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Abstract

Although there have been recent efforts to characterize the important structural character-

istics of fish scales and fish skin (e.g., the tensile strength [9] , puncture strength [19], bending

rigidity [10]), attempts to fabricate materials that mimic natural fish skins have remained limited.

This thesis presents a synthetic fish skin material designed to replicate the structural, dimensional,

mechanical, and functional aspects of natural teleost fish skin comprised of leptoid-like scales. The

material design and fabrication has been simplified to include (i) a low modulus elastic mesh or

dermis layer that holds (ii) relatively (in comparison to the mesh) rigid, plastic scales. While the

mesh holds the scales in place even when the skin is deformed, the scales remain free to rotate

and interact with neighboring scales or the substrate. The mechanics of the resulting material was

quantified, using experiments and theoretical models, in response to in-plane deformations, flexure,

and indentation. The mechanical behavior achieved with this design was found to be similar to

that of natural fish skin, thus indicating the distinct roles that interacting dermal and scale layers

have on the material properties. Overall the synthetic fish skin is flexible and can conformably

cover a range of surfaces, including those subject to diverse modes of deformation, making such a

material attractive as a low-weight, low-profile protective coating for soft materials.
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Section 1

Motivation and Overview

1.1 Biological Protective Systems and Engineering

Nature presents innumerable variations in protection systems. From the bony plates on the

back of an armadillo to the exoskeletons of crustaceans and the delicate scales on the wings of a

butterfly, animals and insects have evolved to defend themselves against predation. In particular,

scaled skin provides some of the most effective protection seen for its weight and flexibility. Ancient

scaled fish are known to have existed as far back as the Paleozoic period, but their armor consisted

of much larger, thicker plates and in more layers than in modern fish [3]. Over time, the need for

greater flexibilty and mobility fostered the evolution of these scales into numerous smaller, thinner

scales with fewer layers and overall more flexibility, still with outstanding protective characteristics

[3]. Today, fish scales are classified into the following groups: placoid, ganoid, cosmoid, and elasmoid

(see Figure 1.1) [22].

Placoid scales are typically found on creatures such as sharks, and especially known for

their ability to reduce drag, while ganoid scales are the hardest known scales and are the main

protection for gars [22],[10]. Elasmoid, or leptoid, scales are further broken down into cycloid and

ctenoid type scales, both of which are flexible scales with similar shapes, but cycloid scales sport a

smooth surface, while ctenoid scales are found to have numerous small ridges and grooves, creating

a rough surface [22],[16]. The structural and mechanical characteristics of these scales are of great

interest in engineering biomimetic designs for lightweight protective membranes.

Interestingly, the idea of exploiting the mechanical characteristics and benefits of fish skin is
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Figure 1.1: Photographs of a) Placoid scales, b) Cosmoid scales of Australian Lungfish,
c) Ganoid scales of a Florida Gar, and d) Ctenoid scales (images © Australian Museum,
http://australianmuseum.net.au/, Last Accessed April 21, 2014)

not a new one. H. Russell Robinson [13] suggests that perhaps the earliest use of fish armor occurred

in the Middle East, where a painting finished sometime around 1411 B.C. depicts a garmet fashioned

of bronze scales. Some of the first heavily armored army in the western world were the Sarmatians,

who also adopted armors built from metal scale-like shapes, and even used this armor to protect

their horses [11]. These ancient people recognized the advantage of fish skin as a flexible alternative

to a solid sheet of heavy armor typically depicted for ancient times. Similarly, the Romans preferred

scaled armor due to its low cost and ease in fabrication [8]. From the remaining scaled Roman

armors existing today, it is surmised that the Romans used a rolling process to create relatively

thin sheets from which the scales were cut and punctured with a nail so they could be attached to

a base fabric or leather [8]. Figure 1.2 shows a variety of ancient scale shapes used to create such

armors.

In modern times, there is still interest in fish scale body armor, but several researchers in the

engineering community have also realized the potential for this material as replicable lightweight,

flexible armor for use in composite textiles [5], architecture [12],[15], and flexible electronics [19],[7].

These interests have led to increased efforts in understanding the exact mechanical behavior of fish

skin, in the hopes for a complete biomimetic “transfer of technology”[24].



3

Figure 1.2: Shapes of Ancient Scale Armor a) Egyptian bronze, b) Syrian from Nuzi,c) Egyption
with boss, d) Roman bronze, e) Roman bronze, f)Roman bronze, and g)Chinese copper (Image
from [13])

1.2 Mechanical Characterization of Fish Skin

Recent efforts to characterize the important structural characteristics of fish scales and fish

skin have resulted in a great deal of information on the composition, tensile strength, puncture

strength, and flexural rigidity of scales and fish skin. As discussed by Lin, et. al. [9] fish scales

display a hierarchical architecture, with a hard, mineralized outer layer and a softer inner lay com-

prised of collagen fibers arranged in a Bouligand, or plywood-like pattern. This structure provides a

unique combination of strength and fracture toughness, which leads to an excellent ability to protect

against penetration, while also allowing for flexibility[6]. Zimmerman, et. al. [25] demonstrated

with in situ synchrotron small-angle X-ray scattering that during tensile loading, collagen fibers

within the scales reorient themselves, giving the scales enhanced ductility and fracture resistance.

In regards to puncture strength, Zhu et. al.[24] characterized the structure and puncture me-

chanics of the teleost skin from the M. saxatilis by examining six different parameters that could

affect the puncture resistance of the fish skin. These included substrate stiffness, puncture site (on

an individual scale), number of overlapping scales, friction between scales, scale arrangement and

overlap, and scale interaction and force dispersal. With these parameters, Zhu, et. al. determined

that substrate stiffness was of secondary importance to the mechanics of fish skin during penetra-

tion. However, puncture site affected the penetration resistance significantly since the scale of the

M. saxatilis does not display the same thickness across its surface. As would be expected, more
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force was needed to puncture the center region of the scale, which is thicker than the edges of the

scale. Perhaps one of the most notable findings in this paper was that puncture force increases al-

most linearly with the number of overlapping scales, meaning that three scales provide almost three

times the penetration resistance of a single scale. This is despite the non-homogeneous structural

make-up of the scales. Through the use of finite element modeling, Zhu, et. al. demonstrated that

the friction between scales is practically zero, which allows for ease of motion during swimming, but

can also be seen as a detriment to puncture resistance, as fully bonded scales would provide more

bending stiffness and therefore greater resistance to puncture. The effects of scale arrangement

and overlap were considered by penetrating three scales arranged in one of three ways: stacked,

staggered overlap (natural arrangement), or rotated. From this test, the researchers noted that

the stacked arrangement provided the most resistance to penetration, and that each arrangement

allowed for the scales to “sink” into the substrate, and the edges of the scales in the natural ar-

rangement lifted off of the substrate during penetration. These observations led to the last test,

which is also of interest in this study - scale interaction and force dispersal. From this test, the

researchers observed that the scales reduced the deflection of the substrate during penetration by

about 25%, but only in the area near the indenter. Essentially, this demonstrates the scales’ role

in redistributing the forces from a point load, reducing damage to the underlying substrate [24].

At the macro-scale, or whole fish, level Long et. al. [10] measured the flexural stiffness of

the longnose gar Lepisosteus osseus during swimming. Flexural stiffness of the gar was measured

by gripping a dead specimen in an apparatus that measured applied bending moment as well as

curvature of the fish. The flexural stiffness was calculated for the unaltered fish and then compared

to the stiffness of the fish after alterations. Specifically, it was shown that cutting the dermis between

two caudal scale rows on the gar drastically reduces stiffness, while removing a caudal scale row did

not significantly impact the flexural stiffness of the gar beyond the effects of cutting the dermis.

These measurements were also performed on live fish, and it was shown that cutting the dermis

of the gar reduced tailbeat frequency and propulsive wave speed[10]. This study demonstrated the

importance of the dermis with regards to the mechanics of the skin of the gar, specifically with its
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contribution to flexural stiffness and swimming efficiency.

These studies discuss just a few of the important characteristics of fish skin discovered over

the past few decades, and present a basis for the contributions of this study.

1.3 Background

Even though researchers have made great strides in characterizing real fish skin, attempts

to fabricate materials that mimic natural fish skins have remained limited. The main focus of

this study is on the replication and characterization of leptoid scale group of the teleost fish, and

particularly the flexible properties of individual scales embedded in individual dermal pockets [19].

