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Mixed mode (MM) buildings are a subset of low-energy buildings that employ both

natural mechanical ventilation, often using manually operable windows for natural ventila-

tion, along with other low-exergy cooling systems such as radiant cooling. This combination

of systems has proven di�cult to control in practice, in particular due to the potential for

occupants to significantly impact building performance. Model predictive control (MPC)

and rule extraction are promising methods for optimizing MM building systems in an o✏ine

setting, and for generating usable control rules that can be implemented in practice.

Simulation studies were performed to investigate the impact that occupant actions have

on mixed mode buildings, and to improve the performance of natural ventilation controls

in mixed mode buildings while accounting for uncertain occupant behavior. Results show

that accounting for occupant behavior in building simulations provides useful insight into

the robustness of di↵erent control strategies with respect to the impact of occupant actions.

Two approaches to improving natural ventilation controls are applied to a physical building;

the first seeks to improve on existing control logic by optimizing setpoints, while the second

employs MPC and rule extraction to generate all new control logic. Each approach provides

insight into potential flaws in existing logic and suggests revised logic that leads to better

performance in the presence of occupant behavior.

In a final study, rule extraction is applied to optimal control datasets for multiple sea-

sons and locations to develop control rules that approximate optimal controller performance.

Converting state information to state-change information prior to applying rule extraction

is shown to improve the performance of extracted rules, and it is shown that rules generated

using data for a single season or location do not transfer well to other seasons or locations.
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Chapter 1

Introduction

1.1 Motivation

As the population of humans on Earth grows, the world becomes more developed,

and energy consumption increases, human activity has led to changes in the global climate.

We, as a species, are changing our environment for the worse, and will continue to do so

for the foreseeable future, feeding our addiction to fossil fuels to power our economies and

our increasingly comfortable lifestyles. Renewable energy sources can help the situation by

reducing carbon emissions from energy production, but the long term solution to the energy

crisis plaguing our planet is not on the supply side of the energy equation, but on the demand

side. We need to simply consume less energy, then the question of how to most e�ciently or

cleanly provide the energy need not even be asked; we can reduce both sides of the equation

by demanding less. Less demanded equals less supplied.

On the demand side of the energy equation are four main sectors of energy consump-

tion; transportation, industrial, residential, and commercial. Currently, the residential and

commercial sectors combined account for 30% of energy consumption worldwide [95], and

about 40% of energy consumption in the United States [96]. Within these sectors, heating,

cooling, lighting, and appliance use are the main drivers of energy consumption. It is easy

to save energy in any of these end-uses by simply turning the lights o↵, or turning the heat

down - but realistically we need to figure out how to keep the lights on, keep the computers

running, keep our buildings conditioned, and to do it all with less energy.
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The work presented here focuses on a technique for conserving energy in buildings which

marries together old technology and new in what are called mixed-mode (MM) buildings.

Mixed mode buildings combine natural ventilation and mechanical ventilation (along with

other low-energy sources of cooling such as ground source heat pumps) in a variety of ways

in order to condition buildings more e�ciently. MM buildings could fall in the commercial or

residential sectors of energy consumption, but the primary focus here is on larger commercial

buildings.

In the simplest design, a MM building can fully turn o↵ its mechanical ventilation

system and use natural ventilation whenever outdoor conditions are appropriate. By disen-

gaging the mechanical ventilation system, fans, pumps, and potentially heating and cooling

equipment are all turned o↵ and the energy demand of a building is reduced. A method

for further driving down the energy demand of a MM building is to capture free cooling by

enabling the natural ventilation system to operate when outdoor conditions are cooler than

indoor.

While the concept of a MM building can be simple and the operation of such a building

is straightforward to describe, the reality is that MM buildings can be di�cult to control

in practice. A diverse mix of low-energy technologies are often combined in a single MM

building, so there is no universal design and no standard control strategy that will work in

every one. Additionally, an uncertain ingredient common to all MM buildings is the pool of

occupants that use the building. Depending on what systems are available to the occupants

in a MM building, e.g. operable windows, shades, fans, etc., the occupants may have a

large potential to impact the performance of the building. Indeed, occupants can have an

especially large impact on MM buildings that o↵er occupants access to operable windows,

and may depend on occupant actions to keep the building comfortable.

In recent work, May-Ostendorp optimized MM building system controls in simulation,

and used machine learning with simulation results to generate usable control rules that

perform near optimally in simulation [63]. To cope with the complexities of MM buildings
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and system controls, May-Ostendorp used the simulation software EnergyPlus to model

and simulate building performance, and a purpose-built model predictive control (MPC)

environment to optimize control actions.

Optimizing building system controls is challenging due to the nonlinearity of thermal

and fluid dynamics within building systems, the range of conditions a control system may

need to work in, and the diverse time scales involved. EnergyPlus is a detailed simulation

engine that is designed to cope with exactly these issues. The MPC environment allows

one to optimize control actions over long time scales by breaking the problem down in time,

optimizing one day at a time in sequence.

In order to leverage the results of controls that are optimized in simulation, May-

Ostendorp used rule extraction to derive simple control relationships from optimal simulation

results, and showed that the extracted control rules could work outside of simulation. The

presented work expands on that of May-Ostendorp by including detailed stochastic models

of occupant behavior in MM building simulation models, thus accounting for the impact of

occupant actions on building performance, and by attempting to demonstrate the technology

in a real building.

1.2 Research Objective and Questions

The central thesis of this work is that the added consideration of stochastic e↵ects of

human behavior in developing optimal building control strategies for MM buildings will lead

to control strategies that are more robust to the impact of occupant behavior than strategies

that are developed considering only mean-response occupant behavior, or none at all. The

core questions we try to answer are listed below.

• Which aspects of occupant behavior have the greatest e↵ect on energy consumption

in MM buildings?

• How do the results of deterministic and stochastic MPC di↵er, and is the extra e↵ort



4

required for SMPC justified?

• Can we generalize extracted control rules to multiple climates or seasons?

• Do extracted control rules work in practice?

1.3 Organization and Summary

Having motivated and introduced the research presented here in Chapter 1, this section

outlines the remainder of this document. Chapter 2 gives us a look at what the current state

of the art is in mixed mode building research, predictive control in buildings, and occupant

behavior in buildings, as well as some background on the use of machine learning algorithms

in building control. Chapters 3, 4, and 5 give simple and detailed descriptions, respectively,

of the methods applied in this research, and Chapters 6 through 9 show the results of the

research.

The range of impacts that occupant behavior can have on a prototypical MM building

are investigated in Chapter 6, with a focus on the impact of occupant actions on building

heating, ventilating, and air conditioning (HVAC) energy consumption. The results show

what one would expect - that occupant use of windows has the largest impact on HVAC

energy consumption. The study also highlights the interaction between occupant use of

building systems under di↵erent automatic control scenarios. A key finding is that the

impact of occupant behavior on building performance is not consistent across all automatic

building controls.

Leveraging the simulation and optimization environment built up in Chapters 5 and

6, Chapters 7, 8, and 9 follow two approaches to improving automatic window controls

for a specific building. The first approach (bottom-up) takes an existing building control

heuristic and explores opportunities to improve (to the extent possible) the performance

of the existing controls by modifying setpoints in the existing logic. The second approach

(top-down) follows a more complex two-step approach, where the first step is to optimize a



5

long-term (i.e. multiple months) sequence of control actions, resulting in an optimal control

decision time series, and the second step is to apply a machine learning algorithm to that

optimal dataset to learn near-optimal control rules from the optimizer.

The majority of the work and simulation studies conducted throughout this project

centered around the research support facility (RSF) building, which is a large net-zero energy

building and part of the National Renewable Energy Laboratory (NREL) in Golden, CO.

The final results presented in Chapter 10 consist of a description of the process followed

to carry out a controls change in the RSF, and a presentation of the impact of the final

controls implemented. Throughout the project, a simplified model of the RSF building was

used in simulation studies to isolate potential faults in the window control logic, and to find

opportunities to improve indoor comfort or reduce HVAC electrical energy consumption.

Interim conclusions and findings are given throughout each of the relevant Chapters,

and the final conclusions are given in Chapter 11, along with some thoughts on opportunities

for future work.



Chapter 2

Literature Review

2.1 Introduction

Five areas of literature relevant to this project are presented in the following,

• Mixed-mode buildings

• Occupant behavior in buildings and models of occupant behavior

• Model predictive control

• Stochastic processes and uncertainty in building simulation

• Rule extraction

2.2 Mixed Mode Buildings

2.2.1 Definition

Mixed-mode (MM) is a term used to identify a subset of high performance buildings

(HPB) that use a combination of natural ventilation and mechanical ventilation systems

to condition indoor air. MM buildings incorporate mechanical cooling and typically em-

ploy a variety of other low-energy cooling technologies, whereas strictly naturally ventilated

buildings lack any mechanical cooling. MM buildings are designed to conserve energy by

employing natural ventilation instead of mechanical ventilation whenever outdoor conditions
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allow, and extend the range of naturally ventilated buildings beyond temperate climates into

more extreme climates where natural ventilation is possible in swing seasons, but mechanical

cooling is necessary during the cooling season.

MM buildings often incorporate manually operable windows, blinds, or other systems

that occupants can adjust to change their local environment and make themselves more com-

fortable. By enabling occupants to adjust local systems, MM buildings can take advantage

of relaxed comfort standards such as the adaptive version of ASHRAE Standard 55 [4], or

EN 15251 [68]. This benefits from both an energy and a comfort standpoint, since cooling

setpoints can be elevated during warmer periods, and since occupant comfort is typically

higher when occupants are able to adapt to their local environment [25].

The population of mixed-mode buildings in the US market is growing but as yet MM

technologies are not specifically addressed in ASHRAE standards. While ASHRAE Stan-

dard 62.1 [5] does address natural ventilation, European and International standards adopt

definitions for both hybrid ventilation and mixed-mode ventilation.. The International En-

ergy Agency (IEA) and the European Committee for Standardization (CEN) define hybrid

ventilation in Annex 35 (HybVent) [45] and EN 13779 [16] respectively. The Center for the

Built Environment (CBE) at UC Berkeley, and the Chartered Institute of Building Services

Engineers (CIBSE) in the UK provide similar definitions of mixed-mode building designs.

For simplicity, the definition provided by the CBE will be used here and is as follows:

Mixed-mode “refers to a hybrid approach to space conditioning that uses
a combination of natural ventilation from operable windows (either manu-
ally or automatically controlled), and mechanical systems that provide air
distribution and some form of cooling.”[13]

The above definition is not very restrictive in terms of mechanical systems, and as such the

variation in mixed-mode buildings is large. To account for this variation, a detailed classifi-

cation scheme for mixed-mode buildings has been created. A summary of the classification

scheme laid out by CIBSEs Application Manual 10 [20] is as follows. MM buildings are
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classified in two ways, first by the spatial distribution of ventilation strategies and second

by their ventilation control topology, as in Figure 2.1 and in the following list.

1. Zoned In zoned MM buildings, di↵erent physical spaces are ventilated separately - each

space is conditioned exclusively by either mechanical or natural methods.

2. Complimentary Complimentary systems are broken up based on temporal di↵erences

in control strategies into three sub-categories:

1. Concurrent In concurrent systems both mechanical and natural ventilation can

occur in the same space at the same time.

2. Changeover In changeover systems, natural and mechanical ventilation do not

occur at the same time and switching from one mode to another is controlled

automatically.

3. Alternating Alternating systems are similar to changeover systems but are usu-

ally switched between mechanical and natural ventilation for each season (e.g.

natural ventilation is only active during swing seasons), rather than on an

hourly or shorter time-scale.

3. Contingent The term contingent is used to describe any building that is a potential

MM retrofit, or has the potential to utilize mixed-mode ventilation or cooling.

Complimentary

Concurrent Changeover Alternating
Zoned Contingent

Temporal DivisionsSpatial Divisions

Figure 2.1: Spatial and temporal breakdown of MM designs.
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2.3 Occupant Behavior in Buildings

2.3.1 Introduction

Building occupants can do a number of things to change the way a building performs.

Occupant presence is itself an influence, resulting in heat gain, moisture gain, and genera-

tion of pollutants like CO2. Occupant actions like adjusting windows, blinds, temperature

setpoints, lights, and fans are some examples of the ways that occupants can alter the charac-

teristics of a building zone, thereby changing the space conditioning loads, comfort criteria,

and the performance of HVAC system. Occupant personal characteristics can also vary when

occupants remove or add layers of clothing, eat or drink (which changes metabolic rates), or

when occupants engage in more or less intense activities, e.g. sitting at a desk or working

out in a gym.

Modern building performance simulation software calculates air, water, and energy

flows within buildings, typically without accounting for realistic occupant-building interac-

tions. Normally the impact of an occupant action (i.e. turning on a light or computer at

work) is modeled as a regular schedule, i.e. lighting energy and associated heat gains are

present from 8:00AM to 6:00PM on weekdays. Building occupants can influence all of these

simulated building processes actively doing something, like turning a light on or o↵, or pas-

sively, by simply being present or absent. Depending on activity level, an occupant can

generate more or less heat; in an o�ce environment, workers use computers, printers and

small kitchen appliances, all of which can increase noise and air pollution, generate heat,

and consume electricity.

In attempting to simulate building performance more accurately, several questions

emerge from examples like these. How much can occupants influence building performance?

How, when, and why do occupants decide to take certain actions? What methods exist

to accurately model occupant behavior in buildings? What level of detail is required to

accurately simulate occupant behavior? Is a model of a single average occupant su�cient
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or should unique individuals be modeled explicitly? In the following review of pertinent

literature, some of these questions are answered.

2.3.2 Occupant Behavior Models

In [68], Nicol et al. show that occupants take actions to keep their environment com-

fortable as ambient conditions change. This could mean opening a window or turning on

a fan to increase airflow, or adjusting a thermostat to change the indoor temperature to a

more comfortable value. When ambient lighting is below a comfort level, or daylight entering

a space is uncomfortable, people are likely to adjust artificial lighting or activate shading

controls to keep work plane illuminance at a desired level [52].

Intuition tells us that occupants take certain actions under certain generic conditions,

e.g. when an occupant feels cold, he or she will take action to make him- or herself feel

warmer, perhaps by increasing a thermostat setpoint or putting on a sweater, but it is

di�cult to accurately predict when an occupant will take action, and what action he or she

will take. Accurate predictions are also di�cult because di↵erent people might not perform

the same action every time under the same conditions, (e.g. one person turns on lights when

workplace illuminance drops to 200 Lux, while another turns on lights when it drops to

100 Lux). Similarly, a person might act the same way twice in a given situation, or he or

she might act di↵erently depending on season, time-of-day, or a number of other building-

independent factors like mood, personality, or culture, confounding variables that are not

available to use in predicting occupant actions.

Two primary methods for modeling occupant behavior have been developed; some

models predict occupant actions (e.g. an occupant opens a window at time t), while others

predict the state of some system which must have been acted upon by an occupant (e.g. a

window is likely to be open at time t). The outputs of these models are inherently di↵erent,

but the di↵erence is subtle. To illustrate this subtle di↵erence, consider a model of an

occupant opening and closing windows. Within each type of model, the prediction of an
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occupant action is computed, but in the first type there are multiple output categories: (1)

occupant opens a window, (2) occupant closes a window, or (3) occupant does nothing. In

the second type, there are only two output categories: (1) the window is open, or (2) the

window is closed. This subtle di↵erence is somewhat trivial in building simulation, but it

is more meaningful when building controls are considered, since building controls typically

have to initiate an action, and cannot specify the state of a system explicitly.

The steps normally taken to develop a model of an occupant behavior (like those

described later in this section) are as follows:

(1) Conduct a field study, recording ambient conditions and occupant actions.

(2) Find correlations between ambient conditions and occupant actions.

(3) Refine correlations into usable algorithms.

(4) Validate the model (function) by comparing its output to recorded data.

After completion of the field study, the second step is to create a probabilistic model of some

behavior by correlating environmental factors (indoor and outdoor temperature, time of day,

weather, etc.) with an action (opening a window, turning on a light, etc.) or with the state

of a system determined by human actions (window is open, light is on, etc.). Frequently

the model creators warn that site-specific data is probably leading to site-, building- or

seasonally-dependent models, though models are kept as generic as possible to avoid these

dependencies, and typically include additional ‘tuning’ parameters that are intended to adapt

the models to di↵erent populations.

To illustrate this process an example of such a correlation between the status of windows

and the indoor air temperature is given in Figure 2.2, adapted from [50].

In this example, the likelihood of a window being open is expressed as a function

of indoor temperature. The probability p of a window being opened or closed is given by

p = at20+bt0+c where t0 is the outdoor temperature, and a, b, and c are coe�cients found for
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Figure 2.2: Correlation of open windows with indoor temperature. Adapted from Herkel et
al. [50]
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the probability function. Note that the coe�cients a, b, and c, are not constant for a given

person or day, and can be recalculated for a number of di↵erent situations. Further analysis

of field data has shown that behaviors vary significantly at di↵erent times of day, typically

occurring with a higher frequency around arrival or departure events. This dependence upon

time of day or occupant transition is common among newer behavioral models, and is likely

due to the occupant’s reaction to changing from one environment to another, which can make

the new environment seem more uncomfortable than it would otherwise (e.g., from walking

to work in fresh cool air, and arriving in an indoor space that is warm and stu↵y). That is,

under the same indoor conditions, an occupant may be more likely to take an action when

they have just arrived in the space than when they have been present in the space for a longer

time. This temporal variation in behavior creates the need for multiple behavioral models,

or multiple sets of coe�cients to relate environmental conditions to occupant actions; i.e.

one set for each state of presence (arriving, present, leaving). At this point, it may seem

that we have potentially three probability functions per occupant, but studies have shown

that considerably more complexity can be added to a model. For example, Herkel notes that

di↵erent types of windows are acted upon di↵erently, which leads to a di↵erent model for

each type of window [50]. Along this same train of thought, it follows that a unique model

could exist for di↵erent building façades - because o�ces on the west side of a building may

be cooler in the morning than those on the east side - or di↵erent levels in a building - because

windows on the ground floor are vulnerable to burglary and present a security breach when

open. Further detail is often added to behavioral models to account for di↵erences between

occupants; unique models exist for active, medium, and passive lighting users [81], as well

as for occupants who are more or less mobile (tend to leave their workspace more or less

frequently) [75].

First generation behavioral models take the form of probability functions, simply relat-

ing the current state of a user-influenced system (e.g., an open window) to the current state

of the environment (e.g., the indoor and outdoor temperature)[85]. Subsequent and newer
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models often take the form of Markov chains, which provide the probability of an action or

state using both the current state of the environment and the prior state of the system being

acted upon [37, 75, 103]. Markov chains tend to predict actions more accurately since they

are dependent on the prior state of the system. Unless acted upon, things tend to stay in

their current state; open windows are likely to stay open, lowered blinds are likely to stay

lowered, and so on. Markov chains incorporate individual probabilities for each combina-

tion of states of a system; for a binary system (on/o↵), there will be four probabilities, the

probability of changing state from on to o↵, or from o↵ to on, and the two probabilities of

remaining in either the on or o↵ state.

It is important to note that each behavioral model described in this document is based

on a unique set of data; some data sets are from a single o�ce or building, while others draw

on studies from multiple buildings in di↵erent climates. In each case, the available data

could be leading to estimates of behavior that are unique to a particular climate, building,

season, or culture.

2.3.2.1 Occupancy and Lighting Use

The purpose of a building is to provide a comfortable, safe, productive environment for

people to work in, live in, play in - to exist in, thus building performance is driven by occu-

pancy. For the purpose of estimating building performance, occupancy can be represented in

many ways, from scheduled heat gains or scheduled appliance use, to aggregated values over

the course of a given day, month or year for computational purposes. For example, when

computing the cost of operating a desk lamp, we might simply assume that an occupant is

present at the desk for 2000 hours per year, and that the occupant uses the lamp for 90% of

that time, thus arriving at 1800 hours of lamp use per year. For computing more detailed

metrics like building loads or air quality, it is important to know more precisely when occu-

pants are in a building. When occupants are in a building during warm weather, they drive

up cooling loads, and when present during cold weather, they drive down heating loads -
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and a bulk metric like 2000 hours per year is useless without knowing which 2000 hours, so

schedules are typically used in building energy simulation programs like EnergyPlus.

For the purpose of accurately modeling occupant behavior in buildings, modelers re-

quire even more detail about occupant presence and absence, not just knowing whether a

person is present or absent, but knowing additional information on whether they have just

arrived, or have been present for a while, whether they are about to leave - and whether

their impending departure is for a short or a long absence. This extra level of granularity is

required because every other occupant behavior (e.g. turning on a light) is contingent upon

occupants being present to carry them out, and because these secondary behaviors are often

linked to arrival and departure events.

The first attempts to develop accurate occupancy models other than schedules were

driven initially by the lighting industry, when lights were almost entirely occupant controlled.

Given that lighting was and continues to be one of the largest energy end uses in a building,

and that it is often the easiest end-use to reduce, an understanding of occupant lighting

use was useful in predicting and achieving savings. Given the tightly coupled history of

the development of lighting-use and occupancy models, the two are presented together in

this section. Perhaps the first, and certainly one of the most referenced occupant behavior

models is the model developed in 1980 by Hunt [52], aimed at characterizing the interaction of

occupants with lighting equipment. Hunt found the probability that a person would switch

lights on or o↵ based on the work-plane illuminance, which enabled better predictions of

lighting use and energy consumption.

In 1995, Newsham and Reinhart [67] created a stochastic model of occupancy to in-

crease accuracy in calculating lighting energy use; the model was based on typical occupancy

patterns. Essentially, the new model added uncertainty to the times of arrival, departure,

and breaks taken by occupants; it was assumed that occupants arrived and departed and

took lunch within 15 minutes of a scheduled time, and the probability of taking morning

and afternoon breaks was 50%. The two major outcomes of this work were a more realistic
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average occupancy profile and the program called Lightswitch. Lightswitch used observed

occupancy data to produce realistic occupancy and lighting profiles [67]. At that time, the

Lightswitch model was used to generate an average occupancy profile from multiple runs,

and the average profile was then applied to every day in a simulation.

Seven years later, Reinhart refined and expanded upon the Lightswitch model to create

Lightswitch 2002 [81]. This newer program added another degree of complexity and realism

to the existing one by categorizing occupants as active, passive, or medium users (of lights

and blinds). Lightswitch 2002 is used to determine annual energy savings using an annual

occupancy schedule and annual work plane illuminance values to determine at each time

during the year the actions an occupant will take on lighting or shading controls. Lightswitch

2002 enables users to quantify the range of potential energy savings from di↵erent levels

of active or passive occupants due to their control of lights and blinds. The Lightswitch

2002 model has been implemented into a number of simulation and analysis tools (ESP-R,

DAYSIM, and Lightswitch Wizard) and represents the industry standard for quantifying

lighting energy use. While the development of occupant lighting use models has stagnated

recently, interest in the development of occupancy models has grown.

Yamaguchi [102] proposed a model of occupancy in 2003 that represents the sequence

of occupancy states (presence and absence, or 1 and 0) as a Markov chain. Driving this

research was the requirement of an accurate estimate of occupancy to determine energy

consumption from occupant appliance (computer) use, associated heat gains, and electricity

use. Yamaguchi’s model uses empirical data to define the distribution of arrival, departure,

and lunch break times, and categorizes workers according to job-type. From these groups,

energy-use profiles can be generated based on the percentage of workers in each job type,

and used to calculate peak loads based on occupancy profiles.

In 2005, Wang [98] investigated one major shortcoming of existing occupancy predicting

programs, namely that they did not address variations in occupancy throughout the day other

than typical lunch and co↵ee breaks. Wang proposed “a probabilistic model to predict and
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simulate occupancy in single person o�ces”, that would predict longer and shorter intervals

of presence and absence throughout the day. Wang noted that vacancy and occupancy

intervals are both exponentially distributed, and that the distributions of intervals vary

throughout the day. Wang’s final model accurately generates variations in daily occupancy

(introducing periods of absence outside of normally scheduled lunch and co↵ee breaks), but

assumes a normal distribution of arrival, departure, and break times, and that weekends are

always unoccupied.

Noting several deficiencies in existing occupancy prediction models, namely long- and

short- absences that occur in regular schedules, and non-traditional working schedules (i.e.

working late, or working early) in 2008 Page [74] developed a more general model for gener-

ating occupancy profiles. Long and short vacations, business trips, and illness can cause a

worker to be absent for longer periods ranging from partial days to weeks, and an impending

deadline might make someone work outside of typical working hours or on weekends. These

nuances of occupancy are addressed in Page’s algorithm for generating occupancy profiles,

which accurately predicts variations in occupancy throughout the day as well as throughout

the year. The algorithm uses “an inhomogeneous Markov chain interrupted by occasional

periods of long absence.”

The number and duration of long absences are accomplished by generating probability

distributions of the number and duration of absences using the inverse function method and a

Poisson distribution with � = 3 (this leads to a higher probability of three long absences per

year). Subsequent to the definition of periods of absence for a given year, the remaining daily

occupancy schedules are generated and a complete annual sequence of occupant presence and

absence is realized.

Page’s model was validated with two years of data from o�ces in the LESO-PB building

at the EPFL in Lausanne, Switzerland, and can generate “a non-repeating time series of any

length, including essential periods of long absence and otherwise reasonable movements to

and from the zone resulting in an excellent estimate of the total time an occupant really
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spends within the zone simulated” [74].

In each of the three above listed methods for predicting occupant presence, empirical

data is used to create probability distributions of occupant presence. In the models of Wang

and Yamaguchi, the probability is time-independent, but in the Page algorithm, seven unique

probability profiles are used - one for each day of the week, and the addition of long periods

of absence for vacation adds a second layer of realism.

Finally, the Page algorithm also takes into account diversity among occupants by intro-

ducing the so-called mobility parameter, which describes how likely an occupant is to move

into and out of a given zone. Specifically it is the ratio of sums of probabilities, where the

numerator is the sum of probabilities of change in state, and the denominator is the sum of

probabilities of no change in state. With relatively few inputs describing the probability of

long absences, daily probability of presence profiles, and the parameter of mobility, the Page

algorithm should be applicable to most any occupant (whether the model can be extended to

more building types than o�ce and residential is less clear). Chinnis et al. suggest additional

tuning parameters that give the algorithm more degrees of freedom and make it more easily

extensible to di↵erent building or space types [19].

2.3.3 Operable Windows

A summary of field studies conducted to investigate occupant behavior for window

opening is presented here. These field studies were conducted in di↵erent countries, di↵erent

climates, and had di↵erent setups and focus. They di↵ered in observation periods (winter,

summer, full year, short term, long term), o�ce type (single occupancy o�ces, open o�ce

plans), as well as window type and facade design. Studies have typically found that the

parameters most influential on occupant control are season, temperatures, time of day, and

previous window state, but models di↵er significantly in both the predictor variables they

choose, and their form.

Methods for quantifying the frequency and magnitude of occupant interactions with
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operable windows and shading controls have evolved from assumptions of behavior and

simple heuristics to dynamic stochastic computations in the same way that methods for

generating occupancy and lighting profiles were developed. Current models that deal with

operable windows take the form of algorithms that use multiple probability distributions to

determine when a given action (e.g., opening a window) will be taken, and the resulting

system state. Often there are di↵erent probability distributions for di↵erent times of day,

days of the week, or for di↵erent states of presence, i.e. arriving, present, or departing.

Rijal et al. [84] presented the Humphreys adaptive algorithm for simulating open win-

dows in 2007. The Humphreys algorithm predicts the state of a window based on indoor

and outdoor temperature using probability distributions drawn from field studies in 15 build-

ings in the UK between March 1996 and 1997; ten buildings were naturally ventilated and

five were air conditioned. When implemented in the building simulation program ESP-r,

the Humphreys algorithm predicts at each time-step whether occupants will open windows

based on their comfort level (a function of indoor and outdoor temperature), and the re-

sulting change in zone-airflow is used to determine the energy impact of occupant control

of operable windows. The energy savings of di↵erent building designs was quantified by

varying design parameters in simulations. Di↵erent design parameters were shown to influ-

ence occupant comfort, and thus occupant interaction with windows, and the energy-savings

of di↵erent design options was found considering occupant behavior. In one example, it is

suggested that improved building design reduces annual energy heating demand from 105 to

98 kWh/m2.

Bourgeois created a modified version of the Humphreys algorithm to explore the impact

of defining users as active, medium, and passive with respect to window operation. Data

from a study of one o�ce building at the Universitè Laval in Quebec was used to generate

the window opening model; the study spanned several months in the summer and fall of

2002 and the spring of 2003. This window opening model was only intended to determine if

window operation models could benefit from detail on user characteristics in the same way
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that Lightswitch 2002 requires that occupants be defined as active, medium, or passive. The

conclusion is that yes, indeed, models will benefit from defining window users as active and

passive.

