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Wang, Wei (Ph.D., Civil, Enviromental and Architectural Engineering)

Coupled thermo-poro-mechanical axisymmetric finite element modeling of soil-structure interaction

in partially saturated soils

Thesis directed by Associate Professor Richard A. Regueiro

Energy foundations (or geothermal foundations) are becoming more popular as an energy-
saving and environmentally-friendly technology. By fully utilizing the steady ground temperature
and the thermal properties of concrete, buildings can be heated and cooled through energy foun-
dations with heat pumps at very low cost. Although some observations have been obtained from
full-scale field tests and centrifuge-scale tests, there are still issues that are not well understood
with respect to the complex interactions among temperature change, induced effective stress, and
pore fluid flow in partially saturated soils.

In order to investigate soil-structure interaction between energy foundations and partially
saturated soil under non-isothermal condition, the thesis develops a fully coupled thermo-poro-
mechanical (TPM) finite element (FE) model with both nonlinear elastic, and temperature- and
suction-dependent elasto-plastic solid skeleton constitutive models implemented. Based on the mix-
ture theory of porous media and fundamental laws of continuum mechanics, governing equations
are formulated to account for the coupled processes involving the mechanical response, multiphase
pore fluid flow, and heat transfer. Constitutive relations consist of the effective stress concept,
Fourier’s law, as well as Darcy’s law and Fick’s law for pore liquid and gas flow. The elasto-plastic
constitutive model for the soil solid skeleton is based on a critical state soil mechanics framework.
The constitutive parameters are mostly fitted with experimental data. The TPM model is formu-
lated under small strain and axisymmetric condition, and implemented within the finite element
method (FEM). We then simulate a series of energy foundation centrifuge experiments conducted
at the University of Colorado, Boulder. Good agreement is obtained between the experimental

observations and modeling results.
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Another novelty and challenge of the thesis is to develop a double-noded zero-thickness TPM
cohesive interface element (CIE) model with elastoplasticity for fractured geomaterials under sat-
urated or partially saturated condition. The advantage of TPM CIE is to take account of various
jumps within the fracture with respect to tangential and normal displacements, pore liquid and gas
pressure, as well as temperature. Both pre-existing fracture and developing fracture can be ana-
lyzed by choosing appropriate constitutive models. With CIE implemented at the soil-foundation
interface, we are able to capture the plastic failure process of energy foundations due to the loss
of side shear resistance. We can also apply the TPM CIE to better understand the generation
of fractures involving coupled processes in other applications involving mudstone/shale, such as

hydraulic fracturing, and reservoir storage of C'O2 or nuclear waste.
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Chapter 1

Introduction

1.1 Motivation

Energy foundations, which involve heat exchange loops attached to the reinforcing cage within
a drifted-shuft, are a fast-growing geothermal heat-exchange system. With adequate design and in-
stallation, energy foundations can fulfill not only the geotechnical but also the thermal requirements
of buildings without relying solely on conventional heating and cooling systems; hence, energy con-
sumption can be reduced, as well as carbon dioxide emissions (Preene and Powrie, 2009). Typically,
heat carrier fluid is pumped through heat exchange pipes to exchange energy between a building
and energy foundations. In summer, the ground operates as a heat sink by storing thermal en-
ergy, meanwhile, the infrastructure is cooled. While in winter, the energy is extracted for heating
purposes, thus making the ground act as a heat source (Pahud and Matthey, 2001; Brandl, 2006;
De Moel et al., 2010).

Relevant studies in the past decade have indicated the feasibility of energy foundations both
technologically and economically (Hepbasli, 2002; Hepbasli et al., 2003). By using the good thermal
conductivity and thermal storage capacity of concrete, energy foundations can be applied for heat-
ing and cooling of buildings of any size, as well as road pavements, bridge decks, etc (Brandl, 2006).
Given an investment-return period of 5-10 years, this innovative technology can provide significant
long-term cost savings for heating and cooling, compared with conventional systems. And this
investment-return period may vary depending on various effects including ground strata, geotech-

nical, geothermal and hydrogeological properties, etc.(Doherty et al., 2004; Brandl, 2006; De Moel



et al., 2010). As an energy-saving and environmentally-friendly technology, energy foundations have
been widely used for both residential and commercial buildings (Hepbasli, 2003; Hamada et al.,
2007; Omer, 2008). A total of 80 countries have been reported to use certain forms of geothermal
energy as of 2000 (Hepbasli, 2003). According to Yari and Javani (2007), the installations of shallow
energy systems have covered 33 countries as of 2007 in North America and Europe, compared to 26
countries as of 2000. Brandl (2006) reports there is an exponential increase of energy foundations
in Austria; the number of energy foundations installed has grown to ~ 23,000 as of 2004 since the
beginning of the 1980’s.

Observations of energy foundation performance have been conducted in order to investigate
geotechnical and thermal issues. Hepbasli (2002) reports that heat and moisture flow induced
by the operation of energy foundation systems occurs in the surrounding soil. Rees et al. (2000)
explain that conduction, convection, and latent heat of vaporization and condensation are the main
mechanisms of heat transfer in porous media, however, radiation is usually negligible. Hepbasli
(2002); Hepbasli et al. (2003) explain that the efficiency of heat transfer greatly depends on soil
type, temperature and moisture gradients. Thomas and Rees (2009) report that heat conduction
mainly depends on the degree of saturation of the soil. Brandl (2006) indicates that freezing and
thawing may also transfer significant heat.

Notwithstanding the large amount of research and promising investigations hitherto, a diverse
range of research activity has proved necessary in order to provide thorough guidance on the
design and installation of energy foundation systems. Furthermore, it is nontrivial to adequately
describe the varied and sometimes complex interactions among temperature change, induced stress
and pore fluid flow in partially saturated soils, together with soil-structure interaction (SSI). For
example, concurrent with shrinkage or expansion of foundations might be the loss of soil-foundation
friction; thermally induced stress or deformations of foundations may affect structural performance;
furthermore, thermally-induced fluid flow may occur due to high temperature in the soil close to
foundations, which can cause malfunctions of energy foundation systems. Although the focus

of the research is on modeling thermo-poro-mechanical (TPM) soil-structure interaction (SSI) in



energy foundation centrifuge experiments, other applications for thermo-poro-mechanical modeling,
including use of a cohesive interface element, include hydraulic fracturing in shale, and storage of

C' Oy and nuclear waste with shale cap rock features.

1.2 Background on coupled thermo-poro-mechanical processes

1.2.1 Experimental investigations on TPM responses

Thermal effects on the mechanical behavior of soils have been investigated through a number
of experiments, e.g. temperature dependence of elastic modulus and failure criterion, of soils. Gra-
ham et al. (2001, 2004); Cekerevac and Laloui (2004) stated that there was no significant change of
M (the slope of critical state line in the p’ — ¢ plane) with temperature variation, while Hueckel and
Pellegrini (1989); Hueckel and Baldi (1990); Burghignoli et al. (2000) observed a small reduction of
M. Plum and Esrig (1969) observed that heating a cohesive soil increased compressibility when low
mean effective stress was applied; in contrast, cooling the soil changed stress-strain characteristics
and made the soil behave like an over-consolidated soil. Blatz and Graham (2003) tested the influ-
ence of suction on yield stress and shear strength regarding unsaturated highly plastic clay materials.
Uchaipichat and Khalili (2009) performed temperature-controlled soaking, suction-controlled ther-
mal loading and unloading, and temperature-suction-controlled isotropic consolidation tests using
modified traditional triaxial equipments to investigate the thermo-hydro-mechanical behavior of
partially saturated soils under elevated temperature. Experiments by Ghabezloo and Sulem (2009)
indicated that temperature increase in saturated soils under undrained conditions led to a reduction
of the effective mean stress and might cause shear failure or hydraulic fracturing. Many attempts
have been made to explore the thermal effects on the soils with different overconsolidation ratios
(OCRs). (Campanella and Mitchell, 1968; Hueckel and Baldi, 1990; Hueckel and Borsetto, 1990;
Towhata et al., 1993; Cekerevac and Laloui, 2004; Cui et al., 2000). Paaswell (1967); Tidfors and
Sallfors (1989); Cui et al. (2000) observed that volumetric strains due to heating of the soil had a

strong dependence on over-consolidation ratio (OCR). Kuntiwattanakul et al. (1995) investigated



the effects of high temperature (90 °C') on the undrained shear characteristics of both normally con-
solidated (NC) and overconsolidated (OC) clays, and observed that increasing temperature caused
an increase of the initial secant modulus of both NC and OC clays, but only normally consolidated
clay showed an increase of shear strength under heating.

Research work (Grant and Salehzadeh, 1996; Delage et al., 2000; Romero et al., 2001)has also
been conducted regarding the thermal effects on the hydraulic properties of soils, e.g. permeability,
water retention curve (SWRC), etc. Grant and Salehzadeh (1996) investigate temperature effects
on wetting coefficients, and concluded that wetting coefficients affected the temperature sensitivity
of the capillary pressure function significantly; a general expression that related capillary pressure

and temperature was proposed as follows

+0
pelo=o; = pelo=o, % (g(; +6f> (1.1)

where p¢lg—g ; and Pelo=o, are the capillary pressures at an observational temperature §; and a
reference temperature 0,., respectively; [y is fitting parameter. Thus, the van Genuchten soil water

retention model was accordingly modified as:

0 — 0,
[1+ (ape(67))"]"™

0(pe,0f) = 0r + (1.2)

where 6, is the residual water content, 6y is saturated water content, and « [cm_l], n and m are
empirical fitting parameters. Romero et al. (2001) studied temperature on water retention and
permeability of partially saturated clays. It was investigated that the total suction tended to de-
crease as temperature increased at constant water content, and this dependence became weaker at
a lower suction (see Figure 1.1). As for the apparent permeability for water phase, the temperature
influence was shown to be more significant under near-saturated conditions, and this effect became
hardly noticeable when the degree of saturation is below 75 % (see Figure 1.2 bottom). In addi-
tion, the experimental data showed that no significant temperature dependence was detected for
relative permeability (Figure 1.3). An extrapolated interpretation for temperature effects on water

permeability under saturated condition was formulated at constant void ratio e and water content



w as follows (Romero et al., 2001),

kw(e 0,Ty)  _ pu(Tppu(Ty)
Tl 0,T) = pulbuae) ~ I T 13)

where Gp is an empirical coefficient that fits relative viscosity data over a temperature range of
22°C < 0 < 80°C. Many experimental investigations has been carried out for different types of
soils to estimate the value of S under saturated condition (Volckaert et al., 1996; Cho et al., 1999)

and unsaturated conditions with low suction (Haridasan and Jensen, 1972; Hopmans and Dane,

1936).
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Figure 1.1: Total suction-temperature plots at constant water content (Romero et al., 2001).

Wu et al. (2004) presented an extended constitutive TPM models for partially saturated
soils based on the work by Hueckel and Baldi (1990); Hueckel and Borsetto (1990); Hueckel and
Pellegrini (1989) and Cui et al. (2000), and explored the coupling behavior between suction and
temperature. Tong et al. (2009) and Tong et al. (2012) proposed an effective thermal conductivity
model and a new water retention curve (SWRC) model, which included the effect of porosity and

temperature on suction.

Dumont et al. (2011) introduced capillary stress defined as the summed capillary forces
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Figure 1.2: Hydraulic conductivity (k) vs.void ratio for different degrees of saturation at 22 °C' and 80 °C'
(Romero et al., 2001).

divided by the cross-section area of the REV (representative elementary volume) to the effective
stress concept based on microstructural model and modeled the effect of desaturation and thermal
softening phenomenon. Laloui and Cekerevac (2003) present an isotropic thermo-plastic mechanism
of clay based on considerations of the thermal effect on void ratio. Figure 1.4 and Figure 1.5 show

an example of T-p.-0 relationship of a silt soil.
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Figure 1.4: Plot of function ¥ /(0¥ /IT) vs. absolute volumetric temperature vs. water content for silt.

(Bachmann and van der Ploeg, 2002).
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Figure 1.5: Global fit of the temperature-dependent van Genuchten function for a drying humid sand
(Bachmann and van der Ploeg, 2002).



1.2.2 Thermo-poro-mechanical model

Porous media theory has a long tradition (de Boer, 2005). Research has been done on poro-
mechanics based on the mixture theory restricted by the volume fraction concept Bear and Bachmat
(1990); Bowen (1980, 1982) Some authors studied porous media from nano or micro scales (Brochard
et al., 2012; Dormieux et al., 2006). Alonso et al. (1990); Toll (1990); Gens and Alonso (1992) have
made great contribution to the development of constitutive models for partially saturated soils under
isothermal condition. From the aspect of numerical modeling, Borja (1991); Borja et al. (1997);
Borja and Tamagnini (1998); Borja (2004a) developed the algorithms of numerically implementing
modified Cam-Clay plasticity model for both saturated and partially saturated soils at small strain
and finite strain. In the last 50 years, coupled thermo-poro-mechanical processes has aroused great
interest in different fields, such as the nuclear waste repository (Tsang et al., 2012; Rutqvist et al.,
2014), carbon dioxide injection and sequestration (Hou et al., 2012; Fang et al., 2013; Soltanzadeh
and Jafari, 2013), geothermal systems (Gelet et al., 2012; Wang et al., 2012; Jiang et al., 2013),
reservoir simulation and borehole stability (Pao et al., 2001; Longuemare et al., 2002; Zhai et al.,
2009; Lee and Ghassemi, 2010). Hassanizadeh and Gray (1980, 1990); Gray and Schrefler (2001);
Schrefler (2002); Coussy (2004) introduced macroscale thermodynamics to describe the multiphase
flow in porous media. Philip and de Vries (1957); de Vries (1958) proposed a model for the movement
of liquid water and water vapor in rigid porous media under the combined gradients of temperature
and moisture content. This model later was modified by Milly (1982); Bear et al. (1991); Thomas
and King (1991), which replaced volumetric moisture content with matric suction as a primary
variable. However, these models all assumed a rigid solid skeleton. Deformation of solid skeleton
was considered to obtain coupled thermo-poro-mechanical model Thomas and He (1995); Schrefler
et al. (1995); Thomas and He (1997); Zhou et al. (1998), and finite element method is mainly
used to solve the initial-boundary-value-problem (IBVP) (Noorishad et al., 1982, 1984; Thomas
and Missoum, 1999; Korsawe et al., 2006). Some research considered elastic constitutive model for

soil (Aboustit et al., 1985a,b; Korsawe et al., 2006); others introduced Coussy (1989); Khalili and
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Loret (2001); Laloui and Cekerevac (2003) considered thermo-plasticity with dependence on suction
and temperature in the finite element element. Aboustit et al. (1985a) presented a thermoelastic
consolidation model with general variational principles and finite element method, and ignored
heat convection and the coupling term between the temperature and pressure. Coussy (1989)
proposed a general theory of thermo-poro-elasto-plasticity for saturated porous materials derived
from thermodynamics of open systems and irreversible processes. Wheeler (1996) proposed an
elasto-plastic model by introducing variation of specific water volume taken into account, which
could predict the specific water volume during wetting and drying, loading and unloading as well as
shearing by only adding two additional suction-dependent soil parameters. It also could predict the
variation of suction during undrained loading. Khalili and Loret (2001) proposed an elasto-plastic
THM model to account for the suction and temperature effects on the yield function based on the
works by Alonso et al. (1990); Hueckel and Baldi (1990). Laloui and Cekerevac (2003) presented
a thermo-plastic model for saturated soil. Lewis et al. (1986); Lewis and Schrefler (1998); Coussy
(2004); de Boer (2005) have proposed finite element models of elastic and elastoplastic thermo-
poro-mechanical model for both saturated and partially saturated porous media. Yang et al.
(1998) proposed an elastoplastic three-dimensional finite element model to analyze the transient
coupled heat and fluid flow as well as the stress and strain of partially saturated soil skeleton.
Lee and Ghassemi (2011) presented the stress-dependent permeability in a three-dimensional THM
finite element model with damage mechanics. Bluhm (2002) and Niessner and Hassanizadeh (2009)
relaxed the assumption of local thermal equilibrium by considering different phase temperatures and
interphase heat transfer, respectively. Schrefler et al. (1995) simulated the soil skeleton deformation,
heat and fluid (water and air) flow in porous media, considering both conduction and convection but
latent heat. Olivella and Gens (2000) discussed the phase change (from water to vapor) and vapor
transport under temperature gradients in partially saturated soils. Research on the multiphase flow
and transport in porous media has been conducted (Spalding, 1980; Miller et al., 1998; Tryggvason
et al., 2001; Shin and Juric, 2002; Blunt et al., 2002), and several simulators have been developed for

the flow and heat analysis in porous media (Pruess, 1991; Olivella et al., 1996; Kolditz et al., 2012).
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Rutqvist et al. (2001) compared four finite element simulators (ROCMAS, THAMES, FRACON
and AQCLAY) with respect to governing equations and constitutive relations. Modaressi and
Laloui (1997); Oka et al. (2004) extended for thermo-viscoplastic model. Thermo-poro-mechanical
model under quasi-static condition have been extended to analyze dynamic problems, such as
seismic triggering and evolution of catastrophic landslides (Vardoulakis, 2002; Sulem et al., 2004;
Rice, 2006; Sulem et al., 2007).

Some research focused on solving the coupled thermo-poro-elastic problems analytically:
Booker and Savvidou (1985) developed an analytical solution for the consolidation around a point
and a spherical heat source in saturated thermoelastic soil. The mechanical contribution to the
energy conservation equation is neglected to uncouple the temperature field from the calculation
of displacement and pressure. Bai and Abousleiman (1997) presented an analytical solution of a
1-D linear, quasi-static elastic, saturated system. Various coupling cases are compared to discover
the influence of each coupling term. For partially saturated porous media, close form solutions
of two-dimensional and three-dimensional transient quasi-static thermo-poro-mechanical problems
are developed (Jabbari and Gatmiri, 2007; Gatmiri et al., 2010; Maghoul et al., 2010). Suction and

temperature effect on soil skeleton deformation and the inverse effects are incorporated.

1.2.2.1 Hydraulic properties of soils

The soil-water characteristic curve (SWCC) for soil is defined as the relationship between
water content and suction of soil. The suction can be either the matric suction (also known as
capillary pressure) that equals s = p, — p,, or total suction (i.e. matric suction plus osmotic
suction), where p, and p,, are the pore gas and pore water pressures, respectively. At high suction
(greater than about 1500 kPa), it can be assumed that matric suction approximately equals total
suction, according to Fredlund and Xing (1994). A great number of experiments have been done
to obtain the SWCC, which is usually plotted on a logarithmic (base 10) scale. A typical plot
of SWCC for a silty soil (see Figure 1.6) shows the information about the air-entry value or the

bubbling pressure (i.e., the matric suction where air begins to enter the biggest pores in the soil
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upon drying), the residual water content 6, and the residual air content. The difference between
the absorption (wetting) and desorption (drying) is the result of hysteresis. The SWCC for soils
with different plasticity (Figure 1.7) shows the air-entry value increases with increasing cohesion of

soil.
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Figure 1.6: Typical soil-water characteristic for a silty soil (Fredlund and Xing, 1994).

Among many empirical equations which have been developed to simulate the soil-water char-
acteristic curve, two most frequently used forms are respectively proposed by Brooks and Corey

(1964) and van Genuchten (1980) as shown in (1.4) and (1.5), respectively.

o— (SL)A (1.4)

S

where © = (0 —0,)/(0s — 0,), with 05 and 6, the saturated and residual volumetric water contents

respectively, s,. the air-entry value, A\ the pore size distribution index, and

o[t

where p, n, and m are fitting parameters, and m =1 — 1/n.
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Figure 1.7: Soil-water characteristic curves for a sandy soil, silty soil and clayey soil (Fredlund and Xing,
1994).

The model by Brooks and Corey (1964) has been proved to work well for suction higher than the
air-entry value, while the model by van Genuchten (1980) provides more flexibility. Another valid
form (1.6) was proposed by McKee and Bumb (1987) to deal with conditions in low suction range,

while this relationship would fail in the high suction range.

1

= T o (1.6)

where a and b are fitting parameters.

The coefficient of permeability of a partially saturated soil depends on the volumetric water

content n" or the soil suction s. The relative permeability k, is defined as:
k, = — (1.7)

where k, is saturated permeability, according to Coussy (2004) it is related to fluid viscosity 7
and the intrinsic permeability (x = [26(n), [ is a geometric length scale associated with the pore

space), which depends on the geometry of the porous media irrespective of the fluid, such that

ko = Ko 125(n)
nr ny

(1.8)
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§(n) (1.9)

where n is the porosity of soil. (1.9) is the often used Kozeny-Carman’s formula (Coussy, 2004).
Some empirical equations are proposed to estimate the permeability of partially saturated soils.
Based on a large number of experimental data, Brooks and Corey (1964) gave the expression of

relative permeability as,

ko = (S0)°%° (1.10)
242
krmw = (1 —5e)? (1—5@) (1.11)
Sw - Swr
Se = 1.5, (1.12)

where k., and k., are relative permeability of wetting (e.g. water) and non-wetting (e.g. air)
phases respectively, A is the same as that in (1.4), S, is the effective (or relative) degree of saturation,
and k = ks is used when s < s;. van Genuchten (1980) proposed an expression to relate relative

permeability to suction as follows

kro(Se) = /8. (1 - (1 . Sg/m>m)2 (1.13)
krnw(Se) = /1— S, (1 - s;/m)”” (1.14)

where S, is the effective (or relative) degree of saturation as defined in (1.12), and m is fitting

parameter as that in (1.5).

1.2.2.2 Effective stress theory of partially saturated soils

For saturated and partially saturated soils, the effective stress principle is necessary to distin-
guish between pore air and water pressures and the solid skeleton constitutive response, involving
elastic or elastoplastic constitutive models. Terzaghi (1936) proposed the expression of effective
stress for saturated soils:

Ugj = 0ij + apy 0;j (1.15)

where 02’-]- and o;; are respectively effective stress and total stress, and the sign convention follows

solid mechanics, i.e. positive in tension; p,, is pore water pressure, which is positive in compression;
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S, (%)

Figure 1.8: Relative permeability k., and k..., plotted against S,, when varying m from 0.1 to 1 (Coussy,
2004).

The Biot’s coefficient « is introduced to account for the volumetric deformability of the solid
particles as follows (Biot, 1941; Skempton, 1984; Gawin et al., 1996): a =1 — % < 1, where Kt
and Kg denote the bulk moduli of the porous medium and the solid particle, respectively.

For partially saturated soils, it is demonstrated that the capillary effect from the format of
water menisci at the pore air-water and solid interfaces should be incorporated. The capillary forces
are complex in that it is dependent upon soil properties, degree of saturation, matric suction and
the properties of the multiphase fluid interface (air-water surface tension, contact angle) (Lu and
Likos, 2006). The effective stress for partially saturated soil is usually written as (Gawin et al.,
1996)

O'gj = 045 + pdij (1.16)
where « is Biot’s coefficient as defined before, and p is an average pressure of the mixture, and is

shown as follows (Gray and Hassanizadeh, 1991):
ﬁ:Swpw+(1_Sw)Pg (117)
Bishop (1959) gives the effective stress formula in the following:

o' ="+ xsl (1.18)
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where g€t

= 0 — py 1 is the net stress, s = p; — p,, is matric suction, p, is pore gas pressure, x is
the effective stress parameter,related to the degree of saturation S, of soils. Bishop proposed that
x equals 1 for saturated soils and 0 for dry soils. Despite experimental validation by Bishop and
Donald (1961), and Bishop and Blight (1963), the validity of Bishop’s effective stress principle for
partially saturated soils has been criticized by many researchers through a series of consolidation
tests. Among these arguments (Kohgo et al., 1993; Bolzon et al., 1996; Loret and Khalili, 2000;
Khalili and Loret, 2001), some researchers investigated the effect of plastic deformation on the
effective stress expression by defining the yield surface as a function of suction. Others pointed
out through experiments that the relationship between x and S, is not unique, it also depends
on the soil structure (Coleman, 1962), drying and wetting cycles, and stress history. Khalili and
Khabbaz (1998) presented a plot of x versus suction ratio (the ratio of matrix suction over the
air entry value). Fredlund and Morgenstern (1977) proposed two independent stresses variables,
0ij — Pg 0 and pg — py, respectively from a macroscopic view and pore scale to express the stress
state in partially saturated soils.

Recently, the relationship between the deviatoric stress and effective mean stress for both
saturated and partially saturated soils has been extensively studied. Data from the triaxial shear
tests (Figure 1.9 and Figure 1.10) show the uniqueness of the critical state line (CSL) for both
saturated and partially saturated soils under different suction values (Maatouk et al., 1995; Cui
and Delage, 1996; Wheeler and Sivakumar, 1995a).

Khalili et al. (2004) analyzed these literature and validated this relationship experimentally,
and also demonstrated the incremental form of effective stress equation used in path-dependent

processes. For saturated soils, the incremental effective stress equals the total counterpart:
(5O'Z,~j = (SO'Z']' —5pw(5,'j (119)

For partially saturated soils,

50’% = 50‘%6t — 0 (X 5)0i; (1.20)
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Figure 1.9: Evolution of critical state with suction in p’-g plane for Jossigny silt (Cui and Delage, 1996).
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Figure 1.10: Evolution of critical state with suction in p’-q plane for kaolin clay (Wheeler and Sivakumar,
1995a).

where x is defined by Khalili and Khabbaz (1998) as

—0.55
<i> if s > s,

Se

v = (1.21)

1 if s < s,
where s, is the suction value marking the transition between saturated and partially saturated

states. For wetting processes, s. is equal to the air expulsion value, while for drying processes,

Se is equal to the air entry value, which can be obtained from the soil water characteristic curve

(SWCC) (e.g. figure 1.6).
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For the stress state variables, three possible combinations of stress variables to define the stress
state are as follows: (1) (04 — pw) and (pg — Pw) ; (2) (i — pg) and (pg — Pw); (3) (0 — pg)
and (0y; — pw), where o;; is the total normal stress component, were proposed and verified by
experiments (Fredlund and Morgenstern, 1977). Lately the stress state variable theory has been
modified to add soil properties to the constitutive model of partially saturated soils (Gallipoli et al.,
2003b; Khalili et al., 2008; Kohgo et al., 1993; Tamagnini, 2004; Wheeler et al., 2003) . Wheeler
et al. (2003) argued that Bishop’s stress failed to consider the influence of meniscus water. He

proposed to employ two new stress variables o7; and s* defined as:

075 = 0ij = [Swpw + (1 — Suw)pgldi (1.22)

*

s* =ns =n(py — pw) (1.23)

where 0;; is the total stress tensor, S, is degree of saturation, p,, and p, are pore water and pore
gas pressure, s is suction, n is porosity. Bishop’s stress tensor can be attained if we replace S,, by
X- Similar conclusion is made by Houlsby (1997),who suggested to add the porosity n to the stress
variables in the principle of work conjugacy. Wheeler et al. (2003) also presented the simplified

incremental form of input work dIW (see (1.24)) of triaxial test as

dW = p*de, + qdes — s*dS, (1.24)
where ¢ is the deviatoric stress, p* is the mean Bishop’s stress, defined by

P =p—Supw— (1 —Su)py (1.25)

The stresses p*,q and s* are chosen to be the three stress variables for triaxial test; €, and ¢4
are respectively volumetric strain and deviotoric strains. Compared to the traditional variables
which are net stress and suction, the approach of using new stress variables is more complex,
and thus makes the development of corresponding constitutive models more difficult. Lu et al.
(2010) extended the theory of Bishop’s stress, and gave a modified form of effective stress for all
saturations,

o5 = (0ij — pg) — 0°0y; (1.26)
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where ¢° is defined as suction stress, and the closed form solution is attained with SWCC model

by van Genuchten (1980) :

—(pg — Pw) if pg —puw <0
o8 = ! ! (1.27)

Pg—Pw :
_{1+[a(pg_gpw)}n}(n71)/n lf pg — Pw 2 0

Lu and Likos (2006) developed the concept of suction stress characteristic curve (SSCC) to describe
the stress state of partially saturated soil. And this concept is verified experimentally in terms of

Mohr-Coulomb failure and critical state failure.

1.3 Background on soil-structure interaction

1.3.1 Background on interface element models

Cohesive interface elements have been widely used to model nucleation or propagation of
cracks in composite materials (e.g. delamination of fiber-reinforced composite laminates (Balzani
and Wagner, 2008), cross-ply composite laminates (Aymerich et al., 2008, 2009), and polymer ma-
trix composite (Corigliano and Ricci, 2001)), rock failure (e.g. fault slip (Aagaard et al., 2013)),
soil-structure interaction (e.g. soil-wall and soil-pile) (Cai et al., 2000; Hu and Pu, 2004), and
soil-reinforcement analysis (Gens et al., 1989). Desai et al. (1984) proposed a thin-layer interface
element for soil-structure interaction with special constitutive law to model cracks under opening
and shearing modes. Given the same constitutive parameters, the performance of the interface
element can be affected by the thickness of the thin-layer. This effect was discussed by Sharma
and Desai (1992) through an extensive parametric study; certain guidelines were provided to em-
pirically determine the element thickness under various conditions. Different approaches have been
proposed for the constitutive model of discontinuity including penalty method (Papadopoulos and
Taylor, 1992; Xie and Waas, 2006), Lagrange multipliers (Aagaard et al., 2013). Numerical per-
formance of different interface laws (or stress-displacement curves), e.g.bilinear, linear-parabolic,
exponential, and trapezoidal, for debonding problems was studied using pure-mode problems (Al-

fano, 2006); it was reported that the choice of softening curve depended greatly on ratio between
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the interface toughness and the stiffness of the bulk material. In geomechanics, several categories of
finite elements that have been proposed to model the soil-structure interaction, soil-reinforcement
interaction, and rock joints (Goodman et al., 1968; Beer, 1985; Griffiths, 1985; Pande and Sharma,
1979; Gens et al., 1989). Some examples are: Gens et al. (1989) used zero-thickness solid inter-
face elements to analyze the soil-reinforcement interaction in a pull-out test; softening behavior of
the interface was observed. Carol et al. (1997) proposed a general normal/shear cracking model
for quasi-brittle materials, which was used for discrete crack analysis. Katona (1983) introduced
a contact-friction interface element to simulate the frictional slippage, separation and re-bonding
between two bodies along the interface and the subsequent deformation due to an arbitrary static
loading. Zong-Ze et al. (1995) explored the constitutive law using a direct shear test and proposed
an interface element model with small thickness. Day and Potts (1994) numerically investigated
the effects of stiffness matrix and stress gradients on the stability of zero-thickness interface ele-
ments in practical applications. Some research work related to mesh free method (Dolbow and
Belytschko, 1999; Sukumar and Belytschko, 2000; Wells and Sluys, 2001; Remmers et al., 2003)
have been developed based on partition-of-unity property of finite element shape functions Melenk
and Babuska (1996). The key feature is to capture the crack initiation/propagation in an arbitrary
direction independent of mesh structure. Therefore, mesh bias can be avoided and remeshing is

not necessary during the crack propagation.

1.3.2 Multiphase flow and heat transfer in fractured porous media

Fluid flow in saturated fracture has been studied by many researchers. Fractures saturated
with liquid in geomaterials act as main flow paths. Noorishad et al. (1982) studied the coupled
stress and fluid flow in a fracture-closing problem due to fluid withdraw in a saturated fractured
medium. Ge (1997) proposed a generalized equation to predict fluid flow behavior in a saturated
fracture with nonparallel and nonsmooth geometry surfaces under steady state conditions. Segura
and Carol (2004) presented a double-noded zero-thickness flow interface model to account for both

longitudinal and transversal fluid flows in a single discontinuity. The model was further extended
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to a coupled hydro-mechanical interface model for geomaterials with existing or developing frac-
tures by Segura and Carol (2007a,b, 2010). In contrast to saturated fractures, multiphase flow and
transport processes in partially saturated fractures are theoretically more complex and practically
more significant. For partially saturated fractures with two phases (gas and liquid) coexisting, and
the presence of one phase produces various degrees of resistance to the flow of the other phase,
depending on phase saturation. With the flow paths distorted, the fractures may act as barriers
for the phase under low saturation. Several mathematical models have been proposed to describe
the multiphase flow in fractured porous media under partially saturated condition (Therrien and
Sudicky, 1996; Pruess and Tsang, 1990; Persoff and Pruess, 1995). Recently, coupling between
flow and mechanical response in cracks of geomaterials has gained increasing attention. A typ-
ical application is related to geomechanical analysis of geological sequestration of COs, which is
broadly considered as a challenging but promising technology to mitigate climate change. Reservoir
failure or fault slip may happen due to increased fluid pressure during geological sequestration of
C'O4, and earthquake may be induced by the fault-instability processes (Rutqvist et al., 2007, 2008,
2010; Cappa and Rutqvist, 2011a,b). Fluid flow and chemical transport in fractured porous me-
dia under non-isothermal conditions have received increasing attention due to various geotechnical
applications. A number of numerical simulations have been reported to predict the more com-
plex interaction between multiphase flow, chemical transport, and heat transfer processes (Pruess
et al., 1990; Xu and Pruess, 2001). Rutqvist et al. (2002) developed a coupled thermo-hydrologic-
mechanical-chemical simulator by combining two existing computer codes TOUGH2 and FLAC3P.
The so-called “coupling” between flow and mechanical responses in the analysis are based on linking
the multiphase flow simulator TOUGH2 (Pruess et al., 1999) and commercial geomechanical code

FLAC?P.

1.4 Interaction of soil-atmosphere surfaces

Evaluation of evaporative fluxes at the soil surface is necessary in many geotechnical applica-

tions when temperature and partially saturated conditions are considered. Research dealing with
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evaporation from the surface of either saturated or partially saturated soil can not avoid the con-
cept of potential evaporation (PE), which is considered to be an upper limit or maximum rate of
evaporation (Wilson et al., 1997). The International Glossary of Hydrology (World Meteorological
Organization gives the definition of potential evaporation as “The quantity of water vapor which
could be emitted by a surface of pure water per unit surface area and unit time under the existing

atmospheric conditions.” Gray (1970) gave the evaporation rate E from a free water surface:

E = f(u)(es — eq) (1.28)

Where, e, and e, are, relatively, the saturation vapor pressure of the water surface and the vapor
pressure in the atmosphere above the water surface (kPa), and f(u) is a transmission function
that may be evaluated empirically with the characteristics of the air above the evaporation surface.
The actual rate of evaporation from vegetated and bare soil surface can only be approximated
using the theory of PE under the condition of unlimited supply or availability of water to the soil
surface (Penman, 1948). However, the prediction by traditional methods may overestimate the
evaporation rate for partially saturated soil surfaces (Granger, 1989). For a few decades, many
researchers have been investigating how to measure or compute the actual evaporation (AE) rate
for partially saturated soils. Most of them attempted to find a relationship between PE and AE
(Gray, 1970; Holmes, 1961). A few empirical methods have been developed due to the difficulties
in evaluating the soil properties that determine evaporation from partially saturated soil surfaces
(Hillel, 1980; Yanful et al., 1993). Some efforts have been made to define certain functions of
evaporation with dependent variables, e.g., humidity and water content of near surface soil (Barton,
1979), moisture and temperature gradients (Hammel et al., 1981). Wilson et al. (1994) developed a
coupled soil-atmosphere model for soil evaporation. This model calculated the vapor pressure at the
soil surface with the assistance of coupled heat and mass balance equations for the soil profile under
the surface. Although the comparison was good between the model prediction and the experimental
results with ideal cohesionless uniform sand, this model is not ready for wide application due to the

lack of generality, i.e. for fine silt and cohesive clay. Wilson et al. (1997) carried out experiments
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on three different soil samples to study the evaporative fluxes from nonvegetated soil surfaces. A
unique relationship was discovered between the actual evaporation rate and total suction for all
three soil samples independent of soil texture, drying time and water content. The normalized soil
evaporation was found to be unity approximately until the total suction at the soil surface exceeded

3000k Pa.

1.5 Objectives

Numerical modeling of the thermo-poro-mechanical behavior of partially saturated soils is
a significant issue in the analysis of geothermal structures. It can be also applied to solve other
problems such as nuclear waste isolation and C'Oy storage. Based on extensive study of existing
models, the author proposes a general coupled finite element model which incorporates different
coupling physics of partially saturated soils, mainly, thermo-poro-mechanics (TPM). A new research
code is written to understand how all the coupled physics fit together in a monolithically-coupled
finite element (FE) framework in which to insert our constitutive model for certain type of soil
(e.g. silt, sand, clay, or some mix). A partially saturated porous media can be treated as three-
phase (solid,liquid water, and gas) or four constituent (solid (s), liquid water (w), water vapor (gv),
and dry air (ga)) mixture. The gas phase is considered to be a combination of dry air and water
vapor. The governing equations are developed according to mixture theory Goodman and Cowin
(1972); Bowen (1980, 1982); de Boer (2005), and satisfy the balance of mass, momentum and energy
conservation (first law of thermodynamics). Heat transfer is considered through conduction and
convection. Thermal effects are taken into account in fluid flow, viscosity and density variation.
Constitutive equations are adopted, such as Fick’s law of diffusion, Newton’s law of viscosity,
Fourier’s law for heat flux, and other relations about relative permeability of wetting and non-
wetting phases. Entropy inequality is used to assure that the second law of thermodynamics is not
violated, and some constitutive relations are obtained following the procedure proposed by Coleman
and Noll (1963). Local continuum thermal equilibrium is assumed throughout, where mixture

temperature 6 equals that of the constituents, i.e. 0 = 6, = 0,, = 0,4,04, . The solid and liquid water
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are both assumed to be mechanically incompressible for now (bulk moduli Ky — oo, K,, — 00).
They can easily be modified to be compressible if needed. The solid skeleton is compressible.
Solid skeleton displacement vector, pore water pressure, pore gas pressure and temperature are the
primary field variables.

In general, the main research objectives of the thesis include:

(1) Develop thermo-poro-mechanical (TPM) model for saturated and partially saturated soils with
linear and nonlinear elastic constitutive model for solid skeleton;

(2) Extend for temperature- and suction- dependent elastoplastic solid skeleton constitutive model
for partially saturated soils;

(3) Fit the material parameters of soil used in the energy centrifuge experiments;

(4) Develop thermo-poro-mechanical cohesive interface element, and implement it at the soil foun-
dation interface;

(5) Simulate the energy foundation centrifuge tests with partially saturated soil, and compare the

numerical modeling results and centrifuge modeling observations.



Chapter 2

Thermoelasticity

2.1 Introduction

First, let us start from the theory of thermo-elasticity for solid. In this chapter, governing
equations in terms of balance of linear momentum and conservation of energy are derived for solid,
which are supplemented with the second law of thermodynamics. Finite element formulations in
axisymmetric coordinate are presented; several numerical examples regarding thermal expansion

are analyzed.

