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Foucard, Louis Cyrille (Ph.D, Civil, Environmental and Architectural Engineering)

The Particle based Moving Interface Method for soft matter mechanics and fluid/membrane

interactions with applications to biological cells.

A thesis directed by Associate Professor Franck J. Vernerey

The mechanics of the interaction between a fluid and a soft interface (such as an elastic

membrane or shell) undergoing large deformations appears in many places, such as in biolog-

ical systems or industrial processes. We present here an Eulerian approach that describes the

mechanics of an interface and its interactions with a surrounding fluid via the so-called Navier

boundary condition. The interface is modeled as a curvilinear surface with arbitrary mechanical

properties across which discontinuities in pressure and tangential fluid velocity can naturally

be enforced using a modified version of the extended finite element method. The tracking and

evolution of the membrane is then handled with the Grid Based Particle method, and the han-

dling of complex singular boundary conditions around sharp corner is accounted for with the use

of an asymptotic/numerical matching method. We show that this method is ideal to describe

large membrane deformations, enforce volume constraints, and Navier boundary conditions on

the interface with velocity/pressure discontinuities. The method is applied to the study of the

filtration of deformable particles through a fibrous network, and an the equivalent permeabilities

with respect to the fluid and particles are estimated. The method is then adapted to the study of

an elastic material in an Eulerian framework and is shown to be capable of handling arbitrarily

large deformations, which is ideal for the study of biological problems.
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Introduction

The problem of embedded soft bodies and membranes undergoing large shape changes is relevant

to many areas of engineering and biological research but still remains a significant computational

challenge. Particular examples of this problem include the mechanics of the cell membrane and

vesicles and the extreme deformations they are subjected to during migration [128, 166, 58,

59, 23, 129], blebbing [31, 155, 56, 32], division [16] and budding [109, 174]. The ability of

biological tissues to adapt and respond to external mechanical stimuli is also at the heart of

a variety of biological phenomena, such as morphogenesis [72], wound healing [107] or cancer

dynamics [121, 105, 26]. This behavior arises from the capacity of certain cells (i.e. fibroblasts)

to generate a network of contractile Stress Fibers (SFs) which attach to the surrounding extra-

cellular matrix (ECM) via Focal Adhesions (FAs). This dynamic structure enables cells to sense

their mechanical environment and react to any changes in stretch, stress or stiffness by applying

contractile forces, which ultimately results in ECM deformation and remodeling [162, 166]. The

complex dynamics at the heart of many of these vital cell functions are found to rely heavily on

the mechanics that take place inside the cell itself and around the cell’s membrane. However,

in order to understand such an intricate system and develop predictive models, one needs to

be able to simulate the large deformations and constant remodelling of the cell, as well as its

interactions with the external environment. The present work therefore aims at developing the

theoretical and numerical tools needed to describe: (a) the mechanics of an immersed membrane

in part I and (b) the mechanics of immersed soft matter in part II, as these two aspects are

fundamental in describing such biological problems. The organization of the thesis is as follows.

In chapter 1 of part I, the reader is first provided with a global overview of the Particle

based Moving Interface Method (PMIM) designed to study the immersed membrane problem.

The global scope and novelties of the method are described, and a summary of the structure

of the PMIM is given. Throughout chapter 1, the reader will be referred to chapter 2 for the

theoretical and numerical details of the implementation. The objective of chapter 3 is to adapt

the method to more complex boundary conditions by introducing an X-FEM based numerical-

asymptotic expansion for simulating a Stokes flow near a sharp corner, which will be needed
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when simulating the flow of particle througha fibrous network for example. The fourth and

fifth chapters apply the methods introduced in the first three chapters to biologically relevant

problems. Chapter 4 studies the permeation of soft particles through filtration membranes and

estimates the equivalent permeabilities of different fibrous networks with respect to the vesicles as

well as the solvent in which they are immersed. Chapter 5 adapts the immersed thin membrane

formulation to the study of the membrane of biological cells and shows that it can successfully

describe complex behaviors such as endocytosis or cell blebbing. Finally, chapter 6 walks the

reader through the numerical implementation of the method by presenting and commenting

extracts from the code itself.

While the six four chapters in part I mainly focus on the mechanics of the cell’s and vesicle’s

membrane, the objective of the two last chapters in part II is to concentrate on the mechanics

that take place inside biological cells. Chapter 7 presents a numerical formulation for the me-

chanics of embedded soft matter in an Eulerian framework. This last formulation reuses many

of the numerical tools developed in the first chapter, and constitutes a numerical framework

perfectly adapted to the study of the large deformations as well as the anisotropic/viscoelastic

constitutive models of live cells. Finally, chapter 8 aims at formulating such a constitutive model

by introducing a simple thermodynamical model that describes the formation and orientation of

stress fibers in contractile cells. It is shown that the model is able to capture key mechanisms of

SF organization in contractile cells on substrate of variable stiffness and subjected to arbitrary

stretching conditions.
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Part I

The immersed membrane system
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Chapter 1

Global overview of the Particle-based

Moving Interface Method

The objective of this chapter to give the reader a general view of the proposed numerical frame-

work, which is described in details in chapters 2 and 3. As we go over the structure of the

PMIM, the reader will be referred to various sections in the chapters of part I for the details of

the implementation.

1.1 Scope and novelties of the method

The PMIM is designed to be able to simulate the mechanics of a membrane undergoing arbi-

trary large deformations and interacting with an incompressible fluid, within the assumption of

a Stokes flow regime. Simulating such problems consists in solving a set of partial differential

equations on a domain with a moving boundary. As mentioned in the introduction, various

mesh-based methods have been developed to approximate partial differential equations. These

methods mostly fall within two categories: the Boundary-Fitted methods and the Immersed-

Boundary methods. In the case of the Boundary-Fitted methods, the mesh used to geometrically

discretize the system is fitted to the boundary (Fig. 1.1a), which makes the enforcement of con-

straints or application of forces on the boundary an effortless process. This is commonly used

in most finite element methods formulated on curvilinear geometries or unstructured meshes.
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METHOD

Figure 1.1: (a) unstructured mesh used in Boundary-Fitted methods and (b) structured mesh
used in Immersed-Boundary methods.

On the other hand, the Immersed-boundary methods correspond to the case where the compu-

tational mesh is generated without consideration for the geometry of the boundary (Fig. 1.1b),

which considerably simplifies the of generation of the mesh but complicates the enforcement of

conditions on the boundary.

Many approximation techniques that belong to the class of Immersed-Boundary methods

have been proposed over the last few decades [124, 126, 125]. Indeed, generating a mesh that

fits complex geometries still remains a computational challenge and a time consuming task, espe-

cially in three dimensions, and the difficulties inherent to the generation of a fitted mesh become

particularly clear when dealing with evolving boundaries, as it is the case for the immersed mem-

brane problem. One of the principal advantages of the Immersed-Boundary methods resides in

eliminating the issue associated with meshing complicated geometries. The method particularly

relies on three features: the fluid flow equations are handled on the structured, fixed Eulerian

grid, the membrane deformation are described within a Lagrangian evolving frame and the fluid-

structure interactions are handled via a forcing term that is localized on the membrane domain.

It is able to simulate the deformation of thin boundaries as well as three-dimensional structures

immersed in an incompressible flow [176, 186, 173]. An approach similar to the IB method is
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the Distributed Lagrange Multipler/Fictitious Domain (DLM/FD) method [69, 68], which has

also been adapted to simulate deformable thin surfaces [158, 7]. Here, the coupling between the

fluid and the structure is enforced in the entire domain occupied by the structure. The structure

is therefore tied to the underlying fictitious flow and has to deform in an incompressible way,

which limits the type of materials that can be simulated.

Another approach developed to study fluid/interface interaction within the creeping flow

regime is the Boundary Integral (BI) method, where only the surface of the interface needs to

be discretized. The method is very successful at simulating drops in viscous flows [12, 189], and

was also extended to elastic interfaces by using the projection of the velocity gradient of the

surrounding fluid to find the deformation rate of the interface [131, 180].

Most of these methods have in common a Lagrangian mesh for the structure interacting with

the fluid and cannot easily handle the large deformations or viscoelastic behaviors observed in

many biological systems. Indeed, when the membrane is described in a Lagrangian framework,

extreme deformations often lead to severe distortions of the finite element mesh, an issue that

can only be approached by complicated and/or computationally expensive mesh regularization

techniques [104, 123].

A solution to this problem was presented by Cottet et al in[37] via the introduction of a fully

Eulerian description of the system, in which kinematic quantities representing the interface mo-

tion (such as position or dilation) are implicitly described by a level-set function which is defined

and updated on a fixed underlying Eulerian grid. The approach has the advantage of removing

the need for discretizing the two-dimensional surface and effectively eliminates the issue of mesh

distortion. Using this formulation, the authors successfully predicted the equilibrium shape

of a red blood cell and showed that large membrane deformation could be naturally handled.

Similar level-set approaches are typically used to simulate fluid interfaces and bio-film growth

[141, 52] and generalized to elasto-plastic materials [156, 117], as well as hyperelastic materials

[85, 38, 81, 101]. More recently, the level-set technique was implemented in combination with

remeshed smoothed particle hydrodynamics, where the fluid is simulated on adaptive Lagrangian

particle and the interface conditions are enforced using the Immersed-Boundary techniques [77].
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Two major limitations of existing level-set formulations however are as follows. First, a level-set

function is typically unable to carry and transport lagrangian information associated with the

interface, such as, for instance, the interface strain or a concentration of interface particles.

The technique is therefore restricted to fluid interfaces or limited cases of elastic behaviors [37].

Second, the level-set formulation implicitely assumes that the fluid flow is continuous across

the interface (‘stick’ condition between fluid and interface). This precludes the consideration

of ‘slip’ conditions, that are known to be preponderant in many situations such as flows at the

micro or nano scale [108], on hydrophobic surfaces, or even on hydrophilic surfaces under certain

conditions [4].

The objective of Part I of the thesis is to introduce the reader to the PMIM, a general

theoretical and computational framework that can accurately describe the large deformation

of an immersed thin membrane and its interactions with the surrounding fluid in a variety of

situations. We specifically propose the following three contributions:

� (a) The model endows the interface with its own independent velocity and curvilinear

coordinate system, which is required for the calculation of the surface velocity gradient

that dictates the interface deformation, and for the implementation of the Navier boundary

condition.

� (b) The method uses a modified version of the X-FEM that naturally handles discontinu-

ities in pressure and tangential velocity arising from the Navier boundary condition and

the interface elastic stress. Introducing the tangential enrichment in the velocity field only

imposes the discontinuity in the tangential direction and the continuity condition in the

normal direction is automatically satisfied, which eliminates the need for an additional

Lagrange multiplier field.

� (c) The Extended Finite element method is used in combination with a grid-based par-

ticle method [100] to provide an explicit, high definition description of the geometry of

the interface and to transport the Lagrangian quantities on the interface. This method of

tracking the interface geometry is not subject to mesh distortion and can therefore han-

dle arbitrarily large deformations without needing time consuming mesh reinitialization

7



CHAPTER 1. GLOBAL OVERVIEW OF THE PARTICLE-BASED MOVING INTERFACE
METHOD

algorithms.

Before getting into the details of the implementation in chapter 2 and 3, let us first summarize

the basic structure of the PMIM.

1.2 Summary and structure of the PMIM

Concretely, the immersed membrane system consists in an interface Γ immersed in a fluid domain

Ω. To remain general, the term interface throughout the thesis will designate an arbitrary surface

separating two fluids, and which can be endowed with a wide range of mechanical properties,

from the surface tension between two different fluids to more complex elastic behaviors for thin

membranes. To fix ideas, let us write down the basic governing equation of the incompressible

Stokes flow in the fluid domain:

∇ · σ = 0 and ∇ · v = 0 ∀x ∈ Ω (1.1)

where σ = µ∇v−pI is the viscous stress tensor in the fluid, with µ the fluid viscosity, v the fluid

velocity and p the fluid pressure. The second equation imposes the condition of incompressibility.

The above equations are subjected to the following boundary condition at the interface:

[σ · n̄] = f̄ ∀x ∈ Γ (1.2)

with the force f̄ is the interface force exerted on the fluid and generated by the deformation of the

interface from its equilibrium shape and the brackets [σ · n̄] indicates the jump of viscous stress

across the interface Γ in the normal direction n̄. The calculation of the tensor that measures

the deformation of the interface in the interface’s curvilinear coordinate system is detailed in

section 2.1.1, and the different forms taken by the interface force f̄ are given in section 2.1.4. For

simplicity, we are assuming here the continuity of the fluid velocity across the interface, i.e. the

velocity of the fluid is the same as the the interface velocity. More complex boundary conditions

such as the Navier boundary conditions with a non zero slip velocity between the fluid and the

interface are detailed in section 2.1.3.
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Figure 1.2: Overview of the PMIM

To solve equations (1.1) and (1.2), the PMIM marches forward in time by going through two

main steps in an explicit, staggered manner as follows:

1. Step 1 (Fig 1.2a): assuming the position and the deformation of the interface is known,

the force f̄ of the interface is calculated and the governing equations mentioned above

are solved using the Extended Finite Element Method (X-FEM): first, a structured, fixed

finite element mesh is generated as shown in Fig. 1.1b. The fluid velocity and pressure

unknowns as well as the pressure jump across the interface are discretized on the finite

element mesh as described in section 2.2.1. The spatial discretization of the governing

equations used to solve the system for the pressure and velocity degrees of freedom are

then found in section 2.2.2.

2. Step 2 (Fig 1.2b): knowing the velocity field vt at time t, the position of the interface

is updated using a grid based particle method as detailed in section 2.2.3. Section 2.2.4

describes how the deformation measure of the interface is transported and updated.

At the end of step 2, a complete time step has been simulated, the interface has moved to its new

position, and its deformation has been computed. If the convergence criteria that mark the end
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of the simulation (given at the end of section 2.2.2) are not satisfied, the algorithm proceeds to

the next time step and repeats steps 1 and 2 until convergence is achieved. Commented extracts

from the code itself are shown in chapter 6 where the numerical implementation is detailed.
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Chapter 2

Particle-based Moving Interface

Method for the study of immersed

thin membranes

The outline of the chapter is as follows: Section 1 introduces the kinematics and deformation

measures used for the fluid and the interface in an Eulerian framework, as well as the govern-

ing and constitutive equations. The numerical implementation of the derived equation is then

discussed in the context of the X-FEM and the grid based particle method in section 2. The

validity and accuracy of the formulation is then assessed in section 3 where we consider, in order,

the stability of the Lagrange multiplier fields along the interface, the numerical convergence for

an axisymmetrical flow past a spherical capsule with various surface properties and membrane

rigidities, the shear flow past a two-dimensional capsule and the effect of slip length. We then

study the case of the aspiration of a liquid droplet through a cylindrical channel and the perme-

ation of an elastic capsule through a tight opening. Section 4 finally concludes with a discussion

of the results and possible future applications.

11



CHAPTER 2. PARTICLE-BASED MOVING INTERFACE METHOD FOR THE STUDY OF
IMMERSED THIN MEMBRANES

2.1 Mathematical formulation for a soft immersed interface

2.1.1 Geometry and deformation measures of a membrane in Eulerian frame-

work

Consider a curvilinear surface Γ in a three-dimensional Euclidean space whose geometry is

defined by the position of a point x through the parameterization xi(t) = ri (ξα, t), ξα, α = 1, 2

being fixed surface coordinates and xi, i = 1, 2, 3 being the components of the position vector.

In the remainder of the manuscript, greek indices will be considered as running on values 1, 2,

while latin indices will span values 1, 2, 3, both being summed over their respective range if

repeated. With the help of the parameterization ri(ξα, t), one can define the components of

two vectors, tangent to the surface Γ, as aiα = ∂ri/∂ξα . The two vectors a1 and a2 form the

basis of the plane tangent to Γ at point x. A third vector n̄, orthogonal to the surface and of

unit length is defined as n̄ = a1 × a2/|a1 × a2|, and represents the orientation of Γ at point x.

The induced first fundamental form of the surface Γ, also called metric, is given by the scalar

product aαβ = aα · aβ, and can be used to define a dual basis to aα as aα = aαβaβ, whereby

aαβ = (aαβ)−1 and aα · aβ = δαβ. The second fundamental form is a surface tensor field whose

components in the basis of the tangent plane are bαβ := −aα · n̄,β. An appropriate measure

of surface bending, which we will refer to as the curvature tensor C̄, can then be obtained by

calculating the change in the second fundamental form between the reference and the current

configurations as follows:

C̄ = (bαβ −Bαβ)aα ⊗ aβ = C̄ipαβa
α ⊗ aβ (2.1)

where Bαβ is the intrinsic interface curvature expressed in the a basis and C̄ipαβ = bαβ − Bαβ

the in-plane curvature tensor. Note that the former identically vanishes for a surface that is

intrinsically flat. The invariants of the second fundamental form b yield the mean curvature as:

H =
1

2
aαβbβα =

1

2
bαα. (2.2)
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Figure 2.1: Reference and deformed configuration of the interface. The parametrization r maps
the 2D space ξα to the 3D space xi. The (2*2) deformation tensor F̄ip maps the deformation
of a material point ξα in the 2D reference configuration to the 2D deformed configuration Ξα.
The (3*3) deformation tensor F̄ maps the deformation of a material point r(ξ1, ξ2) in the 3D
reference configuration to the 3D deformed configuration r(Ξ1(ξ1, ξ2),Ξ2(ξ1, ξ2))

To characterize the in-plane deformation of the interface, let us now introduce the deforma-

tion tensor F̄:

F̄ = F̄ ipβαaβ ⊗ aα with F̄ ipβα =
∂ξβ

∂Ξα
(2.3)

where ξβ and Ξα denote in the curvilinear coordinates of an interface material point in the

reference and deformed configuration respectively. It can further be seen that the deformation

gradient can be represented in two ways: (1) by the full deformation gradient F̄ with dimension

(3*3) and (b) by the in-plane deformation gradient F̄ip with dimension (2*2) (Fig. 2.1). To

avoid complication due to rigid body motion, it is more convenient to work with the symmetric

part of the deformation gradient, or equivalently, with the Green-Lagrange strain tensor defined

as:

Ē =
1

2
(F̄T F̄− I) = Ēipαβa

α ⊗ aβ (2.4)

where the identity tensor I can be written in terms of the reference configuration basis I =

aαβa
α⊗ aβ and Ēip is the in-plane Green-Lagrange strain. Finally, the material time derivative
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˙̄F and ˙̄E are written:

˙̄F = L̄F̄ and ˙̄E = F̄D̄F̄T , (2.5)

where it can be shown that the velocity gradient L̄ has the form [130]:

L̄ =
(
v̄
‖α
|β − bαβ v̄

⊥
)

aα ⊗ aβ + (v⊥,α + bλαv̄
‖
λ)n̄⊗ aα (2.6)

Here we used the normal and tangential decomposition of the interface velocity v̄ in the fixed

basis aα, such that v̄ = v̄‖αaα + v̄⊥n̄ ,and the operator | indicates the covariant derivative.

With this, we have a complete description of the interface position, velocity, strain and

curvature, as well as their associated rates. The kinematics of the immersed interface are

therefore known via the knowledge of the instantaneous velocity field v̄(x, t) and the knowledge

of the interface geometry at all time. To complete the description, we next discuss the kinematics

of the surrounding fluid and its interaction with the interface.

2.1.2 Kinematics of the fluid/interface interactions

Let us now consider that the (closed) interface Γ is immersed in a fluid domain denoted by Ω.

Let us further denote as Ω− the subdomain that is enclosed within the interface and Ω+ the

external subdomain such that Ω = Ω− ∪Ω+. Before we turn to the governing equations for the

interface/fluid system, let us introduce the operators needed to describe the kinematics of the

interaction between the interface and the surrounding fluid. For this, we consider an arbitrary

Eulerian vector field f(x, t) (which may be the velocity) and seek a mathematical representation

at a point that is very near the interface, whose normal vector, at this location is n̄. In these

conditions, it is convenient to write the vector f in terms of its normal and tangential projections

on Γ as:

f = f⊥ + f‖ with f⊥ = P⊥ · f and f‖ = P‖ · f (2.7)
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where the normal and tangential projection operators are defined by:

P⊥ij = n̄in̄j and P
‖
ij = ai1a

j
2

In addition, to account for the existence of Navier-type boundary conditions at the fluids/in-

terface boundary, one needs to introduce field discontinuities across Γ. Denoting v− and v+ as

the fluid velocity field v in Ω+ and Ω− respectively, it is possible to introduce discontinuities in

tangential velocity across Γ as [164]:

[v]‖+ = v̄‖ − v‖+, [v]‖− = v‖− − v̄‖ and [v]‖ = v‖+ − v‖− (2.8)

Further assuming that no normal separation occurs between the fluids and the interface, we

obtain the following normal velocity continuity conditions:

v⊥+ = v⊥− = v̄⊥ (2.9)

where we used the decomposition of the velocity vector in normal and tangential components

as defined in (2.7). With this formalism, it is important to realize that motion at the interface

Γ and the nearby fluids are entirely specified by the combination of three independent variables

{v̄, [v]‖, v‖−} or, equivalently {v̄, v‖+, v‖−}.

2.1.3 Basic governing equations

Consider a two-dimensional incompressible viscous flow in the domain Ω delimited by a boundary

∂Ω in which exists a closed vesicle, with surface Γ that is able to move with the surrounding

fluid. The problem is characterized by the Reynolds number Re = HV ρ/µ where H is the

characteristic length scale, V the characteristic fluid velocity, µ the kinematic viscosity and

ρ the fluid densities in and out of the vesicle. We choose here to remain in the Stokes flow

assumption with Re � 1, where inertial effect may be neglected. The velocity of a fluid particle

is given in terms of its material time derivative v(x, t) = Dx/Dt, where x is the current position

of the fluid particle at time t. Under these conditions, the governing equations and boundary
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conditions for the Stokes flow are written:

∇ · σ = 0 ∀x ∈ Ω/Γ (2.10)

∇ · v = 0 ∀x ∈ Ω/Γ (2.11)

where σ is the Cauchy stress tensor in the fluid and the second equation imposes the condition

of incompressibility. These equations are combined with the moving interface problem:

[σ · n̄] = f̄ ∀x ∈ Γ (2.12)

(σ · n̄)‖± =
µ

l±
[v]‖± ∀x ∈ Γ (2.13)

dr(ξ1, ξ2, t)

dt
= v̄(ξ1, ξ2, t) (2.14)

with the force f is the unbalanced interface force due to its deformation. Equation (2.13) is the

Navier boundary conditions at the interface, where l± > 0 is known as the slip length, a physical

parameter that depends on the surface roughness. The case l = 0 corresponds to the no slip

condition while l = ∞ is the free sleep condition between the fluid and the interface. Finally,

the boundary condition for fluid motion on the external boundary reads:

σ · n = pon ∀x ∈ ∂Ωp (2.15)

v(x, t) = v0 ∀x ∈ ∂Ωv. (2.16)

where p0 is an external pressure surrounding the domain Ω, and a Dirichlet type condition can

be applied on the velocity on the sub domain ∂Ωv.

2.1.4 Constitutive equations

To complement the above system of equation, a number of constitutive relation must be intro-

duced. They can be broken down into three components that describe in turns: (a) the behavior

of the fluid and (b) the mechanical behavior of the interface. In this work, we consider a sim-

ple incompressible Newtownian fluid with viscosity µ that can be different within the enclosed
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volume and the external fluid.

σ = µD− pI (2.17)

where D is the rate of deformation and p is the hydrostatic pressure enforcing the incompressibil-

ity condition. In the case of an elastic thin membrane, a strain energy function Φ̄ = Φ̄(C̄ip, Ēip)

can be generally defined in terms of the curvature C̄ip and strain Ēip introduced in the previous

section. The in-plane Cauchy stress T̄ip and bending moment M̄ip are then found by taking the

partial derivatives of Φ̄:

T̄ip =
1

J
F̄ip ∂Φ̄

∂Ēip
F̄ipT and M̄ip =

1

J

∂Φ̄

∂C̄ip
(2.18)

where J is the local area dilatation of the surface and Γ0 is the surface Γ in its reference

configuration. The resulting force of the interface is then found to be [6] (the details of the

derivation are given in the appendix):

f̄ =
(
−T̄ ipαβ|βa

α − T̄ ipαβbαβn̄
)

︸ ︷︷ ︸
in-plane stress

+
(
M̄ ip
αβ|αβ v̄

⊥ − M̄ ip
αβb

λ
αbλβ

)
n̄︸ ︷︷ ︸

bending moment

(2.19)

Here, the vector f̄ is the force resulting from stretching and bending the interface. Alternatively,

the case of a lipid bilayer can be considered by choosing Φ̄ to be the classical Helfrich-Canham

energy per current unit area Φ̄(C̄ip) = κ/2(H − H0)2, with κ the elastic moduli and H0 the

spontaneous curvature [76]. Under these conditions, the interface force is written:

f̄ = κ(∆H +
H −H0

2
(H2 − 4K +HC0))n̄. (2.20)

Finally, the simple case of surface tension at the interface between two liquids can also be

modelled by choosing the following well-known equation for the interface force, in the direction

opposite to the normal and proportional to the mean curvature:

f̄ = −γHn̄, (2.21)
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with γ the surface tension.

2.2 Numerical solution: Extended Finite element and grid-based

particle method

The solution strategy adopted here aims to attain a state of equilibrium between the interface

and the surrounding fluid by solving a sequence of steady state flow and update of the interface

in a staggered manner. As we march forward in time, the interface is first considered fixed,

and the Extended Finite Element method is used to solve the Eulerian fields v±, v̄ and p±

for the system subjected to the interface force f̄ . The coupling between the interface and the

surrounding fluid is handled via the use of Lagrange multipliers, where special care is taken in

defining the right Lagrange multiplier space along the interface [113]. This first step is described

in section 2.2.1. Next, given the interface velocity field v̄, section 2.2.2 describes how the Grid

Based Particle method and a second order Runge-Kutta time integration scheme are used to

update the interface position, deformations measures as well as the interface force f̄ for the next

time step.

2.2.1 The Extended Finite Element method with directional discontinuities

The examples chosen here to illustrate the method are axisymmetrical or plane-stress and there-

fore only require a two-dimensional spatial discretization. Every aspect of the method can

however be adapted in three dimensions but involve additional computational aspect (such as

parallel computing and optimization) which are beyond the scope of this study. Following classi-

cal methods for fluid flow at low Reynolds number, the pressure and velocity fields are discretized

on a two-dimensional fixed finite element mesh and interpolated with a mixed finite element pro-

cedure [91] with (four-node) bilinear shape functions for the pressure and (nine-node) quadratic

shape functions for the velocity. Since the framework adopted to describe the system is Eule-

rian, the finite element discretization is structured and does not conform to the shape of the

membrane Γ. The existence of an interface is then accounted for by the zero-level of a level-set

function φ(x) defined as the signed distance function from the interface Γ. An illustration of
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this function is given in Fig. 2.2a and 2.2b. This interface then creates discontinuities in the

velocity and pressure fields within elements cut by Γ which can be accounted for by adopting

the Extended Finite Element Method (X-FEM) in which such elements are enriched with ‘jump’

degrees of freedom, as described in [114, 20]. For example, the general rule for interpolating the

pressure p inside element e is:

p̃e(x, t) =
4∑
I=1

N4
I (x)pI(t) +

4∑
I=1

N4
I (x) (H(φ(x))−H(φ(xI))) p̂

I(t) (2.22)

where the upper case indices I and J are used for node numbering and the N4
I are the four-node

element shape functions. The terms pI denotes the regular pressure at node I while p̂I represents

the pressure jump. Finally, the Heaviside function H(φ(x)) provides the discontinuity needed

to describe the jump in velocity and pressure across the membrane (Fig. 2.2c). In contrast to

Figure 2.2: (a) shows the elements split by membrane Γ and the enriched nodes (circle). The
3D distance function can be seen in (b) where its intersection with the plan z = 0 defines Γ, and
(c) shows the Heaviside function in an element cut by Γ.

the pressure field, the discontinuity that affects the velocity field is directional since only the

tangential components of v are discontinuous across Γ. We here introduce a modification to the

shape functions used in X-FEM by making the discontinuity directional as follows:

ṽei (x, t) =
9∑

J=1

N9
J (x)vJi (t) +

9∑
J=1

N9
J (x)(H(φ(x, t))−H(φ(xJ , t)))a

J
i (t)v̂J(t), (2.23)

where the lower case i indicates the component of a vector and N9 are the nine-node element

shape functions. The term aJi represents the ith component of the covariant tangent vector to Γ

at node J and provides the tangential direction for the velocity jump v̂J at node J . With this
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method of interpolation, the normal velocity continuity condition v⊥+ = v⊥− is automatically

satisfied across Γ, and the jump in tangential velocity is reduced to a scalar v̂J multiplied by

the tangent vector aJi . Note that in the three-dimensional case, the jump discontinuity becomes

a two-dimensional vector in the plane tangent to the interface.

Remark: Although the condition v⊥+ = v⊥− ensures the continuity of the velocity field across

the interface, a jump in the viscosity of the fluid across the interface can cause kink in the veloc-

ity field, i.e. a discontinuity in the velocity gradient in the normal direction across the interface.

This can easily be taken into account with the help of an additional enrichment that incorporates

a piecewise affine ‘hat’ function. For the sake of simplicity, we choose to keep the same viscosity

on either side of the interface.

Figure 2.3: (a) shows how the mesh nodes 1 through 4 are used to discretize the Lagrange
multipliers and interface velocity (circled nodes) and (b) shows the value taken by the shape
functions N̄1 and N̄2 in each element e1 to e5 cut by the interface. Each tick along the absisse
One can note that the interpolation of the Lagrange multipliers is constant in e2 while e4 and e5

share the same Lagrange multipliers.

Finally, to compute the motion of the interface and couple it to the nearby fluids, let us introduce

the Lagrange multipliers λp, λ
+ and λ− used in combination with the membrane velocity v̄‖ to

enforce (2.12) and (2.13). Special care needs to be given to the discretization of the Lagrange

multipliers along the interface in the context of the X-FEM. Indeed, a ‘naive’ discretization, i.e.

a Lagrange multiplier at each intersection between the interface and the underlying mesh, leads
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to a Lagrange multiplier space that does not satisfy the so-called inf-sup (or LBB) condition

[54]. This in turn creates oscillations in the Lagrange multiplier field along the interface and

affects the convergence rate. To address this issue we here choose to use the method developed

by Möes et al in [113] to construct the correct Lagrange multiplier space and discretize the fields

v̄‖, λp, λ
+ and λ− on nodes of the underlying Eulerian mesh (Fig. 2.3a), which we will refer to

as the M-discretization. Each selected node carry the following four degrees of freedom: v̄‖K ,

λKp , λ+K and λ−K . These fields are interpolated along the section Γe of Γ that cuts element e

as follows:

˜̄v‖e(ξ, t) =
2∑

K=1

N̄K(ξ)v̄‖K(t) , λ̃ep =
2∑

K=1

N̄K(ξ)λKp (t) , λ̃±e =
2∑

K=1

N̄K(ξ)λ±K(t) (2.24)

where N̄I are one-dimensional two-node shape functions and the coordinate ξ runs along Γe (Fig

2.3b). More detail about the discretization algorithm that construct the Lagrange multiplier

space can be found in [113].

2.2.2 Weak formulation

Introducing the test functions wv, wp, wv̄‖ , wλp , wλ+ and wλ− , integrating by parts and using

the divergence theorem, the weak form of the governing equations (2.10)-(2.13) in the fluid

domain can be written as: given the position r of the interface Γ at time t, find v ∈ V, p ∈ P,

v̄‖ ∈ L, λp ∈ L, λ+ ∈ L and λ− ∈ L such that for all wv ∈ V, wp ∈ P, wv̄‖ ∈ L, wλp ∈ L
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wλ+ ∈ L and wλ− ∈ L :

(∇wv, µ∇v)Ω − (∇wv, pI)Ω +
(
wv,

µ

l+
λ+ − µ

l−
λ−
)

Γ
+
(
wv, f̄

)
Γ

= 0

(wp,∇ · v)Ω + (wp, λp)Γ = 0

(wλp , [p])Γ + (wλp , f̄
⊥)Γ = 0(

wv̄‖ ,
µ

l+

(
λ+ + [v]‖+

)
+
µ

l−

(
−λ− + [v]‖−

))
Γ

+
(
wv̄‖ , f̄

‖
)

Γ
= 0(

wλ+ ,
(

(σ · n̄)‖+ − µ

l+
[v]‖+

))
Γ

= 0(
wλ− ,

(
(σ · n̄)‖− − µ

l−
[v]‖−

))
Γ

= 0 (2.25)

After a long but straightforward calculation using the discretized form of v, p, v̄‖, v̄⊥ and

λ± (given in the appendix) , the weak form (2.25) at time t can conveniently be written in the

following format:

 Kt It2

It1 K̄t

 ·
 d(t)

d̄(t)

+

 Ft
f

F̄t
f

 = 0 (2.26)

where d is a vector composed of the bulk degrees of freedom d(t) = [v(t) p(t)]> while d̄ corre-

sponds to the interface degrees of freedom d̄(t) =
[
v̄‖(t) λp(t) λ

+(t) λ−(t)
]>

. It can be seen that

the component Kt of the tangent matrix corresponds to the fluid domain, the component K̄t is

associated with the interface while It1 and It2 can be thought of as the fluid/interface interaction

matrices. The global force vector [Ft
f F̄t

f ]T , which include both external forces and the interface

force at time t, as well as the tangent matrix components Kt, K̄t, It1 and It2 are assembled from

their element constituents as follows:

Ft
f = Anele=1

(
Ft
fe

)
, F̄t

f = An̄ele=1

(
F̄t
fe

)
, Kt = Anele

(
Kt
e

)
, K̄t = An̄ele

(
K̄t
e

)
,

It1 = An̄ele

(
Ite 1

)
and It2 = An̄ele

(
Ite 2

)
where Ae , nel and n̄el respectively denote the conventional FEM assembly operator, the total

element number and the number of elements cut by Γ. While precise expressions are provided
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in the appendix, the submatrix and subvectors appearing in (2.26) take the form:

Kt
e =

 Ke
vv Ke

vp

Ke
pv 0

 , K̄t
e =



Ke
v̄‖v̄‖

0 Ke
v̄‖λ+ Ke

v̄‖λ−

0 0 0 0

Ke
λ+v̄‖

0 0 0

Ke
λ−v̄‖

0 0 0


, Ite 1 =



Ke
v̄‖v

0

0 Ke
λpp

Ke
λ+v 0

Ke
λ−v 0


(2.27)

Ite 2 =

 0 0 Ke
vλ+ Ke

vλ−

0 Ke
pλp

0 0

 , Ft
fe =

 Fe
v

Fe
p

 and F̄t
fe =



Fe
v̄‖

Fe
λp

0

0


(2.28)

Remark: The computation of these quantities involves the assessment of integrals over elements

that can be numerically evaluated using Gaussian quadrature with four integration points in

regular elements. However, to carry out the integration over the two sides of Γ in split elements,

a division into sub-triangles is required as described in [114].