Ortiz and coworkers [2] explored the effects of scale geometry and composition by creating 21

macroscale prototypes using 3-D printed ABS (acrylonitrile butadiene styrene) scales embedded in

a substrate of silicone rubber. It was demonstrated that scale overlap is critical for the distribution

of forces across the material, and that it is possible to tailor the overall stiffness of the material by

adjusting structural parameters such as the scale overlap, orientation, aspect ratio, and volumetric

filling within the substrate [2]. Song [15] and Reichert [12] also developed two separate 3-D printed

prototypes based on the armor of P. senegalus to better characterize the global and local behavior

of this scale type. Specifically, individual scales (local behavior) were printed using a rigid material

by the name of Objet VeroWhite to explore the contributions to the mechanical behavior of the

skin from (i) peg-and-socket connections between individual scales and (ii) overlapping surfaces.

At the global level, Song [15] and Reichart [12] developed helical rings in the image of the overall

pattern of scales on the P. senegalus. With these models, it was demonstrated that individual

scales are important for the overall flexibility of the fish, since an architecture of solid helical rings

provided little to no range of motion in comparison to the individual scales. They also demonstrated

that the flexible peg-and-socket connections in combination with the sliding, overlapped surfaces

were key in P. senegalus mobility [15], [12]. On a microsystem level, Kim, et. al. [7], used a

transfer printing process to explore two variations of fabrication processes involving scales measuring

600µm x 600µm. In the first variation, scales were attached in an imbricate pattern to molded
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poly(dimethylsiloxane) (PDMS) posts using surface hydroxyl condensation reactions. The second

variation comprised of transfer printing the scales to a smooth silicon substrate by means of a

small PDMS anchor attached to a single edge of the scale [7]. The researchers went on to test the

mechanics of these microsystems qualitatively, showing that in both variations, the scales provided

full coverage and protection during bending, stretch, and buckling, which is of great interest in

the development of flexible electronics. These modern designs and implementations of man-made

scaled skins, although sharing structural aspects and duplicating some performance features of

natural materials, have not successfully captured key features of the fundamental mechanics in

teleost fish skin. Specifically, this study is interested in more flexible armors than those of the

P. senegalus, in order to characterize the rotational and flexible aspects of individual scales, but

unlike the microsystem fabrications, feasibility of construction without advanced technologies was

of paramount importance.

1.4 Materials and Fabrication Process

Research into the architecture of fish skin has indicated three components that are key to the

mechanical response of fish skin: thin but relatively rigid scales with some degree of overlap (see

Figure 1.3), an underlying elastic substrate or dermis, and a periodic distribution of soft, elastic

pockets in the substrate into which the scales are inserted [19]. A bio-inspired skin was fabricated, as

shown in 1.3c, in a simplified material design from two primary materials (i) dermis layer consisting

of a flexible polypropylene mesh or net and (ii) scales of cellulose acetate butyrate (CAB) having

an elastic modulus on the order of 7 times larger than that of the mesh as a whole. Individual CAB

“scales” were inserted in each opening of the mesh and sewn to the cross-links of the mesh with

cotton thread. See Appendix A for further explanation and schematics demonstrating this process.

As in natural fish-skin, the mesh serves the dual purpose of providing a relatively soft, flexible

scaffold or backbone for the material, as well as providing a pocket stiffness, which performs the

function of allowing rotation of individual scales about the latitudinal axis and restricting rotation

about the longitudinal axis. This periodic mesh also controls the scale position and overlap and



7

thus the scale-scale interactions. At its base, the mesh is a periodically repeated, sinusoidal-shaped,

single fiber with E=1300 MPa, a fiber radius of 0.06 ±.01 mm, and with x- and y- dimensions of

5.13±.01 mm and 2.81±.01 mm, respectively, creating diamond-like openings measuring 10.26±.01

mm wide by 5.62±.01 mm tall. The CAB scales, which were attached at the center of each scale

to the mesh intersections with cotton thread, provide the protective component of the synthetic

material with an elastic modulus of 800 MPa, individual thickness of 0.20±.01 mm, a width of

9.46±.01 mm, a length of 12.68±.01 mm, and a normalized overlapping ratio the ratio of scale

spacing to scale length r, of 0.19, which is similar to values typically found in nature - 0.2 to

0.3 [19]. A macroscopic specimen suitable for mechanical characterization was fabricated with an

overall area of 153.39±.01 mm in the lateral direction (direction from abdomen-to-dorsal side of

the fish, see 1.3c) by 167.87±.01 mm in the longitudinal (from anterior-to-posterior end) direction.

After fabrication, several experimental tests were performed to quantify the mechanics of the

resulting synthetic material. The material’s response to in-plane deformations, flexure, and inden-

tation were captured and modeled as described on the following pages. The mechanical behavior

achieved with this design was found to be similar to that of natural fish skin, thus indicating the

distinct roles that interacting dermal and scale layers have on the material properties.
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Figure 1.3: Photographs of a) skin from Mullus surmuletus and b) the synthetic fish skin when
undeformed (left) and under bending deformation (right). c) Schematic of the materials and pro-
cesses used to fabricate the synthetic fish skin with rigid cellulose acetate butyrate scales and
polypropylene fiber mesh.



Section 2

Mechanical Response of Synthetic Fish Skin to In-Plane Deformation

The bio-inspired fish skin’s mechanical response to in-plane deformations was first character-

ized and modeled as shown in Figure 2.1. The stress-strain response of the fish-skin was compared

to two other traditional materials: (i) a single solid sheet of CAB with the same thickness as the

scales used for the synthetic material and (ii) the polypropylene fiber mesh without scales. The

anisotropic tensile responses of the synthetic fish skin and the mesh were measured in both the

longitudinal and the lateral directions as shown by discrete points in 2.1. The data for the solid

sheet of CAB is not shown here as deformation was negligible for the range of loading considered.

For a full explanation of the testing process, see Appendix A.

2.1 Results

Four notable outcomes resulted from these tests. First, the skin shows a relatively soft

response in the longitudinal direction that stiffens with increasing strain. These results demonstrate

that in the longitudinal direction, or head-to-tail direction on a fish, the skin is very flexible (much

more so than the single, solid scale), allowing for ease in stretching in this direction. Second, this

stiffening behavior is controlled primarily by the mesh, the longitudinal response of which is shown

in black in Fig. 2.1. As the mesh is placed in tension, deformation initially occurs as bending of the

individual fibers, and a very soft response is observed during this regime due to the low bending

stiffness of the polypropylene fibers. After a certain point, the fibers begin to carry an increasing

amount of uniaxial load, thereby causing a stiffer response to the applied load [20].
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Figure 2.1: Experimental and modeled response of synthetic skin and mesh during in-plane tensile
deformation

The third notable observation is provided by comparison of the response in the longitudinal

direction of the mesh and the skin, where we see that the scales do increase the stiffness of the

material by constraining the displacement of the nodes on the mesh in the lateral direction (or

x-direction in Fig. 2.2). Without scales, much larger strains are needed to place the polypropylene

fibers in axial tension only, and the individual nodes are almost touching at this point. The scales

prevent this nodal movement in the lateral direction, thereby placing the fibers fully in tension

at smaller strains and increasing the overall stiffness of the material. This trend holds true for

tensile deformation in the lateral direction as well. This trend can be quantified by comparing the

Poisson’s ratios of the mesh and the skin in the longitudinal and lateral directions (see Fig. 2.2 for

strain equations):

νlong.,mesh =
−εtrans,long
εaxial,long

= .35 (2.1)

νlat.,mesh =
−εtrans,lat
εaxial,lat

= .26 (2.2)

νlong.,scales =
−εtrans,long
εaxial,long

= .25 (2.3)
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νlat.,scales =
−εtrans,lat
εaxial,lat

= .14 (2.4)

These Poisson’s ratios demonstrate that the scales are responsible for increasing the stiffness

of the material by constraining the mesh in the direction perpendicular to loading. Here, axial strain

is the strain computed with respect to the direction of loading, and transverse strain is computed

perpendicular to loading - e.g. for the longitudinal test, εlong (Fig. 2.2) represents the strain in the

axial direction, while εlat (Fig. 2.2) measured during this test represents the strain in the transverse

direction. These Poisson’s ratios indicate that the scales are responsible for increasing the stiffness

of the material by constraining the mesh in the direction perpendicular to loading.

