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Energy foundations (or geothermal foundations) are becoming more popular as an energy-

saving and environmentally-friendly technology. By fully utilizing the steady ground temperature

and the thermal properties of concrete, buildings can be heated and cooled through energy foun-

dations with heat pumps at very low cost. Although some observations have been obtained from

full-scale field tests and centrifuge-scale tests, there are still issues that are not well understood

with respect to the complex interactions among temperature change, induced effective stress, and

pore fluid flow in partially saturated soils.

In order to investigate soil-structure interaction between energy foundations and partially

saturated soil under non-isothermal condition, the thesis develops a fully coupled thermo-poro-

mechanical (TPM) finite element (FE) model with both nonlinear elastic, and temperature- and

suction-dependent elasto-plastic solid skeleton constitutive models implemented. Based on the mix-

ture theory of porous media and fundamental laws of continuum mechanics, governing equations

are formulated to account for the coupled processes involving the mechanical response, multiphase

pore fluid flow, and heat transfer. Constitutive relations consist of the effective stress concept,

Fourier’s law, as well as Darcy’s law and Fick’s law for pore liquid and gas flow. The elasto-plastic

constitutive model for the soil solid skeleton is based on a critical state soil mechanics framework.

The constitutive parameters are mostly fitted with experimental data. The TPM model is formu-

lated under small strain and axisymmetric condition, and implemented within the finite element

method (FEM). We then simulate a series of energy foundation centrifuge experiments conducted

at the University of Colorado, Boulder. Good agreement is obtained between the experimental

observations and modeling results.
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Another novelty and challenge of the thesis is to develop a double-noded zero-thickness TPM

cohesive interface element (CIE) model with elastoplasticity for fractured geomaterials under sat-

urated or partially saturated condition. The advantage of TPM CIE is to take account of various

jumps within the fracture with respect to tangential and normal displacements, pore liquid and gas

pressure, as well as temperature. Both pre-existing fracture and developing fracture can be ana-

lyzed by choosing appropriate constitutive models. With CIE implemented at the soil-foundation

interface, we are able to capture the plastic failure process of energy foundations due to the loss

of side shear resistance. We can also apply the TPM CIE to better understand the generation

of fractures involving coupled processes in other applications involving mudstone/shale, such as

hydraulic fracturing, and reservoir storage of CO2 or nuclear waste.
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Chapter 1

Introduction

1.1 Motivation

Energy foundations, which involve heat exchange loops attached to the reinforcing cage within

a drifted-shuft, are a fast-growing geothermal heat-exchange system. With adequate design and in-

stallation, energy foundations can fulfill not only the geotechnical but also the thermal requirements

of buildings without relying solely on conventional heating and cooling systems; hence, energy con-

sumption can be reduced, as well as carbon dioxide emissions (Preene and Powrie, 2009). Typically,

heat carrier fluid is pumped through heat exchange pipes to exchange energy between a building

and energy foundations. In summer, the ground operates as a heat sink by storing thermal en-

ergy, meanwhile, the infrastructure is cooled. While in winter, the energy is extracted for heating

purposes, thus making the ground act as a heat source (Pahud and Matthey, 2001; Brandl, 2006;

De Moel et al., 2010).

Relevant studies in the past decade have indicated the feasibility of energy foundations both

technologically and economically (Hepbasli, 2002; Hepbasli et al., 2003). By using the good thermal

conductivity and thermal storage capacity of concrete, energy foundations can be applied for heat-

ing and cooling of buildings of any size, as well as road pavements, bridge decks, etc (Brandl, 2006).

Given an investment-return period of 5-10 years, this innovative technology can provide significant

long-term cost savings for heating and cooling, compared with conventional systems. And this

investment-return period may vary depending on various effects including ground strata, geotech-

nical, geothermal and hydrogeological properties, etc.(Doherty et al., 2004; Brandl, 2006; De Moel
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et al., 2010). As an energy-saving and environmentally-friendly technology, energy foundations have

been widely used for both residential and commercial buildings (Hepbasli, 2003; Hamada et al.,

2007; Omer, 2008). A total of 80 countries have been reported to use certain forms of geothermal

energy as of 2000 (Hepbasli, 2003). According to Yari and Javani (2007), the installations of shallow

energy systems have covered 33 countries as of 2007 in North America and Europe, compared to 26

countries as of 2000. Brandl (2006) reports there is an exponential increase of energy foundations

in Austria; the number of energy foundations installed has grown to ≈ 23, 000 as of 2004 since the

beginning of the 1980’s.

Observations of energy foundation performance have been conducted in order to investigate

geotechnical and thermal issues. Hepbasli (2002) reports that heat and moisture flow induced

by the operation of energy foundation systems occurs in the surrounding soil. Rees et al. (2000)

explain that conduction, convection, and latent heat of vaporization and condensation are the main

mechanisms of heat transfer in porous media, however, radiation is usually negligible. Hepbasli

(2002); Hepbasli et al. (2003) explain that the efficiency of heat transfer greatly depends on soil

type, temperature and moisture gradients. Thomas and Rees (2009) report that heat conduction

mainly depends on the degree of saturation of the soil. Brandl (2006) indicates that freezing and

thawing may also transfer significant heat.

Notwithstanding the large amount of research and promising investigations hitherto, a diverse

range of research activity has proved necessary in order to provide thorough guidance on the

design and installation of energy foundation systems. Furthermore, it is nontrivial to adequately

describe the varied and sometimes complex interactions among temperature change, induced stress

and pore fluid flow in partially saturated soils, together with soil-structure interaction (SSI). For

example, concurrent with shrinkage or expansion of foundations might be the loss of soil-foundation

friction; thermally induced stress or deformations of foundations may affect structural performance;

furthermore, thermally-induced fluid flow may occur due to high temperature in the soil close to

foundations, which can cause malfunctions of energy foundation systems. Although the focus

of the research is on modeling thermo-poro-mechanical (TPM) soil-structure interaction (SSI) in
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energy foundation centrifuge experiments, other applications for thermo-poro-mechanical modeling,

including use of a cohesive interface element, include hydraulic fracturing in shale, and storage of

CO2 and nuclear waste with shale cap rock features.

1.2 Background on coupled thermo-poro-mechanical processes

1.2.1 Experimental investigations on TPM responses

Thermal effects on the mechanical behavior of soils have been investigated through a number

of experiments, e.g. temperature dependence of elastic modulus and failure criterion, of soils. Gra-

ham et al. (2001, 2004); Cekerevac and Laloui (2004) stated that there was no significant change of

M (the slope of critical state line in the p′−q plane) with temperature variation, while Hueckel and

Pellegrini (1989); Hueckel and Baldi (1990); Burghignoli et al. (2000) observed a small reduction of

M . Plum and Esrig (1969) observed that heating a cohesive soil increased compressibility when low

mean effective stress was applied; in contrast, cooling the soil changed stress-strain characteristics

and made the soil behave like an over-consolidated soil. Blatz and Graham (2003) tested the influ-

ence of suction on yield stress and shear strength regarding unsaturated highly plastic clay materials.

Uchaipichat and Khalili (2009) performed temperature-controlled soaking, suction-controlled ther-

mal loading and unloading, and temperature-suction-controlled isotropic consolidation tests using

modified traditional triaxial equipments to investigate the thermo-hydro-mechanical behavior of

partially saturated soils under elevated temperature. Experiments by Ghabezloo and Sulem (2009)

indicated that temperature increase in saturated soils under undrained conditions led to a reduction

of the effective mean stress and might cause shear failure or hydraulic fracturing. Many attempts

have been made to explore the thermal effects on the soils with different overconsolidation ratios

(OCRs). (Campanella and Mitchell, 1968; Hueckel and Baldi, 1990; Hueckel and Borsetto, 1990;

Towhata et al., 1993; Cekerevac and Laloui, 2004; Cui et al., 2000). Paaswell (1967); Tidfors and

Sallfors (1989); Cui et al. (2000) observed that volumetric strains due to heating of the soil had a

strong dependence on over-consolidation ratio (OCR). Kuntiwattanakul et al. (1995) investigated
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the effects of high temperature (90 oC) on the undrained shear characteristics of both normally con-

solidated (NC) and overconsolidated (OC) clays, and observed that increasing temperature caused

an increase of the initial secant modulus of both NC and OC clays, but only normally consolidated

clay showed an increase of shear strength under heating.

Research work (Grant and Salehzadeh, 1996; Delage et al., 2000; Romero et al., 2001)has also

been conducted regarding the thermal effects on the hydraulic properties of soils, e.g. permeability,

water retention curve (SWRC), etc. Grant and Salehzadeh (1996) investigate temperature effects

on wetting coefficients, and concluded that wetting coefficients affected the temperature sensitivity

of the capillary pressure function significantly; a general expression that related capillary pressure

and temperature was proposed as follows

pc|θ=θf = pc|θ=θr ×

(
β0 + θf
β0 + θr

)
(1.1)

where pc|θ=θf and pc|θ=θr are the capillary pressures at an observational temperature θf and a

reference temperature θr, respectively; β0 is fitting parameter. Thus, the van Genuchten soil water

retention model was accordingly modified as:

θ(pc, θf ) = θr +
θs − θr

[1 + (apc(θf ))
n]m

(1.2)

where θr is the residual water content, θs is saturated water content, and α
[
cm−1

]
, n and m are

empirical fitting parameters. Romero et al. (2001) studied temperature on water retention and

permeability of partially saturated clays. It was investigated that the total suction tended to de-

crease as temperature increased at constant water content, and this dependence became weaker at

a lower suction (see Figure 1.1). As for the apparent permeability for water phase, the temperature

influence was shown to be more significant under near-saturated conditions, and this effect became

hardly noticeable when the degree of saturation is below 75 % (see Figure 1.2 bottom). In addi-

tion, the experimental data showed that no significant temperature dependence was detected for

relative permeability (Figure 1.3). An extrapolated interpretation for temperature effects on water

permeability under saturated condition was formulated at constant void ratio e and water content
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w as follows (Romero et al., 2001),

kw(e, θ, Tf )

kw(e, θ, Tr)
|e,θ=

ρw(Tf )µw(Tr)

ρw(θr)µw(θ)
≈ 1 + βT (Tf − Tr) (1.3)

where βT is an empirical coefficient that fits relative viscosity data over a temperature range of

22oC ≤ θ ≤ 80oC. Many experimental investigations has been carried out for different types of

soils to estimate the value of βT under saturated condition (Volckaert et al., 1996; Cho et al., 1999)

and unsaturated conditions with low suction (Haridasan and Jensen, 1972; Hopmans and Dane,

1986).

Temperature T (°C)

S
u

ct
io

n
  

S
 (

M
P

a
)

Figure 1.1: Total suction-temperature plots at constant water content (Romero et al., 2001).

Wu et al. (2004) presented an extended constitutive TPM models for partially saturated

soils based on the work by Hueckel and Baldi (1990); Hueckel and Borsetto (1990); Hueckel and

Pellegrini (1989) and Cui et al. (2000), and explored the coupling behavior between suction and

temperature. Tong et al. (2009) and Tong et al. (2012) proposed an effective thermal conductivity

model and a new water retention curve (SWRC) model, which included the effect of porosity and

temperature on suction.

Dumont et al. (2011) introduced capillary stress defined as the summed capillary forces
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Figure 1.2: Hydraulic conductivity (kw) vs.void ratio for different degrees of saturation at 22 oC and 80 oC
(Romero et al., 2001).

divided by the cross-section area of the REV (representative elementary volume) to the effective

stress concept based on microstructural model and modeled the effect of desaturation and thermal

softening phenomenon. Laloui and Cekerevac (2003) present an isotropic thermo-plastic mechanism

of clay based on considerations of the thermal effect on void ratio. Figure 1.4 and Figure 1.5 show

an example of T -pc-θ relationship of a silt soil.
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Figure 1.3: Relative permeability (krw = kw

kws

) versus relative degree of saturation Se at 22 oC and 80 oC
(Romero et al., 2001).
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Figure 1.4: Plot of function Ψ/(∂Ψ/∂T ) vs. absolute volumetric temperature vs. water content for silt.
(Bachmann and van der Ploeg, 2002).
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Figure 1.5: Global fit of the temperature-dependent van Genuchten function for a drying humid sand
(Bachmann and van der Ploeg, 2002).
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1.2.2 Thermo-poro-mechanical model

Porous media theory has a long tradition (de Boer, 2005). Research has been done on poro-

mechanics based on the mixture theory restricted by the volume fraction concept Bear and Bachmat

(1990); Bowen (1980, 1982) Some authors studied porous media from nano or micro scales (Brochard

et al., 2012; Dormieux et al., 2006). Alonso et al. (1990); Toll (1990); Gens and Alonso (1992) have

made great contribution to the development of constitutive models for partially saturated soils under

isothermal condition. From the aspect of numerical modeling, Borja (1991); Borja et al. (1997);

Borja and Tamagnini (1998); Borja (2004a) developed the algorithms of numerically implementing

modified Cam-Clay plasticity model for both saturated and partially saturated soils at small strain

and finite strain. In the last 50 years, coupled thermo-poro-mechanical processes has aroused great

interest in different fields, such as the nuclear waste repository (Tsang et al., 2012; Rutqvist et al.,

2014), carbon dioxide injection and sequestration (Hou et al., 2012; Fang et al., 2013; Soltanzadeh

and Jafari, 2013), geothermal systems (Gelet et al., 2012; Wang et al., 2012; Jiang et al., 2013),

reservoir simulation and borehole stability (Pao et al., 2001; Longuemare et al., 2002; Zhai et al.,

2009; Lee and Ghassemi, 2010). Hassanizadeh and Gray (1980, 1990); Gray and Schrefler (2001);

Schrefler (2002); Coussy (2004) introduced macroscale thermodynamics to describe the multiphase

flow in porous media. Philip and de Vries (1957); de Vries (1958) proposed a model for the movement

of liquid water and water vapor in rigid porous media under the combined gradients of temperature

and moisture content. This model later was modified by Milly (1982); Bear et al. (1991); Thomas

and King (1991), which replaced volumetric moisture content with matric suction as a primary

variable. However, these models all assumed a rigid solid skeleton. Deformation of solid skeleton

was considered to obtain coupled thermo-poro-mechanical model Thomas and He (1995); Schrefler

et al. (1995); Thomas and He (1997); Zhou et al. (1998), and finite element method is mainly

used to solve the initial-boundary-value-problem (IBVP) (Noorishad et al., 1982, 1984; Thomas

and Missoum, 1999; Korsawe et al., 2006). Some research considered elastic constitutive model for

soil (Aboustit et al., 1985a,b; Korsawe et al., 2006); others introduced Coussy (1989); Khalili and
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Loret (2001); Laloui and Cekerevac (2003) considered thermo-plasticity with dependence on suction

and temperature in the finite element element. Aboustit et al. (1985a) presented a thermoelastic

consolidation model with general variational principles and finite element method, and ignored

heat convection and the coupling term between the temperature and pressure. Coussy (1989)

proposed a general theory of thermo-poro-elasto-plasticity for saturated porous materials derived

from thermodynamics of open systems and irreversible processes. Wheeler (1996) proposed an

elasto-plastic model by introducing variation of specific water volume taken into account, which

could predict the specific water volume during wetting and drying, loading and unloading as well as

shearing by only adding two additional suction-dependent soil parameters. It also could predict the

variation of suction during undrained loading. Khalili and Loret (2001) proposed an elasto-plastic

THM model to account for the suction and temperature effects on the yield function based on the

works by Alonso et al. (1990); Hueckel and Baldi (1990). Laloui and Cekerevac (2003) presented

a thermo-plastic model for saturated soil. Lewis et al. (1986); Lewis and Schrefler (1998); Coussy

(2004); de Boer (2005) have proposed finite element models of elastic and elastoplastic thermo-

poro-mechanical model for both saturated and partially saturated porous media. Yang et al.

(1998) proposed an elastoplastic three-dimensional finite element model to analyze the transient

coupled heat and fluid flow as well as the stress and strain of partially saturated soil skeleton.

Lee and Ghassemi (2011) presented the stress-dependent permeability in a three-dimensional THM

finite element model with damage mechanics. Bluhm (2002) and Niessner and Hassanizadeh (2009)

relaxed the assumption of local thermal equilibrium by considering different phase temperatures and

interphase heat transfer, respectively. Schrefler et al. (1995) simulated the soil skeleton deformation,

heat and fluid (water and air) flow in porous media, considering both conduction and convection but

latent heat. Olivella and Gens (2000) discussed the phase change (from water to vapor) and vapor

transport under temperature gradients in partially saturated soils. Research on the multiphase flow

and transport in porous media has been conducted (Spalding, 1980; Miller et al., 1998; Tryggvason

et al., 2001; Shin and Juric, 2002; Blunt et al., 2002), and several simulators have been developed for

the flow and heat analysis in porous media (Pruess, 1991; Olivella et al., 1996; Kolditz et al., 2012).
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Rutqvist et al. (2001) compared four finite element simulators (ROCMAS, THAMES, FRACON

and AQCLAY) with respect to governing equations and constitutive relations. Modaressi and

Laloui (1997); Oka et al. (2004) extended for thermo-viscoplastic model. Thermo-poro-mechanical

model under quasi-static condition have been extended to analyze dynamic problems, such as

seismic triggering and evolution of catastrophic landslides (Vardoulakis, 2002; Sulem et al., 2004;

Rice, 2006; Sulem et al., 2007).

Some research focused on solving the coupled thermo-poro-elastic problems analytically:

Booker and Savvidou (1985) developed an analytical solution for the consolidation around a point

and a spherical heat source in saturated thermoelastic soil. The mechanical contribution to the

energy conservation equation is neglected to uncouple the temperature field from the calculation

of displacement and pressure. Bai and Abousleiman (1997) presented an analytical solution of a

1-D linear, quasi-static elastic, saturated system. Various coupling cases are compared to discover

the influence of each coupling term. For partially saturated porous media, close form solutions

of two-dimensional and three-dimensional transient quasi-static thermo-poro-mechanical problems

are developed (Jabbari and Gatmiri, 2007; Gatmiri et al., 2010; Maghoul et al., 2010). Suction and

temperature effect on soil skeleton deformation and the inverse effects are incorporated.

1.2.2.1 Hydraulic properties of soils

The soil-water characteristic curve (SWCC) for soil is defined as the relationship between

water content and suction of soil. The suction can be either the matric suction (also known as

capillary pressure) that equals s = pg − pw or total suction (i.e. matric suction plus osmotic

suction), where pg and pw are the pore gas and pore water pressures, respectively. At high suction

(greater than about 1500 kPa), it can be assumed that matric suction approximately equals total

suction, according to Fredlund and Xing (1994). A great number of experiments have been done

to obtain the SWCC, which is usually plotted on a logarithmic (base 10) scale. A typical plot

of SWCC for a silty soil (see Figure 1.6) shows the information about the air-entry value or the

bubbling pressure (i.e., the matric suction where air begins to enter the biggest pores in the soil
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upon drying), the residual water content θr and the residual air content. The difference between

the absorption (wetting) and desorption (drying) is the result of hysteresis. The SWCC for soils

with different plasticity (Figure 1.7) shows the air-entry value increases with increasing cohesion of

soil.
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Figure 1.6: Typical soil-water characteristic for a silty soil (Fredlund and Xing, 1994).

Among many empirical equations which have been developed to simulate the soil-water char-

acteristic curve, two most frequently used forms are respectively proposed by Brooks and Corey

(1964) and van Genuchten (1980) as shown in (1.4) and (1.5), respectively.

Θ =
(sae
s

)λ
(1.4)

where Θ = (θ − θr)/(θs − θr), with θs and θr the saturated and residual volumetric water contents

respectively, sae the air-entry value, λ the pore size distribution index, and

Θ =

[
1

1 + (p s)n

]m
(1.5)

where p, n, and m are fitting parameters, and m = 1− 1/n.
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Figure 1.7: Soil-water characteristic curves for a sandy soil, silty soil and clayey soil (Fredlund and Xing,
1994).

The model by Brooks and Corey (1964) has been proved to work well for suction higher than the

air-entry value, while the model by van Genuchten (1980) provides more flexibility. Another valid

form (1.6) was proposed by McKee and Bumb (1987) to deal with conditions in low suction range,

while this relationship would fail in the high suction range.

Θ =
1

1 + e(s−a)/b
(1.6)

where a and b are fitting parameters.

The coefficient of permeability of a partially saturated soil depends on the volumetric water

content nw or the soil suction s. The relative permeability kr is defined as:

kr =
k

ks
(1.7)

where ks is saturated permeability, according to Coussy (2004) it is related to fluid viscosity ηf

and the intrinsic permeability (κ = l2δ(n), l is a geometric length scale associated with the pore

space), which depends on the geometry of the porous media irrespective of the fluid, such that

ks =
κ

ηf
=
l2δ(n)

ηf
(1.8)
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δ(n) =
n3

1− n2
(1.9)

where n is the porosity of soil. (1.9) is the often used Kozeny-Carman’s formula (Coussy, 2004).

Some empirical equations are proposed to estimate the permeability of partially saturated soils.

Based on a large number of experimental data, Brooks and Corey (1964) gave the expression of

relative permeability as,

krw = (Se)
2+3 λ

λ (1.10)

krnw = (1− Se)
2

(
1− S

2+λ
λ

e

)
(1.11)

Se =
Sw − Swr
1− Swr

(1.12)

where krw and krnw are relative permeability of wetting (e.g. water) and non-wetting (e.g. air)

phases respectively, λ is the same as that in (1.4), Se is the effective (or relative) degree of saturation,

and k = ks is used when s < sb. van Genuchten (1980) proposed an expression to relate relative

permeability to suction as follows

krw(Se) =
√
Se

(
1−

(
1− S1/m

e

)m)2
(1.13)

krnw(Se) =
√

1− Se

(
1− S1/m

e

)2m
(1.14)

where Se is the effective (or relative) degree of saturation as defined in (1.12), and m is fitting

parameter as that in (1.5).

1.2.2.2 Effective stress theory of partially saturated soils

For saturated and partially saturated soils, the effective stress principle is necessary to distin-

guish between pore air and water pressures and the solid skeleton constitutive response, involving

elastic or elastoplastic constitutive models. Terzaghi (1936) proposed the expression of effective

stress for saturated soils:

σ′ij = σij + αpw δij (1.15)

where σ′ij and σij are respectively effective stress and total stress, and the sign convention follows

solid mechanics, i.e. positive in tension; pw is pore water pressure, which is positive in compression;
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Figure 1.8: Relative permeability krw and krnw plotted against Sw when varying m from 0.1 to 1 (Coussy,
2004).

The Biot’s coefficient α is introduced to account for the volumetric deformability of the solid

particles as follows (Biot, 1941; Skempton, 1984; Gawin et al., 1996): α = 1 − KT
KS

≤ 1, where KT

and KS denote the bulk moduli of the porous medium and the solid particle, respectively.

For partially saturated soils, it is demonstrated that the capillary effect from the format of

water menisci at the pore air-water and solid interfaces should be incorporated. The capillary forces

are complex in that it is dependent upon soil properties, degree of saturation, matric suction and

the properties of the multiphase fluid interface (air-water surface tension, contact angle) (Lu and

Likos, 2006). The effective stress for partially saturated soil is usually written as (Gawin et al.,

1996)

σ′ij = σij + αp̄δij (1.16)

where α is Biot’s coefficient as defined before, and p̄ is an average pressure of the mixture, and is

shown as follows (Gray and Hassanizadeh, 1991):

p̄ = Sw pw + (1− Sw)Pg (1.17)

Bishop (1959) gives the effective stress formula in the following:

σ′ = σnet + χ s1 (1.18)
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where σnet = σ − pg 1 is the net stress, s = pg − pw is matric suction, pg is pore gas pressure, χ is

the effective stress parameter,related to the degree of saturation Sw of soils. Bishop proposed that

χ equals 1 for saturated soils and 0 for dry soils. Despite experimental validation by Bishop and

Donald (1961), and Bishop and Blight (1963), the validity of Bishop’s effective stress principle for

partially saturated soils has been criticized by many researchers through a series of consolidation

tests. Among these arguments (Kohgo et al., 1993; Bolzon et al., 1996; Loret and Khalili, 2000;

Khalili and Loret, 2001), some researchers investigated the effect of plastic deformation on the

effective stress expression by defining the yield surface as a function of suction. Others pointed

out through experiments that the relationship between χ and Sw is not unique, it also depends

on the soil structure (Coleman, 1962), drying and wetting cycles, and stress history. Khalili and

Khabbaz (1998) presented a plot of χ versus suction ratio (the ratio of matrix suction over the

air entry value). Fredlund and Morgenstern (1977) proposed two independent stresses variables,

σij − pg δij and pg − pw respectively from a macroscopic view and pore scale to express the stress

state in partially saturated soils.

Recently, the relationship between the deviatoric stress and effective mean stress for both

saturated and partially saturated soils has been extensively studied. Data from the triaxial shear

tests (Figure 1.9 and Figure 1.10) show the uniqueness of the critical state line (CSL) for both

saturated and partially saturated soils under different suction values (Maatouk et al., 1995; Cui

and Delage, 1996; Wheeler and Sivakumar, 1995a).

Khalili et al. (2004) analyzed these literature and validated this relationship experimentally,

and also demonstrated the incremental form of effective stress equation used in path-dependent

processes. For saturated soils, the incremental effective stress equals the total counterpart:

δ σ′ij = δ σij − δ pwδij (1.19)

For partially saturated soils,

δ σ′ij = δ σnetij − δ (χ s)δij (1.20)
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Figure 1.9: Evolution of critical state with suction in p′-q plane for Jossigny silt (Cui and Delage, 1996).

Figure 1.10: Evolution of critical state with suction in p′-q plane for kaolin clay (Wheeler and Sivakumar,
1995a).

where χ is defined by Khalili and Khabbaz (1998) as

χ =





(
s
se

)−0.55
if s > se

1 if s ≤ se

(1.21)

where se is the suction value marking the transition between saturated and partially saturated

states. For wetting processes, se is equal to the air expulsion value, while for drying processes,

se is equal to the air entry value, which can be obtained from the soil water characteristic curve

(SWCC) (e.g. figure 1.6).
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For the stress state variables, three possible combinations of stress variables to define the stress

state are as follows: (1) (σii − pw) and (pg − pw) ; (2) (σii − pg) and (pg − pw); (3) (σii − pg)

and (σii − pw), where σii is the total normal stress component, were proposed and verified by

experiments (Fredlund and Morgenstern, 1977). Lately the stress state variable theory has been

modified to add soil properties to the constitutive model of partially saturated soils (Gallipoli et al.,

2003b; Khalili et al., 2008; Kohgo et al., 1993; Tamagnini, 2004; Wheeler et al., 2003) . Wheeler

et al. (2003) argued that Bishop’s stress failed to consider the influence of meniscus water. He

proposed to employ two new stress variables σ∗ij and s
∗ defined as:

σ∗ij = σij − [Swpw + (1− Sw)pg]δij (1.22)

s∗ = ns = n(pg − pw) (1.23)

where σij is the total stress tensor, Sw is degree of saturation, pw and pg are pore water and pore

gas pressure, s is suction, n is porosity. Bishop’s stress tensor can be attained if we replace Sw by

χ. Similar conclusion is made by Houlsby (1997),who suggested to add the porosity n to the stress

variables in the principle of work conjugacy. Wheeler et al. (2003) also presented the simplified

incremental form of input work dW (see (1.24)) of triaxial test as

dW = p∗dεv + qdεs − s∗dSr (1.24)

where q is the deviatoric stress, p∗ is the mean Bishop’s stress, defined by

p∗ = p− Sw pw − (1− Sw) pg (1.25)

The stresses p∗,q and s∗ are chosen to be the three stress variables for triaxial test; εv and εs

are respectively volumetric strain and deviotoric strains. Compared to the traditional variables

which are net stress and suction, the approach of using new stress variables is more complex,

and thus makes the development of corresponding constitutive models more difficult. Lu et al.

(2010) extended the theory of Bishop’s stress, and gave a modified form of effective stress for all

saturations,

σ′ij = (σij − pg)− σsδij (1.26)
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where σs is defined as suction stress, and the closed form solution is attained with SWCC model

by van Genuchten (1980) :

σs =





−(pg − pw) if pg − pw ≤ 0

−
pg−pw

{1+[α(pg−pw)]n}(n−1)/n if pg − pw ≥ 0
(1.27)

Lu and Likos (2006) developed the concept of suction stress characteristic curve (SSCC) to describe

the stress state of partially saturated soil. And this concept is verified experimentally in terms of

Mohr-Coulomb failure and critical state failure.

1.3 Background on soil-structure interaction

1.3.1 Background on interface element models

Cohesive interface elements have been widely used to model nucleation or propagation of

cracks in composite materials (e.g. delamination of fiber-reinforced composite laminates (Balzani

and Wagner, 2008), cross-ply composite laminates (Aymerich et al., 2008, 2009), and polymer ma-

trix composite (Corigliano and Ricci, 2001)), rock failure (e.g. fault slip (Aagaard et al., 2013)),

soil-structure interaction (e.g. soil-wall and soil-pile) (Cai et al., 2000; Hu and Pu, 2004), and

soil-reinforcement analysis (Gens et al., 1989). Desai et al. (1984) proposed a thin-layer interface

element for soil-structure interaction with special constitutive law to model cracks under opening

and shearing modes. Given the same constitutive parameters, the performance of the interface

element can be affected by the thickness of the thin-layer. This effect was discussed by Sharma

and Desai (1992) through an extensive parametric study; certain guidelines were provided to em-

pirically determine the element thickness under various conditions. Different approaches have been

proposed for the constitutive model of discontinuity including penalty method (Papadopoulos and

Taylor, 1992; Xie and Waas, 2006), Lagrange multipliers (Aagaard et al., 2013). Numerical per-

formance of different interface laws (or stress-displacement curves), e.g.bilinear, linear-parabolic,

exponential, and trapezoidal, for debonding problems was studied using pure-mode problems (Al-

fano, 2006); it was reported that the choice of softening curve depended greatly on ratio between
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the interface toughness and the stiffness of the bulk material. In geomechanics, several categories of

finite elements that have been proposed to model the soil-structure interaction, soil-reinforcement

interaction, and rock joints (Goodman et al., 1968; Beer, 1985; Griffiths, 1985; Pande and Sharma,

1979; Gens et al., 1989). Some examples are: Gens et al. (1989) used zero-thickness solid inter-

face elements to analyze the soil-reinforcement interaction in a pull-out test; softening behavior of

the interface was observed. Carol et al. (1997) proposed a general normal/shear cracking model

for quasi-brittle materials, which was used for discrete crack analysis. Katona (1983) introduced

a contact-friction interface element to simulate the frictional slippage, separation and re-bonding

between two bodies along the interface and the subsequent deformation due to an arbitrary static

loading. Zong-Ze et al. (1995) explored the constitutive law using a direct shear test and proposed

an interface element model with small thickness. Day and Potts (1994) numerically investigated

the effects of stiffness matrix and stress gradients on the stability of zero-thickness interface ele-

ments in practical applications. Some research work related to mesh free method (Dolbow and

Belytschko, 1999; Sukumar and Belytschko, 2000; Wells and Sluys, 2001; Remmers et al., 2003)

have been developed based on partition-of-unity property of finite element shape functions Melenk

and Babuška (1996). The key feature is to capture the crack initiation/propagation in an arbitrary

direction independent of mesh structure. Therefore, mesh bias can be avoided and remeshing is

not necessary during the crack propagation.

1.3.2 Multiphase flow and heat transfer in fractured porous media

Fluid flow in saturated fracture has been studied by many researchers. Fractures saturated

with liquid in geomaterials act as main flow paths. Noorishad et al. (1982) studied the coupled

stress and fluid flow in a fracture-closing problem due to fluid withdraw in a saturated fractured

medium. Ge (1997) proposed a generalized equation to predict fluid flow behavior in a saturated

fracture with nonparallel and nonsmooth geometry surfaces under steady state conditions. Segura

and Carol (2004) presented a double-noded zero-thickness flow interface model to account for both

longitudinal and transversal fluid flows in a single discontinuity. The model was further extended
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to a coupled hydro-mechanical interface model for geomaterials with existing or developing frac-

tures by Segura and Carol (2007a,b, 2010). In contrast to saturated fractures, multiphase flow and

transport processes in partially saturated fractures are theoretically more complex and practically

more significant. For partially saturated fractures with two phases (gas and liquid) coexisting, and

the presence of one phase produces various degrees of resistance to the flow of the other phase,

depending on phase saturation. With the flow paths distorted, the fractures may act as barriers

for the phase under low saturation. Several mathematical models have been proposed to describe

the multiphase flow in fractured porous media under partially saturated condition (Therrien and

Sudicky, 1996; Pruess and Tsang, 1990; Persoff and Pruess, 1995). Recently, coupling between

flow and mechanical response in cracks of geomaterials has gained increasing attention. A typ-

ical application is related to geomechanical analysis of geological sequestration of CO2, which is

broadly considered as a challenging but promising technology to mitigate climate change. Reservoir

failure or fault slip may happen due to increased fluid pressure during geological sequestration of

CO2, and earthquake may be induced by the fault-instability processes (Rutqvist et al., 2007, 2008,

2010; Cappa and Rutqvist, 2011a,b). Fluid flow and chemical transport in fractured porous me-

dia under non-isothermal conditions have received increasing attention due to various geotechnical

applications. A number of numerical simulations have been reported to predict the more com-

plex interaction between multiphase flow, chemical transport, and heat transfer processes (Pruess

et al., 1990; Xu and Pruess, 2001). Rutqvist et al. (2002) developed a coupled thermo-hydrologic-

mechanical-chemical simulator by combining two existing computer codes TOUGH2 and FLAC3D.

The so-called “coupling” between flow and mechanical responses in the analysis are based on linking

the multiphase flow simulator TOUGH2 (Pruess et al., 1999) and commercial geomechanical code

FLAC3D.

1.4 Interaction of soil-atmosphere surfaces

Evaluation of evaporative fluxes at the soil surface is necessary in many geotechnical applica-

tions when temperature and partially saturated conditions are considered. Research dealing with
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evaporation from the surface of either saturated or partially saturated soil can not avoid the con-

cept of potential evaporation (PE), which is considered to be an upper limit or maximum rate of

evaporation (Wilson et al., 1997). The International Glossary of Hydrology (World Meteorological

Organization gives the definition of potential evaporation as “The quantity of water vapor which

could be emitted by a surface of pure water per unit surface area and unit time under the existing

atmospheric conditions.” Gray (1970) gave the evaporation rate E from a free water surface:

E = f(u)(es − ea) (1.28)

Where, es and ea are, relatively, the saturation vapor pressure of the water surface and the vapor

pressure in the atmosphere above the water surface (kPa), and f(u) is a transmission function

that may be evaluated empirically with the characteristics of the air above the evaporation surface.

The actual rate of evaporation from vegetated and bare soil surface can only be approximated

using the theory of PE under the condition of unlimited supply or availability of water to the soil

surface (Penman, 1948). However, the prediction by traditional methods may overestimate the

evaporation rate for partially saturated soil surfaces (Granger, 1989). For a few decades, many

researchers have been investigating how to measure or compute the actual evaporation (AE) rate

for partially saturated soils. Most of them attempted to find a relationship between PE and AE

(Gray, 1970; Holmes, 1961). A few empirical methods have been developed due to the difficulties

in evaluating the soil properties that determine evaporation from partially saturated soil surfaces

(Hillel, 1980; Yanful et al., 1993). Some efforts have been made to define certain functions of

evaporation with dependent variables, e.g., humidity and water content of near surface soil (Barton,

1979), moisture and temperature gradients (Hammel et al., 1981). Wilson et al. (1994) developed a

coupled soil-atmosphere model for soil evaporation. This model calculated the vapor pressure at the

soil surface with the assistance of coupled heat and mass balance equations for the soil profile under

the surface. Although the comparison was good between the model prediction and the experimental

results with ideal cohesionless uniform sand, this model is not ready for wide application due to the

lack of generality, i.e. for fine silt and cohesive clay. Wilson et al. (1997) carried out experiments
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on three different soil samples to study the evaporative fluxes from nonvegetated soil surfaces. A

unique relationship was discovered between the actual evaporation rate and total suction for all

three soil samples independent of soil texture, drying time and water content. The normalized soil

evaporation was found to be unity approximately until the total suction at the soil surface exceeded

3000kPa.

1.5 Objectives

Numerical modeling of the thermo-poro-mechanical behavior of partially saturated soils is

a significant issue in the analysis of geothermal structures. It can be also applied to solve other

problems such as nuclear waste isolation and CO2 storage. Based on extensive study of existing

models, the author proposes a general coupled finite element model which incorporates different

coupling physics of partially saturated soils, mainly, thermo-poro-mechanics (TPM). A new research

code is written to understand how all the coupled physics fit together in a monolithically-coupled

finite element (FE) framework in which to insert our constitutive model for certain type of soil

(e.g. silt, sand, clay, or some mix). A partially saturated porous media can be treated as three-

phase (solid,liquid water, and gas) or four constituent (solid (s), liquid water (w), water vapor (gv),

and dry air (ga)) mixture. The gas phase is considered to be a combination of dry air and water

vapor. The governing equations are developed according to mixture theory Goodman and Cowin

(1972); Bowen (1980, 1982); de Boer (2005), and satisfy the balance of mass, momentum and energy

conservation (first law of thermodynamics). Heat transfer is considered through conduction and

convection. Thermal effects are taken into account in fluid flow, viscosity and density variation.

Constitutive equations are adopted, such as Fick’s law of diffusion, Newton’s law of viscosity,

Fourier’s law for heat flux, and other relations about relative permeability of wetting and non-

wetting phases. Entropy inequality is used to assure that the second law of thermodynamics is not

violated, and some constitutive relations are obtained following the procedure proposed by Coleman

and Noll (1963). Local continuum thermal equilibrium is assumed throughout, where mixture

temperature θ equals that of the constituents, i.e. θ = θs = θw = θgvθga . The solid and liquid water
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are both assumed to be mechanically incompressible for now (bulk moduli Ks → ∞, Kw → ∞).

They can easily be modified to be compressible if needed. The solid skeleton is compressible.

Solid skeleton displacement vector, pore water pressure, pore gas pressure and temperature are the

primary field variables.

In general, the main research objectives of the thesis include:

(1) Develop thermo-poro-mechanical (TPM) model for saturated and partially saturated soils with

linear and nonlinear elastic constitutive model for solid skeleton;

(2) Extend for temperature- and suction- dependent elastoplastic solid skeleton constitutive model

for partially saturated soils;

(3) Fit the material parameters of soil used in the energy centrifuge experiments;

(4) Develop thermo-poro-mechanical cohesive interface element, and implement it at the soil foun-

dation interface;

(5) Simulate the energy foundation centrifuge tests with partially saturated soil, and compare the

numerical modeling results and centrifuge modeling observations.



Chapter 2

Thermoelasticity

2.1 Introduction

First, let us start from the theory of thermo-elasticity for solid. In this chapter, governing

equations in terms of balance of linear momentum and conservation of energy are derived for solid,

which are supplemented with the second law of thermodynamics. Finite element formulations in

axisymmetric coordinate are presented; several numerical examples regarding thermal expansion

are analyzed.

2.2 Governing equations

2.2.1 Balance of linear momentum

The balance of linear momentum of a solid is given as:

D

Dt

∫

Ω
(ρv)dv =

∫

Ω
ρbdv +

∫

∂Ω
T da (2.1)

where, D(•)/D t is the material time derivative, ρ is the mass density, v the velocity vector, b the

body force vector per unit mass, and T the surface traction vector, which is defined as

T = σ · n (2.2)

where, σ is the symmetric Cauchy stress tensor, and n is the unit normal to the surface ∂Ω.

Assuming constant ρ and small strains,

D

D t

∫

Ω
(ρv)dv =

∫

Ω

D

D t
(ρv)dv =

∫

Ω
ρa dv (2.3)
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where, a is the acceleration vector, which will be ignored for quasi-static condition. Using the

divergence theorem,
∫

∂Ω
Tda =

∫

∂Ω
σ · nda =

∫

Ω
divσdv (2.4)

Ignoring the inertia term, the local form of the balance of linear momentum equation (2.1) is then:

div(σ) + ρb = 0 (2.5)

2.2.2 Balance of energy

2.2.2.1 The first law of thermodynamics

The first law of thermodynamics, (or the energy conservation) states that the rate of internal

energy and kinetic energy equals the rate of the mechanical work and the heat. The first law is

expressed as:

Ė + K̇ = P + Q̇ (2.6)

where, E,K, P andQ are, respectively the internal energy, the kinetic energy, the rate of mechanical

work caused by the external forces (body force and surface traction in this thesis), and the heat

supplied to the system by the surroundings. And they are given by

Ė + K̇ =
D

D t

∫

Ω
(ρe+

1

2
ρv · v)dv

=

∫

Ω

[
D(ρe)

D t
+ ρv · a

]
dv (2.7)

where, e is the internal energy per unit mass, and the inertia term will be ignored later. The

external power is

P =

∫

Ω
ρb · vdv +

∫

∂Ω
T · v da (2.8)
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Using the divergence theorem and (2.2),

∫

∂Ω
T · v da =

∫

∂Ω
(Ti vi) da =

∫

∂Ω
(σij nj vi) da

=

∫

∂Ω
(σji vi nj) da

=

∫

∂Ω
(σ · v) · n da

=

∫

Ω
div(σ · v) dv

=

∫

Ω
div(σ) · v dv +

∫

Ω
σ : grad(v) dv (2.9)

Using (2.9), we get:

P =

∫

Ω




ρb+ divσ︸ ︷︷ ︸

R1


 · v + σ : grad v


 dv (2.10)

The terms R1 = 0 according to (2.5).

grad(v) = u̇i,j =
1

2
(u̇i,j + u̇j,i)
︸ ︷︷ ︸

ε̇

+
1

2
(u̇i,j − u̇j,i)
︸ ︷︷ ︸

˙Ω

= ε̇+ Ω̇ (2.11)

where a comma stands for spatial differentiation (i.e., ui,j = dui/dxj), and u̇ stands for material

time derivative of the displacement (i.e., u̇ = Du/D t). ε̇ is the symmetric strain rate tensor for

small strain theory, and Ω̇ is defined as rotation rate tensor, which is a skew symmetric tensor,

thus

σ : grad v = σ : ε̇+ σ : Ω̇︸ ︷︷ ︸
R2

(2.12)

where R2 = 0. Substitution of (2.12) leads to the internal stress power

P =

∫

Ω
σ : ε̇ dv (2.13)

The rate of heat supply is expressed in the form:

Q̇ =

∫

Ω
ρrdv −

∫

∂Ω
q · nda

=

∫

Ω
ρrdv −

∫

Ω
divqdv

(2.14)

where, r is the heat source or heat supply per unit mass, and q the heat flux vector, which is

positive when entering the body. Let us assume the heat flux vector is defined in terms of the
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temperature gradient by the generalized Fourier’s law:

qi = −Kθ
ijθ,j, Kθ

ij = Kθ
ji (symmetric) (2.15)

where Kθ is referred to as the thermal conductivity matrix, and the components Kθ
ij are constants

throughout Ω for a homogeneous body, but homogeneity can be accounted for through a finite

element mesh where different elements have different material properties. The most common situ-

ation is the isotropic case in which Kθ
ij = Kθδij , where δij is the Kronecker delta (Hughes, 2000).

Substitution of (2.7), (2.13) and (2.14) into (2.6) gives the balance of energy equation in the form:

D(ρe)

D t
= σ : ε̇+ ρr − div q (2.16)

2.2.2.2 The second law of thermodynamics

The conservation laws must be supplemented with the second law of thermodynamics. Ac-

cording to this law, the rate of net entropy production of the system must be non-negative. The

second law of thermodynamics is expressed as:

D

D t

∫

Ω
ρηdv ≥

∫

Ω

ρr

θ
dv −

∫

∂Ω

q · n

θ
da (2.17)

where, η is the entropy per unit mass; θ is the temperature. Considering the divergence theorem,

we get:
∫

∂Ω

q · n

θ
da =

∫

Ω
div
(q
θ

)
dv =

∫

Ω

(
div(q)

θ
−

q · grad θ

θ2

)
dv (2.18)

Using (2.18) and localizing the integral leads to an expression for the second law of thermodynamics:

θ
D(ρη)

D t
≥ ρr − div(q) +

q grad(θ)

θ
(2.19)

To relate the first law and second law of thermodynamics, we consider the Helmholtz free energy

function per unit mass ψ :

ψ = e− η θ (2.20)

Multiplying by ρ and applying the material time derivative on both sides of (2.20) yield:

D(ρψ)

D t
=
D(ρe)

D t
− θ

D(ρη)

D t
− ρη

Dθ

D t
(2.21)
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The Helmholtz free energy per unit mass is hypothesized to be a function of strain and temperature:

ψ = ψ(ε, θ) (2.22)

so that,

D(ρψ)

D t
=
∂(ρψ)

∂ε
:
Dε

D t
+
∂(ρψ)

∂θ
:
Dθ

D t
(2.23)

Using (2.23) and (2.21), we can rewrite (2.16) in the form:

∂(ρψ)

∂ε
:
Dε

Dt
+
∂(ρψ)

∂θ
:
Dθ

Dt
+ θ

D(ρη)

Dt
+ ρη

Dθ

Dt
= σ :

Dε

Dt
+ ρr − div(q) (2.24)

Combining (2.19) and (2.24), and regrouping terms lead to:

[
σ −

∂(ρψ)

∂ε

]
: ε̇−

[
ρη +

∂(ρψ)

∂θ

]
θ̇ −

q · grad(θ)

θ
≥ 0 (2.25)

Following the thermodynamic arguments explored by Coleman and Noll (1963) that the rate pro-

cesses ε̇ and θ̇ can be varied independently, we derive the constitutive equations in the form:

σ =
∂(ρψ)

∂ε
(2.26)

ρη = −
∂(ρψ)

∂θ
(2.27)

such that the second law (2.25) is always satisfied.

Thus, the reduced energy dissipation inequality becomes:

−
q · grad θ

θ
≥ 0 (2.28)

The above inequality states that heat flows spontaneously from high temperature to low tempera-

ture, and therefore justifies the form of the Fourier’s law in (2.15). Substitution of (2.26) and (2.27)

into (2.24) leads to the expression of energy conservation:

θ
D(ρη)

Dt
= ρr − divq (2.29)
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2.2.2.3 The entropy of an elastic solid system

In this part, I follow the procedure in Biot (1956) to identify the relation linking the entropy

and elastic strain; we need to revisit the first law. Ignoring the kinetic energy, the first law is

written in differential form as:

dE = dW + dQ (2.30)

where, dE, dW , dQ respectively, are the infinitesimal amount of internal energy, the infinitesimal

amount of external work done on the system, and the infinitesimal amount of heat supplied to the

system, note that dW = P dt According to (2.13), over dv we have

dW = σ : dε (2.31)

dQ = dE − σ : dε (2.32)

Introducing entropy per unit volume S (same as ρη) and using (2.32):

dS =
dQ

θ
=
dE

θ
−

1

θ
σ : dε (2.33)

The internal energy E(ε, θ) is assumed to depend on total strain ε and temperature θ. (2.33) can

be written as:

dS =
1

θ

∂E

∂θ
dθ +

1

θ

[
∂E

∂ε
− σ

]
: dε (2.34)

According to the second law, dS is required to be an exact differential in θ and ε. This implies:

∂
[
1
θ

(
∂E
∂ε − σ

)]

∂θ
= 0 (2.35)

with the assumption:

∂2E

∂ε∂θ
= 0 (2.36)

we get:

∂E

∂ε
= σ −

∂σ

∂θ
θ (2.37)

For linear isotropic thermoelasticity, the Cauchy stress tensor is written as:

σ = ce : εe (2.38)
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where, ce(θ) is the isotropic elastic modulus tensor, which is defined as:

ceijkl(θ) = λ(θ)δijδkl + 2µ(θ)Iijkl (2.39)

and where, λ(θ) and µ(θ) are the temperature-dependent Lamé parameters, I is the fourth order

identity tensor, and is defined as:

Iijkl =
1

2
(δikδjl + δilδjk) (2.40)

The small strain is defined as:

εij =
1

2
(ui,j + uj,i) (2.41)

In small strain thermo-elasticity, the total strain is additively-decomposed into the mechanical

(elastic for thermoelasticity) strain εe and the thermal strain εθ:

ε = εe + εθ (2.42)

in which,

εθ = αθ(θ − θ0)1 (2.43)

and where, αθ is the linear thermal expansion coefficient; θ − θ0 the increment of temperature; θ0

the reference temperature, with the unit of Kelvin; 1 the second order identity tensor. Substitution

of (2.39), (2.40), (2.42), (2.43) into (2.38) yields:

σ = ce : ε− (3λ+ 2µ)αθ︸ ︷︷ ︸
β

(θ − θ0)1 (2.44)

where, β = (3λ+ 2µ)αθ. From (2.44) we can derive

∂σ

∂θ
= −β1 (2.45)

Substitution of (2.45) into (2.37) yields:

∂E

∂ε
= σ + βθ1 (2.46)

Combining (2.34) and (2.46), we get

dS =
1

θ

∂E

∂θ
dθ + βdεkk (2.47)
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where εkk is the volumetric strain. From (2.32),we have

dQ

dθ
=
∂E

∂θ
= ρC (2.48)

where C is the heat capacity per unit mass. Substitution of (2.48) into (2.47) yields the differential

of entropy:

dS =
ρC

θ
dθ + βdεkk (2.49)

With the definition S = ρη, where η is the entropy per unit mass, (2.29) can be expressed as

ρCθ̇ + βθtr(ε̇)− ρr + divq = 0 (2.50)

2.2.2.4 An alternative way of choosing independent variables for ψ

In this section, I will introduce an alternative way of choosing independent variables for the

Helmholtz free energy per unit mass ψ. Instead of using the total strain ε, we will use the elastic

strain εe as one of two independent variables in the form:

ψ = ψ(εe, θ) (2.51)

such that,

D(ρψ)

Dt
=
∂(ρψ)

∂εe
:
Dεe

Dt
+
∂(ρψ)

∂θ
:
Dθ

Dt
(2.52)

Using (2.42) and (2.43), we can express σ : ε̇ in the form:

σ :
Dε

D t
= σ :

Dεe

D t
+ σ :

Dεθ

D t

= σ :
Dεe

D t
+

[
(θ − θ0)

dαθ

D t
+ αθ

Dθ

D t

]
tr(σ) (2.53)

where, tr(σ) is the trace of the stress tensor, and tr(σ) = σkk. We assume the linear thermal

expansion coefficient does not dependent on temperature, that is,

Dαθ

D t
= 0 (2.54)

thus, we have:

σ :
Dε

D t
= σ :

Dεe

D t
+ αθ

Dθ

D t
tr(σ) (2.55)
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Comparing to (2.24), we will write instead,

∂(ρψ)

∂εe
:
Dεe

Dt
+
∂(ρψ)

∂θ
:
Dθ

Dt
+ θ

D(ρη)

Dt
+ ρη

Dθ

Dt
= σ :

D εe

D t
+ αθ

Dθ

D t
tr(σ) + ρ r − div(q) (2.56)

Combining (2.56) and (2.19) , and regrouping terms lead to:

[
σ −

∂(ρψ)

∂εe

]
:
Dεe

Dt
−

[
ρη +

∂(ρψ)

∂θ
− αθtr(σ)

]
Dθ

Dt
−

q · grad(θ)

θ
≥ 0 (2.57)

Now with the thermodynamics arguments in Coleman and Noll (1963), we will get:

σ =
∂(ρψ)

∂εe
(2.58)

ρη = −
∂(ρψ)

∂θ
+ αθtr(σ) (2.59)

with (2.59), and together with the definition:

−
∂2(ρψ)

∂θ2
=
ρC

θ
(2.60)

we get:

D(ρη)

Dt
= −

∂2(ρψ)

∂θ2
θ̇ + αθtr(σ̇) (2.61)

Substitution of (2.61) into (2.29) provides the general form (with nonlinear constitutive model) of

the balance of energy equation

ρC θ̇ + αθ θ tr(σ̇)− ρ r + div(q) = 0 (2.62)

A combination of (2.39) and (2.40) gives an expression of the elastic modulus tensor in the form:

ceijkl(θ) = λ(θ)δijδkl + µ(θ)(δikδjl + δilδjk) (2.63)

Therefore, (2.44) is written as:

σij = ceijkl εkl − β(θ − θ0)δij

= λδijδklεkl + µ(δikδjl + δilδjk)εkl − β(θ − θ0)δij

= λδijεkk + 2µεij − β(θ − θ0)δij

(2.64)
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and the trace of σ is:

tr(σ) = σmm = (3λ+ 2µ)︸ ︷︷ ︸
3K

εmm − 3β(θ − θ0) (2.65)

thus,

tr(σ̇) = 3Ktr(ε̇)− 3βθ̇ (2.66)

where K is the bulk modulus. Thus, the balance of energy equation with linear constitutive model

is then written as
[
ρC − 9(αθ)2θK

]
θ̇ + β θ tr(ε̇)− ρ r + div(q) = 0 (2.67)

2.3 Finite element analysis

In this section, by consulting Hughes (2000), I develop the weak form based upon the strong

form of the thermoelastic boundary value problem. Galerkin’s method is then adopted to seek the

approximate solution to the weak form. Displacement u and temperature θ are chosen to be the

two primary variables. The governing equations used here are stated as (2.5) and (2.62).

2.3.1 Strong and Weak forms

The strong form of thermoelastic problem involving the governing equations (2.5) and (2.62),

as well as the boundary conditions imposed on the primary variables u and θ is as follows:

(S)





Find u(x, t) ∈ S u, and θ(x, t) ∈ S θ, with t ∈ [0, T ], such that

σij,j + ρbi = 0 ∈ Ω

ui = gui onΓu

σijnj = tσi onΓt

ui(x, 0) = u0i(x) ∈ Ω

ρC θ̇ + αθ θ tr(σ̇)− ρ r + div(q) = 0 ∈ Ω

θ = gθ onΓθ

−niqi = q onΓq

θ(x, 0) = θ0(x) ∈ Ω

(2.68)
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where S u and S θ are the trial solution spaces,

S
u = {ui : Ω× [0, T ] 7→ R

2, ui ∈ H1, ui(t) = gui (t) on Γu, ui(x, 0) = ui0(x)}

S
θ = {θ : Ω× [0, T ] 7→ R, θ ∈ H1, θ(t) = gθ(t) on Γθ, θ(x, 0) = θ0(x)}

(2.69)

where x is the coordinate vector; Ω stands for the domain of the body, Γ stands for the boundary of

the Ω, respectively; Γu and Γt denote respectively the boundary where displacement is prescribed

and the boundary with surface traction; Γθ and Γq denote the boundary where temperature is

prescribed and the boundary with heat flux; u0 and θ0 are the initial displacement vector and

temperature, respectively. H1 is the first Sobolev space (Hughes, 2000).