The finite element equation (2.26) can be solved with a linear solver to yield an expression

for the fluid and interface velocities at time t. Given the interface velocity v̄(t), the position

of Γ and its deformation measures C̄t, Ēt and F̄t are then updated using an explicit second

order Runge-Kutta time integration scheme to compute Kt+dt
e and Ft+dt

e for the next time step.

Convergence is achieved once the two following criteria are met:

1. The pressure and velocity fields of the fluid surrounding the interface are constant with

respect to time. This criterion is met when ||vreg(t+dt)−vreg(t)|| < TOLv and ||preg(t+

dt) − preg(t)|| < TOLp, where vreg(t) and preg(t) are the vectors of all regular fluid

pressure and velocity degrees of freedom at each node, and TOLv and TOLp the user

defined tolerances for the velocity and pressure.

2. The interface tangential velocity field is constant with respect to time. Here, since the

number of degrees of freedom associated with the interface changes at each iteration, we

rely on the particles tracking the interface (described in the next section) to compare the
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interface velocity field between two time steps. The second criterion is therefore written

||v̄‖p(t + dt) − v̄
‖
p(t)|| < TOLv̄‖ , with v̄

‖
p(t + dt) and v̄

‖
p(t) the tangential velocity of the

interface interpolated at the same particles at times t and t+ dt.

Once criteria (1) and (2) are satisfied, the algorithm has converged and the interface is in

equilibrium with the surrounding fluid. The next step involves the transport of the interface

using a mesh-based particle method, as discussed in the next section.

2.2.3 Tracking the evolution of the interface

Traditionally, the temporal evolution of an interface in an Eulerian framework is handled with

the level-set evolution equation [52]. This has the main advantage of turning the evolution of the

interface into seeking the solution of a partial differential equation, removing the need for surface

parameterization or meshing. A main issue with this class of methods within the context of our

study is that a levelset formulation is usually not adapted to contain Lagrangian informations on

an interface, which may include strain and concentration fields. They also suffer from the fact

that they generally cannot capture in-plane, interface shear deformation since such instances

are not associated with a normal interface velocity (the latter being the main component of the

level-set evolution equation). To circumvent these limitations, we choose here to use a grid-

based particle method similar to what was introduced in [100]. This method indeed possesses

the double advantage of tracking the interface explicitly with particles that contain lagrangian

information while using the underlying fixed finite element mesh to ensure a fairly uniform

repartition of the particles on the interface. Here we summarize the grid based particle method

and discuss the update of the interface position and deformations measures.

The particles, whose position vector is denoted by y, are chosen as the normal projection

of the underlying mesh nodes, with position vector p, on Γ. Initially, the interface is described

implicitly as the zero level-set of a signed distance function φ(p, t = 0). The initial coordinates

of particles y can then found as follows:

y = p− φ(p, 0)∇φ(p, 0) (2.29)
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Figure 2.4: Figure (a) shows the sampling of Γ by the particles y represented by a circle while
the associated nodes p inside the computational tube λtube are represented by crosses. Figure (b)
shows the second order Runge-Kutta time integration of the evolution of the interface: ˜̄v denotes
the velocity of the interface interpolated at the particle’s position while Ω is the angular velocity
of the interface’s normal n̄.

To limit the number of particles, we define a so-called computational tube such that only nodes

p whose distance to Γ is smaller than a cut-off value λtube are accounted for (Fig. 2.4a). It is

important to note here that there is a one to one correspondence between each particle y and

node p. This ensures a quasi-uniform repartition of particles along the interface throughout

its evolution. Between two subsequent time steps, the particles are moved according to the

interface velocity ˜̄v(ξ, t) and using a second order Runge-Kutta time integration procedure as

follows (Fig. 2.4b):

yt+dt/2 = yt + ˜̄v(yt, t)
dt

2
+ Ω · ˜̄v(yt, t)

dt2

4
(2.30)

yt+dt = yt + ˜̄v(yt+dt/2, t)dt+ Ω · ˜̄v(yt+dt/2, t)
dt2

2
, (2.31)

where Ω is the matricial form of the angular velocity of the interface normal [86]:

dn̄

dt
= ω × n̄ , ω = −

(
v⊥,α + bλαv

‖λ
)

aα and Ωik = εijkωj (2.32)

with εijk the permutation tensor. After the motion of the interface, the particles y may not be

the closest point on Γ to their associated nodes p. Moreover, the motion of the particles may

cause their distribution on Γ to become uneven, which can affect the geometrical resolution of
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the interface. To overcome this issue, the interface is ressampled after motion by recomputing

the particles as the closest points on Γ to the nodes p inside the updated computational tube

(which has moved with the interface). This is done by first locally approximating the interface

with polynomials around each particle. The procedure, explained here in the two dimensional

case, is as follows: for each node p inside the computational tube, the closest m particles y0...ym

are collected, carrying with them the tangent at0...a
t
m and normal n̄t0...n̄

t
m to the interface before

motion. Denoting y0 as the particle closest to p, a polynomial of degree n < m is fitted to

the particles y0...ym in the local coordinate system {at0; n̄t0} centered on y0. The location ỹi of

particle i in this local coordinate system is given by:

ỹi =

 ξ1
i

ξ2
i

 = Rt · (yi − y0) with Rt =

 (at0)T

(n̄t0)T

 . (2.33)

Taking the example of a quadratic polynomial (n = 2), the interface around particle y0 is

represented in the local referential as the graph function ξ2(ξ1) = c0 + c1ξ
1 + c2(ξ1)2, where the

coefficients c0, c1 and c2 are found by minimizing the L2 difference between the ξ2(ξ1
i ) and the

ξ2
i . This method of interface approximation can be generalized in three dimension [100], where

a quadratic graph function would take the form ξ3(ξ1, ξ2) = c00 + c10ξ
1 + c01ξ

2 + c11ξ
1ξ2 +

c20(ξ1)2 + c02(ξ2)2, as shown in Fig. 2.5. The coordinates
{
ξ1, ξ2, ξ3(ξ1, ξ2)

}
defines a local

Figure 2.5: Local polynomial approximation of the surface (and of any Lagrangian field). The
polynomial ξ3(ξ1, ξ2) that approximates the interface is constructed via least square fitting using
neighbouring particles in the local referential {a1t

0 ,a
2t
0 , n̄

t
0} centered on particle y0.
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parameterization rl(ξ1, ξ2) of Γ in the neighbourhood of y0 (Fig. 2.4b):

rl(ξ1, ξ2) =


ξ1

ξ2

ξ3(ξ1, ξ2)

 . (2.34)

The relationship between the local parameterization rl(ξ1, ξ2) and the global parameterization

r(ξ1, ξ2) defined in section 2.1.1 is then found via rotation and translation operations in the

form:

r(ξ1, ξ2, t+ dt) = (Rt)−1 rl(ξ1, ξ2) + y0. (2.35)

The parameterization r(ξ1, ξ2, t+dt) can now be used to ressample the interface, i.e. recalculate

the closest point on the interface to the nodes p. This is done by minimizing the distance

function d(r(ξ1, ξ2, t + dt); p) = 1/2
∣∣r(ξ1, ξ2, t+ dt)− p

∣∣ with respect to ξ1 and ξ2. In three

dimensions, this requires the use of an iterative solver, which for small dt is given a good initial

guess and converges very quickly. In two dimensions however, the solution can be found explicitly

by solving a cubic equation. The quality of approximation of a two-dimensional interface when

fitted to a circle using the sequence of second order polynomials detailed above is shown in Table

I and in Fig 2.6. It is found that the L2 error e2 in the position of the particles decreases with

the size of the underlying mesh at with a convergence rate of approximately 4. This is in

mesh size h 0.4 0.2 0.1 0.05

e2 2.87× 10−2 1.73× 10−3 1.12× 10−4 6.97× 10−6

Table 2.1: L2 error in the position of particles when fitted to a circle.

perfect agreement with results found in [100] and comes from the fact that both the circle and

the polynomials are even functions. The approximation error should therefore be of fourth order

since there are no contribution from third order terms. Other geometrical quantities such as the
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Figure 2.6: log of the error e2 as a function of the log of the mesh size h

updated basis
{

at+dt1 ,at+dt2 , n̄t+dt
}

are then found using the parameterization r(ξ1, ξ2, t+ dt):

at+dtα = r(ξ1, ξ2, t+ dt),α = Rt ∂rl(ξ1, ξ2)

∂ξα
(2.36)

n̄t+dt = at+dt1 × at+dt2 /|at+dt1 × at+dt2 |. (2.37)

The metric at+dtαβ = at+dtα · at+dtβ or the second fundamental form bt+dtαβ = −at+dtα · n̄t+dt,β can also

be directly obtained from equations (7.42), (7.43), (7.39) and their derivatives.

Finally, the new level-set function φ(p, t + dt) is calculated as the signed distance function

to Γ at nodes p as follows [100]:

φ(p, t+ dt) = −sgn(
yt+dt − p

|yt+dt − p|
· n̄t0)|yt+dt − p|, (2.38)

where yt+dt is the particle associated with p at time t+ dt and the sign function sgn(((yt+dt −

p)/|yt+dt − p|) · n̄t0) determines whether node p is in Ω+ or Ω−. The reconstruction of the

level-set function using the local polynomial approximation of the interface is computationally

inexpensive, and is used the X-FEM part of the algorithm (2.22) and (2.23).
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2.2.4 Update of the interface deformation

In addition to the interface geometry, the sampling particles also carry lagrangian fields as-

sociated with the interface, such as the deformation gradient. The deformation gradient F̄ is

updated at each particle yt in their respective basis {at0 1,a
t
0 2, n̄

t
0} using the rate equation (2.5)

and the velocity gradient L̄ (2.6) as follows (Fig. 2.7a and 2.7b):

L̄t =
(

˜̄v
‖
α|β − b

t
αβ

˜̄v⊥
)

aα t0 ⊗ aβ t0 + (˜̄v⊥,α + btλα ˜̄v
‖
λ)n̄t0 ⊗ aα t0 (2.39)

(F̄t)′ = F̄t exp (L̄tdt), (2.40)

where ˜̄v is the interface velocity interpolated at particle yt using equation (2.24). Next, the

updated deformation gradient (F̄t)′ is rotated into the basis {at+dt1 ,at+dt2 , n̄t+dt} to yield F̄t+dt

(Fig. 2.7c and 2.7d.):

F̄t+dt = (F̄t)′(Rt+dt
t )T with Rt+dt

t = (Rt)−1Rt+dt. (2.41)

Similarly to the polynomials that approximates the geometry of the interface in section 4.2,

a new set of polynomials is constructed to interpolate the deformation gradient around each

particle. The second order polynomial that approximates the deformation gradient F̄t+dt around

a particle yt+dt is written:

F̄ t+dtαβ (ξ1, ξ2, t) = cαβ0,0 + cαβ1,0ξ
1 + cαβ0,1ξ

2 + cαβ1,1ξ
1ξ2 + cαβ2,0(ξ1)2 + cαβ0,2(ξ2)2, (2.42)

where the coefficients cαβi,j are found with the method of least square fitting, using the values of

the deformation gradient at the neighbouring particle. Thanks to the local polynomial recon-

structions, the deformation gradient F̄t+dt can be interpolated anywhere on the interface Γ. The

Green-Lagrange deformation tensor and the jacobian of the deformation are then computed as:

Ēt+dt =
1

2

(
F̄t+dt(F̄t+dt)T − I

)
and J t+dt = det (F̄t+dt)
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Figure 2.7: Update and transport of the deformation gradient F̄: (a) the fluid and interface
velocity field are first computed by solving (2.26). The interface velocity field v̄ is then used to
update F̄ in the basis {at0 1,a

t
0 2, n̄

t
0} (b). Finally, the interface position is updated (c) and the

deformation gradient is rotated in the basis {at+dt1 ,at+dt2 , n̄t+dt} to yield F̄t+dt (d).

Once the different deformation measures of the interface are updated, one can compute the

interface force f̄ anywhere on Γ using equation (2.19). Given the new interface force f̄ , the

algorithm turns back to the X-FEM and computes the velocity and pressure fields for the new

time step, as shown in Fig. 2.8.
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Figure 2.8: General flowchart: the different velocity and pressure fields are solved using the X-
FEM while the tracking and update of the interface geometry and Lagrangian fields is achieved
using the grid based particle method.
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2.3 Numerical examples

We now consider several numerical examples with the aim of validating the proposed model and

illustrating its ability to simulate some cases of extreme membrane deformations occurring in

engineering and biological problems.

2.3.1 Convergence study

Here we first address the ill-conditioning of the tangent matrix usually associated with X-FEM

formulation, and verify that the Lagrange multiplier space obtained using the M-discretization

leads to stable fields on the interface. We then investigate the convergence of the error made

in calculating the flow velocity and pressure around a fixed, rigid spherical capsule. Finally, we

allow the capsule to elastically deform in contact with the surrounding fluid and study the CFL

condition in time step dt for the temporal evolution of the interface.

X-FEM ill-condition and Lagrange multiplier discretization

A common issue that arises in X-FEM formulations is the typically ill-conditioned tangent matrix

in (2.26) [64]. This is caused by the interface cutting through elements in a way that leaves very

little support for the enrichment functions (Fig. 2.9a). This can lead to large oscillations in the

pressure and velocity fields and affect the rate of convergence.

Several methods have been developed to address that issue, such as using a modified step

enrichment function [8], or applying X-FEM specific preconditioners [14, 110]. Here we choose

to use the enriched degrees of freedom (EDOF) blocking strategy, which consists in removing

the EDOF that have very little support, as described in [136]. This method has the advantage of

using the following simple geometrical criterion to determine which enriched degree of freedom

should be neutralized. Inside each element cut by the interface, the areas A+
e and A−e on each

side of the interface are computed. The EDOF that are to be neutralized correspond to those

whose algebraic sign of the level-set value is opposite to that of the phase occupying the larger

area in each cut element, and which only belong to elements where the following condition holds

32



CHAPTER 2. PARTICLE-BASED MOVING INTERFACE METHOD FOR THE STUDY OF
IMMERSED THIN MEMBRANES

true [136]:

min(A+
e , A

−
e )

max(A+
e , A

−
e )

< Cblock, (2.43)

where Cblock � 1 is a user-defined constant. The EDOF p̂I and v̂I that satisfy these conditions

are ‘removed’ by enforcing the following Dirichlet conditions:

p̂I = 0 and v̂I = 0 (2.44)

To investigate the effect of blocking the poorly supported EDOF on the pressure field across

the interface, let us consider the case of an the inflation of an elastic circle of initial radius R0.

The circle is endowed with the following strain energy φ̄(Ēip) = 1
2Ēip : C : Ēip, where the

fourth order tensor C is the elasticity tensor and can be written in the case of an isotropic linear

material as C = λ̄1 ⊗ 1 + 2µ̄I, with λ̄ and µ̄ the first and second Lamé coefficients. A point

source is placed at the center of the circle until its enclosed area has doubled (Fig. 2.9). Once

Figure 2.9: (a) inflation of an elastic circle with a point source at its center and (b) numerical
solution at equilibrium.

the point source is removed, the exact solution to this problem is given by (2.12) as:

[p] = f⊥ ∀x ∈ Γ. (2.45)
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where the interface elastic force f⊥ can be calculated using (2.19) as f⊥ = T̄ ip11/R, with R the

current radius of the circle and the stress T̄ ip11 that arises from stretching the circle is written

T̄ ip11 = (λ̄+ 2µ̄)Ēip11F̄
ip
11. The deformation measures F̄ ip11 and Ēip11 can easily be calculated as:

F̄ ip11 =
R

R0
(2.46)

Ēip11 =
1

2

((
R

R0

)2

− 1

)
(2.47)

Figure 2.10: (a) jump of pressure field and (b) jump of tangential viscous stress as a function of
angle θ along the interface using both the unmodified X-FEM as well as with the EDOF blocking
strategy.

Fig. 2.10a shows the jump of pressure across the interface as a function of angle θ along

the circle (Fig. 2.9a) with mesh size h = R/10. One observes that blocking selected EDOF

removes the large oscillations of pressure across the interface that otherwise appear when using

the unmodified X-FEM. The second column of table II presents the infinite norm of the error

||e[p]||∞ made in the pressure jump across the interface, which is observed to drop considerably
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when the EDOF blocking strategy is used.

case ||e[p]||∞ ||e[σ·n̄]‖ ||∞
X-FEM 1.64 1.95
X-FEM, Cblock = 0.001 6.21× 10−2 4.12× 10−2

Table 2.2: Maximum pressure and tangential stress jump error using the unmodified X-FEM
the EDOF blocking strategy.

Remark: Since the normal force f⊥ of the interface in (2.45) is a function of the interface

deformation measure Ēip, the above example also ensures that the deformation of the interface

is properly updated as the circle inflates to its final size.

Next, in order to investigate the behavior of the jump in tangent viscous stress across the

interface, we turn to the case of a circle spinning in an infinite expanse of fluid. A tangential

force f‖ is applied to the interface and the jump of tangent viscous stress across the interface is

computed along the circle (Fig. 2.11). The exact solution for the jump of viscous stress in this

problem is given by (2.12):

[σ · n̄]‖ = f‖ ∀x ∈ Γ. (2.48)

The jump of viscous stress is shown in Fig. 2.10b as a function of angle θ around the interface.

Similarly to the pressure jump, the oscillations in the tangential viscous stress jump disappear

with the neutralization of selected EDOF. The last column of table II shows that the infinite

norm of the error ||e[σ·n̄]‖ ||∞ made in computing the jump of tangential viscous stress across the

interface behaves in a similar manner as ||e[p]||∞. Here we chose the slip length on both sides

of the interface as l+ = l− = 0, which correspond to a ‘stick’ boundary condition between the

fluid and the interface.

Finally, let us turn to the Lagrange multiplier fields discretized on the interface Γ. Fig. 2.12a

presents the Lagrange multiplier field λp that enforces the pressure jump around the interface

for the case of the inflating elastic circle while Fig. 2.12b shows the field λ+ that enforces the
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Figure 2.11: (a) circle spinning in an infinite expanse of fluid under the action of a tangential
force and (b) numerical result for the pressure and velocity field.

‘stick’ boundary condition for the case of the spinning circle, using both the ‘naive’ and the M-

discretization presented in section 3.1. We observe that using the M-discretization considerably

reduces the large oscillations that are otherwise present in the fields λp and λ+ when using the

‘naive’ discretization.

Figure 2.12: Lagrange multiplier field λp (a) and λ+ (b) along the interface as a function of
angle θ, using both the ‘naive’ and the M-discretization.

The EDOF blocking strategy used in combination with the proper Lagrange multiplier space

are therefore shown to appropriately address both the ill-conditioning of the stiffness matrix K

and the oscillations of the Lagrange multiplier fields along the interface.
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Rigid spherical shell

Let us consider a uniform incompressible flow past a rigid spherical shell, and investigate the

difference between model’s prediction and the analytical solution of the flow velocity and pressure

around the sphere with ‘slip’ or ‘stick’ boundary conditions at its surface. Analytically, the

solution of the Stokes flow for an infinite expanse of fluid around a rigid sphere is given, in

spherical coordinates (Fig. 2.13a), by [94]:

vr =
1

r2sin2(θ)

∂Ψstokes

∂θ
, vθ =

−1

r sin θ

∂Ψstokes

∂r
, vφ = 0 (2.49)

where Ψstokes is the Stokes stream function that takes the form in the ‘stick’ and ‘slip’ cases,

respectively [94]:

Ψstick
stokes(r, θ) = sin2(θ)

U

4

(
R2

r
− 3Rr + 2r2

)
(2.50)

Ψslip
stokes(r, θ) = sin2(θ)

U

2

(
−Rr + r2

)
. (2.51)

with R is the radius of the sphere and U is the flow velocity away from the sphere vr→∞ = U .

In our model, the ‘stick’ condition corresponds to a Navier boundary condition with l+slip = 0

while the ‘slip’ boundary condition requires lslip >> R. We first investigate the convergence of

the error made in calculating the pressure at the surface of the rigid sphere as the mesh size h

is decreased. We define the L2-error in pressure as :

e2
p =

1

πpmax

[∫ Π

0
(pexact(r = R, θ)− pnum(r = R, θ))2 dθ

]1/2

(2.52)

where pexact can easily be obtained from knowing the Stokes stream functions appearing in (2.50)

and (2.51), pmax = max(pexact(r = R, θ)) and pnum is the pressure calculated numerically. Fig.

2.13b presents the pressure field around the sphere for the ‘stick’ case while Fig. 2.13c (log-log

scale) shows that the error made in calculating the pressure converges to zero like O((h/R)3),

for both extreme cases l+ = 0 (stick) and l+ >> R (slip). The Reynolds number chosen in those

simulations is Re = RUρ/(µ) = 0.05, at which inertia forces can be neglected. The solid and
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Figure 2.13: (a) Finite element mesh and boundary conditions, (b) pressure field and velocity
stream line for the fluid flowing around the sphere and (c) convergence of the error made on the
pressure on the surface of the sphere as the mesh size decreases.

doted lines show the power law fitting of the error, calculated as:

ep fit = k1(h/R)k2 (2.53)

where k2 ∼ 3 is an approximation of the rate of convergence. This is in excellent agreement

with the convergence study done for the grid-based particle method performed in [100].

Figs. 2.14a and 2.14b respectively show the vertical flow velocity vθ(r, θ = π/2) and the

surface pressure p(r = R, θ) for a rigid sphere with different slip length, ranging from l+ = 0

(‘stick’ condition) to l+ >> R (‘slip’ condition). We observe an excellent agreement between the

analytical and numerical results for the vertical flow velocity vθ(r, θ = π/2) and surface pressure

p(r = R, θ) in both the ‘stick’ and ‘slip’ cases. Intermediate values of l+ show the capability of

the model to continuously transition from a ‘stick’ to ‘slip’ boundary condition. As we increase

the slip length from l+ = 0, the tangential velocity jump increases (Fig. 2.14a) while the viscous

shear stress at the surface of the sphere decreases since (σ · n̄)‖+ = (µ[v]+)/l+, which in turn

lowers the pressure exerted by the fluid on the surface.
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Figure 2.14: Simulation and analytical results of the velocity (a) and pressure (b) for different
slip lengths

Figure 2.15: Convergence of the error made in conserving the enclosed volume (a) and residual
velocity (b) as the mesh size decreases, for ∆t ∼ O(h/R)4 and for different slip lengths

Remark: In the enrichment functions that allow the tangential velocity jump for l >> R, we use

the tangent vectors calculated from the second order polynomials that approximate the interface.

However, the Gaussian quadrature used to calculate the stiffness matrix in split elements uses a

subset of triangles, which leads to a piece-wise linear interface. This inconsistency is believed to

lead to the suboptimal convergence rates observed in the coarsest 4 mesh sizes in Fig.2.15b.
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Soft spherical shell

The convergence study shown in Fig. 2.13 is only valid for a fixed, rigid interface. Next, we show

convergence with evolution of the interface by allowing the elastic spherical capsule to deform

in contact with the surrounding fluid, while its top extremity remains fixed. We first endow the

capsule with elastic mechanical properties. To this end, we write the capsule’s strain energy

function φ̄(Ēip, C̄ip) as the sum of a quadratic potential function of Ēip and the Helfrich surface

energy function of the mean curvature H [75]:

φ̄(Ēip, C̄ip) =
1

2
Ēip : C : Ēip +

κ

2
(H −H0)2, (2.54)

where the spontaneous curvature was taken to be H0 = 0. Next, to characterize the capsule’s

elasticity relative to the fluid velocity, we introduce a dimensionless parameter G = (µU)/E,

where E = µ̄(3λ̄ + 2µ̄)/(λ̄ + µ̄) is the in-plane elastic modulus of the capsule. The membrane

Poisson’s ratio was taken to be ν = λ̄/(2(λ̄ + µ̄)) = 0.25. A second parameter Eb = κ/(R2E)

relates the bending elasticity κ to E.

We show in Fig. 2.15 the convergence of the residual velocity of the membrane as well as the

error made in conserving the enclosed volume when the capsule reaches equilibrium, for values

of G and Eb that produces large deformations of the capsule’s membrane, e.g. G = 0.1 and

Eb = 0.01. Fig. 2.15a shows that for both cases l+ = 0 and l+ >> R , the velocity residual

converges like O(h/R)2. This is consistent with the convergence rate found [100] and the fact that

we used a second-order Runge-Kutta algorithm in time discretization. Furthermore, the error

made in conserving the enclosed volume converges like O(h/R)3. However, due to the presence

of fourth order terms in the membrane bending force, the explicit time evolutive simulations are

subjected to a strict Courant-Friedrichs-Lewy (CFL) condition on the time step of the fourth

order in mesh size ∆t ∼ O(h/R)4 [99].

The shapes adopted at equilibrium by the capsule with l+ = 0 and for different values of

G are shown in Fig. 2.16a. As expected, one can see that the capsule deformation increases

with the ratio of the fluid velocity to capsule elasticity. Fig. 2.16b illustrates the effect of the
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Figure 2.16: figure (a) shows the capsule deformations for different values of G while figure (c)
shows the effect of the slip length on the capsule deformation and velocity profile. Figure (c)
shows the fluid streamlines around the capsule and the surface jacobian J . The time step used
was ∆t = (h/R)× 1e−4 and the tolerances TOLv = TOLp = TOLv̄‖ = 1e−5

slip length l+ on the capsule deformation for G = 0.1. As the slip length increases, the pressure

exerted on the capsule decreases, which in turn reduces the deformation. Furthermore, Fig.

2.16b shows the fluid velocity profiles along a direction normal to the capsule at the points A

and B respectively for l+ >> R and l+ = 0. The discontinuity in tangential velocity between the

fluid and the membrane is clearly apparent in the case l+ >> R, while setting l+ = 0 ensures a

continuous tangential velocity that decreases to zero at the surface of the capsule. As the capsule

deforms under the action of the fluid flow, the jacobian J of the deformation represented as a

color gradient on the surface in Fig. 2.16c is shown to take very large values around the fixed

extremity. The particle ressampling ensures that the spatial discretization and the geometrical

resolution of the membrane remains uniform throughout the simulation.
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2.3.2 Capsule in shear flow

Our second example now investigates the equilibrium shapes of an initially circular capsule in

shear flow, with the objectives of replicating the results from [149] for validation and showing the

effect of slip length on the deformation and ‘tank-threading’ motion. The capsule is endowed

with the same elastic properties as (2.54) and its initial circular shape corresponds to an in-

plane stress free configuration. However, since the spontaneous curvature H0 is chosen to be

zero (which corresponds to a flat surface), the capsule has a non-zero bending energy at time

t = 0. The capsule is subjected to a shear flow on the top and bottom boundaries of the

Figure 2.17: Figure (a) shows the computational domain and the boundary conditions for the
elastic capsule in shear flow.

computational domain of size Lx by Ly, as shown in Fig. 2.17. The shear flow is characterized

by a shear rate kshear with v = (ksheary, 0). The magnitude of the shear flow relative to the

capsule’s elasticity is captured by the dimensionless parameter G such that G = (µkshearR)/E.

The ratio between the bending elasticity κ and the in-plane elasticity E constitutes a second

dimensionless parameter written as Eb = κ/(R2E). The Reynolds number in these simulations

is calculated as Re = (4R2kshearρ)/(µ) and is set to 0.05, where inertia effects can be neglected.

The size of the computational domain is Lx = 4R by Ly = 4R and is discretized using square

elements of size h = 0.1R, as this was shown to be sufficient to make the simulation independent

of the mesh size.

Fig. 2.18a and 2.18b show the streamlines, velocity magnitude and pressure field for the
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Figure 2.18: Figures (a) and (b) show the pressure fields, streamlines and velocity magnitude
for the steady states of a capsule in shear flow, with respectively stick and slip surfaces. The
time step used was ∆t = (h/R)× 1e−4 and the tolerances TOLv = TOLp = TOLv̄‖ = 1e−5

Figure 2.19: Figure shows the capsule deformation with different bending rigidities in the cases
(a) l+ = 0 (stick) and (b) l+ >> R (slip).

‘stick’ l+ = 0 and ‘slip’ l+ >> R capsules at steady state. As expected, the effect of the

capsule’s surface property is quite apparent: for the same values of G and Eb, the ‘stick’ capsule

clearly displays a tank threading motion, as observed in [149]. However, the tank threading

motion is totally absent for a ‘slip’ capsule. The magnitude of the pressure field and the capsule

deformation are also much higher in the ‘stick’ than in the ‘slip’ case since a greater slip length

increases the viscous shear stress around the capsule.

The equilibrium shapes of the capsule with different values of Eb are shown in Fig. 2.19, in
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Figure 2.20: Figures (a) and (b) show the Taylor deformation parameter Dxy as a function
of the non-dimensional time ksheart for different bending rigidities in the stick and slip cases
respectively. The black dots in (a) represent data point from [149].

the ‘slip’ and ‘stick’ case. One can see that the effect of the bending elasticity has a direct impact

on the equilibrium shapes of the capsules: a higher bending rigidity reduces the curvature at

both ends of the capsule and for a high enough value of Eb, the capsule undergoes almost no

deformation. Here again, the effect of surface properties can be observed as the deformations

of a ‘slip’ capsule are smaller compared to the ‘stick’ case, for equal bending elasticity. More

quantitatively, the temporal evolution of the Taylor deformation parameter is presented in Fig.

2.20. The Taylor deformation parameter is defined by Dxy = (a − b)/(a + b), where a and b

are the length and width of the capsule. The black dots in Fig.2.20a represent data points from

[149] for the ‘stick’ case. Although the Taylor deformation parameter appears somewhat lower

for Eb = 0 and Eb = 0.025, the temporal evolution of the capsule in the ‘stick’ case are in very

good agreement with the results from [149]. The ‘slip’ boundary condition is shown to decrease

the maximum value of the Taylor deformation parameter compared to the ‘stick’ case for the

same bending rigidities Eb in Fig. 2.20b.

2.3.3 Pipette aspiration

Let us now turn to the aspiration of an immersed liquid droplet into a spherical channel (which

corresponds to the tip of a pipette for example), where the fluid/interface and membrane/inter-
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face interactions as well as the large deformations play an essential role. We choose to investigate

the well studied case of an incompressible liquid droplet with surface tension γ and radius Rc

being aspired into a pipette of radius Rp by a constant pressure gradient ∆p = Pex − Pin,

where Pex and Pin are respectively the pressure outside and inside the pipette (Fig. 2.21a).

There exists a critical surface tension γcrit such that for γ < γcrit the droplet is entirely aspired

Figure 2.21: Figure (a) shows the pipette aspiration geometry and figure (b) shows the analytical
and numerical results for the penetration length Lp as a function of capillarity G. The time step
used was ∆t = (h/R)× 1e−2 and the tolerances TOLv = TOLp = TOLv̄‖ = 1e−5

into the pipette whereas for γ > γcrit, the droplet is partially uptaken and reaches mechanical

equilibrium at the entry of the pipette [51]. This allows us to characterize the droplet/pipette

system with two dimensionless numbers: a version of the capillarity number G = γ/γcrit and the

dimensionless radius Rp = Rp/Rc.

For values of G > 1, the equilibrium shape of the partially aspired droplet can found analyt-

ically as follows. Considering that at equilibrium the velocity field vanishes and the pressure in

the droplet is constant, the Laplace law combined with some geometrical considerations yields

the following system of equations that describe the pressure and shape of the droplet at equi-
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librium [51]:

peq − pin
2γ

=
2Lp eq

R2
p + L2

p eq

(2.55)

peq − pex
2γ

= β(8R3
c − 3R2

pLp eq − L3
p eq)

−1/3 (2.56)

where peq and Lp eq are respectively the pressure and the distance travelled by the droplet inside

the pipette when it reaches equilibrium, and we used the fact that the interface force caused by

the droplet surface tension is given by (2.21) as:

f̄ = γHn̄.

Fig. 2.21b shows the analytical and numerical results for the dimensionless travel distance

Lp = Lp/Rp for stable values of surface tension G > 1. The contact between the droplet

interface and the pipette wall is handled by the penalty method and by taking advantage of the

level-set function that is locally reconstructed at each iteration. Knowing the level-set function

instantaneously yields the closest distance from any point on the pipette wall to the droplet

interface, which considerably simplifies the contact problem. The computational domain was

discretized using elements of size h = R/10 with R the radius of the droplet in its initial spherical

shape. The CFL condition on the time step is less strict here since the interface force here only

depends on the mean curvature which is a second order term (as opposed to fourth order terms

for an elastic interface). The time step was therefore chosen as ∆t = (h/R)2. The numerical

and analytical solutions for the travel distance Lp show a very good agreement and predict the

same critical surface tension below which the droplet cannot find a stable equilibrium and is

entirely aspired.

