratio, flashiness of runoff). Even more, it was found that 

scaling effects may surpass those associated with WRF configuration when projecting variations 

in hydrologic behavior (e.g. flashiness of runoff). 

The main conclusion from this study is that RCM configuration has enormous 

implications on the magnitude and direction of hydrologic change signal. Moreover, the results 

presented here illustrate the strong interplay between meteorological forcings and hydrologic 

model structures. In order to avoid an over-confident portrayal of climate change impacts, future 

studies should incorporate an integrated characterization and quantification of the different 

sources of uncertainty in hydrologic modeling, with particular emphasis on inputs, model 

structure and parameters. 
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CHAPTER 7:  Towards a process-based assessment of the sensitivity of water resources to 

climate variability and change 

7.1 Introduction  

Understanding and predicting the water cycle at multiple spatial and temporal scales has 

been a key challenge for humanity. We have seen how relatively recent, but clear evidence of 

ongoing shifts in hydroclimatic variables (e.g. Barnett et al. 2005, 2008; Regonda et al. 2005; 

Mote et al. 2005; Stewart et al. 2004, 2005; Knowles et al. 2006; Hamlet et al. 2007; Cayan et al. 

2010; Pierce et al. 2008; Das et al. 2009; Hidalgo et al. 2009) has increased the awareness of the 

impact of climate variability and change on water resources, especially considering that an 

important fraction of the observed trends are human induced. 

Given the above problem, the literature has seen a plethora of studies aimed to generate 

reliable projections of changes in hydrology at the catchment, regional and global scales due to 

future shifts in precipitation and temperature. Nevertheless, the little agreement in results – 

particularly runoff – from different studies conducted in the same domain (Vano et al. 2014; 

Mendoza et al. 2015a) suggests that uncertainties in projections arise from the generally 

subjective nature of methodological choices. In this chapter we discuss the existing paradigms 

used in the assessment of climate change impacts, illustrate how different hydrologic modeling 

decisions can generate an over-confident portrayal of climate change impacts, and make some 

recommendations to improve our understanding of the sensitivity of the water cycle to climate 

variability and change. 
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7.2 Paradigms for the assessment of climate change impacts 

There are two main complementary perspectives on climate risk assessment for adaptation 

(Wilby et al. 2009; Wilby and Dessai 2010): (i) the ‘top-down’ (or scenario-led) approach – also 

known as the ‘uncertainty cascade’ –, and (ii) the ‘bottom-up’ (or vulnerability-based) approach. 

The ‘top-down’ approach relies heavily on the generation of scenarios from different 

methodological choices (e.g. greenhouse gas emission scenarios, global climate models, 

downscaling methods, hydrologic models); therefore, implementing this paradigm involves 

quantifying the uncertainty at each step of the modeling process, resulting in a final envelope for 

the projected variable(s) of interest (e.g. Wilby and Harris 2006; Chen et al. 2011; Addor et al. 

2014). On the other hand, ‘bottom-up’ methods focus on identifying and reducing the 

vulnerability to known climate variability, and hence do not necessarily require climate change 

scenarios (e.g. Lempert et al. 2004; Naylor et al. 2007). In view of the possible mismatch 

between the outputs generated by ‘top-down’ frameworks and the needs of decision-makers (e.g. 

Hallegatte 2009; Romsdahl and Pyke 2009), some authors have argued for combining the 

strengths of the scenario-led and vulnerability-based approaches, by using climate change 

projections at a later stage to inform the assessment of vulnerability (e.g. Prudhomme et al. 2010; 

Wilby and Dessai 2010; Brown et al. 2012).  

From the paradigms listed above, the ‘top-down’ approach has been the primary method in 

the assessment of climate change impacts on hydrological processes, demonstrating to be 

particularly useful for identifying the main sources of uncertainty  (e.g. Chen et al. 2011; Addor 

et al. 2014). However, this approach has two main problems: (1) limited practicality (Chen et al. 