For implementation with building energy simulation software, Bourgeois [12] developed

the sub-hourly occupancy-based control program (SHOCC) that works in parallel with ESP-

r to enable behavioral models to be implemented dynamically within ESP-r (and potentially

other building simulation programs). The Lightswitch 2002 model was implemented in

SHOCC to predict occupant actions on lights and blinds dynamically in ESP-r simulations.

Results of simulations revealed a potential for savings of 40% in primary energy expenditures

between users that actively seek daylighting and users that rely on artificial lighting.

Yun [104] developed a stochastic model of occupant window-control and implemented it

in ESP-r to demonstrate the influence of occupant actions on building ventilation. Results of

simulations indicate that active window users e↵ectively reduce the average summer indoor

temperature by 2.6”C compared to passive users. The Yun model uses a Markov chain to

determine the window state at each time step, based on the previous window state and

probability distributions found in previous studies [103]. Monte Carlo methods are used in

the simulation implementation to generate a distribution of results in accordance with the

distribution of possible occupant actions during the simulation.

Herkel [50] created an algorithm to model window operation based on data from a

year long study at the Fraunhofer Institute in Freiburg, Germany. This model predicts

window status based on outdoor temperature and occupancy using an approach similar

to Humphreys, with probability distributions of window control for arriving, present, and

departing occupants. Herkel suggests that models could include further resolution with

respect to season.

Haldi [37] created algorithms for window operation and the use of manual blinds us-

ing nearly 8 years of continuous data from a study at the LESO-PB building in Lausanne,

Switzerland. His model for predicting window control uses the indoor and outdoor temper-
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ature, the prior window state, occupancy status and the presence of rain to determine the

future (i.e. next time step) window state. The model takes the form of a Markov chain to

determine when windows are opened or closed, and uses a Weibull distribution to compute

the length of time that a window will remain open or closed. Haldi’s algorithm for simulating

user control of manually operated blinds follows the pattern found in the window algorithm;

it uses outdoor horizontal illuminance, work plane illuminance, and occupancy status to pre-

dict when blinds will be acted upon and to what degree. This algorithm is unique in that it

addresses a higher degree of uncertainty; not only is it unknown when occupants will act on

blinds, but it is also unknown whether they will completely or partially raise or lower them;

Haldis algorithm does predict both (it predicts the shading fraction conditioned on the rais-

ing or lowering action). This two-tiered or primary/secondary model arrangement provides

another layer of detail and leads to more accurate representation of occupant actions.

2.3.4 Summary

Over the last decade, research on human behavior in buildings has led to the creation of

algorithms that predict the probability of occupant actions, behaviors, or decisions based on

data collected in field studies. Prominent among these are the Lightswitch 2002 algorithm

for predicting lighting and blind use, the Haldi algorithms for predicting occupant use of

blinds and operable windows, and the Page algorithm for predicting occupancy status. The

majority of these algorithms have been implemented in popular building simulation software

to demonstrate the influence that human behavior has on building performance, occupant

comfort, and energy consumption. Results have shown that variations in human behaviors

can lead to a 40% change in building energy consumption [12], and that using behavioral

models in simulation can help to predict the energy cost or savings of di↵erent building de-

signs. These models provide a sound foundation for further investigations of human behavior

in buildings.

Given this discussion of occupant behavior modeling, and the recent developments over
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the last decade, it is no surprise that in November, 2013 the International Energy Agency

(IEA) o�cially launched IEA Energy in Buildings and Communities (EBC) Annex 66,1

which is a project focused entirely on occupant behavior simulation. The project is due to

start in the fall of 2014, and will be complete in the spring of 2017. It seeks to leverage

all of the work cited here, and is a collaboration between most of the authors cited in this

section, as well as many others from around the globe. The goals of the Annex are to

standardize the simulation methodology and models of occupant behavior, and to develop a

consistent, usable framework for implementing occupant behavior models and understanding

their impact on building performance through simulation.

2.4 Model Predictive Control in Buildings

2.4.1 Introduction

In the following, deterministic and stochastic model predictive control (MPC) are dis-

cussed with a focus on MPC in buildings. Initially hindered by complexity and lack of

acceptance, these technologies have matured in the last thirty years to a point where they

can be applied to building heating, ventilating, and air conditioning (HVAC) system con-

trol. Improvements in computational power have made o✏ine MPC investigations easier,

and MPC has shown strong potential through simulation studies and o✏ine demonstrations

for saving energy and increasing occupant comfort in buildings, though only a handful of

real-time implementations exist. The main obstacles that must be overcome to realize MPC

in buildings are (1) accurate system models, and (2) e↵ective optimization strategies. These

two components are imperative for MPC, and both present challenges to HVAC control

because the controlled processes in buildings, i.e. airflow, water flow, and heat transfer are

inherently nonlinear. Thus one might conclude that nonlinear system models and nonlinear

optimization techniques are necessary for MPC in buildings. For real-time implementation

1 http://www.annex66.org
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of MPC, models must be simpler, which is achieved by linearizing non-linear processes and

simplifying optimization problems to a point where they are computationally tractable.

2.4.2 MPC

MPC has its roots in the process industry, and excels where common PID controllers

cannot achieve good control due to complex system dynamics and large time constants.

Over the last three decades, computing and science have grown, enabling the application of

MPC to nonlinear processes and systems with faster dynamics. MPC has found its way into

the automotive, aerospace, and robotics industries, and in the last decade MPC has begun

working for building control as well. MPC has proven to be robust by nature, even overly

conservative in some cases because it guarantees (in theory) that the implemented control

sequence will never cause the system to stray outside of its defined operating limits. MPC

is also very e↵ective at controlling highly nonlinear systems.

Before considering stochastic model predictive control (SMPC), it is important to

understand deterministic model predictive control (MPC). Model Predictive Control is a

method of process control, normally implemented in discrete time steps by repeating the

following four steps.

(1) A process model is used to predict over a finite horizon the response and future

states of the process given a sequence of control inputs.

(2) Optimal control sequences are computed to minimize some cost associated with the

process.

(3) The first portion of the optimal control strategy is implemented.

(4) Time passes, and the system advances to the next time step.

As stated in the introduction, a model predictive controller relies heavily on two compo-

nents: the system model and the optimizer, both of which present significant challenges.
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Often, simple system models are adequate to achieve satisfactory control, as poor long-term

predictions are discarded when the prediction horizon approaches the actual time of action,

and more accurate near-term predictions are used instead. When system models are linear

or convex, optimization is straightforward and follows well established mathematical guide-

lines for convex optimization, but typically MPC is applied to more complex systems, so

practitioners transform nonlinear system models to linear form so that convex optimization

techniques can be used.

Here we discuss SMPC in finer detail, but it is noteworthy to mention that MPC comes

in a multitude of flavors and acronyms, including nonlinear (NMPC), open- and closed

loop (O-MPC and C-MPC), robust (RMPC), receding horizon control, (RHC), adaptive

predictive control (APC), and many others. The central concepts common to all variants of

MPC are described above in the simplified four-step process, and throughout this document

we use the terms MPC and SMPC to refer specifically to deterministic and stochastic model

predictive control.

2.4.3 SMPC

Stochastic model predictive control extends deterministic MPC to more unstable pro-

cesses, in particular those processes that are subject to stochastic variations in inputs and/or

outputs. The defining feature of SMPC is that the controller assumes a range of possible

system responses, and delivers a control strategy that is very likely to bring the system

to a given state in spite of stochastic influences, while (deterministic) MPC assumes perfect

knowledge of the system, and delivers a single control strategy (with a single predicted re-

sponse) that may not be robust to the set of possible system dynamics. Note that stochastic

MPC is not equivalent to robust control; robust control is theoretically robust to all possible

disturbances, while stochastic MPC is only robust to the set of likely disturbances.

The most desirable and common treatment of SMPC for real-time implementation is

with mathematically closed-form representations of the uncertainties. Often unknown dis-
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turbances, errors, or other criteria are assumed to be independent and identically distributed

(IID) and Gaussian, which allows for simple computation of performance bounds. Such tech-

niques provide some insight into what might be the range of possible errors or outputs from

a model, but in reality these inputs often conform to non-normal distributions, and when

the true distributions are unknown, the assumption of normality is no longer accurate and

may lead to inaccurate results.

2.4.3.1 Addressing Uncertainty in MPC

Uncertainty can enter the model predictive control algorithm through several avenues:

• The system model is probably not perfectly accurate, so model predictions will be

uncertain to some extent, even if inputs and disturbances are perfectly known.

• Uncontrolled disturbances that enter the system can be predicted but are also

uncertain, and it follows that the e↵ects of such disturbances are also uncertain as

they propagate through the model.

• In real-time MPC implementation, measurement and data transmission errors

or time-delays can skew the controller’s interpretation of the true current state of

the system, just as they would with conventional control methods (e.g. PID control).

In the presence of uncertain disturbances, a controller is faced with the di�cult task of

predicting an unknown future state and selecting a control strategy for the current time that

will satisfy both present and future system constraints.

2.4.4 Approaches to MPC in Buildings

Predictive control of building systems is a relatively new field, with examples stretching

back only a few decades. MPC e↵orts in buildings are focused on either low-level, local loop

control, e.g. single-zone heating [58], or on high-level, supervisory control, typically leveraging
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thermal storage for cooling applications as in examples from Henze and Braun [48, 14, 49].

Some other examples of applications of MPC to buildings are included here, with extra

attention given to examples that include mixed mode buildings, or stochastic e↵ects.

May-Ostendorp [63] simulates deterministic MPC with a MM building modeled, where

the building is modeled in EnergyPlus [91], and deterministic occupant behavior was consid-

ered, following the Humphrey’s occupant window-opening behavior model [83]. Here, only

the mean-response of occupant behavior was considered, so there was no variation from one

simulation to the next in occupant behavior. May-Ostendorp’s work and the work presented

in this paper leverage the same framework developed by Corbin et al. for orchestrating sim-

ulated MPC with building models in EnergyPlus, as described in [24]. In Corbin’s work,

the development of the MPC environment is described in detail and a case study is used

to demonstrate the feasibility of supervisory MPC in commercial buildings for cooling opti-

mization when applied to the control of buildings with thermally activated building systems

(TABS).

In [62], Mady demonstrates SMPC of indoor air temperature with a simplified single-

zone model based on first principles, where occupant presence is the stochastic disturbance

considered. Occupant presence is computed by an inhomogenous Markov model which pro-

vides a probability of presence for each hour. The SMPC controller uses the sensed indoor

air temperature with the probability of occupancy to plan temperature setpoints for each

minute to keep indoor air temperature constant.

In [30], Freire et al. demonstrate through simulation that MPC can be harnessed to

provide superior occupant comfort while reducing energy consumption. A state space model

of a single building zone is used, and five di↵erent cost functions are used with varying em-

phasis on comfort criteria and energy consumption. Comfort metrics included temperature

and humidity bands, with a strong focus on the predicted mean vote (PMV) model. While

a state space model of the zone was used by the controller, a whole-building simulation en-

vironment, PowerDomus, was used to simulate the MPC controller, which used a sequential
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quadratic programming optimization algorithm to discover optimal control signals.

Oldewurtel et al. present a methodology for approximating closed-loop constrained

MPC in the presence of stochastic disturbances using a�ne disturbance feedback in [71]. To

demonstrate the methodology, an example of building zone temperature control is given, in

which stochastic disturbances include solar gains, outdoor air temperature, and occupancy

(internal gains). Each disturbance is assumed to come from a predefined forecast, and is

augmented by a random variable to induce variability; disturbances are assumed to be inde-

pendent and identically distributed, and to come from a normal distribution. The example

uses a state-space building model based on an RC (Resistance-Capacitance) nodal network.

Following on this work, Oldewurtel et al. applied SMPC to an RC network building

model, in this case simulating uncertain disturbances with archived (real) weather forecasts

and the corresponding forecast prediction error [72].

As part of the OptiControl Project2 , Oldewurtel et al. [71] use a�ne disturbance

feedback to approximate chance constraints on the MPC problem, as well as the MPC

problem itself. In approximating the MPC problem, the vector of decision variables is broken

down into adjustable (‘wait and see’) and non-adjustable (‘here and now’) decisions. The

adjustable decisions are assumed to be a�ne functions of the uncertain disturbances that

will occur in the future. Chance constraints are constraints on a system that must be met

with a certain probability; in buildings for example, the indoor air temperature must fall

within the comfort band with a high probability. Hard constraints are variables that have

fixed maxima or minima, e.g. the output of a heating system; a 5000 BTU/h heater can not

output more than 5000 BTU/h, or less than 0 BTU/h.

The MPC model addressed by Oldewurtel et al. in [71] is based on a linear time-

invariant (LTI) system subjected to normally distributed disturbances. The assumption of

normally distributed disturbances enables the chance constraints to be approximated by a

hard constraint, turning the stochastic problem back into a deterministic one, as in [9]. The

2 http://www.opticontrol.ethz.ch/index.html



28

resulting simplified problem is shown to be robust but less conservative than other robust

MPC methods. Building on the methods described in [71], Oldewurtel et al. go on to

demonstrate the simplified MPC controller in simulation.

An investigation of the potential of SMPC to save energy in buildings is provided in

[72], in which Oldewurtel et al. present results from a parametric study of control techniques,

building and HVAC variants, as well as climate variants. The simulated controller controlled

HVAC air change rates, lighting, and blind positioning. Uncertainty in weather predictions

was addressed by a Kalman filter comparing predictions to historical prediction and actual

data. Three control schemes were compared: traditional rule-based control (RBC), certainty

equivalent (CE) MPC, and SMPC. Certainty-equivalent MPC operates with the assumption

that future disturbances materialize at their expected values, thereby neglecting uncertainty

in weather or occupancy predictions; when these predictions prove false, CEMPC usually

behaves poorly. In four out of six selected examples (each example representing a unique

building or climate), SMPC resulted in fewer comfort violations than RBC, and in all six

cases SMPC resulted in less building energy use. In a comparison of stochastic and certainty

equivalent MPC, results showed that SMPC usually resulted in fewer comfort violations than

CEMPC, and that SMPC generally resulted in less dramatic indoor temperature variations.

A recent example of MPC implementation in buildings is given in [90], where the heat-

ing system in a Czech Technical University (CTU) building in Prague, CZ was controlled via

MPC. The building uses a thermally activated building system (TABS) for radiant heating,

which was the system controlled via MPC; the heating supply water temperature was ad-

justed to minimize energy use and maintain occupant comfort. A two day planning horizon

was found to be the best compromise between accuracy of weather predictions and allowed

su�cient time for planning control strategies; the sampling rate of the implementation was

20 minutes. The building model was a data-driven RC network, and the optimization was

achieved through a standard quadratic programming (QP) solver. Savings due to using

MPC instead of PID control were documented between 15 and 23% depending on building
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construction and weather conditions. The authors point out that the methodology and im-

plementation are neither simple nor trivial, but that the energy and associated cost savings

will likely lead to widespread adoption of MPC techniques in the near future.

One recent example of MPC in the built environment is provided by Ma et al. in [59],

and [60], in which thermal energy storage and building climate control are investigated.

In [59], Ma et al demonstrate MPC of a campus-wide chilled water system at UC-Merced.

Experimental results show reduced electricity cost and improved plant e�ciency. System

models are data-driven, and some input variables are implemented as look-up tables to

reduce computation time and facilitate online implementation. Two major outcomes of

the project are a 19% improvement in plant COP and a confirmation that existing system

operation is near-optimal (the system managers were already operating the plant very well).

2.4.5 Summary

From this sampling of the literature relating to stochastic model predictive control in

buildings, we note several major trends:

• System models are kept simple, leading to tractable, computationally e�cient MPC

formulations. With respect to building models, RC networks, state-space models,

and data-driven models are the most popular. More detailed building models like

those built in EnergyPlus, ESP-r, and TRNSYS are avoided due to the di�culty of

implementation within an MPC scheme.

• Convex optimization is the normally chosen method due to its simplicity and famil-

iarity; researchers are comfortable with convex optimization and build their models

to fit within convex optimization schemes.

• Uncertainties a↵ecting the system model are rarely (if ever) treated explicitly, and

are usually approximated, transformed, or linearized to simplify the optimization

problem.
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• In recent building-related MPC experiments, uncertainties in occupancy [72], weather

predictions [90], and deterministic occupant behavior [63] are addressed, stochastic

occupant behavior is not.

Two main themes emerge as one looks at the goals of each building-system MPC e↵ort.

One theme is to use highly complex models of buildings and MPC to conduct simulation

studies, which inform researchers about the potential for control improvements, and demon-

strate the advantages of MPC. Another theme is to develop simplified models of buildings,

processes, or stochastic influences that can be used in real-time implementation. In the

latter theme, a common need is for computationally e�cient models. The work presented

here falls in line with the former theme, where complex, detailed, slower-running models of

buildings and stochastic influences are used to give the most accurate simulation results and

performance predictions possible.

An important note on the use of a more detailed simulation model (EnergyPlus), is

that this type of simulation software is generally avoided in optimization studies because it

lacks the ability to set states within the model or to control the numerical noise within the

solver. The inability to set the state means that each simulation must be warmed up to the

proper initial conditions, and the inability to control numerical noise within the solver can

lead to rough cost surfaces, which in turn preclude the use of some optimization algorithms

(those that require a smooth cost surface).

Given the complexity of MPC and a general lack of understanding or acceptance of

MPC in the buildings industry, May-Ostendorp suggests in [63] that simpler, more under-

standable control rules will be accepted by building managers - and it has been shown that

such control rules can be derived from the optimal datasets that result from simulated MPC

of building systems.

In this project, using Monte Carlo sampling to investigate the impact of human be-

haviors leaves models of occupant behavior in their original stochastic form, rather than
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converting the impacts of occupant actions into min/max input disturbances, or assuming

deterministic behavior.

2.5 Monte Carlo Stopping Criteria

Working with stochastic models can be challenging; care must be taken with the inputs

(typically a random seed, and any number of weighting parameters or model coe�cients),

and with the outputs - which can be immense and di�cult to analyze. For a deterministic

annual hourly simulation, an analyst is faced with 8760 hourly values of each output variable,

while for a stochastic simulation with 100 unique simulations, the analyst is faced with 100

realizations of each output, for each of the 8760 simulated hours. The analyst is then tasked

with somehow turning this large dataset into something more tractable; aggregating 100

time series data sequences into one average, or perhaps showing the maximum of all 100

simulations, or using all of the data to show a distribution for each hour.

While the tasks of aggregating, summarizing, and visualizing stochastic results are a

challenge compared to working with deterministic results, the more important questions are:

“How many stochastic simulations are enough?”, and “How do we define enough?”.

In several uncertainty analyses of building simulation parameters, a typical range of

60-80 simulations is often cited [32, 57, 61] as an acceptable range, since the change in

the distribution of a given output does not change substantially when more simulations are

conducted. The question of defining the figure of merit for a suite of simulations depends

entirely on the application. It could be an aggregate numeric like total energy consumption

or average fan speed, a discrete metric such as the number of equipment cycles or the number

of hours when comfort conditions are satisfactory, or a range, i.e. the temperature varied

between Tmin and Tmax.

Since we are optimizing control sequences, and our optimizer requires a single number

that can be used to rate the performance of a given control sequence, we use this same

number, the objective function value, to determine if and when su�cient simulations have
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been conducted. A detailed discussion of the methodology employed to ensure convergence

of the average of simulation results is given in Section 4.3.6.

2.6 Rule Extraction

In [63], May-Ostendorp introduces the notion of using machine learning techniques with

time series building control data to learn near-optimal control strategies. Using simulation-

derived optimal control time series similar to those generated in this work, May-Ostendorp

demonstrates that rules based on generalized linear models (GLMs), classification and re-

gression trees (CARTs), and adaptive boosting (AdaBoost) models all show promise as

candidates for generating usable control rules for MM building systems. A number of op-

timizations were performed with four di↵erent MM building variants, and subsequent rule

extraction was tested in di↵erent climates, buildings, and seasons to evaluate robustness of

the rules. While the extracted rules in May-Ostendorp’s work performed well in open-loop

cross validation testing, some broke down in closed-loop testing, and a considerable amount

of expert knowledge and manual tuning went into generating the rules. May-Ostendorp sug-

gested that individual rules for di↵erent modes of operation, i.e. seasonal, weekday/weekend,

occupied/unoccupied, etc., might be necessary, since rules trained on one dataset tend per-

form poorly under conditions that were not present in the training data.

In [26], Domahidi applies the AdaBoost algorithm to optimal control datasets for six

di↵erent cases, which include di↵erent building configurations and climates. The control logic

learned by the AdaBoost algorithm is shown to outperform heuristic controllers, approaching

the performance of the optimal controller (called the ‘Performance Bound’) in all six cases.

Domahidi also trained an AdaBoost model on the aggregate result of all six optimizations,

and the rule trained with the aggregate dataset performed almost identically to the rules

trained using individual data sets, when tested on the individual conditions. This result

suggests that a larger dataset might enable training a single rule that works in multiple

di↵erent buildings, or in multiple locations.
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While May-Ostendorp applied rule extraction to both binary and continuous control in-

puts (window open/close, and temperature setpoints, respectively), Domahidi’s work focuses

on binary controls only, since binary decisions require mixed-integer programming optimiza-

tion techniques, and are thus harder to implement in practice. Specifically, Domahidi looked

at optimizing energy recovery and free cooling, since both of these systems are either active

or inactive, and do not modulate across a range.

The methodology referred to later as top-down, is very similar to the methods used

by May-Ostendorp and Domahidi, but is limited to the use of CART models since they

result in the most readable control rules. Since clarity and simplicity in control rules are

arguably the greatest barriers to acceptance by practicing building controls engineers and

building operators, a primary goal throughout this project was to maximize the opportunity

for implementation.
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Methodology

This chapter serves as a high-level overview of the more detailed discussion of methods

explained in Chapters 4 and 5. Bearing in mind that mixed mode buildings present unique

controls challenges due to the combinations of natural and mechanical ventilation systems

that are used together in MM buildings, and due to the interaction of occupants with MM

building systems, this project follows two paths towards optimizing automatic window con-

trols for MM buildings. The two approaches are referred to as ‘bottom-up’ and ‘top-down’,

where both begin with an existing building with some heuristic automatic window control

logic, and both use simulation studies with a building energy model to find ways of improving

building performance by changing the automatic window controls in simulation.

Both approaches begin with a building energy model, developed to accurately predict

the impact of controls changes on the mechanical and natural ventilation systems in the

actual building selected. In most of this work, the Research Support Facility, a large net-zero

energy o�ce building in Golden, CO, is the building in question. Since the building is large

and complex, a full-scale model of the building proved too slow-running and cumbersome

for use with optimization, so a simplified model of a typical cell of the building was used

for controls investigations. Both methods also incorporate models of occupant behavior,

which are coupled to the building energy simulation so that occupant actions are simulated

in concert with the building simulation, leading to a distribution of results that show how

occupant behavior impacts building performance. The final result of either approach is
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improved automatic window control logic that can be easily implemented into an existing

building control system.

The bottom-up approach adopts the existing control logic, and makes adjustments

to the setpoints and parameters within the existing logic to improve building performance.

This is in contrast to the top-down approach, which begins with optimizing a sequence of

control actions, then trying to find control logic that reproduces the same optimal sequence

of control actions - or comes as close as possible to achieving the same level of building

performance as the optimal sequence of control actions.

For the bottom-up approach, a simplified single-zone of an area of the RSF building is

developed that includes all of the mechanical systems, natural ventilation, and controls in

the primary o�ce spaces of the building, as well as a model for simulating occupant use of

operable windows. Since the same controls that exist in the building are also present in the

model, it is possible to incrementally change the values of setpoints in the control logic, and

observe the impact on building performance in simulation.

For the top-down approach, the same simplified model of the building is used as the

objective function evaluator in a stochastic model predictive control optimization environ-

ment. In the control optimization, control actions are optimized one day at a time to arrive

at multi-day (season-long) sequences of optimal control actions. Once a sequence of optimal

control actions is available, it is used as the response variable, and combined with ambient

conditions (predictor variables) to create a dataset of optimal control action time series. This

dataset is then used by a machine learning algorithm to find causal relationships between

ambient conditions and the control actions.

Occupant behavior is simulated either by coding probabilistic algorithms into Matlab

and coupling them to EnergyPlus using the Building Controls Virtual Test Bed (BCVTB), or

by coding the algorithms directly into the EnergyPlus input data file (IDF). The algorithms

produce a probability of an occupant action at each time step, and comparison with a

randomly generated number between zero and one determines whether the action occurs in
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simulation or not. Since this random comparator is di↵erent for each time step, and di↵erent

for each simulation, multiple simulations are conducted to establish what the average impact

of occupant behavior is on building performance. An investigation of how many simulations

are required to ensure a reliable average impact is included in Section 4.3.6.

Early on in this research, the decision was made to use EnergyPlus to simulate build-

ing performance, and to use Monte Carlo simulations to evaluate the impact of occupant

behavior on building performance. The combination of these two decisions, (1) to use a

white-box, slow-running simulation model, and (2) Monte Carlo sampling, within an opti-

mization scheme where thousands of simulations are required, led to a very computationally

expensive process. This computational expense necessitated using the simplest EnergyPlus

model possible to reduce runtime, and the smallest number of Monte Carlo samples possible

to reduce the overall quantity of simulations.



Chapter 4

Control Approaches

4.1 Two Approaches

Recall that the major outcomes of this project are to determine the e↵ects of occupant

behavior on MM buildings, and to derive control strategies for MM buildings that account

for building-occupant interactions. Two approaches to achieving these goals are illustrated

in Figure 4.1 and described here; the specific tools and methods for each are discussed in

the following sections.

4.2 Bottom Up: Optimization of Conventional Control Parameters

The first and simpler approach, the ‘bottom-up’ approach, entails parametric studies

of setpoints in existing control sequences, outlined in the following procedure.

(1) Select an existing MM building.

(2) Construct a simplified energy model of the physical building.

(3) Incorporate the existing MM building controls in the energy model.

(4) Couple stochastic occupant behavior models to the building energy model.

(5) Choose setpoints from building control logic.

(6) Choose a set of values for each setpoint.
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(7) For each unique combination of setpoint values, conduct a suite of simulations in

order to capture the range of impacts of occupant behavior on building energy con-

sumption and indoor comfort conditions.

(8) Select the set of control values that result in the best1 combination of minimized

energy consumption and maximized occupant comfort.
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Figure 4.1: Two methodologies for improving MM building controls.

This procedure is both simple to implement and to understand, and should enable the

tuning of existing MM controls to the best of their potential. The second approach, dubbed

‘top-down’, is considerably more complex, but may lead us to unconventional or unforeseen

control strategies.

1 The notion of what is best is for the investigator to decide; it could be wholly energy-focused, cost-
focused, comfort-focused, a combination of multiple criteria, or some other objective entirely.
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4.3 Top Down: O✏ine Optimization and Rule Extraction

The steps we follow in the second approach are nearly identical to the approach taken

by May-Ostendorp et al. [63], with the only change being the inclusion of stochastic occupant

behavior models.

(1) Select an existing MM building.

(2) Construct a simplified energy model of the physical building.

(3) Incorporate the existing MM building controls in the energy model.

(4) Conduct o✏ine SMPC studies with the building energy model, arriving at a dataset

that includes a sequence of optimal setpoints.

(5) Use rule-extraction to find relationships (control rules) between measurable ambient

conditions and optimal setpoints.

(6) Tune and validate extracted control rules.

The key di↵erence between the methods in [63], and those described here is in the treat-

ment of occupant behavior. Here, instead of simulating the building energy model once per

objective-function-call, we simulate the model multiple times per objective-function-call. It

is shown in Section 4.3.6 that we simulate enough times to arrive at a representative expected

value of the objective function (building energy consumption, occupant comfort, etc.).

In the next section, software environments and methods used to undertake the above

two methodologies are described.

4.3.1 Supervisory Control

This work does not address local-loop or terminal unit controls, rather it focuses on

whole-building supervisory control, and seeks to determine control logic that will take ad-

vantage of whole-building features such as thermal mass or natural ventilation to improve
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comfort conditions and decrease energy consumption. The outcome of a given study that

follows this methodology is a rich dataset which includes simulation results for a building

being controlled by two distinct strategies: a heuristic control strategy, and an optimal con-

trol strategy. All results include distributions which show the impact of occupant behavior

on building performance.