2.3.4 Droplet subjected to surface tension and gravity

To further assess the formulation’s validity, we considered the more complicated problem of a

fluid droplet subjected gravitational fluid and laying on a flat rigid substrate. Although the

strain energy φ̄ and the membrane force f̄ take the same form as in the precedent example,
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this example is particularly interesting to demonstrate the applications of Dirichlet boundary

conditions on the membrane by imposing a zero vertical velocity at the section of the membrane

in contact with the substrate. This problem also serves as a benchmark as the analytical solution

for the height h of a droplet characterized by different surface tensions γ is known. Following

[42], the analytical solution has the form:

Figure 2.22: Finite element mesh on which the governing equations are solved and nodes with
enriched degrees of freedom (white circles). Images (a), (b) and (c) show the droplet progres-
sively finding its equilibrium position where the pressure gradient is vertical and the velocity (red
arrows) null. In figure (d) the Droplet’s height is plotted as a function of surface tension over
density times the gravity and figure (b) is a 3D representation of the droplet’s equilibrium shapes
for different surface tension. The internal pressure field is projected onto the plan z = 0 and the
membrane curvature is plotted on the surface as a color gradient. The viscosity chosen here is
µ = 1.10−3Pa.s (water) and the surface tension corresponding to water is γ/ρg = 6.1mm2

h =

√
2γ(1− cos θ)

ρg
(2.57)
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where the contact angle θ chosen was chosen to 180◦, corresponding to a non-wettable surface.

Regarding the numerical formulation, Fig.2.22a-c. shows the eulerian domain, the associated

finite element discretization and the pressure field in the droplet as it reaches its equilibrium

position. We also note that the enriched nodes of split elements, represented with white circle,

are subjected to Dirichlet boundary conditions as the membrane comes in contact with the

substrate. Numerical and analytical prediction of the droplet height h are then shown for four

different values of surface tension in Fig. 2.22d. We observe a very good agreement between

these results, with a maximum error of 0.2%. The three-dimensional shape of the droplet is

then depicted in Fig.2.22c. at equilibrium for different surface tension. It can clearly be seen

that both surface curvature (plotted on the droplet surface as a color gradient) and the internal

pressure (projected on a vertical plan) a strongly influenced by surface tension.

2.3.5 Elastic capsule through a tight opening

Figure 2.23: The surface Jacobian J of the vesicle is shown as a color gradient along the interface,
along with the surrounding fluid pressure field and streamlines. The time step used was ∆t =
(h/R)× 1e−4 and the tolerances TOLv = TOLp = TOLv̄‖ = 1e−5

This example shows an elastic vesicle forced through a small opening by a pressure gradient

∆p, and illustrates the very large deformations the vesicle can go through using the presented
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method, both in terms of the stretching and bending of the interface. The surface Jacobian (or

dilation) of the vesicle is shown as a color gradient along the interface in Fig.2.23, along with

the surrounding fluid pressure field and streamlines. A slip boundary condition was applied on

the walls of the opening and a double pressure and velocity enrichment was implemented in the

elements cut by both the walls and the interface. The computational domain was discretized

using elements of size h = R/10 with R the radius of the vesicle in its initial circular shape,

and the time step was chosen as ∆t = (h/R)−4. One can observe the wide range of values

taken by the surface Jacobian (> 2.5 and as low as 0.2) as the vesicle goes through the opening.

Simulating such deformations with a Lagrangian description of the interface would require the

use of complicated remeshing algorithms at several points during the simulation to prevent large

mesh distortion. The advantages of using a Eulerian point of view in combination with the grid

based particle tracking of the interface become clear here as it ensures a homogeneous spatial

discretization of the interface throughout the simulation.

2.4 Conclusion

In this chapter, we presented a full Eulerian formulation for the analysis of the large deforma-

tions of an immersed interface arising in a large number of soft matter mechanics problems.

The model is versatile enough to accommodate various material behaviors from a hyperelastic

membrane to a fluid interface. The introduction of a tangential velocity degree of freedom for

the interface in combination with discontinuities in velocity and pressure fields enables us to

simulate a wide variety of boundary conditions between the interface and the surrounding fluid

while automatically satisfying the normal velocity continuity condition. These contributions

were made numerically possible by coupling two very efficient methods: the extended finite el-

ement and the grid-based particle methods, which used in an Eulerian framework completely

circumvents the problem of mesh distortion usually associated with Lagrangian finite elements.

The combination of these methods has two key advantages: (a) the X-FEM makes it possible

to account for field discontinuities within the finite element framework and (b) the grid based

particle method removes the need for time consuming reinitialization that are usually associ-
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ated with the use of of level-set in X-FEM. Furthermore, as opposed to the traditional level-set

method, the grid based particle method is very well suited to the computation of higher order

derivative on a curved surface and can accurately track the Lagrangian fields associated with an

elastic interface. We showed, via a number of examples, that the approach gives very satisfactory

results for a wide variety of problems involving the effect slip lengths, membrane elasticity, and

characterized by very large shape changes. In this context, future research can describe various

mechanisms that may include the phoretic transport of highly deformable cells [3], the diffusion

of membrane associated molecules on curved manifolds and its coupling with mechanical defor-

mation [150, 62], or the effect of slip length on vesicles tumbling under the effect of shear flow

[149].

Appendix: Derivation of the interface force f̄

The interface force f̄ can be found by writing the interface elastic power as the dot product of

the interface velocity v̄ and f̄ . First recalling the expressions of D̄ and ˙̄C as functions of v̄,

respectively equations:

D̄ =

(
1

2

(
v̄
‖
α|β + v̄

‖
β|α

)
− bαβ v̄⊥

)
aα ⊗ aβ

and ˙̄C = ḃαβ =
(
v̄⊥|αβ − v̄

⊥bλαbλβ

)
aα ⊗ aβ,

one can write the interface elastic power as follows:

˙̄E [v̄] =

∫
Γ

(
T̄ : D̄ + M̄ : ˙̄C

)
ds

=

∫
Γ

(
T̄ :

(
1

2

(
v̄
‖
α|β + v̄

‖
β|α

)
− bαβ v̄⊥

)
aα ⊗ aβ + M̄ :

(
v̄⊥|αβ − v̄

⊥bλαbλβ

)
aα ⊗ aβ

)
ds

=

∫
Γ

(
T̄ ipαβ

1

2

(
v̄
‖
α|β + v̄

‖
β|α

)
− T̄ ipαβbαβ v̄

⊥ + M̄ ip
αβ v̄
⊥
|αβ − M̄

ip
αβb

λ
αbλβ v̄

⊥
)
ds,

where T̄ ipαβ and M̄ ip
αβ are the in-plane components of the stress and moment tensor, such that

T̄ = T ipαβa
α ⊗ aβ and M̄ = M ip

αβa
α ⊗ aβ. Next, using the divergence theorem once on the first
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integrand T̄ ipαβ
1
2

(
v̄
‖
α|β + v̄

‖
β|α

)
and twice on the third integrand M̄ ip

αβ v̄
⊥
|αβ yields:

˙̄E [v̄] =

∫
Γ

(
−T̄ ipαβ|β v̄

‖
α − T̄

ip
αβbαβ v̄

⊥ + M̄ ip
αβ|αβ v̄

⊥ − M̄ ip
αβb

λ
αbλβ v̄

⊥
)
ds,

where the boundary terms on δΓ do not appear since the interface Γ is considered closed in this

work. Finally, recalling that v̄ = v̄‖αaα + v̄⊥n̄ we can write:

˙̄E [v̄] =

∫
Γ

(
−T̄ ipαβ|βa

α − T̄ ipαβbαβn̄ +
(
M̄ ip
αβ|αβ − M̄

ip
αβb

λ
αbλβ

)
n̄
)
· v̄ds

=

∫
Γ

f̄ · v̄ds

with f̄ =
(
−T̄ ipαβ|βa

α − T̄ ipαβbαβn̄
)

︸ ︷︷ ︸
in-plane stress

+
(
M̄ ip
αβ|αβ v̄

⊥ − M̄ ip
αβb

λ
αbλβ

)
n̄︸ ︷︷ ︸

bending moment

Appendix: components of the tangent matrix

To obtain the dicretized weak form of the governing equations, let us turn to the weak form

(2.25) and decompose the integration over Ω∪Γ into the sum of the integration over the element

domain Ωe:

nel∑
e=1

[∫
Ωe

(µ∇wv : ∇v − p∇wv : I) dV e +

∫
Γe

wv ·
( µ
l+
λ+ − µ

l−
λ− + +f̄

)
dse

+

∫
Ωe

wp∇ · vdV e +

∫
Γe

wpλpds
e +

∫
Γe

λp([p] + ¯f⊥)dse

+

∫
Γe

w
‖
v̄

( µ
l+

(λ+ + [v]‖+) +
µ

l−
(λ+ + [v]‖−) + f̄‖

)
dse

+

∫
Γe

wλ+

(
(µ∇v · n̄)‖+ − µ

l+
[v]‖+

)
dse

+

∫
Γe

wλ−
(

(µ∇v · n̄)‖− − µ

l−
[v]‖−

)
dse
]

= 0 (2.58)

Next, we replace the different fields v, p, v̄‖, λp, λ
+ and λ− with their discretized form (2.22),

(2.23) and (2.24). In order to minimize the length of the discretized governing equations, we first

rewrite the interpolation equations as the product of a shape function matrix and the element
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nodal values vector as follows. Equation (2.23) can be rewritten as

ṽe(x, t) = N9(x) · ve(t)

with N9(x) =

 N9
1 0

0 N9
1

...
N9

9 0

0 N9
9

(H −H1)N9
1a

1
1 0

0 (H −H1)N9
1a

1
2

...
(H −H9)N9

9a
9
1 0

0 (H −H9)N9
9a

9
2


and ve(t) =

{
v1

1 v
1
2 v

2
1 v

2
2... v

9
1 v

9
2, v̂

1...v̂9
}T

,

while (2.22) takes the form:

p̃e(x, t) = N4(x) · pe(t)

with N4(x) =
[
N4

1 ...N
4
4 (H −H1)N4

1 ...(H −H4)N4
4

]
and pe(t) =

{
p1...p4 p̂1...p̂4

}T
,

and (2.24) reads:

˜̄v‖ e(x, t) = N̄(x) · v̄‖ e(t) , λ̃ep(x, t) = N̄(x) · λep(t) and λ̃± e(x, t) = N̄(x) · λ± e(t)

with N̄ =
[
N̄1 N̄2

]
and v̄‖ e(t) =

{
v̄‖ 1 v̄‖ 2

}T
, λep(t) =

{
λ1
p λ

2
p

}T
, λ± e(t) =

{
λ± 1 λ± 2

}T
We further write the rate of deformation of the fluid De (in Voigt notation) and the velocity

divergence ∇.ve in element e in the two-dimensional plane strain case as:

{De} =


De

11

De
22

2De
12

 = B · ve and ∇ · ve = B̌ · ve
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where the B and B̌ matrices relates the nodal velocities to the deformation rate and velocity

divergence:

B = [B1 B2 ... Bn9+m9 ] with BI =


∂N9

I (x)
∂x1

0

0
∂N9

I (x)
∂x2

∂N9
I (x)
∂x2

∂N9
I (x)
∂x1


and

B̌ =
[
B̌1 B̌2 ... B̌n9+m9

]
with B̌I =

[
∂N9

I (x)

∂x1

∂N9
I (x)

∂x2

]

with these definition, one can rewrite the weak form in its discretized form as follows:

nel∑
e=1

{we
v}T

[∫
Ωe

BT ·
(
µB · ve −N4 · pe

)
dV e +

∫
Γe

(N9)T · a1

( µ
l+

N̄ · λe+ − µ

l−
N̄ · λe−

)
dse (2.59)

+

∫
Γe

(N9)T · f̄dse
]

+
nel∑
e=1

{wep}T
[∫

Ωe

(N4)T · B̌ · vedV e +

∫
Γe

(N4
[])
T · N̄ · λepdse

]

+
nel∑
e=1

{we
v̄‖}

T

[∫
Γe

N̄T ·
( µ
l+

N̄ ·
(
λe+ + v̄‖e

)
− µ

l+
N9

+ · a1 · ve
)
dse∫

Γe

N̄T ·
( µ
l−

N̄ ·
(
−λe− − v̄‖e

)
+
µ

l−
N9
− · a1 · ve

)
dse +

∫
Γe

N̄T · f̄‖dse
]

+
nel∑
e=1

{weλp}
T

[∫
Γe

N̄T ·N4
[] · p

edse +

∫
Γe

N̄T · f̄⊥dse
]

+
nel∑
e=1

{weλ+}T
[∫

Γe

N̄T ·
(
µaT1 ·P⊥ ·B+ · ve −

µ

l+

(
N̄ · v̄‖e −N9

+ · a1 · ve
))

dse
]

+

nel∑
e=1

{weλ−}
T

[∫
Γe

N̄T ·
(
µaT1 ·P⊥ ·B− · ve +

µ

l−

(
N̄ · v̄‖e −N9

− · a1 · ve
))

dse
]

= 0

where the subscript + and − on the B and N9 indicates whether the fluid velocity (and its

derivative) is interpolated on the + or − side of Γ while N4
[ ] =

[
0..0 N4

1 ...N
4
4

]
is used to

interpolate the pressure jump across the interface. The above equation can then conveniently

53



CHAPTER 2. PARTICLE-BASED MOVING INTERFACE METHOD FOR THE STUDY OF
IMMERSED THIN MEMBRANES

be written in the following format:

 Kt It2

It1 K̄t

 ·
 d(t)

d̄(t)

+

 Ft

F̄t

 = 0

Where the matrices The various component of the element matrix Ke in are calculated as:

Ke
vv =

∫
Ωe

µBT ·B dV e

Ke
vp =

∫
Ωe

−BT ·N4 dV e

Ke
vλ+ =

∫
Γe

µ

l+
(N9
−)T · a1 · N̄ dse

Ke
vλ− =

∫
Γe

− µ

l−
(N9
−)T · a1 · N̄ dse

Ke
pv =

∫
Ωe

(N4)T · B̌dV e

Ke
pλp =

∫
Γe

(N4
[ ])
T · N̄dse

Kv̄‖v =

∫
Γe

N̄T · a1 ·
( µ
l−
·N9
− −

µ

l+
·N9

+

)
dse

Ke
v̄‖v̄‖ =

∫
Γe

N̄T ·
( µ
l+
− µ

l−

)
· N̄dse

Ke
v̄‖λ+ =

∫
Γe

µ

l+
N̄T · N̄dse

Ke
v̄‖λ− =

∫
Γe

− µ

l−
N̄T · N̄dse

Ke
λpp =

∫
Γe

N̄T ·N4
[ ]ds

e

Ke
λ+v =

∫
Γe

N̄T ·
(
µaT1 ·P⊥ ·B+ + N9

+ · a1

)
dse

Ke
λ+v̄‖ =

∫
Γe

− µ

l+
N̄T · N̄dse

Ke
λ−v =

∫
Γe

N̄T ·
(
µaT1 ·P⊥ ·B− −N9

− · a1

)
dse

Ke
λ−v̄‖ =

∫
Γe

µ

l−
N̄T · N̄dse
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while the external forces associated with element e are written:

Fe
v =

∫
Ωe

−(N9)T · f̄ dV e

Fe
v̄‖ =

∫
Γe

N̄T · f̄‖ dse

Fe
λp =

∫
Γe

N̄T · f̄⊥ dse

where f̄ is computed using the updated strain and curvature.
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Chapter 3

An X-FEM based

numerical-asymptotic expansion for

simulating a Stokes flow near a sharp

corner

A large number of the flows considered in Fluid-structure interaction problems include their

interactions with structures with sharp corners or tips. Examples of these problems include

the flow inside a channel with sudden changes of radius [1, 11, 139, 60, 116], the flow through

cracks and interfaces [165] or the filtration of particles through a porous membrane [178, 84, 80].

The presence of local curvature singularities where the fluid interacts with the structure results

in the appearance of pressure or velocity singularities, as described by Moffat in [115]. These

singularities at the small scale are often associated with flow separation or stagnation regions at

the larger scale that are of great importance in many engineering applications, and to describe

them accurately still remains a significant computational challenge.

Traditionally in this type of fluid/interaction problem, the geometry of sharp corner and the

singular fields around them are resolved through the use of local refinement of the spatial dis-
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cretization [1, 11, 139, 60, 116]. However, these types of algorithms are computationally costly

and can never truly resolve the local field discontinuities. Indeed, the standard finite element

method uses a linear or quadratic continuous space that ultimately fails to describe the hyper-

bolic pressure field that appears at the corner tips [115].

To address that issue, Hawa and Rusak [74] developed an asymptotic/numerical matching

method to simulate a viscous flow through a suddenly expanding channel. In this work, the

inner analytical solution around the corner is matched with the outer numerical solution com-

puted with the finite difference method. They successfully simulated the singularities near the

corner for various Reynolds number and channel expansion ratios. However, their numerical

method still requires some level of mesh refinement around the corner and the spatial discretiza-

tion of the corner is mesh dependent, which limits the method to the study of right angle corners.

Another numerical/asymptotic matching method is the extended finite element method, which

was originally developed by Moës et al in the framework of the Extended Finite Element method

(X-FEM) to compute the discontinuous displacement and singular stress field around cracks in-

side an elastic body [114]. The idea was to locally enrich the traditional C0 finite element space

around the crack tips with the asymptotic solution for the displacement and stress fields. This

enriched space allowed the finite element method to describe the singular fields around the crack

tip without the need for refinement or remeshing [114, 73, 134, 28]. The method has also suc-

cessfully been applied to the simulation of the Stokes flow around rigid particles, where the

asymptotic solution for the pressure and velocity field around a cylinder are used to enrich the

finite elements cut by the particle [169].

Recognizing the similarities between the pressure field of the flow around a corner and the

stress field around a crack tip, we here follow the same approach as taken by Moës et al in [114]

and present a collocation method in the framework of the X-FEM to simulate the Stokes flow

around structures with sharp corners. We enrich the finite element space around corner tips

with the first order symmetric and anti-symmetric modes of the asymptotic solution for a Stokes
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flow near a sharp corner, following Moffatt’s solution [115]. These special enrichment functions

provide the finite element method with the flexibility needed to accurately describe the singular

pressure and velocity field around sharp corners. The no-slip boundary condition on the walls

of the corner is enforced via the use of Lagrange multipliers. The proposed approach has the

following three contributions:

� The local field singularities near sharp corners are resolved without the need for compu-

tationally expensive mesh refinement.

� The enrichment functions are calculated for any convex sharp corners .

� The technique presented holds for any simultaneous combinations of sharp corners, and

can handle the simulation of a Stokes flow with complex boundary condition without any

refinement and on a fixed structured mesh.

We show that the formulation is well adapted for investigating problems where physics at the

small scale have a large impact on the overall large scale behavior. The outline of the chapter is

as follows: Section 2 presents the governing equations and the asymptotic solution for the Stokes

flow near a sharp corner. Section 3 follows with the extended finite element discretization scheme

and the derivation of the weak form. The special enrichment functions used in the numerical

discrezation are derived from the asymptotic solution in section 4. We then verify in section

5 the accuracy of the method by calculating the error made when computing the flow velocity

around corners of different angle, with and without special enrichment. The present method

is also compared with the X-FEM without corner enrichment but with different levels mesh

refinement for the problem of a Stokes flow through a suddenly expanding channel. Finally, the

method is applied to the estimation of the permeability of a network of fibers, where it is shown

that neglecting the pressure and velocity singularities around the fiber tips leads to a significant

underestimation of the overall network permeability.
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3.1 Governing equations

3.1.1 Basic equations

Consider a two-dimensional incompressible viscous flow in a domain Ω, in which exists one or

multiple no-slip rigid boundaries Γ taking the shape of thin plates or sharp corners (Fig.4.1). The

problem is characterized by the Reynolds number Re = HUρ/µ where H is the characteristic

length scale, U the characteristic fluid velocity, µ the kinematic viscosity and ρ the fluid density.

We choose here to remain in the Stokes flow assumption with Re � 1, where inertial effect may

be neglected. The velocity of a fluid particle is given in terms of its material time derivative

v(x) = Dx/Dt, where x = {x y} is the current position of the fluid particle at time t. In these

conditions, the governing equations with the associated boundary conditions for the Stokes flow

at the steady state are written:

µ∇2v −∇p = ρf ∀x ∈ Ω

∇ · v = 0 ∀x ∈ Ω

with v(x) = 0 ∀x ∈ Γ.

 (3.1)

where p is the fluid pressure and f a body force. These equations govern the fluid flow in the

domain Ω and can generally be easily solved using the finite element method, as long as the

geometry of the boundary Γ does not include any curvature singularities, such as a sharp corner.

However, when such a sharp corner occur in the geometry of Γ, equations (3.1) admit a singular

solution near the tip of the corner, which cannot be resolved with the classical finite element

method. First, let us turn to the asymptotic solutions for the fluid velocity and pressure near

the corner tip, as they will be needed when deriving the corresponding enrichment functions.

3.1.2 Asymptotic solution for the flow near a sharp corner

For simplicity, we adopt a polar coordinate system (r, θ) centred on the corner, where r =√
x′2 + y′2, θ = arctan (y′/x′) and the axis x′ and y′ are aligned with the corner’s bisector (see

Fig.3.1). The corner is defined by the angle α made with its bisector, where α = π/2 and α = π

respectively correspond to a flat wall and a semi infinite plate.
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Figure 3.1: (a) fluid domain Ω and fixed structure Γ with no-slip/no-penetration boundary con-
didtion. (b) local polar coordinate system centred at the corner.

The asymptotic solution of the viscous flow near a sharp corner follows the paper of Moffat

[115]. The streamline function ψ(r, θ) solution to the Stokes equation ∇ψ = 0 in the region

0 < r � H can be written in the following separated form:

ψ(r, θ) = rγfγ(θ) (3.2)

where γ is an unknown complex exponent that determines the structure of the flow, and is to

be found as part of the solution, as described in section 3.1.3. According to [115], the function

fγ(θ) takes the general form:

fγ(θ) = A cos (γθ) +B sin (γθ) + C cos ((γ − 2)θ) +D sin ((γ − 2)θ) (3.3)

where A,B,C and D are arbitrary complex constants. In the cases where γ = 0, 1 or 2, the

above equation degenerates into other forms that are not relevant to the problem studied here,

and we will henceforth only consider values of γ such that γ 6= 0, 1, 2. The axial and radial

velocities of the flow are deduced from the stream function ψ(r, θ) as follows:

vr =
1

r

∂ψ

∂θ
and vθ = −∂ψ

∂r
, (3.4)
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and are subjected to the following no-splip/no-penetration boundary conditions at the wall:

vr(r, θ = α) = 0, vθ(r, θ = α) = 0 (3.5)

vr(r, θ = −α) = 0, vθ(r, θ = −α) = 0. (3.6)

In general, any Stokes flow near a corner can be calculated as the linear superposition of an anti-

symmetrical (mode I) and symmetrical (mode II) solution with respect to the corner’s bisector

x′ (see Fig.3.2). We now briefly present these two cases.

Figure 3.2: Asymptotic solution: pressure and stream lines for a viscous flow near a sharp corner
α = 0.8π for (a) mode I and (b) mode II. The pressure field is singular at r = 0.

3.1.3 Mode I: anti-symmetrical case

In the anti-symmetrical case, which we will refer to as mode I, the flow is even so the constants

B and D in (3.3) vanish, and fγ(θ) reads:

fγ(θ) = A cos (γθ) + C cos ((γ − 2)θ). (3.7)

Enforcing the boundary condition at the wall requires that fγ(±α) = ∂fγ(±α)/∂θ = 0, and

yields a system of two equations for A and C:

 A cos (γθ) + C cos ((γ − 2)θ) = 0

Aγ sin (γθ) + C(γ − 2) sin ((γ − 2)θ) = 0
, (3.8)
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which admits non trivial solutions only if γ satisfies the following simple algebraic equation [115]:

sin ((γ − 1)2α) = (1− γ) sin (2α). (3.9)

Combining (3.2), (3.7) and (3.8), one finds that the stream function in the anti-symmetrical

case is written:

ψ(r, θ) = rγ (cos (γθ) cos ((γ − 2)α)− cos (γα) cos ((γ − 2)θ)) . (3.10)

The resulting stream lines and pressure field for α = 0.8π in mode I are shown in Fig.3.2a, where

the pressure is calculated by solving the momentum equation

∇p = µ∇2v (3.11)

where v = vrer + vθeθ is computed using equations (3.2) and (3.4).

Figure 3.3: Asymptotic solution: pressure and stream lines forming eddies for a viscous flow
near a sharp corner α = 0.3π for (a) mode I and (b) mode II. The pressure and velocity fields
vanish at r = 0 and show no singularity.

When the angle α made by the two walls of the corner is less than a critical angle α < 0.405π

(or α < 73◦), equation (3.9) admits complex solutions [115]. To calculate the stream function

ψ(r, θ) in this case, we first decompose the exponent into its real and complex components
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γ = γR + iγI and rewrite (3.9) as the following system of equations [132]:

 sin (2α(γR − 1)) cosh (2αγI) = (1− γR) sin(2α)

cosh (2α(γR − 1)) sinh (2αγI) = (−γI) sin(2α)
(3.12)

which can be solved for γR and γI using a Newton-Raphson non-linear solver, given a good

initial guess. Finally, using (4.10), (3.7) and (3.8), one can write the stream function ψ(r, θ) in

the case α < 0.405π as [132, 115]:

ψ(r, θ) = rγR [Real {Q} cos (γI ln r)− Imag {Q} sin (γI ln r)] (3.13)

with Q = (cos (γθ) cos ((γ − 2)α)− cos (γα) cos ((γ − 2)θ)))

The resulting stream lines and pressure field are shown in Fig.3.3.a, where one notes the ap-

pearance of an infinite number of self repeating eddies as r decreases to zero.

3.1.4 Mode II: symmetrical case

The derivation of the solution for the symmetrical flow, or mode II is extremely similar to mode

I, and we will therefore omit some details. In this case, fγ(θ) should be an odd function, and

we therefore set A and C to be zero in (3.3):

fγ(θ) = B sin (γθ) +D sin ((γ − 2)θ). (3.14)

Enforcing the no-slip and no-penetration boundary conditions yields to following alebraic equa-

tion for γ:

sin ((γ − 1)2α) = (γ − 1) sin (2α). (3.15)

Combining (3.2), (3.14) and the boundary conditions one finds the stream function for mode 2

to read:

ψ(r, θ) = rγ (sin (γθ) sin ((γ − 2)α)− sin (γα) sin ((γ − 2)θ)) . (3.16)
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Similarly to mode 1, for α < 0.405π, equation (3.15) admits complex solutions. Taking the

same approach as for mode 1, a decomposition of the exponent γ into its real and imaginary

components leads to the following form of the stream function:

ψ(r, θ) = rγR [Real {Q} cos (γI ln r)− Imag {Q} sin (γI ln r)] (3.17)

with Q = (sin (γθ) sin ((γ − 2)α)− sin (γα) sin ((γ − 2)θ))).

The resulting stream lines and pressure field are shown in Fig.3.3.b where similarly to mode I,

one notes the apparition of an infinite number of self repeating eddies as r decreases to zero.

Let us now turn to the numerical formulation and use the asymptotic solution presented above

to derive the corresponding enrichment functions.

3.2 Extended finite element formulation

The idea of the Extended Finite Element Method is to enrich a finite element space with addi-

tional functions. Our numerical technique takes the same approach: the Stokes flow is solved

using the traditional C0 conforming finite elements (in our cases 4 nodes bilinear elements for

the pressure and 9 nodes quadratic elements for the velocity) space, and we enrich this space

with additional degrees of freedom that allow the pressure jump across an interface (the velocity

stays continuous) and singular pressure/velocity fields around the corner tip. The velocity and

pressure fields in this enriched space are interpolated as follows:

p(x) =
∑
i

Ni(x)pi +
∑
j

Nj(x)(H(x)−Hj)p̌j +
∑
k

∑
l

Nk(G
l (r(x), θ(x))−Gk)p̃k (3.18)

v(x) =
∑
i

N̂i(x)vi +
∑
k

∑
l

N̂k(F
l (r(x), θ(x))− Fk)ṽk (3.19)

where N and N̂ are the regular 4 nodes and 9 nodes shape functions, H is the Heaviside function

that provides the needed discontinuity, and F = {FI ,FII} and G = {GI ,GII} are the special

asymptotic corner tip functions for modes I and II. They are derived in section 3.3 from the

asymptotic solution presented in section 3.1.2 . The term p̌j corresponds to the enriched degrees
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of freedom associated with the jump in pressure across an interface while the terms p̃k and ṽk

are the enrichment degrees of freedom associated with the near corner tip pressure and velocity

fields.

Figure 3.4: Node selection for the slip and tip enrichment of a (a) corner and (b) plate. The
black dots denote tip enrichment for the velocity and pressure (only the four corner nodes in the
case of the pressure) while the squares indicate split enrichment for the pressure.

Fig.3.4a and b illustrate the enrichment strategy used to model the flow around sharp corners

and tips. The full circles denote the node enriched with corner/tip functions and belong to the

element that contains the corner/tip. The empty squares represent the nodes enriched with a

Heaviside function and belong the elements fully cuts by the corner walls.

In addition to the velocity and pressure degrees of freedom and their respective enrich-

ment, let us introduce the Lagrange multipliers λI . These are used to enforce the no-slip/no-

penetration boundary condition (3.1) on the corner walls and tip and are discretized at the

intersection between the corner walls and the underlying mesh, as shown in Fig.3.5. They are

Figure 3.5: Discretization of the Lagrange multipliers in (a) simple cut element, (b) double cut
element, (c) corner tip element and (d) tip element.)

interpolated along the interface Γ using one-dimensional shape functions λi(x) =
∑2

I=1 N̄
I(x)λIi

where I denotes the numbering of the nodes for each segment of the corner walls, and i runs

over the dimensions 1 and 2 (in 2D).
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3.2.1 Weak formulation

Introducing the test functions wv and wp, integrating by parts and using the divergence theorem,

the weak form of the governing equations (3.1) in the fluid domain can be written as:

(∇wv, µ∇v)Ω − (∇wv, pI)Ω + (wv, ρf)Ω = 0

(wp,∇ · v)Ω = 0 (3.20)

where the notation (·, ·)Ω indicates the L2 inner product with respect to the domain Ω. We

also need to enforce the no-slip/no-penetration boundary conditions given in (3.1) on the corner

walls. This is done by using the Lagrange multipliers λ. The corresponding variational form is

then given by: find v ∈ V, p ∈ P and λ ∈ L such that for all wv ∈ V, wp ∈ P and wλ ∈ L

(∇wv, µ∇v)Ω − (∇wv, pI)Ω + (wv, ρf)Ω + (wv,λ)Γ = 0

(wp,∇ · v)Ω = 0

(wλ,v)Γ = 0 (3.21)

where wλ are the test functions associated with the Lagrange multipliers and V, P and L are

admissible spaces for the velocity, pressure and Lagrange multipliers.

3.2.2 Discretized form

The discretized form of the equilibrium can be written from the weak form (3.21) by using the

XFEM approximation as follows:

Kd = f (3.22)

66



CHAPTER 3. AN X-FEM BASED NUMERICAL-ASYMPTOTIC EXPANSION FOR SIMULATING
A STOKES FLOW NEAR A SHARP CORNER

where K is the consistent tangent matrix, d = {v p λ} the global vector of unknowns and f

the force vector. The element contribution to K and f are as follows:

ke =


kevv kevp kevλ

kepv 0 0

keλv 0 0

 (3.23)

f e =

{
f ev 0 0

}T
(3.24)

with

kvv =

∫
Ωe

µBT ·B dΩ (3.25a)

kevp =

∫
Ωe

−BT · N̂ dΩ (3.25b)

kevλ =

∫
Γe

NT · N̄dΓ (3.25c)

kepv =

∫
Ωe

N̂T ·B dΩ (3.25d)

keλv =

∫
Γe

N̄T ·NdΓ (3.25e)

and

f ev =

∫
Ωe

NT · ρf dΩ. (3.26)

The shape function matrices N, N̂, N̄ and B take the following form:

N =
[
N1, ...,N9, Ñ1, ..., Ñ9

]
(3.27a)

N̂ =
[
N̂1, ..., N̂4,

ˇ̂
N1, ...,

ˇ̂
N4,

˜̂
N1, ...,

˜̂
N4
]

(3.27b)

N̄ =
[
N̄1 N̄2

]
(3.27c)

B =
[
B1, ...,B9, B̃1, ..., B̃9

]
(3.27d)
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with

Ni =

 N i 0

0 N i

 , Ñi =

(F − F 1)

 N i 0

0 N i

 , ..., (F − F 8)

 N i 0

0 N i




(3.28a)

ˇ̂
N i = (H −H i)N̂ i ,

˜̂
N i =

[
(G−G1)N̂ i, ..., (G−G4)N̂ i

]
(3.28b)

Bi =



N i
,1 0

0 N i
,2

N i
,2 0

0 N i
,1


(3.28c)

B̃i =





(F − F 1)N i),1 0

0 (F − F 1)N i),2

(F − F 1)N i),2 0

0 (F − F 1)N i),1


, ...,



(F − F 8)N i),1 0

0 (F − F 8)N i),2

(F − F 8)N i),2 0

0 (F − F 8)N i),1




.

(3.28d)

where F i and Gi are the asymptotic functions used to enriched the standard finite element space

around the corner tips. They are derived in the next section.