Lastly, the response of the skin under longitudinal loading can be compared to its response

under lateral loading. In the longitudinal direction, the scales provide essentially no frictional

resistance to axial deformation, since the geometry and fabrication of the skin allows for the scales

to slide across each other freely, whereas the scales are restricted from sliding the in lateral direction.

Ultimately, these mechanisms allow the mesh to govern the general response of the skin during

stretch, dictating that the skin responds more softly in the longitudinal direction than in the

lateral direction.

2.2 Model and Discussion

To better understand and verify these mechanisms and their effect on the mechanics of the

fish skin material, a simple numerical model for the in-plane deformation of an elastic mesh with

and without scales was developed. An idealized mesh (bottom inset in Fig. 2.1a) was created

to model the experimental results of the mesh and synthetic fish skin. As an idealized geometry,

the modeled geometry does not exactly match the geometry of the actual mesh, which is more

complicated. Nevertheless, the geometry displays the same overall diamond-like openings bounded

by sinusoidal-shaped fibers, modeled as y = ax − bx3. The geometry of the mesh was determined

by the numerical implementation of a finite element model for large beam deformation [17] (details

of this model provided in Appendix B)and the stress-strain response was computed by imposing
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periodic boundary conditions on the element as shown in Figure 2.2.

Figure 2.2: Free-body diagram of periodic cell used to model axial loading responses. Stress is
calculated as σx = Fx

h′ or σy =
Fy

w′ , respectively.

Figure 2.3: Comparison between Model and Actual Results from In-plane Deformation - modeled
geometry on the left in each frame

This concept was extended to model stress-strain response of the skin by idealizing each scale

as a spring separating the nodes of the mesh in the lateral direction. Essentially, by placing a

displacement control on these nodes at each loading increment, the fibers of the mesh are forced
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Figure 2.4: Comparison between Model and Actual Results from In-plane Deformation - modeled
geometry on the left in each frame

into uniaxial loading sooner than when the nodes are allowed to move freely, thus increasing the

tensile stiffness of the modeled material, and reducing the Poisson’s ratio. Figure 2.3 demonstrates

the modeled geometry in comparison to the actual mesh geometry. Figure 2.4 demonstrates the

utility of the proposed model for designing a mesh or dermis layer with the desired tensile response

for the synthetic fish skin material. Three distinct mesh geometries with identical fiber dimensions

and physical properties are considered here and exhibit different mechanical responses; conceivably

any number of mesh geometries could be considered to achieve an optimal balance between skin

flexibility and stiffness. Not shown in this figure is the effect of mesh geometry in the lateral

direction, but that is simply because the results are similar in that different geometries can be

created to produce different stress-strain responses. In design, both directions would be considered.

It may even be of interest to researchers to optimize a mesh such that it was isotropic. This would

not only lead to greater ease in characterizing the material, but it would also lend itself more

favorably to body armor, as flexibility in both directions can be equally important.



Section 3

Mechanical Response of Synthetic Fish Skin to Flexure

The presence of scales on the skin becomes a salient feature of fish-skin mechanics during

out-of-plane deformation as we will see in the context of skin bending and indentation by a sharp

object. For example, the relatively high curvatures of the skin achieved during swimming serves

a mechanical function to fish, as it acts as a spring to restore elastic energy and assist in more

efficient propulsion. [10],[19]. Imbricate scales also are important as protection when the fish skin

is subjected to extreme surface instabilities such as wrinkling of the skin (from pinching and/or

buckling) or indentation. In this context, the synthetic fish skin’s response to flexure was measured

in two directions - bending about the lateral axis and bending about the longitudinal axis . The

load-displacement responses in Figure 3.1 of the fish skin were compared to flexure of an unscaled,

foam substrate (i.e., analogous to the flesh of a fish). Loads were applied incrementally at the center

of each specimen, and deflections were measured at the loading point (using the testing setup

illustrated in Appendix A, Figure A.3). The procedure used to determine the flexural response

is detailed in Appendix A. Figure 3.1 demonstrates that the synthetic skin behaves similarly to

real skin in that it increases the overall flexural stiffness of the foam substrate. In fact, it was seen

during testing that at the maximum load, the unscaled foam specimen displayed potentially critical

curvatures (as indicated by a kink at the point of loading), whereas the same foam substrate, when

protected by the synthetic fish skin, displayed much smaller curvatures.
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3.1 Results

From the mechanical characterization of the bio-inspired skin’s flexural response, the following

conclusions were drawn about the mechanical behavior of the skin during flexure. First, the skin

behaves softly in the longitudinal direction (bending about the lateral axis) in comparison to a solid

sheet of CAB with equal thickness (36 mm of deflection at a maximum load of 1 N in comparison

to 21 mm of deflection at the same load). Results from the flexural response of the solid CAB are

not shown here for clarity. The mechanism controlling this soft behavior is the small rotational

stiffness of the scale pockets, which allows for large scale rotation rather than individual scale

bending under relatively low applied moments. At larger bending moments, however, the skin

stiffened significantly as the curvature increased and scale-scale interactions lead to the bending of

each individual scale. Figures 1.3a and 1.3b demonstrate that that in flexure, both the real and

synthetic fish scales exhibit rotational and bending properties, just like those shown in Figure B.4.

In the lateral direction (bending about the longitudinal, or head to tail, axis), it was discovered that

Figure 3.1: Experimental and modeled flexural response of specimen under uniaxial bending. Ex-
perimental results shown as discrete points, and modeled as solid curves.
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the skin responded more softly than a solid sheet of CAB with equal thickness attached completely

to the top of the foam specimen, which can be explained by the discontinuity of material across the

surface of the skin. Contrary to the behavior in the longitudinal direction, however, the limitation

on scale rotation in the lateral direction restricts overall bending of the skin in this direction, leading

to a stiffer response and eliminating the stiffening behavior seen in the longitudinal direction . This

stiffer behavior can also be attributed to the fact that the flexural stiffness of a single scale, EIs,

is larger about the longitudinal axis since the scales are longer and Is = lh3/12.

3.2 Model and Discussion

In order to verify the assumptions in regards to the mechanisms controlling the skin’s response

to bending, a numerical model was developed based on the derivations of Vernerey and Barthelat

[19] that could qualitatively predict the behavior of the skin in terms of the mechanical properties,

spatial organization, and morphometry of individual scales. Three separate models were needed to

compute the flexural stiffness for each test specimen, one each for the foam only, scales bending

about the longitudinal axis, and scales bending about the lateral axis. Exact details of these models

are described in Appendix B, and the results are shown as solid lines in Figure 3.1.

As indicated in Figure 3.1, the proposed model conforms well to the experimental results,

indicating that this model has potential for the design and optimization of synthetic scaled skins.

In Fig. 3.2, the model is extended to explore two approaches that may be used to influence the

skins bending response in the longitudinal direction: (i) tuning pocket stiffness and (ii) controlling

substrate thickness. The effect of pocket stiffness is considered by removing the foam stiffness from

the model (specifically achieved by setting tfoam = 0). These results are shown as solid curves in

Figure 3.2, where it is should be noted that an increase in normalized pocket stiffness, K̄, leads to

an increase in skin stiffness and a reduction of the stiffening response at higher curvatures. The blue

curve (K̄ = 0.05, far right) demonstrates the effect of low pocket stiffness, which causes the overall

skin to be much more flexible initially than a similar specimen with high pocket stiffness. The

discrete points in Fig. 3.2 represent the scaled substrate as modeled in Fig. 3.1, only with varying
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Figure 3.2: Effect of the normalized pocket stiffness, K̄ = Kl
EIs

, and substrate thickness on the
moment/curvature response of the skin.

values of substrate thickness as specified within the plot. It is noteworthy that adding the foam

substrate to the model increases the stiffness of the specimen such that the pocket stiffness no longer

has an effect on the overall response of the skin. It is also observed that decreasing the thickness of

the foam substrate decreases the stiffness of the specimen. With this type of modeling capability, it

would be possible to customize the response of the synthetic skin based on the potential use of the

material. For instance, it may be of interest to researchers to develop a material that was almost

equal in flexibility about both axes of the skin to ensure property flexibility in any direction. Here

a base set of parameters is provided, which can be optimized to achieve such results.