The means by which we control the entire building in simulation is via setpoints, which

could be temperatures, flow rates, or some other threshold values in a control sequence. In

the example provided in the results section, we optimize automatic window control signals,

which can take binary values of either 0 (close) or 1 (open). As we look at longer time-scales,

i.e. building operation for many days or months, optimizing a setpoint for each hour becomes

increasingly computationally expensive. To address this expense, we break up the problem

in time with model predictive control (MPC), advancing through each day in a month, and

optimizing each day individually instead of the whole month at once.

4.3.2 Organization

This methodology section is broken up into four components. In the first portion, we

address the implementation issues associated with EnergyPlus, which are also addressed in

detail by [24]. In particular, we discuss how the objective function is broken up into di↵erent

temporal components, explaining how each component applies to a di↵erent time-horizon

required for MPC with EnergyPlus.

The next section continues with a discussion of the objective function, now delving

into the specifics of how we provide a single metric for an entire simulation. Where the first

section discusses the breakdown of the objective function into di↵erent values for di↵erent

periods of time, the second section discusses how the objective function is broken down into

two components: one for energy consumption, and one for comfort conditions.

In the third portion of the methodology section, we discuss the details of the stochastic

phenomena that impact the sequences of events in each simulation. This section highlights
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the di↵erences between stochastic and deterministic MPC, and what care needs to be taken

when conducting suites of simulations instead of one for each unique case. Here we introduce

several di↵erent simulation cases, the case that uses default controls (DEF), the case that

uses optimal controls (OPT) and the cases that the optimizer chooses from, called candidates

(CAND).

The fourth element of the methodology is a discussion of the number of stochastic

simulations required to provide a satisfactory distribution of results, or the Monte Carlo

number. Often, this number is chosen a priori as some round number such as 50, 100, or

1000, depending on the goals of the researcher, and on computational constraints. Here we

implement a variable convergence criteria that ensures we have conducted enough simula-

tions, and that we do not needlessly simulate too many simulations. In practice, we ensure

that at least 50 simulations, and no more than 400 simulations are conducted.

For clarity, a nomenclature section with terms used in this chapter is included here.

4.3.3 SMPC in Simulation

In most MPC applications, simplified (typically linear) dynamic models are used as they

allow for many simulations in a short time (i.e. thousands per second). In the application

presented here, a more complex model of an entire building, modeled in EnergyPlus, is used

which presents several major issues. The first is that initial and final state variables cannot

be directly prescribed, the second is that there are more states in an EnergyPlus model than

in simpler models, and the third is simulation time. Simulation time is minimized wherever

possible throughout the approach, and the treatment of simulation start and end states is

defined here. We begin by stating the MPC problem mathematically, then describe the

time-horizons pictured in Figure 4.2 and explain why each is necessary in this approach.

Model predictive control is a method of dynamic optimization in which multiple control

decisions for a dynamic system are optimized sequentially. For a given point in time t, control



42

Table 4.1: Nomenclature.

Symbol Definition
C The value of the objective function.
P The portion of the objective function computed over the planning

horizon.
T The portion of the objective function computed over the termination

horizon.
R The cost of energy.

M,M 0 The cost of occupant-weighted comfort conditions.
N The number of execution horizons in the planning horizon.
K The number of execution horizons in the termination horizon.
~u The vector of control decisions at a given point in time.
~x The vector of system states at a given point in time.
BW The bandwidth inside which the moving average must fall to ensure

convergence.
BL The number of consecutive simulations required to reach convergence.
t A time index.

n, k, i A simulation index.
DEF, d Refers to the default case.
CAND, c Refers to a candidate case considered during an optimization.
OPT Refers to the optimal case.
NMC The number of Monte Carlo simulations.
S A simulation.
F The final candidate in an optimization.
W The set of possible disturbances.
WR Weighting coe�cient applied to the cost of energy.

WM ,WM 0 Weighting coe�cients applied to the cost of comfort.
U The set of possible control actions.
8 For all.
!
< Must be less than.
d·e Ceiling.
(·)+ Positive values only.
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decisions are optimized as in Equation 4.1

min
~u2U

NX

t=t0

C(~x, ~u) 8W (4.1)

where C(~x, ~u) is an objective function describing the cost of operating the system with states

~x and a vector of control decisions ~u.

In stochastic MPC (SMPC), the state at any future time is uncertain due to stochastic

disturbances in the system, and the new formulation is

min
~u2U

NX

t=t0

E[C(~x, ~u) 8W ] (4.2)

where E(C) is the expected value of the cost function, and W is the set of possible distur-

bances. Once the optimization for a given point in time is complete, the first element of the

control sequence ~u(t = t0) is implemented, and the system steps forward in time (typically

in discrete time steps) to t = t1. This is referred to here as one execution, and the time

between optimizations we refer to as the execution horizon, as shown in Figure 4.2. At

each time step, the objective function given in Eq. 4.3 is used to evaluate performance for a

given simulation:

Initialization
Horizon

Cost Horizon

Termination
Horizon

Planning
Horizon

t
i

FuturePast

t
i+N

Execution 
Horizon

t
i+1

Figure 4.2: Time-horizon nomenclature.

C(t) =
N�1X

t=t0

P (~x(t), ~u(t)) + T (~x(tN)) (4.3)

where P (~x, ~u) is a cost function for the planning horizon and T (~x) is the cost associated

with leaving the system in the terminal state ~x(tN).
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In a simple system with only a handful of states, it is tractable to assign penalty

terms to each state, however in a complex model and in a general sense, it is di�cult to

assign a penalty to every possible state. For example, if a problem involves the surface

and air temperatures in a zone, combined with flow rates and water temperatures in a

heating system, should the penalty be high when flow rates are high, or when temperatures

are high at the end of a simulation? To address this issue, we assign a cost to the whole

building performance during the entire termination horizon (see Figure 4.2), rather than

to the terminal state at time tN . This new formulation of the objective function is given in

Equation 4.4.

C(t) =
NX

t=t0

P (~x(t), ~u(t)) +
N+KX

t=N+1

T (~x(t), ~uT (t)) (4.4)

where uT is the control sequence applied during the termination horizon, andK is the number

of time steps included in the termination horizon. This leads to a new question: what controls

should be applied during the termination horizon? Typically in MPC the planning horizon

is the only time period considered by the optimizer. Since optimizing more than 24 hourly

decisions is computationally intractable for the EnergyPlus models used in this work, we

cannot reasonably optimize 48 hours at once, yet it is still important that we consider the

impact of decisions made during one day on building performance for the following day,

particularly for buildings with high thermal mass. So, while we can optimize a single 24-hr

period in detail (the planning horizon), we must assume some heuristic control is applied

during the termination horizon for the purpose of computing the terminal cost. In order to

account for long-term e↵ects of decisions chosen for the planning horizon, we assume that

the building is operated with default control logic during the termination horizon, so that

the results of candidate simulations can be compared with results of default simulations, and

the only di↵erences in cost can be attributed to di↵erences in controls during the planning

horizon.

In nominal MPC, Figure 4.2 can be simplified to the planning and execution horizons,
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with initial states ~x(t0) set explicitly, and terminal states ~x(tN) computed at each time step,

however with EnergyPlus as the simulation engine, the full set of horizons in Figure 4.2

are required. As explained, the termination horizon is included to address the di�culty of

computing terminal constraints associated with the terminal state of the building and its

systems. To ensure that the initial conditions are the same for each new optimization, each

simulation is run through an initialization period as described in [24]. The initialization

horizon should not be confused with the warm-up period in EnergyPlus simulations,which

precedes the initialization horizon in each simulation; rather, the initialization horizon en-

sures that long-term e↵ects of prior control strategies are accounted for. We have found

that a 7-day initialization horizon is su�cient to ensure that states are matched, even for

buildings with high thermal mass.

A final note on horizons as they are treated in this application of SMPC is the way that

control decisions are applied during the initialization horizon. For the first optimization at

t = t0, the initialization horizon for the default simulation and for all candidate simulations

is the same, as indicated in Figure 4.3. Once the system advances in time however, the

optimizer will inevitably choose di↵erent controls than what are used in the default case, and

in subsequent optimizations, the control decisions applied during the initialization horizon

diverge as in Figure 4.3. So, for all simulations after t = t0, default cases use default

control setpoints in the initialization horizon, and candidate cases use optimal setpoints in

the initialization horizon; this ensures that any long-term planning by the optimizer can be

taken advantage of, i.e. pre-cooling a large thermal mass on one day in preparation for a

warm following day.

4.3.4 Cost Functions

In Equations 4.1 through 4.4, the SMPC problem is defined, and the objective function

is defined, with attention given to how it is broken up into di↵erent components for time

horizons. Here we describe how the objective function is broken up in terms of energy
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Figure 4.3: Divergent thermal histories: for optimizations at t � t1, candidate simulations
have the optimal thermal history, while default simulations have the default thermal history.



47

consumption and comfort penalties, and define the particular objective function, henceforth

referred to as the cost function, used in the results presented later in this paper. The

discussion begins with defining the primary cost function, used in the majority of simulation

studies. At the end of this section, a secondary cost function is defined which is aimed at

improving comfort conditions - rather than just respecting a discomfort limit.

In dealing with a suite of simulation results, computing the cost function is a two-step

process. First, the cost function is computed for each simulation in the suite, then some

method of aggregating the results must be applied to arrive at a singular numerical value

that the optimizer can associate with each candidate control vector. The most appropriate

statistic to use in this case is the expected value, or arithmetic mean of all of the individual

simulation results. Another option for treating the range of results would be to take the max-

imum value, essentially assuming the worst and guaranteeing satisfactory albeit conservative

controller performance.

Since the optimizer must be presented with a single numerical value, we use the ex-

pected value E(C(~u)) of building performance given each control vector ~u, where the cost

function P (~u) (or similarly, T ( ~uT )) is a metric for defining building performance for a given

period of time, defined in Equation 4.5,

P (~u) =
NX

t=t0

R(~u(t)) +M(~u(t)) (4.5)

where N includes all time steps in the planning horizon, R is the cost associated with energy

consumption, and M is the cost associated with comfort performance.

While the cost of energy consumption is straightforward for computation, there is

significant ambiguity around how to quantify comfort - especially when considering temporal

datasets. Here the cost of comfort is defined using hourly PMV scores, occupancy, and a

base-case for comparison, as presented in [24, 63], and below in Equation 4.6. In essence, this

sets a prescribed range of comfort conditions that are allowed, which is whenever the hourly

PMV is between ±0.5, or closer to zero than what was achieved under default control, and
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results in penalty for any comfort conditions that fall out of the range.

M(~u(t)) = [(|PMVt,CAND| > 0.5)� (|PMVt,DEF | > 0.5)]NocctWM (4.6)

That is, for each candidate control vector ~u, a simulation with default control setpoints

is conducted, and a simulation with the candidate control setpoints is conducted. The

PMV score for each hour from the candidate results is compared to the default results,

and whenever the candidate PMV score is worse than the default score, or worse than a

predetermined baseline value of (PMV ± 0.5), it is multiplied by the number of occupants

present and a large weighting coe�cient WM , which serves to enforce constraints on comfort

conditions in simulation. For the results presented later, WM was set to a value of 106,

which causes the cost function to be very large for any simulation with even slightly poor

comfort conditions; essentially preventing the optimizer from choosing controls that lead to

any comfort conditions which fall outside of the prescribed range.

4.3.4.1 Secondary Cost Function

From the start of simulation studies with the RSF building, it was obvious that sav-

ing energy would be di�cult since the building was already well designed and operating

e�ciently. When initial simulation studies showed what we expected (minimal energy sav-

ings), a new cost function was defined that would incentivize the optimizer to try to save

energy and improve comfort, rather than trying to save energy and merely meet the comfort

constraints set by the default controller.

Recall that first cost function consists of two components, an energy cost (raw energy

consumed) and a comfort penalty. The comfort penalty for a candidate simulation is zero

when comfort conditions are the same as, or better than, the comfort conditions in a default

simulation, as determined by the PMV score. The second cost function consists of four

components, namely energy consumption, a comfort score, an energy penalty, and a comfort

penalty. Each of these components is computed for an entire planning horizon, rather than
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per-hour. This new formulation is given below in equation 4.7.

P =
1

2

✓
Rc

Rd

+
M 0

c

M 0
d

◆
+WR

�
Rc �Rd

�+
+WM 0

�
M 0

c �M 0
d

�+
(4.7)

Note that a new formulation for the cost of comfort for a given hour is redefined as M 0 to

distinguish it from the cost of comfort in the first cost function, M . The new cost of comfort

for a given hour is simply the occupant-weighted PMV score for that hour, as in equation

4.8.

M 0(~u(t)) = Nocct ⇤ PMVt (4.8)

The weighting coe�cients, WR and WM 0 are both set to 106 to heavily penalize any increase

in energy comfort or any degradation of comfort conditions.

Some hypothetical energy and comfort scores are given in Table 4.2 below, to illustrate

the di↵erence between the first cost function and the second, just described. The di↵erence

between the two cost functions is subtle, but evident in the second and fifth rows of the table,

where the second objective function shows a benefit from improving comfort conditions, and

the first shows none.

Table 4.2: Example calculations of cost function values for a single cost horizon, assuming
the default simulation has resulted in 1 unit of energy consumption, and a 1 unit comfort
violation. Note that a comfort value closer to zero is better.

Default Candidate Cost Cost
Energy Comfort Energy Comfort Function 1 Function 2

1 1 1.0 1.0 1.0 1.00
1 1 1.0 0.9 1.0 0.95
1 1 0.9 1.0 0.9 0.95
1 1 0.9 0.9 0.9 0.90
1 1 0.9 0.8 0.9 0.85
1 1 1.0 1.1 100001.0 100001.05
1 1 1.1 1.0 1.1 100001.05
1 1 1.1 1.1 100001.1 200001.10
1 1 1.1 0.9 1.1 100001.00
1 1 0.9 1.1 100000.9 100001.00
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Table 4.2 also illustrates the sensitivity of both cost functions to poor comfort perfor-

mance; if the candidate control results in even slightly worse comfort conditions, the cost

function value will be very high, due to the high weighting coe�cients. For the second cost

function, this is also true for energy consumption, and the optimizer is quickly forced away

from any control decisions that result in higher energy consumption.

Two nuances of the second cost function are a sensitivity to zero values, and an ability

to trade between hours. Firstly, a value of zero for either energy or comfort score for the

default simulation (which can happen on weekends when no occupants are present) will

result in an infinite value of one of the first terms (Rc
Rd

or M 0
c

M 0
d
), so some logic is included

in the code to address this issue. Secondly, since each individual part of this cost function

(Rc, Rd,M
0
c, and M 0

d) is computed for the entire planning horizon prior to combining into

the final score (P ), the cost function allows for hourly energy costs to be traded with each

other, or for hourly comfort scores to be traded. The two penalty terms ensure that comfort

and energy are not traded with one another, as evidenced by the high values in the last two

rows of Table 4.2. The ability to trade comfort scores relies on the assumption that one

occupant’s discomfort present for five hours when the PMV score is PMV�1 is equivalent to

five occupants’ discomfort present for one PMV�1 hour.

4.3.5 Handling Stochastic Occupant Behavior Models

This section addresses the treatment of stochastic phenomena in occupant behavior

within building energy models used here. Within the building energy model, a stochastic

model of occupant window use is implemented which requires a random number at each

time step to generate unique evolutions of occupant behavior. The seeding of this randomly

generated number is an important detail since it governs stochastic phenomena within the

model, and its importance is illustrated in Figure 4.4, where the di↵erent combinations of

automatic controls and stochastic phenomena in simulation cases are illustrated.

For a single MPC optimization (for one execution horizon), the optimization will con-
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Figure 4.4: Illustrations of control signals and stochastic phenomena in di↵erent simulation
cases.
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duct a suite of simulations for the model with default controls (DEF), and suites of simu-

lations for each candidate control vector (CAND) evaluated during the optimization, com-

puting the objective function for each individual simulation, then aggregating the results of

each suite.

In order to compare the results of a simulation for a given candidate control vector to

the results of a simulation with default controls, the random seed must be the same in both

simulations. This is shown in Figure 4.4 by the two solid thin lines labeled Random Stream

1 and 2, respectively. In the first column of subfigures (a,c, and e), the same random seed

(Random Stream 1) is used in each simulation, and in the second column of subfigures, a

di↵erent random seed (Random Stream 2) is used. When comparing di↵erent simulations,

one can compare simulations from di↵erent rows or di↵erent columns of Figure 4.4, but not

from di↵erent rows and columns. Comparing the simulations in Figure 4.4 (a) and (b) gives

insight into the e↵ect of di↵erent evolutions of stochastic behavior, given the same automatic

(DEF) controls, while comparing the simulations in Figure 4.4 (a) and (c) gives insight into

the e↵ect of di↵erent automatic controls (DEF vs. CAND 1), considering a single evolution

of stochastic behavior. It is not valid to compare the simulations in Figure 4.4 (a) and (d),

since both the automatic controls and the stochastic behavior are di↵erent.

Note that this does not guarantee that the stochastic behavior will evolve in the same

manner in each simulation with the same random seed, but that if all other parameters and

the random seed are the same, then stochastic behavior will be identical in each simulation.

In fact, one of the goals of this research is to find control strategies that work in concert

with occupant behavior, so if a candidate control vector leads to indoor conditions which,

in turn, lead to more desirable occupant behavior, it will be reflected in the results. If, on

the other hand, a given control sequence leads to undesirable occupant behavior, this will

be reflected in the results and the control sequence will be discarded.
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4.3.6 Monte Carlo Criteria

During a given optimization, some number F of candidate vectors are explored, and

for each candidate vector, a suite of simulations are conducted to establish a representative

result. The quantity of simulations per-candidate can be established a priori as NMC , as

show in Table 4.3, or can vary with each candidate depending upon the variability in the

stochastic behavior for that candidate, as in Table 4.4. Choosing a set number of Monte Carlo

simulations a priori is di�cult for two reasons, first it is impossible to know in advance how

many simulations will be required to capture the range of variability in the stochastic model

being simulated - so the chosen number may be too low; the second is that simulations

are computationally expensive, and for cases with a small range of variability the chosen

number may be too high. The solution to this conundrum is to implement a system of

checking the results after any number of simulations have been conducted to determine if

enough simulations have been conducted to arrive at a satisfactory expected value.

4.3.6.1 Convergence Band Stopping Criteria

Table 4.3: Monte Carlo sampling and optimization candidates - static Monte Carlo criteria.

Sample 1 Sample 2 · · · Sample NMC

Default Def, S1 Def, S2 · · · Def, SNMC

Candidate 1 C1, S1 C1, S2 · · · C1, SNMC

Candidate 2 C2, S1 C2, S2 · · · C2, SNMC

...
...

...
. . .

...
Candidate F CF , S1 CF , S2 · · · CF , SNMC

A variant of the methodology in [6] is employed to determine when su�cient simulations

have been performed to ensure that the range of probable impacts of occupant action has

been explored. First, a pair of convergence criteria: the convergence band width BW and

the convergence band length BL are defined, as in Equation 4.9 and Figure 4.5. The band

length is expressed as a minimum number of simulations, and the band width is a percentage
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Table 4.4: Monte Carlo sampling and optimization candidates - variable Monte Carlo criteria.

Sample 1 Sample 2 · · · · · · · · · Sample NMC

Default Def, S1 Def, S2 · · · · · · · · · Def, SNMC,D

Candidate 1 C1, S1 C1, S2 · · · · · · · · · C1, SNMC,1

Candidate 2 C2, S1 C2, S2 · · · C2, SNMC,2 ⇥ ⇥
...

...
...

...
...

. . .
...

Candidate F CF , S1 CF , S2 · · · · · · CF , SNMC,F ⇥

error, E, of the average value of all simulations up to simulation n, analogous to a statistical

confidence interval.

BW = EC̄n (4.9)

C̄n =
1

n

nX

i=1

Ci (4.10)

After computing the cost function of simulation n, one can compute the upper and

lower bounds of the convergence band as C̄n ± BW/2.

Next, we ensure that the moving average at each prior iteration falls within the con-

vergence band, as shown by the dark line in Figure 4.5, which is within the darkest shaded

region for all simulations in BL. This criteria is also given in Equation 4.11. Values of BL

and BW are 50 and .02, respectively, which ensures that a minimum of 50 simulations are

conducted, and that the moving average does not change by more than 2% over the last fifty

computations. 
C̄n �

BW

2

!
< C̄n�k

!
< C̄n +

BW

2

�
8k, k = 1, 2, ..., BL (4.11)

This ensures that when the impact of occupant behavior is small, superfluous simulations

are not needlessly conducted, and when occupant behavior leads to large variation in the

results, we perform enough simulations to capture that variability.
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Figure 4.5: Convergence band method for Monte Carlo stopping criteria.

4.3.6.2 Variance Based Stopping Criteria

Following the methodology in Section 4.3.6, we begin with an investigation of normally

distributed data, and demonstrate through empirical studies how we can ensure that enough

simulations have been conducted in a Monte Carlo sampling exercise with simulated building

energy consumption data. First, we recall the standard normal distribution �(z), with mean

µ and standard deviation �. According to the central limit theorem, the distribution of any

random variable, x, will approach the normal distribution as the sample size, n, approaches

infinity.

lim
n!1

Pr

✓
x̄n � µ

�/
p
n

< z

◆
= �(z) (4.12)

Using the standard normal distribution, one can compute the probability that the sample

mean is equal to the population mean (in this case, equal to the mean of the standard normal

distribution) according to

Pr

✓
|x̄n � µ| < z↵/2

�p
n

◆
= 1� ↵ (4.13)

where (1 � ↵) is the desired level of confidence, and z↵/2 is equal to the inverse normal

distribution calculated at the upper 100(1� ↵/2)th percentile as in

z↵/2 = ��1(1� ↵/2) (4.14)
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By expressing the di↵erence between the sample mean and the true mean as a relative error

✏ = E ⇤ x̄, we can determine the the number of Monte Carlo nCLT samples required to say

with 100(1� ↵)% confidence that the sample mean is within 100(✏)% of the true mean.

|x̄n � µ| = ✏ (4.15)

✏ < z↵/2
�p
n

(4.16)

nCLT =

⇠⇣
z↵/2

�

✏

⌘2⇡
(4.17)

Note that we now have three parameters, �, ↵, and ✏ which determine the number of samples

required. Since � is fixed at a value of 1.0 for the standard normal distribution, we can observe

the number of samples required as a function of ↵ and ✏ in Figure 4.6.

Figure 4.6 shows us that the number of samples required increases sharply as the error

criteria shrinks. If we look at a normal distribution with mean x̄ = 1 and standard deviation

Sx, and if we fix the error criteria to 0.1, we can look at the number of samples as a function

of the standard deviation and the confidence level in Figure 4.7.

Note in Figure 4.7 that the number of samples goes up steeply as the standard deviation

increases relative to the mean of the data, and that even for a modest 10% error (✏ = 0.1) and

95% confidence (↵ = 0.05) levels, some 400 samples are required if the standard deviation is

large relative to the mean (Sx/x̄ = 1). The sample size nCLT is only applicable to independent

and identically distributed (i.i.d.) random variables that come from a normal distribution,

and ensures that the variance of the sample-data is very close to the variance of the normal

distribution.

Next, we apply the standard sample size on an empirical data set, and show that it is

overly conservative for our needs since it depends on the variance of the data, while we are

only concerned with finding a representative mean.



57

0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

100

200

300

400

500

600

700

800

900

1000

n
C
L
T

Absolu te Error : ϵ

 

 

0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.1

Confidence
Level: α

Figure 4.6: Monte Carlo samples required to reach representative mean for the standard
normal distribution.
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4.3.6.3 Empirical Testing

For empirical testing, 1000 simulations of the SMM1 model (described in Chapter 5)

with stochastic occupant window behavior were conducted for the month of June, since

it is conducive to occupant window use, and represents a case where occupant behavior

heavily impacts building performance. Figure 4.8 shows the minimum and maximum energy

consumption for each hour of the simulation.

In Figure 4.9, we see the distributions of daily variation in energy consumption for the

month of June. Note that early on in the month, outdoor conditions are cooler and occupant

use of windows is unlikely. Later in the month however, occupant window use leads to a

wide range of energy consumption on some days. When we conduct SMPC, we consider

the average energy consumption over the course of 8-10 days, depending on the horizon

scheme implemented, which includes a 7-day initialization and 1-3 day cost horizon, so it is

important that we capture the variability over a 10-day period. In the beginning of June,

this variation is small - so theoretically we do not need to conduct very many simulations

to get a good representative average of energy consumption. Later in the month however,

occupant behavior leads to a wide spread in the data, and we will want to conduct more

simulations to capture that spread.

Table 4.5 contains the statistics of the daily energy consumption data presented in

Figure 4.9, with the mean and standard deviation from the full 1000 runs presented in the

first two columns, and the required number of simulations needed to arrive at a representative

average according to two methods. CB Stop refers to the number of simulations that

are required to reach convergence using the convergence-band method described in Section

4.3.6.1, and Variance Stop is equivalent to nCLT in Figures 4.6 and 4.7; it is the number

of simulations required to reach a representative average using the variance-based standard

sample size methodology in Section 4.3.6.2.

An example demonstrating the two convergence criteria for June 26 (CB Stop and
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Table 4.5: Daily energy consumption statistics (kWh) and convergence criteria.

Day Mean Standard Deviation CB Stop Variance Stop

1 64 7.37E-06 36 1
2 120 0.015 36 1
3 150 0.168 36 1
4 173 0.338 36 1
5 185 3.145 36 12
6 193 3.239 36 11
7 66 1.58E-04 36 1
8 50 5.00E-13 36 1
9 58 3.72E-05 36 1
10 134 0.052 36 1
11 167 0.412 36 1
12 204 5.789 37 31
13 234 17.793 51 223
14 238 20.039 52 273
15 211 10.079 42 88
16 178 1.261 36 2
17 161 1.016 36 2
18 189 2.179 39 6
19 114 1.17E-03 36 1
20 164 0.620 36 1
21 180 8.610 42 88
22 177 2.621 36 9
23 191 0.213 36 1
24 192 10.956 71 126
25 225 24.556 71 458
26 258 31.009 71 554
27 241 14.276 51 135
28 253 17.949 78 194
29 8 1.63E-13 36 1



63

Variance Stop) is given in Figure 4.10. The confidence band and width parameters are 36

and 0.01 for the CB method; the absolute error and confidence level ↵ are 0.01 and 0.05

for the variance method. Note that the according to the CB method, we have reached a

representative average after 71 simulations, while the Variance based method ensures that

both a representative average and a stable variance have been reached at 554 simulations.

For the purpose of our SMPC optimizations, the CB method is su�cient, since it provides

a representative average with the fewest simulations possible.

Table 4.6 has statistics for energy consumption on June 26 after 71, 554, and 1000

simulations. Assuming that the 1000 simulations encompass the entire population, and that

the mean, standard deviation, and variance are their true values after 1000 simulations,

we have computed the di↵erence between the true and sample statistics after 71 and 554

simulations. Note that after 71 (the stopping point according to the CB method), the mean

is within 1% of the true value, but the standard deviation and variance are still 5 and 11

% away from their true values. Following the variance based stopping method, one ensures

that the standard deviation and variance are much closer to their true values, but the mean

value is certainly captured by the CB method.

Table 4.6: June 26 energy consumption statistics [kWh].

Simulation Cum. Cum. Variance % Di↵. % Di↵. % Di↵.
Number Mean Std. Dev. Mean Std. Dev. Variance

71 256 33 3852 -0.86 5.36 11.28
554 260 31 3547 0.54 0.89 2.46
1000 258 31 3462 - - -

Next, we consider a ten-day simulation result, since this is what will commonly be

visible to the optimizer. Since we are considering now 240 hours instead of 24, the impact

of occupant actions in individual hours are much less significant, and the results that were

much more variable on a 1-day time scale are washed out in the 10-day summary, presented
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in Figure 4.11. Where the range of energy consumption impacts for a single hour was 300%

of the minimum value, and the range for a single day was 50%, the largest distance between

the minimum and maximum for a ten day period is only about 20%. This smaller range in

values means that the rate of convergence to a representative average will be even faster for

longer time-scales than for shorter ones.

If we look at the summary statistics for the first twenty 10-day periods in June in Table

4.7, it is clear that using the variance-based convergence criteria leads to convergence in fewer

simulations than were required for single-day metrics. For hourly data, the CB method

consistently required fewer simulations to reach convergence than the variance method, but

for ten-day data, the CB method tends to require more simulations - until the last two ten

day periods. The ten day periods starting on June 19 and 20 have the highest variance, and

the CB method and variance-based method require comparable numbers of simulations to

reach an acceptable mean value.