Remark: The computation of these quantities involves the assessment of integrals over

elements that can be numerically evaluated using Gaussian quadrature with four integration

points in regular elements. However, for the elements cut by the corners, the integration is

performed by splitting the element into sub-triangles using a Delaunay triangulation on the four

corner points, the point at the corner tip, and the two intersection points between the corner walls

and the element edges. A fourth order Gauss integration is then carried out in each triangle, as

described in [114].
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3.3 Enrichment functions

Here we aim at identifying the asymptotic corner tip functions F and G that can span all

the solutions for the velocity and pressure fields of a flow near a sharp corner. Similar to the

asymptotic solutions presented in section 3.1.2, we proceed by considering mode I and mode II

separately.

3.3.1 Mode I: asymptotic enrichment for the anti-symmetrical case

Recalling equation (3.10) for the stream function in mode I, one can use (3.4) to compute the

axial and radial velocities as follows:

vr(r, θ) =
1

r

∂ψ

∂θ
= rγ−1((γ − 2) cos(γα) sin(θ(γ − 2))− γ cos(α(γ − 2)) sin(θγ)) (3.29)

vθ(r, θ) = −∂ψ
∂r

= γ
(
−rγ−1

)
(cos(α(γ − 2)) cos(θγ)− cos(γα) cos(θ(γ − 2))). (3.30)

Next, we write the flow velocity in the local Cartesian coordinate system {x′, y′}:

vx′ = vr cos θ − vθ sin θ = γ sin(θ)rγ−1(cos(α(γ − 2)) cos(θγ)− cos(γα) cos(θ(γ − 2)))

+ cos(θ)rγ−1((γ − 2) cos(γα) sin(θ(γ − 2))− γ cos(α(γ − 2)) sin(θγ))(3.31)

vy′ = vr sin θ + vθ cos θ = sin(θ)rγ−1((γ − 2) cos(γα) sin(θ(γ − 2))− γ cos(α(γ − 2)) sin(θγ))

− γ cos(θ)rγ−1(cos(α(γ − 2)) cos(θγ)− cos(γα) cos(θ(γ − 2))) (3.32)

Finally, we write the functions FI as the basis of functions that can span all the solutions vx′

and vy′ in mode I. After some calculation, and making use of trigonometry identities, the basis

of function FI for mode I is found to be:

FI =
{
rγ−1 sin ((γ − 2)θ) sin θ, rγ−1 cos ((γ − 2)θ) cos θ,

rγ−1 sin ((γ − 2)θ) cos θ, rγ−1 cos ((γ − 2)θ) sin θ
}

(3.33)

where γ is found using a non-linear solver on (3.9), given α and a good initial guess. The basis

functions GI for the pressure are derived in a similar manner. Given the stream function (3.10)
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and the momentum equation (3.11), the pressure field around the corner tip for mode I is found

to be:

p(r, θ) = − 1

(γ − 2)Re
rγ−2

(
γ2((γ − 2) cos(γα) sin(θ(γ − 2))− γ sin(γθ) cos(α(γ − 2)))

+ γ3 sin(γθ) cos(α(γ − 2)) + (γ − 2)3(− cos(γα)) sin(θ(γ − 2))
)

+ p∞ (3.34)

where p∞ is the pressure away from the corner tip when r → ∞. An important feature of

equation (3.34) is the fact that for α < π/2, the pressure shows no singular behavior at r = 0.

Indeed, for α < 0.405π, equation (3.9) yields γ > 2, and the term rγ−2 in (3.34) becomes zero

at r = 0. In that case, the corner always become a stagnation point where the pressure and

velocity are identically zero. In this work, we choose to focus on the cases where the pressure

shows a singular behavior and therefore only use enrichment functions for α > 0.405π. The

basis functions for the pressure in mode I are therefore written:

GI =
{
rγ−2 sin (γθ), rγ−2 sin ((γ − 2)θ)

}
(3.35)

Remark: Alternatively to solving (3.9) a priori, the parameter γ in the enrichment functions

above can also be found via an adaptive method for parametric X-FEM [170]. This method

considers the residual error based on the strong form to drive the algorithm and determine the

parameter of the enrichment function. .

3.3.2 Mode II: asymptotic enrichment for the symmetrical case

Finding the corner tip asymptotic function for mode II is very similar to mode I. The basis of

functions FII that can span all the solutions vx′ and vy′ in mode II is found to be same as for

mode I, only the value of the exponent γ changes:

FII =
{
rγ−1 sin ((γ − 2)θ) sin θ, rγ−1 cos ((γ − 2)θ) cos θ,

rγ−1 sin ((γ − 2)θ) cos θ, rγ−1 cos ((γ − 2)θ) sin θ
}

(3.36)
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Next, the pressure field around the corner tip for mode II is found to be:

p(r, θ) = − 1

(γ − 2)Re
rγ−2

(
γ2((γ − 2) sin(γα) cos(θ(γ − 2))− γ cos(γθ) sin(α(γ − 2)))

+ γ3 cos(γθ) sin(α(γ − 2)) + (γ − 2)3(− sin(γα)) cos(θ(γ − 2))
)

+ p∞ (3.37)

The basis functions for the pressure in mode II is therefore written:

GII =
{
rγ−2 cos (γθ), rγ−2 cos ((γ − 2)θ)

}
(3.38)

Table 1 shows a summary of the asymptotic functions used as enrichment for both pressure and

velocity fields for both modes, which constitutes the main result of the present work.

Mode I

GI

{
rγ−2 sin (γθ), rγ−2 sin ((γ − 2)θ)

}

FI

{
rγ−1 sin ((γ − 2)θ) sin θ, rγ−1 cos ((γ − 2)θ) cos θ ,

rγ−1 sin ((γ − 2)θ) cos θ, rγ−1 cos ((γ − 2)θ) sin θ
}

Mode II

GII

{
rγ−2 cos (γθ), rγ−2 cos ((γ − 2)θ)

}

FII

{
rγ−1 sin ((γ − 2)θ) sin θ, rγ−1 cos ((γ − 2)θ) cos θ ,

rγ−1 sin ((γ − 2)θ) cos θ, rγ−1 cos ((γ − 2)θ) sin θ
}

Table 3.1: Corner tip asymptotic functions

3.4 Results

In this section, the numerical scheme presented above is used to solve for fluid flows with

different boundary conditions and the results are compared with both the analytical solution

and the X-FEM without special enrichment. It is then applied to estimate the permeability of

a two-dimensional fibrous network.
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3.4.1 Flow around a corner

Here we investigate the accuracy of the numerical technique by comparing it with the analytical

solution developed by Moffat [115]. The velocity given by the analytical solution is imposed at

the boundary of the computational domain while a no-slip/no-penetration condition is enforced

along the wall of the corner (Fig. 3.7). The Reynolds number is given by [115]:

Re =
UrReal[γ]

ν
(3.39)

with ν the kinematic viscosity and U the fluid velocity away from the corner. The inertial

Figure 3.6: Flow around a corner of angle α.The velocity given by the analytical solution is
imposed at the boundary of the computational domain while a no-slip/no-penetration condition
is enforced along the wall of the corner (shown in red).

effect can therefore be neglected sufficiently close to the corner since for the cases investigated

here, Real[γ] > 0. The parameters U and ν are chosen such that Re � 1 everywhere in the

computational domain. The error made in computing the velocity of the flow near a corner is

calculated as follows:

Ev =

∫ L/2

0

∫ π

−π

||vnum(r, θ)− vasymp(r, θ)||
||vasymp(r, θ)||

drdθ, (3.40)

where vnum denotes the velocity calculated using the numerical method, vasymp the asymptotic

solution and L the length of the computational domain.

Fig.3.6 shows the error for different corner angle α, with or without special enrichment. We
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Figure 3.7: Error Ev made in computing the flow velocity around the corner tip in mode I and
II, for different corner angle α. The error can be divided by up to a factor of 8 by using corner
tip enrichment.

observe that without enrichment, the error varies between 10% up to 27%, and decreases as the

corner angle increases. However, the incorporation of the corner tip enrichment developed above

reduces the error for all corner angles, by up to a factor of 8 and always stays under 5%. Fig.3.8

shows the streamlines for the flow around the different corners. One notes that without corner

tip enrichment, the streamlines intersect the corner wall, which denotes a poor enforcement of

the no-penetration boundary condition. The effect of incorporating the corner tip enrichment

can also be clearly seen on the pressure field inside elements containing the corner tip, in Fig.3.9:

with enrichment (Fig.3.9e-h), the pressure field is singular around the corner tip and matches

the behavior shown in the asymptotic solution (Fig.3.2) , whereas without corner enrichment

(Fig.3.9a-d), the pressure field only varies linearly inside the element and does not show any

pressure concentration around the corner tip.
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Figure 3.8: Streamlines with and without enrichment for (a) α = π, (b) α = 0.87π,(c) α = 0.75π
and (c) α = 0.47π.

3.4.2 Channel with a sudden expansion

In this section the proposed numerical method is applied to a simulation of a viscous flow

through a symmetric two dimensional long channel of height h which suddenly expands into a

long channel of height H. The flow through the channel is described in a Cartesian coordinate

{x, y} system where x runs along the length of the channel and y along the height of the channel

. The sudden expansion forms a sharp right angle located at x = 0, and the centerline of the

channel corresponds to y = 0 (Fig.3.10). A steady Poiseuille flow is imposed at the channel inlet

section located at x = x0:

vx =
Uave

3h2/16
((h/2)2 − y2) (3.41)

vy = 0 (3.42)

where Uave is the average flow velocity at the channel entry. The outlet section x = x1 is located

far enough from the corner to have a steady Poiseuille flow profile. The Reynolds number is
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Figure 3.9: Streamlines and pressure fields for α = π, α = 0.87π, α = 0.75π and α = 0.47π.
Left column (a)-(d), without enrichment and right column (e)-(h) with enrichment.

given by Re = Uaveh/ν and Re is chosen such that Re � 1 in order to stay within the Stokes

flow assumptions.

The results for the flow in an expanding channel were obtained from the X-FEM without

corner tip enrichment but with several levels of mesh refinement, and compared to the results
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Figure 3.10: Two-dimensional channel with sudden symmetrical expansion. The expansion is
characterized by the ratio h/H)

Figure 3.11: Corner discretization for the two-dimensional channel with sudden symmetrical
expansion. (a) 2 level refinement, (b) 3 level refinement, (c) 4 level refinement. (d) shows the 1
level refinement discretization of the corner when using the enrichment functions.

Figure 3.12: Pressure field and velocity streamlines for the two-dimensional channel with sudden
symmetrical expansion. The expansion is characterized by the ratio h/H = 0.5.

from the X-FEM with corner tip enrichment. The different mesh sizes and the corresponding

corner discretization are shown in Fig.3.11. One can see that as mesh size decreases for the

X-FEM without tip enrichment, the resolution of the corner geometry improves but can never
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be fully resolved as being infinitely sharp (Fig.3.11.a-c), whereas the use of tip enrichment allows

a perfect geometrical discretization while using a larger mesh size (Fig.3.11.d).

Figure 3.13: Velocity streamlines for the two-dimensional channel with sudden symmetrical ex-
pansion, using the X-FEM without tip enrichment with 4 different level of mesh refinement. The
streamlines are shown to converge towards those from using the present numerical technique.

The streamline patterns for the flow in an expanding channel forRe � 1 and h/H = 0.5 with

and without tip enrichment and for different mesh sizes are compared in Fig.3.13. It is found

that at least four levels of mesh refinement were necessary without tip enrichment, whereas the

same results could be obtained without mesh refinement using the tip enrichment numerical

scheme. It is also important to note that the results of the X-FEM without tip enrichment

converge toward those from the present numerical method as the mesh size decreases.

3.4.3 Permeability of a fibrous network

In this example, we simulate a viscous flow through a fibrous network and estimate the equivalent

permeability. A possible application for this type of problem is filtration membranes, which

are present in many important processes in bio-medical engineering [9, 47], food or renewable
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fuel industry [34]. The system modelled here represents a cross sectional area of a filtration

membrane, where the fibers constitute the membrane itself. For a low enough Reynolds number

and pressure gradient (or, equivalently, for an elastic modulus of the fibers high enough), the

fibers can be considered as rigid and fixed in place . A cross section of a fibrous network of size

L ×H is considered, with an influx q = 1ms−1 prescribed at y = H/2 while a no-penetration

boundary conditions are enforced at x = −L/2 and x = L/2 (Fig.3.14). Since the flow considered

here is two-dimensional, the fibers are actually plates that extend infinitely in the out of plane

direction. Different densities of fibers with random shapes and sharp tips are generated inside

Figure 3.14: Flow though a fibrous network. No-penetration boundary conditions are enforced at
x = L and x = −L while an influx of q = 1ms−1 is prescribed at y = H/2.)

the computational domain. Recalling Darcy’s law for a flow through a permeable medium, one

can estimate the equivalent permeability of the network as follows [40]:

keq = − 2Hµq

Pav(y = −H/2)− Pav(y = H/2)
(3.43)

where Pav(y = −H/2) and Pav(y = H/2) are the average pressure calculated at y = H/2 and

y = −H/2, and µ the fluid’s viscosity. Fig.3.15 shows the pressure field and streamline patterns

for the flow through networks with different fiber densities. It is important to note that the fibers

are generated independently from the underlying finite element mesh and can take any size,

shape and orientation, therefore making the generation of a network a straightforward process.
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Figure 3.15: Pressure field and streamline patterns for a viscous flow through a network with
fiber density (a) d = 0.1, (b) d = 0.5, (c) d = 0.9 and (d) d = 1.7. Figures (e) and (f) are a close
up on the pressure singularities around fiber tips. Figure (g) shows the equivalent permeability
keq as a function of fiber density with enrichment (continuous line with circles) and without
enrichment (dashed line). The relative difference ∆keq = (keq − keq w/o)/keq is shown in (h).

Assuming an average fiber length l0, with the length of each fiber in the region [0.8l0 1.2l0], the
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network is characterized by the following two parameter:

d =
n

HL
, (3.44)

Sθ =

〈
3 cos2(θ)− 1

2

〉
, (3.45)

where d is the fiber density computed as the number of fibers n in the area considered H×L, and

Sθ is the order parameter [145] of the fibers with respect to their preferred alignment direction θ.

The brackets 〈·〉 denotes the spacial averaging operation. For an isotropic distribution, Sθ = 0

while for perfectly aligned fibers, Sθ = 1. Assuming that the fibers do not intersect or touch,

the case d = 0 corresponds to a perfectly permeable material while d = ∞ denotes a perfectly

impermeable material. The equivalent network permeability keq is plotted as a function of fiber

density d for Sθ = 0 in Fig.3.15g, using the finite element method with (continuous lines) and

without tip enrichment (dashed line). As expected, one can observe that as the equivalent net-

work permeability decreases as the fiber density increases. However, it is important to note that

without enrichment, the equivalent network permeability is consistently underestimated. Indeed,

the relative difference between the two permeabilities ∆keq = (keq − keq w/o)/keq (where keq w/o

is the permeability calculated without enrichment) increases with the fiber density, reaching

27% for d = 4.2m−2 (Fig.3.15h), and is likely to keep diverging as the density of fibers increases.

This discrepancy illustrates the multiscale nature of this problem. While the present method

can compute the pressure gradient at the larger scale H, it also accurately describes the small

scale pressure singularities which have a large impact on the overall permeability. This mul-

tiscale description of a viscous flow through a network of fibers is achieved while keeping the

discretization of the fibers completely mesh-independent, which ensures a great robustness and

efficiency of the method.

Finally, network anisotropy is considered and the effect of a preferred fiber orientation on the

equivalent network permeability is studied. Fig.3.16.a-c shows the pressure field and streamline

patterns for the flow through an anisotropic network (Sθ = 1) with different orientation θ =

0, π/4 and π/2. The equivalent network permeability is found to decrease with the orientation

angle θ (Fig.3.16) until it finds a minimum at θ = π/2 when the preferred orientation of the
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fibers is perpendicular to the flow direction.

Figure 3.16: Equivalent permeability as a function of fiber orientation, with Sθ = 1. Pressure
field and streamline patterns are shown for (a) θ = 0, (b) θ = π/4 and (c) θ = π/2
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3.5 Conclusion

A new computational technique based the Extended Finite Element method for describing the

Stokes flow around structures with any number of sharp corners/tips in combination with La-

grange multipliers to enforce the no-slip boundary condition was developed. The enrichment

functions for the pressure and velocity fields are derived for any convex corner. The results

compared with the analytical solution for the flow around corners of various angle show a good

accuracy of the method and a large improvement over the standard finite element method. It is

also found that results from the X-FEM without tip enrichment for the flow through a suddenly

expanding channel converge towards those of the present numerical scheme as the level of mesh

refinement increases. These results demonstrate that enriching the finite element space with the

asymptotic solution near the corner lead to converged and accurate results for the problem of a

viscous flow around sharp corners without the need for complicated and time consuming mesh

refinement algorithms.

The equivalent permeability keq of networks with various fiber densities and anisotropy is

estimated using the X-FEM with and without the proposed tip enrichment strategy. It is

found that the local microscale pressure and velocity singularities around the fiber tips have

a large impact on the macroscale behavior of the network; neglecting them can lead to an

underestimation of the permeability of as low as 30% for the finite element mesh size considered.

The present numerical method is therefore well adapted for situations where the flow at different

scales play an important role, and the mesh independent discretization of corners and walls make

it ideal to compute the viscous flow around multiple obstacles with sharp corners. The extension

of the method in 3 dimensions is being considered. Moffat’s solution and the present enrichment

functions can easily be used in 3 dimensions with minimum modification for the case of the

flow around the edges of a plate. Possible complications might occur in defining the correct

Lagrange multiplier space to enforce the zero velocity condition on the surface of the plate in

3 dimensions. Another difficulty resides in resolving the flow around the corners of the plate in

3 dimensions, although there exist asymptotic solutions for the flow past a quarter plate [82]

which can be used to develop the corresponding enrichment functions.
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Chapter 4

Applications of the Immersed

Membrane formulation to the study

of the interaction between soft

colloid particles and immersed

fibrous network

Filtration membranes are ubiquitous to most biological systems and are at the heart of important

applications in bio-medical engineering [9, 47], food industry and both fossil and renewable fuels

processes [34]. In the majority of these applications, membranes are used to either (a) separate

undesired particles from a solution or (b) produce (and fractionate) stable emulsions with specific

size controls (such as liposomes) used in medical diagnosis and therapy [27]. In addition, a novel

area of biological medicine is drug delivery using liposomes [70, 2]. A liposome is a micron-sized

vesicle (bubble) whose interfacial surface is stabilized by lipids. The interior of the liposome

can be filled with drugs to be delivered for treatment of various diseases. Filtration of fluids

containing liposomes are required at various steps within their manufacture and delivery to

patients, in order to provide sterility. These filtration steps can require both allowing liposomes
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to freely pass through the porous filter, while retaining possible biological contaminants, as well

as, retaining and concentrating the liposomes. Despite the very soft nature of these colloidal

particles, current membrane designs have consistently relied on the assumptions that they are

rigid particles [57, 146, 79]. In fact, it has only been in recent years that hindrance factors for

transport of non-spheroidal (rod) shaped rigid particles in ideal pores has been theoretically

addressed [10, 43]. This has strongly hindered the performance of current membrane systems.

The incorporation of deformation is, however, expected to critically affect the above mechanisms

since particles can easily change their shape to accommodate a variety of pore shapes and sizes.

It can also increase the adhesion between a particle and a surface (by effectively increasing the

contact surface area) and thus hinder particle entry and permeation.

From a computational modeling viewpoint, studies of the mechanics of soft vesicles and their

interactions with an immersed porous network has been hindered by a number of theoretical

challenges, which include the coupled fluid-structure interactions, intense particle deformations

and perhaps separation, as well as the effect of surface forces that are very significant at micron

(and lower) length scales. Furthermore, when fibers are present, the geometry of sharp tips

create singular flow fields which have been resolved through the use of refinement methods

[1, 116]. Such approaches are not only costly but can never truly resolve the steep gradient and

hyperbolic pressure field that appears at the fiber tips [115].

To address these issues, the objectives of the work are two-folds. First, we integrate a recently

developed Particle-based Moving Interface Method (PMIM) [61] to describe the mechanics of

immersed and porous interfaces [164, 165] with a numerical technique to describe creeping flow

through a fibrous network [63]. In this framework, the motion of an immersed soft vesicle

is coupled with an Eulerian fluid description via a particle-enriched interface that can evolve

as dictated by mechanical force equilibrium. Using an updated Lagrangian description of the

vesicle, the motion of the deformable vesicle is completely independent from the spatial numerical

discretization and it enables a very precise description of the curvature and motion of the vesicle

over time. The method also use a enriched finite element approach to match the analytical

asymptotic fields near the tip of fibers to smoothen far-field velocity and pressure fields. This

ensures that a high fidelity solution is obtained without using refinement techniques. Note
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that the model is presented in two dimensions and fibers can actually be better described as

plates that extend to infinity in the third dimension. The second contribution of the chapter is

the introduction of a homogenization approach, inspired by research efforts in solid mechanics

[163], to bridge the microscale mechanics of flow and vesicle transport to the estimation of

the macroscale permeability of the network. For this, we introduce a so-called elementary

volume element in which one can computationally average the flux of fluid/vesicles subjected

to macroscopic pressure gradients. This operation eventually permits the determination of

macroscopic network permeabilities as illustrated in subsequent examples. To showcase the

potential of the method, we then predict the role of a microscopic parameter, the surface tension

at the vesicle-solvent interface, on the overall permeation of particles through the network. This

study highlights the role of surface tension, pressure differential and porosity configuration on

the entry and perhaps immobilization of the vesicle within a porous media. It should be noted

that in our current model, the colloidal vesicle is actually a deformable fluid ”cylinder” that

extent in the third dimension. The closest physical embodiment of this type of vesicles might

be coalescing media for oil in water separations.

The chapter is organized as follows. In the next section, we provide a mathematical de-

scription to describe the deformation of a soft fluid-like colloid interacting with an immersed

fibrous network. In section 3, we then discuss the numerical formulation based on a mixed-finite

element and particle method. Section 4 then concentrates on the derivation of a homogenization

technique that bridges the micro-mechanisms of vesicle permeation to macroscopic permeabili-

ties. We finally conclude the chapter with a discussion of the method, results and potential for

improvement.

4.1 Multiscale mathematical formulation for a soft droplet in

an immersed fibrous network

4.1.1 Basic governing equations

Consider a two-dimensional incompressible viscous flow in a domain Ω delimited by a boundary

∂Ω in which exists one or multiple no-slip rigid boundaries ΓF taking the shape of thin fibers (or
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plates) (Fig.4.1). We also consider a number of closed vesicles, with boundaries ΓI and that are

able to move with the surrounding fluid. The problem is characterized by the Reynolds number

Re = HV ρ/µ where H is the characteristic length scale, V the characteristic fluid velocity, µ

the kinematic viscosity and ρ the fluid densities in and out of the vesicles. We choose here to

remain in the Stokes flow assumption with Re � 1, where inertial effect may be neglected. The

velocity of a fluid particle is given in terms of its material time derivative v(x, t) = Dx/Dt,

where x = {x y} is the current position of the fluid particle at time t. Under these conditions,

the governing equations and boundary conditions for the Stokes flow are written:

∇ · σ = 0 ∀x ∈ Ω/Γ (4.1)

∇ · v = 0 ∀x ∈ Ω/Γ (4.2)

where σ is the Cauchy stress tensor in the fluid and the second equation imposes the condition

of incompressibility. These equations are combined with the moving interface problem:

[σ · n] = fI + fF/I ∀x ∈ ΓI (4.3)

DXI(t)/Dt = v(x (XI , t), t) ∀x ∈ ΓI (4.4)

Here XI denotes a point on the vesicle boundary, the vector n represent the normal direction

to the moving interface, the force fI is the unbalanced interface force due to its deformation

and fF/I is the interaction force between fibers and the moving interface. Finally, the boundary

conditions for fluid motion on the external boundary and on fibers read:

σ · n = pon ∀x ∈ ∂Ω (4.5)

v(x, t) = 0 ∀x ∈ ΓF . (4.6)

where p0 is an external pressure surrounding the domain Ω, and a zero-velocity condition is

applied on the fiber domain. The latter assumption arises from the model that (a) the fiber are

rigid and (b) a no-slip condition is assumed between the fluid and the fibers.
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4.1.2 Constitutive equations

To complement the above system of equation, a number of constitutive relation must be intro-

duced. They can be broken down into three components that describe in turns: (a) the behavior

of the fluid, (b) the mechanical behavior of the interface and (c) the interactions forces between

interface and fibers. In this work, we consider a simple incompressible Newtownian fluid with

viscosity µ that can be different within the colloids and the external fluid.

σ = µD− pI (4.7)

where D is the rate of deformation and p is the hydrostatic pressure enforcing the incompress-

ibility condition. For the sake of simplicity, we consider here a bi-fluid interface without elastic

stiffness and characterized by the liquid-liquid surface tension γ between the vesicle and the

continuum fluid. More complex cases can later be considered as discussed in the first chapter.

In these conditions, the force fI of the interface can be written:

fI = −γH (4.8)

with H the mean curvature of the surface. Finally, the fiber-interface interaction forces is

considered to be of repulsive nature at short distance. For this initial modeling effort, we have

used an interaction energy function of the same form as the electrostatic potential function.

That is, the force is inversely proportional to the distance between hypothetical point charges

on the surface of the flake (fiber):

fF/I ∝ 1/φF (XI) (4.9)

where φF is the distance function with respect to the fiber. Future work can incorporate more

complex formulations including van derWaals interactions.
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Figure 4.1: fluid domain Ω, interface ΓI and fixed structure ΓF with no-slip/no-penetration
boundary condition. The local polar coordinate system is centred at the fiber tip and oriented in
the direction of the fiber.

4.1.3 A two-scale asymptotic solution to describe the fluid flow around thin

fibers

When the diameter of fibers constituting the network is very small compared to characteristic size

of a particle, the above mathematical problem admits a solution that displays variation across

three disparate length-scales (Fig. 4.1): macroscopic fields variations are on the order of the

domain size, mesoscopic variations are on the order of the particle size and finally, microscopic

fields vary on the order of the fiber diameter size. This creates a significant issue to later derive

an accurate numerical solution at a reasonable computational cost. Inspired by asymptotic

methods [74, 114], we here propose to address the problem as follows; First, we derive a solution

for the fluid flow around the tip of a fiber and subjected to the far-fields boundary conditions.

Then, we enrich our macroscopic solution with this solution in the regions of interests, which

result in introducing a limited number of ”microscopic” degrees of freedom. Finally, we compute

a solution that ensures that both microscopic and mesoscopic are consistent within the entire

computational domain.

To simplify our analysis, let us first assume that the width of our fibers is infinitesimally small

compared to other dimensions of the problem. In this case, the flow field near the tip of fibers

admits a singular solution that was derived by Moffat in [115]. Adopting a polar coordinate

system (r, θ) centred on the fiber tip, where r =
√
x′2 + y′2, θ = arctan (y′/x′) and the axis
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x′ and y′ are aligned with the fiber (Fig. 4.1). The streamline function ψ(r, θ) solution to the

Stokes equation ∇ψ = 0 in the region 0 < r � H can be written in the following separated

form:

ψ(r, θ) = rαfα(θ) (4.10)

where α is an unknown complex exponent that determines the structure of the flow, and is to

be found as part of the solution. Following [115], the function fα(θ) is written:

fα(θ) = A cos (αθ) +B sin (αθ) + C cos ((α− 2)θ) +D sin ((α− 2)θ) (4.11)

where A,B,C and D are arbitrary complex constants. In the cases where α = 0, 1 or 2, the

above equation degenerates into other forms that are not relevant to the problem studied here,

and we will henceforth only consider values of α such that α 6= 0, 1, 2. The axial and radial

velocities of the flow are deduced from the stream function ψ(r, θ) as follows:

vr =
1

r

∂ψ

∂θ
and vθ = −∂ψ

∂r
, (4.12)

and are subjected to the following no-slip/no-penetration boundary conditions at the wall:

vr(r, θ = α) = 0, vθ(r, θ = α) = 0 (4.13)

Enforcing these boundary conditions on (4.12) and (4.11) yields the constant A,B,C and D

[[115]]:

A = cos (α− 2)α, B = sin (α− 2)α, C = − sinαα and D = − cosαα (4.14)

as well as the exponent α, found to be α = 3/2 in the particular case of infinitesimally thin

fibers [115]. The pressure can then be calculated by solving the momentum equation

∇p = µ∇2v (4.15)
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where v = vrer + vθeθ is computed using equations (4.10) and (4.12).

4.2 Numerical approach: the Particle Enriched Moving Inter-

face Method

The idea of the Extended Finite Element Method is to enrich a finite element space with addi-

tional functions. Our numerical technique takes the same approach: the Stokes flow is solved

using the traditional C0 conforming finite elements (in our cases 4 node bilinear elements for the

pressure and 9 node quadratic elements for the velocity) space, and we enrich this space with

additional degrees of freedom that allow the pressure jump across the interface (the velocity

stays continuous) and singular pressure and velocity fields around the corner tip. To enrich the

standard finite element space, we make use of the linearity of the Stokes flow and simply sum

the enrichments for the pressure jump and the asymptotic solution around the corner tip. The

velocity and pressure fields in this enriched space are therefore interpolated as follows:

p(x) =
∑
i

Ni(x)pi +
∑
j

Nj(x)(H(φF (x))−Hj)p̌j +
∑
k

∑
l

Nk(G
l (r(x), θ(x))−Gk)p̂k

+
∑
j

Nj(x)(H(φI(x))−Hj)p̌j (4.16)

v(x) =
∑
i

N̂i(x)vi +
∑
k

∑
l

N̂k(F
l (r(x), θ(x))− Fk)ṽk (4.17)

where N and N̂ are the regular 4 nodes and 9 nodes shape functions, H is the Heaviside

function that provides the needed discontinuity, and F and G are the special asymptotic corner

tip functions. The terms φI and φF denote level-set functions, i.e. the signed distance functions

with respect to the interface and the fibers. Table 1 shows a summary of asymptotic functions

used as enrichment for both pressure and velocity fields calculated in chapter 3: The terms p̌j

Table 4.1: Corner tip asymptotic functions

G
{
rα−2 sin (αθ), rα−2 sin ((α1 − 2)θ), rα−2 cos (αθ), rα−2 cos ((α− 2)θ)

}
F

{
rα−1 sin ((α− 2)θ) sin θ, rα−1 cos ((α− 2)θ) cos θ ,

rα−1 sin ((α− 2)θ) cos θ, rα−1 cos ((α− 2)θ) sin θ
}
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and p̂j correspond to the enriched degrees of freedom associated with the jump in pressure across

the fibers and the droplet interface respectively, while the terms p̃k and ṽk are the enrichment

degrees of freedom associated with the near corner tip pressure and velocity fields. In addition to

Figure 4.2: Black dots denote tip enrichment for the velocity and pressure (only the four corner
nodes in the case of the pressure) while squares and triangles indicate split enrichment for the
pressure for the fibers and the interface respectively.

the velocity and pressure degrees of freedom and their respective enrichment, let us introduce the

Lagrange multipliers λI and λIp. These are used to enforce the no-slip/no-penetration boundary

condition (4.6) on the corner walls and tip and the pressure jump condition at the interface.

They are discretized at the intersection between the corner walls and the underlying mesh for

λI , and at the intersection between the interface and the underlying mesh for λIp, as shown

in Fig.4.2. They are interpolated along the interface Γ using one-dimensional shape functions

λi(x, t) =
∑2

I=1 N̄
I(x)λIi (t) where I denotes the numbering of the nodes for each segment of the

corner walls, and i runs over the dimensions 1 and 2 (in 2D).

4.2.1 Weak formulation

Introducing the test functions wv, wp, wλ and wλp , integrating by parts and using the divergence

theorem, the weak form of the governing equations (4.1)-(4.5) in the fluid domain can be written

as: given the position XI at time t, find v ∈ V, p ∈ P, λ ∈ L and λp ∈ Lp such that for all
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wv ∈ V, wp ∈ P, wλ ∈ L and wλp ∈ Lp

(∇wv, µ∇v)Ω − (∇wv, pI)Ω + (wv, ρf)Ω + (wv,λ)Γ +
(
wv, fI + fR/I)

)
Γ

= 0

(wp,∇ · v)Ω + (wp, λp)Γ = 0

(wλp , [p])Γ + (wλp , (fI + fR/I) · n)Γ = 0

(wλ,v)Γ = 0 (4.18)

where the notation (·, ·)Ω indicates the L2 inner product with respect to the domain Ω. The

Lagrange multipliers λ and λp enforce the no-slip/no-penetration boundary conditions (4.6) and

the pressure jump conditions on the implicitly defined corner walls. The test functions wλ and

wλp are associated with the Lagrange multipliers and V, P, L and Lp are admissible spaces for

the velocity, pressure and Lagrange multipliers.

4.2.2 Discretized form

The weak form (4.18) is then discretized in space by using the XFEM approximation, and after

simplifications yields the following linear system:

Ktdt = f t (4.19)

where Kt is the consistent tangent matrix, dt = {v p λp λ} the global vector of unknowns

and f t the global force vector at time t. The element contribution to Kt and f t are as follows:

ke =



kevv kevp 0 kevλ

kepv 0 kepλp 0

0 keλpp 0 0

keλv 0 0 0


, f e =

{
f ev 0 f eλp 0

}T
. (4.20)

The form of the components in the ke matrix and and the f e are given in appendix A. The

finite element equation (4.19) can be solved with a linear solver to yield an expression for the

fluid (and interface) velocity v at time t. Given the interface velocity v, the position XI of
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the vesicle interface ΓI is then updated to compute Kt+dt and f t+dt for the next time step,

with dt the time step increment. Once the vesicle has left the computational domain, or once

||dt+dt − dt|| < TOL, the algorithm has converged and the interface is in equilibrium with the

surrounding fluid. The next step involves the transport of the interface using a mesh-based

particle method, as discussed next.

