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SUMMARY

Express shipment package delivery is a multi-billion-dollar industry special-

izing in the rapid transportation of parcels, documents and freight items between

customers around the world. It is challenged and characterized by extremely tight

service guarantees, the huge volume of material that must be moved daily, and a large

geographical area of service. Despite the scope of these companies and the challenges

they face, relatively little work has focused on developing computational methods

to study and improve their airline operations. Therefore, the primary objective of

this dissertation is to address these challenges and develop an algorithm that quickly

and efficiently routes one day’s worth of domestic express shipment packages and

schedules the best possible vehicles to move them.

To this end, the express shipment problem is modeled as a mixed integer program

called the Express Shipment Service Network Design problem (ESSND), and three

different solution methods, a monolithic, an exact decomposition, and a heuristic

decomposition, are considered. The fundamental hypothesis of this work is that of

these three solution methods, either a heuristic decomposition or exact decomposition

approach will outperform the baseline monolithic approach.

The monolithic approach is implemented using a state-of-the-art branch-and-cut-

based optimization software (Gurobi 7.5) and serves as the baseline solution method.

Solving the problem instances with the full set of options is found to be intractable

so a heuristic is used to remove options that are unlikely to be present in the op-

timal solution. With this modest problem-size reduction, the monolithic approach

is capable of producing good solutions for the baseline, single-day problem instance

xv



encompassing same-day, overnight and two-day domestic demand. However, the run-

time to generate high-quality solutions is slower than desired, and the optimum is

elusive, even after two days of runtime.

Benders decomposition, an exact decomposition approach is also implemented.

Benders decomposition is chosen because it is designed to handle mixed integer pro-

grams containing “complicating variables,” which are variables whose omission would

make the problem markedly easier to solve. Benders decomposition reformulates the

original problem into a master problem containing the complicating variables and

one or more subproblems containing the other variables. It then attempts to exploit

the fact that in an optimal solution only a subset of the problem constraints will be

active. It iteratively generates constraints in the form of Benders “cuts” by solving

the subproblems and adding those cutting planes to the master problem.

Since its original development in 1962, a number of modifications and improve-

ments to Benders decomposition have been developed. Several of those modifications

from the literature are implemented in this work. First, a “single search tree” Ben-

ders is implemented, which capitalizes on advancements in modern branch-and-bound

solvers to avoid repeatedly rebuilding and resolving the branch-and-bound tree, thus

potentially avoiding significant rework. Second, valid inequalities based on the cut-

set inequalities used by Kim (1997)[129] are added to the master problem to help

shape the otherwise poor master problem relaxation. Finally, two improved Benders

cuts are implemented. The first of which is Pareto-optimal cuts generated using the

modifications by Papadakos (2008). The second of which is the minimal infeasible

subsystem (MIS) cuts developed by Fischetti et al. (2010)[82].

Unfortunately, despite these modifications, all implementations of Benders de-

composition, including a commercially-developed one, were found to be inferior to

the monolithic approach. All Benders decomposition implementations are tested on

two problem instances, a small ten-airport case and the full-sized baseline case. All
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Benders variants were capable of generating optimal solutions for the small problem

instance, but for all except the commercially-developed implementation, generating

these solutions took considerably longer than the monolithic solution approach. For

the full-sized baseline case, none of the Benders decomposition implementations are

capable of finding feasible solutions before surpassing the available computational re-

sources. Benders decomposition, particularly for problems like the ESSND, suffers

from the handicap that feasible solutions will not be found until the optimal solution

is found. As a result, the algorithm cannot be terminated before convergence and

produce a feasible solution, unlike the monolithic approach.

Finally, a heuristic decomposition approach is developed and implemented. This

heuristic capitalizes on the observation that the monolithic approach, despite having

only modest performance for full-sized problem instances, quickly solves smaller prob-

lem instances. Therefore the ESSND problem is decomposed into a Package Routing

Problem (PRP) and an Aircraft Movement Problem (AMP), which can be solved to

optimality in minutes even for the full-scale baseline problem instance. Since these

two problems are coupled, a fixed point iteration approach is initially explored but is

found to be underwhelming.

Instead, a sequential approach is found to be successful. This sequential approach

first solves the Package Routing Problem that includes integral aircraft movement

variables. The fundamental idea is that better package routing solutions are those

that more efficiently load the aircraft, therefore aircraft considerations should be in-

cluded in the Package Routing Problem. The basic implementation of this sequential

heuristic only includes the feeder limit constraint and aircraft variable integrality con-

straint as additions to the Package Routing Problem (which is re-named the Package

Routing with Aircraft Problem). This sequential heuristic, which is called the Basic

Sequential Algorithm, is found to produce high-quality solutions more quickly than

the monolithic approach for the first hour of runtime.
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Two potential improvements to the Basic Full-Set Sequential algorithm are ex-

plored. First, the Collapsed Product Set Sequential Algorithm is developed. The

Collapsed Product Set Sequential Algorithm exploits the fact that many commodi-

ties in the express shipment problem share origin-destination pairs and only differ in

their product type or origination day. Using the concept of “analogous commodities,”

a smaller problem encompassing only the overnight box products, is solved and the

routings chosen for the priority box products are used as a template to assign the

routings of all analogous commodities. This algorithm is also capable of producing

good-quality solutions more quickly than the monolithic approach for the first hour of

runtime, but its performance is generally worse than the Basic Sequential Algorithm.

However, the advantage of the Collapsed Product Set Sequential Algorithm is that

it is relatively insensitive to problem size, and it is capable of solving the full-week

problem, a previously intractable problem that is more valuable to express shipment

companies than the single-day problem, in only a few hours.

The second improvement to the Basic Sequential Algorithm is the Improved Se-

quential algorithm. This algorithm improves the solutions produced by the Package

Routing with Aircraft Problem by including a phase-based hull count constraint. This

addition significantly improves the quality of the solutions found by the sequential

algorithm. In an hour, the Improved Sequential Algorithm finds solutions of the same

quality as the monolithic approach found after two days of runtime. This definitively

supports the fundamental hypothesis that a heuristic approach (or exact decompo-

sition approach) would be able to find high-quality solutions more quickly than a

monolithic. In sensitivity studies, the Improved Sequential Algorithm consistently

out-performed the baseline monolithic approach, showing that it performs well in a

variety of problem instances, and it was capable of finding good-quality solutions

to problem instances with a longer temporal scope, including a week-long problem

instance.
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The Improved Sequential Algorithm is the primary contribution of this work. It

is substantially faster than the monolithic approach, the baseline, and for the base-

line problem instance, it found a better solution in one hour than the monolithic

approach found in two-days. The Template-Based Sequential algorithm is also a con-

tribution, particularly in its insensitivity to problem size. It is capable of generating

good-quality solutions for previously intractable problem instances. Finally, although

Benders decomposition was found to be inferior to the baseline monolithic approach

for the express shipment problem, several enhancements from the literature were

implemented and tested, resulting in some important lessons for future researchers

looking to follow a similar approach. Together, the heuristic algorithms are significant

improvements over the baseline approach and open the door to more informed strate-

gic and tactical-level planning for express shipment companies, potentially having

implications ranging in the millions of dollars.
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CHAPTER I

INTRODUCTION AND MOTIVATION

Express shipment package delivery is a multi-billion dollar industry in the United

States and abroad. It has become an essential part of business operations and, with

the rise of e-commerce, an expectation of the everyday consumer. Express shipment

package delivery is challenged by extremely tight service guarantees, the huge volume

of material that must be moved in a multimodal network, and the large geographical

area of service. These challenges necessitate the use of large jet aircraft fleets, thus

prompting the desire of package delivery companies to use these aircraft as efficiently

as possible.

Every day, express shipment package delivery companies pick up millions of parcels,

documents, and freight items from customers around the world and transport them us-

ing extensive vehicle fleets through an organized network of intermediate warehouses

and sorting facilities to their final destination within a couple days. This extensive

transportation network can be broken into two categories, 1) last mile service, and 2)

line-haul service. Last mile service encompasses the parts of the service that directly

interact with the customer, the initial pick up and the final delivery legs. After being

picked up, express packages1 are consolidated at a local warehouse and moved via

truck to a nearby airport, where it enters the line-haul portion of the service network.

Line haul service is the movement of similar packages en masse from a spoke airport

to a sorting facility located at a network hub where they are reorganized according

to their destination, and then finally flown to that destination airport.

1For brevity, the term package will refer to anything carried by an express shipment company,
whether it be parcels, documents or freight items.
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This line haul service portion constitutes the fundamental aspect of express ship-

ment operations which sets it apart from other similar logistics problems such as

less-than-truckload (LTL), railroad and oceanic shipping. Therefore, this work will

concentrate solely on the line haul service portion of express shipment operations and

call this problem the express shipment problem. To formalize the definition for this

purposes of this dissertation,

The express shipment problem is the problem of determining the lowest

cost way to use a heterogeneous vehicle fleet composed of aircraft and trucks

to move a set of express shipment packages from their origin airports to

their destination airports within a domestic multi-hub-and-spoke network and

within the guaranteed service periods.

Even without considering the last mile service, the express shipment problem is

a large, complex and interconnected problem that has major real-world ramifications

for express shipment companies ranging the hundreds of millions of dollars annually.

Following the classification scheme for logistical problems outlined by Crainic and

Laporte (1997)[61], the express shipment problem as it is considered in this work

is a tactical -level problem with some operational-level considerations. Since even

relatively small changes to daily operations can result in significant cost savings for

these companies, ideally a solution method to the express shipment problem would not

only cover tactical needs but also enable the exploration of strategic-level questions.

For an express shipment carrier, those questions may include, “Should the company

invest in more aircraft, and if so, what kind?”, or “Which sorting facilities should

be upgraded or re-timed?” or “Should more sorting facilities be opened, and if so,

where?”

In order to enable the study of these kinds of questions, a solution method would

need to be fast, realistic and produce good solutions in order to allow many possible

scenarios to be considered without requiring excessing resources or time. Currently,
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this problem is primarily solved by experienced human planners with the aid of com-

putational analysis tools, but this approach does not allow for the rapid generation of

high-quality solutions that could allow for detailed strategic planning. A computer-

based method is better-suited to match those needs.

In order to leverage the advantages of computer-based optimization techniques,

the express shipment problem is modeled as an extension of the service network

design problem (SNDP) called the Express Shipment Service Network Design problem

(ESSND). This problem has been tackled a few times previously in the literature and

goes by a number of names, though each problem formulation is an extension of the

SNDP. Some names from the notable works are the Express Service Design problem

(ESD) [24], Express Package Service Network Design problem (EPSND) [132] and

Express Shipment Delivery Problem (ESDP) [201]. The name Express Shipment

Service Network Design problem (ESSND) is the name given to the problem in the

work by Armacost et al. (2000)[12] and is the name used in this work, in large part

because it best reflects the problem lineage.

However, even with the enhanced speed and power of a digital computer compared

to human-based methods, solving the ESSND problem to optimality in its original

form is extremely challenging due to the large number of variables and their combina-

torial nature. Adding to the difficulty, the variables corresponding the movement of

aircraft must be integer-valued in order to represent feasible solutions. This precludes

the possibility of using the more efficient continuous variable optimization methods.

In the face of these challenges and in light of the large potential benefits to express

shipment companies, the primary goal of this work is to find a quick and effective

method for solving the express shipment problem. More specifically,

The primary objective of this work is to develop a quick and effective

algorithm that generates low-cost vehicle schedules to completely route one

days worth of domestic express shipment packages.
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The Express Shipment Service Network Design problem, as it is formulated in this

work, is a mixed integer program (MIP). There a number of solution methods that

have been developed to solve MIPs and they can be broadly categorized into three

groups, 1) monolithic approaches, 2) exact decomposition approaches, and 3) heuristic

approaches. The monolithic approaches do not require a reformulation of the original

problem and, if run to completion, produce the optimal solution. The most prominent

algorithms are branch-and-bound, cutting plane algorithms, and the combination of

the two, which is called branch-and-cut. The exact decomposition approaches also

produce a provably optimal solution if run to completion but solve only a subset or

a reformulation of the original problem at any given time. Well-known approaches

include Dantzig-Wolfe decomposition and Benders decomposition. These approaches

rely on the fact that in the optimal solution, typically only a small number of the

variables will be non-zero and only a small number of the constraints will be active.

Finally, heuristic approaches are problem-specific solution methods that give up the

pursuit of the provable optimum in exchange for the ability to produce a good-quality

feasible solution in a short amount of time. The methods that heuristic approaches

employ to find or improve solutions are typically tailored specifically to the problem

at hand, and in some applications, they may be strategically guided through the use

of a metaheuristic.

This work studies the effectiveness of a monolithic, an exact decomposition and

a heuristic approach for solving the Express Shipment Service Network Design prob-

lem in an effort to fulfill the primary research objective. Of the three approaches, I

hypothesize that a heuristic approach will be capable of producing high-quality so-

lutions more quickly than either of the exact approaches. This is primarily because

due to important characteristics in the ESSND problem itself and how the two exact

solution methods function.

4



For the monolithic approach, the poorness of the ESSND linear relaxation ham-

strings the ability of the underlying branch-and-bound tree to prune options, and as

a result, the algorithm devolves into something more akin to an inefficient explicit

enumeration approach. For the Benders decomposition, a poor ESSND master prob-

lem relaxation means that a very large number of iterations will be needed in order to

find a feasible and optimal solution. My hypothesis is that a heuristic approach will

be able to sidestep the pitfalls of these exact methods by exploiting problem-specific

features rather than falling prey to them. To test this hypothesis, all three methods

are implemented and compared.

The monolithic approach was developed as part of a collaboration, of which I

was a member, between FedEx Services and Georgia Tech. A state-of-the-art opti-

mization software, Gurobi 7.5, was used as the branch-and-cut implementation. The

single-day baseline problem instance was found to be intractable if the full option

set was considered so heuristics were developed to remove options unlikely to be

present in the optimal solution. This monolithic algorithm was taken as the base-

line approach against which the exact decomposition and heuristic approaches were

compared. These other two approaches were developed entirely by the author.

The first of the two approaches was a heuristic approach. Of the three approaches,

developing a heuristic approach requires the most creativity since it is tailored to the

problem at hand, but this additional design effort can pay dividends in runtime, par-

ticularly if finding the exact optimum is not a priority. Since no standard heuristic

algorithm exists for the express shipment problem, one was developed through a se-

ries of hypotheses and experiments with influence from the Multidisciplinary Design

Optimization (MDO) field. The cornerstone of this heuristic approach is the fact that

the monolithic approach can efficiently solve smaller problems or relaxed problems,

but struggles as the number of options increases. Therefore, the heuristic algorithm

takes a decomposition-based approach in which subsets of the full problem are solved
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and then frozen as other parts of the problem are then solved. Initially, an itera-

tive, fixed point iteration-based approach was posed and tested, but ultimately, a

sequential approach was found to be more successful.

Finally, as for the exact decomposition approach, Benders decomposition was

chosen due to the presence of complicating variables2 in the Express Shipment Service

Network Design problem, and its recent popularity and success. Several improvements

from the literature were included in the Benders decomposition implementation in

this work. Specifically, the algorithm was implemented as a “single search tree”

Benders decomposition, valid inequalities were added to the master problem, and

improved cut-generation methods were used. The same method used in the monolithic

approach to generate the reduced option space was used to generate the options for

the Benders decomposition. Otherwise, the Benders decomposition implementation

was completely developed and implemented by the author.

After implementing and testing these three solution methods, a heuristic approach

was found to be the most successful. Benders decomposition, while successful on small

problem instances, was incapable of solving full-sized problem instances encompass-

ing a single day’s worth of domestic demand. In regards to the heuristic approach,

several algorithms were developed, but the most successful was the Improved Sequen-

tial Algorithm. That algorithm is capable of producing better solutions to the express

shipment problem in one hour than the monolithic approach is capable of producing

in two days of runtime for the baseline single-day problem instance. The different

heuristic decomposition algorithm, called the Collapsed Product Set Sequential Al-

gorithm, is less sensitive to problem size than the other approaches explored in this

work, and is capable of producing good-quality solutions to problems encompassing

a full week’s worth of domestic demand, a more useful problem for express shipment

2Complicating variables can be defined simply as those variables whose exclusion would make the
problem significantly easier to solve. In mixed integer programs, the integer variables are considered
“complicating.”
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companies, in fewer than sixteen hours.

The primary contribution of this work is the Improved Sequential Algorithm.

The ability of this heuristic algorithms to produce high-quality solutions quickly will

enable express shipment companies to conduct detailed strategic and tactical-level

studies that could have implications in the range of millions of dollars and beyond.

Additionally, the ability to provide good-quality feasible solutions for the previously

intractable full-week problem opens the door to analyses encompassing more useful

time frames for these companies. The results of the Benders decomposition are also a

contribution, since many important lessons were learned in the process of implement-

ing it. The results of the Benders decomposition implementation provide guidance for

any future forays into its implementation for the Express Shipment Service Network

Design problem.

This has been a brief introduction to the primary challenges of the express ship-

ment problem, the methods that were implemented and studied to solve this problem

and the contributions of this work. The remainder of this dissertation provides more

detail and is organized as follows,

• Chapter 2 fully characterizes the express shipment problem and describes, in

detail, the real-world data set that will be used in this work.

• Chapter 3 reviews how problems like the express shipment problem are typically

modeled in the literature, and presents the Express Shipment Service Network

Design problem formulation.

• Chapter 4 provides an introduction to solution methods for mixed integer pro-

gramming methods like the ESSND problem, and summarizes the established

literature concerning previous work on the ESSND problem and similar logistics

problems.

• Chapter 5 details the research questions, hypotheses, and experiments of this
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work.

• Chapter 6 presents the monolithic approach and results.

• Chapter 7 presents the development of the heuristic decomposition algorithm

and results.

• Chapter 8 presents the Benders decomposition implementation and results

• Chapter 9 summarizes the conclusions and contributions of this work and offers

some suggestions for future work.
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CHAPTER II

PROBLEM CHARACTERIZATION

Since the first Federal Express flight in 1973, the express shipment industry has

grown into a multi-billion dollar industry in the United States and abroad. Today,

overnight and two-day package delivery is a critical part of business operations, and

an expectation of the everyday consumer. According to recent reports, the express

shipment industry is expected to continue to thrive and experience moderate growth

thanks in large part to e-commerce and globalization.[58, 124]

Over time, smaller, regional shippers have consolidated into larger companies,

and currently, the US package delivery market is dominated FedEx and UPS (United

Parcel Service). In the 2016 fiscal year, FedEx reported $50.4 billion in annual rev-

enue [79], and UPS reported $58.4 billion in 2015 [186]. Outside of the United States,

Deutsche Post DHL and TNT (acquired by FedEx in 2016) are also important com-

panies, particularly in Europe. Within the United States, the United States Postal

Service (USPS) provides some competition in ground shipping, but its express prod-

ucts are all moved by FedEx as a result of a $10.5 billion, seven-year agreement made

in 2013 and extended through 2024 in 2017 [79, 80].

For many package delivery companies, express shipment is just one part of their

business. These companies also offer other “delivery solutions” such as ground (par-

cel) shipping, less-than-truckload (LTL) freight shipping and supply-chain logistics.

Within FedEx, each of these delivery solutions is handled by a different company

under the FedEx corporate umbrella with FedEx Express handling all of the express

(same-day, overnight and two-day products) shipments. UPS is organized differently
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and all delivery options are organized under the single UPS corporation. These ad-

ditional delivery services share some similarities with the express shipment problem,

but will not be considered in this work.

2.1 The Express Shipment Problem

Express shipment companies are large, intricate companies that work on a global

scale. Considering every aspect of these companies all at once is a task that is

insurmountable and, realistically, unnecessary. For the purposes of this dissertation,

express shipment problem specifically refers to,

The problem of determining the lowest cost way to use a heterogeneous, multi-

modal vehicle fleet to move a set of express shipment packages from their

origin airports to their destination airports within a domestic multi-hub-and-

spoke network and within the guaranteed service periods.

Despite being only a part of the overall express shipment “picture,” the line-haul

portion is the crux of what makes express shipment different from other logistical

problems. It tackles the issue of using a diverse fleet of, primarily, expensive jet air-

craft to move a very large number of packages in a short period of time subject to

network limitations. Therefore, only a part of the express shipment problem, namely

the domestic line-haul portion of operations, will be considered in this work. Accord-

ing to the classification scheme laid out by Crainic and Laporte, the express ship-

ment problem is a tactical -level problem (though it contains some operational-level

elements as well).[61] For realistic problem instances, the express shipment problem

is extremely large and difficult to solve well. More details on this problem definition,

its scope, and its challenges will be presented in the following sections of this chapter.