If we consider the entire month of data together and compute the number of simulations

required to reach an acceptable average according to each of our two rules in Table 4.8, we see

that the variance based method requires only 16 simulations, and the CB-method requires

only two more than its minimum, or 38 total.

In conclusion, the convergence band and variance-based methods give comparable stop-

ping criteria when tested on a large (1000-sample) dataset for ten-day periods, which are

typical time-periods in the MPC scheme described earlier in this chapter. While the vari-

ance based stopping rule correctly recommends stopping after just one or two simulations in

many cases, it requires knowledge of the variance of the entire population of data in order

to confirm that the single result is representative of the population. In contrast, the conver-

gence band stopping rule does not require statistical knowledge of the population in order to

establish convergence, but it does require a minimum number of samples before converging.

Since we can not compute 1000 simulations every time a new control strategy is tested, and

we need a representative average result with the minimum simulations possible, we select
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Table 4.7: Ten day energy consumption statistics (MWh) and convergence criteria.

Days Mean Standard Deviation CB Stop Variance Stop

1 - 10 1.193 0.0056 36 1
2 - 11 1.295 0.0056 36 1
3 - 12 1.379 0.0080 36 2
4 - 13 1.464 0.0222 37 9
5 - 14 1.528 0.0375 43 24
6 - 15 1.554 0.0436 43 31
7 - 16 1.539 0.0442 43 32
8 - 17 1.635 0.0447 43 29
9 - 18 1.774 0.0455 43 26
10 - 19 1.830 0.0455 43 24
11 - 20 1.860 0.0455 43 24
12 - 21 1.874 0.0468 43 24
13 - 22 1.847 0.0444 43 23
14 - 23 1.804 0.0319 39 13
15 - 24 1.758 0.0237 37 8
16 - 25 1.772 0.0385 42 19
17 - 26 1.853 0.0626 53 44
18 - 27 1.933 0.0739 51 57
19 - 28 1.996 0.0865 70 73
20 - 29 1.890 0.0865 70 81

Table 4.8: Monthly energy consumption statistics (MWh) and convergence criteria

Mean Standard Deviation CB Stop Variance Stop

4.78 0.097 38 16
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the convergence band method for use in future studies.

4.3.7 MPC Software Environment

The core of the simulation/optimization environment that is used to orchestrate sim-

ulated SMPC is described in detail by Corbin et al. in [24]. A summary is included here for

clarity, see Figure 4.12 for a diagram of how data flows between software during a simulated

MPC run; the numbered ovals indicate the sequence of events in the diagram. In Figure

4.12, an MPC run begins with the MPC Controller, which is implemented in matlab, which

calls for an occupancy schedule from the occupancy model (discussed on Section 5.3.2). This

occupancy schedule, which contains hourly presence and absence profiles for each occupant

in the simulated model, will be used for the duration of the study. Next, the MPC controller

gathers the data required to conduct a single optimization for a single execution horizon,

and dispatches the information to an optimizer, (see number 3 in Figure 4.12). When the

optimizer has concluded its work for a given execution horizon, the MPC controller stores

the results of simulating with the optimal control vector u⇤ and advances to the next time

horizon, repeating this process (all of steps 2 through 7 in Figure 4.12) until a predefined

end-date is reached. Note that there are three nested processes in the diagram; the iterative

simulation between steps 4 and 5 occurs in each objective function call, there are many

objective function calls (steps 3-6) in each optimization, and one optimization is conducted

for each execution horizon (steps 2-7) - resulting in a computationally expensive process.

4.3.7.1 Extending the Environment

While the focus of this work is largely focused on optimizing natural ventilation by

scheduling automatic windows to open and close at certain times, the software environment

is extensible to any parameter or setting in EnergyPlus. Since EnergyPlus uses text-based

input data files (IDFs), and the software environment overwrites selected bits of text in the

IDF in order to manipulate the simulated building controls, any field that is an input in the
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IDF could be a parameter tuned by the optimizer. That said, we could in theory optimize

schedules for lighting, HVAC setpoints, automatic window, or automatic blinds all at once

in a single optimization study.

However, before embarking on an even more computationally expensive MPC study

where every system is optimized together, consider that each system could have somehow

conflicting objectives, and constructing a single objective function that will capture the goals

of all systems at once will be a challenge. Consider also the granularity of parameters to be

optimized in both scale and time - do we want to adjust lighting levels by 1 lumen at 10

second intervals, or by 50 lumens at 10 minute intervals?

Currently the software environment is limited to making hourly decisions, since any

finer resolution would have increased the computational time beyond reasonable limits, as-

suming EnergyPlus is the simulation engine. The final optimization runs, discussed in Section

9.4, required 7 days of computing time using 12 2.8Ghz processors. Each run consisted of

213 individual one-day optimizations, each objective function call required between 36 and

100 simulations, and the only optimized parameters were 12 binary window open or close

decisions. If more variables are to be considered for optimization, or continuous variables are

considered rather than binary, the time for the optimizer to converge over each optimization

horizon will increase exponentially.

4.4 Rule Extraction

In the top-down approach, the methods of machine learning adopted by May-Ostendorp

et al. [63], are used to learn what relationships exist between ambient conditions and optimal

control setpoints.

Here, the term rule extraction refers to the process of deriving usable building control

rules from synthetic optimal datasets, such as those generated during an o✏ine DMPC or

SMPC process. In the context of this research, o✏ine SMPC studies will yield large time-

series datasets that include building performance characteristics, ambient conditions, and
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a set of optimal control decisions. Using various machine learning techniques, functional

relationships can be developed between any subset of results (e.g. weather conditions) and

the optimal control decision, which can then be converted into usable building control logic.

Based on the work of May-Ostendorp et al, in which generalized linear models (GLMs),

classification and regression trees (CARTs) and adaptive boosting methods were employed,

we know that rule extraction works in an o✏ine context.

4.4.1 Classification and Regression Trees

Rooted in the fields of data mining and decision theory, classification and regression

tree analysis provides a nonparametric means to relate a set of predictor variables to a re-

sponse variable through a sequence of conditional statements. CART models can be visually

represented and understood through dendrograms (see Figure 4.13), and thereby lend them-

selves to implementation in building automation systems as simple if/then/else control rules.

Regression trees are created by recursively splitting the set of predictor variables according

to their skill at classifying the response variable; this process is referred to as learning or

growing the decision tree. At each split (node) in the tree, the subset of predictor variables

is examined, and a single predictor is selected that divides the subset into groups (branches)

that similarly classify the response variable. When classification or misclassification rate is

the sole metric used to determine where to split the predictor set, this process continues until

every branch leads to a terminal node where there is one and only one data point, called a

leaf. Normally, a fully grown tree (one in which every branch ends in a single value) is too

complex and over-fitted to the data and must be simplified (pruned) to be useful. In order

to prune the tree appropriately, a complexity criterion C↵ is introduced that combines the

rate of misclassification R(T ) with the number of terminal nodes (Nm) in the model. The

misclassification error is given by:

R(T ) =
1

Nm

X

i2Rm

I(yi 6= k(m)) (4.18)
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as in [42], where I is an indicator function that returns a 1 when the expression in parenthesis

is true, yi is the the true class of a terminal node, k(m) is the predicted class, and Rm is

a region encompassing i observations that are isolated in a given split. The complexity

criterion is given by:

C↵(T ) =
|T |X

m=1

NmQm(T ) + ↵|T | (4.19)

where T 2 To is a subtree that is a obtained by pruning To, m is the index of a terminal

node, ↵ is a tuning parameter, and Qm is an average of the squared di↵erence between the

total number of nodes and the number of nodes in the full tree To. The reader is referred

to [42] for more information on the derivation of CART classification and pruning, su�ce

it to say that parsimonious models are readily found by established and e↵ective pruning

techniques.

4.4.1.1 Guiding Growth

The basic algorithm and premise behind CART growth is to minimize misclassification.

For some data sets this is su�cient and the basic algorithm su�ces, but the avid CART

grower has several tools for guiding models in di↵erent directions. A maximum complexity

value or a minimum number of observations per leaf can determine how complex a tree

can grow, or one can specify that a certain number of observations must be present to

even consider growing a new branch. Since misclassification is the main driver for tree

growth, there are three tuning parameters that can be used to adjust the importance of

misclassification for certain classes of observations or individual observations. Weightings

are used to add importance to individual observations, while prior probabilities and class

losses are used to add importance to classes of observations.

To illustrate, consider a dataset that has some multinomial response with three classes:

1, 2, and 3. A weight could be used to add importance to individual instances where the

response takes on the value of 3, while a prior probability could add significance to every
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observation where the response takes the value of 3. Losses are more nuanced, because they

can impart a conditionality to the importance of di↵erent observations. With losses, consider

the true response, and the CART-predicted response; a perfect model would always predict

a 2 to be a 2, a 3 to be a 3, and so on. Actual CARTs will misclassify some observations,

and losses are used to penalize di↵erent misclassifications, so we could add significance to

2’s that are misclassified as 1’s, or take away significance from 2’s that are misclassified as

3’s.

In the end, using any of the three tuning methods can guide the CART to the same

result. For a binomial response, specifying case weights of 2 for the first class and 3 for

the second class is equivalent to specifying priors of 0.4 and 0.6, or specifying losses of

misclassifying the first class as the second and misclassifying the second class as the first, as

1 and 1.5, respectively. Later in this research, priors are used to guide tree growth towards

achieving a maximum ranked probability skill score (RPSS).
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Chapter 5

Model Development and Integration

5.1 Occupant Behavior Implementation

In general, occupant behavior models provide a probability at some instant in time of

an occupant taking an action; the probability of an action PA is computed as a function of

some combination of current ambient conditions (CEnv) and occupant characteristics (Occ).

PA = f(CEnv, Occ) (5.1)

Given this probability and a randomly generated number (RU) from the uniform distribution

on the interval [0,1], the two numbers are compared to determine whether the action A(t))

takes place or not.

A(t) = �(PA > RU) (5.2)

where �(·) is an indicator function that equals 1 if the statement in parenthesis is true.

Choosing a threshold value instead of a random variable for comparison leads to a deter-

ministic model of behavior, one in which every simulation would return identical sequences

of behavior and thus energy consumption. When stochastic models are employed in sim-

ulations, they lead to uncertainty in simulation results, thus multiple simulations must be

conducted to arrive at a representative distribution of results.

Whether it takes the form of a Markov chain, a bernoulli process, a logistic function,

or something else, an occupant behavior model can be encoded as an algorithm. Since there
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is no standard means of representing occupant behavior in simulation or a standard means

of modeling occupant behavior, di↵erent researchers have each chosen a unique language or

approach to simulate their models. Here we describe two techniques that are used in this

project to couple occupant behavior models to building energy models, specifically those

built in EnergyPlus.

5.1.1 BCVTB

The Building Controls Virtual Test Bed [100], enables co-simulation between multiple

simulation environments, including Modelica, Radiance, Simulink, and several others. As it

pertains to this research, BCVTB enables occupant behavior models written in matlab R�

to interact with building energy models in EnergyPlus.

BCVTB 

MATLAB 

Window Use 

Lighting Use 

Shading Device 
Use 

EnergyPlus 

Building Model 

Environmental Parameters 

Occupant Control Actions 

Stochastic 
Occupancy 

Figure 5.1: Building energy model and occupant behavior model connections.

5.1.2 EMS

In order to simulate a wide variety of controls and to enable users to customize models,

EnergyPlus incorporates multiple objects in a subsystem called the Energy Management

System (EMS). The EMS allows users to manipulate the state of virtually any simulation

input, schedule, or control parameter. As of EnergyPlus version 7.0, the EMS also includes

a built-in random number generator - which is a key ingredient to any stochastic model.
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5.2 SMM1 Building Model

For initial investigations on the impact of occupant behavior in Chapter 6, an 11 zone

EnergyPlus building model representative of a small mixed-mode o�ce building is used. The

roughly 1800 m2 (18000 ft2) model is pictured in Figure 5.2 below and includes manually

operable windows, window shades, and lights. The MM model is derived from the DOE

reference small o�ce building model, and draws its base features and characteristics directly

from the reference model; construction details are consistent with energy e�ciency standard

ASHRAE 90.1, the only building-controlled MM feature is building controlled windows. The

building is oriented such that the longer exterior walls face North and South. The first level

is divided into four perimeter zones and one core zone, while the upper two levels are divided

into three zones: narrower zones on the east and west facades, and a large central core zone

spanning the width of the building. For reference, this energy model is the same as the

SMM1 model developed in [63].

Occupant density, lighting density, and plug loads are 0.0538 (persons/m2) 10.76

(W/m2), and 8.07 (W/m2) respectively. A conventional gas-fired heating system and direct

expansion cooling systems serve the heating, ventilating, and air-conditionings needs of the

zones through variable air volume terminal units when natural ventilation is not appropriate.

Typical meteorological year data for Boulder, Colorado is used an all simulations.

Figure 5.2: Isometric view of building energy model.
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5.2.1 Incorporation of Occupant Behavior Models

In initial work, the BCVTB was used to couple the building energy model in Energy-

Plus to occupant behavior models scripted in Matlab. When the quantity of Monte Carlo

simulations grew however, and SMPC runs were beginning, it became evident that the addi-

tion of several extra input files and an additional simulation engine (BCVTB), were overly

complex and significantly slowing down our simulation studies. At this juncture, the decision

was made to script occupant behavior models directly into the building energy model via

the EnergyPlus EMS.

Whether BCVTB or EMS was used, four occupant behavior models were used with

the SMM1 building model: the Page model for occupancy, the Haldi models for window and

shading device use, and the Lightswitch2002 model for occupant use of lighting only.

The Page occupancy algorithm generates an annual sequence of occupant presence, in

its base form, the model predicts occupancy at 15-minute intervals for an entire year for

a single occupant. Since the window, shading, and lighting use models require occupancy

status as an input, and we assume there is one occupant responsible for each window, shade,

or lighting device, the Page algorithm is used to generate individual occupancy profiles for

each simulated occupant in the model. In the SMM1 model, there are only ten zones with

external windows and shades, and a single occupant profile is simulated to ’control’ each

zone. For larger spaces where loads are coupled to dozens of occupants, the Page algorithm

can be used to generate occupant presence/absence on a per-occupant bases, then aggregated

to get a bulk percentage of occupancy at each time step.

To incorporate the occupancy schedule into EnergyPlus, the schedule has to be trans-

formed in two ways; first, since we include the schedule as a separate input comma-separated

value (CSV) file, it is limited to 8760 rows, or one per-hour, so instead of simulating presence

at 15-minute resolution, it is simulated at hourly resolution. The second transformation is

required for use with the window and shading device use models, which require not only
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occupant presence/absence - but also flags to indicate whether an occupant has just arrived,

is about to depart, or has been present for a long time, and a few other parameters; there

are 7 in total. These flags are pre-computed outside of EnergyPlus, and also included in the

input schedule file.

In the SMM1 model, occupant behavior is simulated on a per-zone basis; that is, in

spite of the fact that there would be dozens of occupants in each of the zones in the model,

only one is assumed to activate the building systems, and we assume in all cases that a

system is either fully activated (i.e. windows are fully opened) or fully deactivated (windows

are closed). So for a single zone, when an occupant is predicted to open a window, all of

the windows in that zone are assumed to fully open. This represents an extreme case, which

is appropriate for investigating the range of impact that occupant behavior can have on

building performance.

A last note on the implementation of occupant behavior models in SMM1 is that the

average or default parameters for each behavior model are used. Often, models include

tuning parameters to simulate more or less active occupants, and to account for diversity

within the occupant pool. In this work, we only consider the ’average’ occupant, and through

a Monte Carlo analysis we learn what the average impact from the average occupant is.

5.3 NREL Research Support Facility

The Research Support Facility (RSF) (see Figure 5.4a) is the largest o�ce building

on the National Renewable Energy Laboratory (NREL) campus in Golden, CO. Even with

a large data center on site, the RSF documented net-zero energy performance on June 23,

2011 with the help of clear skies and a solar array that covers the building and an adjacent

parking structure. The RSF was designed to operate at 35kBtu/ft2 (25kBtu/ft2 without the

data center) annually, and has met that achieved that level of performance. Ventilation in

the RSF is provided by an underfloor air distribution (UFAD) system, controlled to maintain

ambient CO2 levels per ASHRAE 62.1-2010 [5], and by natural ventilation that is supplied
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Figure 5.3: Research Support Facility (RSF) building in Golden, Colorado.
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through both manually and automatically controlled windows, as illustrated in Figure 5.4b.

Heating and cooling are provided by 42 miles of radiant piping embedded in concrete slabs,

which comprise the exposed ceiling of each o�ce space. With a gross area of 360,000 ft2 and

five floors, the RSF also features aggressive daylighting measures including external fins and

shades, internal light-louvers, electrochromic glazing, and narrow wings (60 ft) with long

north and south facing façades to minimize east and west facing glazing, maximize cross-

ventilation potential, and to ensure that all interior spaces are within 30 ft of a window.

(a) RSF front entrance.1

Natural Ventilation - Summer Day

50 F to 75 F

(b) RSF airflow concept drawing.2

Figure 5.4: RSF images.

5.3.1 RSF Building Model

For simplicity, a representative zone of the RSF building was modeled for use with

control investigations; the window controls to be optimized only a↵ect the open-plan o�ce

spaces of the building, so there is no need to model the data center, conference rooms, or

other auxiliary spaces that are served by separate heating, ventilating, or air conditioning

(HVAC) systems. EnergyPlus was selected as the modeling tool and simulation engine due

to its ability to accurately model radiant systems and natural ventilation.

1 http://www.nrel.gov/sustainable nrel/rsf photos.html
2 http://apps1.eere.energy.gov/buildings/publications/pdfs/corporate/ns/webinar rsf 03182010.pdf
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The single zone model’s physical dimensions, material constructions, schedules, loads,

and systems are consistent with open-plan o�ce spaces in the RSF, Figure 5.5 provides an

image of the full building model, as well as the simplified 1-zone model used in this study.

The RSF building was built using a modular design, in which 9.14m (30 ft) sections of the

exterior walls were prefabricated, resulting in repeated identical building sections; the single-

zone model represents two of these sections. The model also includes manually operable

windows, automatically controlled windows, a concrete ceiling slab with embedded radiant

piping for heating and cooling, an under-floor air distribution (UFAD) system for ventilation

and supplemental conditioning, and an air flow network to account for natural ventilation.

Heating and cooling for the RSF are provided by campus heating and chilled water systems,

so purchased heating and cooling energy were specified in the model. The campus heating

system burns wood waste for fuel and is 90% e�cient, and the campus chiller plant has

a COP of 7.8. Shading in the RSF is provided by fixed exterior shading elements, and

internally mounted light reflectors that project daylight onto the ceiling. With the exception

of the North and South facing (glazed) walls, all exterior surfaces of the single-zone model

are assumed to have adiabatic boundary conditions, following from the assumption that

this representative zone is surrounded by other similarly conditioned spaces. Schedules for

lighting and electrical loads were adjusted to match published RSF-energy consumption data,

schedules and controls for HVAC equipment were set to match existing building operation,

and occupancy schedules were generated using the occupancy algorithm by [75]. Indoor

conditions in the RSF are fairly constant due to the large thermal mass associated with the

building’s radiant systems, with indoor temperatures holding fairly constant at 23�C, which

is well above the 10�C heating setpoint, and below the 24�C cooling setpoint.

5.3.1.1 RSF Model Calibration

Annual energy performance metrics (normalized by floor-area) as computed by the

model and as measured on-site are presented in Figure 5.6. Note that the simplified model
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Figure 5.5: Simplified building energy model.
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does not include loads associated with auxiliary spaces, and only predicts energy consumption

for the open-plan o�ce spaces, while measured data is for the entire building excluding the

data-center. The model slightly under-predicts energy consumption in all areas; any savings

predictions will be conservative.

Figure 5.6: RSF measured energy consumption compared with simplified model predictions.

In developing and calibrating the EnergyPlus model, manual window operation was

ignored, because the published data being matched was collected during the initial year of

building occupancy, when the building’s natural ventilation system was set to keep windows

closed during occupied hours, and occupants were instructed to open and close windows

consistently with the automatic windows. Average daily profiles of lighting and plug loads

were available, so those loads are set as constant schedules in the model. Actual occupancy

data from the Page algorithm is only used to inform the model of occupant window use

during optimization studies.

After first developing the model to match parameters found in design documents, the

primary steps taken to tune the model to match energy consumption data are outlined here.

• Operational schedules and setpoints were adjusted to keep indoor temperature fairly

constant at 23�C year-round during occupied hours only.
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• Window U-values were increased and wall U-values were decreased slightly from

design values to raise the cooling loads and lower the heating loads in the model.

Note that the assumption of adiabatic boundary conditions on four sides of the model

means that the two external walls have a large impact on modeled performance, and

in some sense serve as the envelope component for all sides of the model.

• Fan and pump sizing parameters were adjusted to appropriately serve the floor area

of the model, and to consume the same power per unit area as the entire building.

A final note on the model is that detailed operational data was unavailable for the

first two years of work on this project, so the model was tuned to match annual energy

consumption. As more detailed data became available and as the actual control strategies

for systems within the RSF building evolved, the model was changed to better match the

best available data. The most significant changes to the model included changes to natural

ventilation control logic as the physical building controls changed, and updating radiant

system controls in the model to match the dynamics of the radiant systems in the physical

building. The first iteration of the model included radiant system controls that allowed for

fast changes in radiant slab temperatures, whereas radiant controls in the later iterations of

the model are much slower.

5.3.2 Occupant Behavior Models

5.3.2.1 Manual Window Use

One model of occupant behavior applied in the case study here is described by Haldi et

al. in [39], and determines whether occupant-controlled windows are open or closed for each

time step in a simulation. The model is based on over seven years of occupant-window-use

data from the LESO research facility in Lausanne, Switzerland; the reader is advised that

the model may be unique to this climate, building, and set of occupants, however it remains

the state of the art in the literature. At each time step during the simulation, the algorithm
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yields a probability P that an occupant will open or close a window, and if that probability

is greater than a random number drawn from the uniform distribution on the interval [0, 1],

then the action occurs (in simulation). Once an action has occurred, the duration of that

action persisting (i.e. how long a window stays open) is predicted by a sub-model which

draws times from a Weibull distribution

The Haldi window model is implemented via the Energy Management System (EMS),

and directly coded in the EnergyPlus Energy Runtime Language (ERL). In this imple-

mentation, the parameters corresponding to the ‘average occupant’ are used, these are the

parameters derived from the aggregate dataset of window openings from all occupants in the

behavior study. While there are parameters given for unique occupants in the behavior study,

and the potential exists to model occupants with unique behavioral model parameters, that

amount of detail was not included in this work. The reader is referred to [78] and [41] for

detailed discussions on how occupant diversity impacts simulation results. To summarize,

the model predicts a probability of window opening or closing based on indoor and outdoor

temperature, the presence of rain, and on the state of occupancy, and the coe�cient that

corresponds to each ambient condition can vary from one occupant to the next. In the case

study results presented here, the coe�cients are constant for all occupants, as they were

derived from an aggregate dataset for all occupants.

For example, with no rain, an outdoor temperature of 20�C, for an occupant arriving

from a long absence, and indoor temperatures of 20�C and 25�C, the probabilities of opening

a window are .007 and .033, respectively, meaning that statistically, an occupant would open

his or her window in 0.7% or 3.3% of simulations at those indoor and outdoor conditions.

If a window opening was predicted, then the duration of window opening is drawn from a

Weibull distribution, and will remain open for the predicted period unless conditions cause an

occupant to close the window prematurely. Similar computations are conducted for window

openings and closings during intermediate presence and upon departure.

In the RSF building, two of every three windows on the southern façade are manually
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operable, and the third is automatically controlled. Windows on the north façade are divided

between upper- and lower-windows; every other upper window is automatically controlled,

while all of the lower windows are manually controlled. In the single-zone model, there

are six windows on the southern façade (Figure 5.5, and twelve on the northern façade; six

lower and six upper. In total there are ten manually controlled windows, five automatically

controlled windows, and three fixed windows. The manually operable windows are four on

the southern façade and six on the northern façade; the automatically controlled windows

are two on the southern façade, and three upper windows on the northern façade. Partial

window openings are not considered, in both the real building and in the building model,

all openable windows are either fully open or fully closed at all times, and when fully open,

windows act as connections between nodes in a nodal air flow network as described by Gu

et al. in [34].

5.3.2.2 Occupant Presence

The second model of occupant behavior applied in this study is the occupancy predic-

tion algorithm developed in [75]. This model takes the form of an inhomogeneous Markov

chain, and uses daily probability profiles to determine occupancy at 15-minute intervals

for a full year for each occupant in a given zone. The model accounts for both short and

long absences (i.e. lunch-breaks and multi-day absences), and provides a critical input for

other stochastic occupant behavior models. Details of the implementation of this model are

included in Section 5.2.1.

Many behavior models account for occupant presence, and cite higher probabilities of

occupant actions when occupants enter or leave a space [50, 83, 94]. The Page occupancy

model provides more granular information on when occupants are arriving and departing,

and whether their absences and presences are long or short; information which feeds into

the window-use model. If a standard schedule of occupancy were used instead, there would

be only three cases of occupancy: arriving in the morning after a long absence, present all
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day, or departing at the end of the day for a long absence. With the more granular presence

profile, we can have occupants arriving, departing, or present for long or short time periods

(six di↵erent cases), spread out appropriately through each day and each week.

One detail of the implementation is that the random seed for each simulation must be

carefully controlled, since it governs the stream of random numbers which in turn governs

stochastic occupant behavior within the model. The random seed can be set in one of two

ways, either with a unique value for each simulation (to evaluate the impact of occupant

behavior), or with the same value in each simulation for comparing multiple cases where

some other parameter (e.g. fan control logic) is changed.

5.3.3 Generalizing Behavioral Models

In all of the work presented here, occupant behavioral models (OBMs) are used without

modification, and assumed to be applicable to the SMM1 and the RSF building models used

in optimization studies. In the case of the more generic SMM1 building model, it would be

hard to argue that the OBMs are not applicable to the building model. In the case of the

RSF building, or any real building for that matter, one can argue that the OBMs ought to

be adapted in some way to the specific physical building being studied, or that the results

of simulations might be skewed in some way. This section provides a discussion of this topic

in general, with a focus on the model of manual window operation and the RSF building

which are both the primary models in this research.

5.3.3.1 Consider Manual Window Models

First consider what the potential impacts of manual operation of windows on building

performance (energy consumption and comfort) might be. Opening of a manual window

can influence energy consumption in three primary ways, by changing the heating load, the

cooling load, or the ventilation requirement for a space. If a window-HVAC interlock system

is in place, any instance of opening a manual window will reduce the mechanical ventilation
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required. Depending on the season and the HVAC controls in the building, opening a window

when outdoor conditions are cool will drive the cooling load down, or the heating load up,

and opening windows when outdoor conditions are relatively warm will have the opposite

e↵ect on heating and cooling loads. Finally, opening windows when outdoor humidity is high

can increase the latent load experienced by the building’s HVAC system.

Second, recall that people tend to adjust their environment to make themselves more

comfortable. When a cool breeze is coming in the window and we feel too cold, we might close

the window, turn up the heat, or put on a sweater. In a perfectly conditioned and ventilated

building, a perfect occupant would theoretically never need to adjust any part of his or her

environment. By now we know that occupants are not perfect, but are somewhat predictable,

and perfectly conditioned buildings are an impossibility. Just consider the Fanger PMV

model for comfort, which states that there will always be at least 5% of people unsatisfied,

regardless of indoor conditions.

Third, consider the Haldi model for manual window operation. The model captures

both the predictable occupant behavior - when they open windows to get some natural

cooling, for example, and the unpredictable occupant behavior - when they are unlikely to

open or close a window according to predicted probabilities, but do so anyway thanks to

the stochastic nature of the model.

5.3.3.2 Transferability

Now, examine in detail the di↵erences between the LESO-PB building, where data

was collected to develop Haldi’s model, and the RSF building, where the model is used to

simulate occupant behavior. Table 5.1 highlights the di↵erences between the two buildings,

which are significant. To account for the di↵erence in o�ce layout (single occupancy vs.

open plan), we assume that one occupant has ‘ownership’ of each manually operable window

in the open plan spaces in the RSF building, which from experience, is true. Generally there

is one occupant closest to each window and takes responsibility for opening and closing it.
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Table 5.1: Di↵erences between the LESO and RSF buildings.