Section 4

Mechanical Response of Synthetic Fish Skin to Indentation

Perhaps the most important function of fish skin is its resistance to penetration [24],[22].

The same variables that control the skin’s response in flexure also influence its response during

indentation [20]. The main characteristic controlling the indentation response, however, is the

imbricate pattern of the scales. This overlapping allows for the transfer of forces from a single scale

to the scales directly adjacent, dispersing the force and ultimately decreasing damage to underlying

tissues. Zhu et. al. [24] performed indentation tests on M. saxatilis specimen using a sharp needle

(35 µm tip), demonstrating that scaled skin was able to resist about three times the penetration

force compared to unscaled skin, and under blunt loading (probe diameter of 2.2 mm), the scales

reduce absolute deflection by interlocking redistributing the force across the skin.

4.1 Results

In this study, indentation tests were performed on the synthetic fish skin, a solid sheet of

CAB (two layers of CAB in the same dimension of the scaled specimen), and an unscaled foam

specimen with a cylindrical indenter of radius 1.14 mm (see Appendix A for detailed experimen-

tal procedures). As Figures 4.1 shows, the synthetic skin behaves in the same manner as the M.

saxatilis specimen with regards to increased penetration resistance compared to the unscaled spec-

imen, and as establish earlier in the thesis, the scales have the added benefit of flexibility (soft

responses in tension and bending), unlike the solid sheet of CAB. Figure 4.1 also demonstrates

that approximately the same amount of energy is needed to penetrate the synthetic fish skin and
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the solid sheet of CAB, with one important caveat. The fish skin displays greater deformation at

lower forces, indicating that it takes less energy to flex and stretch the skin which demonstrates

that the skin is more flexible than a solid sheet of CAB, while providing approximately the same

energetic resistance to a penetration force. To further quantify the skin’s resistance to penetra-

Figure 4.1: Effect of scales on resistance to puncture. Scale failure indicates direct puncture of a
scale, while other failure indicates a failure of the synthetic material either failure of the mesh or
buckling of a scale.

tion and the mechanisms that allow this behavior, the three specimen were indented at a static

load of 1.96 N (the critical load for the unscaled foam specimen) and the surface contours were

measured and plotted in Figure 4.2. From the results in Figure 4.2, we ascertain that the scales

prevent unstable localized deformation by dispersing the applied force over a larger area. This

behavior is contributed to by the nonlinear bending mechanisms described earlier in the thesis, and

is a function of individual scale size [4]. At first, the scale or scales directly in contact with the

indenter transfer this force to surrounding scales through scale rotation. As the force increases,

localized curvature increases, and just as in the case of bending, individual scales begin to bend

and stiffen the response of the material. It is also important to be cognizant of the fact that force

dispersion relies directly on the size of the scales i.e. larger scales will promote force dispersion

over larger areas, while smaller scales will be associated with a smaller area of dispersion. This
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effect is demonstrated in Figure 4.2. If we consider the solid CAB to be a very large scale, we see

that it disperses the force over a much larger area than the synthetic skin. Likewise, if we were

to imagine that the scale size was infinitely small, we would see a response similar to that of the

unscaled foam substrate, which disperses the force over a very small area, creating a situation that

is prone to early damage nucleation in the substrate. The choice of scale size is a parameter that

can be tailored to achieve the desired response of the skin during indentation, as a direct trade

between protection and flexibility.

Figure 4.2: a)Schematic of test set-up and b)-d) contour plots of the specimen surface under a load
of 1.96 N (critical load for foam only scenario).

4.2 Discussion

At this time, a comprehensive indentation model for scaled skins does not exist. This is left

as future work in the attempt to fully characterize the structural mechanics of fish skin. There

are, however, a couple of base models show the potential for expansion into a bending model. In

particular, the bending model proposed by Vernerey and Barthelat [19] used in this study certainly

has potential in being expanded to encompass bending in three-dimensions, which is the essential

behavior during indentation. As noted throughout this study, the scales on the fish skin disperse
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forces by interlocking, rotating, and finally bending which ultimately relieves the instability created

by a single point load. Vernerey, et. al. [21] have developed a computational approach in order to

determine the influence of the microstructure - scales, pocket stiffness, etc. - on the overall behavior

of the skin by homogenizing the skin based on a representative volume element (RVE). With this

approach, they determined that it is feasible to model the scales as Kirchhoff plate structures, and

by imposing periodic boundary conditions around the RVE, the response of the skin during bending

can be predicted [21]. It is not implausible to think that a model such as this could extend into

predictions regarding the skin’s response to indentation.

As for this study, a couple of notable control parameters identified by the penetration test

are parameters of interest for furthering the future fabrication of biomimetic fish skin. These

parameters, as identified in Figure 4.1 were general fabrication technique and material strengths.

It was found here that two failure modes are possible for the synthetic skin during indentation:

scale failure and other failure. Scale failure indicates the occurrence when a single scale was

punctured by the indenter, and can be modified by choosing a stronger material, or by increasing

the thickness of the individual scales. Other failure indicates the failure of the mesh a break in

the fiber of the mesh or scale buckling, when a scale folded upon itself and fell through the mesh.

This failure mechanism can be avoided by selecting a stronger mesh, increasing the overlap of the

scales (to prevent fall-through), or increasing the flexural strength of the scales. Even with these

imperfections, the synthetic fish skin displays a very similar behavior under indentation as real fish

skin as shown by Zhu et. al. [24], in that it is able to withstand much larger loads than the foam

specimen on its own by magnitudes (about 7 times the failure load of the foam specimen at its

weakest point).



Section 5

Conclusions

In summary, this study proposes a simple fabrication procedure for creating biomimetic fish

skin. By characterizing the behavior of this material during in-plane deformation, flexure, and

indentation, it is shown that this synthetic fish skin behaves in a similar manner to real fish skin,

indicating its potential for providing the unique and desired combination of flexibility and protection

found in real fish skin. The novelty of this process lies in the fact that no expensive machinery or

materials were needed to create a stand-alone biomimetic protective material that can be attached

to a variety of substrates. With this simple process this study shows that, just as is seen in real

fish skin, overlap, underlying mesh geometry, and material strength contribute significantly to the

mechanical behavior of synthetic fish skin, and are all important parameters to consider in future

development of synthetic fish skin.

Future recommendations for furthering the design of protective synthetic fish skin include the

development of a model to more accurately predict the skin’s response to indentation. Penetration

resistance is of utmost importance, particularly in regards to the application of fish skin as body

armor, and a model to optimize the flexibility, weight, and penetration resistance of a material is

paramount for the development and application of said materials.
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Appendix A

Methods and Materials

A.1 Fabrication

CAB was purchased as a 90 mm x 60 mm sheet, and then cut into small rectangles measuring

9.8 mm x 12.5 mm. The width of each rectangle was controlled by the dimensions of the available

mesh. After each scale was created, two small adjacent holes were punched into the center of the

scale in preparation for fastening, via sewing needle and thread, each scale to the mesh. Once

prepared, a scale was inserted through an opening the mesh so that one half of the scale lay on top

of mesh, and the other half lay under the mesh. The pre-made holes were aligned with the mesh

node corresponding to the opening, and cotton thread was used to tack the scale to the node with

three stitches and a single knot. This process was repeated for each node on the mesh. Figure A.1

demonstrates this process.
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Figure A.1: Schematic of the fabrication process
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A.2 In-plane Testing

Tensile tests were performed on three separate materials: the polypropylene mesh, the syn-

thetic fish skin, and the double layer of CAB. During testing, the upper end of the specimen was

attached to a smooth metal rod every 10 mm along the edge of the material. The free end was then

attached to a smooth metal rod in the same manner. The upper rod was then placed between two

supporting beams near a smooth, vertical surface to reduce any out-of-plane deformation. Loading

Figure A.2: Schematic of test set-up used to determine in-plane tensile response of mesh and skin

was then performed manually in increments of .2 N, and deflection was measured at the center

point of the specimen after the application of each load. Deflection was measured only after the

specimen reached equilibrium, and care was taken to prevent the mesh from interacting with the

vertical surface at back. Once this process was completed for the specimen in one direction (e.g.

longitudinal) the metal roads were then attached to the perpendicular sides and the same specimen

was tested in the opposite direction.