2.2 Governing equations

2.2.1 Balance of linear momentum

The balance of linear momentum of a solid is given as:

D
—/(pv)dv:/pbdv—i— Tda (2.1)
Dt Jo Q 0

where, D(e)/Dt is the material time derivative, p is the mass density, v the velocity vector, b the

body force vector per unit mass, and T the surface traction vector, which is defined as
T=0c'n (2.2)

where, o is the symmetric Cauchy stress tensor, and n is the unit normal to the surface 0f2.
Assuming constant p and small strains,

% Q(pv)dUZ/QE(pv)dv=/Qﬂadv (23)
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where, a is the acceleration vector, which will be ignored for quasi-static condition. Using the

divergence theorem,

Tda:/ U-nda:/divadv (2.4)
o0 o0 Q

Ignoring the inertia term, the local form of the balance of linear momentum equation (2.1) is then:

div(e) + pb=0 (2.5)

2.2.2 Balance of energy
2.2.2.1 The first law of thermodynamics

The first law of thermodynamics, (or the energy conservation) states that the rate of internal
energy and kinetic energy equals the rate of the mechanical work and the heat. The first law is

expressed as:

E4+K=P+Q (2.6)

where, I/, K, P and Q) are, respectively the internal energy, the kinetic energy, the rate of mechanical
work caused by the external forces (body force and surface traction in this thesis), and the heat

supplied to the system by the surroundings. And they are given by

. . D 1
E+ K = e Q(pe+§pv-v)dv
D
= /Q [ l()pte) + pv - a] dv (2.7)

where, e is the internal energy per unit mass, and the inertia term will be ignored later. The

external power is

P:/pb'vdv—i— T -vda (2.8)
Q 09
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Using the divergence theorem and (2.2),

T"vda:/ (T;v;)da = (03 njv;) da
[2}9] o Q
(invinj)da
Q

(o-v) -nda
Q

I
ST~ ——

= /div(a-'v)dv
Q
= / div(e) - vdv + / o : grad(v)dv (2.9)
Q Q
Using (2.9), we get:
P:/ pb—l—diva) -v+o:gradv| dv (2.10)
Q —
R1
The terms R1 = 0 according to (2.5).
. 1. . 1. . L
grad(v) =Ujj; = §(ui,j + Ujﬂ') + §(um — uM) =€+ N (2.11)
€ Q

where a comma stands for spatial differentiation (i.e., u;; = du;/dx;), and & stands for material
time derivative of the displacement (i.e., @ = Du/Dt). € is the symmetric strain rate tensor for
small strain theory, and Q is defined as rotation rate tensor, which is a skew symmetric tensor,
thus

o:gradv=0c:é+0o:Q (2.12)
R2
where R2 = 0. Substitution of (2.12) leads to the internal stress power

P:/a:édv (2.13)
Q

The rate of heat supply is expressed in the form:

Q:/prdv—/ q - nda
Q Y]

:/prdv—/diquv
Q Q

where, r is the heat source or heat supply per unit mass, and g the heat flux vector, which is

(2.14)

positive when entering the body. Let us assume the heat flux vector is defined in terms of the
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temperature gradient by the generalized Fourier’s law:
g = —Kijj, Kfj = K;-)Z- (symmetric) (2.15)

where K is referred to as the thermal conductivity matrix, and the components Kfj are constants
throughout 2 for a homogeneous body, but homogeneity can be accounted for through a finite
element mesh where different elements have different material properties. The most common situ-
ation is the isotropic case in which Kfj = K5;;, where &;; is the Kronecker delta (Hughes, 2000).

Substitution of (2.7), (2.13) and (2.14) into (2.6) gives the balance of energy equation in the form:

D
l()pte) =0:€+pr—divg (2.16)
2.2.2.2 The second law of thermodynamics

The conservation laws must be supplemented with the second law of thermodynamics. Ac-
cording to this law, the rate of net entropy production of the system must be non-negative. The

second law of thermodynamics is expressed as:

D pr q-n
— dv> [ —dv — ——d 2.1
Dt/szpnv_/sze : /89 o (2.17)

where, 77 is the entropy per unit mass; 6 is the temperature. Considering the divergence theorem,

qg-n . /q div(q) q-gradf
L g = = = — 2.1
/m da /Qd1v<0)dv /Q< 9 - dv (2.18)

Using (2.18) and localizing the integral leads to an expression for the second law of thermodynamics:

we get:

HD(,on)
Dt

q grad(0)
0

> pr —div(q) + (2.19)

To relate the first law and second law of thermodynamics, we consider the Helmholtz free energy
function per unit mass v :

Y=e—nb (2.20)

Multiplying by p and applying the material time derivative on both sides of (2.20) yield:

D(py) _ D(pe) ,D(pn) DO
Dt Dt —0 Dt "Dy (2.21)
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The Helmholtz free energy per unit mass is hypothesized to be a function of strain and temperature:

¥ =1(€,0) (2.22)
so that,
D(py) _ 9(pyp)  De  O(py) DO
Dt — 0e ‘Dt 00 Dt (2.23)

Using (2.23) and (2.21), we can rewrite (2.16) in the form:

d(pp)  De O(py) DO  D(pn) D§ _  De .
9 Dt 90 | Di i + Py =9 Iy + pr — div(q) (2.24)

Combining (2.19) and (2.24), and regrouping terms lead to:

[a—%};é—[wr%]'—%ad@zo (2.25)

Following the thermodynamic arguments explored by Coleman and Noll (1963) that the rate pro-

cesses € and @ can be varied independently, we derive the constitutive equations in the form:

A(py)
= 2.2
9 (2.26)
py)
= —— 2.27
P 50 (2.27)
such that the second law (2.25) is always satisfied.
Thus, the reduced energy dissipation inequality becomes:
_a g;ad_e >0 (2.28)

The above inequality states that heat flows spontaneously from high temperature to low tempera-
ture, and therefore justifies the form of the Fourier’s law in (2.15). Substitution of (2.26) and (2.27)

into (2.24) leads to the expression of energy conservation:

D(pn)
Dt

= pr — divq (2.29)
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2.2.2.3 The entropy of an elastic solid system

In this part, I follow the procedure in Biot (1956) to identify the relation linking the entropy
and elastic strain; we need to revisit the first law. Ignoring the kinetic energy, the first law is

written in differential form as:

dE = dW + dQ (2.30)

where, dE, dW, dQ respectively, are the infinitesimal amount of internal energy, the infinitesimal
amount of external work done on the system, and the infinitesimal amount of heat supplied to the

system, note that dW = P dt According to (2.13), over dv we have
dW = o : de (2.31)
dQ =dE — o : de (2.32)

Introducing entropy per unit volume S (same as pn) and using (2.32):

L dQ dE 1

The internal energy FE(e,f) is assumed to depend on total strain € and temperature . (2.33) can

be written as:

as

10F 1[0F

According to the second law, dS is required to be an exact differential in # and e. This implies:

0[5 (5 = )] (gfe_ o) _y (2.35)
with the assumption:
S;EO — 0 (2.36)
we get:
aa—f — o - g—ge (2.37)

For linear isotropic thermoelasticity, the Cauchy stress tensor is written as:

o=c":¢€ (2.38)
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where, ¢(0) is the isotropic elastic modulus tensor, which is defined as:
ijkl(e) = A(G)éijékl + QM(Q)Iijkl (2.39)

and where, A(0) and p(6) are the temperature-dependent Lamé parameters, I is the fourth order

identity tensor, and is defined as:
1
Liji = 5(%5]'1 + 0q0jk) (2.40)

The small strain is defined as:
1
€ij = 5(“@3)’ + i) (2.41)

In small strain thermo-elasticity, the total strain is additively-decomposed into the mechanical

(elastic for thermoelasticity) strain €® and the thermal strain €?:

e=¢"+é (2.42)

in which,

e’ =a (-1 (2.43)

and where, af is the linear thermal expansion coefficient; 6 — 6 the increment of temperature; 6y
the reference temperature, with the unit of Kelvin; 1 the second order identity tensor. Substitution

of (2.39), (2.40), (2.42), (2.43) into (2.38) yields:

g=c:e— (3\+2u)a’ (0 — )1 (2.44)
B

where, 8 = (3\ + 2u)a?. From (2.44) we can derive

oo
55 = b1 (2.45)
Substitution of (2.45) into (2.37) yields:
OF
Combining (2.34) and (2.46), we get
10F
ds = —a—dH + Bdegy. (2.47)

000
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where e, is the volumetric strain. From (2.32),we have

dQ OFE
— = = 24
a6~ o0 ~ " (2.48)
where C' is the heat capacity per unit mass. Substitution of (2.48) into (2.47) yields the differential
of entropy:

pC

ds = 7d0 + Bdegy. (2.49)

With the definition S = pn, where 7 is the entropy per unit mass, (2.29) can be expressed as

pCO + Botr(€) — pr + divg = 0 (2.50)

2.2.2.4 An alternative way of choosing independent variables for v

In this section, I will introduce an alternative way of choosing independent variables for the
Helmholtz free energy per unit mass . Instead of using the total strain €, we will use the elastic

strain € as one of two independent variables in the form:
P =1(e0) (2.51)

such that,

D(py) _ 9py)  De®  0py) DO (2.52)

Dt Oe¢ Dt 00 Dt

Using (2.42) and (2.43), we can express o : € in the form:

'De B 'Dee_i_ .Dee
U.—Dt = U'Dt U.—Dt
DEE dae 9D9
_ . _ - - 2.
o5+ (0 HO)Dt+a L tr(o) (2.53)

where, tr(o) is the trace of the stress tensor, and tr(o) = o. We assume the linear thermal
expansion coefficient does not dependent on temperature, that is,

D 0
D—O‘t =0 (2.54)

thus, we have:
De De® o DO
— =0 — 2.
Vil + o Dttr(a) (2.55)
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Comparing to (2.24), we will write instead,

d(pY) De®  O(py) DO D(pn) Dy  De° o DO .
See | Di 50 " Di 0 Dt +p77Dt =005 +a Dttr(a)+pr div(qg) (2.56)

Combining (2.56) and (2.19) , and regrouping terms lead to:

Now with the thermodynamics arguments in Coleman and Noll (1963), we will get:

A(py)

T = o (2.58)
pn = —%—Fa@m‘(a) (2.59)

with (2.59), and together with the definition:

’(pp)  pC
JTew) _ef (2.60)
we get:
D(PU) o _82(p¢)9-+ aetr(d') (2.61)

Dt 062
Substitution of (2.61) into (2.29) provides the general form (with nonlinear constitutive model) of

the balance of energy equation
pCO+a0tr(e) — pr+div(g) =0 (2.62)
A combination of (2.39) and (2.40) gives an expression of the elastic modulus tensor in the form:
Ciip(0) = A0)ij0k1 + 11(0)(dikdj1 + dudjk) (2.63)
Therefore, (2.44) is written as:

oij = Cip ek — B(O — 00)di;
= AijOni€rs + (0051 + 0udjn)ers — B(0 — 6o)di; (2.64)

= Aéijekk + 2,ueij — 5(9 — 90)5@'
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and the trace of o is:

tr(o) = omm = (BX + 20) €mm — 36(0 — o) (2.65)
—_——
3K
thus,
tr(¢) = 3Ktr(e) — 3460 (2.66)

where K is the bulk modulus. Thus, the balance of energy equation with linear constitutive model
is then written as

pC — 920K | 6+ BOtr(€) — pr+div(q) =0 (2.67)
2.3 Finite element analysis

In this section, by consulting Hughes (2000), I develop the weak form based upon the strong
form of the thermoelastic boundary value problem. Galerkin’s method is then adopted to seek the
approximate solution to the weak form. Displacement w and temperature 6 are chosen to be the

two primary variables. The governing equations used here are stated as (2.5) and (2.62).

2.3.1 Strong and Weak forms

The strong form of thermoelastic problem involving the governing equations (2.5) and (2.62),

as well as the boundary conditions imposed on the primary variables w and 0 is as follows:

Find u(x,t) € 7%, and 0(x,t) € % with t €[0,7], suchthat
055 +pbi = 0 eN
u = g onl',
oiin; = t7 onl
(S) ui(x2,0) = wpi(x) e N (2.68)
pCO+alotr(e) —pr+div(ig) = 0 €N
6 = ¢ only
—n;q; = (¢ onl’,
O(x,0) = 6g(x) €N
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where % and .Y are the trial solution spaces,

= {u; : A x[0,T] = R% u; € HY ui(t) = g*(t) on Ty, us(x,0) = uio(x)}
(2.69)

SP={0:0x[0,T] »R,0 € H',0(t) = ¢’(t)onTy,0(x,0) = Op(x)}
where x is the coordinate vector; 2 stands for the domain of the body, I' stands for the boundary of
the €, respectively; I', and I'; denote respectively the boundary where displacement is prescribed
and the boundary with surface traction; I'y and I'; denote the boundary where temperature is
prescribed and the boundary with heat flux; uy and 6y are the initial displacement vector and
temperature, respectively. H' is the first Sobolev space (Hughes, 2000).

To define the weak or variational form of the strong form (2.68), we choose the weighting

functions (also called variations) of the primary variables as follows:

w(x,t) = du(x,t)

(2.70)
w(x,t) = d6(x,t)
where w; € %, w € ¥?, with variation spaces
Y = {wi Q= Rz,wi € Hl,wi =0 Onru}
(2.71)

V' ={w: Q= RweH w=0 only}

Using the weighting function w(x,t), we get the weak form of balance of linear momentum as

follows:
/ w; (O‘ijJ + pb;)dv =0 (2.72)
Q

Making use of the chain rule, the derivative of w o can be written as

(wioij) j = wijoij + w0 (2.73)
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and with the divergence theorem:

/(wiaij),jdv = /(wio'ij)njda—F/ (wiaij)njda
Q Iy

u

—
=0
— / (wiaji)njda
Iy
= / wi(aijnj)da
Iy
= / w; t7 da (2.74)
I
result in
/ w; jojdv = / pw;bida +/ w;ti da (2.75)
Q Q T
For linear thermoelasticity specifically, use (2.64) to yield:
w; ;05 = Cjip ekt — B0 — o) wi; (2.76)
Therefore (2.75) becomes:
/ [wi ;¢S et — B0 — Oo) wii] dv = / pw;bida +/ w;t] da (2.77)
Q Q Tt

With the weighting function w(x,t), we get the weak form of the balance of energy as follows:
/Qw { [,oC - 9(a9)26K] 0+ BOtr(e) + div(q) — pr} dv=0 (2.78)
Using the chain rule,
(Wg;),i = wi @i +w i (2.79)
and the divergence theorem again,

/Q(qu)idv = /Fq(w%)ni da + /Fg(w%)ni da
D (2.80)

= —/ wqda
Fq

The weak form of the balance of energy is:

/Qw [,oO—g(oﬁ)?eK] fdv —I—/wﬁﬁtr(é)dv

Q

(2.81)
+/w7,~Kfj€7jdv:/ wqda—i—/wprdv
Q Iy Q
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where, ¢ is the surface heat flux scalar on boundary I'y, and ¢; is defined by (2.15).

To summarize, the weak form of the nonlinear thermoelastic problem goes as follows:
(

Find u;(z,t) € 7" and 0(x,t) € .Y such that

/wm sigmag; dv:/pwibida—i—/ w;t! da
Q 9] Ft

/prédv+/wa99tr(d)dv

/ Kgﬁjdv / wqda+/w,0rdv
T, Q

2.82
holds Vw;(x) € ¥* and Yw(x) € #? (282)
= {u; : Qx[0,T] — R u; € H'  u;(t) = g (t) on Ty, u;(x,0) = ujo(x)}
SV =10:Qx[0,T]— R, 0 € H', 0(t) = ¢°(t)on Ty, 8(z,0) = p(x)}
Y={w;: QA R% w; € HY w; = OonTy}
VY ={w:Q—R,we H w=00nTy}
For linear thermoelastic problem, the second equation in (2.82) will then be written as
/ [wmcfjkl et — B(0 — 6p) w“] dv = / pw;b;da + / w;t! da (2.83)
Q Q Iy
/w [pC— 9(0/")291(] fdv + / wBOtr(é) dv
Q Q
+/ KZHJ dv = / wqda + / wprdv (2.84)
Q T, Q

2.3.2 Axisymmetric formulations

In this section, I refer to Felippa (2010) and Hughes (2000) regarding the axisymmetric
formulation. To simplify the governing equations of axisymmetric problem, we adopt the cylindrical
coordinate system (r, z,0),
r = the radial coordinate
z = the axial coordinate (2.85)
0 = the circumferential coordinate

The basic postulation of torsionless axisymmetry is that all functions under consideration are only

functions of r and z, i.e., they are independent of the angle #. Therefore three-dimensional problems
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are reduced to two-dimensional ones. Another basic assumption of axisymmetry is that ug = 0
based on the rotational symmetry. Thus the displacement field is defined by two components, which

are functions of r and z:
up (7, 2)
u(r, z) = Y
uz(r, 2)
where, u, is called the radial displacement, and u, is the axial displacement. Due to the assumption

of axisymmetry, we have:

€rg = €29 =0

(2.86)
org =0r9 =0
The nonvanishing components of stress and strain vectors are:
)
Ory Err
o €
Orz 2€,,
000 €00
The strain-displacement equations for small strain axisymmetric problem are:
ou, ou, Uy 1 /0u, Ou,
_ _ 7z = == 2.88
Err or €2z 0z €00 7 €rz 5\ 92 + or ( )
In matrix form: ~ _
0
— 0
or 5
0 — Uy
e=| 0z (2.89)
— 0 Uy
r
o 0
L 0z Or
2.3.2.1 Dimensionality reduction

The element of volume dv can be expressed as

dv = 2rrda = 2wrdrdz (2.90)
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where da is the element of area in the generating cross section in r — z plane, such that the volume

integral over the volume element ¢ can be expressed as

/QJ‘)d” o /QJ‘)TMZ = /_ 11 /_ 11<6> r(&)j° ¢ dn

where (o) denotes a function that depends on r; (e) is the function estimation in natural coordinate

(2.91)

£ j¢ =det(J), and J€ is referred to as Jacobian of coordinate transformation,

JC=dr/dE, r=]rz], &=I[n). (2.92)
Similarly, the element of surface dS can be expressed as
dS = 2nrds (2.93)
where ds is an arclength element, and can be expressed as
(2.94)

ds = +/(dr)? + (dz)?

Thus, the surface integral over the surface element S¢ can be expressed as

/e(.)ds =2r /E(o)rds =2r /1 (5)7‘({)\/<g—2>2 + <g—z>2d§ (2.95)

-1

where it is assumed that (e) is evaluated at 7 = £1 depending on which element surface S° the
boundary condition acts (traction or heat flux).

2.3.3 Coupled finite element formulation

We adopt Galerkin’s method to obtain solutions to the weak form. . and ¥" are introduced
“The superscript

to denote the finite -dimensional approximations to . and ¥, respectively.

refers to the association of .#" and ¥" with a mesh, or discretization, of the domain €, which is
parameterized by a characteristic length scale h” (Hughes, 2000). It is assumed that:
ul e () (S C S
w'e (V) (O
(2.96)
0" e () ()

Wl e (7/9)h; (7/9)h C 7/9;
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We assume that all members of (#*)" and (#%)" vanish, or approximately vanish on I',, and Ty,

respectively, i.e.,
wl =0onT,, Ywl(x) e (V)"
(2.97)
w" =0onTy, Yu'(z) e (V)"

QE

Qh

Figure 2.1: Discretization into thermoelastic mixed quadrilateral elements .

Figure 2.1 shows the element, i.e. biquadratic in displacement, and bilinear in temperature.
We discretize the domain Q" into element domains ¢, 1 < e < n, see Figure 2.1. For this two
dimensional thermoelastic problem, we introduce the mixed quadrilateral elements, i.e. biquadratic
interpolation in displacement and bilinear interpolation in temperature. Using interpolation func-
tions, we write u”, w”, #" and w" in natural coordinates as follows:

(1) Displacement w :

9
(g t) = 3 NE(€) di(t) = N° - df
a=1

dy (2.98)
n
dg
N& 0 @)
0 N d o

wh(€) = No% . ¢° (2.100)
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where, d; and N}, a = 1,2,...,9 are nodal displacement and shape functions for displacement,
respectively. Superscript e denotes element. The components of vector ¢® are the nodal values of
h

the weighting function w".

(2) Temperature 6:
4
0"(&.t) =) Na(€)05(t) = N 6°
a=1

07
5 (2.101)
2
= [ N? N§ N{ NY
03
| 5
Wwh(Et) = N? . af (2.102)

where, 05 and Ng , a = 1,2,3,4 are nodal temperature and shape functions for temperature, re-

spectively. The components of vector a¢ are the nodal values of the weighting function w”.

The gradient of temperature is calculated as,

grad(6") = 6 = B’ . 6°
e,0 __
where, B = B(f Bg Bg BZ
(2.103)
ON?
0 = ar =
Ba 8Ng 5 ((I 1,,4)
0z
(3) Strain: According to (2.89), the total strain is written as
€= B . d° (2.104)
where
B = [ BY ... BY ]
[ ONY |
4 0
or
0 ONY (2.105)
B! = L, 92 |, (a=1,...,9
N[l
— 0
,
ONY  ONY
L 0z or |
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Vw" (&) = B4" - ¢ (2.106)

The term é,,,, in (2.67) is written as:

. .
N ONY  N¥\ 9N dy
tr(e):“hmzz[ ( or +7> D ] :

a=1 d,
d,
' _eu s (2.107)
:[qu Bg] : =B -d
dy
where, BZ:[ aNa—l—& ONy ], (a=1,...,9)
or r 0z
The coupled FE equations for this thermoelastic problem are written as:
(1) Balance of linear momentum:
Mel ~ e,Uu
A [/ (BT . D . Bo* dv} d° — V 3Ka’(B™)T - N dv| -(8° — 65)
8:1 e e
ke K
_ / p(N™Tb do + / (N4 da (2.108)
e F?
fszewt f(:t,ewt
(2) Balance of energy:
Nel e
A(ae)T [/ pC(NeHT . Ne"gdv] -0
e=1 <
k@@,l
+ < / Al (N“)T(N06°) - tr(a’)dv> + [ K(B“")"- B’ dv| -6°
Qe Qe
f@d k09,2
= / p(IN®NTrdy + / (N“NTqda (2.109)
€ Fg
N—— ———

fz'r,ezt fzq’ezt
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For the linear isotropic elastic problem, we then have

Nel .
A(ae)T {/ |:pC _ 9K(a9)2(N6’9 . 06):| (Ne,G)T . Ne’edv} '06
e=1 ©
k99,1
+ [ / 3K/ (N (Ne? . 96)36’“@} d+ [ K9(Be"T . B*Y dv] .6°
e Qe
k@d k90,2
= / p(IN®NT rdy + / (N“NTqda (2.110)
€ Fg
N— ———
fZT’EZt f9q,e:vt
We can write the coupled FE equations in the form:
el . .
A(ce)T . [fgd,znt _ f;l@,znt _ fglf,emt + fgt,ext}
e=1
2.111
‘N oNT [1.6d 3¢ 100 ¢ L ebint _ pbext ( )
AT [k kD8 4 pomt = foet]
e=1
in which,
fgd,int _ kgd . de; fZ@,int — kg@ . (06 _ 08) (2 112)
f@,int _ k96’2 . 0: f@,ext _ fﬁr,ext + feq,e:ct .
e e ? e e e
After element assembly, we arrive at the coupled FE equations in matrix form:
0 0 d FddINT _ [pdo,INT FYEXT | pdt. EXT
. . + = (2.113)
K% 00 0 FOINT FO-EXT
C(D) 14 F'™"(D) F"*"(D)

We evaluate the coupled equations at time ¢,41, and introduce difference formulas for D, and

V 41, where « is the time integration parameter for the generalized trapezoidal rule (Hughes, 2000)

Dn+1 == Dn + AtVn+a (2114)
Vn+a = (1 — Oé)Vn + OéVn+1 (2115)
so that,

Dn+1



44
« method type

0 forward Euler | explicit (if C' diagonal, which it is not)
1/2 | trapezoidal rule implicit

1 | backward Euler implicit

Apply the generalized trapezoidal rule to (2.113) to get:

C(Dn+1) Vg + FINT(Dn—i-l) = FEXT(Dn+1) (2.117)

The Newton-Raphson iteration algorithm will be used to solve for Vﬁﬂ with the current iteration

value V¥ 41 as follows:

R(V, 1) = C(Dy 1) - Vil + FIVU(D ) - FPYT(DT) = 0

£, oR"
NR+8V %

v () R 211y

Vi =Via+ov
befﬁ = bn—irl + OéAtVZii

Consistent tangent used can be written as:

OR oC 0D OFINT 9D oFEXT 9D
== V4+C+——— i
ov oD oV oD oV 9D oV (2.119)
. oC V—’_aFINT_aFEXT 8_D :
oD oD oD ov
where,
oD
0
C.V= . . (2.121)
KGd .d + KG@ .0
9C 0 0

2 T o4 20 T 50

— V= 0d 00 0d 00 (2.122)
oD <8K OK '0> <8K 0K '0>
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[ 8FINT aFINT :|

ad 06
9F4LINT  §pdo INT 9F4LINT  pdd,INT
< od ~ od ) < 06 06 )
OFYINT 9FYINT (2'123)
ad 06
Kdd Kd@
0 K902

HFEXT _ QFEXT HFEXT
oD od 06

0 o (2.124)

00
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2.4 Numerical examples

2.4.1 Free thermal expansion

First, to test the FE model for thermoelasticity, let us look at a simple example of free
thermal expansion. As Figure 2.2 shows, the bottom of the column is fixed in vertical direction,
and the surface is free to expand. Due to the axisymmetry, the central axis is fixed in the horizontal
direction. The height and radius of the column are 0.3 m and 0.1 m, respectively. The column is
discretized into 10 elements. The initial temperature is uniform 20 °C'. The bottom and the side
surface are adiabatic. The temperature is prescribed at the top surface to be 40 °C. The top and

the side surfaces are free of traction. Table 2.1 lists the parameters used in the example.

Table 2.1: Constant parameters used in the FEA of thermo-elastic modeling

Parameter Symbol  Value Units
Thermal expansion coefficient 11.7x107% m/(m- K)
Specific heat capacity C 855 J/(K - kg)
Thermal conductivity K* 0.817 W/(m - K)
Mass density P 2000 kg/m3
Lame parameter A 1.35 x 106 Pa

Lame parameter 1 5.4 x 10° Pa

Figure 2.3 (a) shows that the temperature becomes uniform after 100 hours. Figure 2.3 (c)
shows that the total strain (can be additively decomposed to the thermal strain and the elastic
strain) arrives at 0.0234 when the temperature becomes uniform eventually. This value is equal to
o x (0 —0p) = 11.7 x 107 x 20 = 0.0234. Since the example models the free thermal expansion,
we can also observe from Figure 2.3 (c) that the total strain is equal to the thermal strain, i.e.,
the elastic strain is almost equal to zero. Figure 2.3 (d) illustrates the stress distribution arrives at

zero eventually inside the column when temperature is uniform and thus strain is uniform.
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Figure 2.2: 10 element mesh for axisymmetric free thermal expansion example
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(a) Temperature variation at nodes 2, 3 and 4 (N2, N3, N4 in Figure 2.2).

(b) Vertical

displacement at nodes 1 and 3. (c) Variation of total strain and thermal strain at the top Gauss integration
points of elements 1, 5 and 10. (d) Variation of stress at the top Gauss integration points of elements 1, 2,

3, 5, 8, 10.
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2.4.2 Comparison between the fully coupled and the decoupled TE models

The comparative analysis is designed to illustrate the influence of the coupling term. Here
let us call the method we elaborated in Section (2.3.3) the fully coupled TE model. On the other
hand, we ignore the thermal expansion coefficient in the balance of energy equation to obtain
the decoupled TE model, in which we solve the temperature separately, instead of solving the
displacement and the temperature monolithically. We use the same geometry and the mesh as
shown in Figure 2.2, as well as the same material parameters (see Table 2.1) in this example. The
initial and boundary conditions are the same except that the gravity acceleration is applied as the
body force and the vertical traction (t° = 9 x 10*Pa) are exerted on the top.

The compared results, as shown in Figure 2.4 (a)-(d) indicate that the coupled model and
decoupled model match each other well. Compared to the fully coupled model, the decoupled
model, which is a simpler method, can also achieve reasonably accurate results for the thermo-

elastic analysis.



Figure 2.4: Comparison between fully coupled and decoupled thermo-elastic models.
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(a) Temperature

variation at the bottom nodes of elements 1, 3, 5 and 10. (b) Vertical displacement at the top nodes of
elements 1, 5 and 10. (c¢) Variation of total strain €., at the top Gauss integration points of elements 1, 5
and 10. (d) Variation of stress o, at the top Gauss integration points of elements 1, 5 and 10.
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Chapter 3

Saturated thermoporomechanics

The mixture theory is used to formulate balance equations for porous media Coussy (2004).
Governing equations, including balance of mass, balance of linear momentum and balance of energy
are developed for each constituent. The pore fluid pressure py, the displacement of solid skeleton

u; and the temperature of the mixture 6 are selected as three primary variables.

3.1 Governing equations

3.1.1 Balance of mass

Saturated soil is usually treated as a two-phase mixture, i.e., solid phase (s) and fluid phase
(f) (de Boer, 2005; Coussy, 2004). The volume of the mixture, solid phase and fluid phase are
respectively noted as v, vs, and vy. The corresponding masses are m, ms and my. And for
a(a = s, f) phase, my = p*fv,, where p®f is the real mass density of o phase. The partial
mass density of a phase is defined as p® = n®p®%, where n® is the volumetric fraction occupied
by a phase, i.e. n® = v, /v for a homogeneous soil, or n® = dv,/dv for heterogeneous case, and
n! 4+ n® = 1. The density of a soil mixture is p = m/v = p/ + p*. And for saturated soil, the
porosity n = n/.

Recall the material time derivative of a scalar field ¢ (x,t) following the o phase motion is

(de Boer, 2005; Coussy, 2004):

DYY(xo(Xast),t)  Op(x,t)  OY(x,t) Ox, 8_¢ '
Dt =Tt 0w ot o eadviva (3:1)
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where x, denotes the motion of phase a, X, is reference position of phase «, x is the current
position of all phases smeared together at time ¢, and v, is the velocity of phase . These no-
tations imply a finite strain formulation, but we will simply eventually to assume small strain on
the material. Thus the relationship between the material time derivative D%(e)/Dt and partial

derivative for fluid and solid phases are:

Df¢(Xf(Xf7t)7t) _ 8¢(mvt) +81/)(ac,t) 8Xf 5711

Dt T T o 0w ot or eradv-r (3.2)
D¥(xs(Xs,t),1) Oz, t) | Op(x,t) Oxs _ Oy
Dt = ot T oz o o Teadveos (3.3)

vy
Ff U dv
\ « * o «° e -
fluid L et ¢ e

mixture

20
00 Q
QQ O% solid

Figure 3.1: The transformation of material volume.

In Figure (3.1), dV,, is the initial material volume of « phase, and dv is the current material

volume of the mixture, such that

dv = JodV, (3.4)
dve, = n%dv = n®J,dV, (3.5)

where, dv,, is the current material volume of « phase. J, is the Jacobian of deformation of o phase,

and J, = det F', with F,, the deformation gradient of phase c. The material time derivatives of
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the integral over the current volume needs to be converted to be that over initial material volume:

pe pe
E/Q(o)dv _ D—t/Qg(o)JadVa

Da
= 0 Dt [(0)Ja] dVa
0
D“(e) D J,
= Ja dVy dVy 3.6
L 7t [ @7 (3.6
The material time derivative of J, is defined as:

DO[

Eja == JO! le'Ua (37)
where v, is the velocity of a constituent, v, = 2 g't‘“, and where, u,, is the displacement of «
phase. Thus,

D~ D> D>
D—t/Q(o)dv = /Qg [ D(t.) + (o)div(va)] JadVy, :/Q [ D(t.) + (o)div(vy)| dv (3.8)

The total mass of the v phase in € is written as:

ma:/ paRdva:/ﬂpadv (3.9)

Ignoring sources and sinks and chemical reaction between phases for now, the balance of mass

equation for the o phase is written as:

D*m
<= [ p*d 1
[ /Q pdv (3.10)

where p® is the mass supply rate per volume. For saturated condition, it is assumed that there is
no mass exchange between solid and fluid phases, and no separate source of mass, i.e. p* = 0.

Substitution of (3.8) and (3.9) into (3.10) provides:

/ [D P +(p°‘)divva] dv:/ﬁadv (3.11)
ol Dt 0

Thus the local form of the balance of mass equation for the a phase is:

07

D%p
Dt

(87

+ p%divo, =0 (3.12)
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Now we write the balance of mass for solid and fluid separately

DS S

DZ + p divws = 0 (3.13)
DS pf
D—’; +pf divoy =0 (3.14)

We would like to express the derivatives solely in terms of the motion of the solid phase for eventual

Lagrangian FEA. A combination of (3.2) and (3.3) yields:

Di(s) _ D¥(o)
Dt Dt

+ grad(e) - v (3.15)

where, (o) indicates any variable, ¥y = vy — v, is relative velocity vector of fluid phase with respect
to the solid phase motion. Use of (3.15) in (3.14) allows us to express the balance of mass of fluid

phase in the form:

DS pf
5o+ ! divey = —div(p'®y) (3.16)

Combining (3.13) and (3.16), we get the balance of mass equation for the mixture:

s

Dtp + pdive, = —div(p 5 ) (3.17)

In addition, the densities of solid and fluid constituents are expressed as (Lewis and Schrefler, 1998):

1 DspsR B 1 Dsps eDse

pR Dt Ks Dt "* Dt (3.18)
1 Dip/® (1 DIpl . Do (3.19)
o® Dt — \ K/ Dt "Dt ‘

where K¢ is the bulk modulus, 3% is the volumetric thermal expansion coefficient of a(a = s, f)

constituent, and 8% = 3a, where af is the linear thermal expansion coefficient of a(a = s, f)

phase. The first terms of the bracket in (3.18) and (3.19) are ignored, owing to the fact that solid

and fluid phases (water for saturated condition) are nearly mechanically incompressible compared

to the skeleton. Thus the densities of solid and fluid are only functions of temperature:

1 DspsR eDse
FDi = —0. D1 (3.20)
1 DfpfR D'
Wip = = (3.21)
P Dt Dt
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Using p® = p*¥n®, together with (3.20) and (3.21), we can alternatively write (3.13) and (3.14)

as:
Dsn® D6
DZ +n divo, = 8 n* = (3.22)
Dfnf . D’o

Use of (3.15) in (3.23), and together with (3.22), allows us to express the balance of mass for the

mixture, accounting for thermal expansion of the solid and fluid constituents,

D*0
divvg + d1vvf — (59713 + 59 f)

where ’lNJ? =nlv 7 is the superficial Darcy velocity.

3.1.2 Balance of linear momentum

The balance of linear momentum for the o (o« = s, f) phase is written in global form:

DO!

adv = “p* +h)d Td 3.25
Dt/pvv/g(p +)U+8Q a (3.25)

@ is the partial stress of phase a, 0® = n% ; and the total stress is: o = o° + o/. b®

where o
is the body force vector per unit mass of o phase, we assume it equals to acceleration of gravity:
b“ = b = g, where g is the acceleration vector of gravity. R” is internal body force drag on
constituent « caused by the other constituents, and

> h*=0 (3.26)

a=s,f
Using (3.8), we rewrite the LHS of (3.25):

D* D* (e (e} :
on /p vodv = /Q [ﬁ(p Vo) +p vadlv(va)] dv

D% a, 1
= Vg + p%aq + ptvadiv(vy) | dv
o7 Dt

DCY (6%
= /'va[ P —i—padiv('va)} dv—l—/po‘aadv (3.27)
Q Dt Q

where, a,, is the acceleration of o phase:

D%,
Dt

(3.28)

aq, —
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Using the balance of mass equation (3.12), and ignoring the inertia term, we obtain:

D« o
— =0 3.29
D /Q Pvg (3.29)
The traction on « constituent is:
T =0 n (3.30)

where, o0 and n are respectively the partial Cauchy stress tensor and the unit normal at the

surface of o constituent. Using divergence theorem to obtain:
Tda = / div(o®)dv (3.31)
19) Q
If we substitute (3.27) and (3.31) into (3.25), and localize the integral, we will obtain:
dive® + p°b* + h" =0 (3.32)

By summing up the individual balance of linear momentum equations for solid and fluid phases

and using (3.26), we have the balance equation for the mixture
dive + pb =0 (3.33)

The balance of angular momentum for non-polar constituents states that the respective partial

stresses (and, in turn, the total stress) are symmetric:

o = (6T (3.34)

3.1.3 Balance of energy
3.1.3.1 The first law of thermodynamics

The first law of thermodynamics (or energy conservation) is written for each constituent
(de Boer, 2005):

EY+ K= PY4 Q%+ / é“dv (3.35)
Q
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where E%, K¢, P, Q% and €% are respectively the internal energy, the kinetic energy, the rate of
mechanical work rate caused by external forces (i.e. body force and surface forces), the input heat

to « constituent, and the energy supply rate to «. constituent caused by all other constituents.

. D«
B = 2 [ et .
Di /Qp e“dv (3.36)
. D« 1
K = — | =p%v, - v,d .
Dt/92p Vo - Vo dv (3.37)
P = /paba-vadv—l— T - vyda (3.38)
Q o0
QY = /paro‘dv—/ q“ -n%da (3.39)
Q o9

where, e is the internal energy per unit mass, T is the traction on « phase, r* and q“ are
respectively heat source per unit mass and heat flux vector at surface of a phase.

Using (3.8) in (3.36) and (3.37) allows us to write:

. . D® /1 1
EY+ K% = / [ <§pava . va> + =p%vg - vadivva} dv
Q

Dt 2
Da o o :
—I-/ [— (p%e”) + pe dlvva} dv (3.40)
o | Dt
Using the chain rule, we have
D* /1 1 D%p~ o o
T <§p va-va> =5V Va—p, + p%ve - a (3.41)

Combining (3.40 - 3.42), and ignoring the inertia term p®a®, we get:

: . v2 Dep® D%
Ea Ka = — a ad‘ [e “ D d 4
+ /Q[<2—|—e>< ; +p 1vv>—i—p t} v (3.43)

Substitution of the balance of mass equation (3.12) into (3.43) yields:

. . D
FY 4+ K% = O‘ d 3.44
4 /Qp e (3.44)

We express the power done on « constituent in the form:

Da (0%
P = / <p°‘ba Vg +dive® v, + 0% © > dv (3.45)
0 Dt
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Using the balance of linear momentum (3.32), we obtain:

D™ .«
P = @ —h v, 4
/Q<0' Dt v > dv (3.46)

Substitution of (3.39), (3.44) and (3.46) into (3.35), and use of divergence theorem lead to the local

form of balance of energy equation for « constituent:

DOC (0% Da (0% N
P Di —o%: DE +h" vg — 2 + divg® — é* =0 (3.47)
3.1.3.2 The second law of thermodynamics

The second law of thermodynamics (or entropy inequality) has to be adopted in order to
obtain restrictions for constitutive equations. The procedure was described in Coleman and Noll
(1963). The postulate is that it is necessary and sufficient to apply the entropy inequality principle

to all constituents for the existence of dissipation mechanisms within the mixture (de Boer, 2005):

Do PO q*-n
- o O > . 4
Dt/Qp n“dv > e dv /8Q 7o da (3.48)

Again, use of (3.8) provides:

Da o, Da o, o, :
L Qpndvz ; o7 P) + p" divea | dv

(3.49)

DO{ (6% Da (0% .
:/Q p° DTtI +n® Dit) + p%divy,

=0

Using the balance of mass (3.12), we get:

= Ay — « d .
Dt/ﬂpn v /Qp D (3.50)

Applying the divergence theorem, we derive:

qOé n . qa
da = / div <—> dv
/89 o« Q 0«

B divg® g% - grad 8¢
- /Q [ . | v (3.51)
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The local form of the entropy inequality is gained as:

o« DN
Dt

q® - grad ¢
Qa

0 — p%r® 4 divg® — >0 (3.52)

To relate the first and the second laws of thermodynamics, we introducing the Helmholtz free

energy per unit mass:

P =e* — 9 (3.53)
Thus, the material time derivative following the motion of o phase is:

VT _ DR pe DT o (3.54)

Dt Dt Dt Dt

Combining (3.54) and (3.52), and canceling the term 6% D;’Za, we arrive at:

aDaea o aDaea aDCl{,l/}a

B B q® - grad 9%
pt "7 Dt P Dt

904

— pr® + divg® — >0 (3.55)

p

Combining (3.55) and (3.47), together with the assumption (de Boer, 2005):

d =0 (3.56)

a:Syf

we obtain the entropy inequality for the mixture:

—h% v, >0 (3.57)

5 [o0 D oD oD g gradd
Dt Dt Dt 0
OCZS,f

Let us recall the partial stress tensors o (Terzaghi, 1936), invoking the effective stress principle

and assuming an inviscid fluid,

o°=0c —pr(l—n)l (3.58)
ol = —npsl1 (3.59)

where, py is the pore fluid pressure, n is the porosity (=n' in the saturated condition), & and ¢’

are respectively the total and effective stress tensors. Now let us go back to (3.57), and look at the

D€
Dt

terms o : for each constituent separately. For the solid skeleton, use of (3.58) provides:
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s D¢, D€ (1 o1 Dse’ (3.61)
0 =0 npsl:— .
Using small strain theory, we write:
o 1
1:€% = 0 5[(“(1)@',)' + (ua)y,i]
1
= 5[(“@)2’,2’ + (ua)i,i]
_ div(u) (3.62)
Thus,
D D o )
1: D? = div( DT: > = divw, (3.63)
With (3.63), (3.61) is written as:
o’ DD(Z =o' DD? — (1 —n)pyrdiv(vs) (3.64)
The total strain of the solid skeleton is defined as:
€ = eskel,e + eskelﬂ (365)

skel 0

where €3#¢1¢€ is the strain caused by mechanical loading (elastic currently), and e is the strain

caused by thermal loading, which is defined as
eskell — of (6° — o)1 (3.66)

where 6° and 6 refer to the current and initial temperatures of the solid phase. af

ke 18 the linear

thermal expansion coefficient of the solid skeleton. Palciauskas and Domenico (1982) proposed an
expression of agkel in the form:

o =01—-n)d + naz (3.67)

where n is the porosity of porous media. a? and ozz are the linear thermal expansion coefficients of

the solid and pores.