To define the weak or variational form of the strong form (2.68), we choose the weighting

functions (also called variations) of the primary variables as follows:

w(x, t) = δu(x, t)

ω(x, t) = δθ(x, t)

(2.70)

where wi ∈ V u, ω ∈ V θ, with variation spaces

V
u = {wi : Ω 7→ R

2, wi ∈ H1, wi = 0 onΓu}

V
θ = {ω : Ω 7→ R, ω ∈ H1, ω = 0 onΓθ}

(2.71)

Using the weighting function w(x, t), we get the weak form of balance of linear momentum as

follows:
∫

Ω
wi (σij,j + ρbi) dv = 0 (2.72)

Making use of the chain rule, the derivative of wσ can be written as

(wiσij),j = wi,jσij +wiσij,j (2.73)
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and with the divergence theorem:

∫

Ω
(wiσij),j dv =

∫

Γt

(wiσij)nj da+

∫

Γu

(wiσij)nj da

︸ ︷︷ ︸
=0

=

∫

Γt

(wiσji)njda

=

∫

Γt

wi(σijnj)da

=

∫

Γt

wi t
σ
i da (2.74)

result in
∫

Ω
wi,jσijdv =

∫

Ω
ρwibida+

∫

Γt

wit
σ
i da (2.75)

For linear thermoelasticity specifically, use (2.64) to yield:

wi,jσij = ceijkl εkl − β(θ − θ0)wi,i (2.76)

Therefore (2.75) becomes:

∫

Ω

[
wi,jc

e
ijkl εkl − β(θ − θ0)wi,i

]
dv =

∫

Ω
ρwibida+

∫

Γt

wit
σ
i da (2.77)

With the weighting function ω(x, t), we get the weak form of the balance of energy as follows:

∫

Ω
ω
{[
ρC − 9(αθ)2θK

]
θ̇ + β θ tr(ε̇) + div(q)− ρ r

}
dv = 0 (2.78)

Using the chain rule,

(ωqi),i = ω,i qi + ω qi,i (2.79)

and the divergence theorem again,
∫

Ω
(ωqi),idv =

∫

Γq

(ωqi)ni da+

∫

Γθ

(ωqi)ni da

︸ ︷︷ ︸
=0

= −

∫

Γq

ωq da

(2.80)

The weak form of the balance of energy is:
∫

Ω
ω
[
ρC − 9(αθ)2θK

]
θ̇dv +

∫

Ω
ωβ θ tr(ε̇)dv

+

∫

Ω
ω,iK

θ
ijθ,jdv =

∫

Γq

ωqda+

∫

Ω
ωρ rdv

(2.81)
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where, q is the surface heat flux scalar on boundary Γq, and qi is defined by (2.15).

To summarize, the weak form of the nonlinear thermoelastic problem goes as follows:

(W )





Find ui(x, t) ∈ S
u and θ(x, t) ∈ S

θ such that
∫

Ω
wi,j sigmaij dv =

∫

Ω
ρwibida+

∫

Γt

wit
σ
i da

∫

Ω
ωρCθ̇ dv +

∫

Ω
ωαθ θ tr(σ̇) dv

+

∫

Ω
ω,iK

θ
ijθ,j dv =

∫

Γq

ωqda+

∫

Ω
ωρ r dv

holds ∀wi(x) ∈ V
u and ∀ω(x) ∈ V

θ

S
u = {ui : Ω× [0, T ] 7→ R

2, ui ∈ H1, ui(t) = gui (t) on Γu, ui(x, 0) = ui0(x)}

S
θ = {θ : Ω× [0, T ] 7→ R, θ ∈ H1, θ(t) = gθ(t) on Γθ, θ(x, 0) = θ0(x)}

V
u = {wi : Ω 7→ R

2, wi ∈ H1, wi = 0on Γu}

V
θ = {ω : Ω 7→ R, ω ∈ H1, ω = 0onΓθ}

(2.82)

For linear thermoelastic problem, the second equation in (2.82) will then be written as

∫

Ω

[
wi,jc

e
ijkl εkl − β(θ − θ0)wi,i

]
dv =

∫

Ω
ρwibida+

∫

Γt

wit
σ
i da (2.83)

∫

Ω
ω
[
ρC − 9(αθ)2θK

]
θ̇ dv +

∫

Ω
ωβ θ tr(ε̇) dv

+

∫

Ω
ω,iK

θ
ijθ,j dv =

∫

Γq

ωqda+

∫

Ω
ωρ r dv (2.84)

2.3.2 Axisymmetric formulations

In this section, I refer to Felippa (2010) and Hughes (2000) regarding the axisymmetric

formulation. To simplify the governing equations of axisymmetric problem, we adopt the cylindrical

coordinate system (r, z, θ),

r = the radial coordinate

z = the axial coordinate

θ = the circumferential coordinate

(2.85)

The basic postulation of torsionless axisymmetry is that all functions under consideration are only

functions of r and z, i.e., they are independent of the angle θ. Therefore three-dimensional problems
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are reduced to two-dimensional ones. Another basic assumption of axisymmetry is that uθ = 0

based on the rotational symmetry. Thus the displacement field is defined by two components, which

are functions of r and z:

u(r, z) =



ur(r, z)

uz(r, z)




where, ur is called the radial displacement, and uz is the axial displacement. Due to the assumption

of axisymmetry, we have:

εrθ = εzθ = 0

σrθ = σrθ = 0

(2.86)

The nonvanishing components of stress and strain vectors are:

σ =





σrr

σzz

σrz

σθθ





; ε =





εrr

εzz

2εrz

εθθ





(2.87)

The strain-displacement equations for small strain axisymmetric problem are:

εrr =
∂ur
∂r

, εzz =
∂uz
∂z

, εθθ =
ur
r
, εrz =

1

2

(
∂ur
∂z

+
∂uz
∂r

)
(2.88)

In matrix form:

ε =




∂

∂r
0

0
∂

∂z
1

r
0

∂

∂z

∂

∂r






ur

uz


 (2.89)

2.3.2.1 Dimensionality reduction

The element of volume dv can be expressed as

dv = 2πrda = 2πrdrdz (2.90)
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where da is the element of area in the generating cross section in r− z plane, such that the volume

integral over the volume element Ωe can be expressed as

∫

Ωe

(•)dv = 2π

∫

Ωe

(•)rdrdz = 2π

∫ 1

−1

∫ 1

−1
(•̂) r(ξ)je dξ dη (2.91)

where (•) denotes a function that depends on r; (•̂) is the function estimation in natural coordinate

ξ. je = det(J e), and Je is referred to as Jacobian of coordinate transformation,

Je = dr/dξ, r = [r, z], ξ = [ξ, η]. (2.92)

Similarly, the element of surface dS can be expressed as

dS = 2πrds (2.93)

where ds is an arclength element, and can be expressed as

ds =
√

(dr)2 + (dz)2 (2.94)

Thus, the surface integral over the surface element Se can be expressed as

∫

Se

(•)dS = 2π

∫

Se

(•)rds = 2π

∫ 1

−1
(•̂)r(ξ)

√(
∂r

∂ξ

)2

+

(
∂z

∂ξ

)2

dξ (2.95)

where it is assumed that (•) is evaluated at η = ±1 depending on which element surface Se the

boundary condition acts (traction or heat flux).

2.3.3 Coupled finite element formulation

We adopt Galerkin’s method to obtain solutions to the weak form. S h and V h are introduced

to denote the finite -dimensional approximations to S and V , respectively. “The superscript

refers to the association of S h and V h with a mesh, or discretization, of the domain Ω, which is

parameterized by a characteristic length scale h” (Hughes, 2000). It is assumed that:

uh ∈ (S u)h; (S u)h ⊂ S
u;

wh ∈ (V u)h; (V u)h ⊂ V
u;

θh ∈ (S θ)h; (S θ)h ⊂ S
θ;

ωh ∈ (V θ)h; (V θ)h ⊂ V
θ;

(2.96)
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We assume that all members of (V u)h and (V θ)h vanish, or approximately vanish on Γu and Γθ,

respectively, i.e.,

whi = 0 onΓu, ∀w
h
i (x) ∈ (V u)h

ωh = 0 onΓθ, ∀ω
h(x) ∈ (V θ)h

(2.97)

Ωe

Ωh

uh

θh

1

2

3

4

7

8
9

5

6

Ωe

η

ξ

r

z

Figure 2.1: Discretization into thermoelastic mixed quadrilateral elements .

Figure 2.1 shows the element, i.e. biquadratic in displacement, and bilinear in temperature.

We discretize the domain Ωh into element domains Ωe, 1 ≤ e ≤ nel, see Figure 2.1. For this two

dimensional thermoelastic problem, we introduce the mixed quadrilateral elements, i.e. biquadratic

interpolation in displacement and bilinear interpolation in temperature. Using interpolation func-

tions, we write uh, wh, θh and ωh in natural coordinates as follows:

(1) Displacement u :

uh(ξ, t) =
9∑

a=1

Nu
a (ξ)d

e
a(t) = N e,u · de

=

[
Nu

1 . . . Nu
9

]




de1

...

de9




(2.98)

Nu
a =



Nu
a 0

0 Nu
a


 , dea =



der(a)

dez(a)


 (2.99)

wh(ξ) = N e,u · ce (2.100)
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where, dea and Nu
a , a = 1, 2, ..., 9 are nodal displacement and shape functions for displacement,

respectively. Superscript e denotes element. The components of vector ce are the nodal values of

the weighting function wh.

(2) Temperature θ:

θh(ξ, t) =
4∑

a=1

N θ
a (ξ) θ

e
a(t) = N e,θ · θe

=

[
N θ

1 N θ
2 N θ

3 N θ
4

]




θe1

θe2

θe3

θe4




(2.101)

ωh(ξ, t) = N e,θ ·αe (2.102)

where, θea and N θ
a , a = 1, 2, 3, 4 are nodal temperature and shape functions for temperature, re-

spectively. The components of vector αe are the nodal values of the weighting function ωh.

The gradient of temperature is calculated as,

grad(θh) = θh,i = Be,θ · θe

where,Be,θ =

[
Bθ

1 Bθ
2 Bθ

3 Bθ
4

]

Bθ
a =



∂N θ

a

∂r
∂N θ

a

∂z


 , (a = 1, ..., 4)

(2.103)

(3) Strain: According to (2.89), the total strain is written as

ε = Be,u · de (2.104)

where

Be,u =

[
Bu

1 . . . Bu
9

]

Bu
a =




∂Nu
a

∂r
0

0
∂Nu

a

∂z
Nu
a

r
0

∂Nu
a

∂z

∂Nu
a

∂r




, (a = 1, . . . , 9)

(2.105)
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∇wh(ξ) = Be,u · ce (2.106)

The term ε̇mm in (2.67) is written as:

tr(ε̇) = u̇hm,m =
9∑

a=1

[ (
∂Nu

a

∂r
+
Nu
a

r

)
∂Nu

a

∂z

]


ḋr

ḋz




=

[
Bu

1 . . . Bu
9

]




ḋ
e
1

...

ḋ
e
9



= B̃

e,u
· ḋe

where, B̃
u
a =

[ (
∂Nu

a

∂r
+
Nu
a

r

)
∂Nu

a

∂z

]
, (a = 1, . . . , 9)

(2.107)

The coupled FE equations for this thermoelastic problem are written as:

(1) Balance of linear momentum:

nel

A
e=1

(ce)T





[∫

Ωe

(Be,u)T ·D ·Be,u dv

]

︸ ︷︷ ︸
k

dd
e

·de −

[∫

Ωe

3Kαθ(B̃
e,u

)T ·N e,θ dv

]

︸ ︷︷ ︸
k

dθ
e

·(θe − θe0)

=

∫

Ωe

ρ(N e,u)T b dv

︸ ︷︷ ︸
f

df,ext

e

+

∫

Γe
t

(N e,u)T tσda

︸ ︷︷ ︸
f

dt,ext

e





(2.108)

(2) Balance of energy:

nel

A
e=1

(αe)T





[∫

Ωe

ρC(Ne,θ)T ·Ne,θdv

]

︸ ︷︷ ︸
k

θθ,1
e

·θ̇
e

+

(∫

Ωe

αθskel(N
e,θ)T (N e,θθe) · tr(σ′)dv

)

︸ ︷︷ ︸
f

θd

e

+

[∫

Ωe

Kθ(Be,θ)T ·Be,θ dv

]

︸ ︷︷ ︸
k

θθ,2
e

·θe

=

∫

Ωe

ρ(N e,θ)T rdv

︸ ︷︷ ︸
f

θr,ext

e

+

∫

Γe
q

(N e,θ)T q da

︸ ︷︷ ︸
f

θq,ext

e





(2.109)
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For the linear isotropic elastic problem, we then have

nel

A
e=1

(αe)T





{∫

Ωe

[
ρC − 9K(αθ)2(N e,θ · θe)

]
(N e,θ)T ·Ne,θdv

}

︸ ︷︷ ︸
k

θθ,1
e

·θ̇
e

+

[∫

Ωe

3Kαθ(N e,θ)T (N e,θ · θe)B̃
e,u
dv

]

︸ ︷︷ ︸
k

θd
e

·ḋ
e
+

[∫

Ωe

Kθ(Be,θ)T ·Be,θ dv

]

︸ ︷︷ ︸
k

θθ,2
e

·θe

=

∫

Ωe

ρ(N e,θ)T rdv

︸ ︷︷ ︸
f

θr,ext

e

+

∫

Γe
q

(N e,θ)T q da

︸ ︷︷ ︸
f

θq,ext

e





(2.110)

We can write the coupled FE equations in the form:

nel

A
e=1

(ce)T ·
[
fdd,inte − fdθ,inte = fdf,exte + fdt,exte

]

nel

A
e=1

(αe)T ·
[
kθde · ḋ

e
+ kθθe · θ̇

e
+ fθ,inte = f θ,exte

] (2.111)

in which,

fdd,inte = kdde · de; fdθ,inte = kdθe · (θe − θe0)

fθ,inte = kθθ,2e · θ; fθ,exte = f θr,exte + f θq,exte

(2.112)

After element assembly, we arrive at the coupled FE equations in matrix form:



0 0

Kθd Kθθ




︸ ︷︷ ︸
C(D)

·





ḋ

θ̇





︸ ︷︷ ︸
V

+




F dd,INT − F dθ,INT

F θ,INT




︸ ︷︷ ︸
F

INT
(D)

=




F df,EXT + F dt,EXT

F θ,EXT




︸ ︷︷ ︸
F

EXT
(D)

(2.113)

We evaluate the coupled equations at time tn+1, and introduce difference formulas for Dn+1 and

V n+1, where α is the time integration parameter for the generalized trapezoidal rule (Hughes, 2000)

Dn+1 = Dn +∆tV n+α (2.114)

V n+α = (1− α)V n + αV n+1 (2.115)

so that,

Dn+1 = Dn +∆t(1− α)V n︸ ︷︷ ︸
D̃n+1

+∆tαV n+1 (2.116)
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α method type

0 forward Euler explicit (if C diagonal, which it is not)

1/2 trapezoidal rule implicit

1 backward Euler implicit

Apply the generalized trapezoidal rule to (2.113) to get:

C(Dn+1) · V n+1 + F INT (Dn+1) = FEXT (Dn+1) (2.117)

The Newton-Raphson iteration algorithm will be used to solve for V k+1
n+1 with the current iteration

value V k
n+1 as follows:

R(V k+1
n+1) = C(Dk+1

n+1) · V
k+1
n+1 + F INT (Dk+1

n+1)− FEXT (Dk+1
n+1) = 0

≈ Rk + ∂R
k

∂V
· δV

=⇒ δV = −
(
∂R

k

∂V

)−1

·Rk

V k+1
n+1 = V k

n+1 + δV

Dk+1
n+1 = D̃n+1 + α∆tV k+1

n+1

(2.118)

Consistent tangent used can be written as:

∂R

∂V
=

(
∂C

∂D
·
∂D

∂V

)
· V +C +

∂F INT

∂D
·
∂D

∂V
−
∂FEXT

∂D
·
∂D

∂V

= C +

(
∂C

∂D
· V +

∂F INT

∂D
−
∂FEXT

∂D

)
·
∂D

∂V

(2.119)

where,

∂D

∂V
= α∆t (2.120)

C · V =




0

Kθd · ḋ+Kθθ · θ̇


 (2.121)

∂C

∂D
· V =




0 0
(
∂Kθd

∂d
· ḋ+

∂Kθθ

∂d
· θ̇

) (
∂Kθd

∂θ
· ḋ+

∂Kθθ

∂θ
· θ̇

)


 (2.122)
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∂F INT

∂D
=

[
∂F INT

∂d

∂F INT

∂θ

]

=




(
∂F dd,INT

∂d
−
∂F dθ,INT

∂d

) (
∂F dd,INT

∂θ
−

F dθ,INT

∂θ

)

∂F θ,INT

∂d

∂F θ,INT

∂θ




=




Kdd −Kdθ

0 Kθθ,2




(2.123)

∂FEXT

∂D
=

[
∂FEXT

∂d

∂FEXT

∂θ

]

=




0 0

0 0




(2.124)
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2.4 Numerical examples

2.4.1 Free thermal expansion

First, to test the FE model for thermoelasticity, let us look at a simple example of free

thermal expansion. As Figure 2.2 shows, the bottom of the column is fixed in vertical direction,

and the surface is free to expand. Due to the axisymmetry, the central axis is fixed in the horizontal

direction. The height and radius of the column are 0.3 m and 0.1 m, respectively. The column is

discretized into 10 elements. The initial temperature is uniform 20 oC. The bottom and the side

surface are adiabatic. The temperature is prescribed at the top surface to be 40 oC. The top and

the side surfaces are free of traction. Table 2.1 lists the parameters used in the example.

Table 2.1: Constant parameters used in the FEA of thermo-elastic modeling

Parameter Symbol Value Units

Thermal expansion coefficient αθ 11.7× 10−4 m/(m ·K)
Specific heat capacity C 855 J/(K · kg)
Thermal conductivity Kθ 0.817 W/(m ·K)
Mass density ρ 2000 kg/m3

Lame parameter λ 1.35× 106 Pa
Lame parameter µ 5.4× 106 Pa

Figure 2.3 (a) shows that the temperature becomes uniform after 100 hours. Figure 2.3 (c)

shows that the total strain (can be additively decomposed to the thermal strain and the elastic

strain) arrives at 0.0234 when the temperature becomes uniform eventually. This value is equal to

αθ × (θ − θ0) = 11.7 × 10−4 × 20 = 0.0234. Since the example models the free thermal expansion,

we can also observe from Figure 2.3 (c) that the total strain is equal to the thermal strain, i.e.,

the elastic strain is almost equal to zero. Figure 2.3 (d) illustrates the stress distribution arrives at

zero eventually inside the column when temperature is uniform and thus strain is uniform.



47

10 

9 

8 

7 

6 

5 

4 

3 

Temperature 

Prescribed : 40 ̊ C 

N 1 
N 2 

N 3 

N 4 

Figure 2.2: 10 element mesh for axisymmetric free thermal expansion example
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Figure 2.3: (a) Temperature variation at nodes 2, 3 and 4 (N2, N3, N4 in Figure 2.2). (b) Vertical
displacement at nodes 1 and 3. (c) Variation of total strain and thermal strain at the top Gauss integration
points of elements 1, 5 and 10. (d) Variation of stress at the top Gauss integration points of elements 1, 2,
3, 5, 8, 10.
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2.4.2 Comparison between the fully coupled and the decoupled TE models

The comparative analysis is designed to illustrate the influence of the coupling term. Here

let us call the method we elaborated in Section (2.3.3) the fully coupled TE model. On the other

hand, we ignore the thermal expansion coefficient in the balance of energy equation to obtain

the decoupled TE model, in which we solve the temperature separately, instead of solving the

displacement and the temperature monolithically. We use the same geometry and the mesh as

shown in Figure 2.2, as well as the same material parameters (see Table 2.1) in this example. The

initial and boundary conditions are the same except that the gravity acceleration is applied as the

body force and the vertical traction (tσ = 9× 104Pa) are exerted on the top.

The compared results, as shown in Figure 2.4 (a)-(d) indicate that the coupled model and

decoupled model match each other well. Compared to the fully coupled model, the decoupled

model, which is a simpler method, can also achieve reasonably accurate results for the thermo-

elastic analysis.
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Figure 2.4: Comparison between fully coupled and decoupled thermo-elastic models. (a) Temperature
variation at the bottom nodes of elements 1, 3, 5 and 10. (b) Vertical displacement at the top nodes of
elements 1, 5 and 10. (c) Variation of total strain εzz at the top Gauss integration points of elements 1, 5
and 10. (d) Variation of stress σzz at the top Gauss integration points of elements 1, 5 and 10.
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Chapter 3

Saturated thermoporomechanics

The mixture theory is used to formulate balance equations for porous media Coussy (2004).

Governing equations, including balance of mass, balance of linear momentum and balance of energy

are developed for each constituent. The pore fluid pressure pf , the displacement of solid skeleton

ui and the temperature of the mixture θ are selected as three primary variables.

3.1 Governing equations

3.1.1 Balance of mass

Saturated soil is usually treated as a two-phase mixture, i.e., solid phase (s) and fluid phase

(f) (de Boer, 2005; Coussy, 2004). The volume of the mixture, solid phase and fluid phase are

respectively noted as v, vs, and vf . The corresponding masses are m, ms and mf . And for

α(α = s, f) phase, mα = ραRvα, where ραR is the real mass density of α phase. The partial

mass density of α phase is defined as ρα = nαραR, where nα is the volumetric fraction occupied

by α phase, i.e. nα = vα/v for a homogeneous soil, or nα = dvα/dv for heterogeneous case, and

nf + ns = 1. The density of a soil mixture is ρ = m/v = ρf + ρs. And for saturated soil, the

porosity n = nf .

Recall the material time derivative of a scalar field ψ(x, t) following the α phase motion is

(de Boer, 2005; Coussy, 2004):

Dαψ(χα(Xα, t), t)

Dt
=
∂ψ(x, t)

∂t
+
∂ψ(x, t)

∂x

∂χα
∂t

=
∂ψ

∂t
+ gradψ · vα (3.1)
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where χα denotes the motion of phase α, Xα is reference position of phase α, x is the current

position of all phases smeared together at time t, and vα is the velocity of phase α. These no-

tations imply a finite strain formulation, but we will simply eventually to assume small strain on

the material. Thus the relationship between the material time derivative Dα(•)/Dt and partial

derivative for fluid and solid phases are:

Dfψ(χf(X f , t), t)

Dt
=

∂ψ(x, t)

∂t
+
∂ψ(x, t)

∂x

∂χf

∂t
=
∂ψ

∂t
+ gradψ · vf (3.2)

Dsψ(χs(Xs, t), t)

Dt
=

∂ψ(x, t)

∂t
+
∂ψ(x, t)

∂x

∂χs

∂t
=
∂ψ

∂t
+ gradψ · vs (3.3)

dV

solid

fluid

mixture

dVf

dvF f

F

Figure 3.1: The transformation of material volume.

In Figure (3.1), dVα is the initial material volume of α phase, and dv is the current material

volume of the mixture, such that

dv = JαdVα (3.4)

dvα = nαdv = nαJαdVα (3.5)

where, dvα is the current material volume of α phase. Jα is the Jacobian of deformation of α phase,

and Jα = detF α with F α the deformation gradient of phase α. The material time derivatives of
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the integral over the current volume needs to be converted to be that over initial material volume:

Dα

D t

∫

Ω
(•)dv =

Dα

D t

∫

Ωα
0

(•)JαdVα

=

∫

Ωα
0

Dα

D t
[(•)Jα] dVα

=

∫

Ωα
0

Jα
Dα(•)

Dt
dVα +

∫

Ωα
0

(•)
DαJα
Dt

dVα (3.6)

The material time derivative of Jα is defined as:

Dα

Dt
Jα = Jα divvα (3.7)

where vα is the velocity of α constituent, vα = Dαuα
Dt , and where, uα is the displacement of α

phase. Thus,

Dα

D t

∫

Ω
(•)dv =

∫

Ωα
0

[
Dα(•)

Dt
+ (•)div(vα)

]
JαdVα =

∫

Ω

[
Dα(•)

Dt
+ (•)div(vα)

]
dv (3.8)

The total mass of the α phase in Ω is written as:

mα =

∫

Ωα

ραRdvα =

∫

Ω
ραdv (3.9)

Ignoring sources and sinks and chemical reaction between phases for now, the balance of mass

equation for the α phase is written as:

Dαmα

Dt
=

∫

Ω
ρ̂αdv (3.10)

where ρ̂α is the mass supply rate per volume. For saturated condition, it is assumed that there is

no mass exchange between solid and fluid phases, and no separate source of mass, i.e. ρ̂α = 0.

Substitution of (3.8) and (3.9) into (3.10) provides:

∫

Ω

[
Dαρα

D t
+ (ρα)divvα

]
dv =

∫

Ω
ρ̂αdv (3.11)

Thus the local form of the balance of mass equation for the α phase is:

Dαρα

D t
+ ρα divvα = 0 (3.12)
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Now we write the balance of mass for solid and fluid separately

Dsρs

D t
+ ρs divvs = 0 (3.13)

Dfρf

D t
+ ρf divvf = 0 (3.14)

We would like to express the derivatives solely in terms of the motion of the solid phase for eventual

Lagrangian FEA. A combination of (3.2) and (3.3) yields:

Df (•)

Dt
=
Ds(•)

Dt
+ grad(•) · ṽf (3.15)

where, (•) indicates any variable, ṽf = vf −vs is relative velocity vector of fluid phase with respect

to the solid phase motion. Use of (3.15) in (3.14) allows us to express the balance of mass of fluid

phase in the form:

Dfρf

D t
+ ρf divvf = −div(ρf ṽf ) (3.16)

Combining (3.13) and (3.16), we get the balance of mass equation for the mixture:

Dsρ

Dt
+ ρdivvs = −div(ρf ṽf ) (3.17)

In addition, the densities of solid and fluid constituents are expressed as (Lewis and Schrefler, 1998):

1

ρsR
DsρsR

Dt
=

(
1

Ks

Dsps

Dt
− βθs

Dsθ

Dt

)
(3.18)

1

ρfR
DfρfR

Dt
=

(
1

Kf

Dfpf

Dt
− βθf

Dfθ

Dt

)
(3.19)

where Kα is the bulk modulus, βθα is the volumetric thermal expansion coefficient of α(α = s, f)

constituent, and βθα = 3αθα, where α
θ
α is the linear thermal expansion coefficient of α(α = s, f)

phase. The first terms of the bracket in (3.18) and (3.19) are ignored, owing to the fact that solid

and fluid phases (water for saturated condition) are nearly mechanically incompressible compared

to the skeleton. Thus the densities of solid and fluid are only functions of temperature:

1

ρsR
DsρsR

Dt
= −βθs

Dsθ

Dt
(3.20)

1

ρfR
DfρfR

Dt
= −βθf

Dfθ

Dt
(3.21)
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Using ρα = ραR nα, together with (3.20) and (3.21), we can alternatively write (3.13) and (3.14)

as:

Dsns

D t
+ ns divvs = βθs n

sD
sθ

Dt
(3.22)

Dfnf

D t
+ nf divvf = βθf n

fD
fθ

Dt
(3.23)

Use of (3.15) in (3.23), and together with (3.22), allows us to express the balance of mass for the

mixture, accounting for thermal expansion of the solid and fluid constituents,

divvs + divṽDf −
(
βθsn

s + βθfn
f
) Dsθ

Dt
− βθf ṽ

D
f · gradθ = 0 (3.24)

where ṽDf = nf ṽf is the superficial Darcy velocity.

3.1.2 Balance of linear momentum

The balance of linear momentum for the α (α = s, f) phase is written in global form:

Dα

Dt

∫

Ω
ραvαdv =

∫

Ω

(
ρα bα + ĥ

α
)
dv +

∫

∂Ω
T αda (3.25)

where σα is the partial stress of phase α, σα = nασ ; and the total stress is: σ = σs + σf . bα

is the body force vector per unit mass of α phase, we assume it equals to acceleration of gravity:

bα = b = g, where g is the acceleration vector of gravity. ĥ
α

is internal body force drag on

constituent α caused by the other constituents, and

∑

α=s,f

ĥα = 0 (3.26)

Using (3.8), we rewrite the LHS of (3.25):

Dα

Dt

∫

Ω
ραvαdv =

∫

Ω

[
Dα

Dt
(ραvα) + ραvαdiv(vα)

]
dv

=

∫

Ω

[
vα
Dαρα

Dt
+ ραaα + ραvαdiv(vα)

]
dv

=

∫

Ω
vα

[
Dαρα

Dt
+ ραdiv(vα)

]
dv +

∫

Ω
ραaαdv (3.27)

where, aα is the acceleration of α phase:

aα =
Dαvα

Dt
(3.28)
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Using the balance of mass equation (3.12), and ignoring the inertia term, we obtain:

Dα

Dt

∫

Ω
ραvα = 0 (3.29)

The traction on α constituent is:

T α = σα · n (3.30)

where, σα and n are respectively the partial Cauchy stress tensor and the unit normal at the

surface of α constituent. Using divergence theorem to obtain:

∫

∂Ω
T αda =

∫

Ω
div(σα)dv (3.31)

If we substitute (3.27) and (3.31) into (3.25), and localize the integral, we will obtain:

divσα + ραbα + ĥ
α
= 0 (3.32)

By summing up the individual balance of linear momentum equations for solid and fluid phases

and using (3.26), we have the balance equation for the mixture

divσ + ρb = 0 (3.33)

The balance of angular momentum for non-polar constituents states that the respective partial

stresses (and, in turn, the total stress) are symmetric:

σα = (σα)T (3.34)

3.1.3 Balance of energy

3.1.3.1 The first law of thermodynamics

The first law of thermodynamics (or energy conservation) is written for each constituent

(de Boer, 2005):

Ėα + K̇α = Pα + Q̇α +

∫

Ω
êαdv (3.35)
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where Eα, Kα, P , Qα and êα are respectively the internal energy, the kinetic energy, the rate of

mechanical work rate caused by external forces (i.e. body force and surface forces), the input heat

to α constituent, and the energy supply rate to α constituent caused by all other constituents.

Ėα =
Dα

Dt

∫

Ω
ραeαdv (3.36)

K̇α =
Dα

Dt

∫

Ω

1

2
ραvα · vαdv (3.37)

Pα =

∫

Ω
ραbα · vαdv +

∫

∂Ω
T α · vαda (3.38)

Q̇α =

∫

Ω
ραrαdv −

∫

∂Ω
qα · nαda (3.39)

where, eα is the internal energy per unit mass, T α is the traction on α phase, rα and qα are

respectively heat source per unit mass and heat flux vector at surface of α phase.

Using (3.8) in (3.36) and (3.37) allows us to write:

Ėα + K̇α =

∫

Ω

[
Dα

Dt

(
1

2
ραvα · vα

)
+

1

2
ραvα · vαdivvα

]
dv

+

∫

Ω

[
Dα

Dt
(ραeα) + ραeα divvα

]
dv (3.40)

Using the chain rule, we have

Dα

Dt

(
1

2
ραvα · vα

)
=

1

2
vα · vα

Dαρα

Dt
+ ραvα · aα (3.41)

Dα

Dt
(ραeα) = eα

Dαρα

Dt
+ ρα

Dαeα

Dt
(3.42)

Combining (3.40 - 3.42), and ignoring the inertia term ραaα, we get:

Ėα + K̇α =

∫

Ω

[(
v2
α

2
+ eα

)(
Dαρα

Dt
+ ραdivvα

)
+ ρα

Dαeα

Dt

]
dv (3.43)

Substitution of the balance of mass equation (3.12) into (3.43) yields:

Ėα + K̇α =

∫

Ω
ρα
Dαeα

D t
dv (3.44)

We express the power done on α constituent in the form:

Pα =

∫

Ω

(
ραbα · vα + divσα · vα + σα :

Dαεα

Dt

)
dv (3.45)



58

Using the balance of linear momentum (3.32), we obtain:

Pα =

∫

Ω

(
σα :

Dαεα

Dt
− ĥ

α
· vα

)
dv (3.46)

Substitution of (3.39), (3.44) and (3.46) into (3.35), and use of divergence theorem lead to the local

form of balance of energy equation for α constituent:

ρα
Dαeα

Dt
− σα :

Dαεα

Dt
+ ĥ

α
· vα − ραrα + divqα − êα = 0 (3.47)

3.1.3.2 The second law of thermodynamics

The second law of thermodynamics (or entropy inequality) has to be adopted in order to

obtain restrictions for constitutive equations. The procedure was described in Coleman and Noll

(1963). The postulate is that it is necessary and sufficient to apply the entropy inequality principle

to all constituents for the existence of dissipation mechanisms within the mixture (de Boer, 2005):

Dα

D t

∫

Ω
ραηαdv ≥

∫

Ω

ραrα

θα
dv −

∫

∂Ω

qα · n

θα
da (3.48)

Again, use of (3.8) provides:

Dα

D t

∫

Ω
ραηαdv =

∫

Ω

[
Dα

D t
(ραηα) + ραηα divvα

]
dv

=

∫

Ω


ρ

αD
αηα

D t
+ ηα



Dαρα

Dt
+ ραdivvα

︸ ︷︷ ︸
=0







(3.49)

Using the balance of mass (3.12), we get:

Dα

D t

∫

Ω
ραηαdv =

∫

Ω
ρα
Dαηα

D t
dv (3.50)

Applying the divergence theorem, we derive:

∫

∂Ω

qα · n

θα
da =

∫

Ω
div

(
qα

θα

)
dv

=

∫

Ω

[
divqα

θα
−

qα · grad θα

(θα)2

]
dv (3.51)
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The local form of the entropy inequality is gained as:

ραθα
Dαηα

D t
− ραrα + divqα −

qα · grad θα

θα
≥ 0 (3.52)

To relate the first and the second laws of thermodynamics, we introducing the Helmholtz free

energy per unit mass:

ψα = eα − θαηα (3.53)

Thus, the material time derivative following the motion of α phase is:

Dαψα

Dt
=
Dαeα

Dt
− θα

Dαηα

Dt
− ηα

Dαθα

Dt
(3.54)

Combining (3.54) and (3.52), and canceling the term θαD
αηα

Dt , we arrive at:

ρα
Dαeα

D t
− ραηα

Dαθα

Dt
− ρα

Dαψα

Dt
− ραrα + divqα −

qα · grad θα

θα
≥ 0 (3.55)

Combining (3.55) and (3.47), together with the assumption (de Boer, 2005):

∑

α=s,f

êα = 0 (3.56)

we obtain the entropy inequality for the mixture:

∑

α=s,f

[
σα :

Dαεα

Dt
− ραηα

Dαθ

Dt
− ρα

Dαψα

Dt
−

qα · grad θ

θ
− ĥ

α
· vα

]
≥ 0 (3.57)

Let us recall the partial stress tensors σα (Terzaghi, 1936), invoking the effective stress principle

and assuming an inviscid fluid,

σs = σ′ − pf (1− n)1 (3.58)

σf = −n pf1 (3.59)

σ = σs + σf (3.60)

where, pf is the pore fluid pressure, n is the porosity (=nf in the saturated condition), σ and σ′

are respectively the total and effective stress tensors. Now let us go back to (3.57), and look at the

terms σα : D
αεα

Dt for each constituent separately. For the solid skeleton, use of (3.58) provides:
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σs :
Dsεs

Dt
= σ′ :

Dsεs

Dt
− (1− n)pf 1 :

Dsεs

Dt
(3.61)

Using small strain theory, we write:

1 : εα = δij
1

2
[(uα)i,j + (uα)j,i]

=
1

2
[(uα)i,i + (uα)i,i]

= div(uα) (3.62)

Thus,

1 :
Dαεα

Dt
= div

(
Dαuα

D t

)
= divvα (3.63)

With (3.63), (3.61) is written as:

σs :
Dsεs

Dt
= σ′ :

Dsεs

Dt
− (1− n) pf div(vs) (3.64)

The total strain of the solid skeleton is defined as:

εs = εskel,e + εskel,θ (3.65)

where εskel,e is the strain caused by mechanical loading (elastic currently), and εskel,θ is the strain

caused by thermal loading, which is defined as

εskel,θ = αθskel(θ
s − θs0)1 (3.66)

where θs and θs0 refer to the current and initial temperatures of the solid phase. αθskel is the linear

thermal expansion coefficient of the solid skeleton. Palciauskas and Domenico (1982) proposed an

expression of αθskel in the form:

αθskel = (1− n)αθs + nαθp (3.67)

where n is the porosity of porous media. αθs and α
θ
p are the linear thermal expansion coefficients of

the solid and pores.

Some literature suggested that αθskel is equal to α
θ
s approximately if all the solid grains are in contact

(Walsh, 1973; Campanella and Mitchell, 1968). Khalili et al. (2010) showed experimentally that
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the thermal expansion coefficient of the porous media is equal to that of the solid constituent, and

is independent of the porosity or void ratio. Thus αskel = αθs will be used in the FEA.

Substitution of (3.65) and (3.66) into (3.64) gives:

σs :
Dsεs

Dt
= σ′ :

Dsεskel,e

Dt
+ αθskeltr(σ

′)
Dsθs

Dt
− (1− n)pfdivvs (3.68)

where, tr(σ′) = σ′kk is the trace of the Cauchy effective stress tensor. With (3.59), we have,

σf :
Dfεf

Dt
= −nfpfdiv (vf ) (3.69)

Now let us derive the term ĥ
α
· vα in (3.57). Recall the balance of linear momentum equation

(3.32):

ĥ
f
= −divσf − ρfbf (3.70)

Considering (3.26), we get:

ĥ
s
= −ĥ

f
= divσf + ρfbf (3.71)

According to (3.59),

div(σf ) = div (−nfpf )1

= −grad(nfpf )

= −pf grad(n
f )− nf grad(pf ) (3.72)

Combining (3.70), (3.71) and (3.72) gives:

∑

α=s,f

ĥ
α
· vα = ṽDf · (gradpf − ρfRb) + pf ṽf · gradn (3.73)

in which, ṽf = vf − vs is the relative velocity of fluid, ṽDf = nṽf is Darcy’s velocity, and n = nf

for saturated case. We will assume body force per unit mass bs = bf = b = g is the acceleration

due to gravity for soils. Substitution of (3.64), (3.69) and (3.73) into (3.57) yields:

σ′ :
Dsεskel,e

Dt
+ αθskel

Dsθ

Dt
tr(σ′)−(1 − n)pfdivvs − npfdivvf − pf ṽf · gradn︸ ︷︷ ︸

Term1

− ṽsf ·
(
gradpf − ρfRg

)
−

q · grad θ

θ
−
∑

α=s,f

(
ραηα

Dαθ

Dt
+ ρα

Dαψα

Dt

)
≥ 0

(3.74)
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where q = qs + qf is the heat flux of the mixture, and local thermal equilibrium is assumed, i.e.,

θs = θf = θ. Term 1 in (3.74) can be rewritten in the form:

Term 1 = −pf divvs − n pf divṽf − pf ṽf · gradn

= −pf divvs − pf div(nṽf ) (3.75)

Use of (3.24) and (3.15) in (3.75) allows us to rewrite Term1 in (3.74) in the form:

Term 1 = −pf

(
βθsn

sD
sθ

Dt
+ βθfn

fD
fθ

Dt

)
(3.76)

where, ns and nf are the volume fraction of solid and fluid, and ns = 1− n, nf = n.

According to de Boer (2005); Hassanizadeh and Gray (1990), the Helmholtz free energy can

depend on the combination of certain independent variables, e.g., ραR, εα, nα, Sw, θ, gradθ etc. In

the thesis, a simpler functional dependence of free energies is postulated:

ψs = ψs(εskel,e, θ); ψf = ψf (θ) (3.77)

Thus,

∑

α=s,f

ρα
Dαψα

Dt
= ρs

∂ψs

∂εskel,e
:
Dsεskel,e

Dt
+ ρs

∂ψs

∂θ

Dsθ

Dt
+ ρf

∂ψf

∂θ

Dfθ

Dt
(3.78)

Substituting (3.78) into (3.74) and regrouping terms, we get:

(
σ′ − ρs

∂ψs

∂εskel,e

)
:
Dsεskel,e

Dt
−

[
ρs
∂ψs

∂θ
+ ρsηs + pfβ

θ
sn

s − αθskeltr(σ
′)

]
Dsθ

Dt

−

(
ρf
∂ψf

∂θ
+ pfβ

θ
fn

f + ρfηf
)
Dfθ

Dt
+ ṽsf

[
−grad pf + ρfRg

]
−

q · gradθ

θ
≥ 0

(3.79)

The entropy inequality must remain valid for all possible thermodynamic states. This requirement

restricts the constitutive assumptions in certain ways (Hassanizadeh and Gray, 1990), and can be

interpreted as: the rates can be controlled independently (Coleman and Noll, 1963), such that for

(3.79) to hold,

σ′ = ρs
∂ψs

∂ εskel,e
(3.80)

ρsηs = −ρs
∂ψs

∂θ
− pfβ

θ
sn

s + αθskeltr(σ
′) (3.81)

ρfηf = −ρf
∂ψf

∂θ
− pfβ

θ
fn

f (3.82)
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Thus, (3.79) reduces to:

ṽsf

(
−grad pf + ρfRg

)
−

q · gradθ

θ
≥ 0 (3.83)

Due to the distinct nature of dissipations, the inequality (3.83) can be decoupled to two inequalities

(Coussy, 2004): 



−
q · gradθ

θ
≥ 0

ṽsf

(
−grad pf + ρfRg

)
≥ 0

(3.84)

The first inequality in (3.84) states that heat spontaneously flows from high temperature to low

temperature, and the second inequality in (3.84) states that the velocity ṽsf and the force producing

the velocity £ = −grad pf + ρfRbf have the same sign. Darcy’s law is the simplest constitutive

relation which linearly relates ṽsf and £ (Coussy, 2004) in the form:

ṽsf = k
(
−grad pf + ρfRg

)
(3.85)

where the body force bf is assumed to equal gravity g, k is the isotropic permeability of the fluid,

which must be positive. Let us go back to the first law written for the mixture:

∑

α=s,f

(
ρα
Dαeα

Dt
− σα :

Dαεα

Dt
+ ĥ

α
· vα − ραrα + divqα

)
= 0 (3.86)

Combining (3.54) and (3.86), we derive:

∑

α=s,f


ρ

αθ
Dαηα

Dt
+ ρα

Dαψα

Dt
+ ραηα

Dαθ

Dt
− σα :

Dαεα

Dt
+ ĥ

α
· vα

︸ ︷︷ ︸
R

−ραrα + divqα


 = 0 (3.87)

A comparison between (3.87) and (3.57) shows that the same terms (term R in (3.87)) appear in

both equations with opposite signs, together with the dissipation inequality (3.83), we can derive:

∑

α=s,f

(
ρα
Dαψα

Dt
+ ραηα

Dαθ

Dt
− σα :

Dαεα

Dt
+ ĥ

α
· vα

)
= −ṽsf

(
−grad pf + ρfRg

)
(3.88)

Substitution of (3.88) into (3.87) provides the first law written in the form:

∑

α=s,f

(
ραθ

Dαηα

Dt
− ραrα + divqα

)
− ṽsf

(
−grad pf + ρfRg

)
= 0 (3.89)
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With the assumption

∂2ψs

∂θ ∂εskel,e
= 0 (3.90)

together with the definition:

−
∂2ψs

∂θ2
=
Cs

θ
(3.91)

we derive from (3.81):

ρs
Dsηs

Dt
=
ρsCs

θ

Dsθ

Dt
− βθsn

sD
spf
Dt

+ αθskel
Dstr(σ′)

Dt
(3.92)

ρf
Dfηf

Dt
=
ρfCf

θ

Dfθ

Dt
− βθfn

fD
fpf
Dt

(3.93)

where, Cs and Cs are respectively the heat capacity per unit mass of solid and fluid phases. (3.93)

is in agreement with the conclusion in (Coussy, 2004)( Chap.4, equation (4.53)). Substitution of

(3.92) and (3.93) into (3.89), and use of (3.15) give the balance of energy for mixture in the form:

(ρC)mθ̇ + ρfRCfp ṽ
s
f · grad θ − ṽsf · (−grad pf + ρfRg)

+ αθskel θ tr(σ̇) + div(q)− ρ r −
(
βθsn

s + βθfn
f
) Dspf

Dt
− βθf ṽ

s
f · grad pf = 0

(3.94)

For linear isotropic elasticity, (3.94) is then written as

[
(ρC)m − 9Kskel(αθskel)

2θ
]
θ̇ + ρfRCfp ṽ

s
f · grad θ − ṽsf · (−grad pf + ρfRg)

+ 3Kskelαθskel θ tr(ε̇) + div(q)− ρ r −
(
βθsn

s + βθfn
f
) Dspf

Dt
− βθf ṽ

s
f · grad pf = 0

(3.95)

where Kskel is the bulk modulus of the solid skeleton. The heat capacity density of the mixture

(ρC)m = ρsCs + ρfCf ; the heat source term ρr = ρsrs + ρfrf ; heat flux vector q = qs + qf ;

ḟ = Dsf
Dt , and where, f is any function.
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3.2 Finite Element Analysis

3.2.1 Strong and Weak forms

The strong form of the coupled thermo-poro-elastic problem for saturated porous soils can

be written as follows:

(S)





Find u(x, t) ∈ S u, pf (x, t) ∈ S p,

and θ(x, t) ∈ S θ, with t ∈ [0, T ], such that

σij,j + ρbi = 0 ∈ Ω

ui = gui onΓu

σijnj = tσi onΓt

ui(x, 0) = u0i ∈ Ω

u̇i,i + (ṽDf )i,i − (βθs n
s + βθf n

f )θ̇ − βθf ṽ
D
f · grad θ = 0 ∈ Ωf

pf = gf onΓf

−ni(ṽ
D
f )i = Sw onΓs

pf(x, 0) = pf0 ∈ Ωf

[
(ρC)m − 9Kskel (αθskel)

2 θ
]
θ̇ + ρfRCfp ṽ

D
f · grad θ

−ṽDf · (−grad pf + ρfRg) + 3Kskelαθskel θ tr(ε̇) + div(q)

−ρ r −
(
βθsn

s + βθfn
f
)
ṗf − βθf ṽ

D
f · grad pf = 0 ∈ Ω

θ = gθ onΓθ

−niqi = q onΓq

θ(x, 0) = θ0 ∈ Ω

(3.96)

where S u , S p and S θ are the collections of trial solution,

S
u = {ui : Ω× [0, T ] 7→ R

2, ui ∈ H1, ui(t) = gui (t) on Γu, ui(x, 0) = ui0(x)}

S
θ = {θ : Ω× [0, T ] 7→ R, θ ∈ H1, θ(t) = gθ(t) on Γθ, θ(x, 0) = θ0(x)}

S
p = {pf : Ω× [0, T ] 7→ R, pf ∈ H1, pf (t) = gf (t) on Γf , pf (x, 0) = pf 0(x)}

(3.97)
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The symbols Ω, Γ, Γu, Γt, Γθ, Γq, g
u
i , g

θ, u0 and θ0 are the same as those in (2.68), and Ωf

stands for the domain of the pore fluid, Γf stands for the boundary where pore fluid pressure

is prescribed, and Γs denotes the boundary of infiltration, and pf 0 denotes the initial pore fluid

pressure. To obtain the weak form or variational form of the strong form (3.96), we choose the

weighting functions as follows:

w(x, t) = δ u(x, t)

ω(x, t) = δ pf (x, t)

ϕ(x, t) = δ θ(x, t)

(3.98)

where wi ∈ V u, ϕ ∈ V p and ω ∈ V θ for the variational spaces,

V
u = {wi : Ω 7→ R

2, wi ∈ H1, wi = 0 onΓu}

V
p = {ω : Ω 7→ R, ω ∈ H1, ϕ = 0 onΓf}

V
θ = {ϕ : Ω 7→ R, ϕ ∈ H1, ω = 0 onΓθ}

(3.99)
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After applying the weighting functions w, ω and ϕ to the coupled strong form of the balance

equations respectively, we obtain the coupled weak form as follows:

(W )





Find ui(x, t) ∈ S
u, pf (x, t) ∈ S

p, and θ(x, t) ∈ S
θ such that

∫

Ω
wi,j σ

′
ij − wi,i pfdv =

∫

Ω
wi ρ gida+

∫

Γt

wi t
σ
i da

∫

Ωf

ωu̇i,i dv −

∫

Ωf

ω,i(ṽ
D
f )i dv −

∫

Ωf

ω(βθs n
s + βθf n

f )θ̇ dv

−

∫

Ωf

ωβθf (ṽ
D
f )iθ,i dv =

∫

Γs

ω s da

∫

Ω
ϕ(ρC)mθ̇ dv +

∫

Ω
ϕρfRcf (ṽDf )iθ,i dv +

∫

Ω
ϕ,iK

θ
ijθ,j dv

−

∫

Ω
ϕ(ṽDf )i

[
−(pf ),i + ρfRgi

]
dv +

∫

Ω
ϕ(αθskel θ)σ̇kk dv

−

∫

Ω
ϕ
(
βθsn

s + βθfn
f
)
ṗf dv −

∫

Ω
ϕβθf (ṽ

D
f )i(pf ),i dv =

∫

Γq

ϕq da+

∫

Ω
ϕr dv

holds ∀wi(x) ∈ V
u and η(x) ∈ V

θ

S
u = {ui : Ω× [0, T ] 7→ R

2, ui ∈ H1, ui(t) = gui (t) on Γu, ui(x, 0) = ui0(x)}

S
p = {pf : Ωf × [0, T ] 7→ R, pf ∈ H

1, pf(t) = r(t) on Γr, pf(x, 0) = pf0(x)}

S
θ = {θ : Ω× [0, T ] 7→ R, θ ∈ H1, θ(t) = gθ(t) on Γθ, θ(x, 0) = θ0(x)}

V
u = {wi : Ω 7→ R

2, wi ∈ H
1, wi = 0onΓu}

V
p = {ω : Ω 7→ R, η ∈ H1, ω = 0on Γf}

V
θ = {ϕ : Ω 7→ R, ξ ∈ H1, ϕ = 0on Γθ}

(3.100)
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3.2.2 Coupled finite element formulation

Following the same procedure we used for thermoelastic problems, we introduce the following

symbols used in Galerkin’s method:

uh ∈ (S u)h; (S u)h ⊂ S
u;

wh ∈ (V u)h; (V u)h ⊂ V
u;

phf ∈ (S f )h; (S f )h ⊂ S
f ;

ωh ∈ (V f )h; (V f )h ⊂ V
f ;

θh ∈ (S θ)h; (S θ)h ⊂ S
θ;

ϕh ∈ (V θ)h; (V θ)h ⊂ V
θ;

(3.101)

We assume that all members of (V u)h , (V f )h and (V θ)h vanish, or approximately vanish on Γu,

Γf and Γθ, respectively, i.e.,

whi = 0 onΓu, ∀w
h
i (x) ∈ (V u)h

ωh = 0 onΓf , ∀ω
h(x) ∈ (V f )h

ϕh = 0 onΓθ, ∀ϕ
h(x) ∈ (V θ)h

(3.102)

Ωe

Ωh

uh

phf , θ
h

1

2

3

4

7

8
9

5

6

Ωe

η

ξ

r

z

Figure 3.2: Discretization into therm-poro-elastic mixed quadrilateral elements.

Fig. (3.2) shows the mixed quadrilateral element, i.e. biquadratic in displacement, and bi-

linear in pore fluid pressure and temperature. Using interpolation functions, we can write the
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functions uh, phf , θ
h, wh,ωh and ϕh in terms of nodal values and shape functions as follows:

uh(ξ, t) = N e,u · de

wh(ξ, t) = N e,u · ce

phf (ξ, t) = N e,θ · pef

ωh(ξ, t) = N e,θ ·αe

θh(ξ, t) = N e,θ · θe

ϕh(ξ, t) = N e,θ · βe

(3.103)

in which N e,u and N e,θ are defined in (6.18) and (6.28). The gradients of temperature θh and pore

water pressure pf are written as,

grad θh = Be,θ · θe

grad phf = Be,θ · pef

(3.104)

The coupled thermo-poro-elastic finite element equations are written as:

(1) Balance of linear momentum:

nel

A
e=1

(ce)T ·




∫

Ωe

(Be,u)T · σ′ dv

︸ ︷︷ ︸
f

d,int

e

−

∫

Ωe

(B̃
e,u

)T ·N e,θ · pef dv

︸ ︷︷ ︸
f

dp,int

e

=

∫

Ωe

ρ(N e,u)T b dv

︸ ︷︷ ︸
f

df,ext

e

+

∫

Γe
t

(N e,u)T tσda

︸ ︷︷ ︸
f

dt,ext

e




(3.105)

For linear isotropic elasticity, (3.105) is then simplified as

nel

A
e=1

(ce)T ·




∫

Ωe

(Be,u)T ·D ·Be,u · de dv

︸ ︷︷ ︸
f

dd,int

e

−

∫

Ωe

3Kskelαθskel(B̃
e,u

)T ·Ne,θ · (θe − θe0) dv

︸ ︷︷ ︸
f

dθ,int

e

−

∫

Ωe

(B̃
e,u

)T ·N e,θ · pef dv

︸ ︷︷ ︸
f

dp,int

e

=

∫

Ωe

ρ(N e,u)Tb dv

︸ ︷︷ ︸
f

df,ext

e

+

∫

Γe
t

(N e,u)T tσda

︸ ︷︷ ︸
f

dt,ext

e




(3.106)
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(2) Balance of mass:

nel

A
e=1

(αe)T ·




(∫

Ωe
f

(N e,θ)T · B̃
e,u
dv

)

︸ ︷︷ ︸
k

pd
e

·ḋ
e
−

[∫

Ωe
f

(βθs n
s + βθf n

f )(N e,θ)T ·Ne,θ dv

]

︸ ︷︷ ︸
k

pθ
e

·θ̇
e

−

∫

Ωe
f

(Be,θ)T · ṽDf dv

︸ ︷︷ ︸
f

pp,int

e

−

∫

Ωe
f

βθf (N
e,θ)T ·

[
(ṽDf )

T ·Be,θ · θe
]
dv

︸ ︷︷ ︸
f

pθ,int

e

=

∫

Γe
s

(N e,θ)T s da

︸ ︷︷ ︸
f

p,ext

e




(3.107)

(3) Balance of energy

nel

A
e=1

(βe)T ·




∫

Ωe

(
(ρC)m(N

e,θ)T ·N e,θdv
)

︸ ︷︷ ︸
k

θθ
e

·θ̇
e

−

(∫

Ωe

(βθs n
s + βθf n

f )(N e,θ)TN e,θ dv

)

︸ ︷︷ ︸
k

θp
e

·ṗef +

(∫

Ωe

αθskel(N
e,θ)T (N e,θθe) · tr(σ′)dv

)

︸ ︷︷ ︸
f

θd

e

+

∫

Ωe

(Be,θ)T ·Kθ ·B
e,θ · θedv

︸ ︷︷ ︸
f

θ1,int

e

+

∫

Ωe

ρfRCf (N e,θ)T (ṽDf )
T ·Be,θ · θe dv

︸ ︷︷ ︸
f

θ2,int

e

−

∫

Ωe

(N e,θ)T · (ṽDf )
T · (−Be,θ · pef + ρfRg) dv

︸ ︷︷ ︸
f

θ3,int

e

−

∫

Ωe

βθf (N
e,θ)T · (ṽDf )

T · (Be,θ · pef ) dv

︸ ︷︷ ︸
f

θ4,int

e

=

∫

Ωe

ρ(N e,θ)T r dv

︸ ︷︷ ︸
f

θr,ext

e

+

∫

Γe
q

(N e,θ)T q da

︸ ︷︷ ︸
f

θq,ext

e




(3.108)
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For the linear isotropic elastic problem, (3.108) is then written as

nel

A
e=1

(βe)T ·




(∫

Ωe

(
(ρC)m − 9Kskel(αθskel)

2(N e,θ · θe)
)
(N e,θ)T ·N e,θdv

)

︸ ︷︷ ︸
k

θθ
e

·θ̇
e
+

(∫

Ωe

3Kskelαθskel(N
e,θ)T (N e,θθe) · B̃

e,u
dv

)

︸ ︷︷ ︸
k

θd
e

·ḋ
e
−

(∫

Ωe

(βθs n
s + βθf n

f )(N e,θ)TN e,θ dv

)

︸ ︷︷ ︸
k

θp
e

·ṗef

+

∫

Ωe

(Be,θ)T ·Kθ ·B
e,θ · θedv

︸ ︷︷ ︸
f

θ1,int

e

+

∫

Ωe

ρfRCf (N e,θ)T (ṽDf )
T ·Be,θ · θe dv

︸ ︷︷ ︸
f

θ2,int

e

−

∫

Ωe

(N e,θ)T · (ṽDf )
T · (−Be,θ · pef + ρfRg) dv

︸ ︷︷ ︸
f

θ3,int

e

−

∫

Ωe

βθf (N
e,θ)T · (ṽDf )

T · (Be,θ · pef ) dv

︸ ︷︷ ︸
f

θ4,int

e

=

∫

Ωe

ρ(N e,θ)T r dv

︸ ︷︷ ︸
f

θr,ext

e

+

∫

Γe
q

(N e,θ)T q da

︸ ︷︷ ︸
f

θq,ext

e




(3.109)

After element assembly, we arrive at the coupled FE matrix equation in the form:




0 0 0

Kpd 0 Kpθ

Kθd Kθp Kθθ








ḋ

ṗf

θ̇





+




F d,INT

F p,INT

F θ,INT



=





F d,EXT

F p,EXT

F θ,EXT





(3.110)

in which,

F d,INT = F dd,INT − F dp,INT − F dθ,INT

F p,INT = −F pp,INT − F pθ,INT

F θ,INT = F θ1,INT + F θ2,INT − F θ3,INT − F θ4,INT

F d,EXT = F df,EXT + F dt,EXT

F θ,EXT = F θr,EXT + F θq,EXT

(3.111)

The Newton-Raphson method is again adopted to solve for this nonlinear matrix equation, we need
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to write the consistent tangent as is shown in (2.119) for the saturated THM problem.