Characteristic LESO RSF

O�ce Perimeter dual and single Primarily open plan, with
layout occupancy o�ces. some perimeter single o�ces.

Window open/close None. Popup notification on
notification system computer desktop.

Heating Radiant Heating Radiant Heating
Cooling No Mechanical Cooling Radiant Cooling
Ventilation No Mechanical Ventilation UFAD

Window Each occupant has an Some occupants have their
arrangement individual view window. own window; some share

access to open plan windows.

Window Hinge Bottom and side hinge. Top hinge only.

Climate Dry / cold in winter Dry / cold in winter
Mild / hot in summer Dry / hot in summer
HDD(65F) 5221 HDD(65F) 8010
CDD(65F) 584 CDD(65F) 278
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Other di↵erences between the two buildings are more di�cult to account for. The

presence of a notification system in the RSF might mean that occupants are much more

likely to open or close a window when receiving a notification than at other times. This

feature is not included in Haldi’s model, nor is there a straightforward way to incorporate

an additional tuning parameter without first conducting a field study to understand how

occupants in the RSF do or do not respond to the notifications.

The di↵erences in climate and in HVAC system are potentially the most troubling.

The lack of any ventilation system in the LESO building means that LESO occupants are

probably much more likely to open windows for fresh air than RSF occupants. The lack

of any cooling system in the LESO building appears to have the same e↵ect at first, and

one might think that LESO occupants would open windows more for cooling than RSF

occupants. Note that the OBM for manual windows is dominated by indoor temperature,

and the probability of an occupant opening a window is high when indoor temperature is

high (other parameters held constant). Given that the RSF building is cooled, RSF indoor

temperatures are typically so low that the probability of opening a window is under 0.1,

according to Haldi’s model. So where a LESO occupant might open windows often for

cooling in the LESO building, he or she might never feel the need to open a window in the

RSF, simply because the RSF is mechanically cooled.

5.3.3.3 Adapting OBMs

Truly, there is no better way to adapt a behavioral model from one building, region,

or community to another is to conduct a field survey, and to tease out di↵erences in model

parameters that vary according to some rules, i.e. Europeans open windows according to X,

and Americans open windows according to Y, or model coe�cient A can be scaled linearly

according to latitude. It may also be that there are not significant di↵erences, and that a

single model is highly transferable; without many more years and buildings of data to work

with, it is impossible to say.
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Considering the RSF and LESO buildings, a few thoughts on adapting Haldi’s model

to the RSF population are to:

(1) Add a scaling factor that increases the probability of opening or closing a window

whenever occupants receive a notification to do so.

(2) Adjust indoor temperature model coe�cients to account for the tighter temperature

control in the RSF building.

In (2) above, the intent is to account for the fact that the LESO building is not cooled,

so occupants experience a much wider range of indoor conditions, and it follows that they

are more willing to accept those conditions. Since RSF occupants experience a very narrow

band of indoor conditions, it may be that they are more likely to open a window when

indoor conditions deviate even a little bit from typical. The coe�cients in the model that

correspond to indoor temperature could be scaled up to account for this di↵erence.

5.3.3.4 Impact on Results

With the discussion of di↵erences between the RSF and LESO building in mind, and

the fact that the model was used without modification or adaptation, what is the likely

impact on results of simulation studies?

If anything, the results of simulations with the RSF model are probably conservative.

This is due to the fact that the main driver (after arrival/departure status) for manual

operation of windows in the behavioral model is indoor temperature. The LESO building

uses passive night ventilation (occupants can leave their windows open at night) for cooling,

and lacks any mechanical cooling, so temperatures can vary significantly. The RSF building

however is very tightly controlled by a massive and responsive embedded radiant system.

Thus, conditions in the RSF are very rarely conducive to opening and closing windows,

according to Haldi’s model of window operation - and the impact of occupant window use

will be small.
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What about the window open/close notification system in the RSF? This probably

leads to occupants doing the right1 thing with their windows more often than not. The

notification system is tied directly to the RSF automatic windows, and instructs occupants

to open or close their windows whenever the automatic windows do the same. When the

RSF building was designed, the natural ventilation system was designed to be able to achieve

su�cient airflow (for night cooling) without the help of occupants (manual windows). That

is, the openable surface area of the automatic windows is su�cient, and the openable area

of manual windows is essentially a bonus feature for occupants.

Recall that the RSF automatic window controls only allow windows to be open when

outdoor conditions are virtually identical to indoor conditions, so there is no significant

change in heating or cooling load, and the RSF mechanical ventilation system operates inde-

pendent of the natural ventilation system, so there is no impact on mechanical ventilation.

If in fact occupants open and close their windows whenever the notification system instructs

them to, the impact on building energy consumption is negligible. Rather, it is those occa-

sions when occupants open or close windows outside of the more predictable times that have

a greater impact on building performance. The instances when occupant use of windows can

impact performance are those instances when they leave a window open on a hot afternoon,

or overnight when it is very cold out.

The results of optimization studies presented later often show the average of many

simulations, or the distribution of many simulations. If in fact Haldi’s model of occupant

window operation is not applicable to the RSF, then it might mean the average results are

inaccurate, or that the distribution of results is inaccurate.

It is entirely speculative, but the opinion of this author is that the average results

would not change significantly even if there were large di↵erences in a behavioral models.

Performance of the RSF building is not very sensitive to occupant behavior. Certainly there

are isolated events where a number of occupants all do the same thing to improve or degrade

1 Assuming that the notification system is telling occupants the right thing.
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performance, but over a longer timescale than a few days, the building’s systems, controls,

and the outdoor conditions have a much higher impact on performance than occupant behav-

ior. The distribution of results however, is more challenging even to speculate on. In general,

distributions of energy consumption show a long right tail, meaning that occupant behavior

can do more harm than good. Occupant behavior can lead to some energy savings, or some

increased energy consumption, but relatively speaking, it can lead to larger energy increases

than decreases. This makes sense, since there is some lower limit of energy consumption for

a building, but theoretically no upper limit, so the benefits of occupant behavior hit a lower

bound but not an upper bound.



Chapter 6

Occupant Behavior in Mixed Mode Buildings

6.1 Introduction

In this chapter, building energy simulation models are coupled with stochastic occupant

behavior models, and the magnitude and distribution of impacts that occupants have on

building energy consumption are demonstrated via a simulation study. The results show

that occupant actions can increase or decrease energy consumption depending on the HVAC

control strategy implemented. For a single month during the cooling season, the range of

HVAC electricity consumption predicted by a set of simulations that included stochastic

models of occupant window, blind, and lighting use varied by approximately 20% for each

of 25 di↵erent control scenarios.

6.2 Results

Figure 6.1 shows the results of 400 simulations using the building model described

above coupled with the model for occupant use of manual windows; it shows the variation of

building HVAC energy consumption for the month of June including the e↵ects of manual

window use. In this case, the deterministic simulation (without occupant behavior models

- all occupant windows closed) resulted in an energy consumption of 4581 kWh, and the

average result of the stochastic simulation (with behavioral models) is 4882 kWh. Note that

the resulting distribution of energy consumption is skewed to the right, indicating that the

response of the building to occupant actions is not normally distributed, and that occupant



96

action can lead to cost penalties or cost savings compared to the deterministic case (or to the

average result of the stochastic case). The long right tail on the data shows that occupants

can incur larger energy consumption penalties than they can savings; if the distribution had

a long left tail, it would indicate that the opportunity for savings from occupant interaction

is much greater than the risk of penalties. While the 6% di↵erence between deterministic and

stochastic results appears small, the second value comes with richer information: a lower and

upper limit defining a range of what energy consumption could be, and most importantly a

high level of confidence in the average result. A generalized extreme value distribution was

fitted to the data; the shape k, scale �, and location µ parameters for the distribution are

given in Table 6.1.
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June Energy Consumption (kWh)
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Figure 6.1: Distribution of energy consumption for 400 samples of window opening behavior.

Figure 6.2 shows data similar to that in Figure 6.1 for 25 unique BAS-window control

scenarios to demonstrate the dynamic response of the building and occupants to di↵erent

building control methods. Recall that the building energy model has two banks of windows;

the lower bank is assumed to be occupant-controlled (OCC), and the upper bank is controlled

by the building automation system (BAS). For simplicity, the various BAS window control

scenarios are defined as a single window opening event with two defining parameters: opening
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Table 6.1: GEV fit parameters.

Parameter Estimate Std. Err.
k 0.0214 0.0403
� 95.52 4.039
µ 4825 5.449

time and duration; this entails a single control action that is repeated by the BAS on each

day for the duration of the simulation. Five unique opening times (8, 9, 10, 11, and 12:00)

and five opening durations (1-5 hrs) represent the assumed set of possible BAS-window

control options, resulting in a total of 25 options. For each control option, 400 simulations

were completed, so the results presented in Figure 6.2 are the product of 400x25 = 10,000

simulations.

Note the location of the vertical line in Figure 6.2 (indicating the result of a determinis-

tic simulation) relative to the distribution of results from stochastic simulations; the bottom

row of plots for examples shows that when BAS windows are opened for one hour, occupant

actions lead to higher energy consumption than the deterministic simulation predicts.

When the BAS window signal commands windows to open at 11:00 or 12:00 for 4 or

5 hours (top-right), occupant behavior leads to lower simulated energy consumption than

what is predicted by a deterministic simulation without occupant models. In contrast, in the

lower-left quadrant of the figure, the deterministic result is significantly lower than the results

predicted by the simulations that incorporate stochastic behavior. For this window control

scenario depicted in Figure 6.2, while the stochastic cases reveal significant distributions

of energy consumption for each individual control option, the range of energy consumption

between the minimum and maximum mean (5.0-5.7 MWh) is smaller than the range of energy

consumption of the deterministic case (4.6-6.0 MWh). For this analysis, occupant behavior

compresses the range of building energy use, dampening the e↵ects of the BAS window

controls. Looking at the figure as a whole, note the general trend from left to right and from

bottom to top (opening BAS windows for longer periods, later in the day) of an increase in
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Figure 6.2: June energy consumption for 25 control options.
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energy consumption. This makes sense in the month of June, when opening windows in the

afternoon may allow warmer air into the building, thereby increasing cooling loads. In the

central plot in Figure 6.2, there is good agreement between the average stochastic result and

the single deterministic result, which is strictly coincidental; for the particular time period

of the simulation and the building and occupant behavior models used in this study, when

BAS windows are opened at 10:00 for 3 hours, occupant behavior does not shift average

energy consumption up or down from the deterministic baseline.

Figure 6.3 shows the e↵ects of including additional behavioral models in a suite of

simulations just as in Figure 6.2, however here four di↵erent building cases were included: a

deterministic case (D), a case which includes the stochastic window use model (W), a case

that includes use of windows and blinds (WB), and a case that includes models for window,

blind, and lighting use (WBL). Each of the four cases is identical to the others with the

exception of the set of behavioral models included.

Two observations are made: First, in all cases, the inclusion of more behavioral models

leads to lower energy consumption; the WBL cases use less energy than the WB cases,

which use less energy than the W cases. Second, in some cases the deterministic energy

consumption is significantly lower, in others significantly higher, and yet in others it is

similar to the occupant influenced scenarios, so it can not be assumed that the inclusion

of stochastic behavior always leads to decreased energy consumption when compared to

deterministic simulations.

Where Figure 6.3 looks at three combinations of occupant behavior models incorpo-

rated in the building model, Figure 6.4 includes all 8 permutations of the three behavioral

models. Clearly those that include window opening behavior have the largest impact, which

is to be expected since we consider only the impacts on HVAC performance. Again we see

that the impact of occupant behavior is di↵erent with each di↵erent automatic control; the

lower-left control cases in Figure 6.4 seem to result in consistent performance regardless oc-

cupant behavior, and occupant behavior in these cases has more potential to increase energy
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consumption than to decrease energy consumption. The automatic control cases in the top

right however are much less robust to the impact of occupant behavior; when models of

occupant window use are included, HVAC energy consumption is roughly 10% lower than

when models of occupant window use are not included.

Given the results presented in Figure 6.1, Figure 6.2, and Figure 6.4, it is clearly di�cult

to predict exactly what the net e↵ect of occupant behavior in a building will be, especially

for a range of di↵erent control scenarios issued from a BAS. This fact leads us to propose

the development of methodology for determining near-optimal control rules for buildings

that are sensitive to occupant interaction. Work currently underway is thus concerned with

developing such an optimization environment.
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6.3 Conclusion

An investigation of the e↵ect of occupant behavior in buildings on building HVAC

electricity consumption was conducted. The results show that occupant actions can increase

or decrease energy consumption depending on the HVAC control strategy implemented.

Additionally, it is shown that as more models of occupant behavior are added to the energy

model, the predicted energy consumption tends to decrease, indicating that added access to

manually operable systems and occupant actions on those systems are likely to reduce energy

consumption. For a single month during the cooling season, the range of HVAC electricity

consumption predicted by a set of simulations that included stochastic models of occupant

window, blind, and lighting use varied by approximately 20% for each of 25 di↵erent control

scenarios.



Chapter 7

Bottom Up Results: Tuning Setpoints

7.1 Introduction

In the context of optimizing controls for high performance buildings to achieve energy

savings while maintaining or improving occupant comfort, this study is aimed at finding

incremental improvements in the existing control logic for an existing building, specifically

the RSF Building. Through the use of parametric studies with a building energy simulation

model that incorporates a stochastic model of occupant window use and automatic window

control logic commensurate with the physical building, the performance of di↵erent natu-

ral ventilation control strategies is evaluated. Due to the inclusion of stochastic occupant

behavior in the building model, results of simulations are presented as a distribution of po-

tential outcomes, rather than a scalar value, however the average of these distributions is

used for simpler comparison between control strategies. The results show that annual HVAC

electricity consumption can be reduced by 3% to 15%, depending upon the controls changes

implemented.

In the following the building selected for the study and a simplified energy model for

that building are described. Special attention is given to the HVAC and automatic window

controls in the building, and the parametric studies conducted are presented.
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7.1.1 Building HVAC and Window Controls

The main goal of the parametric study is to determine if savings can be achieved

through decreased demand on HVAC equipment, specifically the air distribution and radi-

ant systems. The radiant system is controlled to maintain a weighted average space tem-

perature, where dry-bulb temperature contributes to 80% of the average, and the radiant

slab temperature contributes to 20% of the average. Supply water temperatures are set

according to a seasonal reset schedule, and circulation pumps are cycled on whenever the

space temperature falls outside of the range between the heating and cooling setpoints. The

UFAD system is controlled to maintain adequate CO2 levels in each space; a variable air

volume ventilation system modulates between a minimum setting and a fully open setting as

space-CO2 levels change per ASHRAE Standard 62.1-2010 [5], and the outdoor-air fraction

is set to the maximum required per person or per floor-area (whichever is greater).

7.2 Automatic Window Control Strategies

The RSF automatic window control strategy began as a simple night purging sequence,

then evolved into a 24-hour natural ventilation scheme. A proposed change is the addition

of an interlock system, which would turn o↵ mechanical ventilation entirely to a given zone

when natural ventilation is in e↵ect in that zone; this represents a significant change from

concurrent to changeover control as described above. The three window control scenarios

investigated are shown graphically in 7.1. In the first control scheme, windows are opened

at night when temperature and humidity are both low in order to cool the building and

flush out stale air. In the second scheme, windows are opened at any time when outdoor

conditions allow, and in the third (proposed) scheme, the ventilation system is turned down

significantly when windows are opened.

In all three cases, the same temperature, wind, and humidity-based setpoints are used,

and there is a lockout function that closes the windows whenever wind is gusting. A 1�F
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deadband exists around all temperature setpoints to prevent excessive open/close cycling of

the automatic windows; the actual temperature setpoints are discussed further below. The

humidity setpoints allow windows to open when outdoor relative humidity (RH) drops below

50%, and force windows to close when outdoor RH rises above 52%. The wind speed lockout

control algorithm uses a combination of time and windspeed to determine when windows

can be opened or closed. If wind speeds remain above 17 mph (7.6 m/s) for six minutes, the

windows are forced to close, and cannot re-open until wind speeds have remained below 12

mph (5.4 m/s) for five minutes.

7.2.1 Control Heuristics

Considering the systems and controls in place, several straightforward methods exist for

achieving the stated goal, which is to o↵set cooling, or ventilation requirements by employing

natural

Free Cooling. To o↵set a cooling load, the windows need to be opened when the building

requires cooling and the outdoor temperature is cooler than the indoor temperature.

Pre-Cooling. In a building like the RSF which features significant thermal mass, if a warm

period is preceded by a cooler period, it is also possible to pre-cool the buildings

thermal mass in anticipation of the warm period, potentially avoiding the need for

cooling entirely during the warm period.

Natural Ventilation. In order to o↵set a ventilation requirement, automatic windows

should be opened when outdoor air conditions fall within established comfort limits,

i.e. per ASHRAE Standard 55-2010 [4], which provides a comfort temperature range

that varies with the monthly mean outdoor air temperature.

If the air and slab temperatures are kept between the heating and cooling setpoints, the

radiant system will not cycle on and thus will not consume energy. In this case, the radiant
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Figure 7.1: Diagrams for three control logic scenarios considered for parametric study and
for implementation in the RSF building; the RH conditional statement refers to the relative
humidity (RH) of outdoor air.
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system responds to conditioning provided by natural ventilation without extra control logic,

and savings will accrue without extra e↵ort. In the case of ventilation however, the situation

is di↵erent; the ventilation system will typically continue to provide fresh air (dampers set

to a minimum or unoccupied setting), even when windows are opened. The controls of the

mechanical ventilation system must be able to respond to the state of the windows and ramp

down when windows are open, otherwise the system may continue to supply air when it is

not needed, and potential energy savings will not be realized.

7.2.2 Parametric Studies

Three parametric studies are presented. In each case a small set of control parameters

are chosen from the logic diagrams presented above, and reasonable values of each are chosen

for further analysis. For each combination of values, a new building energy model is created

with the unique set of values employed in the simulated control system. In the second

study presented, two parameters and eight values of each are chosen, leading to 64 (8x8)

combinations of control parameters, and 64 unique building energy models. Each unique

model is then simulated 400 times, and in each simulation the simulated occupant behavior

is slightly di↵erent due to its inherent stochastic nature. An investigation into the necessary

number of samples to achieve convergence in the average energy consumption revealed that

samples greater than 200 are su�cient, with negligible changes observed for larger samples.

We adopted 400 samples where possible and reverted to 200 samples for time intensive

investigations. The individual results of these 400 simulations are then combined and lead

to a distribution of results, the average of which is taken to represent the entire set. The

64 average results are then compared, the result which minimizes energy consumption while

preserving occupant comfort is chosen as the best, and the corresponding control parameters

are recommended. Night Purging. In the night purging control logic (see Figure 7.1(a)),

three setpoints were selected for a parametric study: the two time-of-day limits (6:00 pm

and 6:00 am), and the lower temperature limit (65�F (18.3�C)). Due to the infeasibility of
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some combinations (i.e. start time equal to or later than end time), only 75 combinations of

the selected control parameters are possible.

Table 7.1: Parametric study 1: night purge control parameter values

Night Ventilation Night Ventilation Outdoor Air Temp.
Start Time End Time Lower Limit

18:00 21:00 61�F, 16.1�C
21:00 24:00:00 63�F, 17.2�C

24:00:00 3:00 65�F, 18.3�C
3:00 6:00 67�F, 19.1�C
6:00 9:00 69�F, 20.6�C

Natural Ventilation. In July 2012 the night-purge control logic was abandoned in

favor of a 24-hour natural ventilation scheme, a new set of control parameters were selected

for analysis. Here, the upper and lower temperature thresholds for window opening were

adjusted.

Window-HVAC Interlock. The final control change investigated was a direct link-

age between the automatic windows and the ventilation system (see Figure 7.1 (c)). Without

the linkage, the ventilation system operates normally whether windows are opened or closed

(concurrent control), and with the linkage, the local ventilation system is turned o↵ when

windows are open, and turned back on whenever windows are closed (changeover control). In

EnergyPlus, this is achieved by setting the availability of terminal units to zero, while in real-

ity it might be achieved by closing a VAV damper completely. With the existing CO2-based

control logic, VAV dampers are set to minimum setting but not closed completely when CO2

levels are low; this ensures that there is always su�cient fresh air, whether windows are open

or closed.
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Table 7.2: Parametric study 2: natural ventilation control parameter values

Outdoor Air Temp. Outdoor Air Temp.
Lower Limit Upper Limit

62�F, 16.7�C 71�F, 21.7�C
63�F, 17.2�C 72�F, 22.2�C
64�F, 17.8�C 73�F, 22.8�C
65�F, 18.3�C 74�F, 23.3�C
66�F, 18.9�C 75�F, 23.9�C
67�F, 19.4�C 76�F, 24.4�C
68�F, 20.0�C 77�F, 25.0�C
69�F, 20.6�C 78�F, 25.6�C

7.3 Results

In the following discussion, the results of the night purge control logic cases are pre-

sented in Figure 7.2 through Figure 7.4; Figure 7.2 provides a comparison of the results of

all 75 combinations of control parameters considered, while Figure 7.3 and Figure 7.4 show

the energy performance and comfort performance for the default case and for the 8 alter-

natives that resulted in the lowest energy consumption. Results of the second parametric

study, which considers 24-hour natural ventilation, are shown in Figure 7.6; in this figure,

energy consumption resulting from each combination of control parameters is displayed as a

function of each month. Figure 7.7 shows monthly energy savings for the third parametric

study, which explores the application of a window-HVAC interlock system. In all of the

results presented here, energy consumption and comfort values are for the simplified 1-zone

model, which has a 3600 ft2 floor area, and 18 occupants when fully occupied. Additionally,

the results are often compared to what we have named the default case, which is the case

with existing in-use setpoints; e.g. in the night purge control logic, the default case refers

to the case with setpoints matching actual RSF night purge control setpoints at the time of

the study; for each parametric study, there is a di↵erent default case, and thus a di↵erent

benchmark for comparison.
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In Figure 7.2, 75 values are presented; each value is the average HVAC electrical energy

consumption (sum of fan, pump, and chiller electrical consumption) for 400 simulations of

the single-zone RSF model for the month of June. Each value corresponds to a unique set

of control parameters; for example, the circle corresponding to the existing control param-

eters represents 973 kWh, which is the average of 400 simulations with the existing control

parameters: 6:00 pm start time, 6:00 am end time, and 65�F (18.3�C) minimum outdoor

air temperature. Any circle that appears darker than this one corresponds to a combina-

tion of control parameters that lead to lower building energy consumption. Eight of the 75

simulations stand out as good performers, but no single combination leads to a dominant

best. This graphic only shows the energy consumption of each case, and does not consider

comfort conditions, however the modeled building does maintain similar comfort conditions

in each case, as shown below in Figure 7.4. Several trends in the data presented in Figure

7.2 are evident; in the upper-right portion of the figure (early morning-ventilation), the 65�F

setpoint is better than any higher or lower value, and the energy consumption for these cases

are generally lower than those with night ventilation start times before midnight. This sug-

gests that opening the windows prior to midnight does little to reduce energy consumption,

however the case that resulted in the lowest overall energy consumption (6:00 pm start time,

6:00 am end time, 61�F (16.1�C) temperature setpoint) does include these evening window-

opening actions. In the next two figures, the results of the 8 cases that yielded the lowest

average energy consumption are compared to the default case, and a summary of each case

is given in Table 7.3. Figure 7.3 shows the distribution of June HVAC energy consumption

from 400 simulations, and Figure 7.4 shows a comfort metric, which is described below. In

both cases, lower values of the data displayed (energy consumption or comfort) are better.

The comfort metric displayed in Figure 7.4 is intended to quantify the total comfort

(or discomfort) for a given building and time period, similar to a total energy consumption

metric. Here we sum the product of occupancy and the absolute value of the Predicted

Mean Vote (PMV) comfort score as reported by the Fanger Comfort Model for each hour of
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Figure 7.2: Energy consumption for the month of June for 75 combinations of night purge
control setpoints. The default setpoints are 6:00 pm (start), 6:00 am (end), and 65�F (18.3�C)
(outdoor air temp).
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simulation according to Equation 7.1.

C =
TX

t=1

|PMVt|NOcct (7.1)

In Equation 7.1, C is the comfort metric value, t is an index for each time step, T is the

final time index, PMVt is the PMV value for each time step, and NOcc is the number of

occupants at each time step. The resulting number is a time- and occupant-weighted value

that is only useful for comparing nearly identical simulations; the value has no meaningful

interpretation by itself. Smaller values of C are better as they indicate closer proximity to

comfort neutrality.

In Figure 7.3, more detail on the results of each case are presented, highlighting the

influence of occupant behavior on energy consumption. Instead of a single average value for

the suite of 400 simulations, we see the distribution of results for each case, with the average

value for each case indicated by a dashed line. In both the default case and the result in

Figure 7.3(b), there is a very strong modal result around the average, indicating that the

corresponding combinations of control parameters are less strongly influenced by occupant

behavior. In the remaining seven subfigures, the average value is slightly to the right of

values that occurred with higher frequency, indicating that the average is skewed by high

outliers, and may slightly over-estimate the most likely response.

Table 7.3 shows a summary of the values presented in Figure 7.2 and Figure 7.3; the

default set of data is boldfaced. Note that the range in HVAC electric consumption is 4.4%,

while the range in the comfort metric is 0.5%, indicating that the opportunity for savings

comes with minimal risk of adversely a↵ecting comfort.

In Figure 7.5, 64 values are presented for suites of annual simulations with and without

HVAC-window interlock control logic; just as in Figure 7.2, each of these 64 values is the

average result of many unique simulations, 200 for this set; each value also corresponds to

a combination of two control parameters: the minimum and maximum outdoor air temper-

ature setpoints between which automatic windows are allowed to open. The default control
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Figure 7.3: Energy consumption for the month of June for 8 combinations of night purge
control setpoints, and the default setpoints (center).
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Figure 7.4: Cumulative comfort metric for the default case and for 8 cases that consumed
the least energy on average.
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Table 7.3: Summary statistics for the night purge control study.

TOA,Max Default-Case Best-Case Absolute Percentage
�F, �C Energy Energy Savings Savings

Consumption Consumption (kWh)
(kWh) (kWh)

74, 23.3 191 189 2 1%
71, 21.7 147 142 5 4%
78, 25.6 306 285 22 7%
78, 25.6 333 253 80 24%
76, 24.4 404 355 49 12%
77, 25.0 747 723 24 3%
72, 22.2 961 942 19 2%
74, 23.3 1205 1142 63 5%
75, 23.9 381 343 38 10%
73, 22.8 213 199 14 7%
76, 24.4 318 245 73 23%
78, 25.6 142 137 5 4%
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parameters are 65 and 74�F (23.3�C), and a white border highlights the corresponding value

of energy consumption. Note that the energy values have been normalized such that the

default value is equal to 1.0, so that the graphics show relative increases or decreases in

energy consumption for di↵erent combinations of control parameters. For an automatic win-

dow control system without ventilation-interlock, savings are only realized when loads on

the radiant system are reduced, as the ventilation system continues to operate regardless of

window position. For a system with ventilation-interlock, savings accrue whenever windows

are opened because fan energy and associated supply-air cooling loads are reduced. This

di↵erence between the two systems leads to considerably di↵erent choices of minimum and

maximum outdoor air temperature for opening automatic windows. For a system without

interlock, the combination of min- and max- temperatures that minimizes HVAC electric

consumption is 67 and 74�F (19.4 and 23.3�C), while for a system with interlock the combi-

nation is 62 and 77�F (16.7 and 25.0�C). At this point it is meaningful to note that heating

energy is not considered in this analysis, as electrical load reduction is the primary goal.

Decreasing the setpoint for window opening will naturally lead to cooler indoor air tem-

peratures when windows are opened on cooler days, and decreasing it to a value below the

heating setpoint will cause the heating system to respond, and increase the heating energy

required. The question then becomes, how much more costly is extra heating energy relative

to electrical energy. To determine potential heating energy savings, a source energy anal-

ysis involving the wood pellet boiler and electricity mix of site generated and grid sourced

electricity would have to be conducted, which is reserved for future work. Comfort is also

treated explicitly in this analysis, as it was shown in the first parametric study that comfort

conditions are consistently maintained by the HVAC system regardless of the window control

logic. Note also that adverse comfort conditions are included indirectly through increased

HVAC loads and energy consumption.