4.2.3 Grid based particle method for interface evolution

To track the deformation of the interface ΓI , we choose here to use a grid-based particle method

similar to what was introduced in [99]. This method indeed possesses the double advantage of

tracking the interface explicitly with particles while using the underlying fixed finite element

mesh to ensure a fairly uniform repartition of the particles on the interface. Here we summarize

the grid based particle method and discuss the update of the interface position and deformations

measures. The particles, whose position vector is denoted by y, are chosen as the normal

projection of the underlying mesh nodes, with position vector p, on Γ (Fig. 4.3a.). Initially, the

interface is described implicitly as the zero level-set of a signed distance function φI(p, t = 0).

The initial coordinates of particles y can then found as follows:

y = p− φI(p, 0)∇φI(p, 0) (4.21)

To limit the number of particles, we define a so-called computational tube such that only nodes

p whose distance to ΓI is smaller than a cut-off value λtube are accounted for. It is important

to note here that there is a one to one correspondence between each particle y and node p.

This ensure a quasi-uniform repartition of particles along the interface throughout its evolution.

Between two subsequent time steps, the particles are moved according to the normal component

of the interface velocity v⊥(ξ, t) as follows:

yt+dt = yt + v⊥(yt, t)dt+ Ω · v⊥(yt, t)
dt2

2
(4.22)

93



CHAPTER 4. APPLICATIONS OF THE IMMERSED MEMBRANE FORMULATION TO THE
STUDY OF THE INTERACTION BETWEEN SOFT COLLOID PARTICLES AND IMMERSED
FIBROUS NETWORK

where Ω is the matricial form of the angular velocity of the interface normal [86]:

ω = −
(
v⊥,ξ1

)
[0 0 1]T and Ωik = εijkωj (4.23)

with εijk the permutation tensor and ξ1 the local coordinate running along the interface (Fig.

4.3b.). After the motion of the interface, the particles y may not be the closest point on ΓI to

their associated nodes p. Moreover, the motion of the particles may cause their distribution on

Figure 4.3: (a) particles and associated nodes in the computational tube. (b) Local polynomial
approximation of the surface (and of any Lagrangian field). The polynomial ξ3(ξ1, ξ2) that
approximates the interface is constructed via least square fitting using neighbouring particles in
the local referential {a0, n̄0} centered on particle y0.

ΓI to become uneven, which can affect the geometrical resolution of the interface. To overcome

this issue, the interface is ressampled after motion by recomputing the particles as the closest

points on ΓI to the nodes p inside the updated computational tube (which has moved with

the interface) (Fig.4.3a.). This is done by first approximating the interface with polynomials

locally around each particle. The procedure, explained here in the two dimensional case, is

as follows: for each node p inside the computational tube, the closest m particles y0...ym are

collected, carrying with them the tangent at0...a
t
m and normal n̄t0...n̄

t
m to the interface before

motion. Denoting y0 as the particle closest to p, a polynomial of degree n < m is fitted to the

particles y0...ym in the local coordinate system {st0; n̄t0} centered on y0 (Fig.4.3b). The location
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ỹi of particle i in this local coordinate system is given by:

ỹi =

 ξ1
i

ξ2
i

 = Rt · (yi − y0) with Rt =

 (at0)T

(n̄t0)T

 . (4.24)

Taking the example of a quadratic polynomial (n = 2), the interface around particle y0 is

represented in the local referential as the graph function ξ2(ξ1) = c0 + c1ξ
1 + c2(ξ1)2, where the

coefficients c0, c1 and c2 are found by minimizing the L2 difference between the ξ2(ξ1
i ) and the ξ2

i .

The coordinates
{
ξ1, ξ2(ξ1)

}
defines a local parameterization rl(ξ1) of Γ in the neighbourhood

of y0:

rl(ξ1) =

 ξ1

ξ2(ξ1)

 . (4.25)

The relationship between the local parameterization rl(ξ1) and the global parameterization

XI(ξ
1) defined in section 2.1 is then found via rotation and translation operations in the form:

XI(ξ
1, t+ dt) = (Rt)−1 rl(ξ1) + y0. (4.26)

The parameterization XI(ξ
1, t+ dt) can now be used to ressample the interface, i.e. recalculate

the closest point on the interface to the nodes p. This is done by minimizing the distance

function d(r(ξ1, t + dt); p) = 1/2
∣∣r(ξ1, t+ dt)− p

∣∣ with respect to ξ1. In two dimensions, the

solution can be found explicitly by solving a cubic equation. Other geometrical quantities can

also be found using the parameterization XI(ξ
1, t+dt), such as the updated basis

{
at+dt, n̄t+dt

}
:

at+dt = r(ξ1, t+ dt),1 = Rt ∂rl(ξ1, t+ dt)

∂ξ1
(4.27)

n̄t+dt = at+dt × z/|at+dt × z|. (4.28)

and the mean curvature can be found as follows [[100]]:

H =
ξ′′2

(1 + ξ′2)3/2
(4.29)
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where ′ denotes the derivative with respect to ξ1. Finally, a new level-set function φI(p, t+ dt)

can be calculated as the signed distance function to ΓI at nodes p as follows:

φI(p, t+ dt) = −sgn(
yt+dt − p

|yt+dt − p|
· n̄t0)|yt+dt − p|, (4.30)

where yt+dt is the particle associated with p at time t+ dt and the sign function sgn(((yt+dt −

p)/|yt+dt − p|) · n̄t0) determines whether node p is in Ω+ or Ω−. The reconstruction of the

level-set function using the local polynomial approximation of the interface is computationally

inexpensive, and is used in the X-FEM part of the algorithm.

4.2.4 Validation for the pressure/velocity field in the tip vicinity

Here we investigate the accuracy of the numerical technique by comparing it with the analytical

solution developed by Moffat [115] for the velocity and the pressure field around the fiber tip,

with and without a circular droplet in the vicinity. The velocity given by the analytical solution

is imposed at the boundary of the computational domain. The Reynolds number is given by:

Re =
V rReal[λ]

ν
(4.31)

with µ the kinematic viscosity and V the fluid velocity away from the corner. The parameters

V and µ are chosen such that Re � 1 everywhere in the computational domain. The error made

in computing the velocity of the flow near a corner is calculated as follows:

Ev =

∫ x1

x0

||vnum(x)− vasymp(x)||
||vasymp(x)||

dx, (4.32)

Ep =

∫ x1

x0

||pnum(x)− pasymp(x)||
||pasymp(x)||

dx (4.33)

where vnum denotes the velocity calculated using the numerical method, vasymp the asymptotic

solution and x0,x1 two points in the vicinity of the fiber tip (Fig.4.4a.).

The circular vesicle in the neighbourhood of the fiber tip is shown in Fig.4.4a., as well as

a close up of the singular pressure field around the fiber tip and the pressure jump across the
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Figure 4.4: Error Ev made in computing the flow velocity around the corner tip in mode I and
II, for different corner angle α. The error can be lessened by more then a factor of 10 using
corner tip enrichment.

Table 4.2: Error made in computing the pressure and velocity fields Ep and Ev, without enrich-
ment, with enrichment and with a vesicle in the vicinity of the fiber tip.

w/o enrichment with enrichment with enrichment & vesicle

Ev 18.2% 0.7% 0.7%

Ep 22.1% 3.1% 3.1%

vesicle interface. Fig.4.4b. shows the velocity and the pressure field in the neighbourhood of the

fiber tip, along the line from point x0 to x1. We observe in table 2 that without enrichment, the

errors Ev and Ep are fairly high, at 18.2% and 22.1% respectively. However, the incorporation

of the tip enrichment developed above reduces the errors down to 0.7% and 3.1% respectively.

The presence of a circular vesicle in the vicinity of the fiber tip does not significantly affect the

accuracy of the scheme, and we can note the appearance of a pressure jump across the vesicle

interface from its surface tension, as expected. The source of the remaining error stems from

the weak enforcement of the no-slip/no-penetration condition on the corner wall. Future studies

will investigate reducing the error by using quadratic instead of linear shape function for the
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interpolation of Lagrange multipliers. Overall, the numerical technique presented here is shown

to significantly increase the accuracy of the simulation of a flow near a sharp corner using the

extended finite element method, at a much lesser computational cost than classical methods

since no mesh refinement is needed.

4.3 Numerical approach to predict the permeation of a soft col-

loids though a fibrous network

In this section, we present a generalized homogenization scheme to determine how different

phases of a fluid (such as solvent or various vesicles present in the solvent) can permeate through

a fibrous filtration membrane. For this, we first present a general homogenization scheme based

on the Hill-Mendel conditions that then served as a basis to express macroscopic permeabilities

in terms of flux and pressure on the boundary of a volume element. We then apply these

concepts to the specific problem of soft vesicles travelling through a small fibrous network and

pay particular attention to the role of surface tension at the vesicle-solvent interface.

Figure 4.5: Periodic assumption of a fibrous network with a population of permeating particles.
A unit periodic cell is identified and analysized to extract the macroscopic properties of the
network.
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4.3.1 General homogenization scheme to compute macroscopic permeabili-

ties

From a macroscopic viewpoint, the phenomenon of fluid flow through porous media has tradi-

tionally been described by Darcy’s law relating volumic flux to pressure gradient throughout a

porous network. The relationship between the flux Qα of fluid α and the macroscopic pressure

gradient ∇̄p̄ is established via the definition of so-called macroscopic permeability tensor κα in

the form

Qα = −κα
µα
∇̄p̄ (4.34)

where µα is the fluid viscosity. We note that for isotropic porous network such as those studied

in this chapter, the permeability can be expressed in terms of a single scalar quantity κα such

that κα = καI with I representing the second order identity tensor.

It is clear here that the quantity κα represents the ease by which a fluid permeated through

the network. Theoretically, it may therefore be determined through a thorough study of the

micromechanisms of vesicle flow and deformation and a consistent averaging operation to bridge

micro to macroscale. We propose here to use classical homogenization theory where we assume

that at the mesoscale, a membrane is made of a periodic array of unit cells comprised of a

pseudo-random fiber distribution. For the sake of simplicity, we also assume that a number of

vesicles can be found within each of these cells and that they all have the same position relative

the their corresponding unit cells (Fig. 4.5). For each elementary volume (of dimension, W×H),

it is possible to introduce a local coordinate system (ξ, η) whose origin is at the center of the

volume. With this, it is possible to express the microscopic pressure field p in such a domain as

a first order expansion as follows:

p(ξ, t) =
(
∇̄p̄
)

(t) · ξ + ∆p̃(t) (4.35)

where ∇̄p̄ is the macroscopic pressure gradient and ∆p̃(t) is a fluctuation field arising from

the presence of random fibers and vesicles in the domain. Using the fact that the macroscopic
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pressure gradient is an average of the microscopic pressure gradient over the unit cell, one can

show that:

∇̄p̄ =
1

∆t

∫
∆t

[
1

V0

∫
Ω

(∇p)dV
]
dt =

1

∆t

∫
∆t

[
1

V0

∫
Γ
pndS

]
dt (4.36)

with n the unit vector normal to the boundary Γ and V0 the volume of the domain. Note that

we used the divergence theorem to obtain the last equality. The above relation is particularly

useful as it enables to characterise the macroscopic pressure gradient in terms of the microscopic

pressure field on the boundary of the unit cell. We also obtain that

1

∆t

∫
∆t

[
1

V0

∫
Ω
p̃dV

]
dt = 0 (4.37)

In other words, the macroscopic average of the microscopic fluctuation fields identically van-

ish. To further establish a relationship between fluxes and pressure gradients, we invoke the

Hill-Mendel condition on energy dissipation. More precisely, we postulate that the macroscopic

energy dissipation per unit volume and time is equal to the average of the microscopic dissipation

over the elementary volume and during a characteristic time period ∆t. Note that this elemen-

tary time increment is related to the time needed for a vesicle α to go through the elementary

volume. We write:

(
Qα · ∇̄p̄

)
V∆t =

∫
∆t

[∫
Γ
(qα · pn)dS

]
dt (4.38)

On the left hand side, we expressed the energy dissipation of a Darcy-type flow over a volume

V0 = W × H × 1 and a period ∆t. On the right hand side, we expressed this same energy

in terms of the product of surface forces pn where p is the pressure and n the normal to the

boundary, and the velocity v of fluid particle moving across the boundary. Substituting the

expression (4.35) for p into (4.38) and identifying the terms, one can show that:

Qα =
1

∆t

∫
∆t

[
1

V0

∫
Γ
(qα · n)ξdS

]
dt (4.39)
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This establishes a relation between the macroscopic volumic flux Q̄α and the microscopic flux

qα across the boundary of the elementary volume. The macroscopic permeability can then be

numerically determined by relating the macroscopic flux (4.39) to pressure gradient (4.43) via

equation (4.34).

Figure 4.6: Schematic of the geometry, dimensions and boundary conditions for assessing the
permeation of a soft colloid particle through a fibrous network.

4.3.2 Application to the numerical evaluation of the permeation of soft col-

loidal particles

Let us now apply the above findings to the computation of a network permeability to two fluids:

(a) the solvent and (b) the immersed vesicles. To simplify the analysis, we consider a two-

dimensional vertical porous flow (Fig. 4.6) for which boundary conditions are given in terms

of the macroscopic solvent flow qs = V and a no-flux boundary condition on the left and right

boundaries of the domain. The relevant quantities to compute are therefore (a) the overall

vertical solvent flux Qsy, (b) the overall vertical vesicle flux Qsv and the vertical macroscopic

pressure gradient ∇̄yp̄. For each simulation, the elementary time ∆t is computed as the time

required for a vesicle to travel the entire (vertical) length of the domain.

Flux. For this particular problem, the homogenization relation (4.39) becomes, for the

solvent:

Qsy =
1

WH∆t

∫
∆t

[∫ W/2

ξ=−W/2
(−HV dξ)

]
dt = −V (4.40)
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where the final equality was obtained by realizing that the volumic flux of the fluid across the

boundary is constant in time. The volumic flux of vesicle can similary be computed by:

Qvy =
1

WH∆t

∫
∆t

[∫ W/2

ξ=−W/2
(−Hvvdξ)

]
dt = −fv H

∆t
(4.41)

where we used the fact that for incompressible fluids, the cumulative volumic flux entering the

domain during a time interval ∆t is equal to the volume Ωv in the vesicle. In other words, we

have:

Ωv =

∫
∆t

[∫ W/2

ξ=−W/2
(vvdξ)

]
dt (4.42)

This relation, together with the expression of the volume fraction of a vesicle fv = Ωv/(WH)

yields the second equality in (4.41). This result indicates that the volumic flux of vesicles is

proportional to their volume fraction and inversely proportional to the time ∆t needed to travel

a vertical distance H in the network.

Pressure gradient. As mentioned above, we are here interested in computing the vertical

macroscopic velocity gradient ∇̄yp̄. Using (4.43) for the geometry shown in Fig. 4.6, it is

straightforward to show that:

∇̄yp̄ =
1

HW∆t

∫
∆t

∫
Γ

(
p(ξ,

H

2
)− p(ξ,−H

2
)

)
dξdt (4.43)

Numerically, the above spatial integrals over the top and bottom boundaries of the domain can

be evaluated using a surface gausian quadrature rule while the time integral can be evaluated

using the trapezoidal rule.

Macroscopic permeabilities With the knowledge of (4.40), (4.41) and (4.43), it is now

possible to compute the macroscopic permeabilities of the network. Indeed, writing (4.34) in

the vertical direction, it is straightforward to show that:

κs =
µV

∇̄yp̄
and κv =

µHfv

∆t ∇̄yp̄
(4.44)
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In summary, our numerical approach can be divided into four steps: (a) Build a fibrous network,

apply given boundary conditions and simulate the permeation of a vesicle through the elementary

volume, (b) Determine the elementary time ∆t, (c) Using numerical integration of the boundary

of the elementary volume, compute fluxes and pressure gradients as given by (4.40), (4.41) and

(4.43) and (d) Compute the macroscopic permeabilities using (4.44).

4.3.3 Numerical investigation of the role of surface tension soft vesicles per-

meation

The objective of this last section is to illustrate how the proposed numerical and homogenization

scheme can give precious insights regarding the effect of vesicle deformability on its permeation

through a fibrous network. For this, we consider the problem shown in Fig. 4.6 and studied four

quasi-random fibrous networks distinguished by similar fiber densities and distributions. For

each network, we then investigate the permeation of vesicles that are characterized by a range

of deformability, measured in terms of a nondimensional capillary number Ca = µV/γ. Small

capillary numbers correspond to vesicles with high surface tension and low deformability; in

contrast, a high capillary number reduces the solvent-vesicle surface tension and allows vesicles

to undergo very large deformation and flow though narrow pores. Other parameters needed

to describe the permeation of the vesicle include the non-dimensional time and permeabilities,

written as:

t∗ =
tH

V
, κ∗s =

κs
κ̄

and κ∗v =
κv
κ̄

(4.45)

where κ̄ is the average fluid permeability for networks 1-4 without vesicle. The simulations were

run on finite element mesh of size 26× 31 (806 elements), sufficiently small to resolve the high

curvature of the vesicle interface at large capillary numbers. Due to the presence of second order

terms (e.g. the mean curvature) in the force generated by the vesicle-solvent surface tension,

the explicit time evolutive simulations are subjected to a strict Courant-Friedrichs-Lewy (CFL)

condition on the time step of the second order in mesh size dt ≈ O(∆h)2, with ∆h the size of

a single element. In this context, Fig. 4.7 shows the history of the non-dimensional speed of
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the vesicle vv/V as it travels through network 1 for capillary numbers Ca = 0.04 (Fig.4.7a) and

Ca = 0.2 (Fig.4.7b). We observe that for a capillary number low enough (Ca = 0.04), the vesicle

is too rigid to squeeze through the network (Fig. 4.7a). As a result, it remains trapped between

two fibers while the surrounding fluid is diverted away from the obstructed pore. For higher

capillary numbers (Ca = 0.2), the vesicle is slowed downed at the pore but is deformable enough

to fully permeate through the same network (Fig 4.7b). These two example clearly indicate

that deformation, in addition to size, dictate wether a vesicle can go through a porous medium.

We further see that low deformability may result in the accumulation of trapped vesicles within

the network and thus decrease the overall effective permability. This phenomenon is known as

fouling [REF].

Figure 4.7: Vesicle speed as a function of non-dimensionalized time t∗ for network 1, Ca = 0.04
(a) and Ca = 0.2 (b).

Let us now turn to the macroscopic effects of these observations. For this, we compute

for each network and capillary numbers the macroscopic permeabilities given in (4.44). For

clarity, we particularly focus on understanding how the non-dimensional vesicle and solvent

permeabilities κ∗v and κ∗s change as functions of the capillary number Ca in Fig. 4.8 and Fig. 4.9

respectively. For all networks, we observe, as expected, that the vesicle permeability decreases

with the capillary number, since less deformable vesicles have more difficulties squeezing through

the tight pores. We also note that the vesicle permeability decreases to zero in the cases where

the capillary number is low enough to cause the vesicle to be permanently trapped into the

pores (fouling). On the other hand, the vesicle permeability is shown to approach that of the
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fluid without vesicle as the capillary number increases. Similarly, the solvent permeability κ∗f

is shown to decrease with the capillary number in Fig. 4.9. This is explained by the fact that

more rigid vesicles hinder the fluid flow through the network, and that pores can be permanently

obstructed by the most rigid vesicles. More importantly, even when pores are not obstructed,

Fig. 4.9 shows that the presence of the vesicles can lessen the fluid permeability by as much as

20% for the network studied here.

Figure 4.8: Vesicle permeability as a function of the capillary number Ca = µU
γ
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Figure 4.9: Fluid permeability as a function of the capillary number Ca = µU
γ

4.4 Summary and future work

We have described a new numerical modeling approach that can be used to quantitatively

examine the interplay between a rigid media’s structure, the surface energy of deformable,

immiscible, suspended particles (vesicles), and an externally imposed continuum flow, on the

particles’ conductance through that media. The novelty of the approach is two-fold: (a) the

inclusion of locally-explicit continuum solutions for the pressure and velocity fields that eliminate

the need for the computational cost of mesh refinement and (b) the derivation of a numerical

homogenization scheme that permits to calculate the macroscopic permeabilities of a fibrous

network for complex fluids. We have illustrated the usefulness of the approach by performing

a study on an idealized two-dimensional problem containing deformable, ”cylindrical-shaped”

vesicles being transported in a simple fluid through a media containing rigid flakes (which project

as ”fibers” in our 2-d problem). The major macroscopic figures-of-merit were the permeability

coefficients of the continuous fluid and the vesicles. For the range of parameters studied, our

results have illustrated that vesicles are always retarded relative to the continuum flow, and

that the relative selectivity for the continuum versus the vesicle is inversely proportional to
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the Capillary number (based on the vesicle’s surface energy relative to the continuum fluid).

Overall, these results show the capability of the proposed approach to both accurately describe

the micro-scale physics of a vesicle permeation, and their effects at the macroscale in terms of

effective permeability estimations. A number of improvements is however necessary to increase

the fidelity of the models. First, a thorough study of the physical interaction between fibers and

vesicles must be carried out. For instance, the consideration of a repulsive force between the

two entities in the proposed study ultimately facilitated the flow of vesicles away from fibers. In

an alternate case, where fiber-vesicle adhesion occurs, one may predict very different behaviors

[41]. Our two-dimensional (2D) assumptions may also drastically affect the overall behavior of

the system for several reasons. First, in 3D, one might expect a lower flow resistance from the

fibers, but an increase in fiber-fiber connections, which might act as traps for vesicles. On the

other hand, 3D vesicles possess more deformation potential to escape from these obstacles. From

a modeling viewpoint, the proposed computational scheme is applicable in 3D although it is not

straightforward. Asympotic flows around fibers and the deformation of 3D vesicles are indeed

significantly more complex than in a 2D setting, involving numerous theoretical and numerical

challenges. Such research endeavors are however necessary as a fundamental undertanding of the

interactions between soft vesicles and porous media can help design new membranes for medical

and energy applications [70, 2], but also help understand fundamental problems in biology such

as the interactions between cells and their surrounding fibrous matrix [62, 159, 166].

Appendix A

Using the spatial discretization scheme from section 3, the components of the matrix ke and

vector f e take the following form:
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kvv =

∫
Ωe

µBT ·B dΩ (4.46a)

kevp =

∫
Ωe

−BT · N̂ dΩ (4.46b)

kevλ =

∫
Γe

NT · N̄dΓ (4.46c)

kepv =

∫
Ωe

N̂T ·B dΩ (4.46d)

keλv =

∫
Γe

N̄T ·NdΓ (4.46e)

keλpp =

∫
Γe

N̄T · N̂dΓ (4.46f)

kepλp =

∫
Γe

N̂T · N̄dΓ (4.46g)

and

f ev =

∫
Ωe

NT · ρf dΩ +

∫
Γe

NT · (fI + fR/I) dΓ. (4.47)

f eλp =

∫
Γe

N̄Tn · (fI + fR/I) dΓ. (4.48)

The shape function matrices N, N̂, N̂ and B take the following form:

N =
[
N1, ...,N9, Ñ1, ..., Ñ9

]
(4.49a)

N̂ =
[
N̂1, ..., N̂4,

ˇ̂
N1, ...,

ˇ̂
N4,

˜̂
N1, ...,

˜̂
N4
]

(4.49b)

N̄ =
[
N̄1 N̄2

]
(4.49c)

B =
[
B1, ...,B9, B̃1, ..., B̃9

]
(4.49d)
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with

Ni =

 N i 0

0 N i

 , Ñi =

(F − F 1)

 N i 0

0 N i

 , ..., (F − F 8)

 N i 0

0 N i




(4.50a)

ˇ̂
N i = (H −H i)N̂ i ,

˜̂
N i =

[
(G−G1)N̂ i, ..., (G−G4)N̂ i

]
(4.50b)

Bi =



N i
,1 0

0 N i
,2

N i
,2 0

0 N i
,1


(4.50c)

B̃i =





(F − F 1)N i),1 0

0 (F − F 1)N i),2

(F − F 1)N i),2 0

0 (F − F 1)N i),1


, ...,



(F − F 8)N i),1 0

0 (F − F 8)N i),2

(F − F 8)N i),2 0

0 (F − F 8)N i),1




.

(4.50d)

where F i and Gi are the asymptotic functions used to enriched the standard finite element space

around the corner tips introduced earlier.
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Chapter 5

Applications of the Immersed

Membrane formulation to the study

of the membrane-cortex complex

In this chapter we use the formulation presented in chapter two to describe the rich mechanics

and interactions between the cell membrane and cortex and between the membrane and the

external environment. The formulation takes into account the mechanics of both the lipid bilayer

membrane and the cortex as well as their interactions. We show that these considerations are

of critical importance in situations that lead to debonding between the two the membrane and

the cortex, as it is the case in the cell blebbing problem for example. The formulation is then

coupled with the Extended Finite Element Method (X-FEM), a numerical method that naturally

allows for pressure and velocity discontinuities across the membrane, and the grid bases particle

method that allows us to accurately track the membrane geometry and large deformations as it

evolves in a Eulerian frame.

The outline of this chapter is as follows: first we provide a biological and mechanical descrip-

tion of the MCC, and introduce the main constitutive equations. In section 5.1, the mathematical

formulation used to describe the membrane mechanics, membrane-cortex interactions, and the

membrane-fluid interactions in a Eulerian framework is presented, followed with the derivation
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of the governing equations from energetic considerations. Section 5.2 discusses the numerical

implementation in the framework of the X-FEM and the grid based particle method. In section

5.3, the problems of the cell blebbing and the cell endocytosis are investigated to demonstrate

the model’s abilities to describe the rich mechanics of the MCC. Section 5.4 finally concludes

with a discussion of the results and recommendations for future improvements.

5.1 The physics of the membrane-cortex complex and its inter-

actions

In many biological problems such as endocytosis, blebbing or the red blood cell biconcavity, the

evolution of the shape the cell is driven by the mechanics of the cell membrane and its interaction

and adhesion with surrounding fluids or objects. In order to understand the debonding that

occurs during cell blebbing between the membrane and the cortex, or the intake by the cell

membrane of nanoparticles during endocytosis, one must therefore first investigate the mechanics

of each component as well as the forces responsible for their interactions.

5.1.1 The mechanics of the membrane-cortex complex

In most cells the membrane consists of the juxtaposition of two layers: the lipid bilayer and

the cortex, often refereed as the membrane-cortex complex. The lipid bilayer itself is made

of a double layer of phospholipids, whose hydrophylic heads point outside of the membrane

and hydrophobic tails point in to the core of the membrane. Attached to the lipid bilayer via

membrane-cortex attachment proteins is the cortex, composed of a mesh of actin/myosin/spec-

trin filaments that provides the cell with resistance to deformations and possesses contractile

abilities [32] (Fig.5.1.). The membrane-cortex complex is generally viewed as an elastic mem-

brane with values of stretching and bending stiffnesses that vary with the type of cell considered.

For example, a leukocyte (or white blood cell) has reserves of membrane area stored in micro-

folds that reduce its stretching stiffness whereas the membrane of a erythrocyte (or red blood

cell) has no such reserves and is assumed in most studies to be essentially inextensible (maximum

area change ≤ 4% [133]). Some biological processes, such as cell blebbing can lead to debonding
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Figure 5.1: Global scheme of the cell membrane with the detailed parts of the cortex and the lipid
bilayer

between the cortex and the lipid bilayer by rupturing the membrane-cortex attachment proteins.

In this context, the cortex and the lipid bilayer become two separate membranes with different

parameters of elasticity. The mechanical characteristics of the membrane also vary with the

scale of the problem considered: in the case of endocytosis, only the lipid bilayer mechanics

are relevant in the uptake of nanoparticles by the cell membrane since the spacing between the

cortical filament (200 nm) is much larger than the size of the particles (10 − 20 nm). Here, we

propose to model the MCC, the cortex and the lipid bilayer as elastic membranes with different

elasticies. In this view, let us consider a generic elastic membrane (that can be the MCC, the

cortex or the lipid bilayer) whose geometry is characterized by a thickness negligible compared

to its other dimensions. The analysis of this membrane can then be viewed as a multiscale

problem. At the microscale, the membrane is described as a thin layer of thickness h with a

elastic energy density W, function of the membrane strain E that varies along the membrane

thickness. At the mesoscale, the membrane is considered as a zero-thickness surface in which the

strain E = E
(
Ēip, C̄ip

)
and the elastic energy density Φ̄ = Φ̄

(
Ēip, C̄ip

)
can be approximated as

functions of the membrane in-plane strain Ēip and second fundamental form C̄ip. An averaging

operation is then introduced in order to reconcile the microscopic and mesoscopic descriptions of

the membrane, such that the elastic energy and densities at the two scales are related as follows
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[164]:

Φ̄ =
1

h

∫ h/2

−h/2
Φ̄dr3 and ρ̃ =

1

h

∫ h/2

−h/2
ρdr3 (5.1)

Although the formulation allows for more complex strain energy functions, we here concentrate

on a linear elastic material with a quadratic elastic energy density function:

Φ̄(Ēip, C̄ip) = Φ̄0 + T0 : Ēip +
1

2
Ēip : C : Ēip︸ ︷︷ ︸

strain energy

+ M0 : C̄ip +
1

2
Cip : D : C̄ip︸ ︷︷ ︸

bending energy

+ Ēip : F : C̄ip︸ ︷︷ ︸
mixed

(5.2)

where W0 is the initial energy (per mass) stored in the membrane when undeformed, T0 and

M0 are the pre-stress and pre-moment and the fourth order tensor C is the elasticity tensor. In

addition, the tensors D and F (also fourth order) characterize the resistance to bending and the

interaction between the two modes of deformation Ēip and C̄ip. For the sake of clarity and as

it does not introduces major changes, the interaction between the different deformation modes

are neglected by choosing F = 0. Let us now detail the elastic parameters used in the strain

and bending energy for the cortex and the lipid bilayer:

Strain energy. The cortex is idealized as a permeable isotropic linear elastic membrane with

contractile abilities. The pre-stress T0 can therefore be directly related to the surface tension

created by the contraction of the acto-myosin complexes that are present throughout the cortex.

Furthermore, for a linear elastic material the elasticity tensor is written as C = λ̄1 ⊗ 1 + 2µ̄I,

with λ̄ and µ̄ the first and second Lamé coefficients. On the other hand, the lipid bilayer is

usually described as a surface fluid with no resistance to shear forces but high resistance to

surface dilation. This behavior can be modelled by choosing an incompressible linear elastic

material (but not inextensible, since the lipid bilayer can sustain around 4% of surface dilation)

where the first and second Lamé coefficient are respectively equal to the bulk modulus λ̄ = K̄

and zero µ̄ = 0. However, in certain types of cells such as leukocytes for examples, the pres-

ence of undulation of the lipid bilayer over the cortex has been observed. These undulations,

stabilized by the membrane-cortex bonds, constitute a reserve of lipid bilayer area (that can

113



CHAPTER 5. APPLICATIONS OF THE IMMERSED MEMBRANE FORMULATION TO THE
STUDY OF THE MEMBRANE-CORTEX COMPLEX

reach up to 2.6 time the apparent area in some white blood cells) that impart the membrane

with a non-linear elastic behavior and allow it to endure deformations much larger than 4% in

processes such a cell blebbing. A constitutive relation between the membrane tension and the

membrane increase of area was introduced in [133] as:

ε =
∆A

A0
=

kbT

8πkc
ln

(
1 +

cτmA

K lipid
h

)
+
τm
KA

(5.3)

with ε = ∆A
A0

the membrane dilation or relative increase of apparent area, KA the elastic

modulus for direct stretchm, kbT the thermal energy, c=0.1 reflects the type of modes used to

describe the undulations and τm the membrane tension. Eq.5.3 has two main regimes: for low

values of area increase, the membrane stiffness remains low and increases logarithmically, which

corresponds to the smoothing of the membrane undulations. For higher values of area increase,

Figure 5.2: Fig (a) shows the tension-dilation curve for the unfolding membrane [133]. In Fig
(b) we see the behaviour of the function fb for different values of parameters Kb, fb0 and nb.

the lipid bilayer is completely smoothed out and enters a pure stretch regime, that is governed

by an elastic linear relationship with a much higher elastic modulus, making the lipid bilayer

essentially inextensible (Fig.5.2a). From equation (5.3), one can find the lipid bilayer non-linear

bulk modulus λ̄(ε) = K̄(ε) such that τm = K̄(ε)ε. Finally, the pre-stress T0 is taken to be zero

in the case of the lipid bilayer since it has not been shown to exhibit contractile abilities.
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Bending energy. For both the cortex and the lipid bilayer, we choose to use the widely

accepted Canham-Helfrich bending energy, with different bending stiffnesses as the cortex offers

a greater resistance to bending than the lipid bilayer. The Canham-Helfrich energy is written

Eh(C̄ip) = Kh/2(H − C0)2 +KgK with H and K the mean and Gauss curvatures, Kh and Kg

the bending parameters and C0 the spontaneous curvature [75]. If the membrane is closed (as it

is the case in the different problems considered here), the Gaussian curvature energy KgK has

no contribution and can be discarded.

With the elasticity parameters defined, the elastic energy densities for the cortex and the lipid

bilayer now reads:

cortex Φ̄(Ēip, C̄ip) = T0 : Ēip +
1

2
Ēip : C : Ēip︸ ︷︷ ︸

strain energy

+
Kcortex
h

2
(H − C0)2︸ ︷︷ ︸

bending energy

(5.4)

lipid bilayer Φ̄(Ēip, C̄ip) = 1/2K̄ε2︸ ︷︷ ︸
strain energy

+
K lipid
h

2
(H − C0)2︸ ︷︷ ︸

bending energy

(5.5)

where ε = tr Ēip and H = tr C̄ip. Having defined the strain and bending energy densities of both

the cortex and the lipid bilayer membrane, let us now turn to the Membrane-cortex attachment

energy to investigate the mechanical behavior of the MCC, and in particular the debonding

between the lipid bilayer membrane and the cortex that occurs during cell blebbing.