C · V =




0

Kpd · ḋ−Kpθ · θ̇

Kθd · ḋ−Kθp · ṗf +Kθθ · θ̇




(3.112)

∂C

∂D
· V =




0

∂K
pd

∂d
· ḋ− ∂K

pθ

∂d
· θ̇

∂K
θd

∂d
· ḋ− ∂K

θp

∂d
· ṗf +

∂K
θθ

∂d
· θ̇

0

∂K
pd

∂pf
· ḋ− ∂K

pθ

∂pf
· θ̇

∂K
θd

∂pf
· ḋ− ∂K

θp

∂pf
· ṗf +

∂K
θθ

∂pf
· θ̇

0

∂K
pd

∂θ
· ḋ− ∂K

pθ

∂θ
· θ̇

∂K
θd

∂θ
· ḋ− ∂K

θp

∂θ
· ṗf +

∂K
θθ

∂θ
· θ̇




(3.113)

∂F INT

∂D
=

[
∂F

INT

∂d
∂F

INT

∂pf

∂F
INT

∂θ

]

=




∂F
d,INT

∂d
∂F

d,INT

∂pf

∂F
d,INT

∂θ

∂F p,INT

∂d
∂F p,INT

∂pf

∂F p,INT

∂θ

∂F
θ,INT

∂d
∂F

θ,INT

∂pf

∂F
θ,INT

∂θ




(3.114)
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in which

∂Kpd

∂d
· ḋ = 0

∂Kpθ

∂d
· θ̇ =

∫

Ωe

(βθf − βθs )(N
e,θ · θ̇e)(N e,θ)T ·

∂n

∂de
dv

∂Kpd

∂pf
· ḋ = 0

∂Kpθ

∂pf
· θ̇ = 0

∂Kpd

∂θ
· ḋ = 0

∂Kpθ

∂θ
· θ̇ = 0

∂Kθd

∂d
· ḋ = 0

∂Kθp

∂d
· ṗf =

∫

Ωe

(βθf − βθs )(N
e,θ · ṗef )(N

e,θ)T ·
∂n

∂de
dv

∂Kθθ

∂d
· θ̇ =

∫

Ωe

∂(ρC)m
∂de

(N e,θ · θ̇
e
)(N e,θ)T dv

∂Kθd

∂pf
· ḋ = 0

∂Kθp

∂pf
· ṗf = 0

∂Kθθ

∂pf
· θ̇ = 0

∂Kθd

∂θ
· ḋ =

∫

Ωe

3Kskelαθskel(N
e,θ)T · (B̃

e,u
· ḋ

e
)N e,θ dv

∂Kθp

∂θ
· ṗf f = 0

∂Kθθ

∂θ
· θ̇ =

∫

Ωe

(N e,θ · θ̇
e
)(N e,θ)T ·

[
∂(ρC)m
∂θ

− 9Kskel(αθskel)
2Ne,θ

]
dv

(3.115)
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∂F d,int

∂d
=

∫

Ωe

(Be,u)T ·D ·Be,u dv

∂F d,int

∂pf
=

∫

Ωe

(B̃
e,u

)T ·N e,θ dv

∂F d,int

∂θ
=

∫

Ωe

3Kskelαθskel(B̃
e,u

)T ·N e,θ dv

∂F p,int

∂d
=

∫

Ωe

[
(Be,θ)T + βθf (N

e,θ)T · (Be,θ · θ)T
]
·
∂ṽDf
∂n

·
∂n

∂d
dv

∂F p,int

∂pf
=

∫

Ωe

[
(Be,θ)T + βθf (N

e,θ)T · (Be,θ · θ)T
]
·
∂ṽDf
∂pf

dv

∂F p,int

∂θ
=

∫

Ωe

{[
(Be,θ)T + βθf (N

e,θ)T · (Be,θ · θ)T
]
·
∂ṽDf
∂θ

+ βθf (N
e,θ)T (ṽDf )

T ·Be,θ

}
dv

(3.116)

∂F θ,int

∂d
=

∫

Ωe

ρfRCf (N e,θ)T · (Be,θ · θ)T ·
∂ṽDf
∂d

dv

−

∫

Ωe

(N e,θ)T ·
[
−Be,θ · pef + ρfRg + βθfB

e,θ · pef

]T
·
∂ṽDf
∂d

dv

∂F θ,int

∂pf
=

∫

Ωe

ρfRCf (N e,θ)T · (Be,θ · θ)T ·
∂ṽDf
∂pf

dv

−

∫

Ωe

{
(βθf − 1)(N e,θ)T (ṽDf )

T ·Be,θ + (N e,θ)T
[
ρfRg + (βθf − 1)Be,θ · pef

]T ∂ṽDf
∂pf

}
dv

∂F θ,int

∂θ
=

∫

Ωe

[
Kθ(B

e,θ)T + ρfRCf (N e,θ)T (ṽDf )
T
]
·Be,θ dv

+

∫

Ωe

Cf(N e,θ)T (ṽsf )
T · (Be,θ · θ) ·

∂ρfR

∂θ
+ ρfRCf (N e,θ)T · (Be,θ · θ)T ·

∂ṽDf
∂θ

dv

−

∫

Ωe

[
(N e,θ)T

[
ρfRg + (βθf − 1)Be,θ · pef

]T
·
∂ṽDf
∂θ

+ (N e,θ)T (ṽDf )
Tg ·

∂ρfR

∂θ

]
dv

(3.117)
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3.3 Numerical examples

3.3.1 Analytical verification

3.3.1.1 Verification against the analytical solution by Bai and Abousleiman (1997)

To verify the saturated coupled TPM FE model, results are compared with the analytical

solution provided by Bai and Abousleiman (1997). The height of the column is 0.3 m and the

radius is 0.1 m as shown in Figure 3.3. Initially, the homogeneous temperature is 50 oC. The

boundary conditions are: the lateral surface at r = 0.1m is fixed in ur, and the bottom surface is

fixed in uz; the top of the column is drained boundary (pw = 0); the other surfaces are imperme-

able and adiabatic; the temperature is prescribed to be 0 oC at the top; traction (tσ) is applied

on the top surface. To compare with the analytical solution (Bai and Abousleiman, 1997), the

gravity acceleration is turned off in the TPM model. The selected parameters, with respect to

the mechanical, thermal and hydraulic categories are listed in Table 3.1. Figure 3.4 illustrates the

response of temperature, pore fluid pressure and displacement during the thermal consolidation of

the column. The comparison shows a good match. The temperature variation at the bottom of

the column is identified as shown in Figure 3.4(a). Figure 3.4(b) illustrates a similar dimensionless

pore fluid pressure (pw/t
σ) distribution in both results. Since the gravity acceleration is turned off,

the pore fluid pressure arrives at steady state with pw = 0. The top displacement arrives at steady

state (dz = 18mm) after the consolidation is complete, as shown in Figure 3.4(c).
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Figure 3.3: 3 element mesh for saturated non-isothermal consolidation

Table 3.1: Verification of saturated TPM model against an analytical solution by Bai and Abousleiman
(1997)

Parameter Symbol Value Units

Thermal expansion coefficient of solid αθ
s 1.65× 10−6 m/(m ·K)

Thermal expansion coefficient of fluid αθ
f 2.07× 10−4 m/(m ·K)

Specific heat capacity of solid Cs 703 J/(K · kg)
Specific heat capacity of fluid Cf 4180 J/(K · kg)
Thermal conductivity of solid Kθ

s 1.38 W/(m ·K)
Thermal conductivity of fluid Kθ

f 0.6 W/(m ·K)

Mass density of solid ρsR 3696 kg/m3

Mass density of fluid ρfR 1000 kg/m3

Intrinsic permeability κ 1.0× 10−14 m2

Lamé parameter λskel 7.05× 107 Pa
Lamé parameter µskel 4.7× 107 Pa
Traction on top tσ 1× 107 Pa
Initial porosity n0 0.42 m3/m3

Viscosity of fluid (water) µf 0.001 Pa · s
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Figure 3.4: (a) Temperature of the bottom. (b) Pore water pressure of the bottom. (c) Displacement of
the top.
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3.3.1.2 Verification against the analytical solution by Booker and Savvidou (1985)

The thermo-poro-elastic model is verified against another analytical solution by Booker and

Savvidou (1985) regarding thermal consolidation of saturated soil due to a deep-buried cylindrical

heat source. Figure 3.5(a) shows the geometry of the cylindrical heat source, which represents the

orange part in the finite element mesh shown in figure 3.5(b). In the finite element analysis, initial

temperature of the soil is uniform, i.e. θ0 = 20oC; with gravity ignored, the initial pore water

pressure is set to zero. Since the heat source is buried deep enough that the boundary effect at

the soil top is negligible; in finite element analysis, Dirichlet boundary condition is assumed, i.e.

prescribed temperature θ = 20oC at the soil top. Traction is not applied at the soil top. All the

surfaces except the top are fixed in normal directions. The comparisons between modeling results

and analytical solutions are presented in figure 3.6 in terms of normalized temperature (θ/θN ) and

normalized pore water pressure (Pf/PN ) at three different radii, i.e. r = r0, r = 2r0, and r = 5r0,

and good agreement is obtained. Note that θN denotes a maximum value that temperature reaches

at the midpoint on the surface of the cylinder; PN denotes a maximum value that pore pressure

could reach at the midpoint on the surface of the cylinder if the soil was impermeable; T denotes

the dimensionless time given by T = κt/r2o .



79

z 

y 

x 

h0 

Φ r 

r0 

(a)

18m

z

r

12m

(b)

Figure 3.5: Thermal consolidation of saturated soil around a cylinder heat source with analytical solution in
Booker and Savvidou (1985): (a) schematic of the cylinder heat source. (b) FE mesh used in the axisymmetric
coupled saturated TPM FEA.
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“A” represents the analytical solution from Booker and Savvidou (1985), and “M” represents the modeling
results using the saturated TPM model.
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3.3.2 Comparison between TPM model and poro-mechanical (PM) model

This section shows that the Thermo-poro-mechanical (TPM) model can be reduced to be a

Poro-mechanical (PM) model by setting the temperature change prescribed on the top surface to

zero. Figure 3.7 shows the geometry of the soil column, with the height of 3 m and the radius of

1 m. The domain is discretized to ten elements to analyze this axisymmetric problem. For two

models, the initial homogeneous temperature is 20 oC. The boundary conditions are assumed to

be: impermeable for the lateral and the bottom surfaces; the lateral surface has fixed displacement

in r direction, and the bottom surface has fixed displacement in z direction; the pore fluid pressure

is held at zero due to the saturated condition; traction is applied on the top. For the TPM model,

all the lateral and bottom surfaces are adiabatic. All parameters adopted in the two models are

the same except for the thermal parameters that are only used in the TPM model (see Table 3.2).

The process is: first, ramp up the gravity acceleration from 0 to 9.18 m/s2, and keep it constant

for the rest of the time; second, ramp up the traction from 0 to 90 kPa, and keep it constant for

the rest of the simulation time. The variations of displacement and pore fluid pressure with depth

in Figure 3.8(a) and Figure 3.8(b) show a good agreement between the reduced TPM model and

the PM model. Figure 3.8(c) shows that the final pore fluid pressure arrives at the hydrostatic

distribution.

Table 3.2: Constant parameters used in the comparison between TPM model and PM model

Parameter Symbol Value Units

Thermal expansion coefficient of solid αθ
s 3× 10−5 m/(m ·K)

Thermal expansion coefficient of fluid αθ
f 2.07× 10−4 m/(m ·K)

Thermal expansion coefficient of skeleton αθ
skel 8.7× 10−6 m/(m ·K)

Specific heat capacity of solid Cs 870 J/(K · kg)
Specific heat capacity of fluid Cf 4180 J/(K · kg)
Thermal conductivity of solid Kθ

s 5 W/(m ·K)
Intrinsic permeability κ 1.326× 10−14 m2

Lamé parameter λskel 2.9× 107 Pa
Lamé parameter µskel 7× 106 Pa
Traction on top tσ 9× 104 Pa
Initial porosity n0 0.38 m3/m3

Viscosity of fluid (water) µf 0.001 Pa · s
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Figure 3.7: 10 element mesh
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Figure 3.8: (a) Comparison of top displacement between TPM and PM models. (b) Comparison of pore
fluid pressure at near top, middle and bottom between TPM and PM models. (c) Comparison of final pore
fluid pressure distribution between TPM and PM models.
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3.3.3 Comparison between TPM model and thermo-elastic (TE) model

This section shows that the Thermo-poro-mechanical (TPM) model can be reduced to be

thermo-elastic (TE) model by setting the degree of freedoms (DOFs) of pore fluid pressure (pf ) to

zero. Figure 3.9 shows the geometry, with the height of 0.3 m and radius of 0.1 m. The domain

is discretized to ten elements to analyze this axisymmetric problem. For two models, the initial

homogeneous temperature is 20 oC. The boundary conditions are assumed to be: no heat flux

for the lateral and the bottom surfaces; the lateral surface is fixed in r direction, and the bottom

surface is fixed in z direction; there is no traction on the top; and a temperature increase of 20 oC is

prescribed on the top. For this case, the gravity is set to zero. For the TPM model, the pore water

fluid pressure is set to zero initially, and all the lateral and bottom surfaces are impermeable. All

parameters adopted in two models are the same (see Table 3.3) except for the hydraulic parameters

only used in the TPM model. pf will not be calculated in the reduced TPM model in which the

DOFs of pf are set to zero. The comparison of temperature and displacement of the chosen elements

in Figure 3.10 shows a good agreement between the reduced TPM model and the TE model.

Table 3.3: Parameters used in the comparison between TPM model and TE model

Parameter Symbol Value Units

Thermal expansion coefficient αθ
skel 11.7× 10−4 m/(m ·K)

Specific heat capacity Cmix 1400 J/(K · kg)
Thermal conductivity Kθ

mix 0.817 W/(m ·K)
Mass density ρmix 2500 kg/m3

Lamé parameter λskel 2.9× 107 Pa
Lamé parameter µskel 7× 106 Pa
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Figure 3.10: (a) Comparison of temperature between TPM and TE models. (b) Comparison of displacement
between TPM and TE models.
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Chapter 4

Partially saturated thermoporomechanics

In many processes, several fluids, such as two liquids or liquid and gas coexist in the pore

space, so that the porous media is called partially saturated with respect to a reference fluid of

main concern, usually chosen in liquid form (Coussy, 2004). This chapter introduces the thermo-

poro-mechanical (TPM) coupling effects of partially saturated porous media, specially for soil.

4.1 Governing equations

Partially saturated porous media can be treated as a three-phase mixture, i.e. solid phase,

liquid phase and gas phase. For soils, a water phase includes liquid water and air dissolved in water,

while the latter is ignored in this thesis. The gas phase includes two constituents, which are water

vapor (gv for “gas vapor”) and dry air (ga for “gas air”). Therefore, the partially saturated soil is

composed of four components, i.e., solid (s), liquid water (w), water vapor (gv), and dry air (ga).

I refer to Coussy (2004); de Boer (2005); Lewis and Schrefler (1998) to formulate the governing

equations using mixture theory at small strains of the solid skeleton (skel).

Similar to the saturated case, the governing equations include balance of mass, balance of

linear momentum, and balance of energy, and are derived for each constituent. Phase change

(vaporization) between liquid water and water vapor is considered through the latent heat. There

are several possible combinations of primary variables that can be chosen (Lewis and Schrefler,

1998) for the partially saturated case. In my thesis, I choose the solid skeleton displacement u,

the temperature of the mixture θ, the pore water pressure pw and pore gas pressure pg as the four



86

primary variables to solve using nonlinear finite element analysis.

The notation used is as follows: the volume of the mixture is v = vs+ vw+ vg, vg = vgv+ vga

and the corresponding mass of the mixture is m = ms + mw + mg . The differential mass of α

(α = s,w, g) phase is written as dmα = ραRdvα , in which, ραR is true mass density, and volume

fraction of α phase nα = dvα/dv. Hence mα = ραRnαdv. ρα = nαραR is defined to be partial mass

density of α phase. One can show that,

ρs + ρw + ρg = ρ (4.1)

ns + nw + ng = ns + n = 1 (4.2)

nw =
dvw
dv

; ng =
dvg
dv

(4.3)

dvvoid = dvw + dvg (4.4)

Sw =
nw

n
=

nw

nw + ng
=

dvw
dvvoid

(4.5)

nw = nSw , n
g = nSg , Sw + Sg = 1 (4.6)

Sw =
dvw
dvvoid

; Sg =
dvg
dvvoid

(4.7)

where n is porosity, Sw is the degree of water saturation, and Sg is the degree of gas saturation. ρ

is the density of the soil mixture.

4.1.1 Balance of mass

The balance of mass for a partially saturated soil is similar to the balance of mass equation

for the saturated condition, except that we need to consider the mass exchange term ρ̂α for partially

saturated condition. The balance of mass for each constituent α(α = s,w, ga, gv) is the same as

(3.11), and the local form is:

Dαρα

D t
+ ρα divvα = ρ̂α (4.8)

where ρ̂α is the mass supply from the other phases per unit time per unit volume. Assuming ρ̂s =

ρ̂ga = 0 (i.e., no dry air is convected from other constituents, and no solid is precipitated from other

constituents), and −ρ̂w =ρ̂g= ρ̂gv, where, ρ̂gv is the quantity of water lost through vaporization
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per unit time per unit volume, which is positive. Writing the balance of mass equations for four

constituents separately: for solid (s):

Dsρs

D t
+ ρs divvs = 0 (4.9)

for water, (the air dissolved in water is ignored):

Dwρw

D t
+ ρw divvw = −ρ̂gv (4.10)

for water vapor (gv):

Dgvρgv

Dt
+ ρgv divvgv = ρ̂gv (4.11)

for dry air (ga):

Dgaρga

Dt
+ ρga divvga = 0 (4.12)

Using ρα = ραRnα, and assuming the solid and water are mechanically incompressible (i.e., constant

ρsR and ρwR), but allow thermal expansion (see (3.20) and (3.21)), we write (4.9) and (4.10) in the

form:

Dsns

D t
+ nsdivvs = βθs n

sD
sθ

D t
(4.13)

Dwnw

D t
+ nwdivvw = βθw n

wD
wθ

D t
−
ρ̂gv

ρwR
(4.14)

Use of (3.15) allows us to write (4.14) in the form:

Dsnw

D t
+ nwdivvw + gradnw · ṽw = βθw n

wD
sθ

D t
+ βθwn

wgradθ · ṽw −
ρ̂gv

ρwR
(4.15)

Substitution of nw = nSw into (4.15) gives:

n
DsSw
D t

+ Sw
Dsn

D t
+ div (nwṽw) + nwdivvs = βθw nSw

Dsθ

D t
+ βθwnSwgradθ · ṽw −

ρ̂gv

ρwR
(4.16)

Use of ns = 1− n in (4.13) gives the expression:

Dsn

D t
= (1− n)divvs − βθs (1− n)

Dsθ

D t
(4.17)
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Substitution of (4.17) into (4.16) yields the balance of mass equation for liquid water:

Swdivvs − Sw

[
(1− n)βθs + nβθw

] Dsθ

D t
+ n

DsSw
Dt

+ div ṽDw − βθwgrad θ · ṽ
D
w = −

ρ̂gv

ρwR
(4.18)

With the temperature dependent definition of real mass density of water,

ρwR = ρwRo
[
1− βθw (θ − θ0)

]
(4.19)

one can derive,

ρwRdiv ṽDw − ρwRβθwgrad θ · ṽ
D
w = ρwRdiv ṽDw + grad(ρwR) · ṽDw = div(ρwR ṽDw ) (4.20)

Thus, (4.18) becomes:

ρwRSwdivvs − ρwRSw

[
βθs (1− n) + nβθw

] Dsθ

D t
+ nρwR

DsSw
Dt

+ div(ρwR ṽDw ) = −ρ̂gv (4.21)

where ṽDα = nα(vα − vs) is the filtration vector associated with fluid constituent α (α = w, g)

(Coussy, 2004).

The gas phase is composed of two different species, which are dry air (ga) and water vapor (gv),

which are miscible, so that they share the same volume fraction ng = nSg, where, Sg = 1 − Sw.

Thus the partial mass densities of the water vapor and dry air are expressed in the form:

ρgv = ngρgvR (4.22)

ρga = ngρgaR (4.23)

The ideal gas law is applied to the gas phase, such that the real mass density functions are written

in the form:

ρgvR =
pgvMw

θR
(4.24)

ρgaR =
pgaMa

θR
(4.25)

where pgv and pga are pore pressure of water vapor and dry air, respectively, Mw and Ma are molar

mass of constituent water and air, and R is the universal gas constant. The real mass density of

the gas phase is simply the superposition of its two components:

ρgR = ρgaR + ρgvR (4.26)
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According to (4.24) we have

DgvρgvR

Dt
=

Mw

R

(
1

θ

Dgvpgv
Dt

−
1

θ2
Dgvθ

Dt

)

=
pgvMw

θR

(
1

pgv

Dgvpgv
Dt

−
1

θ

Dgvθ

Dt

)

= ρgvR
(

1

pgv

Dgvpgv
Dt

−
1

θ

Dgvθ

Dt

)
(4.27)

Substitute (4.27) into (4.11), and divide ρgvR on both sides, we get:

Dgvng

D t
+ ngdivvgv + ng

(
1

pgv

Dgvpgv
Dt

−
1

θ

Dgvθ

Dt

)
=

ρ̂gv

ρgvR
(4.28)

Use

Dgv(•)

Dt
=
Ds(•)

Dt
+ grad(•) · ṽgv (4.29)

and substitute ng = nSg and (4.17) into (4.28), we can obtain the balance of mass equation for

water vapor:

Sgdivvs − Sg

[
βθs (1− n) +

n

θ

] Dsθ

D t
+ n

DsSg
Dt

+ div ṽDgv

−
1

θ
grad θ · ṽDgv +

ng

pgv

Dspgv
Dt

+
1

pgv
grad (pgv) · ṽ

D
gv =

ρ̂gv

ρgvR

(4.30)

where ṽDgv = ngṽgv. Use (4.24) to obtain:

−ρgvRSg
n

θ

Dsθ

D t
+
ρgvRng

pgv

Dspgv
Dt

= nSg
DsρgvR

Dt
(4.31)

and,

ρgvRdiv ṽDgv −
ρgvR

θ
grad θ · ṽDgv +

ρgvR

pgv
grad pgv · ṽ

D
gv

=ρgvRdiv ṽDgv + grad(ρgvR) · ṽDgv = div(ρgvR ṽDgv)

(4.32)

Thus, (4.30) becomes:

ρgvRSgdivvs − ρgvRSgβ
θ
s (1− n)

Dsθ

D t
+ nρgvR

DsSg
Dt

+ nSg
DsρgvR

Dt
+ div(ρgvR ṽDgv) = ρ̂gv (4.33)

Combining (4.21) and (4.33) allows us to write the balance equation of mass for water species

(liquid water + water vapor) as follows:
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(ρwRSw + ρgvRSg)divvs −
[
(1− n)(ρwRSw + ρgvRSg)β

θ
s + nρwRSwβ

θ
w

] Dsθ

D t

+ n(ρwR − ρgvR)
DsSw
Dt

+ nSg
DsρgvR

Dt
+ div(ρgvR ṽDgv + ρwR ṽDw ) = 0

(4.34)

We follow the same procedure as we used to derive for water vapor to obtain the balance of mass

equation for dry air:

Sgdivvs − Sg

[
βθs (1− n) +

n

θ

] Dsθ

D t
+ n

DsSg
Dt

+ div ṽDga

−
grad θ

θ
· ṽDga +

ng

pga

Dspga
Dt

+
1

pga
grad pga · ṽ

D
ga = 0

(4.35)

Use (4.25) to obtain:

−Sg
n

θ

Dsθ

D t
+
ng

pga

Dspga
Dt

=
nSg
ρgaR

DsρgaR

Dt
(4.36)

and,

div ṽDga −
grad θ

θ
· ṽDga +

1

pga
grad pga · ṽ

D
ga =

1

ρgaR
div(ρgaR ṽDga) (4.37)

Substitute (4.36) and 4.37) into (4.35) and multiply by ρgaR on both sides to get the balance of

mass equation for dry air as follows:

ρgaRSgdivvs − ρgaRSgβ
θ
s (1− n)

Dsθ

D t
+ nSg

DsρgaR

Dt
− nρgaR

DsSw
Dt

+ div(ρgaR ṽDga) = 0 (4.38)

4.1.2 Balance of linear momentum

Let us follow the same procedure as the one we used for saturated condition. If we substitute

(4.8) into (3.27), and ignore the acceleration of gravity aα, we have:

Dα

Dt

∫

Ω
ραvαdv =

∫

Ω
ρ̂αvαdv (4.39)

Substitute (3.31) and (4.39) into (3.25), we arrive at the local form of the balance of linear momen-

tum equation for constituent α:

∇ · σα + ραbα + ĥ
α
= ρ̂αvα (4.40)

where σα is the partial stress of the α phase, σα = nασ ; and the total stress is: σ = σs+σw+σg;

bα is the body force vector per unit mass of α phase, which we assume is equal to acceleration of
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gravity: bα = b = g; ρ̂αvα is the contribution to momentum of constituent α due to mass exchange

with other constituents; ĥ
α
is the internal body force drag of other constituents on constituent α,

where

∑

α=s,w,g

ĥα = 0 (4.41)

According to de Boer (2005),
∑

(ρ̂αvα) ≈ 0. Thus, the balance of linear momentum equation for

the partially saturated mixture looks the same as that for saturated condition, except that the

effective stress equation is different, and mass density includes more terms.

div(σ) + ρg = 0 (4.42)

4.1.3 Energy conservation

4.1.3.1 1st law of thermodynamics

The first law of thermodynamics written for constituent α (de Boer, 2005)

Ėα + K̇α = Pα + Q̇α +

∫

Ω
êαdv (4.43)

where Ėα, K̇α, Pα, Q̇α and êα are the same as those in (3.35). With the balance of mass equation

(4.8), (3.43) is written for partially saturated condition in the form:

Ėα + K̇α =

∫

Ω

[
ρ̂α
(vα · vα

2
+ eα

)
+ ρα

Dαeα

D t

]
dv (4.44)

Substituting the balance of linear momentum (4.40) into (3.45), we get the expression of the input

power on α constituent:

Pα =

∫

Ω

[
σα :

Dαεα

Dt
+ (ρ̂αvα − ĥ

α
) · vα

]
dv (4.45)

The rate of heat supply Q̇α is:

Q̇α =

∫

Ω
(ραrα − divqα) dv (4.46)

Substitution of (4.44), (4.45), and (4.46) into(4.43) allows us to write the local form of the balance

of energy equation for constituent α:

ρα
Dαeα

Dt
− σα :

Dαεα

Dt
+ ĥ

α
· vα −

1

2
ρ̂αvα · vα − ραrα + divqα + ρ̂αeα − êα = 0 (4.47)
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Summing up (4.47) over α = s,w, g, and with the assumption (de Boer, 2005):

∑

α=s,w,g

êα = 0 (4.48)

we get the balance of energy equation for the mixture in the form:

∑

α=s,w,g

(
ρα
Dαeα

Dt
− σα :

Dαεα

Dt
+ ĥ

α
· vα −

1

2
ρ̂αvα · vα − ραrα + divqα + ρ̂αeα

)
= 0 (4.49)

4.1.3.2 The second law of thermodynamics

The entropy inequality for constituent α of a partially saturated porous media is:

Dα

D t

∫

Ω
ραηαdv ≥

∫

Ω

ραrα

θα
dv −

∫

∂Ω

qα · n

θα
da (4.50)

Using (3.8) and the balance of mass equation (4.8), we obtain:

Dα

D t

∫

Ω
ραηαdv =

∫

Ω
ρα
Dαηα

D t
dv +

∫

Ω
ρ̂αηα dv (4.51)

Applying the divergence theorem, we derive:

∫

∂Ω

qα · n

θα
da =

∫

Ω

[
divqα

θα
−

qα · grad θα

(θα)2

]
dv (4.52)

Substitution of (4.51) and (4.52) into (4.50) gives an expression of the entropy inequality in the

local form:

ραθα
Dαηα

D t
+ ρ̂αηαθα − ραrα + div(qα)−

qα · grad θα

θα
≥ 0 (4.53)

In order to consider the liquid-vapor phase change, the Gibbs potential gf is introduced for the

fluid constituents:

gf = ψf − θf ηf , f = w, gv, ga (4.54)

The internal energy per unit mass is in turn expressed as:

ef = ψf −
pf
ρfR

(4.55)

where ψf is the Helmholtz free energy per unit mass, and pf is the pore fluid pressure. Combining

(4.54) and (4.55), we can relate ef and gf in the form:

ef = gf + θfηf −
pf
ρfR

(4.56)
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and the material time derivative of internal energy:

Df ef

Dt
=
Df gf

Dt
+ θf

Df ηf

Dt
+ ηf

Df θf

Dt
−

1

ρfR
Df pf
Dt

+
pf

(ρfR)2
Df ρfR

Dt
(4.57)

According to ρf = nfρfR, we get:

Df ρf

Dt
= nf

Df ρfR

Dt
+ ρfR

Df nf

Dt
(4.58)

Combining the balance of mass equation (4.8) and (4.58), we have:

Df ρfR

Dt
=

1

nf

(
Df ρf

Dt
− ρfR

Df nf

Dt

)

=
1

nf

(
−ρf div(vf ) + ρ̂f − ρfR

Dfnf

Dt

)

= −ρfR div(vf ) +
ρ̂f

nf
−
ρfR

nf
Dfnf

Dt
(4.59)

Substituting (4.59) into (4.57), we get:

ρfθf
Df ηf

Dt
= ρf

Df ef

Dt
− ρf

Df gf

Dt
− ρfηf

Df θf

Dt
+ nf

Df pf
Dt

−
ρfpf
(ρfR)2

(
−ρfR div(vf ) +

ρ̂f

nf
−
ρfR

nf
Dfnf

Dt

)

= ρf
Df ef

Dt
− ρf

Df gf

Dt
− ρfηf

Df θf

Dt
+ nf

Df pf
Dt

+nfpfdiv(vf )−
pf
ρfR

ρ̂f + pf
Df nf

Dt
(4.60)

From the balance of energy (4.47) with α = f , we get:

ρf
Dfef
Dt

= σf :
Dfεf

Dt
− ρ̂fef +

1

2
ρ̂fvf · vf − ĥ

f
· vf − div(qf ) + ρfrf + êf (4.61)

Substitute (4.61) into (4.60), and then substitute the expression of ρfθf D
f ηf

Dt into the entropy

inequality (4.53) with α = f , we have:

[
σf :

Dfεf

Dt
− ρ̂fef +

1

2
ρ̂fvf · vf − ĥ

f
· vf(((((((((

−div(qf ) + ρfrf + êf
]
− ρf

Df gf

Dt

− ρfηf
Df θf

Dt
+ nf

Df pf
Dt

+ nfpfdiv(vf )−
pf
ρfR

ρ̂f + pf
Df nf

Dt
+ ρ̂fηfθf

(((((((((
+div(qf )− ρfrf −

qf · grad θf

θf
≥ 0

(4.62)
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where terms in [ ] are from (4.61), and where, according to (3.69),

σf :
Dfεf

Dt
= −nfpf div (vf ) (4.63)

so that, σf : Dfεf

Dt and nfpfdiv(vf ) in (4.62) will cancel each other out in (4.62). We introduce

the definition of enthalpy per unit mass:

Hα = eα +
pα
ραR

(4.64)

Let us combine the following two terms in (4.62), and with (4.64), we derive:

−ρ̂fef −
pf
ρfR

ρ̂f = −ρ̂f
(
ef +

pf
ρfR

)
= −ρ̂fHf (4.65)

where Hf is the enthalpy of fluid constituent per unit mass, and is written in terms of the Gibbs

potential gf and the entropy of fluid in this way:

Hf = gf + ηfθf (4.66)

With (4.66), the term ρ̂fηfθf in (4.62) can be written as:

ρ̂fηfθf = ρ̂f (Hf − gf ) (4.67)

Combining (4.65) and (4.67), we obtain:

ρ̂fηfθf − ρ̂fef −
pf
ρfR

ρ̂f = −ρ̂fgf (4.68)

According to Coussy (2004)(chapter 6), the local thermodynamic equilibrium between the liquid

water and water vapor requires their Gibbs potentials to be equal:

gw = ggv (4.69)

Since ρ̂w = −ρ̂gv, we have

ρ̂w gw + ρ̂gv ggv = 0 (4.70)
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Let us apply (4.62) to the liquid water, water vapor, and dry air, and sum up the three inequalities

to get the entropy inequality of the fluids:

∑

f=w,gv,ga

[
−ĥ

f
· vf +

1

2
ρ̂fvf · vf + êf − ρf

Dfgf

Dt
− ρfηf

Dfθf

Dt

+nf
Dfpf
Dt

+ pf
Dfnf

Dt
−

qf · grad θf

θf

]
≥ 0

(4.71)

According to Coussy (2004), the Gibbs potential of fluid gf (pf , θ
f ) depends on the pore fluid

pressure pf and the temperature of the fluid θf , thus the material time derivative of gf is written

in the form:

Dfgf

Dt
=
∂gf

∂pf

Dfpf
Dt

+
∂gf

∂θf
Dfθf

Dt
(4.72)

Substitution of (4.72) into (4.71) gives an alternative expression of the entropy inequality of the

fluid phase in the form:

∑

f=w,g

[
−ĥ

f
· vf +

1

2
ρ̂fvf · vf + êf − ρf

∂gf

∂pf

Dfpf
Dt

− ρf
∂gf

∂θf
Dfθf

Dt

−ρfηf
Dfθf

Dt
+ nf

Dfpf
Dt

+ pf
Dfnf

Dt
−

qf · grad θf

θf

]
≥ 0

(4.73)

Similar to the saturated condition, we adopt the Helmholtz free energy per unit mass ψs for solid

phase:

ψs = es − θs ηs (4.74)

Thus, the material time derivative of ψs is written in the form:

Dsψs

Dt
=
Dses

Dt
− θs

Dsηs

Dt
− ηs

Dsθs

Dt
(4.75)

From the balance of energy (3.47) with α = s, we get an expression of ρs D
s es

Dt in the form:

ρs
Dses

Dt
= σs :

Dsεs

Dt
− ĥ

s
· vs − div(qs) + ρsrs + ês (4.76)

Combining (4.75) and (4.76), we have:

ρsθs
Dsηs

Dt
= σs :

Dsεs

Dt
− ĥ

s
· vs − div(qs) + ρsrs + ês − ρsηs

Dsθs

Dt
− ρs

Dsψs

Dt
(4.77)
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The total stress tensor σ is written as the sum of the partial stress tensors of each phase: σw, σg,

and σs (de Boer, 2005; Coussy, 2004) (ignoring viscosity for water and gas):

σ = σw + σg + σs (4.78)

σw = −nw pw1 (4.79)

σg = −ng pg1 (4.80)

A combination of (4.78)-(4.80) provides:

σs = σ + (nwpw + ngpg)1 (4.81)

The relationship between the total stress tensor and the effective stress tensor is written as (Bishop

and Blight, 1963)

σ = σ′ − p̄1 (4.82)

where σ′ is the effective stress tensor, and p̄ is called averaged pore pressure, which is defined as:

p̄ = (1− χ)pg + χpw (4.83)

where χ is the effective stress parameter (χ = 1 for saturated condition with water; χ = 0 for dry

condition). Combining (4.81)-(4.83) gives:

σs = σ′ + [ng − (1− χ)] pg1+ (nw − χ)pw1 (4.84)

Therefore, substituting (3.63) and (4.84), we derive:

σs :
Dsεs

Dt
= σ′ :

Dsεs

Dt
+ {[ng − (1− χ)] pg + (nw − χ)pw} divvs (4.85)

Let us revisit the definition of the total strain of the solid skeleton (3.65), we have:

σs :
Dsεs

Dt
= σ′ :

Dsεskel,e

Dt
+ αθskeltr(σ

′)
Dsθs

Dt
+ {[ng − (1− χ)] pg + (nw − χ)pw} divvs (4.86)

Setting α = s, and ρ̂s = 0 in (4.53), we write the entropy inequality for the solid skeleton:

ρsθs
Dsηs

D t
− ρsrs + div(qs)−

qs · grad θs

θs
≥ 0 (4.87)
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Substitution of (4.86) into (4.77), and then (4.87) is written as:

σ′ :
Dsεskel,e

Dt
+ αθskeltr(σ

′)
Dsθs

Dt
+ {[ng − (1− χ)] pg + (nw − χ)pw}divvs − ĥ

s
· vs

((((((((
−div(qs) + ρsrs + ês − ρsηs

Dsθs

Dt
− ρs

Dsψs

Dt ((((((((
+div(qs)− ρsrs −

qs · grad θs

θs
≥ 0

(4.88)

Let us derive the internal force drag term ĥ
α
, and recall

ĥ
s
+ ĥ

w
+ ĥ

g
= 0 (4.89)

From the balance of linear momentum equation (4.40), we derive for water and gas phases:

ĥ
w
= −div(σw)− ρwb+ ρ̂wvw (4.90)

ĥ
g
= −div(σg)− ρwb+ ρ̂gvg (4.91)

in which, according to (3.72):

div(σw) = −pw grad(nw)− nw grad(pw) (4.92)

div(σg) = −pg grad(n
g)− ng grad(pg) (4.93)

A combination of (4.89), (4.92) and (4.93) allows us to write:

ĥ
w
· vw + ĥ

g
· vg + ĥ

s
· vs

=ĥ
w
· vw + ĥ

g
· vg − (ĥ

w
+ ĥ

g
) · vs

=ĥ
w
· (vw − vs) + ĥ

g
· (vg − vs)

= [pw grad(nw) + nw grad(pw)− ρwb+ ρ̂wvw] · ṽw

+ [pg grad(n
g) + ng grad(pg)− ρgb+ ρ̂gvg] · ṽg

=ṽDw ·
[
grad(pw)− ρwRb

]
+ ṽDg ·

[
grad(pg)− ρgRb

]

+ pwṽw · grad(nw) + pgṽg · grad(n
g) + ρ̂wvw · ṽw + ρ̂gvg · ṽg

(4.94)

From the balance of mass equation for solid (4.13), we have:

div(vs) = −
1

ns
Dsns

Dt
+ βθs

Dsθs

Dt
(4.95)
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According to Coussy (2004), a simpler functional dependence of the Helmholtz free energy per unit

mass for the solid skeleton is postulated to be:

ψs = ψs(εskel,e, θ, Sw) (4.96)

so that,

Dsψs

Dt
=

∂ψs

∂εskel,e
Dsεskel,e

Dt
+
∂ψs

∂θs
Dsθs

Dt
+
∂ψs

∂Sw

DsSw
Dt

(4.97)

Substituting (4.95) and (4.97) into (4.88) to get entropy inequality for solid, and then combining

that with (4.73) and using (4.94), we arrive at the entropy inequality for the mixture:
{
−ρs

∂ψs

∂θ
+ αθskeltr(σ

′)− ρsηs + 3αθs [(n
g + χ− 1)pg + (nw − χ)pw]

}
Dsθ

Dt

+

(
σ′ − ρs

∂ψs

∂εskel,e

)
:
Dsεskel,e

Dt
−

1

ns
[(ng + χ− 1)pg + (nw − χ)pw]

Dsns

Dt︸ ︷︷ ︸
R1

− ρs
∂ψs

∂Sw

DsSw
Dt

+

(
nw − ρw

∂gw

∂pw

)
Dwpw
Dt

−

(
ρw
∂gw

∂θ
+ ρwηw

)
Dwθ

Dt

+

(
ng − ρg

∂gg

∂pg

)
Dgpg
Dt

−

(
ρg
∂gg

∂θ
+ ρgηw

)
Dgθ

Dt

− ṽDw ·
[
grad(pw)− ρwRb

]
− ṽDg ·

[
grad(pg)− ρgRb

]
−

q · grad θ

θ

−pwṽw · grad(nw)− pgṽg · grad(n
g) + pw

Dwnw

Dt
+ pg

Dgng

Dt︸ ︷︷ ︸
R2

− ρ̂wvw · ṽw − ρ̂gvg · ṽg +
1

2
ρ̂wvw · vw +

1

2
ρ̂gvg · vg ≥ 0

(4.98)

where q = qs + qw + qg, θ = θs = θf . Use of (3.15), and nα = nSα, α = w, g, allows us to write

the terms called R1 in (4.102):

R1 = pw
Dsnw

Dt
+ pg

Dsng

Dt

= (pwSw + pgSg)
Dsn

Dt
− n(pg − pw)

DsSw
Dt

(4.99)

We introduce the definition of suction s:

s = pg − pw (4.100)

If we use χ = Sw (Bishop and Blight, 1963) and ns = 1 − n, the terms called R2 in (4.102) is

written as:

R2 = (−pwSw − pgSg)
Dsn

Dt
(4.101)
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It is straightforward to see that (4.101) will cancel the first term in (4.99). Substitution of (4.99)

and (4.101) into (4.102), we obtain:

{
−ρs

∂ψs

∂θ
+ αθskeltr(σ

′)− ρsηs + βθs [(n
g + χ− 1)pg + (nw − χ)pw]

}
Dsθ

Dt

+

(
σ′ − ρs

∂ψs

∂εskel,e

)
:
Dsεskel,e

Dt
−

[
ns+ ρs

∂ψs

∂Sw

]
DsSw
Dt

+

(
nw − ρw

∂gw

∂pw

)
Dwpw
Dt

−

(
ρw
∂gw

∂θ
+ ρwηw

)
Dwθ

Dt

+

(
ng − ρg

∂gg

∂pg

)
Dgpg
Dt

−

(
ρg
∂gg

∂θ
+ ρgηw

)
Dgθ

Dt

− ṽDw ·
[
grad(pw)− ρwRb

]
− ṽDg ·

[
grad(pg)− ρgRb

]
−

q · grad θ

θ

− ρ̂wvw · ṽw − ρ̂gvg · ṽg +
1

2
ρ̂wvw · vw +

1

2
ρ̂gvg · vg ≥ 0

(4.102)

Again, the thermodynamic arguments (Coleman and Noll, 1963) are adopted to obtain the consti-

tutive relations with respect to solid skeleton and fluids, respectively.

For solid skeleton:

σ′ = ρs
∂ψs

∂ εskel,e
(4.103)

ρsηs = −ρs
∂ψs

∂θ
+ αθskeltr(σ

′) + βθs [(n
g + χ− 1)pg + (nw − χ)pw] (4.104)

ns = −ρs
∂ψs

∂Sw
(4.105)

For fluids, f = w, g

ηf = −
∂gf

∂θ
(4.106)

nf

ρf
=

1

ρfR
=
∂gf

∂pf
(4.107)

Coussy (2004) arrives at the same conclusion as (4.105), (4.106) and (4.107). (See Chapter 6, Page

156 and Chapter 3, Page 39). Thus, the reduced form of entropy inequality of the mixture is

expressed as:

ṽDw ·
[
−grad(pw) + ρwRb

]
+ ṽDg ·

[
−grad(pg) + ρgRb

]
−

q · grad θ

θ

− ρ̂wvw · ṽw − ρ̂gvg · ṽg +
1

2
ρ̂wvw · vw +

1

2
ρ̂gvg · vg ≥ 0

(4.108)
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According to the postulate by Coussy (2004), two inequalities can be derived from (4.108) as follows:

−
q · gradθ

θ
≥ 0 (4.109)

ṽDw ·
[
−grad (pw) + ρfRb

]
≥ 0 (4.110)

ṽDg ·
[
−grad (pg) + ρfRb

]
≥ 0 (4.111)

Combining (4.60) and (4.72), we get:

ρf
Df ef

Dt
= ρf

∂ gf

∂pf

Dfpf
Dt

+ ρf
∂ gf

∂θf
Dfθf

Dt
+ ρfθf

Df ηf

Dt
+ ρfηf

Df θf

Dt

−nf
Df pf
Dt

− nfpfdiv(vf ) +
pf
ρfR

ρ̂f − pf
Df nf

Dt

=

(
ρf
∂ gf

∂pf
− nf

)
Dfpf
Dt

+ ρf
(
∂ gf

∂θf
+ ηf

)
Dfθf

Dt

+ρfθf
Df ηf

Dt
− nfpfdiv(vf ) +

pf
ρfR

ρ̂f − pf
Df nf

Dt
(4.112)

Use of (4.106) and (4.107) allows us to reduce (4.112) to:

ρf
Df ef

Dt
= ρfθf

Df ηf

Dt
− nfpfdiv(vf ) +

pf
ρfR

ρ̂f − pf
Df nf

Dt
(4.113)

Combining (4.75) and (4.97), we get:

Dses

Dt
=

∂ψs

∂εskel,e
Dsεskel,e

Dt
+
∂ψs

∂θs
Dsθs

Dt
+
∂ψs

∂Sw

DsSw
Dt

+ θs
Dsηs

Dt
+ ηs

Dsθs

Dt
(4.114)

Substitution of (4.113) with f = w, g, (4.114), 4.63, (4.86) as well as (4.94) into (4.49), we arrive

at:
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ρwθ
Dw ηw

Dt
− nwpwdiv(vw) +

pw
ρwR

ρ̂w − pw
Dw nw

Dt

+ ρgθ
Dg ηg

Dt
− ngpgdiv(vg) +

pg
ρgR

ρ̂g − pg
Dg ng

Dt

+ ρs
(

∂ψs

∂εskel,e
Dsεskel,e

Dt
+
∂ψs

∂θ

Dsθ

Dt
+
∂ψs

∂Sw

DsSw
Dt

+ θ
Dsηs

Dt
+ ηs

Dsθ

Dt

)

− σ′ :
Dsεskel,e

Dt
− αθskeltr(σ

′)
Dsθ

Dt
− {[ng − (1− χ)] pg + (nw − χ)pw}divvs

+ nw pw divvw + ng pg divvg + ṽDw ·
[
grad(pw)− ρwRb

]
+ ṽDg ·

[
grad(pg)− ρgRb

]

+ pwṽw · grad(nw) + pgṽg · grad(n
g) + ρ̂wvw · ṽw + ρ̂gvg · ṽg

−
1

2
ρ̂wvw · vw −

1

2
ρ̂gvg · vg − ρr + div q + ρ̂wew + ρ̂geg = 0

(4.115)

in the above equation, some terms cancel out in the following way:

−nwpwdiv(vw)− ngpgdiv(vg) + nw pw divvw + ng pg divvg = 0 (4.116)

and use (4.64) gives

pw
ρwR

ρ̂w +
pg
ρgR

ρ̂g + ρ̂wew + ρ̂geg = ρ̂wHw + ρ̂gHg

= ρ̂gv(Hg −Hw)

= ρ̂gvHvap

(4.117)

where, Hvap is called enthalpy of vaporization, or latent heat of vaporization, Hvap =2260 kJ/Kg.

Comparing to (4.99), we get

− pw
Dw nw

Dt
− pg

Dg ng

Dt
+ pwṽw · grad(nw) + pgṽg · grad(n

g)

=
�����������

− (pwSw + pgSg)
Dsn

Dt
+ n(pg − pw)

DsSw
Dt

(4.118)

using (4.95) and (4.101), we have

− {[ng − (1− χ)] pg + (nw − χ)pw} divvs

=− {[ng − (1− χ)] pg + (nw − χ)pw}

(
−

1

ns
Dsns

Dt
+ βθs

Dsθ

Dt

)

=
����������

(pwSw + pgSg)
Dsn

Dt
− βθs {[n

g − (1− χ)] pg + (nw − χ)pw}
Dsθ

Dt

(4.119)
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The first terms in (4.118) and (4.119) cancel out. Substituting (4.117) (4.119) into (4.115), we

arrive at:

ρwθ
Dw ηw

Dt
+ ρwθ

Dwηw

Dt
+ ρgθ

Dgηg

Dt
+

[
n s+ ρs

∂ψs

∂Sw

]
DsSw
Dt

+

(
ρs

∂ψs

∂εskel,e
− σ′

)
:
Dsεskel,e

Dt

+

{
ρs
∂ψs

∂θ
− αθskeltr(σ

′) + ρsηs − βθs [(n
g + χ− 1)pg + (nw − χ)pw]

}
Dsθ

Dt

+ ṽDw ·
[
grad(pw)− ρwRb

]
+ ṽDg ·

[
grad(pg)− ρgRb

]
+ ρ̂wvw · ṽw + ρ̂gvg · ṽg

−
1

2
ρ̂wvw · vw −

1

2
ρ̂gvg · vg − ρr + div q + ρ̂gvHvap = 0

(4.120)

Use of the conclusions (4.103)-(4.105) provides:

ρsθ
Dsηs

Dt
+ ρwθ

Dwηw

Dt
+ ρgθ

Dgηg

Dt
− ρ r + div q + ρ̂gvHvap

−
1

2
ρ̂wvw · vw −

1

2
ρ̂gvg · vg + ρ̂wvw · ṽw + ρ̂gvg · ṽg

+ ṽDw ·
[
grad(pw)− ρwRb

]
+ ṽDg ·

[
grad(pg)− ρgRb

]
= 0

(4.121)

Introduce the definition of the heat capacity

ρsθs
Dsηs

Dt
= ρsCs

Dsθs

Dt
; ρwθw

Dwηw

Dt
= ρwCw

Dwθw

Dt
; ρgθg

Dgηg

Dt
= ρgCg

Dgθg

Dt
(4.122)

where, Cs, Cw and Cg are the heat capacity per unit mass of solid, water and gas phases. Thus

we can rewrite (4.121) with the derivatives expressed in terms of the motion of the solid phase:

(ρC)m
Dsθ

Dt
+ ρwRCw ṽDw · grad θ + ρgRCg ṽDg · grad θ − ρr + div q

+ ρ̂gvHvap −
1

2
ρ̂wvw · vw −

1

2
ρ̂gvg · vg + ρ̂wvw · ṽw + ρ̂gvg · ṽg

+ ṽDw ·
[
grad(pw)− ρwRb

]
+ ṽDg ·

[
grad(pg)− ρgRb

]
= 0

(4.123)

where (ρC)m = ρsCs + ρw Cw + ρg Cg. It is easy to see the unit of each term in (4.123) is W/m3.

The expression of the term ρ̂gv can be obtained from the balance equation of mass for liquid water

(4.21).

4.1.4 Summary of governing equations

We summarize the four governing equations as follows: Balance of linear momentum:

divσ + ρb = 0 (4.124)
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Balance of mass for water species (liquid water and water vapor):

(ρwRSw + ρgvRSg)div vs −
[
(1− n)(ρwRSw + ρgvRSg)β

θ
s + nρwRSwβ

θ
w

] Dsθ

D t

+ n(ρwR − ρgvR)
DsSw
Dt

+ nSg
DsρgvR

Dt
+ div(ρgvR ṽDgv + ρwR ṽDw ) = 0

(4.125)

Balance of mass for dry air:

ρgaRSgdivvs − ρgaRSgβ
θ
s (1− n)

Dsθ

D t
+ nSg

DsρgaR

Dt
− nρgaR

DsSw
Dt

+ div(ρgaR ṽDga) = 0 (4.126)

Energy conservation of mixture:

(ρC)m
Dsθ

Dt
+ ρwRCw ṽDw · grad θ + ρgRCg ṽDg · grad θ − ρr + div q

+ ρ̂gvHvap −
1

2
ρ̂wvw · vw −

1

2
ρ̂gvg · vg + ρ̂wvw · ṽw + ρ̂gvg · ṽg

+ ṽDw ·
[
grad(pw)− ρwRb

]
+ ṽDg ·

[
grad(pg)− ρgRb

]
= 0

(4.127)

in which

DsρgvR

Dt
=

∂ρgvR

∂s

Dss

Dt
+
∂ρgvR

∂θ

Dsθ

Dt

=
∂ρgvR

∂s

Dspg
Dt

−
∂ρgvR

∂s

Dspw
Dt

+
∂ρgvR

∂θ

Dsθ

Dt
(4.128)

and,

DsSw
Dt

=
∂Sw
∂s

Dss

Dt
=
∂Sw
∂s

Dspg
Dt

−
∂Sw
∂s

Dspw
Dt

(4.129)

qi = −Kij θ,j +∆Hvap(Jv)i (4.130)

where, q is the heat flux (W/m2), and Jv is the mass flux of water vapor (kg/m2s). ∆Hvap is the

heat of vaporization of water.
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4.2 Finite element formulations

Ωe

Ωh

uh

phw, p
h
g , θ

h

1

2

3

4

7

8
9

5

6

Ωe

η

ξ

r

z

Figure 4.1: Discretization into mixed quadrilateral elements.

A weighted residual method is used to formulate the coupled variational equations from the

governing differential equations, which are then discretized using finite elements. Quadrilateral

finite elements with biquadratic interpolation in solid-skeleton displacement, bilinear in pore water

and gas pressures and soil mixture temperature are employed to ensure numerical stability. Weight-

ing functions wi(r), η(r), ω(r) and ϕ(r) are used for displacement, pore water pressure, pore gas

pressure, and mixture temperature, respectively.

uh(r) = N e,u · de wh(r) = Ne,u · ce (4.131)

phw(r) = N e,p · pew ηh(r) = N e,p ·αe (4.132)

phg (r) = Ne,p · peg ωh(r) = N e,p · βe (4.133)

θh(r) = Ne,p · θe ϕh(r) = N e,p · γe (4.134)

in which r = [r, z] is the vector of coordinates, where, r is radial and z is axial coordinate.