0

Some literature suggested that o,

; is equal to oY approximately if all the solid grains are in contact

(Walsh, 1973; Campanella and Mitchell, 1968). Khalili et al. (2010) showed experimentally that
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the thermal expansion coefficient of the porous media is equal to that of the solid constituent, and
is independent of the porosity or void ratio. Thus ape = o will be used in the FEA.
Substitution of (3.65) and (3.66) into (3.64) gives:

A D5es , Dseskel,e
g . .

DS 98
Dt

Dt 7T Dt

+algtr(o’) — (1 = n)psdive, (3.68)

where, tr(o’) = oy, is the trace of the Cauchy effective stress tensor. With (3.59), we have,

Dfef
ol : Di = —nIprdiv (vy) (3.69)

Now let us derive the term h" - v, in (3.57). Recall the balance of linear momentum equation

(3.32):
A = _dive! - o’ b! (3.70)
Considering (3.26), we get:
h° =k’ = dive! + /bl (3.71)
According to (3.59),
div(e!) = div(—n'ps)1
= —grad(nfpf)
= —pygrad(n’) —n' grad(py) (3.72)
Combining (3.70), (3.71) and (3.72) gives:
Z h" v, = ’lNJ? - (gradpy — p/Rb) + pso; - gradn (3.73)

CE:S,f
in which, vy = vy — v, is the relative velocity of fluid, ﬁ? = nwy is Darcy’s velocity, and n = nf
for saturated case. We will assume body force per unit mass b° = b/ = b = g is the acceleration

due to gravity for soils. Substitution of (3.64), (3.69) and (3.73) into (3.57) yields:

Dseskel,e s
/ .

o5 + askelﬁtr(a’) —(1 = n)pydives —nppdivoy — pyoy - gradn

Terml (3'74)

s _ ¢r.\_ q-gradf o oD DYY” <
vy (gradpf p g) 9 a;f A TR T
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where q = ¢° + g7 is the heat flux of the mixture, and local thermal equilibrium is assumed, i.e.,

6° =0/ = 0. Term 1 in (3.74) can be rewritten in the form:

Term 1 = —pydivos —npydivoy — ppoy - gradn

= —psdivog — ppdiv(nvy) (3.75)
Use of (3.24) and (3.15) in (3.75) allows us to rewrite T'erm1 in (3.74) in the form:

D59 D
Term 1= —p; (5%5— + Bin! Df) (3.76)

where, n® and n/ are the volume fraction of solid and fluid, and n®* =1 —n, nf = n.
According to de Boer (2005); Hassanizadeh and Gray (1990), the Helmholtz free energy can
depend on the combination of certain independent variables, e.g., p®%, €, n®, S, 0, gradf etc. In

the thesis, a simpler functional dependence of free energies is postulated:

v* =g, 0); gl =gl (0) (3.77)
Thus,
Dayg s pseskele s s N
ags:,fpa qu N psaifehe R 6@11; %f +pf8§9 %f (3.78)
Substituting (3.78) into (3.74) and regrouping terms, we get:
< -, 821}/:2@) : DSglzele [p (;/;65 T +pf/8§n8 _ agkeltr(a’)] %sf .
- <p ag;f +pf6fnf +pf77f> %1;0 + 0% [—gradpf +prg] - %ﬁade >0 |

The entropy inequality must remain valid for all possible thermodynamic states. This requirement
restricts the constitutive assumptions in certain ways (Hassanizadeh and Gray, 1990), and can be
interpreted as: the rates can be controlled independently (Coleman and Noll, 1963), such that for

(3.79) to hold,

oY’
a S
pon’ = —p 8—1’2 — ppBIn® + afyytr(c”) (3.81)
ror ol

a0t
prr = —pl =5 —psBm (3.82)
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Thus, (3.79) reduces to:
q - gradf <

20 (3.83)

o <—gradpf +plR ) -

Due to the distinct nature of dissipations, the inequality (3.83) can be decoupled to two inequalities

(Coussy, 2004):

_q-grad9>0

o - (3.84)
oy (—gradpf + prg) >0

The first inequality in (3.84) states that heat spontaneously flows from high temperature to low
temperature, and the second inequality in (3.84) states that the velocity 'f); and the force producing
the velocity £ = —gradpy + pEb/ have the same sign. Darcy’s law is the simplest constitutive

relation which linearly relates ©% and £ (Coussy, 2004) in the form:
o =k (—grad pr+ ot Rg) (3.85)

where the body force b/ is assumed to equal gravity g, k is the isotropic permeability of the fluid,

which must be positive. Let us go back to the first law written for the mixture:

oD% o D%€*  sa o o )
Z <p o % T +h v, —pr +d1vq>—0 (3.86)

a=s,f

Combining (3.54) and (3.86), we derive:

> |0 DZ +r° Df o =0 o+ R v =™ 4 divg® | =0 (387)

R

a:‘gvf

A comparison between (3.87) and (3.57) shows that the same terms (term R in (3.87)) appear in

both equations with opposite signs, together with the dissipation inequality (3.83), we can derive:

aDCl{,l/}O[ o aDae o DO[ECY ~a - . fR
S (g o G o g+ v ) = < (cdn ) (389

a=s,f
Substitution of (3.88) into (3.87) provides the first law written in the form:

(63 Dana oo . o ~5
Z (p HW—p r® 4+ divg >—vf (—gradpf+pr ) =0 (3.89)

a:Syf
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With the assumption

827!)5
90 Deshele — 0 (3.90)
together with the definition:
82w5 Cs
¥ _Z 91
967~ 0 (3.91)

we derive from (3.81):

DS,’,}S B pSCS DSG B Dspf 0 DStr(o./)

s 0 s
= i A 92
Dt 0 Dr S Tpp Tk (3.92)
foUf _ pfcf Dfp B (,nfopf (3.93)
Dt 9 Dt Dt '

where, C* and C* are respectively the heat capacity per unit mass of solid and fluid phases. (3.93)
is in agreement with the conclusion in (Coussy, 2004)( Chap.4, equation (4.53)). Substitution of

(3.92) and (3.93) into (3.89), and use of (3.15) give the balance of energy for mixture in the form:

(pC)mb + prC’g'ch -grad @ — v} - (—gradpy + p'fg) (3.0
0 . . P U estpf_ew, _
+ e O tr(o) + div(g) — pr Ben® + Byn Di B§v% - gradpy =0
For linear isotropic elasticity, (3.94) is then written as
(pC)m — 9K Skd(aﬁkez)zﬂ 0+ p/"CJ o5 - grad 6 — o5 - (—grad py + p'g) .
Ds ~ '
+ 3K°*a0  Otr(é) + div(q) — pr — <ﬁ§ns + B?nf) T]Zf - 5?1); ~gradpy =0

where K** is the bulk modulus of the solid skeleton. The heat capacity density of the mixture
(pC)p = p°C* + p/Ct; the heat source term pr = p*r® 4+ p/r/ ; heat flux vector ¢ = ¢° + q’;
f=

S . .
—Dth , and where, f is any function.
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3.2 Finite Element Analysis

3.2.1 Strong and Weak forms

The strong form of the coupled thermo-poro-elastic problem for saturated porous soils can

be written as follows:

Find u(x,t) € %, ps(x,t) € ISP,
and 0(x,t) € 9, witht € [0,7], such that

oijj +pbi = 0 €N

u; = g only
OiNj = t? on Ft
ui(az,O) = Uy; e Q

Z.LZ',Z'—I-(ZN}?)Z',Z'—( fns—l—ﬁgnf)é—ﬁ?f)?-grad@ = 0 EQf

= gf r
V%3 g on
(5) d (3.96)
—’I’LZ(ZNJ?)Z = S* on FS
pe(x,0) = po €

[(pC)m — 9K () )? 0] 0+ prCgf)ch) - grad

—0F - (—gradpy + pffig) + 3BKkelaf, 0 tr(¢) + div(q)
_pr—( §n8+6§nf)pf_5?f,?.gradpf -0 cq
0 = g onl'y

—nig = q onl,

9(%,0) = b e N

\

where .7% | P and .#? are the collections of trial solution,
S ={u; - QX [0,T] = R u; € H  ui(t) = g*(t) on Ty, ui(x,0) = uio(x)}
S =10:Qx[0,T] =R, 0 H,0(t) = ¢°(t)on Ty, 0(x,0) = Op(x)} (3.97)

P ={p;: Qx[0,T] = R,ps € Hl,pf(t) = gf(t) onTy,pr(x,0) = pyry(z)}
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The symbols Q, T, Ty, Ty, Ty, Ty, g% ¢°, up and 6y are the same as those in (2.68), and Qf
stands for the domain of the pore fluid, I'y stands for the boundary where pore fluid pressure
is prescribed, and I's denotes the boundary of infiltration, and py, denotes the initial pore fluid
pressure. To obtain the weak form or variational form of the strong form (3.96), we choose the
weighting functions as follows:

w(x,t) = du(x,t)

w(x,t) =0ps(x,t) (3.98)

o(x,t) =00(x,t)

where w; € 7%, o € #? and w € ¥? for the variational spaces,

v =A{w; : QO— R w, e H w; =0 onT,}
VP ={w: Q= RweH p=0 onl;} (3.99)

V' ={p: Q—Rpec H ,w=0 only}
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After applying the weighting functions w, w and ¢ to the coupled strong form of the balance

equations respectively, we obtain the coupled weak form as follows:

Find u;(z,t) € £, py(z,t) € SP, and O(z,t) € # such that
/wm agj—wmpfdv:/wi,ogida%—/ w; t da
Q Q Tt

/ wibi,i dv—/ w,i(f}?)i dv—/ w(ﬁg ’I’Ls—|—ﬁ]€nf)9.dv
Qy Qf Qf

—/ wﬁ? (ﬁ?)iaidv—/ wsda

Q s
/gp(pC)médv+/goprcf(fD]l?)iQ,idv—k cp,inijdv
Q Q Q
—/Q@("N’]]?)i [_(pf)n“i‘Pngi] dv+/ﬂ<ﬂ(agkel 0) Gy dv

— fns—i—ﬁenf 1) dv—/ B8 (p idv:/ qda+/ r dv
/Q<P< f > f Q‘P f( f)(f), ¥ QSD (3.100)

q

holds Vw;(x) € #* and n(x) € ¥?

S ={u; QA x[0,T] = R u; € HY ug(t) = g*(t) on Ty, ui (2, 0) = uio(x)}
P = {pp: Qe x [0,T] — R, pr € HY, pg(t) = r(t) on T, pe(, 0) = po(z)}
S =1{0:Qx[0,T]—R,0€ H",0(t) = ¢°(t)onTy,0(x,0) = Op(x)}

VY ={w;: Q— R? w; € HY w; = OonT,}

VP ={w: Q= Rne H w=00nT;}

Y9 ={p: Q=R Ec H p=00nTy}



68

3.2.2 Coupled finite element formulation
Following the same procedure we used for thermoelastic problems, we introduce the following
symbols used in Galerkin’s method:
ul e (s () o
wh e (vt (v
pie (s (N o
(3.101)
wh e (v (v c v,
0" e (S (SN
e (VO (1O e
We assume that all members of (#*)" | (#7)" and (#?)" vanish, or approximately vanish on T,

I’y and I'y, respectively, i.e.,
wl =0 onl,, Yul(x) e (¥*)"
W' =0only, Yu'(z) € (¥/) (3.102)

" =0onTy, Yo' (x) e (¥9)"

Figure 3.2: Discretization into therm-poro-elastic mixed quadrilateral elements.

Fig. (3.2) shows the mixed quadrilateral element, i.e. biquadratic in displacement, and bi-

linear in pore fluid pressure and temperature. Using interpolation functions, we can write the
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h wh and ¢ in terms of nodal values and shape functions as follows:

functions u”, p?, 0", w
uh(g.0) = N°" - df
h o eu e
w (57 t) =N -C
pi(&.t) = N’ p§
(3.103)
h o e,0 e
w (57 t) =N e
0'(6.1) = N0 - 0"
p(Et) = N 5
in which N¢" and N%? are defined in (6.18) and (6.28). The gradients of temperature 8" and pore

water pressure py are written as,

grad 0" = B*Y . 6°

(3.104)
gradp? = B - P
The coupled thermo-poro-elastic finite element equations are written as:
(1) Balance of linear momentum:
el ~
A(ce)T . / (Be,U)T . 0_/ dv _/ (B&u)T . Ne,@ i pjf dv
8:1 e e
fd,int fdp,int
. (3.105)
_ / PN dy + / (N“"T47dq
e Ff
f:f’EZt let,ecvt |
For linear isotropic elasticity, (3.105) is then simplified as
el ~
A / (B)"-D-B - d*dv / 3K 0 (BT N7 (6° — 65) dv
e—1 e e
fdd,int fdG,int
q (3.106)

- / (B™)"- N pdv = / p(N““)"bdv + / (N“)'t7da
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(2) Balance of mass:
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For the linear isotropic elastic problem, (3.108) is then written as
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After element assembly, we arrive at the coupled FE matrix equation in the form:
0 0 0 d FAINT FEXT
KP o KV p; ¢+ | FPINT | =4 FpEXT (3.110)
K@d K@p K@@ 9 F@,INT FB,EXT
in which,
FGINT _ ppddINT _ pdp,INT _ ppd0,INT
Fp,INT — _Fpp,INT _ FpG,INT
FOINT _ pOLINT | p02INT _ pp03INT _ p04INT (3.111)

d,EXT _ +df,EXT dt,EXT
F =F + F

0,EXT _ 720r,EXT 0q,EXT
F =F + F

The Newton-Raphson method is again adopted to solve for this nonlinear matrix equation, we need



to write the consistent tangent as is shown in (2.119) for the saturated THM problem.
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3.3 Numerical examples

3.3.1 Analytical verification
3.3.1.1 Verification against the analytical solution by Bai and Abousleiman (1997)

To verify the saturated coupled TPM FE model, results are compared with the analytical
solution provided by Bai and Abousleiman (1997). The height of the column is 0.3 m and the
radius is 0.1 m as shown in Figure 3.3. Initially, the homogeneous temperature is 50 °C'. The
boundary conditions are: the lateral surface at r = 0.1m is fixed in u,, and the bottom surface is
fixed in u,; the top of the column is drained boundary (p,, = 0); the other surfaces are imperme-
able and adiabatic; the temperature is prescribed to be 0 °C' at the top; traction (¢7) is applied
on the top surface. To compare with the analytical solution (Bai and Abousleiman, 1997), the
gravity acceleration is turned off in the TPM model. The selected parameters, with respect to
the mechanical, thermal and hydraulic categories are listed in Table 3.1. Figure 3.4 illustrates the
response of temperature, pore fluid pressure and displacement during the thermal consolidation of
the column. The comparison shows a good match. The temperature variation at the bottom of
the column is identified as shown in Figure 3.4(a). Figure 3.4(b) illustrates a similar dimensionless
pore fluid pressure (p,,/t?) distribution in both results. Since the gravity acceleration is turned off,
the pore fluid pressure arrives at steady state with p,, = 0. The top displacement arrives at steady

state (d, = 18mm) after the consolidation is complete, as shown in Figure 3.4(c).
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Figure 3.3: 3 element mesh for saturated non-isothermal consolidation

Table 3.1: Verification of saturated TPM model against an analytical solution by Bai and Abousleiman
(1997)

Parameter Symbol  Value Units
Thermal expansion coefficient of solid o 1.65x107% m/(m- K)
Thermal expansion coefficient of fluid o 2.07x 107 m/(m- K)
Specific heat capacity of solid C, 703 J/(K - kg)
Specific heat capacity of fluid Cy 4180 J/(K - kg)
Thermal conductivity of solid K’ 1.38 W/(m - K)
Thermal conductivity of fluid K ? 0.6 W/(m- K)
Mass density of solid PR 3696 kg/m3
Mass density of fluid pl 1000 kg/m3
Intrinsic permeability K 1.0x 10714 m?

Lamé parameter Askel 7.05 x 107 Pa

Lamé parameter Hskel 4.7 x 107 Pa
Traction on top to 1 x 107 Pa

Initial porosity ng 0.42 m3/m?3

Viscosity of fluid (water) fhf 0.001 Pa-s
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Figure 3.4: (a) Temperature of the bottom. (b) Pore water pressure of the bottom. (c) Displacement of
the top.
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3.3.1.2 Verification against the analytical solution by Booker and Savvidou (1985)

The thermo-poro-elastic model is verified against another analytical solution by Booker and
Savvidou (1985) regarding thermal consolidation of saturated soil due to a deep-buried cylindrical
heat source. Figure 3.5(a) shows the geometry of the cylindrical heat source, which represents the
orange part in the finite element mesh shown in figure 3.5(b). In the finite element analysis, initial
temperature of the soil is uniform, i.e. 6y = 20°C; with gravity ignored, the initial pore water
pressure is set to zero. Since the heat source is buried deep enough that the boundary effect at
the soil top is negligible; in finite element analysis, Dirichlet boundary condition is assumed, i.e.
prescribed temperature § = 20°C' at the soil top. Traction is not applied at the soil top. All the
surfaces except the top are fixed in normal directions. The comparisons between modeling results
and analytical solutions are presented in figure 3.6 in terms of normalized temperature (6/0y) and
normalized pore water pressure (Py/Py) at three different radii, i.e. r = 79, r = 2r¢, and r = 5ry,
and good agreement is obtained. Note that 0 denotes a maximum value that temperature reaches
at the midpoint on the surface of the cylinder; Py denotes a maximum value that pore pressure
could reach at the midpoint on the surface of the cylinder if the soil was impermeable; T denotes

the dimensionless time given by T' = xt/72.
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Figure 3.5: Thermal consolidation of saturated soil around a cylinder heat source with analytical solution in
Booker and Savvidou (1985): (a) schematic of the cylinder heat source. (b) FE mesh used in the axisymmetric
coupled saturated TPM FEA.
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Figure 3.6: (a) Variation of temperature with time. (b) Variation of pore pressure with time. In the legends,
“A” represents the analytical solution from Booker and Savvidou (1985), and “M” represents the modeling

results using the saturated TPM model.
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3.3.2 Comparison between TPM model and poro-mechanical (PM) model

This section shows that the Thermo-poro-mechanical (TPM) model can be reduced to be a
Poro-mechanical (PM) model by setting the temperature change prescribed on the top surface to
zero. Figure 3.7 shows the geometry of the soil column, with the height of 3 m and the radius of
1 m. The domain is discretized to ten elements to analyze this axisymmetric problem. For two
models, the initial homogeneous temperature is 20 °C'. The boundary conditions are assumed to
be: impermeable for the lateral and the bottom surfaces; the lateral surface has fixed displacement
in 7 direction, and the bottom surface has fixed displacement in z direction; the pore fluid pressure
is held at zero due to the saturated condition; traction is applied on the top. For the TPM model,
all the lateral and bottom surfaces are adiabatic. All parameters adopted in the two models are
the same except for the thermal parameters that are only used in the TPM model (see Table 3.2).
The process is: first, ramp up the gravity acceleration from 0 to 9.18 m/s?, and keep it constant
for the rest of the time; second, ramp up the traction from 0 to 90 kPa, and keep it constant for
the rest of the simulation time. The variations of displacement and pore fluid pressure with depth
in Figure 3.8(a) and Figure 3.8(b) show a good agreement between the reduced TPM model and
the PM model. Figure 3.8(c) shows that the final pore fluid pressure arrives at the hydrostatic

distribution.

Table 3.2: Constant parameters used in the comparison between TPM model and PM model

Parameter Symbol  Value Units
Thermal expansion coefficient of solid a? 3x107° m/(m - K)
Thermal expansion coefficient of fluid afc 2.07 x 1074 m/(m - K)
Thermal expansion coefficient of skeleton Y, 8.7x107° m/(m - K)
Specific heat capacity of solid Cs 870 J/(K - kg)
Specific heat capacity of fluid Cy 4180 J/(K - kg)
Thermal conductivity of solid KY 5 W/(m - K)
Intrinsic permeability K 1.326 x 10714 m?

Lamé parameter Askel 2.9 x 107 Pa

Lamé parameter skel 7 x 109 Pa
Traction on top t7 9 x 104 Pa

Initial porosity no 0.38 m3/m?

Viscosity of fluid (water) oy 0.001 Pa-s
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Figure 3.8: (a) Comparison of top displacement between TPM and PM models. (b) Comparison of pore
fluid pressure at near top, middle and bottom between TPM and PM models. (¢) Comparison of final pore
fluid pressure distribution between TPM and PM models.
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3.3.3 Comparison between TPM model and thermo-elastic (TE) model

This section shows that the Thermo-poro-mechanical (TPM) model can be reduced to be
thermo-elastic (TE) model by setting the degree of freedoms (DOFs) of pore fluid pressure (ps) to
zero. Figure 3.9 shows the geometry, with the height of 0.3 m and radius of 0.1 m. The domain
is discretized to ten elements to analyze this axisymmetric problem. For two models, the initial
homogeneous temperature is 20 °C. The boundary conditions are assumed to be: no heat flux
for the lateral and the bottom surfaces; the lateral surface is fixed in r direction, and the bottom
surface is fixed in z direction; there is no traction on the top; and a temperature increase of 20 °C' is
prescribed on the top. For this case, the gravity is set to zero. For the TPM model, the pore water
fluid pressure is set to zero initially, and all the lateral and bottom surfaces are impermeable. All
parameters adopted in two models are the same (see Table 3.3) except for the hydraulic parameters
only used in the TPM model. p; will not be calculated in the reduced TPM model in which the
DOF's of p; are set to zero. The comparison of temperature and displacement of the chosen elements

in Figure 3.10 shows a good agreement between the reduced TPM model and the TE model.

Table 3.3: Parameters used in the comparison between TPM model and TE model

Parameter Symbol  Value Units
Thermal expansion coefficient af, 11.7x107% m/(m- K)
Specific heat capacity Criz 1400 J/(K - kg)
Thermal conductivity K¢ .. 0.817 W/(m - K)
Mass density Pz 2500 kg/m3
Lamé parameter Askel 2.9 x 107 Pa

Lamé parameter Hskel 7 x 108 Pa
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Figure 3.10: (a) Comparison of temperature between TPM and TE models. (b) Comparison of displacement
between TPM and TE models.
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Chapter 4

Partially saturated thermoporomechanics

In many processes, several fluids, such as two liquids or liquid and gas coexist in the pore
space, so that the porous media is called partially saturated with respect to a reference fluid of
main concern, usually chosen in liquid form (Coussy, 2004). This chapter introduces the thermo-

poro-mechanical (TPM) coupling effects of partially saturated porous media, specially for soil.

4.1 Governing equations

Partially saturated porous media can be treated as a three-phase mixture, i.e. solid phase,
liquid phase and gas phase. For soils, a water phase includes liquid water and air dissolved in water,
while the latter is ignored in this thesis. The gas phase includes two constituents, which are water
vapor (gv for “gas vapor”) and dry air (ga for “gas air”). Therefore, the partially saturated soil is
composed of four components, i.e., solid (s), liquid water (w), water vapor (gv), and dry air (ga).
I refer to Coussy (2004); de Boer (2005); Lewis and Schrefler (1998) to formulate the governing
equations using mixture theory at small strains of the solid skeleton (skel).

Similar to the saturated case, the governing equations include balance of mass, balance of
linear momentum, and balance of energy, and are derived for each constituent. Phase change
(vaporization) between liquid water and water vapor is considered through the latent heat. There
are several possible combinations of primary variables that can be chosen (Lewis and Schrefler,
1998) for the partially saturated case. In my thesis, I choose the solid skeleton displacement w,

the temperature of the mixture 6, the pore water pressure p,, and pore gas pressure p, as the four



86

primary variables to solve using nonlinear finite element analysis.

The notation used is as follows: the volume of the mixture is v = v + vy, + Vg, Vg = Vgp + Vgq
and the corresponding mass of the mixture is m = my + m,, + my . The differential mass of «
(a = s,w,g) phase is written as dm, = p®*dv, , in which, p®f is true mass density, and volume
fraction of a phase n® = dv,/dv. Hence my, = p®fn®dv. p® = n®p®% is defined to be partial mass

density of o phase. One can show that,

p+p +p?=p (4.1)
n*+nY+nd=n"+n=1 (4.2)
dv dv
w__ 7w, g 279
il T (4.3)
Avyoig = dvy, + dug (4.4)
n n® dvy,

w _ — = — 4-
& n n® 4+n9  dvuyed (4.5)
n" =nSy, ,n? =nSy , Sy + 5 =1 (4.6)

o dvy, dvg (4.7)

y Pg —
dvvoid dvvoid

where n is porosity, Sy, is the degree of water saturation, and S, is the degree of gas saturation. p

is the density of the soil mixture.

4.1.1 Balance of mass

The balance of mass for a partially saturated soil is similar to the balance of mass equation
for the saturated condition, except that we need to consider the mass exchange term p® for partially
saturated condition. The balance of mass for each constituent a(a = s,w, ga, gv) is the same as
(3.11), and the local form is:

DOépOé
Dt

+ p® dive, = p* (4.8)

where p® is the mass supply from the other phases per unit time per unit volume. Assuming p° =
p9% = 0 (i.e., no dry air is convected from other constituents, and no solid is precipitated from other

constituents), and —p" =p9= p9”, where, p9 is the quantity of water lost through vaporization
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per unit time per unit volume, which is positive. Writing the balance of mass equations for four

constituents separately: for solid (s):

DSpS
Dt

+ pdives =0

for water, (the air dissolved in water is ignored):

Dw w
ot divey, = —p”
for water vapor (gv):
DIV gV
Df + 9 divog, = O
for dry air (ga):
Dy p9a
Dlt) + p?*divug, =0

(4.10)

(4.11)

(4.12)

Using p® = p®fn®, and assuming the solid and water are mechanically incompressible (i.e., constant

p*® and p*F), but allow thermal expansion (see (3.20) and (3.21)), we write (4.9) and (4.10) in the

form:
Dsn® D50
DZ + n’dive, = ﬁf n’® or;
D¥n¥ w e o o»DY0  pT
Dt +n le’Uw:BwTL E_pw—R

Use of (3.15) allows us to write (4.14) in the form:

Dsn®
Dt

D*0
Dt

P
pr

+ n*dive, 4 gradn® - o, = 7 n* + B2 n¥gradf - v, —

Substitution of n* = n.S,, into (4.15) gives:

D*Sw . Dn .- o D%, o
nw+5wﬁ+dlv(n Vy)+ 1 dlvvs—ﬁwnSwﬁ—l—ﬂwnSwgradﬁ Vo —

Use of n®* =1 —n in (4.13) gives the expression:

D*0
Dt

D®n
Dt

= (1 —n)divo, — 8% (1 —n)

pr

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)
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Substitution of (4.17) into (4.16) yields the balance of mass equation for liquid water:

D9 DS, I

Sypdivw, — Sy [(1—n)B + nﬁfv] o7+t divel) — Blgradd -5 = e CRL)
With the temperature dependent definition of real mass density of water,
p = e |1 - 5,0 — 00) (4.19)
one can derive,
pVEdiv ol — pvE0 grad 6 - o2 = p*Bdiv oL + grad(p®F) - 9L = div(p*F oL) (4.20)
Thus, (4.18) becomes:
pPlS, divu, — pvTS,, | 89(1 —n) + n@i] %sf - anR%iw +div(pWt o) = —pv  (4.21)
where Y = n®(v, — v,) is the filtration vector associated with fluid constituent a (a = w,g)

(Coussy, 2004).
The gas phase is composed of two different species, which are dry air (ga) and water vapor (gv),
which are miscible, so that they share the same volume fraction n9 = nSy, where, Sy =1 — S,,.

Thus the partial mass densities of the water vapor and dry air are expressed in the form:
Pt = nIpvh (4.22)
9% = ndpIelt (4.23)
The ideal gas law is applied to the gas phase, such that the real mass density functions are written

in the form:

pgva

R —

p R (4.24)
gaR — pgalua 4.9
P OR (4.25)

where pg, and p,, are pore pressure of water vapor and dry air, respectively, M, and M, are molar
mass of constituent water and air, and R is the universal gas constant. The real mass density of

the gas phase is simply the superposition of its two components:

pgR — pgaR _|_png (4.26)
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According to (4.24) we have

Dt R \6 Dt 62 Dt
_ pgMy < 1 D%pg, 1D9”6>

R \py Dt 6 Dt

DR ), <1 D%p,, 1 ng9>

_ R <Ii Dg;fgv _ %D;?) (4.27)
Substitute (4.27) into (4.11), and divide p9*® on both sides, we get:
Poi ot o (o Ee G < a2
Use
D7(e) _ D) | grad(e) - 5,0 (4.29)

Dt Dt

and substitute nY = nS,; and (4.17) into (4.28), we can obtain the balance of mass equation for

water vapor:

n1 D6 DsS,

S,divo, — S, [55(1—n)+5 57 g +diveg, o
1 . n9 D%p 1 i 59 '
— —oradf - 0P + — 9 1~ orad P = 2
egra Vg, + Y + pgvgra (Pgv) O P
where 133) = n9?y,. Use (4.24) to obtain:
D%0 ngng D5 D3 guR
—pRg D L Pov — g, =L 4.31
P D T D Y Dy (4.31)
g
and,
guR guR
IR div fzg) _P 7 grad 6 - 'Tjg) + /;—gradpgv . f;g)
gv (4.32)

=p? M div o], + grad(p?") - v, = div(p?" 5]

Thus, (4.30) becomes:

D6 DsS, D3 p9vi
R . R 0 R
p?"Sydivog — p?"S B (1 — n)ﬁ + np?? Dtg +nSy i

+div(p R o) = 7 (4.33)

Combining (4.21) and (4.33) allows us to write the balance equation of mass for water species

(liquid water 4+ water vapor) as follows:
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| D*6
(0" S0+ p S )div v, — (1 =) (0" S + p8,) B0 + mp 5,8 =

- o (4.34)
(" = p") = A Sy + div(p™ g, + 0" 8) = 0

We follow the same procedure as we used to derive for water vapor to obtain the balance of mass

equation for dry air:

D6 DsS
Sydivv, — Sy | B0 —n) + 5] == + 02 + dival,
01 Dt Dt g
(4.35)
_ gradb ol 7 Dbga + L rad o =0
6 U pga Dt pget e P =
Use (4.25) to obtain:
n D0 n9 D’py, S, D3 p9ak
s =74 7 = 4.
STy Pea Dt piR Dt (4.36)
and,
. .p gradd _p 1 -p 1 4R =D
divog, — 7 Vg + @gradpga Vg = P div(p?* ™ vy,) (4.37)

Substitute (4.36) and 4.37) into (4.35) and multiply by p9*F on both sides to get the balance of

mass equation for dry air as follows:

D36 DspgaR DSS

a 3 a 0 a w . a ~

pg RSQdIV Vs — pg ngﬂs(l - n) Dt + nSg Dt - npg RW + le(pg R’Ug;) =0 (438)
4.1.2 Balance of linear momentum

Let us follow the same procedure as the one we used for saturated condition. If we substitute

(4.8) into (3.27), and ignore the acceleration of gravity a,, we have:

DOC
E/Qpavadv:/ﬂﬁavadv (4.39)

Substitute (3.31) and (4.39) into (3.25), we arrive at the local form of the balance of linear momen-

tum equation for constituent o:
V-o®+ p®b® + h" = j"v, (4.40)

where o is the partial stress of the a phase, 0® = n%0o ; and the total stress is: ¢ = 6+ 0" + 09,

b“ is the body force vector per unit mass of « phase, which we assume is equal to acceleration of
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gravity: b = b = g; p®v,, is the contribution to momentum of constituent a due to mass exchange
with other constituents; h” is the internal body force drag of other constituents on constituent c,

where

> h*=0 (4.41)

a=s,w,g

According to de Boer (2005), > (p%v4) ~ 0. Thus, the balance of linear momentum equation for
the partially saturated mixture looks the same as that for saturated condition, except that the

effective stress equation is different, and mass density includes more terms.

div(o) + pg =0 (4.42)

4.1.3 Energy conservation
4.1.3.1 1st law of thermodynamics
The first law of thermodynamics written for constituent a (de Boer, 2005)

EY 4+ K= PY4 Q%+ / é“dv (4.43)
Q

where B¢, K@, P* Q% and é* are the same as those in (3.35). With the balance of mass equation

(4.8), (3.43) is written for partially saturated condition in the form:

. . . DOC (0%
EY 4 K* = / {ﬁa (”a;’a +ea> + Di } dv (4.44)
Q

Substituting the balance of linear momentum (4.40) into (3.45), we get the expression of the input

power on « constituent:

D%e” -
P = / [0'0‘ i (p%vq —h ) 'va] dv (4.45)
Q

The rate of heat supply Q is:
Q% = / (p*r® —divg®) dv (4.46)
Q
Substitution of (4.44), (4.45), and (4.46) into(4.43) allows us to write the local form of the balance

of energy equation for constituent c:

Da (6% DOC (0% N 1
o D: o : Di +h" v, — éﬁo"va cVo — POt + divg® + p%e* —é* =0 (4.47)

p
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Summing up (4.47) over a = s, w, g, and with the assumption (de Boer, 2005):

> =0 (4.48)

a:S7w7g

we get the balance of energy equation for the mixture in the form:

DOC (0% Da (0% N 1
Z <pa Di —o%: Dj + A v, — Eﬁava cV — pYrY + divg® + ﬁaeo‘> =0 (4.49)

a=s,w,g

4.1.3.2 The second law of thermodynamics

The entropy inequality for constituent « of a partially saturated porous media is:

D para qa ‘n
— “n%dv > dv — d 4.50
Dt /Qp T av —/Q fo v /89 gor @ ( )
Using (3.8) and the balance of mass equation (4.8), we obtain:
= [ o= | = 0 d 451
Dt/ﬂpnv/ﬂp D v+/ﬂpnv (4.51)
Applying the divergence theorem, we derive:
q“-n divg® q%-grad 9‘“}
da :/ [ — dv 4.52
fo e [ [ ~ 452

Substitution of (4.51) and (4.52) into (4.50) gives an expression of the entropy inequality in the

local form:

«

D%n
Dt

(e}

g% -grad 0«
[ALes

pe” + N0 — p®r® + div(q®) >0 (4.53)
In order to consider the liquid-vapor phase change, the Gibbs potential ¢/ is introduced for the
fluid constituents:

o' =vf =070, f=w,gv,ga (4.54)

The internal energy per unit mass is in turn expressed as:

p
of = pf — /ﬂ”_];% (4.55)

where 1/ is the Helmholtz free energy per unit mass, and py is the pore fluid pressure. Combining

(4.54) and (4.55), we can relate e/ and g/ in the form:

p
ef = gf 4 gipf — pf—éz (4.56)
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and the material time derivative of internal energy:

Dfef:Df9f+9fo77f+nfo9f inpf ps DI pIR

_ 4.57
Dt Dt Dt Dt pff Dt (pfR)2 Dt (4:57)
According to pf = nfpr, we get:
DS of Df ofR DI ntf
LAY el AR el (4.58)
Dt Dt Dt
Combining the balance of mass equation (4.8) and (4.58), we have:
Dt nf \ Dt Dt
1 . . RDfnf
= 7 <—Pf div(vy) + p! — p/ Dt
»f IR Dipf
— B po_p 4
p’tdiv(vy) + F " oF Di (4.59)
Substituting (4.59) into (4.57), we get:
!
pfng _ prfef _prfgf _pfnfoef Py
Dt Dt Dt Dt Dt
- i —p/Bdiv(vy) + ﬁ—f - pf—R Dlnt
(pfF)2 Y Y Y
!
_ prfef _prfgf —pfnfoef —i—nfD ps
Dt Dt Dt Dt
DI nf
Ipsdiv(vy) — L& pf 4.60
+npdiv(og) = 2! + (4.60)
From the balance of energy (4.47) with o = f, we get:
D' D'ef 1 X
f—Djf =0l —DE —plel + §ﬁf'vf v — A vp—div(g)) + pfrf + & (4.61)

f

Substitute (4.61) into (4.60), and then substitute the expression of p/@/L2 ;? into the entropy

inequality (4.53) with a = f, we have:

Dfef 1 R D of
o-f:Ti—ﬁfef—l—iﬁf'vf-vf—hf-vf—d' ol el —prf
D7 of D' p DI nf
_ It f oyl edi _ Pf f 5fnfof 4.62
P +n Dr +n'ppdiv(vy) prp +py i +p'n’0 (4.62)

I orad 6
. q gra
+d —p°r —TZO
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where terms in [ | are from (4.61), and where, according to (3.69),

Dfef
Dt

ol : = —n'psdiv(vy) (4.63)

so that, o/ : le)ff and n/psdiv(vy) in (4.62) will cancel each other out in (4.62). We introduce

the definition of enthalpy per unit mass:
b
H® = e + pa—o‘R (4.64)
Let us combine the following two terms in (4.62), and with (4.64), we derive:
el ~ P s i (of L 2L — iyt
—pe—pf—Rp =—p (e +pf—R>—— H (4.65)

where Hf is the enthalpy of fluid constituent per unit mass, and is written in terms of the Gibbs

potential g/ and the entropy of fluid in this way:
ol =gl +nlef (4.66)
With (4.66), the term pf1/67 in (4.62) can be written as:
pin’6l = pl (H —g7) (4.67)
Combining (4.65) and (4.67), we obtain:
plnlel — plel — p% o= —plgl (4.68)

According to Coussy (2004)(chapter 6), the local thermodynamic equilibrium between the liquid

water and water vapor requires their Gibbs potentials to be equal:
9" = g% (4.69)

Since p* = —p9Y, we have

P9+ 79" =0 (4.70)
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Let us apply (4.62) to the liquid water, water vapor, and dry air, and sum up the three inequalities
to get the entropy inequality of the fluids:

o f 1. . Dfgf Dol
D A A A T T
f:wvgvvga (4'71)
fopf Dinf B q’ - grad 9/

Dt Dt of

+n + py

According to Coussy (2004), the Gibbs potential of fluid gf (pf,Hf ) depends on the pore fluid
pressure py and the temperature of the fluid 67, thus the material time derivative of g/ is written

in the form:
ngf B 8gf Dfpf agf Dfof

Dt dpsy Dt 967 Dt (4.72)

Substitution of (4.72) into (4.71) gives an alternative expression of the entropy inequality of the

fluid phase in the form:

- 1. . dg/ DIp; ;997 DIG7
_i. Lo f_ p99 Ppy  p0g9 D707
Z_ [ VISP P D 967 Di
e fof f fnf ol f (4.73)
gt PO gDy DI g gradfl)
Dt Dt Dt of =

Similar to the saturated condition, we adopt the Helmholtz free energy per unit mass ¥° for solid
phase:

v =e®—6°n’ (4.74)
Thus, the material time derivative of ¢* is written in the form:

Dsws B DSeS DSTIS SDSGS

— ¢ - 4.75
Dt ~ Dt Dt " Dt (4.75)

From the balance of energy (3.47) with o = s, we get an expression of p“’% in the form:

s Dse? s Dse 7S : s 5.8 | 28
P =% —h v, —div(q®) + p°r° + ¢ (4.76)
Combining (4.75) and (4.76), we have:
DS S DS S ~g DSGS DS S

P s 2 R u, — div(g) + it 6 — pirpf —p° L4 (4.77)

Dt " Dt Dt Dt
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The total stress tensor o is written as the sum of the partial stress tensors of each phase: o%“, o9,
and o° (de Boer, 2005; Coussy, 2004) (ignoring viscosity for water and gas):
oc=0c"4+0%+0° (4.78)
o’ = —n"p,1 (4.79)
o9 = —np,1 (4.80)
A combination of (4.78)-(4.80) provides:
o =0+ (n"py +nIpy) 1 (4.81)

The relationship between the total stress tensor and the effective stress tensor is written as (Bishop
and Blight, 1963)

oc=0-p1 (4.82)
where o' is the effective stress tensor, and p is called averaged pore pressure, which is defined as:
p=(1=x)pg + xPuw (4.83)

where x is the effective stress parameter (x = 1 for saturated condition with water; x = 0 for dry

condition). Combining (4.81)-(4.83) gives:
0% =o' +[9 — (1 X)] pgl + (1° — x)pul (4.84)

Therefore, substituting (3.63) and (4.84), we derive:

S .S
s D’e

g .