2011), and (2) little attention to hydrologic process understanding (Bastola et al. 2011). In our 

opinion, it cannot be expected from every climate change impact study to conduct thousands of 
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model simulations – as the ‘uncertainty cascade’ implicitly suggests – to cover the full range of 

possible uncertainties. Further, the ‘top-down’ approach addresses the problem of hydrologic 

model uncertainties from a statistical perspective – i.e. include as many different model 

structures and parameter sets as possible – rather than a process-based perspective. 

In view of such problems, we believe that adopting a process-based paradigm is crucial to 

improve understanding of hydrologic sensitivity to climate variability and change. Implementing 

this vision requires accepting that some climate impacts (e.g. increases in temperature) can be 

predicted – also referred as hard facts (Blöschl and Montanari 2010) – while using expert 

knowledge to quantify the effects of hydrologic modeling decisions on individual simulated 

processes (e.g. runoff efficiency, snowmelt seasonality, soil moisture). This will help to 

understand why certain changes for a hydrological variable are projected, rather than focusing on 

the magnitude of the changes (Blöschl and Montanari 2010). 

7.3 An example of the effects of hydrologic modeling approaches on the portrayal of 

climate change impacts 

In this section, we summarize the main results obtained in chapters 4, 5 and 6. These 

results are presented in a way that allows visualizing the implications that different hydrologic 

modeling decisions have on projected changes in the overall water balance, i.e. changes in mean 

annual runoff and mean annual evapotranspiration (ET). 

7.3.1 Effects of hydrologic model choice and calibration 

Figure 7.1 shows the standard deviation of projected changes in mean annual runoff and 

mean annual ET, computed from the multi-model ensemble using default parameter values (red 

bars) and calibrated parameter values (blue bars). Model calibration was conducted with the 
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Shuffled Complex Evolution (SCE-UA) algorithm (Duan et al. 1992, 1993) by minimizing the 

root mean squared error (RMSE) between observed and simulated daily streamflow for the 

period between October 1, 2002 and September 30, 2008. These results demonstrate that a better 

match between simulated and observed runoff – achieved through traditional single-objective 

calibration – does not necessarily improve inter-model agreement in projected changes of the 

annual water balance. Indeed, the Animas River is the only basin where calibration makes a 

substantial contribution to decrease uncertainty in projections (Mendoza et al. 2015a). Further, it 

was obtained that different models can yield to the same results in projected runoff changes, but 

due to a combination of very different reasons (e.g. different changes in ET, soil moisture). 

 

 

Figure 7.1: Standard deviation of projected changes obtained with four different hydrologic models using 

uncalibrated (red) and calibrated (blue) model parameter values. Results are displayed for mean annual 

runoff (top) and mean annual ET (bottom) for the period October/2002 – September/2008. 
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7.3.2 Comparing the effects of subjective model choice and parameter estimation strategies 

In view of the above results, further experiments were conducted in order to compare the 

effects of model choice with those from parameter estimation strategies (Mendoza et al. 2015c). 

Figure 7.2 displays the standard deviations of projected hydrologic changes (as in Figure 7.1) 

coming from four different hydrologic models calibrated with the same strategy (red bars), and 

those computed with a single model structure (PRMS) using parameter values obtained with four 

different objective functions (blue bars), five local optimal parameter sets (green bars), and three 

different forcing datasets (cyan bars).  

 

Figure 7.2: Standard deviation of projected changes in mean annual runoff (top) and mean annual ET 

(bottom) for the period October/2002 – September/2008, obtained from different options associated with four 

methodological choices: model structure (red), objective function used in model calibration (blue), multiple 

local optimal parameter sets (green), and forcing dataset used in model calibration (cyan). 
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The results in Figure 7.2 show that uncertainty from calibration strategy may overwhelm 

the uncertainty inherent to hydrologic model choice. Even more, it was found that parameter 

estimation methods may introduce significant uncertainty in projected changes of hydrologic 

behavior. 