The coupled thermo-poro-mechanical FE equations for partially saturated soils are written in the

following form:
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(1) Balance of linear momentum for the mixture

nel

A
e=1

(ce)T ·





∫

Ωe

(Be,u)T · σ′ dv

︸ ︷︷ ︸
f

d,int

e (d
e
)

−

∫

Ωe

(B̃
e,u

)T ·N e,p ·
[
χpew + (1− χ)peg

]
dv

︸ ︷︷ ︸
f

dp,int

e (pe
w,pe

g)

−

∫

Ωe

3Kskelαθskel(B̃
e,u

)T ·N e,θ · (θe − θe0) dv

︸ ︷︷ ︸
f

dθ,int

e (θ
e
)

=

∫

Ωe

ρ(N e,u)T b dv

︸ ︷︷ ︸
f

df,ext

e (d
e
,pe

w,p
e
g ,θ

e
)

+

∫

Γe
t

(N e,u)T tσda

︸ ︷︷ ︸
f

dt,ext

e





(4.135)

(2) Balance of mass for the water species

nel

A
e=1

(αe)T ·





∫

Ωe

(ρwRSw + ρgvRSg)(N
e,p)T B̃

e,u
dv

︸ ︷︷ ︸
k

wd
e (pe

w,p
e
g,θ

e
)

· {ḋ
e
}

−

∫

Ωe

[
nSg

∂ρgvR

∂s
+ n(ρwR − ρgvR)

∂Sw
∂s

]
(N e,p)TN e,pdv

︸ ︷︷ ︸
k

wg
e (d

e
,pe

w,p
e
g,θ

e
)

· {ṗew − ṗeg}

+

∫

Ωe

(
nSg

∂ρgvR

∂θ
− βswg

)
(N e,p)TN e,θdv

︸ ︷︷ ︸
k

wθ
e (d

e
,pe

w,p
e
g,θ

e
)

·{θ̇
e
} −

∫

Ωe

ρwR(Be,p)T ṽDw dv

︸ ︷︷ ︸
f

w1,int

e (d
e
,pe

w,pe
g ,θ

e
)

−

∫

Ωe

ρgvR(Be,p)T ṽDgv dv

︸ ︷︷ ︸
f

w2,int

e (d
e
,pe

w,pe
g,θ

e
)

=

∫

Γe

(ρwRSw + ρgvRSgv)(N e,p)Tda

︸ ︷︷ ︸
f

w,ext

e (pe
w,p

e
g,θ

e
)





(4.136)

(3) Balance of mass for the gas

nel

A
e=1

(βe)T ·





∫

Ωe

ρgaRSg(N
e,p)T B̃

e,u
dv

︸ ︷︷ ︸
k

gd
e (pe

w,p
e
g ,θ

e
)

·ḋ
e

+

∫

Ωe

[
nSg

∂ρgaR

∂pw
+ nρgaR

∂Sw
∂s

]
(N e,p)TNe,pdv

︸ ︷︷ ︸
k

gw
e (d

e
,pe

w,pe
g,θ

e
)

·ṗew
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+

∫

Ωe

[
nSg

∂ρgaR

∂pg
− nρgaR

∂Sw
∂s

]
(N e,p)TNe,pdv

︸ ︷︷ ︸
k

gg
e (d

e
,pe

w,p
e
g ,θ

e
)

·ṗeg

+

∫

Ωe

(
nSg

∂ρgaR

∂θ
− βs(1− n)ρgaRSg

)
(N e,p)TN e,θdv

︸ ︷︷ ︸
k

gθ
e (d

e
,pe

w,p
e
g ,θ

e
)

·θ̇
e

−

∫

Ωe

ρgaR(Be,p)T ṽDgadv

︸ ︷︷ ︸
f

g,int

e (d
e
,pe

w,pe
g ,θ

e
)

=

∫

Γe

ρgaRSga(N e,p)Tda

︸ ︷︷ ︸
f

g,ext

e (pe
w,p

e
g ,θ

e
)





(4.137)

(4) Balance of energy for the mixture

nel

A
e=1

(γe)T ·





∫

Ωe

−∆Hvapρ
wRSw(N

e,θ)T B̃
e,u
dv

︸ ︷︷ ︸
k

θd
e (pe

w,p
e
g,θ

e
)

·ḋ
e

+

∫

Ωe

nρwR∆Hvap

(
∂Sw
∂s

)
(N e,θ)TN e,pdv

︸ ︷︷ ︸
k

θw
e (d

e
,pe

w,pe
g ,θ

e
)

·ṗew

−

∫

Ωe

nρwR∆Hvap

(
∂Sw
∂s

)
(N e,θ)TN e,pdv

︸ ︷︷ ︸
k

θg
e (d

e
,pe

w,pe
g ,θ

e
)

·ṗeg

+

∫

Ωe

{
(ρC)eff +∆HvapSwρ

wR[βθs (1− n) + βθw]
}
(N e,θ)TN e,θdv

︸ ︷︷ ︸
k

θθ
e (d

e
,pe

w,pe
g,θ

e
)

·θ̇
e

+

∫

Ωe

[
(N e,θ)T (ρwRCwṽDw + ρgRCgṽDg )

T +Kθ
eff (B

e,θ)T
]
·Be,θ · θdv

︸ ︷︷ ︸
f

θ1,int

e (d
e
,pe

w,pe
g ,θ

e
)

+

∫

Ωe

∆Hvap(B
e,θ)T (ρwRṽsw − ρgvRṽsgv) dv

︸ ︷︷ ︸
f

θ2,int

e (d
e
,pe

w,pe
g ,θ

e
)

=

∫

Ωe

(N e,θ)T q dv

︸ ︷︷ ︸
f

θ1,ext

e

−

∫

Γe

∆Hvapρ
wRsw(N e,θ)Tda

︸ ︷︷ ︸
f

θ2,ext

e (θ
e
)

+

∫

Ωe

ρ(N e,θ)T r dv

︸ ︷︷ ︸
f

θ3,ext

e (d
e
,pe

w,p
e
g,θ)





(4.138)
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The above equations can be simply written as

nel

A
e=1

(ce)T ·
[
fd,INTe − fdp,INTe = fdf,EXTe + fdt,EXTe

]
(4.139)

nel

A
e=1

(αe)T ·
[
kwde · ḋ

e
− kwge · ṗew + kwge · ṗeg + kwθe · θ̇

e
− fw1,INTe − fw2,INTe

= fw,EXTe

]
(4.140)

nel

A
e=1

(βe)T ·
[
kgde · ḋ

e
+ kgwe · ṗew + kgge · ṗeg + kgθe · θ̇

e
− fg,INTe = f g,EXTe

]
(4.141)

nel

A
e=1

(γe)T ·
[
kθde · ḋ

e
+ kθwe · ṗew − kθge · ṗeg + kθθe · θ̇

e
+ f θ1,INTe + f θ2,INTe

= f θ1,EXTe − f θ2,EXTe + fθ3,EXTe

]
(4.142)

After element assembly, we have the coupled nonlinear PDEs to solve using generalized trapezoidal

integration in time, and Newton-Raphson iteration.





F d,INT − F dp,INT − F dθ,INT = F df,EXT + F dt,EXT

Kwd · ḋ−Kwg · ṗw +Kwg · ṗg +Kwθ · θ̇ − Fw1,INT − Fw2,INT = Fw,EXT

Kgd · ḋ+Kgw · ṗw +Kgg · ṗg +Kgθ · θ̇ − F g,INT = F g,EXT

Kθd · ḋ+Kθw · ṗw −Kθg · ṗg +Kθθ · θ̇ + F θ1,INT + F θ2,INT

= F θ1,EXT − F θ2,EXT + F θ3,EXT

(4.143)

Let us write the governing equations in matrix form:

C(D) · Ḋ + F INT (D) = FEXT (D) (4.144)

Ḋ =




ḋ

ṗw

ṗg

θ̇




, D =




d

pw

pg

θ




, C =




0 0 0 0

Kwd −Kwg Kwg Kwθ

Kgd Kgw Kgg Kgθ

Kθd Kθg −Kθg Kθθ



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F INT =




F d,INT − F dp,INT − F dθ,INT

−Fw1,INT − F w2,INT

−F g,INT

F θ1,INT + F θ2,INT




,FEXT =




F df,EXT + F dt,EXT

Fw,EXT

F g,EXT

F θ1,EXT + F θ2,EXT + F θ3,EXT




Recall the generalized trapezoidal integration:

C(Dn+1) · V n+1 + F INT (Dn+1) = FEXT (Dn+1)

Dn+1 = D̃n+1 + α∆tV n+1, D̃n+1 = Dn +∆t(1− α)V n

(4.145)

Newton-Raphson iteration algorithm will be used to solve for V k+1
n+1 with the current value V k

n+1.

R(V k+1
n+1) = C(Dk+1

n+1) · V
k+1
n+1 + F INT (Dk+1

n+1)− FEXT (Dk+1
n+1) = 0

= Rk + ∂R
k

∂V
· δV

=⇒ δV = −
(
∂R

k

∂V

)−1

·Rk

V k+1
n+1 = V k

n+1 + δV

Dk+1
n+1 = D̃n+1 + α∆tV k+1

n+1

(4.146)

The consistent tangent used can be written as:

∂R

∂V
=

(
∂C

∂D
·
∂D

∂V

)
· V +C +

∂F INT

∂D
·
∂D

∂V
−
∂FEXT

∂D
·
∂D

∂V
(4.147)

where,

∂D

∂V
= α∆t (4.148)

C · V =




0

Kwd · ḋ−Kwg · ṗw +Kwg · ṗg +Kwθ · θ̇

Kgd · ḋ+Kgw · ṗw +Kgg · ṗg +Kgθ · θ̇

Kθd · ḋ+Kθg · ṗw −Kθg · ṗgv +Kθθ · θ̇




(4.149)

then,
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∂C

∂D
· V =




0

∂K
wd

∂d
· ḋ− ∂K

wg

∂d
· ṗw + ∂K

wg

∂d
· ṗg +

∂K
wθ

∂d
· θ̇

∂K
gd

∂d
· ḋ+ ∂K

gw

∂d
· ṗw + ∂K

gg

∂d
· ṗg +

∂K
gθ

∂d
· θ̇

∂K
θd

∂d
· ḋ+ ∂K

θg

∂d
· ṗw − ∂K

θg

∂d
· ṗg +

∂K
θθ

∂d
· θ̇

0

∂K
wd

∂pw
· ḋ− ∂K

wg

∂pw
· ṗw + ∂K

wg

∂pw
· ṗg +

∂K
wθ

∂pw
· θ̇

∂K
gd

∂pw
· ḋ+ ∂K

gw

∂pw
· ṗw + ∂K

gg

∂pw
· ṗg +

∂K
gθ

∂pw
· θ̇

∂K
θd

∂pw
· ḋ+ ∂K

θg

∂pw
· ṗw − ∂K

θg

∂pw
· ṗg +

∂K
θθ

∂pw
· θ̇

0

∂K
wd

∂pg
· ḋ− ∂K

wg

∂pg
· ṗw + ∂K

wg

∂pg
· ṗg +

∂K
wθ

∂pg
· θ̇

∂K
gd

∂pg
· ḋ+ ∂K

gw

∂pg
· ṗw + ∂K

gg

∂pg
· ṗg +

∂K
gθ

∂pg
· θ̇

∂K
θd

∂pg
· ḋ+ ∂K

θg

∂pg
· ṗw − ∂K

θg

∂pg
· ṗg +

∂K
θθ

∂pg
· θ̇

0

∂K
wd

∂θ
· ḋ− ∂K

wg

∂θ
· ṗw + ∂K

wg

∂θ
· ṗg +

∂K
wθ

∂θ
· θ̇

∂K
gd

∂θ
· ḋ+ ∂K

gw

∂θ
· ṗw + ∂K

gg

∂θ
· ṗg +

∂K
gθ

∂θ
· θ̇

∂K
θd

∂θ
· ḋ+ ∂K

θg

∂θ
· ṗw − ∂K

θg

∂θ
· ṗg +

∂K
θθ

∂θ
· θ̇




(4.150)

∂F INT

∂D
=

[
∂F INT

∂d
∂F INT

∂pw

∂F INT

∂pg

∂F INT

∂θ

]
(4.151)

∂F INT

∂d
=




∂F
d,INT

∂d

−∂F
w1,INT

∂d
− ∂F

w2,INT

∂d

−∂F
g,INT

∂d

∂F
θ1,INT

∂d
+ ∂F

θ2,INT

∂d




,
∂F INT

∂pw
=




−∂F
dp,INT

∂pw

−∂F
w1,INT

∂pw
− ∂F

w2,INT

∂pw

−∂F
g,INT

∂pw

∂F
θ1,INT

∂pw
+ ∂F

θ2,INT

∂pw




∂F INT

∂pg
=




−∂F
dp,INT

∂pg

−∂F
w1,INT

∂pg
− ∂F

w2,INT

∂pg

−∂F g,INT

∂pg

∂F
θ1,INT

∂pg
+ ∂F

θ2,INT

∂pg




,
∂F INT

∂θ
=




−∂F dθ,INT

∂θ

−∂F w1,INT

∂θ
− ∂F w2,INT

∂θ

−∂F g,INT

∂θ

∂F
θ1,INT

∂θ
+ ∂F

θ2,INT

∂θ



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∂FEXT

∂D
=

[
∂F

EXT

∂d
∂F

EXT

∂pe
w

∂F
EXT

∂pe
g

∂F
EXT

∂θ

]
(4.152)

∂FEXT

∂d
=




∂F
df,EXT

∂d

0

0

∂F
θ3,EXT

∂d




,
∂FEXT

∂pw
=




∂F
d,EXT

∂pw

∂F
w,EXT

∂pw

∂F
g,EXT

∂pw

∂F
θ3,EXT

∂pw




∂FEXT

∂pg
=




∂F
d,EXT

∂pg

∂F w,EXT

∂pg

∂F
g,EXT

∂pg

∂F
θ3,EXT

∂pg




,
∂FEXT

∂θ
=




∂F
d,EXT

∂θ

∂F
w,EXT

∂θ

∂F
g,EXT

∂θ

−∂F
θ2,EXT

∂θ
+ ∂F

θ3,EXT

∂θ




The components in those tangent functions are written as follows:

∂Kwd

∂d
· ḋ = 0 (4.153)

∂Kgd

∂d
· ḋ = 0 (4.154)

∂Kθd

∂d
· ḋ = 0 (4.155)

∂Kwg

∂d
· ṗw =

nel

A
e=1

∂kwge
∂de

· ṗew

=
nel

A
e=1

∫

Ωe

ṗw

(
Sg
∂ρgvR

∂s
+ (ρwR − ρgvR)

∂Sw
∂s

)
(N e,p)T ⊗

∂n

∂de
da (4.156)

∂Kgw

∂d
· ṗw =

nel

A
e=1

∂kgwe
∂de

· ṗew

=
nel

A
e=1

∫

Ωe

ṗw

(
Sg
∂ρgaR

∂pw
+ ρgaR

∂Sw
∂s

)
(N e,p)T ⊗

∂n

∂de
da (4.157)

∂Kθg

∂d
· ṗw =

nel

A
e=1

∂kθge
∂de

· ṗew

=
nel

A
e=1

∫

Ωe

ṗw
(
ρwR∆Hvap

) ∂Sw
∂s

(N e,p)T ⊗
∂n

∂de
da (4.158)
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∂Kwg

∂d
· ṗg =

nel

A
e=1

∂kwge
∂de

· ṗeg

=
nel

A
e=1

∫

Ωe

ṗg

(
Sg
∂ρgvR

∂s
+ (ρwR − ρgvR)

∂Sw
∂s

)
(N e,p)T ⊗

∂n

∂de
da (4.159)

∂Kgg

∂d
· ṗg =

nel

A
e=1

∂kgge
∂de

· ṗeg

=
nel

A
e=1

∫

Ωe

ṗg

(
Sg
∂ρgaR

∂pg
− ρgaR

∂Sw
∂s

)
(N e,p)T ⊗

∂n

∂de
da (4.160)

∂Kθg

∂d
· ṗg =

nel

A
e=1

∂kθge
∂de

· ṗeg

=
nel

A
e=1

∫

Ωe

ṗg
(
ρwR∆Hvap

) ∂Sw
∂s

(N e,p)T ⊗
∂n

∂de
da (4.161)

∂Kwθ

∂d
· θ̇ =

nel

A
e=1

∂kwθe
∂de

· θ̇
e

=
nel

A
e=1

∫

Ωe

θ̇(N e,p)T ⊗

(
∂n

∂de
Sg
∂ρgvR

∂θ
−
∂βswg
∂de

)
da (4.162)

∂Kgθ

∂d
· θ̇ =

nel

A
e=1

∂kgθe
∂de

· θ̇
e

=
nel

A
e=1

∫

Ωe

θ̇(N e,p)T ⊗
∂n

∂de

(
Sg
∂ρgaR

∂θ
+ βsρ

gaRSg

)
da (4.163)

∂Kθθ

∂d
· θ̇ =

nel

A
e=1

∂kθθe
∂de

· θ̇
e

=
nel

A
e=1

∫

Ωe

θ̇

[
∂(ρC)eff

∂n
+∆HvapSwρ

wR(βw − βs)

]
· (N e,θ)T ⊗

∂n

∂de
da (4.164)

∂Kwd

∂pw
· ḋ =

nel

A
e=1

∂kwde
∂pew

· ḋ
e

=
nel

A
e=1

∫

Ωe

ε̇v(N
e,p)T ·

(
ρgvR

∂Sw
∂s

− ρwR
∂Sw
∂s

− Sg
∂ρgvR

∂s

)
N e,pda (4.165)

∂Kgd

∂pw
· ḋ =

nel

A
e=1

∂kgde
∂pew

· ḋ
e

=
nel

A
e=1

∫

Ωe

ε̇v(N
e,p)T ·

(
ρgaR

∂Sw
∂s

+ Sg
∂ρgaR

∂pw

)
N e,pda (4.166)

∂Kθd

∂pw
· ḋ =

nel

A
e=1

∂kθde
∂pew

· ḋ
e
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=
nel

A
e=1

∫

Ωe

ε̇v(N
e,θ)T ·

(
∆Hvapρ

wR∂Sw
∂s

)
Ne,pda (4.167)

∂Kwg

∂pw
· ṗw =

nel

A
e=1

∂kwge
∂pew

· ṗew

=
nel

A
e=1

∫

Ωe

ṗw ·

[
2n
∂ρgvR

∂s

∂Sw
∂s

− nSg
∂2ρgvR

∂s2
− n(ρwR − ρgvR)

∂2Sw
∂s2

]

·(N e,p)T ·N e,pda (4.168)

∂Kgw

∂pw
· ṗw =

nel

A
e=1

∂kgwe
∂pew

· ṗew

=
nel

A
e=1

∫

Ωe

ṗw(N
e,p)T ·

(
nSg

∂2ρgaR

∂pw2
− nρgaR

∂2Sw
∂s2

)
N e,pda (4.169)

∂Kθg

∂pw
· ṗw =

nel

A
e=1

∂kθge
∂pew

· ṗew

=
nel

A
e=1

∫

Ωe

ṗw ·

(
−nρwR∆Hvap

∂2Sw
∂s2

)
· (N e,θ)T ·Ne,pda (4.170)

∂Kwg

∂pw
· ṗg =

nel

A
e=1

∂kwge
∂pew

· ṗeg

=
nel

A
e=1

∫

Ωe

ṗg · n

(
2
∂ρgvR

∂s

∂Sw
∂s

− Sg
∂2ρgvR

∂s2
− (ρwR − ρgvR)

∂2Sw
∂s2

)

·(N e,p)T ·Ne,pda (4.171)

∂Kgg

∂pw
· ṗg =

nel

A
e=1

∂kgge
∂pew

· ṗeg

=
nel

A
e=1

∫

Ωe

ṗg · n

((
∂ρgaR

∂pg
−
∂ρgaR

∂pw

)
∂Sw
∂s

+ Sg
∂2ρgaR

∂pg∂pw
+ ρgaR

∂2Sw
∂s2

)

·(N e,p)T ·Ne,pda (4.172)

∂Kθg

∂pw
· ṗg =

nel

A
e=1

∂kθge
∂pew

· ṗeg

=
nel

A
e=1

∫

Ωe

ṗg ·

(
−nρwR∆Hvap

∂2Sw
∂s2

)
· (N e,p)T ·N e,pda (4.173)

∂Kwθ

∂pw
· θ̇ =

nel

A
e=1

∂kwθe
∂pew

· θ̇
e

=
nel

A
e=1

∫

Ωe

θ̇(N e,p)T ·

[
n
∂ρgvR

∂θ

∂Sw
∂s

− nSg
∂2ρgvR

∂s∂θ
+
∂βswg
∂s

]
N e,pda (4.174)

∂Kgθ

∂pw
· θ̇ =

nel

A
e=1

∂kgθe
∂pew

· θ̇
e
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=
nel

A
e=1

∫

Ωe

θ̇ ·

[
n
∂ρgaR

∂θ

∂Sw
∂s

+ nSg
∂2ρgaR

∂pw∂θ
− βs(1− n)Sg

∂ρgaR

∂pw

−βs(1− n)ρgaR
∂Sw
∂s

]
· (N e,p)T ·Ne,pda (4.175)

∂Kθθ

∂pw
· θ̇ =

nel

A
e=1

∂kθθe
∂pew

· θ̇
e

=
nel

A
e=1

∫

Ωe

θ̇ ·

[
∂(ρC)eff
∂pw

−∆Hvapρ
wR[βwn+ βs(1− n)]

∂Sw
∂s

]

·(N e,θ)T ·N e,pda (4.176)

∂Kwd

∂pg
· ḋ =

nel

A
e=1

∂kwde
∂peg

· ḋ
e

=
nel

A
e=1

∫

Ωe

ε̇v(N
e,p)T ·

(
ρwR

∂Sw
∂s

− ρgvR
∂Sw
∂s

+ Sg
∂ρgvR

∂s

)
N e,pda (4.177)

∂Kgd

∂pg
· ḋ =

nel

A
e=1

∂kgde
∂peg

· ḋ
e

=
nel

A
e=1

∫

Ωe

ε̇v(N
e,p)T ·

(
Sg
∂ρgaR

∂pg
− ρgaR

∂Sw
∂s

)
N e,pda (4.178)

∂Kθd

∂pg
· ḋ =

nel

A
e=1

∂kθde
∂peg

· ḋ
e

=
nel

A
e=1

∫

Ωe

ε̇v(N
e,θ)T ·

(
−∆Hvapρ

wR∂Sw
∂s

)
N e,pda (4.179)

∂Kwg

∂pg
· ṗw =

nel

A
e=1

∂kwge
∂peg

· ṗew

=
nel

A
e=1

∫

Ωe

ṗw ·

(
−2n

∂ρgvR

∂s

∂Sw
∂s

+ nSg
∂2ρgvR

∂s2
+ n(ρwR − ρgvR)

∂2Sw
∂s2

)

·(N e,p)T ·N e,pda (4.180)

∂Kgw

∂pg
· ṗw =

nel

A
e=1

∂kgwe
∂peg

· ṗew

=
nel

A
e=1

∫

Ωe

ṗw · n

[
∂Sw
∂s

(
∂ρgaR

∂pg
−
∂ρgaR

∂pg

)
+ Sg

∂2ρgaR

∂pw∂pg
+ ρgaR

∂2Sw
∂s2

]

·(N e,p)T ·N e,pda (4.181)

∂Kθg

∂pg
· ṗw =

nel

A
e=1

∂kθge
∂peg

· ṗew

=
nel

A
e=1

∫

Ωe

ṗw ·

(
nρwR∆Hvap

∂2Sw
∂s2

)
· (N e,p)T ·N e,pda (4.182)
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∂Kwg

∂pg
· ṗg =

nel

A
e=1

∂kwge
∂peg

· ṗeg

=
nel

A
e=1

∫

Ωe

ṗg(N
e,p)T

[
−2n

∂ρgvR

∂s

∂Sw
∂s

+ nSg
∂2ρgvR

∂s2
+ n(ρwR − ρgvR)

∂2Sw
∂s2

]

·(N e,p)T ·N e,pda (4.183)

∂Kgg

∂pg
· ṗg =

nel

A
e=1

∂kgge
∂peg

· ṗeg

=
nel

A
e=1

∫

Ωe

ṗg · n

(
−2

∂ρgaR

∂pg

∂Sw
∂s

+ Sg
∂2ρgaR

∂pg2
− ρgaR

∂2Sw
∂s2

)

·(N e,p)T ·N e,pda (4.184)

∂Kθg

∂pg
· ṗg =

nel

A
e=1

∂kθge
∂peg

· ṗeg

=
nel

A
e=1

∫

Ωe

ṗg ·

(
nρwR∆Hvap

∂2Sw
∂s2

)
· (N e,p)T ·Ne,pda (4.185)

∂Kwθ

∂pg
· θ̇ =

nel

A
e=1

∂kwθe
∂peg

· θ̇
e

=
nel

A
e=1

∫

Ωe

θ̇ ·

[
−n

∂ρgvR

∂θ

∂Sw
∂s

+ nSg
∂2ρgvR

∂s∂θ
−
∂βswg
∂s

]

·(N e,p)T ·N e,pda (4.186)

∂Kgθ

∂pg
· θ̇ =

nel

A
e=1

∂kgθe
∂peg

· θ̇
e

=
nel

A
e=1

∫

Ωe

θ̇ ·

[
−n

∂ρgaR

∂θ

∂Sw
∂s

+ nSg
∂2ρgaR

∂pg∂θ
− βs(1− n)Sg

∂ρgaR

∂pg

+βs(1− n)ρgaR
∂Sw
∂s

]
· (N e,p)T ·N e,pda (4.187)

∂Kθθ

∂pg
· θ̇ =

nel

A
e=1

∂kθθe
∂peg

· θ̇
e

=
nel

A
e=1

∫

Ωe

θ̇ ·

{
∂(ρC)eff
∂pg

+∆Hvapρ
wR[βwn+ βs(1− n)]

∂Sw
∂s

}

·(N e,θ)T ·N e,pda (4.188)

∂Kwd

∂θ
· ḋ =

nel

A
e=1

∂kwde
∂θe

· ḋ
e

=
nel

A
e=1

∫

Ωe

ε̇v(N
e,p)T ·

(
Sw

∂ρwR

∂θ
+ Sg

∂ρgvR

∂θ

)
N e,θda (4.189)
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∂Kgd

∂θ
· ḋ =

nel

A
e=1

∂kgde
∂θe

· ḋ
e

=
nel

A
e=1

∫

Ωe

ε̇v(N
e,p)T ·

(
∂ρgaR

∂θ
Sg

)
N e,θda (4.190)

∂Kθd

∂θ
· ḋ =

nel

A
e=1

∂kθde
∂θe

· ḋ
e

=
nel

A
e=1

∫

Ωe

ε̇v(N
e,p)T ·

(
−∆HvapSw

∂ρwR

∂θ

)
N e,θda (4.191)

∂Kwg

∂θ
· ṗw =

nel

A
e=1

∂kwge
∂θe

· ṗew

=
nel

A
e=1

∫

Ωe

ṗw(N
e,p)T ·

[
nSg

∂2ρgvR

∂s∂θ
+ n

(
∂ρwR

∂θ
−
∂ρgvR

∂θ

)
∂Sw
∂s

]

·(N e,p)T ·N e,θda (4.192)

∂Kgw

∂θ
· ṗw =

nel

A
e=1

∂kgwe
∂θe

· ṗew

=
nel

A
e=1

∫

Ωe

ṗw(N
e,p)T ·

(
nSg

∂2ρgaR

∂pw∂θ
+ n

∂ρgaR

∂θ

∂Sw
∂s

)
N e,θda (4.193)

∂Kθg

∂θ
· ṗw =

nel

A
e=1

∂kθge
∂θe

· ṗew

=
nel

A
e=1

∫

Ωe

ṗw(N
e,θ)T ·

(
n∆Hvap

∂ρwR

∂θ

∂Sw
∂s

)
Ne,θda (4.194)

∂Kwg

∂θ
· ṗg =

nel

A
e=1

∂kwge
∂θe

· ṗeg

=
nel

A
e=1

∫

Ωe

ṗg ·

[
nSg

∂2ρgvR

∂s∂θ
+ n

(
∂ρwR

∂θ
−
∂ρgvR

∂θ

)
∂Sw
∂s

]

·(N e,p)T ·Ne,θda (4.195)

∂Kgg

∂θ
· ṗg =

nel

A
e=1

∂kgge
∂θe

· ṗeg

=
nel

A
e=1

∫

Ωe

ṗg(N
e,p)T ·

(
nSg

∂2ρgaR

∂pg∂θ
− n

∂ρgaR

∂θ

∂Sw
∂s

)
N e,θda (4.196)

∂Kθg

∂θ
· ṗg =

nel

A
e=1

∂kθge
∂θe

· ṗeg

=
nel

A
e=1

∫

Ωe

ṗg(N
e,θ)T ·

(
n∆Hvap

∂ρwR

∂θ

∂Sw
∂s

)
N e,θda (4.197)
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∂Kwθ

∂θ
· θ̇ =

nel

A
e=1

∂kwθe
∂θe

· θ̇
e

=
nel

A
e=1

∫

Ωe

θ̇e(N e,p)T ·

(
nSg

(∂)2ρgvR

∂θ2
−
∂βswg
∂θ

)
N e,θda (4.198)

∂Kgθ

∂θ
· θ̇ =

nel

A
e=1

∂kgθe
∂θe

· θ̇
e

=
nel

A
e=1

∫

Ωe

θ̇e(N e,p)T ·

(
nSg

(∂)2ρgaR

∂θ2
− βs(1− n)Sg

∂ρgaR

∂θ

)
N e,θda (4.199)

∂Kθθ

∂θ
· θ̇ =

nel

A
e=1

∂kθθe
∂θe

· θ̇
e

=
nel

A
e=1

∫

Ωe

θ̇ ·

[
∂(ρC)eff

∂θ
+∆HvapSw[βwn+ βs(1− n)]

∂ρwR

∂θ

]

·(N e,θ)T ·N e,θda (4.200)

∂F
d,INT

∂d
=

nel

A
e=1

∂fd,INTe

∂de
=

nel

A
e=1

∫

Ωe

(Be,u)T
∂σ′

∂ε
Be,uda (4.201)

∂F
w1,INT

∂d
=

nel

A
e=1

∂fw1,INTe

∂de
=

nel

A
e=1

∫

Ωe

ρwR(Be,p)T
∂ṽDw
∂d

da (4.202)

∂F
w2,INT

∂d
=

nel

A
e=1

∂fw2,INTe

∂de
=

nel

A
e=1

∫

Ωe

ρgvR(Be,p)T
∂ṽDgv
∂d

da (4.203)

∂F
g,INT

∂d
=

nel

A
e=1

∂f g,INTe

∂de
=

nel

A
e=1

∫

Ωe

ρgaR(Be,p)T
∂ṽDga
∂d

da (4.204)

∂F
θ1,INT

∂d
=

nel

A
e=1

∂f θ1,INTe

∂de

=
nel

A
e=1

∫

Ωe

(N e,θ)T (Be,θθe)T

(
ρwRCw

∂ṽDw
∂d

+ ρgRCg
∂ṽDg
∂d

)
da (4.205)

∂F
θ2,INT

∂d
=

nel

A
e=1

∂f θ2,INTe

∂de
=

nel

A
e=1

∫

Ωe

∆Hvapρ
wR(Be,θ)T

∂ṽDw
∂d

da (4.206)

∂F dp,INT

∂pw
=

nel

A
e=1

∂fdp,INTe

∂pew
=

nel

A
e=1

∫

Ωe

(B̃
e,u

)TN e,p

[
(peg − pew)

∂χ

∂s
N e,p + χ1

]
da (4.207)

∂F w1,INT

∂pw
=

nel

A
e=1

∂fw1,INTe

∂pew
=

nel

A
e=1

∫

Ωe

ρwR(Be,p)T
∂ṽDw
∂pw

da (4.208)

∂F w2,INT

∂pw
=

nel

A
e=1

∂fw2,INTe

∂pew
=

nel

A
e=1

∫

Ωe

(Be,p)T

(
ρgvR

∂ṽDgv
∂pw

+ ṽDgv ⊗
∂ρgvR

∂pw

)
da (4.209)
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∂F g,INT

∂pw
=

nel

A
e=1

∂f g,INTe

∂pew
=

nel

A
e=1

∫

Ωe

(Be,p)T

(
ρgaR

∂ṽDga
∂pw

+ ṽDga ⊗
∂ρgaR

∂pw

)
da (4.210)

∂F θ1,INT

∂pw
=

nel

A
e=1

∂f θ1,INTe

∂pew

nel

A
e=1

∫

Ωe

(N e,θ)T (Be,θθe)T

= ·

(
ρwRCw

∂ṽDw
∂pw

+ ρgRCg
∂ṽDg
∂pw

+ CgṽDg ⊗
∂ρgR

∂pw

)
da (4.211)

∂F θ2,INT

∂pw
=

nel

A
e=1

∂f θ2,INTe

∂pew
=

nel

A
e=1

∫

Ωe

∆Hvapρ
wR(Be,θ)T ·

∂ṽDw
∂pw

da (4.212)

∂F dp,INT

∂pg
=

nel

A
e=1

∂fdp,INTe

∂peg
=

nel

A
e=1

∫

Ωe

(B̃
e,u

)TN e,p

·

[
(pew − peg)

∂χ

∂s
Ne,p + (1− χ)1

]
da (4.213)

∂F w1,INT

∂pg
=

nel

A
e=1

∂fw1,INTe

∂peg
=

nel

A
e=1

∫

Ωe

ρwR(Be,p)T
∂ṽDw
∂pg

da (4.214)

∂F w2,INT

∂pg
=

nel

A
e=1

∂fw2,INTe

∂peg
=

nel

A
e=1

∫

Ωe

(Be,p)T

(
ρgvR

∂ṽDgv
∂pg

+ ṽDgv ⊗
∂ρgvR

∂pg

)
da (4.215)

∂F g,INT

∂pg
=

nel

A
e=1

∂f g,INTe

∂peg
=

nel

A
e=1

∫

Ωe

(Be,p)T

(
ρgaR

∂ṽDga
∂pg

+ ṽDga ⊗
∂ρgaR

∂pg

)
da (4.216)

∂F θ1,INT

∂pg
=

nel

A
e=1

∂f θ1,INTe

∂peg
=

nel

A
e=1

∫

Ωe

(N e,θ)T · (Be,θθe)T

·

(
ρwRCw

∂ṽDw
∂pg

+ ρgRCg
∂ṽDg
∂pg

+ CgṽDg ⊗
∂ρgR

∂pg

)
da (4.217)

∂F θ2,INT

∂pg
=

nel

A
e=1

∂f θ2,INTe

∂pew
=

nel

A
e=1

∫

Ωe

∆Hvapρ
wR(Be,θ)T ·

∂ṽDw
∂pg

da (4.218)

∂F dp,INT

∂θ
=

nel

A
e=1

∂fdp,INTe

∂θe
= 0 (4.219)

∂F dθ,INT

∂θ
=

nel

A
e=1

∂fw1,INTe

∂θe
=

nel

A
e=1

∫

Ωe

3KBα
θ
skel(B̃

e,u
)T ·Ne,θda (4.220)

∂Fw1,INT

∂θ
=

nel

A
e=1

∂fw1,INTe

∂θe
=

nel

A
e=1

∫

Ωe

(Be,p)T
(
ṽDw

∂ρwR

∂θe
Ne,θ + ρwR

∂ṽDw
∂θe

)
da (4.221)

∂Fw2,INT

∂θ
=

nel

A
e=1

∂fw2,INTe

∂θe
=

nel

A
e=1

∫

Ωe

(Be,p)T

(
ṽDgv

∂ρgvR

∂θe
N e,θ + ρgvR

∂ṽDgv
∂θe

)
da (4.222)

∂F g,INT

∂θ
=

nel

A
e=1

∂f g,INTe

∂θe
=

nel

A
e=1

∫

Ωe

(Be,p)T

(
ṽDga

∂ρgaR

∂θe
N e,θ + ρgaR

∂ṽDga
∂θe

)
da (4.223)



118

∂F θ1,INT

∂θ
=

nel

A
e=1

∂f θ1,INTe

∂θe
=

nel

A
e=1

∫

Ωe

{
(N e,θ)T (Be,θ · θe)T

·

(
ρwRCw

∂ṽDw
∂θe

+ CwṽDw ⊗
∂ρwR

∂θe
+ ρgRCg

∂ṽDg
∂θe

+ CgṽDg ⊗
∂ρgR

∂θe

)

+
[
(N e,θ)T ⊗ (ρwRCwṽDw + ρgRCgṽDg )

T +Kθ
eff (B

e,θ)T
]
Be,θ

}
da (4.224)

∂F θ2,INT

∂θ
=

nel

A
e=1

∂f θ2,INTe

∂θe
=

nel

A
e=1

∫

Ωe

∆Hvap(B
e,θ)T ·

[
ṽDw

∂ρgR

∂θe
+ ρwR

∂ṽDw
∂θe

]
da (4.225)

where

∂pgv
∂θ

= pgv
Mw

Rθ2

(
∆Hvap +

s

ρwR

)
(4.226)

∂pgv
∂s

= pgv

(
−Mw

RθρwR

)
(4.227)

∂2pgv
∂s2

=
−Mw

RθρwR
∂pgv
∂s

(4.228)

∂2pgv
∂s∂θ

= −
Mw

RθρwR
∂pgv
∂θ

+ pgv
Mw

Rθ2ρwR
(4.229)

∂2pgv
∂θ2

=
∂pgv
∂θ

(
Mw∆Hvap

Rθ2
+

Mws

Rθ2ρwR

)

−pgv

(
2Mw∆Hvap

Rθ3
+

2Mw∆s

Rθ3ρwR
+
∂ρwR

∂θ

Mws

Rθ2(ρwR)2

)
(4.230)

∂ρgvR

∂θ
=

Mw

Rθ

∂pgv
∂θ

− pgv
Mw

Rθ2
(4.231)

∂ρgvR

∂s
=

Mw

Rθ

∂pgv
∂s

(4.232)

∂2ρgvR

∂s2
=

Mw

Rθ

∂2pgv
∂s2

(4.233)

∂2ρgvR

∂s∂θ
=

Mw

Rθ

(
1

θ

∂2pgv
∂s∂θ

−
1

θ2
∂pgv
∂s

)
(4.234)

∂2ρgvR
∂θ2

=
Mw

Rθ

(
∂2pgv
∂θ2

+
2pgv
θ2

−
2

θ

∂pgv
∂θ

)
(4.235)

pga = pg − pgv (4.236)

∂pga
∂pw

=
∂pgv
∂s

(4.237)

∂pga
∂pg

= 1−
∂pgv
∂s

(4.238)

∂pga
∂θ

= −
∂pgv
∂θ

(4.239)
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∂ρgaR
∂pw

=
Ma

Rθ

∂pgv
∂s

,
∂ρgaR
∂pg

=
Mw

Rθ

(
1−

∂pgv
∂s

)
(4.240)

∂ρgaR

∂θ
= −

Ma

Rθ

(
∂pgv
∂θ

+
pga
θ

)
(4.241)

∂2ρgaR

∂pw2
=
∂2ρgaR
∂pg2

= −
Ma

Rθ

∂2pgv
∂s2

(4.242)

∂2ρga
∂θ2

=
Ma

Rθ

(
2

θ

∂pgv
∂θ

+
2pga
θ2

−
∂2pgv
∂θ2

)
(4.243)

∂2ρgaR

∂pw∂θ
=
Ma

Rθ

(
∂2pgv
∂s∂θ

−
1

θ

∂pgv
∂s

)
(4.244)

∂2ρgaR

∂pg∂θ
= −

Ma

Rθ

[
∂2pgv
∂s∂θ

+
1

θ

(
1−

∂pgv
∂s

)]
(4.245)

∂2ρgaR

∂pw∂pg
=
Ma

Rθ

∂2pgv
∂s2

(4.246)

∂ρgR
∂pw

=
∂ρgaR
∂pw

−
∂ρgvR
∂s

(4.247)

∂ρgR
∂pg

=
∂ρgaR
∂pg

+
∂ρgvR
∂s

(4.248)

∂ρgR
∂θ

=
∂ρgaR
∂θ

+
∂ρgvR
∂θ

(4.249)

ṽDw = −Kw(∇pw − ρwR g) , Kw =
κ(n)Krw(Sw)

µw(θ)
(4.250)

∂ṽDw
∂de

= −
∂Kw

∂n
(∇pw − ρwR g)⊗

∂n

∂de
(4.251)

∂ṽDw
∂pew

=
∂Kw

∂Sw

∂Sw
∂s

(∇pw − ρwR g)N e,p −KwB
e,p (4.252)

∂ṽDw
∂peg

= −
∂Kw

∂Sw

∂Sw
∂s

(∇pw − ρwR g)N e,p (4.253)

∂ṽDw
∂θe

= −
∂Kw

∂θ
(∇pw − ρwR g)N e,θ +Kwg ⊗

∂ρwR

∂θ
bN e,θ (4.254)

ṽDg = −Kg(∇pg − ρgR g) , Kg =
κ(n)Krg(1− Sw)

µg(θ)
(4.255)

∂ṽDg
∂de

= −
∂Kg

∂n
(∇pg − ρgR g)⊗

∂n

∂de
(4.256)

∂ṽDg
∂pew

=
∂Kg

∂Sw

∂Sw
∂s

(∇pg − ρgR g)N e,p +Kgg ⊗
∂ρgR

pw
N e,p (4.257)
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∂ṽDg
∂peg

= −
∂Kg

∂Sw

∂Sw
∂s

(∇pg − ρgR g)N e,p −Kg

(
Be,p − g ⊗

∂ρgR

pg
N e,p

)
(4.258)

∂ṽDg
∂θe

= −
∂Kg

∂θ
(∇pg − ρgR g)N e,θ +Kgg ⊗

∂ρgR

∂θ
Ne,θ (4.259)

ṽDgv = −Kg∇pg − nSgτD0
patm
pgv

∇

(
pgv
pg

)
(4.260)

∂ṽDgv
∂de

= −
∂Kg

∂n
∇pg ⊗

∂n

∂de
− SgD0

patm
pgv

(
τ + n

∂τ

∂n

)
∇

(
pgv
pg

)
⊗

∂n

∂de
(4.261)

∂ṽDgv
∂pew

=
∂Kg

∂Sw

∂Sw
∂s

∇pg ⊗Ne,p − nD0patm

∂

[
Sgτ∇

(
pgv
pg

)

pgv

]

∂pew
(4.262)

∂ṽDgv
∂peg

= −
∂Kg

∂Sw

∂Sw
∂s

∇pg ⊗N e,p −KgB
e,p − nD0patm

∂

[
Sgτ∇

(
pgv
pg

)

pgv

]

∂peg
(4.263)

∂ṽDgv
∂θe

= −
∂Kg

∂θ
∇pg ⊗N e,θ − nSgτpatm

∂

[
D0∇

(
pgv
pg

)

pgv

]

∂θe
(4.264)

ṽDga = −Kg(∇pg + nSgτD0
patm
pga

∇

(
pga
pg

)
(4.265)

∂ṽDga
∂de

= −
∂Kg

∂n
∇pg ⊗

∂n

∂de
+ SgD0

patm
pga

(
τ + n

∂τ

∂n

)
∇

(
pgv
pg

)
⊗

∂n

∂de
(4.266)

∂ṽDga
∂pew

=
∂Kg

∂Sw

∂Sw
∂s

∇pg ⊗N e,p + nD0patm

∂

[
Sgτ∇

(
pgv
pg

)

pga

]

∂pew
(4.267)

∂ṽDga
∂peg

= −
∂Kg

∂Sw

∂Sw
∂s

∇pg ⊗N e,p −KgB
e,p + nD0patm

∂

[
Sgτ∇

(
pgv
pg

)

pga

]

∂peg
(4.268)

∂ṽDga
∂θe

= −
∂Kg

∂θ
∇pg ⊗N e,θ + nSgτpatm

∂

[
D0∇

(
pgv
pg

)

pga

]

∂θe
(4.269)

in which,

∂

[
Sgτ∇

(
pgv
pg

)

pgv

]

∂pew
=

1

pgv

∂
[
Sgτ∇

(
pgv
pg

)]

∂pew
+

1

p2gv
Sgτ∇

(
pgv
pg

)
∂pgv
∂s

N e,p (4.270)



121

∂
[
Sgτ∇

(
pgv
pg

)]

∂pew
=
∂Sw
∂s

∇

(
pgv
pg

)(
τ + Sg

∂τ

∂Sg

)
N e,p + Sgτ

∂
[
∇
(
pgv
pg

)]

∂pew
(4.271)

∇

(
pgv
pg

)
=

1

pg

∂pgv
∂s

(∇pg −∇pw) +
1

pg

∂pgv
∂θ

∇θ −
pgv
pg2

∇pg (4.272)

∂
[
∇
(
pgv
pg

)]

∂pew
= −

1

pg

∂2pgv
∂s2

(∇pg −∇pw)N
e,p −

1

pg

∂pgv
∂s

Be,p

−
1

pg

∂2pgv
∂s∂θ

∇θ ·N e,p +
1

pg2
∇pg

∂pgv
∂s

N e,p (4.273)

∂

[
Sgτ∇

(
pgv
pg

)

pgv

]

∂peg
=

1

pgv

∂
[
Sgτ∇

(
pgv
pg

)]

∂peg
−

1

p2gv
Sgτ∇

(
pgv
pg

)
∂pgv
∂s

N e,p (4.274)

∂
[
Sgτ∇

(
pgv
pg

)]

∂peg
= −

∂Sw
∂s

∇

(
pgv
pg

)(
τ + Sg

∂τ

∂Sg

)
N e,p + Sgτ

∂
[
∇
(
pgv
pg

)]

∂peg
(4.275)

∂
[
∇
(
pgv
pg

)]

∂peg
=

1

pg

∂2pgv
∂s2

(∇pg −∇pw)N
e,p +

1

pg

∂pgv
∂s

Be,p +
1

pg

∂2pgv
∂s∂θ

∇θ ·N e,p

−
2

pg2
∇pg

∂pgv
∂s

N e,p +
1

pg2
∇pw

∂pgv
∂s

N e,p +
2pgv
pg3

∇pgN
e,p

−
pgv
pg2

Be,p −
1

pg2
∂pgv
∂θ

∇θNe,p (4.276)

∂

[
D0∇

(
pgv
pg

)

pgv

]

∂θe
=

1

pgv




∂D0

∂θ
∇

(
pgv
pg

)
N e,θ +D0

∂
[
∇
(
pgv
pg

)]

∂θe





−
1

pgv2
D0∇

(
pgv
pg

)
∂pgv
∂θ

Ne,θ (4.277)

∂
[
∇
(
pgv
pg

)]

∂θe
=

[
1

pg

∂2pgv
∂s∂θ

(∇pg −∇pw) +
1

pg

∂2pgv
∂s2

∇θ

]
Ne,p

+
1

pg

∂pgv
∂θ

Be,θ −
1

pg2
∇pg

∂pgv
∂θ

Ne,θ (4.278)

∂

[
Sgτ∇

(
pgv
pg

)

pga

]

∂pew
=

1

pga

∂
[
Sgτ∇

(
pgv
pg

)]

∂pew
+

1

p2ga
Sgτ∇

(
pgv
pg

)
∂pga
∂s

N e,p (4.279)

∂

[
Sgτ∇

(
pgv
pg

)

pga

]

∂peg
=

1

pga

∂
[
Sgτ∇

(
pgv
pg

)]

∂peg
−

1

p2ga
Sgτ∇

(
pgv
pg

)
∂pga
∂s

N e,p (4.280)
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∂

[
D0∇

(
pgv
pg

)

pga

]

∂θe
=

1

pga




∂D0

∂θ
∇

(
pgv
pg

)
N e,θ +D0

∂
[
∇
(
pgv
pg

)]

∂θe





−
1

pga2
D0∇

(
pgv
pg

)
∂pga
∂θ

N e,θ (4.281)
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4.3 Numerical example

Comparison to an analytical solution for transient partially saturated flow

In this part, the partially saturated TPM model is reduced to be a partially saturated PM model

by setting the temperature to be constant. To verify this reduced model, we take the analytical

solution by Srivastava and Yeh (1991) for water flow through a partially saturated soil column with

the water table at the bottom. The infiltration seepage Sw happens at the top as shown in the left

figure in Figure 4.2. The displacements at the lateral surfaces are fixed in the radial direction, and

the bottom is fixed in the vertical direction. All the surfaces are impermeable. The right figure in

Figure 4.2 shows the profile of negative pore water pressure head in vadose zone as is provided in

the one-dimensional analytical solution (Srivastava and Yeh, 1991). Figure 4.3 shows that a good

agreement is obtained from the comparison between the reduced partially saturated TPM model

and the analytical solution.

kw(s) =
Ks

γw
exp(−αs/γw)

S(s) =
1

Θ
[Θr + (Θs −Θr)exp(αs/γw)]

(4.282)

Table 4.1: Parameters used in the comparison to the analytical solution in Srivastava and Yeh (1991)

Soil Parameter Value Units
Saturated permeability Ks 2.8× 10−6 m/s
Saturated volumetric water content Θs 0.45
Residual volumetric water content Θr 0.2
Initial infiltration seepage rate Sw

0 2.8× 10−7 m/s
Final infiltration seepage rate Sw(t > 0, f inal) 9Sw

0 m/s
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Figure 4.2: (a) Mesh for FEM of partially saturated flow.(b) Analytical solution for partially saturated flow
in vadose zone(Figure 1 of Srivastava and Yeh (1991)).

1 2 3 

4 5 6 

7 8 9 

10 11 12 

13 14 15 

16 17 18 

19 20 21 

r 

z 

Pw=0 

1m 

1m 

tσ , Sw 

(a)

Pw (cm) 

(b)



125

Figure 4.3: Comparison of the suction in vadose zone.
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4.4 Thermo-poro-elasto-plasticity for porous media

4.4.1 Nonlinear thermo-elasticity

According to Laloui and Cekerevac (2008a), the total strain rate of the solid skeleton is

written as :

ε = εe + εθ + εp (4.283)

in which, εe, εθ and εp denote elastic, thermal and plastic components of the total solid skeleton

strain, respectively. The reversible thermal strain is εθ = βθskel1, where β
θ
skel = linear thermal

expansion coefficient of the soil skeleton; with vector 1 = [1 1 1 0] when expressing εθ in vector

form, otherwise, in tensor form, εθij = βθskel δij . The rate form of effective Cauchy stress tensor is

conventionally written as:

σ̇′ = ce : ε̇e; ε̇e = ε̇− ε̇θ − ε̇p (4.284)

where ce denotes the fourth-order elastic modulus tensor.

In this part, the thesis refers to Borja (2004b); Borja et al. (1997) and research notes by R.A.

Regueiro at University of Colorado, Boulder in the formulation of hyperelastic model. Volumetric

and deviatoric invariants of the small elastic strain tensor are defined as:

εev = εekk, εesh =

√
2

3
‖ ee ‖, eeij = εeij −

1

3
εevδij (4.285)

where, δij is Kronecker delta. A class of stored energy function is defined in terms of εev and εesh,

which are the elastic volumetric strain and elastic shear strain, respectively.

ρs ψ(εev, ε
e
s) = p′0κ̃exp

(
εev − εev0

κ̃

)
+

3

2
µεe2sh (4.286)

where, εev0 denotes elastic volumetric strain corresponding to a mean normal stress of p0; κ̃ denotes

elastic compressibility index; and µ = µ(εev) is elastic shear modulus defined as

µ = µ0 + α(−p′0)exp

(
−
εev − εev0

κ̃

)
(4.287)

where, µ0 and α are material constants. The effective Cauchy stress tensor σ′ and the elastic

moduli tensor can be expressed in terms of ρs ψ as
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σ′ij =
∂(ρsψs)

∂εeij
(4.288)

ceijkl =
∂σ′ij
∂εekl

=
∂2(ρsψs)

∂εeij∂ε
e
kl

(4.289)

With the expression of stored energy function (4.286), then we can use the chain rule to rewrite

(4.288) in the form:

σ′ij =
∂(ρsψs)

∂εev

∂εev
∂εeij

+
∂(ρsψs)

∂εes

∂εes
∂εeij

(4.290)

Let us set

p′ =
∂(ρsψs)(εev, ε

e
s)

∂εev
, q =

∂(ρsψs)(εev , ε
e
s)

∂εes
(4.291)

Then, (4.290) becomes:

σ′
ij = p′δij +

√
2

3
q n̂ij (4.292)

where, n̂ij = eeij/ ‖ ee ‖=
√

2/3eeij/ε
e
s; p

′ and q are the volumetric and deviatoric stress invariants

of the effective Cauchy stress tensor σ′, respectively, and are expressed as

p′ =
1

3
tr(σ′), q =

√
3

2
‖ s ‖, s = σ′ − p′1 (4.293)

According to (4.286), one can derive the elastic constitutive equations for p′ and q as follows:

p′ = p′0β exp

(
−
εev − εev0

κ̃

)
(4.294)

q = 3µεes (4.295)

where, µ is given in (4.287), and

β = 1 +
3α(εes)

2

2κ̃
(4.296)

Now let us calculate the elastic moduli in (4.289)

∂σ′ij
∂εekl

=
∂σ′ij
∂p′

∂p′

∂εekl
+
∂σ′ij
∂q

∂q

∂εekl
+
∂σ′ij
∂n̂ij

∂n̂ij
∂εekl

= δij
∂p′

∂εekl
+

√
2

3
n̂ij

∂q

∂εekl
+

√
2

3
q
∂n̂ij
∂εekl

(4.297)
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where

∂p′

∂εekl
=

p′0
κ̃
exp

(
εev − εev0

κ̃

)(
3αεes

∂εes
∂εekl

− β
∂εev
∂εekl

)
(4.298)

∂q

∂εekl
= 3εes

αp′0
κ̃

exp

(
εev − εev0

κ̃

)
∂εev
∂εekl

+ 3µ
∂εes
∂εekl

(4.299)

where according to the definition in (4.285), we obtain

∂εev
∂εekl

=
∂εeii
∂εekl

= δikδil = δij (4.300)

∂eeab
∂εekl

=
∂εeab
∂εekl

−
1

3
δab

∂εev
∂εekl

= δakδbl −
1

3
δabδkl (4.301)

∂εes
∂εekl

=
∂εes
∂eeab

∂eeab
∂εekl

=

√
2

3
n̂ab

(
δakδbl −

1

3
δabδkl

)
=

√
2

3
n̂kl (4.302)

∂n̂ij
∂εekl

=
1

‖ ee ‖

∂eeij
∂εekl

+ eeij

∂
[
(eeabe

e
ab)

− 1
2

]

∂εekl

=
1

‖ ee ‖

(
δikδjl −

1

3
δijδkl

)
−

1

2
(eeabe

e
ab)

− 3
2 (2eeab)

∂eeab
∂εekl

=
1

‖ ee ‖

(
δikδjl −

1

3
δijδkl

)
−

eekle
e
ij

‖ ee ‖3

=
1

‖ ee ‖

(
δikδjl −

1

3
δijδkl − n̂ijn̂kl

)
(4.303)

Then (4.298 and 4.299) become

∂p′

∂εekl
=

p′0
κ̃
exp

(
εev − εev0

κ̃

)(
3αεes

√
2

3
n̂kl − βδkl

)
(4.304)

∂q

∂εekl
=

3αp′0
κ̃

εesexp

(
εev − εev0

κ̃

)
δkl + 3µ

√
2

3
n̂kl (4.305)

(4.297) takes the form

∂σ′

∂εe
=

[
−
p′0
κ̃
βexp

(
εev − εev0

κ̃

)
−

2q

9εes

]
1⊗ 1

+

√
2

3

2α

κ̃
p′0ε

e
sexp

(
εev − εev0

κ̃

)
(1⊗ n̂+ n̂⊗ 1)

+

(
2µ−

2q

3εes

)
n̂⊗ n̂+

2q

3εes
I (4.306)

where I is a rank-four identity tensor defined as Iijkl = (δik + δjl)/2
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4.4.2 Thermo-plasticity

It is known that the essentials of a plasticity model are a yield function, a flow rule and a hardening

law. Many enhanced versions of Cam-clay-type models have been proposed to capture the mechan-

ical behavior (Alonso et al., 1990; Gens and Alonso, 1992; Wheeler and Sivakumar, 1995b; Vaunat

et al., 2000; Loret and Khalili, 2002; Gallipoli et al., 2003a) and the thermal-plastic properties of

partially saturated soil(Khalili and Loret, 2001; Laloui and Cekerevac, 2003, 2008b; François and

Laloui, 2008). We mainly refer to Borja (2004b) and Laloui and Cekerevac (2003), and assume

that the the yield function is defined in the effective stress space, and the size of the yield surface

is controlled by the effective preconsolidation pressure, suction and temperature.