_O-I.Dses
Dt ' Dt

+{[n? — (1 = x)]pg + (" — X)pw} div v (4.85)

Let us revisit the definition of the total strain of the solid skeleton (3.65), we have:

o . D3es B 0_/ . Dseskel,e N ae tr(a./) D503
"Dt Dt shel Dt

{0 = (1 =Xl pg + (n* = x)pw} dives  (4.86)

Setting o = s, and p® = 0 in (4.53), we write the entropy inequality for the solid skeleton:

S

Dsn
Dt

S

S . deS
p°0° — p*r® + div(g®) — % >0 (4.87)
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Substitution of (4.86) into (4.77), and then (4.87) is written as:

/

[o

Dseskel,e D303 ) s
’ B = (1= ]pg + (0" = x)pu} dive, — b - vy
(4.88)

0
Dt + askeltr(al)
DSGS DS S S . d 98
—divlg )+ + & — py 5 — ' sz vl =77 - LEE 0

Let us derive the internal force drag term ﬁa, and recall

=0 (4.89)

From the balance of linear momentum equation (4.40), we derive for water and gas phases:

~ W

h = —div(e®) — pb+ p" vy (4.90)
R’ = —div(a?) — p“b + v, (4.91)
in which, according to (3.72):
div(e") = —py grad(n®) — n® grad(py) (4.92)
div(@%) = —p, grad(n?) — n? grad (p,) (4.93)

A combination of (4.89), (4.92) and (4.93) allows us to write:

hw-vw+ﬂg-vg+ﬁs-vs

AW ~q

:ﬁw-'vw—i-flg-vg—(h +h) - v,

=h" (v, —v,)+ R’ (vg — vy)

= [pw grad(n™) + n" grad(py) — p*b + p vy - Uy (4.94)
+ [pg grad(n?) + nf grad(py) — p?b + pPvg] - T,

=L - [grad(p.) — p“7b] + ¥ - [grad(p,) — p?"b]
+ Puly - grad(n®) + pyv, - grad(n?) + pYvy, - 0y + plvg - U4

From the balance of mass equation for solid (4.13), we have:

1 D*n® _,D%6*

div('vs):_ﬁ Dt +5s Dt

(4.95)
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According to Coussy (2004), a simpler functional dependence of the Helmholtz free energy per unit

mass for the solid skeleton is postulated to be:
U = (e, 0,5,) (4.96)

so that,
Dsws - 81/18 Dseskel,e 81/18 D393 81/18 DSSw

— 4.
Dt Oeskele Dt 005 Dt 0S, Dt (4.97)

Substituting (4.95) and (4.97) into (4.88) to get entropy inequality for solid, and then combining

that with (4.73) and using (4.94), we arrive at the entropy inequality for the mixture:

¢8 (/] / ] 0 g w Do
{ P 90 + askeltr(a ) —pn + 3as [(TL +X— 1)p9 + (’I’L o X)pw] E
aws Ds skel,e 1 " DSns
i (" o aeskele> o |77 X = Ly - (0 = X)pul 5
R1
B sOU® D38 w (e D¥py w 09" . D™0
P 95, Di =t apw Dt P TP ) o
agg D9p dg9 Do
9 _ 2Py 999" i (4.98)
+<" apg> Dt <p o9 TP ) Dt
q-gradf

— 135 . [grad(pw) — prb] — ’lNJ? . [grad(pg) — pgRb] —

B ~ D¥Yn¥ DIn9
— Py - grad(n®) — pyv, - grad(n?) + py, Dr +pyg Di

o

R2

. - . - 1, 1,
—pwvw-'vw—pgvg-'vg+—pwvw-vw+§pgvg-'vg20

2
where ¢ = ¢° + q¥ + q7, 6 = 6° = 67. Use of (3.15), and n® = nS,,a = w, g, allows us to write

the terms called R1 in (4.102):
Dsn" Den9

R1 =py, + Py
Dt gﬁn Do (4.99)
w
= (prw +pg5g) ﬁ - n(pg - pw)ﬁ
We introduce the definition of suction s:
5 =Dy — Puw (4.100)

If we use x = Sy, (Bishop and Blight, 1963) and n® = 1 — n, the terms called R2 in (4.102) is

written as:
D*n

R2 = (—pySw — pgSg)D—t

(4.101)
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It is straightforward to see that (4.101) will cancel the first term in (4.99). Substitution of (4.99)

and (4.101) into (4.102), we obtain:

a S Dse
{_ps awe + alyetr(a”) = p*n® + B [(n? + x — Dpy + (0" — x)pw]} Dt

Dt
ws . Dseskel,e aws D5S
4‘< "aewde ‘T Di R o

., 209"\ D¥py (09" |\ D"
P o Dt P90 TP ) Dy
dg9\ D9p 0g9 D96
g _ 9 9 g_J g, w | — -
+<n r 8pg> Dt (p og P > Dt

— o, - [grad(py) — p""b] — 3] - [grad(p,) — p*"'b] —

(4.102)

q - grad @
0

R . R . . 1.
— PPy - Uy — PTG Vg + PV -V F ipg'vg-vg >0

2
Again, the thermodynamic arguments (Coleman and Noll, 1963) are adopted to obtain the consti-

tutive relations with respect to solid skeleton and fluids, respectively.

For solid skeleton:

oY*
o' = p aeskel e (4103)
Pt = —p* 5@ + algertr(e”) + B2 (07 + x = pg + (0" = x)pul (4.104)
ns = —p° g;pw (4.105)
For fluids, f = w, g

g’

f—_Z7
n 5 (4.106)

f f

1 _ 9 (4.107)

ol pIR Opy
Coussy (2004) arrives at the same conclusion as (4.105), (4.106) and (4.107). (See Chapter 6, Page
156 and Chapter 3, Page 39). Thus, the reduced form of entropy inequality of the mixture is
expressed as:

q - gradf

ob. [—grad(pw) —I—p“’Rb] [ grad(p )—I—pgRb] - 7
(4.108)

1, 1.
=Py - Uy + ipgvg-'vg >0

w - . -
—p vw-vw—pgvg"vg—kz
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According to the postulate by Coussy (2004), two inequalities can be derived from (4.108) as follows:

q- gradf
0

2 |—grad (pu) + o] 2 0

>0

(41

vy {—grad (pg) +prb} >0

Combining (4.60) and (4.72), we get:

f
Dt dpy Dt o0f Dt Dt Dt
Dfp Dfnf
_nf f_ Py .y
nf = = nlpsdiv(vs) + SR Py
_ pfi?gf ot Dfpf Z?gf Dfo/
apf 89f Dt
DIyt DI ntf
fof —nfordi Pr of
0 5y —prdivivs) + 50— pi—
Use of (4.106) and (4.107) allows us to reduce (4.112) to
DI ef Df nf Dfnt
f — fpf =1 Fpedi Pr o5
P =Y prdiv(v) + 5P = prp,
Combining (4.75) and (4.97), we get:
DSes s Dseskel,e o D5O* o’ DS D5ns D563
Dt Odeskele Dt 005 Dt oSy Dt Dt Dt

(4.109)
(4.110)

(4.111)

(4.112)

(4.113)

(4.114)

Substitution of (4.113) with f = w, g, (4.114), 4.63, (4.86) as well as (4.94) into (4.49), we arrive

at:
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p“’@D;;:Zw —n"pypdiv(vy) + ;ZU—wRﬁw — Duw D;?w
+ pg@Dlg)?g — npydiv(vg) + ;—gRﬁg — Py D;?g
s s skele s s s s 8,8 s
+7 (oo * 30 o %, o O )
~ot: DO (o) 2~ (100~ (1l + (0~ X)pu} v —

+n" py dive,, +n? pg dive, + ol [grad(pw) — prb] + 'T)? . [grad(pg) — pgRb}

+ Puwy - grad(n') + pyvg - grad(n?) + pY vy, - Uy + plvg - Uy

1
- Eﬁwvw-vw — =pvg vy — pr+divg + p¥e" 4 ple? =0

DO —

in the above equation, some terms cancel out in the following way:
—npydiv(vy) — npydiv(vg) + n® py, dive,, + nf pgy dive, =0 (4.116)

and use (4.64) gives

_ (o - B (4.117)
= p7" Hyap

where, H,qp is called enthalpy of vaporization, or latent heat of vaporization, Hyq,, =2260kJ/Kg.

Comparing to (4.99), we get

D% n% DIn9 5 N
— Pw oo Py n + PwUw - grad(nw) + pgvg - grad(ng)
Dt Dt
(4.118)
— (puS Y2 4 n(py — )%
== (Pw 929) "y Pg — Pw Dt

using (4.95) and (4.101), we have

—{[n? = (1 = x)]pg + (n" = X)pw} divvs

= {9 — (1= )] py + (1" — X)pu) (— LD 9”)

— 4.11
ns Dt + 5 Dt ( 9)

D?9

=(puSu 7757 = — B[ = (1= )] Py + (0 = pu} -
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The first terms in (4.118) and (4.119) cancel out. Substituting (4.117) (4.119) into (4.115), we

arrive at:
Dw nw Dw,’,}w Dg,’,}g aws Dssw aws , Dseskel,e
vg wg 99 s s AT A
P Dt e Dt e Dt + [ns e 0S, | Dt + deskele — 7 Dt
s D0
+ {psW — aQertr(a’) + p"n° = B2 [(n? + x — L)pg + (n® — x)pw]} 0T

+ o2 [grad(pw) — prb] + 'TJ? - [grad(pg) — pgRb] + 00y - Oy + pvg - Dy

1 1
— =Py Uy — §ﬁg’Ug ~vg — pr+divg + p? Hyqp =0

2
(4.120)
Use of the conclusions (4.103)-(4.105) provides:
DST]S Dwnw Dgng ) .
p°0 Dt + p"0 Dr + p?0 Dy~ PT + div g + p9 Hyap
1 1 - . N
— Eﬁwvw SV — 5[’)91)9 Vg + PPy Dy + vy - Vg (4.121)
+ 135 . [grad(pw) — prb] + ’lNJ? . [grad(pg) — pgRb] =0
Introduce the definition of the heat capacity
D#p® D#* D¥nv Dvov DIn9 D969
505 = 50" . wHw = pvov . 909 = 909 4.122
PP "o =P e PV e TP Dt "7 Dt TPV Dt (4.122)

where, C%, C" and CY are the heat capacity per unit mass of solid, water and gas phases. Thus

we can rewrite (4.121) with the derivatives expressed in terms of the motion of the solid phase:

D0 - - .
(P C)m Dr T pUBC oL - grad 6 4 prCY 'vf]) -grad  — pr + divg
1 1 - R -
+ 7" Hypap — §ﬁwvw SV — 5/59129 Vg + PV - Dy + Vg - Dy (4.123)

+ 0, - [grad(pw) — p"7'b] + o, - [grad(py) — p?"b] = 0
where (pC)y = p* C% + p¥ O + p9 9. Tt is easy to see the unit of each term in (4.123) is W/m?>.
The expression of the term p9” can be obtained from the balance equation of mass for liquid water

(4.21).

4.1.4 Summary of governing equations

We summarize the four governing equations as follows: Balance of linear momentum:

dive + pb=10 (4.124)



Balance of mass for water species (liquid water and water vapor):

. D50

(0750 + RS, )div v, — (1 =) (0" RS, + RSB + np S, 65 Dt
DsS DSPQUR i - ~

T 2R s L i, ) <

Balance of mass for dry air:

D%0 D3 gaR D3 w ~
T, +nSy P npgaR—S + div(p?*f o) =0

u . a 0
p? RSgdlv vs — pJ ngﬁs (I-n) Dt Dt 9

FEnergy conservation of mixture:

s

D50
(PC)m i

+ plcv D . grad 6 + prRCY i)? -grad § — pr 4+ divg

R 1. 1, . - R -
+ pgvHUap _ §p’w,vw CVy — §pgvg . Ug + p’w,vw “ Uy + pg'Ug . fvg

+ oD [grad(pw) — prb] + 'Df]) - [grad(py) — pgRb] =0

in which
Dspng 8png DSs apng D56
Dt~ 8s Dt | a8 D
- 8png Dspg 8png D?py, 8png D30
0s Dt 0s Dt 00 Dt
and,

DS, 08, D% 9S,D'p, 05, Dp,

Dt  9s Dt  9s Dt ds Dt

gi = —Kij 05+ AHyop(Jy)i
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(4.125)

(4.126)

(4.127)

(4.128)

(4.129)

(4.130)

where, g is the heat flux (W/m?), and J, is the mass flux of water vapor (kg/m?s). AH,q, is the

heat of vaporization of water.



4.2 Finite element formulations

oph, ph, 6"

Qh

Figure 4.1: Discretization into mixed quadrilateral elements.
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A weighted residual method is used to formulate the coupled variational equations from the

governing differential equations, which are then discretized using finite elements. Quadrilateral

finite elements with biquadratic interpolation in solid-skeleton displacement, bilinear in pore water

and gas pressures and soil mixture temperature are employed to ensure numerical stability. Weight-

ing functions w;(r), n(r), w(r) and ¢(r) are used for displacement, pore water pressure, pore gas

pressure, and mixture temperature, respectively.

ul(r) = Nov. d°

pl(r) = NP . pf,

py(r) = N p

0" (r) = N°P . 6°

in which r = [r, z] is the vector of coordinates, where, r is radial and z is axial coordinate.

wh(r) = N*". ¢
W) = N7 - af
wh('r) = N°P. 3¢

pi(r) = NP~

(4.131)
(4.132)
(4.133)

(4.134)

The coupled thermo-poro-mechanical FE equations for partially saturated soils are written in the

following form:
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(1) Balance of linear momentum for the mixture

'R T T 5 €U T
AT [ BTt [ (BTN [+ (- o] do
e:l e e
) £ s, pe)
(4.135)
_/ 3Kskelagk8l(ée,u)T X Ne,@ X (98 _ 08) dv = / p(Ne,u)Tb dv + /Fe (Ne,u)Ttada
fj@,int(ee) fzf,ewt(de’pi)’p!ewee) f(:t,ewt

(2) Balance of mass for the water species

Tel T 756U e

AT [0S, g ) (N B o (i)

e=1 ©

k' (ps,.ps.0°)
8png whi guR dSw e,p\T nre,p - e - e

_/e [”SQW‘F”(P —p )W (N“P)EN“Pdv -{p}, — Dy}

k.(d" pg,.ps.0%)

o guR e

b [ (08,20~ By ) (N NP3}~

e Qe

f;ul,int(d(—,”pieu’pg’ee)

pB(BEPYT oD dy

k.’ d ps.p:.6%)

= [ R Tahdo= [ (s 4 S (N da (4.136)

Fo (pe,pe.0%)

Foemtde pe,pe.0%)

(3) Balance of mass for the gas

Nel ~ .
: / p? B S (NPT B dv -d°

ko (pe,pe.0°)
gaR
+/ [nSgap +npgaR% (Nevp)TNeyde.pZ}
e Do Js
k*(d.ps,.ps.0%)
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8pgaR g Rasw T .
~ppteR 22w | (e T Ner gy e
—|—/e |:TLSg p, np?* = ( ) dv -py

k¥ (d" pz,.p:.0°)

g’

8p9aR 0 - e
w [ (05,20 — 1= s, ) (NN

k!’ (d" ps,p;.0°)

_/ P (BT 5L dv = / p? 59 (NPT da (4.137)

Ford pe, ps.6°) Fo" (pe,ps.6%)

(4) Balance of energy for the mixture

(76)T' o _AHvapprSw (NE’Q)TBem dv -de

k! (pe.ps.0°)

+/ nprAHvap <885; )(NEQ)TNe’pd’U pw

k" (d° ps,.p:.0°)

— / nPwRAHvap <8S > (Ne,Q)TN&pd,U pf}

Os
k! (d pe.p:.6°)

+ / {(pC)ef £ AHpopSuwp 1801 —n) + ﬁﬁ,]} (N“HTNYdp -6
Qe

k!’ ps,.p:.0°)

+ / (N (o RO + ptRCTsD)T + K2y (B)T| - B - 0dv

f01 znt(d ,pi},pe 06)

b [ AL (B (0 - ) o= [ (N0
Qe e

FEmde psps.69) foe

AHyopp® s (N“NTda+ | p(NO)Trdv (4.138)
Ie Qe

Fres6 £ Py 0)
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The above equations can be simply written as

Nel

()7 - [T piINT T e (1.130)
e=1

@13T’:k?d-de-kgg-p&-%k?g'PZ+-k?9~96—-f$LINT—- e
= fOPAT] (4.140)

A(Be)T ) _kgd cd + kY pe + k9 S PE A+ k90 .6 — foINT — fngXT] (4.141)

[ e . . e
T[R9 4R, K 4 KO INT 4 g

_ fgLEXT _ fglEXT + fg?’vEXT} (4.142)

After element assembly, we have the coupled nonlinear PDEs to solve using generalized trapezoidal

integration in time, and Newton-Raphson iteration.

7

\

FAOINT _ pdpINT _ ppd0,INT _ ppdf EXT | ppdt, EXT
Kwd . d — Kw9 'pw + KW9 'pg + Kw@ . 0 o le,INT o FwZ,INT — Fw,EXT
K9 . d+ K. p, + K% Py + K9 .0 _ FpoINT _ pg.EXT (4.143)

K% . g+ K P — K% B, 1L K9 .9y FOLINT | pO2INT

_ FOI,EXT o F92,EXT +F93,EXT

Let us write the governing equations in matrix form:

C(D)- D + FINT(D) = FEXT (D) (4.144)
d d 0 0 0 0
pw Do Kwd _Kw9 KW Kwe
D= , D= , C=
Py Py K9  K9v K99 K99
9 7] K@d K@g _Kﬁg K@@
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FAINT _ ppdpINT _ ppdd,INT FdEXT | pdt EXT
_FwLINT _ ppuw2,INT Fw.EXT
INT _ EXT _
FINT _  FEXT _
_R9.INT F9-EXT
FOLINT | p02INT FOLEXT | p02,EXT | po3,EXT

Recall the generalized trapezoidal integration:

C(Dn-l—l) Vo + FINT(Dn-l—l) = FEXT(Dn+1)
(4.145)

Dn+l = Dn+l + ()éAtVn+1, Dn+l = Dn + At(l — Oé)Vn

Newton-Raphson iteration algorithm will be used to solve for Vfljj with the current value V¥ 41

R(vf‘li%) — C(Dk+l) i Vﬁii + FINT(Dk-i-l) . FEXT(Dk‘-i-l) -0

n+1 n+1 n+1
k
=R+ 2L v
_(oR*\ 7' i 4.146

Vi =Via+ov
DM = Dyt + AtV

n+1

The consistent tangent used can be written as:

OR oC 0D OFINT 9D 9FFXT 9D
—av_<a_D'W>'V+C+ oD v oD ov (4.147)
where,
oD
Sy = 0Ot (4.148)

0

K".d— K" p,+ K" -p,+ K" 0
C-V= _ _ (4.149)
K. d+ K% . p,+ K9 p,+ K"’ 0

K. d+ K% p,— K pv+K".0

then,
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oD
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oD

QFINT
od

QFINT
c?pg

0
oK™ 4 oK™ . K"
vV = od 4= Yod Put P
oK™ o oK™ K
od” 4t Tod 'pw+aad
oK oK" . oK%
| od At Tod Pe Tod
0
oK™ - oK™ . o K"’
op, 4~ Tp, Put Tp;
oK o oK™ . oK™
op, 4t Tp, Put Tp,
oK™ o oK oK%
op, 4t Tp, Pu Tp,
0
oK™ 4 9K" . oK™
op, "4 “op, Put Top,
oK o oK™ . oK™
P, d+ op, Dy + op,
oK 4 oK% . oK%
op, 4T op,; P Top,
0
oK™ 4 oK™ . K"
s 4= g Put g
oK™ 4 oK™ . K
20 T Ton 'pw+aae
oK™ 4. oK™ oK%
00 00 w 00
8FINT 8FINT a1_7!1'1\7’1“ a1_7!1'1\7’1“
aod oD, p, o0
aFd,INT T
ad
ale,INT aFwQ,INT
T ad o od 8FINT_
aFg,INT ’ apw -
T ad
aFGLINT a1_7|92,I]\7T
ad T ad
aIpdp,INT ]
—oF—
ale,INT aFwQ,INT
~op, ~ op, OFNT
gF 9 INT ’ o0 o
-oE
a171<91,INT a1;v92,INT
o, o,

o F P INT
- op,

gF“ INT gF 2 INT

9P, 9P,

gF9INT
S

aFGLINT 8I;192,I]\’T
ap, T op,
a1_71(10,11\7’1“
_T
8_F*lwl,INT a1_7!1112,1]\1'T

00 00

aFg’INT
- 90

8F92’INT
00

a1_7-161,INT
00 +
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(4.150)

(4.151)




OFEXT
oD

OFEXT
od

aFEXT

op,

The components in those tangent functions are written as follows:

oK™
od

0K
od

oK"Y
od

’pw =

'pw =

'pw =

8FEXT BFEXT 8FEXT 6FEXT
| od P, Ipg 00
B 8Fdf,EXT T B 8Fd,EXT T
ad ap,,
w,EXT
0 OFFXT 78Fapw
0 ’ apw 8F9'EXT
ap,,
F > EXT HF?3EXT
L od J L Ip, J
i 8I;-.d,EXT ] B 8Fd’EXT T
op, 00
aI_le,EXT a—Fnu,EXT
P, OFPXT g
aFg,EXT ’ 00 8Fg,EXT
op,, 00
gF?>EXT _6F92,EXT N o F?>EXT
| 9P, | L o0 00 _
Kwd .
a@d d=0
OK9 .
od d=0
8K€d .
9 d=20
el Okw9 e
e w
— od
Tlel OpIvR a8, on
. S wR _ _guR w INEP T —d
£«1/erw<gas =) S JINT @ g geda
Tel akgw .
5qc P
e=1
el OpIak a8, on
. S gaR w NE&P T —d
é/gep“’< 9 Opy TP a.s)( )@ pgeda
nel Okb9
5qe  Pw

e=1

A [ 5 (R 95w nrenyT o 97
é/epw (p AHU“P) 68 (N ) ® adeda
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(4.152)

(4.153)
(4.154)

(4.155)

(4.156)

(4.157)

(4.158)
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OKvI na Glwe
aa Po = Apa P

Tl ) o guR 85
= A/ 7 (S Lt (o = )(N”’) © e (4159)

6:1 Qe g a 83 ade
OK99 el Okd9 e
oa Po ~ Aadff' g
. Tel apga gaRasw e\T 877/
= / pg< — P > (NP ® adeda (4.160)
oK% L
oa Po = '9107”
Tel oS on
= ) U)RAHva — ep)T .
é/mpg (p ») e (NEP) ®adeda (4.161)
oK . el gl .,
od ? = R odr 0
Tlel . on _ Opd'F  9p
— HNe,pT o swg
291 ) (N®P) ®<adesg—89 5 )da (4.162)
oK . e 9o .
aa ¢ = \ 9d° 0
_ nel/ (Ne»)T 5,207 L 5 kg ) d 4.163
- . ade Y. sP7 g ) 4a (4.163)
8K€9 0 Nl 8k69 -e
od = adE'
"el PC OpC)ess e\ o On
= + AHyopSuwp™ (Buw — Bs) | - (N®Y) 8deda (4.164)
aKwd . Tl akwd e
opy 4 A o
Mel a8 05y OpIvE
_ NEP guRZZw  wR ép .
/e ( 55 " 5 — 8y P >N da  (4.165)
OK9 . nel ak:gd e
opn d = A -d
Nel o8 apgaR
_ Nep gaR ¥~ W e,p
/ ) ( B + S, e >N da (4.166)
0d Nel 0d
K" g ko J

Opy, B = op;,



oK w9
Op,,

oK w9
Op,,

O0K99

oK
op,,

’pw

’pw
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el
— / (NS (AHW, “’Raaﬁ> N®%Pdaq, (4.167)
e ]
e PEvI
eel ops,
Tl apng aSw a2png wR JoR 82Sw
eel . Pw - |:2n 83 W —n 97882 — n(p —p )—832
(NeP)T . N®Pda,  (4.168)
K okI" .,
Nel . o pgaR Ra25 ‘.
/epw (NPT ( Sy T —np? 552 NPda (4.169)
el akgg e
e=1 apf” o
Nel 2
A / Puw - (—nprAHmp%> S(NSHT . N*Pdq (4.170)
e=1 ¢
el PEvI
e=1 apf” e
Nel ] apng Sy, angvR R R 82Sw
e«l/p" <2 s 05 o W PG
(NeP)T . N®Pdq, (4.171)
e P9I
N op;, Y
el / p pgaR B apgaR aSw g a2pgaR +pgaR82Sw>
e Ipg Opw 0s 9 OpyOpu, 0s2
(NeP)T . N®Pdq, (4.172)
el Ok9 .
e=1 9 16” !
Nel 825
A Dy - <—”PwRAHvapw> (NeP)T . N“Pdq (4.173)
e=1 ©
Nel akwe e

Op?R DS, 2p7E 0Bsug

A QNE”’ [ 50 s —nS, 5590 " B NPda  (4.174)



aKGG
P,

aKwd .

Z?pg

oK% .

8pg

aKBd .

Jdp,

OK™9
op,

'pw

0K
op,

'pw

oK%
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o pgaR
Ipw

Tel . apgaR 8Sw a2pgaR
A/ee' [" a0 s " apa0

gaR aﬁ
s

Bs(1 —n)S,

—Bs(1 —n)p ] A(NeP)T . N¢Pdq (4.175)

e=1

05,
Opw

Js
(NNT . N®Pda (4.176)

R S as dpIvh
e,p\T' | wR w  _guR w e,p
A/eeU(N ) (p 2. P S 5; >N da  (4.177)

(4.178)

(4.179)

K okvs

ope w

e=1 g

Tel ) apng aSw 82png R R 825w

w " _2 _ = w __ A9v

eél/ep ( o+ nSy— 5 +nlp R
(NeP)T . N°Pda  (4.180)

Nel akgw e

op¢ Hw

e=1 g

Nel 8Sw o gaR o gaR 82 gaR 825w

A/ pw-n[a (g - g >+Sg8 pa +pg"R—a2]

=17/4¢ $ Pg Pg PwOPg S
(N°P)T . N°Pda  (4.181)

Nel 8kgg e

w

A

e=1

Nel 2
A / pw.<nprAHv “”)-(N@vp)T-NWda
e=1 €

ap;

apW (4182)



oK™

OK 99
apg

oK%

oK 9
Jdp,

aKBG
Jdp,
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e QKW
N e=1 8})2 J
Nel 8png aS a2png R R 82Sw
— EP _ _Tw -7 whR _ _gvu
/e N [ ds  Os "5 Ds? Hnlp P Ds? ]
(NPT . NePdq, (4.183)
Eakw y
op; Py
Nel ) 8pgaR Sy, 82pgaR R 82Sw
pr— . —2 J— ga
;Al/epg n( Opg 0s 5 Opg? 0s? )
(NPT . NePdq, (4.184)
el akzg e
= -p
e=1 8])2 I
Nel R 82Sw .
= A/ Pa ("”w A5 > (NPT N“Pda (4.185)
e=1 €
. Tel w0 e
.0 = A ak .0
e=1
B el / png 85 . 62png B 8/85wg
N e s 9 0500 0s
(NeP)T . N¢Pdq (4.186)
. Mel 81{:99 e
O = e
A o,
el . 8pgaR aSw 82pgaR 8pgaR
p— 0 . _— —_— _— s 1 J— —
e«l/ {"ae gs " gpas P TS
aRaSw e,p\T e
+ﬁs(1_n)pg W (N ,p) - N%Pda (4187)
. Nel akGG .
.0 = €
é op;
el . 8(p0)eff 85
= ‘N o AHva w s 1-
eel/ee { Opg * p" (B 4 By (1 = )] 5 ds
(N®HT . N®Pda (4.188)
8Kwd . Nl 8kgd e
oo ? Ial 4
Tel o wR o guR
— . e,p\T | P P e,0
A G(N®P) (Sw 50 TS5 >N da (4.189)
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06 Po

e gk ..
N 806 d
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et ep 67
/CEUN ( 50 Sg>N da
Nel aked e
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A 70"
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— /CEUN P ( AHyapSuw=s >N’9da
e OkWI
i 806 w
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.w Ne’p T X _ w

£«1 o) {”Sﬂ D500 +”< 20 o0 ) 83}
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» NeOT . AH,, P Ne?
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ne OkYI

806 g
"cl/ p g o7 a2png 8pr B apng 8Sw

g’ 99500 00 00 0s
(NeP)T . N%¥dq
nel P99 o
A 96° P9
Nel 82pgaR apgaR a8
Nep T w Ne,@

/epg < "5 p08 " a8 as> da
Nel akgg e

00 9

) op»t 08,
e,0\T | e,
pg(N ) <nAHmp 90 s > N%da
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(4.190)

(4.191)

(4.192)

(4.193)

(4.194)

(4.195)

(4.196)

(4.197)



8Kw9
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OK9?
00

8K€9
00

gFVINT

ad

gF " INT

ad

gF 2 INT

od

gF9INT

od

aFQl,INT
ad

02,INT
oF™™
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ade,INT

Iy,
ale,INT

0P,
HFWLINT

Op,,
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‘N Ok e
= oo°
el . . o 2png aﬂsw .
A 69 (NeP)T . <n5g( )692 - 899> N%daq (4.198)
Nel kge . e
68066 o
e=1
Nl . e T (8)2pgaR 8pgaR .0
é NN 08y = (1= )S, 7o | N*Yda (4.199)
Nel 60 e
o0
e=1
Nel . a(ﬂc)eff apr
0 - AHva w [Mw s
A [ 0[5t - Attt + 8.0 -] P
(NeHT . N“Yda (4.200)
Nel d,INT Nel a
- fgde / (BeyT o' - B“"da (4.201)
e=1 ©
Nl afwl,INT Nl 8’0
_ e _ Be,p T w .
A5 - / e —gda (4.202)
Nl afw2,INT Nel
_ e guR e,p U
éiade / (B 8d ~ % da (4.203)
Nl afg,INT Nel
_ e gaR e,p ga
A~oF / B a 2 da (4.204)
Nel ale,INT
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Ne@ Beeee wR ~w gR ~g )
/E )T(BY6°) ( v RIS Y da (4.205)
WO oy 08
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Tl afdp,INT Nl eu T aX
NeP NP + 1 .
A~ =R/ ® (5~ L) AN 1 da (200
ne g fwLINT — ne ool
A fe / R(genyT Py (4.208)
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A — Be,p ng ~D '
é / G oRe S | da (420)
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) da  (4.210)

(4.211)

(4.212)

(4.213)

(4.214)

) da  (4.215)

) da  (4.216)

9
8 ) da (4.217)
D

(4.218)

(4.219)

(4.220)

>da (4.221)
)da (4.222)

) da  (4.223)
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] da  (4.225)

(4.226)
(4.227)
(4.228)

(4.229)

(4.230)

(4.231)
(4.232)
(4.233)

(4.234)

(4.235)

HFOLINT na GpILINT g P
90 :Al 96° :Al/e{(N’)(B"O)
wR w0V | p  OpPT 0 .
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(4.240)
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(4.245)

(4.246)
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(4.249)

(4.250)

(4.251)

(4.252)

(4.253)

(4.254)

(4.255)

(4.256)

(4.257)



ovP
op;
ovP

00°

gu

ovP

gqgu

od°

ovP

qu

0K, 0S
0S5, Os

g 7w gRR e,p e,p apgR e,p
25 - (Vpg—p?"g) N’ — K, | B’ —g® ——N

Dy

opS,

ovP

gu

ap;

ooP

gu

06°

’l~)D

ga

=D
v,

od°

=D
v,

0K, ap
gR e,0 e,0
Patm pgv
—K,Vp, —nS,tD \Y <—>
gV Pg g0 Dgv P
aKg 8 Patm or Pgv on
D - 29Y
5 ngv(’;f—g’“)
0K, 05, . pav
o SgTV(%)]
0K, 08, Pov
_Toelow NP — K,B*? — nDopatm ——r—
S, 0Os ~Vpy @ g nLoPat ap;
5 Dov (222)
aKg e,0 bov
—vag X N — TLSngatm 806

—Ky(Vpy + nSyrDoLetm v <@>

ope

w

vl
ap;

8'651
00°

in which,

d

SyTV ( Pgv

Pgv

opS,

Pga Pg
a[(g on Patm or Pgv on
D ar Pgv on
o Vg®8de+5 Opga <7‘—|—nan>v<pg ®8de
9 _SQTV(?J)]
0K, 95, Pas
N67p D atm
95, Os Vpy ® + nDoPat .

5 sgrv(”g)]

0K, 08, Pga

29PNy, @ NOP — KB 4 nDopm—————-
8pg

0S5y 0Os
9 _DOV(””)]

0K, . pae
5 9" Vpy @ N 4+ nS,Tpatm 507

Pg

|
= ia [SgTazfg%ﬂ + ]%SQTV (%) %Ne,p

120

(4.258)

(4.259)

(4.260)

(4.261)

(4.262)

(4.263)

(4.264)

(4.265)

(4.266)

(4.267)

(4.268)

(4.269)

(4.270)
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4.3 Numerical example

Comparison to an analytical solution for transient partially saturated flow

In this part, the partially saturated TPM model is reduced to be a partially saturated PM model
by setting the temperature to be constant. To verify this reduced model, we take the analytical
solution by Srivastava and Yeh (1991) for water flow through a partially saturated soil column with
the water table at the bottom. The infiltration seepage S* happens at the top as shown in the left
figure in Figure 4.2. The displacements at the lateral surfaces are fixed in the radial direction, and
the bottom is fixed in the vertical direction. All the surfaces are impermeable. The right figure in
Figure 4.2 shows the profile of negative pore water pressure head in vadose zone as is provided in
the one-dimensional analytical solution (Srivastava and Yeh, 1991). Figure 4.3 shows that a good
agreement is obtained from the comparison between the reduced partially saturated TPM model

and the analytical solution.

Fuls) = 22exp(—as /1)
1%" (4.282)
S(S) = 6 [@r + (68 - @r)exp(as/’yw)]

Table 4.1: Parameters used in the comparison to the analytical solution in Srivastava and Yeh (1991)

Soil Parameter Value Units

Saturated permeability K, 28 x107% m/s
Saturated volumetric water content Oy 0.45

Residual volumetric water content S 0.2

Initial infiltration seepage rate Sy 28 x 1077 m/s

Final infiltration seepage rate SY(t >0, final) 9SY m/s
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Figure 4.2: (a) Mesh for FEM of partially saturated flow.(b) Analytical solution for partially saturated flow
in vadose zone(Figure 1 of Srivastava and Yeh (1991)).
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Figure 4.3: Comparison of the suction in vadose zone.
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4.4 Thermo-poro-elasto-plasticity for porous media

4.4.1 Nonlinear thermo-elasticity

According to Laloui and Cekerevac (2008a), the total strain rate of the solid skeleton is

written as :

e=€+¢€ +¢€ (4.283)

in which, €°, €’ and €” denote elastic, thermal and plastic components of the total solid skeleton
strain, respectively. The reversible thermal strain is €/ = ﬁfkell, where ﬁfkel = linear thermal
expansion coefficient of the soil skeleton; with vector 1 = [1110] when expressing €’ in vector
form, otherwise, in tensor form, efj = ngel 0i;. The rate form of effective Cauchy stress tensor is
conventionally written as:

o' =c:éf f=é—é& & (4.284)
where ¢® denotes the fourth-order elastic modulus tensor.
In this part, the thesis refers to Borja (2004b); Borja et al. (1997) and research notes by R.A.

Regueiro at University of Colorado, Boulder in the formulation of hyperelastic model. Volumetric

and deviatoric invariants of the small elastic strain tensor are defined as:

2 1
R N TPy N (425)
where, 0;; is Kronecker delta. A class of stored energy function is defined in terms of € and €,

which are the elastic volumetric strain and elastic shear strain, respectively.

S e e\ _ I~ 616)_616}0 § e2 4286
P 1/}(61)768) = DPoRexXp P + 2M63h ( . )

where, €, denotes elastic volumetric strain corresponding to a mean normal stress of pg; £ denotes

elastic compressibility index; and p = p(eS) is elastic shear modulus defined as

€ — €
p = pio + a(—pg)exp <_TO> (4.287)

where, pp and a are material constants. The effective Cauchy stress tensor ¢’ and the elastic

moduli tensor can be expressed in terms of p® as
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r a(psl/}S)
= G (4.288)
Oo’. 2( 5,18
G = = Olpv) (4.289)

Oey, o 86%66%
With the expression of stored energy function (4.286), then we can use the chain rule to rewrite
(4.288) in the form:
, _ 0p™®) dey  A(p*Y®) Deg

= 4.2
7ii O, Oef; * des  Oey (4.290)

Let us set

AN | ()
Oes ’ De¢

(2

(4.291)

p

Then, (4.290) becomes:
2
Géj = pléij + \/;qnij (4292)
where, 7;; = ef;/ || €° ||= \/2/3¢;;/€5; p' and g are the volumetric and deviatoric stress invariants

of the effective Cauchy stress tensor o’, respectively, and are expressed as

1
= gtr(e’), ¢ = \/g Isl, s=0"—p1 (4.293)

According to (4.286), one can derive the elastic constitutive equations for p’ and ¢ as follows:

/ / 62 — 650
Po= poPexp | ——— (4.294)
qg = 3pe (4.295)
where, p is given in (4.287), and
3 e)\2
B=1+ aéef) (4.296)
R

Now let us calculate the elastic moduli in (4.289)

da; doi; op'  Ooi; dq  00i; Oyj

Oey, op’ Oeg, dq Oej,  Ongj O,

aop' \F dq \P Onsi
= i P Z J 4.297
T D¢, T\ 3" T Dec, T34 det, (4.297)




where

op
Oeg,
dq
Oey,

PO e <
K

epo

. O€S O€,
) (3 3i _636k1>

e €€
k kl

where according to the definition in (4.285), we obtain

O€’ et
= o = 0k = bij
deg,  Oef Rl J
ey Oesy 1. Oe 1
ab _ T 25 O 55 500
dec, — Dec, 3 MPec, — TokTM T glabTH
dec D€ e’y \F 1 \F .
s a b by — =00t ) = 1/ =
de:, aeab Dt 3" b( kObL — 3 0ab kl> 3
_1
Oﬁ,-j - 1 aefj ee a [(ezbegb) 2:|
Oy, || e || O, u Oeg,

1

1
— 68 —
el < T3

1

1
e <‘5"’“5ﬂ B

Then (4.298 and 4.299) become

0ir0j1 —
| ec | < !

_ e 9
#) <3ae§ \/jﬁkl — 55kl>
R 3

o’ PO €
Oey, R P
Jq 3apy,
oes, Focox
(4.297) takes the form
oo’ p/ €€
fe = | Hheewn (2

where I is a rank-four identity tensor defined as I;j5; =

+<2,u——q

\/7—2905

3€s

1 3 Oe®
—5z'j5kl> — = (ehpey) 2 (2efy) 72

1 €L15
25::0 _ J
37 ’“) IEE
1 -
§5z'j5kl — Ny

€f — €€ 2 .
P< = = v0> 5kl+3,u\/;nkl

_7620> 2}1@1
K

exp <
I
>n® 3

(0ir +651)/2

) lon+nel)
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(4.298)

(4.299)

(4.300)

(4.301)

(4.302)

(4.303)

(4.304)

(4.305)

(4.306)
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4.4.2 Thermo-plasticity

It is known that the essentials of a plasticity model are a yield function, a flow rule and a hardening
law. Many enhanced versions of Cam-clay-type models have been proposed to capture the mechan-
ical behavior (Alonso et al., 1990; Gens and Alonso, 1992; Wheeler and Sivakumar, 1995b; Vaunat
et al., 2000; Loret and Khalili, 2002; Gallipoli et al., 2003a) and the thermal-plastic properties of
partially saturated soil(Khalili and Loret, 2001; Laloui and Cekerevac, 2003, 2008b; Francois and
Laloui, 2008). We mainly refer to Borja (2004b) and Laloui and Cekerevac (2003), and assume
that the the yield function is defined in the effective stress space, and the size of the yield surface
is controlled by the effective preconsolidation pressure, suction and temperature.