7.3.3 Effects of regional climate model configuration and forcing scaling 

Finally, numerical experiments were conducted to quantify the effects of regional climate 

model (RCM) configuration (i.e. horizontal grid spacing and parameterization), and forcing re-

scaling on projected hydrologic changes obtained with four model structures (Mendoza et al. 

2015d). In the first experiment, hydrologic changes were computed using 4-km, 12-km and 36-

km WRF outputs obtained by Rasmussen et al. (2014), where convective parameterization was 

activated only for 12-km and 36-km simulations (experiment 1). In the second experiment, 

hydrologic changes were computed with 4-km WRF outputs, and two additional datasets 

obtained from re-scaling 4-km outputs to the original 12- and 36-km WRF grid cells (experiment 

2) used by Rasmussen et al. (2014). Figure 7.3 shows the standard deviation of projected changes 

in mean annual runoff and mean annual ET, computed from the multi-forcing ensembles in 

experiments 1 (plain bars) and 2 (hatched bars). The reader can note that WRF configuration has 

much larger effects than forcing re-scaling on projected changes in the overall water balance.  
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Figure 7.3: Standard deviation of projected changes in mean annual runoff (top) and mean annual ET 

(bottom) for the period October/2002 – September/2008, obtained from different forcing datasets across four 

hydrologic model structures. Plain bars represent the uncertainty from WRF configuration, and hatched 

bars represent the uncertainty from forcing scaling. Parameter values used here were obtained by calibrating 

each model against observed daily runoff, forcing simulations with 4-km WRF outputs.  

 

Figure 7.4 illustrates the uncertainty in projected changes of mean annual runoff and ET, 

obtained from multi-model ensembles for each forcing dataset in experiments 1 (plain bars) and 

2 (hatched bars). No clear relation was found between uncertainty in projections and WRF 

configuration across basins. Nevertheless, Figure 7.4 shows that uncertainty in projections 

increases as coarser forcing resolutions (hatched bars) are used to compute hydrologic changes. 

Also, the comparison of Figures 7.3 and 7.4 for East and Animas reveals that the method used to 
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generate forcing datasets can introduce larger uncertainty than model choice in hydrologic 

change projections. 

 

Figure 7.4: Standard deviation of projected changes in mean annual runoff (top) and mean annual ET 

(bottom) for the period October/2002 – September/2008, obtained from different models across three forcing 

datasets. Plain bars represent the uncertainty from WRF configuration (i.e. horizontal grid spacing and 

convective parameterization), and hatched bars represent the uncertainty from forcing scaling. Parameter 

values used here were obtained by calibrating each model against observed daily runoff, forcing simulations 

with 4-km WRF outputs. 

7.4 Avoiding an over-confident prediction of hydrologic changes  

7.4.1 What have we learnt? 

Past efforts have proposed several paths to improve confidence in projected hydrologic 

changes. For example, Blöschl and Montanari (2010) pointed that a critical first step is to 
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“improve our knowledge of the connections among climate, weather and hydrology under the 

current climate” (italics added). Other general recommendations include the separation and 

understanding of the different sources of uncertainty (e.g. Harding et al. 2012; Steinschneider et 

al. 2012), accounting for  non-stationary interactions between a changing climate and landscape 

properties (e.g. Milly et al. 2008; Miller et al. 2011; Surfleet and Tullos 2013), understanding the 

relative role of climatic variability and land cover change on hydrologic processes at multiple 

scales (Blöschl et al. 2007), and a better comprehension of climate change impacts on water 

management planning and decision making (Miller et al. 2012). 