In Figure 7.6, 64 values are presented for each month of the case without an interlock

system; just as in Figure 7.5, the values in Figure 7.6 have been normalized for easier
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comparison from month to month; the values for January are all divided by the default

energy consumption for the month of January, values for February are divided by the default

consumption in February, and so on. This normalization makes it easier to determine which

months have large potential for savings (or increased costs) and which months have small

potential for savings. The results in Figure 7.6 show that there is considerable potential for

savings in the swing season months of April, May and November, but minimal opportunity in

the summer and winter months, suggesting that the existing setpoints are at or near their best

values for the summer months. In November, the control pair (67�F,76�F) (19.4�C,24.4�C)

uses 23% less energy than the default (65�F,74�F) (18.3�C,23.3�C), and in April, the control

pair (69�F,78�F) (20.6�C,25.6�C) saves 24% compared to the default. Savings in these cases

come from avoiding window openings during cooler periods and allowing it during warmer

periods, thus avoiding pumping energy associated with heating loads; additional savings are

realized through reduced heating energy, but are not included in this analysis, as stated

above. Note that in Table 7.4, each of the control parameter values considered emerges as

the best for one month or another, and there is clearly no single combination of minimum

and maximum outdoor air temperatures that leads to consistent energy savings from month

to month. This finding suggests that a monthly reset schedule may lead to more savings

than a single set of control parameters that is employed year-round. Figure 7.7 shows savings

in each month that could be achieved by employing the combination of control parameters

that minimizes energy consumption for that month; in each case, the monthly minimum

is compared to the monthly no-interlock default value. Figure 7.7 provides a summary of

the absolute savings potential in each month as well as a comparison between concurrent

and changeover controls. In Figure 7.7 we see that with the one exception of the month of

January, a system that incorporates HVAC-interlock has greater potential for savings than

a system without. Data presented in Figures 7 through Figure 7.7 is summarized in Tables

4, 5, and Table 7.6. In comparing the monthly data in Table 7.4 with that in Table 7.5,

note that the inclusion of an interlock system changes the opportunity for savings in each
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month; more savings opportunity exists in March, May, September, and October when there

is an interlock system, compared to more savings opportunity in April and November when

there is not an interlock system. In Table 7.6 the annual performance of a system with

the single set of control parameters that minimizes HVAC electric consumption is compared

to the performance of a system that uses a reset schedule of the best monthly parameters.

Note that in all cases, the addition of an interlock system significantly increases the energy

savings potential, and that the simplest case of modifying the existing system by changing

two parameters in the control logic leads to 3.1% savings, while the most complex case of

a system retrofitted with window-HVAC interlock logic and a reset schedule of monthly

control parameters leads to 15.6% savings. This latter case indicates the most involved

recommendation that can come out of this study: change the annual setpoints to monthly

setpoints, and change the controls of the HVAC and window systems such that interlock

behavior occurs, while the former case is as simple as changing two numbers in a direct

digital control (DDC) system.

Table 7.4: Monthly summary statistics for natural ventilation study without interlock.

Month TOA,Min TOA,Max Default-Case Best-Case Absolute Percentage
�F, �C �F, �C Energy Energy Savings Savings

Consumption Consumption (kWh)
(kWh) (kWh)

January 62, 16.7 74, 23.3 191 189 2 1%
February 65, 18.3 71, 21.7 147 142 5 4%
March 66, 18.9 78, 25.6 306 285 22 7%
April 69, 20.6 78, 25.6 333 253 80 24%
May 67, 19.4 76, 24.4 404 355 49 12%
June 64, 17.8 77, 25.0 747 723 24 3%
July 62, 16.7 72, 22.2 961 942 19 2%

August 63, 17.2 74, 23.3 1205 1142 63 5%
September 62, 16.7 75, 23.9 381 343 38 10%
October 66, 18.9 73, 22.8 213 199 14 7%
November 67, 19.4 76, 24.4 318 245 73 23%
December 68, 20.0 78, 25.6 142 137 5 4%
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Table 7.5: Monthly summary statistics for natural ventilation study with interlock.

Month TOA,Min TOA,Max Default-Case Best-Case Absolute Percentage
�F, �C �F, �C Energy Energy Savings Savings

Consumption Consumption (kWh)
(kWh) (kWh)

January 62, 16.7 74, 23.3 196 191 5 3%
February 62, 16.7 72, 22.2 145 142 3 2%
March 62, 16.7 78, 25.6 288 242 46 16%
April 63, 17.2 76, 24.4 259 238 21 8%
May 64, 17.8 77, 25.0 312 279 33 11%
June 63, 17.2 77, 25.0 695 658 38 5%
July 63, 17.2 76, 24.4 926 901 25 3%

August 62, 16.7 77, 25.0 1149 1072 77 7%
September 62, 16.7 78, 25.6 336 290 46 14%
October 62, 16.7 76, 24.4 186 140 46 25%
November 64, 17.8 72, 22.2 246 225 22 9%
December 65, 18.3 76, 24.4 138 136 2 1%

Table 7.6: Annual summary statistics for natural ventilation study and interlock vs. no
interlock comparison.

Description TOA,Min TOA,Max Default-Case Best-Case Absolute Percentage
�F, �C �F, �C Energy Energy Savings Savings

Consumption Consumption (kWh)
(kWh) (kWh)

No
Interlock

Single Set of
Best Control
Parameters

67,
19.4

74,
23.3

5349 5184 166 3.10%

Monthly Reset
of Best Control
Parameters

- - 5349 4955 395 7.40%

Interlock

Single Set of
Best Control
Parameters

62,
16.7

77,
25.0

4877 4608 269 5.50%

Monthly Reset
of Best Control
Parameters

- - 4877 4513 364 7.50%

Total
Potential
Savings by
Adding
Interlock

Single Set of
Best Control
Parameters

62,
16.7

77,
25.0

5349 4608 741 13.90%

Monthly Reset
of Best Control
Parameters

- - 5349 4513 836 15.6%
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Figure 7.7: Absolute savings achieved with best combination of control parameters relative
to default combination. Note that there is no potential savings in January with an interlock
system present.
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7.4 Conclusion

The automatic window control logic for the RSF building located in Golden, CO was

analyzed by means of a parametric study in which sets of values of key control parameters

were used in simulations of a calibrated building energy model. The results of each set of

simulations gives insight into the energy savings potential of each combination of control pa-

rameters, helping to point control designers to a set of control parameters that will minimize

energy consumption.

While this study focuses on automatic window control, the methods are applicable to

any control strategy with key setpoints and threshold values. Noting that building heating,

cooling, and ventilation can be heavily influenced by occupant use of operable windows, a

stochastic model of window use was implemented in the building energy model, and the aver-

age e↵ect of occupant window use was accounted for by simulating each model a large number

of times, and using the average HVAC electric consumption to measure performance. This

method allows us to compare the benefits of each combination of control parameters while

accounting for the interactive e↵ects between the building systems and occupants. Occupant

comfort was accounted for by comparing a weighted sum of comfort conditions computed

for each control scenario, and results demonstrated that for this building model, the build-

ings cooling and heating system consistently maintained comfort conditions regardless of

automatic window controls.

Results for the RSF building show that for night ventilation control, opening auto-

matic windows prior to midnight provides little benefit, and that the minimum outdoor air

temperature setpoint that minimizes energy consumption is 65�F (18.3�C). For a 24-hour

natural ventilation strategy, results showed that the best combination of minimum and max-

imum outdoor air temperature setpoints that govern automatic window openings is highly

dependent on season, and on the presence or absence of a HVAC-window interlock system.

In nearly all cases, the addition of an interlock system leads to increased energy savings,
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and the savings potential from optimizing setpoints is greater when an interlock system is

present, largely due to decreased demand on the mechanical ventilation system.

The best-case annual minimum and maximum temperature setpoints are (67�F, 74�F)

(19.4�C, 23.3�C) for systems with interlock and (62�F, 77�F) (16.7�C, 25.0�C) for systems

without interlock, and lead to annual savings of 5.5% and 3.1%, respectively. If, instead

of a single annual combination of control parameters, the controls are augmented by a

monthly reset schedule of temperature setpoints, savings potential for a system with interlock

increases to a theoretical 7.5%, and savings for a system without interlock increase to 7.4%.

The combination of adding an interlock system to a building that lacks one, as well as a

monthly reset schedule of window control setpoints leads to a potential 15.6% savings for

the RSF building.



Chapter 8

Top Down Results: SMPC and DMPC

8.1 Introduction

A methodology has been developed for optimizing building supervisory control strate-

gies, employing building models that incorporate stochastic models of occupant behavior and

serve as the objective function evaluator in a stochastic model predictive control (SMPC)

architecture. The SMPC architecture accounts for variability in building performance due

to occupant behavior and is shown to generate a sequence of window opening decisions for

a mixed mode (MM) building which lead to more robust building performance in the face

of occupant window use than a heuristic controller. A set of receding optimization time

horizons are described which enable the use of complex building models in simulated SMPC.

Results of a case study show that deterministic optimization predicts a 50% increase in

building performance, while stochastic stochastic optimization leads to a more conservative

and more reliable 33% performance improvement, which takes into consideration the impact

of occupant behavior.

8.2 Case Study

The results shown in this section are part of an ongoing natural ventilation controls

optimization at the Research Support Facility (RSF) building on the National Renewable

Energy Laboratory (NREL) campus in Golden, Colorado, USA. To this end, an energy

model of the RSF building has been developed in EnergyPlus, as well as a sub-model which
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was developed specifically for optimization of the building’s automatic window controls. See

Figure 5.3 for an aerial photo of the building, and Figure 5.5 for visuals of the energy models.

The majority of the RSF building is comprised of o�ce space in the long, narrow, east-west

(left-right, in the images) oriented wings, though conference rooms, dining areas, a gym, a

library, and a large data center also exist in the core of the building, which is the north-south

oriented spine of the building, connecting the o�ce wings to each other.

The simulation study results are presented for the month of October, which is char-

acterized by cooler temperatures and large diurnal swings; night time lows typically range

between 0�C and 10�C, and daytime hits range between 15�C and 25�C. During summer

months, larger cooling loads are prevalent, but in the month of October we do not expect

to see much cooling energy consumption. The results show that the default window controls

miss several opportunities to take advantage of natural ventilation for cooling, while the

optimal controls exploit these opportunities and prevent the radiant system in the building

from switching between heating and cooling several times during the month.

At the time of this simulation study, the automatic windows in the RSF were controlled

based on wind speed, outdoor relative humidity, and outdoor dry bulb temperature. The

wind speed computations are based on granular checks for gusts over 7.5 m/s, and windows

are allowed to open whenever the wind is generally calm, but since weather data was only

available in hourly increments, we simply disable window openings whenever wind speed is

greater than 7.5 m/s. The relative humidity and temperature based control logic is straight-

forward; automatic windows are allowed to open whenever outdoor temperature is between

20�C and 23.3�C, and outdoor relative humidity is above 50%.

For each of the manually operable windows, it is assumed that there is one occupant

responsible for opening and closing it. This is true in the actual building on the North façade,

where there are single-occupancy semi-enclosed o�ces, and partially true on the southern

façade, where there is a desk near each window, but where any occupant is able to open

or close any window. In the simulation, each of the 10 occupants that control windows is
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given a unique occupancy profile generated by the Page occupancy algorithm before the

EnergyPlus simulation, and actions are predicted for each occupant for each hour based on

the Haldi window-use algorithm. The particular occupancy profiles, parameters of mobility,

and long-term absence inputs to the Page occupancy model are drawn at random from the 20

individual sets generated in the model’s development ([75]). The probability profiles follow

typical 35-hour work weeks - high in the morning and afternoon on weekdays, low during

the lunch hour and on weekends, and the mobility parameters are typically 0.12.

8.2.1 Optimization Settings

For the results presented here, a maximum Monte Carlo number (100) was chosen to

constrain runtime, though use of the Monte Carlo convergence criteria with BL = 50 and

BW = .02 often leads to convergence in less than 100 simulations, and typical Monte Carlo

numbers used in similar studies are in the range of 50 to 100, as in [41, 61]. The MPC

evaluation was conducted for the month of October, using TMY3 weather data for Golden,

Colorado, USA. Execution, planning, and termination horizons are all 24 hours; this results in

a 48-hour cost horizon. The decision space is discretized into twelve two-hour blocks per day,

always from 18:00 on one day to 18:00 on the following day, which corresponds approximately

to the end of the occupied period. In each two-hour block, the optimizer can choose a single

decision (whether to open or close automatic windows), resulting in 212 = 4096 possible

window control vectors for any 24-hour period. The optimization algorithm is a modified

version of the meta-heuristic particle swarm optimizer (PSO) described in [55]. The SMPC

run required 88 hours to run on twelve 2.8 GHz Intel Westmere processors. The goal of the

optimization was to minimize cooling energy (electricity consumption for fans, pumps, and

chilled water production) while preserving or improving indoor comfort conditions, as in the

cost function in Equations 4.5 and 4.6. Before presenting results, the reader should note

that the RSF building was designed to operate at net-zero energy conditions, and that it is

already near-optimal in terms of minimizing cooling energy. Heating energy was not added
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to the objective function because at the time of the simulation study, minimizing electrical

energy was the primary concern of the building operations sta↵, and the cost of operating

the campus heating system was much lower than the cost of electrical energy for cooling or

running HVAC equipment.

8.2.2 Results

Figure 8.1 shows the cumulative energy consumption for fans, pumps, and cooling for

the month of October for two cases, a deterministic simulation with default controls, and

a deterministic simulation with optimal controls that were selected in a deterministic MPC

run. Occupant behavior was neglected for deterministic MPC, meaning that no occupant

window-openings occurred in the simulations. Figure 8.2 shows the analogous sets of results

for stochastic simulations with default controls and optimal controls as determined by an

SMPC run. The first, and possibly most significant contribution of this work is to present

results as in Figure 8.2, where we can see the distribution of impacts on building performance

from occupant behavior, given default controls and optimal controls. In the box whisker

plots, the boxes encompass data between the 25th and 75th quartiles, with the median

shown by the horizontal line near the middle of each box; whiskers extend to the last value

that falls within 1.5 times the inter-quartile (75th-25th) range; any points outside of this are

outliers, and plotted as points. In the deterministic results in Figure 8.1, one could assume

some percentage error around the given results, but the stochastic figure shows that the

results are not normally distributed, and instead have a long upper tail. In both Figures

8.1 and 8.2, the savings that accumulate when optimal controls are used are characterized by

large jumps, for the deterministic results (Figure 8.1) this is obvious on the 18th, 19th, 23rd,

and 24th days of the month. In the stochastic optimization results, we see large changes on

days 10, 13, 16, 18, 19, 23, and 24 for the default case, and similar but smaller changes on the

same days for the optimal case. These large spikes in energy consumption in the simulations

with default controls are due to the radiant system changing from heating mode to cooling
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Figure 8.1: Deterministic MPC results: cumulative energy consumption for one month.
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Figure 8.2: Stochastic MPC results: cumulative energy consumption for one month.
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mode; with optimal controls in place, windows are opened which lets in cool outside air,

prevents the indoor conditions from becoming too warm, and prevents the radiant system

from switching between heating and cooling. For the stochastic results, note that the median

values of energy consumption do not experience any large jumps until day 16, though the

range of potential energy consumption is growing due to occupant behavior.

On other days, there is virtually no di↵erence in performance between the optimal

and default controls, because there is no opportunity for natural ventilation to significantly

impact the performance of the radiant system. There might be opportunities for fan energy

savings if the building’s ventilation system were programmed to respond to natural ventila-

tion (i.e. reduce ventilation rates when windows are open), however this is not the case - so

savings from fan energy are nonexistent.

The impact of occupant behavior is also very small for the first ten days of the simula-

tion whether default or optimal controls are used, this is due to relatively moderate outdoor

conditions, where energy consumption is low in general, however we note that it is possi-

ble that the random streams simply lead to lower than typical occupant behavior during

this period. The impacts of occupant behavior begin for both the default and optimally

controlled buildings on the 10th day in October, however the impacts are slightly di↵erent

due to the di↵erent automatic controls, which lead to di↵erent indoor conditions for the rest

of the month. An important di↵erence between the stochastic and deterministic results is

apparent on day 16, when there is a larger jump in energy consumption for stochastic results

(for both optimal and default controls) - this is due to the aggregate impact of occupant

behavior over the last two weeks in simulation, and not due to any isolated event.

Figure 8.3 is a histogram of the cumulative energy consumption for the entire month

of October for two simulation cases: the building operated with default controls and with

optimal controls. Four hundred simulations were conducted with both control sequences

(optimal and default) after the MPC run to fill out the distribution of energy for each case.

We note that the results of simulations with optimal controls are more tightly clustered,
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while the results of simulations with default controls are more spread out, indicating that

the optimal controls lead to more consistent building performance in the presence of occupant

behavior. With default controls, the deterministic result falls near the center of the range

of stochastic results, indicating that occupant behavior can increase or decrease building

performance in general. For the simulations with optimal controls, at first glance it appears

that occupant behavior has shifted energy consumption up, and never shifts it down, but

this is not true, since the optimal control sequences found using deterministic and stochastic

MPC are slightly di↵erent. Some disagreement in results is expected, however the fact that

the deterministic result is not even within the range of the stochastic results tells us how

important it is to consider occupant behavior during the optimization. The deterministic

optimal result may not be valid at all, given that it does not account for the impacts of

occupant behavior, while the stochastic result gives a more realistic estimate of potential

performance improvements. In both the default and optimal stochastic results, the total

energy consumption for the month of October di↵ers by slightly less than a factor of two,

which is consistent with the results presented in [41], where the same occupant window-use

model is coupled to a single-zone building model, and heating and cooling demands vary by

a factor of two. Note that here we do not employ a model of occupant shading device-use

since there are no manual shades in the RSF building, however there was occupant shading

device-use in the related study; we also do not consider diversity within the occupant pool

(i.e. active and passive occupants), while the aforementioned study provides further insight

on di↵erences within the occupant pool. In [78], a simulation study that uses a whole

building energy model and models of occupant behavior for shading devices and internal

lighting shows that the range of lighting energy consumption varies by a factor of two, while

the standard deviations of heating and cooling energy use are 9% and 10% respectively,

which is lower than the range for this study and other studies that use a single-zone building

model, and which incorporate occupant use of manual windows.

Figure 8.4 provides a summary of the savings for the stochastic simulations; the range
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month.
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of savings is between -68 kWh and 138 kWh, while the average is 55 kWh, and clearly the

negative savings estimates are outliers. For the deterministic simulations, energy consump-

tion with default controls was 190 kWh, and with optimal controls was 88 kWh, resulting in

a 102 kWh savings prediction. We can deduce from Figures 8.1 through 8.4 that occupant

behavior in the RSF tends to decrease the savings potential from controls improvements

with MPC.

Figure 8.5 shows the daily energy consumption throughout the month of October. Due

to occupant control of manual windows only, the energy consumption varies on each day.

On most days, the variation is minimal, indicating that the indoor and outdoor conditions

are not conducive to opening windows. On other days however, the variation is quite large,

indicating that occupants are opening windows at times when outside conditions are much

cooler than the indoor conditions (since the simulation is for October, temperatures are

typically cooler outdoors than inside).

Figure 8.6 shows the hourly energy consumption for October 16. Note that here, as in

the daily energy consumption displayed in Figure 8.5, there are only a few isolated energy

consuming events that account for the majority of the total consumption. On this day,

conditions lead to a large energy consumption event at 10:00am that causes the radiant

cooling system to turn on.

Figure 8.7 shows the hourly predicted mean vote (PMV) comfort index for October 16:

Note that during unoccupied hours the range of PMV indices when optimal BAS window

controls are used is allowed to drop well outside of the nominal [-0.5,0.5] range, and that

during occupied hours, the PMV drops as low as -0.5, but never lower. The low PMV scores

during hours 8 and 9 are a result of BAS windows being opened to prevent an impending

cooling event. The presence of the cooling event is obvious in this figure if one looks at

the box plots of PMV in hours 10 and 11 for the DEF case; the average PMV value drops

dramatically from hour 10 to hour 11, indicating that cooling has occurred. During the

simulation, air speed and clothing assumptions that factor into the PMV calculations are
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set to 0.2 m/s, and 0.5 clo during the summer, (May 15-October 15) or 1.0 clo during the

winter (Oct 16 - May 14).

Figure 8.8 shows the distribution of energy consumption for a single hour, from 9:00

to 10:00 on October 16. With default BAS window controls in place, the range of potential

energy consumption is considerably higher. This is a result of space temperatures rising

due to internal loads and solar gains, reaching the cooling setpoint, and causing the cooling

system to turn on. With optimal BAS window controls at the helm, windows are opened

for two hours before 10:00, which causes indoor space temperatures to drop significantly,

preventing the cooling system from turning on. Note in Figure 8.7 that the indoor comfort

index drops to -0.5 during occupied hour 8. In this case, the window controls are acting like

an outside air economizer with a bit of predictive power. The DOAS in the building model

is only intended to provide fresh air, so while it could potentially perform the same function

that the windows are, it is not designed to. Instead, cooling and heating come from the

concrete slab in the ceiling, and in order for the radiant system to respond to this cooling

event, it has to completely switch from providing hot water to a typically warm slab, to

providing cool water to cool the slab and then the space. It is this switch that draws such a

large amount of energy in the higher cases in Figure 8.8.

In Figure 8.8, we see that the DEF case can experience large energy consumption,

depending on the behavior of occupants, while the OPT case has successfully avoided any

large energy consumption event. Note in the subplot in Figure 8.8 that the OPT results do

still contain some variation, but the variation is limited to a much smaller range than in the

DEF case.
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8.3 Conclusion

A methodology has been developed for optimizing building supervisory control in simu-

lation, in which building models developed in EnergyPlus can incorporate stochastic models

of occupant behavior and serve as the objective function evaluator for a stochastic model

predictive controller. The SMPC architecture accounts for di↵erent levels of variability in

building performance due to occupant behavior, and is shown to provide control setpoints

which lead to more consistent building performance in the face of occupant window use.

A set of time horizons are described which enable the use of complex building models in

simulated SMPC. Results of a case study show that stochastic optimization leads to more

conservative performance, but guarantees that performance with some level of confidence,

as compared to deterministic optimal control, which does not consider any uncertain dis-

turbances and only provides a point estimate of performance. The optimal data sets that

are created by this process provide useful insight into the performance of existing control

strategies, and can be used to create better control strategies. In the case study results, the

SMPC result highlighted several occasions where an existing heuristic control strategy was

not performing as well as it could.



Chapter 9

Rule Extraction

In [26] and [63], o✏ine optimization results are used with di↵erent statistical modeling

techniques to develop simple control rules that approximate the performance of optimal con-

trollers. In this chapter, CARTs are used with results of multiple deterministic optimizations

of window controls in the simplified RSF building model.

In [63], May-Ostendorp shows that control rules trained on a dataset of optimization

results for the cooling season do not perform well when tested in a swing season, whereas in

[26], Domahidi demonstrates that a rule trained on the results of multiple optimizations in

di↵erent climates works well when tested in each individual climate. Following from these

initial findings, we look a bit deeper into training CARTs on optimal results from di↵erent

times of year, and from di↵erent climates.

First, in Section 9.1, we lay out the structure of several di↵erent CART training pro-

cesses that were used to generate dozens of CARTs for each optimal result and select the best

one based on closed-loop validation. Second, we put the methods to work training CARTs

on datasets corresponding to each month during the swing seasons and the summer, as well

as the aggregate dataset of all seven months, then pit the rules from each month against

each other in a contest to see which rule can perform the best in any or all other months, and

to tease out the generalizability of CARTs trained on limited datasets. Third and finally in

Section 9.4 we explore the robustness of rules with respect to climate, training rules using

optimization results from 42 di↵erent locations and comparing the performance of each rule
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in every location.

9.1 Rule Extraction Techniques

The general approach to training CARTs in this work begins with preparing the data

for rule extraction. The optimal control signal in this case is always the status of automatic

windows in the RSF. In its raw form, this signal takes the form of a binary (0,1) sequence,

corresponding to closed (0) or open (1). In both [63] and [26], binary signals are the response

variable predicted by CARTs, and performance of the CARTs is shown to be strong in both

cases, but later we show that transforming this response from binomial to multinomial can

help in closed loop testing.

Given our response variable, the window status, we can collect all of the potential

predictor variables that we think may be relevant; some past and some predicted outdoor

weather parameters, as well as a selection of current-time indoor environment parameters

that were used in the results presented here are listed in Table 9.1.

Armed with a set of predictors and a response, we follow the methodology set out in

[42] to first grow a tree to an acceptable level of complexity, then prune it back to a less

complex structure using the typical one standard error (1-SE) rule of thumb. An example

CART dendrogram is given in Figure 9.1, and the pruning process can be understood by

examining the complexity chart in Figure 9.2, where the horizontal line corresponds to the

value of relative error that is one standard error larger than the lowest value for any split in

the tree. The rule of thumb specifies that the appropriate number of splits is the one with

the highest relative error that still falls within one standard error of the minimum. In this

case, the solution is trivial and corresponds to the final (10th) split, so the pruned and full

tree are the same. In Figure 9.1 this is indicated by the color of the trunk in the dendrogram,

where any split that is fed by a red branch would be pruned away by the one standard error

rule. In this case, every split is fed by a green branch, so every split is retained in the pruned

model.
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Table 9.1: Weather parameters used in rule extraction.

Time Period Parameter Value Sum Min Max Mean Swing

Past 24 Hours Solar Radiation •
Relative Humidity •
Outdoor Dry Bulb • • •

Future Days Outdoor Dry Bulb • • •
(0,1,2)

Future Hours Outdoor Dry Bulb •
(1,2,3,4)

Current Value Outdoor Dry Bulb •
Outdoor Dew Point •
Solar Radiation •
Wind Direction •
Wind Speed •
Total Sky Cover •
Opaque Sky Cover •
Precipitation •
Occupancy •
Indoor Air Temperature •
Indoor Relative Humidity •
Indoor Humidity Ratio •
Indoor CO2 Concentration •
Hour of the day (1-24) •
Weekday (1-7) •
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TempIndoorAir >= 21.76

CO2ConcentrationIndoor >= 442.9

drybulb < 19.85

drybulb_future_value_1h >= 24.9

drybulb_future_max_0d >= 32.5

horizirrad < 356

TempIndoorOperative >= 23.2

TempIndoorMeanRadiant < 22.36

TempIndoorMeanRadiant < 21.92

TempIndoorAir >= 20.59

 < 21.76

 < 442.9
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Figure 9.1: Month of August binary CART. White and green boxes are the ‘leaves’ of the
tree, representing closed and open windows, respectively. Numbers in the leaves indicate the
response level (0 or 1), as well as the count of each response that falls in each leaf.
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At this point, we have a basic strategy for developing basic or what we refer to as

original CART models in two forms, the fully grown or full tree, and the pruned version.

Next we will explore di↵erent options for optimizing CARTs, and for massaging the data in

our response variable to better approximate real-world building controls.

9.1.1 Evaluating CART performance

In the next section a method of optimizing CARTs is discussed, here we describe the

specific metric used to score CART models using their own training data and when tested in

EnergyPlus simulations. The ranked probability skill score (RPSS) is a common metric for

rating the performance of categorical prediction models. The RPSS compares the predictive

ability of a selected model (the ranked probability score, or RPS) to the predictive ability

of an unskilled model RPSunskilled, and can take values between � inf and 0. The RPSS is

computed in Equation 9.1

RPSS =
RPS �RPSunskilled

0�RPSunskilled

(9.1)

where RPS is given by

RPS =
1

M � 1

MX

m=1

" 
mX

k=1

pk

!
�
 

mX

k=1

ok

!#2
(9.2)

in which pk is the predicted probability in forecast category k, and ok is an indicator (no=0,

yes=1) for the observation in category k, andM is the number of discrete response categories.

The unskilled forecast, RPSunskilled, could be as simple as a proportional probability for each

response category.

While RPSS is appropriate for evaluating CART models in open-loop tests, i.e. using

the raw training data, it is less appropriate for evaluating the performance of the CART in

an EnergyPlus simulation. For this case, closed loop testing, we can simply use the same

metrics that were used to evaluate control performance in the MPC optimizations in Chapter

8, and in the parametric studies in Chapter 7: HVAC electric consumption, indoor comfort

conditions, or the combination of two in the objective function in Equations 4.5 and 4.6.
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9.1.2 Optimizing Priors

From [63], we know that we can improve the performance of a CART by giving pref-

erential treatment to di↵erent levels of the response variable, but it is unclear whether we

should prioritize incorrect window = open predictions, or incorrect window = closed pre-

dictions, though May-Ostendorp suggests that missing the right window opening decisions

is what leads to less than optimal performance for CART-based window control rules.