Membrane-cortex attachment energy. The interaction between the lipid bilayer mem-

brane and the cortex plays a critical role in many cellular processes. Under normal conditions,

the lipid bilayer membrane and the cortex are bonds together via an ensemble of attachment

proteins or bonds called ERM (Exrin/Radixin/Moesin). However, when subjected to sufficiently

large forces, these bonds start disassembling, effectively freeing the lipid bilayer from the cor-

tex. This mechanism is at the origin of the large spherical membrane protrusions, or blebs,

observed in cell motility processes for example. Here we propose to model the membrane to
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cortex bonds using the following assumptions: (1) the force in one bond follows Hook’s law of

elasticity: fb = Kbd, with d distance from the bond’s resting position, and Kb the elasticity

modulus [55, 183], and (2) the bonds probability to disassemble increases exponentially with the

force to which the bonds are subjected [17]. To model the later assumption, we choose to use

the Weibull probability of failure [179], function of the force in the bond and written as follows:

P (fb) = 1− exp
(
− fb
fb0

)
, where fb0 is related to the critical force fcrit at which the bond starts

failing, found to be fcrit =5 pN in [25], via the relation fb0 = fcrit exp (1) = 13.5pN . One can

now compute the force per unit area fb that binds the lipid bilayer to the cortex as the force in

one bond times its probability of failure multiplied by the bonds surface density nb as follows:

fb = fbnb exp

(
− fb
fb0

)
n̄ = Kbdnb exp

(
−Kbd

fb0

)
n̄ (5.6)

where n̄ is the unit vector normal to the surface. Using the experimental results from [29]

the bonds surface density is found to be nb = 100/nm2 and the elasticity modulus Kb =

2.25·10−2pN/nm is computed from [30] by matching the energy required for debonding. Fig.5.2b

shows the behavior of the attachment force for different parameter values: reducing the bond

elastic modulus Kb increases the total energy required to break the bonds, whereas decreasing

the bond density nb or the bond critical force fb0 has the opposite effect. The membrane-cortex

attachment energy (or power) density can then be found as the force fb times the membrane-

cortex relative displacement (or velocity).

Finally, the MCC total elastic energy is computed as the sum of the lipid bilayer membrane

and cortex elastic energy plus the membrane-cortex attachment energy. Lets us now turn to the

interaction between the lipid bilayer membrane and the external environment, and in particular

to the adhesion forces that allow the cell to intake external particles during the endocytosis

process.
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5.1.2 Interaction of the membrane with the outer environment

An important aspect of the MCC mechanics is to understand how the cell (and particularly the

membrane) senses and interacts with its external environment. Membrane adhesion is at the

heart of these interactions and plays a primordial role in the intake of external bodies such as

vesicles, viruses or other nanoparticles [18]. This process known as endocytosis is one of the

mechanisms the cell uses to absorb particles that are too large to simply diffuse through the

lipid bilayer membrane. Here, we choose to focus on the receptor mediated endocytosis that is

used by the cell for the uptake of particles with a diameter of the order of tens of nanometers.

In this context, the mechanism of endocytosis consists in the wrapping of particles by the lipid

bilayer until complete absorption. During this process, two forces are at play and compete

against each other: the adhesion between the membrane and the particle and the lipid bilayer

bending resistance. If the adhesion that pulls the membrane toward the particle is strong enough

to overcome the lipid bilayer bending resistance, the particle becomes completely wrapped and

eventually absorbed inside the cell. On the other hand, if the bending resistance is stronger

than the adhesion forces, only partial wrapping is observed and the endocytosis process cannot

be achieved.

One of the well accepted models for the cell adhesion was proposed by [18], who developed

a thermodynamic approach to the cell adhesion. In this work, three main variables are at play:

the concentration of free ligand on the particle surface, the concentration of free receptors on

the membrane surface, and the number of bound ligand-receptor complexes (Fig.5.3a.). The

system’s equilibrium is found by minimizing its total free energy ∆G given by:

∆G = [(Nr −Nb) (µr(Nr −Nb))−Nr (µr (Nr))] +

+ [(Nl −Nb) (µl(Nl −Nb))−Nl (µl (Nl))] +

+Nb (µb (S,Nb)) + Γ (d)

(5.7)

where Nr, Nl and Nb are the densities (number per unit surface) of free receptors, ligands and

bounds respectively, and µr, µl and µb are their chemical potentials. For dilute solutions, the

chemical potentials of the free ligands and receptors is equal to the reference chemical potential
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plus the entropy of configuration:

µα = µ0
α + kBT ln (Nα −Nb) with α = r, l (5.8)

In the case of the bound ligand-receptor complexes however, the free energy also includes the

elastic energy that comes from stretching these bonds. Considering the bonds as linear elastic

”springs” of stiffness Kbond and natural length l0, the bonds mechano-chemical potential µb is

written:

µb = µ0
b +

1

2
Kbond (d− l0)2 + kBT ln (Nb) (5.9)

where d denotes the distance between the membrane and the particle. The term Γ(d) in (5.7)

was introduced to take into account the Van der Waals repulsive force between the membrane

and particle at small distances. This energy depends on a characteristic decay length τ , and on

a strength parameter γ as:

Γ(d) =
γ

d
exp

(
−d
τ

)
(5.10)

The force produced by the attached complexes must overcome this repulsion in order to be able

to uptake the external particle. One can then translate the total free energy (5.7) to a tension

t̄ applied on the cell membrane by taking its derivative with respect to the separation distance:

t̄ =
∂∆G

∂d
=

[
NbKbond (d− l0)− γ

d2 · τ
exp

(
−d
τ

)
(d+ τ)

]
n (5.11)

where d = dn and n is a unit vector normal to the particle surface. The first term of this equation

represents the force associated to the bond complex deformation while the latter part represents

the repulsion due to the Van der Waals forces. In this chapter and for the sake of simplicity, we

consider both the free ligands and receptors to be abundant enough for their concentration to

be considered constant and their diffusion instantaneous. However, the concentration of bound

ligand-receptor complexes needed to find t̄ in (5.11) varies with time and the separation distance.
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The following equation relates the chemical potential of the bound ligand-receptor complexes to

their change of concentration [119, 46]:

∂Nb

∂t
= −krNb

(
1−KL exp

(
−1

2

Kbond (d− l0)2

kBT

)
(Nr −Nb) (Nl −Nb)

Nb

)
(5.12)

Since the evolution of the membrane is much slower then the ligands/receptors binding rate, we

are only interested in the stationary solution of the above equation, which is given by:

Nb = KL exp

(
−Kbond(d− l0)2

2kBT

)
(Nr −Nb)(Nl −Nb) (5.13)

Once the number of bound complexes is known, the adhesion force can be calculated for any

distance and time. Figure 5.3b shows the steady state of (5.11) for different distances between

the particle and the membrane. For large distances, the receptors and ligands are not able

Figure 5.3: Equilibrium force for different fixed distances

to attach and there is no interaction between the particle and the membrane. As they come

closer together, a few receptors are able to attach to the particle’s ligands and act as stretched

springs exerting an attractive force between the membrane and the particle. As the process

unfolds, the bonds concentration increases and the membrane wraps around the particle until

complete absorption. With the interaction forces fb and t̄ defined, let us now derive the equations

governing the evolution of the MCC.
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5.1.3 Governing equations for the MCC problem

Consider a two-dimensional incompressible viscous flow in the domain Ω delimited by a boundary

∂Ω in which exists a closed MCC, where the cortex Γc and lipid bilayer Γl that are able to move

with the surrounding fluid. The problem is characterized by the Reynolds number Re = HV ρ/µ

where H is the characteristic length scale, V the characteristic fluid velocity, µ the kinematic

viscosity and ρ the fluid densities in and out of the MCC. We choose here to remain in the

Stokes flow assumption with Re � 1, where inertial effect may be neglected. The velocity of a

fluid particle is given in terms of its material time derivative v(x, t) = Dx/Dt, where x is the

current position of the fluid particle at time t. Similarly to the case of a single vesicle in chapter

1, the governing equations and boundary conditions for the Stokes flow are written:

∇ · σ = 0 ∀x ∈ Ω/Γ (5.14)

∇ · v = 0 ∀x ∈ Ω/Γ (5.15)

where σ is the Cauchy stress tensor in the fluid and the second equation imposes the condition

of incompressibility. These equations are combined with the governing equations of the lipid

bilayer Γl:

[σ · n̄] = f̄l − t̄− f̄b ∀x ∈ Γl (5.16)

(σ · n̄)‖± =
µ

l±
[v]‖± ∀x ∈ Γl (5.17)

drl(ξ
1, ξ2, t)

dt
= v̄(ξ1, ξ2, t) (5.18)

and on the cortex Γc:

f̄c + f̄b = 0 ∀x ∈ Γc (5.19)

drc(ξ1, ξ2, t)

dt
= v̄(ξ1, ξ2, t) (5.20)

where the forces fl and fc are the unbalanced forces due to the deformation of the lipid bilayer and

the cortex respectively, and rl, rc denote the position of the lipid bilayer and cortex. Equation
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(5.17) is the Navier boundary conditions at the interface, where l± > 0 is known as the slip

length, a physical parameter that depends on the surface roughness. The case l = 0 corresponds

to the no slip condition while l = ∞ is the free sleep condition between the fluid and the lipid

bilayer.

5.2 Examples

5.2.1 Cell endocytosis

The cell endocytosis is currently being studied in different areas such as the creation of new

drug delivery tools or the allergies control. Different investigations proved that there is a close

dependence between the size and shape of the nanoparticle and the rate of endocytosis, explain-

ing why different particles have more or less affinity to be uptaken. In this section, we show

that our model is able to represent the endocytosis of a single nanoparticle, and could be used

in the future to investigate the effect of different factors such as particles shape and elasticity.

Figure 5.4: The evolution of the cell membrane around a nanoparticle of 45 nm in Radius.
Figures A, B and C represent the pressure and velocity field of the fluid in different moments of
the endocytosis. The last one is the evolution of the wrapped area with the time. The values of the
different parameters are Kbond=2 ·10−3N/m, l0=10nm, Nr = 5 ·10−31/nm2, Nl=5 ·10−31/nm2,
KL=109nm2, kBT=4.1e− 21J , τ=5nm and γ= 1 pN

The case of endocytosis being studied here involves the uptake of a single, rigid particle in the

range of tens of nanometers in diameter. At this scale, the cell membrane can be represented as
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a flat surface since the cell is orders of magnitude (' 50µm) larger than the particle. As a result,

we impose a constraint on the membrane on the right edge of the (axysimmetric) computational

domain to ensure that the membrane remains flat away from the particle. Moreover, both

the membrane and the cytosol can flow freely in and out of bottom and right edges of the

computational domain. This choice of boundary conditions is motivated by the fact that a nano

particle only displaces an infinitesimal portion of the total cell volume, and that the membrane

has enough area reserves to wrap around the particle without being stretched (the membrane

stays in the unfolding regime). In figure (5.4) shows the evolution of a cell membrane around a

particle of 45 nm in radius. The blue line is a level set function representing the nano-particle,

while the red line is a second level set representing the cell membrane. The adhesion force

represented by the black arrows is shown to be much larger in the leading edge of the membrane

as it uptakes the particle.

A critical question in the cell endocytosis problem is to find the minimal particle size for a

complete particle uptake. When a spherical particle is considered, most studies agree that the

minimum radius for complete wrapping lies between 20-25 nm [33],[65],[187],[184],[185]. Figure

5.5 shows how the total wrapped area in the steady state increases with the size of the particle.

This is explained by the fact that curvature, and therefore the bending energy decrease with

the size of the particle, allowing the adhesion force to push the membrane higher around the

particle, until complete wrapping occurs. Our simulations predict that this occurs for a particle

radius of around 22-23 nm, which is in good agreement with experiments and other studies such

as [44] and [65].

5.2.2 Cell Blebbing

The blebbing of a cell has been shown to be involved in the spreading of cancerous cell as an

alternative mechanism of motility [155, 56, 32]. The typical evolution of a bleb may be describe

in the following manner [31]. First, the cell cortex generates surface tension by contracting itself

via the acto-myosin mechanism that leads to an increase of the internal pressure in the cytosol.

This first stage can then be followed by two possible outcomes : the rupture of the actin cortex,

or delamination of the cell membrane, i.e. the debonding between the lipid bilayer and the
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Figure 5.5: Percentage of particle area wrapped by the membrane as a function of the particle
size.

cortex. Both of these outcomes produce a local decrease of pressure at the rim of the cell which

drives cytosol into that region and initiate bleb growth. As bleb grows (the growth time is in

order of the minute), the actin cortex starts reassembling beneath the bleb membrane. The

newly formed actin cortex in the bleb region generates tangential contraction (T0) that locally

raises the pressure in the bleb, effectively slowing down the growth and reversing the process.

This last stage is known as bleb retraction and ends once the bleb has disappeared [31].

Numerically, this process can be described by introducing two level-set functions associated

with the debonding lipid bilayer and cortex. The interactions between the two level-set are

governed by the membrane-cortex binding force fb given in equation (5.6). This force is not

homogeneous throughout the cell surface, in fact its heterogeneity is responsible of the bleb

initiation: as the cortex increases the cell’s internal pressure, the debonding between the lipid

bilayer and the cortex starts in the cell region that has the lowest binder concentration.

Figure 5.6a shows the evolution of the blebbing process from the bleb initiation to its re-

traction, while figure 5.6b shows the relationship between the cell cortex contractile tension and

the resulting bleb volume. The results compare qualitatively with the experimental data by

[155], however the simulations show bigger volumes of blebs. This could be explained by the

fact that the experiments in [155] uses a pipette to create the bleb, adding friction energy on

the pipette’s wall that potentially reduces the bleb sizes. While the bleb is growing, the cell
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Figure 5.6: (a) evolution of the blebbing process. The white arrows deonte the adhesion force
between the cortex and the membrane. (b) bleb volume as a function of cortical tension

membrane stretches so that its surface increases up to 2.6 times its initial surface [30] thanks

to the mechanism of undulations unfolding described in part 2.2 . Here we assume the cell

membrane stays in the unfolding regime and therefore offers very small resistance to stretching.

Let us now turn to the retraction phase of the blebbing process. The reconstruction of the bleb

cortex is led by the polymerisation of actin monomers (associated with myosin) into contractile

filaments described by the following equation [92, 177, 24]:

Cp(t) = Cm0(1− exp(−k1Cm0t) (5.21)

where Cp is the polymerized actin concentration, Cm0 the initial actin monomer concentration

with Cm0 = 0.6 µ and k1 = 12 µM−1 s−1 is the polymerization rate [157]. The cortex contraction

can then be found as follows:

γc = γc0
Cp
Cm0

(5.22)

where γc0 = 1000pN/µm is the maximum cortex tension [154]. This equation assumes that

the cortex tension is directly proportional to the actin/myosin concentration. The following
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figure shows the surface of the bleb with three different values of polymerisation rates. As

expected, we observe that a higher polymerisation rate results in a smaller bleb and a faster

retraction (Fig.5.7). Here we have shown that the proposed formulation is able to capture the

Figure 5.7: Bleb evolution for different values of actin polymerization rates.

basic stages of bleb growth and retraction, including the large deformations inherent to the

cell blebbing problem, based on a simplified model of retraction. However, better descriptions

of actin polymerization can later be incorporated, such as a thermodynamical model of actin

polymerisation that depends on the strains in the bleb [62].

5.3 Conclusion

In this chapter, we presented a full Eulerian formulation for the analysis of the fluid-membrane

problem, coupled with X-FEM, a numerical method that allows a natural implementation of

velocity and pressure discontinuities across the membrane, and the grid based particle that tracks

the geometry and large deformations of the MCC. We showed that the formulation is capable

of reproducing different equilibrium shapes exhibited by the red blood cell, and can handle the

very large deformations experienced by the membrane in the endocytosis and blebbing problems.

This is the first formulation capable of fully describing the mechanics of the MCC, including the

membrane-cortex debonding, and can be used with more detailed models of actin polymerization

or adhesion forces in order to describe biological problems in a way that is both biologically and
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mechanically accurate.

One of the advantages of the full Eulerian method presented here is the complete absence of

mesh distortion that is inherent to a Lagrangian description of large deformations. Furthermore,

the coupling of the formulation with a finite element method that permits discontinous fields

in elements cut by the membrane enables an easy enforcement of a wide variety of boundary

conditions on the membrane. In the present state, the finite element mesh size is limited by the

maximum curvature along the membrane. Using a curvature based refinement algorithm (easy

to implement on a fixed structured mesh, and naturally compatible with the grid based particle

method) could greatly improve the method’s performance by coarsening or refining the mesh in

regions of low or high curvature respectively.
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Chapter 6

Tutorial for the PMIM

In this chapter, we will describe a simplified version of the PMIM that simulates a fluid droplet

resting on a flat surface and deforming under the action of gravitational forces. Large sections

of the Matlab code ”surface tension.m” will be cited and put into context. The code can be

found at the following address: http://vernereygroup.wordpress.com/

6.1 Initialization

Before all the parameters and geometry of the interface and fluids at time t=0 are initialized,

the lines matlabpool close force local and matlabpool open 4 first open a pool of pro-

cessors (in this example, a pool of 4 processors is open) that will be used and the parallelized

sections of the code, such as the computation of the stiffness matrix K. Next, the mesh size and

initial position of the droplet are defined as shown below:

1 % +++++++++++++++++++++++++++++

2 % INPUT

3 % +++++++++++++++++++++++++++++

4

5 % Initial level-set radius and center and number of elements

6

7 plane axi = 'axi1'; %plane axi = 'axi1' : axisymmetric problem
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8 %plane axi = 'plane' : plane strain problem

9 switch plane axi

10 case 'axi1'

11 % Dimension of the domain (it is simply a rectangular region Lx x Ly)

12 element y = 60; %number of nodes in y direction

13 element x = 40; %number of nodes in x direction

14

15 element length = 0.1;

16

17 Ly = element y*element length/2 ; %y

18 Lx = element x*element length/2; %x

19

20 R2 = 1.01; %droplet radius

21 c2 = [-Lx/2 0]; %position of the droplet center

22

23 close DBC2=0;

24 case 'plane'

25 % Dimension of the domain (it is simply a rectangular region Lx x Ly)

26 element y = 80; %number of nodes in y direction

27 element x = 100; %number of nodes in x direction

28

29 element length = 0.1;

30

31 Ly = element y*element length/2 ; %y

32 Lx = element x*element length/2; %x

33

34 R2 = Ly/2-0.521; %droplet radius

35 c2 = [0 0]; %position of the droplet center

36 close DBC2=1;

37 end

The mechanical properties of the interface, the fluid and the interaction between the fluid

and the interface are then specified:

1 % +++++++++++++++++++++++++++++++ %
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2 % Material properties %

3 % +++++++++++++++++++++++++++++++ %

4

5 %interface mechanical properties:

6 Kc = 0; %bending rigidity

7 gamma = 1e-6; %surface tension

8 nu = 0; %Poisson's ratio

9 mu membrane = 0; %first lame parameter

10 lambda membrane = 0; %second lame parameter

11

12 %fluid mechanical properties:

13 mu f minus = 1e-10; %viscosity indide droplet

14 mu f plus = 1e-10; %viscosity outside droplet

15 rho = 2e-7; % fluid density

16

17 %fluid/interface interaction:

18 l plus = 0.00000001*R2; %slip length outside

19 l minus = 0.00000001*R2; %slip length inside

Given the initial geometry of the system, the next steps consists in generating the fixed

finite element mesh that is used to spatially discretize the system. Two superimposed meshes

are generated: one with 9-node elements for the velocity

1 % 9-nodes element mesh for velocity

2 elemType9 = 'Q9' ;

3 [node9,element9,¬] = meshRectangularRegion(pt1, pt2, pt3, pt4, ...

nnx9,nny9,elemType9);

and one with 4-node elements for the pressure

1 % 4-nodes element mesh for the pressure

2 elemType4 = 'Q4' ;

3 [node4,element4,¬] = meshRectangularRegion(pt1, pt2, pt3, pt4, ...

nnx4,nny4,elemType4);
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where pt1, pt2, pt3, pt4 correspond to the four corner points of the computational domain.

The levelset function (which stores the signed shortest distance between the nodes of the mesh

and the interface) that initially describes the geometry of the droplet is then calculated using

the radius and center defined earlier:

1 %---------------------------------%

2 %compute level set value at nodes%

3 %---------------------------------%

4 % circle%

5 for n=1:numnode9

6 Phi92(n) = (((node9(n,1)-c2(1)))ˆ2 + ((node9(n,2)-c2(2)))ˆ2)ˆ(1/2)- R2;

7 end

Knowing the initial level-set function for the droplet allows us to generate particles along the

droplet’s interface, which will be used to track the interface position and deformation:

1 %---------------------------------%

2 % initialize Grid Based Particles %

3 %---------------------------------%

4

5 [ Foot points, n Foot points, Active points] = Init Foot points func( ...

element length(1),Phi92,Phi91,enrich node91,enrich node92, ...

Grad phi x,Grad phi y );

where Foot points, n Foot points, Active points respectively denote the coordinates of

the particles (referred to here as ”Foot points”), the unit vector normal to the interface a each

particle, and the nodes from the underlying finite element mesh that were used to define the

particles (see section 2.2.3 on the grid based particle method). This concludes the initialization

step. Let us now move to steps 1 and 2 as described in chapter 1. Both steps 1 and 2 are nested

inside a while loop that goes through iterations in time until the convergence criteria given in
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section 2.2.2 are satisfied, as follows:

1 while(errorP>1e-9) | | (errorV>0.001*element length)

2 t = t+dt

3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

4 %--STEP1: compute the pressure and velocity fields--%

5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

6

7 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

8 %--STEP2: update the interface's position and deformation--%

9 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

10 end

6.2 Step 1: solving the system for the fluid velocity and pressure

fields

This steps consists in first computing the stiffness matrices Kt, K̄, It1 and It2 necessary to solve

equation (2.26) for the velocity and pressure fields. This is done by looping over each element and

computing the element stiffness matrices detailed in the appendix of chapter 2. This process is

summarized in the following few lines (modified, simplified and commented version of the actual

code to clarify the algorithm):

1 while(errorP>1e-9) | | (errorV>0.001*element length)

2 t = t+dt

3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

4 %--STEP1: compute the pressure and velocity fields--%

5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

6

7 %initialize K,F%

8

9 for iel=1:numelem9 %loop over the elements
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10

11 %find the connectivity matrix for each element (i.e. the adress of ...

each degree of freedom that belongs to the element being considered)

12 [sctrBv,sctrBp, sctrBl plus, sctrBl minus,sctrBv m, sctrBlp] = ...

assembly fluid XFEM ndiscont v2 parallel(iel,numnode9 local...);

13

14 %The element stiffness matrices are the computed by performing the ...

integration over each element using a Gauss integration scheme:

15 %*********loop over gauss points************

16 for ix=1:ngp(iel)

17 %computes and sums the value of the element stiffness matrix K at ...

each gauss point

18 K vv = K vv + Bv'*Bv*mu*W(iel,ix)*det(J0);

19 K vp = K vp - Bv'*[Np;Np;0;0]*W(iel,ix)*det(J0);

20 K pv = K pv - Np'*B dot v*W(iel,ix)*det(J0);

21 Fp = Fp - Np'*Np*se*W(iel,ix)*det(J0);

22 Fv = Fv + Nv'*[0 ; 0 ]*W(iel,ix)*det(J0);

23

24 end

25

26 % Next, the components of the interaction and interface stiffness ...

matrices I 1, I 2 and \bar{K} are computed if the element is ...

crossed by the interface:

27

28 if (ismember(iel,Split ordered)) % split element

29 %loop over the gauss points to perform the integation along the ...

interface

30 for ix = 1 : nogp2(iel)

31

32 % First, find the interface force \bar{f}

33 [ force membrane force membrane stretch] = ...

find membrane force pt parallel23(Gpt proj,Foot points...

34 ,n Foot points,..);

35

36 %compute the components of the interface matrix
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37 K lpp(:,5:8) = K lpp(:,5:8) + Nl'*Np(1:4)*Wl2(iel,ix)*J0*r;

38 K plp(5:8,:) = K plp(5:8,:) + Np(1:4)'*Nl*Wl2(iel,ix)*J0*r;

39

40 %compute the components of the interface force vector

41 Fv m = Fv m + Nl'*(t*force membrane')*Wl2(iel,ix)*J0*r;

42

43 Flp = Flp + (n Gpt*(force membrane + ...

force repulsion)'*Nl')*Wl2(iel,ix)*J0*r;

44

45 Fv = Fv + (n Gpt*(force membrane + ...

force repulsion)'*Nv'*n Gpt')*Wl2(iel,ix)*J0*r;

46 end

47 end

48 end

49 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

50 %--STEP2: update the interface's position and deformation--%

51 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

52 end

Once the global stiffness matrix K = [Kt It1; K̄ It2] and force vector F is computed, finding the

fluid velocity and pressure fields consists in inverting the matrix K as follows:

1

2 %-----------------------------------%

3 % solve for velocity and pressure %

4 %-----------------------------------%

5 d = K\F;

At this point, the pressure and velocity field (stored in vector d shown above) is known every-

where and can be used to update the position of the interface in step 2 as detailed in the next

section.
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6.3 Step 2: Updating the position and deformation of the in-

terface

Here we use the velocity field calculated in step 1 to update the interface. This is achieved by

moving individually each particle that sample the interface, as described in section 2.2.3:

1 for in =1:length(Active points)

2 Foot points(in,:) = Foot points(in,:)+ vel Foot points update(in,:)*dt;

3 end

Finally, in order to keep their repartition homogeneous along the interface, the particles along

the interface are ressampled (this step is described in section 2.2.3):

1 %---------------------------------------------------------------%

2 % RESAMPLE FOOTPOINTS AND CALCULATE GEOMETRICAL QUANTITIES %

3 %---------------------------------------------------------------%

4

5 [Active points, Foot points,n Foot points,..] = ...

Foot point ressampling v2(Active points, Foot points,n Foot points..);

If the interface is elastic, the deformation measure of the interface also has to be updated as

follows:

1 for k = 1:length(Foot points)

2 p = Foot points(k,:);

3 [ d d cont E Fd Ja] = ...

find velocity gradient d(p,Foot points,n Foot points,..);

4 F Foot points(k,:) = Fd.*expm(d*dt);

5 end

This concludes step 2 and the tutorial for the PMIM. If the convergence criteria are not

satisfied, the algorithm keeps iterating steps 1 and 2 alternatively inside the while loop until
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convergence is attained.
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Part II

The immersed soft matter system
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Chapter 7

A coupled Eulerian-Lagrangian

extended finite element formulation

for the study of embedded soft

matter

Many important and challenging problems in the areas of geophysics (e.g. ice sheet flow, mantle

dynamics), soft materials (e.g. deformation of hydrogels and biological cells) and material

science (e.g. metal forming) involve large deformations or flow of solid material. In these

conditions, it can be convenient to work with a fully Eulerian description of solid deformation,

especially when the boundaries of the solid domain are not moving [45, 53]. For problems where

domain boundaries are free to move, however, a Lagrangian (material) description is required to

map solid deformation between reference and current configurations. Such a moving boundary

problem also needs the introduction of specialized numerical methods that can track an interface

without remediating to expensive remeshing techniques. In this context, we propose to address

the challenges with describing the evolution of free boundaries through the introduction of

a coupled Eulerian–Lagrangian formulation, based on the combination of the extended finite

element method (XFEM) and the grid based particle method (GPM) [98].
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Traditionally, a purely Lagrangian finite element formulation is used for solid mechanics be-

cause it is simple to implement, computationally less expensive and does not need any interface-

tracking techniques; however, in the case of severe material distortion, it may suffer from numer-

ical issues due to excessive mesh distortion. Many strategies have been elaborated to tackle this

issue including the use of remeshing with interpolation techniques between old and new meshes

[39, 95, 35], but the latter is generally cumbersome and displays a lack of accuracy. Another

approach consists in using the Deforming Spatial Domain or Stabilized Space Time (DSD/DST)

formulation [152, 153] which has been powerful to handle fluid-structure interactions with large

deformation of the fluid-solid interface. A more popular approach is to employ the arbitrary

Lagrangian–Eulerian (ALE) formulation, wherein, a deformation step on a distorted Lagrangian

mesh is followed with a remap step onto a spatially fixed Eulerian mesh. Some early work on

ALE formulations can be found in [83, 71, 102, 21, 22, 181, 87] and for a complete literature

review of ALE and Space-Time methods for moving boundaries and interfaces, the reader is

referred to [13]. In both the ALE and DSD/DST formulations, the mesh moving techniques

typically aims at reducing the frequency of remeshing [148].

An alternative approach is to use a purely Eulerian formulation for solid mechanics. Al-

though not as popular as the ALE formation, a handful of Eulerian formulations have been

proposed in the literature [45, 118, 78, 53, 135]. The two main advantages of the Eulerian ap-

proach, as pointed by Benson [22], are: (1) it can handle arbitrarily large deformations, so it

can be suitable for studying soft matter and viscoelastic fluids, for example and (2) it allows

the creation, merging and vanishing of free surfaces or interfaces in a natural manner, so it

can be used for studying growth and phase transformation processes. Since the material is not

fixed to the finite element mesh, but rather flows through the mesh, an Eulerian formulation

does not suffer from mesh distortion issues. The drawback of Eulerian formulation for solids

is its higher computational cost due to the need for computing velocity and deformation vari-

ables separately, as opposed to a Lagrangian formulation, wherein only the velocity needs to

be computed. In three-dimensions, this means in an Eulerian finite element formulation for a

compressible hyperelastic medium, there will be 13 unknown (3 velocity, 9 deformation gradi-
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ent, 1 Jacobian determinant) nodal degrees of freedom (DOFs), whereas in a Lagrangian finite

element formulation there will be only 3 unknown (3 velocity) nodal DOFs [53]. Moreover, in

Eulerian formulations material interfaces and free boundaries need to be tracked using moving

interface methods, which adds to the numerical challenge and computational expense.

A critical issue in the case of Eulerian formulations is the handling of heterogeneous or

multi-phase materials. For two-phase materials that are a bonded well (i.e. no slip conditions

at the interface) mixture theory approaches work well, but for more general applications the

discontinuity in material properties across the interface needs to handled carefully. Previously,

Vitali and Benson have employed the extended finite element method (XFEM) to model con-

tact in multi-material arbitrary Lagrangian–Eulerian (MMALE) formulations [167, 168]. Herein,

we develop a multi-material coupled Eulerian–Lagrangian (CEL) formulation by employing the

XFEM [19, 112] and a level set representation of the interface [138]. By enriching the stan-

dard finite element shape functions with a Heaviside step function, a sharp discontinuity in the

material properties across the embedded interface can be incorporated within a finite element.

Tracking the deformation-driven motion of the interface can then be accomplished by for in-

stance, using the GPM [98] or, alternatively, using an interface-capturing scheme such as the

level set method [120, 137]. Among the two options, the GPM is computationally less expensive,

simpler to implement, and can also handle arbitrary topological transitions such as merging and

vanishing of material interfaces. Another issue arising from the existence of a moving interface

is the imposition of interface constraints, however, recent work provides viable weak formula-

tions by employing either the Lagrange multiplier method [15, 90] or a Nitsche’s method [49, 5].

Therefore, the imposition of interface conditions is not currently addressed herein and the reader

is refereed to the above cited work.

In the present work, we develop a coupled Eulerian-Lagrangian formulation with moving

interface associated with the large deformations of soft solids. The momentum equations and

the transport equations for the deformation gradient are solved in a staggered manner in time.

The velocity field is first calculated by solving the momentum equation in a Eulerian framework,

and is then used to update the isochoric and volumetric parts of the deformation gradient,
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separately, using an updated Lagrangian description. The position of the material interface

is tracked using the GPM [98] and the velocity field projected in the direction normal to the

interface. We show that the method is accurate in the regime of finite deformation and viable

for investigating soft matter mechanics. The organization of the chapter is as follows: section

7.1 introduces the kinematics, the governing and constitutive equations, and the resulting weak

form for the mechanical equilibrium of an elastic body. In section 7.2, we present a numerical

strategy to discretize the weak form, the tracking of the interface and the Lagrangian transport of

the deformation gradient tensor components. Finally, the numerical convergence and accuracy

of the method is considered in section 7.3 through the examples of a uniaxial extension of a

rectangular bar, and the simple shear of a rectangular block. The mesh-independent geometric

discretization and the absence of mesh distortion problem is then demonstrated with the test

of a cylinder under compression and the indentation of a rectangular block. The latter results

are validated by comparing them with those from traditional Lagrangian formulation in the

commercial software Abaqus. Some concluding remarks are made in section 7.4.

7.1 Formulation of the governing equations

7.1.1 Kinematics

In this study we consider a domain Ω containing an elastic body in the region Ωs(t). The

domain Ω is delimited by a boundary ∂Ω while the interface describing the current shape of

the elastic body is denoted Γ(t). Thus, Γ splits the domain Ω into the solid domain Ωs(t) and

its complement denoted by Ω \ Ωs(t). We employ the Eulerian description of the motion and

choose a fixed right-handed Cartesian system of coordinates {x = xj êj , j = 1, 2, 3}, where êj

are the orthonormal basis vectors [106]. The motion of a physical particle P is expressed by the

mapping function x = χ(X, t) between its reference coordinates {X = Xj êj , j = 1, 2, 3} at an

initial time t = t0 and its current coordinates x at a subsequent time t > t0 (see Fig. 7.1). We

assume that the function χ(X, t) is sufficiently differentiable and single valued with the region

Ωs(t). From an Eulerian viewpoint, the spatial velocity field v(x, t) gives the velocity of the
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Figure 7.1: Schematic diagram of the domain and its evolution under an applied traction. The
moving interface Γ(t) at any time t separates the solid domain Ωs(t) from its complement Ω \
Ωs(t).

particle located at x at time t and is defined as

v =

(
∂χ

∂t

)
X

=

(
∂x

∂t

)
X

= g [x(X, t), t] , (7.1)

where g is a sufficiently differentiable function. The deformation of a solid particle is described

by the tensor given by F =
∂x

∂X
. The isochoric part of this tensor F̂ is given by:

F = J−1/3 F̂, (7.2)

where J = det [F] is the Jacobian determination of the deformation. The rate of change of the

deformation gradient is given by,

Ḟ =
dF

dt
=

d

dt

(
∂x

∂X

)
=

(
∂v

∂x

)
·
(
∂x

∂X

)
= LF, (7.3)

where
d

dt
denotes the material time derivative and L =

∂v

∂x
= (∇v)T is the velocity gradient

with respect to the current coordinates. We note here that the superscript T is used for the

transpose of a tensor. The above equation can be split into its volumetric and isochoric parts

as,

dF̂

dt
=
∂F̂

∂t
+ v · ∇F̂ =

[
L− 1

3
(∇ · v)I

]
F̂, (7.4)

dJ

dt
=
∂J

∂t
+ v · ∇J = J ∇ · v, (7.5)
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where ∇ =
∂

∂xj
êj is the spatial gradient operator, I is the second order identity tensor and ·

denotes the dot product.