A.3 3-point Bending Test for Flexural Response

Flexural response of three different specimen was determined by attaching the two sides of

the specimen opposite one another to wooden rods at every 10±.01 mm along the material sides.

These rods were then laid on parallel supporting beams which allowed the rods to freely move

closer to one another as a line load was applied parallel to the wooden rods, directly in the center

of the specimen. After a load was applied, the specimen was allowed to settle before a deflection

measurement was taken at the point of loading. Loads were applied manually in increments of 0.1
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N. Once a specimen was tested in flexure about one axis, the wooden rods were attached to the

perpendicular sides, and the specimen was tested again in the same manner. For those specimen

consisting of two materials, i.e. the scaled foam and solid CAB plus foam specimen, the protective

material was attached to the foam using stitches of cotton thread at every 10±.01 mm along the

edges of the foam. No attachments were made within the center portion of the foam.

Figure A.3: Schematic of flexural test set-up and measured quantities for flexural tests

For the sake of developing a numerical model that could replicate these results, it was also

necessary to measure the compressive and tensile moduli of the open-celled polyurethane foam

specimen. The tensile modulus of elasticity was determined by first attaching one metal rod to

each of the shorter ends (153.39±.01 mm x 11.99±.01 mm) of the foam specimen with cotton

thread stitches at every 10±.01 mm along the edge of the specimen. Then the ends of one rod

were place upon two parallel supports and the other end of the specimen was allowed to hang

freely. The free end of the specimen was then loaded manually with four different loads, and

the tensile deformation was measured at the center of the specimen after the loaded specimen

reach equilibrium. This process was repeated three times, and a stress-strain curve was created

to determine the modulus of elasticity for each test. The modulus was determined by the slope

of a linear trendline fit to the experimental results. The moduli of each test were averaged to
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determine the final tensile modulus of elasticity of .06 MPa. Unlike the tensile modulus, it was

much more difficult to obtain the compressive modulus. In compression, open-celled foam behaves

in a non-linear fashion due to the difference in material properties between the individual fibers

of the foam and the foam as a whole. Figure A.4 shows the typical response of open-celled foam

Figure A.4: Generalized stress/strain response of open-celled foam under compressive loading

during compression [14]. When the specimen is first loaded, the response of the material is that of

the cell wall bending, where a cell is considered to be one of the thousands of small bubbles within

the foam. As the load is increased, these walls become unstable and buckle, drastically reducing

the stiffness of the material. If loading is continued, all of the vertical components of the fibers

within the foam have buckled, and the material exhibits a strain stiffening response as the fibers

act more like a homogenous material made only of solid polyurethane[14]. In this report, the main

response under consideration was that of the cell wall bending, since the compressive loads seen

by the foam during flexure were assumed to remain within this linear region. In order to measure

the compressive modulus, a small foam specimen measuring 43.89±.01 mm long by 41.92±.01 mm

wide by 73.53±.01 mm thick was placed in compression by applying a surface load to the top of the

specimen and measuring the deflection. A total of six different loads were applied to the specimen,

and the specimen was allowed to fully settle before deformation measurements were taken at the

center of the long edge of the specimen. These data points were then fit with a linear trend line,
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and the compressive modulus was taken as the slope of said trend line - .2 MPa.

Lastly, it was necessary to experimentally determine the modulus of elasticity of the CAB

for the purposes of calculating the flexural stiffness of the scales and solid sheet of CAB. This was

accomplished by performing tensile tests on CAB specimen with small widths (3.44±.01 mm and

4.20±.01 mm) and respective lengths of 52.81±.01 mm and 152.62±.01 mm. During testing, the

top portion of the specimen was fixed, and a tensile load was manually applied downward in discrete

increments. After each load was applied, the displacement of the bottom end of the specimen was

measured. With this data, the stress and stress were calculated and plotted to find the average

modulus of elasticity of 800 MPa as the slope of the stress-strain curve.

A.4 Indentation

The first indentation test performed on each specimen involved the indentation of each spec-

imen using a 1.14 mm in diameter indenter and a static load of 1.96 N. This load was chosen

because it is just below the critical load for the foam specimen. For each specimen, this static in-

dentation test was performed three times. Each time, the load was applied to the specimen at least

30 mm away from the edge of the specimen to avoid effects from the boundaries of the specimen.

Figure A.5: Diagram of mea-

surements taken for static in-

dentation test

Fourteen to fifteen deflection measurements were taken at one mil-

limeter intervals from the origin, or indentation point, in a radial

pattern of every 30◦, giving a total of 168 measurements for each

test(see Fig. A.5). In the case of the foam specimen and the solid

CAB plus foam specimen, the deflection from indentation was de-

termined to be symmetrical about all axes, so all of the measure-

ments were averaged for plotting the contours seen in Figure 4.2.

The scaled specimen showed symmetry about the longitudinal di-

rection, so the measurements were average across both sides of the

specimen for plotting.

Penetration testing with the Instron machine was the last
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round of testing, as it was destructive. Just like the static indentation tests, the specimen were

indented with a 1.14 mm diameter indenter at a rate of .1 mm/s until failure. The effects of loading

rate were not considered in this study. Direct measurements from the Instron device were plotted

in Figure 4.1. Effects of loading rate were not considered for the purposes of this thesis



Appendix B

Supplementary Information

B.1 Finite Deformation Beam Theory - In-plane Stress/Strain Response

Model

The stress/strain response of the mesh during tensile loading was calculated using the finite

deformation beam theory developed by Vernerey and Pak [17]. Taking note of the periodic geometry

of the mesh, the response of the mesh was determined numerically by placing kinematic boundary

conditions on a single polypropylene fiber as shown in Figure 2.2 and computing the conjugate

forces. The modeled fiber, or beam, had an elastic modulus of 1300 MPa and a circular cross-

section with a radius of 0.21 ± 0.01 mm. Shear effects were neglected since the beam was very

long in comparison to its thickness. The undeformed geometry of the beam (as shown in red in

Figure 2.2) along its length as modeled as a cubic function: y = .75x− 4x3. In order to implement

Vernerey and Paks model on this unit cell, the beam was divided into 40 finite elements. At each

increment of loading, the stress on the fiber was calculated as the applied force divided by the

effective mesh width w (longitudinal deformation) or length l (lateral deformation) as denoted in

Figure 2.2:

σlong =
Fy
w′ (B.1)

σlat =
Fx
h′′ (B.2)
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Similarly, the strain was computed by dividing the change in effective mesh length or width

by the undeformed length, l (longitudinal deformation) or width, w (lateral deformation). This

method of computing stresses and strains effectively normalized the response of the mesh by the

unit cell shown in Figure 2.2, which allowed for a direct comparison between the model and the

experimental results as in Figure 2.1. The following is a detailed explanation of the model used. For

more in-depth information regarding this theory, please see Analysis of Soft Fibers with Kinematic

Constraints and Cross-Links by Finite Deformation Beam Theory by Franck Vernerey and Ronald

Pak [17].

In the field of bioengineering, the ability to model the deformations of thin fibers during

tension, compression, and flexure is key to developing materials with desired characteristics for

protection, flexibility, durability, and many other characteristics. For this reason (and others)

Vernerey and Pak [17] successfully solved the problem of finite deformation of single or multiple

fibers with imposed kinematic constraints with the use of a hybrid analytical/numerical method.

The following is a summary of this theory, including the governing equations, reductions of said

equations, and the kinematic constraints proposed in their theory.

Kinematics, equilibrium equations, boundary conditions, and constitutive relations are inte-

gral for the development of the finite deformation beam theory. Figure B.1, copied from Analysis

of Soft Fibers with Kinematic Constraints and Cross-Links by Finite Deformation Beam Theory

[17], shows the free-body diagram used to describe the physical set-up used for this theory. From

Figure B.1, the following quantities can be defined:

Shear deformation, α = φ− β (B.3)

X′ =

cosφ0(s)

sinφ0(s)

 (B.4)

and

x′ = (1 + e)

cosβ(s)

sinβ(s)

 (B.5)
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Figure B.1: Free-body diagram of beam element used in the finite deformation beam theory.

where e is the strain, giving the current length of a differential beam segment as (1 + e)ds,

X gives the initial coordinates of the beam, x gives the coordinates of the beam in its deformed

state, and the prime notation indicates the derivative of these items with respect to the centroidal

curvilinear coordinate, s. The Green-Lagrange strain tensor is then approximated by

Ẽ ≈
R0

R0 − Y2

ε− Y2κ
γ
2

γ
2 0

 (B.6)

where Y2 is the coordinate in the n direction in the reference configuration and

Scalar Measure of Stretch, ε = (1 + e) cosα− 1, (B.7)

Scalar Measure of Shear, γ = (1 + e) sinα, (B.8)

Scalar Measure of Bending Deformation, κ = φ′ − φ′
0 (B.9)

R0 is the initial radius of curvature of the beam given by R0 = 1

φ
′
0

. See Appendix A for the

full derivation of the Green-Lagrange strain tensor approximation as shown by [?].