In an attempt to maximize the performance of a CART model, we set up an opti-

mization routine wherein the objective function evaluator trains a CART model given some

prior probabilities for each response class (chosen by the optimizer), computes the RPSS,

and returns the RPSS score as the objective function value. By optimizing the priors to

maximize the RPSS score, we guide the tree growth away from misclassification, and closer

to a perfect prediction - but for its own training data. The results of an RPSS score opti-

mization, further described below, are shown in Table 9.4. The table contains RPSS scores

for various extracted rules for a single set of training data, of note is that the RPSS score

generally increases as we move from the first column to the third, which contain scores for

original and optimized CARTs, respectively.

Bearing in mind that the end-goal of this rule extraction exercise is to arrive at a

pragmatic, usable control logic, we would prefer to have pruned models, and experience

tells us that full CART models, while still understandable, can be a bit unwieldy and still

di�cult to implement if they are excessively large. To that end, we have implemented our

CART optimization routine in two forms, in the first form we compute the RPSS for fully

grown trees, and return this score to the optimizer - so we are essentially training fully grown

trees. In the second implementation, we grow a CART, prune it back per the 1-SE rule, and

compute the RPSS of the pruned tree; in this case we are optimizing a pre-pruned tree by

adjusting the prior probability values.

At the conclusion of a single CART growing season, we are left with six trees to choose
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from, a full and pruned version of the original CART, and similar versions of an optimized

full tree and an optimized pruned tree, all of which are listed in Table 9.4.

9.1.3 Multinomial Responses

Initial forays into the world of CART training with RSF results showed an interesting

trend, which is best explained through an example. Consider the RSF building on a perfect

day for pre-cooling; the early morning hours are cool, and the daytime will be hot - so the

building can benefit from opening its windows prior to occupancy, harvesting some cold

outside air and dumping its heat to the outdoors. In an MPC run, the optimizer recognizes

this and takes advantage by opening windows during the early morning hours and closing

them during the warm afternoon. The result is an optimal dataset that contains several

hours where the indoor temperature is cool, and the windows are open.

Now step forward to the rule extraction process when a CART algorithm is faced with

choosing what variables to partition the response variable by, and the CART algorithm

notices that whenever windows are open, the indoor temperature is cool - and it chooses to

recommend opening windows when the indoor temperature is cool. In an open loop test

- where the CART is asked to predict window position given its own training data, it scores

well - choosing to open windows when the indoor temperature is low.

When we implement this control rule in a closed-loop simulation, however, the rule

performs poorly, because it got things backwards; the CART captured the relationship well

- but not the correct direction of cause and e↵ect. In a closed loop simulation, the CART

rules open windows whenever it is cool inside, regardless of the outdoor conditions, which

leads to increased heating demand in the swing season, and, sadly, increased cooling demand

in the summer.

While it is clear to an engineer that the open window caused the cool indoor conditions

during a cool outdoor period, the CART algorithm misinterprets the causality. Therefor

we describe some methods for changing the response signal from binary to multinomial so
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that the CART can (hopefully) see things more clearly. Start by considering the di↵erence

between an open window, a closed window, an opening window, and a closing window. In

the binary signal, only the state of the variable is captured - not the change in state. If we

can capture the extra information on the change in state of the windows, and provide this

information to the CART algorithm, perhaps it will see that when windows are opened, it

is warmer inside, and when windows are closing, it is cooler inside.

Tables 9.2 and 9.3 will help in explaining how the binary response signal was trans-

formed into a multinomial signal for the CART. After the time index in the first column of

Table 9.3, we see the original binary response, followed by eight columns of di↵erent multi-

nomial transformations, which are intended to capture the change in state of the original

response.

In the first transformation, Multinomial-1, the change in state is associated with the

first hour that the response is in a changed state relative to the previous time step. In the

next column, Multinomial-2, the change in state is associated with the time-step before a

new state is realized. All of the first four columns represent 3-level multinomial responses,

where the state of the window is interpreted as opening (-1), closing (+1), or static (0),

which could indicate an open window or a closed window.

In columns 5-8, we introduce another level of detail, di↵erentiating between open and

closed windows, instead of only considering the window to be static. We now have eight

di↵erent transformations of the original binary response, and we consider all eight because we

know that the optimizer opens and closes windows considering present and future conditions

- and we want to enable the CART algorithm to mimic the optimizer as closely as possible.

Perhaps the optimizer chose to open windows at time index 4 in the binary response in Table

9.3 solely based on conditions during hour 4 - but maybe something during hour 3, i.e. the

building heating up, led to the opening decision, and thus the open window during hour 4.

Without knowing a priori whether to use the hour before the change in state, or the

hour after the change in state, or whether it should be the hour before for opening decisions,
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Table 9.2: Binary and multinomial response case value key.

Window State
Value Binary Multinomial 1-4 Multinomial 5-8

0 closed static closed
1 open opening opening
-1 closing closing
2 open

Table 9.3: The original binomial response, and multinomial variants.

Time
Binomial

Multinomial
Index 1 2 3 4 5 6 7 8

1 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0
3 0 0 1 0 1 0 1 0 1
4 1 1 0 1 0 1 2 1 2
5 1 0 -1 -1 0 2 -1 -1 2
6 0 -1 0 0 -1 -1 0 0 -1
7 0 0 1 0 1 0 1 0 1
8 1 1 0 1 0 1 2 1 2
9 1 0 0 0 0 2 2 2 2
10 1 0 -1 -1 0 2 -1 -1 2
11 0 -1 0 0 -1 -1 0 0 -1
12 0 0 0 0 0 0 0 0 0
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and the hour after for closing decisions, or vice-versa, we try all eight permutations as they

are laid out in Table 9.3. Recall that we had six di↵erent methods for growing and pruning

trees in Section 9.1.2, combining those six methods with the nine di↵erent response classes,

we have 54 di↵erent potential options for CART models for a given data set.

9.2 Results for a Single Month

Table 9.4 gives a summary of the RPSS metric for each of 54 di↵erent CARTs that were

trained on one month of data that came from optimizing the RSF model for the month of

August. A summary of the initial MPC optimization results is given in Figure 9.3, where the

default and optimal control signals are displayed in the middle panel. When CART derived

rules are embedded in the EnergyPlus simulation, most of them perform poorly in spite of

some relatively high (0.7-0.8) RPSS scores in open loop testing. Computing the RPSS for

the closed-loop simulations results in the scores presented in Table 9.5, all of which are below

zero - indicating that they perform worse than an unskilled model. However, as revealed

by further analysis, a low open-loop RPSS is not always indicative of poor performance in

closed-loop simulations.

Table 9.4: August CART open loop validation RPSS scores.

Original Optimized - Full Tree Optimized - Pruned Tree
Response Full Pruned Full Pruned Full Pruned

Binary 0.77 0.77 0.84 0.55 0.84 0.82
Multinomial 1 0.34 0.00 0.40 -0.02 0.23 -0.01
Multinomial 2 0.21 0.00 0.34 0.00 0.27 0.00
Multinomial 3 0.28 0.00 0.49 -0.02 0.28 0.19
Multinomial 4 0.17 0.00 0.38 -0.01 0.17 0.00
Multinomial 5 0.63 0.43 0.72 0.63 0.67 0.67
Multinomial 6 0.51 0.33 0.56 0.25 0.46 0.46
Multinomial 7 0.52 0.23 0.58 0.21 0.50 0.15
Multinomial 8 0.65 0.50 0.65 0.57 0.66 0.63
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Table 9.5: August CART closed loop validation RPSS scores.

Original Optimized - Full Tree Optimized - Pruned Tree

Response Full Pruned Full Pruned Full Pruned

Binary -2.67 -2.67 -1.87 -2.95 -2.06 -2.95

Multinomial 1 -0.45 -3.08 -2.98 -3.08 -0.32 -3.08

Multinomial 2 -3.08 -3.08 -1.79 -3.08 -3.10 -3.08

Multinomial 3 -3.01 -3.08 -1.87 -3.08 -3.08 -0.32

Multinomial 4 -2.78 -3.08 -0.49 -3.08 -2.78 -3.08

Multinomial 5 -3.08 -0.77 -0.55 -3.08 -2.63 -3.08

Multinomial 6 -0.43 -3.08 -2.97 -3.08 -3.08 -3.08

Multinomial 7 -3.08 -3.07 -3.03 -3.07 -2.99 -3.06

Multinomial 8 -3.08 -3.08 -3.08 -3.08 -3.08 -3.08

Because the actual conditions evolve di↵erently in the closed-loop simulation than

what was present during the optimal simulation, computing the RPSS for these two cases is

not a very good indicator of performance. Instead we can observe the energy and comfort

performance of the models in simulation, as in Figure 9.4, where the open loop RPSS and

the closed loop objective function are juxtaposed in the bottom panel. Note that the actual

objective function value is extremely large due to the weighting coe�cients introduced in

Section 4.3.4, and have been log-transformed for the chart.

Figure 9.4 provides a number of insights. Note that the ⇥ symbol in the chart corre-

sponds to a ‘trivial’ controller, or one which leads to closed windows for the duration of the

simulation. A number of extracted rules fell into this group, and were combined into the

single ⇥ marker. Additionally, the CART model that performed the best in the closed loop

simulation is denoted by a black circle. The solid horizontal black line corresponds to the

performance of the model with default controls (the controls currently in use at the RSF),
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and the dashed line corresponds to the performance with the optimal control signal.

First observing the colors of the points in Figure 9.4, we can see some trends in the

relative performance of di↵erent response cases; CART models trained with the original

binary response signal clearly achieve the highest RPSS values on average, with multinomial-

5, 6, and 7 also scoring well. Next, looking at the shapes we can see that there is no consistent

trend in terms of tree-growth; optimizing the priors to achieve high RPSS scores does not

correspond to better performance in closed-loop simulation. One interesting trend however is

that pruned models (hollow shapes) often outperform their ‘full’ counterpart (filled shapes)

according to closed-loop metrics, in spite of lower open-loop RPSS values.

We can also see in Figure 9.4 that some extracted rules outperform the optimizer

and the default controller in terms of the comfort metric (middle panel), but none are able

to match the optimal or default controller in HVAC electric consumption (top panel). A

final note is that the optimizer performs worse than the default controller in terms of the

objective function, which is clearly due to the worse-than-default comfort value seen in the

middle panel. Given that our objective function was intended to guide the optimizer towards

improving HVAC and comfort performance, how is this possible?

The answer to this question comes in two parts. For the first part, recall the discussion

of divergent thermal histories and Figure 4.3; at some point in the MPC run, the optimizer

chooses a di↵erent control sequence than the default controller. From that point onward in

the MPC run, the indoor conditions in default simulations and optimal simulations will be

slightly di↵erent, and at some point the optimizer will be stuck in a situation where it can

not achieve comfort conditions that are equivalent to those in the default simulation. At

this point, the optimizer still tries to outperform the default controller but can not, and has

to choose the least ‘worse-than-default’ control sequence, or choose the least of all evils. It

is under these conditions that the optimizer is able to trade energy consumption for comfort

conditions, depending on which is ‘cheaper’ in terms of the objective function, leading to

results like those in Figure 9.4.
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The first part of this answer can be attributed to the near-sightedness of the MPC

process. While we consider the impact of control decisions over the future 48 hours, we can

not consider the infinite impacts, so there are inevitably cases where a decision made early in

a simulation can have a slightly negative e↵ect far later in the simulation. Short of providing

a multiple-week cost horizon for the optimizer, this is an unavoidable consequence.

The second reason for the occasional failure of the optimizer to produce perfect long-

term results is its lack of access to anything besides windows. All of the optimizations have

only considered opening and closing automatic windows, and as such the optimizer can not

force the ventilation, cooling, or heating systems to actively respond.

While Figure 9.4 gives the final aggregate metrics for the CART performance for the

month of August, it does not give any insight into the dynamics that led to the HVAC,

comfort, or objective function values. What did the di↵erent CART models do to achieve

their performance? The initial binary model in Figure 9.1 allowed windows to open whenever

the indoor air temperature was less than 21.76�C, and the mean radiant temperature was

above 21.92�C (the upper-rightmost green leaf); other window-opening decisions are also

based primarily on indoor temperatures, though current and future outdoor temperatures

and solar radiation are considered.

The CART that scored the best in terms of the objective function value was the un-

pruned version of the Multinomial-7 response case, where prior probabilities were optimized

to maximize the performance of a pruned model. This unpruned version is more complex,

and includes heating setpoints and indoor CO2 concentration as predictors. The closed-loop

response of each of the top 20 CART models is plotted in Figure 9.5; note that there are very

few window-openings in general, that the ‘trivial’ case, of windows being closed the entire

time, comprises 9 out of the top 20 performers, and that none of the CART rules seem to

come close to re-creating the optimal controller’s performance.

While these findings are less than exciting, they serve to illustrate the process which

is employed here repeatedly. Given a set of optimal results, 54 di↵erent CARTs are created
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with varying response, growth, and pruning characteristics. Each CART is tested in a closed-

loop simulation, and a ‘best’ rule can be selected based on any of the standard building

performance metrics. Next, this process is applied to multiple month-long optimization

results, and to an aggregate seven-month dataset.
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9.3 Rule Extraction for Multiple Months

After looking at the results of optimizing controls for a single month, and applying

rule extraction to the limited one-month optimal dataset, we can do the same for multiple

months. Recall that for the month of August, the full version of the multinomial-7 response

case with priors optimized to maximize the performance of a pruned model was the best

performer in terms of the objective function. Figure 9.6 shows the ‘best’ performing type of

CART for each of seven individual one-month datasets, as well as the aggregate seven-month

dataset, which includes all months from April through October. While there is no definite

overall standout, a few observations are worthwhile. First, no single type scores the best

in both comfort performance and HVAC energy consumption, though several score best in

both HVAC and the overall objective function, which is an indication that HVAC energy has

a larger impact on the overall objective function value. Second, only four out of the 24 total

cases use the binary version of the response variable, indicating that there is something to be

gained from transforming the binary response into a multinomial. A third note is that only

three out of the 24 cases use the original or un-optimized version of the CART, indicating

that optimizing the prior probabilities to increase the RPSS definitely leads to improved

closed-loop performance.

With dozens of CART models now in our toolset, we can look into the transferability of

rules from month-to-month throughout the cooling and swing seasons. Using the closed-loop

objective function value as the criteria for selection, the eight best-performing CARTs were

chosen, one for each month and one for the aggregate data, and each CART was tested in each

of the eight di↵erent time periods, resulting in 8 · 8 = 64 total simulations. Visualizations of

the results of each simulation are given in Figure 9.7. The x� axis indicates what data was

used to train the CART used in each column, and the y � axis indicates which time-period

was used in the simulation. In each of these figures, the results are aggregate sums per-

simulation that have been normalized by row, such that the performance of a given CART
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in its own locale (e.g. CART trained on August data, and tested in the August time period)

is scaled to a value of 1.0. To keep the color scales of the charts reasonably constrained,

any values above 10 (ten times worse than the native CART) are truncated to a value of 10;

this is especially helpful with the objective function, which often takes on very large values.

Colors in the charts are consistent, such that red is always worse, green is always better, and

yellow is acceptable.

In Figure 9.7a, we see what is expected, that the diagonal values are best - indicating

that CARTs are seasonally dependent; each rule works best in its own month, and rules

trained on other months always perform poorly when tested outside of their training period.

One surprise is that several of the one-month rules (Jun, Aug, Oct) outperform the aggregate

seven-month rule, when tested on the full seven-month period. Closer inspection reveals

that these one-month CARTs tend to leave windows closed more often than the aggregate-

CART, which tends to reduce HVAC energy consumption, which we can recall has a stronger

influence on the objective function.

One feature we hoped to see in a chart like this and unfortunately do not is good

performance of the aggregate rule when tested in each of its constituent monthly datasets.

The CART corresponding to September, for example, outperforms the aggregate dataset

CART in every month except for May and July (consequently also for the seven-month

period). Also notable is a trend that is evident if we look at June and September specifically.

Most CARTs trained in other months perform relatively well in June and September, and

CARTS trained in June and September tend to perform well in other months, both June

and September bridge the transitions between the swing and cooling seasons - and they, like

the aggregate dataset, are exposed to a wider range of conditions. On the other end of the

spectrum, months in the heart of a given season like April, May, October (swing), and July

(cooling), seem to be very specific. With the possible exception of October, these CARTs

seem to be particular to their own time period; they do not perform well when tested in

other months, and other CARTs do not perform well when tested in April, May, July, or
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Figure 9.7: Monthly cross validation: objective function summary.
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October.

In summary, it is not clear from looking at the objective function alone that using an

aggregate dataset to train a rule on multiple months will ensure good performance in each

season. In Figures 9.7b and 9.7c, we can inspect the two components that contribute to the

objective function, namely HVAC energy consumption and the comfort metric. The benefit

of using an aggregated or larger dataset is more obvious in these charts, since we can see

that no rule performs as well in terms of the comfort metric. The CART trained in August

does exceedingly well in terms of HVAC energy alone, but struggles in the spring and fall

months to maintain comfort.

9.4 Cross-Climate Rule Extraction

Having established that CARTs trained on datasets spanning longer time periods tend

to perform better than CARTs trained on individual months, we take a look now at exposing

rules to di↵erent climates. In the previous section, we trained CARTs on individual months

and conducted a cross-comparison of performance; in similar fashion in this section, CARTs

are trained based on optimizations for di↵erent climates. In total, 42 di↵erent locations were

selected from across the US to capture at least one location in each ASHRAE climate zone,

to capture a number of locations in the vicinity of the actual location of the RSF, in and

around Colorado, and in similar climates across the western US.

Table 9.6 lists all of the sites selected. Abbreviations in the Colorado Region column

correspond to the Western slope (ws), or western portion of the state, the plains or eastern

portion of the state (pl), and the Front Range (fr), locations just East of the rocky mountains.

Figures 9.8 and 9.9 show the geographic location of each site in the US and within Colorado,

respectively.

After selecting the sites, a deterministic optimization was conducted for each site span-

ning the time period from April 1 to October 31. Examples of results for two locations,

Golden, CO, and Homestead, FL, are given in Figures 9.11 and 9.10, respectively. Note that
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Table 9.6: Sites selected for cross-climate rule extraction study.

WMO State ASHRAE Site Name Colorado
Number Climate Zone Region

722026 FL 1a Homestead AFB
722050 FL 2a Orlando Intl AP
722748 AZ 2b Casa Grande AWOS
723110 GA 3a Athens-Ben Epps AP
722650 TX 3b Midland Intl AP
723910 CA 3c Point Mugu NAS
724055 VA 4a Leesburg Muni AP-Godfrey Field
724855 NV 4b Tonopah AP
725070 RI 5a Providence-T F Green State AP
723663 NM 5b Taos Muni AP
723677 NM 5b Las Vegas-Muni AP
723747 AZ 5b Show Low Muni AP
724625 CO 5b Durango-La Plata County AP ws
724640 CO 5b Pueblo Mem AP fr
724660 CO 5b Colorado Springs-Peterson Field fr
724665 CO 5b Limon Muni AP pl
724666 CO 5b Golden-NREL fr
724698 CO 5b Akron-Washington County AP pl
724699 CO 5b Boulder-Broomfield-Je↵erson County AP fr
724756 UT 5b Bryce Canyon AP
724760 CO 5b Grand Junction-Walker Field ws
724765 CO 5b Montrose County AP ws
724767 CO 5b Cortez-Montezuma County AP ws
724768 CO 5b Greeley-Weld County AWOS fr
724769 CO 5b Fort Collins AWOS fr
724860 NV 5b Ely-Yelland Field
725717 CO 5b Rifle-Garfield County Rgnl AP ws
725724 UT 5b Provo Muni AWOS
725805 NV 5b Lovelock-Derby Field
725866 ID 5b Twin Falls-Magic Valley Rgnl AP-Joslin Field
725955 CA 5b Montague-Siskiyou County AP
726835 OR 5b Redmond-Roberts Field
726886 OR 5b Baker Muni AP
726988 WA 5b The Dalles Muni AP
727810 WA 5b Yakima Air Terminal-McAllister Field
727830 ID 5b Lewiston-Nez Perce County AP
727834 ID 5b Coeur dAlene AWOS
725945 CA 5c Arcata AP
727885 WA 5c Port Angeles-William R Fairchild Intl AP
726380 MI 6a Houghton-Lake Roscommon County AP
726776 MT 6b Lewistown Muni AP
727477 MN 7 Roseau Muni AWOS
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energy savings are nearly impossible in the Florida location (climate zone 1a: Hot and Hu-

mid), however comfort is improved by occasional window openings. CARTs generated from

the results of the Homestead, FL optimization depend heavily on indoor and outdoor hu-

midity levels, while those generated from Golden, CO results use indoor CO2 concentration

and indoor temperature to control natural ventilation.

In all of the 42 optimizations conducted, total HVAC savings ranged from 1-19% over

the seven-month period, and primarily fell in the 5-10% range, indicating that the RSF

building is (as designed) extremely e�cient, and performance improvements are di�cult in

any climate. Improvements in the comfort metric were negligible, with 5% improvement in

a handful of cases.

Just as Figure 9.6 showed the best rules for each monthly CART, Figure 9.12 shows

the best CART for each climate. In this figure, we begin to see definite trends; multinomial

models dominate the group, as do full (un-pruned) models. Multinomial-7, -3, and -1 models

occur frequently, but the Multinomial-2 format seems to be the best overall, counting all three

metrics (HVAC energy alone, comfort alone, and the objective function) and all 138 total

cases, the Multinomial-2 case scores best 44 times. Recall from Table 9.3 that Multinomial-

2 corresponds to transforming a binary signal to a 3-level multinomial signal, where the

change in state is associated with the hour preceding a change. This makes sense given that

we want the CART to leverage some predictive power, if possible, just as the optimizer does

in MPC. The six additional cases in the top of Figure 9.12 correspond to CARTs trained

with six di↵erent aggregate datasets. Since optimizing the natural ventilation controls of the

RSF was the primary goal, the six aggregate datasets, and the selection of the 42 climate

sites followed the logic that rules would be more robust when trained with more data. To

get a larger dataset, the idea is to optimize the RSF building in multiple climates; the first

aggregate dataset, Colorado: Front Range, includes six sites, all within a few hundred miles

of the RSFs home location in Golden, CO. All of these sites are located in the transitional

region between the Rocky Mountains and the flat eastern plains of Colorado, which is a
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region with very specific weather patterns - significantly di↵erent from either the nearby

mountains or the nearby plains.

The second aggregate dataset, Colorado: East, consists of the same six sites in the

Front Range group, as well as two more that are in the nearby easter plains of colorado.

The third set, Colorado: All, includes five sites located in the western part of colorado that

certainly experiences di↵erent weather patterns - but still falls in the ASHRAE 5B climate

zone. The fourth set expands on the third by including 15 additional climate zone 5B sites

from across the western US. The fifth set adds in four locations that are in dry climate zones

(2B, 3B, 4B, 6B), and the final set includes nine more sites to include at least one site from

each of the ASHRAE climate zones represented in the continental US. By exposing the RSF

building model to a variety of climates in simulation, with an emphasis on nearby or similar

locations, we hope to train a CART that is robust to any environmental conditions that

might come along. By choosing the six di↵erent sets of aggregate data, we also hope to tease

out what level of aggregation - or how much variety - is necessary to train a highly robust

CART.

We begin breaking down the results in Figure 9.7 with a look at the the extremes.

Locations 722026 and 727885 correspond to climate zones 1a and 5c respectively; one is on

the southern tip of Florida and the other is on the Olympic peninsula in Washington State.

Understandably, these locations represent the edge-cases and rules for these locations are

very specific to the local climate. Not only do these CARTs not perform well anywhere else,

but almost no other rules are capable of performing well in these locations.

Next we can take a look at our primary location of interest, site 724666 (Golden, CO),

which seems to be unique in that it is a relatively di�cult climate to handle for CARTs

trained elsewhere, and the CART trained on Golden, CO weather data only works well in its

own location. Interestingly, there is not one other location with both of these characteristics.

Next, we observe three sites which are di�cult locations for CARTs trained elsewhere

to work in, but tend to generate CARTs that perform well everywhere else. Sites 724756,
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724767, and 725724 correspond to Bryce Canyon, UT, Cortez, CO, and Provo, UT, re-

spectively. All three locations are in climate zone 5B, and all three CART models use the

Multinomial-7 response format, with fully grown trees. The Bryce Canyon CART uses an

original CART, while the other two use the second growth optimization.
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Figure 9.13: Climate cross validation: objective function summary.
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(b) Climate cross validation: heating.

Figure 9.14: Climate cross validation: heating and cooling.



Chapter 10

RSF Controls Implementation

10.1 Introduction

The RSF building is the largest net-zero energy buildings in the world, it operates at a

site energy use intensity of 25 kBtu/ft2, and a comfort study conducted as part of this project

ranked the RSF in the top 92nd percentile for comfort satisfaction among occupants in 2012,

and in the 95th percentile in 2013. Of the energy consumed in the RSF, 3% is cooling-related,

and 6% goes to powering fans and pumps. This chapter addresses the process of attempting

to improve comfort and/or reduce energy consumption from fans, pumps, and cooling in the

RSF building. Achieving meaningful improvements in any of these areas is rather di�cult,

given the existing near-optimal performance of the building.

10.2 Summary

Our original goal was to use stochastic model predictive control to generate a dataset

of optimal control decisions for the automatic windows in the RSF, and to use this dataset

and rule extraction methods to generate simplified near-optimal control rules that we could

implement in the building - proving the methods can work outside of simulation.

An initial meeting with RSF personnel in Spring, 2012 led to an informal agreement to

use the RSF building as a testbed later that summer and/or in the warmer months of 2013.

The RSF sta↵ generously provided a complete energy model of the RSF building, however

the model was deemed unusable since it took 24 hours to run a single annual simulation,
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and it did not incorporate radiant systems, underfloor air distribution, or natural ventilation

- the three primary systems involved in the cooling and ventilation of the building. The

model did incorporate work-arounds which enabled the model to provide estimates of energy

consumption throughout the design process.

Work commenced with constructing the single zone RSF model, which was calibrated

to initial annual energy usage statistics. Next, occupant behavior models were coded into

the building simulation model, specifically the Haldi model for occupant use of windows [38].

Results of initial parametric studies with the single-zone model provided preliminary

insight into savings opportunities in the RSF. Savings from adjusting only the setpoints in

the existing control logic were small, and work continued with SMPC investigations in the

fall of 2012.

In mid summer 2013, the decision was made to abandon the top-down approach in

favor of the simpler bottom-up approach so that a controls change could be made before the

cold weather set in later in the fall, ending the natural ventilation season.

Additionally, making involved changes to control logic statements or programming new

algorithms was not possible due to budgetary and manpower constraints within NREL’s fa-

cility management department, so a decision was made to focus on optimizing a few setpoints

in the natural ventilation control logic, similar to the parametric study results presented in

Chapter 7.

10.3 Controls Changes

Using results of past parametric studies, optimizations, and results of new parametric

studies conducted in the summer of 2013, changes in setpoints were recommended that govern

automatic window openings and closings, as well as the setpoints that govern variable air

volume (VAV) terminal positions when windows are open. A summary of the various RSF

studies, and the final control changes made are given in the following:



176

Parametric Study 1 This parametric study is described in detail in Chapter 7, and took

place in June of 2012, and focused on setpoints that govern night-ventilation. We

investigated the impact of changing the minimum outdoor air temperature setpoint

that governed automatic window openings, as well as the time of day when night

ventilation was allowed. At the time, the minimum setpoint was 65�F, and the night

ventilation was enabled between 6pm and 6am. Our study showed that 65�F was the

best choice (between 61 and 69�F), and that night ventilation had the largest benefit

in the morning - though enabling it at 6pm did not result in significant comfort or

energy penalties.

Parametric Study 2 In the summer of 2012, independent of our work, the site operations

and engineering sta↵ at the RSF resolved to enable natural ventilation at all times,

not just at night. Given the new controls, we conducted a new parametric study,

again looking at minimum outdoor air temperature, but this time also consider-

ing adding window-HVAC interlock. The interlock system would simply close VAV

terminal boxes whenever automatic windows were open, rather than keeping VAV

terminal boxes open at all times, regardless of natural ventilation - as was the case

at the time. The outcome of this study were multiple; the major insight was that

the addition of an HVAC-interlock system would generate the most energy savings,

independent of all other natural ventilation controls. Secondary results were that

the majority of potential energy savings in the RSF were available during the swing

seasons and that a seasonal or monthly reset of setpoints (minimum outdoor air

temperatures) would lead to better performance than a single annual setpoint.