2.2 Scope of Express Shipment Carriers Today

Express shipment companies move a massive number of parcels and documents daily.

Within the U.S. express shipment market, FedEx and UPS are nearly evenly matched.
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During similar time frames, FedEx Express and UPS moved nearly identical average

domestic package volumes. In FY2017 FedEx reported moving an average of 2.726

million domestic packages daily and in FY2016 UPS reported moving an average of

2.730 million daily packages domestically1.[79, 186] Both companies deliver to essen-

tially every point around the globe, with service to over 220 countries and territories.

This translates to massive and complex networks of packages, aircraft, ground crews,

pilots, airports, truck drivers and more that must work together seamlessly in order

to consistently satisfy the level of service guarantees.

Each of these companies offers a wide variety of shipment services including freight,

ground and express transportation. Freight shipment focuses on Less-Than-Truckload

(LTL) shipping in addition to ship and rail transport. Ground shipping moves pack-

ages and documents via trucks and other low-cost transportation methods. Express

shipping moves packages and documents within extremely tight time constraints, typ-

ically via aircraft. Express service, while expensive to operate, also generates a large

amount of revenue. FedEx reported that FedEx Express generated $27.4 billion in

FY2017, while FedEx Ground and FedEx Freight generated $18.1 billion and $6.4 bil-

lion, respectively [79]. UPS does not differentiate between express service and ground

service revenues in their reports but reported $50.7 billion for package operations

(express and ground service) compared to $10.2 billion in revenue for supply chain

and freight service [186].

Express package delivery is focused on speed and provides same-day, next-day,

and two-day service. These service guarantees are extremely challenging, especially

considering the large volumes that must be picked up, sorted and delivered. These

tight service guarantees necessitate the use of jet aircraft, even for domestic service.

Some areas are close enough to sorting facilities to allow for package transportation

1FedEx’s fiscal year ends on May 31 of the given year, whereas UPS’s fiscal year ends on Decem-
ber 31 of the given year.
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via truck, but the bulk of the volume must be flown. The Airline Deregulation Act

of 1978 allowed for package delivery companies to own and operate their own cargo

airlines, thus enabling them to become air integrators. According to public SEC

(U.S. Securities and Exchange Commission) filings, FedEx Express currently operates

a fleet of 657 jet and feeder2 aircraft (598 are FedEx-owned, 59 are leased), and UPS

operates a fleet of 657 jet and feeder aircraft (237 are UPS-owned, 420 are leased or

chartered) [79, 186]. Overall, in order to meet the large demand for overnight and

two-day delivery service, express shipment companies operate vast and complex multi-

modal networks involving hundreds of jet and feeder aircraft, thousands of trucks and

several hundred thousand employees.

The massive amount of volume that must be moved, the extremely tight service

guarantees and the operation of a large jet aircraft fleet results in a logistical problem

that is large, complex and critical with a large financial impact. Given the scope and

complexity of these networks and operations, improvements to the operations of air

integrators could save millions of dollars annually.

2.2.1 Problem Scope

Geographic Scope This dissertation will focus specifically on the express shipment

problem within the continental United States. Domestic express shipment operations

within the United States provide an approachable, though by no means easy, prob-

lem instance that encompasses the same critical questions and essential challenges

encountered when considering the global problem. The size of the United States,

even when excluding Alaska, Hawai‘i and the territories, necessitates the use of large

airline fleets, captures some of the complexities introduced by time zones, and the ex-

tensive American use of express shipment results in a large amount of daily demand.

2Feeder aircraft are small propeller-driven aircraft.
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Additionally, considering a fully domestic problem removes distractions such as cus-

toms inspections, large time zone challenges, regulatory differences and aircraft range

limitations which make the problem more difficult, but do not encompass the heart

of the problem which is to route packages and schedule the best possible vehicles to

move them. In essence, the continental United States defines a “Goldilocks” problem

instance for the express shipment problem in which it is large and challenging enough

to be interesting and worthy of study without adding complications that distract from

the overall purpose of the work.

Temporal Scope For the express shipment problem, the most appropriate period

of time to schedule is a week. The relatively small amount of weekend volume provides

a better opportunity to reposition aircraft, if necessary, and, because of the two extra

days afforded by the weekend, much more late-week volume can truck rather than fly.

The weekend creates a natural break at the end of the time period. By contrast, if

only one day’s worth of operations is considered, the overnight and same-day volume

can be handled without an issue, but the two-day volume is problematic because

it “rolls over” to the next day and still requires aircraft in order to arrive on time.

The issue of handling roll-over volume still exists when considering a week, but it is

much more limited in scope. All that being said, the majority of the work in this

dissertation will focus on solving a single day’s worth of operations because solving

problem instances that encompass a week using exact methods is intractable, as will

be shown in Chapter 6. Later, in Chapter 7, the concept of solving a one-week problem

instance will be revisited and the MDAO-inspired heuristic approach will be shown

to be effective on that more useful and previously intractable problem instance.
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2.3 Movement of Packages Through the Express Shipment
Network

With few exceptions, all packages in the custody of an express shipment company

follow the same functional path from their origin to their destination as shown in

Figure 1. Each stop along the path is called an activity. A package first enters the

Pick Up Location Origin Station Origin Airport

Pick Up ConsolidationSorting FacilityDelivery Consolidation

Destination Airport Destination Station Delivery Location

Figure 1: Package Activities from Origin to Destination

custody of the package delivery company at a pick up location such as a business,

private residence or drop box. The package is then transported via small ground

vehicle to an origin station3. At the origin station, local packages are sorted by

service type (express, ground, etc.). The express packages are then transported via

truck to a designated nearby airport. This airport, called a gateway, is the collection

point for all of the stations in a given region. The packages are then loaded onto

aircraft and flown to a large sorting facility, which also serves as the network hub

for the airline operations. If the origin gateway does not produce a large amount

of volume, it may be consolidated with a nearby larger market via truck, feeder or

two-legged flight. Truck and feeder consolidation operates on a point-to-point basis

between the two spoke airports. A two-legged flight is when a trunk aircraft makes

3This terminology is not strictly universal. Origin stations may also be called “ground centers”
depending on the company.
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an intermediate stop en route from a spoke to a hub in order to pick up more volume.

Once at the sorting facility, all of the aircraft are unloaded, and packages bound for

the same destination are grouped together. After the sorting is completed, packages

are loaded onto aircraft and the process essentially reverses itself. Aircraft deliver the

packages to the destination gateway. From the destination gateway, the packages are

moved via truck to a destination station where they are loaded onto a small ground

vehicle for final delivery.

2.3.1 Last Mile Service and Line Haul Service

The sequence of activities followed by a package can be divided into two categories,

1) last mile delivery, and 2) line-haul service. Last mile service is the strictly ground-

based service consisting of the transportation from the origin location to the origin

ground center and the origin airport, and the transportation from the destination

airport to the destination ground center and final delivery location. The air-based

service that encompasses the transport from the origin airport to sorting facility and

on to destination airport is called “line haul” service. Although “line haul” is a

term that commonly refers to less-than-truckload service between terminals, in this

context, the volume is transported via aircraft. In Figure 1, the line haul portion is

highlighted in gray, and the last mile delivery parts are on either side.

This work focuses specifically on the line-haul portion of express shipment op-

erations. Last mile service is a challenging logistical problem in its own right with

strong ties to the vehicle routing problem (VRP). The vehicle routing problem and

its permutations are well-studied, but it is still an active area of research. As a close

relative of the traveling salesman problem, it is quite difficult to generate optimal

solutions for the VRP in a reasonable time frame. Fortunately, the last mile service

and line haul service problems can be solved in isolation from each other through the

use of time-based constraints. Given the difficulty of each problem even in isolation,
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solving the two separately is, by far, the most common approach both in academia

and in industry.

The feasibility of the line haul problem can be guaranteed through the use of

time-based constraints. Since last mile service does not share equipment with line-

haul service, time is the is the only resource that must be linked between the two

services. The two problems can be solved independently by enforcing “due times.” A

last mile service problem solution can be joined with an air transportation problem

solution by making sure that the packages from the origin ground center are delivered

to the origin airport no later than a due time that is known to allow enough travel

time to the sort, and likewise, packages must be delivered to a destination airport no

later than the pre-set due time. Some absolute optimality may be sacrificed through

this approach, but any gained improvement would almost certainly not be worth the

enormous problem size increase.

When speaking of the “express shipment problem,” and the “Express Shipment

Service Network Design problem,” only the line-haul service portion of the overall

process is considered. Last mile service is a separate problem and last mile operations

are considered fixed when solving the express shipment delivery problem.

2.3.2 Activities

Each package stop, represented by a block in Figure 1, is called an activity. An

activity is an event at a particular location in which a something needs to be done

with the package. Activities can be thought as the points along a routing when a

package needs to be touched while in the custody of the express shipment company.

For line-haul, there are four types of activities: origin, destination, consolidation, and

sort. The activity type, coupled with a location, constitutes an activity.

At an airport, often an activity will occur multiple times per day. For example,

packages may originate at a spoke airport once in the evening and once in the morning.
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Both of these events would be an origin activity but pertain to separate activity

instances. An activity instance is a unique combination of an activity and the time

at which that activity occurs.

2.3.3 Important Activity Times, Cycles and Phases

In order to ensure that each activity has enough time to process all of its packages,

each activity has several important times associated with it as shown in Figure 2. The

most important times are the due time and the available time. The due time is the

latest time that a package can be delivered to an activity and still have enough time

to be processed. The due time is critical to ensure that everything occurs on time.

Any delays in the system can have a cascading effect and affect the entire process.

The available time is the time that a package is available to leave that activity and

be transported to the next activity. Thus, the time elapsed between the due time and

the available time is the minimum processing time. The open time is the time when

an activity will start accepting packages.

Min. Processing

time +

Open Due Avail

Figure 2: Activity Times

These times create time windows which can be very restrictive. Origin available

times are late in the day, usually after business hours, in order to allow customers

the most time to drop off their packages. For next day service, this means that all

operations, including the sort, must occur overnight in order to deliver the packages

the following morning. Two-day packages, which have more relaxed time constraints,

are transported by truck if there is time to do so. Otherwise, the two-day volume can

be loaded on the nighttime aircraft if there is excess capacity, but in general two-day

volume is transported by aircraft during the day.
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Same-day packages, of course, must fly during the day. For the purposes of this

work, same-day volume is volume that must be moved as a result of a contract with

a third party. Many express shipment companies offer same-day shipping of their

own products, at least locally, but this volume is typically handled differently from

the overnight and two-day volume. Same-day volume as the result of a contract is

volume that is delivered in bulk to the air integrator in the morning and is delivered

back to that customer (at a different location) in the evening. The customer handles

the last mile service.

The movement of some products during the day and some products overnight

results in periods of the day called cycles. These cycles are oriented according to

sorting times at the hubs. There are night operations which move the next-day volume

through a nighttime sort, and there are day operations which move the same-day and

two-day volume through a daytime sort. Of the two cycles, nighttime operations are

more difficult to satisfy because there is a shorter amount of time in which to move all

of the volume. This results in the counterintuitive fact that overnight packages (i.e.

one-day) have less time to move than same-day (i.e. zero-day) packages. Cycles can

be further broken into phases based on whether an activity occurs before the sorting

activity instance (i.e. a pick up phase) or after the sorting activity instance (i.e. a

delivery phase).

2.4 Packages Aggregated as Commodity Flows

Due to the magnitude of the package volume, modeling package flows on an indi-

vidual parcel-level is an unnecessary level of detail. Instead, similar packages can be

aggregated as commodities, and then a decision can be made on how to route and

transport each commodity. This approach assumes that the packages are numerous

enough that the commodities can be assumed to be continuous. In general, this is a

safe assumption.
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A commodity is defined as the unique combination of origin, destination, product

and origin day. The origin and destination are the airports at which the commod-

ity enters and leaves the air network. The product type describes the level of service

(same-day, next-day or two-day) and the sort classification (box, document or freight).

The origin day is the day that the package enters the network. Although this aggrega-

tion of packages into commodity flows simplifies the problem and transforms it from

hopelessly intractable to possibly solvable, the number of commodities is still large,

even for a single day of operations.

The demand of each commodity is represented in terms of its spatial volume

(measured in cubic feet or “cube”). Spatial volume is more representative of the

real-world constraints because express shipment aircraft tend to “cube out” before

they “weigh out” since parcels tend to have a low weight density. For the purposes

of this work, commodity demand is assumed to be deterministic, accurate and pre-

defined. Robust scheduling would add an additional layer of complexity on an already

challenging problem, and demand forecasting is, like last mile service, a field in and

of itself.

2.5 Air Fleet Considerations

In order to satisfy their level of service guarantees, express shipment companies op-

erate large, heterogeneous aircraft fleets. These fleets encompass aircraft of a range

of sizes from wide-body jets to propeller-driven feeder aircraft.

Although air transportation is faster than ground transportation, it is much more

expensive. Aircraft are more expensive to own, operate and maintain compared to

any other long-distance transportation mode. Additionally, they require a larger and

more expensive workforce per vehicle, a specialized infrastructure and incur a large

purchasing cost. As a consequence, reducing the total number of flight hours can have

an enormous impact on the total transportation cost. Reducing the total number of
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flight hours by even a small amount for every operating day can result in millions of

dollars in annual savings.

In addition to using their own aircraft, air integrators can purchase cargo space

in the belly of passenger aircraft. This option, called “interline,” is even more ex-

pensive and is typically not extensively used by major air integrators in the United

States which have extensive domestic airlines of their own. As a result, this option is

usually reserved for international markets or last-minute contingency planning when

confronted with larger than expected volume.

Air integrator fleets also tend to be very diverse as a reflection of the diverse

markets they serve. This fleet diversity enables a more efficient use of aircraft because

it allows the capacity to be more closely matched to the cargo volume. However,

this fleet diversity also makes the problem more difficult to solve. If there were

only a single aircraft type, then only multiples of that vehicle would need to be

assigned to a potential flight. Instead, if there is more than one type, then a variable

for each feasible aircraft type is necessary and values must be assigned to each of

those variables. Ultimately, although reducing the fleet diversity would simplify the

problem, it would also reduce the realism of the solution.

2.6 Air Network Topology

In order to minimize transportation costs, express shipment airlines operate in multi-

hub-and-spoke networks. Hub-and-spoke networks generally offer the lowest cost

network topology for covering a given geographic area, because it requires the fewest

flights to connect every location to every other. Due to the large geographic areas and

the physical limitations of the network hubs, air integrators operate multi-hub-and-

spoke networks which employ several strategically placed hubs rather than a single

hub.

Originally, air cargo networks were single hub-and-spoke networks, but as volume
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and geographical service area increased, more hubs were needed in order to handle

the demand. Large carriers found that it was not possible to land all of the aircraft,

sort the volume and have all the aircraft takeoff again within the necessary time

frame when using a single sorting location. This has produced a hierarchic multi-

hub-and-spoke network in which there is one primary hub and several secondary or

tertiary regional hubs. For FedEx, the hub in Memphis (MEM) is the “Super Hub”

with lower-level hubs in Indianapolis (IND), Fort Worth (AFW), Newark (EWR),

Oakland (OAK) and Greensboro, NC (GSO). For UPS, the hub in Louisville is the

“World Hub” with lower-level hubs in Philadelphia (PHL), Dallas (DFW), Ontario,

CA (ONT), Rockford, IL (RFD) and Columbia, SC (CAE).[79, 186]

In order to ensure that every package that can enter the network can be delivered,

every spoke airport is required to have “network connectivity” to the primary hub.

This means that every origin and destination location must be able to route through

that hub. This allows for last-minute contingency planning, particularly for larger-

than-forecast volumes or regional weather problems. The secondary hubs do not

connect to all other spokes, only a subset. Overall, the hierarchical hub-and-spoke

network preserves some of the advantages of the pure hub-and-spoke network while

diffusing some of the volume to more regional sorting hubs. The multi-hub topology

does, however, make the problem more difficult to solve compared to a pure hub-

and-spoke network because it has a multiplicative effect on the number of potential

package routings, thus greatly increasing the problem size.

In this work, the sorting hub locations, as well as the spoke airports (gateways),

are assumed to be fixed. Considering changes to the network topology is out of the

scope of a tactical-level model and problem, and is typically handled with a hub

network design problem or a facility location problem.
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2.7 Data Set

Thanks to a collaboration between FedEx Services and a team of researchers, of which

I am a member, at the Georgia Institute of Technology, I have access to a complete

planning data set from FedEx. The data spans one week of forecast domestic demand

in a recently passed year. Additionally, this dataset includes facility locations, activity

times and instances, sort capacities, vehicle properties and cost information. This

dataset will be used for all of the experiments and studies of this work. Although the

time frame of this data set has, at this point, passed, some information, particularly

commodity demand and cost, is still sensitive and cannot be shared in its full form.

As appropriate, characteristics of the data set are described in this section so that the

reader has a thorough understanding of the scope and details of the problem instance.

2.7.1 Facility Locations

As previously mentioned, this work focuses on the express shipment problem within

the continental United States. That is reflected in the facility set, which is shown

geographically in Figure 3. In total, there are 115 facilities and they are all located

at airports. In reality, FedEx Express operates out of some additional “secondary”

airports in small, remote areas which always consolidate to nearby markets. To

simplify the problem slightly, this volume has been integrated into the consolidation

market and those secondary airports are excluded from the problem.

In Figure 3, the hubs are highlighted for easy identification. In this data set, the

FedEx hub at Greensboro, NC (GSO) is not considered part of the hub set because

it was not a major hub during the time frame of the data set. The others are,

as mentioned previously, MEM (primary), IND (national), EWR (regional), AFW

(regional), and OAK (regional).
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Figure 3: FedEx Air Facilities in the Data Set
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2.7.2 Sort Capacity

Sorting facilities have limited capacity due to physical limitations on the number of

pieces that can be correctly sorted in a given period despite high levels of automation

and technological sophistication. The actual sort capacity values are proprietary but

the capacities that FedEx makes public in their investor reports, see Table 1, are

representative.[79]

Table 1: Public FedEx Sort Capacities [79]

Facility Region Cap. (pcs/hr)
MEM Primary 475,000
IND National 214,000
EWR Northeast 156,000
AFW Southwest 76,000
OAK West Coast 63,000

The capacities shown in Table 1 are given in terms of packages and documents.

In reality, these products are sorted on different machines and are therefore tracked

separately as different product types. Additionally, each sort has a maximum amount

of freight products (i.e. parcels over 150 lbs) that it can handle. This differentiation

of products and their individual sort capacities is captured in this work, but sorting

capacities for freight items are not made public by FedEx and cannot be shared.

2.7.3 Product Types and Commit Days

In addition to the sort-based product classifications described in Section 2.7.2 (box,

document, and freight), products are classified by the level of service that the company

has promised the customer. The main classifications are priority, economy, and postal

(U.S. Postal Service) volume. For the most part, this translates to overnight, two-

day and same-day service, respectively. Additionally, FedEx offers overnight and

two-day products that deliver on Saturdays, and the USPS volume similarly has

distinctions for weekend delivery. Finally, priority box volume is divided into two

categories: 1) regular priority boxes, and 2) First Overnight boxes. First Overnight
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boxes are delivered earlier in the morning than the priority boxes. The product sort

classifications and level of service categories combine to define unique product types,

which are shown in Table 2.

Table 2: Product Types of the Data Set

Level of Service Base Commit Box Document Freight

Priority Overnight 3×2 3 3

Economy Two-Day 3 3 3

Priority Saturday Overnight 3 3 3

Economy Saturday Two-Day 3 7 3

USPS 0-Day Same-Day 3 7 7

USPS 1-Day Overnight 3 7 7

USPS Friday Overnight 3 7 7

In total, there are fifteen different product types in the dataset. Priority boxes

are shown as having two types because the priority box products and First Overnight

packages are handled similarly for the line-haul portion of their transport. In reality,

FedEx Express carries and tracks even more products, such as those carrying live

products or perishables, but those require special handling and the products in Table 2

constitute the vast majority of the volume.

The total number of calendar days that the company has promised to deliver the

package to the final destination is called the number of commit days. Every level

of service has a base number of commit days which corresponds to the number of

business days the company has promised the customer. Commit days are always

counted in terms of the number of “midnights” crossed from pick up to delivery.