Some authors have put detailed emphasis on the improvement of hydrologic modeling 

decisions. For example, Steinschneider et al. (2012) recommended the incorporation of input (i.e. 

meteorological forcing) and response data uncertainties in statistical frameworks that quantify 

hydrologic change uncertainties. Poulin et al. (2011) and Velázquez et al. (2013) recommended 

the use of hydrological models with different levels of complexity in the assessment of climate 

change impacts. In this line, Seiller et al. (2012) concluded that use of a multi-model ensemble 

offers “better climate transposability”, i.e. better model accuracy using parameter values 

calibrated for very different hydroclimatic conditions. Nevertheless, there is also awareness that 

hydrologic model structures should be carefully selected depending on the study purposes, 

hydroclimatic regime and basin characteristics (Bae et al. 2011; Najafi et al. 2011). In terms of 

hydrologic model parameters, Addor et al. (2014) suggests that multi-objective calibration may 

improve inter-model agreement when using multiple hydrologic model structures. Other studies 

have found a strong dependence between parameter values and climatic conditions (e.g. Rosero 

et al. 2010; Vaze et al. 2010; Merz et al. 2011; Coron et al. 2012; Herman et al. 2013). To 

address this problem, Singh et al. (2011) proposed a trading-space-to-time technique to generate 
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probabilistic streamflow predictions under different climatic scenarios. More recently, Westra et 

al. (2014) proposed the inclusion of non-stationarity by allowing hydrologic model parameters to 

vary in time as a function of selected covariates (e.g. stratify by season, rising and falling 

hydrograph limbs, etc.). 

7.4.2 What have we missed? 

Although we agree on the usefulness of multi-model approaches and multi-objective 

calibration to account for hydrologic model uncertainty, we believe that two key elements should 

be considered to advance towards a process-based assessment of climate change impacts on 

hydrology: (1) a diagnostic evaluation approach (Gupta et al. 2008) to build feasible multi-model 

ensembles and conduct model calibration/evaluation, and (2) agile modeling frameworks 

(Mendoza et al. 2015b) that allow model deconstruction and the incorporation of non-stationarity 

in model parameters. The inclusion and interaction between the above elements is crucial to 

understand and attribute hydrologic responses to specific modeling decisions (Clark et al. 

2011a). 

For example, in the case study presented in section 7.3 we selected four hydrologic 

models on an ad-hoc basis, rather than from the careful examination of available data to build 

realistic hypotheses of hydrologic behavior (e.g. McMillan et al. 2011; Clark et al. 2011b). This 

is problematic because the arbitrary addition of hydrologic models that include unfeasible 

process representations for the catchment(s) of interest may not only result in the over-estimation 

of structural uncertainty, but also in practicality issues related with unnecessary extra 

computational costs. Moreover, the subjective choice of a suite of model structures – developed 

under very different modeling philosophies – makes it very difficult to isolate the set of decisions 

as part of the model building process, or remove ‘undesirable’ modeling approaches (e.g. 
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potential evapotranspiration formulations, mosaic approach for sub-grid variability, linear 

reservoir for baseflow generation). 

Regarding parametric uncertainty, two main lessons can be extracted from the example 

provided in section 7.3: (1) single-objective calibration does not necessarily help to reduce inter-

model differences in projected hydrologic changes, and (2) uncertainties arising from parameter 

estimation strategies may overwhelm structural uncertainties. Hence, future studies should 

incorporate a diagnostic model evaluation approach to guide the parameter search towards 

hydrologically consistent regions (Martinez and Gupta 2011) – i.e. reproduce signature measures 

of specific catchment processes (e.g. evapotranspiration, high flow volumes, runoff seasonality, 

long-term baseflow). This could be achieved by constraining solutions or within a multi-

objective calibration framework that includes signatures in the formulation of objective 

functions. Further, parametric uncertainty should be accounted for each model/ensemble member 

in order to reduce inter-model differences in projected changes of catchment behavior (e.g. 

Najafi et al. 2011; Velázquez et al. 2013). In our opinion, the availability of more agile 

hydrologic modeling frameworks (i.e. having the capability to modify spatial variability and 

hydrologic connectivity, model parameterizations and model parameter values) is crucial for 

facilitating experimentation towards more reliable estimates of projected hydrologic changes. 