Using the theorem of virtual work,

δWint − δWext = 0 (B.10)

where

δWint =

∫ L0

0
(Pδε+ V δγ +Mδκ)ds (B.11)
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and

δWext =

∫ L0

0
(p · δu + µδφ)ds+

N∑
j=1

[f j · δu +mjδφ]s=sj (B.12)

These kinematics were then used along with the theorem of virtual work to arrive at three nonlinear

ordinary differential equations describing the equilibrium of the system: (R ·Ξ)′ = p

M′ − e : (Ξ⊗Π) = µ

 (B.13)

where Ξ is the measure of axial shear stress, Π is the measure of axial strain:

Ξ =

P
V

 and Π =

ε+ 1

γ

 (B.14)

P ,V ,and M are the resultants of axial stress, shear stress, and bending moment with respect

to the initial configuration, R is the orthogonal rotation matrix, and e is the permutation tensor.

The quantities p and µ are the rectangular components of the applied distributed force and moment

resultants, respectively, along the beam.

The boundary conditions at discrete points along the beam are then described as[R ·Ξ](sj) = f j

[M ](sj) = mj

 j = 1, ..., q and (B.15)

u(sj) = ūj

φ(sj) = φ̄j

 j = (q + 1), ..., (q + r) (B.16)

where q and r denote the number of points at which a concentrated force or moment, or a prescribed

displacement or rotation are applied, respectively.

The constitutive equation is yet another vital piece to Vernerey and Pak’s theory [17], and

is given as a hyperelastic potential, Ψ(ε, γ, κ), which is related to the stress resulant by

[P V M ] = [Ψ,ε Ψ,γ Ψ,κ] (B.17)

The elastic potential Ψ is written as

Ψ(ε, γ, κ) =
EA

2
ε2 +

kGA

2
γ2 +

EI

2
κ2 (B.18)
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Here, E and G are Young’s and shear moduli, A and I are the area and the moment of inertia of

the cross section, and k is the shape factor representing the effective shear modulus of the beam to

allow for nonuniform cross-sectional shear stress distribution.

These equations can then be reduced to define the current coordinate of the beam centroid

as

x(s) = x(s0) +

∫ s

s0

q(F , φ)ds (B.19)

where

q(F , φ) = (1 + e)

cosβ

sinβ

 = R ·Π = w + P2 · F (B.20)

and

w(φ) =

cosφ

sinφ

 , F =

η(s)∑
j=0

f j(sj) +

∫ s

0
p(s)ds, (B.21)

η =



0 if s < s1

j if s ∈ [sj , sj+1)

N if s ≥ sN

(B.22)

and

P2 =

λ2 + λ1 cos 2φ λ1 sin 2φ

λ1 sin 2φ λ2 − λ1 cos 2φ

 , λ1 =
1

2
(

1

EA
− 1

kGA
), λ2 =

1

2
(

1

EA
+

1

kGA
)(B.23)

where F is related to the axial stress through Ξ = RT ·F and η is an integer function related

to the total number of concentrated forces along the beam, N .

Vernerey and Pak [17] then go on to generalize this reduced formulation such that a variety

of kinematic constraints can be applied to the beam. In their paper, they consider only two cases:

one in which a prescribed displacement ū is imposed along a beam, and the second is cross-link
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constraint in which two interacting beams are constrained to have the same displacement at their

intersection.

For the case of the specified displacement ū at s = sj , the coordinate of the displacement is

given as

x(sj) = x̄j = X(sj) + ū (B.24)

An integral equation for f j is then obtained by using Equation B.19:∫ sj

0
q[F (f j , φ)]ds = x̄j − x(0) (B.25)

The task is then to find a force f j such that Equation B.25 is verified. This is accomplished through

the use of a finite element method. Similarly, the cross-link constraint equation is given as∫ sjA

0
q[φA,FA(f j)]ds−

∫ sjb

0
q[φB,FB(−f j)]ds = xB(0)− xA(0) (B.26)

where the subscripts A and B are used to denote quantities related to the beams in question - A

and B, and xB(0) and xA(0) describe the initial coordinates of the beams.The task is then again

to use a finite element method to find a force f j such that Equation B.26 is verified.

The last step of this derivation is to summarize the reduced beam formulation with the

translational constraints. If we consider the case in which the beam is subjected to the load case

as described in Equation B.21, the problem consists of finding the orientation of the beam, φ(s),

and the forces f j through the use of the following three, coupled equations:

EI(φ′ − φ′0) + g(F , φ) = 0 on(0, L)− sj (B.27)∫ sj

0
q(φ,F (f j))ds = x̄j − bmx(0) (B.28)

∫ sjA

0
q[φA,FA(f j)]ds−

∫ sjb

0
q[φB,FB(−f j)]ds = xB(0)− xA(0) (B.29)

Here, Equation B.27 is the moment equation, B.28 describes the fixed displacement constraint at

s = sj , and B.29 describes the cross-link displacement constraint at s = sjA and s = sjB. Additional

equations can be used to describe concentrated moments (B.30), fixed rotation constraints (B.31),

or cross-link rotation constraints (B.32):
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EI(φ′ − φ′0)(sj) = M̄ j (B.30)

φ(sj) = φ̄j (B.31)

φ(sjA) = φ(sjB) (B.32)

B.2 Flexure of Composite Beam

B.2.1 Flexural Stiffness of Foam Specimen

The flexural stiffness of the anisotropic, open-celled, polyurethane foam specimen (153.39±.01

mm x 167.87±.01 mm x 11.99±.01 mm) was computed using the method of transformed cross-

sections, as shown in Figure B.2, where n is defined as n = Ec
Et

and Ec = .02MPa and Et = .06MPa

are the compressive and tensile moduli of the foam, respectively. The neutral axis in the foam

Figure B.2: Diagram of transformed cross-section method for flexural stiffness of foam

specimen was determined by equating the resultant compressive and tensile forces generated during

flexure:

−κEct
2
2

2
= −κEtt

2
1

2
(B.33)

giving

NA =
t√

1
n + 1

(B.34)

With these results, the moment of inertia of the foam about the lateral axis (abdomen to dorsal

side) is given as

If =
W (NA)3

3
+
nW (t−NA)3

3
(B.35)
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and the flexural stiffness of the foam is then calculated as EtIf . Since the measured quantities

during testing were load and deflection, rather than load and curvature, the appropriate geometric

and constitutive equations were employed to convert total curvature to the deflection of the speci-

men at the midpoint. Using the classic Timoshenko linear elastic beam theory, the curvature,κ for

every point along the beam is given by solving

M(x) = −EtIf (
dθ

dx
) = −EtIfκ (B.36)

where M(x) = −Px/2 as given by simple structural analysis of a point load applied to the center

of a simply supported beam. Using a finite difference method, and boundary conditions specified

to allow the movement of the beam ends in the x-direction and rotation in the y-direction, while

restricting their vertical deflection in the y-direction (see Figure A.3), the rotation at every point on

the beam was found. Exact formulation of this method can be found in Appendix A. The following

equations were then implemented to calculate the new (after deflection) X and Y coordinates of

every point on the beam:

X(x) =

∫ L/2

0
(1 + ε(x)) cos θ(x)dx (B.37)

Y (x) =

∫ L/2

0
(1 + ε(x)) sin θ(x)dx (B.38)

Where ε(x) is the axial strain in the foam calculated by

ε(x) =
σ(x)

Ef
; σ(x) =

N(x)

A
(B.39)

and N(x) is calculated as shown in Figure B.3. It was assumed that the axial load was resisted

entirely by the foam substrate, and that deformation from shear was negligible since the foam

was relatively thin with respect to its length. With each incrementally applied load, the moment

equation from a structural analysis was updated, and the solid green curve in Figure 3.1 was

generated.
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Figure B.3: Free-body diagram for calculating beam deformation

B.2.2 Flexural Stiffness of Specimen About the Longitudinal Axis

To the best knowledge of the author, no exact solution exists for the flexural response of fish

skin to the moment applied about the longitudinal axis, in part because natural fish skin is not

subjected to such modes of deformation. What is proposed here is that the flexural response of the

synthetic fish skin in this direction can be modeled as a composite beam with a solid CAB layer

having an effective thickness of 3.2 mm, which is calculated by dividing the total volume of scales

used in the specimen by the area which they cover during testing:

Teff =
nshbl

WL
(B.40)

where ns is the total number scales in the specimen (690), h, b, and l are the thickness, width and

length of an individual scale, respectively. W and L are the width and length of the foam specimen

that the synthetic skin covered during testing.