Early in the week, the total number of commit days will equal the base number of

commit days, but later in the week, a product will have more commit days because it

is delivered after the weekend. For example, an economy package mailed on Thursday

will have 2 base commit days, but a total of 4 commit days because it does not need

to be delivered until Monday. As a result, late-week products, particularly economy

products, tend to have many more routing options than their early-week counterparts.
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2.7.4 Commodity Demand

As mentioned in Section 2.4, a commodity is defined as a unique combination of

the origin, destination, product type and origin day. Due to its sensitive nature,

specific demand information cannot be shared. However, some characteristics of the

commodity demands can be used to understand data in general.

First, Figure 4 shows the total originated demand for each day in the week of

the data set. As would be expected, the volume is greatest on the weekday and

Figure 4: Total Originated Volume For Each Day of Data Set

significantly smaller on the weekends. As would be expected, the demand volume is

lowest on the weekend and highest on Monday through Thursday, the busiest days for

business. Monday’s volume is small primarily because there is no postal volume (i.e.

no mail pickup on Sundays). Friday’s volume is the lowest weekday in large part due

to the preprocessing performed on the data set (by FedEx) to remove any commodities

that could be completely moved via truck from origin to destination. Friday products

(and Thursday economy) products have two extra days to move, which makes many

more markets available to truck their volume, and those commodities are therefore

excluded from the dataset.

Another illuminating way to view the commodity demand is by how much volume
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is originated at in each market. Figure 5 shows the distribution of total originated

volume on an airport-wise basis. The majority of markets (identified by airports) in

Figure 5: Market-Wise Distribution of Total Volume Originated on Tuesday

the data set are small compared to the largest market. Close to half (50 out of 115) of

the airports originate five or less percent of the volume of the largest market. Overall,

the shape of the distribution makes sense, particularly when considered alongside

the map of facilities in Figure 3. Overall, FedEx flies out of a lot of airports, and

these airports have been deliberately chosen to follow the population density of the

country. The densely-populated regions of the country have many facilities, while even

sparsely-populated regions like the Mountain West have some facilities. Additionally,

major metropolitan areas, such as New York City, Los Angeles, and Dallas have

multiple facilities. In total, the dataset demand features a large set of small markets,

some medium-sized markets, a few large markets and one exceptionally large market.

2.7.5 Vehicle Fleet and Hull Count

FedEx Express operates a large, international fleet of aircraft and as a result, the

precise size and composition of the fleet that is within the continental United States

is fluid. Aircraft may fly in from overseas, make a few stops carrying domestic volume,

and then fly back overseas. As a result, it is not possible to specify an exact fleet hull
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count and composition at any given time, but it is still meaningful to use a reasonable

estimate. The hull counts used in this dataset can be found in Table 3. Trucks are

assumed to be unlimited, and they can carry more volume than a feeder, but less

than a jet aircraft.

Table 3: Data Set Fleet Composition

Name Hull Count Class Max. Payload (lbs)
B777F 7 Super Wide 233,300
MD-11 43 Wide 192,600
MD-10-10 37 Wide 137,500
B767-300F 30 Wide 127,100
A-300 49 Wide 106,600
A-310 8 Wide 83,170
B757-200 80 Narrow 63,000
ATR-72 10 Feeder 17,970
ATR-42 10 Feeder 12,070
C-208 50 Feeder 2,830
Truck ∞ Truck unspecified

As mentioned in Section 2.4, express shipment aircraft tend to “cube out” before

they “weigh out” and therefore the spatial capacity of each vehicle type is more

important than its weight capacity. However, the spatial capacities of these vehicles

is an important planning consideration and the exact specifications cannot be detailed

here. To provide a basis for comparison, the maximum gross structural payload for

each vehicle is provided, as specified in the 2017 FedEx investor report.[79] When

using the dataset, the spatial capacities are used, not the weight capacities.

2.7.6 Cost

In order to protect proprietary information, exact cost information cannot be shared,

but the data can be characterized. First, only vehicle-based costs are considered.

Costs related to the magnitude of the package flows are negligible compared to the

base cost of flying an aircraft. Therefore, direct package costs are assumed to be zero.

Second, there are two categories of aircraft-related cost, 1) cycle costs, and 2) flight
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hour costs. Cycle costs are those that are automatically incurred anytime the aircraft

takes off. They can include landing fees, depreciation costs, ground crew wages, etc.

Flight hour costs are those that scale with the length of the flight. They can include

fuel cost, maintenance and repair costs, pilot salaries, etc. Truck costs only include a

“flight” hour cost. The total cost of a flight is the sum of the cycle cost and the total

flight hour cost. Third, costs scale with vehicle capacity although newer vehicles tend

to be cheaper per unit capacity than older aircraft. Finally, trucks are, by far, the

cheapest vehicle per unit capacity, and feeder aircraft are the cheapest aircraft type.

The dataset described in this section will be used extensively throughout this work

to conduct experiments on the studied algorithmic approaches to solving the express

shipment problem. The baseline problem instance for these studies will encompass

one full day’s worth of express shipment volume for the domestic problem instance

described here. Additionally, experiments will be conducted on problem instances of

larger scope, up to a week worth of demand volume, to study how different solution

methods’ performance scales with problem size.

2.8 Summary

Express shipment companies are large, global companies that operate large aircraft

fleets and scores of facilities with the overall mission to deliver large numbers of pack-

ages across wide geographical distances in very little time. The problem of optimizing

or at least improving their operations is a correspondingly large, challenging and com-

plex. That problem, which here is referred to is as the “express shipment problem,”

can be summarized as,

The problem of determining the lowest cost way to use a heterogeneous, multi-

modal vehicle fleet to move a set of express shipment packages from their

origin airports to their destination airports within a domestic multi-hub-and-

spoke network and within the guaranteed service periods.
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This dissertation will focus on solving the express shipment problem for a single

day’s worth of domestic demand using a data set provided by FedEx and, where mean-

ingful, will extend that scope to a full week of demand. The next chapter, Chapter 3,

briefly reviews how similar problems are captured mathematically and presents the

optimization formulation for the Express Shipment Service Network Design problem.
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CHAPTER III

EXPRESS SHIPMENT SERVICE NETWORK DESIGN:

MODELING THE EXPRESS SHIPMENT PROBLEM

As shown in Chapter 2, the airline operations of an express shipment carrier are

extensive, complex and highly interconnected. The scope, complexity, and difficulty

of the problem preclude the possibility of an efficient and high-quality human-based

optimization method. It is certainly possible for a team of human planners to generate

feasible solutions for these extensive problems, but this kind of hand-made approach

is highly time-intensive, typically built heavily on historical schedules and lacks a

meaningful way of optimizing or improving the solution.

However, this human-based method is largely how planning is done today.1 While

it is not true that computers outperform humans in all venues, computers tend to

outperform humans in arenas in which the option space is massive and the elements

of the system are highly interconnected, such as in the express shipment problem.

In order to take advantage of the strengths of digital computing, the problem must

first be captured in a model that is accessible to computers. This chapter presents

a mixed integer programming formulation that captures the relevant aspects of the

express shipment problem.

3.1 Modeling Logistics Problems as Mixed Integer Programs

The choice to model logistics problems as mixed integer programs has roots in the

literature that stretch back to the early days of optimization. Many of the most

famous logistics-related problems, such as the Traveling Salesman Problem (TSP),

1This is mentioned in Armacost (2000)[11] and corroborated by personal discussions with indi-
viduals in the industry.
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Vehicle Routing Problem (VRP), Crew Scheduling Problem and Facility Location

Problem are modeled as mixed integer programs (MIP).

A mixed integer program (MIP) is an optimization problem that can be expressed

in the form,2

max{cx+ hy | Ax+Gy ≤ b, x ∈ Rp
+, y ∈ Zn+}

where Rp
+ is the set of nonnegative real p-dimensional vectors and Zn+ is the set of

nonnegative integral n-dimensional vectors, and x = (x1, . . . , xp) and y = (y1, . . . , yn)

are the variables (“unknowns”). The data (c,h,A,G,b) specifies a problem instance

where c and h are appropriately-sized vectors and A and G are appropriately-sized

matrices.

The feasible region (also called the feasible set or design space) is the set S =

{Ax + Gy ≤ b, x ∈ Rp
+ y ∈ Zn+} and an instance is feasible if S 6= ∅. The feasible

point (x0, y0) for which the objective function, z = cx + hy, is as large as possible is

called the optimal solution and z = cx0 + hy0 is the optimal value.

The mixed integer program is called “mixed” because it contains a mix of both

continuous and integer variables. There are several special cases of this optimization

problem. In the case in which there are no integer variables,

max{cx | Ax ≤ b, x ∈ Rp
+}

the problem is a linear program (LP). In the special case in which there are no

continuous variables,

max{hy | Gy ≤ b, y ∈ Zn+}

the problem is called an (pure) integer program (IP). Finally, in the special case where

the integer variables represent logical decisions and are constrained to y ∈ Bn, the

2This brief introduction to mixed integer programs closely follows the introduction presented in
Nemhauser and Wolsey (1989) §I.1. [160]
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problem is called a 0-1 mixed integer program (0-1 MIP). Finally, if y ∈ Bn and

x = ∅, the problem is called a binary integer program (BIP).

Mixed integer nonlinear programs are a class of closely-related optimization prob-

lems in which the constraints and/or the objective function, is nonlinear. Some ap-

proaches for solving mixed integer linear programs have been successfully adapted to

their nonlinear cousins, but in general, mixed integer nonlinear problems are much

more challenging to solve.[112] In this work, as is the general norm, the term “mixed

integer program” will only refer to the fully linear case unless otherwise specified.

In general, formulating an optimization problem as a mixed integer program is

preferable to other classes of optimization problems because their linear mathematical

structure often makes them easier to solve. Linear programs, which are fully linear

and fully continuous, can often be solved very quickly and have been shown to be

solvable in polynomial time. The presence of integral variables in an optimization

problem greatly increases the difficulty of finding the optimal solution compared to a

fully continuous problem, but this may be unavoidable in order to accurately capture

the real world system, such as in the express shipment problem. Integer programming

has been shown to be NP-complete, and the special case 0-1 integer programming

problem is one of Karp’s 21 problems.[126]

The branch-and-bound algorithm, which is a systematic enumeration algorithm

(explained further in Chapter 4) is a popular approach for solving problems with

integer variables and it depends on the maintenance of upper and lower bounds. When

solving a linear mixed integer program, an LP relaxation of the original problem is

used in the maintenance of the bounds as well as subproblem evaluations along the

search tree. As a result, although IPs are still difficult problems to solve, formulating

a problem such that it has an LP relaxation is still advantageous when implementing

common solution approaches.
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3.2 Network Design Problems

As stated previously, many well-known logistical and combinatorial optimization

problems can be formulated as mixed integer programs, but more specifically, many

of those problems, including the express shipment problem, can be formulated as

a specific mixed integer program called a Network Design problem (NDP). Briefly

stated, the goal of the NDP is to find an optimal subgraph F = (N ′, A′) of a graph

G = (N,A) subject to flow capacity and balance side constraints. Many applica-

tions include additional side constraints specific to the problem needs. Some of the

best-known specializations and variations of the NDP include the traveling salesman

problem (TSP), vehicle routing problem (VRP), minimum spanning tree problem

(MSTP), and the facility location problem (FLP). As described by Magnanti and

Wong (1984), “many of the most well-known and intensively studied problems en-

countered in transportation planning can be viewed as specializations and variations

of this generic design model.”[146]

The most general form of the Network Design problem is to find the optimal sub-

graph F of a graph G subject to forcing, flow balance, and side constraints. There are

typically two types of variables: 1) binary variables capturing the decision to include

arc (i, j) in the subgraph F , and 2) flow variables (which are continuous) capturing

the amount of flow on an arc. The forcing constraints require the amount of flow on

an arc to be less than the capacity on the arc. The flow balance constraints require

flow to be conserved throughout the network. The side constraints are additional

problem-specific constraints.

Depending on the application, the objective function may be linear or nonlinear.

Nonlinear objective functions may be the result of congestion effects or other coupled

phenomena. This is not the case for the express shipment problem and the problem

can be comfortably modeled as a mixed integer program. Table 4, adapted from

Magnanti and Wong (1984), provides an overview of well-known NDPs and NDP
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Table 4: Specializations and Variations of the Network Design Problem (Adapted from Magnanti and Wong[146])

Problem Name Demand Structure Objective Function Capacities Side Constraints
Minimal Spanning
Tree

Complete (undirected
network)

Linear in design
variables, no flow costs

Uncapacitated None

Shortest Path Arbitrary
Linear in flows, no
design costs

Uncapacitated None

Steiner Tree Problem
Complete on a subset
of nodes (undirected
network)

Linear in design
variables, no flow costs

Uncapacitated None

Multicommodity Flow
Problem

Single source
Linear in design
variables, no flow costs

Uncapacitated None

Traveling Salesman
Problem

Complete
Linear in design and
flow variables, large
constant fixed costs

Uncapacitated None

Vehicle Routing
Problem

Single Source
Linear design
variables, no flow costs

Fixed capacity on all
arcs

Assignment constraints
on design variables

Facility Location
Problem

Arbitrary
Linear in flow
variables, fixed costs
on facility nodes

Capacities on facility
nodes

Node

Fixed Charge Network
Design Problem

Arbitrary
Linear in flows and
design variables

Uncapacitated None

Service Network
Design Problem

Arbitrary
Linear in flows and
design variables

Fixed capacity on all
arcs

Assignment and
balance constraints on
design variables

Network Loading
Problem

Arbitrary
Linear in design
variables, no flow costs

Fixed capacity on all
arcs

Assignment and
integral design
variables
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variations that are applicable to the express shipment problem.

In the special case in which the network is capacitated and there is more than

one commodity being moved through the network, the Network Design problem be-

comes the multicommodity flow problem.[4] For example, many telecommunications

problems can be modeled as an MCFP in which calls, defined by an origin and desti-

nation, must be routed through the telecommunications infrastructure in which each

link (arc) has a limited bandwidth. The Express Shipment Service Network Design

problem (ESSND), the extension of the NDP presented in Section 3.3 is a special case

of the MCFP since each origin-destination contains commodities (defined as the com-

bination of origin, destination, product and origination day) that have to be routed

through the network. The ESSND problem adds additional constraints regarding the

nature of the arc capacity – specifically that it must be applied in integral units in

the form of vehicles which must be balanced and conserved through the network.

The network loading problem (NLP) is another special case of the NDP, and

is one in which capacity is assigned to arcs in the form of “facilities” in integer

quantities.[11, 148] For a transportation network, a “facility” would be a vehicle.

Facility (vehicle) costs are assumed to dominate flow costs, and as a consequence flow

costs are not included in the objective function. Therefore, the total cost for the

network is the sum of the costs incurred by installing facilities on the network. The

NLP model can be used for either single or multicommodity problems. The ESSND

problem adds additional constraints to enforce facility (vehicle) balance and fleet size.

Of the general Network Design problems found in the literature, the Service Net-

work Design problem (SNDP) is the most similar problem to the ESSND problem. It

is the special case of the NLP in which the installed facilities must be balanced, that

is, facilities (vehicles), as well as flow, must be conserved through the network.
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3.2.1 Network Design Problem Formulation

The objective of the Network Design problem is to find the optimal subgraph F in a

graph G subject to forcing, flow balance and side constraints. In order to express the

problem in a more detailed form, the following notation is first defined,

Sets

• i ∈ N : node in the set of nodes

• (i, j) ∈ A: arc in the set of arcs

• k ∈ K: commodity in the set of commodities

• S: set of side constraints

Cost Parameters

• ckij: cost of sending one unit of flow of k ∈ K along arc (i, j) ∈ A

• dij: fixed cost of including arc (i, j) ∈ A

Additional Parameters

• bk: total quantity of commodity k

• uij: capacity of arc (i, j)

Decision Variables

• xkij: fraction of commodity k ∈ K on arc (i, j) ∈ A

• yij =


1 if arc (i, j) is included in the subgraph F

0 otherwise

When the objective function, φ(xkij, yij), is linear, the Network Design Problem can
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be mathematically formulated in the following way,

min φ(xkij, yij) =
∑
k∈K

∑
(i,j)∈A

ckijb
kxkij +

∑
(i,j)∈A

dijyij (3.1a)

s.t.
∑
k∈K

bkxkij ≤ uijyij ∀(i, j) ∈ A (3.1b)

∑
j:(i,j)∈A

xkij −
∑

j:(j,i)∈A

xkji =


1 if i = O(k),

−1 if i = D(k),

0 otherwise

∀i ∈ N, k ∈ K (3.1c)

(xkij, yij) ∈ S (3.1d)

0 ≥ xkij ≤ 1 ∀(i, j) ∈ A, k ∈ K (3.1e)

yij ∈ {0, 1} ∀(i, j) ∈ A (3.1f)

The objective, Equation 3.1a, is to minimize the total cost of the network, φ(xkij, yij),

which is the sum of the linear cost of each commodity and the fixed cost of each in-

cluded arc. Equation 3.1b represents the “forcing” constraints, which ensure that the

flow on any arc does not exceed the capacity assigned to that arc. Next is the flow

balance, also called the flow conservation, constraint, Eq. 3.1c, which ensures that

commodities only enter or leave the network at their source or sink nodes, respec-

tively. The side constraints, Eq. 3.1d, serve as a catch-all for constraints that may be

added to tailor the NDP to specific applications. Finally, Eq. 3.1e and Eq. 3.1f are

the range constraints on the flow and decision variables. They ensure that the flows

are nonnegative, and the decision variables are binary.

There are some constraints that are common additions to the Network Design

problem. One of them is a budget constraint,

∑
(i,j)∈A

eijyij ≤ B
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where eij represents the cost of using the arc (i, j) and B represents the total budget.

A budget constraint may be used in a situation in which infrastructure must be built

in order to use an arc (i, j), such as installing power lines or telecommunication cables.

There can also be topological constraints. In a network improvement model, there

is a pre-existing network which must be automatically included in the model. A pre-

existing arc, (i, j), can be represented in the model with the constraint yij = 1, which

states that the decision to include the arc (i, j) in the solution network must be true.

Additionally, there can be conditional topological constraints, such as yrs ≤ yij, which

states that arc (i, j) can be chosen if and only if arc (r, s) is also chosen.

3.2.2 Service Network Design Problem Formulations

The Service Network Design Problem (SNDP) is a variant of the Network Loading

Problem (NLP) which is, in turn, a variant of the Network Design Problem. The

SNDP differs from the NDP in the fact that arc capacities must be assigned in the

form of facilities, which must balance through the network. Therefore, the SNDP

formulation includes a design balance constraint, and the design variable domain

is changed from binary to nonnegative integer. The balance requirement and the

retainment of the flow costs in the objective function differentiates a Service Network

Design problem from a network loading problem.

In the context of express shipment, the “facilities” in regards to the problem for-

mulation terminology are vehicles and should not be confused with “facilities” in the

problem-application-sense, which are physical locations owned by a company which

serve as origins, destinations and sorts. To reduce the conflicting use of the word while

respecting its established use in the respective contexts, vehicles in mathematical for-

mulations will be represented as f ∈ F , which provides consistency with formulations

in the literature, but otherwise, outside of this subsection, “facilities” will refer only

to origin, destination and sorting locations owned by an express shipment company.
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Kim (1997), in his Ph.D. thesis on Service Network Design problems and their ap-

plication to the express shipment problem, presents three formulations for the SNDP,

1) node-arc, 2) path-based, and 3) tree-based.[129] In the node-arc formulation, the

flow and decision variables are directly tied to specific nodes and arcs in the graph,

just like the NDP formulation in Formulation 3.1. In the path formulation, the flow

and decision variables correspond to paths (i.e. ordered subsets of arcs) through

the network rather than individual arcs. Finally, in the tree formulation, which was

originally presented by Jones (1993), commodities with the same origin, or, alter-

natively, the same destination, are aggregated together in a single super commodity

and flow options are represented as trees rooted at the origin (destination) of the

super commodity.[121] In the tree formulation, design variables are still represented

as paths.

Kim highlights several advantages that path-based and tree-based formulations

have over node-arc formulations. First, non-linear costs can be easily captured in

path-based and tree-based formulations without introducing non-linearity in the prob-

lem formulation. Second, some constraints, such as a limit on the number of arcs in

a path are difficult to write effectively in a node-arc formulation but are trivial in a

path-based or tree-based formulation. Finally, the number of constraints, particularly

flow balance constraints, is significantly lower in path-based and tree-based formula-

tions compared node-arc formulations. However, the reduced number of constraints

comes at the cost of significantly more variables to achieve equivalent formulations.