7.1.2 Strong from

The strong form of the governing equations, which include both mechanical equilibrium and

transport equations, can be written in the elastic body in Ωs(t) as [53]:

∇ · σ + ρf = 0, (7.6)

dJ

dt
− J∇ · v = 0, (7.7)

dF̂

dt
−
[
∇v − 1

3
(∇ · v)I

]
F̂ = 0, (7.8)

where σ is the Cauchy stress tensor and f the body force per unit volume in the current config-

uration. The above equations are subjected to the following boundary and initial conditions:

v = v̄ on ΓD
v , (7.9)

n · σ = t̄ on ΓN
v , (7.10)

F̂(t = 0) = I in Ωs(0), (7.11)

J(t = 0) = 1 in Ωs(0), (7.12)

where ΓD
v and ΓN

v represent the Dirichlet and Neumann parts of Γ for the boundary conditions

on velocity and traction, respectively.

Remark 1 If the transport equations (7.7) and (7.8) are discretized using an Eulerian descrip-

tion, one needs to specify boundary conditions on F̂ and J , in addition to initial conditions

(7.11) and (7.12). To simplify our analysis, we propose here to use a Lagrangian (particle)

description to update F̂ and J and does not necessitate the use of above boundary conditions.

Ultimately, the formulation only requires initial conditions on F̂ and J .
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7.1.3 Constitutive equations

To model the large deformations of the compressible hyperelastic domain, we consider the

isochoric-volmetric decoupling of the strain energy function as,

W = U(J) + Ŵ (b̂), (7.13)

where b̂ = F̂F̂T = J−2/3FFT . The specific functional forms of U and Ŵ are to be chosen to

satisfy physical conditions. Herein, we assume the functions proposed by Simo et al. [143, 142]

as,

U(J) =
κ

2
[ ln(J) ]2 ,

Ŵ (b̂) =
µ

2

[
tr(b̂)− 3

]
,

(7.14)

where µ and κ represent the shear and bulk modulus of the material, respectively, and ‘tr’

denotes the trace of the tensor and b̂ = F̂F̂T . The expression for the Cauchy stress is [53],

σ(J, F̂) =
1

J

[
κ ln (J)I + µ dev(b̂)

]
(7.15)

where dev(b̂) = b̂− 1

3
tr(b̂)I is deviatoric part.

Remark 2 The above functional form for U(J) is chosen so that it satisfies several requirements

[50]. First, in the limit case when Ωs is compressed to a single point or is stretched to be infinitely

large the strain energy always tends to positive infinity, that is,

lim
J→+0

U = +∞ and lim
J→+∞

U = +∞. (7.16)

Second, the volumetric stress tends to negative infinity when Ωs is compressed to a single point

and to positive infinity when stretched to infinitely large, that is,

lim
J→+0

∂U

∂J
= −∞ and lim

J→+∞

∂U

∂J
= +∞. (7.17)
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Hence U has to be an even power of ln(J) so that U > 0 for all J .

Remark 3 As pointed out in [50] the assumed volumetric part of the strain energy function U

does not satisfy the polyconvexity because
∂2U

∂J2
< 0 for ln(J) > 1, that is, for all J > e where

e is Euler’s number. However, this inconsistency is not a issue in the current work as all our

investigations are carried out for J < e.

7.1.4 Weak Form

Introducing the test functions w, integrating by parts and using the divergence theorem, the

weak form of the equilibrium equation in the elastic domain can be written as: find v ∈ V for

all w ∈ V0 such that,

− (∇w,σ)Ωs − (w, t̄)ΓN
v

+ (w, ρf)Ωs = 0, (7.18)

where the notation (·, ·)Ωs indicates the L2 inner product with respect to the domain Ωs, and V

and V0 are spaces of sufficiently smooth functions for the continuous fields and their variations.

By construction, we also require that the test function w vanishes on the Dirichlet boundaries.

We do not write the weak form for the transport equations (related to F̂ and J) because we will

use an explicit scheme to update of the variables for each Lagrangian particle, individually, as

described in Section 7.2.5.

7.2 Solution strategy

We now present a novel numerical strategy that couples the Eulerian and updated Lagrangian

formulations with the objective of evolving the moving interface on a fixed Eulerian grid. For this

the solid boundary Γ is represented by a evolving level set function across which a discontinuity in

velocity and deformation is described using the extended finite element method. The interface

describing the deformed shape of the elastic body is moved in an incremental manner until

equilibrium. For any increment, the method consists in computing the velocity field v in the

current domain Ωs(tn) by solving the equilibrium equation (7.18). The field variables F̂ and J are
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then updated point-wise by using an explicit updated Lagrangian mapping algorithm between

the material configurations at the current and next increments (denoted by pseudo-time steps

tn = t and tn+1 = t+dt, respectively). Between these increments the interface is moved using the

particle-based moving interface method. In the following sections, a more detailed description

of the methodology is presented.

7.2.1 Level-set representation of the solid interface

Mathematically, we here represent the boundary Γ(t) of the solid domain with the level set

function φ defined as,

Γ = {x ∈ Ω | φ(x, t) = 0}, (7.19)

so that φ < 0 inside the solid domain Ωs(t) and φ > 0 outside the solid domain Ω \ Ωs(t).

Although there are several choices for φ, for stability, we choose it to be the signed distance

function defined by:

φ(x, t) = ±min
x′∈Γ
||x− x′|| for all x ∈ Ω. (7.20)

Practically, the function φ can be reinitialized at every increment using the locations of the

interface in order to maintain the properties of the signed distance function. When the interface

is described by particles, the reinitialization procedure is discussed in [98]. A more detailed

description of the implementation of the interface evolution algorithm will be given later in this

chapter (section 7.2.4).

Remark 4 We note here that the level set method (LSM) [138] may also be used for evolving

the interface in time. However, the GPM [98] employed here provides an attractive solution to

explicitly track Lagrangian particles on the solid boundary instead of resorting to solving a level

set evolution equation.

7.2.2 The extended finite element approximation

Following an Eulerian approach, a fixed and structured finite element discretization is introduced

for the entire physical domain Ω (including the space that does not belong to the solid body).
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The boundary of the body Ωs is then defined with a multi-segment closed surface Γ that cuts

through some of the elements. Since the field variables, namely, v, F̂ and J have non-zero values

in Ωs but identically vanish in Ω\Ωs(t), field discontinuities naturally occur across Γ. To handle

this issue, we employ the extended finite element method (XFEM), as it is able to capture the

presence of discontinuities within elements and thus render the discretization of the interface Γ

easy and computationally efficient. We adopt a mixed formulation wherein the velocity field v is

interpolated with nine-node (biquadratic) element shape functions and the isochoric part of the

deformation gradient F̂ and its Jacobian J are interpolated with four-node (bilinear) element

shape functions (see Figure 7.2). This reads:

vi(x, t) =

9∑
I=1

N I(x)vIi (t) +

9∑
I=1

N I(x)SI(x, t)aIi (t), (7.21)

F̂ij(x, t) =
4∑
I=1

N̂ I(x)F̂ Iij(t) +
4∑
I=1

N̂ I(x)SI(x, t)DI
ij(t), (7.22)

J(x, t) =
4∑
I=1

N̂ I(x)JI(t) +
4∑
I=1

N̂ I(x)SI(x, t)CI(t), (7.23)

where N I and N̂ I denote the 9-node element and the 4-node element Lagrange shape functions,

respectively; the superscript index I is used for node numbering and the subscript indices i, j

are used for numbering the Cartesian components; vI , F̂I , JI denote the standard degrees of

freedom (DOFs) and aI , DI CI denote the corresponding enriched DOFs at node I, respectively;

the step enrichment function SI at enriched node I used to incorporate the jump discontinuity

in the fields is defined as,

SI = H (φ(x, t))−H
(
φ(xI , t)

)
(7.24)

and the Heaviside function H is defined as,

H(φ(x, t)) =

 1 φ > 0,

0 φ < 0.
(7.25)
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Note that the level set function φ is continuous across the interface and so that it can be

interpolated using the shape functions N I and N̂ I .

Figure 7.2: Illustration of the mixed extended finite element and the location of the degrees of
freedom. Circles (◦) show the location of bilinear element nodes and crosses (×) show the location of

biquadratic element nodes. The interface cutting through the element is represented implicitly using the

level set function φ.

Remark 5 Previously, Duddu et al. [53] proposed the above mixed formulation to ensure

stability in the case of nearly incompressible elastic solids (e.g. rubber with Poisson’s ratio

ν = 0.48 − 0.5. However, even for a compressible solid, the mixed formulation results in better

accuracy and hence requires less number of iterations to reach the tolerance limit for the residual.

In this study, we reduce the dimension of the domain by considering that it is uniform in

the x3 direction (plane strain conditions apply). This implies that v3(x, t) = 0, F33(x, t) = 1,

F13(x, t) = F32(x, t) = 0; this allows us to not consider them as nodal degrees of freedom (DOFs)

in our analysis. Moreover, for clarity, we write the linear system in the following matrix form:


v(x, t) = N̄v(x, t)v̄(t),

F̂(x, t) = N̄F̂(x, t)F̄(t),

J(x, t) = N̄J(x, t)J̄(t).

(7.26)

Here, the shape function matrices N̄v, N̄F̂ and N̄J and element vectors v̄, F̄ and J̄ contain

both standard and enriched DOFs and are defined as:
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nodal DOFs



v̄ = [v̄reg; v̄enr]36×1 ,

v̄reg =
[
v1

1, v
1
2, ... v

9
1, v

9
2

]T
18×1

; v̄enr =
[
a1

1, a
1
2, ... a

9
1, a

9
2

]T
18×1

F̄ =
[
F̄reg; F̄enr

]
32×1

,

F̄reg =
[
F̂ 1

11, F̂
1
22, F̂

1
12, F̂

1
21, ... F̂

4
11, F̂

4
22, F̂

4
12, F̂

4
21]T16×1,

F̄enr =
[
D1

11, D
1
22, D

1
12, D

1
21, ... D

4
11, D

4
22, D

4
12, D

4
21

]T
16×1

J̄ =
[
J̄ reg; J̄enr

]
8×1

,

J̄ reg =
[
J1, ... J4]T4×1; J̄enr =

[
C1, ... C4

]T
4×1

,

(7.27)

shape functions



N̄v =

[
Nreg

v , Nenr
v

]
2×36

N̄F̂ =

[
Nreg

F , Nenr
F

]
4×32

N̄J =

[
Nreg
J , Nenr

J

]
1×8

(7.28)

with

Nreg
v =

[
N1

v, ...,N
9
v

]
2×18

,Nenr
v =

[
S1N1

v, ...,S9N9
v

]
2×18

Nreg
F =

[
N1

F, ...,N
4
F

]
4×16

,Nenr
F =

[
S1N1

F, ...,S4N4
F

]
4×16

Nreg
J =

[
N̂1, ..., N̂4

]
1×4

,Nenr
J =

[
S1N̂1, ...,S4N̂4

]
1×4

and NI
v =

 N I 0

0 N I

, NI
F =



N̂ I 0 0 0

0 N̂ I 0 0

0 0 N̂ I 0

0 0 0 N̂ I


.
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7.2.3 Linearization of the equilibrium equation

The discretized form of the equilibrium equation can be written from the weak form (7.18) by

introducing the XFEM approximation. Neglecting body forces, the element residual vector is

given by,

Rv = −
∫

Ωe

BT
v σ̃ dΩ−

∫
Γe
v

N̄T
v t̄ dΓ, (7.29)

where Ωe is the part of the domain Ωs contained in the finite element e, Γev is the segment of the

Neumann boundary ΓN
v intersecting the element e. Furthermore, σ̃ = [σ11, σ22, σ21, σ12]T4×1

is the symmetric Cauchy stress matrix, t̃ = [t̄1, t̄2]T2×1 is the surface traction vector and the

gradient matrix of the 9-node element shape functions Bv is given by:

Bv =
[
B1

v, ..., B9
v, S1B1

v, ..., S9B9
v

]
4×36

with BI
v =



∂NI

x1
0

0 ∂NI

x2

∂NI

x2
0

0 ∂NI

x1


4×2

(7.30)

Although, due symmetry it is sufficient to represent the stress tensor σ̃ as a 3×1 array in Voight

notation, for the purpose of matrix operations related to the divergence of stress in the above

residual we prefer to use 4 × 1 array. Using a Taylor’s expansion, we linearize equation (7.29)

at time tn+1 as [45] and obtain:

0 = Rv (tn+1) = Rv (tn) +

[
∂Rv

∂t

]
∆t, (7.31)

which yields: [
∂Rv

∂t

]
= − 1

∆t
Rv (tn) , (7.32)

Using the transport equations (7.7) and (7.8) together with the constitutive relation (7.15), the

above equation can be written in the form of a linear system as [53]:

Kv(tn)v̄(tn+1) = − 1

∆t
Rv(tn), (7.33)
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where Kv is the consistent tangent stiffness matrix. The discretization of the domain integrals

using the extended finite element approximation for obtaining the tangent matrix Kv is described

in 7.4.

7.2.4 The grid based particle method

To track the deformation of the interface Γ, we propose to use a grid based particle method

similar to what was introduced in [98]. This method indeed possesses the double advantage of

tracking the interface explicitly with particles while using the underlying fixed finite element

mesh; this ensures a fairly uniform repartition of the particles throughout the interface. Herein,

we review the basic idea behind the particle based moving interface method and discuss the

procedure to update of the interface position and deformations measures within the current

numerical scheme. The interface particles on Γ, whose position is denoted by the vector y, are

Figure 7.3: Grid particle scheme . Figure (a) shows the one to one correspondence between the
particles and the nodes inside the computational tube, while (b) shows the local basis, centred on
the particle y0 closest to the node considered p.

chosen as the normal projection of the underlying mesh nodes with position vector p. Since

the interface is initially described implicitly as the zero level set of a signed distance function

φ(p, 0) at initial time t = t0, its value gives the perpendicular distance between mesh point

and interface point. Considering that the gradient of level set function gives the local interface
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normal, the initial coordinates of particles y are given by [98]:

y = p− φ(p, 0)n = p− φ(p, 0)∇φ(p, 0) (7.34)

Note that the above expression is only valid when ‖∇φ‖ = 1, that is, when φ is a signed distance

function. To limit the number of particles, we define a so-called computational tube such that

only nodes p, whose distance to Γ is smaller than a cut-off value λtube, are taken into account

(see Fig. 7.3(a)).

Remark 6 It is important to note here that there is a one to one correspondence between each

particle y and node p, thus, providing each interface particle an Eulerian reference mesh point.

This ensures a quasi-uniform repartition of particles along the interface throughout its evolution

and avoids the need for node point redistribution schemes, unlike the standard marker particle

methods [67]

Between two subsequent time steps tn = t and tn+1 = t + dt, the particles are moved with

the normal interface velocity v⊥ = (v · n)n using a second order Runge-Kutta time integration

procedure as follows:

yt+dt/2 = yt + v⊥(yt, t)
dt

2
+ Ω · v⊥(yt), t

dt2

4
(7.35)

yt+dt = yt + v⊥(yt+dt/2, t)dt+ Ω · v⊥(yt+dt/2, t)
dt2

2
, (7.36)

where Ω is the matrix of the angular velocity of the interface normal. Introducing the local

coordinates ξ1 and ξ2 that respectively run in the directions tangent and normal to the interface

at point yt, the angular velocity can be written as,

ω = −
(
v⊥ · n

)
,ξ1

z and Ωik = εijkωj (7.37)

with the permutation tensor εijk =
1

2
(i− j)(j−k)(k− i), indices i, j, k = {1,2.3} and the normal

vector out of plane z = [0 0 1]T . The term (v⊥ · n),ξ1 indicates the derivative of the magnitude

of the normal velocity with respect to the coordinate ξ1. The relationship between the local and
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global coordinates ξ1 and y is given bellow.

After the position of the interface has been updated, the particle distribution on Γ may

become uneven, and this can affect the geometrical resolution of the interface. To overcome

this issue, the interface is ressampled after motion by recomputing the particles as the closest

points on Γ to the nodes p inside the updated computational tube (which has moved with the

interface). This is done by first approximating the interface with polynomials locally around

each particle. The procedure, explained here in the two dimensional case, is as follows: for

each node p inside the computational tube, the closest m particles yt0...y
t
m are collected at time

t, carrying with them the tangent st0...s
t
m and normal n̄t0...n̄

t
m to the interface before motion.

Denoting yt0 as the particle closest to p, a polynomial of degree n < m is fitted to the particles

yt0...y
t
m in the local coordinate system {st0; n̄t0} centered on yt0. The location ỹti of particle i in

this local coordinate system is given by:

ỹi =

 ξ1
i

ξ2
i

 = Rt · (yti − yt0) with Rt =

 (st0)T

(n̄t0)T

 . (7.38)

Taking the example of a quadratic polynomial (n = 2), the interface around particle y0 is

represented in the local referential as the graph function ξ2(ξ1) = c0 + c1ξ
1 + c2(ξ1)2, where the

coefficients c0, c1 and c2 are found by minimizing the L2 difference between the ξ2(ξ1
i ) and the ξ2

i .

The coordinates
{
ξ1, ξ2(ξ1)

}
defines a local parameterization rl(ξ1) of Γ in the neighbourhood

of yt0 (Fig. 7.3(b)):

rl(ξ1) =

 ξ1

ξ2(ξ1)

 . (7.39)

The relationship between the local parameterization rl(ξ1, ξ2) and the global parameterization

of the interface r(ξ1, ξ2) is then found via rotation and translation operations in the form:

r(ξ1, ξ2, t+ dt) = (Rt)−1 rl(ξ1, ξ2) + yt0 (7.40)

with Rt = [st0 n̄t0]T , (7.41)
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where Rt is the rotation matrix from the local basis {st0; n̄t0} to the global basis {e1; ē2}. The

parameterization r(ξ1, t + dt) can now be used to ressample the interface, i.e. recalculate the

closest point on the interface to the nodes p. This is done by minimizing the distance function

d(r(ξ1, t + dt); p) = 1/2
∣∣r(ξ1, t+ dt)− p

∣∣ with respect to ξ1. In two dimensions, the solution

can be found explicitly by solving a cubic equation. Other geometrical quantities can also be

found using the parameterization r(ξ1, t+ dt), such as the updated basis
{
st+dt, n̄t+dt

}
:

st+dt = r(ξ1, t+ dt),1 = Rt ∂rl(ξ1, t+ dt)

∂ξ1
(7.42)

n̄t+dt = st+dt × z/|st+dt × z|. (7.43)

Finally, a new level-set function φ(p, t+ dt) can be calculated as the signed distance function to

Γ at nodes p as follows [98]:

φ(p, t+ dt) = −sgn

(
yt+dt − p

|yt+dt − p|
· n̄t0
)
|yt+dt − p|, (7.44)

where yt+dt is the particle associated with p at time t+ dt and the “sgn” is the sign or signum

function. The reconstruction of the level set function using the local polynomial approximation

of the interface is computationally inexpensive, and is used in the XFEM part of the algorithm.

Let us summarize the GPM scheme in a pseudo algorithm as follows:

1. Given the initial level set function φ, find the coordinates of the particles that corresponds

to the nodes inside the computational tube (initialization step).

2. Given the velocity field vt, update the position of the particle yt to its current position

yt+dt.

3. For each particle y0, find the neighbouring particles to construct a local polynomial inter-

polation r(ξ1, t+ dt) of the surface Γ around y0.

4. Given r(ξ1, t+dt), find the new particles by projecting the nodes inside the computational

tube on the surface Γ.

5. Compute the new geometrical quantities such as the normal n̄t+dt and the level set function
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φt+dt

7.2.5 Lagrangian transport of F̂ and J

As the elastic body deforms, the material flows through the mesh, allowing finite element nodes

to come in and out of the domain Ωs. Because the interface Γ(t) describing the solid domain is

moving, the transport of F̂ and J cannot be described with a simple convection term, unlike when

the domain boundaries are fixed [53]. To overcome this issue, herein we propose to transport

deformation quantities by employing an updated Lagrangian description. It this scheme, first,

the regular degrees of freedom J̄ reg and F̄reg are updated as follows:

1. Given the velocity field vt computed with (7.33) and using the PMIM, the domain Ωs(t)

and the interface Γ(t) are updated to their new position Ωs(t+ dt) and Γ(t+ dt).

2. For each node i inside Ωs(t+dt), material particle at its spatial location xt+dti is backtracked

to its position xti at time t in accordance with the velocity field vt.

3. The fields J ti and F̂t
i known at time t are interpolated at point xti in Ωs(t) using the

extended finite element approximation.

4. Using the transport equations (7.7) and (7.8), J t+dti and F̂t+dt
i at point xt+dti are computed

as:

J t+dti = J ti (1 +∇ · vt(xti)dt), (7.45)

F̂t+dt
i = F̂t

i(I +∇vt(xti)dt−
1

3
∇ · vt(xti)Idt), (7.46)

and assigned to the new regular degrees of freedom J̄ reg
i = J t+dti and F̄reg

i = F̂t+dt
i .

At the end of step 4, the regular degrees of freedom J̄ reg and F̄reg have been updated at each

node inside the new domain Ωs(t+dt). However, since the interface has moved, the intersection

between Γ and the underlying mesh has changed and the enriched degrees of freedom J̄enr and

F̄enr have to be updated as well. This is done by solving the following equations in the elements
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cut by Γ:

J t+dt − J̃ = 0 ∀ x ∈ ΩΓ, (7.47)

F̂t+dt − F̃ = 0 ∀ x ∈ ΩΓ, (7.48)

where ΩΓ is the ensemble of the elements Ωe that are cut by Γ. The terms J̃ and F̃ are the

updated values of the fields, which can be calculated at any points x inside element cuts by Γ

using equations (7.45) and (7.46). The weak form of the above equations read,

(
wJ , (J t+dt − J̃)

)
ΩΓ

= 0, (7.49)(
wF , (F̂t+dt − F̃)

)
ΩΓ

= 0, (7.50)

and the corresponding discretized forms of are given by,

Kenr
J J̄enr

g = Renr
J , (7.51)

Kenr
F F̄enr

g = Renr
F , (7.52)

where J̄enr
g and F̄enr

g are the unknown global vectors of all enriched degrees of freedom; the global

tangent matrices are given by,

Kenr
J =

∑
e

∫
Ωe

(Nenr
J )T Nenr

J dΩe, (7.53)

Kenr
F =

∑
e

∫
Ωe

(Nenr
F )T Nenr

F dΩe; (7.54)

tand the residuals matrices are given by,

Renr
J =

∑
e

∫
Ωe

(Nenr
J )T

(
J̃ −Nreg

J J̄ reg
)

dΩe, (7.55)

Renr
F =

∑
e

∫
Ωe

(Nenr
F )T

(
F̃−Nreg

F F̄reg
)

dΩe. (7.56)
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In the above equations
∑
e

indicates the matrix assembly of the global system from the element

matrices. Thus, the idea here is to simply calculate the enriched DOFs by performing the

L2 projections (7.49) and (7.50) [111] such that the deformation field quantities are accurately

described in the elements cut by the interface.

7.2.6 Algorithm

The numerical strategy progressively converges towards equilibrium by solving a series of pseudo

steady states of flow until the velocity vanishes everywhere in the domain. The initially non-

linear problem is decomposed in linear momentum and transport equation that are solved in a

staggered way as follows:

1. At time t = 0, F̂(0) = I and J(0) = 1

2. In the elastic domain Ωs(t), given F̂t and J t, compute vt+dt by solving (7.33).

3. Given vt+dt, update the position of Γ, which yields the new domains Ωs
t+dt.

4. Given vt+dt and Ωs(t + dt) compute regular and enriched nodal degrees of freedom for

F̂t+dt and J t+dt.

5. if ||F̂t+dt− F̂t|| < TolF and ||J t+dt− J t|| < TolJ and ||vt+dt|| < Tolv, end of computation.

Else, set t = t+ dt and go to step 2.

7.3 Numerical Examples

In this section, we present two numerical studies aimed at validating the CEL formulation

using 1D theoretical results for uniaxial tension and simple shear loading. Next, we consider a

macroindentation test typically used to characterize hydrogels and validate our numerical results

with those from the standard Lagrangian formulation in Abaqus. Finally, we study the case of

extreme deformations by simulating the lateral compression of a soft cylinder to demonstrate

the capability of the CEL formulation.
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7.3.1 Uniaxial extension of a rectangular bar

Let us consider a rectangular domain of dimensions 0.2 m (width x1) × 0.25 m (depth x2)

containing a soft hyperelastic solid that is of dimensions 0.2 m × 0.11 m. We assume that the

solid, characterized by a Young’s modulus EY = 15.0 MPa and Poisson’s ratio ν = 0.25, is

fixed at the top end and subjected to normal traction of t̄ = −2ê2 MPa at the bottom end (see

Figure 7.4). The sides of the solid are constrained in the horizontal direction so that deformation

gradient component F11 = 1 at all times. We discretize the domain using square (9-node and

4-node) finite elements of size h = 0.0125 m. We neglect the effect of gravity and assume zero

body forces. The boundary and initial conditions of this simplified benchmark problem are:

Figure 7.4: Schematic diagram of the uniaxial extension of a soft rectangular bar. A traction of
t̄ = −2 MPa is applied to the end of the bar to deform it elastically.

t̄ = 2ê2 on Γ,

v1(x1 = −0.1, x2) = v1(x1 = 0.1, x2) = 0,

v(x1, x2 = 0) = 0,

v(x, t = 0) = 0.


(7.57)

As soon as the traction is applied at pseudo-time t = 0, the material in the solid domain

moves downwards with a non-zero velocity v and consequently the solid elongates in the x2
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direction. The vertical component of the velocity field v2 is negative (downward motion) and

varies linearly in the x2 direction as shown in Figure 7.5. With each pseudo-time step (or

iteration) the component v2 decreases and eventually the solid reaches its equilibrium state

when v2 → 0.

Figure 7.5: Numerical results from the CEL formulation for the downward flow of material under
applied uniaxial tension.

Next, we investigate the performance of the mixed formulation for simulating compressible

hyperelastic behavior for ν = 0 and ν = 0.25 using three different finite element (FE) interpo-

lation strategies:

1. Bilinear: 4-node FE interpolation of v, F̂ & J

2. Biquadratic: 9-node FE interpolation of v, F̂ & J

3. Mixed: 9-node FE interpolation of v and 4-node FE interpolation of F̂ & J

In the case of uniaxial extension in x2, we have J = F22 > 1, since F11 = F33 = 1 and all

other components of F vanish. Therefore, it is sufficient to only observe the behavior of F22

from t = 0 until equilibrium. In the following figures, we plot the variation of F22 in the x2

direction at every 50 iterations. Note that the length of the solid increases and the change in F22

decreases with each iteration as we approach equilibrium. We can see from Figure 7.6 that for
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ν = 0 the bilinear and mixed interpolation strategies work equally well, whereas the biquadratic

interpolation strategy suffers from spurious oscillations close to the traction boundary. From

Figure 7.6 we can observe that for ν = 0.25 both the bilinear and biquadratic interpolation

strategies suffer from spurious oscillations, whereas the mixed interpolation strategy is least

affected. This study demonstrates that the mixed interpolation strategy leads to better accuracy

and stability compared to the uniform interpolation strategies.

We next investigate the accuracy of the scheme by comparing the analytical and numerical

equilibrium stress versus deformation curves. Using the constitutive law given in equation (7.15),

we can derive the analytical expression for the Cauchy stress component σ22 as,

σ22 =
1

F22

[
κ log(F22) +

2

3
µF
−2/3
22 (F 2

22 − 1)

]
(7.58)

Now, for different values of applied normal traction t̄ · ê2 = σ22 ∈ [−4 4] MPa we numerically

evaluate the equilibrium value of F22 for three different values of Poisson’s ratio ν = 0, 0.25 and

0.45. These numerical results are then plotted as a scatter over the analytical solution (solid

lines) given in (7.58). The excellent match of the numerical results with the analytical solution

in Figure 7.7(a) illustrates the accuracy of the method. We also evaluate the variation of the

error in the reference (initial) volume of the solid at each iteration to check for the conservation

of mass. The initial volume V (0) = 0.044 m3 and at each iteration (i) we can calculate the

percentage error as,

ε(i) =
V (0) − V (i)

V (0)
× 100, where V (i) =

∫
Ωs

1

J (i)
dV. (7.59)

The variation of ε(i) with iterations is plotted in Figure 7.7(b). As we can see the error initially

oscillates and after 500 iterations or so it gradually reaches a steady state. However, it is

important to note that percentage error ε(i) < 0.06 (i.e. error is 0.0006) indicating that the

scheme is quite accurate in conserving the mass of the elastic solid. Since the volume error is

so low at all times, the convergence criterion is based on the L2 error in velocity or deformation

gradient.
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Figure 7.6: Performance of the mixed element formulation for uniaxial tension test. Variation
of F22 along the length of domain is shown for bilinear, biquadratic and mixed formulation for
two compressible materials with Poisson’s ratio ν=0 (left column) and ν=0.25 (right column).

7.3.2 Simple shear of a rectangular block

Let us now study the shear flow of a solid under applied shear traction. Once again, we consider

a rectangular domain of dimensions 0.2 m × 0.25 m and solid domain of dimensions 0.2 m ×
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Figure 7.7: Validation and error analysis of numerical results from the CEL formulation for
uniaxial tension test

0.11 m. The domain is discretized with an element size h = 0.0125 m. We assume the Young’s

modulus EY = 15.0 MPa and Poisson’s ratio ν = 0.25. The solid is fixed at the top end

and subjected to shear traction of t̄ = −0.4ê1 MPa at the bottom end. On the left and right

boundaries, we impose zero velocity in the e2 direction to strictly prescribe horizontal shear

flow. The boundary and initial conditions of this simplified benchmark problem are,

t̄ = −0.4ê1 on Γ,

F̂(x1 = −0.1, x2 ≤ 0.11) = F̂(x1 = 0.1, x2) = I,

J(x1 = −0.1, x2) = J(x1 = 0.1, x2) = 1,

v(x1, x2 = 0) = 0,

v(x, t = 0) = 0.


(7.60)

We discretize the domain using the mixed interpolation strategy as discussed in the previous

section with an element length of h = 0.0125 m in both x1 and x2 directions. Due to the applied

shear, the material flows from right to left as shown in Figure 7.8a, so the velocity is negative.

In the case of simple shear flow in x1 direction, we have F12 > 0, F22 = F11 = F33 = 1 and all

other components of F are zero. Therefore, it is sufficient to only observe the behavior of F12

from t = 0 until equilibrium.

We next plot the match between the analytical and numerical equilibrium stress versus
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Figure 7.8: Numerical results from the CEL formulation for the shear flow of material under
applied shear traction. The results are in agreement with theory, thus, validating our scheme.

deformation curves. From the constitutive relation in equation (7.15), we can write the analytical

expression for the Cauchy stress component σ12 = µF12. For four different values of applied

shear stress, we plot the numerical results (scatter) against the analytical solution (solid line)

in Figure 7.8(b). We observe an excellent agreement between theory and simulation with a

linear response in the applied stress range. Since shear flow is isochoric, the error in volumetric

deformation identically vanishes.

7.3.3 Indentation of a rounded rectangular solid

Let us consider a rounded rectangular solid made up of the same soft material as in the previous

example (EY = 15.0 MPa and ν = 0.25). The dimensions of the straight portion of the rounded

rectangle is 3.5 cm × 0.92 cm and the rounded edges are semicircles with radius 0.46 cm. The

solid domain and test configuration are chosen to mimic a hydrogel placed onto a relatively rigid

substratum, typically seen in tissue printing. The total computational domain is 5.2 cm × 1.2

cm that is discretized using an element size h = 0.1 cm. A Gaussian-shaped vertical pressure

field with amplitude p (MPa) is prescribed on the top surface centered at mid-span as follows:

p(x1) = p0 exp (−x2
1/α

2) (7.61)
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where α = 0.25 cm is the standard deviation and represents the spread of the applied pressure

around the central point. The solid is restrained in the x1 and x2 directions on the bottom

surface. It is important to note that the bottom surface is restrained in the x1 and x2 directions

by enforcing these Dirichlet conditions on the underlying grid nodes that are closest to the

interface, and not on the interface itself. In order to limit the error created in doing so, we

position the rounded rectangle such as its bottom interface remains very close to the nodes

of the underlying mesh. Alternatively, Dirichlet boundary conditions can easily be enforced

directly on the interface with the use of Lagrange multipliers. The geometry and the boundary

conditions are illustrated in the Figure 7.9. The initial undeformed shape and the final or

equilibrium deformed shape of the solid under an applied pressure amplitude of p0 = 6 MPa are

shown in Figures 7.10a and 7.10b. The surface plot of the Jacobian determinant J in Figure

7.10b shows that the material experiences compression at the center (J < 1) and some tension as

we move towards the ends; however, far away from the center the material is unstressed J = 1.