Generally, the yield function for partially saturated soils is assumed to take the following form:

F (p′, q, p′c) =
q2

M2
+ (p′ − p′s)(p

′ − p̄c) = 0 (4.307)

p̄c = −exp[a(ξ)](−p′c)
b(ξ)

[
1− γθlog

(
θ

θ0

)]
(4.308)

p′s = k s (4.309)

where p′ and q are invariants defined in (4.291), M is the slope of critical state line, k is a dimen-

sionless material parameter that is equal to or greater than zero, s is suction, s = pg − pw; p̄c is

defined as the effective preconsolidation pressure at temperature θ, which is assumed to vary with

plastic volume strain εpv, suction s and temperature θ, p′c is the saturated effective preconsolidation

pressure at reference temperature θ0, it can be considered as the plastic stress-like internal state

variable of the material model, and it varies solely with the plastic deformation in the form (Borja,

2004b):

p′c = p′c,nexp

[
−(εpv − εpv,n)

λ̃− κ̃

]
(4.310)

and refer to (4.318) for the expression of ξ in (4.308). The sign convention of strain and stress is:

negative under compaction, positive under dilation. εpv and εpv,n are plastic volumetric strains at

current time step tn+1 and previous time step tn, respectively; p
′
c,n denotes the effective preconsoli-

dation pressure at time step tn; λ̃ denotes the virgin compression index of the soil. The trial elastic
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strain εe,tr and the elastic strain at tn+ 1 are given respectively as,

εe,tr = εen +∆ε−∆εθ, εen+1 = εe,tr −∆γ
∂F

∂σ′
(4.311)

where, ∆εθ = βθskel∆θ, and ∆θ = θn+1−θn is the temperature difference between current time step

tn+1 and previous time step tn. Thus, the volumetric strains are,

εe,trv = εv,n +∆εv − εθv, εev,n+1 = εev,n +∆εev (4.312)

εpv = εv − εev − εθv (4.313)

εpv,n = εv,n − εev,n − εθv,n (4.314)

εpv − εpv,n = εv − εv,n︸ ︷︷ ︸
∆εv

+εev,n −∆εθv − εev = εe,trv − εev (4.315)

Then, (4.310) can be written in the form

p′c = p′c,nexp

[
−(εe,trv − εev)

λ̃− κ̃

]
(4.316)

For partially saturated condition, a(ξ) and b(ξ) in (4.308) take the form

a(ξ) =
N [c(ξ)− 1]

λ̃c(ξ) − κ̃
, b(ξ) =

λ̃− κ̃

λ̃c(ξ)− κ̃
(4.317)

where N is the reference value of vsat at unit saturated preconsolidation stress; ξ ≥ 0 is called the

“bonding variable”, and has a minimum value of zero at saturated condition. It is expressed in

terms of the air void fraction 1− Sw and a suction function f(s):

ξ = f(s)(1− Sw), f(s) = 1 +
s/patm

10.7 + 2.4(s/patm)
(4.318)

where patm is the atmospheric pressure. The suction function f(s) is a hyperbolic approximation to

the curve describing the meniscus-induced interparticle force between two identical spheres (Fisher,

1926). Refer to Borja (2004b) for more details. The degree of water saturation Sw may be expressed

as a function of suction s. Here we adopt the relation proposed by van Genuchten (van Genuchten,

1980). c(ξ) is defined as

c(ξ) :=
v

vsat
(4.319)
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where, v denotes the specific volume of the virgin compression curve in the partially saturated state;

vsat denotes the corresponding specific volume in the fully saturated state. According to Gallipoli

et al. (2003a), c(ξ) takes the following form:

c(ξ) = 1− c1 [1− exp(c2ξ)] (4.320)

where c1 and c2 are fitting parameters. For a fully saturated condition, c(ξ) = 1, a(ξ) = 0, and

b(ξ) = 1. We recall that

ε̇pv = tr(ε̇p) = γ̇ tr

(
∂F

∂σ′

)
= γ̇(2p′ − p′s − p̄c) (4.321)

Thus the preconsolidation pressure rate gives the plastic hardening relation

ṗ′c =
−p′c

λ̃− κ̃
tr(ε̇p) = (2p′ − p′s − p̄c)(pc)

′
nexp

[
−(εe,trv − εev)

λ̃− κ̃

]
·

−1

λ̃− κ̃
︸ ︷︷ ︸

hpc

γ̇ (4.322)

Note that ṗ′c and tr(ε̇p) share the same sign. According to the sign convention mentioned before,

positive (softening) under plastic dilation, i.e., the size of the yield surface decreases, negative

(hardening) under plastic compaction, and perfect plasticity at the critical state. Now we come to

the plastic flow rule, which defines the direction of the plastic strain rate in the model. Associative

plastic flow is assumed, i.e., the plastic potential function G = the yield function F , such that

ε̇p = γ̇
∂G

∂σ′
= γ̇

∂F

∂σ′
(4.323)

where the non-negative plastic multiplier γ̇ satisfies Kuhn-Tucker conditions, i.e., γ̇ ≥ 0, F ≤ 0,

γ̇F = 0. Backward Euler is adopted to obtain the plastic strain at time step tn+1:

ε
p
n+1 = εpn +∆γ

(
∂F

∂σ

)

n+1

(4.324)

ε
p
n+1 = εn+1 − εen+1 − εθn+1 (4.325)

εpn = εn − εen − εθn (4.326)

where ∆γ = ∆t γ̇n+1 ≥ 0 is the discrete consistency parameter. Substitute (4.325) and (4.326) into
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(4.324) to obtain

εn+1 − εen+1 − εθn+1 = εn − εen − εθn +∆γ

(
∂F

∂σ

)

n+1

⇒ εen+1 = εn+1 − εn︸ ︷︷ ︸
∆ε

+εen − (εθn+1 − εθn︸ ︷︷ ︸
∆εθ

)−∆γ

(
∂F

∂σ

)

n+1

⇒ εen+1 = εen +∆ε︸ ︷︷ ︸
εe,tr
n+1

−∆εθ −∆γ

(
∂F

∂σ

)

n+1

(4.327)

where ∆εθ = βθskel(θn+1 − θn). Now we solve ∂F
∂σ′ in the plastic strain rate:

∂F

∂σ′
=
∂F

∂p′
∂p′

∂σ′
+
∂F

∂q

∂q

∂σ′
(4.328)

where

∂F

∂p′
= (2p′ − p′s − p̄c);

∂F

∂q
=

2q

M2
(4.329)

(
∂p′

∂σ′

)

ij

=
1

3
δij ;

(
∂q

∂σ′

)

ij

=

√
3

2
n̂ij (4.330)

Then,
(
∂F

∂σ′

)

ij

=
1

3
(2p′ − p′s − p̄c)δij +

2q

M2

√
3

2
n̂ij (4.331)

The elastic strain invariants can be obtained by trial values:

εev = εe,trv −∆εθv −∆γtr

(
∂F

∂σ′

)

= εe,trv −∆εθv −∆γ
∂F

∂p′
(4.332)

εes =

√
2

3

√
eeabe

e
ab

= εe,trs −∆γ
∂F

∂q
(4.333)

To solve for ∆γ, we construct a residual vector R and an unknown vector X :

R(X) =




Rv

Rs

RF



=




εev − εe,trv +∆γ ∂F∂p

εes − εe,trs +∆γ ∂F∂q

F




(4.334)
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and,

X =




εev

εes

∆γ




(4.335)

We adopt Newton-Raphson method to solve:

Rn+1(Xn+1) = 0

Rk
n+1 +

(
∂R

∂X

)k

n+1

· δX = 0 ⇒ δX = −

(
∂R

∂X

)−1

·Rk (4.336)

Xk+1 = Xk + δX

The driving forces in this nonlinear problem are the trail elastic strains εe,trv and εe,trs , thermal

strain εθ, and the matrix suction s. εe,trv and εe,trs are held fixed at local iteration level; εθ and s can

be calculated at global level. To solve this nonlinear matrix equation by Newton-Raphson method,

we need to calculate the consistent tangent operator:

∂R

∂X
=




∂Rv
∂εev

∂Rv
∂εes

∂Rv
∂∆γ

∂Rs
∂εev

∂Rs
∂εes

∂Rs
∂∆γ

∂RF
∂εev

∂RF
∂εes

∂RF
∂∆γ




(4.337)

Substituting (4.329) and calculating the derivatives in (4.337) lead to

∂R

∂X
=




1 + ∆γ
(
2 ∂p

′

∂εev
− ∂p̄c

∂εev

)
2∆ ∂p′

∂εes

∂F
∂p′

∆γ 2
M2

∂q
∂εev

1 + ∆γ 2
M2

∂q
∂εes

∂F
∂q

∂F
∂p′

∂p′

∂εev
+ ∂F

∂q
∂q
∂εev

+ ∂F
∂p̄c

∂p̄c
∂εev

∂F
∂p′

∂p′

∂εes
+ ∂F

∂q
∂q
∂εes

0




(4.338)

where

∂p′

∂εev
= −

p′

κ̃
;

∂p′

∂εes
= p′0exp (ω)

∂β

∂εes
=
αεes
κ̃
p′0exp (ω) (4.339)

∂q

∂εev
= 3εes

∂µ

∂εev
= 3

αεes
κ̃
p′0exp(ω) =

∂p′

∂εes
;

∂q

∂εes
= 3µ (4.340)

∂p̄c
∂εev

=
∂p̄c
∂p′c

p′c
∂εev

=
∂p̄c
∂p′c

p′c

λ̃− κ̃
(4.341)

(4.342)
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where ω = −
εev−ε

e
v0

κ̃ . According to (4.308),

∂p̄c
∂p′c

=
b(ξ)p̄c
p′c

(4.343)

Instead of solving (4.336) for δX , we combine terms in (4.337) to construct the following matrices:

A =




∂Rv
∂εev

∂Rv
∂εes

∂Rs
∂εev

∂Rs
∂εes


 ; B =




∂Rv
∂εev

∂Rs
∂εes


 ; C =

[
∂RF
∂∆γ

∂RF
∂∆γ

]
(4.344)

Let us rewrite (4.336) and drop the iteration number k




Rv

Rs

RF



+




A B

C 0


 ·




δεev

δεes

δ∆γ



=




0

0

0




(4.345)

(4.345) can be split into two equations



Rv

Rs


+A



δεev

δεes


+B(δ∆γ) = 0 (4.346)

RF +C



δεev

δεes


 = 0 (4.347)

We Multiply (4.346) by matrix A and combine with (4.347) to obtain

RF −CA−1



Rv

Rs


−CA−1B(δ∆γ) = 0 (4.348)

⇒ δ∆γ =

RF −CA−1



Rv

Rs




CA−1B
(4.349)

Substituting (4.349) into (4.346) gives the increments of εv and εs



δεev

δεes


 = −A−1






Rv

Rs


+B(δ∆γ)


 (4.350)
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We update to obtain

(εev)
k+1 = (εev)

k + δεev (4.351)

(εes)
k+1 = (εes)

k + δεes (4.352)

(∆γ)k+1 = (∆γ)k + δ∆γ (4.353)

Update Rk+1 and check whether the absolute or (and) relative tolerance is (are) acceptable. If

acceptable, exit and calculate the elastic strain εe and the effective stress σ′.

4.4.2.1 Consistent tangent operators

In this section we develop expressions of consistent tangent operators for both saturated and

partially saturated conditions. The yield function rate is:

Ḟ =
∂F

∂σ′
: σ̇′ +

∂F

∂s
ṡ+

∂F

∂p′c
ṗ′c +

∂F

∂θ
θ̇ = 0 (4.354)

where,

∂F

∂s
= −(p′ − p̄c)

∂p′s
∂s

− (p′ − p′s)
∂p̄c
∂s

(4.355)

∂F

∂p′c
= −(p′ − p′s)

∂p̄c
∂p′c

(4.356)

∂F

∂θ
= −(p′ − p′s)

∂p̄c
∂θ

(4.357)

in (4.355)

∂p′s
∂s

= k;
∂p̄c
∂s

=
∂p̄c
∂ξ

∂ξ

∂s
(4.358)

We recall that p̄c = p̄c(pc, ξ(s), θ) in (4.308). Differentiating p̄c with respect to ξ and θ gives

∂p̄c
∂ξ

= p̄c
[
a′(ξ) + b′(ξ)ln(−p′c)

]
(4.359)

∂p̄c
∂θ

=
γθ

log10θ
exp[a(ξ)](−pc)

b(ξ) (4.360)

where

a′(ξ) =
Nb(ξ)

λ̃c(ξ)− κ̃
, b′(ξ) =

−λ̃b(ξ)

λ̃c(ξ)− κ̃
c′(ξ), c′(ξ) = c1c2exp(c2ξ) (4.361)
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The derivative of the variable ξ with respect to the suction s is:

ξ′(s) = (1− Sw)f
′(s)− f(s)S′

w(s) (4.362)

where

f ′(s) =
10.7/patm

[10.7 + 2.4(s/patm)]
2 (4.363)

With the commonly used van Genuchten model (van Genuchten, 1980), the degree of water satu-

ration is written as (see notations in (5.18))

Sw − Sr
Ss − Sr

= [1 + (s/a)n]−m (1− Sr) + Sr (4.364)

then, one can write the derivative of Sw with respect to suction s as

S′
w(s) =

∂Sw
∂s

= − (1− Sr)
(mn
a

) [
1 +

s

a

]−(m+1)
(4.365)

The effective Cauchy stress tensor rate is written as:

σ̇′ = ce : ε̇e = ce : (ε̇− ε̇θ − ε̇p) (4.366)

Substitute (4.331, 4.366, 4.355, 4.356) and (4.357) into (4.354) to obtain

∂F

∂σ′
: ce : σ̇′ +

[
∂F

∂θ
−
∂F

∂σ′
: ce : (βθskel1)

]
θ̇ +

∂F

∂s
ṡ−

[
∂F

∂σ′
: ce :

∂F

∂σ′
−
∂F

∂p′c
hpc
]

︸ ︷︷ ︸
χ

γ̇ = 0 (4.367)

Thus, the plastic multiplier takes the form

γ̇ =
1

χ

{
∂F

∂σ′
: ce : ε̇+

∂F

∂s
ṡ+

[
∂F

∂θ
−
∂F

∂σ′
: ce : (βθs 1)

]
θ̇

}
(4.368)

Finally, the effective constitutive Cauchy stress rate is

σ̇′ =

(
ce −

1

χ
ce :

∂F

∂σ′
⊗
∂F

∂σ′
: ce
)

︸ ︷︷ ︸
cep

: ε̇−
1

χ

∂F

∂s
(ce :

∂F

∂σ′
)ṡ

−

{
βθsc

e : 1+
1

χ

[
∂F

∂θ
−
∂F

∂σ′
: ce : βθs1

]
⊗ (ce :

∂F

∂σ′
)

}

︸ ︷︷ ︸
cθ

θ̇ (4.369)
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where cep is called the continuum elastoplastic tangent under partially saturated condition with

temperature. Below we list the other continuum tangents

∂σ′

∂s
= −

1

χ

∂F

∂s

(
ce :

∂F

∂σ′

)
(4.370)

∂σ′

∂θ
=
∂σ′

∂ε

∂ε

∂θ
− cθ = cep : (βθs 1)− cθ = −

1

χ

∂F

∂θ
ce :

∂F

∂σ′
(4.371)

Note that, generally, the material consistent tangent (∂σ′/∂ε)n+1 and the continuum elastoplastic

tangent cep are different. And the advantage of the consistent tangent is that it will allow the

Newton-Raphson algorithm to demonstrate quadratic convergence for the global solution iterative

scheme, however, the continuum tangent usually gives linear convergence. Now let us derive the

material consistent tangent ∂σ′

∂ε .

∂σ′ij
∂εkl

=
∂σ′ij
∂p′

∂p′

∂εkl
+
∂σ′ij
∂q

∂q

∂εkl
+
∂σ′ij
∂n̂ij

∂n̂ij
∂εkl

= δij
∂p′

∂εkl
+

√
2

3
n̂ij

∂q

∂εkl
+

√
2

3
q
∂n̂ij
∂εkl

(4.372)

where

∂p′

∂εkl
=

∂p′

∂εev

∂εev
∂εkl

+
∂p′

∂εes

∂εes
∂εkl

=
p′0
κ̃
exp

(
εev − εev0

κ̃

)(
3αεes

∂εes
∂εkl

− β
∂εev
∂εkl

)
(4.373)

∂q

∂εkl
=

∂q

∂εev

∂εev
∂εkl

+
∂q

∂εes

∂εes
∂εkl

= 3εes
αp′0
κ̃

exp

(
εev − εev0

κ̃

)
∂εev
∂εkl

+ 3µ
∂εes
∂εkl

(4.374)

We recall (4.327) and drop the n+ 1:

εeab = εe,trab −∆γ
∂F

∂σ′ab
(4.375)

εe,trab = (εeab)n + εab − (εab)n︸ ︷︷ ︸
∆εab

−εθab (4.376)

(εeab)n and (εab)n are fixed values at the local level, which can be obtained from previous time step

tn, and ε
θ
ab is also fixed at local level, because it can be obtained from the global solution. Thus,

the three terms are not functions of εkl. Then,

∂εe,trab

∂εkl
= δakδbl (4.377)



138

∂εeab
∂εkl

=
∂εe,trab

∂εkl
−
∂∆γ

∂εkl

∂F

∂σ′ab
−∆γ

∂2F

∂σ′ab∂εkl
(4.378)

Let us assume

n̂tr = n̂ (4.379)

Recall

ee,trab = εe,trab −
1

3
εe,trv δab (4.380)

The derivative is written as

∂ee,trab

∂εkl
=
∂(εe,trab − 1

3ε
e,tr
v δab)

∂εkl
= δakδbl −

1

3
δklδab (4.381)

∂n̂trij
∂εkl

=
1

‖ ee,tr ‖

∂ee,trij

∂εkl
+ ee,trij

∂
[
(ee,trab e

e,tr
ab )−

1
2

]

∂εkl

=
1

‖ ee,tr ‖

(
δakδbl −

1

3
δklδab

)
−

1

2

(
ee,trab e

e,tr
ab

)− 3
2
(2ee,trab )

∂ee,trab

∂εkl

=
1

‖ ee,tr ‖

(
δakδbl −

1

3
δklδab − n̂trij n̂

tr
kl

)
(4.382)

We need to construct three equations to solve for ∂εev
∂ε ,

∂εes
∂ε ,

∂(∆γ)
∂ε . According to (4.331) and (4.377),

one can write

εev = εe,trv −∆γ
∂F

∂σ′kk
(4.383)

∂εe,trv

∂εkl
= δkl (4.384)

∂F

∂σ′kk
=
∂F

∂p′
= 2p′ − p′s − p̄c (4.385)

Then,

∂εev
∂εkl

= δkl − (2p′ − p′s − p̄c)
∂∆γ

∂εkl
−∆γ

(
2
∂p′

∂εkl
−
∂p̄c
∂εkl

)
(4.386)

where,

∂p̄c
∂εkl

=
∂p̄c
∂pc

(
∂pc

∂εe,trv

∂εe,trv

∂εkl
+
∂pc
∂εev

∂εev
∂εkl

)
(4.387)
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where,

∂pc

∂εe,trv

=
−1

λ̃− κ̃
pc (4.388)

∂pc
∂εev

=
1

λ̃− κ̃
pc (4.389)

Substituting (4.373, 4.387, 4.389) into (4.386) gives

[
1 + ∆γ

(
2
∂p′

∂εev
−

p̄c
∂pc

∂pc
∂εev

)]
∂εev
∂ε

+

(
2∆γ

∂p′

∂εes

)
∂εes
∂ε

+
∂F

∂p′
∂∆γ

∂ε
=

(
1 + ∆γ

∂p̄c
∂pc

∂pc

∂εe,trv

)
1 (4.390)

where, 1 is 6× 1 vector, and is given as

1 =

[
1 1 1 0 0 0

]T
(4.391)

(4.333) becomes

εes = εe,trs −∆γ
∂F

∂q
(4.392)

then,

∂εes
∂εkl

=
∂εe,trs

∂εkl
−
∂∆γ

∂εkl

∂F

∂q
−∆γ

(
∂F
∂q

)

∂εkl
(4.393)

where, (
∂F
∂q

)

∂εkl
=

2

M2

∂q

∂εkl
=

2

M2

(
∂q

∂εes

∂εes
∂εkl

+
∂q

∂εev

∂εev
∂εkl

)
(4.394)

With (4.381), we derive

∂εes
∂εkl

=

√
2

3
×

�
��
1

2

(
ee,trab · ee,trab

)− 1
2
(�2e

e,tr
ab )

∂ee,trab

∂εkl

=

√
2

3

ee,trab

‖ ee,tr ‖

(
δakδbl −

1

3
δabδkl

)

=

√
2

3

ee,trkl

‖ ee,tr ‖
=

√
2

3
n̂tr (4.395)

Thus (4.393) becomes

(
1 +

2∆γ

M2

∂q

∂εes

)
∂εes
∂ε

+

(
2∆γ

M2

∂q

∂εev

)
∂εev
∂ε

+
∂F

∂q

∂∆γ

∂ε
=

√
2

3
n̂tr (4.396)

Let us assume

∂F

∂εkl
= 0 (4.397)
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∂F

∂ε
=

∂F

∂p′
∂p′

∂ε
+
∂F

∂q

∂q

∂ε
+
∂F

∂p̄c

∂p̄c
∂p′c

∂p′c
∂ε

=
∂F

∂p′

(
∂p′

∂εev

∂εev
∂ε

+
∂p′

∂εes

∂εes
∂ε

)
+
∂F

∂q

(
∂q

∂εev

∂εev
∂ε

+
∂q

∂εes

∂εes
∂ε

)

+
∂F

∂p̄c

∂p̄c
∂p′c

(
∂p′c

∂εe,trv

∂εe,trv

∂ε
+
∂p′c
∂εev

∂εev
∂ε

)
(4.398)

We Group terms to obtain

(
∂F

∂p′
∂p′

∂εev
+
∂F

∂q

∂q

∂εev
+
∂F

∂p̄c

∂p̄c
∂p′c

∂p′c
∂εev

)

︸ ︷︷ ︸
A

∂εev
∂ε

+

(
∂F

∂p′
∂p′

∂εes
+
∂F

∂q

∂q

∂εes

)

︸ ︷︷ ︸
B

∂εes
∂ε

= −
∂F

∂p̄c

∂p̄c
∂p′c

∂p′c

∂εe,trv

1 (4.399)

Combine (4.390), (4.396) and (4.399) to obtain the matrix equation



[
1 + ∆γ

(
2 ∂p

′

∂εev
− p̄c

∂pc
∂pc
∂εev

)]
I

(
2∆γ
M2

∂q
∂εev

)
I ∂F

∂p′I
(
2∆γ ∂p

′

∂εes

)
I

(
1 + 2∆γ

M2
∂q
∂εes

)
I ∂F

∂q I

AI BI 0




︸ ︷︷ ︸
18×18

·




∂εev
∂ε

∂εes
∂ε

∂∆γ
∂ε




︸ ︷︷ ︸
18×1

=




(
1 + ∆γ ∂p̄c∂p′c

∂p′c
∂εe,trv

)
1

√
2
3 n̂

tr

(
− ∂F
∂p̄c

∂p̄c
∂p′c

∂p′c
∂εe,trv

)
1




︸ ︷︷ ︸
18×1

(4.400)

Note that, I is 6 × 6 unit tensor, and should not be confused with 1, which is 6 × 1 vector as

mentioned before. Set

M =




[
1 + ∆γ

(
2 ∂p

′

∂εev
− p̄c

∂p′c

∂p′c
∂εev

)]
I

(
2∆γ
M2

∂q
∂εev

)
I

(
2∆γ ∂p

′

∂εes

)
I

(
1 + 2∆γ

M2
∂q
∂εes

)
I




︸ ︷︷ ︸
12×12

(4.401)

Then, (4.400) can be decomposed into

M




∂εev
∂ε

∂εes
∂ε




︸ ︷︷ ︸
12×1

+




∂F
∂p′I

∂F
∂q I




︸ ︷︷ ︸
12×6

·
∂∆γ

∂ε︸ ︷︷ ︸
6×1

=




(
1 + ∆γ ∂p̄c∂p′c

∂p′c
∂εe,trv

)
1

√
2
3 n̂

tr




︸ ︷︷ ︸
12×1

(4.402)

[
AI BI

]

︸ ︷︷ ︸
6×12




∂εev
∂ε

∂εes
∂ε




︸ ︷︷ ︸
12×1

=

(
−
∂F

∂p̄c

∂p̄c
∂p′c

∂p′c

∂εe,trv

)
1

︸ ︷︷ ︸
6×1

(4.403)
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We pre-multiple (4.402) by [AI BI] M−1 to get

[
AI BI

]



∂εev
∂ε

∂εes
∂ε




︸ ︷︷ ︸
C(6×1)

+

[
AI BI

]
·M−1 ·




∂F
∂p′I

∂F
∂q I




︸ ︷︷ ︸
D(6×6)

·
∂∆γ

∂ε

=

[
AI BI

]
·M−1 ·




(
1 + ∆γ ∂p̄c∂p′c

∂p′c
∂εe,trv

)
1

√
2
3 n̂

tr




︸ ︷︷ ︸
6×1

(4.404)

Combine with (4.403) to obtain

∂∆γ

∂ε
= D−1



[
AI BI

]
·M−1 ·




(
1 + ∆γ ∂p̄c∂p′c

∂p′c
∂εe,trv

)
1

√
2
3 n̂

tr


+

∂F

∂p̄c

∂p̄c
∂p′c

∂p′c

∂εe,trv

1


 (4.405)




∂εev
∂ε

∂εes
∂ε


 = M−1







(
1 + ∆γ ∂p̄c∂p′c

∂p′c
∂εe,trv

)
1

√
2
3 n̂

tr


−




∂F
∂p′I

∂F
∂q I


 ·

∂∆γ

∂ε


 (4.406)



Chapter 5

Finite element analysis of the energy foundations experiments

5.1 Introduction to the energy foundations experiments

This chapter presents an axisymmetric, small strain, fully-coupled thermo-poro-mechanical

(TPM) finite element analysis (FEA) of soil-structure interaction (SSI) between energy foundations

and partially saturated silt. The simulations involve two types of energy foundations: semi-implicit

foundation and end-bearing foundation. A series of centrifuge-scale tests were performed on the

two types of foundations at the University of Colorado at Boulder. Numerical results are compared

with experimental observations (Stewart, 2012; Stewart and McCartney, 2013; Goode, 2013; Goode

and McCartney, 2014). Good agreement is obtained between the experimental and modeling re-

sults. Thermally-induced liquid water and water vapor flow inside the soil were found to have an

impact on soil-structure interaction. With further improvements (including interface elements at

the foundation-soil interface), FEA with the validated thermo-poro-mechanical model can be used

to predict performance and soil-structure interaction mechanisms for energy foundations.

5.2 Constitutive equations

In this section, we introduce the constitutive equations adopted in thermo-poro-mechanical

model, and show how the material parameters are fitted with the experimental data.
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Figure 5.1: Schematic of overall temperature control system, including heat pump, auxiliary pump and
fluid transition into experimental setup (Stewart, 2012)

Figure 5.2: a single energy foundation SSI experiment mounted on a 400 g-ton centrifuge bucket.
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Figure 5.3: Schematic showing approximate locations of instrumentation, left: semi-floating foundation,
right: end-bearing foundation (Stewart, 2012)

Table 5.1: Centrifuge scaling rules are summarized according to (Ko, 1988).

Quantity Prototype Model

Length 1 1/N
Force 1 1/N2

Stress 1 1
Strain 1 1
Elastic modulus 1 1
Acceleration 1 N
Temperature 1 1
Displacement 1 1/N
Time (diffusive flow processes) 1 1/N2
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5.2.1 Mechanical properties

5.2.1.1 Effective stress equations

For saturated porous media, the expression of the effective stress is proposed by Terzaghi

(1943):

σ′ = σ + pw 1 (5.1)

where, σ′ and σ are the effective and total stress tensors, respectively. To be consistent, the sign

convention in mechanics is used, i.e., σ′ and σ are positive in tension. pw is the pore water pressure.

For partially saturated porous media, Terzaghi’s classic effective stress equation have been

extended to account for the negative pore water pressures in various forms (Bishop, 1959; Khalili

et al., 2004; Lu et al., 2010; Borja and White, 2010). For example, a commonly used form proposed

by Bishop (1959) is expressed as:

σ′ = (σ + pg 1)− χ(pg − pw)1 (5.2)

where, pg is the pore gas pressure, pg − pw denotes the matric suction s is positive for partially

saturated soils, χ is a material property referred to as the effective stress parameter, which depends

on the degree of saturation or matric suction. In (5.2), σ + pg 1 represents the net stress, and

χ(pg − pw)1 represents the suction stress. 5.2 will reduce to the classic effective stress equation by

setting χ = 0 for perfectly dry soils, or χ = 1 for saturated soils. Borja and White (2010); Lewis

and Schrefler (1998) use χ = Sw, where Sw is the degree of saturation. In our code we will use the

same relationship.

5.2.1.2 Densities

Water density

Fernandez (1972) proposed an equation for compressibility of water in the form:

ρwR = ρwR0exp

[
−βθw(θ − θ0) +

1

Kw
(pw − pw0)

]
(5.3)
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where βθw = 4.0× 10−4K−1 (Khalili et al., 2010) is the volumetric thermal expansion coefficient of

water; θ and θ0 are respectively the current and reference temperatures; pw and ρwR are respectively

the pore water pressure and the water real mass density at current temperature θ; pw0 and ρwR0

are respectively the pore pressure and water density at reference temperature θ0; K
w is the bulk

modulus of water.

Lewis and Schrefler (1998) proposed a simpler form for the compressible water phase by

retaining the first-order terms of the series expansion of (5.3) as follows

ρwR = ρwR0
[
1− βθw(θ − θ0) +

1

Kw
(pw − pw0)

]
(5.4)

With the assumption in this thesis that water is mechanically incompressible, i.e., Kw is large

enough that 1
Kw

goes to zero, we rewrite the real mass density equation of water in the form (Lewis

and Schrefler, 1998):

ρwR = ρwR0
[
1− βθw(θ − θ0)

]
(5.5)

and the material time derivative of water real mass density is given as,

DwρwR

D t
= −ρwR0βθw

Dwθ

D t
(5.6)

Solid density

Using the same procedure as we did for water density, the real mass density for a compressible solid

phase can be expressed in the form

ρsR = ρsR0
[
1− βθs (θ − θ0) +

1

Ks
(ps − ps0)

]
(5.7)

where Ks is the bulk modulus of the solid phase; βθs is the volumetric thermal expansion coefficient

of solid grains (with an estimate βθs = 3.5 × 10−5K−1 for the solid grains of silt is obtained by

Khalili et al. (2010) via a drained heating-cooling test), ps and ρ
sR are respectively the solid phase

pressure (not the solid skeleton mean effective stress p′) and the solid real mass density at current

temperature θ; ps0 and ρsR0 are respectively the solid phase pressure and solid real mass density

at reference temperature θ0. For a mechanically incompressible solid phase, the material time
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derivative of the solid phase is simplified to be:

Ds ρsR

D t
= −ρsR0βθs

Ds θ

D t
(5.8)

Gas densities

The gas phase is assumed to be a mixture of water vapor(gv) and dry air (ga). The ideal gas law

is applied to the gas and its components, such that the real mass densities can be expressed as:

ρgv =
pgvMw

θR
(5.9)

ρga =
pgaMa

θR
(5.10)

where pgv and pga are respectively the pressure of water vapor and dry air of the gas phase,Mw and

Ma are molar mass of constituent water and air, respectively, and R is the universal gas constant.

According to Dalton’s law of additivity of partial pressures, we write the real mass density and the

pressure of gas phase as,

ρg = ρgv + ρga (5.11)

pg = pgv + pga (5.12)

where saturated vapor pressure pgvs(θ) and relative humidity RH (according to Kelvin’s law) are

given as follows,

pgvs(θ) = pgvso exp

[
−
Mw4Hvap

R

(
1

θ
−

1

θo

)]
(5.13)

RH = exp

(
−sMw

RθρwR

)
(5.14)

5.2.1.3 Kelvin’s law and Clausius-Clapeyron equation

For water vapor, the relative humidity RH is employed to relate the vapor pressure pgv to

the saturated vapor pressure pgvs as follows,

RH =
pgv

pgvs(θ)
(5.15)



148

where pgvs(θ) only depends on temperature. The saturated vapor pressure pgvs, which depends

only on temperature θ, is predicted by the Clausius-Clapeyron equation:

pgvs(θ) = pgvs0 exp

[
−
Mw4Hvap

R

(
1

θ
−

1

θ0

)]
(5.16)

where pgvs0 is the saturated vapor pressure at reference temperature θ0, 4Hvap is the latent heat

of vaporization, Mw the molar mass of water, R the universal gas constant. Kelvin’s law is applied

to relate the relative humidity to the suction or capillary pressure in the pores (s = pg − pw) as

RH = exp

(
−sMw

RθρwR

)
(5.17)

In the model, the vapor pressure under certain temperature and suction conditions can be obtained

with (5.15)-(5.17), therefore, the air pressure can be calculated by the difference of gas pressure

and vapor pressure. Thus the real mass densities of vapor, air and gas will be obtained with ideal

gas law.

5.2.2 Hydraulic properties

5.2.2.1 Soil-water retention curve (SWRC)

A most frequently used SWRC equation presented by van Genuchten (1980) relates the degree

of saturation to the suction of the soil in the form

Se =
Sw − Sr
Ss − Sr

=

[
1

1 + (s/a)n

]m
(5.18)

where Se is the effective degree of saturation; Sw is the degree of saturation; Sr and Ss = 1 are

relatively the residual and saturated degree of saturations; n and m are van Genuchten model

parameters, and m = 1− 1/n, s = pg − pw is the suction, α, m and other parameters are obtained

from the curves. The fitted parameters for drying curve are chosen in the numerical modeling, as

shown in Table 5.3.
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5.2.2.2 Darcy’s Law

The porous media is filled with a wetting fluid (water) and a non-wetting fluid (gas). Darcy’s law is

extended to the partially saturated case to obtain the Darcy’s velocities of water and gas: Darcy’s

law is applied to the partially saturated porous media to get Darcy’s velocity (or apparent velocity)

of water and gas respectively (Section 6.5.2 of Coussy (2004)):

ṽDw = −
κ(n)Krw(Sw)

µw(θ)
(∇pw − ρwRg) (5.19)

ṽDg = −
κ(n)Krg(Sw)

µg(θ)
(∇pg − ρgRg) (5.20)

where Krw(Se) and Krg(Se) are the relative permeabilities related to respectively water and gas.

They both are functions of the effective degree of saturation (Se). Here n is the porosity of the

porous media, and n = nw + ng. The Darcy’s velocities of water and gas are defined in the form:

ṽDw = nwṽw = nSw(vw − vs) (5.21)

ṽDg = ngṽg = nSg(vg − vs) (5.22)

where vw, vg, vs are the real velocities of water, gas and solid phases, respectively; ṽw and ṽg are

the relative velocities of water and gas phase, respectively. Sg = 1 − Sw. The material porosity

κ = l2δ(n) is also called the intrinsic permeability of the skeleton due to its dependency solely on

the porous network geometry. l is assumed to characterize the porous network geometry as far

as the porous media is saturated with one fluid for simple geometries. Among various expressions

of δ(n) derived in the literature, a frequently used form by Kozeny-Carman’s equation (Carman,

1956) is given as

δ(n) =
n3

1− n2
(5.23)

Experimental determination of the intrinsic permeability κ will be necessary for more complex ge-

ometries (Coussy, 2004). For partially saturated soils, the expression frequently used in association

with the expression (5.18), the relative permeability depends on the effective degree of saturation
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Se (van Genuchten, 1980),

Krw(Se) =
√
Se

[
1− (1− S

1
m
e )m

]2
(5.24)

Krg(Se) =
√

1− Se

(
1− S

1
m
e

)2m

(5.25)

For saturated soils, the permeability ks is then identified as:

ks =
κ(n)

µw(θ)
=

l2

µw
δ(n) (5.26)

where, l2, µw(θ) and δ(n) are already defined in (5.19).

5.2.2.3 Fick’s Law

As a vapor-air mixture, the apparent velocity of gas can be defined in the form:

ṽDg =
pgv
pg

ṽDgv +
pga
pg

ṽDga (5.27)

where ṽDgv and ṽDga are respectively the apparent relative velocities of vapor and air. Vapor is

transported both by advection which is governed by Darcy’s law, and molecular diffusion through

the gas, which is governed by Fick’s law. An explicit form of the velocity of vapor and air is given

by combining Darcy’s and Fick’s laws (Coussy, 2004):

ṽDgv = nSg(vgv − vs) = −
κ(n)Krg

µg(θ)
∇ pg −D ∇

[
ln

(
pgv
pg

)]
(5.28)

ṽDga = nSg(vga − vs) = −
κ(n)Krg

µg(θ)
∇ pg −D ∇

[
ln

(
pga
pg

)]
(5.29)

where n = ng + nw is the overall porosity, Sg is degree of gas saturation. pg, pgv, and pga are gas,

water vapor and dry air pressures, repsepectively. The diffusion coefficient D involved in Fick’s law

is expressed in Coussy (2004):

D = (ng × τ)D0

(
patm
pg

)
, D0 = δ0

(
θ

θ0

)1.88

(5.30)

where the parameters involved are obtained through experiments (De Vries and Kruger, 1966):

δ0 = 2.17×10−5m2s at θ0 = 273K, and patm = 101325Pa. τ is the so-called tortuosity, and a usual

expression of τ (Millington, 1959) shows its dependence on n and Sg as,

τ(n, Sg) = n1/3S7/3
g (5.31)
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5.2.3 Thermal properties

5.2.3.1 Fourier’s law and thermal conductivity

A generalized Fourier’s law is assumed for heat conduction in the TPM model,

q = −Kθ
effgrad θ (5.32)

where, Kθ
eff is referred to as the effective thermal conductivity tensor for the soil mixuture, and q

is the heat flux of the porous media, which is the sum of the partial heat fluxes of each phase qα.

For isotropic porous media, we then have

Kθ
eff = Kθ

eff1 (5.33)

where Kθ
eff denotes the effective thermal conductivity, and is assumed to be constant inside the

homogeneous porous media. The effective thermal conductivity can either be predicted with a

linear mixture relationship (5.34) or determined experimentally.

Kθ
eff = nsKθ

s + nwKθ
w + ngKθ

g (5.34)

where ns, nw and ng are, respectively the volumetric fractions of solid, water and gas. Accordingly,

Kθ
s , K

θ
w and Kθ

g are, respectively, the thermal conductivities of solid, water and gas.

Figure 5.4 gives the thermal conductivity of Bonny silt as a function of solid porosity (Stewart,

2012). During the experiments, the thermal conductivity of a cylindrical Bonny silt specimen is

measured after isotropic consolidation to different void ratios. The linear regression equation to

represent the dependence of thermal conductivity of Bonny silt on solid volumetric fraction is given

in the form:

Kθ
eff = 2.039ns + 0.1 (5.35)

In the model, quadratic equations of the thermal conductivities of water and gas (Kθ
w and Kθ

g ) are

used (Campbell et al., 1994):

Kθ
w = 0.554 + 2.24 × 10−3 × (θ − 273.15) − 9.87 ××10−6 × (θ − 273.15)2 (5.36)

Kθ
g = 0.024 + 7.73 × 10−5 × (θ − 273.15) − 2.6××10−8 × (θ − 273.15)2 (5.37)
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Figure 5.4: Thermal conductivity of Bonny silt.
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where θ−273.15 denotes the conversion from Kelvin to Celsius temperature unites. The parameters

are curve fitted parameters. The thermal conductivity of the mineral fraction is assumed to be

constant. With (5.36), (5.37) and (5.35), we choose 2.04W/(m ·K) as the thermal conductivity of

solid Kθ
s in the model, so that the thermal conductivity of Bonny silt calculated by (5.34) will be

within the range of experimental results (see Figure 5.4).
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5.3 Coupled TPM FEA of centrifuge experiments

5.3.1 Semi-floating energy foundation centrifuge experiment

5.3.1.1 Centrifuge Physical Model

A series of centrifuge-scale tests were performed on semi-floating energy foundations in par-

tially saturated silt by Goode (2013). A scale-model energy foundation having a diameter of 63.5

mm and a length of 342.9 mm was fabricated to study the impact of mechanical loading and heat-

ing on the internal strain distribution in energy foundations. A centrifuge acceleration of 24g was

used throughout this study, so the corresponding prototype-scale foundation length is 8.2 m with

a diameter of 1.5 m. However, the FEA in this study was performed in model scale to avoid issues

related to the scaling of temperature and diffusive heat transfer in the centrifuge as recommended

by Stewart and McCartney (2013).

Seven strain gages and thermocouples were embedded within the foundation to characterize

the strain response and temperature distribution within the foundation at the depths shown in

the schematic in Figure 5.5. Three loops of Perfluoroalkoxy (PFA) tubing with an inside diameter

of 3.175 mm were used to circulate heated fluid through the foundation. The loops were affixed

to the inside of the reinforcing cage so that the inlet and outlet tubes were on the opposite sides

of the foundation and so that they did not cross the bottom of the cage. The foundation has a

larger diameter than that of Stewart and McCartney (2013) to provide more space around em-

bedded instrumentation and to incorporate a larger fraction and size of coarse aggregates into the

concrete mix design. Although drilled shafts are typically cast-in-place, the model foundation was

precast in a cardboard mold with a reinforcement cage having an opening size of 12.7 mm to en-

sure quality construction considering the extensive instrumentation. This approach also allows for

characterization of the mechanical and thermal properties of the foundation. The larger fraction

of coarse aggregates led to a Young’s modulus of reinforced concrete of 30 GPa that was closer to

that of drilled shaft foundations in the field than that of Stewart and McCartney (2013). The mea-

sured coefficient of thermal expansion of the scale-model energy foundation was 16µε/oC, which is
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greater than that of reinforced concrete in full-scale drilled shaft foundations (typically between 10

and 12µε/oC). Details of the instrumentation calibration are provided by Goode and McCartney

(2014).

A cross-sectional profile schematic and a top-view plan schematic of the container used in the

centrifuge-scale tests is shown in Figure 5.6. The container is an aluminum cylinder with an inside

diameter of 605 mm, wall thickness of 13 mm, and an inside height of 533.4 mm. The foundation is

tested in a soil layer having a thickness of 533.4 mm, so its tip will rest on a layer of compacted silt

leading to a semi-floating end restraint boundary condition. The schematics in Figure 5.6 show the

positions of the embedded strain gauges and thermocouples within the foundations, linearly-variable

differential transformers (LVDTs) used to measure vertical displacements of the foundation and soil,

dielectric sensors used to monitor the volumetric water content and temperature of the surrounding

soil, and thermocouple profile probes for measuring the temperature of the soil. A 13 mm-thick

insulation sheet is wrapped around the container to minimize heat transfer through the sides of

the cylinder, which corresponds with an adiabatic boundary condition on the container surface.

The bottom of the container is not insulated in order to provide a stiff platform during mechanical

loading. Although a slight heat loss will likely occur from both the top and the bottom of the

container, these boundary are assumed to be adiabatic in the FEA for simplicity. Heat convection

at the boundaries will be included in future work to provide a more accurate simulation. The top of

the container is covered using plastic wrap to minimize loss of fluid and to reduce convective heat

transfer at the soil surface. Thus, no water flux at the top of the soil is assumed in the analysis. In

the experiment, the temperature of the energy foundation is controlled by circulating fluid with a

known temperature through the heat exchanger tubes attached to the inside of the reinforcement

cage at r = 24.25mm, but a constant temperature was applied to this radial location in the FEA.

In the centrifuge-scale experiments, the same scale-model foundation was used in different

tests. The tests were performed with identical conditions, except that different temperature changes

were applied to the foundation in the different tests. The test procedures involve application of a

seating load (600N) in load-control conditions (i.e., zero head stiffness), followed by heating of the
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foundation to reach a desired temperature. After the head displacements, internal axial strains,

and temperature of the foundation stabilized under each change in temperature, the foundation

was loaded to failure to define the load-settlement curve. After reaching a load of 3265 N in model

scale, the foundation was unloaded. A general schematic of the experimental procedures is shown

in Figure 5.7, and a list of the testing phases is shown in Table 5.2.

To simulate SSI of an energy foundation in partially saturated silt under thermal, hydraulic,

and mechanical loads in the centrifuge experiments, a simplified axisymmetric FE mesh contains 81

elements, 9 elements in radial r direction and 9 elements in axial z direction, as shown in Figure 5.8.

The partially saturated soil is modeled as an overconsolidated soil layer with thermo-elasto-plastic

behavior. The geometry of the FE model (Figure 5.8) is the same as the experimental samples. The

heights of the semi-floating foundation and the container are 342.9mm and 533.4mm, respectively.

Boundary conditions and initial conditions are simplified according to knowledge of the ex-

perimental conditions. The initial conditions are shown in Table 5.4. As for boundary conditions,

due to the axisymmetry of the problem, and assumed rigidity of the bucket, nodal displacements

on the z axis (r = 0) and right edge (r = R) are ur = 0, and nodal displacements on the bottom

(z = −H) are uz = 0. An unreinforced concrete energy foundation is assumed to be impermeable

in this analysis. For now, on the top of the soil, we assume zero water flux Sw = 0, and the pore

gas pressure being kept to be atmospheric pressure pg = patm. We notice that the assumption of

undrained boundary condition for pore water pressure and drained boundary condition for pore gas

pressure at the top may not be justified, but it will be improved in future work when we consider

soil-atmosphere interaction to account for evaporation fluxes. To mimic the heating condition of

the circulating fluid through the “U” shape heat exchanger tubes, we assume that temperature

is prescribed along the z axis at r = 24.25mm for simplicity. However, technically, a 3-D model

including a computational fluid dynamics (CFD) analysis of the heated fluid flow through the tubes

would be a more accurate estimate of the thermal boundary condition. During circulation of heated

fluid through the heat exchange elements in the foundation, energy foundations typically reach a

relatively constant temperature with depth. This has been observed in several previous laboratory
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studies (Stewart and McCartney, 2013). The constant temperature conditions were selected in the

study to evaluate the thermo-mechanical soil-structure interaction behavior of the foundation, not

to evaluate the transient heat transfer processes, which we believe would be better simulated with

a heat flux boundary condition. The temperature at the top of the soil is held constant at room

temperature (20 ◦C, 293 K), and the other surfaces are adiabatic as indicated in Figure 5.8. Corre-

sponding to the seating load (600N), a corresponding effective solid-skeleton traction tσ
′

= [0 −tσ
′

],

tσ
′

= 189kPa, is applied on the top of the energy foundation. During Phase 5, a load of 3645N

was applied to simulate the load to fail the foundation (Goode, 2013). The parameters of the

reinforced concrete energy foundation (F) and soil (Table 5.3) are determined from experimental

measurements (Goode, 2013). Fluid parameters are assumed for water. In addition, the paper

refers to Borja (2004b) for certain elasto-plastic parameters of the soil that are not tested in the

experiment.

The simulation of the centrifuge experiments is part of the validation process of the TPM

model. After the model is further improved and validated, FEA can be combined with the cen-

trifuge experiments to obtain a comprehensive understanding of the fundamental soil mechanics

phenomena involved in energy foundations. With this knowledge, we may assess the potential

issues, evaluate the long-term performance and sustainability, thereby providing practical design

guidance for energy foundations.

Table 5.2: Experimental and FE simulation procedure shown in Figure 5.7.

Phase 1 Consolidation under g-level N =1 in simulation, representing compaction of soil
Phase 2 Spin up centrifuge to a g-level of N = 24, wait for equilibration
Phase 3 Apply a seating load at the foundation top, wait for equilibrium
Phase 4 Heating the foundations to different temperatures
Phase 5 Load the foundations to failure, and then unload under different temperatures
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Table 5.3: Parameters used in the FEA.

Parameter Symbol Value Unit

Linear thermal expansion coefficient of energy foundation βθ
F 16× 10−6 /K

Linear thermal expansion coefficient of solid skeleton βθ
skel 8.7× 10−6 /K

Linear thermal expansion coefficient of solid βθ
s 1.17× 10−5 /K

Linear thermal expansion coefficient of water βθ
w 6.9× 10−5 /K

Specific heat capacity of energy foundation CF 855 J/(K · kg)
Specific heat capacity of solid Cs 1000 J/(K · kg)
Specific heat capacity of water Cw 4180 J/(K · kg)
Mass density of energy foundation ρF 2564 kg/m3

Specific gravity of soil solids Gs 2.6
Thermal conductivity of reinforced concrete Kθ

F 1.978 W/(m ·K)
Thermal conductivity of soil mixture Kθ

s 1.24 W/(m ·K)
Young’s modulus of reinforced concrete EF 30× 109 Pa
Poisson’s ratio of energy foundation νF 0.18 m/m
van Genutchen model parameter a 19.4× 103 Pa
van Genutchen model parameter n 1.8
Intrinsic permeability of soil mixture κ 1.22× 10−14 m2

Initial mean effective preconsolidation pressure p′c 100× 103 Pa
Initial mean effective pressure p′0 70× 103 Pa
Elastoplastic parameter (slope of critical state line) M 1.305

Elastoplastic parameter (slope of isotropic normal compression line) λ̃ 0.14
Elastoplastic parameter (slope of isotropic recompression line) κ̃ 0.034
Thermoplastic parameter γθ 0.04

Table 5.4: Initial conditions for soil used in FEA.

Porosity 0.4
Volumetric water content 0.226
Suction 30 kPa
Gas pressure 101 kPa
Temperature 20 oC(293K)
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5.3.1.2 TPM FEA Results

Contour plots show various results on the deformed mesh with displacement magnification

factor equal to 100. Temperature contours (Figures 5.9, 5.11, and 5.13) indicate that although

the foundation reaches steady-state temperature at the end of each test, the soil is not necessarily

at steady-state temperature, for example, soil mixture temperature remains near the initial value

θ0 = 20oC(293K) at further radial distance in the soil. This means that the system response is

representative of transient heating, meaning the soil mixture temperature is still evolving. The

modeling results of thermal axial strains εθzz within the foundation are compared with experimental

data collected by the strain gauges in Figure 5.21. Good agreement is observed in the comparison

throughout the energy foundation. Note that, different from the sign conventions used by Stewart

and McCartney (2013) and Goode (2013), positive strains are used to denote elongation of a

foundation or soil element (e.g., due to application of tension or due to thermal expansion), the

coefficient of thermal expansion is defined as a positive value, and a positive settlement is defined as

an upward heave. Here, the so-called “thermal axial strain” should not be confused with the term

we usually use, which is defined as εθ = βθ∆θ. In the thesis particularly, the thermal axial strain

εθzz is the total vertical strain at the end of temperature increase εzz zeroed out by subtracting the

total vertical strain caused by mechanical effects εmechzz including the gravity and building load, i.e.,

εθzz = εzz− εmechzz . The energy foundation achieves almost uniform thermal axial strain distribution

except at the bottom where much smaller thermal strain is observed. It is understandable because

the thermal expansion of the foundation bottom is partially constrained by the soil resistance

underneath. Also, as shown in the temperature contours, the temperature at the foundation bottom

is always relatively lower than the upper region due to the contact with the underneath soil. While,

for the foundation top, we can conclude that it almost expands freely under thermal loading,

based on the fact that the strain values are approximately equal to the calculation by free thermal

expansion εθ = βθ∆θ. Figures 5.10, 5.12 and 5.14 show that thermal axial strains inside the soil

vary more noticeably. Temperature increases cause expansion of the soil near the foundation-soil
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interface (31.75mm < r < 132.75mm). Negligible positive expansive axial strains are observed

at further radial distance. The negative compressive axial strains within the soil underneath the

foundation imply that the compression due to the building load on the top of the foundation is

dominant, compared to the thermal expansion.

Figures 5.15 and 5.16 indicate significant changes in suction and volumetric water content re-

spectively near the soil-foundation interface. For example, volumetric water content decreases from

an initial value of 0.226 to approximately 0.18 near the foundation-soil interface (r = 31.75mm),

and a small rise occurs in the soil at r = 56.75mm. Volumetric water contents increase slightly

in the region of 56.75mm < r < 92mm, however, no significant variation is observed beyond

r = 92mm. Figure 5.17 indicates that a net rate of evaporation is produced within the soil due to

rapidly increasing temperatures. A sharp rise of water vapor pressure (from initial value of 2.5kPa

to around 6.5kPa) happens near the soil-foundation interface (r = 31.75mm), and a smaller rise

occurs further from the interface. The formed density gradients drive vapor from the hotter region

(soil-foundation interface) to the cooler region. Arrows in Figure 5.19 show the direction of water

vapor flow inside the soil. Also, higher vapor velocity is observed under larger temperature gradi-

ents. This diffusion process is governed by many factors including hydraulic and thermal properties

of soil, which require further research. Condensation occurs when the hotter vapor migrates to the

region of lower temperature, and hence leads to a rise in volumetric water content, as shown in

Figure 5.16 at 56.75mm < r < 92mm. As the soil near the soil-foundation interface becomes drier

(pw ≈ 60kPa at r = 31.75mm) compared to the soil further from the interface (pw approaches

75kPa at 56.75mm), pore water pressure gradients are formed, which force liquid water to flow

from the wetter region to the drier region, as shown in Figure 5.18. The movement of pore water

is illustrated by the direction of water flow inside the soil in Figure 5.20. In the soil at further

radial distance, gravity mainly induces downward pore water flow. The pore liquid water flow is

in the direction of the soil-foundation interface near the interface. The trend of thermally-induced

fluid flow will be more obvious as the tests run longer or under higher thermal load (Wang et al.,

2014). Variations of volumetric water content are compared vertically and horizontally between
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the modeling and experimental results in Figure 5.22. Similar trends are observed though the ex-

perimental results exhibit slightly higher values. Volumetric water contents are very close at the

same radius (r = 58mm). While the temperature increases within soil, volumetric water contents

rise higher in the region closer to the foundation-soil surface (r = 58mm) than in the further region

(r = 101mm). In the further region (r = 177mm), much lower increase of the volumetric water

content is observed at the end of Phase 4. But the thermally driven moisture movement might

change the distribution of volumetric water content as the temperature gradients become lower

within the soil. Further research involving higher temperature gradients and longer-term observa-

tions are necessary to investigate the thermally-induced fluid (liquid water and water vapor) flow.

Figure 5.23 presents the average temperature variations of the foundation center and the different

positions in the soil during Phase 4. The temperature trend at the foundation center depends on

how the prescribed temperature is applied at r = 24.25mm. In the simulation, the prescribed

temperature linearly ramps up from room temperature (20oC) to 39oC during the first 1.35 hours,

and then is kept constant for the rest of Phase 4. According to the temperature comparison, the

simplified assumption of the thermal boundary condition does not capture the transient trend at

the foundation center exactly, but after a certain time (3 hours in this case), the difference becomes

negligible when the foundation arrives at the steady-state temperature. The temperature within

the soil (r = 106, 155, 216, 293mm) changes relatively slow, compared to the foundation.

In an attempt to simulate the failure process during Phase 5 in the centrifuge experiment, the

model uses a failure load of 3645N estimated from the experimental observations (Goode, 2013) as

the ultimate load on the top of the foundation. Figure 5.24 shows that the settlements corresponding

to the ultimate capacity in the experiment are much larger than those from the modeling results.

Load-settlement curves from the modeling results imply that plasticity is not reached in the soil

continuum under the estimated ultimate load, even though the nonlinear thermo-elasto-plastic

constitutive model is applied to the soil continuum. Because of the assumption of a perfect bond

at the foundation-soil interface, the model failed to capture the side-shear failure that induced the

slippage at the interface and meanwhile contributed to the large settlements in the experiment.
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We believe that with the interface elements implemented along the foundation-soil interface, the

model can provide more accurate simulation of the failure mechanism. This will be investigated in

Section 7.3.3.

Figure 5.9: Temperature (oC) contours at the end
of Phase 4 under ∆θ = 6oC.

Figure 5.10: Thermal axial strain εzz(µε) contours
at the end of Phase 4 under ∆θ = 6oC.

Figure 5.11: Temperature (oC) contours at the end
of Phase 4 under ∆θ = 14oC.

Figure 5.12: Thermal axial strain εzz(µε) contours
at the end of Phase 4 under ∆θ = 14oC.
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Figure 5.13: Temperature (oC) contours at the end
of Phase 4 under ∆θ = 19oC.

Figure 5.14: Thermal axial strain εzz(µε) contours
at the end of Phase 4 under ∆θ = 19oC.