To best illustrate the SNDP’s relationship to the NDP, and later, the Express Ship-

ment Service Network Design problem, the node-arc, and path-based formulations are

presented here. First, using the notation defined for the NDP in Formulation 3.1 and

additionally defining f ∈ F to be a facility in the set of facilities (i.e. vehicle in the
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set of vehicles), and the design variables to be

yfij =


1 if arc (i, j) is served with the facility (vehicle) f

0 otherwise

the node-arc formulation for the Service Network Design problem can be written,

min
∑
k∈K

∑
(i,j)∈A

ckijb
kxkij +

∑
(i,j)∈A

dfijy
f
ij (3.2a)

s.t.
∑
k∈K

bkxkij ≤
∑
f∈F

ufyfij ∀(i, j) ∈ A (3.2b)

∑
j:(i,j)∈A

xkij −
∑

j:(j,i)∈A

xkji =


1 if i = O(k),

−1 if i = D(k),

0 otherwise

∀i ∈ N, k ∈ K (3.2c)

∑
j:(i,j)∈A

yfij −
∑

j:(j,i)∈A

yfji = 0 ∀i ∈ N, f ∈ F (3.2d)

0 ≤ xkij ≤ 1 ∀(i, j) ∈ A, k ∈ K (3.2e)

yfij ∈ Z+ ∀(i, j) ∈ A, f ∈ F (3.2f)

The objective function (Eq 3.2a), forcing constraint (Eq 3.2b) and flow balance con-

straint (Eq 3.2c) are nearly identical to those in the NDP formulation (Formula-

tion 3.1). The only difference is that capacities, uf , are based on the assignment

of facilities rather than a property of the arc itself, and the fixed arc cost, dfij, is

based on the assigned facility as well as the arc. Constraint 3.2d, which ensures the

balance of facilities throughout the network, is new. Finally, the domain of the flow

variables, Eq. 3.2e, is unchanged relative to the NDP formulation, but the decision

variables, Eq. 3.2f, correspond to a facility choice for arc (i, j) and are nonnegative

integral-valued, rather than binary-valued.
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Alternatively, the SNDP can be represented in a path-based formulation. To

represent this formulation, the following additional notation must be defined. To

differentiate flow-based paths from facility-based paths, flow-based paths are called

“paths” while facility-based paths are called “routes.”

Sets

• p ∈ P k: path in the set of paths for commodity k

• r ∈ Rf : route in the set of design routes for facility f

• f ∈ F : facility in the set of facilities

Cost Parameters

• cfp : cost of sending one unit of flow of k ∈ K along path p ∈ P k

• dfr : fixed cost of providing one unit of facility f ∈ F along route r ∈ Rf

Additional Parameters

• uf : capacity of facility f

• bk: total quantity of commodity k

Indicators

• βri =


1, if route r starts at i

−1, if route r ends at i

0, otherwise

• δrij =


1, if route r includes arc (i, j)

0, otherwise

• δpij =


1, if path p includes arc (i, j)

0, otherwise

Decision Variables

• xkp: fraction of bk on path p ∈ P k for k ∈ K

• yfr : number of facilities, f ∈ F , installed on r ∈ Rf
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Using this notation, the path-based SNDP formulation can be expressed,

min
∑
k∈K

∑
p∈Pk

ckpb
kxkp +

∑
f∈F

∑
r∈Rf

dfry
f
r (3.3a)

s.t.
∑
k∈K

∑
p∈Pk

δpijb
kxkp ≤

∑
f∈F

∑
r∈Rf

δriju
fyfr ∀(i, j) ∈ A (3.3b)

∑
p∈Pk

xkp = 1 ∀k ∈ K (3.3c)

∑
r∈Rf

βri y
f
r = 0 ∀i ∈ N, f ∈ F (3.3d)

0 ≤ xkp ≤ 1 ∀p ∈ P k, k ∈ K (3.3e)

yfr ∈ Z+ ∀r ∈ Rf , f ∈ F (3.3f)

As with the node-arc formulation, the objective function, Equation 3.3a, is the sum

of the flow costs and facility costs. The first constraint, Equation 3.3b, is the forcing

constraint, which uses indicator variables to enforce the constraint on every arc. Next,

the flow balance constraint from the node-arc formulation, Eq. 3.2c, has been replaced

with a flow cover constraint which ensures that all of the flow for each commodity is

accounted for within the network. Flow balance is automatically ensured through the

use of the path variables so it is sufficient to ensure that the full commodity demand

is satisfied without tracking it throughout the network. Constraint 3.3d enforces

facility balance through the network. Finally, the flow and design variable domains,

Equations 3.3e and 3.3f are nearly identical to the node-arc formulation, except that

the variables are path-based and route-based rather than arc-based.

3.3 Express Shipment Service Network Design Problem

While the Service Network Design problem captures most of the essence of express

shipment, i.e. finding the lowest cost assignment of vehicles to move flow from origin

to destination within a network while ensuring the balance of both flow and vehicles,
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there are additional constraints that must be added to the SNDP formulation to

truly capture the express shipment problem. Based on the problem description from

Chapter 2, a complete model of the express shipment problem must be capable of

encapsulating and handling its essential parts,

• Find the minimum cost way to move all of the packages

• Cost is a function of vehicle use

• Commodity volume is large, diverse and fully-connected

• A commodity can only enter the network and its origin and leave the network

at it destination (i.e. commodity flow must be conserved)

• Diverse and multi-modal vehicle fleet

• Diverse vehicle capacities

• Limited number of each vehicle type

• Vehicles must be assigned in integral quantities

• In order for a vehicle to travel from one location to another, it must first be

present at the origin location (i.e. vehicles must be balanced/conserved through-

out the network)

• Multi-hub-and-spoke network structure

• Sorting facilities have limits on the number of packages they can process during

a given period

• Level of service (i.e. time) requirements must be satisfied

Of the requirements listed above, many, such as the calculation and minimization of

cost, handling a large set of diverse commodities and the use of diversely-sized ve-

hicles to provide capacities to commodity flows are handled seamlessly by modeling

the problem as a Service Network Design problem. Others, particularly the limited

fleet size and volume capacities at sorting facilities, are not part of the typical Ser-

vice Network Design problem formulation but can be easily included as linear side

constraints. The final consideration, level of service/time requirements, has not been
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explicitly discussed in the context of any of the formulations thus far but can be

handled with an intelligent choice of the graph, G, upon which the SNDP is based.

Namely, a time-space graph can be used to encapsulate temporal as well as spatial

considerations of the problem.

3.3.1 Time-Space Graphs

In a time-space graph (also known as a time-space network or time-expanded net-

work), nodes represent points in both space and time. The concept was first in-

troduced by Ford and Fulkerson in 1958 who modeled dynamic flows on a static

“expanded” network.[86, 87] Since that point, time-space networks have been, along

with connection networks, the most common way to model time-dependent aspects

of many problems, including transportation planning problems.

The primary idea behind time-space graphs is that a spatial graph can be ex-

panded to capture time-dependent problem features by adding a time property to

each node. The original spatial graph is modified such that a node exists for each

point in time (according to a pre-determined time step) and space, and arcs repre-

sent physically feasible connections in time and space. Figure 6 displays a notional

time-space graph involving three locations and ten time periods for a total of thirty

nodes.
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Figure 6: Notional Time-Space Graph

The basic time-space graph contains nodes for each place in space and each step

in time. There are two types of connections represented by the arcs: 1) connections
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between locations, and 2) connections at locations. For transportation problems like

the ESSND problem, arcs between locations (shown in black) represent feasible flights

between locations. Connections at a location, sometimes called time-line arcs, capture

the passing of time at a location (gray arcs).

For more information and background on time-space networks, the introduction

by Skutella (2009)[180] provides a thorough summary, as well as Chapter 19.6 of the

text by Ahuja, Magnanti and Orlin (1995)[5], and the original text by Ford and Fulk-

erson (1962)[87]. Although they can be an effective tool in handling time-dependent

aspects of networks, time-space graphs have some drawbacks, particularly the time

discretization and the corresponding explosion of problem size. Many applications

of time-space networks employ novel approaches to reduce the size of the time-space

graph without sacrificing the effectiveness of the time-space graph. The network

reduction approach undertaken for this work is detailed in Chapter 6, but for this

chapter, it is sufficient to mention that a time-space graph is used to handle the

time-dependent nature of the problem.

3.3.2 Express Shipment Service Network Design Problem Formulation

In the literature, there is no universally-used problem definition for the express ship-

ment problem. Many applications add carrier-specific or application-specific side

constraints or assumptions. However, there is a “core” set of constraints that are

found, either explicitly or implicitly, in the majority of express shipment formula-

tions. The problem definition used in this work includes those core constraints as

well as a “wrap-around” constraint and a feeder-use constraint.

The core formulation of the Express Shipment Service Network Design problem

inherits the constraints of the SNDP, as implied in the name, and includes additional

constraints for hull count and sort capacity. These two additional constraints capture

the critical aspects of the problem that elevate it beyond a Service Network Design
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problem. The hull count constraint is critical since express shipment airlines own a

limited number of vehicles and the composition of the aircraft fleet can have a large

impact on how those vehicles are used. The sort capacity constraint encompasses

another critical limitation faced by express shipment carriers. A key reason that

express shipment carriers operate in a multi-hub-and-spoke network is because the

primary sorting locations (such as FedEx’s Super Hub and UPS’s Worldport) have

neared the current practical, physical and technological limits of processing within

their limited time window. The secondary hubs provide additional sorting capacity

within the network and help to lower some transportation costs by sorting some

intraregional volume.

In addition to these core constraints, the formulation of the Express Shipment

Service Network Design problem used in this work includes a feeder-use constraint.

The feeder use limit restricts the use of feeders to one per arc. This reflects the

carrier-specific preference to only use feeder aircraft to serve small markets. Feeder

aircraft are considerably cheaper than trunk aircraft and the larger feeders have about

half of the capacity of the smallest trunk aircraft. As a result, if left unrestricted, an

optimizer will often assign multiple feeder aircraft to a serve a medium-sized market

rather than assign a single small trunk aircraft, contrary to the preferences of the

carrier.

As a form of the SNDP, the formulation considerations raised by Kim (1997) also

apply to the Express Shipment Service Network Design problem. In some regards,

particularly the number and ease of writing constraints, a path-based or tree-based

formulation is superior. On the other hand, node-arc formulations tend to have many

fewer variables for realistic problem sizes, which is crucial in many MIP solution

methods.

Although Kim (1997) [129] decided that the path-based and tree-based formu-

lations were superior to the node-arc formulation for his application and problem
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instances, I found that there were appealing aspects to both the path-based and

node-arc formulations. On the one hand, using a path-based formulation is appeal-

ing when faced with the massive number of flow balance constraints that would be

required if the node-arc formulation were used with such a large commodity set. On

the other hand, the highly diverse vehicle fleet and the massive number of commodi-

ties translates to a huge number of design and flow variables in the path-based and

tree-based formulations.

In an effort to capture the best of both worlds, an arc-path formulation, which is a

hybrid of the two formulations, is used in this work. Arc-path formulations, in which

the flows are expressed in terms of paths and the design decisions are expressed

in terms of arcs, are not as common as node-arc or path-based formulations but

they do have precedent in the literature for other Service Network Design problems

and multicommodity network flow problems.[10, 128, 162] The arc-path formulation

takes advantage of the elimination of flow balance constraints from the path-based

formulation while also keeping the number of design (vehicle) variables relatively low.

This formulation does still suffer from a very large set of path-based flow variables,

but this problem can be mitigated by preprocessing the set of flow variables and

removing those that are unlikely to be present in the optimal solution. The impact

that preprocessing has on the final solution value is based on how aggressive that

remove scheme is. The scheme used in this work is presented in Chapter 6.

In order to mathematically capture the Express Shipment Service Network Design

problem, additional notation is needed. That notation, including the relevant notation

previously defined for the NDP and SNDP formulations, is,

48



Sets

• i ∈ N : node in the set of nodes

• i+ ∈ N+: source node in the set of source nodes

• i− ∈ N−: sink node in the set of sink nodes

• (i, j) ∈ A: arc in the set of arcs

• k ∈ K: commodity in the set of commodities

• p ∈ P k: path in the set of paths for commodity k

• h ∈ H: hub in the set of hubs

• θ ∈ Θ: airport in the set of airports

• f ∈ F : vehicle type in the set of vehicle types

• F̃ : set of truck vehicle types

Cost Parameters

• dfij: fixed cost of providing one unit of facility (vehicle) f ∈ F along route

r ∈ Rf

Additional Parameters

• uf : capacity of vehicle f

• bk: total quantity of commodity k

• nk: number of boxes in commodity k

• eh: sorting capacity of hub h

Indicators

• δpij =


1, if path p includes arc (i, j)

0, otherwise

• δph =


1, if path p passes through hub h

0, otherwise

• δθi =


1, if node i represents a point in time at airport θ

0, otherwise
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Decision Variables

• xkp: fraction of bk on path p ∈ P k for k ∈ K

• yfij: number of facilities, f ∈ F , installed on (i, j) ∈ A
Using this notation, the arc-path formulation for the Express Shipment Service Net-

work Design problem as defined in this work can be written,

min
∑

(i,j)∈A

dfijy
f
ij (3.4a)

s.t.
∑
k∈K

∑
p∈Pk

δpijb
kxkp ≤

∑
f∈F

ufyfij ∀(i, j) ∈ A (3.4b)

∑
p∈Pk

xkp = 1 ∀k ∈ K (3.4c)

∑
j:(i,j)∈A

yfij =
∑

j:(j,i)∈A

yfji ∀i ∈ N, f ∈ F \ F̃ (3.4d)

∑
(i+,j)∈A

yfi+j ≤ nf ∀f ∈ F \ F̃ (3.4e)

∑
f∈F̂

yfij ≤ 1 ∀(i, j) ∈ A (3.4f)

∑
k∈K

∑
p∈Pk

δphnkx
k
p ≤ eh ∀h ∈ H (3.4g)

0 ≤ xkp ≤ 1 ∀p ∈ P k, k ∈ K (3.4h)

yfij ∈ Z+ ∀(i, j) ∈ A, f ∈ F (3.4i)

As in the network loading problem, the objective, Eq. 3.4a, is to minimize the total

fixed cost of installing vehicles on arcs. On its own, commodity flow cost is inconse-

quential compared to the cost of flying an aircraft and so in the model only installing

vehicles to move commodities incurs a cost. The forcing constraint, Eq. 3.4b, is a

combination of the forcing constraints from the node-arc and path-based SNDP for-

mulations. The cover constraint, Eq. 3.4c, is unchanged from the SNDP path-based

formulation. The vehicle balance constraint, Eq. 3.4d, is unchanged from the SNDP

node-arc formulation. Equation 3.4e is the hull count constraint. Note that for the
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vehicle balance, wrap around and hull count constraints, only aircraft are constrained

while trucks are not. Trucks are assumed to be so numerous and cheap that the

are not subjected to the same constraints necessary to monitor aircraft movements

throughout the network. The next equation, Eq. 3.4g, is the sort capacity constraint.

Finally, Equations 3.4h and 3.4i are the bounds on the flow and design variables.

3.4 Summary

This chapter presented the mathematical formulation of the express shipment prob-

lem as a mixed integer program called the Express Shipment Service Network Design

problem (ESSND). The ESSND is an extension of the Service Network Design prob-

lem, which is an extension of the network design problem. The connections of the

ESSND to these more general problems was illustrated as well as the necessity of

adding additional problem-specific constraints.

One of the primary motivations behind formulating the express shipment problem

mathematically was so that computational solution methods could be employed in

solving this large, complex optimization problem. In this chapter, it was briefly

mentioned that formulating a problem as a mixed integer program was desirable

compared to other problem structures involving integral variables because its linear

constraints and objective function makes it generally easier to solve (there are, of

course, exceptions). In the next chapter, Ch. 4, solution methods for MIPs in general

as well as for MIPs related to the express shipment problem will be discussed.
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CHAPTER IV

METHODS FOR SOLVING MIXED INTEGER

PROGRAMS, THE ESSND AND RELATED PROBLEMS

This chapter discusses methods for solving mixed integer programs and provides a

review of the literature focused on solution approaches for the ESSND and related

problems. In order to provide context for the review of the literature, and set the stage

for the solution methods considered for the express shipment problem, the common

solution methods for solving MIPs is discussed first. Solution methods are catego-

rized according to whether they are a monolithic approach, an exact decomposition

approach or a heuristic approach. The methods in each category are discussed in

brief in order to facilitate future discussions within this work.

The second half of this chapter focuses specifically on how these MIP solution

methods have been applied to other ESSND problems and ESSND-related problems.

The body of work in the literature that focuses directly on the express shipment

problem is small compared to some other transportation fields, but that body of

work is covered extensively in Section 4.2. Related problems including the letter

mail/postal package delivery problem, LTL shipping problems, and passenger airline

problems are covered in lighter detail in the following section.

4.1 A Brief Overview of Solution Approaches for Mixed
Integer Programs

Since the introduction of linear programming during WWII and mixed integer pro-

gramming shortly thereafter, the use of mathematical programming to solve real-

world problems has become wide-spread and popular in both academia and industry.[67]

The body of research devoted to efficiently formulating and solving mathematical
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programs is immense and can be found in countless books, journals, and conference

proceedings today. As such, this work will only provide a brief overview of the most

common methods for solving mixed integer programs in an effort to provide context

for a) the problem-specific solution approaches and techniques found in the literature

and summarized in this chapter, and b) the solution approaches mentioned and used

in this work.

4.1.1 Linear Programming Solution Methods

Before a discussion of solution methods for mixed integer programs can meaningfully

begin, solution methods for linear programs, the fully-continuous version of MIPs,

must be presented. Linear programming was first introduced and solved by Leonid

Kantorovich in 1939 in the USSR but it did not initially catch on. It was indepen-

dently developed and solved in 1947 by George Dantzig who invented the simplex

method to solve linear programs.[67, 177] In the same year, John von Neumann pro-

posed the concept of duality, and together these two concepts revolutionized mathe-

matical optimization. Since that time, the simplex method, with just a few modifica-

tions and variations, has been a cornerstone of solving LPs. In practice, it performs

very well in the vast majority of applications but unfortunately has poor worst-case

performance. For many years, it was not known if LPs were in P , but in 1979 Leonid

Khachiyan showed that the problem was indeed solvable in polynomial time. Unfortu-

nately, although it was a theoretical breakthrough, in practice Khachiyan’s algorithm,

the ellipsoid method, performed poorly.[31] Not long after, in 1984, Narendra Kar-

markar presented an interior-point method for solving LPs in polynomial time, which

was both a practical as well as theoretical breakthrough.[30, 125]

Today, simplex and interior-point (also called barrier) methods are the two pri-

mary approaches for solving linear programs. They form the backbone of modern

commercial solvers and approaches. Not only are they used to solve linear programs,
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but they are used to solve crucial subproblem linear relaxations within mixed integer

program solution methods.

At the risk of oversimplifying both algorithmic approaches, the simplex algorithm

operates by systematically moving from vertex to vertex of the convex polyhedron

defined by the LP linear inequality constraints. Interior-point methods, by contrast,

move within the interior of the feasible region to find optimal solutions at the vertices.

A further dive into LP solution methods is beyond the scope of this brief summary,

but the most important takeaway should be the fact that linear programs can be

solved extremely quickly in practice using simplex and interior-point methods, and

they are provably solvable in polynomial time. There are a multitude of resources for

the reader interested in studying this topic further, including, but not limited to, the

texts by Bertsimas and Tsitsiklis (1997)[29], Chvátal (1983)[45], Schrijver (1998)[177],

Vanderbei (2014)[193], and for a more historical look, Dantzig (1963)[66].

4.1.2 Monolithic Solution Methods for Mixed Integer Programming

When it comes to solving integer programs or mixed-integer programs, two funda-

mental algorithms have been developed: 1) the cutting plane method, and 2) the

branch-and-bound algorithm. Of the two, the general cutting plane algorithm was

developed first, by Gomory in 1958 (a TSP-specific cutting plane was first developed

by Dantzig, Fulkerson and Johnson in 1954).[55, 65, 99, 100, 101] Branch-and-bound

(B&B) was first introduced by Land and Doig in 1960 and named by Little et al. in

their work on the traveling salesman problem in 1963.[136, 141] Both of these algo-

rithms seek to address the same difficulty in integer and mixed-integer programming.