Generally, the yield function for partially saturated soils is assumed to take the following form:

2
F(p.q.pl) = 0 + (0 = P =) = 0 (4.307)
P = ~expla @l |1~ log (1 ) (4:308
Py =ks (4.309)

where p’ and ¢ are invariants defined in (4.291), M is the slope of critical state line, k is a dimen-
sionless material parameter that is equal to or greater than zero, s is suction, s = py — pw; De is
defined as the effective preconsolidation pressure at temperature 6, which is assumed to vary with
plastic volume strain €}, suction s and temperature 6, p/, is the saturated effective preconsolidation
pressure at reference temperature 6y, it can be considered as the plastic stress-like internal state
variable of the material model, and it varies solely with the plastic deformation in the form (Borja,

2004b):

(4.310)

and refer to (4.318) for the expression of £ in (4.308). The sign convention of strain and stress is:
negative under compaction, positive under dilation. €} and egm are plastic volumetric strains at
current time step t,,1 and previous time step t,,, respectively; p’cm denotes the effective preconsoli-

dation pressure at time step ¢,; A denotes the virgin compression index of the soil. The trial elastic
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strain €“'" and the elastic strain at tn 4 1 are given respectively as,

oF
oo’

€ = €5+ Ae— Ae’, € =€ — Ay (4.311)

where, Ae? = 8% Af, and A = 6,1 — 6, is the temperature difference between current time step
skel +

tn+1 and previous time step t,. Thus, the volumetric strains are,

657” = €yn + Ae, — Gg, Ez,n-l—l - Ez,n + Aezc; (4312)
el =, — e — € (4.313)
€hn = €on — € — eg,n (4.314)
L — el =€, — €y tes, — Al — & =0 ¢ (4.315)
) k)
A€y
Then, (4.310) can be written in the form
/ / _(61617” — Ee)
Pe = Pen®Xp | —=——— (4.316)
A—R

For partially saturated condition, a(§) and b(¢) in (4.308) take the form

R

_ N[e(§) — 1] A=
a(§) = o) 7 b(§) = Seld) R (4.317)

where N is the reference value of vy, at unit saturated preconsolidation stress; & > 0 is called the

R

“bonding variable”, and has a minimum value of zero at saturated condition. It is expressed in

terms of the air void fraction 1 — S, and a suction function f(s):

S/patm
10.7 + 2.4(8/patm)

§=[f(s)(1=5u), [f(s)=1+ (4.318)

where pgip, is the atmospheric pressure. The suction function f(s) is a hyperbolic approximation to
the curve describing the meniscus-induced interparticle force between two identical spheres (Fisher,
1926). Refer to Borja (2004b) for more details. The degree of water saturation S,, may be expressed
as a function of suction s. Here we adopt the relation proposed by van Genuchten (van Genuchten,
1980). ¢(€) is defined as

c(§) = (4.319)
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where, v denotes the specific volume of the virgin compression curve in the partially saturated state;
vsqt denotes the corresponding specific volume in the fully saturated state. According to Gallipoli

et al. (2003a), c¢(§) takes the following form:

c(§) =1—cr[1 —exp(caf)] (4.320)

where ¢; and co are fitting parameters. For a fully saturated condition, ¢(§) = 1, a(§) = 0, and

b(§) = 1. We recall that

) ) ) oF ) _
& = (&) = 4 (67) — 42— B, — 7o) (4321)

Thus the preconsolidation pressure rate gives the plastic hardening relation

e,tr

g P _ —(e” — € -1 .

Py = == tr(é") = (20" — P — Pe) (Pe)pexDp (& - ) ol (4.322)
A—R A=K

hpe
Note that p!, and tr(é€P) share the same sign. According to the sign convention mentioned before,
positive (softening) under plastic dilation, i.e., the size of the yield surface decreases, negative
(hardening) under plastic compaction, and perfect plasticity at the critical state. Now we come to
the plastic flow rule, which defines the direction of the plastic strain rate in the model. Associative

plastic flow is assumed, i.e., the plastic potential function G = the yield function F', such that

0G| OF

P — _— =
€ 780'/ 780’

(4.323)

where the non-negative plastic multiplier 4 satisfies Kuhn-Tucker conditions, i.e., ¥ > 0, F' < 0,

4F = 0. Backward Euler is adopted to obtain the plastic strain at time step t,41:

OF
e, = €+ Ay (8_0'> 1 (4.324)
n+
€. = €np1— €y — € (4.325)
€ = €, —€ —é (4.326)

where Ay = At 4,41 > 0 is the discrete consistency parameter. Substitute (4.325) and (4.326) into



(4.324) to obtain

oF
en-i-l_efz—i-l_efz—i-l:en_e € +A’Y<ao_
oF
= e _ _ e 6 A
€nt1 €n+1 €n, t+€, — ( €nt1 — ) v <80'
AE Ae@
oF
= €., =€, +Ae— A€’ —Afy<aa>
e

oF
oo’

where Ae? = Bfkel(enH —6,,). Now we solve

or _orof  or o
oo’ ~ Op' da’ ' 9q Oa’

where
or _ = (2 — e): oF _ 29
oy — 2P Pl — Pe); 97 = 2
W\ _ls . (01 _ f
do’ Z-j_ 3 do’ ij_ 2
Then,

oF 1 _ 29 /3.
<ﬁ>ij = §(2P/ — Pl = Pe)dij + W\/;mj

The elastic strain invariants can be obtained by trial values:

F
€ = " A — Aytr or
oo’

= Ae — A’ygj

]

2
€ = \/; VeanCap

— Ee,tr _ A’}/—

To solve for A, we construct a residual vector R and an unknown vector X:

R, € —ef,tr+A78F

R(X)=| R, | = | e—e"+ 075

Rp F

in the plastic strain rate:

132

(4.327)

(4.328)

(4.329)

(4.330)

(4.331)

(4.332)

(4.333)

(4.334)
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and,

X = ¢ (4.335)

We adopt Newton-Raphson method to solve:

Rn+1 (Xn+1) =0

OR\* OR\ !
RF —— X =0 i X=-(=2=) -RF 4.
b (55). - (5%) (4.330)
XM= x*F 40X
The driving forces in this nonlinear problem are the trail elastic strains ef,’tr and ei’tr , thermal

strain 69, and the matrix suction s. ef,’tr and e?tr are held fixed at local iteration level; ¢ and s can
be calculated at global level. To solve this nonlinear matrix equation by Newton-Raphson method,

we need to calculate the consistent tangent operator:

OR, OR, OR,
O€S 0es O0AYy

OR
S ORs ORs ORs
0X o e et OA~ (4337)

ORr ORr ORp
| Oe§ 0es 0Ay

Substituting (4.329) and calculating the derivatives in (4.337) lead to

op’ Opc op’ OF
L+ Ay (2 Bz — afg) 2056 oy
OR = 2 0Oq 2_9q OF 4.338
X AV 9eg L+ Av5mae 3¢ (4.338)
OF op’ OF 0O OF Op. OF 0p’ OF 0
| owo T 900 t oo opoes T ogoe O |
where
o' 9B _ aeg
9 ~ TR pe PP (w) e = Dexp () (4.339)
0q ou el op'  Oq
= 3ei— = 3—2p( = —; =3 4.340
e s Oes R Pocxp(w) Oe¢’” e H ( )

Opc _ Ope p. _ O pe
de¢  Oploes I\ —F

(4.341)

(4.342)
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where w = —%. According to (4.308),

Ope _ b(§)Pe
o = (4.343)

Instead of solving (4.336) for 60X, we combine terms in (4.337) to construct the following matrices:

ORy, OR, ORy

D Det Des
A= v > |, B= vl = | 9Br ORp 4.344
oR. R, | or, | ¢ [Mg aAi] (€369
O€S 0es O¢e¢
Let us rewrite (4.336) and drop the iteration number k
v 6616) 0
A B
R, | + 1 sec | =10 (4.345)
cC 0
Rp 0AYy 0
(4.345) can be split into two equations
" o€’
+A + B(0Av) =0 (4.346)
Ry 0€s
O€,
Rp+C =0 (4.347)
o€
We Multiply (4.346) by matrix A and combine with (4.347) to obtain
R,
Rr —CA™! ~CA™'B(5AY) =0 (4.348)
R
Rp—CA™'|
= Ay = - 4.349
! CA B (4.349)
Substituting (4.349) into (4.346) gives the increments of €, and €
o€ R,
=-A! + B(6AY) (4.350)
o€

R
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We update to obtain

(e9)FHL = (e€)F 4 g€ (4.351)
(e)FH = (e9)F 4 o¢¢ (4.352)
(AR = (Ay)F + 6Ay (4.353)

Update R*™! and check whether the absolute or (and) relative tolerance is (are) acceptable. If

acceptable, exit and calculate the elastic strain € and the effective stress o’.

4.4.2.1 Consistent tangent operators

In this section we develop expressions of consistent tangent operators for both saturated and

partially saturated conditions. The yield function rate is:

F:Sﬁ:d’+g—fs+§£pg+%—§éz (4.354)
where,
o -2l )2 (1.355)
o7 =~ (1.356)
=l A (4.357)
in (4.355)

ds 7 0s  0¢ Os (4.358)

We recall that p. = pe(pe, £(s),0) in (4.308). Differentiating p. with respect to £ and 6 gives

%ﬁg = pe [d/(€) + ¥/ (&)In(—pl.)] (4.359)
e 2 explofe))(—p0 (4.360)

where
= s VO = X;é;’(f)gc%s), ¢(€) = ercaexp(cat) (1.361)
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The derivative of the variable £ with respect to the suction s is:
() = (1= Suw)f'(s) = f(5)S,(s) (4.362)

where

’ o 10.7/patm
Fle) = [10.7 + 2.4( /patm)])* (4.363)

With the commonly used van Genuchten model (van Genuchten, 1980), the degree of water satu-

ration is written as (see notations in (5.18))

=[1+(s/a)"]™ 1-5)+S; (4.364)
then, one can write the derivative of S,, with respect to suction s as

si(s)= 2w g, (%) [1 + f}_(mﬂ) (4.365)

s a

The effective Cauchy stress tensor rate is written as:
o =c e =c:(e—é —é&) (4.366)

Substitute (4.331, 4.366, 4.355, 4.356) and (4.357) into (4.354) to obtain

oF ., oF OF 0 . OF oF oF  oF .| .
1t — — —:c%: —5— it — — ‘1 y= 4.
57 C ot [89 557 | € (ﬁskell)} 0+ 55> [80’ 57 8p’ch 0 (4.367)
X
Thus, the plastic multiplier takes the form
1 [0F . OF oF OF 0 .
y=—9575:¢c: -5 — ——:c": 4.
A . {80” e+ s 5+ [89 997 | € (Bq 1)] 9} (4.368)
Finally, the effective constitutive Cauchy stress rate is
S . 16'8F®8F.6 ',_laF(ce'aF),
o = |c¢ XC ' 5g @ ag 1) € 195\ aer $
cer
1 [0F OF oF .
0 e e 6 e
— : — = - =—:c": : 0 4.
{Bsc 1+ Ny [89 57 - € ﬁsl} ® (c 80’)} (4.369)

ct
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where ¢ is called the continuum elastoplastic tangent under partially saturated condition with

temperature. Below we list the other continuum tangents

do'  19F [, OF

&‘"&55@~5;) (4.370)
do’  Jo’ de . 19F ., OF
5 = e _ae_cech:(ﬁf 1)—c6:—;—86c g (4.371)

Note that, generally, the material consistent tangent (9o'/J€),, ,, and the continuum elastoplastic
tangent ¢ are different. And the advantage of the consistent tangent is that it will allow the
Newton-Raphson algorithm to demonstrate quadratic convergence for the global solution iterative
scheme, however, the continuum tangent usually gives linear convergence. Now let us derive the

material consistent tangent %.

802’-j _ 80’2]- op' 802’-j dq 80’2]- Onij
Oe op' Oeyy 0q Oep  Ongj Oeyy
op’ \F dq \P Dy
it i — Z J 4.372
Jaekl + 3n J@ekl + 3 a 86191 ( )
where
/ / e / e / e __ e e e
ap _ op' 0¢  Op' O€S _ @ - € ~evo Sac¢ O¢s _ﬁaev (4.373)
Oepg 865 Oepg 863 Oery K K Oepg Oepg
g Oq 0t  Oq OcC app € — €Sy O€S O¢s
— = L 5 = 3e— v v v +3 5 4.374
Oepy €S Oegp  O€C ey 5K P K Oepy + Oepy ( )
We recall (4.327) and drop the n + 1:
oF
e e,tr
€ap = €qp — AV (4.375)
b daol,
ey = (€p)n + €ab — (€ab)n —€0s (4.376)
A
€ab

(€5, )n and (€qp)n are fixed values at the local level, which can be obtained from previous time step
tn, and ezb is also fixed at local level, because it can be obtained from the global solution. Thus,

the three terms are not functions of €j;. Then,

e,tr
Je,),

5l = Bakdu (4.377)
€kl
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R ) . PF (4.378)
Oepy ey Jeyy 0o, do! Oy
Let us assume
A =n (4.379)
Recall
1
€ = Cap — 36" Oab (4.380)
The derivative is written as
aegg" a(egg" - %ef,’tréab) 1
= = O,k0p — = 0110 4.381
Deu e akObl — 30ki0ab ( )
onlr 1o 0 {(egref&f’“)_%]
e et || e W D€y
1 1 1 e T
_ Sl — —8010 __<e,tr e,tr) 26,7’ ab
H ee,tr H ( ak bl 3 kl ab) 2 eab eab ( eab ) aEkl
1 1 o
= W <5ak5bl — gékléab — nf?n%) (4.382)

We need to construct three equations to solve for %, aaf, a(aAg). According to (4.331) and (4.377),

one can write

ﬁ:iﬂ_Aﬁgg (4.383)
ng:; = O (4.384)
5%2; ::EE; =2 —p, —Pe (4.385)
Then,
gizﬁ“*%“”?*”%f‘A”@gi—gﬁ) (4.386)
where,
= - e tr .
e = o e ) s



where,
op. -1 »
9" N—F& ¢
op. 1

Substituting (4.373, 4.387, 4.389) into (4.386) gives
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Chapter 5

Finite element analysis of the energy foundations experiments

5.1 Introduction to the energy foundations experiments

This chapter presents an axisymmetric, small strain, fully-coupled thermo-poro-mechanical
(TPM) finite element analysis (FEA) of soil-structure interaction (SSI) between energy foundations
and partially saturated silt. The simulations involve two types of energy foundations: semi-implicit
foundation and end-bearing foundation. A series of centrifuge-scale tests were performed on the
two types of foundations at the University of Colorado at Boulder. Numerical results are compared
with experimental observations (Stewart, 2012; Stewart and McCartney, 2013; Goode, 2013; Goode
and McCartney, 2014). Good agreement is obtained between the experimental and modeling re-
sults. Thermally-induced liquid water and water vapor flow inside the soil were found to have an
impact on soil-structure interaction. With further improvements (including interface elements at
the foundation-soil interface), FEA with the validated thermo-poro-mechanical model can be used

to predict performance and soil-structure interaction mechanisms for energy foundations.

5.2 Constitutive equations

In this section, we introduce the constitutive equations adopted in thermo-poro-mechanical

model, and show how the material parameters are fitted with the experimental data.
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Figure 5.1: Schematic of overall temperature control system, including heat pump, auxiliary pump and

fluid transition into experimental setup (Stewart, 2012)

Figure 5.2: a single energy foundation SSI experiment mounted on a 400 g-ton centrifuge bucket.
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Figure 5.3: Schematic showing approximate locations of instrumentation, left: semi-floating foundation,
right: end-bearing foundation (Stewart, 2012)

Table 5.1: Centrifuge scaling rules are summarized according to (Ko, 1988).

Quantity Prototype Model
Length 1 1/N
Force 1 1/N?
Stress 1 1
Strain 1 1
Elastic modulus 1 1
Acceleration 1 N
Temperature 1 1
Displacement 1 1/N
Time (diffusive flow processes) 1 1/N?
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5.2.1 Mechanical properties
5.2.1.1 Effective stress equations

For saturated porous media, the expression of the effective stress is proposed by Terzaghi
(1943):

o' =0+py,1l (5.1)

where, o’ and o are the effective and total stress tensors, respectively. To be consistent, the sign
convention in mechanics is used, i.e., ¢’ and o are positive in tension. p,, is the pore water pressure.

For partially saturated porous media, Terzaghi’s classic effective stress equation have been
extended to account for the negative pore water pressures in various forms (Bishop, 1959; Khalili
et al., 2004; Lu et al., 2010; Borja and White, 2010). For example, a commonly used form proposed

by Bishop (1959) is expressed as:

o' =(o+py1) = x(pg — pu) 1 (5.2)
where, p, is the pore gas pressure, p, — p,, denotes the matric suction s is positive for partially
saturated soils, y is a material property referred to as the effective stress parameter, which depends
on the degree of saturation or matric suction. In (5.2), o + p, 1 represents the net stress, and
X(Pg — pw) 1 represents the suction stress. 5.2 will reduce to the classic effective stress equation by
setting x = 0 for perfectly dry soils, or x = 1 for saturated soils. Borja and White (2010); Lewis
and Schrefler (1998) use x = Sy, where S,, is the degree of saturation. In our code we will use the

same relationship.

5.2.1.2 Densities

Water density

Fernandez (1972) proposed an equation for compressibility of water in the form:

1
pf = pexp | -9 (6 — 6p) + ﬁ(pw — Puwo) (5.3)



146

where 5% = 4.0 x 107* K~ (Khalili et al., 2010) is the volumetric thermal expansion coefficient of
water; 0 and  are respectively the current and reference temperatures; p,, and p** are respectively
the pore water pressure and the water real mass density at current temperature ; p,o and p®*H0
are respectively the pore pressure and water density at reference temperature #y; K% is the bulk
modulus of water.

Lewis and Schrefler (1998) proposed a simpler form for the compressible water phase by

retaining the first-order terms of the series expansion of (5.3) as follows

1
pUf = pHO 11— 88 (0 — 6p) + K—(pw — Pwo) (5.4)

With the assumption in this thesis that water is mechanically incompressible, i.e., K, is large
enough that Kiw goes to zero, we rewrite the real mass density equation of water in the form (Lewis

and Schrefler, 1998):
P = R0 1= 30— 0y)| (5.5)
and the material time derivative of water real mass density is given as,

prwR
Dt

, D@0
v Dt

= —pR0 (5.6)

Solid density
Using the same procedure as we did for water density, the real mass density for a compressible solid

phase can be expressed in the form

1
Pt = p™ 1= B0 — 00) + 7= (Ps — Ps0) (5.7)

where K* is the bulk modulus of the solid phase; ﬁf is the volumetric thermal expansion coefficient
of solid grains (with an estimate ¢ = 3.5 x 1075 K—! for the solid grains of silt is obtained by
Khalili et al. (2010) via a drained heating-cooling test), ps and p* are respectively the solid phase
pressure (not the solid skeleton mean effective stress p’) and the solid real mass density at current
temperature 6; pyo and p*9 are respectively the solid phase pressure and solid real mass density

at reference temperature 5. For a mechanically incompressible solid phase, the material time
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derivative of the solid phase is simplified to be:

DS psR
Dt

D% 0
sRO p6
= — —_— 5.8

Gas densities
The gas phase is assumed to be a mixture of water vapor(gv) and dry air (ga). The ideal gas law

is applied to the gas and its components, such that the real mass densities can be expressed as:

DgvM

a p IIMCL
P9t = 907 (5.10)

where pg, and py, are respectively the pressure of water vapor and dry air of the gas phase, M,, and
M, are molar mass of constituent water and air, respectively, and R is the universal gas constant.
According to Dalton’s law of additivity of partial pressures, we write the real mass density and the

pressure of gas phase as,
p? o= p?+p (5.11)
Dg = DPgv+ Pga (5.12)

where saturated vapor pressure pgys() and relative humidity RH (according to Kelvin’s law) are

given as follows,

MyAHep (11
pgvs(e) = Pgvso €XP [_Tp (5 - 9_0>:| (5.13)
—5 My,
RH = exp <R9pWR> (5.14)
5.2.1.3 Kelvin’s law and Clausius-Clapeyron equation

For water vapor, the relative humidity RH is employed to relate the vapor pressure py, to

the saturated vapor pressure py,s as follows,

Pgv
RH = —— 5.15
Pgvs(0) ( )
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where pg,s(0) only depends on temperature. The saturated vapor pressure pg,s, which depends

only on temperature 6, is predicted by the Clausius-Clapeyron equation:

MyAHye, (1 1
pgvs(e) = Pgvs0 €XP [_Tp <§ - %>:| (516)

where pg.s0 is the saturated vapor pressure at reference temperature 0y, AH,,), is the latent heat
of vaporization, M,, the molar mass of water, R the universal gas constant. Kelvin’s law is applied

to relate the relative humidity to the suction or capillary pressure in the pores (s = py — py) as

—s M,
RH = exp <R0p“’R> (5.17)

In the model, the vapor pressure under certain temperature and suction conditions can be obtained
with (5.15)-(5.17), therefore, the air pressure can be calculated by the difference of gas pressure
and vapor pressure. Thus the real mass densities of vapor, air and gas will be obtained with ideal

gas law.

5.2.2 Hydraulic properties
5.2.2.1 Soil-water retention curve (SWRC)

A most frequently used SWRC equation presented by van Genuchten (1980) relates the degree

of saturation to the suction of the soil in the form

=35~ o o

where S, is the effective degree of saturation; S,, is the degree of saturation; S, and Sy = 1 are
relatively the residual and saturated degree of saturations; n and m are van Genuchten model
parameters, and m = 1 —1/n, s = pg — p, is the suction, o, m and other parameters are obtained
from the curves. The fitted parameters for drying curve are chosen in the numerical modeling, as

shown in Table 5.3.
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5.2.2.2 Darcy’s Law

The porous media is filled with a wetting fluid (water) and a non-wetting fluid (gas). Darcy’s law is
extended to the partially saturated case to obtain the Darcy’s velocities of water and gas: Darcy’s
law is applied to the partially saturated porous media to get Darcy’s velocity (or apparent velocity)

of water and gas respectively (Section 6.5.2 of Coussy (2004)):

o = - HEe) gy, - i) (5.19)
v, = ——K(nngg)(SW)(Vpg—pgRg) (5.20)

where K., (Se) and K,4(Se) are the relative permeabilities related to respectively water and gas.
They both are functions of the effective degree of saturation (S.). Here n is the porosity of the

porous media, and n = n% + nY. The Darcy’s velocities of water and gas are defined in the form:

Y = Ny, = nSu(vy, — vs) (5.21)
vy = ngby=nS,(vy—vs) (5.22)

where v, v4, v, are the real velocities of water, gas and solid phases, respectively; v,, and v, are
the relative velocities of water and gas phase, respectively. S, = 1 — S,,. The material porosity
k = 1?6(n) is also called the intrinsic permeability of the skeleton due to its dependency solely on
the porous network geometry. [ is assumed to characterize the porous network geometry as far
as the porous media is saturated with one fluid for simple geometries. Among various expressions
of 6(n) derived in the literature, a frequently used form by Kozeny-Carman’s equation (Carman,

1956) is given as
3

o) =10

(5.23)

Experimental determination of the intrinsic permeability £ will be necessary for more complex ge-
ometries (Coussy, 2004). For partially saturated soils, the expression frequently used in association

with the expression (5.18), the relative permeability depends on the effective degree of saturation
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Se (van Genuchten, 1980),
2
1
Kow(Se) = /Se [1 —(1- Sem)m] (5.24)
1 2m
Kog(Se) = /1-8. <1 - Sg”) (5.25)

For saturated soils, the permeability ks is then identified as:

ks = —4d(n) (5.26)

where, 12, 11,(0) and 6(n) are already defined in (5.19).

5.2.2.3 Fick’s Law

As a vapor-air mixture, the apparent velocity of gas can be defined in the form:

oD = Lovgh | Poogh (5.27)
Pg Pg
where fjﬁ) and ﬁgz are respectively the apparent relative velocities of vapor and air. Vapor is

transported both by advection which is governed by Darcy’s law, and molecular diffusion through
the gas, which is governed by Fick’s law. An explicit form of the velocity of vapor and air is given

by combining Darcy’s and Fick’s laws (Coussy, 2004):

5D = nS,(vg —vs) = —%V})g - DV [m <’;L:>} (5.28)
D = nS,(vge —vy) = —%V})g DV [111 (%ﬂ (5.29)

where n = ng4 + n,, is the overall porosity, S, is degree of gas saturation. py, pgy, and py, are gas,
water vapor and dry air pressures, repsepectively. The diffusion coefficient D involved in Fick’s law

is expressed in Coussy (2004):

’ o\ 188
D = (ny x 7)Dy < atm) ;Do =do <9—> (5.30)
0

Py

where the parameters involved are obtained through experiments (De Vries and Kruger, 1966):
8o = 2.17x 107°m?s at 0y = 273K, and pgsm = 101325Pa. 7 is the so-called tortuosity, and a usual

expression of 7 (Millington, 1959) shows its dependence on n and S, as,

7(n, Sy) = n'/381/3 (5.31)
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5.2.3 Thermal properties
5.2.3.1 Fourier’s law and thermal conductivity
A generalized Fourier’s law is assumed for heat conduction in the TPM model,
q=—K;grad6 (5.32)

where, K g Fr s referred to as the effective thermal conductivity tensor for the soil mixuture, and g
is the heat flux of the porous media, which is the sum of the partial heat fluxes of each phase g“.

For isotropic porous media, we then have
Kl =K1 (5.33)
eff eff :

where Kgff denotes the effective thermal conductivity, and is assumed to be constant inside the
homogeneous porous media. The effective thermal conductivity can either be predicted with a

linear mixture relationship (5.34) or determined experimentally.
Kl =n"K! +n" Ki +nI K! (5.34)

where n®, n® and nY are, respectively the volumetric fractions of solid, water and gas. Accordingly,
Kf, Kg, and K, g are, respectively, the thermal conductivities of solid, water and gas.

Figure 5.4 gives the thermal conductivity of Bonny silt as a function of solid porosity (Stewart,
2012). During the experiments, the thermal conductivity of a cylindrical Bonny silt specimen is
measured after isotropic consolidation to different void ratios. The linear regression equation to
represent the dependence of thermal conductivity of Bonny silt on solid volumetric fraction is given
in the form:

Kl ;=2.039n° +0.1 (5.35)

In the model, quadratic equations of the thermal conductivities of water and gas (K and K g ) are

used (Campbell et al., 1994):

K? = 05544224 x 1072 x (0 — 273.15) — 9.87 x x107% x (9 — 273.15)? (5.36)
K = 0.024+7.73 x 1077 x (§ — 273.15) — 2.6 x x10~% x (f — 273.15)? (5.37)



Thermal conductivity of soil K® (w/m K)

o experimental data

1.44} linear regression line |
1427 i

1.4} 1

6_
138} K¥=2.039n_+0.1
=}
1.36 ‘ ‘ ‘
0.62 0.63 0.64 0.65 0.66

Solid porosity ng

Figure 5.4: Thermal conductivity of Bonny silt.
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where 0 —273.15 denotes the conversion from Kelvin to Celsius temperature unites. The parameters
are curve fitted parameters. The thermal conductivity of the mineral fraction is assumed to be
constant. With (5.36), (5.37) and (5.35), we choose 2.04W/(m - K) as the thermal conductivity of
solid K in the model, so that the thermal conductivity of Bonny silt calculated by (5.34) will be

within the range of experimental results (see Figure 5.4).
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5.3 Coupled TPM FEA of centrifuge experiments

5.3.1 Semi-floating energy foundation centrifuge experiment
5.3.1.1 Centrifuge Physical Model

A series of centrifuge-scale tests were performed on semi-floating energy foundations in par-
tially saturated silt by Goode (2013). A scale-model energy foundation having a diameter of 63.5
mm and a length of 342.9 mm was fabricated to study the impact of mechanical loading and heat-
ing on the internal strain distribution in energy foundations. A centrifuge acceleration of 24g was
used throughout this study, so the corresponding prototype-scale foundation length is 8.2 m with
a diameter of 1.5 m. However, the FEA in this study was performed in model scale to avoid issues
related to the scaling of temperature and diffusive heat transfer in the centrifuge as recommended
by Stewart and McCartney (2013).

Seven strain gages and thermocouples were embedded within the foundation to characterize
the strain response and temperature distribution within the foundation at the depths shown in
the schematic in Figure 5.5. Three loops of Perfluoroalkoxy (PFA) tubing with an inside diameter
of 3.175 mm were used to circulate heated fluid through the foundation. The loops were affixed
to the inside of the reinforcing cage so that the inlet and outlet tubes were on the opposite sides
of the foundation and so that they did not cross the bottom of the cage. The foundation has a
larger diameter than that of Stewart and McCartney (2013) to provide more space around em-
bedded instrumentation and to incorporate a larger fraction and size of coarse aggregates into the
concrete mix design. Although drilled shafts are typically cast-in-place, the model foundation was
precast in a cardboard mold with a reinforcement cage having an opening size of 12.7 mm to en-
sure quality construction considering the extensive instrumentation. This approach also allows for
characterization of the mechanical and thermal properties of the foundation. The larger fraction
of coarse aggregates led to a Young’s modulus of reinforced concrete of 30 GPa that was closer to
that of drilled shaft foundations in the field than that of Stewart and McCartney (2013). The mea-

sured coefficient of thermal expansion of the scale-model energy foundation was 16ue/°C, which is
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greater than that of reinforced concrete in full-scale drilled shaft foundations (typically between 10
and 12u€e/°C). Details of the instrumentation calibration are provided by Goode and McCartney
(2014).

A cross-sectional profile schematic and a top-view plan schematic of the container used in the
centrifuge-scale tests is shown in Figure 5.6. The container is an aluminum cylinder with an inside
diameter of 605 mm, wall thickness of 13 mm, and an inside height of 533.4 mm. The foundation is
tested in a soil layer having a thickness of 533.4 mm, so its tip will rest on a layer of compacted silt
leading to a semi-floating end restraint boundary condition. The schematics in Figure 5.6 show the
positions of the embedded strain gauges and thermocouples within the foundations, linearly-variable
differential transformers (LVDTSs) used to measure vertical displacements of the foundation and soil,
dielectric sensors used to monitor the volumetric water content and temperature of the surrounding
soil, and thermocouple profile probes for measuring the temperature of the soil. A 13 mm-thick
insulation sheet is wrapped around the container to minimize heat transfer through the sides of
the cylinder, which corresponds with an adiabatic boundary condition on the container surface.
The bottom of the container is not insulated in order to provide a stiff platform during mechanical
loading. Although a slight heat loss will likely occur from both the top and the bottom of the
container, these boundary are assumed to be adiabatic in the FEA for simplicity. Heat convection
at the boundaries will be included in future work to provide a more accurate simulation. The top of
the container is covered using plastic wrap to minimize loss of fluid and to reduce convective heat
transfer at the soil surface. Thus, no water flux at the top of the soil is assumed in the analysis. In
the experiment, the temperature of the energy foundation is controlled by circulating fluid with a
known temperature through the heat exchanger tubes attached to the inside of the reinforcement
cage at r = 24.25mm, but a constant temperature was applied to this radial location in the FEA.

In the centrifuge-scale experiments, the same scale-model foundation was used in different
tests. The tests were performed with identical conditions, except that different temperature changes
were applied to the foundation in the different tests. The test procedures involve application of a

seating load (600N) in load-control conditions (i.e., zero head stiffness), followed by heating of the
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foundation to reach a desired temperature. After the head displacements, internal axial strains,
and temperature of the foundation stabilized under each change in temperature, the foundation
was loaded to failure to define the load-settlement curve. After reaching a load of 3265 N in model
scale, the foundation was unloaded. A general schematic of the experimental procedures is shown
in Figure 5.7, and a list of the testing phases is shown in Table 5.2.

To simulate SSI of an energy foundation in partially saturated silt under thermal, hydraulic,
and mechanical loads in the centrifuge experiments, a simplified axisymmetric FE mesh contains 81
elements, 9 elements in radial r direction and 9 elements in axial z direction, as shown in Figure 5.8.
The partially saturated soil is modeled as an overconsolidated soil layer with thermo-elasto-plastic
behavior. The geometry of the FE model (Figure 5.8) is the same as the experimental samples. The
heights of the semi-floating foundation and the container are 342.9mm and 533.4mm, respectively.

Boundary conditions and initial conditions are simplified according to knowledge of the ex-
perimental conditions. The initial conditions are shown in Table 5.4. As for boundary conditions,
due to the axisymmetry of the problem, and assumed rigidity of the bucket, nodal displacements
on the z axis (r = 0) and right edge (r = R) are u, = 0, and nodal displacements on the bottom
(z = —H) are u, = 0. An unreinforced concrete energy foundation is assumed to be impermeable
in this analysis. For now, on the top of the soil, we assume zero water flux S* = 0, and the pore
gas pressure being kept to be atmospheric pressure p; = patm. We notice that the assumption of
undrained boundary condition for pore water pressure and drained boundary condition for pore gas
pressure at the top may not be justified, but it will be improved in future work when we consider
soil-atmosphere interaction to account for evaporation fluxes. To mimic the heating condition of
the circulating fluid through the “U” shape heat exchanger tubes, we assume that temperature
is prescribed along the z axis at r = 24.25mm for simplicity. However, technically, a 3-D model
including a computational fluid dynamics (CFD) analysis of the heated fluid flow through the tubes
would be a more accurate estimate of the thermal boundary condition. During circulation of heated
fluid through the heat exchange elements in the foundation, energy foundations typically reach a

relatively constant temperature with depth. This has been observed in several previous laboratory
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studies (Stewart and McCartney, 2013). The constant temperature conditions were selected in the
study to evaluate the thermo-mechanical soil-structure interaction behavior of the foundation, not
to evaluate the transient heat transfer processes, which we believe would be better simulated with
a heat flux boundary condition. The temperature at the top of the soil is held constant at room
temperature (20 °C, 293 K), and the other surfaces are adiabatic as indicated in Figure 5.8. Corre-
sponding to the seating load (600N), a corresponding effective solid-skeleton traction t = [0 —t7'],
t7" = 189k Pa, is applied on the top of the energy foundation. During Phase 5, a load of 3645N
was applied to simulate the load to fail the foundation (Goode, 2013). The parameters of the
reinforced concrete energy foundation (F) and soil (Table 5.3) are determined from experimental
measurements (Goode, 2013). Fluid parameters are assumed for water. In addition, the paper
refers to Borja (2004b) for certain elasto-plastic parameters of the soil that are not tested in the
experiment.

The simulation of the centrifuge experiments is part of the validation process of the TPM
model. After the model is further improved and validated, FEA can be combined with the cen-
trifuge experiments to obtain a comprehensive understanding of the fundamental soil mechanics
phenomena involved in energy foundations. With this knowledge, we may assess the potential
issues, evaluate the long-term performance and sustainability, thereby providing practical design

guidance for energy foundations.

Table 5.2: Experimental and FE simulation procedure shown in Figure 5.7.

Phase 1  Consolidation under g-level N =1 in simulation, representing compaction of soil
Phase 2 Spin up centrifuge to a g-level of N = 24, wait for equilibration

Phase 3 Apply a seating load at the foundation top, wait for equilibrium

Phase 4 Heating the foundations to different temperatures

Phase 5 Load the foundations to failure, and then unload under different temperatures




Table 5.3: Parameters used in the FEA.
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Parameter Symbol  Value Unit
Linear thermal expansion coefficient of energy foundation B% 16 x 1076 /K
Linear thermal expansion coefficient of solid skeleton 0 ol 8.7x10°° /K
Linear thermal expansion coefficient of solid 0 1.17x107° /K
Linear thermal expansion coefficient of water B 6.9 x 107° /K
Specific heat capacity of energy foundation Cr 855 J/(K - kg)
Specific heat capacity of solid Cs 1000 J/(K - kg)
Specific heat capacity of water Cuw 4180 J/(K - kg)
Mass density of energy foundation PF 2564 kg/m3
Specific gravity of soil solids Gy 2.6

Thermal conductivity of reinforced concrete K9, 1.978 W/(m - K)
Thermal conductivity of soil mixture K? 1.24 W/(m- K)
Young’s modulus of reinforced concrete Er 30 x 10? Pa
Poisson’s ratio of energy foundation VR 0.18 m/m

van Genutchen model parameter a 19.4 x 103 Pa

van Genutchen model parameter n 1.8

Intrinsic permeability of soil mixture K 1.22 x 1071 m?

Initial mean effective preconsolidation pressure L. 100 x 103 Pa

Initial mean effective pressure D) 70 x 103 Pa
Elastoplastic parameter (slope of critical state line) M 1.305

Elastoplastic parameter (slope of isotropic normal compression line) A 0.14

Elastoplastic parameter (slope of isotropic recompression line) R 0.034

Thermoplastic parameter ~? 0.04

Table 5.4: Initial conditions for soil used in FEA.

Porosity 0.4
Volumetric water content  0.226
Suction 30kPa

Gas pressure 101 kPa
Temperature 20°C(293K)
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5.3.1.2 TPM FEA Results

Contour plots show various results on the deformed mesh with displacement magnification
factor equal to 100. Temperature contours (Figures 5.9, 5.11, and 5.13) indicate that although
the foundation reaches steady-state temperature at the end of each test, the soil is not necessarily
at steady-state temperature, for example, soil mixture temperature remains near the initial value
0o = 20°C'(293K) at further radial distance in the soil. This means that the system response is
representative of transient heating, meaning the soil mixture temperature is still evolving. The
modeling results of thermal axial strains ¢/, within the foundation are compared with experimental
data collected by the strain gauges in Figure 5.21. Good agreement is observed in the comparison
throughout the energy foundation. Note that, different from the sign conventions used by Stewart
and McCartney (2013) and Goode (2013), positive strains are used to denote elongation of a
foundation or soil element (e.g., due to application of tension or due to thermal expansion), the
coefficient of thermal expansion is defined as a positive value, and a positive settlement is defined as
an upward heave. Here, the so-called “thermal axial strain” should not be confused with the term
we usually use, which is defined as €/ = 8?Af. In the thesis particularly, the thermal axial strain

¢’ is the total vertical strain at the end of temperature increase .. zeroed out by subtracting the

mech
zz

total vertical strain caused by mechanical effects € including the gravity and building load, i.e.,

0

O =e,.— " The energy foundation achieves almost uniform thermal axial strain distribution

€
except at the bottom where much smaller thermal strain is observed. It is understandable because
the thermal expansion of the foundation bottom is partially constrained by the soil resistance
underneath. Also, as shown in the temperature contours, the temperature at the foundation bottom
is always relatively lower than the upper region due to the contact with the underneath soil. While,
for the foundation top, we can conclude that it almost expands freely under thermal loading,
based on the fact that the strain values are approximately equal to the calculation by free thermal

expansion ¢/ = 8% Af. Figures 5.10, 5.12 and 5.14 show that thermal axial strains inside the soil

vary more noticeably. Temperature increases cause expansion of the soil near the foundation-soil
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interface (31.75mm < r < 132.75mm). Negligible positive expansive axial strains are observed
at further radial distance. The negative compressive axial strains within the soil underneath the
foundation imply that the compression due to the building load on the top of the foundation is
dominant, compared to the thermal expansion.