Stochastic MPC and O✏ine Optimizations Results of our optimizations with the RSF

have shown that there is minimal room for improvement in energy performance

at the RSF from natural ventilation due to the already outstanding performance

of the building. The RSF was designed to use a small amount of cooling energy,
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and so reducing cooling energy consumption is challenging. Our optimizations have

nevertheless led us to a few opportunities for savings. The first opportunity is one

common to most mixed mode buildings, the opportunity for pre-cooling; charging the

building’s thermal mass with cool outside air before a warm day when the building

will require cooling. As in the parametric studies, our optimizations have shown

that the swing months have the largest potential for generating energy savings. The

final lesson learned from our optimizations is that in the spring, when the building

is switching from primarily heating to primarily cooling (or vice-versa, in the fall), it

is important to avoid switching back and forth multiple times, since the building has

to heat up or cool down a massive concrete ceiling. Natural ventilation can help to

avoid repeated switching between heating and cooling by providing natural cooling

at times during these swing months - instead of forcing the radiant systems to fully

cool the concrete ceiling.

Parametric Study 3 In the summer of 2013, with the results of the last three studies

in mind and a new directive from the engineering sta↵ at the RSF, we worked

through a final parametric study. This final study was the result of several meetings

and brainstorming sessions which leveraged the results of the previous studies and

optimizations to design new simplified window control algorithms. The goal was to

try five or six di↵erent pragmatic control strategies, to look in detail at where they

performed better or worse than the existing controls, and then to see how much

benefit could be gained by changing only setpoints in the existing controls. The

di↵erent strategies employed in this study were:

Base Case (Existing Controls) Windows are opened whenever wind is minimal,

outdoor relative humidity is below 50%, and outdoor temperature is between

68 and 74�F. Windows are closed whenever wind is gusty or strong, outdoor

relative humidity is above 52%, or outdoor temperatures fall outside of the
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68-74�F range.

Case 2: Indoor Temp vs. Heating Setpoint Windows are opened according to

the rules in the Base Case. Windows are closed whenever indoor temperature

approaches the heating setpoint. (intended to allow for more cooling than the

base case)

Case 3: Indoor vs. Outdoor Temp Windows are opened according to the rules

in the Base Case. Windows are closed whenever indoor temperature ap-

proaches the outdoor temperature (this is intended to allow aggressive cooling).

Case 4: Higher Humidity Windows are opened and closed according to the rules

in the Base Case, with the exception that the humidity setpoint is not 50%,

instead multiple options for relative humidity were selected (60, 70, 80%).

Case 5: Relative Enthalpy Windows are opened whenever outdoor enthalpy is

lower than indoor enthalpy, and temperatures are cooler than 74�F. Windows

are closed whenever outdoor enthalpy approaches indoor enthalpy, or outdoor

temperature drops below a minimum (60�F).

Case 6: Absolute Enthalpy Windows are opened whenever outdoor enthalpy is

lower than a fixed upper limit, equal to the enthalpy at 74�F and 50% RH (the

high limit in the base case). Windows are closed whenever outdoor enthalpy

approaches the upper limit, or outdoor temperature drops below a minimum

(60�F).

The outcome of the final parametric study (beyond reinforcing the conclusions made

in prior studies) was a conclusion that little could be gained from changing setpoints

in the existing controls, and that truly a comparison with indoor conditions was

necessary to make a meaningful improvement.

Final Controls Recommendations Leveraging the results of all of the controls investiga-
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tions listed above, our final controls recommendations (sent on September 6, 2013)

to the engineering sta↵ were as follows.

(1) The controls change that will have the most significant impact is to enable VAV

terminal boxes to close fully whenever automatic windows are open.

(2) The second most meaningful change that can be made to the existing window

controls is to reduce the minimum outdoor air temperature from 68 to 64�F.

(3) If changing the window control logic is possible, we recommend the following

logic: open windows whenever outdoor conditions are satisfactory (as in the

existing controls), but close windows whenever indoor conditions are approach-

ing unsatisfactory levels.

Final Controls Changes Implemented In Short:

(1) Minimum outdoor air temperature setpoint for closing windows reduced from

68 to 65�F.

(2) Three VAV terminal boxes have lower minimum airflow setpoints.

In detail: In response to our recommendations, the sta↵ of the RSF agreed to re-

duce the minimum outdoor air temperature setpoint for closing windows to 65�F,

since they had used that value previously without major consequences. The setpoint

for opening windows remains at 68�F. This is a slight deviation from our recom-

mendation, which was to both open and close windows around the 64�F setpoint,

but opening windows when temperatures were that cool seemed too aggressive for

the RSF sta↵.

The RSF sta↵ was however unable to fully implement the other controls changes

for di↵erent reasons. Fully closing VAV terminal boxes when windows are open was

ruled out, since it would require adding logic to the VAV controls programs (i.e.
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checking for a natural ventilation status, and adjusting VAV terminal boxes accord-

ingly), however reducing the minimum damper setpoint was a feasible change. As of

November 2013, three VAV terminal boxes have had minimum airflow setpoints re-

duced from 130, 140, and 135 to 80, 90, and 80, respectively. Results presented below

show that reducing the airflow through these VAV terminal boxes has not resulted

in larger CO2 concentrations than were present with the larger airflow setpoints.

In aggregate, the airflow reductions for the three VAV boxes represent an 8% re-

duction in the total airflow through the main AHU for that wing of the building; if

all VAVs in the wing were changed proportionally, the main AHU would see a 35%

reduction in airflow.

Fully changing the window control logic to respond to indoor conditions was ruled

out because it would require unique code for each zone of the RSF. Currently all of

the windows are controlled at once for 14 di↵erent zones, and making 14 individual

programs (each computing local indoor average/minimum/maximum temperatures

and relative humidities) was not possible; however the site operations team has taken

the suggestion under consideration and may implement it in the future.

10.4 Recommendations

What can a practitioner learn from this experience? In the RSF the granularity of

window control is limited to fairly large portions of the building. For the 14 zones mentioned

above, there could be as many as eight natural ventilation zones based on the window

actuating hardware that is in place. The bottom floors are grouped together into one control

zone for each wing, and the top floor exists as its own zone for each wing (there are four wings

total in the original RSF building; a two-wing addition is not included in this analysis). So at

most, the controls can be refined to meet the needs of eight di↵erent natural ventilation zones

individually, but each of these zones can see 2-3 �F variations in temperature throughout
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the space. Parts of the each space include small meeting rooms, kitchen areas, and copy

areas, and it is challenging to pick one representative temperature sensor to guide controls

for natural ventilation for these di↵erent spaces that are all grouped together. This is a

large part of the reason that automatic windows are only controlled according to outdoor

conditions - because the indoor conditions can vary widely within an individual natural

ventilation zone.

That said, it would likely benefit the RSF to break up the natural ventilation controls

into the eight possible groups, since the lower floors experience di↵erent envelope loads than

the top floor, and the the east wings experience di↵erent loads than the west wings over the

course of each day. The ground floor in an east wing is controlled exactly the same as the

top floor in a west wing, but on a given temperate afternoon it might be too cool for natural

ventilation in the east-ground floor space, but perfect for natural ventilation in the west-top

floor space.

For natural ventilation designers, we suggest the following conventions when designing

a natural ventilation system with automatic windows. Specify that natural ventilation sys-

tems are zoned according to building space types, and specify that controls for automatic

windows be as flexible and localized as possible. If there will be individual o�ces, then

each o�ce should include an individual controller. In general, the bottom floor of a building

should be controlled individually because it can represent a security threat (open windows

at night could admit burglars), and the top floor should be controlled individually due to the

additional envelope heat transfer through the roof. In addition to keeping window actuation

hardware and controls as localized as possible, it is important to specify what outdoor and

indoor sensors will be required to guide window control, and where they should be located

(close to the window they are controlling).

Finally, in order for a natural ventilation system to save energy in a building, it needs to

be controlled in concert with the mechanical ventilation and/or mechanical cooling systems.

If saving mechanical ventilation energy is the goal, then the mechanical ventilation system
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should ramp down or turn o↵ when natural ventilation is in e↵ect. If saving cooling energy is

the goal, then at a minimum, automatic windows need to be opened when outdoor conditions

are cooler than indoor conditions.

10.5 Final Comments

In the last 18 months working with the RSF, we have learned just how di�cult it is

to implement a meaningful change to the controls of a building, largely because of the risk-

averse nature of facilities management sta↵, and also because of the di�culty in accurately

predicting building performance from a model. Model creation and calibration are not

trivial tasks, and require considerable time and e↵ort. Vetting the results of the model, and

convincing ones self and others that what works in the simulation will work in reality, are

also di�cult tasks.

In the end, we have fallen short of our lofty goal of implementing control rules that were

learned from o✏ine optimization results - but given the di�culty we faced in getting even

the simplest setpoint changes made, that goal was clearly unreachable. We are confident

that the controls changes that have been made have led to some energy savings in the RSF:

additional free cooling from leaving windows open at cooler temperatures, and fan savings

from reducing airflow through VAV terminal boxes.

Figure 10.1 below shows the status of the three VAV terminal boxes before and after

the controls change. Note the immediate drop in airflow after the controls change. Generally

speaking, these VAV terminal boxes operate at their minimum values at all times, unless

a large number of occupants are breathing near the CO2 sensor, in which case the VAV

terminal box opens to allow more fresh air in to drive CO2 values down. It remains to be

seen whether the new minimum value is still higher than necessary, or if it has been reduced

to a point that the VAV terminal boxes actually open and close in response to higher and

lower occupancy levels.

Figure 10.2 shows the behavior of the automatic windows after the controls changes
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Figure 10.1: Airflow and CO2 concentration for three VAV terminal boxes in the RSF. Note
that the data collection system was down for roughly one month from Sep 17 - Oct 14, and
blank data has been omitted.
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were implemented. In this case, the controls were changed for RSF1 (wings B and C), but not

for RSF2 (wing A), so while the new control sequence for B and C wing allowed windows

to stay open until the outdoor air temperature dropped to 65�F, the old setpoint forced

windows to close when the outdoor air temperature dropped to 68�F.

Figure 10.3 shows three operational parameters for the air handling unit (AHU) which

serves the three VAV terminal boxes that now have lower airflow rates. The combined flow

rate through the three VAV terminal boxes accounted for 22% of the total airflow through the

main AHU prior to the reduced flow rate setpoints. The total reduction in flow is equivalent

to 8% of the total flow through the main AHU, and we expect to see this reduction in the

average flow rate during occupied hours, but there is no clear reduction evident in the figure.

Another look at the pre- and post-implementation data from the air handling unit in

Figure 10.4 shows that there is not a significant change at the AHU, in spite of the 8%

decrease in air flow rate.
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Chapter 11

Summary, Conclusions, and Future Work

The work presented here was motivated by the need to reduce energy consumption

in commercial buildings. To address this need, we focused on mixed mode buildings as

a promising means for reducing building energy demand. Recognizing that MM buildings

are challenging to control and that occupant actions can significantly impact MM building

performance, we built on existing work to investigate opportunities for improving MM control

strategies while accounting for the actions of building occupants.

11.1 Summary

From a review of relevant literature, we learned that occupant behavior modeling is

a field of growing interest, and that when models of occupant behavior are implemented

in building simulations, the impacts on building performance vary significantly, providing

valuable information on the robustness of a building to the actions of occupants. We also

learned that uncertainty in building simulations is typically accounted for by simplifying the

uncertain parameters to an archetypal probability distribution of possible values.

The field of model predictive control in building systems is also growing to maturity,

with numerous examples of simulation studies and a handful of physical implementations

occurring in the last decade. The main trends in model predictive control are to employ

simplified models for real-time implementation, or complex models for simulation studies,

such as those presented in this work.
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In the first of four simulation studies presented in this work, the impact of occupant

behavior on the performance of a prototypical MM building is explored. The results show

that occupant use of windows has the largest impact on HVAC energy consumption, but that

comfort is minimally impacted since the HVAC system operates independently of occupant

window position. A key finding from this study is that the impact of occupant behavior

is not constant relative to changes in automatic building controls. In other words, when

one changes the automatic controls in a building, the impact of occupant behavior will also

change.

In Chapters 7 and 8, bottom-up and top-down approaches are employed to find how

the natural ventilation control logic of the RSF building could be improved. The bottom-

up approach showed that incorporating a window-HVAC interlock system was the surest

means of capturing energy savings from natural ventilation. Since the ventilation system

currently operates independently of the RSF’s building-controlled windows, fans continue

to run even when natural ventilation is in operation; savings should be easily attainable by

enabling fans to ramp down or turn o↵ when natural ventilation is in e↵ect. Without an

interlock system, adjustments of a few key setpoint values showed potential for roughly 5%

HVAC energy savings on an annual basis. If, instead of annual setpoint values, monthly

values are optimized, savings estimates increase to roughly 7.5%, and if improved setpoints

are combined with an interlock system, the savings increase to 15%. Noting that these

estimates are for a building that is already operating extremely e�ciently, it stands to

reason that savings might be greater for more typical buildings.

Results of the top-down approach provide insight into the di↵erences between stochas-

tic and deterministic MPC through an optimization study of the RSF automatic window

controls. Deterministic results tend to over-estimate the savings potential of MPC, and only

provide a point estimate of savings. Stochastic results provide a range of savings estimates,

and a sequence of control actions that is more robust to the impact of occupant behavior

than default controls.
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In an attempt to determine the transferability of extracted control rules across di↵erent

seasons and climates, Chapter 9 uses results of multiple o✏ine MPC investigations to show

that rules tend to be location and time specific, and are not transferable in general. The

first conclusion is that rules extracted from single-month MPC results are very specific to

each month, however rules extracted from data for single months that bridge the cooling

and swing seasons (June and September) tend to perform better across seasons than rules

extracted from data from the heart of either season. A rule trained on data combined from

seven individual one-month results does, on average, perform better than any rule trained

on data from a single month alone, when both comfort and HVAC energy consumption are

considered.

Results of the cross-climate rule extraction study showed results similar to the cross-

season study; rules trained on data from one location typically do not perform well when

tested in other locations. Just as certain one-month datasets yielded control rules that were

somewhat transferable, data from MPC runs for certain locations lead to control rules that

do perform well in multiple other locations.

11.2 Pragmatism

Practically speaking, what can this research bring to the real world? Consider that

the largest barriers to completing this project were in modeling and computing. Modeling

occupant behavior, modeling the buildings, and integrating the models together are tedious,

di�cult, time consuming tasks. The MPC environment was also a large investment in time,

but really only needs to be done once, and can be used with any number of buildings. Each

building, however, will need its own individual model, and it remains to be seen whether

occupant behavior models are truly applicable to multiple di↵erent buildings, with di↵erent

occupants, in di↵erent places.

With modeling tools improving, and new automated modeling techniques entering the

market, the cost of creating detailed building energy models will fall, and one of the major
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hurdles will diminish in size. Computing costs are also coming down with the advent of

widespread and cheaply available cloud computing. With those two major obstacles either

gone or considerably smaller, work like the research presented here will be much easier to

conduct, and controls optimizations could become a routine part of any building design or

retrofit process.

Now consider that the cost of energy is constantly climbing, and that weather forecasts

are always improving. The former will make the incentive to save energy grow, and the latter

will make it easier to plan ahead for future weather and its impact on building performance.

Current day-ahead weather forecasts are highly reliable, and given that the dynamics of most

buildings only matter on a time scale of hours to a day or two at most, this amount of future

information is adequate for most buildings to plan ahead and schedule operation to combat

the weather.

All of this is to say that predictive control is coming to buildings. The real question then

becomes: what is our objective, and how do we properly ask our control system to achieve

that objective? Throughout this work two objective functions were used to guide optimizers

in adjusting building controls in order to save energy and satisfy comfort requirements.

Current control systems generally only work towards achieving a single setpoint, but in the

future there will be controls designed to maintain indoor environmental quality while limiting

energy consumption, or limiting peak demand, or limiting equipment cycling, or some other

goal. In many cases, the objectives of a control system may be conflicting, so finding a

proper method for checking and balancing multiple objectives is key.

With smartphones in most every person’s pocket these days, it is feasible to know

where every person (with a smartphone) is at all times, which could enable building systems

to anticipate the arrival of occupants, and know exactly where they are at all times. The

challenges in this scenario are in implementation and security, but the benefits of a well

conditioned building, and a building that is conditioned only when needed may well justify

the investment in figuring out how to securely implement such a system.
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Occupant Behavior

In Chapter 6, we showed through a simulation study that it is impossible to know a

priori what the impact of occupant behavior will be on building performance. We can predict

with some accuracy what the impacts will be, but not without an extensive simulation study,

which comes after all of the model development and integration work. Without the aid of

such a study, what is the best way to account for occupant behavior? Bring occupants into

the conversation. Educate occupants on what they should and should not do, tell them what

will work and will not work in terms of adjusting their environment, and why. If a building is

designed to work with occupants, e.g. through manual windows and night ventilation, then

it is critical that occupants know when and why they should open and close windows. This

knowledge could come from some rules of thumb that are passed on to occupants through

organized instruction, or through a real-time notification system, as in the RSF building.

In the RSF Building, occupants have access to a reporting system, through which

they can log their comfort, discomfort, or comments about events and conditions in the

building, and through which they receive instructions on when it is a good idea to open or

close windows. The ability to quickly and easily log their discomfort empowers occupants,

giving them a stronger sense of ownership of and connection to their space, while at the

same time alerting facilities management to potential faults in the HVAC system, or in the

building design. The ability to ask occupants to close and open windows on command can

also eliminate a great deal of uncertainty around when and why they might do so.

We have to be careful though, not to go too far in telling occupants exactly what to do

to change their environment. A great deal of occupant satisfaction comes from being able

to make adjustments according to one’s own internal comfort thresholds and preferences.

Indeed, since there is no one-size-fits-all temperature, airflow, or lighting level, we can prob-

ably come much closer to optimal by getting close on a large-scale, and allowing occupants

to adjust the last bit of lighting (task light), airflow (individual di↵user), or temperature

(local thermostat).
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Bottom Up

The bottom-up method demonstrated in Chapter 7 is very straightforward in both

designing a study and in analyzing results. Such simulations studies should be a part of

every building design and retrofit process, assuming a building energy model already exists.

Existing design work generally involves a limited simulation study that might investigate

variations on window-to-wall ratio, insulation levels, glazing types, di↵erent HVAC systems,

and other physical properties. The construction and components in a building are only a part

of the whole, however, and it is proper operation of these systems that will lead to consistent

and more accurate predictions of performance. Controls are often overlooked in the design

of a building, but can and do play a very important role in its day to day performance, this

is especially true for newer, more complex, high performance buildings that often contain a

multitude of systems that have to work in concert to work well.

Top Down

The top-down method shown in Chapters 8 and 9, is considerably more involved, and

relies on a broad set of knowledge including building physics, modeling, controls, optimiza-

tion, statistical modeling, and an ability to work with a considerable amount of data. While

results for the RSF building showed minimal potential improvements, the fact that results

were positive at all for such an e�cient building lends some credibility to the method. In

buildings with complex, nonlinear, interacting systems, such methods may go a long way to-

wards finding simple, e↵ective control strategies, and can certainly shed light on the potential

upper bound for a system’s performance.

One major warning regarding MPC and rule extraction for researchers and practitioners

alike is to carefully consider the objective function. Every decision the optimizer makes is

guided by the objective function it is given, and if there is some way to exploit a flaw in the

building model to improve the value of the objective function, the optimizer will find it, and

exploit it. For example if heat is not included in the objective function, the optimizer can

find massive cooling savings from natural cooling, but spend massive amounts on re-heating
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cool air as it enters the building.

Recommendations

As a building designer, what might one do to mitigate the impact of occupant behavior?

Limit an occupant’s potential to impact building performance by constraining the size of any

system they can adjust. If there is only one light switch for an entire wing of a building,

and a single occupant is working late, he or she will have to turn on the lights for the entire

wing. If, however, the same occupant has a task light or a switch controlling a smaller area

of overhead lights, the impact of that occupant working late and keeping the lights on will be

smaller. The same logic works for a thermostat, or ventilation system; localized control will

give each occupant the ability to impact a smaller portion of the building, without having a

large impact on the whole. Give occupants what they need, and not more than they need.

The only other major recommendation is to implement a reset system, so that if and when

occupants change a system and leave it in an undesirable setting (e.g. window left open on a

hot day, blind left down even though outdoor lighting is good), it can be reset to a desirable

setting. This could be windows that close automatically at certain times, or thermostats

that reset at a reasonable interval.

Finally, ensure that systems operate as intended. If a system is designed to save energy

by turning o↵ at night, take measures to ensure that it does in fact turn o↵ at night. Take the

RSF building as an example again, it was designed to save cooling energy using night cooling

from natural ventilation - but does not, because the automatic windows are not allowed to

open when it is cool outdoors. Additionally, the natural ventilation system is intended to

o↵set mechanical ventilation and save energy by turning fans down - but does not, because

the mechanical ventilation system operates independently of the natural ventilation.

11.3 Major Contributions

Recall that the main goal of this project was to develop control strategies for conserv-

ing energy in a mixed mode building while respecting occupant comfort and accounting for
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occupant behavior. The chosen building for testing, the RSF building, has set the bar for

e�cient design, construction, and operation of a large o�ce building, and as such made the

goal of the project that much harder to achieve. The RSF is and was already operating

very e�ciently, and the massive radiant conditioning systems in the building are not very

susceptible to occupants opening manual windows, which was the primary occupant behav-

ior considered. Thus, results of the many simulation and optimization studies show only

minor potential improvements in building performance, however several important lessons

and techniques were learned along the way.

In the investigation of occupant behavior on a prototypical MM building in Chapter

6, we learned that the impact of occupant behavior changes whenever the operation of the

building systems change. That is to say, there is a two-way interaction between building

systems and manually operable systems which is di�cult (if not impossible) to determine a

priori without a large simulation study. This is a new finding, and should be considered in

future simulation or optimization studies where occupant behavior plays a large role.

Most simulation studies that include stochastic e↵ects use predefined distributions

of each stochastic variable, and use guided sampling techniques to e�ciently compute the

impact of stochastic disturbances on the system being simulated. In this work we used

unadulterated and unsimplified stochastic models in a Monte Carlo analysis to learn what

the true distribution of results is. The inclusion of occupant behavior models and MC

sampling within a building controls optimization problem was tried for the first time in

this work. The augmentation of the MPC software to deal with stochastic models and MC

sampling, as well as the methodology for treating inputs and outputs during each step of the

simulation and optimization process are both contributions that researchers can leverage in

future work. The chapter on Control Approaches (Chapter 4 can serve as a how-to guide for

future researchers.

Finally, the large simulation, optimization, and rule extraction studies presented in

Chapter 9, have shown that extracted control rules for buildings are not transferable, as was
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hoped. The good news for practitioners is that every building and every climate will require

unique control logic, there is no silver-bullet control strategy that will work in all situations.

11.4 Conclusions

The major insights gleaned from the presented work focused on mixed mode buildings,

occupant behavior, model predictive control, and the worlds largest net-zero energy building

are as follows. First, the impact of occupant behavior on mixed mode buildings can be

significant, as the literature shows, and as the global building stock trends towards more

e�cient designs that include natural ventilation and manually operable systems, the net

impact of occupant behavior in buildings will grow. In studies focused on the RSF building,

the impact of occupant behavior is less significant since the RSF is designed with systems

to operate independently of occupant interaction. Other buildings, i.e. those that rely

on occupant window use for adequate ventilation or for night time cooling will be more

susceptible to occupant behavior.

Accounting for occupant behavior via the Monte Carlo simulation strategy employed

in this work is certainly one of the most accurate methods, but requires considerable work

on the front end in implementation and on the back end for analysis. For strategies like

this to gain traction on any scale, the barriers to implementation and use of behavioral

models need to be removed. The means to easily implement occupant behavior models into

building energy simulation, and for easily analyzing the results of multiple simulations are

currently unavailable. Additionally, each model of occupant behavior is at least partially

biased towards the pool of occupants or buildings that were used to develop the model,

and a standard procedure for adapting each model to a given building or climate is needed.

Fortunately, the recently founded IEA Annex 66 project1 will begin work in exactly these

topics starting in November, 2014.

Until mixed mode buildings are more common and design paradigms are established,

1 http://www.annex66.org/
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each MM building will continue to feature its own unique control strategy. While the methods

applied in this research showed promise for improving upon conventional natural ventilation

control heuristics, they relied upon a detailed and accurate energy model of the building

and considerable coding to set up and analyze the results of controls studies. For the RSF

building, the added work involved in the top-down approach is not justified, since the building

is already operating very e�ciently. The bottom-up method did, however, identify several

opportunities for savings.

In the end, the bottom-up method showed a potential 7% improvement in performance

for the RSF building, while the top-down method showed a potential 10% performance

improvement by the optimizer, but no savings were possible with extracted rules. In the end

this comes from two sources; the lack of savings from rule extraction is partially an artifact

of the limited opportunity for improvement in the RSF building, and partially due to the

disconnect between statistical models and physical models. Plenty of extracted rules were

found that performed well in a statistical sense compared to their own training data, but

performed poorly in closed-loop simulations.

The field of rule extraction is still new in the buildings industry, and there is plenty

of room for improvement and testing of di↵erent rule extraction methods. The concept of

converting state information to state-change information for extracting control rules was new

in this work, and was shown to improve the performance of extracted rules in closed-loop

simulations, but consistent performance in closed-loop simulations was beyond our reach.

This leaves the door open for a more comprehensive investigation of how the rule extraction

process can be changed to further improve closed-loop performance.

11.5 Future Work

Unanswered Questions A great deal of time and e↵ort was expended during this

project to work with a single building, the RSF, so most of the results can be presented

with a footnote that reads “these results are specific to the RSF”. It would be interesting
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to apply the methodology developed throughout this work to a broad range of buildings,

including not just mixed-mode buildings and those with manually operable systems, but

also to conventional buildings with conventional controls to see if they can be improved

upon, and if so, how. Another obvious next-step is to try the methodology on a building

that truly needs significant improvement, to see how much more the top down approach can

improve performance than the bottom up (if at all).

It would also be interesting to apply the rule extraction techniques to di↵erent control

problems for di↵erent buildings. How much data does one need for rule extraction to work

properly, what are the best inputs to provide to the CART (or other) machine learning al-

gorithm? What are the best set of CART growth and pruning parameters? In this work we

followed rules of thumb and used default parameters for guiding the CART algorithm, but

there are numerous knobs one can turn to get di↵erent results from the CART algorithm.

In addition to digging deep into the CART algorithm to see how it could be tuned, another

goal is to investigate a set of rule extraction techniques, including random forests, adap-

tive boosting, and others, to see what machine learning algorithms worked best in building

controls.

Occupant Behavior Model Comparison In the work that was restricted to in-

vestigating the impact of occupant behavior, only four di↵erent models were considered, one

each for lighting, shading, windows, and occupancy. The literature lacks any comprehen-

sive comparison of numerous di↵erent models, though several models exist for predicting

occupancy, and for occupant use of windows. While verbose comparisons exist, there is no

simulation study that would compare the models on even terms, with the same building

model, for example.

Cost Functions A crucial part of every MPC investigation that can not be under-

scored enough is the formulation of the cost function. In this work we considered energy

consumption and occupant comfort, as defined by the Fanger PMV/PPD model. In many

MPC in buildings studies, comfort is considered by establishing limits on indoor air tem-
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perature, and the optimizer is asked to keep temperatures within the limits. In our work,

we asked the optimizer to reduce energy consumption, and improve comfort, but in reality

there will always be tradeo↵s, and establishing a sound method for fairly trading energy and

comfort could change the cost function, which could in turn change the optimization results

considerably. For future work, a comparison of the cost functions used in current MPC in

buildings investigations, and an attempt to establish what works best are needed. Currently

every MPC investigation uses its own cost function, just as every MM building uses its own

new set of controls.

MPC or Rule Extraction? Given the heavy computational burden and scientific

overhead in the top-down approach, including rule extraction, one might ask: why bother?

Why not just embed a building’s controller with the MPC algorithm and control it directly?

The answer is, and will continue to be, a lack of faith from the controls contractors and

building operators that care for our buildings every day. The HVAC industry is slow to adapt

to change and to adopt new technologies, and will continue to reject the black-box that is

an MPC controller for years to come. Rule extraction provides a compromise between next-

generation control and current control practice. Control rules that are readable, consistent,

and transparent. Even to an expert an MPC controller may appear to be misbehaving at

times due to some nuance of the objective function or the forecasted model that a casual

observer cannot see. In the end, all control strategies are born out of experience and testing;

in the case of rule extraction from optimal data sets, the control strategies are the child of

an optimizer’s testing and experience with a model.
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