That difficulty is that the constraints of these mathematical programs rarely define

the convex hull of the integer space, and therefore efficient algorithms developed for

linear programs such as simplex and interior-point methods will not produce integral

solutions and therefore cannot be used in isolation to solve IPs and MIPs to integral
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optimality. Since these methods do not require a user to reformulate the MIP, they

will be called monolithic solution methods in this work.

4.1.2.1 Cutting Plane Methods

Cutting plane methods are based on the observation that if a linear programming

solution method were given the convex hull of the set of feasible integer points, then

it would find the optimal integer point. Cutting plane methods successively add

additional linear inequalities (cutting planes) to the original formulation in order to

eventually define the convex hull of the integer feasible set, at least in the region of

the space relevant to finding the optimal solution. As long as none of the feasible

integer solutions are incorrectly cut off from the feasible space, an optimal integral

solution found by an LP solution method will be optimal for the original IP or MIP.

Cutting plane methods can be either problem-specific or general based on the type

of cutting planes used.

Figure 7 displays a notional application of cutting planes to find the optimal so-

lution to a two-dimensional IP. In the figure, the gray-shaded space represents the

polytope created by the linear constraints. The black dots within the polytope are

the feasible integer points within the space. Their convex hull is shown in gold. The

objective points towards the top right corner. If the integrality constraints were re-

laxed in the IP, yielding a formulation called the LP relaxation, the solution would

be the right-hand red circle, but this solution is infeasible in the original IP formu-

lation because the variable values are fractional. If the two shown cutting planes are

added to the original formulation, they trim down the polytope such that the optimal

integer point becomes a vertex of the polytope and can be found using LP solution

methods.

Unfortunately, cutting plane methods often suffer from two major drawbacks. One

drawback is that the problem of finding valid and useful cutting planes, called the
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Figure 7: Using Cutting Planes to Find an Optimal IP Solution

separation problem, can be a challenging problem in itself. The other major drawback

is that “pure” cutting plane methods often suffer from numerical instability and

convergence issues. Cutting planes added later in the algorithmic progression tend to

cut off less of the space relative to the earlier cutting planes and as a result, a large,

potentially prohibitive, number of cutting planes is needed to achieve convergence.

In general, these issues, particularly the slow convergence make “pure” cutting plane

methods unappealing and seldom used.

4.1.2.2 Branch-and-Bound Methods

The other general approach to solving MIPs and IPs is branch-and-bound. Branch-

and-bound methods are an implicit enumeration approach wherein a tree of possible

solution values is successively created, explored and pruned until the optimal value

is found and proven to be optimal. B&B differentiates itself from a “brute-force”
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enumeration technique by intelligently exploring branches and pruning provably sub-

optimal and infeasible branches from the tree through the maintenance of solution

bounds.

A notional example of a branch-and-bound algorithm for a four-dimensional BIP

minimization problem as shown in Figure 8. Black nodes are those that are infea-

sible, gray nodes are those that have been pruned and the gold node is the optimal

solution. The numbers inside the nodes are simply identifiers and not necessarily the

progression of the algorithm. The numbers next to nodes 7-14 represent the upper

and lower bounds of the node.

Figure 8: Using Branch-and-Bound to Find an Optimal Solution to a BIP Minimiza-
tion Problem

The basic structure of a branch-and-bound method is to first, after initialization,

select a subproblem and solve its relaxation. This produces a lower bound in the case

of a minimization problem like the notional example in Fig. 8. Second, pruning is

attempted using what is known about the problem thus far, specifically the best-found

integer solution (if one exists) and the subproblem lower bound. Finally, termination

criterion is checked. If it is not satisfied, the problem is divided into subproblems
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and the algorithm returns to the first step until the termination criterion has been

satisfied.

B&B prunes branches through three criteria, 1) pruning by optimality, 2) pruning

by bound, 3) pruning by infeasibility.[202] The first criteria, pruning by optimality,

occurs when the lower bound and upper bound on a node in the tree are equal. This

means that the objective value of all solutions of that branch will have the same value

so it not worth the effort to evaluate them. This quality of having several solutions

that produce the same objective value is called degeneracy. Node 8 of Fig. 8 has

been pruned by optimality, and the solutions x = {0, 1, 1, 0} and x = {0, 1, 1, 1} are

degenerate. The second criteria, pruning by bound, occurs when, in the case of a

minimization problem, the lower bound is higher than the upper bound of another

node. This indicates that it is impossible for the optimal solution to exist on that

branch. Nodes 10 in Fig. 8 has been pruned by bound. The third criteria, pruning by

infeasibility occurs when a branch is found to be infeasible, which means that every

other node on that branch is also infeasible. Nodes 3 and 6 are pruned by infeasibility

in Fig. 8. Finally, nodes 11, 12, 13 and 14 are evaluated exactly and node 14 is found

to be optimal.

The major implementation decisions in the implementation of a branch-and-bound

algorithm are 1) the strategy for dividing the problem into subproblems, 2) the strat-

egy for selecting the next subproblem, and 3) how to relax the subproblem. For a

detailed discussion of the first two points, Nemhauser and Wolsey (1989)[160] and

Wolsey (1998)[202] are good resources. For the third implementation decision, the

most common decision, and the one used in commercial solvers, is to solve the LP

relaxation.

When the LP relaxation is used for the subproblem relaxations, division is per-

formed by adding linear constraints to the subproblem to define that particular sub-

problem. In the BIP example in Fig. 8, since the variables were binary, this was

58



done with equality constraints. However, if the domain of x ∈ Z4
+ and the relaxation

of the root node produced a fractional solution with x1 = 3.5, the algorithm could

create two branches, x1 ≤ 3 and x1 ≥ 4, by adding those constraints to the respective

subproblems. Finally, it should be mentioned that although this discussion has been

focused on solving integer programs, branch-and-bound is easily extended to mixed

integer programs.

One of the advantages of branch-and-bound from an implementation standpoint is

that, because an upper and lower bound is being maintained on the solution through-

out the entire progression of the algorithm, the user knows how far away the current

solution is from the absolute best-possible solution. Progress is tracked in terms of

the MIP optimality gap, which for a minimization problem, is defined as,

optimality gap =
|z∗IP − z¯|

max{z∗IP , ε}
(4.1)

where z∗IP is the current best found integral solution, z
¯

is the lower bound and ε

is a small number, perhaps 10−4, to avoid division by very small numbers. For

maximization problems, the gap is calculated exactly the same except that the upper

bound, z̄, is used rather than the lower bound.

The optimality gap is additionally useful as a termination criterion, particularly

for very large problems in which the B&B algorithm may never find and prove the

absolute optimal solution, the user may choose to terminate the algorithm at a pre-

determined optimality gap. In fact, the default termination criterion of Gurobi and

Cplex, two of the most popular commercial solvers, is set to be gap ≤ 10−4.

Although the optimality gap is a useful tool, it is important to remember that

it is the comparison of the best-found integer solution to the relaxation bound. As

a result, if a problem has a poor relaxation, the optimization bound may be poor

regardless of the actual quality of the integer solution. The optimality gap is an
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important and useful tool for understanding the progress of the branch-and-bound

algorithm, and it will be used and referenced extensively in this work, but it is not

without limitations.

4.1.2.3 Branch-and-Cut Methods

The shortcomings of general cutting plane methods were well-known from the start

and cutting plane methods were widely considered to be impractical, even by Gomory

himself.[102] As a result, for several decades, the branch-and-bound algorithm was

the accepted method of solving mixed integer programs. In particular, an extension

of branch-and-bound, called branch-and-cut (B&C), was considered to be one of

the most effective ways to solve mathematical programs containing integer variables.

Branch-and-cut combines the implicit enumeration of branch-and-bound with the

bound strengthening of cutting planes. However, these early branch-and-cut schemes

had to be specifically tailored to individual problems so, while they were effective,

they were also time-intensive and challenging to implement.[54]

A major turning point occurred in the mid-1990s when Balas, Ceria, Cornuéjols

and Natraj (1996) revisited Gormory’s original general cutting planes to improve

the progress of the branch-and-bound algorithm.[18, 55] From that work, interest in

Gormory cuts and other general cuts was revitalized and the general branch-and-

cut algorithm was developed. By adding cutting planes to the problem, the linear

relaxation is improved which, in turn, allows for more pruning and overall better

performance. The general B&C algorithm is now the foundation of modern integer

and mixed-integer programming solvers.

In addition to the techniques discussed here for the basic implementations of these

algorithms, commercial solvers employ sophisticated preprocessing algorithms that

serve to improve the formulation before it enters the branch-and-cut algorithm. Ad-

ditionally, heuristics are used to find integral solutions within the branch-and-bound
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tree. Finally, the branch-and-bound methods discussed here are the sequential imple-

mentation of branch-and-bound. Commercial solvers, when provided with multiple

processors, will typically default to using parallel branch-and-bound, which solves

subproblems simultaneously on different processors. For large problems with many

subproblems, this can result in a significant performance increase. Across the board,

commercial solvers such as CPLEX and Gurobi have far surpassed the basic imple-

mentation of the algorithms described here and in many cases have started to border

on “black box” solvers thanks to highly sophisticated proprietary additions and mod-

ifications that are not present in the literature. They are exceptionally good at using

these general algorithms to solve a wide array of MIP problem instances and employ-

ing them to solve MIPs, where appropriate, is an academic and industry standard

practice.

The literature on these algorithms stretches back nearly as long as integer and

mixed-integer programming has been a field of study, and the explanation here is in-

tended only to give the reader a sense of how the commercial solvers operate. There

is a plethora of sources on this subject, but some notable introductions and expla-

nations can be found in Clausen (1999) [47], Jünger et al. (2009)[122], Klotz and

Newman (2013)[134], Nemhauser and Wolsey (1989)[160], Papadimitriou and Stei-

glitz (1998)[165], Schrijver (1998)[177], and Wolsey (1998)[202].

4.1.3 Decomposition Solution Methods for Mixed Integer Programming

Decomposition is an approach in which a problem is split (reformulated) into smaller

problems which are solved separately, either sequentially or in parallel.[37] The pri-

mary motivation behind decomposition is to take advantage of subproblems within

the original problem which are easier to solve, reduce the non-linear effects of prob-

lem scaling, and exploit parallel computing advantages where possible. In this work,

methods which require a deliberate reformulation of the problem will be considered
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decomposition methods.

Decomposition in mixed integer programming typically falls into two primary

categories: 1) exact, and 2) approximate. Exact methods are those which utilize a

decomposition reformulation but are guaranteed to produce an optimal solution if

solved to completion. Approximate methods are heuristic approaches that do not

guarantee a globally optimal solution but may be valuable in transforming an oth-

erwise intractable problem into a tractable problem. For example, sequential opti-

mization approaches are common in passenger airline scheduling problems in which

flight scheduling, crew scheduling, and maintenance scheduling need to be optimized.

Heuristic approaches will be discussed in more detail in Subsection 4.1.4.

The two primary exact decomposition methods in mixed integer programming are

Dantzig-Wolfe decomposition and Benders decomposition. Dantzig-Wolfe decomposi-

tion was first formulated in 1960 for linear programs with “complicating constraints”

and has since been extended to mixed integer and integer programs.[51, 68, 191, 192]

It is a delayed column generation approach in which only a subset of the original

variables is included in the master problem at any given time. The master problem is

iteratively solved with subproblems, called pricing problems, which determine which

variables should be added and which should be removed from the master problem.

The primary idea behind Dantzig-Wolfe decomposition, and all column generation

techniques, is that in the optimal solution many of the variable values will be zero so

only the “necessary” variables need to be in the master problem.[72]

Closely related to Dantzig-Wolfe decomposition is another column generation ap-

proach called “branch-and-price” which combines column generation with the branch-

and-bound algorithm.[22, 21, 72, 174, 191] This can be taken a step further and

combined with a cutting plane algorithm to produce an algorithm called “branch-

and-price-and-cut.” Unlike branch-and-cut, there is no general branch-and-price al-

gorithm, and all implementations are problem-specific. As a result, branch-and-price
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has not been adopted into general commercial solvers.

Whereas Dantzig-Wolfe decomposition is a column generation approach, Benders

decomposition can be thought of as a row generation approach. Benders decom-

position is appropriate in cases where there are “complicating variables,” which are

variables that make the problem much more difficult to solve. The natural application

of this approach is mixed integer programming because the integrality constraints on

a subset of the variables makes the problem significantly more difficult to solve. It

was originally formulated by J.F. Benders in 1962 and has recently become a pop-

ular decomposition approach.[27, 168] In Benders decomposition for mixed integer

programming, the master problem contains only the integer variables and the con-

straints containing integer variables, thus constituting a relaxation of the original

problem. The subproblems serve to successively add cutting planes (i.e. rows) to the

master problem to drive it to a feasible optimal solution.

For linear programs, Benders decomposition is closely related to Dantzig-Wolfe

decomposition and Lagrangian optimization.[139] When the problem is purely linear

and continuous, solving a problem via Dantzig-Wolfe decomposition is equivalent to

solving the dual of the problem with Benders decomposition. Lim (2010) additionally

shows that for LPs, solving a problem with Benders decomposition is closely related

to solving the problem using Lagrangian optimization. These relationships do not

hold true for problems with integral variables due to duality relationships.

Lagrangian relaxation is another solution method well-suited to problems with

complicating constraints, though it is not a decomposition method in the same style

as Dantzig-Wolfe decomposition and Benders decomposition. Lagrangian relaxation

seeks to make difficult problems easier to solve by moving complicating constraints to

the objective function and using a penalty term to enforce the constraint. For more

information specific to Lagrangian relaxation, Fisher (1981)[83], Fisher (1985)[84],

Frangioni (2005)[88], and Nemhauser and Wolsey (1989)[160] are valuable resources
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among others.

Of these decomposition approaches, Benders decomposition is the most appropri-

ate for the Express Shipment Service Network Design problem according to the litera-

ture because of the presence of complicating variables. Benders decomposition is used

as an exact decomposition benchmark in this work and a more extensive explanation

can be found in Chapter 8. For more information on the other decomposition ap-

proaches, Conejo et al. (2006)[51] focuses exclusively on mathematical programming

decompositions, additionally mathematical programming texts such as Bertsimas and

Tsitsiklis (1997)[29], Nemhauser and Wolsey (1988)[160], Schrjiver (1998)[177] and

Wolsey (1998)[202] are valuable resources in addition to the approach-specific re-

sources mentioned above.

4.1.4 Heuristic and Metaheuristic Solution Methods for Mixed Integer
Programming

The solution methods described thus far have been exact (also called “complete”)

methods which are guaranteed to produce the optimal solution if they are run to con-

vergence. However, these solution approaches for mixed integer programs can be very

slow to converge.1 Since combinatorial optimization problems and integer programs

are NP-hard, in the worst case solving these problems may require exponential time

to solve exactly, assuming P 6= NP .[90]

In some situations, the long computational runtime may be acceptable, but for

many practical real-world problems, faster solution times are desired, even at the

expense of exact optimality. In response to this need, many heuristics (approximate)

and metaheuristic methods have been developed to produce high-quality solutions in a

fraction of the time needed by exact approaches. Heuristics are “rules of thumb” used

to obtain a “good enough” solution. By their nature, implementations of heuristic

1For example, the current best-found solution to the Mona Lisa TSP Challenge, a 100,000 city
TSP instance created by Robert Bosch, took 11.5 CPU years to obtain a 0.0019% gap.[34, 187]
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approaches tend to be highly-problem specific, but many can be categorized as either

1) constructive, or 2) local (neighborhood) search.

Constructive heuristics are those that successively build a solution from nothing

until a complete solution instance is formed. Problem-specific rules are used in order

to decide how to proceed throughout the construction. For example, a feasible TSP

tour could be constructed by always selecting the nearest unvisited city until all cities

have been visited, then returning to the tour origin.[26] A local search heuristic starts

with a feasible solution and explores its “neighborhood” to find the best local solution.

For example, in the 2-opt local search heuristic for the TSP, a complete tour is first

created by any method, then the algorithm swaps any nodes where the route crosses

over itself.[64] Heuristics can be extremely fast and, if well-constructed, produce high-

quality solutions. However, they can be difficult to adapt to other problems, tend to

get stuck in local optima, and may exhibit very poor worst-case behavior.[173]

Metaheuristics are more generalized approaches that typically apply a heuristic

approach with a formalized higher-level guidance that seeks to alleviate the short-

comings of basic heuristics. As explained by Voß et al. (2012), “A metaheuristic is

an iterative master process that guides and modifies the operations of subordinate

heuristics to efficiently produce high-quality solutions. It may manipulate a complete

(or incomplete) single solution or a collection of solutions at each iteration. The sub-

ordinate heuristics may be high (or low) level procedures, or a simple local search, or

just a construction method.”[196]

To date, many metaheuristics have been developed and range from simplistic to

complex. In light of the number and variety of metaheuristic approaches, it is more

illuminating, at least in this brief overview, to discuss classifications for metaheuristics

rather than attempt to enumerate even a subset of the algorithms. Classifications

illuminate common schemes undertaken by metaheuristics without needing to explain

the particulars of the approach. Blum and Roli (2003) present an excellent survey of
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metaheuristics and their classification scheme is presented here.[32] They identify the

following ways to classify metaheuristics,

• Population-based vs. single point search

• Dynamic vs. static objective function

• One vs. various neighborhood structures

• Memory usage vs. memory-less methods

• Nature-inspired vs. non-nature-inspired

First, algorithms may either keep track of a population of solutions or a single solution

at a time. Algorithms that work only on a single point are called “trajectory meth-

ods” because they follow the “trajectory” of that point through the space. Genetic

Algorithms [40, 113, 114, 183] and Particle Swarm Optimization [48, 127, 166, 195]

are examples of population-based methods. Examples of trajectory-based methods

are Variable Neighborhood Search [109, 110, 158], Tabu Search [94, 95, 96, 97] and

Simulated Annealing [133, 189], though it should be mentioned that population-based

variants exist for many trajectory-based approaches. Second, some metaheuristics,

like Guided Local Search [197, 198, 199], modify the objective function throughout

the progression of the algorithm in an effort to escape local optima, while other meth-

ods keep the objective function as it was originally formulated. Third, some methods,

like Variable Neighborhood Search, diversify the search space by changing the means

of improving the solution throughout the algorithm. Most, however, retain the same

“fitness landscape topology” throughout the progression. Additionally, methods dif-

fer in their use of memory. Some methods, like Greedy Randomized Adaptive Search

Procedure (GRASP) [81, 169] make decisions solely on the information available in

the current solution. Other methods, like Tabu Search “recall” results from past

solutions and use that information to make decisions. Finally, many metaheuristics

are inspired by natural processes (e.g. Genetic Algorithms, Ant Colony Algorithms),

but aside from explaining the inspiration behind the approach, it is not a helpful
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classification in understanding the underlying structure of the algorithm.

A comprehensive survey of metaheuristics is beyond the intention of this brief

introduction, particularly since metaheuristics are not a focus of this work and a

multitude of books and survey papers have already been written on metaheuristics.

In addition to the previously mentioned survey by Blum and Roli (2003)[32], for more

information on metaheuristics the interested reader may wish to consult Boussäıd et

al. (2013)[35], Gendreau and Potvin (2010)[91], Glover and Kochenberger (2006)[98],

Luke (2009)[143], Talbi (2009)[184] as well as many others.

4.2 Express Shipment Service Network Design Problem Anal-
ysis and Solution Approaches

Compared to other transportation planning problems and applications such as less-

than-truckload (LTL) shipping, passenger airline operations, commercial and cargo

rail operations and oceanic shipping, express shipment has received relatively little

focus in the literature. The largest body of work produced by one group of researchers

was the product of a collaboration between MIT and UPS in the late 1990s and

early 2000s. That collaboration focused on solving the express shipment problem

for UPS’s Next-Day Air (NDA) network (only overnight packages). The products

of that collaboration are detailed in Subsection 4.2.1. Next, solution approaches

for the express shipment problem from other research groups and collaborations are

summarized in Subsection 4.2.2. Finally, research studying the express shipment

problem, airlines and companies is summarized in Subsection 4.2.3.