Figures 5.15 and 5.16 indicate significant changes in suction and volumetric water content re-
spectively near the soil-foundation interface. For example, volumetric water content decreases from
an initial value of 0.226 to approximately 0.18 near the foundation-soil interface (r = 31.75mm),
and a small rise occurs in the soil at r = 56.75mm. Volumetric water contents increase slightly
in the region of 56.75mm < r < 92mm, however, no significant variation is observed beyond
r = 92mm. Figure 5.17 indicates that a net rate of evaporation is produced within the soil due to
rapidly increasing temperatures. A sharp rise of water vapor pressure (from initial value of 2.5k Pa
to around 6.5kPa) happens near the soil-foundation interface (r = 31.75mm), and a smaller rise
occurs further from the interface. The formed density gradients drive vapor from the hotter region
(soil-foundation interface) to the cooler region. Arrows in Figure 5.19 show the direction of water
vapor flow inside the soil. Also, higher vapor velocity is observed under larger temperature gradi-
ents. This diffusion process is governed by many factors including hydraulic and thermal properties
of soil, which require further research. Condensation occurs when the hotter vapor migrates to the
region of lower temperature, and hence leads to a rise in volumetric water content, as shown in
Figure 5.16 at 56.75mm < r < 92mm. As the soil near the soil-foundation interface becomes drier
(pw =~ 60kPa at r = 31.75mm) compared to the soil further from the interface (p,, approaches
75kPa at 56.75mm), pore water pressure gradients are formed, which force liquid water to flow
from the wetter region to the drier region, as shown in Figure 5.18. The movement of pore water
is illustrated by the direction of water flow inside the soil in Figure 5.20. In the soil at further
radial distance, gravity mainly induces downward pore water flow. The pore liquid water flow is
in the direction of the soil-foundation interface near the interface. The trend of thermally-induced
fluid flow will be more obvious as the tests run longer or under higher thermal load (Wang et al.,

2014). Variations of volumetric water content are compared vertically and horizontally between
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the modeling and experimental results in Figure 5.22. Similar trends are observed though the ex-
perimental results exhibit slightly higher values. Volumetric water contents are very close at the
same radius (r = 58mm). While the temperature increases within soil, volumetric water contents
rise higher in the region closer to the foundation-soil surface (r = 58mm) than in the further region
(r = 101mm). In the further region (r = 177mm), much lower increase of the volumetric water
content is observed at the end of Phase 4. But the thermally driven moisture movement might
change the distribution of volumetric water content as the temperature gradients become lower
within the soil. Further research involving higher temperature gradients and longer-term observa-
tions are necessary to investigate the thermally-induced fluid (liquid water and water vapor) flow.
Figure 5.23 presents the average temperature variations of the foundation center and the different
positions in the soil during Phase 4. The temperature trend at the foundation center depends on
how the prescribed temperature is applied at r = 24.25mm. In the simulation, the prescribed
temperature linearly ramps up from room temperature (20°C') to 39°C' during the first 1.35 hours,
and then is kept constant for the rest of Phase 4. According to the temperature comparison, the
simplified assumption of the thermal boundary condition does not capture the transient trend at
the foundation center exactly, but after a certain time (3 hours in this case), the difference becomes
negligible when the foundation arrives at the steady-state temperature. The temperature within
the soil (r = 106, 155, 216,293mm) changes relatively slow, compared to the foundation.

In an attempt to simulate the failure process during Phase 5 in the centrifuge experiment, the
model uses a failure load of 3645\ estimated from the experimental observations (Goode, 2013) as
the ultimate load on the top of the foundation. Figure 5.24 shows that the settlements corresponding
to the ultimate capacity in the experiment are much larger than those from the modeling results.
Load-settlement curves from the modeling results imply that plasticity is not reached in the soil
continuum under the estimated ultimate load, even though the nonlinear thermo-elasto-plastic
constitutive model is applied to the soil continuum. Because of the assumption of a perfect bond
at the foundation-soil interface, the model failed to capture the side-shear failure that induced the

slippage at the interface and meanwhile contributed to the large settlements in the experiment.



164

We believe that with the interface elements implemented along the foundation-soil interface, the
model can provide more accurate simulation of the failure mechanism. This will be investigated in

Section 7.3.3.

y |

Figure 5.9: Temperature (°C') contours at the end  Figure 5.10: Thermal axial strain €., (ue) contours
of Phase 4 under Af = 6°C. at the end of Phase 4 under Af = 6°C.
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Figure 5.11: Temperature (°C) contours at the end ~ Figure 5.12: Thermal axial strain €., (ue) contours
of Phase 4 under Af = 14°C. at the end of Phase 4 under Af = 14°C.
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Figure 5.13: Temperature (°C') contours at the end ~ Figure 5.14: Thermal axial strain €, (ue) contours
of Phase 4 under Af = 19°C. at the end of Phase 4 under Af = 19°C.
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Figure 5.15: Contours of suction (kPa) in soil at ~ Figure 5.16: Volumetric water content (%) (100
the end of Phase 4 under Af = 19°C. n') contours in soil at the end of Phase 4 under
Af =19°C.
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Figure 5.17: Contours of absolute pore water vapor Figure 5.18: Contours of pore water liquid pressure
pressure (kPa) in soil at the end of Phase 4 under (kPa) in soil at the end of Phase 4 under Af = 19°C.
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Figure 5.19: Pore water vapor flow vectors in soil ~ Figure 5.20: Pore water liquid flow vectors in soil
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0 =
50¢
—_ A8 (°C)
g 100}
= m| —6(M)
S 150t —14(M) |
2 —19(M)
8 200t m 6(E)
(8]
g u " m o145
(2] L 4
2 250 m 19(E)
300 |m n
350

50 100 150 200 250 300 350 400
Thermal axial strain ( pe€)

Figure 5.21: Comparison of thermal axial strain €%,

within the energy foundations at the end of Phase 4
under different temperature changes between model
(M) predictions and experimental (E) data from
Goode (2013).

55 : ‘ ‘ ‘ ‘
—r=0mmM™) r=0 mm (E)
50 ——r=106 mm M) oo r=106 mm (E) 1
——r=155 mm (M) -~ r=155 mm (E)
457 ——r=216 mm (M) oo r=216 mm (E)
r=293 mm (M)

r=293 mm (E)

N
o

Temperature (°C)
w
(3]

30¢

25¢ -

20F e e << cxrecz7i
0 0.5 1 1.5 2 2.5 3

Time (hour)

Figure 5.23: Comparison of temperature variation
at the center of the energy foundation (r = 0mm)
and different radii inside the surrounding soil dur-
ing Phase 4 under Af = 19°C between model (M)
predictions and experimental (E) data from Goode
(2013).

167

25 ‘ ‘ ‘ ‘ ‘
——r=58,z=-76(M)  © =58, z=-76(E)
S ——r=58, z=-152(M) ©0 =58, z=-152(E)
S 2f ——=58,7=-228(M) © =58, z=—-228(E) |
°g’> ——1r=101, z=-228(M) © r=101, z=—228(E)
% 1.5 r=177, z=—228(M) r=177, z=—228(E) |
g Ch]
g o 0868
g 4 egoeeeaees J
Q
5]
E 050 ]
3 0009
g oooooo°°°°°°°°°°°°
OpecBaees

0 015 1 1:5 2 2:5 3
Time (hour)
Figure 5.22: Comparison of volumetric water con-
tent within soil during Phase 4 under A8 = 19°C' at

different positions (mm) between model (M) predic-
tions and experimental (E) data from Goode (2013).

0.6 : : :
04 © AB=0°C(M) ——AB=0°C(E)

' © A6=10°C (M) ——AB8=10°C (E)
0.2 © A8=18°C(M) ——A9=18°C (E)

Settlement (mm)
S
N

0 1000 2000 3000 4000
Load (N)

Figure 5.24: Comparison of load-settlement curves
between model (M) predictions and experimental
(E) data within soil during Phase 5 from Goode
(2013).



168

5.3.2 End-bearing energy foundation centrifuge test

A simplified axisymmetric FE mesh containing 30 elements (Figure 5.25) is created to sim-
ulate SSI of an end-bearing energy foundation under thermal, hydraulic, and mechanical loads in
the centrifuge experiment with centrifugation to an acceleration of 24 times gravity (N=24). In the
experiment, the foundation is heated in stages over a range of temperatures expected in the field
through P4-P7 as shown in Figure 5.26. The partially saturated soil is modeled as an overconsol-
idated soil layer with linear thermo-elastic behavior. Elastic, hydraulic, and thermal parameters
are applied for Bonny silt. Fluid parameters are assumed for water. The geometry of the FE
model is the same as that in the experiments. The height of the energy foundation is H = 0.537m.
The radius of the energy foundation is a = 0.025m, and the radius of the centrifuge bucket is
R = 0.3025m.

Initial conditions and boundary conditions are simplified according to knowledge of the exper-
imental conditions. The initial conditions include: porosity ng = 0.425; volumetric water content
wo = 26%; suction sg = 32kPa; gas pressure pgy = 101k Pa; temperature #y = 20°C. As for bound-
ary conditions, due to the axisymmetry of the problem, and assumed rigidity of the bucket, nodal
displacements on the z axis (r = 0) and right edge (r = R) are u, = 0, and nodal displacements
on the bottom (z = —H) are u, = 0. An unreinforced concrete energy foundation is assumed to
be impermeable in this analysis. There is reinforcement in the actual experiment, but since failure
of the foundation is unlikely, linear thermoelastic assumption for the concrete is reasonable, with
or without reinforcement. Also zero water flux S* = 0 at the top of soil is assumed, since plastic
sheeting is placed on the top surface to minimize evaporation. The pore gas pressure p, on the top
is held to be atmospheric pressure py = patm at z = 0. In the experiment or the field, the tempera-
ture of the energy foundation is actually controlled by circulating fluid with a known temperature
through a series of three equally spaced “U” shape heat exchanger tubes attached to the inside of
the reinforcement cage at r = 0.02m. Technically, a 3-D model including a CFD analysis of the

heated fluid flow through the tubes would be a more accurate estimate of the thermal boundary
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condition. However, for simplicity, we assume that temperature is prescribed along the z axis at
r = 0.02m. During circulation of heated fluid through the heat exchange elements in the founda-
tion, energy foundations typically reach a relatively constant temperature with depth. This has
been observed in several previous laboratory studies (Stewart and McCartney, 2013). The constant
temperature conditions were selected in the study to evaluate the thermo-mechanical soil-structure
interaction behavior of the foundation, not to evaluate the transient heat transfer processes, which
we agree would be better simulated with a heat flux boundary condition. The temperature at the
top of the soil is held constant at room temperature (20 °C), and the other surfaces are adiabatic as
indicated in Figure 5.25. Axial load is exerted on the top of the energy foundation instantaneously,
and is kept constant during the test. Effective solid-skeleton traction 7" = [0 —t7'], t = 384kPa,
is applied on the top of the energy foundation. The parameters of the unreinforced concrete energy
foundation (c) and soil (Table 5.5) are determined from experimental measurements.

TPM FEA Results for the end-bearing foundation centrifuge experiment:

Figure 5.27 - Figure 5.38 are plotted contours of various results on the deformed mesh with
displacement magnification factor equal to 100. Temperature contours (Figure 5.27 - Figure 5.30)
indicate that although the foundation reaches steady temperatures after each stage, the soil is not
necessarily at steady-state temperature, for example, soil mixture temperature remains near the
initial value 0y = 20°C" at further radial distance in the soil. This means that the system response
is representative of transient heating. About 10 hours after the end of phase 7 (phase 7 ends at
about 2.64 hr), higher temperature is observed inside the soil near the foundation, as shown in
Figure 5.31. Variation of the pore gas pressure is negligible during the heating process as shown
in Figure 5.32. Figure 5.33 and Figure 5.34 indicate significant changes in suction and volumetric
water content respectively near the soil-foundation interface. For example, suction increases from
an initial value of 32kPa to nearly 60kPa near the interface (r = 0.025m), and smaller rise occurs
in the soil at r = 0.05m. Suction drops slightly in the region of 0.05m < r < 0.14m, however, no
significant variation of suction is observed beyond r = 0.14m. A corresponding trend is detected

regarding volumetric water content distribution in Figure 5.34. Figure 5.35 indicates that a net rate
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of evaporation is produced within the soil due to rapidly increasing temperatures. A sharp rise of
water vapor pressure (from initial value of 2.5k Pa to around 7k Pa) happens near the soil-foundation
interface (r = 0.025m), and a smaller rise occurs further from the interface. The formed density
gradients drive vapor from the hotter region (soil-foundation interface) to the cooler region. Arrows
in Figure 5.37 show the direction of water vapor flow inside the soil. Also, higher vapor velocity is
observed under larger temperature gradients. This diffusion process is governed by many factors
including hydraulic and thermal properties of soil, which require further research. Condensation
occurs when the hotter vapor migrates to the region of lower temperature, and hence leads to a
rise in volumetric water content, as shown in Figure 5.34 at 0.05m < r < 0.14m. As the soil near
the soil-foundation interface becomes drier (p,, ~ 45kPa at r = 0.025m ) compared to the soil
further from the interface (p, =~ 70kPa at r = 0.05m ), pore water pressure gradients are formed,
which force liquid water to flow from the wetter region to the drier region, as shown in Figure 5.36.
The movement of pore water is illustrated by the direction of water flow inside the soil in Figure
5.38. In the soil at further radial distance, gravity mainly induces downward pore water flow. The
pore liquid water flow is in the direction of the soil-foundation interface near the interface. The
comparison of thermal strain between FEA and experimental results in Figure 5.39 shows good
agreement at the foundation top, with similar trend observed for the rest of the foundation. One
of the possible reasons for the difference is the assumption of perfect bond at the soil-foundation
interface in the model, therefore, side shear resistance along the length of the foundation is not
well represented. Implementation of interface elements at the soil-foundation interface will likely
allow closer representation of the SSI conditions. Figure 5.40 indicates that both experimental and
modeling results show smaller thermally induced stress at the top of the foundation as compared
to the bottom. Figure 5.41 shows good agreement of displacement at the foundation top in the
temperature range of 20°Ct030°C, but in the range 30°Cto40°C, the linear elastic solid skeleton
constitutive behavior and function of temperature needs to be modified. The thermal expansion
coefficient of the energy foundation estimated from Figure 5.41 is ~ 6.8 x 1075/K. This value is

slightly smaller than the given parameter ﬂf = 7.5 x 107%/K due to the assumption of perfect
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bond at the soil-foundation interface in the FEA model. This assumption will be relaxed when
the interface element is implemented. The top displacements of foundation and soil are shown in
Figure 5.42 with respect to radial coordinate r and phase loading. The deformation of soil is a
combination of thermal expansion and solid skeleton consolidation due to gravity level increases in

centrifuge experiments.

Table 5.5: Parameters used in the FEA.

Parameter Symbol  Value Unit
Linear thermal expansion coefficient of concrete BY 7.5x 107 /K

Linear thermal expansion coefficient of solid skeleton 3%, , 8.7x 107° /K

Linear thermal expansion coefficient of soil solid BY 1.17x107° /K
Specific heat capacity of concrete C. 855 J/(K - kg)
Specific heat capacity of soil solid Cs 1000 J/(K - kg)
Specific gravity of soil solid Gy 2.6

Thermal conductivity of concrete K? 2.6 W/(m- K)
Thermal conductivity of solid KY 1.24 W/(m- K)
Young’s modulus of concrete foundation b, 7.17 x 10° Pa
Poisson’s ratio of concrete foundation Ve 0.18 m/m
Lamé parameter of soil solid skeleton Askel 2.9 x 107 Pa

Lamé parameter of soil solid skeleton Wskel 4.7 x 107 Pa

van Genutchen model parameter « 0.357 x 107%  Pa~!

van Genutchen model parameter n 1.8

Hydraulic conductivity of saturated soil ksat 1.3x 1077 m/s
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Figure 5.25: Axisymmetric FE mesh and geometry for simulating end-bearing energy foundation centrifuge
experiment. Boundary conditions are included.
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Figure 5.27: Temperature (°C') contour at Af = Figure 5.28: Temperature (°C') contour at Af =
5°C (the end of phase 4). 10°C' (the end of phase 5).

]

Figure 5.29: Temperature (°C') contour at Af = Figure 5.30: Temperature (°C') contour at Af =
15°C' (the end of phase 6). 20°C (the end of phase 7).
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Figure 5.33: Contour of suction (kPa) in soil at 10~ Figure 5.34: Volumetric water content (%) (100n*)
hours after the last thermal loading phase. contour in soil at 10 hours after the last thermal
loading phase.
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Figure 5.37: Pore water vapor flow vectors in soil
at 10 hours after the last thermal loading phase.
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Figure 5.36: Contour of pore water pressure (kPa)
in soil at 10 hours after the last thermal loading
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Figure 5.38: Pore water flow vectors in soil at 10
hours after the last thermal loading phase.
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Figure 5.39: Comparison of total vertical strain e,
between experimental (E) data (Stewart, 2012) and

model (M) predictions inside the energy foundation.
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Chapter 6

Fully and partially saturated poro-mechanical (PM) cohesive interface element

(CIE) models implemented within TPM FE framework

6.1 Fully saturated PM CIE model

This part we introduce the formulation of interface element under isothermal and saturated
conditions. This discussion follows R.A.Regueiro’s notes at the University of Colorado, Boulder.
6.1.1 Governing equations

Balance equations are derived for the continuum and the crack separately, and then are
combined to obtain the governing equations for the fractured porous media.
6.1.1.1 Balance of linear momentum

The balance of linear momentum equation for continuum and discontinuity is written as:

o

aUTj‘l-pbi:O xZEQ/S

u; = gj' r; €Dy

Ungj = t?/ x; €Iy (61)

otnt =T x,€8t

otnT =T~ x,€8"

where n, n* and n~ are respectively the normal vectors of surface S, ST and S™; v is the normal
vector of surface of continuum (see Figures 6.1 and 6.2). The assumptions are: for small rotation,

n=n" = —n", and for large rotation of S, n = 1(n™ —n~). T'" and T’ are respectively the
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Figure 6.1: Sketch of continuum with discontinuity.
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Figure 6.2: Sketch of 2D zero-thickness interface element with fluid flow in tangential and normal directions.
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O pore water pressure

@ displacement

X Gauss points 1-3

Figure 6.3: Schematic of mixed Q6P4 saturated PM cohesive surface element, indicating local node num-
bering of the six nodes 1-6, the three virtual interface nodes I-III on the virtual surface S, and the three
Gauss points 1-3 (in green) on natural coordinate .
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Figure 6.4: Schematic of the crack S with a width of /.
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effective traction on surface ST and surface S~. We define an effective traction T on the virtual
surface S (see Figure 6.2), which can be expressed by a constitutive equation. Furthermore, we

assume effective traction continuity across S, such that
T =T/" = -1/~ (6.2)

In the code, TV = [T!; T!] in the global coordinate system is calculated through the following
equation:

T = AT (6.3)
where, T' = [T/;T)] is the effective traction on S in the local coordinate system (Figure 6.1). We

apply weighted function w; = du; to formulate the weak form of balance of linear momentum

(5

) dv =0 (6.4)

Using the chain rule, one can write

/ 80'1Jd U)zo-zj / ow O'Zjdv (65)

8%_7 Q 8%_7

We apply the divergence theorem to obtain

INwioij) / _
————dv = | wio;inida 6.6
I [ wion, (6.6)

where 71; is a generic normal vector to surface I', and I' =T'y + 'y + S~ + S7; thus we rewrite

/wmi]—ﬁjda:/ ’in'ijdea-i-/
T Iy Iy

|

wi;=00nl'g

wiaijyjda+/+ w+a;;n;rda+/ w; o;n; da (6.7)
S S—

where we apply the effective stress principle to obtain,

0ij = 0i; — Pylij (6.8)
0-2—;: zj_pféw (69)
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where p; is the pore fluid pressure in the continuum; p;{ and py are respectively the pore fluid
pressures on surfaces ST and S™, positive in compression.

We substitute the effective stress expressions into (6.7):

/ wiaijujda = / w; (O'gj — pf5ij) dea
Ft Ft

= /wia;jyjda—/ w;ipoi;vida
Ft Ft

= /witflda—/ wipprida (6.11)
Ft Ft

With 6.2, and assuming an average pore fluid pressure p;? associated with the virtual surface .S, we

can write

+ 4.+ _ + i+ 4,4+
/S+w2- aijnjda = /S+wiTi da—/g+wipfnida

= /w?’ﬂ'da—/w?‘p?nida (6.12)
S S

where p? = %(p}' + p]T) Similarly,

/S wi_ai_jnj_da = / wi_Ti'_da — /S wi_p;ni_da

= [ o [ v (nda (6.13)

We substitute (6.11), (6.12) and (6.13) into (6.7) to obtain

/wiaijﬁjda = /witflda—/ wiprvida
r I Iy

+/ (wj” —w;) Ti’da—|—/ (w;—w;")p?nida (6.14)
S S

Let us introduce the definition of jump displacement vector and jump weighting function vector
across S as,
[u]] =u® —u®"; [w]=w® —w"" (6.15)

where the superscripts + and — denotes the surface ST and S~; v° and u® " are the displacement

vectors on S~ and ST, respectively; [[u]] = [us; u,], where u; and u,, denote tangential and normal



183

displacement jumps, respectively. Use (6.8) to write the 2nd term on the R.H.S. of (6.5) in the

bulk continuum as

ow; ow; , ow;
oijdv = —0 dv /pr o dv (6.16)

Substitute (6.14) into (6.5) to obtain

ow; , / ow; /
— 0 .dv — dv + prvida
0 Z?xja” v pr oz, v . wip v

+/S[[wi]]Ti’da—/s[[wi]]p?ni da:/QwinidU+/Ft wit{ da (6.17)

The discrete Galerkin form of the variables are written as, u”, [[u”]], p?, (p? )", [[p?]L the Galerkin
form of the corresponding weighting functions are: w”, [[w"]], ¢, (¢5)" and [[¢"]]. The local node
order of the zero-thickness interface element is shown in Figure 6.3.

(1) Displacement

The Galerkin form of the displacement vector of the continuum FE is (using Q9P4 for bulk con-

tinuum FE discretization):

9
u(§,t) = NA€)dg(t) = N - d°
a=1

dy (6.18)
[m
N*(2x18) dg
fora=1,2,...,9,

NE 0 de
Ny = , di = (6.19)

0 N} di(a)
wh(&) = Nev . ¢ (6.20)

Next, let us write the Galerkin form of displacement vector of zero-thickness interface element (see

Figure 6.3:

cse
d4

u’ b= 5(1;‘5) _5(12—5) (1—&1+¢) |- dse (6.21)

cse
d6



dise
S+7h _— — cse

u — _5(12 §) §(1;‘5) (1 _ g)(l + f) . d2
dgse

Thus, the jump displacement vector is written as

Huh“ _ uS*,h_uSﬂh

— cse,u cSe,u cse,u cSe,u cSe,u cse,u

IN““"(2x12)
where, for a = 1,2...,6
Ngse,u 0
Ngse,u —
0 Ngse,u

The shape functions for cohesive element are:

Nlcse,u _ Ngse,u _ _5(12_ é)
Nzcsau _ stau _ 5(12"1' g)

Ng™" = Ng™" = (1 = (1 +¢)

(2) Pore fluid pressure

d:CLSe
dgse
dgse
dzse

cse
d5

cse
d6

d” (12x1)
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(6.22)

(6.23)

(6.24)

(6.25)
(6.26)

(6.27)



The Galerkin form of pore fluid pressure in the bulk porous continuum:

4
P& ) =D NP(E)p§, = NP -pf
a=1

Pia
— P P P P p§,2
o N1 Nz Ns N4
(&
Py3
NP (1x4)
| Pfa

¢"(&,1) = N°P(€) - a®

185

(6.28)

(6.29)

where, & = [¢,n] denotes parent coordinates. The nodal shape functions for bilinear quadrilateral

are,

M =4 )
Ny =3(1+81-n)
Ny =31+ +n)

( )

p_ 1
N4—Z

(6.30)

On the cohesive surface element: (1) The pore fluid pressure on surface S is denoted by p? , and

Pi =73 (pj? +p})7 then,

h
p; =

DO =

|: Nlcsel,p N2csel,p stel,p Nscsel,p

NP (1x4)

where, the shape functions NSV, a = 1,2,4,5 are:

Nlcsel,p _ Nscsel,p _

(1-¢)
(1+¢)

DOl

Nlcse2,p _ stel,p _

D=

cse

Py

cse

P2

cse

Py3

cse

Pya
N——
Piee(4x1)

The weighting function of p? is denoted by ¢°; the Galerkin form is:

<Sh _ Ncsel,p . oC5¢

(6.31)

(6.32)

(6.33)
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(2) The weighting function of jump pore fluid pressure on the cohesive surface element is denoted

by [[¢]]; the Galerkin form is written as:

[[Ch“ — _Nlcsel,p _N2csel,p stel,p Nscsel,p .af5¢ (634)

NcseZ,p
where, the shape functions NS***F,a = 1,2, 4,5 are the same as those defined in (6.32). The jump

pore fluid pressure is written as

[P}]] = NP . p§e (6.35)

6.1.1.2 Balance of mass

In this part, we will write balance of mass for discontinuity (or cohesive interface element) and
continuum (or bulk element) separately. Then combine the two equations to obtain one balance of
mass equation for discontinuity and continuum together. The balance of mass in discontinuity S*

(with changing aperture 1) is:
=L T —0, zel, i=tn (6.36)

where u; is the displacement component in the discontinuity; ¢ and n denote “tangential” and
“normal”, respectively . f)?’s = [’DtD S ; oo ’S] is Darcy’s velocity of the fluid in discontinuity. The
aperture of the discontinuity (or crack) S is denoted by I = Iy + u,, where, [ is the initial width
of the discontinuity, and wu,, is the displacement jump normal to S between ST and S~ due to the
development of the crack. A Heaviside step function is assumed to express the displacement (or

velocity) in the discontinuity:

w; = [[ui(x)]|Hs(x), xS (6.37)
where Hg is a heaviside step function on S. The divergence of @ is then,

g’;: _ a[[?g;j?)]]Hs(m) + [l (2)]]nids (6.38)




187

where n is the normal vector of surface S, therefore we have [[4;(x)]|n; = [[t,(x)]]; ds is the Dirac

delta function on S. We ignore the first term on the R.H.S of (6.38) for now to obtain

o0t
al'i

= [[@n(2)]]0s (6.39)

In 2D, we define the nodal displacement vector of an oriented cohesive interface element (see Figure

6.3) in the local coordinate system t = (¢,n) as:

- (df)

=40 """ (6.40)
(d7,)a

As shown in Figure 6.3, an averaged angle o of .S with respect to global coordinate frame r — z is

defined as:

a= %(ozJr +a7) (6.41)

To establish a geometrical relationship between the nodal displacement vector in the local coordi-

nate system and that in the global coordinate system r = (r, z), we construct a matrix A such

that
(df)q cosa  sino (dS)a)
! - : (6.42)
(dS)a —sina  cosa (dS)a
Ae
Thus, the Galerkin form of element displacement jump can be written as
~ e uf e e e cse,u cSe
[[a®(t)]] = =A% [[uf(r)]] = A°- N9 - d (6.43)
uy,
If we write
Aj
A¢ = (6.44)
A5
note,
Al = [ cosa  sino } = tT§ A5 = [ —sina  coso } =n" (6.45)

The displacement jump in normal and tangential directions are given as

up =0t fu(r)]]; u = fu(r)] (6.46)
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Thus, u, > 0 implies that the crack is opening; u, < 0 implies that the crack is closing. Let us

derive the divergence of ( ) the superficial velocity of the pore fluid in the crack S’.

-D,S - -
o0, B 81}5’5 81}?’5

- 6.47
ox; o, Oxy ( )
where 55° and @tD S are respectively the velocities in normal and tangential directions within the

crack volume S! (see Figure 6.4).

We apply weighting function ¢ and integrate (6.36) over the volume of the discontinuity S to obtain

o(v7"%);

According to the nature of the Dirac delta step function, the volumetric integration over S' can be

converted to area integration over S in the following form:
Clinds dv = / Sinda (6.49)
St S

Let us derive the second term in (6.48). We use chain rule again to obtain

%) (¢ o
fo ;i DS
/Sl ¢ s dv /Sl o dv . amZ( )idv (6.50)
We apply the divergence theorem to obtain
o(Cv"); _
/ %dv = CH(® }q D) Fda+ C‘(@? Dy, n; da + C(f}?’s)i vida (6.51)
L Ly S+ S— I's

where ['g is the end boundary of the crack, with v being the normal vector.

(7 )ivida= [ ¢(=S"%)da (6.52)
I's s

where S¥° is the flux at the ends of the boundaries of the crack domain S!. We define the flux

into the crack to be positive, thus
+ = DSt = DS (6.53)

@5 )in; =oPST = DS (6.54)
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Therefore, substituting the upper equations and using the definition of jump weighting function

[[¢°]] on surface S gives:

CH@P S )ing da + / @ )inyda = CtoPSda — | ¢ P5da
S+ - 5+ S
— [ =
— [ -l da (6.55)
s
Substituting (6.52) and (6.55) into (6.50) yields
o7 o
fo ST =D,S 3 w,S
/S e / (€577 5da— [ cs"%da— | o (0 ido (6.56)
where, the last term can be written as
¢ _ [ 9¢ oS oC gD:S
. axl( )d . axt dv + o &En dv (6.57)

We assume the derivative of { with respect to x,, takes the form:

¢ g
e L (6:58)
where dg is 0 function as in (6.38), such that
o050 = [ (¢ dame 2 [ )50 ds (6.59)
Sl 8$n S S

where 75 S denotes the normal velocity of fluid on the crack surface S, and can be expressed with
a constitutive equation. Combining (6.59), (6.57), (6.56) and (6.48) allows us to write the balance

of mass equation of the discontinuity as follows

/SCSunda—/[[CS]] Dsda—/rs gsfda—/s[[g]]@,?vsda—/sl gft 525 dv =0 (6.60)

Now let us add the balance of mass equations of bulk and discontinuity together

/ggZZ 84 (uf dv—i—/CSunda— /[[gs]] DS da

% Dsd = [ ¢SYda+ | ¢S“da (6.61)
Sl 8!1715 T I'sg
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where S% is the fluid flux at the continuum boundary I'y; w is the displacement of the solid
skeleton; 'T)]lc) is the Darcy’s velocity of pore fluid in the continuum. The element of volume dv for

an axisymmetric solid can be expressed as (assuming independence with respect to angle 0)
dv = rdf da = 2mrda (6.62)

where da = drdz is the element of area in the generating cross section of r — z in the bulk. The

volume integration is then written as

/Q (o)dv = 27 /A (o)rda (6.63)

For the crack, however, we have:

/ (o)dv = Zw/(O)lrds (6.64)
St S
forS!, dv = lr dfds = 2xlrds (6.65)

where ds is the differential arc length element of the discontinuity S. Then, the area integra-

tion of fluid flux at the end of the discontinuity (z faces) is:

/F (5% da = (2nl7 (S, (6.66)
S

where 0 and L denote the two ends of the crack S¥, respectively.

/ 9 52 do = 2 /ag 52 1 ds (6.67)
St al't

We use the upper relation in (6.60) and cancel 27 to arrive at

¢ oS

T O Irds=0  (6.68)

/ Siyrds — 2 / ¢S] 8PSrds — [zorogosg“vs +erL<L5§’S] .
S S

For quadratic CSE, ds can be related to the global coordinate vector r = [r, Z]T as follows:

ds = \/dr? + d22 = f(£)de = ¢<Z—g> (Z;) de (6.69)
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where
1
5(r1 +
dr 8[ —le-¢) leive) -6 +9) L(ry +75)
d_f : (9§ %(T2 + 7"4)
%(73 + 7"6)
%(Tl + 7’5)
: { ST iy ] BIELERERY (6.70)
%(T3 + 7’6)
similarly,
%(21 + 25)
dz
%" [ S erhy ] BECRED (6.71)
%(23 + 26)

where, r, and z, are the coordinates of node a, and the order of numbering is in accordance with

that in Figure 6.3, thus, by chain rule,

d(e) 0O(e) 1

95~ 0 1 (6.72)

Note that for CSE element specifically, ds = dxy, i.e., %(;t) = 85;).

For an axisymmetric problem, the volume and surface integrations can be respectively reduced to

surface and line integrations:

/S (o)dv = /0 K /S /O l(-)dxndsrd0:27r /S (o)irds (6.73)
/S (o)da = /0 - /S (o)dsrd) = 2 /S (e)rda (6.74)

where (e) is assumed constant in direction of z,, (normal to the virtual crack surface 5).

6.1.2 Constitutive relations for saturated interface element

The normal velocity in the crack is expressed as Segura and Carol (2008):

505 = ka(pf — py) = —knllp]] (6.75)
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where k, = k/(u #1) is the normal permeability, x = intrinsic normal permeability with the unit of
m2; ¢ = dynamic viscosity of fluid, with the unit of Pa - s; | denotes the aperture, with the unit

of m. The tangential velocity in the crack takes the following formSegura and Carol (2008):

D o 6ps 8ZS
Ut t < . p g ) (6 16)

where k; = tangential permeability of the crack with the unit of m?/(Pa - s), and is given as

R 12

" 12u,

(6.77)

where [ = u,, + o is the changing width of the crack, where u,, = n” - [[u(r)]], lo is the initial width
of the crack; py = the dynamic viscosity of fluid; z = elevation of crack center. g = [0; —g], where

g = 9.81N/m?. Let us derive for the finite element formulation:

o S B S 0 Sh csel,p
Dy _ Dy ~ Dy % _ ON _p?se . L — peselp 'p;se (678)
dxy  0Os o5 Os 23 f(€)

where
1
csel,p __
TGN B B B 079
02 _azs _azsg_ais 1 (6.80)
dxy  0s  0¢ 0s  O¢ f(¢) )
where, the Galerkin form of z° in CSE is obtained from
zie,[
sh
e = | —3€(1-€) 3(1+8) 1-00+8 || e (6.81)
Ncase,S Zie,lll
—_—
ZCSSC
where,
%(Zl + 25)
zcsse - %(22 + Z4) (682)

(23 + 26)

D=
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thus, the derivative in CSE is:

azfse S
e | §705 405 26 | Fese (6.83)
Bcse,S
6.1.3 Finite element formulation

The finite element form of balance of linear momentum equation (6.17) is written as

A(Ce)T . /e (Be’u)T ) O'/d’U—/e (Be,u>T . NPdy ‘p;

fz,int(de) k::pl

—/ p(Ne)T -bdv—/
e Fg

df ,ext
fe e (de) f;it,ext kZPQ

(Ne,U)T tU,d(H—/

: (N v - N°Pda - p§ (6.84)
t

Ncel

— A(CCSE)T _/ (Ncse,u)T . T'da—i—/ (Ncse,U)T ‘n- Ncsel,pda_p?se
6:1 e e

f‘c:l;int (dcse) kdp

cse

where, np denotes the number of bulk elements; correspondingly, ne denotes the number of

cohesive elements.
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The finite element form of balance of mass equation (6.61) is:

Thel ~ cu e -

()7 / (NP B dv-d” — / (Be?)" - 9P dv — / (NePYE sy
e=1 ¢ ¢ rs

(k)" foid py) e

Ncel -cse
+ A(acse)T . / (NcseLp)TnT NS da - d . / (Ncse2,p)T . (Qﬁr?’s)da (685)

e:1 e e

(kg§e>T fzc)i:nt (dcse7p;se)

_/ (Bcsel,p)T . 1~)tD,S dv _/ (Ncsel,p)T Sw,Sda -0
ste

I's

PR ey _
In the local degree of freedom matrix, the order of nodes in cohesive surface element follows the
order in Figure 6.3. d° and d“*® are respectively the nodal displacement vectors of bulk element
and cohesive interface element. After assembly, we can write the coupled two governing equations

in the matrix vector form:

C(D) D+ FINT(D) = FEXT (D) (6.86)
where

0 0

(KT 4+ (K% )" 0

0 0 0 0
~—~ N~ N~ ~—~
Mbel 18x18 18x4 Tecel 18x 18 18x4
= Al oyt o [FA] T (6:57
_ kP! 0 _ kP 0
e=1 e N , e=1 cse R ,
N——  4x4 N—— 4x10
4x18 4x12

The global degrees of freedom D and the rate form D are:

D= . D= (6.88)
Py Py



The internal force

The external force FEXT

FINT
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assembled from bulk elements and cohesive surface elements is given as

d,INT dINT dp2 dpl dp
FOINT  pAINT o (g2 _ gl _ KO ) . p,
_ p,INT _ pl,INT p2,INT
F che che
d,int cse
- B fcse cse pf
d,int dp2 dpl ~ ~~~
fe + (keP® — kPt ) - pf o oxa Ax1
f
O T ax1 R
= 18x4 + 0 (6.89)
e=1 o fp,imf e=1 6x1
e
~—~— pl,int p2,int
L 4x1 _ fcse fcse
| 4x1 4x1 _

FEXT

FYEXT

FdLEXT

FPEXT | ppOEXT | ppL EXT

cse

cse

assembled from bulk elements and cohesive surface elements is given as

fgf,ext _’_fglt,emt 0
Npel Ncel bonend
_ A 18x1 18x1 + 18x1 (6.90)
| e | e ke
L Ax1 ] 4><1 4><1
Recall the generalized trapezoidal rule and construct the consistent tangent:
C(Dn-i-l) Vg1 + FINT(Dn-i-l) - FEXT(Dn-i-l) (6-91)

where V' = D. The subscript n+ 1 denotes the current time step; and the subscript n denotes the
previous converged time step. « is the time integration parameter, and typically, o = 0 for forward

Euler; a = 0.5 for trapezoidal rule; o = 1 for backward Euler, which will be used here.

Dn+1 = Dn+1 + OéAtVrH_l, n+1 == n + At(l - Oé)Vn (692)

k+1

The Newton-Raphson iteration algorithm is used to solve for V7,

where the superscript k& + 1
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denotes the iteration number in one time step.

R(vk+l) — C(Dk-i-l) . Vic:-‘ri + FINT(Dk-‘rl) - FEXT(Dk-i-l) -0

n+1 n+1 n+1 n+1
_ pk, 0R"
=R"+ %4 oV
_ oR*\ ' ok
— 6V = — (W) ‘R (6.93)

Vi =Via+v
Dflﬁ = Dn+1 + aAtVE!

n+1

Generally, the consistent tangent is written as:

OR oC 0D OFINT 9D oFEXT 9D
— === -—— |- V+C+ e —— (6.94)
ov oD 0V oD ov oD ov
where
oD oC
ANt 2 )
BY% alAt; D 0 (6.95)
therefore,
OR OFINT — gpEXTN 9D
— =C + — = (6.96)
ov oD oD ov
where
aFINT _ 8FINT 8FINT
oD od op;
8fg7imt kdp2 _ kdpl
od* —— =~
Npel m 18x4  18x4
= p,int p,int
|-
P}
~—
4x18 —
L 4x4 ]
- d,int q
8fc(fsee N 0 , - kgge
&lf—/ 12x6
12x12 . 124
Tcel N 0 _ \0./ \0,-/
+ A 6x12 6x6 6x4 (6.97)
e=1
8fp1,int afp2,imt afpl,imt afp2,int
o cse cse 0 . cse cse
adcse adCS@ \4 M 6/ 8p§86 ap?se
4x12 4x12 7;4—’ ™
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aFEXT _ aFEXT 8FEXT
0D od op;
B df ext
of 0 0 0
od* ~~ 18x18 18x4
Npel N—— 18x4 Ncel
= A 18x18 + 20.cat oL cat (6.98)
o1 0 0 e—1 Of Vs +8fcse’ 0
\ , \ , CSe cSe v
4x18 Ax4 ﬂf—’ ﬂ'—’ 4x10
- i 4x12 4x12 ]
The details of the derivatives are shown as follows:
d,int do!
82} - / (B ai B du (6.99)
o r 007 r Oky on
¢ = Bery. dv = BenY . 2L (vp, — p/E — dv (6.100
b = [, B Gkdv= [ BT G- ) an (6100)
o fpint / T 813/9 / T
e = B —Lgy= [ —k; (BT . BoP 6.101
= (BTG [ty (B*) (6.101)
oo’

where

50 where k(n) =

permeability given as ky = i

fluid.

afd,int
9d€

= [ e

= [ e

1,h( jcse
/ (Ncse,u)T . 8Tad(ccsie )dCL

r 0T @) o[ offul]

F sese
r 0T (d™)

ofla"]

ofla"]

A[ul]]  ad°c

. AC . NCS&U g

, e is consistent tangent from constitutive model of solid skeleton; ky denotes the saturated

intrinsic permeability, @y = dynamic viscosity of

da

(6.102)

~1.h . . . ~—y
where, T"" and T are Galerkin forms of the cohesive traction at the crack surface T' and T,

which are respectively written as,

! _ !
T=| "|; T=|" (6.103)
T T,
=) / /,h ey—1 A T  Alh
T =A-T =T =)L T" =(A)T. T (6.104)

~h . . . . .
and, T (d°*¢) is obtained from a nonlinear function of CIE displacement d“*®;

oT

—~1,h

is called the

o[u"]

elasto-plastic consistent tangent in the local frame of CSE, assuming there is elasticity associated

with the crack material.
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Furthermore,
agg%{:t _ / (Nesezn)T (28872?5) da (6.105)
ag%{:t _ / e (Nesezn)T (faiS) da (6.106)
852%”? _ / e (Bcsel,p)T,%c’if)da (6.107)
%é{:t _ / (Bcsel,p)T,%jlil)da (6.108)

with the expression ﬁtD % in (6.76) and (6.77), we can derive the derivatives w.r.t. d** and p}*,

assuming fluid is incompressible, i.e., p/® is constant.

adec— ad™c \ Oz, 0 xy

@ 1) Ak 1) (apf _ ing a_ﬁ)

N 12,uf 8dcse al’t p 8:13,5
— & T cse,u apf fR d2°
= mn "N <8—3:t —prg 8—33) (6.109)
~D,S R
% =yl <BCS€1’P- %) (6.110)
!
oy Oy, Oy, e
8dcse = _8d686[[p?“ = W’n’T A [[p?]] (6111)
~D,S 0 S )
a?)n — —k [[pf]] — _ancspQ,p (6112)

8})?86 n ap;se
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6.2 Biphasic partially saturated PM CIE model

The fracture is characterized by very high permeability and very low storage capacity, in

contrast, the porous continuum is characterized by low permeability and high storage capacity.