Figure 5.15: Contours of suction (kPa) in soil at
the end of Phase 4 under ∆θ = 19oC.

Figure 5.16: Volumetric water content (%) (100
nw) contours in soil at the end of Phase 4 under
∆θ = 19oC.
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Figure 5.17: Contours of absolute pore water vapor
pressure (kPa) in soil at the end of Phase 4 under
∆θ = 19oC.

Figure 5.18: Contours of pore water liquid pressure
(kPa) in soil at the end of Phase 4 under ∆θ = 19oC.

Figure 5.19: Pore water vapor flow vectors in soil
at the end of Phase 4 under ∆θ = 19oC.

Figure 5.20: Pore water liquid flow vectors in soil
at the end of Phase 4 under ∆θ = 19oC.
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Figure 5.21: Comparison of thermal axial strain εθzz
within the energy foundations at the end of Phase 4
under different temperature changes between model
(M) predictions and experimental (E) data from
Goode (2013).
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Figure 5.22: Comparison of volumetric water con-
tent within soil during Phase 4 under ∆θ = 19oC at
different positions (mm) between model (M) predic-
tions and experimental (E) data from Goode (2013).
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5.3.2 End-bearing energy foundation centrifuge test

A simplified axisymmetric FE mesh containing 30 elements (Figure 5.25) is created to sim-

ulate SSI of an end-bearing energy foundation under thermal, hydraulic, and mechanical loads in

the centrifuge experiment with centrifugation to an acceleration of 24 times gravity (N=24). In the

experiment, the foundation is heated in stages over a range of temperatures expected in the field

through P4-P7 as shown in Figure 5.26. The partially saturated soil is modeled as an overconsol-

idated soil layer with linear thermo-elastic behavior. Elastic, hydraulic, and thermal parameters

are applied for Bonny silt. Fluid parameters are assumed for water. The geometry of the FE

model is the same as that in the experiments. The height of the energy foundation is H = 0.537m.

The radius of the energy foundation is a = 0.025m, and the radius of the centrifuge bucket is

R = 0.3025m.

Initial conditions and boundary conditions are simplified according to knowledge of the exper-

imental conditions. The initial conditions include: porosity n0 = 0.425; volumetric water content

w0 = 26%; suction s0 = 32kPa; gas pressure pg0 = 101kPa; temperature θ0 = 20oC. As for bound-

ary conditions, due to the axisymmetry of the problem, and assumed rigidity of the bucket, nodal

displacements on the z axis (r = 0) and right edge (r = R) are ur = 0, and nodal displacements

on the bottom (z = −H) are uz = 0. An unreinforced concrete energy foundation is assumed to

be impermeable in this analysis. There is reinforcement in the actual experiment, but since failure

of the foundation is unlikely, linear thermoelastic assumption for the concrete is reasonable, with

or without reinforcement. Also zero water flux Sw = 0 at the top of soil is assumed, since plastic

sheeting is placed on the top surface to minimize evaporation. The pore gas pressure pg on the top

is held to be atmospheric pressure pg = patm at z = 0. In the experiment or the field, the tempera-

ture of the energy foundation is actually controlled by circulating fluid with a known temperature

through a series of three equally spaced “U” shape heat exchanger tubes attached to the inside of

the reinforcement cage at r = 0.02m. Technically, a 3-D model including a CFD analysis of the

heated fluid flow through the tubes would be a more accurate estimate of the thermal boundary



169

condition. However, for simplicity, we assume that temperature is prescribed along the z axis at

r = 0.02m. During circulation of heated fluid through the heat exchange elements in the founda-

tion, energy foundations typically reach a relatively constant temperature with depth. This has

been observed in several previous laboratory studies (Stewart and McCartney, 2013). The constant

temperature conditions were selected in the study to evaluate the thermo-mechanical soil-structure

interaction behavior of the foundation, not to evaluate the transient heat transfer processes, which

we agree would be better simulated with a heat flux boundary condition. The temperature at the

top of the soil is held constant at room temperature (20 ◦C), and the other surfaces are adiabatic as

indicated in Figure 5.25. Axial load is exerted on the top of the energy foundation instantaneously,

and is kept constant during the test. Effective solid-skeleton traction tσ
′

= [0 − tσ
′

], tσ
′

= 384kPa,

is applied on the top of the energy foundation. The parameters of the unreinforced concrete energy

foundation (c) and soil (Table 5.5) are determined from experimental measurements.

TPM FEA Results for the end-bearing foundation centrifuge experiment:

Figure 5.27 - Figure 5.38 are plotted contours of various results on the deformed mesh with

displacement magnification factor equal to 100. Temperature contours (Figure 5.27 - Figure 5.30)

indicate that although the foundation reaches steady temperatures after each stage, the soil is not

necessarily at steady-state temperature, for example, soil mixture temperature remains near the

initial value θ0 = 20oC at further radial distance in the soil. This means that the system response

is representative of transient heating. About 10 hours after the end of phase 7 (phase 7 ends at

about 2.64 hr), higher temperature is observed inside the soil near the foundation, as shown in

Figure 5.31. Variation of the pore gas pressure is negligible during the heating process as shown

in Figure 5.32. Figure 5.33 and Figure 5.34 indicate significant changes in suction and volumetric

water content respectively near the soil-foundation interface. For example, suction increases from

an initial value of 32kPa to nearly 60kPa near the interface (r = 0.025m), and smaller rise occurs

in the soil at r = 0.05m. Suction drops slightly in the region of 0.05m < r < 0.14m, however, no

significant variation of suction is observed beyond r = 0.14m. A corresponding trend is detected

regarding volumetric water content distribution in Figure 5.34. Figure 5.35 indicates that a net rate
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of evaporation is produced within the soil due to rapidly increasing temperatures. A sharp rise of

water vapor pressure (from initial value of 2.5kPa to around 7kPa) happens near the soil-foundation

interface (r = 0.025m), and a smaller rise occurs further from the interface. The formed density

gradients drive vapor from the hotter region (soil-foundation interface) to the cooler region. Arrows

in Figure 5.37 show the direction of water vapor flow inside the soil. Also, higher vapor velocity is

observed under larger temperature gradients. This diffusion process is governed by many factors

including hydraulic and thermal properties of soil, which require further research. Condensation

occurs when the hotter vapor migrates to the region of lower temperature, and hence leads to a

rise in volumetric water content, as shown in Figure 5.34 at 0.05m < r < 0.14m. As the soil near

the soil-foundation interface becomes drier (pw ≈ 45kPa at r = 0.025m ) compared to the soil

further from the interface (pw ≈ 70kPa at r = 0.05m ), pore water pressure gradients are formed,

which force liquid water to flow from the wetter region to the drier region, as shown in Figure 5.36.

The movement of pore water is illustrated by the direction of water flow inside the soil in Figure

5.38. In the soil at further radial distance, gravity mainly induces downward pore water flow. The

pore liquid water flow is in the direction of the soil-foundation interface near the interface. The

comparison of thermal strain between FEA and experimental results in Figure 5.39 shows good

agreement at the foundation top, with similar trend observed for the rest of the foundation. One

of the possible reasons for the difference is the assumption of perfect bond at the soil-foundation

interface in the model, therefore, side shear resistance along the length of the foundation is not

well represented. Implementation of interface elements at the soil-foundation interface will likely

allow closer representation of the SSI conditions. Figure 5.40 indicates that both experimental and

modeling results show smaller thermally induced stress at the top of the foundation as compared

to the bottom. Figure 5.41 shows good agreement of displacement at the foundation top in the

temperature range of 20oCto30oC, but in the range 30oCto40oC, the linear elastic solid skeleton

constitutive behavior and function of temperature needs to be modified. The thermal expansion

coefficient of the energy foundation estimated from Figure 5.41 is ≈ 6.8 × 10−6/K. This value is

slightly smaller than the given parameter βθc = 7.5 × 10−6/K due to the assumption of perfect
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bond at the soil-foundation interface in the FEA model. This assumption will be relaxed when

the interface element is implemented. The top displacements of foundation and soil are shown in

Figure 5.42 with respect to radial coordinate r and phase loading. The deformation of soil is a

combination of thermal expansion and solid skeleton consolidation due to gravity level increases in

centrifuge experiments.

Table 5.5: Parameters used in the FEA.

Parameter Symbol Value Unit

Linear thermal expansion coefficient of concrete βθ
c 7.5× 10−6 /K

Linear thermal expansion coefficient of solid skeleton βθ
skel 8.7× 10−6 /K

Linear thermal expansion coefficient of soil solid βθ
s 1.17× 10−5 /K

Specific heat capacity of concrete Cc 855 J/(K · kg)
Specific heat capacity of soil solid Cs 1000 J/(K · kg)
Specific gravity of soil solid Gs 2.6
Thermal conductivity of concrete Kθ

c 2.6 W/(m ·K)
Thermal conductivity of solid Kθ

s 1.24 W/(m ·K)
Young’s modulus of concrete foundation Ec 7.17× 109 Pa
Poisson’s ratio of concrete foundation νc 0.18 m/m
Lamé parameter of soil solid skeleton λskel 2.9× 107 Pa
Lamé parameter of soil solid skeleton µskel 4.7× 107 Pa
van Genutchen model parameter α 0.357× 10−4 Pa−1

van Genutchen model parameter n 1.8
Hydraulic conductivity of saturated soil ksat 1.3× 10−7 m/s
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Figure 5.27: Temperature (oC) contour at ∆θ =
5oC (the end of phase 4).

Figure 5.28: Temperature (oC) contour at ∆θ =
10oC (the end of phase 5).

Figure 5.29: Temperature (oC) contour at ∆θ =
15oC (the end of phase 6).

Figure 5.30: Temperature (oC) contour at ∆θ =
20oC (the end of phase 7).
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Figure 5.31: Temperature (oC) contour at 10 hours
after the last thermal loading phase.

Figure 5.32: Contour of pore gas pressure (kPa) in
soil at 10 hours after the last thermal loading phase.

Figure 5.33: Contour of suction (kPa) in soil at 10
hours after the last thermal loading phase.

Figure 5.34: Volumetric water content (%) (100nw)
contour in soil at 10 hours after the last thermal
loading phase.



175

Figure 5.35: Contour of pore water vapor pressure
(kPa) in soil at 10 hours after the last thermal load-
ing phase hours.

Figure 5.36: Contour of pore water pressure (kPa)
in soil at 10 hours after the last thermal loading
phase.

Figure 5.37: Pore water vapor flow vectors in soil
at 10 hours after the last thermal loading phase.

Figure 5.38: Pore water flow vectors in soil at 10
hours after the last thermal loading phase.
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Figure 5.39: Comparison of total vertical strain εzz
between experimental (E) data (Stewart, 2012) and
model (M) predictions inside the energy foundation.
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Figure 5.40: Comparison of stress σzz between
experimental (E) calculations (Stewart, 2012) and
model (M) predictions inside the energy foundation.
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Figure 5.41: Comparison of vertical displacement
versus temperature at the center of the founda-
tion top between experimental (Stewart, 2012) and
model results.

0 0.1 0.2 0.3 0.4
0

0.01

0.02

0.03

0.04

0.05

0.06

Distance from the center of the foundation (m)

V
er

tic
al

 d
is

pl
ac

em
en

t (
m

m
) 

 

 

End of P4
End of P5
End of P6
End of P7

Figure 5.42: Vertical displacement dz of the top of
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Chapter 6

Fully and partially saturated poro-mechanical (PM) cohesive interface element

(CIE) models implemented within TPM FE framework

6.1 Fully saturated PM CIE model

This part we introduce the formulation of interface element under isothermal and saturated

conditions. This discussion follows R.A.Regueiro’s notes at the University of Colorado, Boulder.

6.1.1 Governing equations

Balance equations are derived for the continuum and the crack separately, and then are

combined to obtain the governing equations for the fractured porous media.

6.1.1.1 Balance of linear momentum

The balance of linear momentum equation for continuum and discontinuity is written as:




∂σij
∂xj

+ ρbi = 0 xi ∈ Ω/S

ui = gui xi ∈ Γg

σ′ijνj = tσ
′

i xi ∈ Γt

σ′+ij n
+
j = T ′+

i xi ∈ S+

σ′+ij n
−
j = T ′−

i xi ∈ S−

(6.1)

where n, n+ and n− are respectively the normal vectors of surface S, S+ and S−; ν is the normal

vector of surface of continuum (see Figures 6.1 and 6.2). The assumptions are: for small rotation,

n = n+ = −n−, and for large rotation of S, n = 1
2 (n

+ − n−). T ′+ and T ′− are respectively the
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Figure 6.1: Sketch of continuum with discontinuity.
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Figure 6.2: Sketch of 2D zero-thickness interface element with fluid flow in tangential and normal directions.
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Figure 6.3: Schematic of mixed Q6P4 saturated PM cohesive surface element, indicating local node num-
bering of the six nodes 1-6, the three virtual interface nodes I-III on the virtual surface S, and the three
Gauss points 1-3 (in green) on natural coordinate ξ.
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Figure 6.4: Schematic of the crack Sl with a width of l.
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effective traction on surface S+ and surface S−. We define an effective traction T ′
i on the virtual

surface S (see Figure 6.2), which can be expressed by a constitutive equation. Furthermore, we

assume effective traction continuity across S, such that

T ′
i = T ′+

i = −T ′−
i (6.2)

In the code, T ′ = [T ′
r ; T

′
z] in the global coordinate system is calculated through the following

equation:

T ′ = Λ−1T̃
′

(6.3)

where, T̃
′
= [T ′

t ;T
′
n] is the effective traction on S in the local coordinate system (Figure 6.1). We

apply weighted function wi = δui to formulate the weak form of balance of linear momentum

∫

Ω
wi

(
∂σij
∂xj

+ ρbi

)
dv = 0 (6.4)

Using the chain rule, one can write

∫

Ω
wi
∂σij
∂xj

dv =

∫

Ω

∂(wiσij)

∂xj
dv −

∫

Ω

∂wi
∂xj

σijdv (6.5)

We apply the divergence theorem to obtain

∫

Ω

∂(wiσij)

∂xj
dv =

∫

Γ
wiσij ñjda (6.6)

where ñj is a generic normal vector to surface Γ, and Γ = Γt + Γg + S− + S+; thus we rewrite

∫

Γ
wiσij ñjda =

∫

Γt

wiσijνjda+

∫

Γg

wiσijνjda

︸ ︷︷ ︸
wi=0onΓg

+

∫

S+

w+
i σ

+
ijn

+
j da+

∫

S−

w−
i σ

−
ijn

−
j da (6.7)

where we apply the effective stress principle to obtain,

σij = σ′ij − pfδij (6.8)

σ+ij = σ′+ij − p+f δij (6.9)

σ−ij = σ′−ij − p−f δij (6.10)
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where pf is the pore fluid pressure in the continuum; p+f and p−f are respectively the pore fluid

pressures on surfaces S+ and S−, positive in compression.

We substitute the effective stress expressions into (6.7):

∫

Γt

wiσijνjda =

∫

Γt

wi
(
σ′ij − pfδij

)
νjda

=

∫

Γt

wiσ
′
ijνjda−

∫

Γt

wipfδijνjda

=

∫

Γt

wit
σ′
i da−

∫

Γt

wipfνida (6.11)

With 6.2, and assuming an average pore fluid pressure pSf associated with the virtual surface S, we

can write

∫

S+

w+
i σ

+
ijn

+
j da =

∫

S+

w+
i T

′+
i da−

∫

S+

w+
i p

+
f n

+
i da

=

∫

S
w+
i T

′
ida−

∫

S
w+
i p

S
fnida (6.12)

where pSf = 1
2(p

+
f + p−f ). Similarly,

∫

S−

w−
i σ

−
ijn

−
j da =

∫

S−

w−
i T

′−
i da−

∫

S−

w−
i p

−
f n

−
i da

=

∫

S
w−
i

(
−T ′

i

)
da−

∫

S
w−
i p

S
f (−ni) da (6.13)

We substitute (6.11), (6.12) and (6.13) into (6.7) to obtain

∫

Γ
wiσij ñjda =

∫

Γt

wit
σ′

i da−

∫

Γt

wipfνida

+

∫

S

(
w+
i − w−

i

)
T ′
ida+

∫

S

(
w−
i −w+

i

)
pSf ni da (6.14)

Let us introduce the definition of jump displacement vector and jump weighting function vector

across S as,

[[u]] := uS
−

− uS
+
; [[w]] := wS−

−wS+
(6.15)

where the superscripts + and − denotes the surface S+ and S−; uS
−

and uS
+
are the displacement

vectors on S− and S+, respectively; [[u]] = [ut ; un], where ut and un denote tangential and normal
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displacement jumps, respectively. Use (6.8) to write the 2nd term on the R.H.S. of (6.5) in the

bulk continuum as
∫

Ω

∂wi
∂xj

σijdv =

∫

Ω

∂wi
∂xj

σ′ijdv −

∫

Ω
pf
∂wi
∂xi

dv (6.16)

Substitute (6.14) into (6.5) to obtain

∫

Ω

∂wi
∂xj

σ′ijdv −

∫

Ω
pf
∂wi
∂xi

dv +

∫

Γt

wipfνida

+

∫

S
[[wi]]T

′
ida−

∫

S
[[wi]]p

S
f ni da =

∫

Ω
wiρbidv +

∫

Γt

wit
σ′
i da (6.17)

The discrete Galerkin form of the variables are written as, uh, [[uh]], phf , (p
S
f )
h, [[phf ]]; the Galerkin

form of the corresponding weighting functions are: wh, [[wh]], ζh, (ζS)h and [[ζh]]. The local node

order of the zero-thickness interface element is shown in Figure 6.3.

(1) Displacement

The Galerkin form of the displacement vector of the continuum FE is (using Q9P4 for bulk con-

tinuum FE discretization):

uh(ξ, t) =

9∑

a=1

Nu
a (ξ)d

e
a(t) = N e,u · de

=

[
Nu

1 . . . Nu
9

]

︸ ︷︷ ︸
N

e,u
(2×18)




de1

...

de9




(6.18)

for a = 1, 2, ..., 9,

Nu
a =



Nu
a 0

0 Nu
a


 , dea =



der(a)

dez(a)


 (6.19)

wh(ξ) = N e,u · ce (6.20)

Next, let us write the Galerkin form of displacement vector of zero-thickness interface element (see

Figure 6.3:

uS
−,h =

[
ξ(1+ξ)

2 − ξ(1−ξ)
2 (1− ξ)(1 + ξ)

]
·





dcse4

dcse5

dcse6





(6.21)
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uS
+,h =

[
− ξ(1−ξ)

2
ξ(1+ξ)

2 (1− ξ)(1 + ξ)

]
·





dcse1

dcse2

dcse3





(6.22)

Thus, the jump displacement vector is written as

[[uh]] = uS
−,h − uS

+,h

=

[
−N

cse,u
1 −N

cse,u
2 −N

cse,u
3 N

cse,u
4 N

cse,u
5 N

cse,u
6

]

︸ ︷︷ ︸
N

cse,u
(2×12)

·





dcse1

dcse2

dcse3

dcse4

dcse5

dcse6





︸ ︷︷ ︸
d

cse
(12×1)

(6.23)

where, for a = 1, 2..., 6

N cse,u
a =



N cse,u
a 0

0 N cse,u
a


 (6.24)

The shape functions for cohesive element are:

N cse,u
1 = N cse,u

5 = −
ξ(1− ξ)

2
(6.25)

N cse,u
2 = N cse,u

4 =
ξ(1 + ξ)

2
(6.26)

N cse,u
3 = N cse,u

6 = (1− ξ)(1 + ξ) (6.27)

(2) Pore fluid pressure
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The Galerkin form of pore fluid pressure in the bulk porous continuum:

phf (ξ, t) =
4∑

a=1

Np
a (ξ) p

e
f,a = Ne,p · pef

=

[
Np

1 Np
2 Np

3 Np
4

]

︸ ︷︷ ︸
N

e,p
(1×4)




pef,1

pef,2

pef,3

pef,4




(6.28)

ζh(ξ, t) = Ne,p(ξ) · αe (6.29)

where, ξ = [ξ, η] denotes parent coordinates. The nodal shape functions for bilinear quadrilateral

are,

Np
1 = 1

4(1− ξ)(1− η)

Np
2 = 1

4(1 + ξ)(1− η)

Np
3 = 1

4(1 + ξ)(1 + η)

Np
4 = 1

4(1− ξ)(1 + η)

(6.30)

On the cohesive surface element: (1) The pore fluid pressure on surface S is denoted by pSf , and

pSf = 1
2

(
p+f + p−f

)
, then,

pSf
h
=

1

2

[
N cse1,p

1 N cse1,p
2 N cse1,p

4 N cse1,p
5

]

︸ ︷︷ ︸
N

cse1,p
(1×4)

·





pcsef,1

pcsef,2

pcsef,3

pcsef,4





︸ ︷︷ ︸
pcse

f (4×1)

(6.31)

where, the shape functions N cse1,p
a , a = 1, 2, 4, 5 are:

N cse1,p
1 = N cse1,p

5 = 1
2 (1− ξ)

N cse2,p
1 = N cse1,p

4 = 1
2 (1 + ξ)

(6.32)

The weighting function of pSf is denoted by ζS ; the Galerkin form is:

ζS
h
= N cse1,p ·αcse (6.33)
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(2) The weighting function of jump pore fluid pressure on the cohesive surface element is denoted

by [[ζ]]; the Galerkin form is written as:

[[ζh]] =

[
−N cse1,p

1 −N cse1,p
2 N cse1,p

4 N cse1,p
5

]

︸ ︷︷ ︸
N cse2,p

·αcse (6.34)

where, the shape functions N cse1,p
a , a = 1, 2, 4, 5 are the same as those defined in (6.32). The jump

pore fluid pressure is written as

[[phf ]] = N cse2,p · pcsef (6.35)

6.1.1.2 Balance of mass

In this part, we will write balance of mass for discontinuity (or cohesive interface element) and

continuum (or bulk element) separately. Then combine the two equations to obtain one balance of

mass equation for discontinuity and continuum together. The balance of mass in discontinuity Sl

(with changing aperture l) is:

∂u̇i
∂xi

+
∂(ṽD,Sf )i

∂xi
= 0, xi ∈ S

l, i = t, n (6.36)

where ui is the displacement component in the discontinuity; t and n denote “tangential” and

“normal”, respectively . ṽ
D,S
f = [ṽD,St ; ṽD,Sn ] is Darcy’s velocity of the fluid in discontinuity. The

aperture of the discontinuity (or crack) Sl is denoted by l = l0 + un, where, l0 is the initial width

of the discontinuity, and un is the displacement jump normal to S between S+ and S− due to the

development of the crack. A Heaviside step function is assumed to express the displacement (or

velocity) in the discontinuity:

u̇i = [[u̇i(x)]]HS(x), x ∈ Sl (6.37)

where HS is a heaviside step function on S. The divergence of u̇ is then,

∂u̇i
∂xi

=
∂[[u̇i(x)]]

∂xi
HS(x) + [[u̇i(x)]]niδS (6.38)
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where n is the normal vector of surface S, therefore we have [[u̇i(x)]]ni = [[u̇n(x)]]; δS is the Dirac

delta function on S. We ignore the first term on the R.H.S of (6.38) for now to obtain

∂u̇i
∂xi

= [[u̇n(x)]]δS (6.39)

In 2D, we define the nodal displacement vector of an oriented cohesive interface element (see Figure

6.3) in the local coordinate system t = (t, n) as:

d̃
e
a =





(det )a

(den)a





(6.40)

As shown in Figure 6.3, an averaged angle α of S with respect to global coordinate frame r − z is

defined as:

α =
1

2
(α+ + α−) (6.41)

To establish a geometrical relationship between the nodal displacement vector in the local coordi-

nate system and that in the global coordinate system r = (r, z), we construct a matrix Λe, such

that 



(det )a

(den)a





=




cosα sinα

−sinα cosα




︸ ︷︷ ︸
Λe

·





(der)a)

(dez)a





(6.42)

Thus, the Galerkin form of element displacement jump can be written as

[[ũe(t)]] =



uet

uen


 = Λe · [[ue(r)]] = Λe ·N cse,u · dcse (6.43)

If we write

Λe =




Λe
1

Λe
2


 (6.44)

note,

Λe
1 =

[
cosα sinα

]
= tT ; Λe

2 =

[
−sinα cosα

]
= nT (6.45)

The displacement jump in normal and tangential directions are given as

un = nT [[u(r)]] ; ut = tT [[u(r)]] (6.46)
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Thus, un > 0 implies that the crack is opening; un < 0 implies that the crack is closing. Let us

derive the divergence of (ṽD,Sf ), the superficial velocity of the pore fluid in the crack Sl.

∂(ṽD,Sf )i

∂xi
=
∂ṽD,Sn

∂xn
+
∂ṽD,St

∂xt
(6.47)

where ṽD,Sn and ṽD,St are respectively the velocities in normal and tangential directions within the

crack volume Sl (see Figure 6.4).

We apply weighting function ζ and integrate (6.36) over the volume of the discontinuity Sl to obtain

∫

Sl

ζu̇nδS dv +

∫

Sl

ζ
∂(ṽD,Sf )i

∂xi
dv = 0 (6.48)

According to the nature of the Dirac delta step function, the volumetric integration over Sl can be

converted to area integration over S in the following form:

∫

Sl

ζu̇nδS dv =

∫

S
ζSu̇nda (6.49)

Let us derive the second term in (6.48). We use chain rule again to obtain

∫

Sl

ζ
∂(ṽD,Sf )i

∂xi
dv =

∫

Sl

∂(ζṽD,Sf )i

∂xi
dv −

∫

Sl

∂ζ

∂xi
(ṽD,Sf )idv (6.50)

We apply the divergence theorem to obtain

∫

Sl

∂(ζṽD,Sf )i

∂xi
dv =

∫

S+

ζ+(ṽS
+,D

f )i n
+
i da+

∫

S−

ζ−(ṽS
−,D

f )i n
−
i da+

∫

ΓS

ζ(ṽD,Sf )i νida (6.51)

where ΓS is the end boundary of the crack, with ν being the normal vector.

∫

ΓS

ζ(ṽD,Sf )i νida =

∫

ΓS

ζ(−Sw,S)da (6.52)

where Sw,S is the flux at the ends of the boundaries of the crack domain Sl. We define the flux

into the crack to be positive, thus

(ṽD,S
+

f )i n
+
i = ṽD,S

+

n = ṽD,Sn (6.53)

(ṽD,S
−

f )i n
−
i = ṽD,S

−

n = −ṽD,Sn (6.54)
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Therefore, substituting the upper equations and using the definition of jump weighting function

[[ζS ]] on surface S gives:

∫

S+

ζ+(ṽD,S
+

f )i n
+
i da+

∫

S−

ζ−(ṽD,S
−

f )i n
−
i da =

∫

S+

ζ+ṽD,Sn da−

∫

S−

ζ−ṽD,Sn da

=

∫

S
(ζ+ − ζ−)ṽD,Sn da

=

∫

S
−[[ζS]]ṽD,Sn da (6.55)

Substituting (6.52) and (6.55) into (6.50) yields

∫

Sl

ζ
∂(ṽD,Sf )i

∂xi
dv = −

∫

S
[[ζS ]] ṽD,Sn da−

∫

ΓS

ζSw,Sda−

∫

Sl

∂ζ

∂xi
(ṽD,Sf )idv (6.56)

where, the last term can be written as

∫

Sl

∂ζ

∂xi
(ṽD,Sf )idv =

∫

Sl

∂ζ

∂xt
ṽD,St dv +

∫

Sl

∂ζ

∂xn
ṽD,Sn dv (6.57)

We assume the derivative of ζ with respect to xn takes the form:

∂ζ

∂xn
= [[ζS ]] δS (6.58)

where δS is δ function as in (6.38), such that

∫

Sl

∂ζ

∂xn
ṽD,Sn dv =

∫

S
[[ζS]] ṽD,Sn da ≈ 2πr0

∫

S
[[ζS ]] ṽD,Sn ds (6.59)

where ṽD,Sn denotes the normal velocity of fluid on the crack surface S, and can be expressed with

a constitutive equation. Combining (6.59), (6.57), (6.56) and (6.48) allows us to write the balance

of mass equation of the discontinuity as follows

∫

S
ζS u̇n da−

∫

S
[[ζS]]ṽD,Sn da−

∫

ΓS

ζSfda−

∫

S
[[ζ]] ṽD,Sn da−

∫

Sl

∂ζ

∂xt
ṽD,St dv = 0 (6.60)

Now let us add the balance of mass equations of bulk and discontinuity together

∫

Ω
ζ
∂u̇i
∂xi

dv −

∫

Ω

∂ζ

∂xi
(ṽDf )i dv +

∫

S
ζSu̇nda− 2

∫

S
[[ζS ]] ṽD,Sn da

−

∫

Sl

∂ζ

∂xt
ṽD,St dv =

∫

Γs

ζSwda+

∫

ΓS

ζSw,Sda (6.61)
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where Sw is the fluid flux at the continuum boundary Γs; u is the displacement of the solid

skeleton; ṽDf is the Darcy’s velocity of pore fluid in the continuum. The element of volume dv for

an axisymmetric solid can be expressed as (assuming independence with respect to angle θ)

dv = r dθ da = 2πrda (6.62)

where da = drdz is the element of area in the generating cross section of r − z in the bulk. The

volume integration is then written as

∫

Ω
(•)dv = 2π

∫

A
(•)rda (6.63)

For the crack, however, we have:

∫

Sl

(•)dv = 2π

∫

S
(•)lrds (6.64)

forSl, dv = l r dθds = 2πl r ds (6.65)

where ds is the differential arc length element of the discontinuity S. Then, the area integra-

tion of fluid flux at the end of the discontinuity (z faces) is:

∫

ΓS

ζSw,S da =
(
2πl r ζSw,S

)
0,L

(6.66)

where 0 and L denote the two ends of the crack SL, respectively.

∫

Sl

∂ζ

∂xt
ṽD,St dv = 2π

∫

S

∂ζ

∂xt
ṽD,St l r ds (6.67)

We use the upper relation in (6.60) and cancel 2π to arrive at

∫

S
ζSu̇nrds− 2

∫

S
[[ζS ]] ṽD,Sn rds−

[
l0r0ζ0S

w,S
0 + lLrLζLS

w,S
L

]
−

∫

S

∂ζ

∂xt
ṽD,St lr ds = 0 (6.68)

For quadratic CSE, ds can be related to the global coordinate vector r = [r, z]T as follows:

ds =
√
dr2 + dz2 = f(ξ)dξ =

√(
dr

dξ

)2

+

(
dz

dξ

)2

dξ (6.69)
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where

dr

dξ
=

∂

[
−1

2ξ(1− ξ) 1
2ξ(1 + ξ) (1− ξ)(1 + ξ)

]

∂ξ
·





1
2(r1 + r5)

1
2(r2 + r4)

1
2(r3 + r6)





=

[
ξ − 0.5 ξ + 0.5 −2ξ

]
·





1
2(r1 + r5)

1
2(r2 + r4)

1
2(r3 + r6)





(6.70)

similarly,

dz

dξ
=

[
ξ − 0.5 ξ + 0.5 −2ξ

]
·





1
2(z1 + z5)

1
2(z2 + z4)

1
2(z3 + z6)





(6.71)

where, ra and za are the coordinates of node a, and the order of numbering is in accordance with

that in Figure 6.3, thus, by chain rule,

∂(•)

∂s
=
∂(•)

∂ξ

1

f(ξ)
(6.72)

Note that for CSE element specifically, ds = dxt, i.e.,
∂(•)
∂xt

= ∂(•)
∂s .

For an axisymmetric problem, the volume and surface integrations can be respectively reduced to

surface and line integrations:

∫

Sl

(•)dv =

∫ 2π

0

∫

S

∫ l

0
(•)dxndsrdθ = 2π

∫

S
(•)lrds (6.73)

∫

S
(•)da =

∫ 2π

0

∫

S
(•)dsrdθ = 2π

∫

S
(•)rda (6.74)

where (•) is assumed constant in direction of xn (normal to the virtual crack surface S).

6.1.2 Constitutive relations for saturated interface element

The normal velocity in the crack is expressed as Segura and Carol (2008):

ṽD,Sn = k̂n(p
+
f − p−f ) = −k̂n[[p

S
f ]] (6.75)



192

where k̂n = κ/(µf l) is the normal permeability, κ = intrinsic normal permeability with the unit of

m2; µf = dynamic viscosity of fluid, with the unit of Pa · s; l denotes the aperture, with the unit

of m. The tangential velocity in the crack takes the following formSegura and Carol (2008):

ṽD,St = −k̂t

(
∂pSf
∂xt

− ρfRg
∂zS

∂xt

)
(6.76)

where k̂t = tangential permeability of the crack with the unit of m2/(Pa · s), and is given as

k̂t =
l2

12µf
(6.77)

where l = un+ l0 is the changing width of the crack, where un = nT · [[u(r)]], l0 is the initial width

of the crack; µf = the dynamic viscosity of fluid; z = elevation of crack center. g = [0;−g], where

g = 9.81N/m2. Let us derive for the finite element formulation:

∂pSf
∂xt

=
∂pSf
∂s

≈
∂pS

h

f

∂ξ

∂ξ

∂s
=
∂N cse1,p

∂ξ
· pcsef ·

1

f(ξ)
= Bcse1,p · pcsef (6.78)

where

Bcse1,p =
1

f(ξ)

[
−1

4
1
4

1
4 −1

4

]
(6.79)

∂zS

∂xt
=
∂zS

∂s
=
∂zS

∂ξ

∂ξ

∂s
=
∂zS

∂ξ

1

f(ξ)
(6.80)

where, the Galerkin form of zS in CSE is obtained from

zS
h

cse =

[
−1

2ξ(1− ξ) 1
2ξ(1 + ξ) (1− ξ)(1 + ξ)

]

︸ ︷︷ ︸
N

case,S

·





zScse,I

zScse,II

zScse,III





︸ ︷︷ ︸
zS

cse

(6.81)

where,

zScse =





1
2(z1 + z5)

1
2(z2 + z4)

1
2(z3 + z6)





(6.82)
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thus, the derivative in CSE is:

∂zScse
∂ξ

=

[
ξ − 0.5 ξ + 0.5 −2ξ

]

︸ ︷︷ ︸
Bcse,S

·zScse (6.83)

6.1.3 Finite element formulation

The finite element form of balance of linear momentum equation (6.17) is written as

nbel

A
e=1

(ce)T ·




∫

Ωe

(Be,u)T · σ′dv

︸ ︷︷ ︸
f

d,int

e (d
e
)

−

∫

Ωe

(
B̃
e,u
)T

·Ne,pdv

︸ ︷︷ ︸
k

dp1
e

·pef

−

∫

Ωe

ρ (N e,u)T · b dv

︸ ︷︷ ︸
f

df,ext

e (d
e
)

−

∫

Γe
t

(N e,u)T tσ
′

da

︸ ︷︷ ︸
f

dt,ext

e

+

∫

Γe
t

(N e,u)T · ν ·N e,pda

︸ ︷︷ ︸
k

dp2
e

·pef




=
ncel

A
e=1

(ccse)T



−

∫

Se

(N cse,u)T · T ′da

︸ ︷︷ ︸
f

d,int

cse (d
cse

)

+

∫

Se

(N cse,u)T · n ·N cse1,pda

︸ ︷︷ ︸
k

dp
cse

·pcsef




(6.84)

where, nbel denotes the number of bulk elements; correspondingly, ncel denotes the number of

cohesive elements.
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The finite element form of balance of mass equation (6.61) is:

nbel

A
e=1

(αe)T ·




∫

Ωe

(Ne,p)T · B̃
e,u
dv

︸ ︷︷ ︸
(
k

dp1
e

)T

· ḋ
e
−

∫

Ωe

(Be,p)T · ṽDf dv

︸ ︷︷ ︸
f

p,int

e (d
e
,pe

f )

−

∫

Γe
s

(Ne,p)T Swdv

︸ ︷︷ ︸
f

p,ext

e




+
ncel

A
e=1

(αcse)T ·




∫

Se

(
N cse1,p

)T
nT ·N cse,uda

︸ ︷︷ ︸
(
k

dp
cse

)T

· ḋ
cse

−

∫

Se

(
N cse2,p

)T
· (2ṽD,Sn )da

︸ ︷︷ ︸
f

p1,int

cse (d
cse
,pcse

f )

−

∫

Sle

(
Bcse1,p

)T
· ṽD,St dv

︸ ︷︷ ︸
f

p2,int

cse (d
cse
,pcse

f )

−

∫

Γe
S

(
N cse1,p

)T
Sw,Sda



= 0

(6.85)

In the local degree of freedom matrix, the order of nodes in cohesive surface element follows the

order in Figure 6.3. de and dcse are respectively the nodal displacement vectors of bulk element

and cohesive interface element. After assembly, we can write the coupled two governing equations

in the matrix vector form:

C(D) · Ḋ + F INT (D) = FEXT (D) (6.86)

where

C(D) =




0 0

(Kdp1)T +
(
Kdp

cse

)T
0




=
nbel

A
e=1




0︸︷︷︸
18×18

0︸︷︷︸
18×4(

kdp1e

)T

︸ ︷︷ ︸
4×18

0︸︷︷︸
4×4



+

ncel

A
e=1




0︸︷︷︸
18×18

0︸︷︷︸
18×4(

kdpcse

)T

︸ ︷︷ ︸
4×12

0︸︷︷︸
4×10




(6.87)

The global degrees of freedom D and the rate form Ḋ are:

D =




d

pf


 ; Ḋ =




ḋ

ṗf


 (6.88)
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The internal force F INT assembled from bulk elements and cohesive surface elements is given as

F INT =




F d,INT + F d,INT
cse +

(
Kdp2 −Kdp1 −Kdp

cse

)
· pf

−F p,INT − F p1,INT
cse − F p2,INT

cse




=
nbel

A
e=1




fd,inte︸ ︷︷ ︸
18×1

+
(
kdp2e − kdp1e

)

︸ ︷︷ ︸
18×4

· pef︸︷︷︸
4×1

−fp,inte︸ ︷︷ ︸
4×1



+

ncel

A
e=1




fd,intcse︸ ︷︷ ︸
12×1

− kdpcse︸︷︷︸
12×4

· pcsef︸︷︷︸
4×1

0︸︷︷︸
6×1

−fp1,intcse︸ ︷︷ ︸
4×1

−fp2,intcse︸ ︷︷ ︸
4×1




(6.89)

The external force FEXT assembled from bulk elements and cohesive surface elements is given as

FEXT =




F df,EXT + F dt,EXT

F p,EXT + F p0,EXT
cse + F pL,EXT

cse




=
nbel

A
e=1




fdf,exte︸ ︷︷ ︸
18×1

+fdt,exte︸ ︷︷ ︸
18×1

fp,exte︸ ︷︷ ︸
4×1



+

ncel

A
e=1




0︸︷︷︸
18×1

fp0,extcse︸ ︷︷ ︸
4×1

+fpL,extcse︸ ︷︷ ︸
4×1




(6.90)

Recall the generalized trapezoidal rule and construct the consistent tangent:

C(Dn+1) · V n+1 + F INT (Dn+1) = FEXT (Dn+1) (6.91)

where V = Ḋ. The subscript n+1 denotes the current time step; and the subscript n denotes the

previous converged time step. α is the time integration parameter, and typically, α = 0 for forward

Euler; α = 0.5 for trapezoidal rule; α = 1 for backward Euler, which will be used here.

Dn+1 = D̃n+1 + α∆tV n+1, D̃n+1 = Dn +∆t(1− α)V n (6.92)

The Newton-Raphson iteration algorithm is used to solve for V k+1
n+1, where the superscript k + 1
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denotes the iteration number in one time step.

R(V k+1
n+1) = C(Dk+1

n+1) · V
k+1
n+1 + F INT (Dk+1

n+1)− FEXT (Dk+1
n+1) = 0

= Rk + ∂R
k

∂V
· δV

=⇒ δV = −
(
∂R

k

∂V

)−1

·Rk

V k+1
n+1 = V k

n+1 + δV

Dk+1
n+1 = D̃n+1 + α∆tV k+1

n+1

(6.93)

Generally, the consistent tangent is written as:

∂R

∂V
=

(
∂C

∂D
·
∂D

∂V

)
· V +C +

∂F INT

∂D
·
∂D

∂V
−
∂FEXT

∂D
·
∂D

∂V
(6.94)

where

∂D

∂V
= α∆t ;

∂C

∂D
= 0 (6.95)

therefore,

∂R

∂V
= C +

(
∂F INT

∂D
−
∂FEXT

∂D

)
·
∂D

∂V
(6.96)

where

∂F INT

∂D
=

[
∂F

INT

∂d
∂F

INT

∂pf

]

=
nbel

A
e=1




∂fd,inte

∂de︸ ︷︷ ︸
18×18


kdp2e︸︷︷︸

18×4

−kdp1e︸︷︷︸
18×4




−
∂fp,inte

∂de︸ ︷︷ ︸
4×18

−
∂fp,inte

∂pef︸ ︷︷ ︸
4×4




+
ncel

A
e=1




∂fd,intcse

∂dcse︸ ︷︷ ︸
12×12

0︸︷︷︸
12×6

− kdpcse︸︷︷︸
12×4

0︸︷︷︸
6×12

0︸︷︷︸
6×6

0︸︷︷︸
6×4

−
∂fp1,intcse

∂dcse︸ ︷︷ ︸
4×12

−
∂fp2,intcse

∂dcse︸ ︷︷ ︸
4×12


 0︸︷︷︸

4×6


−

∂fp1,intcse

∂pcsef︸ ︷︷ ︸
4×4

−
∂fp2,intcse

∂pcsef︸ ︷︷ ︸
4×4







(6.97)
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∂FEXT

∂D
=

[
∂F

EXT

∂d
∂F

EXT

∂pf

]

=
nbel

A
e=1




∂fdf,ext

∂de︸ ︷︷ ︸
18×18

0︸︷︷︸
18×4

0︸︷︷︸
4×18

0︸︷︷︸
4×4



+

ncel

A
e=1




0︸︷︷︸
18×18

0︸︷︷︸
18×4


∂fp0,extcse

∂dcse︸ ︷︷ ︸
4×12

+
∂fpL,extcse

∂dcse︸ ︷︷ ︸
4×12


 0︸︷︷︸

4×10




(6.98)

The details of the derivatives are shown as follows:

∂fd,inte

∂de
=

∫

Ωe

(Be,u)T ·
∂σ′

∂ε
·Be,u dv (6.99)

∂fp,inte

∂de
=

∫

Ωe

(Be,p)T ·
∂ṽDf
∂de

dv =

∫

Ωe

− (Be,p)T ·
∂kf
∂n

(∇pf − ρfRg)⊗
∂n

∂de
dv (6.100)

∂fp,inte

∂pef
=

∫

Ωe

(Be,p)T ·
∂ṽDf
∂pef

dv =

∫

Ωe

−kf (Be,p)T ·Be,p (6.101)

where, ∂σ
′

∂ε is consistent tangent from constitutive model of solid skeleton; kf denotes the saturated

permeability given as kf = κ(n)
µf

, where κ(n) = intrinsic permeability, µf = dynamic viscosity of

fluid.

∂fd,intcse

∂dcse
=

∫

Se

(N cse,u)T ·
∂T ′,h(dcse)

∂dcse
da

=

∫

Se

(N cse,u)T · (Λe)T ·
∂T̃

′,h
(dcse)

∂[[ũh]]
·
∂[[ũh]]

∂[[uh]]
·
∂[[uh]]

∂dcse
da

=

∫

Se

(N cse,u)T · (Λe)T ·
∂T̃

′,h
(dcse)

∂[[ũh]]
·Λe ·N cse,u da (6.102)

where, T ′,h and T̃
′,h

are Galerkin forms of the cohesive traction at the crack surface T ′ and T̃
′
,

which are respectively written as,

T ′ =



T ′
r

T ′
z


 ; T̃

′
=



T̃ ′
t

T̃ ′
n


 (6.103)

T̃
′
= Λ · T ′ ⇒ T ′,h = (Λe)−1 · T̃

′,h
= (Λe)T · T̃

′,h
(6.104)

and, T̃
′,h
(dcse) is obtained from a nonlinear function of CIE displacement dcse; ∂T̃

′,h

∂[[ũh
]]
is called the

elasto-plastic consistent tangent in the local frame of CSE, assuming there is elasticity associated

with the crack material.
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Furthermore,

∂fp1,intcse

∂dcse
=

∫

Se

(
N cse2,p

)T
·

(
2
∂ṽD,Sn

∂dcse

)
da (6.105)

∂fp1,intcse

∂pcsef
=

∫

Se

(
N cse2,p

)T
·

(
2
∂ṽD,Sn

∂pcsef

)
da (6.106)

∂fp2,intcse

∂dcse
=

∫

Se

(
Bcse1,p

)T
·
∂(ṽD,St l)

∂dcse
da (6.107)

∂fp2,intcse

∂pcsef
=

∫

Se

(
Bcse1,p

)T
·
∂(ṽD,St l)

∂pcsef
da (6.108)

with the expression ṽD,St in (6.76) and (6.77), we can derive the derivatives w.r.t. dcse and pcsef ,

assuming fluid is incompressible, i.e., ρfR is constant.

∂(ṽD,St l)

∂dcse
=
∂(k̂t l)

∂dcse

(
∂ pf
∂ xt

− ρfRg
∂ zS

∂ xt

)

=
3l2

12µf

∂l

∂dcse

(
∂ pf
∂ xt

− ρfRg
∂ zS

∂ xt

)

=
l2

4µf
nT ·N cse,u

(
∂ pf
∂ xt

− ρfRg
∂ zS

∂ xt

)
(6.109)

∂(ṽD,St l)

∂pcsef
= k̂tl

(
Bcse1,p ·

1

f(ξ)

)
(6.110)

∂ṽD,Sn

∂dcse
= −

∂k̂n
∂dcse

[[pSf ]] =
∂k̂n
∂l

nT ·N cse,u[[pSf ]] (6.111)

∂ṽD,Sn

∂pcsef
= −k̂n

∂[[pSf ]]

∂pcsef
= −k̂nN

csp2,p (6.112)



199

6.2 Biphasic partially saturated PM CIE model

The fracture is characterized by very high permeability and very low storage capacity, in

contrast, the porous continuum is characterized by low permeability and high storage capacity.

6.2.1 Governing equations

6.2.1.1 Balance of linear momentum

The balance of linear momentum equation for the partially saturated continuum with discontinuity

is written as 



∂σij
∂xj

+ ρbi = 0 xi ∈ Ω

ui = gui xi ∈ Γg

σijνj = tσi xi ∈ Γt

σ′+ij n
+
j = T ′+

i xi ∈ S+

σ′+ij n
−
j = T ′−

i xi ∈ S−

(6.113)

Apply weighting function wi to the balance equation to get

∫

Ω
wi

(
∂σij
∂xj

+ ρbi

)
dv = 0 (6.114)

Use chain rule and apply divergence theorem to the 1st term of (6.114), then we have

∫

Ω
wi
∂σij
∂xj

dv =

∫

Ω

∂(wiσij)

∂xj
dv −

∫

Ω

∂wi
∂xj

σijdv

=

∫

Γ
wiσij ñjda−

∫

Ω

∂wi
∂xj

σijdv (6.115)

where the boundary Γ = Γt + Γg + S+ + S−, thus,

∫

Γ
wiσijñjda =

∫

Γt

wiσijνjda+

∫

Γg

wiσijνjda+

∫

S+

w+
i σ

+
ijn

+
j da+

∫

S−

w−
i σ

−
ijn

−
j da (6.116)

the integral over the prescribed displacement boundary Γg, i.e. the 2nd term in (6.116) is equal

to zero. For partially saturated biphasic mixture, Bishop’s expression of the total stress tensor is
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given as

σij = σ′ij + χsδij (6.117)

σ+ij = σ′+ij + χ+s+δij (6.118)

σ−ij = σ′−ij + χ−s−δij (6.119)

where σ′ij , σ
′+
ij , and σ

′−
ij are respectively the effective stress tensors on the continuum elements and

interfaces S+ and S−; χ, χ+, and χ− are respectively the material properties referred to as the

effective stress parameters, which depend on the suction. s, s+, and s− are respectively the suctions

of the continuum elements, S+ and S−, and the suctions are defined as

s = pg − pw; s+ = p+g − p+w ; s− = p−g − p−w (6.120)

where pg, p
+
g , and p

−
g are pore gas pressures of bulk, S+ and S−, and are assumed to be zero for

partially saturated biphasic mixture, thus

s = −pw; s+ = −p+w; s− = −p−w (6.121)

We define a averaged pore pressure on the interface element S as

pSw =
1

2
(p+w + p−w) (6.122)

and a pore water pressure jump in the discontinuity

[[pw]] = p−w − p+w (6.123)

thus, for the biphasic formulation, we have

sS = −pSw; [[s]] = s− − s+ = −[[pw]] (6.124)

Given pSw and [[pw]], p
+
w and p−w can be calculated as follows:

p+w = −
1

2
[[pw]] + pSw; p−w =

1

2
[[pw]] + pSw; (6.125)
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correspondingly, the suctions on S+ and S− are written as

s+ = −p+w =
1

2
[[pw]]− pSw; s− = −p−w = −

1

2
[[pw]]− pSw (6.126)

We make the following assumptions

χ+ = χ− = χS =
1

2
(χ+ + χ−) (6.127)

n+i = −n−i = ni (6.128)

T ′,+
i = −T ′,−

i = T ′
i (6.129)

where the effective stress tensor on interface element T ′
i is calculated through a constitutive model.

then we can rewrite the surface integrals in (6.116)

∫

Γt

wiσijνjda =

∫

Γt

wi
(
σ′ij + χsδij

)
νjda

=

∫

Γt

wiσ
′
ijνjda+

∫

Γt

χswiδijνjda

=

∫

Γt

wit
σ′
i da+

∫

Γt

χswiνida (6.130)

∫

S+

w+
i σ

+
ijn

+
j da =

∫

S+

w+
i T

′+
i da+

∫

S+

χ+s+w+
i n

+
i da

=

∫

S
w+
i T

′
ida+

∫

S
χSsS,+w+

i nida (6.131)

∫

S−

w−
i σ

−
ijn

−
j da =

∫

S−

w−
i T

′−
i da+

∫

S−

χ−s−w−
i n

−
i da

=

∫

S
−w−

i T
′
ida+

∫

S
χSsS,−w−

i (−ni)da (6.132)

Substituting (6.130), (6.131), and (6.132), and (6.126) into (6.116) yields

∫

Γ
wiσij ñjda =

∫

Γt

wit
σ′

i da+

∫

Γt

χswiδijνjda+

∫

S

(
w+
i − w−

i

)
T ′
ida

+

∫

S
w+
i χ

S

(
1

2
[[pw]]− pSw

)
nida+

∫

S
w−
i χ

S

(
−
1

2
[[pw]]− pSw

)
(−ni)da

=

∫

Γt

wit
σ′

i da−

∫

Γt

χpwwiνida−

∫

S
[[wi]]T

′
ida

+

∫

S
χSni[[p

S
w]]

1

2

(
w+
i + w−

i

)
da+

∫

S
χSpSwni (w

−
i − w+

i )︸ ︷︷ ︸
[[wi]]

da (6.133)

The 2nd term on the R.H.S. of (6.115) can be written as

∫

Ω

∂wi
∂xj

σijdv =

∫

Ω

∂wi
∂xj

σ′ijdv −

∫

Ω
χpw

∂wi
∂xi

dv (6.134)
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where the effective stress tensor of the continuum σ′ij will be calculate from the elastic or elasto-

plastic constitutive model. Substitute (6.133) and (6.134) into (6.114) to obtain the balance of

linear momentum of the continuum with discontinuity:

∫

Ω

∂wi
∂xj

σ′ijdv −

∫

Ω
(χpw)

∂wi
∂xi

dv +

∫

Γt

(χpw)wiνida+

∫

S
[[wi]]T

′
ida−

∫

S
(χSpSw)[[wi]]nida

−

∫

S

1

2
χS[[pw]](w

+
i + w−

i )nida

︸ ︷︷ ︸
Term1

=

∫

Ω
ρwibidv +

∫

Γt

wit
σ′

i da (6.135)

(6.135) is similar to the balance of linear momentum equation of saturated condition, but note pw

is negative for the biphasic partially saturated mixture. “Term 1” needs to check further.

6.2.1.2 Balance of mass

The balance of mass equations for the discontinuity and bulk element are derived separately, as-

suming the discontinuity is also biphasic partially saturated mixture. Adding the two equations to

obtain the balance of mass equation of the whole system. First, let us write the balance of mass

for the continuum Ω,

Sw
∂u̇i
∂xi

+ n
DsSw
Dt

+
∂
(
ṽDw
)
i

∂xi
= 0 (xi ∈ Ω) (6.136)

Apply the weighting function ζ and integrate over the continuum domain Ω, the weak form is:

∫

Ω
ζSw

∂u̇i
∂xi

dv +

∫

Ω
ζn
∂Sw
∂s

Dss

Dt
dv +

∫

Ω
ζ
∂
(
ṽDw
)
i

∂xi
dv = 0 (6.137)

Apply the chain rule and divergence theorem to the last term of the left-hand side of (6.137),

∫

Ω
ζ
∂ (ṽsw)i
∂xi

dv =

∫

Ω

∂
(
ζṽDw

)
i

∂xi
dv −

∫

Ω

∂ζ

∂xi

(
ṽDw
)
i
dv

=

∫

∂Ω
ζ (ṽsw)i nida−

∫

Ω

∂ζ

∂xi

(
ṽDw
)
i
dv (6.138)

where the boundary of the continuum is: ∂Ω = Γt + Γg , thus

∫

∂Ω
ζ
(
ṽDw
)
i
nida =

∫

Γs

ζ
(
ṽDw
)
i
nida+

∫

Γr

ζ
(
ṽDw
)
i
nida (6.139)

in which, Γs is the water flux boundary where
(
ṽDw
)
i
ni = −Sw. On boundary Γr pore water

pressure is prescribed, and ζ = 0 on Γr.
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Similar to (6.136), the balance equation for discontinuity Sl with the width of l is

SSw
∂u̇i
∂xi

+ nS
DsSSw
Dt

+
∂ṽD,Si

∂xi
= 0, xi ∈ Sl (6.140)

where SSw = degree of saturation of the crack, and nS = porosity of the crack. ṽD,Si (i = t, n) is

the tangential (t) or normal (n) component of superficial velocity of pore water flow in the crack.

Here van-Genuchten model is adopted to relate the degree of saturation SSw and the suction sS in

the crack. Extended Darcy’s velocity is applied to the tangential velocity of pore water flow in the

crack,

ṽD,St = k̂rw k̂t

(
∂pSf
∂xt

− ρfRg
∂zS

∂xt

)
(6.141)

where k̂rw and k̂t are respectively relative permeability and absolute permeability of the crack in the

tangential direction to the crack. The assumptions made here include: the absolute permeability

of the crack domain Sl is higher than that of the continuum porous media domain Ω; the air entry

value in the crack is lower than that in the continuum porous media; cubic law is used to estimate

the absolute permeability of the crack in the tangential direction as follows:

k̂t =
l2

12µw
(6.142)

where l = width of the crack; µw = dynamic viscosity of water with the unit of Pa ·s. The material

time derivative of degree of saturation in (6.140) can be written as

DsSSw
Dt

=
DsSSw
DsS

DssS

Dt
(6.143)

The divergence of displacement in the crack is defined as (see (6.37)-(6.38)

∂u̇i
∂xi

= [[u̇n(x)]]δS (6.144)

and the divergence of velocity of water flow in the crack:

∂ṽD,Si

∂xi
=
∂ṽD,Sn

∂xn
+
∂ṽD,St

∂xt
(6.145)

Apply weighting function ζ to (6.140) and integrate over the crack domain Sl, then we have

∫

Sl

ζSSw[[u̇n]]δSdv +

∫

Sl

ζnS
∂SSw
∂sS

ṡSdv +

∫

Sl

ζ
∂ṽD,Si

∂xi
dv = 0 (6.146)
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The first term on L.H.S. is:

∫

Sl

ζSSw[[u̇n]]δSdv =

∫

S
ζSSw[[u̇n]]da (6.147)

Apply the divergence theorem:

∫

Sl

ζ
∂ṽD,Si

∂xi
dv =

∫

Sl

∂
(
ζṽD,Si

)

∂xi
dv −

∫

Sl

∂ζ

∂xi
ṽD,Si dv

=

∫

∂Sl

ζṽD,Si nida−

∫

Sl

∂ζ

∂xi
ṽD,Si dv (6.148)

where the boundary of the crack Sl is ∂Sl = S+ + S− + ΓS , and ΓS is the end boundary which is

perpendicular to S (see figure 6.4), and the outward normal vector of Γs is denoted as ν, and the

water flux at SwS = −ṽD,Si νi. S
w
S should not be confused with the degree of saturation of the crack

SSw. Water flux at interfaces S+ and S− are respectively ṽD,S
+

n = ṽD,Si n+i and ṽD,S−n = ṽD,Si n−i .