4.2.1 Collaboration Between MIT and UPS

A number of papers and Ph.D. theses resulted from the collaboration between MIT

and UPS, and most of the solution approaches fall into three major categories, 1) col-

umn generation, 2) composite variable formulations, and 3) heuristic. Unsurprisingly,

these categories echo those presented earlier in this chapter in Section 4.1.
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The first work in the collaboration was that of Barnhart and Schneur (1996).[24]

They solve the air network design problem for express shipment using a column

generation approach. They only solve the problem for next-day delivery, which they

model as an integer program. Notably, aircraft capacities are not explicitly enforced;

instead, the cost of a route that exceeds the aircraft capacity includes the cost of

using belly space in passenger aircraft. Then, they solve the LP relaxation and use

explicit column generation to find the final solution.

Kim (1997)[129], in his Ph.D. thesis, provides an approach to solving large-scale

service network design problem with a case study focus on express service network

design problems. Kim presents three formulations for the SNDP 1) a node-arc formu-

lation, 2) a path-based formulation, and 3) a tree-based formulation. He decides that

the node-arc formulation is inferior, and exact and approximate solution methods are

developed for the path-based and tree-based formulations. Network reduction heuris-

tics are also presented to remove unnecessary options in the underlying time-space

graph. Kim additionally presents formulations for the express shipment application

of the service network design problem formulations, and cutset inequalities for the

ESSND problem to improve the lower bounds of the problem. He finds that the

ESSND problem is too large to solve for real-world applications so he presents an

approximate model and a heuristic solution approach. The work is summarized in

the journal publication by Kim et al. (1999). [132]

Another paper based on the work in Kim’s Ph.D. work is that of Kim and Barn-

hart (1997).[130]. In that paper, they discuss large-scale service network problems

and, again, use the ESSND problem as an example. Problem size, loose bounds and

the fact that problem is NP-hard are all cited as challenges to solving the problem.

They use a path-based model and employ a branch-and-price-and-cut solution ap-

proach to solve it. In another publication, Kim and Barnhart [131] discuss challenges

of the SNDP and present an algorithm from Kim’s Ph.D. work that uses synchronized
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column generation and row generation.

Barnhart et al. (2002)[23] provide an alternative heuristic solution technique to

the models presented in Kim’s Ph.D. work (and related papers). They decompose the

problem into the aircraft route generation and the package movement subproblems.

The subproblems are then solved iteratively. Aircraft routes are generated first, then

shipment flows are solved on the network (a multicommodity flow problem) and

“promising route variables” are fixed. If there is enough capacity on the network to

move all of the commodities, the algorithm ends. If not, commodities that can be

flown on the fixed routes are removed from the model. If the model is then small

enough to be solved exactly, it is solved exactly using the approach from Kim et al.

(1999)[132], and otherwise new routes are generated and the process begins again.

In his Ph.D. thesis, Armacost (2000)[11] presents an alternate formulation for the

ESSND problem that uses “composite variables.” These variables represent aircraft

route combinations that also capture package flows. This eliminates the need for the

flow decisions. Additionally, Armacost shows his composite variable formulation to

have tighter bounds than the conventional formulation and proves the formulation to

be at least as strong as the network design-based formulation. Thanks to this tighter

formulation, realistic problem instances can be solved in acceptable time frames. Ar-

macost demonstrates the performance of his approach using a real-world problem

instance from UPS and reports significant potential cost savings. However, his ap-

proach only covers overnight delivery volume and assumes a pre-set sort assignment

for each origin-destination pair. The work of his Ph.D. thesis is summarized in the

journal publication, Armacost et al. (2002)[12], and a summary of its implementation

is presented in Armacost et al. (2004)[13]. The applicability of composite variable

formulations to other transportation planning and logistics problems is studied in the

Ph.D. thesis by Cohn (2002)[50].

In his Ph.D. thesis, Shen (2004)[178], expands the work of Armacost (2000)[11] to
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two-day volume and flexible hub assignment. The addition of these options in the de-

sign space greatly expands the size of the problem. In response, he presents three col-

umn generation approaches, 1) “näıve” column generation, 2) “aggregate information-

enhanced” column generation, and 3) “disaggregate information-enhanced” column

generation. Shen finds that the disaggregate information-enhanced column generation

approach is the most appropriate. Additionally, Shen introduces another formulation

for the ESSNDP entitled the “gateway cover and flow formulation.” The work is

summarized in the work by Barnhart and Shen (2005)[25].

One fundamental theme through this previous work is the modeling of the prob-

lem as a mixed integer linear program. No fewer than six different mathematical

formulations are presented, but all are either mixed integer programs or integer pro-

grams. This modeling choice is natural given the strong precedent of solving other

transportation problems using mathematical programming, and the strong similari-

ties of the Service Network Design problem (SNDP) to the express shipment problem

as shown extensively in Kim (1997).[130]

4.2.2 ESSND Problem Solution Methods

The collaboration between MIT and UPS is not the only work that has focused on

the express shipment problem. Others have also tackled the problem and the closely

related air cargo problem. Their work is summarized here.

In perhaps the first academic handling of this problem, Marsten and Muller

(1980)[153] optimize the service network and aircraft routing of the Flying Tiger Line,

an all-cargo airline. They build a mixed integer program based on “spider graphs”

which capture the hub-and-spoke network structure of the airline but do not account

for time. Then, they schedule flights to and from the hub with intermediate stops,

if feasible. They consider both the night network and the day network but solve the

two problems sequentially. The hull balance necessity between the two networks is
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handled by forcing the day network to use whichever aircraft was left at a spoke by

the night network. They additionally consider prime (night) cargo, day cargo, and

second-day cargo. The networks were smaller then they are today, but Marsten and

Muller are able to solve real-world problems and “[determine] the design of Flying

Tiger’s service network for the mid-80’s,” which at that time, was still to come. The

model was also used to perform strategic studies for the company.

Derigs et al. (2009)[71] present a model and solution method for incremental

planning and a model and solution for integrated planning for air cargo. The goal

of their approach is to choose the best combination of flights, given a list of manda-

tory flights and optional flights. The incremental planning approach decomposes the

ESSND problem into flight selection, route plan generation and schedule evaluation

subproblems. The modules are modified iteratively until a final solution is found. The

integrated planning approach uses column generation and a shortest path algorithm

to define routes.

Derigs and Frederichs (2013)[70] build on their previous work and expand the

scope of their problem instance. As before, they solve the ESSND problem for the

case in which a pre-existing schedule must be optimally modified. They identify, with

the support of the literature, a decomposition into flight selection, fleet assignment,

rotation planning and cargo routing subproblems. They provide subproblem formu-

lations and present a branch-and-price-and-cut approach to solve the subproblems.

Li et al. (2006)[137] solve the integrated cargo routing and fleet assignment prob-

lems for a combination cargo-passenger carrier using Benders decomposition. They

first identify the cargo routing and fleet assignment subproblems then present an in-

tegrated formulation which maximizes profits. They use Benders decomposition to

solve the overall problem, which they argue decomposes back into a cargo routing

subproblem and a fleet assignment feasibility problem. They report significant im-

provements in runtime through the use of Benders decomposition though they are
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not clear on the scope of their test problems.

Zäpfel and Wasner (2002)[206] study the optimality of hub and spoke networks

for parcel service providers. They determine that a pure hub and spoke topology is

not always appropriate and instead, including shortcuts provides a better solution.

They use an iterative algorithm to perform the line haul network analysis that suc-

cessively reduces the design space by eliminating poor options. They note that for

large problems the design space is not reduced sufficiently to produce an optimal

solution so a local search algorithm is used. They also study the joint line haul and

pickup/delivery (i.e. last mile) problem.

In a follow-on to their 2002 paper, Wasner and Zäpfel (2004)[200] tackle an ex-

panded scope parcel service problem which includes hub location, last mile service,

and line haul vehicle routing. This results in a very large, complex and interrelated

model. In response, they develop an iterative heuristic algorithm that decomposes the

problem into subproblems and features several feedback loops to converge on a final

solution. The algorithm is applied to an Austrian postal network and the potential

for very large savings is found.

Louwerse et al. (2014)[142] solve a form of the ESSND problem using column

generation. They also find that the problem is too large to solve as a single MIP.

In their formulation, they divide the problem into movements between depots and

hubs, and movements between hubs. They use the composite variable formulation

from Armacost et al. (2000,2002,2004)[11, 12, 13] to strengthen their formulation.

Their solution approach uses column generation and a local search algorithm then

iterates until convergence. They find large cost improvements in their test networks

over networks used by a real-life carrier.

Cohn et al. (2007)[49] and Root and Cohn (2008)[172] develop an alternative for-

mulation for expressing the line haul problem for ground-based express package car-

riers. In their alternative formulation, variables represent combinations of loads and
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their corresponding routings rather than explicitly enforcing these qualities through

the constraints. This alternative formulation strengthens the LP relaxation, reduces

the number of constraints and allows the inclusion of operational considerations that

would otherwise be difficult or impossible to include. However, their approach is en-

tirely focused on the loading and routing of trailers. It is unclear whether this could

be scaled to an airline application in which there are diverse vehicle capacities.

Grünert and Sebastian (2000)[105] study optimization models for postal and ex-

press shipment companies. They identify important planning tasks within these com-

panies and discuss how they relate to optimization models. Those models are then

used for decision support. Analyses are performed on a German case study provided

by Deutsche Post AG.

Büdenbender, Grünert and Sebastian (2000)[38] present a network design problem

for routing letter mail using direct flights rather than a hub-and-spoke. Their argu-

ment is that the time gained by avoiding hub-and-spoke flight enables more trucking.

They model the problem as a capacitated warehouse location problem and present a

hybrid tabu search/branch-and-bound algorithm to solve it. They show results for a

German letter mail network and are capable of solving real-world instances in accept-

able time. Grünert, Sebastian and Th arigen (1999)[104] present a decision support

system that incorporates the group’s previous developments into a decision support

system for Deutsche Post AG.

Finally, there are a few papers that study tangential parts of the express ship-

ment operations that I will mention briefly. Schenk and Klabjan (2008)[175], and

Schenk and Klabjan (2010)[176] focus on the sorting of packages at stations and

ramps and optimize the problem using approximate dynamic programming. Yaman,

Karasan and Kara (2012)[204] study the time at which demand should be released

from hubs in order to enable next-day delivery in a ground-based express shipment

73



network. Li, Miao and Wang (2013)[138] study the challenge of USPS to intelli-

gently allocate airmail to commercial (i.e. FedEx) flights. Smilowitz, Atamtürk and

Daganzo (2003)[181] formulate a model and solve the problem of moving deferred

volume in an express shipment network via aircraft with empty space. That is, they

look to reduce overall cost by moving truckable volume via already-scheduled aircraft

(whose cost is already committed). Limbourg, Schyn and Laporte (2012)[140] study

the problem of loading pallets and containers into cargo aircraft subject to aircraft

control and safety constraints with the goal of optimally positioning the center of

gravity of the cargo.

4.2.3 ESSND Problem Analysis

Chan and Ponder (1979)[44] study the then-new Federal Express Corporation (FEC)

a few years after its start in 1973. They discuss the advantages of FEC’s hub-and-

spoke topology, as well as the need for smaller regional “mini-hubs.” They also discuss

management practices at the company, including the use of the Clarke and Wright

Algorithm [46] to develop the monthly airline route structure and schedule.

Hall (1989)[107] builds off a previous work, Hall (1985)[106], and analyzes the

effect of time zones and overnight restrictions on overnight package air networks. Hall

calculates the minimum time between customer drop-off at the end of the day and the

latest delivery time the next day for U.S. markets (he calls these “time windows”).

He also calculates the minimum sort time for U.S. markets, which is defined as the

“time required to sort all shipments if all shipments arrive at once.” Hall finds that

for a longer sort time, it is beneficial to place the hub east of geographic center in

order to take advantage of the time zones. Hall also studies routing strategies for

multi-hub topologies in which a package has several sorting location options.

O’Kelly (1998)[161] also addresses hub placement, particularly in the context of

“user-attracting” systems, such as passenger airlines, versus “delivery systems” such
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as cargo airlines. He makes the point that since the customers of cargo airline are not

concerned by the aircraft routings in the network (unlike passenger airlines), cargo

airline companies are free to place their hub facilities in locations that produce the

best routings. He cites this as the reason for the concentration of air hubs in the Ohio

Valley.

Continuing on the topic of network topology studies, Bowen (2012)[36] studies the

FedEx and UPS domestic and international air networks, particularly in the context

of the theoretical modeling work done previously by Hall (1989), O’Kelly (1998),

and others. He finds that predictions made in the academic literature have been

substantiated in the years since their publications. Additionally, he notes, “[t]he

network configurations adopted by FedEx and UPS strike a balance between sorting

costs and transportation costs. Their networks also display the importance of time,

not only in moving goods from place to place but also in affording the integrator’s

customers the flexibility to stretch the work-day.” Additionally, he finds that despite

the addition of secondary hubs, air integrator networks are highly centralized at a

major hub; surpassing the centralization of passenger airlines.

Kuby and Gray (1993)[135] introduce a network design problem called the “hub

network design problem with stopovers and feeders” and analyze the performance of

the network in the context of the, then-named, Federal Express Corporation. They

formulate a mixed integer programming (MIP) model for the problem and test it on

the western portion of the Federal Express network. Kuby and Gray compare the hub-

and-spoke network with stopovers and feeders to the pure hub-and-spoke network.

They find significant cost savings for the hub-and-spoke network with stopovers and

feeders.

Yang and Kornfeld (2003)[205] study the hub and spoke network in the context of

next-day air delivery. They find that the pure hub and spoke network is not always

the optimal network structure and sometimes inclusion of direct flights is necessary.
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However, their model is simplistic. It only considers three different aircraft types,

and there is no limit on the fleet size. They find that solving the whole model is

intractable for realistic problem sizes using Cplex so they reduce their analysis to a

network of 7 cities (from 26 cities) and solve for the exact solution.

Mason et al. (1997)[155] provides an overview of the use of operations research

in the start of FedEx, explaining how operations research was used to make critical

decisions in the early days of the company. They tell the story of the analysis behind

determining the initially served cities, engine maintenance scheduling, choosing new

hubs and network structure, human resources planning, and package tracking. The

paper is not mathematically intensive but illustrates the importance of OR analysis

in the field.

Similarly, Fleuren et al.(2013) [85] provides an overview of the importance of OR

at TNT Express, which at that time was an independent express shipment carrier

predominant in Europe. It has since been acquired by FedEx. Fleuren et al. describe

the development of the routing and network scheduling analysis, pickup and delivery

(i.e. last mile) operations analysis, and supply chain model.

Heinitz and Meincke (2014)[111] present work on an economic problem related

to the ESSNDP. In their work, they seek to ensure that scheduled itineraries for air

cargo demand will be feasible based on expected cargo flows. A multi-step iterative

algorithm is used for the network assignment analysis which determines a load plan

for each aircraft flight in the network.

Mahapatra (2005)[152], in his Masters Thesis, develops a MIP model for express

shipment companies and performs sensitivity studies for different operational strate-

gies (whether or not to allow intermediate stops) and network configurations (single-

hub vs. multi-hub). They find that allowing a single intermediate stop and using

regional hubs produces the lowest cost combination for current express shipment

company (UPS).
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4.3 Solution Approaches for Related Problems

Although the literature focused on the express shipment problem is not extensive, the

body of work that focuses on other transportation problems is large, as a whole. Oper-

ations research and optimization has been applied to a wide variety of transportation

planning and logistics problems, some of which are very similar to the express ship-

ment problem. Some of those problems are presented in this section. Postal delivery,

passenger airline operations and less-than-truckload shipping are the most similar to

express shipment and receive a more in-depth treatment while others are mentioned

in brief.

4.3.1 Relevant Survey Papers

Crainic and Laporte (1997)[61] provide a structured organizational framework for clas-

sifying operations research models and problems in terms of the recognized decision-

making levels: strategic, tactical and operational. Crainic and Laporte categorize

common freight transportation-related OR models such as location planning, net-

work design, multimodal planning, service network design, vehicle routing and crew

scheduling, amongst others. They discuss qualities and solution methods for these

OR models and problems.

Crainic (2000)[59] provides a literature survey of service network design problem

models and related mathematical programming developments, particularly focused

on the application to LTL service networks. In a discussion of common solution

methods, Crainic particularly highlights branch-and-bound and column generation.

Additionally, he presents a classification method for SNDPs and formulations.

Wieberneit (2008)[201] provides a survey of service network design in the context

of freight transportation for tactical-level planning. The survey includes sections

on the Express Shipment Delivery Problem and the Lettermail Problem; as well as

covering work done one LTL operations in North America, multimodal LTL operations
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in Europe and road LTL operations in Europe.

Gorman et al. (2014)[103] also review the use of OR in freight transportation.

They review network design, asset planning, terminal management and load manage-

ment for oceanic freight, rail intermodal freight, less-than-truckload freight and air

freight. Within their coverage of air freight, they focus on network design and man-

agement, and revenue management. They point out that while more work has been

done on the operations and revenue management of passenger airlines, the problems

are distinct.

4.3.2 Lettermail/Postal Package Delivery Problems

Of the real-world applications of network design, the letter mail/postal package de-

livery problem is the closest to the express shipment problem. The two problems are

conceptually nearly identical: pickup and deliver parcels in a quick, efficient man-

ner while respecting time constraints. However, the postal package delivery problem

differs from the express shipment problem in the fact that it is typically entirely

ground-based, includes last mile service and the selection of sorting facilities may be

part of the problem definition. The fact that the operations are ground-based usually

simplifies the vehicle decisions because the vehicles are typically all the same type of

truck, but the fact that last mile service is included as well as sort facility placement

greatly complicates the problem.

Çetiner (2003)[41] and Çetiner, Sepil and Süral (2010)[42] develop an iterative

two-stage heuristic to solve the hubbing and routing problem for postal delivery. In

the first stage, hubs are determined in the network and in the second stage, routes

through these hubs are generated. The two stages iterate in order to produce a

feasible good solution. They apply this algorithm to a case study from the Turkish

postal delivery system.

Ernst and Krishnamoorthy study the p-hub median problem and apply it to a
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postal delivery network in a series of papers. Ernst and Krishnamoorthy (1996)[77]

present a new LP formulation for the single-allocation p-hub median problem which

is smaller than others in the literature. They additionally developed a simulated-

annealing-based heuristic which produces good solutions and is used to provide and

upper bound for a branch-and-bound method. Ernst and Krishnamoorthy (1998)[78]

expands the scope of the problem to the multiple-allocation p-hub median problem

and presents a heuristic based on shortest paths to solve it as well as new MILP

formulations for the problem. Ernst and Krishnamoorthy (1999) return to their

earlier single-allocation p-hub median problem and their approaches for solving it.

Ji and Chen (2007)[120] study the vehicle routing problem in the context of postal

operations. They model the problem as an integer program and solve a problem

instance from the Hong Kong Post using CPLEX. The model is intended to generate

mail routes on a daily basis, a task that is currently performed by hand.

Droździel et al. (2017)[73], in a short study, analyze an existing postal network,

identify inefficiencies and, using a MIP, optimize the hub placement to reduce costs.

They find that if the Polish Post SA in Lublin province were to move the provincial

sort, cost savings could be realized.

A survey paper by Alumur and Kara (2008)[9] focuses on network hub location

problems in general but touches on the contributions to the general problem from

postal delivery applications. Some of the notable contributions to the network hub

location problem are thanks to postal delivery applications, particularly the work of

Ernst and Krishnamoorthy.

4.3.3 Passenger Airline Problems

Planning problems for passenger airlines share some similarities to those in express

shipment. The most obvious, of course, is the goal to efficiently utilize an often large

and expensive aircraft fleet with diverse capacities in a large network. Additionally,
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passenger airline networks tend to have hub-and-spoke topologies, though they tend

to include more point-to-point flights than express shipment. The two problems differ,

primarily, in the customer demand and the role that takes in the decision making. In

passenger airlines, passenger preference has a huge impact on the scheduling of flights

since passenger prefer point-to-point flights at convenient times. If a passenger airline

fails to provide these flights, they risk losing those passengers to a competitor. As a

result, passenger preference plays a major part in the fleet allocation and scheduling

problems in passenger airlines, but this problem is non-existent for cargo airlines.

However, passenger airlines do not need to “sort” their passengers as cargo airlines

need to do with packages. Passenger airlines only need to make sure that there exists a

feasible connection for passengers. Finally, express shipment operates in two distinct

periods through the day, night network and day network, with distinct points in time

where all the aircraft may be on the ground or flying, whereas passenger airlines

operate flights continuously throughout the day.