6.2.1 Governing equations
6.2.1.1 Balance of linear momentum

The balance of linear momentum equation for the partially saturated continuum with discontinuity

is written as
60” +pb;=0 z;,€0Q

u; = g;' r; €Dy
OijVj = t? xz; €I (6113)

ot it e o
o =1, r; €S

a/;'n_ = T/_ x; €57

Apply weighting function w; to the balance equation to get

Doy B
/ (8% + b)dv_O (6.114)

Use chain rule and apply divergence theorem to the 1st term of (6.114), then we have

/ 80”(1 _ / 8(wi0’ij)dv 8w20wdv
" Ox; o Oz o Ox;
- ow;
= /Fin'ijnjda—/QaTjO'”d’U (6115)

where the boundary I' =Ty + T'y + ST + S, thus,

/w,-a,-jﬁjda:/ in'ijI/jda—F/ w,-aijujda—k/ w+a;;n;rda+/ wl_algn;da (6116)
r Iy Iy S+ S—

the integral over the prescribed displacement boundary I'y, i.e. the 2nd term in (6.116) is equal

to zero. For partially saturated biphasic mixture, Bishop’s expression of the total stress tensor is
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given as
045 = 0i; + X80 (6.117)
Ji‘; = O'Z/;_ + xTsTd;5 (6.118)
o5 =05 + X80 (6.119)
where Jgj, agj, and 0'2]7 are respectively the effective stress tensors on the continuum elements and

interfaces ST and S™; x, x*, and x~ are respectively the material properties referred to as the
effective stress parameters, which depend on the suction. s, s, and s~ are respectively the suctions

of the continuum elements, S* and S—, and the suctions are defined as

§=Dg—DPuws ST =Dy —Dyi 5 =Dy — Dy (6.120)

where pg, p;, and p, are pore gas pressures of bulk, St and S™, and are assumed to be zero for

partially saturated biphasic mixture, thus

s=—pw; st =-py; 5 =D, (6.121)

We define a averaged pore pressure on the interface element S as

1 .
P =55 + 1) (6.122)

and a pore water pressure jump in the discontinuity
[pw]] = Py — P (6.123)
thus, for the biphasic formulation, we have
=i [ =5 —5" = —llpu) (6124
Given p? and [[py]], pi; and py, can be calculated as follows:

v = —glpull 4955 po = gllpull + S (6.12)



correspondingly, the suctions on ST and S~ are written as
+ +_1 P - s
s = vy = 5lpull = pus 57 = vy = —5llpoll - P

We make the following assumptions

L+ /= _ /
Tt = 1T =]
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(6.126)

(6.127)
(6.128)

(6.129)

where the effective stress tensor on interface element 77 is calculated through a constitutive model.

then we can rewrite the surface integrals in (6.116)
/ w;ojvida = / w; (agj + xs6i5) vida
Ft Ft

= /wiagjl/jda—l—/ Xsw;0;vjda
Ft Ft

= / witflda —l—/ xsw;vida
Ft Ft

ot _ i+ +ottnt
/S+wiaijnjda = w; T, da+/ X" sTw; n; da

+ S+

wi T/ da + / x*s5Tw n;da
s

/S w; opn;da = w; T da + / X~ s w; n; da

T~ —a o

—wi_TZ-’da—k/stss’_w;(—ni)da

Substituting (6.130), (6.131), and (6.132), and (6.126) into (6.116) yields

/wiaijﬁjda = / wit;’,da—l—/ Xswiéijl/jda—l—/ (w;"—w;) T!da
r I I s

(6.130)

(6.131)

(6.132)

+/Swi+x5 <%[[pw]] —pg> nida + /Swi—xs <—%[[Pw]] —pi> (n)da

= /’wit?/da—/ Xpwinida—/HwiHﬂda
Ft Ft S

1 _ _
+ [ Enlpdllg (wf +o7) da+ [ xSpin i~ wf
S S —

([ws]]
The 2nd term on the R.H.S. of (6.115) can be written as

ow; ow; ow;
—oiidv = ol dy — o —d
o 0a; 0% /Qal’j% ! /pr oz "

(6.133)

(6.134)
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where the effective stress tensor of the continuum Jgj will be calculate from the elastic or elasto-

plastic constitutive model. Substitute (6.133) and (6.134) into (6.114) to obtain the balance of

linear momentum of the continuum with discontinuity:

ol = | e g+ | Jwrian = | %2
—0jdv — w w)Wivida + w;||1;da — D) |wi]|nida
o 0z, Q(XP )c%;,- Ft(xp) S[[ Il S(X )[wil]

—/ 1XS[[pw]](w;r—I—U)i_)nida:/,owibiahw—/ wit? da (6.135)
52 0 I,

Terml

(6.135) is similar to the balance of linear momentum equation of saturated condition, but note p,,

is negative for the biphasic partially saturated mixture. “Term 1”7 needs to check further.

6.2.1.2 Balance of mass

The balance of mass equations for the discontinuity and bulk element are derived separately, as-
suming the discontinuity is also biphasic partially saturated mixture. Adding the two equations to
obtain the balance of mass equation of the whole system. First, let us write the balance of mass

for the continuum £2,

ou; DS, 0(vf
+ +

);
oz, LY oz, =0 (z;e) (6.136)

Sw

Apply the weighting function ¢ and integrate over the continuum domain 2, the weak form is:

/gs 8u’d +/g 85 %st /g ’d ~0 (6.137)

Apply the chain rule and divergence theorem to the last term of the left-hand side of (6.137),

o(03); , (Co), o p
/QQ 0z, dv = /Q 7, —'dy — S (vw).dv

s 0
/8Q ¢ (05)); nida — (‘hi (0 ).dv (6.138)

where the boundary of the continuum is: 0Q =Ty +T'; , thus

/ C(@fg)inida:/ C(ﬁg)inida—k/ ¢ (00),nida (6.139)
oN

E] T

in which, I'y is the water flux boundary where (275 )an = —S%. On boundary I', pore water

pressure is prescribed, and ¢ =0 on I,.
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Similar to (6.136), the balance equation for discontinuity S' with the width of [ is

du, = ¢D°S5  ovl”
Sp—+n’—24—L_ =0, x5 6.140
w(‘)xi o Dt - 8%, ’ i ( )
where S2 = degree of saturation of the crack, and n® = porosity of the crack. ?7Z-D’S (i =t,n) is

the tangential (¢) or normal (n) component of superficial velocity of pore water flow in the crack.

Here van-Genuchten model is adopted to relate the degree of saturation S2 and the suction s° in
the crack. Extended Darcy’s velocity is applied to the tangential velocity of pore water flow in the

crack,

S
0% = ki b (ZL;’: - prgg—i> (6.141)
where k,, and k; are respectively relative permeability and absolute permeability of the crack in the
tangential direction to the crack. The assumptions made here include: the absolute permeability
of the crack domain S’ is higher than that of the continuum porous media domain €; the air entry
value in the crack is lower than that in the continuum porous media; cubic law is used to estimate

the absolute permeability of the crack in the tangential direction as follows:

R 12
k, =
" 12,

(6.142)

where [ = width of the crack; u,, = dynamic viscosity of water with the unit of Pa-s. The material
time derivative of degree of saturation in (6.140) can be written as

DsSy  DsS5 Dss®

= 14
Dt DsS Dt (6.143)
The divergence of displacement in the crack is defined as (see (6.37)-(6.38)
2 [l (6.144)
and the divergence of velocity of water flow in the crack:
~D,S ~D,S ~D.,S
v, _ Oty 07, (6.145)

ox; oz, Oxy

Apply weighting function ¢ to (6.140) and integrate over the crack domain S’, then we have

-D,S

d8S - I,
/Sl (Sﬁ[[un]]égvar/Sl Cnsﬁssdv—k Slc §$ dv=0 (6.146)
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The first term on L.H.S. is:

[ csitwalissao= [ ¢sSlfialjda (6.147)
Apply the divergence theorem:
~D,S
C@vDS _ /Mdv_/ 0C 105 4,
ox; sl ox; gt Ox; "
= /. ¢t nida — / gg % dv (6.148)

where the boundary of the crack S is 9S' = S* + S~ 4+ I'g, and I'g is the end boundary which is

perpendicular to S (see figure 6.4), and the outward normal vector of I'y is denoted as v, and the

water flux at S¢ = —f)Z-D’SVZ-. S¢ should not be confused with the degree of saturation of the crack
SS Water flux at interfaces ST and S~ are respectively oD ST @Z-D’Sn+ and 55°7 = f)D o n; .
f)fl)’s = 27,?’5+ = —@5’57, and is defined as

~D.S _ 7 i (+ e T

Uy = kpwkn (pw _pw) = —krwkn[[pw]] (6.149)

where /;rw and l;:n are respectively the relative and absolute permeability in the normal direction

of the crack (or across the crack). Thus the 1st term in (6.148) is

Cf)iD’Snida = (+27Z-D’Snfda+ (‘f}iD’Sn;da+ C@iD’Suida
08! S+ S— T

= oS da+ [ ¢ToP % da — / ¢SYSda
S+ S— T's

= / (¢t =¢7)op da - / (S¥da
s Isg

= / —[[¢N8) da — [ (S¢da (6.150)
S I's

The 2nd term on the right-hand side of (6.148) is

0C :p.s o¢ oD /_ DS
/Sl 83:, dv = . axt dv + . c%znv dv (6.151)

We assume:

57— = [[¢1)9s (6.152)
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then the integral over S’ is converted to the integral over the interface surface S

/Sl ;:f DS dy = /S[[C]]ﬁf’sda (6.153)
Substitute into (6.146) to obtain
S5t ]] wcz o254
[ ¢silinlda+ [ oSS Pran— [ 1) Sda
¢S¥da — /Sl g—iﬁ?’sdv - /S[[(]]f){?’sda =0 (6.154)

Combine with the weighted residual form of balance of mass equation of bulk, we obtain

/gs [ti,] da+/ ¢nss —“’d 5 CSw’Sda—/Sl gﬁt o dv —2/S[[C]]17£)’Sda
/gs /g aSS D' dv—/ ¢S"da — ac( 2),dv=0 (6.155)

6.2.2 Finite element formulations

The finite element form of balance of linear momentum equation (6.135) is written as

nACl(Ce)T . /e (Be’u)T . O'/dU— /e X (Be,u>T . NePdv 'pz)

e=1

Firdo) k' (pe)

— / p (N . bdv— / (N 7" da + / X (N v N®Pda -pe, (6.156)

fzfae"ct(de) fzt,ext kZpZ(pfu)

Ncel

+ A(CCSE)T / (Ncse,u)T . T'da _/ XS (Ncse,U)T .- Ncsel,pda _pi}se -0
— e e

fortde kL. (pge)
where ny,q denotes the number of bulk element; correspondingly, n.. denotes the number of cohesive

element. For now, the term “Term 1” is ignored; it needs to check that if it should be considered.
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The finite element form of balance of mass equation (6.155) is:

kel ~ e,u -e aSw .
A(ae)T- S (Ne’p)T B dv-d — / (Nfz"”’)717z—a NPdv - p,,°
o—1 Qe e S

kP ke .ps)

e

- / (BP) . o dy — / (NPT svdy
e Fg

fz’int(dipij) fi”e“”
(6.157)

Ncel .
+ A(acse)T' / Sf} (Ncsel,p)T TLT . INESeU (g - dcse o / (Ncse2,p)T . (2@5’5)(1&
e=1 ©

e

o PO d )
085 .
_ / (NcseLp)TnS 5 chsel,de 'pwcse . / (BcseLp)T . @tD“S dv
Sl,e S Sl,e
k;c;ge(dcse7pzfe) f;cziéznt (dcse7pz}se)
— [ S“%da|l =0
/F s ]

If we choose x = S, and x° = S respectively for the continuum and the discontinuity, then we

have k! = (k:fgd)T, and k% = (k:pd )T. The surface integrals over the element of the crack surface

cse cse

S¢ and the two end surfaces perpendicular to the crack I'¢, as well as the volumetric integral over

the crack volume S' are implemented with axisymmetric formulations.



6.3 Elasto-plastic cohesive interface element (CIE) model
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So far, the normal/shear constitutive model Carol et al. (1997) used for the poro-mechanical or

thermo-poro-mechanical interface element does not include suction or temperature effects explicitly,

ie. F:F(T/,q), G:G(T/,q). We should further consider certain constitutive model to make F' and

G dependent on suction s° and temperature #° of the discontinuity.

6.3.1 Traction-displacement model for geomaterials

The yield function F' and potential function G that model post-bifurcation softening along

the virtual discontinuity surface S is given as Carol et al. (1997) (we use f and g for the yield

function and potential function respectively for the continuum.)

F = \/Tt’2 + (¢ — xtang)? — (¢ — T, tang)

G= \/Tt’2 + (¢ — xtany)? — (¢ — T tanw))

where
X =Xr + (Xp — Xr) exp [~y (e + €))]
c=cr+(cp —cr)exp [—ac(eh + €)]
tanQS = tan@r + (tan¢p - tan¢T)eXp(_a¢€€)
tany = (tanyy,)exp(—ay€?)

where

t
eg:/ & di
0

t
eg:/ & dt
0

. sign (T} . .
v = 0L 1) — s vamol i
f
&= Ty
G

(6.158)

(6.159)

(6.160)
(6.161)
(6.162)

(6.163)

(6.164)
(6.165)
(6.166)

(6.167)
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Where the local effective traction vector is T = [T} ; T}]. The rate of local plastic jump displace-
ment vector [[wP]] = [4?; 4h); x = tensile strength; ¢ = cohesion; ¢ = friction angle, 1) = dilation
angle; fo = the fracture energy when cracks occur under pure tension (Mode I); G;I = the frac-

ture energy when cracks occur under shear and very high compression with no dilation allowed

(asymptotic Mode II); and

T’ T’
1y = gl e

T, — |75

5 (6.168)

where (7)) > 0 for tensile normal effective traction, and (7)) < 0 for compressive normal effective

traction We define the internal state variable vector as:

q = [x, ¢, tang, tany)]” (6.169)
and, o, ae, @y and oy, are material parameters that control the rate of softening of internal vari-
ables;

6.3.2 Implementation of elasto-plastic CIE model

For plastic loading of the interface 45 > 0, the rate forms employed in the elasto-plastic CIE model

are presented as

~

T = Ko (@) = K° - ([[i]) - [[@]) (6.170)
(7)) = 5,29 L9 (6.171)
oT
g = 4sh? (6.172)
F(T',q)=0 (6.173)

where K¢ is the elastic modulus of the crack, and note the e denotes “elastic” instead of “element”;

K; and K, are the tangential and normal stiffnesses, respectively, of the crack; [[@]] = [us un]" is
the local jump displacement vector; [[@€]] = [u¢; u¢] and [[@P]] = [u} ; ul)] are respectively the local

elastic and plastic jump displacement vectors; 75 is the rate of plastic multiplier along the crack; F

and G are yield and plastic potential functions, respectively; q is the internal state variable vector;
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h? is the softening function vector; and the elastic stiffness matrix of the crack takes the following

form:

K 0
K¢ = (6.174)

0 K,

Integrating (6.170-6.171) by applying Backward Euler time integration gives

AT = K° - (Alfa]] - Alfa”]) (6.175)
Al[a?]] = Avs (aGT,)nH (6.176)
Aq = Avshl, (6.177)
Foi1=0 (6.178)

where, the subscript n + 1 denotes the current time step designator, and subscript n will be used

as the previous time step designator in the following equations, such that

AT =Tp.1—Th (6.179)

Aq=q, 1 —q, (6.180)

and, A[[u]] is calculated from global iteration for the CIE nodal displacements, and is kept con-
stant during local iteration, i.e., 6(A[[@]]) = 0, 5(e) = (8)**1 — (8)¥ is the local Newton-Raphson
increment, with k 4 1 the current iteration.

If we write (6.175-6.178) in residual form and leave off the current time step designator n + 1, we

will obtain

_ - _ _, . i . -
Rp F

We construct an unknown vector X and rewrite (6.181) in the following form

R(X)=0; X=| 4 (6.182)
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Recall (4.336) and calculate the consistent tangent operator:

[ oRy oR; oRs ]
aT/ 8q 8A76
OR oR, oR, oR,
0X oI oq oA7s
ORp ORp IRy

L T oq A |

1 + A76K6 . aG,—’l‘:,/i_‘l A76K6 N aGT/q KB . 8Gi—1/

= Ars - OR, —I+ Ays - O, h4 (6.183)
i OFz dFq 0 |
where,
1000
10 0100
1= . I= (6.184)
0 1 0010
(00 0 1|

Applying the same approach used in (4.344) and (4.345) allows us to write

R, o7 0
A B
R, |+ - 5q =10 (6.185)
c o0
Rp 6(Avs) 0
where,
oR;, oR;
= g 1+ AvK® 0G5 AvysK®- 0G5
A= 85 ; _ TT Tq (6.186)
0 0 q q
aTtlZ 8qq A’)/(; . 8h%, —I+ A’yg . 8hq
oR;,
K- 0G~
B = j;‘; — T (6.187)
T h
— | aRr oR —
C= [ T ] = [ 0F; 0Fg } (6.188)

The details of the derivatives are shown in Section 6.3.2.3. We can write the following results by
following the same procedure through (4.346) to (4.350):

Rz,
R,
C-A'B

RF—C-A_I-

5(Avs) = (6.189)
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oT R
=—A"! + 6(Avs) - B (6.190)
oq R,
With the solution of §X, we can update X* to obtain X**1, then check if the convergence is

satisfied, if not, go through the procedure again till convergence is satisfied.

(T = (T + 6T (6.191)
(@) = (@)" + dq (6.192)
(Ays)" 1 = (Ays)" + 6(Ans) (6.193)

where, k denotes the local iteration number designator.

6.3.2.1 Formulation of softening function h¢

Let us formulate the expression for the softening function h?. According to (6.169), (6.171) and
(6.172), we can write

dq 0 dq 9&" G

- Yd 0Pl = AL = 6.194
= g o ™ e o] o7 (o1
0q 0P
and, h? = wm@GTJ (6195)
where,
54 uf 8¢
& = D= s acy =] (6.196)
oG
n U o1,
Thus, we can write the derivatives in (6.195) as
Ay Ay % X
8(] Ag A4 {?ch ((;96—%
A5 Ag aig(z) ai?
A e ol ol
e el
o0 | Bu B |G fn 6.198
@ | 5 g || o2 oe (0199
3 4 Jur  Oun

where according to (6.160)- (6.167), we can derive
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Ar = Az = (Xp — xr) exp [—an (€] + )] - (—ay) = —ay(x — x»)
Ag = Ay = (¢p — ) exp [—ae(e + €))] - (—ae) = —ac(c — ¢)
As = (tang, — tang,) exp(—age?) - (—ay) = —ag(tang — tang,)
Ag=0

A7 = (tant)y,) exp(—ayel) - (—ay) = —aytany

Ag =0
D€l Sign(Tt/) / /
B = = = YT/ — T
= G = T 1T )
Ol
By = D, 0
Oéb
B = —_—
3 aut 0
Oéb 1
By =" = (T}
and h? can be written as
h4(1) Ay As
hi(2) As Ay B, Bs 9
Rt — _ . S| (6.199)
hi(3) A5 Ag By By L
i hi(4) | I A Ag |
where
oG oG
q(1) — g il
h (1) A1 By aTt, + A2B48T7/L
oG oG
q(9) — g el
h (2) A3Bq aTt, + A4B48T7/L
oG
h1(3) = AsB]—
(3) 5 181},
hi(4) = A7B; oG

o1y



6.3.2.2 Consistent tangents of elasto-plastic interface element model

Write (6.181) using Backward Euler time integration method:

~/

Rn+1 =

~/

—Agq + Avsh?

F

T =T, — K- [[uflnpr + K- [[ulln + Avs K- (0G 7 )nta

=0
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(6.200)

Take the derivatives of Ry41 w.r.t. [[@]],11 and Multiply the first equation in (6.200) by (K¢)™ "

ey—1 . 8T;+1 o oG 0A~vs 892G af;+1 a2a¢ 8(~1n+1
B S~ o @ e A <3T’2+1 Ml 5T, oq,., Tl
0q,, q 0A~s ahgwrl OT;+1 8hi+1 0q,, 1,
AWss 1 ® AWlnrs A5 <a’fn+1 [Unt1 ' 0G4y O[[W]]nia
oF 8Tn+1 oF 94,44
oI, ,, W1 91 (@l

Leave off the subscript n + 1 and rewrite the above equation in the following form

ey—1 T oT
A;0R, I+ Ays0RYy  he % =1 o,
0A
i OF dFq o | o] [0

where, 1 and I are the same as those in (6.184), and

0 0
0 0
04 = ;o 01 = [ 00 ]
0 0
0 0
Note
y [ o1, o1y
oT - aui {)u,tI
[[u]] ory, T},
| ur Gun
_ o o -
duy Ourn
0 0
aq _ 8_72 8ucn
8[[1]‘]] Jtang  Otang
out Oun
Otanty)  Otaniy
L Ou Oun

(6.201)

(6.202)

(6.203)
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02% _ | aas)  o(am) (6.204)

o] ~ | e ow

Using a similar approach as in Section 4.4.2, we set

ey—1
(K°)™ + A’y(;aGT/i;/ A’y(;aGqu

A= (6.205)
A’y(;ah;, I+ A’ygah;]]
(0G )"
B = ; C= [ OF: OF, ] (6.206)
T q
ha
The solution can then be written as
1
cC- A"
0(Ays) 0
07— 6.207
o[[a]] C-A''B ( )
oI ~
ol | g ||t g 0T (6.208)
g o olfa]
of[u]]
where 8?[—1,‘;” is the material interface consistent tangent used in (6.102).
6.3.2.3 Derivatives in elasto-plastic interface element model

Now let us formulate the derivatives. Set Qr = Tt’2 + (c — xtang)?, and the derivatives of yield

function F w.r.t T and q denoted by 8F1~,r and 0Fy are written as

oF
OF g = —; = [ oF  oF } (6.209)
oT or]  0Tj,
oF
= __ — | 9F OF OF oF
8Fq o dq o |: 9x Oc Otang Otany :| (6210)
[ ona(1)  omi(1) BRI1)  ORI(L) |
Ix dc Otang  Otany
q Oh4(2) 0h%(2) Ohi1(2) Ohi(2)
ahq _ oh _ ox oc Otang Otani) (6 211)
dq Oh9(3) ORI(3) BhI(3)  ORI(3)
ox oc Otang Otani)
Oh4(4) 0Oh%(4) Ohi(4) Ohi(4)
| Ox oc Otang Otanty)




where,

Ohe(1)  OhI(1)
20T 00T,
Ohe(2)  Oh(2)
oR — on' | “gar ooty
T oot | e o)
90T 00T},
Ohe(4)  OhI(4)
| oor;  ooT; |
oG~ — 69/ _ [ G 9G }
T o1 o] oI},
892G 092G
5 — G oT/? T[0Ty
T 8T'8T/ 82G 82G
T}, 0T{ T2
9 G 9%G e 82G
9., — G | 9Tjox OTjoc  FT[o(tand)  OT}o(tany)
Ta  9T'0q 26 %G 092G 092G
0T} 0x 0T} 0c OT!0(tang) IT)O(tany))
oF _
97— T, (Qp)~"°
t
oF
oT7 = tan¢
oF _
o (¢ — xtang) - (—tang) - (Qp)~*°
oF _
B0 = (¢ — xtang) - (Qp)™"° —1
oF _
8(tan¢) = Tr/L - (C - Xta‘n(b) X (QF) 05
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6.4 Numerical example

Three numerical examples are set up in this section. The first two examples are designed to
test the hydraulic (pore water pressure generation) and mechanical (elastic and plastic) performance
of the fully saturated poro-mechanical CIE model, and the third one is designed to analyze liquid
flow in a fractured partially saturated porous media. Linear isotropic elastic constitutive model is

used for the bulk elements.

6.4.1 Case study of fully saturated poro-mechanical CIE

Two examples are set up to test the performance of the saturated poro-mechanical CIE model

under compression and tension respectively.

6.4.1.1 Fully saturated PM CIE under compression

The dimensions and boundary conditions are indicated in Figure 6.5: two matrix blocks, each
has a column of two bulk elements; initial vertical aperture [y = lem, and is represented by two
cohesive interface elements, i.e. element 5 and element 6. The bottom and side surface are fixed in
normal displacement, and are impermeable. Due to the axisymmetry, the axis boundary is fixed in
r direction, and is impermeable. Water table is set at the top z = 1m to represent a fully saturated
condition. Effective traction t° = 10kPa is applied on the top of the matrix (t7 = t"/) at z =1m
since py = 0 at z = 1m. Pore water pressure generation due to the gravity and traction in the
matrix and the fracture are analyzed. The closing of the fracture under compression is observed.

Results: Figure 6.6 illustrates the changes of pore water pressure at different depths in the
matrix and the fracture, i.e. z = 0 and z = 0.5m at various radial distances r = Otol + [. In the
matrix (node 13, 18, 25, and 30), pore water pressure builds up due to successive applications of
gravity and traction, then dissipates with time, and eventually reaches hydrostatic steady state.
While with the initial aperture lp = lem, the fracture behaves like an open channel saturated with

water, therefore, the generation of pore water pressure is negligible within the crack (see the curves
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for nodes 15, 16, 27, and 28). Figure 6.7 shows the vertical displacement change at different depths,
i.e. z=1lem and z = 0.5m. Same displacements are observed within the matrix and the fracture at
the same level, which implies no displacement jump in the tangential direction within the fracture,
ie, uy = 0 (see Figure 6.8). Correspondingly, the tangential stress is almost zero as shown in Figure
6.9. Under the gravity and traction and with the horizontally fixed boundaries, the two compressed
matrix blocks tend to push against each other, thus the closing of the crack, i.e. u, < 0 in Figure
6.8. Correspondingly, the fracture is under compression state, i.e. T, < 0 as shown in Figure 6.9.
Figure 6.10 illustrates the evolution of the yield surface during the compression-dominated process.

Yield surface does not change because only compressive elasticity occurs along the interface.
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Figure 6.5: Axisymmetric finite element mesh for a fully saturated soil column with vertical fracture with
initial aperture Iy = lem: 30 nodes, four saturated Q9P4 PM bulk elements (Elem1-Elem4) and two Q6P4
PM CIEs (Elem5-Elem6). Gravity load is applied, and effective traction t” = 10kPa is exerted on top.
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6.4.1.2 Fully saturated poro-mechanical CIEs under tension

The following example is set up to test the plastic performance of fully saturated poro-
mechanical CIEs under tension. The elasto-plastic parameters for the cohesive interface element
model are listed in Table 6.1. Different from the previous example, gravity and traction are not
applied, the top is fixed vertically, and the side surface is prescribed with horizontal displacement
u, = lem as shown in figure 6.11.

Results: Figure 6.12 shows negligible pore water pressure is observed during the opening of
the crack. Figure 6.13 illustrates the horizontal displacements of the two FE facets at the bottom
of the crack. At t = bhour, the horizontal displacement difference starts to increase dramatically,
which corresponds to the rise of the plastic normal displacement jump u}, as shown in Figure 6.14.
In this tension-dominated process, the tangential displacement jump wu; is negligible in figure 6.14.
In Figure 6.15, the normal effective stress T}, increases with the normal displacement jump w,, inside
the crack, and eventually reaches x,(Pa) = 3.464 x 10° (see Table 6.1) and triggers plasticity of
the cohesive interface element. After that T starts to decrease as the cohesive interface element

softens which is illustrated by the shrinking of the yield surface in Figure 6.15.
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Figure 6.11: Axisymmetric finite element mesh for fully saturated fracture soil column with four saturated
Q9P4 bulk poromechanical elements and two Q6P4 poromechanical CIEs. Initial vertical aperture [ =

1 x 10~°m, and prescribed horizontal displacement u,, = lcm is applied on the side surface at r =1+ [.
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Table 6.1: Parameters for elasto-plastic CIE model depicted in Figure 6.11.

Symbol(unit) Value

K, (Pa/m) 1 x 107
Ki(Pa/m) 1 x 107
GL(Pa-m) 1 x 10
GfI(Pa -m)  1x10%

Xp(Pa) cp/tan(¢,) = 3.464 x 103
Xr(Pa) 0

cp(Pa) 2000

¢r(Pa) 0

¢p(rad) 0.5236

or(rad) 0

Pp(rad) 0.087

ay 200

Qe 200

ag 900

ay 900




0.05

—— Node 25
—e— Node 27
—e— Node 28| |
—— Node 30

Pore water pressure (kPa)

10 15 20 25
Time (hour)

Figure 6.12: Variation of pore water pressure at
the bottom, with gravity equal to zero.

10

[ee]

[<2)
c

Displacement jump (mm)
S

0 5 1‘0 i5 26 25
Time (hour)

Figure 6.14: Plot of total normal, plastic normal,

elastic normal, and total tangential displacement

jumps, i.e. uy, v, uf, and uy, at the first (or lower)

no

Gauss point of element 5.

5
< — Intial yield surface
% 0 Final yield surface
= o Stress path
_5 L L 1 L L
-8 -6 -4 -2 0 2 4

Tn (kPa)
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227

12

—e— Node 30 (precribed)
10| ——Node 27
—— Node 28

r

Horizontal displacement u_(mm)
(2]

0 5 10 15 20 25
Time (hour)

Figure 6.13: Variation of horizontal displacement
at the bottom of the crack (node 27 or 28).

35
3l
2.51
2

(kPa)

1.5f
1

u, (mm)

Figure 6.15: Plot of tangential effective stress T,
normal effective stress T, and the plastic param-
eters x and ¢ in CIE model at the first (or lower)
Gauss point of element 5.

0.7

0.6[

0.57

0.4r —tan @
——tan

0.31

0.27

0.1

0 2 4 6 8 10
u_(mm)
n

Figure 6.17: Variations of plastic variables tang

and tani) at the first (or lower) Gauss point of ele-
ment 5.



228

6.4.1.3 Fluid injection into horizontal crack with crack opening

In this example, we consider a single horizontal crack with initial aperture lp = 1mm in
the middle of a saturated soil column. The axis, bottom, and side surface are fixed in normal
displacement, and are impermeable. Water table is set at the top z = 1.001m, i.e., p,, = 0. At the
beginning of the simulation, gravity g = 9.8m/s? is applied instantaneously, and fluid is injected
from the surface as shown in Figure 6.18. The fluid injection lasts for 2 minutes with the rate
SwS = 18m/hour. External traction is not applied, and the top is free to move under the gravity
load and the fluid injection. we use the same parameters in Table 6.1. Figure 6.18 shows that 306
nodes and 72 elements in total are used in the FEA.

Results: In Figure 6.19, uniform positive normal displacement jump w,, within the horizontal
crack implies that the crack opens evenly due to the fluid injection. The displacement jump in
tangential direction is negligible. According to Figure 6.20, with the free top boundary, a rigid
body movement is indicated for the top bulk elements, and no vertical movement is observed
within the bottom bulk elements due to the fluid injection. Figure 6.21 shows that at a time of
~ 0.52min, softening elastoplasticity is enabled, thus, the tensile strength y and cohesion ¢ start
to degrade as shown in Figure 6.27. Figure 6.23 shows that two-minute fluid injection induces an

approximate increase of 7.5k Pa in pore water within the crack, compared to the hydrostatic state.
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Figure 6.18: Axisymmetric FE mesh for saturated porous medium with a single horizontal crack. Sixty-four
saturated Q9P4 bulk poromechanical elements (element 1-element 64) and eight Q6P4 poromechanical CIEs
(element 65-element 72). Initial vertical aperture Iy = 1mm. Gravity load is applied, and fluid is injected at
the surface r = 1m (nodes 153 and 170) with the rate S*»° = 18m/hour.
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6.4.2 Case study of partially saturated poro-mechanical CIE

Assumptions: Certain assumptions imposed on the zero-thickness CIE model for partially satu-
rated fractured porous media can be summarized as follows:

(1) The partially saturated fracture may be open or partly filled, and a constant porosity n®
which is larger than the porosity of the matrix is used during the evolution. The porosity of the
porous matrix can change with the volumetric deformation of the solid skeleton. If the fracture is
blocked, e.g., filled up with a different material, then our model can still handle it by treating the
fracture also as porous medium, and assigning different material parameters.

(2) For longitudinal (or tangential) fluid flow in the fracture, a laminar flow is valid, thus
cubic law is applied to saturated permeability, and Darcy’s law is adopted for fluid flow.

(3) For hydraulic properties, van Genuchten model and relative permeability function (6.263)
are applied to both the matrix and the fracture. The parameters for the fracture depend on the
aperture of the fracture [ = [y + u,. But generally, the air entry value for the fracture is smaller
than that for the matrix; the residual degree of saturation S, is smaller than that of the matrix;
the absolute permeability of the fracture is larger than that of the matrix. We might also consider
that the parameter m in (6.263) for the fracture to be larger than that of the matrix in that m
represents the slope as degree of saturation decreases with suction (see Figure 6.30), i.e. larger
m corresponds to a steeper slope. It means that as the suction increases in the fractured porous
media, the drying process in the fracture is faster than that in the matrix (solid skeleton porous

medium).

6.4.2.1 Liquid flow in partially saturated fractured porous media

The geometry and boundary conditions of the test case are shown in Figure 6.33. A single
horizontal aperture with a width of [ lies in the middle of a porous medium. As indicated in
Figure 6.34, two Q6P4 interface elements 17 and 18 and sixteen Q9P4 bulk elements are used to

discretize the partially saturated single fractured soil column under an axisymmetric condition. An
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instantaneous increase of suction is imposed on the bottom at z = 0. Due to axisymmetry of the
problem, the axis r = 0 is impermeable and fixed in r direction. The top and side surfaces are
also impermeable boundaries. The bottom and side surfaces are fixed respectively in the normal
directions of z and 7. An initially linear suction profile is assumed, as indicated by the black curve
in Figure 6.36, and suction at the bottom is 10 kPa. A summary of parameters for the matrix and
the fracture is given in Table 6.2. Linear elastic model is used for the bulk elements of the matrix,
and an elasto-plastic model as described in Section 6.3.2.2 is used for the interface elements of the
fracture, with the same parameters in Table 6.1. In the simulation, gravity load is ramped up to

9.8m/s? for the first 10 days, and is kept constant during the following time span of 9610 days.

=35~ o] 0202

Kyu(Se) = V/Se [1 ~-(1- S&)’”] 2 (6.263)
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Table 6.2: Parameters for the partially saturated fracture and matrix.

Parameter Symbol Value
Matrix

Initial porosity no 0.42
Traction o’ 0 Pa
Young’s modulus B 1 x 105Pa
Poisson’s ratio v 0.3
Specific gravity of soil particle Gy 2.7
Saturated degree of saturation S 1
Residual degree of saturation .S, 0.1

van Genuchten parameter a 30 kPa
van Genuchten parameter n 1.818

van Genuchten parameter m=1-1/n 0.45
Saturated permeability K 5 x 107 1%m?
Fracture

Porosity n® 0.75
Saturated degree of saturation S% 1
Residual degree of saturation S~ 0.01

van Genuchten parameter S 5 kPa
van Genuchten parameter ny 4

van Genuchten parameter ms, =1—1/n,, 0.75
Intrinsic permeability kS 1 x 1078m?
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Figure 6.33: Sixteen partially saturated Q9P4 bulk poromechanical elements and two Q6P4 poromechanical
interface elements for axisymmetric finite element mesh of horizontal crack with gravity load, and zero
traction at the top surface.
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Figure 6.34: Finite element mesh with 16 bulk elements and 2 interface elements.
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Results: Figures 6.35 and 6.36 show the influence of the aperture width on suction of the
matrix and the fracture. Three different apertures are analyzed, i.e. Iy = 0.1cm, lyp = lem, and
lp = 10ecm. Although it is axisymmetric condition, the case is actually a one-dimensional problem.
Thus the two columns of elements should behave exactly the same. Figure 6.35 plots suction at
the top and the bottom of interface element 17, i.e. node 41 and node 46 (see Figure 6.34). Under
the suction boundary condition at the bottom of the matrix, suction increases faster in the matrix
below the fracture than the matrix above the fracture. The suction at the bottom of the crack will
eventually arrive at the same steady sate value with the three different aperture widths. However,
larger initial aperture width leads to a lower suction at the top of the crack. To explore the reason
for this phenomena, we should know that the initially unsaturated fracture with larger aperture
tends to desaturate faster as suction increases in the fracture. And as the fracture drains, air
pockets will form along the surface of the fracture, thereby impeding the liquid flow between the
adjacent matrix elements across the fracture and reducing the effective permeability for liquid flow
normal to the fracture surface. The suctions are consistent within the fracture at the beginning of
the drainage, i.e. no suction jump across the fracture. As the fracture becomes drier, it eventually
loses the ability to transmit liquid flow, i.e. the matrix regions above and below the fracture are
separated by the crack, and become independent of each other with respect to liquid flow, hence a
suction jump between the top and the bottom of the fracture. For larger aperture, the foregoing
process happens earlier, therefore, lower suction is kept in the matrix above the fracture. After the
two matrix regions are separated by the fracture between them, a linear suction distribution with
respect to height is reached within each of the matrix regions at the end of the simulation, with
higher suction at higher elevation. Note that the same suction distribution is obtained within the

matrix region below the fracture independent of the aperture width.

In Figure 6.37 and 6.36, we use fracture continuum intrinsic permeability £ with different magni-
tudes, i.e. 1078m?, 107192, and 10~'?m?2, and keep the other parameters to simulate the same

problem with the aperture equal to 1mm. Lower k¢ corresponds to a lower ability to transmit the
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liquid flow across the fracture, therefore, the suction jump between the top and the bottom of the
fracture occurs earlier, and the matrix regions above and below the fracture become independent of
each other thereafter. The other hydraulic parameters can also influence the flow field to a certain
degree, which makes the sensitivity analysis necessary when knowledge of the hydraulic properties

is incomplete.
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Figure 6.35: Variations of suction for partially sat- Figure 6.36: Variations of suction profiles for par-
urated single fractured porous media with different tially saturated single fractured porous media with
initial apertures at the end of simulation. different initial apertures.
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Chapter 7

Fully and partially saturated thermo-poro-mechanical (TPM) cohesive

interface element (CIE) models

7.1 Fully saturated thermo-poro-mechanical (TPM) interface element model

7.1.1 Governing equations for TPM CIE model
7.1.1.1 Balance of linear momentum

The weak form of balance of linear momentum equation for the continuum with discontinuity
under nonisothermal condition is the same as the one under isothermal condition, except that the

constitutive model for the effective stress tensor o' is different due to the thermal effects.