Finally, the example presented in section 7.3 illustrates the large effects of RCM 

configuration on projected hydrologic changes. In view of this, some authors have highlighted 

the need for further research linking atmospheric and land components of the water cycle using 

multiple RCMs (e.g. Gao et al. 2011). In our opinion, a strong a priori constraint of regional 

climate modeling frameworks like WRF is the high computational cost of simulations, making it 

very difficult to conduct extensive analyses with multiple parameterizations and spatial 
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configurations. Extending the principle of agility to weather models and moving towards 

intermediate complexity would facilitate the analyses of multiple scenarios and forcing 

uncertainty quantification via ensemble simulations. 

7.5 Final perspectives 

A fundamental problem in the assessment of climate change impacts on hydrologic 

processes is the large uncertainty associated with each modeling component (e.g. emission 

scenarios, global climate model, hydrological model, etc.). In our opinion, the widely used ‘top-

down’ approach has two main caveats: (1) limited practicality, and (2) little attention to 

hydrologic process understanding. We argue that moving towards a process-based paradigm that 

accounts for a greater role of expert knowledge in decision-making, is crucial to improve 

understanding of hydrologic sensitivity to climate variability and change. While this approach 

requires the assumption that some climate impacts are predictable (i.e. hard facts), it allows 

detailed analyses of the implications that hydrologic modeling decisions have on the simulation 

of individual processes (i.e. focus on the reasons of projected ranges, rather than the magnitude 

of projections). 

To obtain more reliable hydrologic predictions under a changing climate, many authors 

have recommended the use of multi-model ensembles, multi-objective calibration and non-

stationary relations between landscape properties and climatic conditions. We believe that 

integrating a diagnostic evaluation approach with more agile modeling frameworks can facilitate 

the above tasks through the identification of plausible structures (i.e. set of model equations) and 

the exclusion of undesired process representations via model deconstruction. Moreover, agile 

modeling frameworks should facilitate the incorporation of non-stationary parameters and 

extensive sensitivity analyses and calibration towards hydrologically consistent parameter sets. 
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Finally, the extension of agility principles to weather models and the simplification of physics 

representations might facilitate extensive experimentation under different climate change 

scenarios and forcing uncertainty estimates via ensemble simulations. 
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APPENDIX A: Parameters included in hydrologic model calibration 

 

The model parameters included in the calibration process (chapters 4, 5 and 6) are selected based 

on background sensitivity analysis performed for each hydrologic/land surface model. In this 

study, we use the Distributed Evaluation of Local Sensitivity Analysis (DELSA; Rakovec et al. 

2014) method to quantify parameter sensitivity, using the root mean squared error between 

observed and simulated streamflow as the objective function. In DELSA, the assessment of 

parameter sensitivity is based on local gradients of the model performance index with respect to 

model parameters at multiple points throughout the parameter space. A number of soil, 

vegetation, runoff and snow parameters were considered in DELSA for each model: 17 for 

PRMS, 34 for VIC, 17 for Noah-LSM and 30 for Noah-MP. 

Based on the sensitivity analysis results, the numbers of parameters calibrated are 8 for 

PRMS, 9 for VIC, 11 for Noah-LSM and 14 for Noah-MP. These parameters are listed in Tables 

A1-A4. 

Table A.1: Summary of PRMS parameters considered for calibration. 

Parameter Description Units Distributed* Calibration Range 

        min max 

            

jh_coef** monthly Jensen-Haise air temperature coefficient F no 0.36 2.86 

fastcoef_lin linear flow routing coefficient for fast interflow d-1 no 0 10 

fastcoef_sq non-linear flow routing coefficient for fast interflow in-1 d-1 no 0 1.25 

pref_flow_den decimal fraction of the soil zone available for preferential flow - no 0 5 

soil_moist_max maximum volume of water per unit area in the capillary 

reservoir 

in yes 0 2.87 

snarea_curve snow area-depletion curve values - yes 0 1 

tmax_allsnow monthly maximum air temperature at which precipitation is all 

snow for the HRU 

F no -10 40 

tmax_allrain monthly minimum air temperature at an HRU that results in 

all precipitation during a day being rain 

F no 0 90 

            

*If the parameter is distributed in space, its calibration is performed on the basis of multipliers. Although description and units 

refer to actual parameters, the values in bold represent the multiplier values (instead of actual parameter values). 