ṽD,Sn = ṽD,S
+

n = −ṽD,S
−

n , and is defined as

ṽD,Sn = k̂rwk̂n
(
p+w − p−w

)
= −k̂rwk̂n[[pw]] (6.149)

where k̂rw and k̂n are respectively the relative and absolute permeability in the normal direction

of the crack (or across the crack). Thus the 1st term in (6.148) is

∫

∂Sl

ζṽD,Si nida =

∫

S+

ζ+ṽD,Si n+i da+

∫

S−

ζ−ṽD,Si n−i da+

∫

ΓS

ζṽD,Si νida

=

∫

S+

ζ+ṽD,S,+n da+

∫

S−

ζ+ṽD,S,−n da−

∫

ΓS

ζSw,Sda

=

∫

S
(ζ+ − ζ−)ṽD,Sn da−

∫

ΓS

ζSwS da

=

∫

S
−[[ζ]]ṽD,Sn da−

∫

ΓS

ζSwS da (6.150)

The 2nd term on the right-hand side of (6.148) is:

∫

Sl

∂ζ

∂xi
ṽD,Si dv =

∫

Sl

∂ζ

∂xt
ṽD,St dv +

∫

Sl

∂ζ

∂xn
ṽD,Sn dv (6.151)

We assume:

∂ζ

∂xn
= [[ζ]]δS (6.152)
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then the integral over Sl is converted to the integral over the interface surface S

∫

Sl

∂ζ

∂xn
ṽD,Sn dv =

∫

S
[[ζ]]ṽD,Sn da (6.153)

Substitute into (6.146) to obtain

∫

S
ζSSw[[u̇n]]da+

∫

Sl

ζnS ṡS
∂SSw
∂sS

dv −

∫

S
[[ζ]]ṽD,Sn da

−

∫

ΓS

ζSwS da−

∫

Sl

∂ζ

∂xt
ṽD,St dv −

∫

S
[[ζ]]ṽD,Sn da = 0 (6.154)

Combine with the weighted residual form of balance of mass equation of bulk, we obtain

∫

S
ζSSw[[u̇n]]da+

∫

Sl

ζnṡS
∂SSw
∂sS

dv −

∫

ΓS

ζSw,Sda−

∫

Sl

∂ζ

∂xt
ṽD,St dv − 2

∫

S
[[ζ]]ṽD,Sn da

+

∫

Ω
ζSw

∂u̇i
∂xi

dv +

∫

Ω
ζn
∂Sw
∂s

Dss

Dt
dv −

∫

Γs

ζSwda−

∫

Ω

∂ζ

∂xi

(
ṽDw
)
i
dv = 0 (6.155)

6.2.2 Finite element formulations

The finite element form of balance of linear momentum equation (6.135) is written as

nbel

A
e=1

(ce)T ·




∫

Ωe

(Be,u)T · σ′dv

︸ ︷︷ ︸
f

d,int

e (d
e
)

−

∫

Ωe

χ
(
B̃
e,u
)T

·N e,pdv

︸ ︷︷ ︸
k

dp1
e (pe

w)

·pew

−

∫

Ωe

ρ (N e,u)T · b dv

︸ ︷︷ ︸
f

df,ext

e (d
e
)

−

∫

Γe
t

(Ne,u)T tσ
′

da

︸ ︷︷ ︸
f

dt,ext

e

+

∫

Γe
t

χ (N e,u)T · ν ·N e,pda

︸ ︷︷ ︸
k

dp2
e (pe

w)

·pew




+
ncel

A
e=1

(ccse)T




∫

Se

(N cse,u)T · T ′da

︸ ︷︷ ︸
f

d,int

cse (d
cse

)

−

∫

Se

χS (N cse,u)T · n ·N cse1,pda

︸ ︷︷ ︸
k

dp
cse(pcse

w )

·pcsew



= 0

(6.156)

where nbel denotes the number of bulk element; correspondingly, ncel denotes the number of cohesive

element. For now, the term “Term 1” is ignored; it needs to check that if it should be considered.
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The finite element form of balance of mass equation (6.155) is:

nbel

A
e=1

(αe)T ·




∫

Ωe

Sw (N e,p)T · B̃
e,u
dv

︸ ︷︷ ︸
k

pd
e

· ḋ
e
−

∫

Ωe

(Ne,p)T n
∂Sw
∂s

N e,pdv

︸ ︷︷ ︸
k

pp
e (d

e
,pe

w)

· ṗw
e

−

∫

Ωe

(Be,p)T · ṽDwdv

︸ ︷︷ ︸
f

p,int

e (d
e
,pe

w)

−

∫

Γe
s

(N e,p)T Swdv

︸ ︷︷ ︸
f

p,ext

e




+
ncel

A
e=1

(αcse)T ·




∫

Se

SSw
(
N cse1,p

)T
nT ·N cse,uda

︸ ︷︷ ︸
k

pd
cse

· ḋ
cse

−

∫

Se

(
N cse2,p

)T
· (2ṽD,Sn )da

︸ ︷︷ ︸
f

p1,int

cse (d
cse
,pcse

f )

−

∫

Sl,e

(
N cse1,p

)T
nS
∂SSw
∂sS

N cse1,pdv

︸ ︷︷ ︸
k

pp
cse(d

cse
,pcse

w )

· ṗw
cse −

∫

Sl,e

(
Bcse1,p

)T
· ṽD,St dv

︸ ︷︷ ︸
f

p2,int

cse (d
cse
,pcse

w )

−

∫

Γe
S

Sw,Sda

]
= 0

(6.157)

If we choose χ = Sw and χS = SSw respectively for the continuum and the discontinuity, then we

have kdp1e =
(
kpde
)T

, and kdpcse =
(
kpdcse

)T
. The surface integrals over the element of the crack surface

Se and the two end surfaces perpendicular to the crack ΓeS , as well as the volumetric integral over

the crack volume Sl are implemented with axisymmetric formulations.
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6.3 Elasto-plastic cohesive interface element (CIE) model

So far, the normal/shear constitutive model Carol et al. (1997) used for the poro-mechanical or

thermo-poro-mechanical interface element does not include suction or temperature effects explicitly,

i.e. F=F(T̃
′
,q), G=G(T̃

′
,q). We should further consider certain constitutive model to make F and

G dependent on suction sS and temperature θS of the discontinuity.

6.3.1 Traction-displacement model for geomaterials

The yield function F and potential function G that model post-bifurcation softening along

the virtual discontinuity surface S is given as Carol et al. (1997) (we use f and g for the yield

function and potential function respectively for the continuum.)

F =

√
T ′
t
2 + (c− χtanφ)2 − (c− T ′

ntanφ) (6.158)

G =

√
T ′
t
2 + (c− χtanψ)2 − (c− T ′

ntanψ) (6.159)

where

χ = χr + (χp − χr) exp [−αχ(ε
p
n + εps)] (6.160)

c = cr + (cp − cr) exp [−αc(ε
p
n + εps)] (6.161)

tanφ = tanφr + (tanφp − tanφr)exp(−αφε
p
s) (6.162)

tanψ = (tanψp)exp(−αψε
p
s) (6.163)

where

εps =

∫ t

0
ε̇ps dt (6.164)

εpn =

∫ t

0
ε̇pn dt (6.165)

ε̇ps =
sign(T ′

t)

GIIf
〈|T ′

t | − |T ′,∗
n tanφ|〉u̇pt (6.166)

ε̇pn =
1

GIf
〈T ′
n〉u̇

p
n (6.167)
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Where the local effective traction vector is T̃
′
= [T ′

t ; T
′
n]. The rate of local plastic jump displace-

ment vector [[ ˙̃up]] = [u̇pt ; u̇
p
n]; χ = tensile strength; c = cohesion; φ = friction angle, ψ = dilation

angle; GIf = the fracture energy when cracks occur under pure tension (Mode I); GIIf = the frac-

ture energy when cracks occur under shear and very high compression with no dilation allowed

(asymptotic Mode II); and

〈T ′
n〉 =

T ′
n + |T ′

n|

2
; T ′,∗

n =
T ′
n − |T ′

n|

2
(6.168)

where 〈T ′
n〉 ≥ 0 for tensile normal effective traction, and 〈T ′

n〉 ≤ 0 for compressive normal effective

traction We define the internal state variable vector as:

q = [χ, c, tanφ, tanψ]T (6.169)

and, αχ, αc, αφ and αψ are material parameters that control the rate of softening of internal vari-

ables;

6.3.2 Implementation of elasto-plastic CIE model

For plastic loading of the interface γ̇δ > 0, the rate forms employed in the elasto-plastic CIE model

are presented as

˙̃
T

′
= Ke · [[ ˙̃ue]] = Ke ·

(
[[ ˙̃u]]− [[ ˙̃up]]

)
(6.170)

[[ ˙̃up]] = γ̇δ
∂G(T̃

′
, q)

∂T̃
′ (6.171)

q̇ = γ̇δh
q (6.172)

Ḟ (T̃
′
, q) = 0 (6.173)

where Ke is the elastic modulus of the crack, and note the e denotes “elastic” instead of “element”;

Kt and Kn are the tangential and normal stiffnesses, respectively, of the crack; [[ũ]] = [ut un]
T is

the local jump displacement vector; [[ũe]] = [uet ; u
e
n] and [[ũp]] = [upt ; u

p
n] are respectively the local

elastic and plastic jump displacement vectors; γ̇δ is the rate of plastic multiplier along the crack; F

and G are yield and plastic potential functions, respectively; q is the internal state variable vector;
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hq is the softening function vector; and the elastic stiffness matrix of the crack takes the following

form:

Ke =



Kt 0

0 Kn


 (6.174)

Integrating (6.170-6.171) by applying Backward Euler time integration gives

∆T̃ = Ke · (∆[[ũ]]−∆[[ũp]]) (6.175)

∆[[ũp]] = ∆γδ

(
∂G

T̃
′

)
n+1

(6.176)

∆q = ∆γδh
q
n+1 (6.177)

Fn+1 = 0 (6.178)

where, the subscript n + 1 denotes the current time step designator, and subscript n will be used

as the previous time step designator in the following equations, such that

∆T̃ = T̃ n+1 − T̃ n (6.179)

∆q = qn+1 − qn (6.180)

and, ∆[[ũ]] is calculated from global iteration for the CIE nodal displacements, and is kept con-

stant during local iteration, i.e., δ(∆[[ũ]]) = 0, δ(•) = (•)k+1 − (•)k is the local Newton-Raphson

increment, with k + 1 the current iteration.

If we write (6.175-6.178) in residual form and leave off the current time step designator n + 1, we

will obtain

R =




R
T̃

′

Rq

RF



=




∆T̃
′
−Ke ·∆[[ũ]] + ∆γδK

e · ∂G
T̃

′

−∆q +∆γδh
q

F



= 0 (6.181)

We construct an unknown vector X and rewrite (6.181) in the following form

R(X) = 0; X =




T̃
′

q

∆γδ




(6.182)
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Recall (4.336) and calculate the consistent tangent operator:

∂R

∂X
=




∂R
T̃
′

∂T̃
′

∂R
T̃
′

∂q
∂R

T̃
′

∂∆γδ

∂Rq

∂T̃
′

∂Rq

∂q
∂Rq

∂∆γδ

∂RF

∂T̃
′

∂RF
∂q

∂RF
∂∆γδ




=




1+∆γδK
e · ∂G

T̃
′

T̃
′ ∆γδK

e · ∂G
T̃

′

q Ke · ∂G
T̃

′

∆γδ · ∂h
q

T̃
′ −I +∆γδ · ∂h

q
q hq

∂F
T̃

′ ∂Fq 0




(6.183)

where,

1 =




1 0

0 1


 ; I =




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




(6.184)

Applying the same approach used in (4.344) and (4.345) allows us to write



RT̃ ′

Rq

RF



+




A B

C 0


 ·




δT̃
′

δq

δ(∆γδ)



=




0

0

0




(6.185)

where,

A =




∂R
T̃ ′

∂T̃
′

∂R
T̃ ′

∂q

∂Rq

∂T̃
′

∂Rq

∂q


 =




1+∆γδK
e · ∂G

T̃
′

T̃
′ ∆γδK

e · ∂G
T̃

′

q

∆γδ · ∂h
q

T̃
′ −I +∆γδ · ∂h

q
q


 (6.186)

B =




∂R
T̃ ′

∂∆γ

∂Rq

∂∆γ


 =




Ke · ∂G
T̃

′

hq


 (6.187)

C =

[
∂RF

∂T̃
′

∂RF
∂q

]
=

[
∂F

T̃
′ ∂Fq

]
(6.188)

The details of the derivatives are shown in Section 6.3.2.3. We can write the following results by

following the same procedure through (4.346) to (4.350):

δ(∆γδ) =

RF −C ·A−1 ·




R
T̃ ′

Rq




C ·A−1 ·B
(6.189)
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
δT̃

′

δq


 = −A−1







R
T̃

′

Rq


+ δ(∆γδ) ·B


 (6.190)

With the solution of δX , we can update Xk to obtain Xk+1, then check if the convergence is

satisfied, if not, go through the procedure again till convergence is satisfied.

(T̃
′
)k+1 = (T̃

′
)k + δT̃

′
(6.191)

(q)k+1 = (q)k + δq (6.192)

(∆γδ)
k+1 = (∆γδ)

k + δ(∆γδ) (6.193)

where, k denotes the local iteration number designator.

6.3.2.1 Formulation of softening function hq

Let us formulate the expression for the softening function hq. According to (6.169), (6.171) and

(6.172), we can write

q̇ =
∂q

∂ε̃p
∂ε̃p

∂[[ũp]]
[[ ˙̃up]] = γ̇δ

∂q

∂ε̃p
∂ε̃p

∂[[ũp]]

∂G

∂T̃
′ (6.194)

and, hq =
∂q

∂ε̃p
∂ε̃p

∂[[ũp]]
∂G

T̃
′ (6.195)

where,

ε̃p =



εps

εpn


 ; [[ũp]] =



upt

upn


 ; ∂G

T̃
′ =




∂G
∂T ′

t

∂G
∂T ′

n


 (6.196)

Thus, we can write the derivatives in (6.195) as

∂q

∂ε̃p
=




A1 A2

A3 A4

A5 A6

A7 A8




=




∂χ
∂εps

∂χ
∂εpn

∂c
∂εps

∂c
∂εpn

∂tanφ
∂εps

∂tanφ
∂εpn

∂tanψ
∂εps

∂tanψ
∂εpn




(6.197)

∂ε̃p

∂[[ũp]]
=



B1 B2

B3 B4


 =




∂εps
∂ut

∂εps
∂un

∂εpn
∂ut

∂εpn
∂un


 (6.198)

where according to (6.160)- (6.167), we can derive
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A1 = A2 = (χp − χr) exp [−αχ(ε
p
n + εps)] · (−αχ) = −αχ(χ− χr)

A3 = A4 = (cp − cr) exp [−αc(ε
p
n + εps)] · (−αc) = −αc(c− cr)

A5 = (tanφp − tanφr) exp(−αφε
p
s) · (−αφ) = −αφ(tanφ− tanφr)

A6 = 0

A7 = (tanψp) exp(−αψε
p
s) · (−αψ) = −αψtanψ

A8 = 0

B1 =
∂εps
∂ut

=
sign(T ′

t)

GII
f

〈|T ′
t | − |T ′∗

n tanφ|〉

B2 =
∂εps
∂un

= 0

B3 =
∂εpn
∂ut

= 0

B4 =
∂εpn
∂un

=
1

GI
f

〈T ′
n〉

and hq can be written as

hq =




hq(1)

hq(2)

hq(3)

hq(4)




=




A1 A2

A3 A4

A5 A6

A7 A8




·



B1 B2

B3 B4


 ·




∂G
∂T ′

t

∂G
∂T ′

n


 (6.199)

where

hq(1) = A1B1
∂G

∂T ′
t

+A2B4
∂G

∂T ′
n

hq(2) = A3B1
∂G

∂T ′
t

+A4B4
∂G

∂T ′
n

hq(3) = A5B1
∂G

∂T ′
t

hq(4) = A7B1
∂G

∂T ′
t
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6.3.2.2 Consistent tangents of elasto-plastic interface element model

Write (6.181) using Backward Euler time integration method:

Rn+1 =




T̃
′

n+1 − T̃
′

n −Ke · [[ũ]]n+1 +Ke · [[ũ]]n +∆γδK
e · (∂G

T̃
′)n+1

−∆q +∆γδh
q

F



= 0 (6.200)

Take the derivatives of Rn+1 w.r.t. [[ũ]]n+1 and Multiply the first equation in (6.200) by (Ke)−1:



(Ke)−1 ·
∂T̃

′

n+1

∂[[ũ]]n+1
− 1+ ∂G

∂T̃
′

n+1

⊗ ∂∆γδ
∂[[ũ]]n+1

+∆γδ

(
∂2G

∂T̃
′2

n+1

∂T̃
′

n+1

∂[[ũ]]n+1
+ ∂2G

∂T̃
′

n+1∂qn+1

∂qn+1

∂[[ũ]]n+1

)

∂qn+1

∂[[ũ]]n+1
+ h

q
n+1 ⊗

∂∆γδ
∂[[ũ]]n+1

+∆γδ

(
∂h

q
n+1

∂T̃
′

n+1

∂T̃
′

n+1

∂[[ũ]]n+1
+

∂h
q
n+1

∂qn+1

∂qn+1

∂[[ũ]]n+1

)

∂F

∂T̃
′

n+1

∂T̃
′

n+1

∂[[ũ]]n+1
+ ∂F

∂qn+1

∂qn+1

∂[[ũ]]n+1




= 0

Leave off the subscript n+ 1 and rewrite the above equation in the following form



(Ke)−1 +∆γδ∂GT̃
′

T̃
′ ∆γδ∂GT̃

′

q (∂G
T̃

′)T

∆γδ∂h
q

T̃
′ I +∆γδ∂h

q
q hq

∂F
T̃

′ ∂Fq 0



·




∂T̃
′

∂[[ũ]]

∂q
∂[[ũ]]

∂∆γδ
∂[[ũ]]



=




1

04

01




(6.201)

where, 1 and I are the same as those in (6.184), and

04 =




0 0

0 0

0 0

0 0




; 01 =

[
0 0

]

Note

∂T̃
′

∂[[ũ]]
=




∂T ′

t
∂ut

∂T ′

t
∂un

∂T ′

n
∂ut

∂T ′

n
∂un


 (6.202)

∂q

∂[[ũ]]
=




∂χ
∂ut

∂χ
∂un

∂c
∂ut

∂c
∂un

∂tanφ
∂ut

∂tanφ
∂un

∂tanψ
∂ut

∂tanψ
∂un




(6.203)
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∂∆γδ
∂[[ũ]]

=

[
∂(∆γδ)
∂ut

∂(∆γδ)
∂un

]
(6.204)

Using a similar approach as in Section 4.4.2, we set

A =




(Ke)−1 +∆γδ∂GT̃
′

T̃
′ ∆γδ∂GT̃

′q

∆γδ∂h
q

T̃
′ I +∆γδ∂h

q
q


 (6.205)

B =




(∂G
T̃

′)T

hq


 ; C =

[
∂F

T̃
′ ∂Fq

]
(6.206)

The solution can then be written as

∂(∆γδ)

∂[[ũ]]
=

C ·A−1 ·




1

0




C ·A−1 ·B
(6.207)




∂T̃
′

∂[[ũ]]

∂q
∂[[ũ]]


 = A−1







1

0


−B ·

∂T̃
′

∂[[ũ]]


 (6.208)

where ∂T̃
′

∂[[ũ]]
is the material interface consistent tangent used in (6.102).

6.3.2.3 Derivatives in elasto-plastic interface element model

Now let us formulate the derivatives. Set QF = T ′
t
2 + (c − χtanφ)2, and the derivatives of yield

function F w.r.t T̃
′
and q denoted by ∂F

T̃
′ and ∂Fq are written as

∂F
T̃

′ =
∂F

∂T̃
′ =

[
∂F
∂T ′

t

∂F
∂T ′

n

]
(6.209)

∂Fq =
∂F

∂q
=

[
∂F
∂χ

∂F
∂c

∂F
∂tanφ

∂F
∂tanψ

]
(6.210)

∂hqq =
∂hq

∂q
=




∂hq(1)
∂χ

∂hq(1)
∂c

∂hq(1)
∂tanφ

∂hq(1)
∂tanψ

∂hq(2)
∂χ

∂hq(2)
∂c

∂hq(2)
∂tanφ

∂hq(2)
∂tanψ

∂hq(3)
∂χ

∂hq(3)
∂c

∂hq(3)
∂tanφ

∂hq(3)
∂tanψ

∂hq(4)
∂χ

∂hq(4)
∂c

∂hq(4)
∂tanφ

∂hq(4)
∂tanψ




(6.211)
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∂hq
T̃

′ =
∂hq

∂T̃
′ =




∂hq(1)
∂∂T ′

t

∂hq(1)
∂∂T ′

n

∂hq(2)
∂∂T ′

t

∂hq(2)
∂∂T ′

n

∂hq(3)
∂∂T ′

t

∂hq(3)
∂∂T ′

n

∂hq(4)
∂∂T ′

t

∂hq(4)
∂∂T ′

n




(6.212)

∂G
T̃

′ =
∂G

∂T̃
′ =

[
∂G
∂T ′

t

∂G
∂T ′

n

]
(6.213)

∂G
T̃

′

T̃
′ =

∂2G

∂T ′∂T ′ =




∂2G
∂T ′

t
2

∂2G
∂T ′

t∂T
′

n

∂2G
∂T ′

n∂T
′

t

∂2G
∂T ′

n
2


 (6.214)

∂G
T̃

′

q
=

∂2G

∂T ′∂q
=




∂2G
∂T ′

t∂χ
∂2G
∂T ′

t∂c
∂2G

∂T ′

t∂(tanφ)
∂2G

∂T ′

t∂(tanψ)

∂2G
∂T ′

n∂χ
∂2G
∂T ′

n∂c
∂2G

∂T ′

n∂(tanφ)
∂2G

∂T ′

n∂(tanψ)


 (6.215)

where,

∂F

∂T ′
t

= T ′
t · (QF )

−0.5 (6.216)

∂F

∂T ′
n

= tanφ (6.217)

∂F

∂χ
= (c− χtanφ) · (−tanφ) · (QF )

−0.5 (6.218)

∂F

∂c
= (c− χtanφ) · (QF )

−0.5 − 1 (6.219)

∂F

∂(tanφ)
= T ′

n − (c− χtanφ) · χ · (QF )
−0.5 (6.220)

∂F

∂(tanψ)
= 0 (6.221)

set QG = T ′
t
2 + (c− χtanψ)2, and the details are given as

∂G

∂T ′
t

= T ′
t ·QG

−0.5 (6.222)

∂G

∂T ′
n

= tanψ (6.223)

∂2G

∂T ′
t
2 = (c− χtanψ)2 · (QG)

−1.5 (6.224)

∂2G

∂T ′
n
2 = 0 (6.225)

∂2G

∂T ′
t∂T

′
n

=
∂2G

∂T ′
n∂T

′
t

= 0 (6.226)

∂2G

∂T ′
t∂χ

= T ′
t · tanψ · (c− χtanψ) · (QG)

−1.5 (6.227)
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∂2G

∂T ′
t∂c

= −T ′
t · (c− χtanψ) · (QG)

−1.5 (6.228)

∂2G

∂T ′
t∂(tanφ)

= 0 (6.229)

∂2G

∂T ′
t∂(tanψ)

= T ′
t · χ · (c− χtanψ) · (QG)

−1.5 (6.230)

∂2G

∂T ′
n∂χ

=
∂2G

∂T ′
n∂c

=
∂2G

∂T ′
n∂(tanφ)

= 0 (6.231)

∂2G

∂T ′
n∂(tanψ)

= 1 (6.232)

Let us take the derivatives of q w.r.t T ′
t and T

′
n. Note that A1 −A8 are only functions of q not T̃

′
,

i.e., ∂Aa

∂T̃
′ = 0, where, a = 1, . . . , 8. Also note ∂B4

∂T ′

t
= 0, thus

∂q(1)

∂T ′
t

= A1
∂B1

∂T ′
t

∂G

∂T ′
t

+A1B1
∂2G

∂T ′
t
2 (6.233)

∂q(1)

∂T ′
n

= A1
∂B1

∂T ′
n

∂G

∂T ′
t

+A2
∂B4

∂T ′
n

∂G

∂T ′
n

(6.234)

∂q(2)

∂T ′
t

= A3
∂B1

∂T ′
t

∂G

∂T ′
t

+A3B1
∂2G

∂T ′
t
2 (6.235)

∂q(2)

∂T ′
n

= A3
∂B1

∂T ′
n

∂G

∂T ′
t

+A4
∂B4

∂T ′
n

∂G

∂T ′
n

(6.236)

∂q(3)

∂T ′
t

= A5
∂B1

∂T ′
t

∂G

∂T ′
t

+A5B1
∂2G

∂T ′
t
2 (6.237)

∂q(3)

∂T ′
n

= A5
∂B1

∂T ′
n

∂G

∂T ′
t

(6.238)

∂q(4)

∂T ′
t

= A7
∂B1

∂T ′
t

∂G

∂T ′
t

+A7B1
∂2G

∂T ′
t
2 (6.239)

∂q(4)

∂T ′
n

= A7
∂B1

∂T ′
n

∂G

∂T ′
t

(6.240)

recall

|T ′
n| = sign(T ′

n)T
′
n

〈T ′
n〉 =

T ′
n + |T ′

n|

2

T ′∗
n =

T ′
n − |T ′

n|

2
=

1

2
[1− sign(T ′

n)]T
′
n

∂〈T ′
n〉

∂T ′
n

=
1

2
[1 + sign(T ′

n)]

∂T ′∗
n

∂T ′
n

=
1

2
[1− sign(T ′

n)]
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set, R = |T ′
t | − |T ′∗

n tanφ|

thus,
∂〈R〉

∂R
=

1

2
[1 + sign(R)]

∂R

∂T ′
t

= sign(T ′
t);

∂R

∂T ′
n

= −sign(T ′∗
n tanφ) · tanφ ·

∂T ′∗
n

∂T ′
n

∂〈R〉

∂T ′
t

=
1

2
[1 + sign(R)] sign(T ′

t)

∂〈R〉

∂T ′
n

= −
1

2
[1 + sign(R)] sign(T ′∗

n tanφ) · tanφ ·
∂T ′∗

n

∂T ′
n

Then, we can write

∂B1

∂T ′
t

=
sign(T ′

t)

GII
f

∂〈R〉

∂T ′
t

=
1

2GII
f

[1 + sign(R)]

∂B1

∂T ′
n

=
sign(T ′

t)

GII
f

∂〈R〉

∂T ′
n

= −
sign(T ′

t)

4GII
f

· tanφ · sign(T ′∗
n tanφ) · [1 + sign(R)] · [1− sign(T ′

n)]

∂B4

∂T ′
n

=
1

2GI
f

(1 + sign[T ′
n)]

Now let us take the derivatives of hq w.r.t q. First we write down the nonzero derivatives of

A1 . . . A8 and B1 . . . B4 w.r.t. q:

∂A1

∂χ
=
∂A2

∂χ
= −αχ (6.241)

∂A3

∂c
=
∂A4

∂c
= −αc (6.242)

∂A5

∂(tanφ)
= −αφ (6.243)

∂A7

∂(tanψ)
= −αψ (6.244)

∂B1

∂(tanφ)
=

sign(T ′
t )

GII
f

·
∂〈R〉

∂R
· sign(T ′∗

n tanφ) · T ′∗
n (6.245)

Thus,

∂hq(1)

∂χ
=
∂A1

∂χ
B1

∂G

∂T ′
t

+A1
�
�
�∂B1

∂χ

∂G

∂T ′
t

+A1B1
∂2G

∂T ′
t∂χ

+
∂A2

∂χ
B4

∂G

∂T ′
n

+A2
�
�
�∂B4

∂χ

∂G

∂T ′
n

+A2B4
�
�
��∂2G

∂T ′
n∂χ

=
∂A1

∂χ
B1

∂G

∂T ′
t

+A1B1
∂2G

∂T ′
t∂χ

+
∂A2

∂χ
B4

∂G

∂T ′
n

(6.246)
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∂hq(1)

∂c
=
�
��

∂A1

∂c
B1

∂G

∂T ′
t

+A1
�
��

∂B1

∂c

∂G

∂T ′
t

+A1B1
∂2G

∂T ′
t∂c

+
�
��

∂A2

∂c
B4

∂G

∂T ′
n

+A2
�
��

∂B4

∂c

∂G

∂T ′
n

+A2B4

�
�
��∂2G

∂T ′
n∂c

=A1B1
∂2G

∂T ′
t∂c

(6.247)

∂hq(1)

∂tanφ
=
�
�
�
��∂A1

∂(tanφ)
B1

∂G

∂T ′
t

+A1
∂B1

∂(tanφ)

∂G

∂T ′
t

+A1B1
������∂2G

∂T ′
t∂(tanφ)

+
�
�
�
��∂A2

∂(tanφ)
B4

∂G

∂T ′
n

+A2

�
�
�
��∂B4

∂(tanφ)

∂G

∂T ′
n

+A2B4

�������
∂2G

∂T ′
n∂(tanφ)

=A1
∂B1

∂(tanφ)

∂G

∂T ′
t

(6.248)

∂hq(1)

∂tanψ
=

�
�
�
��∂A1

∂(tanψ)
B1

∂G

∂T ′
t

+A1

�
�
�
��∂B1

∂(tanψ)

∂G

∂T ′
t

+A1B1
∂2G

∂T ′
t∂(tanψ)

+
�
�
�
��∂A2

∂(tanψ)
B4

∂G

∂T ′
n

+A2

�
�
�
��∂B4

∂(tanψ)

∂G

∂T ′
n

+A2B4
∂2G

∂T ′
n∂(tanψ)

=A1B1
∂2G

∂T ′
t∂(tanψ)

+A2B4
∂2G

∂T ′
n∂(tanψ)

(6.249)

∂hq(2)

∂χ
=
�
�
�∂A3

∂χ
B1

∂G

∂T ′
t

+A3
�
�
�∂B1

∂χ

∂G

∂T ′
t

+A3B1
∂2G

∂T ′
t∂χ

+
�
�
�∂A4

∂χ
B4

∂G

∂T ′
n

+A4
�
�
�∂B4

∂χ

∂G

∂T ′
n

+A4B4
�
�
��∂2G

∂T ′
n∂χ

=A3B1
∂2G

∂T ′
t∂χ

(6.250)

∂hq(2)

∂c
=
∂A3

∂c
B1

∂G

∂T ′
t

+A3
�
��

∂B1

∂c

∂G

∂T ′
t

+A3B1
∂2G

∂T ′
t∂c

+
∂A4

∂c
B4

∂G

∂T ′
n

+A4
�
��

∂B4

∂c

∂G

∂T ′
n

+A4B4

�
�
��∂2G

∂T ′
n∂c

=
∂A3

∂c
B1

∂G

∂T ′
t

+A3B1
∂2G

∂T ′
t∂c

+
∂A4

∂c
B4

∂G

∂T ′
n

(6.251)

∂hq(2)

∂tanφ
=
�
�
�
��∂A3

∂(tanφ)
B1

∂G

∂T ′
t

+A3
∂B1

∂(tanφ)

∂G

∂T ′
t

+A3B1
������∂2G

∂T ′
t∂(tanφ)

+
�
�
�
��∂A4

∂(tanφ)
B4

∂G

∂T ′
n

+A4

�
�
�
��∂B4

∂(tanφ)

∂G

∂T ′
n

+A4B4

�������
∂2G

∂T ′
n∂(tanφ)
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6.4 Numerical example

Three numerical examples are set up in this section. The first two examples are designed to

test the hydraulic (pore water pressure generation) and mechanical (elastic and plastic) performance

of the fully saturated poro-mechanical CIE model, and the third one is designed to analyze liquid

flow in a fractured partially saturated porous media. Linear isotropic elastic constitutive model is

used for the bulk elements.

6.4.1 Case study of fully saturated poro-mechanical CIE

Two examples are set up to test the performance of the saturated poro-mechanical CIE model

under compression and tension respectively.

6.4.1.1 Fully saturated PM CIE under compression

The dimensions and boundary conditions are indicated in Figure 6.5: two matrix blocks, each

has a column of two bulk elements; initial vertical aperture l0 = 1cm, and is represented by two

cohesive interface elements, i.e. element 5 and element 6. The bottom and side surface are fixed in

normal displacement, and are impermeable. Due to the axisymmetry, the axis boundary is fixed in

r direction, and is impermeable. Water table is set at the top z = 1m to represent a fully saturated

condition. Effective traction tσ
′

= 10kPa is applied on the top of the matrix (tσ = tσ
′

) at z = 1m

since pf = 0 at z = 1m. Pore water pressure generation due to the gravity and traction in the

matrix and the fracture are analyzed. The closing of the fracture under compression is observed.

Results: Figure 6.6 illustrates the changes of pore water pressure at different depths in the

matrix and the fracture, i.e. z = 0 and z = 0.5m at various radial distances r = 0to1 + l. In the

matrix (node 13, 18, 25, and 30), pore water pressure builds up due to successive applications of

gravity and traction, then dissipates with time, and eventually reaches hydrostatic steady state.

While with the initial aperture l0 = 1cm, the fracture behaves like an open channel saturated with

water, therefore, the generation of pore water pressure is negligible within the crack (see the curves
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for nodes 15, 16, 27, and 28). Figure 6.7 shows the vertical displacement change at different depths,

i.e. z = 1cm and z = 0.5m. Same displacements are observed within the matrix and the fracture at

the same level, which implies no displacement jump in the tangential direction within the fracture,

i,e, ut ≈ 0 (see Figure 6.8). Correspondingly, the tangential stress is almost zero as shown in Figure

6.9. Under the gravity and traction and with the horizontally fixed boundaries, the two compressed

matrix blocks tend to push against each other, thus the closing of the crack, i.e. un < 0 in Figure

6.8. Correspondingly, the fracture is under compression state, i.e. Tn < 0 as shown in Figure 6.9.

Figure 6.10 illustrates the evolution of the yield surface during the compression-dominated process.

Yield surface does not change because only compressive elasticity occurs along the interface.
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Figure 6.5: Axisymmetric finite element mesh for a fully saturated soil column with vertical fracture with
initial aperture l0 = 1cm: 30 nodes, four saturated Q9P4 PM bulk elements (Elem1-Elem4) and two Q6P4

PM CIEs (Elem5-Elem6). Gravity load is applied, and effective traction tσ
′

= 10kPa is exerted on top.



223

0 1000 2000 3000 4000 5000
0

2

4

6

8

10

12

time (s)

P
or

e 
pr

es
su

re
 (

kP
a)

 

 

Node 13
Node 15
Node 16
Node 18

 

 

Node 25
Node 27
Node 28
Node 30

Figure 6.6: Pore water pressure.
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Figure 6.7: Vertical displacement.
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6.4.1.2 Fully saturated poro-mechanical CIEs under tension

The following example is set up to test the plastic performance of fully saturated poro-

mechanical CIEs under tension. The elasto-plastic parameters for the cohesive interface element

model are listed in Table 6.1. Different from the previous example, gravity and traction are not

applied, the top is fixed vertically, and the side surface is prescribed with horizontal displacement

ur = 1cm as shown in figure 6.11.

Results: Figure 6.12 shows negligible pore water pressure is observed during the opening of

the crack. Figure 6.13 illustrates the horizontal displacements of the two FE facets at the bottom

of the crack. At t = 5hour, the horizontal displacement difference starts to increase dramatically,

which corresponds to the rise of the plastic normal displacement jump upn as shown in Figure 6.14.

In this tension-dominated process, the tangential displacement jump ut is negligible in figure 6.14.

In Figure 6.15, the normal effective stress T ′
n increases with the normal displacement jump un inside

the crack, and eventually reaches χp(Pa) = 3.464 × 103 (see Table 6.1) and triggers plasticity of

the cohesive interface element. After that T ′
n starts to decrease as the cohesive interface element

softens which is illustrated by the shrinking of the yield surface in Figure 6.15.
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Figure 6.11: Axisymmetric finite element mesh for fully saturated fracture soil column with four saturated
Q9P4 bulk poromechanical elements and two Q6P4 poromechanical CIEs. Initial vertical aperture l0 =
1× 10−5m, and prescribed horizontal displacement ur = 1cm is applied on the side surface at r = 1 + l.
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Table 6.1: Parameters for elasto-plastic CIE model depicted in Figure 6.11.

Symbol(unit) Value

Kn(Pa/m) 1× 107

Kt(Pa/m) 1× 107

GIf (Pa ·m) 1× 104

GIIf (Pa ·m) 1× 104

χp(Pa) cp/tan(φp) = 3.464 × 103

χr(Pa) 0
cp(Pa) 2000
cr(Pa) 0
φp(rad) 0.5236
φr(rad) 0
ψp(rad) 0.087
αχ 200
αc 200
αφ 900
αψ 900
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Figure 6.12: Variation of pore water pressure at
the bottom, with gravity equal to zero.

0 5 10 15 20 25
0

2

4

6

8

10

12

Time (hour)

H
or

iz
on

ta
l d

is
pl

ac
em

en
t u

r (
m

m
)

 

 

Node 30 (precribed)
Node 27
Node 28
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6.4.1.3 Fluid injection into horizontal crack with crack opening

In this example, we consider a single horizontal crack with initial aperture l0 = 1mm in

the middle of a saturated soil column. The axis, bottom, and side surface are fixed in normal

displacement, and are impermeable. Water table is set at the top z = 1.001m, i.e., pw = 0. At the

beginning of the simulation, gravity g = 9.8m/s2 is applied instantaneously, and fluid is injected

from the surface as shown in Figure 6.18. The fluid injection lasts for 2 minutes with the rate

Sw,S = 18m/hour. External traction is not applied, and the top is free to move under the gravity

load and the fluid injection. we use the same parameters in Table 6.1. Figure 6.18 shows that 306

nodes and 72 elements in total are used in the FEA.

Results: In Figure 6.19, uniform positive normal displacement jump un within the horizontal

crack implies that the crack opens evenly due to the fluid injection. The displacement jump in

tangential direction is negligible. According to Figure 6.20, with the free top boundary, a rigid

body movement is indicated for the top bulk elements, and no vertical movement is observed

within the bottom bulk elements due to the fluid injection. Figure 6.21 shows that at a time of

≈ 0.52min, softening elastoplasticity is enabled, thus, the tensile strength χ and cohesion c start

to degrade as shown in Figure 6.27. Figure 6.23 shows that two-minute fluid injection induces an

approximate increase of 7.5kPa in pore water within the crack, compared to the hydrostatic state.
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Figure 6.18: Axisymmetric FE mesh for saturated porous medium with a single horizontal crack. Sixty-four
saturated Q9P4 bulk poromechanical elements (element 1-element 64) and eight Q6P4 poromechanical CIEs
(element 65-element 72). Initial vertical aperture l0 = 1mm. Gravity load is applied, and fluid is injected at
the surface r = 1m (nodes 153 and 170) with the rate Sw,S = 18m/hour.
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Figure 6.22: Variations of pore water pressure at
the top (nodes 137 and 153 ) and the bottom (nodes
154 and 170) of the crack at r = 0 and r = 1m.
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Figure 6.25: Stress path and yield surface evolution
at the third Gauss point of element 72 (CIE).
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6.4.2 Case study of partially saturated poro-mechanical CIE

Assumptions: Certain assumptions imposed on the zero-thickness CIE model for partially satu-

rated fractured porous media can be summarized as follows:

(1) The partially saturated fracture may be open or partly filled, and a constant porosity nc

which is larger than the porosity of the matrix is used during the evolution. The porosity of the

porous matrix can change with the volumetric deformation of the solid skeleton. If the fracture is

blocked, e.g., filled up with a different material, then our model can still handle it by treating the

fracture also as porous medium, and assigning different material parameters.

(2) For longitudinal (or tangential) fluid flow in the fracture, a laminar flow is valid, thus

cubic law is applied to saturated permeability, and Darcy’s law is adopted for fluid flow.

(3) For hydraulic properties, van Genuchten model and relative permeability function (6.263)

are applied to both the matrix and the fracture. The parameters for the fracture depend on the

aperture of the fracture l = l0 + un. But generally, the air entry value for the fracture is smaller

than that for the matrix; the residual degree of saturation Sr is smaller than that of the matrix;

the absolute permeability of the fracture is larger than that of the matrix. We might also consider

that the parameter m in (6.263) for the fracture to be larger than that of the matrix in that m

represents the slope as degree of saturation decreases with suction (see Figure 6.30), i.e. larger

m corresponds to a steeper slope. It means that as the suction increases in the fractured porous

media, the drying process in the fracture is faster than that in the matrix (solid skeleton porous

medium).

6.4.2.1 Liquid flow in partially saturated fractured porous media

The geometry and boundary conditions of the test case are shown in Figure 6.33. A single

horizontal aperture with a width of l lies in the middle of a porous medium. As indicated in

Figure 6.34, two Q6P4 interface elements 17 and 18 and sixteen Q9P4 bulk elements are used to

discretize the partially saturated single fractured soil column under an axisymmetric condition. An
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instantaneous increase of suction is imposed on the bottom at z = 0. Due to axisymmetry of the

problem, the axis r = 0 is impermeable and fixed in r direction. The top and side surfaces are

also impermeable boundaries. The bottom and side surfaces are fixed respectively in the normal

directions of z and r. An initially linear suction profile is assumed, as indicated by the black curve

in Figure 6.36, and suction at the bottom is 10 kPa. A summary of parameters for the matrix and

the fracture is given in Table 6.2. Linear elastic model is used for the bulk elements of the matrix,

and an elasto-plastic model as described in Section 6.3.2.2 is used for the interface elements of the

fracture, with the same parameters in Table 6.1. In the simulation, gravity load is ramped up to

9.8m/s2 for the first 10 days, and is kept constant during the following time span of 9610 days.

Se =
Sw − Sr
Ss − Sr

=

[
1

1 + (s/a)n

]m
(6.262)

Krw(Se) =
√
Se

[
1− (1− S

1
m
e )m

]2
(6.263)
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Figure 6.28: SWRCs of fracture and matrix with
parameters in Table 6.2.
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Figure 6.29: Permeabilities of partially saturated
matrix and fracture with parameters in Table 6.2.
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Figure 6.30: Comparison of SWRCs of fracture us-
ing different values of m.
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Figure 6.31: Comparison of Apparent permeability
using different values of m.
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Figure 6.32: Apparent permeability versus suction
for partially saturated matrix and fracture with dif-
ferent saturated permeabilities.
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Table 6.2: Parameters for the partially saturated fracture and matrix.

Parameter Symbol Value

Matrix
Initial porosity n0 0.42

Traction tσ
′

0 Pa
Young’s modulus E 1× 106Pa
Poisson’s ratio ν 0.3
Specific gravity of soil particle Gs 2.7
Saturated degree of saturation Ss 1
Residual degree of saturation Sr 0.1
van Genuchten parameter a 30 kPa
van Genuchten parameter n 1.818
van Genuchten parameter m = 1− 1/n 0.45
Saturated permeability κ 5× 10−15m2

Fracture
Porosity nS 0.75
Saturated degree of saturation SSs 1
Residual degree of saturation SSr 0.01
van Genuchten parameter aSvan 5 kPa
van Genuchten parameter nSvan 4
van Genuchten parameter mS

van = 1− 1/ncvan 0.75
Intrinsic permeability κS 1× 10−8m2
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Figure 6.33: Sixteen partially saturated Q9P4 bulk poromechanical elements and two Q6P4 poromechanical
interface elements for axisymmetric finite element mesh of horizontal crack with gravity load, and zero
traction at the top surface.
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Figure 6.34: Finite element mesh with 16 bulk elements and 2 interface elements.
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Results: Figures 6.35 and 6.36 show the influence of the aperture width on suction of the

matrix and the fracture. Three different apertures are analyzed, i.e. l0 = 0.1cm, l0 = 1cm, and

l0 = 10cm. Although it is axisymmetric condition, the case is actually a one-dimensional problem.

Thus the two columns of elements should behave exactly the same. Figure 6.35 plots suction at

the top and the bottom of interface element 17, i.e. node 41 and node 46 (see Figure 6.34). Under

the suction boundary condition at the bottom of the matrix, suction increases faster in the matrix

below the fracture than the matrix above the fracture. The suction at the bottom of the crack will

eventually arrive at the same steady sate value with the three different aperture widths. However,

larger initial aperture width leads to a lower suction at the top of the crack. To explore the reason

for this phenomena, we should know that the initially unsaturated fracture with larger aperture

tends to desaturate faster as suction increases in the fracture. And as the fracture drains, air

pockets will form along the surface of the fracture, thereby impeding the liquid flow between the

adjacent matrix elements across the fracture and reducing the effective permeability for liquid flow

normal to the fracture surface. The suctions are consistent within the fracture at the beginning of

the drainage, i.e. no suction jump across the fracture. As the fracture becomes drier, it eventually

loses the ability to transmit liquid flow, i.e. the matrix regions above and below the fracture are

separated by the crack, and become independent of each other with respect to liquid flow, hence a

suction jump between the top and the bottom of the fracture. For larger aperture, the foregoing

process happens earlier, therefore, lower suction is kept in the matrix above the fracture. After the

two matrix regions are separated by the fracture between them, a linear suction distribution with

respect to height is reached within each of the matrix regions at the end of the simulation, with

higher suction at higher elevation. Note that the same suction distribution is obtained within the

matrix region below the fracture independent of the aperture width.

In Figure 6.37 and 6.36, we use fracture continuum intrinsic permeability κc with different magni-

tudes, i.e. 10−8m2, 10−10m2, and 10−12m2, and keep the other parameters to simulate the same

problem with the aperture equal to 1mm. Lower κc corresponds to a lower ability to transmit the
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liquid flow across the fracture, therefore, the suction jump between the top and the bottom of the

fracture occurs earlier, and the matrix regions above and below the fracture become independent of

each other thereafter. The other hydraulic parameters can also influence the flow field to a certain

degree, which makes the sensitivity analysis necessary when knowledge of the hydraulic properties

is incomplete.
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Figure 6.35: Variations of suction for partially sat-
urated single fractured porous media with different
initial apertures at the end of simulation.

0 20 40 60 80 100 120
0

0.5

1

1.5

2

2.5

Suction (kPa)

H
ei

gh
t (

m
)

 

 

initial condition
aperture=0.1cm
aperture=1cm
aperture=10cm

Figure 6.36: Variations of suction profiles for par-
tially saturated single fractured porous media with
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Figure 6.37: Variations of suction versus time for
partially saturated single fractured porous media us-
ing different intrinsic permeabilities of the fracture.
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Chapter 7

Fully and partially saturated thermo-poro-mechanical (TPM) cohesive

interface element (CIE) models

7.1 Fully saturated thermo-poro-mechanical (TPM) interface element model

7.1.1 Governing equations for TPM CIE model

7.1.1.1 Balance of linear momentum

The weak form of balance of linear momentum equation for the continuum with discontinuity

under nonisothermal condition is the same as the one under isothermal condition, except that the

constitutive model for the effective stress tensor σ′ is different due to the thermal effects.

7.1.1.2 Balance of mass

We first write the balance of mass equation for the discontinuity (of (3.24) for continuum):

∇ · vS +∇ · ṽD,Sf −
[
βθs (1− nS) + βθfn

S
]
θ̇S − βθf ṽ

D,S
f · (∇θS) = 0 ,x ∈ Sl (7.1)

where vS is the velocity of solid skeleton in the discontinuity, nS is the porosity of the fracture,

and can be expressed as

vS = u̇S(x, t) = [[u̇(t)]]HS(x) (7.2)

where t denotes time, instead of “tangential”, and [[u]] := uS
−

− uS
+
is the jump in displacement

across the discontinuity surface S, and it is possible for [[u]] to vary along S. But here it is assumed
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to be constant with respect to x of a material point. And the Heaviside function is defined as

Hs =





0 ifx ∈ Ω−

1 ifx ∈ Ω+

(7.3)

According to Regueiro (1998), the gradient of Heaviside ∇HS = nδS , where δS is the Dirac-delta

function on S. The divergence of v can then be written as

∇ · vS = [[u̇(t)]]n δS (7.4)

where n denotes the normal vector, which should not be confused with the porosity of the discon-

tinuity nS. ṽ
D,S
f is Darcy’s velocity of fluid flow in the discontinuity S, and its two components

in the tangential and normal directions are respectively ṽD,St and ṽD,Sn . Applying the weighting

function ζS to (7.1), and integrating over the volume of crack Sl, we have

∫

Sl

ζS[[u̇]]nδSdv+

∫

Sl

ζS∇· ṽD,Sf dv−

∫

Sl

ζS
[
βθs (1− nS) + βθfn

S
]
θ̇Sdv−

∫

Sl

ζSβθf ṽ
D,S
f ·(∇θS)dv = 0

(7.5)

Excluding the signs, let us derive the terms on the left hand side of (7.5)

the 1st term =

∫

S
ζSu̇nda (7.6)

the 2nd term =

∫

Sl

∇ · (ζSṽD,Sf )dv −

∫

Sl

ṽ
D,S
f · (∇ζS)dv

=

∫

∂Sl

ζSṽD,Sf · ñda−

∫

Sl

(
ṽD,St

∂ζS

∂xt
+ ṽD,Sn

∂ζS

∂xn

)
dv (7.7)

the 4th term =

∫

Sl

ζSβθf

(
ṽD,St

∂θS

∂xt
+ ṽD,Sn

∂θS

∂xn

)
dv (7.8)

where ñj is a generic normal vector to surface Γ, and Γ = Γt+Γg +S− +S+. Substitute into (7.5)

to get the balance of mass equation for the discontinuity:

∫

S
ζS[[u̇n]]da− 2

∫

S
[[ζ]]ṽD,Sn da−

∫

Sl

ζS
[
βθs (1− nS) + βθf n

S
]
θ̇Sdv −

∫

Sl

ζSβθf ṽ
D,S
t

∂θS

∂xt
dv

−

∫

S
ζSβθf ṽ

D,S
n [[θ]]da−

∫

Sl

ṽD,St

∂ζS

∂xt
dv =

∫

ΓS

ζSSw,Sda (7.9)

Take ζS as an example, and we derive its gradient and apply the same rule to θS, ϕS , and pSf

∂ζS

∂xt
=

∂ζS

∂s
=
∂ζS

∂ξ

∂ξ

∂s
= Bcse1,p · {θcse} (7.10)

∂ζS

∂xn
= [[ζ]]δS (7.11)
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where, βcse is nodal value vector of weighting function ζS. We can also write,

θ̇S = N cse1,p ·
{
θ̇
cse
}

(7.12)

[[θ]] = N cse2,p · {θcse} (7.13)

[[ζ]] = N cse2,p · {βcse} (7.14)

∂θS

∂xt
= Bcse1,p · {θcse} (7.15)

∂θS

∂xn
= N cse2,p · {θcse} (7.16)

Recall the dimensionality reduction for axisymmetric condition,

∫

Sl

(•)dv = 2π

∫

S
(•)lrds (7.17)

∫

S
(•)da = 2π

∫

S
(•)rds (7.18)

∫

Ω
(•)dv = 2π

∫

A
(•)rdrdz (7.19)

The finite element formulation of the balance of mass equation for the discontinuity is then written

as

ncel

A
e=1

(αcse)T ·




∫

Se

(N cse1,p)T · nT ·N cse,u da

︸ ︷︷ ︸
k

pd
cse

{
ḋ
cse
}

−

∫

Se

[
βθs (1− nS) + βθfn

S
]
l (N cse1,p)T ·N cse1,p da

︸ ︷︷ ︸
k

pθ
cse(d

cse
)

{
θ̇
cse
}

−

∫

Se

(N cse2,p)T (2ṽD,Sn ) da

︸ ︷︷ ︸
f

p1,int

cse (d
cse
,pcse

f )

−

∫

Se

(Bcse1,p)T ṽD,St l da

︸ ︷︷ ︸
f

p2,int

cse (d
cse
,pcse

f )

−

∫

Se

βθf ṽ
D,S
n (N cse1,p)T ·N cse2,p · {θcse} da

︸ ︷︷ ︸
f

p4,int

cse (d
cse
,pcse

f ,θ
cse

)

−

∫

Se

βθf ṽ
D,S
t l (N cse1,p)T ·Bcse1,p · {θcse} da

︸ ︷︷ ︸
f

p3,int

cse (d
cse
,pcse

f ,θ
cse

)

=

∫

ΓS

(N cse1,p)TSw,S da

︸ ︷︷ ︸
f

p,ext

cse



(7.20)
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7.1.1.3 Balance of energy

Similar to the continuum in (3.94), the balance of energy equation for discontinuity is written as

(ρC)S θ̇S + ρfRCf ṽ
S
f · ∇θS + αθ,Sskel θ

S tr(σ̇)− ṽ
D,S
f · (−∇pSf + ρfRg)

+∇ · qS − (ρ r)S −
[
βθ,Ss (1− nS) + βθ,Sf nS

]
ṗSf − βθf ṽ

D,S
f · ∇pSf = 0

(7.21)

where the superscript or subscript “S” indicates the properties of the crack. For example, (ρC)S

= heat capacity per unit volume of the crack; KS
b = bulk modulus of the solid skeleton of the

crack; αθ,Sskel = linear thermal expansion coefficient of the crack solid skeleton. βθ,Sf and βθ,Ss are

respectively the volumetric thermal expansion coefficient of fluid (or water here) and solid phases

in the crack. In the future, we need to derive directly the thermodynamics for the discontinuity

to check the energy conservation equation and the constitutive relation forms. Applying weighting

function ϕS to (7.21), and integrate over Sl:

∫

Sl

ϕ(∇ · qS)dv =

∫

Sl

[
∇ · (ϕSqS)− (∇ϕS) · qS

]
dv

=

∫

∂Sl

ϕSqS · ñda−

∫

Sl

(
∂ϕS

∂xn
qSn +

∂ϕS

∂xt
qSt

)
dv (7.22)

where ∂Sl = S+ ∪ S− ∪ ΓS . Then

∫

∂Sl

ϕSqS · ñda =

∫

S+

(ϕ+q+n+)da+

∫

S−

(ϕ−q−n−)da+

∫

ΓS

ϕSqSνda

=

∫

S+

(ϕ+qS,+n )da+

∫

S−

(ϕ−qS,−n )da+

∫

ΓS

ϕS(−qend)da

=

∫

S
−[[ϕ]]qSnda−

∫

ΓS

ϕqendda (7.23)

assuming ∂ϕS

∂xn
= [[ϕS ]] δS , (7.22) becomes

∫

Sl

ϕ(∇ · q)dv = −

∫

S
[[ϕ]]qSnda−

∫

ΓS

ϕqendda−

∫

S
[[ϕ]]qSnda−

∫

Sl

∂ϕS

∂xt
qSt dv

= −2

∫

S
[[ϕ]]qSnda−

∫

ΓS

ϕqendda−

∫

Sl

∂ϕS

∂xt
qSt dv (7.24)
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where [[ϕ]] = ϕ− − ϕ+. Assuming qSn = qS,+n = −qS,−n , the heat flux across the discontinuity qS is

expressed as

qSn = K̂θ
n(θ

+ − θ−) = −K̂θ
n[[θ]] = −K̂θ

nN
cse2,p · {θcse} (7.25)

qSt = −K̂θ
t

∂θS

∂xt
= −K̂θ

tB
cse1,p · {θcse} (7.26)

and where K̂θ
n and K̂θ

t are respectively the thermal conductivities at normal n and tangential t

directions of the crack; qend denotes the heat flux at the ends of the crack ΓS.