7.1.1.2 Balance of mass

We first write the balance of mass equation for the discontinuity (of (3.24) for continuum):
Voo + Vo — |01 - n%) + 5§n5] 05 — gl (VoS =0,z e S (7.1)

where v° is the velocity of solid skeleton in the discontinuity, n° is the porosity of the fracture,
and can be expressed as
¥ = aS(x,t) = [[a(t)]] Hs() (7.2)
v u” (x, u s(x .

where ¢ denotes time, instead of “tangential”, and [[u]] := u® — u®" is the jump in displacement

across the discontinuity surface S, and it is possible for [[u]] to vary along S. But here it is assumed
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to be constant with respect to @ of a material point. And the Heaviside function is defined as
0 ifr € Q°

H, = (7.3)
1 ifrx € QF

According to Regueiro (1998), the gradient of Heaviside VHg = ndg, where dg is the Dirac-delta

function on S. The divergence of v can then be written as
V- v° = [[a(t)]]n ds (7.4)

where n denotes the normal vector, which should not be confused with the porosity of the discon-

is Darcy’s velocity of fluid flow in the discontinuity S, and its two components

tinuity n°. f)?’s

in the tangential and normal directions are respectively @tD S and 27, Applying the weighting

function ¢° to (7.1), and integrating over the volume of crack S, we have

CS[[u]]nésdv+/Sl CSV-fz?’de—/Sl ¢o [52(1 —n%) + ﬁ?ns} e'de—/Sl OB (VO )dv = 0

St
(7.5)
Excluding the signs, let us derive the terms on the left hand side of (7.5)
the 1st term = /Csanda (7.6)
S
the 2nd term = V- (o) dv — f)D’S (V¢S dv
St f St
- - s 5 g0C
_ S=D,S B D,S DS
= /{)Slg v - nda /gz<t axt—l— . 8£En> v (7.7)
00° 0%
the 4th t = Sg9 (o 503 d .
e erm / ¢ Bf < o + 0, . v (7.8)

where 7 is a generic normal vector to surface I', and I' = I'y + T’y + S~ + ST. Substitute into (7.5)

to get the balance of mass equation for the discontinuity:

[ tinlda—2 [ [P Sda~ [ ¢ [0 —n)+ 8fns] 650~ [ (S 0

- [eaapstonaa— [ 5% aw= [ 35,50 (79)
S Sl 8!1715 s
Take ¢¥ as an example, and we derive its gradient and apply the same rule to 6%, ¢°, and p]s;
8CS _ aCS _ aCS 86 __ pecsel,p cse
gr. o ocas B 0T (7.10)
o S
S (SIEE (711)

dn
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where, 3¢ is nodal value vector of weighting function ¢°. We can also write,

65 _ pNeseln . {g)cse} (7.12)
(6] = N2 . {gese (7.13)
1] = New2p . (o) (7.14)
g;‘g?: _ geselo (gese) (7.15)
g%i _ e (gese) (7.16)

Recall the dimensionality reduction for axisymmetric condition,

/S (o)dv =27 /S (o)irds (7.17)

/(O)da =27 / (o)rds (7.18)
S S
/(o)dv =2 / (o)rdrdz (7.19)
Q A
The finite element formulation of the balance of mass equation for the discontinuity is then written

as

Ncel

A(ar:se)T, /E(Ncsel,p)T .nT . Neseu g {dcse}

e=1

k"

cse

- 321 —n%) + BIn®| 1 (NPT . Neselp g § 97
ge f

k2. (d™)

_/ (Ncse2,p)T (2@5’5) da—/ (Bcsel,p)T ’DtD’Slda

e

pl,int cse p2,int cse
fcse (d 7p1}se) cfcse (d 7p?se)

_/ ﬁ? ,DTIL),S (Ncsel,p)T . NcseZ,p . {0686} da
Se

f;c)j:nt(dcse7p;se7ecse)

_/ /8? ’lN)tD’Sl (Ncsel,p)T . Bcsel,p . {0686} da = / (Ncsel,p)TSw,S da (720)
Se I's

p3,int cse cse t
Jesd " (d7 pye.07) £
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7.1.1.3 Balance of energy
Similar to the continuum in (3.94), the balance of energy equation for discontinuity is written as

(pC)50% + p!iCs57 - V05 + aliy, 0% tr(6) — 57 - (~Vp} + p'Fig) 1)
£Vg% = (o) = |05 =)+ ot B - e Vi =0

where the superscript or subscript “S” indicates the properties of the crack. For example, (pC)°
= heat capacity per unit volume of the crack; Kbs = bulk modulus of the solid skeleton of the
crack; aZ;il = linear thermal expansion coefficient of the crack solid skeleton. 5?’5 and 559’5 are
respectively the volumetric thermal expansion coefficient of fluid (or water here) and solid phases
in the crack. In the future, we need to derive directly the thermodynamics for the discontinuity
to check the energy conservation equation and the constitutive relation forms. Applying weighting

function ¥ to (7.21), and integrate over S':
/Slw(V'qS)dv - /Sl [V (%% = (V¢) - q°] dv

. e e
_ S S _ s S 29
/asl ©’q° - nda /Sl (C%Jn q, + or, q; | dv (7.22)

where 85! = ST US~ UTg. Then

/é)SlcquS-fzda = / (<p+q+n+)da+/ (cp_q_n_)ala—i—/F ¢’ q°vda
B S

S+

— / (¢ g5 )da + / (o~ g5 )da + / & (—q™)da
S+ - FS

— / {lellaSda / g da (7.23)
S I's

assuming % = [[¢°]] s, (7.22) becomes

0
[ o@-ade = - [leladda- [ wqida~ [ (ielgida~ [ S qan
St S Iy S st Ot

S
= —2/[[<p]]q5da—/ cpqe"dda—/ —— g dv (7.24)
S Ts St 8:1715
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where [[¢]] = ¢~ — ¢T. Assuming ¢5 = ¢ = —¢5 ", the heat flux across the discontinuity ¢5

expressed as

= K5(0T —07) = —K{[[0]] = —KiNe2p . (g} (7.25)

o0

g = B = —K/B*'7 . {9} (7.26)

and where K? and K! are respectively the thermal conductivities at normal n and tangential ¢
directions of the crack; ¢°™® denotes the heat flux at the ends of the crack I's.
Apply the weighting function ¢, and write the finite element formulation of the energy conservation

equation for the discontinuity

Ncel .cse
A(ﬁcse)T . / 3KS gkiIHS(Ncsel,p)T . TLT . NCSEU g {d }
e=1

kZ:.(0°)

_/ (/889,5(1 )_’_565’ S> (Ncsel,p)T . Ncsel,p da {p?e}
Se

k: dcse)

c.se(

+/e [(PC) — 9K (o) 95] [(NeebP)T . Neselp g {9056}

k@ée(ecse)

+/ (prcf)Sﬁg,S (Ncsel,p)T . Ncse2,p_ {gcse} da+/ (prCf)S ﬁtI),Sl(Ncsel,p)T . Bcsel,p_ {gcse} da
e Se

01,int cse cse 02,int cse cse
Jesl " (d7 p5ee,07) fo " (dw pse .07

_|_/ 2K2N68627p . {0086} (Ncse2,p)T da + y Kchsel,p . {0686} l(Bcsel,p)T da

fzfeznt (dcae 0066) fz:eznt(da.se 0L.56)

59 S ~ D S (Ncsel,p) Ncse2,p {pcse} da—/ 59 S~ D S (Ncsel,p)T . Bcsel,p . {p?se} da

05,int c 06,int cse
Lo (dese pose) Fo5m de pese)

— / (Ncsel,p)qund da—l—/ (Ncsel,p)T(p,r,)S dv
T's St

or,
fo fo

where fO7¢%! is the heat source within the discontinuity, and will be ignored here.

(7.27)
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7.1.2 Finite element formulations

We combine with the finite element equations for the matrix, i.e. (3.105), (3.107), and (3.108)
and those for the interface element, to write the following equations for TPM model of saturated
fractured porous media.

(1) Balance of linear momentum:

Npel T ~eu\T
A" / (BT o'dv — / (B™) - N“Pdv-p
e—1 Qe e

fd,i7Lt(de) kdpl
- / p (N . bdv— / (N 7" da + / (N“)" v - N*Pda - p (7.28)
fdf,ecvt(de) fdt,ezt k:dp2

Ncel

+ A(CCSE)T /S (Ncse,u)T . T'da _/ (Ncse,u)T ‘- Ncsel,pda 'pjcse =0
e:1 e e

foltde k..
Note although it has the same format with (6.84), o’ and T" are calculated from elastic deformation
of the matrix and the fracture, which are obtained by deducting the thermal strain from the total

strain.

(2) Balance of mass:

Al < | v B@“m) - [ /Q

K K’

e
f

(Bn® + B? nf)(NeHT . N&? dv] 6°

“k

E]

(BT 8P dv— | BN (@P) - B 6| dv - / (NS da
f

e
f

1 0,int p,ext
f;eip,znt f: n fe
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+ K(acse)T . / (Ncsel,p)T . TLT . INEseU g {dcse}
e=1 ¢
k2!

cse

_/ [53,5(1 ) + 59 S S:| (Ncsel,p)T . INCseLp gg {écse}
k2. (d™)
_/ (Ncse2,p)T (2@5,5) da _/ (Bcsel,p)T f}?’s lda

—(k2r

Cse)

fpl,int(dcse7pcse) fPQ-,’L"’Lt dcse pcse)

cse cse

66 S 1? S (Ncsel,p) NcseZ,p {ecse} da / ,89 S D Sl (Ncsel,p) . Bcsel,p . {ecse} da

fiij:nt (dcse7p?se’0cse) fiij;znt (dcse7p‘}se’ocse)
- / (Neseb)T gwss qq = (7.29)
I's
fp,ewt

(3) Balance of energy:

K(IB@)T . (/e ((pC)m _ ngkel(agkel)Q(Ne,G . oe)) (Ne,B)T . Ne’edv> ‘06+

e=1

k@@
( / 3Eckeld  (Ne9)T (N87908)-Be’“dv> d - < /Q (B9 n® + B4 nf )(Ne’e)TNeﬁdv> P
k@d kep
+/ (Beve)T-Kg-Be’e-Oed’U—i-/ p!BCH (NSO @) - B4 - 0° dv

e

fil"int fZQ,int
[N @RI B g v [ BNSOT P (B ) o

03,int 04,int
fe mn fe wm

—/ p(Ne’e)TrdU—/ (N“NTqda
€ 1"(61

N— ——

fZ7‘,ewt fiq‘rewt
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Ncel s.cse
+ A(ﬁcse)T . /Se 3K§agki195(Ncsel,p)T . TLT . INC5EU g {d }

k:cse(

0,5 csel, csel, . cse

= [ (500 5 ) LN N da ()
Kol (d ™ )=kE..

+ / ) [(pC)S — 9K§(ag)2gs] (NSl T . Nesel g { écse}

ocse)

k.. (0°°°)

_|_/ (prCf)Sﬁg,S (Ncsel,p)T . Ncse2,p. {Ocse} da—|—/ (prCf)S ,E?,Sl(Ncsel,p)T . Bcsel,p. {Ocse} da
e Se

fﬁi;i'rLt(dcse’p;5670cse) fffeunt(dcae ;Se7ocse)
+/ 2K2N08827p . {0688} (Ncse2,p)T da + Kf 1 Bcsel,p . {0688} . (Bcsel,p)T da
Se Se

fzjeznt (dcse 0cse) f94 'Lnt(dcse ocse)

cse

/ BGS ~D,S Ncsel,p) Ncse2,p {pcse} da—/ 595 DSZ(Ncsel,p) . Bcsel,p . {p?se} da
Un,

Fomhde pese) FR e pse)

_/ (Ncsel,p)qund da _/ (Ncsel,p)T(p,r)S dv =0
I's St

0 - .
fo for

(7.28), (7.29), and (7.30) may be written in one matrix equation as follows:

C(D) D+ F'NT(D) = FEXT (D) (7.31)
such that, ) )
0 0 0
C(D)=| K"+ K?, 0 — (K™ + K70,) (7.32)
K"+ KJ, —(K"+KY) K"+KJ.

The global degree of freedom vector and its rate form are:

d d

D=|p, |: D=|p, (7.33)

(7.30)



The assembled FINT and FEXT are:

FINT _

where

cse

cse

Fd,INT + Fd,INT + (de2 o del .

_FppINT _ g0 INT _ pplL INT _ pp2INT _ pp3,INT _ ppdINT

cse cse

FOINT | pOINT

cse
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FOINT _ pOLINT | p02INT _ pp03INT _ p04,INT

F@,INT _ FG,INT _’_F92,INT 4 F937INT 4 F64,INT o F@S,INT o FGG,INT
cse - cse cse

FEXT _

cse cse

FdEXT | pdt,BXT

p, EXT p, EXT
F + FCS@

FOrEXT | p0q,EXT | porEXT | poqEXT

cse

Kgge) : pf
cse cse (734)
cse cse
(7.35)
cse ]
0,S

For simplicity, we assume the linear thermal expansion coefficient of the fracture (or crack) o}, is

negligible. And also we can assume that the solid partial volumetric thermal expansion coefficient

of the fracture is equal to that of the matrix, i.e. ﬁg’s = Y. Since ﬁ?’s is approximately 10 times

larger than ﬁg ’S, therefore it is reasonable to assume that ﬂg SnS s negligible compared to Bﬁ’sn ¥

in K. These assumptions can be relaxed later, and adding these terms is straightforward.

cSe

The derivatives of k... s and f... s with respect to d°*°, P, and 6°°° may be written as

afd,int

cse

8dCS€

kP!

cse

odes€
afpl,int

cse

adcse

8T/(dcse)
cseu\T
or’ T  olul]
(Ncse,U)T I . — da
/e o1’ Olla]] od
~
oT
(Ncse,u)T . (Ae)T . L AC . NCseU g
/ e Ol[ul]

T -
Where,m can be calculated from the constitutive model.
akgge _ 0,5 0,5 csel,p\T csel,p ol
8dcse_/se |:55 (1_n)+5f ’I’L] (N ) -N 'adcse

-D,S
/ 2 (Nese2p) T LA
. 8dCS€



afpl,imt

cse

8p086

2,int
.fzgsezn

Odes€
apr ,int

—Jcse

8p086

3,int
.fIc?sem

Ode3€
afp?),int

cse
op§
afp?) ,int

cse

80686

pd,int
a.fcse

ode3€
afp4 ,int

—Jcse

8p686

4,1t
fzgsezn

80686

01,int
9 cse

Ode€
afel,int

cse
8pcse
f@l jint

cse

HO°5¢
af€2,int

cse

Ode€
af€2,int

cse
8pcse

02,int
0 cse

00°3¢
af€3,int

cse

Odes€
af€3,int

cse
80086

04,int
0 cse

odcse
af€4,int

cse

HO°5¢
aft%,int

cse

8d08€

cse

Se

Se

cse T cse cse
/ (PIRC)T (NSSE) T NEetr {9}

/(prCf)S (Ncsel,p) Ncse2,p {ecse}

,89 S (Ncsel,p)

gy (Nete)t
/89 S ~D,S (Ncsel,p)

gy (Nete)t
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/89 S tD Sl (Ncsel,p)

. NcseZ,p {0686}
. Ncse2,p {gcse}
i Ncse2,p

. (Bcsel,p)

. (Bcsel,p) {0686}
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8’UD S
adcse

avf S
a cse

adcse

op

da

/ (prCf)S ,Dz (Ncsel,p)T . Ncse2,p da

/(prCf)S (Ncsel,p) Bcsel,p {ocse}

cse T cse cse
[ Wyt ()T B gy
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Se

Se
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/89 S (Ncsel,p)
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. Bcsel,p da

. Ncse2,p i {p;se} i

OK? ol
ol dd°=°

’ odCcse

da

da

-D,S
0y’

avtD S

CSB
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8dCS€
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af€5,int

cse

8pC8€
o f@ﬁ,int

cse

odcse
afGG,int

cse

8p§86

~D.,S
0,5 ~ T T 0ty
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7.2 Partially saturated TPM CIE model

7.2.1 Governing equations and finite element formulations

The governing equations are obtained by extending the saturated TPM CIE, and details are

omitted here.

7.2.1.1 Balance of linear momentum for matrix and fracture

The finite element form of balance of linear momentum equation is written as

Npel ~
A | [ B oo [ (BTN [+ (-] do
e:l e e
fd,int fdp,int

o e,u\T o e,u\T 4o/ e,u\T e,p e
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(7.36)
where, npe denotes the number of bulk element; correspondingly, n.. denotes the number of

cohesive element.

7.2.1.2 Balance of mass for water species in discontinuity
E(QCSG)T- / (prSi + pngSg‘)(Ncsel,p)T .nT . Neseu da {dcse}
e=1 N

kwd

cse
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7.2.1.3 Balance of mass for dry air in discontinuity
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7.2.1.4 Energy conservation for mixture in discontinuity
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The finite element matrix equation for thermo-poro-mechanical interface element model is

written as
where
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7.3 Numerical examples

In this section, we will test the performance of the fully and partially saturated TPM interface

element models.

7.3.1 Case study of fully saturated TPM CIE

To test the fully saturated saturated TPM cohesive interface element (CIE) model, first we
set up two examples under axisymmetric condition (see Figures 7.1 and 7.11). For both examples,
a linear isotropic elastic constitutive model is adopted for the solid skeleton of the matrix (or bulk
elements), and zero-thickness TPM cohesive interface element (CIE) model is used for the fully
liquid saturated fracture. The water table is at the top, i.e. p, = 0 respectively at z = 1.6m in

Figure 7.1 and z = 1m in Figure 7.11.

7.3.1.1 Fully saturated TPM CIE example 1

An axisymmetric saturated soil column has a depth of 1.6 m and a radius of 2 4+ m. The
vertical fracture with a uniform aperture of [ exists between two matrix (or bulk) elements as shown
in Figure 7.1. To represent a fully saturated condition, the water table is at the top of the soil
domain, which corresponds to a drained boundary p,, = 0 at z = 1.6m. Also, no heat flux is allowed
from the top. The bottom and surface are fixed respectively in vertical and horizontal directions,
and are both treated as impermeable and adiabatic boundaries. Due to axisymmetry, the axis is
fixed horizontally, and is considered as impermeable and adiabatic boundary. The initial conditions
include uniform temperature § = 20°C and a linear distribution of the pore water pressure. The
test procedure is depicted in Figure 7.2. Gravity is considered, and zero traction is applied on the
top. A prescribed temperature change of Af = 20°C' is applied along the axis r = 0. Different
initial apertures are used, which are lp = 0, Iy = 1em, and [y = 10cm.

Results: The variations of pore water pressure at the bottom of the matrix and the fracture

are shown in Figures 7.3, 7.4, and 7.5, respectively. With zero initial aperture, we obtain the
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same results as for an uncracked porous medium, i.e. same pore water pressure builds up due to
application of gravity, and dissipates afterward till it arrives at hydrostatic state afterward. With
initial aperture [y = lcm, smaller pore water pressure generation is observed within the crack
than that in the matrix (node 73 and node 162). While for even greater aperture ly = 10cm, the
fracture acts like an open channel, thus very small pore water pressure is generated within the crack
as shown in Figure 7.5. Figures 7.7-7.9 indicate that temperature jumps inside the crack change
with apertures. With aperture smaller than lp = lcm, temperature jumps due to the fracture is
negligible. With [y = 10cm, small temperature jump is observed as shown in Figure 7.9. With zero
thermal conductivity for the crack, heat transfer does not happen from one matrix to the other,
thus a large temperature jump appears as shown in Figure 7.6. Generally, the heat and liquid flow
from one matrix into the fracture and through the fracture into another matrix may be affected
by thermal, hydraulic and mechanical parameters of the fracture. Further work is necessary with

respect to sensitivity analysis of the relevant parameters.
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Figure 7.1: Axisymmetric finite element mesh for fully saturated porous media with vertical fracture with
aperture [: 162 nodes, thirty-two saturated Q9P4 TPM bulk elements (Elem1-Elem32) and four Q6P4 TPM
CIEs (Elem33-Elem36). Gravity load is applied, and zero traction at the top.

—— Temperature

—— Gravity load

20°C

Mechanical load

Temperature change A8

[

I I
Phase 1 Phase2 Phase3 Phase 4

Figure 7.2: Test procedure of the example in Section

7.3.1.1.
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Figure 7.5: Variations of pore water pressure with Figure 7.6: Variations of pore water pressure with
initial aperture Iy = 10c¢m, and K? = 0W/(Km).

initial aperture o = 10cm.
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Figure 7.9: Variations of temperature with initial Figure 7.10: Variations of pore water pressure with
aperture [y = 10cm. initial aperture ly = 10c¢m, and K? = 0W/(Km).
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7.3.1.2 Fully saturated thermo-poro-mechanical CIE example 2

We set up the following example to test the plastic performance of the fully saturated thermo-
poro-mechanical cohesive interface element. As depicted in Figure 7.11, the axis and side surface
are fixed in the horizontal direction; the top and the bottom of the matrix on the right of the
crack are fixed vertically. The bottom and the side surface are impermeable and adiabatic; the
top boundary is drained and adiabatic. No liquid flux is allowed along the axis r = 0 due to the
axisymmetry. Water table is set at the top z = 1m to represent a fully saturated condition. To
simulate a pull-out test, the bottom of the matrix on the left of the crack is free to move vertically,
and a final prescribed vertical displacement u, = 5mm is ramped up with small enough time step
at the top and kept constant after ¢ = lday to assure the stability during the development of shear
plasticity. Also, the gravity is ignored here. During the prescribed vertical displacement is applied,
a final prescribed temperature increase of 20°C' is applied with the same ramp function as used for
prescribed displacement along the axis (refer to the curve with the legend of Node 73 in Figure
7.13). One column of 6 equal height bulk elements is used for each of the matrix blocks adjacent
to the crack. Another 6 equal length zero-thickness CIEs are used for the crack with the initial
aperture lp = lem. A total of 78 nodes and 18 elements are shown in Figure 7.11. The same
initial conditions are used as the previous example, i.e. uniform temperature 8 = 20°C and a linear
distribution of the pore water pressure.

Results: Figure 7.12 shows the vertical displacement versus the height of the crack at the
end of the simulation. Due to the prescribed upward displacement, the left matrix block moves
upwards compared to the right matrix block, and the largest vertical displacement difference Au,
is reached near the top. In this example specifically, the magnitude of Aw, is the same as that
of the total tangential displacement jump wu;, and positive u; implies that the left virtual surface
experiences a larger vertical displacement than the right virtual surface. Figures 7.14-7.17 are
plotted at the third Gauss point (closest to the top) of element 13 (CIE). Figure 7.14 shows u; as

well as the its plastic and elastic components, i.e. u} and uf, respectively. It indicates that shear
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plasticity is triggered along the virtual surface S" of CIE at this position at a small value of wu;,
and the plastic part u! dominates the total tangential displacement jump u; after ¢ ~ 0.26day. In
Figure 7.15, a much smaller positive normal displacement jump wu,, is developed compared to wu;
during the shear-dominaated process, which implied the crack is slightly under tension as shown
in Figure 7.16. The variations of normal stress 7T,, and tangential stress T;, which are respectively
related to uS and uf, are plotted versus wu; in Figure 7.16. Figure 7.17 shows the stress path (T,
versus T;) and the yield surface evolution. Combining Figures 7.16 and 7.17, we observe that the
tangential stress T; starts to decrease once plasticity is triggered, hence the shrinking of the yield

surface, which is refered to as the stress-softening phenomena.
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Figure 7.11: Axisymmetric finite element mesh for fully saturated porous media with initial vertical fracture
lo = lem: 78 nodes, 12 saturated Q9P4 TPM bulk elements (Eleml-Elem12) and 6 Q6P4 TPM CIEs
(Elem13-Elem18). Gravity load is ignored, and zero traction at the top.
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7.3.2 Case study of partially saturated TPM CIE

We set up the following example to test the plastic performance of the partially saturated
thermo-poro-mechanical cohesive interface element. The dimensions and boundary conditions are
indicated in Figure 7.18. The bottom and side surface are fixed in normal displacement, and are
impermeable and adiabatic boundaries. Due to the axisymmetry, the axis boundary is fixed in r
direction, and is impermeable. An uniform traction t7' = 10kPa is applied upwards at the top of
the left matrix block. An increase temperature of Af = 20°C is prescribed along the axis after the
traction is exerted. The test procedure is shown in Figure 7.19.

Results: Figure 7.20 shows that with the traction applied on the left matrix block, a vertical
displacement jump Awu, occurs between the two virtual surfaces of the crack above the height of
0.5m approximately. The largest Au, ~ 2.75mm is reached at the top. Temperature increase
results in the thermal expansion of the crack, which leads to a small but noticeable upward vertical
displacement at the top of the crack as shown in Figure 7.20. With small initial aperture [y = 1mm,
temperature difference is negligible within the crack according to curves for node 51 and node 52
in Figure 7.21. Therefore, no significant vertical displacement jump induced by thermal expansion
is observed shown by Figure 7.20. Figures 7.22-7.25 are plotted at the third Gauss point (closest
to the top) of element 9 (CIE). Figure 7.22 shows the tangential displacement jump u; as well as
the its plastic and elastic components, i.e. u} and u¢, respectively. It indicates that shear plasticity
is triggered in the cohesive interface element at this position, and the plastic part u} dominates
after the step number n = 12. Figure 7.23 indicates that a very small positive normal displacement
jump u, is developed compared to u;, which implied the crack is under tension as shown in Figure
7.24. A softening phenomenon is observed from shrinking of the yield surface in Figure 7.25. The
stress path T}, versus 7; in Figure 7.25 and the stress variations in Figure 7.24 indicate that the
tangential stress T} starts to decrease from the second step when plasticity is triggered, along with

a small increase of the normal stress T,,.
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Figure 7.18: Axisymmetric finite element mesh for fully saturated porous media with initial vertical fracture
lo = Imm: 54 nodes, 8 unsaturated Q9P4 TPM bulk elements (Elem1-Elem8) and 4 Q6P4 TPM CIEs
(Elem8-Elem12). Gravity load is applied, and upward traction of 10kPa is exerted on top.
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7.3.3 Revisit the energy foundation centrifuge tests

In this part, let us revisit the energy foundation centrifuge test by Goode (2013), and im-
plement the TPM CIEs along the soil-foundation interface. For now, without further information
regarding the failure mechanism, e.g. the position of failure plane in the soil beneath the founda-
tion, let us simply implement the CIEs vertically along the height of the soil as shown in Figure
7.26. Six CIEs are used in total, four of which are implemented at the soil-foundation interface,
and the other two CIEs are implemented at the soil-soil interface. The CIEs are numbered CIE
1,...CIE 6 from top to bottom. In the future, we can consider the shear failure mechanism and
implement CIEs along an inclined failure plane in the soil or consider a random pattern of CIEs,
or an extended discontinuity FE implementation that would be insensitive to mesh alignment and
refinement. The initial aperture is set to be lg = 1 x 10™>m. The plastic parameters for CIEs are
listed in Table 7.1, and the other parameters are the same as those of the soil bulk elements. The

nonlinear thermo-elasto-plastic constitutive model is applied to the soil continuum.

Table 7.1: Parameters for elasto-plastic CIE model.

Symbol(unit) Value

K, (Pa/m) 1 x 107
Ki(Pa/m) 1 x 10%
GL(Pa-m) 1 x 10
G (Pa-m) 1x10*

Xp(Pa) cp/tan(dp)
Xr(Pa) 0
¢p(Pa) 9500
¢ (Pa) 0
op(rad) 0.5236
or(rad) 0
p(rad) 0.087
ay 200

Qe 200

ag 900
Qyp 900

In order to fit the settlement-load curve obtained from the experiment, different plastic
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parameters are tried for the CIE model, and here we present model predictions with the best-
fit parameters. However, with more experimental data available, we will be able to improve the
predictive capability of the model by calibrating the parameters.

Figure 7.27(a) shows that without implementing TPM CIEs, a perfect bond has to be imposed
at the foundation-soil interface. Consequently, the model fails to capture the side-shear failure due
to the slippage along the interface. In contrast, the model is greatly improved after implementing
TPM CIEs along the interface, i.e. the ultimate load ~ 3410/, and the corresponding settlement
~ 0.85mm, which are comparable with the experimental observation. When a higher load is
applied, the model will not reach a converged state due to softening failure of certain CIE(s). After
the unloading process, a smaller residual settlement remained compared to the experimental result.
Nonlinearity and linearity are respectively observed in the loading and unloading processes from
both the experimental and modeling results. An exploratory sensitivity analysis is conducted to
inspect the effect of elastic tangential stiffness K; on the settlement-loading curve during loading
process. In Figure 7.27(c), K; is incrementaly increased from 5e7Pa/m to 1e9Pa/m, and the
other parameters are fixed. For K; = 1e8Pa/m and K; = 5e7Pa/m, a similar ultimate load is
obtained while a larger slope (absolute value) or settlement is observed with lower K. The slopes
with K; = 5e8Pa/m and K; = 1e9Pa/m are similar. While, for both cases (K; = 5e8Pa/m
and K, = 1e9Pa/m), the interface element failure happened at much smaller loads compared to
the other two cases. Obviously, K; is not the only parameter that affects the settlement-loading
curve, thus requiring comprehensive sensitive analysis involving more parameters. Figure 7.27(b)
indicates that 20°C' temperature increase has negligible effect on the settlement-load curve.

Next, let us inspect the displacement jump within the CIEs. Figures 7.28(a)-(c) show the
vertical displacement u, at the corner nodes of quadrilateral bulk elements adjacent to the left and
right surfaces of the CIEs along the height at three different times respectively, i.e., the equilibration
of centrifuge spin-up to a g-level of N = 24, the end of loading process, and the end of unloading
process. In other words, we will analyze the relative vertical movements between the bulk elements

on the left and right of the interface. The analysis will be focused on the CIEs along foundation-soil
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interface, i.e. from the foundation top (H = 0.5334m) to the foundation bottom (0.195m). Figure
7.28(a) indicates vertical displacement jump occurs along the foundation-soil interface due to the
centrifuge spin-up. Larger downward displacements are observed near the top and the bottom,
implying a downward slippage of the foundation relative to the adjoining soil. While an opposite
trend is observed in the region near the center of the foundation-soil interface. When the foundation
is loaded to the ultimate load, settlement is observed for both the foundation and the soil along the
interface, and larger slippage relative to Figure 7.28(a) is indicated by Figure 7.28(b), especially
at the top and the bottom. Approximately equal vertical movements at the top and the bottom
of the foundation confirms the rigidity of the foundation. Also, various slips happened at the
soil-soil interface underneath the foundation during the loading process. In Figure 7.28(c), after
the unloading process, the system did not entirely recover to the condition before loading. An
alternative way to analyze the relative movement is through the tangential displacement jump u;
at the Gauss points of the CIEs. Note that in the specific case, positive u; of the CIE denotes
an upward movement of the left surface relative to the right surface. From Figure 7.28(d), it is
straightforward to see that the largest slippage along the interface happened near the foundation
bottom at both the end of loading and the end of unloading sequences. The total tangential
displacement jump wu; can be decomposed into elastic and plastic components, namely u§ and u}.
And according to the formulation of the elasto-plastic CIE model, u§ is directly related to the
tangential stress developed during shearing of CIE, while «} mainly contributes to the continuous
increase of relative slippage after plasticity is triggered. From Figure 7.28(e), the variation of u} of
CIEs along the height indicates plasticity mainly occurs within the range of 0.15m < H < 0.35m.
And the largest uf appears at the first (or the lower) Gauss point of CIE 4, which is close to the
bottom of the foundation-soil interface at H ~ 0.2m. The variations of four plastic variables (x, c,
tang, and tany) at this point are illustrated in Figures 7.29(a)-(b).

In addition to the displacement jump, we can also explore the failure mechanism by analyzing
the stress state of the CIEs. Figures 7.29(c)-(d) show the tangential and normal stresses generated

within the CIEs at ends of loading and unloading sequences. Figures 7.30-7.32 show the yield
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surface evolution and stress path at all three Gauss points of each CIE. The results further confirm
the foregoing conclusion regarding the range of plasticity. Figure 7.30(e) indicates that the CIE
close to the top experiences high compression-shear, and maintains elasticity during the loading
process. In contrast, Figures 7.31(b),(d), and (f) show that significant softening occurs in CIE 4,
which is illustrated by the shrinkage of the yield surface. During unloading, elastic behavior is

observed for all the CIEs.
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Figure 7.31: Stress path and yield surface evolution at the three Gauss points of CIE 3 and CIE 4.
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Chapter 8

Conclusions and Future work

8.1 Thesis summary

The thesis develops fully coupled thermo-poro-mechanical (TPM) models for saturated and
partially saturated unfractured geomaterials based on the mixture theory of porous media. Both
nonlinear elastic model, and a temperature and suction dependent elasto-plastic Cam-Clay model
are implemented for solid skeleton of porous media. The coupled processes involve mechanical
response, multiphase fluid flow, and heat flow under both saturated and partially saturated con-
ditions. The finite element method is used to implement the fully coupled models at small strain
under quasi-static condition. And the saturated TPM model is verified by comparing with available
analytical solutions for various conditions.

Although there are already some published codes, such as TOUGH2 Pruess et al. (1999),
CODE_BRIGHT Olivella et al. (1996) to simulate the multiphase flow process, it is necessary to
build our own code for the following reasons: to understand how the coupled physics fit together
in a monolithically coupled framework, to flexibly insert our own constitutive models for certain
soils, and to further develop a coupled TPM cohesive interface element (CIE).

Furthermore, the thesis develops fully coupled TPM cohesive interface element (CIE) models
to analyze the coupled thermo-poro-mechanical response and multiphase flow within the geoma-
terials with either pre-existing or developing fractures for soil-structure interfaces, such as energy
foundations, the main motivation for the thesis research. The performance of the CIE is tested

by several examples in different aspects, i.e. compression, tensile plasticity, shear plasticity, liquid
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flow, and heat flow.

Finally, the partially saturated TPM model is employed to explore the soil-structure inter-
action by simulating a series of energy foundation centrifuge experiments with Bonny silt Stewart
(2012); Stewart and McCartney (2013); Goode (2013); Goode and McCartney (2014). Good agree-
ment is obtained between numerical modeling results and centrifuge modeling observations with
respect to temperature, displacement, strain, and volumetric water content. With the implemen-
tation of the zero-thickness CIE at the soil-foundation interface, we can relax the assumption of
perfect bond by allowing the differences with respect to displacement, pore pressure, and tempera-
ture to happen at the interface. Therefore, the model is able to capture the plastic failure process
of energy foundations due to the loss of side shear resistance.

Finite element analysis can be combined with the centrifuge experiments to obtain a com-
prehensive understanding of the fundamental soil mechanics phenomena involved in energy founda-
tions. With this knowledge, we may assess the potential issues, evaluate the long-term performance
and sustainability, thereby providing practical design guidance for energy foundations. For example,
from both modeling predictions and experimental observations, we found that under temperature
increase, the foundation top experienced almost free thermal expansion for both end-bearing and
semi-floating energy foundations. The thermally-induced strain arrived at the highest value at the
top. For the semi-floating foundation, when failure load was applied and then removed, a per-
manent plastic deformation remained. Therefore, if the mechanical system is not designed with
sufficient capacity, deformation and thermal expansion of energy foundations may cause a loss of
foundation-soil friction and affect building performance. In addition, temperature of the soil near
the foundation changed during the heating process of the foundation, thus inducing multiphase
flow in the nearby soil. The change of thermal storage properties of the underground soil should be
considered in order to accurately estimate the heating and cooling capacity of energy foundation

systems.
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8.2 Future work

In order to improve the predictive capability of the model, future work should involve the
following

(1) The simulation of the centrifuge experiments in the thesis has partially validated the TPM
model. However, extensive validation is necessary to examine to what extent the assumptions
and the constitutive relations in the model can reflect the physical phenomena in a variety of
applications. With the validated model, FEA can be combined with the centrifuge experiments
to obtain a comprehensive understanding of the fundamental soil mechanics phenomena involved
in energy foundations. This will assist us to assess the potential issues, evaluate the long-term
performance and sustainability, thereby providing practical design guidance for energy foundations.

(2) Preliminary results indicate certain parameters have an impact on the results. Extension
of the current will focus on systematic uncertainty quantification and sensitivity analysis with re-
spect to the thermal, mechanical, and hydraulic parameters. For the sensitive parameters, available
physical experiments will be used in model calibration to provide refined estimates. For example,
pull-out foundation tests at 1g and more compression tests are suggested to calibrate interface
parameters. With the parameters calibrated, the consistency between simulated and experimental
results will be further enhanced.

(3) From a modeling perspective, the following extensions will be considered in the future: (a)
extension to embedded TPM partially saturated discontinuity models via Extended Finite Element
Method (X-FEM), and Assumed Enhanced Strain (AES) method; (b) extension to include coupling
with chemistry; (c) extension to finite strain; (d) extension to multiscale fracture, such as for

hydraulic fracturing, and reservoir mechanics studies; (e) extension to include inertia terms.
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Notations
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Definitions

Total strain

FElastic strain

Thermal strain

FElastic strain of solid skeleton

2nd order identity matrix l;; = ;5

4th order identity tensor I;;x = %(&-kdjl + 0101

Linear thermal expansion coefficient

Specific heat capacity of mixture

Specific heat capacity of o phase

Absolute temperature

Absolute temperature of constituent o

Intrinsic permeability

Relative permeability with respect to water phase in the continuum
Relative permeability with respect to gas phase in the continuum
Initial temperature

Bulk modulus

Elastic modulus tensor

Body force

N/kg



Gravity

Specific internal energy

Density (of the porous media)
Partial density of o phase

Real density of a phase

Mass supply per volume element
Internal source per unit of mass
Heat flux

Specific Helmholtz free energy
Specific entropy

Specific enthalpy of fluid phase
Total stress

Effective stress

Partial stress of a phase,oc® = n®

o
Thermal conductivity tensor of mixture
Thermal conductivity tensor of « phase
Velocity of a phase

Relative velocity of fluid

Superficial (Darcy’s) velocity

Volume fraction of o phase

Reference volume of fluid

Reference volume of solid

Interaction body forces per unit volume

Acceleration of o phase

Darcy’s velocity of pore fluid in the continuum
Darcy’s velocity of pore water in the continuum

Darcy’s velocity of pore gas in the continuum



Sl

Darcy’s velocity of pore water vapor in the continuum

Darcy’s velocity of pore dry air in the continuum

Darcy’s velocity of pore fluid in saturated crack (or discontinuity) S

Normal component of vs b

Tangential component of 'vS b

Darcy’s velocity of pore water in partially saturated crack (or discontinuity) S

Normal component of vs D

Tangential component of 'vS D

Darcy’s velocity of pore water in partially saturated crack (or discontinuity) S

Normal component of vs D

Tangential component of 'vS D

Degree of saturation of the crack S

Degree of saturation of the continuum

Water flux on the crack boundaries

Water flux on the continuum boundaries

Suction in the crack S

Suction of the continuum

Tangential permeability of the crack

Normal permeability of the crack

Displacement jump within the crack in global coordinate
Displacement jump within the crack in local coordinate
Normal displacement jump within the crack

Tangential displacement jump within the crack

Normal vector of the crack

Tangential vector of the crack

Crack volume with the width of [

Crack surface

kPa
kPa
m?/(Pa - s)

m?/(Pa - s)



6,5
Xskel

0,8
S

Saturated permeability of the continuum under isotropic condition
Saturated permeability of the crack in normal direction
Saturated permeability of the crack in tangential direction
Relative permeability with respect to water phase in the crack
Relative permeability with respect to gas phase in the crack
Width of the crack S

Initial width of the crack S

Effective stress tensor on the crack in global coordinate [r; z]
Effective stress tensor on the crack in local coordinate [t;n]
Elastic stiffness matrix of the discontinuity

Tangential elastic stiffness of the discontinuity

Normal elastic stiffness of the discontinuity

Plastic component of displacement jump in the crack
Elastic component of displacement jump in the crack
Internal state variable vector

Plastic shear strain

Plastic normal strain

Thermal conductivity of the crack

Heaviside function

Generic normal vector of fractured porous media

Averaged pore fluid pressure on the crack S

Pore fluid pressure jump across the crack

Averaged temperature on the crack S

Temperature jump across the crack

Porosity of the crack

Linear thermal expansion coefficient of crack solid skeleton

Volumetric thermal expansion coefficient of the crack solid phase

300

m/(Pa - s)
m/(Pa - s)

m?/(Pa - s)

kPa
kPa
Pa/m

Pa/m

/K

/K
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ﬁ?’s Volumetric thermal expansion coefficient of the crack fluid phase 1/K
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