Since the synthetic skin was not perfectly adhered to the foam, the internal moment of the

specimen is calculated as the sum of the moments generated by the scales and the foam:

M(x) = EtIfκf + EsIsκs (B.41)

where EtIf is the flexural stiffness of the foam as calculated above, Es is the modulus of elasticity

of the CAB (800 MPa), and Is is the moment of inertia of the scales given as Is =
L(Teff )3

12 . For

the sake of reducing this equation, the curvature of the foam can be related to the curvature of the
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scales through the following equation

κf =
1

1
κs

+ .5Teff + (t−NA)
(B.42)

With this, it was possible to solve for the curvature of the scales, κs, and then use the relation

described in the previous section to solve for the deflection of the beam.

B.2.3 Flexural Stiffness of Specimen About the Lateral Axis

Vernerey and Barthelat [19], decomposed the energy associated with fish skin curvature into

rotational and bending energies. The rotational energy is described as the energy stored by the

skin “pockets” as scales rotate about the lateral axis [19]. The pockets act as springs, resisting out

of plane deformation, and as the “springs” are stretched, energy is stored. Scale rotation occurs as

the skin first begins to bend, allowing relatively large flexural deformation for a given moment. As

the curvature increases, individual scales begin to bend, causing a stiffening in the flexural moment

response. Individual scales store this component of the bending energy. These two mechanisms

combine to create the overall flexural response in fish skin, as shown in Figure B.4.

By considering the fact that the energy in a structure is equal to the sum of the stored

energy in each component of the structure, and then invoking the principle of energy minimization,

Vernerey and Barthelat [19] derived that the internal moment can be computed as

M =
(EI)s
rl

(κ̄− κ̄r(κ̄)) (B.43)

where EIs is the bending stiffness of the scales, r and l are the geometric parameters as seen

in Figure B.4, and κ̄ and κ̄r are the normalized total curvature and the curvature generated by

scale rotation, respectively. These curvatures are normalized by the length of a single scale, l (e.g.

κ̄ = lκ) For the full derivation of Equation B.43, see Skin and scales of teleost fish: simple structure

but high performance and multiple functions[19].

Here, this derivation is combined with a general large deformation bending model (see Equa-

tion B.44) for a composite beam composed of an upper scaled layer and a lower polyurethane foam
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Figure B.4: Illustration of the decomposition of the rotation and scale flexure mechanisms con-
tributing to the overall response of the fish skin

layer. The flexural stiffness associated with the polyurethane foam was computed as described in

section 4.3.1. The total external moment generated by the applied load was considered to be equal

to the sum of the internal moments of the scales and the foam:

M(x) = EtIf κ̄f +
(EI)s
rl

(κ̄− κ̄r(κ̄)) (B.44)

where

κ̄f =
1

( 1
κ̄) + (t−NA)

(B.45)

is the curvature of the foam about the neutral axis, computed with respect to the curvature of the

scales and EtIf is the flexural stiffness of the foam. In order to solve this equation, the first step is

to show with a simple structural analysis that

M(x) =
Px

2
(B.46)

Substituting the following equation from Vernerey and Barthelats [19] derivation, we can
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simplify this expression further:

κ̄ = κ̄r + K̄θ(κ̄r)θ
′(κ̄r) (B.47)

Transforming Equation B.44 into

EIf (
1

( 1
κ̄r+K̄θ(κ̄r)θ′(κ̄r)

) + (t−NA)
) +

(EI)s
rl

(κ̄r + K̄θ(κ̄r)θ
′(κ̄r))−

Px

2
= 0 (B.48)

Where

θ(κ̄r) =
−rκ̄r

2
+ sin1(κ̄r cos(

rκ̄r
2

)) (B.49)

and

θ′(κ̄r) =
−r
2

+
cos( rκ̄r2 )− rκ̄r

2 sin( rκ̄r2 )√
1− (κ̄r cos( rκ̄r2 ))2

(B.50)

The normalized rotational curvature can be found through the use of a Newton-Raphson algorithm,

and in turn, the total normalized curvature can be found using Equation B.47. This quantity is

then transformed into the actual curvature by dividing by the length of a scale l. Once the value for

curvature at every point along the beam was determined, the relations described in Section 4.3.1

were used to determine the deflection of the beam.



Appendix C 3-pt Bending Model Matlab Code  
clear all; close all; clc  
%Set-up Problem Material Parameters  
Thickness=(13.78+10.39+10.76+14.86+11.38)/5;  
t=.98*Thickness/1000;  
L=167.87/1000;  
L2=153.39/1000;  
Et=.059567*10ˆ6; %MPa tensile modulus of foam  
Ec=.023*10ˆ6; %compressive modulus of foam  
bw=9.46/1000; l=12.68/1000; h=.2/1000; rl=2.35/1000; r=rl/l; ro=r;  
stiff=.1; %Stiffness of scale pocket Es=800*10ˆ6; %Elastic modulus of scales  
%*************************************************************% 
%%***********************MODEL*******************************%% 
%%%*********************************************************%%%  
Is=L2*(2*h)ˆ3/12; %Moment of Inertia of scale layer EIs=Es*Is; %Flexural Stiffness of Scales 
K=stiff*l/EIs; %Normalized Pocket Stiffness  

 
%Foam Transformed Section Method  
nf=Ec/Et; NA=t/(sqrt(1/nf)+1); Iz1f=L2*(NA)ˆ3/3; 
Iz2f=nf*L2*(t-NA)ˆ3/3; Isolidf=Iz1f+Iz2f;  

 
%Transformed foam for lateral  
NAl=.8*t; Iz2fl=L*NAlˆ3/3; Iz3fl=nf*L*(t-NAl)ˆ3/3; 
solidfl=Iz2fl+Iz3fl;  
 
%Solid CAB  
T1=h; funNA=@ (NAc) h*(3*Es*(t-NAc)+4*Es*h+Ec*(t-NAc))+Ec*(t-NAc)ˆ2-Et*NAcˆ2; NAc=fsolve(funNA, .0001); 
Isolidfc=L2*tˆ3/12+L2*t*(NAc-.5*t)ˆ2; Iz1=L2*hˆ3/12+L2*h*(abs((t+h*.5)-NAc))ˆ2; Iz2=L2*hˆ3/12+L2*h*((t+1.5*h)-
NAc)ˆ2;  
%%Bending About Long Axis Trans. Section  
nscales=690; %Used to determine scale density and actual effective % thickness of scales if they were consolidated to a 
single sheet  
tt=nscales*h*bw*l/(1*L2*L); Iz1s=L*ttˆ3/12; %Scales  

 
%Set-up problem to solve for M, kappa, and displacement at every point on %beam  
dx=.001; %dx 
 x=0:dx:L/2; %x vector  
x=x'; P=0:.1:1; %Line load, P  
iter=0;wmax=[];Xff=x; Xffoam=x; Xffsol=x; Xffsoll=x;  
for k=1:length(P)  
           iter=iter+1  

Ms(:,k)=.5*P(k)*(Xff); %Moment, M(x) -changes after each load increment  
Msf(:,k)=.5*P(k)*(Xffoam); 
 Msol(:,k)=.5*P(k)*(Xffsol);  
Msoll(:,k)=.5*P(k)*Xffsoll;  
for i=1:length(x)  

%======================About Lateral Axis=====================  
theta1=@(k r) (-r*k r/2)+asin(k r*cos(r*k r/2)); thetap=@(k r)(-r/2)+(cos(r*k r/2)-.5*r*k r*sin(r*k 
r/2))/sqrt(1-((k r*cos(r*k r/2))ˆ2)); fun=@(k r) -Ms(i,k)+Et*Isolidf*(1/((1/(k r+K*theta1(k r)*thetap(k 
r)))+(t-NA)))+...  