Apply the weighting function ϕS , and write the finite element formulation of the energy conservation

equation for the discontinuity

ncel

A
e=1

(βcse)T ·




∫

Se

3KS
b α

θ,S
skelθ

S(N cse1,p)T · nT ·N cse,u da

︸ ︷︷ ︸
k

θd
cse(θ

cse
)

{
ḋ
cse
}

−

∫

Se

(
βθ,Ss (1− nS) + βθ,Sf nS

)
l (N cse1,p)T ·N cse1,p da

︸ ︷︷ ︸
k

θp
cse(d

cse
)

{
ṗcsef

}

+

∫

Se

[
(ρC)S − 9KS

b (α
θ
S)

2θS
]
l (N cse1,p)T ·N cse1,p da

︸ ︷︷ ︸
k

θθ
cse(θ

cse
)

{
θ̇
cse
}

+

∫

Se

(ρfRCf )
S ṽD,Sn (N cse1,p)T ·N cse2,p · {θcse} da

︸ ︷︷ ︸
f

θ1,int

cse (d
cse
,pcse

f ,θ
cse

)

+

∫

Se

(ρfRCf )
S ṽD,St l (N cse1,p)T ·Bcse1,p · {θcse} da

︸ ︷︷ ︸
f

θ2,int

cse (d
cse
,pcse

f ,θ
cse

)

+

∫

Se

2K̂θ
nN

cse2,p · {θcse} (N cse2,p)T da

︸ ︷︷ ︸
f

θ3,int

cse (d
cse
,θ

cse
)

+

∫

Se

K̂θ
tB

cse1,p · {θcse} l (Bcse1,p)T da

︸ ︷︷ ︸
f

θ4,int

cse (d
cse
,θ

cse
)

−

∫

Se

βθ,Sf ṽD,Sn (N cse1,p)T ·N cse2,p ·
{
pcsef

}
da

︸ ︷︷ ︸
f

θ5,int

cse (d
cse
,pcse

f )

−

∫

Se

βθ,Sf ṽD,St l (N cse1,p)T ·Bcse1,p ·
{
pcsef

}
da

︸ ︷︷ ︸
f

θ6,int

cse (d
cse
,pcse

f )

=

∫

ΓS

(N cse1,p)T qend da

︸ ︷︷ ︸
f

θq,ext

cse

+

∫

Sl

(N cse1,p)T (ρr)S dv

︸ ︷︷ ︸
f

θr,ext

cse




(7.27)

where f θr,extcse is the heat source within the discontinuity, and will be ignored here.
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7.1.2 Finite element formulations

We combine with the finite element equations for the matrix, i.e. (3.105), (3.107), and (3.108)

and those for the interface element, to write the following equations for TPM model of saturated

fractured porous media.

(1) Balance of linear momentum:

nbel

A
e=1

(ce)T ·




∫

Ωe

(Be,u)T · σ′dv

︸ ︷︷ ︸
f

d,int

e (d
e
)

−

∫

Ωe

(
B̃
e,u
)T

·N e,pdv

︸ ︷︷ ︸
k

dp1
e

·pef

−

∫

Ωe

ρ (N e,u)T · b dv

︸ ︷︷ ︸
f

df,ext

e (d
e
)

−

∫

Γe

(Ne,u)T tσ
′

da

︸ ︷︷ ︸
f

dt,ext

e

+

∫

Γe

(N e,u)T · ν ·N e,pda

︸ ︷︷ ︸
k

dp2
e

·pef




+
ncel

A
e=1

(ccse)T




∫

Se

(N cse,u)T · T ′da

︸ ︷︷ ︸
f

d,int

cse (d
cse

)

−

∫

Se

(N cse,u)T · n ·N cse1,pda

︸ ︷︷ ︸
k

dp
cse

·pcsef



= 0

(7.28)

Note although it has the same format with (6.84), σ′ and T ′ are calculated from elastic deformation

of the matrix and the fracture, which are obtained by deducting the thermal strain from the total

strain.

(2) Balance of mass:

nel

A
e=1

(αe)T ·




(∫

Ωe
f

(N e,θ)T · B̃
e,u
dv

)

︸ ︷︷ ︸
k

pd
e

·ḋ
e
−

[∫

Ωe
f

(βθs n
s + βθf n

f )(N e,θ)T ·N e,θ dv

]

︸ ︷︷ ︸
k

pθ
e

·θ̇
e

−

∫

Ωe
f

(Be,θ)T · ṽDf dv

︸ ︷︷ ︸
f

pp,int

e

−

∫

Ωe
f

βθf (N
e,θ)T ·

[
(ṽDf )

T ·Be,θ · θe
]
dv

︸ ︷︷ ︸
f

pθ,int

e

−

∫

Γe
s

(N e,θ)TSw da

︸ ︷︷ ︸
f

p,ext

e



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+
ncel

A
e=1

(αcse)T ·




∫

Se

(N cse1,p)T · nT ·N cse,u da

︸ ︷︷ ︸
k

pd
cse=(k

dp
cse)

T

{
ḋ
cse
}

−

∫

Se

[
βθ,Ss (1− nS) + βθ,Sf nS

]
l (N cse1,p)T ·N cse1,p da

︸ ︷︷ ︸
k

pθ
cse(d

cse
)

{
θ̇
cse
}

−

∫

Se

(N cse2,p)T (2ṽD,Sn ) da

︸ ︷︷ ︸
f

p1,int

cse (d
cse
,pcse

f )

−

∫

Se

(Bcse1,p)T ṽD,St l da

︸ ︷︷ ︸
f

p2,int

cse (d
cse
,pcse

f )

−

∫

Se

βθ,Sf ṽD,Sn (N cse1,p)T ·N cse2,p · {θcse} da

︸ ︷︷ ︸
f

p3,int

cse (d
cse
,pcse

f ,θ
cse

)

−

∫

Se

βθ,Sf ṽD,St l (N cse1,p)T ·Bcse1,p · {θcse} da

︸ ︷︷ ︸
f

p4,int

cse (d
cse
,pcse

f ,θ
cse

)

−

∫

ΓS

(N cse1,p)TSw,S da

︸ ︷︷ ︸
f

p,ext

cse

= 0




(7.29)

(3) Balance of energy:

nel

A
e=1

(βe)T ·




(∫

Ωe

(
(ρC)m − 9Kskel(αθskel)

2(N e,θ · θe)
)
(N e,θ)T ·N e,θdv

)

︸ ︷︷ ︸
k

θθ
e

·θ̇
e
+

(∫

Ωe

3Kskelαθskel(N
e,θ)T (N e,θθe) · B̃

e,u
dv

)

︸ ︷︷ ︸
k

θd
e

·ḋ
e
−

(∫

Ωe

(βθs n
s + βθf n

f )(N e,θ)TN e,θ dv

)

︸ ︷︷ ︸
k

θp
e

·ṗef

+

∫

Ωe

(Be,θ)T ·Kθ ·B
e,θ · θedv

︸ ︷︷ ︸
f

θ1,int

e

+

∫

Ωe

ρfRCf (N e,θ)T (ṽDf )
T ·Be,θ · θe dv

︸ ︷︷ ︸
f

θ2,int

e

−

∫

Ωe

(N e,θ)T · (ṽDf )
T · (−Be,θ · pef + ρfRg) dv

︸ ︷︷ ︸
f

θ3,int

e

−

∫

Ωe

βθf (N
e,θ)T · (ṽDf )

T · (Be,θ · pef ) dv

︸ ︷︷ ︸
f

θ4,int

e

−

∫

Ωe

ρ(N e,θ)T r dv

︸ ︷︷ ︸
f

θr,ext

e

−

∫

Γe
q

(N e,θ)T q da

︸ ︷︷ ︸
f

θq,ext

e



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+
ncel

A
e=1

(βcse)T ·




∫

Se

3KS
b α

θ,S
skelθ

S(N cse1,p)T · nT ·N cse,u da

︸ ︷︷ ︸
k

θd
cse(θ

cse
)

{
ḋ
cse
}

−

∫

Se

(
βθ,Ss (1− nS) + βθ,Sf n

)
l (N cse1,p)T ·N cse1,p da

︸ ︷︷ ︸
k

θp
cse(d

cse
)=kpθcse

{
ṗcsef

}

+

∫

Se

[
(ρC)S − 9KS

b (α
θ
c)

2θS
]
l (N cse1,p)T ·N cse1,p da

︸ ︷︷ ︸
k

θθ
cse(θ

cse
)

{
θ̇
cse
}

+

∫

Se

(ρfRCf )
S ṽD,Sn (N cse1,p)T ·N cse2,p · {θcse} da

︸ ︷︷ ︸
f

θ1,int

cse (d
cse
,pcse

f ,θ
cse

)

+

∫

Se

(ρfRCf )
S ṽD,St l (N cse1,p)T ·Bcse1,p · {θcse} da

︸ ︷︷ ︸
f

θ2,int

cse (d
cse
,pcse

f ,θ
cse

)

+

∫

Se

2K̂θ
nN

cse2,p · {θcse} (N cse2,p)T da

︸ ︷︷ ︸
f

θ3,int

cse (d
cse
,θ

cse
)

+

∫

Se

K̂θ
t lB

cse1,p · {θcse} · (Bcse1,p)T da

︸ ︷︷ ︸
f

θ4,int

cse (d
cse
,θ

cse
)

−

∫

Se

βθ,Sf ṽD,Sn (N cse1,p)T ·N cse2,p ·
{
pcsef

}
da

︸ ︷︷ ︸
f

θ5,int

cse (d
cse
,pcse

f )

−

∫

Se

βθ,Sf ṽD,St l (N cse1,p)T ·Bcse1,p ·
{
pcsef

}
da

︸ ︷︷ ︸
f

θ6,int

cse (d
cse
,pcse

f )

−

∫

ΓS

(N cse1,p)T qend da

︸ ︷︷ ︸
f

θq,ext

cse

−

∫

Sl

(N cse1,p)T (ρr)S dv

︸ ︷︷ ︸
f

θr,ext

cse

= 0




(7.30)

(7.28), (7.29), and (7.30) may be written in one matrix equation as follows:

C(D) · Ḋ + F INT (D) = FEXT (D) (7.31)

such that,

C(D) =




0 0 0

Kpd +Kpd
cse 0 −

(
Kpθ +Kpθ

cse

)

Kθd +Kθd
cse −

(
Kθp +Kθp

cse

)
Kθθ +Kθθ

cse




(7.32)

The global degree of freedom vector and its rate form are:

D =




d

pf

θ



; Ḋ =




ḋ

ṗf

θ̇




(7.33)
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The assembled F INT and FEXT are:

F INT =




F d,INT + F d,INT
cse +

(
Kdp2 −Kdp1 −Kdp

cse

)
· pf

−F pp,INT − F pθ,INT
cse − F p1,INT

cse − F p2,INT
cse − F p3,INT

cse − F p4,INT
cse

F θ,INT + F θ,INT
cse




(7.34)

where

F θ,INT = F θ1,INT + F θ2,INT − F θ3,INT − F θ4,INT

F θ,INT
cse = F θ,INT

cse + F θ2,INT
cse + F θ3,INT

cse + F θ4,INT
cse − F θ5,INT

cse − F θ6,INT
cse

FEXT =




F df,EXT + F dt,EXT

F p,EXT + F p,EXT
cse

F θr,EXT + F θq,EXT + F θr,EXT
cse + F θq,EXT

cse




(7.35)

For simplicity, we assume the linear thermal expansion coefficient of the fracture (or crack) αθ,Sskel is

negligible. And also we can assume that the solid partial volumetric thermal expansion coefficient

of the fracture is equal to that of the matrix, i.e. βθ,Ss = βθs . Since βθ,Sf is approximately 10 times

larger than βθ,Ss , therefore it is reasonable to assume that βθ,Ss nS is negligible compared to βθ,Sf nf

in Kθp. These assumptions can be relaxed later, and adding these terms is straightforward.

The derivatives of k′
cses and f ′

cses with respect to dcse, pcsef , and θcse may be written as

∂fd,intcse

∂dcse
=

∫

Se

(N cse,u)T ·
∂T ′(dcse)

∂dcse
da

=

∫

Se

(N cse,u)T ·
∂T ′

∂T̃
′ ·

∂T̃
′

∂[[ũ]]
·
∂[[ũ]]

∂dcse
da

=

∫

Se

(N cse,u)T · (Λe)T ·
∂T̃

′

∂[[ũ]]
·Λe ·N cse,u da

where,
∂T̃

′

∂[[ũ]]
can be calculated from the constitutive model.

∂kpθcse
∂dcse

=
∂kθpcse
∂dcse

=

∫

Se

[
βθ,Ss (1− n) + βθ,Sf n

]
(N cse1,p)T ·N cse1,p ·

∂l

∂dcse

∂fp1,intcse

∂dcse
=

∫

Se

2
(
N cse2,p

)T
·
∂ṽD,Sn

∂dcse
da
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∂fp1,intcse

∂pcsef
=

∫

Se

2
(
N cse2,p

)T
·
∂ṽD,Sn

∂pcsef
da

∂fp2,intcse

∂dcse
=

∫

Se

(
Bcse1,p

)T
·
∂(ṽD,St l)

∂dcse
da

∂fp2,intcse

∂pcsef
=

∫

Se

(
Bcse1,p

)T
· l ·

∂ṽD,St

∂pcsef
da

∂fp3,intcse

∂dcse
=

∫

Se

βθ,Sf
(
N cse1,p

)T
·N cse2,p · {θcse} ·

∂ṽD,Sn

∂dcse
da

∂fp3,intcse

∂pcsef
=

∫

Se

βθ,Sf
(
N cse1,p

)T
·N cse2,p · {θcse}

∂ṽD,Sn

∂pcsef
da

∂fp3,intcse

∂θcse
=

∫

Se

βθ,Sf ṽD,Sn

(
N cse1,p

)T
·N cse2,p

∂fp4,intcse

∂dcse
=

∫

Se

βθ,Sf
(
N cse1,p

)T
·
(
Bcse1,p

)T
· {θcse} ·

∂(ṽD,St l)

∂dcse
da

∂fp4,intcse

∂pcsef
=

∫

Se

βθ,Sf l
(
N cse1,p

)T
·
(
Bcse1,p

)T
· {θcse} ·

∂ṽD,St

∂pcsef
da

∂fp4,intcse

∂θcse
=

∫

Se

βθ,Sf ṽD,St l
(
N cse1,p

)T
·
(
Bcse1,p

)T
da

∂f θ1,intcse

∂dcse
=

∫

Se

(ρfRCf )
S
(
N cse1,p

)T
·N cse2,p · {θcse} ·

∂ṽD,Sn

∂dcse
da

∂f θ1,intcse

∂pcsef
=

∫

Se

(ρfRCf )
S
(
N cse1,p

)T
·N cse2,p · {θcse} ·

∂ṽD,Sn

∂pcsef
da

∂f θ1,intcse

∂θcse
=

∫

Se

(ρfRCf )
S ṽcn

(
N cse1,p

)T
·N cse2,p da

∂f θ2,intcse

∂dcse
=

∫

Se

(ρfRCf )
S
(
N cse1,p

)T
·Bcse1,p · {θcse} ·

∂(ṽD,St l)

∂dcse
da

∂f θ2,intcse

∂pcsef
=

∫

Se

(ρfRCf )
S l
(
N cse1,p

)T
·Bcse1,p · {θcse} ·

∂ṽD,St

∂pcsef
da

∂f θ2,intcse

∂θcse
=

∫

Se

(ρfRCf )
S ṽD,St l

(
N cse1,p

)T
·Bcse1,p da

∂f θ3,intcse

∂dcse
=

∫

Se

2N cse2,p · {θcse} (N cse2,p)T
∂K̂θ

n

∂l

∂l

∂dcse
da

∂f θ3,intcse

∂θcse
=

∫

Se

2K̂θ
n(N

cse2,p)T ·N cse2,p da

∂f θ4,intcse

∂dcse
=

∫

Se

K̂θ
tB

cse1,p · {θcse} (Bcse1,p)T ·
∂l

∂dcse
da

∂f θ4,intcse

∂θcse
=

∫

Se

K̂θ
t l (B

cse1,p)T ·Bcse1,p da

∂f θ5,intcse

∂dcse
=

∫

Se

βθ,Sf
(
N cse1,p

)T
·N cse2,p ·

{
pcsef

}
·
∂ṽD,Sn

∂dcse
da
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∂f θ5,intcse

∂pcsef
=

∫

Se

[
βθ,Sf ṽD,Sn

(
N cse1,p

)T
·N cse2,p + βθf

(
N cse1,p

)T
·N cse2,p ·

{
pcsef

}
·
∂ṽD,Sn

∂pcsef

]
da

∂f θ6,intcse

∂dcse
=

∫

Se

βθ,Sf
(
N cse1,p

)T
·Bcse1,p ·

{
pcsef

}
·
∂(ṽD,St l)

∂dcse
da

∂f θ6,intcse

∂pcsef
=

∫

Se

[
βθ,Sf ṽD,St l

(
N cse1,p

)T
·Bcse1,p + βθ,Sf l

(
N cse1,p

)T
·Bcse1,p ·

{
pcsef

}
·
∂ṽD,St

∂pcsef

]
da
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7.2 Partially saturated TPM CIE model

7.2.1 Governing equations and finite element formulations

The governing equations are obtained by extending the saturated TPM CIE, and details are

omitted here.

7.2.1.1 Balance of linear momentum for matrix and fracture

The finite element form of balance of linear momentum equation is written as

nbel

A
e=1

(ce)T ·




∫

Ωe

(Be,u)T · σ′dv

︸ ︷︷ ︸
f

d,int

e

−

∫

Ωe

(B̃
e,u

)T ·Ne,p ·
[
χpew + (1− χ)peg

]
dv

︸ ︷︷ ︸
f

dp,int

e

−

∫

Ωe

ρ (N e,u)T · b dv

︸ ︷︷ ︸
f

df,ext

e

−

∫

Γe
t

(N e,u)T tσ
′

da

︸ ︷︷ ︸
f

dt,ext

e

+

∫

Γe
t

χ (N e,u)T · ν ·N e,p da

︸ ︷︷ ︸
k

dp2
e

·pew




+
ncel

A
e=1

(ccse)T




∫

Se

(N cse,u)T · T ′da

︸ ︷︷ ︸
f

d,int

cse

−

∫

Se

(N cse,u)T · n ·N cse1,p
[
χSpew + (1− χS)peg

]
da

︸ ︷︷ ︸
f

dp,int

cse



= 0

(7.36)

where, nbel denotes the number of bulk element; correspondingly, ncel denotes the number of

cohesive element.

7.2.1.2 Balance of mass for water species in discontinuity

ncel

A
e=1

(αcse)T ·




∫

Se

(ρwRSSw + ρgvRSSg )(N
cse1,p)T · nT ·N cse,u da

︸ ︷︷ ︸
k

wd
cse

{
ḋ
cse
}
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+

∫

Se

[
nS(ρwR − ρgvR)

∂SSw
∂s

+ nSSSg
∂ρgvR

∂s

]
l (N cse1,p)T ·N cse1,p da

︸ ︷︷ ︸
k

wg
cse

{
ṗcseg

}

−

∫

Se

[
n(ρwR − ρgvR)

∂SSw
∂s

+ nSSSg
∂ρgvR

∂s

]
l (N cse1,p)T ·N cse1,p da

︸ ︷︷ ︸
k

wg
cse

{ṗcsew }

+

∫

Se

(
nSSSg

∂ρgvR

∂θ
− βSswg

)
l (N cse1,p)T N cse1,p da

︸ ︷︷ ︸
k

wθ
cse

{
θ̇
cse
}

−

∫

Se

(N cse2,p)T 2ρwR(ṽD,Sw )n da

︸ ︷︷ ︸
f

w1,int

cse

−

∫

Se

(Bcse1,p)T ρwR(ṽD,Sw )t l da

︸ ︷︷ ︸
f

w2,int

cse

−

∫

Se

(N cse2,p)T 2ρgvR(ṽD,Sgv )n da

︸ ︷︷ ︸
f

w3,int

cse

−

∫

Se

(Bcse1,p)T ρgvR(ṽD,Sgv )t l da

︸ ︷︷ ︸
f

w4,int

cse

=

∫

ΓS

(N cse1,p)T
(
Sw,S + Sgv,S

)
da

︸ ︷︷ ︸
f

w,ext

cse




(7.37)

7.2.1.3 Balance of mass for dry air in discontinuity

ncel

A
e=1

(βcse)T ·




∫

Se

ρgaRSSg (N
cse1,p)T · nT ·N cse,u da

︸ ︷︷ ︸
k

gd
cse

{
ḋ
cse
}

+

∫

Se

[
nSSSg

∂ρgaR

∂pw
+ nρgaR

SSw
∂s

]
l (N cse1,p)T ·N cse1,p da

︸ ︷︷ ︸
k

gw
cse

{ṗcsew }

+

∫

Se

[
nSSSg

∂ρgaR

∂pg
− nSρgaR

SSw
∂s

]
l (N cse1,p)T ·N cse1,p da

︸ ︷︷ ︸
k

gg
cse

{
ṗcseg

}

+

∫

Se

(
nSSSg

∂ρgaR

∂θ
− βθ,Ss (1− nS)ρgaRSSg

)
l (N cse1,p)T N cse1,p da

︸ ︷︷ ︸
k

gθ
cse

{
θ̇
cse
}
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−

∫

Se

(N cse2,p)T 2ρgaR(ṽD,Sga )n da

︸ ︷︷ ︸
f

g1,int

cse

−

∫

Se

(Bcse1,p)T ρgaR(ṽD,Sga )t l da

︸ ︷︷ ︸
f

g2,int

cse

=

∫

ΓS

(N cse1,p)TSga,S da

︸ ︷︷ ︸
f

g,ext

cse




(7.38)

7.2.1.4 Energy conservation for mixture in discontinuity

ncel

A
e=1

(βcse)T ·




∫

Se

−∆Hvapρ
wRSSw(N

cse1,p)T · nT ·N cse,u da

︸ ︷︷ ︸
k

θd
cse

{
ḋ
cse
}

+

∫

Se

nSρwR∆Hvap

(
∂SSw
∂s

)
l (N cse1,p)T ·N cse1,p da

︸ ︷︷ ︸
k

θw
cse

{ṗcsew }

−

∫

Se

nρwR∆Hvap

(
∂SSw
∂s

)
l (N cse1,p)T ·N cse1,p da

︸ ︷︷ ︸
k

θw
cse

{
ṗcseg

}

+

∫

Se

{
(ρC)S +∆HvapS

S
wρ

wR
[
βθ,Ss (1− nS) + βθ,Sw

]}
l (N cse1,p)T ·N cse1,p da

︸ ︷︷ ︸
k

θθ
cse

{
θ̇
cse
}

+

∫

Se

(
ρwRCw(ṽ

D,S
w )n + ρgRCg(ṽ

D,S
g )n

)
(N cse1,p)T ·N cse2,p · {θcse} da

︸ ︷︷ ︸
f

θ1,int

cse

+

∫

Se

(
ρwRCw (ṽD,Sw )t + ρgRCg (ṽ

D,S
g )t

)
l (N cse1,p)T ·Bcse1,p · {θcse} da

︸ ︷︷ ︸
f

θ2,int

cse

+

∫

Se

2K̂θ
nN

cse2,p · {θcse} (N cse2,p)T da

︸ ︷︷ ︸
f

θ3,int

cse (d
cse
,θ

cse
)

+

∫

Se

K̂θ
tB

cse1,p · {θcse} l (Bcse1,p)T da

︸ ︷︷ ︸
f

θ4,int

cse

+

∫

Se

∆Hvap

(
ρwR(ṽD,Sw )n − ρgvR(ṽD,Sgv )n

)
(N cse2,p)T da

︸ ︷︷ ︸
f

θ5,int

cse
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+

∫

Se

∆Hvap

(
ρwR(ṽD,Sw )t − ρgvR(ṽD,Sgv )t

)
l (Bcse1,p)T da

︸ ︷︷ ︸
f

θ6,int

cse

=

∫

ΓS

(N cse1,p)T qend da+

∫

Sl

(N cse1,p)T (ρr)S dv −

∫

ΓS

(N cse1,p)T∆Hvapρ
wRSw,S da

︸ ︷︷ ︸
f

θ,ext

cse



(7.39)

The finite element matrix equation for thermo-poro-mechanical interface element model is

written as

Ccse(D
cse) · ˙Dcse + F INT

cse (Dcse) = FEXT
cse (Dcse) (7.40)

where

˙Dcse =




ḋ
cse

ṗcsew

ṗcseg

˙θcse




, Dcse =




dcse

pcsew

pcseg

θcse




, C =




0 0 0 0

Kwd
cse −Kwg

cse Kwg
cse Kwθ

cse

Kgd
cse Kgw

cse Kgg
cse Kgθ

cse

Kθd
cse Kθg

cse −Kθg
cse Kθθ

cse




and,

F INT
cse =




F d,INT
cse − F dp,INT

cse

−Fw1,INT
cse − Fw2,INT

cse − F w3,INT
cse − Fw4,INT

cse

−F g1,INT
cse − F g2,INT

cse

F θ1,INT
cse + F θ2,INT

cse + F θ3,INT
cse + F θ4,INT

cse + F θ5,INT
cse + F θ6,INT

cse




FEXT
cse =




F df,EXT
cse + F dt,EXT

cse

Fw,EXT
cse

F g,EXT
cse

F θ,EXT
cse



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7.3 Numerical examples

In this section, we will test the performance of the fully and partially saturated TPM interface

element models.

7.3.1 Case study of fully saturated TPM CIE

To test the fully saturated saturated TPM cohesive interface element (CIE) model, first we

set up two examples under axisymmetric condition (see Figures 7.1 and 7.11). For both examples,

a linear isotropic elastic constitutive model is adopted for the solid skeleton of the matrix (or bulk

elements), and zero-thickness TPM cohesive interface element (CIE) model is used for the fully

liquid saturated fracture. The water table is at the top, i.e. pw = 0 respectively at z = 1.6m in

Figure 7.1 and z = 1m in Figure 7.11.

7.3.1.1 Fully saturated TPM CIE example 1

An axisymmetric saturated soil column has a depth of 1.6 m and a radius of 2 + l m. The

vertical fracture with a uniform aperture of l exists between two matrix (or bulk) elements as shown

in Figure 7.1. To represent a fully saturated condition, the water table is at the top of the soil

domain, which corresponds to a drained boundary pw = 0 at z = 1.6m. Also, no heat flux is allowed

from the top. The bottom and surface are fixed respectively in vertical and horizontal directions,

and are both treated as impermeable and adiabatic boundaries. Due to axisymmetry, the axis is

fixed horizontally, and is considered as impermeable and adiabatic boundary. The initial conditions

include uniform temperature θ = 20oC and a linear distribution of the pore water pressure. The

test procedure is depicted in Figure 7.2. Gravity is considered, and zero traction is applied on the

top. A prescribed temperature change of ∆θ = 20oC is applied along the axis r = 0. Different

initial apertures are used, which are l0 = 0, l0 = 1cm, and l0 = 10cm.

Results: The variations of pore water pressure at the bottom of the matrix and the fracture

are shown in Figures 7.3, 7.4, and 7.5, respectively. With zero initial aperture, we obtain the
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same results as for an uncracked porous medium, i.e. same pore water pressure builds up due to

application of gravity, and dissipates afterward till it arrives at hydrostatic state afterward. With

initial aperture l0 = 1cm, smaller pore water pressure generation is observed within the crack

than that in the matrix (node 73 and node 162). While for even greater aperture l0 = 10cm, the

fracture acts like an open channel, thus very small pore water pressure is generated within the crack

as shown in Figure 7.5. Figures 7.7-7.9 indicate that temperature jumps inside the crack change

with apertures. With aperture smaller than l0 = 1cm, temperature jumps due to the fracture is

negligible. With l0 = 10cm, small temperature jump is observed as shown in Figure 7.9. With zero

thermal conductivity for the crack, heat transfer does not happen from one matrix to the other,

thus a large temperature jump appears as shown in Figure 7.6. Generally, the heat and liquid flow

from one matrix into the fracture and through the fracture into another matrix may be affected

by thermal, hydraulic and mechanical parameters of the fracture. Further work is necessary with

respect to sensitivity analysis of the relevant parameters.



257

1m 1m

1
.6

m

Impermeable 

and adiabatic   

boundary

Interface 

element

Prescribed 

temperature

3                5                   7                  9                

21               23                25                27                   

39                41               43                45

57                59               61                63

75                77               79                81

84               86                88              90

102             104              106            108

120             122              124            126

138             140              142             144

156             158              160             162

Elem 1 Elem 5 Elem 9 Elem 13

Elem 2 Elem 6 Elem 10 Elem 14

Elem 3 Elem 7 Elem 11 Elem 15

Elem 4 Elem 8 Elem 12 Elem 16

Elem 17 Elem 21 Elem 25 Elem 29

Elem 18 Elem 22 Elem 26 Elem 30

Elem 19 Elem 23 Elem 27 Elem 31

Elem 20 Elem 24 Elem 28 Elem 32
E

le
m

 3
3

E
le

m
 3

4
E

le
m

 3
5

E
le

m
 3

6

Drained

and adiabatic   

boundary

Figure 7.1: Axisymmetric finite element mesh for fully saturated porous media with vertical fracture with
aperture l: 162 nodes, thirty-two saturated Q9P4 TPM bulk elements (Elem1-Elem32) and four Q6P4 TPM
CIEs (Elem33-Elem36). Gravity load is applied, and zero traction at the top.
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Figure 7.2: Test procedure of the example in Section 7.3.1.1.



258

0 0.02 0.04 0.06 0.08 0.1
10

15

20

25

30

35

time (day)

P
w

 (
kP

a)

 

 

Node 73
Node 81 (crack left)
Node 154 (crack right)
Node 162

Figure 7.3: Variations of pore water pressure with
initial aperture l0 = 0.
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Figure 7.4: Variations of temperature with initial
aperture l0 = 1cm.
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Figure 7.5: Variations of pore water pressure with
initial aperture l0 = 10cm.
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Figure 7.6: Variations of pore water pressure with
initial aperture l0 = 10cm, and Kθ

f = 0W/(Km).
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Figure 7.7: Variations of temperature with initial
aperture l0 = 0.
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Figure 7.8: Variations of temperature with initial
aperture l0 = 1cm.
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Figure 7.9: Variations of temperature with initial
aperture l0 = 10cm.
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Figure 7.10: Variations of pore water pressure with
initial aperture l0 = 10cm, and Kθ

f = 0W/(Km).
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7.3.1.2 Fully saturated thermo-poro-mechanical CIE example 2

We set up the following example to test the plastic performance of the fully saturated thermo-

poro-mechanical cohesive interface element. As depicted in Figure 7.11, the axis and side surface

are fixed in the horizontal direction; the top and the bottom of the matrix on the right of the

crack are fixed vertically. The bottom and the side surface are impermeable and adiabatic; the

top boundary is drained and adiabatic. No liquid flux is allowed along the axis r = 0 due to the

axisymmetry. Water table is set at the top z = 1m to represent a fully saturated condition. To

simulate a pull-out test, the bottom of the matrix on the left of the crack is free to move vertically,

and a final prescribed vertical displacement uz = 5mm is ramped up with small enough time step

at the top and kept constant after t = 1day to assure the stability during the development of shear

plasticity. Also, the gravity is ignored here. During the prescribed vertical displacement is applied,

a final prescribed temperature increase of 20oC is applied with the same ramp function as used for

prescribed displacement along the axis (refer to the curve with the legend of Node 73 in Figure

7.13). One column of 6 equal height bulk elements is used for each of the matrix blocks adjacent

to the crack. Another 6 equal length zero-thickness CIEs are used for the crack with the initial

aperture l0 = 1cm. A total of 78 nodes and 18 elements are shown in Figure 7.11. The same

initial conditions are used as the previous example, i.e. uniform temperature θ = 20oC and a linear

distribution of the pore water pressure.

Results: Figure 7.12 shows the vertical displacement versus the height of the crack at the

end of the simulation. Due to the prescribed upward displacement, the left matrix block moves

upwards compared to the right matrix block, and the largest vertical displacement difference ∆uz

is reached near the top. In this example specifically, the magnitude of ∆uz is the same as that

of the total tangential displacement jump ut, and positive ut implies that the left virtual surface

experiences a larger vertical displacement than the right virtual surface. Figures 7.14-7.17 are

plotted at the third Gauss point (closest to the top) of element 13 (CIE). Figure 7.14 shows ut as

well as the its plastic and elastic components, i.e. upt and uet , respectively. It indicates that shear
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plasticity is triggered along the virtual surface Sh of CIE at this position at a small value of ut,

and the plastic part upt dominates the total tangential displacement jump ut after t ≈ 0.26day. In

Figure 7.15, a much smaller positive normal displacement jump un is developed compared to ut

during the shear-dominaated process, which implied the crack is slightly under tension as shown

in Figure 7.16. The variations of normal stress Tn and tangential stress Tt, which are respectively

related to uen and uet , are plotted versus ut in Figure 7.16. Figure 7.17 shows the stress path (Tn

versus Tt) and the yield surface evolution. Combining Figures 7.16 and 7.17, we observe that the

tangential stress Tt starts to decrease once plasticity is triggered, hence the shrinking of the yield

surface, which is refered to as the stress-softening phenomena.
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Figure 7.11: Axisymmetric finite element mesh for fully saturated porous media with initial vertical fracture
l0 = 1cm: 78 nodes, 12 saturated Q9P4 TPM bulk elements (Elem1-Elem12) and 6 Q6P4 TPM CIEs
(Elem13-Elem18). Gravity load is ignored, and zero traction at the top.
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Figure 7.14: Total tangential displacement jump
ut, and its plastic and elastic components upt and uet
at the third (or upper) Gauss point of element 13.
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Figure 7.15: Total normal displacement jump un,
and its plastic and elastic components upn and uen at
the third (or upper) Gauss point of element 13.
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7.3.2 Case study of partially saturated TPM CIE

We set up the following example to test the plastic performance of the partially saturated

thermo-poro-mechanical cohesive interface element. The dimensions and boundary conditions are

indicated in Figure 7.18. The bottom and side surface are fixed in normal displacement, and are

impermeable and adiabatic boundaries. Due to the axisymmetry, the axis boundary is fixed in r

direction, and is impermeable. An uniform traction tσ
′

= 10kPa is applied upwards at the top of

the left matrix block. An increase temperature of ∆θ = 20oC is prescribed along the axis after the

traction is exerted. The test procedure is shown in Figure 7.19.

Results: Figure 7.20 shows that with the traction applied on the left matrix block, a vertical

displacement jump ∆uz occurs between the two virtual surfaces of the crack above the height of

0.5m approximately. The largest ∆uz ≈ 2.75mm is reached at the top. Temperature increase

results in the thermal expansion of the crack, which leads to a small but noticeable upward vertical

displacement at the top of the crack as shown in Figure 7.20. With small initial aperture l0 = 1mm,

temperature difference is negligible within the crack according to curves for node 51 and node 52

in Figure 7.21. Therefore, no significant vertical displacement jump induced by thermal expansion

is observed shown by Figure 7.20. Figures 7.22-7.25 are plotted at the third Gauss point (closest

to the top) of element 9 (CIE). Figure 7.22 shows the tangential displacement jump ut as well as

the its plastic and elastic components, i.e. upt and u
e
t , respectively. It indicates that shear plasticity

is triggered in the cohesive interface element at this position, and the plastic part upt dominates

after the step number n = 12. Figure 7.23 indicates that a very small positive normal displacement

jump un is developed compared to ut, which implied the crack is under tension as shown in Figure

7.24. A softening phenomenon is observed from shrinking of the yield surface in Figure 7.25. The

stress path Tn versus Tt in Figure 7.25 and the stress variations in Figure 7.24 indicate that the

tangential stress Tt starts to decrease from the second step when plasticity is triggered, along with

a small increase of the normal stress Tn.
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Figure 7.18: Axisymmetric finite element mesh for fully saturated porous media with initial vertical fracture
l0 = 1mm: 54 nodes, 8 unsaturated Q9P4 TPM bulk elements (Elem1-Elem8) and 4 Q6P4 TPM CIEs
(Elem8-Elem12). Gravity load is applied, and upward traction of 10kPa is exerted on top.
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Figure 7.22: Total tangential displacement jump
ut, and its plastic and elastic components upt and uet
at the third (or upper) Gauss point of element 9.
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Figure 7.23: Total normal displacement jump un,
and its plastic and elastic components upn and uen at
the third (or upper) Gauss point of element 9.
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Figure 7.24: Tangential stress Tt and normal stress
Tn versus tangential displacement jump at the third
(or upper) Gauss point of element 9.

−4 −2 0 2 4
−5

0

5

T
n
 (kPa)

T
t (

kP
a)

 

 intial yield surface
yield surface after traction)
final yield surface
stress path

Figure 7.25: Stress path and yield surface evolution
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7.3.3 Revisit the energy foundation centrifuge tests

In this part, let us revisit the energy foundation centrifuge test by Goode (2013), and im-

plement the TPM CIEs along the soil-foundation interface. For now, without further information

regarding the failure mechanism, e.g. the position of failure plane in the soil beneath the founda-

tion, let us simply implement the CIEs vertically along the height of the soil as shown in Figure

7.26. Six CIEs are used in total, four of which are implemented at the soil-foundation interface,

and the other two CIEs are implemented at the soil-soil interface. The CIEs are numbered CIE

1,...CIE 6 from top to bottom. In the future, we can consider the shear failure mechanism and

implement CIEs along an inclined failure plane in the soil or consider a random pattern of CIEs,

or an extended discontinuity FE implementation that would be insensitive to mesh alignment and

refinement. The initial aperture is set to be l0 = 1 × 10−5m. The plastic parameters for CIEs are

listed in Table 7.1, and the other parameters are the same as those of the soil bulk elements. The

nonlinear thermo-elasto-plastic constitutive model is applied to the soil continuum.

Table 7.1: Parameters for elasto-plastic CIE model.

Symbol(unit) Value

Kn(Pa/m) 1× 109

Kt(Pa/m) 1× 108

GIf (Pa ·m) 1× 104

GIIf (Pa ·m) 1× 104

χp(Pa) cp/tan(φp)
χr(Pa) 0
cp(Pa) 9500
cr(Pa) 0
φp(rad) 0.5236
φr(rad) 0
ψp(rad) 0.087
αχ 200
αc 200
αφ 900
αψ 900

In order to fit the settlement-load curve obtained from the experiment, different plastic
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parameters are tried for the CIE model, and here we present model predictions with the best-

fit parameters. However, with more experimental data available, we will be able to improve the

predictive capability of the model by calibrating the parameters.

Figure 7.27(a) shows that without implementing TPM CIEs, a perfect bond has to be imposed

at the foundation-soil interface. Consequently, the model fails to capture the side-shear failure due

to the slippage along the interface. In contrast, the model is greatly improved after implementing

TPM CIEs along the interface, i.e. the ultimate load ≈ 3410N , and the corresponding settlement

≈ 0.85mm, which are comparable with the experimental observation. When a higher load is

applied, the model will not reach a converged state due to softening failure of certain CIE(s). After

the unloading process, a smaller residual settlement remained compared to the experimental result.

Nonlinearity and linearity are respectively observed in the loading and unloading processes from

both the experimental and modeling results. An exploratory sensitivity analysis is conducted to

inspect the effect of elastic tangential stiffness Kt on the settlement-loading curve during loading

process. In Figure 7.27(c), Kt is incrementaly increased from 5e7Pa/m to 1e9Pa/m, and the

other parameters are fixed. For Kt = 1e8Pa/m and Kt = 5e7Pa/m, a similar ultimate load is

obtained while a larger slope (absolute value) or settlement is observed with lower Kt. The slopes

with Kt = 5e8Pa/m and Kt = 1e9Pa/m are similar. While, for both cases (Kt = 5e8Pa/m

and Kr = 1e9Pa/m), the interface element failure happened at much smaller loads compared to

the other two cases. Obviously, Kt is not the only parameter that affects the settlement-loading

curve, thus requiring comprehensive sensitive analysis involving more parameters. Figure 7.27(b)

indicates that 20oC temperature increase has negligible effect on the settlement-load curve.

Next, let us inspect the displacement jump within the CIEs. Figures 7.28(a)-(c) show the

vertical displacement uz at the corner nodes of quadrilateral bulk elements adjacent to the left and

right surfaces of the CIEs along the height at three different times respectively, i.e., the equilibration

of centrifuge spin-up to a g-level of N = 24, the end of loading process, and the end of unloading

process. In other words, we will analyze the relative vertical movements between the bulk elements

on the left and right of the interface. The analysis will be focused on the CIEs along foundation-soil
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interface, i.e. from the foundation top (H = 0.5334m) to the foundation bottom (0.195m). Figure

7.28(a) indicates vertical displacement jump occurs along the foundation-soil interface due to the

centrifuge spin-up. Larger downward displacements are observed near the top and the bottom,

implying a downward slippage of the foundation relative to the adjoining soil. While an opposite

trend is observed in the region near the center of the foundation-soil interface. When the foundation

is loaded to the ultimate load, settlement is observed for both the foundation and the soil along the

interface, and larger slippage relative to Figure 7.28(a) is indicated by Figure 7.28(b), especially

at the top and the bottom. Approximately equal vertical movements at the top and the bottom

of the foundation confirms the rigidity of the foundation. Also, various slips happened at the

soil-soil interface underneath the foundation during the loading process. In Figure 7.28(c), after

the unloading process, the system did not entirely recover to the condition before loading. An

alternative way to analyze the relative movement is through the tangential displacement jump ut

at the Gauss points of the CIEs. Note that in the specific case, positive ut of the CIE denotes

an upward movement of the left surface relative to the right surface. From Figure 7.28(d), it is

straightforward to see that the largest slippage along the interface happened near the foundation

bottom at both the end of loading and the end of unloading sequences. The total tangential

displacement jump ut can be decomposed into elastic and plastic components, namely uet and upt .

And according to the formulation of the elasto-plastic CIE model, uet is directly related to the

tangential stress developed during shearing of CIE, while upt mainly contributes to the continuous

increase of relative slippage after plasticity is triggered. From Figure 7.28(e), the variation of upt of

CIEs along the height indicates plasticity mainly occurs within the range of 0.15m < H < 0.35m.

And the largest upt appears at the first (or the lower) Gauss point of CIE 4, which is close to the

bottom of the foundation-soil interface at H ≈ 0.2m. The variations of four plastic variables (χ, c,

tanφ, and tanψ) at this point are illustrated in Figures 7.29(a)-(b).

In addition to the displacement jump, we can also explore the failure mechanism by analyzing

the stress state of the CIEs. Figures 7.29(c)-(d) show the tangential and normal stresses generated

within the CIEs at ends of loading and unloading sequences. Figures 7.30-7.32 show the yield
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surface evolution and stress path at all three Gauss points of each CIE. The results further confirm

the foregoing conclusion regarding the range of plasticity. Figure 7.30(e) indicates that the CIE

close to the top experiences high compression-shear, and maintains elasticity during the loading

process. In contrast, Figures 7.31(b),(d), and (f) show that significant softening occurs in CIE 4,

which is illustrated by the shrinkage of the yield surface. During unloading, elastic behavior is

observed for all the CIEs.
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Figure 7.26: Axisymmetric finite element mesh with 6 TPM CIEs for semi-floating energy foundation.
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Figure 7.27: Comparisons of settlement-load curves between (a) experimental results, model prediction with
and without CIE using parameters in Table 7.1; (b) isothermal (∆θ = 0oC) and nonisothermal (∆θ = 20oC)
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Figure 7.28: Vertical displacement (uz) versus height within the CIE at (a) the equilibration of centrifuge
spin-up; (b) the end of failure load; (c) the end of unloading. (d) Tangential displacement jump ut within
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Figure 7.30: Stress path and yield surface evolution at the three Gauss points of CIE 1 and CIE 2.



277

−150 −100 −50 0 50
−80

−60

−40

−20

0

20

40

60

80

T′
n
 (kPa)

T
′ t (

kP
a)

CIE 3, the 1st Gauss point

 

 

intial yield surface
final yield surface
loading stress path
unloading stress path

(a)

−250 −200 −150 −100 −50 0 50
−80

−60

−40

−20

0

20

40

60

80

T′
n
 (kPa)

T
′ t (

kP
a)

CIE 4, the 1st Gauss point

 

 

intial yield surface
final yield surface
loading stress path
unloading stress path

(b)

−150 −100 −50 0 50
−80

−60

−40

−20

0

20

40

60

80

T′
n
 (kPa)

T
′ t (

kP
a)

CIE 3, the 2nd Gauss point

 

 

intial yield surface
final yield surface
loading stress path
unloading stress path

(c)

−200 −150 −100 −50 0 50
−80

−60

−40

−20

0

20

40

60

80

T′
n
 (kPa)

T
′ t (

kP
a)

CIE 4, the 2nd Gauss point

 

 

intial yield surface
final yield surface
loading stress path
unloading stress path

(d)

−150 −100 −50 0 50
−80

−60

−40

−20

0

20

40

60

80

T′
n
 (kPa)

T
′ t (

kP
a)

CIE 3, the 3rd Gauss point

 

 
intial yield surface
final yield surface
loading stress path
unloading stress path

(e)

−200 −150 −100 −50 0 50
−80

−60

−40

−20

0

20

40

60

80

T′
n
 (kPa)

T
′ t (

kP
a)

CIE 4, the 3rd Gauss point

 

 

intial yield surface
final yield surface
loading stress path
unloading stress path

(f)

Figure 7.31: Stress path and yield surface evolution at the three Gauss points of CIE 3 and CIE 4.
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Figure 7.32: Stress path and yield surface evolution at the three Gauss points of CIE 5 and CIE 6.



Chapter 8

Conclusions and Future work

8.1 Thesis summary

The thesis develops fully coupled thermo-poro-mechanical (TPM) models for saturated and

partially saturated unfractured geomaterials based on the mixture theory of porous media. Both

nonlinear elastic model, and a temperature and suction dependent elasto-plastic Cam-Clay model

are implemented for solid skeleton of porous media. The coupled processes involve mechanical

response, multiphase fluid flow, and heat flow under both saturated and partially saturated con-

ditions. The finite element method is used to implement the fully coupled models at small strain

under quasi-static condition. And the saturated TPM model is verified by comparing with available

analytical solutions for various conditions.

Although there are already some published codes, such as TOUGH2 Pruess et al. (1999),

CODE BRIGHT Olivella et al. (1996) to simulate the multiphase flow process, it is necessary to

build our own code for the following reasons: to understand how the coupled physics fit together

in a monolithically coupled framework, to flexibly insert our own constitutive models for certain

soils, and to further develop a coupled TPM cohesive interface element (CIE).

Furthermore, the thesis develops fully coupled TPM cohesive interface element (CIE) models

to analyze the coupled thermo-poro-mechanical response and multiphase flow within the geoma-

terials with either pre-existing or developing fractures for soil-structure interfaces, such as energy

foundations, the main motivation for the thesis research. The performance of the CIE is tested

by several examples in different aspects, i.e. compression, tensile plasticity, shear plasticity, liquid
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flow, and heat flow.

Finally, the partially saturated TPM model is employed to explore the soil-structure inter-

action by simulating a series of energy foundation centrifuge experiments with Bonny silt Stewart

(2012); Stewart and McCartney (2013); Goode (2013); Goode and McCartney (2014). Good agree-

ment is obtained between numerical modeling results and centrifuge modeling observations with

respect to temperature, displacement, strain, and volumetric water content. With the implemen-

tation of the zero-thickness CIE at the soil-foundation interface, we can relax the assumption of

perfect bond by allowing the differences with respect to displacement, pore pressure, and tempera-

ture to happen at the interface. Therefore, the model is able to capture the plastic failure process

of energy foundations due to the loss of side shear resistance.

Finite element analysis can be combined with the centrifuge experiments to obtain a com-

prehensive understanding of the fundamental soil mechanics phenomena involved in energy founda-

tions. With this knowledge, we may assess the potential issues, evaluate the long-term performance

and sustainability, thereby providing practical design guidance for energy foundations. For example,

from both modeling predictions and experimental observations, we found that under temperature

increase, the foundation top experienced almost free thermal expansion for both end-bearing and

semi-floating energy foundations. The thermally-induced strain arrived at the highest value at the

top. For the semi-floating foundation, when failure load was applied and then removed, a per-

manent plastic deformation remained. Therefore, if the mechanical system is not designed with

sufficient capacity, deformation and thermal expansion of energy foundations may cause a loss of

foundation-soil friction and affect building performance. In addition, temperature of the soil near

the foundation changed during the heating process of the foundation, thus inducing multiphase

flow in the nearby soil. The change of thermal storage properties of the underground soil should be

considered in order to accurately estimate the heating and cooling capacity of energy foundation

systems.



281

8.2 Future work

In order to improve the predictive capability of the model, future work should involve the

following

(1) The simulation of the centrifuge experiments in the thesis has partially validated the TPM

model. However, extensive validation is necessary to examine to what extent the assumptions

and the constitutive relations in the model can reflect the physical phenomena in a variety of

applications. With the validated model, FEA can be combined with the centrifuge experiments

to obtain a comprehensive understanding of the fundamental soil mechanics phenomena involved

in energy foundations. This will assist us to assess the potential issues, evaluate the long-term

performance and sustainability, thereby providing practical design guidance for energy foundations.

(2) Preliminary results indicate certain parameters have an impact on the results. Extension

of the current will focus on systematic uncertainty quantification and sensitivity analysis with re-

spect to the thermal, mechanical, and hydraulic parameters. For the sensitive parameters, available

physical experiments will be used in model calibration to provide refined estimates. For example,

pull-out foundation tests at 1g and more compression tests are suggested to calibrate interface

parameters. With the parameters calibrated, the consistency between simulated and experimental

results will be further enhanced.

(3) From a modeling perspective, the following extensions will be considered in the future: (a)

extension to embedded TPM partially saturated discontinuity models via Extended Finite Element

Method (X-FEM), and Assumed Enhanced Strain (AES) method; (b) extension to include coupling

with chemistry; (c) extension to finite strain; (d) extension to multiscale fracture, such as for

hydraulic fracturing, and reservoir mechanics studies; (e) extension to include inertia terms.
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Appendix A

Notations Definitions Units

ε Total strain m/m

εe Elastic strain m/m

εθ Thermal strain m/m

εskel,e Elastic strain of solid skeleton

l 2nd order identity matrix lij = δij

I 4th order identity tensor Iijkl =
1
2(δikδjl + δilδjk)

αh Linear thermal expansion coefficient 1/K

C Specific heat capacity of mixture J/(K · kg)

Cα Specific heat capacity of α phase J/(K · kg)

θ Absolute temperature K

θα Absolute temperature of constituent α K

κ Intrinsic permeability m2

Krw Relative permeability with respect to water phase in the continuum -

Krg Relative permeability with respect to gas phase in the continuum -

θ0 Initial temperature K

KB Bulk modulus Pa

ce Elastic modulus tensor

b Body force N/kg
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g Gravity m/s2

e Specific internal energy J/kg

ρ Density (of the porous media) kg/m3

ρα Partial density of α phase kg/m3

ραR Real density of α phase kg/m3

ρ̂α Mass supply per volume element kg/(m3 · s)

r Internal source per unit of mass W/kg

q Heat flux W/m2

ϕ Specific Helmholtz free energy J/kg

η Specific entropy J/(K · kg)

hf Specific enthalpy of fluid phase J/kg

σ Total stress N/m2

σ′ Effective stress N/m2

σα Partial stress of α phase,σα = nασ N/m2

kθ Thermal conductivity tensor of mixture W/(m ·K)

kθα Thermal conductivity tensor of α phase W/(m ·K)

vα Velocity of α phase m/s

ṽf Relative velocity of fluid m/s

ṽsf Superficial (Darcy’s) velocity m/s

nα Volume fraction of α phase

V f Reference volume of fluid m3

V s Reference volume of solid m3

ĥ
α

Interaction body forces per unit volume N/m3

aα Acceleration of α phase m/s2

ṽDf Darcy’s velocity of pore fluid in the continuum m/s

ṽDw Darcy’s velocity of pore water in the continuum m/s

ṽDg Darcy’s velocity of pore gas in the continuum m/s
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ṽDgv Darcy’s velocity of pore water vapor in the continuum m/s

ṽDga Darcy’s velocity of pore dry air in the continuum m/s

ṽ
D,S
f Darcy’s velocity of pore fluid in saturated crack (or discontinuity) S m/s

(ṽD,Sf )n Normal component of ṽS,Df m/s

(ṽD,Sf )t Tangential component of ṽS,Df m/s

ṽD,Sgv Darcy’s velocity of pore water in partially saturated crack (or discontinuity) S m/s

(ṽD,Sgv )n Normal component of ṽS,Dgv m/s

(ṽD,Sgv )t Tangential component of ṽS,Dgv m/s

ṽD,Sga Darcy’s velocity of pore water in partially saturated crack (or discontinuity) S m/s

(ṽD,Sga )n Normal component of ṽS,Dga m/s

(ṽD,Sga )t Tangential component of ṽS,Dga m/s

SSw Degree of saturation of the crack S -

Sw Degree of saturation of the continuum -

Sw,S Water flux on the crack boundaries -

Sw Water flux on the continuum boundaries -

sS Suction in the crack S kPa

s Suction of the continuum kPa

k̂t Tangential permeability of the crack m2/(Pa · s)

k̂n Normal permeability of the crack m2/(Pa · s)

[[u]] Displacement jump within the crack in global coordinate m

[[ũ]] Displacement jump within the crack in local coordinate m

un Normal displacement jump within the crack m

ut Tangential displacement jump within the crack m

n Normal vector of the crack -

t Tangential vector of the crack -

Sl Crack volume with the width of l

S Crack surface
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kf Saturated permeability of the continuum under isotropic condition m/(Pa · s)

k̂n Saturated permeability of the crack in normal direction m/(Pa · s)

k̂t Saturated permeability of the crack in tangential direction m2/(Pa · s)

K̂rw Relative permeability with respect to water phase in the crack -

K̂rg Relative permeability with respect to gas phase in the crack -

l Width of the crack S m

l0 Initial width of the crack S m

T ′ Effective stress tensor on the crack in global coordinate [r; z] kPa

T̃
′

Effective stress tensor on the crack in local coordinate [t;n] kPa

Ke Elastic stiffness matrix of the discontinuity Pa/m

Kt Tangential elastic stiffness of the discontinuity Pa/m

Kn Normal elastic stiffness of the discontinuity Pa/m

[[ũp]] Plastic component of displacement jump in the crack m/s

[[ũe]] Elastic component of displacement jump in the crack m/s

q Internal state variable vector -

εps Plastic shear strain -

εpn Plastic normal strain -

K̂θ Thermal conductivity of the crack W/(m ·K)

Hs Heaviside function -

ñ Generic normal vector of fractured porous media -

pSf Averaged pore fluid pressure on the crack S Pa

[[pf ]] Pore fluid pressure jump across the crack Pa

θS Averaged temperature on the crack S K

[[θ]] Temperature jump across the crack K

nS Porosity of the crack -

αθ,Sskel Linear thermal expansion coefficient of crack solid skeleton 1/K

βθ,Ss Volumetric thermal expansion coefficient of the crack solid phase 1/K
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βθ,Sf Volumetric thermal expansion coefficient of the crack fluid phase 1/K
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