Figure 7.9: Schematic diagram of the indentation of soft solid. A Gaussian type pressure load
is applied to simulate the contact between a rigid indenter and the solid. At the bottom the solid
is allowed to slip, however, due to symmetry the center node is pinned.

To benchmark our simulation, we analyzed the problem with a fully Lagrangian finite element

formulation (using the software Abaqus with the UHYPER subroutine). For p0 = 6 MPa, the

deformed shape of the top surface of the solid and the variation of J obtained from Abaqus and

our coupled Eulerian-Lagrangian (CEL) formulation are plotted against each other in Figure

7.11a and Figure 7.11b, respectively. The maximum error in the displacement of the top surface

δ is 1.28 % and the maximum error in Jacobian J along the free surface is 0.39 %. Next, we

check the mass conservation behavior of the CEL implementation by plotting the error in mass
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Figure 7.10: Numerical results showing the Jacobian determinant of the deformation and the
shape evolution of a soft rounded rectangular solid for p0 = 6 MPa during indentation.

εmass with iterations or pseudo-time steps, as given in Figure 7.11c. The error increases initially,

reaches a maximum around 100th iteration and then decreases to reach a steady state value as the

equilibrium is attained. We also find that the L2 norm of error in Von Mises stress and pressure

decreases very rapidly with element size h, as shown in Figure 7.11d. Next, to demonstrate the

robustness and viability of the approach, we apply a larger pressure amplitude of p0 = 40 MPa

so as to simulate large material distortions. The final equilibrium shape of the solid is shown

in Figure 7.12a where we note that material below the load undergoes large compressive strains

with J = 0.5 ( that is, the material is confined to half it original volume). The evolution of the

solid boundary with pseudo-time is then shown in Figure 7.12b. As we can see that interface

initially moves with a high velocity and eventually reaches its final equilibrium shape after

about 150 iterations. It is to be noted that at even moderate load of p0 = 10 MPa the UHPYER

implementation in Abaqus crashed just after a few iterations due to convergence issues. For

higher loads, ALE algorithms can work; however, CEL formulations have the advantage that

it can be used to simulate extreme deformations without requiring mesh moving or remeshing

schemes.
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Figure 7.11: Validation of numerical results from the CEL formulation with the standard La-
grangian formulation in the commercial software Abaqus for the indentation of a rounded rect-
angular solid. The L2 error is calculated by taking the Abaqus solution from a very fine mesh as
the exact solution.

7.3.4 Lateral compression of a cylinder

In the previous two benchmark examples, the interface remained flat at all times. Herein, we

shall consider an example problem with a curved interface and demonstrate the ability of our

formulation to handle its evolution as the solid undergoes very large deformation. Let us consider

an elastic compressible cylinder of radius R = 0.81 cm, with EY = 15.0 MPa and ν = 0.25, which

is compressed between two planes on the top and bottom. The total computational domain is

3.2 cm × 2.4 cm is discretized using an element size h = 0.08 cm. Plane strain conditions apply

and body forces are neglected. We set up the problem with four-fold symmetry about the origin.
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Figure 7.12: Numerical results showing the Jacobian determinant of the deformation and the
shape evolution of a soft rounded rectangular solid for p0 = 40 MPa during indentation. Abaqus
UHYPER subroutine did not converge for this high load case, which demonstrates the robustness
of the current CEL formulation.

The boundary and initial conditions for this problem are,

v2(x1, x2 = 0) = v1(x1 = 0, x2) = 0,

v(x, t = 0) = 0,

F̂(x, t = 0) = I,

J(x, t = 0) = 0.


(7.62)

We define a vertical force that is applied on the portion of interface Γ that is within a certain

distance d0 = from either of the planes. This force function is defined as an exponential repulsive

force to avoid penetration between the cylinder and the two compressive planes:

 t̄(x) = (φ(x)− d0) exp((d0 − φ(x))e2 if φ(x) ≤ d0

t̄(x) = 0 if φ(x) > d0

(7.63)

where d0 represent a cut-off distance over which the repulsive force is applied, and is taken here to

be 1% of the radius of the cylinder. As the planes move closer, only a portion of solid cylinder is
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subjected to compression, which is clear from the contour plot of J in Figure 7.13. For example,

in Figure 7.13(b) we can see that the material in the center is compressed (i.e. J < 1), whereas

the material on the sides is not (i.e. J ≈ 1). As the planes move even closer the solid deforms

into a elongated shape as shown in Figure 7.13(c) and (d), when the material at certain points

is compressed to less than half its initial volume (J ≈ 0.4). Note that the planes are gradually

moved to the final position shown in Figure 7.13(d) until iteration i = 80 and then held in

position. At iteration i = 112, the velocity in the domain vanishes (less than tolerance), so the

stress in the solid is at static equilibrium. As opposed to the presented method, a Lagrangian

finite element formulation would suffer from large mesh distortion in this deformation regime.

To check whether the numerical implementation conserves mass, we consider three mesh

sizes as shown in Table 7.1 and calculate the % error in V0 after each iteration (pseudo-time

step). As expected the coarsest mesh has the highest % error of 1.6 and with the refinement of

mesh, the % error reduces to as low as 0.16.

Element size Element in X-dir Element in Y-dir % Error

0.16 40 30 1.6
0.08 80 60 0.28
0.04 160 120 0.16

Table 7.1: Percentage error in elastic body mass for different finite element mesh sizes for the
deforming cylinder under lateral compression at equilibrium.

7.4 Conclusion

We presented a stable and convergent coupled Eulerian-Lagrangian (CEL) formulation for mod-

eling the large deformations of soft compressible hyperelastic materials. The equilibrium equa-

tions are solved in an Eulerian framework and the transport equations of deformation gradient

and Jacobian determinant are solved in an updated Lagrangian framework; thus, the strategy is

exactly the opposite of that employed in an arbitrary Lagrangian-Eulerian (ALE) formulation.

The mixed element formulation, although originally proposed in [53] for handling incompressibil-

ity, is observed to improve the accuracy of the numerical scheme even in the case of compressible

media. The numerical results of uniaxial tension and simple shear studies agree well with theory
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Figure 7.13: Numerical results from the CEL formulation for lateral compression of a circular
cylinder. The cylinder is located between two rigid planes on the top and bottom that moved
towards each other so that four fold symmetry is maintained. The planes are gradually moved
to the final position shown in (d) until iteration i = 80 and then held in position. At iteration
i = 112, the velocity in the domain vanishes (less than tolerance) so that the stress in the solid
is at static equilibrium.

indicating the accuracy and feasibility of the approach. The numerical study of indentation of

a rounded rectangular block demonstrates the robustness of the implementation as compared

standard Lagrangian finite element implement in Abaqus. It is clear that the presented formu-

lation is attractive when materials undergo extreme deformation and distortions such as that

observed for very soft and visco-elastic media. It can also be an interesting strategy for model-

ing fluid-structure interactions using a fully eulerian framework. This class of problem is often

encountered in biology [159, 61, 62, 161] (e.g. in cell mechanics and growth) or in studying the

mechanics of soft-matter [42, 188, 97].
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Appendix: Element tangent matrix for the equilibrium equation

In equation (7.33), the tangent matrix corresponding to the linear system obtained by discretiz-

ing the equilibrium equation is given by,

Kv =

∫
Ωe

[
BT

v

∂σ

∂F̂

(
−∇ ˜̂

FN̄v +
˜̂
FBv −

1

3
˜̂
FB̌v

)
+ BT

v

∂σ

∂J

(
−∇J̃T N̄v + J̃B̌v

)]
dΩ (7.64)

In the above equation,

∂σ

∂J
=

1

J

[κ
J
{1 0 0 0}T − σ̃

]
4×1

∂σ

∂F̂
=



δσ1111 δσ1122 δσ1112 δσ1121

δσ2211 δσ2222 δσ2212 δσ2221

δσ1211 δσ1222 δσ1212 δσ1221

δσ2111 δσ2122 δσ2112 δσ2121


4×4

δσijlm =
µ

J

(
δliF̂jm + δljF̂im −

2

3
δijF̂lm

)
.

The tilde superscript (̃·) indicates that ∇ ˜̂
F,

˜̂
F and

˜̂
J are interpolated using the fields from the

previous time step F̂t and J t as follows:

∇ ˜̂
F =

[
BF1F̄(t) BF2F̄(t)

]
4×2

∇J̃ = BJ J̄(t)

˜̂
F =

[
N̄F1F̄(t) N̄F2F̄(t) N̄F3F̄(t) N̄F4F̄(t)

]
J̃ = N̄J J̄(t)
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and the matrices BFk, BJ , NFl and B̌v are written, for k = 1, 2 and l = 1, 2, 3, 4:

BFk =
[
B1

Fk, ..., B4
Fk, S1B1

Fk, ..., S4B4
Fk

]
4×32

B̂J =
[
B1
J , ..., B4

J , S1B1
J , ..., S4B4

J

]
2×8

NFl =
[
N1

Fl, ..., N4
Fl, S1N1

Fk, ..., S4N4
Fl

]
4×32

B̌v =
[
B̌1

v, ..., B̌9
v, S1B̌1

v, ..., S9B̌9
v

]
1×36

with

BI
F1 =



∂N̂I

∂x1
0 0 0

0 ∂N̂I

∂x1
0 0

0 0 ∂N̂I

∂x1
0

0 0 0 ∂N̂I

∂x1


4×4

BI
F2 =



∂N̂I

∂x2
0 0 0

0 ∂N̂I

∂x2
0 0

0 0 ∂N̂I

∂x2
0

0 0 0 ∂N̂I

∂x2


4×4

BI
J =

[
∂N̂I

∂x1

∂N̂I

∂x2

]
2×1

B̌1
v =

[
∂NI

x1

∂NI

x2

]
1×2

.
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NF1 =



N̂ I 0 0 0

0 0 0 0

0 0 N̂ I 0

0 0 0 0


4×4

NF2 =



0 0 0 0

0 N̂ I 0 0

0 0 0 0

0 0 0 N̂ I


4×4

NF3 =



0 0 N̂ I 0

0 0 0 0

0 0 N̂ I 0

0 0 0 0


4×4

NF4 =



0 0 0 0

0 0 0 N̂ I

0 0 0 0

0 0 0 N̂ I


4×4
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Chapter 8

A thermodynamical model for

stress-fiber organization in

contractile cells

Numerous experimental and theoretical efforts have been directed toward explaining the bio-

physical mechanisms underlying the structural reorganization of SFs in different mechanical

environments [160]. Techniques such as fluorescent staining of SFs in living cells coupled with

high spatial and temporal resolution microscopy have permitted to measure the volume fraction

and orientation of SFs when subjected to constant or cyclic stretch or to different substrate stiff-

nesses. Further experiments on epithelial cells and fibroblasts have demonstrated that contrac-

tility and SF density increase with substrate stiffness while SF alignment is strongly influenced

by substrate anisotropy [182, 66]. In addition, SFs were shown to align in or perpendicular to

the direction of maximum stretch respectively for constant or cyclic stretch [144, 88, 151]. To

explain the latter, Wang and co-workers [175] proposed a physical model in which perturbations

in the SFs strain energy are assumed to cause their disassembly, and were able to accurately

predict SFs orientations in the case of uniaxial cyclic stretch. More recently, Stamenovitch et al

[147] used the Maxwell stability criteria on the global mechano-chemical energy of the SF-FA

complex to find SFs orientation in cells subjected to constant uniaxial stretch. While those
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models were successful at capturing the alignment of SFs with respect to stretch, the effect of

the substrate stiffness was not considered.

In this chapter we formulate a general thermodynamical model that captures key mecha-

nisms of SF organization in contractile cells on substrate of variable stiffness and subjected to

arbitrary stretching conditions. The model is based on the experimental observations that SF

self-assembly and disassembly are governed by intracellular stress an strain: contractile stress

promotes assembly and stabilizes existing SFs [36, 172] while the elastic deformation of SFs

causes their disassembly [96]. We show here that by considering these two fundamental mecha-

nisms along with the viscoelasticity of SFs [93], it is possible to predict the density and principal

orientation of SFs in cells that are subjected to a variety of mechanical environments.

Figure 8.1: Mechano-chemical potential µsf,mechα in direction α as a function of strain for differ-
ent stretch frequencies (a). SFs assemble in direction α when µsf,mechα decreases, and disassemble

when µsf,mechα increases. Mechanical equilibrium at angle α(b)

8.1 Model formulation

For the purpose of this study, a cell is considered as a solution (the cytosol) in which a population

of soluble contractile units isotropically distributed (made of actin and myosin) coexist with

their polymerized form (SFs), consisting of long filaments of polar volume fraction φsfα , with α

as the angle that characterizes the direction of SFs. The chemical stability of unassembled and

assembled contractile units, respectively, may be written in terms of their respective chemical
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potentials µcu and µsfα as follows: [122, 140, 48]:

µcu = µcu0 + kΘ lnφcu (8.1)

µsfα = µsf0 + kΘ

lnφsfα + aµ

(
φsfα
φ∗

) 5
4

+ µsf,mechα (8.2)

where k is the Boltzmann constant and Θ is the absolute temperature. Note that the subscript

α denotes quantities evaluated in the α-direction. The first term in (8.1) and (8.2) denotes

the reference chemical potential while the second term represents the entropy of configuration.

The overlapping volume fraction φ∗ and the aµ coefficient are correction terms for the mixing

entropy of semi-dilute polymers which have not been determined for actin solutions. They are

neglected in the present work since their role is not expected to impact the general results of

this study. To capture the influence of stress and strain on SF stability, the chemical potential

µsfα possesses a mechanical contribution µsf,mechα [122] :

µsf,mechα =
Vcu
T

∫ T

0

(
−σ∗εα +

1

2
Esf (ω)ε2

α

)
dt (8.3)

where T is a stretch cycle period and Vcu is the volume of a contractile unit. The first term in the

integral corresponds to the lost free energy due to acto-myosin contraction ( σ∗) and captures the

fact that contractility has a stabilizing effect on SFs, as found in experimental studies [36, 172].

In contrast, the second (positive) term contributes to SFs dissociation due to an increase in their

elastic energy during stretch εα in direction α. Furthermore, a key component of the proposed

model is the dependency of elastic modulus Esf on the stretching frequency ω to capture the

viscoelasticity of SFs. Here, we describe SF stiffening with loading frequency ω with a function

Esf (ω) of the form [171]:

Esf (ω) = El + Ev log(1 + 9ω) (8.4)

where El and Ev characterize the static and dynamic stiffnesses of SFs at frequency ω = 1Hz,

respectively. Without loss of generality, we assume here that cells are subjected to sinusoidal

strain variation εα = ε̄α + ε̃α cos(2πt/T ) which, when substituted in Eq.(8.3) leads to the fol-
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lowing mechano-chemical potential:

µsf,mechα =
(El + Ev log(1 + 9ω))

2

(
ε̄2
α +

ε̃2
α

2

)
− σ∗ε̄α (8.5)

The above expression describes how contractile stress as well as static and cyclic stretch influ-

ences the chemical stability of SFs (Fig.8.1.a.). At high frequency (1 Hz cyclic stretch), SFs

appear stiffer and the disassembling elastic energy 1/2ESF (ω)ε2
α is predominant over the con-

tractile work. A rise in the stretch amplitude therefore increases the mechano-chemical potential

µsf,mechα and has a disassembling effect on the SFs. Inversely, at a low frequency (ω → 0), softer

SFs emphasizes the stabilizing role of contractile stress σ? resulting in SF stabilization with

increasing stretch. However, as stretch increases above a critical value at which µsf,mechα is mini-

mum (εcritα = σ∗/El), the stored elastic energy becomes dominant and SFs fall into a disassembly

regime.

To assess the behavior of our thermodynamical model, we consider a system made of a confluent

population of cells adhering to a homogeneously deforming thin substrate (Fig.8.1.b) whose lin-

ear elasticity is governed by its Young’s modulus E and Poisson’s ratio ν. In these conditions,

the state of any material point in the system is given by chemical and mechanical equilibrium

as:

(a) µsfα = µcu ∀α ∈ [0, π] , (b)
∑

β=s,sf

σβ = σ̄ (8.6)

where σ̄ denotes the externally applied stress and the internal stress arises from a combination

of substrate elasticity and SF contractility. Following standard elasticity theory, the components

of the substrate stress are written as σsij = E/(1 + ν)εij +Eν/((1 + ν)(1− 2ν))δijεkk, where δij

is the Kronecker delta. In contrast, the directional SF stress is evaluated in specific direction α

and is comprised of both a contractile and a passive elastic components weighted by the polar

volume fraction as follows: σsfα = φsfα (σ? + Esf (ω)εα). Using expressions (8.1) and (8.2) in

(8.6) and invoking mass conservation between SF and unassembled contractile units allows us
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to solve for the volume fraction of SF and soluble contractile units as follows:

φsfα = φcu exp

(
−µ

sf
0 − µcu0 + µsf,mechα (εα)

kΘ

)
(8.7)

φcu = φ− 1

π

∫ π

0
φsfα dα (8.8)

where φ is the total volume fraction of contractile units (assembled and unassembled) in the

cell (taken to be 5% in this chapter). These nonlinear equations can be solved numerically to

determine the direction and density of SF in cell’s subjected to various mechanical environments.

In our computations, a set of commonly accepted material parameters was chosen: the temper-

ature is 310K, the SF stiffnesses El and Ev are 100kPa [89] and the isometric contractile stress

generated by a SF through acto-myosin interaction σ? is estimated to be 10kPa (obtained with

a tensile force of 300pN and a cross sectional area of 0.03 µm2). Furthermore, SF contractile

units are of the same length of a SF sarcomere (1µm), and of diameter 10nm. The difference

in the reference chemical potential µsf0 − µcu0 is set to −4kΘ such that the average force on

micropillars generated by the isotropic contractile stress of the cell σc = φsfσ∗ on a very stiff

substrate matches the one from [66], i.e ' 10− 11nN :

Figure 8.2: Effect of an isotropic substrate stiffness increase on cell contractility as predicted by
(a) the model and (b) experimental methods [66]. (c) schematic representation of experimental
set up in [66], with Np ' 100.
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8.2 Model prediction of SF distribution

8.2.1 Effect of substrate stiffness

We now propose to use the model to investigate the influence of substrate stiffness on cell

contraction; which was shown to be significant in contracting fibroblasts for instance [182, 66].

Considering a free-standing isotropic substrate (σ̄ = 0) of thickness hs and writing the projection

of the mechanical equilibrium Eq. (8.6b) in the α− direction, the strain εα is found to be:

εα =
−φsfα σ?hsf

Ehs/ ((1 + ν)(1− 2ν)) + φsfα Esf (ω)hsf
(8.9)

where hSF denotes the thickness of SFs. Using Eq.(8.9) in Eq.(8.7) and Eq.(8.8), one can find

the density φsfα and contractile stress φsfα σ? in terms of substrate stiffness E. The model pre-

dicts a pronounced nonlinear relation between contractile stress φsfα σ? and substrate stiffness

(Fig.8.2a), characterized by an asymptotic value which corresponds to SF volume fraction of

4% for very large substrate stiffness. This behavior is explained by the fact that contractile

strain −εα decreases with substrate stiffness, which induces SF stabilization at high stiffness

(see Fig.8.1.a.). The predicted isotropic SF volume fraction and stiffness-contraction relation

qualitatively matches with experimental trends [66] as shown in Fig.8.2b. Note that the discrep-

ancy between the initial slopes of the curves likely arises from phenomena that are not accounted

for in the present model, including bio-chemical signals and the strain dependency of sarcomere

contraction.

8.2.2 Effect of constant stretch

Let us now turn to the case where cells are subjected to substrate deformation. Experimentally,

SFs in contractile cells such as fibroblasts or myofibrils have been shown to preferably align in

the direction of stretch for constant loading [127, 144] and perpendicular to it for cyclic loading

(around a frequency of 1 Hz) [88]. To replicate the constant substrate stretch condition, we

impose a state of uniaxial strain ε̄11 to the substrate such that the angular stretch in a cell

is written εα = ε̄α = ε̄11

(
(1 + ν) cos2(α)− ν

)
. This expression is then substituted in Eq.(8.7)
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Figure 8.3: The effect of constant stretch on the volume fraction of SF φsf0 in direction α =
0 is shown in figure (a), and (b) shows the orientation and disassembly of myofibrils (when
overstretched) [144] with the arrows representing the direction of stretch. Figure (c) is the
angular distribution.

and Eq.(8.8) to derive the angular variation of SF density φsfα . As shown in Fig.8.3, the model

predicts a strong alignment of SFs in direction of stretch (Fig.8.3c). However, once the critical

strain is reached, SFs lose stability and start disassembling with stretch. This behavior can

be understood by observing the curve corresponding to ω = 0Hz in Fig.8.1.a. where µsf,mechα

successively goes through assembling and disassenbling phases (Fig.8.3a) as strain increases; and

has been experimentally observed in myofibrils (Fig.8.3b). [144, 103].

Figure 8.4: Effect of cyclic stretching for ν = 0 (b)(experimental result (a) from [88]) and ν = 0.5
(c) (experimental result (d) from [151]).
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8.2.3 Effect of cyclic stretch

In the case of cyclic stretch, the angular strain in a cell becomes εα = ε̄α + ε̃α cos(2πt/T ) with

ε̃α = ε̃11

(
(1 + ν) cos2(α)− ν

)
and ε̃11 the applied cyclic uniaxial strain. Conversely to the case

of constant stretch, experimental observations have shown that SFs align in the direction of

minimum stretch, i.e. perpendicular to the direction of cyclic stretching for a substrate’s Pois-

son’s ratio ν = 0 (no transverse compression) [88] or at a 60◦ angle for incompressible substrates

(ν = 0.5) [151] (Fig.8.4.). Indeed, introducing the cyclic stretch term ε̃α and a higher frequency

ω in Eq.(8.5) increases the SF’s viscoelastic stiffness and the contribution of the elastic energy

in the SF’s mechano-chemical potential µsf,mechα ; and results in a more convex function µsf,mechα

(curve corresponding to ω = 1Hz in Fig.8.1.a.). This causes the strain to have a disassenbling

effect on SFs and leads to high SF density in directions of minimum strain, i.e. 90◦ for ν = 0

and 60◦ for ν = 0.5. The predicted SF distributions in the case of cyclic stretching for Poisson’s

ratios of 0 and 0.5, shown in Fig.8.4., are amenable to direct comparison with the experimental

images of [88] and [151]. These results explain how SF visco-elasticity leads to two completely

different SF organizations depending on loading frequency.

8.3 conclusion

To summarize, this chapter presented a thermodynamical model that aims at describing the

formation and distribution of SFs when subjected to various mechanical stimuli. Model contri-

butions are two-folds; first by incorporating a mechanical contribution into the chemical potential

of SFs, the formulation enables a natural coupling between chemical stability and stress/strain

states in SFs. Second, the approach revealed the importance of a viscoelastic description of

SFs to accurately describe their rate-dependent behavior under constant or cyclic stretching. It

also shows that, while choosing physiological parameters consistent with experimental data, the

hypotheses by which SFs are stabilized by contractile stress and disassembled by their elastic

energy give results that concur with experimental observations in all the cases tested.
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Chapter 9

Summary and future work

In this thesis, we developed the theoretical and numerical tools to describe the complex me-

chanics of biological cells and vesicles. We presented an Eulerian formulation for immersed thin

membranes and have applied it to model problems of biological interest, such as the permeation

of soft particles through filtration membranes, or the endocytosis of nanoparticles by the cell

membrane and cell blebbing, in which the cell membrane plays a key role. We then presented an

Eulerian formulation for the mechanics of embedded soft mater. These Eulerian formulations

and numerical methods allowed us to completely remove issues such as mesh distortion associ-

ated with classical Lagrangian models when modelling large deformations. We showed that they

are perfectly adapted to the study of the mechanics of live biological cells and their constitutive

models that include constant remodelling and viscoelastic behaviors. Finally, such a constitutive

model was introduced in chapter 6, where we developed a simple thermodynamical formulation

that accounts for the formation and orientation of stress fibers.

Possible future work would first consist in incorporating a fluid in the embedded soft mater

problem, as the present numerical implementation only accounts for the deformation of an elastic

body. The thermodynamical model of the formation of stress fibers would then be used within

the framework of the soft mater formulation to describe the formation and orientation of SF in

more complex geometries and loading configurations (such as a cell resting on micro-pillars) and

directly compare the results with experimental studies. The aim of this study here would be

to understand the dynamics of SF formation as they play a key role in numerous biological cell
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functions. As the numerical implementation of the immersed membrane and soft mater problem

bear many similarities and were developed using many of the same tools, the next step would

therefore consist in integrating them into one single formulation to study the filtration of cells

and vesicles through an elastic porous membrane. This particular problem has numerous appli-

cations in water filtration systems, cancerous/healthy cell sorting or drug delivery mechanisms.

The model would be able to bring insights on how deformable live cells that actively contract

and adhere can plug or filtrate trough a porous membrane.
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[114] Nicolas Moës, John Dolbow, and Ted Belytschko. A finite element method for crack
growth without remeshing. International Journal for Numerical Methods in Engineering,
46(1):131–150, 1999.

[115] H K Moffatt. Viscous and resistive eddies near a sharp corner. 18:1–18, 1963.

[116] T. Mullin, J. R. T. Seddon, M. D. Mantle, and a. J. Sederman. Bifurcation phenomena in
the flow through a sudden expansion in a circular pipe. Physics of Fluids, 21(1):014110,
2009.

[117] S Okazawa, K Kashiyama, and Y Kaneko. Eulerian formulation using stabilized finite
element method for large deformation solid dynamics. Online, 72(May):1544–1559, 2007.

[118] S. Okazawa, K. Kashiyama, and Y. Kaneko. Eulerian formulation using stabilized finite
element method for large deformation solid dynamics. Intl. J. Numer. Methods in Engrg.,
72(13):1544–1559, 2007.

[119] J E Olberding, M D Thouless, E M Arruda, and K Garikipati. IUTAM Symposium
on Cellular, Molecular and Tissue Mechanics. Stress: The International Journal on the
Biology of Stress, 16, 2010.

189



BIBLIOGRAPHY

[120] S. Osher and J. A. Sethian. Fronts propagating with curvature-dependent speed: Algo-
rithms based on Hamilton-Jacobi formulations. J. Comp. Physics, 79(1):12–49, November
1988.

[121] M. Paszek, N. Zahir, K Johnson, J. Lakins, G. Rozenberg, A Gefen, C.A. Reinhart-
King, S. Margulies, M. Dembo, D. Boettiger, D.A. Hammer, and V.M. Weaver. Tensional
homeostasis and the malignant phenotype. Cancer Cell, 8:241–254, 2005.

[122] A. Pathak, V. S. Deshpande, R. M. McMeeking, and A. G. Evans. The simulation of stress
fibre and focal adhesion development in cells on patterned substrates. J.The. Roy. Soc.
Int.., 5:507–524, 2008.

[123] Blair Perot and Ramesh Nallapati. A moving unstructured staggered mesh method for
the simulation of incompressible free-surface flows. Journal of Computational Physics,
184(1):192–214, January 2003.

[124] C Peskin. Flow patterns around heart valves: A numerical method. Journal of Computa-
tional Physics, 10(2):252–271, 1972.

[125] Charles S. Peskin. The immersed boundary method. Acta Numerica, 11(1):1–39, 2002.

[126] C.S. Peskin. Numerical analysis of blood flow in the heart.pdf. Journal of Computational
Physics, 25(1):220–252, 1977.

[127] P. P. Pirentis and K. A. Lazopoulos. On stress bre reorientation under plane substrate
stretching. Arch Appl Mech, 79:263–277, 2009.

[128] Thomas D Pollard and Gary G Borisy. Cellular motility driven by assembly and disas-
sembly of actin filaments. Cell, 112(4):453–65, February 2003.

[129] A Ponti, M Machacek, S L Gupton, C M Waterman-Storer, and G Danuser. Two distinct
actin networks drive the protrusion of migrating cells. Science, 305(5691):1782–6, 2004.

[130] Julian J Pop. Acceleration Waves in Isotropic Elastic Membranes. Archive for Rational
Mechanics and Analysis, 77(1):47–93, 1981.

[131] C. Pozrikidis. Flow-induced deformation of an elastic membrane adhering to a wall. In-
ternational Journal of Solids and Structures, 46(17):3198–3208, August 2009.

[132] C. Pozrikidis. Introduction to Theoretical and Computational Fluid Dynamics. Oxford
University Press, Oxford, 2011.

[133] W Rawicz, K C Olbrich, T McIntosh, D Needham, and E Evans. Effect of chain length
and unsaturation on elasticity of lipid bilayers. Biophysical journal, 79(1):328–39, July
2000.

[134] Casey L Richardson, Jan Hegemann, Eftychios Sifakis, Jeffrey Hellrung, and Joseph M
Teran. An XFEM method for modelling geometrically elaborate crack propagation in
brittle materials. pages 1–41, 2009.

[135] T. Richter. A fully Eulerian formulation for fluid-structure-interaction problems. J. Comp.
Physics, 233:227 – 240, 2013.

190



BIBLIOGRAPHY

[136] Henning Sauerland and Thomas-peter Fries. The stable XFEM for two-phase flows.

[137] J. A. Sethian. A marching level set method for monotonically advancing fronts. Proceedings
of the National Academy of Sciences, 93(4):1591–1595, 1996.

[138] J. A. Sethian. Level Set Methods & Fast Marching Methods: Evolving Interfaces in Compu-
tational Geometry, Fluid Mechanics, Computer Vision, and Materials Science. Cambridge
University Press, Cambridge, UK, 1999.

[139] M. Shapira, D. Degani, and D. Weihs. Stability and existence of multiple solutions for
viscous flow in suddenly enlarged channels, 1990.

[140] T. Shemesh, B. Geiger, A. D. Bershadsky, and M. M. Kozlov. Focal adhesions as
mechanosensors: A physical mechanism. pnas, 2005.

[141] S O Sher. A Level Set Formulation of Eulerian Interface Capturing Methods for Incom-
pressible Fluid Flows. 464(124):449–464, 1996.

[142] J. C. Simo and T. J. R. Hughes. Computational Inelasticity. Springer, Berlin, 1998.

[143] J.C. Simo. A finite strain beam formulation. the three dimensional dynamic problem. part
1. Computer Methods in Applied Mechanics and Engineering, 49:55–70, 1986.

[144] D.G. Simpson, Majeski, T.K. M. Borg, and L. Terracio. Regulation of cardiac myocyte
protein turnover and myofibrillar structure in vitro by specific directions of stretch. Cir-
culation Research, 1999.

[145] Shri Singh. Liquid Crystals: Fundamentals. 2002.

[146] Lianfa Song. Flux decline in crossflow microfiltration and ultrafiltration: mechanisms and
modeling of membrane fouling. Journal of Membrane Science, 139(2):183–200, February
1998.

[147] D. Stamenovic, K. A. Lazopoulos, A. Pirentis, and B. E. Suki. Mechanical stability deter-
mines stress fiber and focal adhesion orientation. Cellular and Molecular Bioengineering,
2009.

[148] K. Stein, T.E. Tezduyar, and R. Benney. Mesh moving techniques for fluid-structure
interactions with large displacements. Journal of Applied Mechanics, 70(1):58–63, 2003.

[149] Y. Sui, Y. Chew, P. Roy, X. Chen, and H. Low. Transient deformation of elastic capsules
in shear flow: Effect of membrane bending stiffness. Physical Review E, 75(6):066301,
June 2007.

[150] Mingzhai Sun, Nathan Northup, Francoise Marga, Tamas Huber, Fitzroy J Byfield, Irena
Levitan, and Gabor Forgacs. The effect of cellular cholesterol on membrane-cytoskeleton
adhesion. Journal of Cell Science, 120(Pt 13):2223–2231, 2007.

[151] T. Takemasa, K. Sugimoto, and K. Yamashita. Amplitude-dependent stress fiber reori-
entation in early response to cyclic strain. Experimental Cell Research, 230(2):407–410,
1997.

191



BIBLIOGRAPHY

[152] T.E. Tezduyar, M. Behr, and J. Liou. A new strategy for finite element computations
involving moving boundaries and interfaces - The deforming-spatial-domain/space-time
procedure: I. The concept and the preliminary numerical tests. Comput. Methods Appl.
Mech. Engrg., 94(3):339 – 351, 1992.

[153] T.E. Tezduyar, M. Behr, S. Mittal, and J. Liou. A new strategy for finite element computa-
tions involving moving boundaries and interfaces - The deforming-spatial-domain/space-
time procedure: II. Computation of free-surface flows, two-liquid flows, and flows with
drifting cylinders. Comput. Methods Appl. Mech. Engrg., 94(3):353 – 371, 1992.

[154] O Thoumine, O Cardoso, and J J Meister. Changes in the mechanical properties of
fibroblasts during spreading: a micromanipulation study. European biophysics journal
EBJ, 28(3):222–34, 1999.

[155] Jean-Yves Tinevez, Ulrike Schulze, Guillaume Salbreux, Julia Roensch, Jean-François
Joanny, and Ewa Paluch. Role of cortical tension in bleb growth. Proceedings of the
National Academy of Sciences of the United States of America, 106(44):18581–6, November
2009.

[156] H S Udaykumar. An Eulerian method for computation of multimaterial impact with ENO
shock-capturing and sharp interfaces, volume 186. 2003.

[157] Jasper van der Gucht and Cécile Sykes. Physical model of cellular symmetry breaking.
Cold Spring Harbor perspectives in biology, 1(1):a001909, July 2009.

[158] Raoul van Loon, Patrick D. Anderson, Frank P.T. Baaijens, and Frans N. van de Vosse.
A three-dimensional fluidstructure interaction method for heart valve modelling. Comptes
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