The literature concerning the application of operations research techniques to

passenger airlines is rich, deep and continuously growing. As such, a full survey

of passenger airline optimization is out of the scope of this work and only a few

works will be mentioned here to give the reader a brief understanding of the type of

challenges that face passenger airlines and what is done to confront those challenges.

Within the scope of passenger airline operations, fleet allocation, flight scheduling,

crew scheduling, and maintenance scheduling are all common considerations (crew

and maintenance scheduling have yet to be addressed within the express shipment

literature).

Ball et al. (2007)[20] provide an overview of the numerous challenges of passenger

airline operations and discuss the ongoing work in the field. They comment that

current airlines are needing to shift from a planning outlook that focuses solely on

reducing costs to one that considers the robustness of a schedule, particularly in light
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of the increasing complexity of the air transportation system and difficulty in reacting

to unplanned disruptions such as severe weather.

Sherali et al. [179] provide a survey of work on the fleet assignment problem (FAP),

which focuses on the assignment of aircraft for passenger airlines. The FAP is, given a

flight schedule and a fleet of aircraft, decide which aircraft should fly which flight leg.

The important tradeoff in that problem is the desire to fly a full aircraft without miss-

ing out on potential customers by choosing too small of an aircraft. Thus the objective

is to maximize profits rather than to just minimize cost. Sherali et al. discuss the

basic problem as well more detailed problems which involve maintenance scheduling,

crew scheduling, ground time windows, through-fleets and re-fleeting flexibility.

Abara (1989) [1] presents and solves an integer programming formulation for the

fleet assignment problem faced by American Airlines. The formulation allows for

flexibility and customization, and it is used by decision makers to perform a number

of strategic studies. The problem is solved using a commercial solver.

Hane et al. [108] provide a solution method for solving a large fleet assignment

problem. They explore solving the problem using an interior-point algorithm, dual

steepest edge simplex, cost perturbation, model aggregation, set-partitioning con-

straints and modified branching prioritization. They find that their method finds a

solution two orders of magnitude faster than a standard LP-based branch-and-bound.

Barnhart et al (1998)[22] solve the combined fleet assignment problem and air-

craft routing problem. The fleet assignment problem is to determine the lowest cost

assignment of aircraft types (fleets) to flights. The aircraft routing problem is to

assign individual aircraft (according to tail numbers) to sequences of flights. They

present a model and solution approach to simultaneously solve the fleet assignment

and aircraft routing problem, including maintenance requirements. Since the model

is exceptionally large, their solution method is a combination column-generation and

constraint-generation approach.
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Barnhart, Kniker and Lohatepanont (2002)[23] propose a new, itinerary-based,

formulation for the airline fleet assignment problem to address suboptimality intro-

duced by more common problem formulations. Their new formulation is more capable

of capturing network effects and by considering those effect, produces better solutions.

They solve this formulation using a column generation approach for a real-world prob-

lem instance.

Rexing et al. [170] study the optimization of takeoff times in the fleet assignment

problem. In order to do this, they discretize the time windows available for takeoff

which allows for flexibility in the takeoff time. In order to solve the resulting large

MIP, they present two solution approaches. The first is a direct solution technique in

which the problem is solved directly after the problem size is reduced using heuristics.

The second is an iterative solution technique in which arc copies are iteratively added

to the model if they are expected to have a positive impact. The resulting smaller

model is then solved.

Rios and Ross [171] optimize the air traffic over the whole Air Traffic System using

a highly-parallel implementation of Dantzig-Wolfe decomposition. They find that the

greater the number of subproblems, the higher the solution quality, convergence and

runtime metrics. Heuristics are used to provide integral solutions, but they note that

employing a highly decomposed (one fight per decomposition) improves the integrality

of the final solution.

Ahuja et al. (2007)[3] study the combined through-fleet-assignment model for pas-

senger airlines. The through-fleet-assignment model (ctFAM) combines the fleet as-

signment model with the through assignment model. Through connections are those

that have the same fleet type for the incoming and outgoing flight through an inter-

mediate stop. This allows for the same aircraft to be used for both flights, which

is preferable for customers. Typically the through assignment problem is solved af-

ter the fleet assignment problem which means that fleeting assignments cannot be
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changed to produce better through connections. To solve the ctFAM, a MIP, they

employ a very large-scale neighborhood search algorithm and use integer program-

ming to identify neighborhoods. They find the combined approach to produce better

solutions compared to the sequential approach.

4.3.4 Less-Than-Truckload Problems

Transportation planning for less-than-truckload (LTL) applications is primarily con-

cerned with load planning and backhauling. Load planning is the routing of a ship-

ment through the network, and backhauling is the desirable situation of carrying

freight on both the outbound and inbound legs of a delivery. It is contrasted with

repositioning or deadheading which is the movement of empty trailers through the

network. Both the load planning and backhauling considerations are important to

express shipment airline applications, though under different names. The term “load

planning” is typically used in reference to the positioning of containers on an aircraft

when applied to express shipment, which is an unnecessary level of detail in this

work. However, the question of how to assign packages to routes, and thus to vehi-

cles, still applies. Backhauling is typically the norm in express shipment because of

the cyclic nature of the operations, however, because of demand asymmetry, vehicle

repositionings are still necessary and an important question.

Although LTL shipping and express shipment share similarities, they differ in

several significant ways. First, LTL shipping tends to only be concerned with one type

of vehicle, whereas express shipment must deal with a diverse set of capacities and

vehicle costs. Second, in general trucks are smaller, more numerous and less expensive

(per vehicle) than aircraft so scheduling an LTL fleet requires the scheduling of many

small vehicles rather than a few large vehicles. Finally, as with passenger airlines,

LTL shipping does not have typically have the strong period nature seen in express

shipment operations. As a result, many more legs can be strung together in one trip.

83



A few papers concerning issues within LTL shipping are outlined below, though this

is only a small part of the larger set of literature.

In an early paper on the load planning problem, Powell and Sheffi (1983)[167]

study the load planning problem for less-than-truckload (LTL) carriers. They discuss

challenges and tradeoffs associated with the problem, develop a model formulation,

and present a local improvement heuristic for solving a large real-world problem

instance.

Lumsden et al. [144] study the hub and spoke network for European truck freight.

They first discuss the proliferation of hub and spoke networks for express shipment

carriers with analogies and impacts to trucking. They acknowledge the transportation

consolidation benefits of the hub and spoke network, but also identify the advantages

of direct delivery in a point to point network. They propose a redesign of a truck-

ing network to represent a hub and spoke network with shortcuts, thus gaining the

advantages of both networks.

Erera et al. (2013)[75] study the service network design problem faced by less-than-

truckload freight transportation carriers, and present integer programming models

and a local search-based solution method. These models route both loaded and empty

trailer so they can efficiently move backhaul lanes. Additionally, the solution method

can produce flexible load plans as well as traditional repeating load plans. The solu-

tion method is an iterative improvement scheme that searches a large neighborhood

using integer programs.

Erera et al. (2013)[76], in a different work, additionally tackle the scheduling

problem for LTL load plans and introduce a better cost calculation than traditional

approaches. The two problems are inter-related since a more precise schedule allows

for a better estimate of costs. For a given load plan, their approach creates loaded

truck dispatches and driver schedules. They find that their results very closely models

real-world operational costs for a large US LTL carrier.
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Erera et al. (2009)[74] study the assignment of truck drivers to home locations or

domiciles in the LTL network. Domiciles are These decisions are complex, are subject

to union rules and can have a major impact on the cost-effectiveness of an LTL carrier.

They use the iterative solution method presented in Erera et al. (2013)[75] to make

domiciling decisions for thousands of drivers over several days within a few minutes.

4.3.5 Other Transportation Planning & Logistics Problems

There are a plethora of transportation planning applications in the literature. Of

those, postal delivery, passenger airlines and LTL load planning are those most appli-

cable to the express shipment problem. However, there are other notable transporta-

tion planning problems worth mentioning, though not in such great detail. Those

problems are mentioned briefly here.

Railroad Network Design Barnhart, Jin and Vance (2000) study the railroad

blocking problem as a network design problem. Railroad blocking is the task of

grouping incoming cars with outgoing trains at rail yards. Cars are classified according

to their origin-destination pair, but this classification and the reassignment of cars to

new trains is a major source of delay in rail operations. The authors propose a network

design problem model for the railroad blocking problem to group cars with similar

O-D pairs together, subject to rail yard constraints, in order to make the process

faster and more reliable. They solve their NDP model with Lagrangian relaxation.

Also on the subject of railroads, Jeong et al. (2007)[119] explores the feasibility and

optimality of employing a hub-and-spoke network for railroad freight, a transportation

method that does not usually operate using the hub and spoke topology. To represent

the additional time freight would spend as a result of the change from the usual

point-to-point network, a time-based cost term is also included. They solve the

resulting MIP using a heuristic algorithm applied to a large-scale European railroad

network. They do not pre-define hubs and, instead, obtain the natural hubs from the
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optimization output.

Liner Shipping Agarwal and Ergun (2008)[2] solve a scheduling and cargo routing

network design problem for liner shipping. They develop and present a mixed integer

programming model that simultaneously optimizes the ship-scheduling and cargo-

routing problems simultaneously. They explore solving the problem with a number

of algorithms, specifically a greedy heuristic, a column generation-based algorithm

and a two-phase Benders decomposition-based algorithm. Additionally, an iterative

search algorithm is presented to generate ship schedules.

Rental Fleet Sizing Wu and Hartman (2010)[203] solve a large time-space network

for a rental fleet sizing problem (RFS). The problem, which features uncertain and

period demand, becomes intractable to solve exactly for realistic problem instances.

In response, Wu and Hartman decide to use an aggregation technique to reduce the

problem size. They aggregate the initial fleet, empty travel time, loaded travel time

and demand. This results in a smaller problem which can be solved, at the cost of a

lower granularity of information in the final solution.

Repositioning Empty Vehicles Dejax and Crainic (1987)[69] provide a survey

paper on the handling of empty capacity flows. The repositioning of empty shipping

containers, trucks, railroad cars, etc. is particularly important in environments with

strongly asymmetric demand. However, repositioning does not directly generate rev-

enue so it must be implemented intelligently. The problem gets more complex if, as

in the railroad industry, there is the option to rent or rent out cars. Additionally,

complications can arise from legal and human resource restrictions such as union

agreements.
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Vehicle Scheduling in Public Transit Bunte and Kliewer (2009)[39] provide

an overview of vehicle scheduling models for public transportation networks. They

present models for the single-depot and multi-depot vehicle routing problems. Ad-

ditionally, they compare LP bounds of the different modeling approaches. Finally,

they present extensions to the problem in the form of discrete and continuous time

windows, and route constraints.

4.3.6 Other Network Design Problems

Magnanti and Wong (1984)[146] provide an extensive review of network design prob-

lems in transportation planning. In addition to covering specific instances of the

NDP, such as the TSP, VRP, and Steiner trees, Magnanti and Wong also cover opti-

mization techniques for NDPs. First, they note that many solution methods, whether

stated or unstated, depend on Benders cuts, and report that many NDPs have been

successfully solved using Benders decomposition. Second, they enumerate the many

successful uses of branch-and-bound for network design problems along with proposed

improvements including the use of Benders cuts. The third and fourth optimization

methods they discuss is the use of Lagrangian relaxation and dual ascent proce-

dures. They note, once more, that these methods are closely related to Benders cuts.

Magnanti and Wong also cover the common heuristic approaches: add, delete and

interchange. These heuristics are used to locally change networks and are particu-

larly useful for large networks in which obtaining an exact optimum is difficult or

intractable. Finally, they cover the optimization of network design problems with

non-linear routing costs.

Andersen, Crainic and Christiansen (2009)[10] study the service network design

problem with asset management (SNDPAM). The SNDPAM arises in problems in

which design-balance constraints are included in the SNDP formulation (such as the

ESSNDP). They make the case that the impact of these constraints had not been
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previously intensely studied so the propose four SNDAM formulations and study the

effect of them in service network design.

Crainic et al. (2014)[60] study the service network design problem with resource

constraints (SNDRC). This is the situation in which resource management (e.g. truck

drivers, train operators, power units, specific vehicles) at terminals becomes an im-

portant and constraining part of the problem. They find high-quality solutions using

an approach combining column generation, slope scaling and the intensification and

diversification metaheuristic. They benchmark against an MIP solver and column

generation-based heuristic. They report good results for the algorithm in terms of

runtime and deviation from the optimum.

Barnhart, Hane and Vance (2000)[21] present two formulations for the origin-

destination integer multicommodity flow problem (ODIMCF), an extension of the

multicommodity flow problem that is encountered in applications such as package

flow problems and bandwidth packing problems. In the ODIMCF, commodities are

defined by their origin-destination pair and can only travel along one route from their

origin to their destination. They present a column generation model and a branch-

and-bound solution approach involving both column and row generation to solve the

ODIMCF.

Balakrishnan et al. (1994)[14] and Balakrishnan et al. (1994)[15] study the Two-

level Network Design (TLND) problem in the context of a two-level hierarchical (con-

taining primary and secondary nodes and edges) network. They compare the undi-

rected and directed TLNDP problem and present formulations for both. Additionally,

they propose two classes of heuristic solution methods, “forward” and “reverse,” for

the TLND problem. Finally, they analyze the worst-case performance of several pub-

lished heuristic methods for the TLND problem and propose a dual ascent heuristic

of their own.

In a different paper, Balakrishnan et al. [16] study a similar class of models called
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overlay optimization problems. In an overlay optimization problem, there are “two

sets of decisions: the choice of activity levels to provide a basic level of service to all

customers, and decisions regarding which of these activities to enhance to meet more

stringent service requirements for subsets of key customers.” They analyze the worst-

case performance of heuristic strategies for solving overlay optimization problems

as well as the gap between the optimal value and linear programming relaxations.

Finally, they present worst-case bounds and LP relaxations for the uncapacitated,

fixed-charge network design problem.

Magnanti et al. [149] completely characterize the convex hull of the single-facility,

multi-commodity network loading problem (NLP) and the three node NLP. Both

problems are important for solving large NLPs. For the single-facility, multi-commodity

NLP, they use this characterization to develop an LP formulation with a bound at

least as strong as the bound given by a Lagrangian relaxation.

Magnanti and Mirchandani [147] study the one, two and three-facility (i.e. ve-

hicle type), single commodity network loading problem. They find that the NLP is

strongly NP-hard, but the shortest-path heuristic provides a good solution. They

characterize the optimal solution for these problems and identify two new families of

facets. Finally, they generalize their results for NLPs with more than three facilities,

and the multi-commodity NLP.

Chabrier et al. [43] present their experimental findings on the performance robust-

ness of five common algorithms in solving the NDP. Those algorithms are mixed inte-

ger programming (MIP), column generation (CG), a simple constraint programming

(CP) algorithm, a more complex constraint programming algorithm, and a genetic

algorithm. They analyze the performance of these algorithms using a large industrial

data set from a telecommunications company and test the performance robustness by

adding and removing constraints to form different specific problems. Each algorithm

is tested in its most basic form as well as with common improvement approaches.
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They find that no single algorithm outperforms all of the others.

4.4 Summary

The first half of this chapter focused on an overview of how mixed integer programs

are solved. Three primary categories were identified. First, non-decomposed exact

methods such as cutting plane methods, branch-and-bound and their combination,

branch-and-cut. This class of methods will be called monolithic approaches for the

purposes of this work. Second, decomposed exact methods such as Dantzig-Wolfe

decomposition and Benders decomposition. Third, heuristic and metaheuristic meth-

ods, which are approximate methods that are typically tailored to the problem at

hand.

The second half of this chapter focused on what formulations and solution methods

have been previously proposed and implemented for the express shipment problem.

The methods and analyses focused on the express shipment problem were discussed

comprehensively while related problems were only touched on to show how they re-

lated to the focal problem in this work. The next chapter, Ch. 5, will lay out the

research plan for this work in detail, outlining the research objective, questions, and

hypotheses.
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CHAPTER V

RESEARCH PLAN

At this point, the express shipment problem has been detailed and characterized, it

has been modeled as a mixed integer program, and approaches to solving MIPs have

been discussed. Now that the background and foundation have been set, solution

methods for this application of the express shipment problem can be discussed.

5.1 Solution Methods

Recall that in Chapter 2 the express shipment problem was defined as,

The problem of determining the lowest cost way to use a heterogeneous, multi-

modal vehicle fleet to move a set of express shipment packages from their

origin airports to their destination airports within a domestic multi-hub-and-

spoke network and within the guaranteed service periods.

The goal of this dissertation is to develop an algorithm to address that problem

computationally. Express shipment is a multi-billion dollar industry today, but the

current planning methods are primarily human-based and therefore slow and vulner-

able to sub-optimality. Due to these companies’ large-scale operations and extensive

airlines, even small changes on the tactical level could translate to millions of dol-

lars in cost saving. Additionally, if there existed a computational planning method

that was capable of solving the express shipment problem in a short time frame, the

strategic-level studies that could be performed could translate to an even greater busi-

ness impact. Considering the potential impact of a quick and effective computational

method for solving the express shipment problem,
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The primary objective of this work is to develop a quick and effective

algorithm that generates low-cost vehicle schedules to completely route one

days worth of domestic express shipment packages.

To this end, in Chapter 3, the express shipment problem was modeled as an ex-

tension of the Service Network Design problem called the Express Shipment Service

Network Design problem. The ESSND problem captures the express shipment prob-

lem mathematically so that computational optimization methods may be applied to

it. As outlined in Chapter 4, there are three general classes of solution approaches

for solving mixed integer programs like the Express Shipment Service Network De-

sign problem, 1) monolithic, 2) exact decomposition, and 3) heuristic. The primary

objective can be restated as a fundamental research question, which is

Research Question 0. What is an appropriate algorithm to quickly and effectively

generate a low-cost vehicle schedule to completely routine route one day’s worth of

express shipment packages?

This fundamental research question was explored by implementing, testing and

comparing an algorithm from each of the three solution generation approaches laid

out in Ch. 4. The first option, a monolithic approach, is often the easiest to im-

plement, particularly if a commercial solver such as Gurobi or Cplex is used. These

solvers are highly-sophisticated and are often successful in solving many MIPs despite

lacking a problem-specific implementation. However, because these solvers rely on a

branch-and-cut algorithm as their foundation, they are susceptible to poor scaling

with problem size, particularly if the LP relaxation bounds are weak.

The second option, an exact decomposition approach, attempts to mitigate some

of the issues of a monolithic branch-and-bound-based approach by solving only a

subset of the problem at any given time. Approaches like Dantzig-Wolfe and Benders

decomposition attempt to exploit the fact that only a subset of the variables will have

non-zero values in the final solution and only a subset of the constraints will be active.
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If these subsets of variables and/or constraints can be efficiently identified, a problem

instance, which otherwise may have been difficult to solve or even intractable, can be

solved much more quickly. Unfortunately, it is not always easy to find the necessary

subset of variables or constraints and many iterations between the master problem

and subproblem may be required, thus resulting in long solve times.

Finally, the third option, a heuristic or metaheuristic approach, sacrifices the

guarantee of an optimal solution in the interest of a faster runtime. In general, it is

difficult to make sweeping statements about heuristic and metaheuristic approaches

because the field is broad and implementations are often problem-specific. The main

takeaway, however, is that they are often capable of producing very good solutions

in a reasonable amount of time by sacrificing the optimality guarantee. For many

problems, particularly real-world problems which tend to be large, complex and in-

clude problem-specific side constraints, a heuristic approach may be the best way to

produce high-quality (or simply feasible) solutions.

When considering these three solution methods, a monolithic approach had al-

ready been implemented and tested through a collaboration, of which I was a member,

between Georgia Tech and FedEx Services. This monolithic approach uses Gurobi as

its branch-and-cut solver along with some custom pre-processing heuristics to make

the single-day problem tractable. For realistic problem instances, solving one day’s

worth of volume for one day (wall time) produces a solution with a 10.8% optimality

gap and it requires an additional eleven hours to produce a solution with less than

a 10% gap. Problems encompassing more than a single day’s worth of volume are

hopelessly intractable. This approach will serve as the baseline approach for this

dissertation.