**The range is provided for a multiplier applied to each monthly value of jh_coef. 
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Table A.2: Summary of VIC parameters considered for calibration. 

Parameter Description Units Distributed* Calibration Range 

        min max 

            

binfilt variable infiltration curve parameter - no 0.001 0.4 

Ds fraction of Dsmax where non-linear baseflow begins - no 10-5 1 

Dsmax maximum velocity of baseflow mm d-1 yes 0.01 2 

Ws fraction of maximum soil moisture where non-linear 

baseflow occurs 

- no 9 × 10-4 1 

depth2 thickness of soil layer 2 m yes 0.5 6 

depth3 thickness of soil layer 3 m yes 0.5 6 

newalb new snow albedo - no 0.7 0.99 

albaa base in snow albedo function (accumulation) - no 0.88 0.99 

albtha base in snow albedo function (melt) - no 0.66 0.98 

            

*If the parameter is distributed, its calibration is performed on the basis of multipliers. Although description and units refer   

to actual parameters, the values in bold represent the multiplier values (instead of actual parameter values). 

 

 

Table A.3: Summary of Noah-LSM parameters considered for calibration. 

Parameter Description Units Distributed* Calibration Range 

        min max 

            

maxsmc soil porosity m3 m-3 yes 0.88 1.18 

satdk saturated soil hydraulic conductivity m s-1 yes 0.41 1.39 

quartz soil quartz content - yes 0.29 1.37 

refdk used with refkdt to compute runoff  parameter kdt - no 2 × 10-8 2 × 10-4 

fxexp bare soil evaporation exponent - no 0.2 4 

refkdt surface runoff  parameter - no 0.1 10 

czil Zilintikevich parameter - no 0.05 8 

cmcmax maximum canopy water capacity used in canopy 

evaporation 

m no 5 × 10-5 2 

rsmax maximum stomatal resistance m-1 s no 2 10 

lvcoef Livneh coefficient for adjusting snow albedo - no 0 1 

slope linear coefficient used to compute subsurface runoff - no 0.2 1 

            

*If the parameter is distributed, its calibration is performed on the basis of multipliers. Although description and units refer   

to actual parameters, the values in bold represent the multiplier values (instead of actual parameter values). 
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Table A.4: Summary of Noah-MP parameters considered for calibration. 

Parameter Description Units Distributed* Calibration Range 

        min max 

            

maxsmc soil porosity m3 m-3 yes 0.88 1.18 

wind_rp empirical canopy wind parameter m-1 yes 0.7 1.3 

slope_ps slope of conductance-to-photosynthesis relationship - yes 0.7 1.3 

laimss monthly leaf area index, one sided (Spring/Summer) - yes 0.7 1.3 

fff runoff decay factor  m-1 no 1 8 

rsbmx baseflow coefficient mm s-1 no 0.5 8 

timean grid cell mean topographic index - no 7.35 13.65 

mexp exponent used in the curves for the melting season - no 0.5 3 

z0sno snow surface roughness length m no 0.0002 0.02 

snow_iwc liquid water holding capacity for snowpack m3 m-3  no 0.02 0.06 

swemx new snow mass to fully cover old snow mm no 0.1 20 

albmin minimum snow albedo - no 0.44 0.66 

albmax maximum snow albedo - no 0.68 1 

albdecay exponent in snow decay albedo relationship h-1 no 0.001 0.1 

            

*If the parameter is distributed, its calibration is performed on the basis of multipliers. Although description and units refer   

to actual parameters, the values in bold represent the multiplier values (instead of actual parameter values). 
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