(EIs/(r*l))*(K*theta1(k r)*thetap(k r)); k r=fsolve(fun,.001); kr(i,k)=k r; 
kappa(i,k)=(kr(i,k)+K*theta1(kr(i,k))*thetap(kr(i,k)))/(l);  

kappa(i,k)=kr(i,k)+K*((-r*kr(i,k)/2)+asin(kr(i,k)*cos(r*kr(i,k)/2)))*((-r/2)+... (cos(r*kr(i,k)/2)-
(.5*r*kr(i,k)*sin(r*kr(i,k)*.5)))/sqrt(1-(kr(i,k)*cos(r*kr(i,k)/2))ˆ2));  

%======================Foam Only=====================  
kappaf(i,k)=Msf(i,k)/(Et*Isolidf);  

%=================Solid CAB==================  



funfun=@ (ks) -Msol(i,k)+Et*Isolidfc*ks+Es*Iz1*ks+Es*Iz2*ks; ks=fsolve(funfun,.001); kappa solid(i,k)=ks;  
%==============About Longitudinal Axis===============  

unfun=@ (ksl) -Msoll(i,k)+Et*Isolidf*(1/((1/ksl)+.5*tt+(t-NA)))+Es*Iz1s*ksl; ksl=fsolve(unfun,.001); 
kappalat(i,k)=ksl;  

end  
%************************************************************************* 
 %***************** Set up Finite Difference Model *********************** 
%*************************************************************************  
%Solve for theta(x) of scaled system %a,b,c vectors  
J=length(x); a1 = 0; b1 = -1/dx; c1 = 1/dx; aJ = 0; bJ = -1/dx; cJ = 1/dx; a=[a1;(0)*ones(J-2,1);aJ]; b=[b1;(-1/(dx))*ones(J-
2,1);bJ]; c=[c1;(1/(dx))*ones(J-2,1);cJ];  
theta(:,k)=thomas(a,b,c,kappa(:,k));  

%Solve for axial stress/strain  
N(:,k)=P(k)*cos(theta(:,k)); sigma(:,k)=N(:,k)./(L2*(t)); epsilonaxial(:,k)=sigma(:,k)./(Et);  

%Solve for theta(x) of non-scaled system %a,b,c vectors  
Jf=length(x); a1f = 0; b1f = -1/dx; c1f = 1/dx; aJf = 0; bJf = -1/dx; cJf = 1/dx; af=[a1f; 0*ones(Jf-2,1);aJf]; bf=[b1f;(-
1/(dx))*ones(Jf-2,1);bJf]; cf=[c1f;(1/(dx))*ones(Jf-2,1);cJf];  
thetaf(:,k)=thomas(af,bf,cf,kappaf(:,k));  
%Solve for theta(x) of solid system %a,b,c vectors  
Js=length(x); a1s = 0; b1s = -1/dx; c1s = 1/dx; aJs = 0; bJs = -1/dx; cJs = 1/dx;  
as=[a1s;(0)*ones(Js-2,1);aJs]; bs=[b1s;(-1/(dx))*ones(Js-2,1);bJs]; cs=[c1s;(1/(dx))*ones(Js-2,1);cJs];  
theta solid(:,k)=thomas(as,bs,cs,kappa solid(:,k));  
%Solve for theta(x) of lateral system %a,b,c vectors  
Jsl=length(x); a1sl = 0; b1sl = -1/dx; c1sl = 1/dx; aJsl = 0; bJsl = -1/dx; cJsl = 1/dx; asl=[a1sl;(0)*ones(Jsl-2,1);aJsl]; 
bsl=[b1sl;(-1/(dx))*ones(Jsl-2,1);bJsl]; csl=[c1sl;(1/(dx))*ones(Jsl-2,1);cJsl];  
thetalat(:,k)=thomas(asl,bsl,csl,kappalat(:,k));  
%*****************Non-Linear Beam Theory****************  
X(1,k)=0; y(1,k)=0;%Scales Xsol(1,k)=0; ysol(1,k)=0;%Solid Xsoll(1,k)=0; 
ysoll(1,k)=0;%Lateral Xf(1,k)=0; yf(1,k)=0;%No Scales  

for i=2:length(x)  
%Scales  
X(i,k)=X(i-1,k)+dx*(1+epsilonaxial(i,k))*cos(theta(i,k)); y(i,k)=y(i-
1,k)+dx*(1+epsilonaxial(i,k))*sin(theta(i,k));  
%No Scales  
Xf(i,k)=Xf(i-1,k)+dx*cos(thetaf(i,k)); yf(i,k)=yf(i-1,k)+dx*sin(thetaf(i,k));  
%Solid  
Xsol(i,k)=Xsol(i-1,k)+dx*cos(theta solid(i,k)); ysol(i,k)=ysol(i-1,k)+dx*sin(theta solid(i,k));  
%Lateral  
Xsoll(i,k)=Xsoll(i-1,k)+dx*cos(thetalat(i,k)); ysoll(i,k)=ysoll(i-1,k)+dx*sin(thetalat(i,k));  

end  
Xffoam=Xf(:,k); Xff=X(:,k); Xffsol=Xsol(:,k);  
Xffsoll=Xsoll(:,k);  

end  
f=EIs*(kappa-kr); ymax=max(abs(y)); %Deflection at midpoint with scales ymaxf=max(abs(yf)); %Deflection at midpoint 
without scales ymaxsol=max(abs(ysol)); ymaxsoll=max(abs(ysoll)); figure; plot(x,laterror)  
%Plot Deflected Shape  
figure; plot(X,y,'b') hold on plot(Xf,yf,'r') legend('P=0','P=.1','P=.2','P=.3','P=.4','P=.5','P=.6','P=.7','P=.8','P=.9','P=1') 
xlabel('x', 'FontSize',12) ylabel('y', 'FontSize',12) legend('With Scales','Without Scales')  
%Plot delta vs. P  
figure; plot(ymax',P,'r','LineWidth',2) %Scales hold on plot(ymaxf',P,'Color',[0 .8 0],'LineWidth',2) %No Scales Without 
Stretch hold on plot(ymaxsol',P,'k','LineWidth',2) %Solid hold on plot(ymaxsoll',P,'b','LineWidth',2) %Lateral %%Real 
Data about Lateral Axis with scales  

F1=[0 0.098 0.196 0.294 0.392 0.49 0.588 0.686 0.784 0.882 0.98]; Delta1=[0 0.00542 0.01077 0.01382 0.01591 
0.01947 0.02186 0.026163333 0.02984 0.03263 0.0355];  

%%Real Data about Lateral Axis without Scales  
F=[0 0.098 0.196 0.294 0.392 0.49 0.588 0.686 0.784 0.882 0.98]; Delta=[0 18.61 29.15 35.08 38.64 43.75 48.34 
52.48 54.48 57.03 58.81]./1000;  

%%Real Data for solid sheet  
Fsol=[0 0.098 0.196 0.294 0.392 0.49 0.588 0.686 0.784 0.882 0.98]; Deltasol=[0 0.94 3.61 5.23 8.1 11.51 12.16 
13.69 15.25 17.59 21.28]./1000;  

%%Real Data for Long  
Fsoll=Fsol;  
Deltasoll=[0 0.0035 0.00691 0.00825 0.01154 0.0133 0.01545 0.01726 0.01933 0.02229 0.02323]; hold on 



plot(Deltasoll,Fsoll,'bˆ','MarkerSize',10) hold on plot(Delta,F,'*','Color',[0 .8 0],'MarkerSize',10) hold on 
plot(Delta1,F1,'ro','MarkerSize',10) hold on plot(Deltasol,Fsol,'kˆ','MarkerSize',10)  
% legend('Model of Solid CAB-2 Sheets','Model of Scales', 'Experimental data for scales', 'Experimental % 
xlabel('Deflection at x=L/2, m', 'FontSize',15) % ylabel('Force, N', 'FontSize',15)  
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