The two other solution methods available for consideration are an exact decom-

position approach and a heuristic approach. Both of these approaches are commonly

employed in the literature when a monolithic approach is found to be insufficient.
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Therefore, I hypothesize,

Hypothesis 0. Based on the evidence in the literature that heuristic and exact de-

composition approaches can out-perform monolithic approaches, I hypothesize that a

heuristic approach or exact decomposition approach will able to produce solutions for

the Express Shipment Service Network Design problem of comparable quality to the

baseline monolithic approach in significantly less time.

This hypothesis is tested by implementing an approach from all three classes of so-

lution methods. The monolithic approach was developed through the aforementioned

collaboration with FedEx, but the Benders decomposition and heuristic method were

implemented solely by the author. The details of the monolithic approach and sen-

sitivity studies are presented in Chapter 6. As mentioned before, the monolithic ap-

proach produces high-quality results, but the runtime to generate those high-quality

results is longer than desired, sometimes on the order of days of runtime.

The heuristic decomposition and exact decomposition, since they are implemented

as part of this dissertation, inspire several more research questions and hypotheses

to address those research questions. Of the two approaches, the heuristic decomposi-

tion approach is presented first, in Chapter 7, and the exact decomposition approach,

Benders decomposition, is presented next, in Chapter 8. Therefore, the first set of re-

search questions will pertain to the development and implementation of the heuristic

approach, and the second set of research questions will pertain to the implementa-

tion of the Benders decomposition approach. There are a total of six research ques-

tions, four which are focused on the heuristic algorithm and two that are focused on

the Benders decomposition algorithm. Section 5.2 summarizes the implementation-

based research questions, corresponding hypotheses, and important experiments for

the heuristic decomposition approach, and Section 5.3 does likewise for the Benders

decomposition implementation.
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5.2 Heuristic Decomposition-Based Research Questions

The first research question, which is the same for any researcher looking to implement

a heuristic approach, is,

Research Question 1. What should the heuristic algorithm be?

To help in answering this question, let us make two observations. First, heuristic

approaches are successful because they can respond directly to specific problem diffi-

culties and exploit problem-specific characteristics. Second, the monolithic approach

is adept at solving smaller problems but struggles to solve realistic problem instances.

These observations, particularly the second, suggests that a heuristic decomposition

approach may be successful. This observation leads to the hypothesis,

Hypothesis 1.1. Based on the observation that the sensitivity studies performed

on the monolithic approach show that smaller problem instances can be much more

quickly solved than the full-sized problem instance, I hypothesize that a decomposition-

based heuristic will be capable of quickly producing high-quality solutions to the express

shipment problem.

This observation gets us one step closer but still leaves many implementation

questions unanswered. For guidance on answering these implementation questions, I

turned to my personal background in aerospace engineering. Within aerospace engi-

neering, a common way to tackle large, complex optimization problems, particularly

in academic studies, is a technique called Multidisciplinary Design and Optimization

(MDO). The primary objective of MDO is to leverage optimization techniques when

designing engineering systems with many subsystems in an effort to produce a better

overall result than if each of the subsystems were designed independently.

In many regards, MDO is a heuristic decomposition approach. Complex engi-

neering systems, such as aircraft, are made up of subsystems (i.e. aerodynamics,

structures, propulsion, controls), which, traditionally, were designed independently.
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MDO seeks to intelligently define the disciplinary boundaries, and then optimize

those disciplines in conjunction with each other to yield an overall superior aircraft,

automobile, spacecraft, etc. By defining disciplinary subproblems, solving them in-

dividually (or semi-independently), and recombining them into a feasible solution,

MDO fits the format of a decomposition technique. MDO differs from the exact de-

composition approaches for mathematical programming in that its architectures do

not typically guarantee a globally optimal solution and its architectures are typically

tailored toward solving problems that may be non-linear and/or non-convex, feature

“black-box” applications or present other challenges.

Since MDO architectures are typically used on problems that behave mathemati-

cally different from MIPs, a direct use of an MDO architecture would be misguided

and likely ill-fated. However, the high-level strategies that MDO uses to craft solution

methods for engineering system design can help to answer research question 1 for the

express shipment problem. In particular, guidance can be taken from MDO regard-

ing the definitions of disciplines, the arrangement of those disciplines relative to each

other, and the production of a high-quality feasible solution from those disciplines.

This leads me to refine my previous hypothesis to be,

Hypothesis 1.2. An MDO-inspired decomposition-based heuristic will be capable of

quickly producing high-quality solutions to the express shipment problem based on the

observation that the sensitivity studies performed on the monolithic approach show

that smaller problem instances can be much more quickly solved than the full-sized

problem instance, and Multidisciplinary Design Optimization is an optimization field

focused on developing heuristic decomposition algorithms.

This hypothesis sets the context for the heuristic decomposition approach. Two

major implementation questions still remain. Those questions are, first,

Research Question 2. How should the disciplines be defined in the heuristic decom-

position approach?
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And, second,

Research Question 3. How should the disciplines be arranged relative to each other

in the heuristic decomposition approach?

The next two subsections consider these research questions in more depth, present

hypotheses to address these questions, and summarize the results of notable experi-

ments.

5.2.1 Discipline Definition

First, the question of how to define the disciplines. Ideally, the disciplines would be

defined in such that they would represent logical subdivisions within the design space,

they could be solved easily and there would few coupling variables between disciplines.

In MDO approaches, disciplines tend to be based on physical or functional boundaries

of the vehicle, such as aerodynamics, structures, propulsion, etc. and problems are

solved in the primal space.

From this observation from the MDO literature, I make the following hypothesis

in response to research question 2,

Hypothesis 2.1. Based on the successful use of functional and physical discipline

definitions in the MDO literature, I hypothesize that either a functional or physical

discipline definition can be used in a heuristic decomposition approach for the express

shipment problem.

Using MDO practices as guidance, let us define the decomposition subproblems

by either physical or functional boundaries. If considering functional boundaries, the

natural choice would originate from the two fundamental express shipment questions,

“How should the packages be routed?” and “How should the aircraft be scheduled to

best move the packages?” These two questions are reflected in the formulation as the

package flow and aircraft movement (design) variables, and constitute the heart of the
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express shipment problem. This discipline definition would result in decomposing the

problem into a Package Routing Problem (PRP) and an Aircraft Movement Problem

(AMP), and since the disciplines are reflected in the variables, this option will be

called the variable-based decomposition. Exploratory experiments showed that the

PRP and the AMP could be solved very quickly for the baseline problem instance.

The primary drawback of this discipline definition is that, although only the forcing

constraint is the only constraint that is involved in both of the subproblems, every

variable would be coupled between the two subproblems.

There are two other candidate options, 1) a time-based decomposition, and 2) a

space-based decomposition. These disciplinary definitions are based on physical prop-

erties of the problem, and they are based on breaking up the time-space graph. The

time-based (temporal) decomposition exploits the periodic nature of express ship-

ment wherein all the aircraft fly in from the spokes to the hubs then back out again

repetitively, all at about the same time throughout the day. Therefore, the prob-

lem can be divided according to its phases. The primary drawback of the temporal

decomposition is the limit on the smallest temporal “resolution” and the handling

of multi-day products. The smallest possible time unit is a half-phase (e.g. night

pickup, day delivery, etc.), but this poses serious flow and vehicle balance challenges.

Increasing the time unit to a full phase alleviates the flow balance issue partially,

but the vehicle balance and some flow balance challenges remain. Unfortunately, ex-

ploratory experiments found that even single-cycle problem instances were too large

to be solved in a reasonable period of time.

The space-based (spatial) decomposition divides the geographic area of service

(which is the continental United States in this dissertation) into regions and then

solves each region independently. The most obvious way to define the regions would

be according to the current arrangement of sorting hubs. This produces regional-

based subproblems that were found to solve very quickly in exploratory experiments.
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The primary drawback of the spatial decomposition is that the demand graph is fully

connected. Every location connects to every other location, and as a result, routing

intra-regional volume is a major hurdle in the spatial decomposition. Additionally,

a regional network does not reflect the current practices of express shipment air-

lines. Express airlines operate multi-hub-and-spoke networks, but the majority of

the volume flows through the primary hub, while the regional hubs provide ancillary

support.

Of the three potential discipline definitions, the variable-based decomposition is

the most appealing because it splits the problem according to its two most funda-

mental questions, it features subproblems that are easy to solve, and it avoids the

vehicle balance, flow balance and hull count challenges of the physical decompositions.

Therefore, I hypothesize,

Hypothesis 2.2. Based on the results of the exploratory experiments conducted on

the temporal, spatial, and functional decomposition definitions, and the success of

physical and functional discipline definitions in the MDO literature, I hypothesize

that a functional decomposition, which features a Package Routing Problem and an

Aircraft Movement Problem, will be an appropriate discipline definition for a heuristic

decomposition approach for the express shipment problem.

The next subsection discusses how the Package Routing Problem and Aircraft

Movement Problem are arranged relative to each other to produce high-quality fea-

sible solutions to the express shipment problem.

5.2.2 Discipline Arrangement

The next question is how the disciplines should be arranged relative to each other. In

hypothesis 2.2, the disciplines were defined as the Package Routing Problem and the

Aircraft Movement Problem. Both of these problems depend on the outputs of the

other and are therefore coupled. The Package Routing Problem requires the aircraft

99



movements in order to know which arcs have capacity, and the Aircraft Movement

Problem needs to know the package routings in order to know where capacity is

needed. In MDO, when two disciplines require the outputs of each other, a common

approach is to produce a consistent solution using a feedback loop. This feedback

loop is often implemented through fixed point iteration. Given that this is a common

way to handle coupled disciplines, I hypothesize,

Hypothesis 3.1. Since the Package Routing Problem and the Aircraft Movement

Problem are coupled, I hypothesize that feedback will be required to produce a mutu-

ally feasible solution, and, given that fixed point iteration is a common way to handle

coupled disciplines in the MDO literature, the Package Routing Problem and Air-

craft Movement Problem should be arranged in a fixed point iteration scheme in the

heuristic decomposition approach for the express shipment problem.

However, when the fixed point iteration (FPI) scheme was implemented and

tested, the solutions it converged to were not very good. As a consequence, hy-

pothesis 3.1 was rejected. The reason why the FPI-based scheme was unsuccessful is

because the decision of how to use the aircraft was completely removed from the deci-

sion of how route packages. As a result, trade-offs such as assigning a longer package

routing in order to group more packages on a larger aircraft were never considered.

In order to intelligently use the aircraft, package routings must take into account the

aircraft that will be required to move them. This finding led to the alteration of the

Package Routing Problem to include the aircraft movement variables, the constraint

requiring them to be positive integers, and the feeder limit constraint. The resulting

problem formulation was called the Package Routing with Aircraft Problem (PRAP).

The Package Routing with Aircraft Problem, though more difficult to solve, incen-

tivized the assignment of package routings such that whole real-world aircraft would

be considered and packed as efficiently as possible. With this alteration in the Pack-

age Routing Problem, the role of the aircraft movement feedback in the FPI scheme
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was redundant with the aircraft movement variables in the PRAP. In response to this

change, I hypothesize,

Hypothesis 3.2. Since the addition of the aircraft movement variables to the Pack-

age Routing Problem adds aircraft-based considerations, I hypothesize that feedback

is not necessary between the Package Routing with Aircraft Problem and the Aircraft

Movement Problem, and a sequential algorithm that first solves the PRAP and then

the AMP will provide high-quality solutions.

The development of the PRAP and the hypothesis that a sequential heuristic al-

gorithm would be sufficient led to the development of the Basic Sequential Algorithm.

The Basic Sequential Algorithm was found to out-perform the monolithic approach

for the baseline single-day problem instance for the first hour of runtime and perform

on-par with the monolithic approach for runtimes beyond one hour. This performance

lent experimental support to hypothesis 1.2, 2.2, and 3.2. It also led to the follow

up research question of how to potentially refine or improve the sequential algorithm.

That question is handled in the next subsection.

5.2.3 Improvements to the Sequential Algorithm

The success of the Basic Sequential Algorithm raises the question,

Research Question 4. How can the Basic Sequential Algorithm be improved?

In response to research question 4, two avenues of improvement were considered

for the Basic Sequential Algorithm. Both avenues focus on improving the Package

Routing with Aircraft Problem, because, as the first of the two disciplines in the

sequential algorithm, it is ultimately responsible for the final solution quality. The

first of the two avenues was to reduce the size of the PRAP so that it could be solved

more quickly. The second of the two avenues was to improve the approximation that

the PRAP makes of the ESSND by including additional constraints without sacrificing

runtime.
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Starting with the first of the two algorithm improvement avenues, the observation

was made that many commodities are very similar to each other and for a given origin-

destination pair, there are often many commodities that differ only in the product

type or number of commit days (i.e. number of days the company has to move the

package). Furthermore, the overnight priority box commodities constitute the most

volume of all of the commodities and are the most-tightly time and sort-capacity

constrained. Using these two observations, I make the hypothesis:

Hypothesis 4.1. Based on the observations that 1) in an express shipment prob-

lem instance there exist many commodities that may only differ by the product type

and/or commit day, and 2) of these similar commodities, the priority box commodi-

ties constitute the largest volume, face the tightest sort capacities, and are the most

time-constrained, I hypothesize that the Basic Sequential Algorithm can be improved

by solving the Package Routing with Aircraft Problem for the problem instance that

only includes the overnight box volume, and assigning the routings for all commodities

based on the routing assigned for the analogous priority overnight commodity.

This hypothesis leads to the Collapsed Product Set Sequential Algorithm, which

uses the idea of “analogous commodities” to shrink the PRAP problem instance.

Analogous commodities are those with the same origin and destination but different

product types or commit days. Within the ESSND problem, each commodity gets its

own variable, but only some commodities are the primary drivers of aircraft movement

decisions. Of the product types, box volume, particularly overnight box volume

constitutes the greatest demand. The Collapsed Product Set Sequential Algorithm

seeks to exploit this quality of the express shipment problem and shrink the PRAP

problem instance to only that of the overnight priority box volume. The routings

assigned those priority box commodities then serve as a “template” for all of their

analogous commodities. To differentiate between the PRAP that is solved for all

of the commodities and the PRAP that is solved for the collapsed product set, the
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latter is called the Collapsed Product Set Package Routing with Aircraft Problem (CP-

PRAP). To further shrink the PRAP, consolidation is also removed. Consolidation is

added to the final solution after identifying suitable opportunities from the solution

of the AMP by solving the Consolidation Assignment Problem.

When tested experimentally, the Collapsed Product Set Sequential Algorithm per-

formed better than the monolithic approach for runtimes less than one hour, but it

was not superior to the Basic Sequential Algorithm for the baseline problem instance.

However, in the sensitivity studies, it was found that the Collapsed Product Set Se-

quential Algorithm does not suffer from the same runtime growth issues and can solve

a full week’s worth of demand, a previously intractable problem, in under four hours

if consolidation is not considered, and in under sixteen hours if it is.

The other avenue for improving the Basic Sequential Algorithm was to improve

the PRAP by including more constraints so it would better approximate the ESSND

problem formulation. The primary motivating observation for this was the fact that

while the PRAP does consider whole aircraft as it assigns package routings, since it

does not include hull count or balance constraints, it assigned package routings to use

significantly more of certain aircraft than were available in the fleet. The prompted

the hypothesis,

Hypothesis 4.2. Based on the observation that the PRAP assigns package rout-

ings with little bearing on the available aircraft fleet, I hypothesize that including a

hull count constraint to the PRAP would improve the performance of the sequential

algorithm.

The original hull count constraint could not be used to improve the PRAP because

it was dependent on the burdensome vehicle balance constraint, so the phase-based

hull count constraint was developed. This new hull count constraint was included in

the PRAP to form the Improved Sequential Algorithm. This algorithm was found to

be significantly superior to not only the Basic Sequential Algorithm but also to the
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monolithic approach. In one hour, it produced a better solution than the monolithic

approach was able to find in two days for the baseline problem instance; a substantial

performance improvement.

The performance of the Improved Sequential Algorithm also inspired the hypoth-

esis,

Hypothesis 4.3. Based on the observation that adding the phase-based hull count

constraint to the PRAP greatly improved the sequential algorithm, I hypothesize that

including a modified vehicle balance constraint to the PRAP will further improve the

performance of the sequential algorithm by adding additional realism to the PRAP.

A relaxed form of the vehicle balance constraint was developed, called the sort-

centric balance constraint, was added to the Package Routing with Aircraft Problem.

However, it was found to hinder performance rather than improve it. As a result, the

Improved Sequential Algorithm includes the phase-based hull count constraint but

not the sort-centric balance constraint. Sensitivity studies show that the Improved

Sequential Algorithm out-performs the monolithic approach for many different prob-

lem instances, including those that are more difficult and those that are less difficult

to solve than the baseline problem instance.

5.3 Benders Decomposition-Based Research Questions

Unlike the heuristic decomposition approach, the many of major details of the Ben-

ders decomposition implementation are already established through the work of Ben-

ders (1962)[27] and those that expanded on his work. However, two research questions

still arise. The first is,

Research Question 5. Can Benders decomposition be used to solve the Express

Shipment Service Network Design problem faster than the baseline monolithic ap-

proach?
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My hypothesis in response to research question 5 is,

Hypothesis 5. Based on the fact that Benders decomposition was specially developed

to solved mixed integer programs, and it is commonly and successfully used for that

purpose in the literature for similar transportation planning problems, I hypothesize

that Benders decomposition will be capable of solving the Express Shipment Service

Network Design problem faster than the baseline monolithic approach.

Although the literature suggests that Benders decomposition may be suitable for

the express shipment problem, it also notes that often researchers need to alter the

“classical” implementation of Benders decomposition to get the desired performance.

Since Benders decomposition is currently a popular approach and several decades have

passed since it was first presented, the body of literature encompassing improvements

to Benders decomposition is extensive. This leads to the research question,

Research Question 6. Which, if any, enhancements to Benders decomposition from

the literature improve its performance when solving the Express Shipment Service

Network Design problem?

To answer this question, the literature was consulted. By using the classification

scheme from the Rahmaniani (2017)[168] survey paper, knowing certain features of the

express shipment problem, and identifying popular current approaches, the extensive

list of potential enhancements to Benders decomposition was reduced to four items.

This led to the hypothesis,

Hypothesis 6. Based on this literature review of previously-developed methods for

improving Benders decomposition, I hypothesize that implementing a single-tree Ben-

ders decomposition algorithm (i.e. improving the solution procedure), including the

cut-set valid inequalities developed by Kim (1997)[129] (i.e. improving the solution

generation), and implementing an approximate version of the Pareto-optimal Benders
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cuts from Papadakos (2008)[163] or the minimal infeasible subsystem (MIS) Benders

cuts from Fischetti et al. (2010)[82] (i.e. improving the cut generation) will improve

the performance of the Benders decomposition algorithm in solving the express ship-

ment problem.

When tested, however, Benders decomposition, even with improvements, was

found to be inferior to the monolithic approach. Therefore, hypothesis 5 is rejected.

It’s primary handicap is that it cannot be prematurely terminated and as a result, if

it struggles to find an optimal solution as was the case for the ESSND, no solution

will be generated. However, some lessons were learned regarding the enhancement

approaches for Benders decomposition. Of those implemented, the minimal infeasible

subsystem (MIS) cuts by Fischetti et al. (2010)[82] provided the most improvement

compared to the “basic” Benders implementation. The valid inequalities and the

approximate Pareto-optimal cuts were actually found to hamper the progress of the

algorithm. No alternative to the single-tree solution procedure was studied so it’s

effect is unknown, but it is currently a very popular and well-regarded method for

implementing Benders decomposition on modern solvers.

5.4 Experimental Testbed

All of the experiments in this dissertation are performed on the same experimental

testbed so that results can be compared across the three different solution generation

approaches. In this testbed, the method for generating the package routings and air-

craft movements is the same for each solution generation technique. This ensures that

for a given problem instance, each solution generation technique is given the same

set of options. The technique for generating these options is described in Chapter 6.

Within the experimental testbed, experiments can be performed by modifying (fil-

tering) the data set that is used to generate the options and/or altering the solution

generation approach. The experimental testbed is summarized in Figure 9.
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Figure 9: Experimental Testbed

First, the input files, which fully describe the problem as characterized in Chap-

ter 2, are parsed into the testbed. They include important data such as the facility

locations, the activity times, fleet composition and properties, and the commodity

demand.

Second, the dataset is filtered to define the problem instance for the experiment.

Since this dissertation does not consider the added complications of international

volume, and unusual products such as live animals and three-day packages, that

demand (which constitutes a small fraction of the total volume) is removed in the

data filter process. Additionally, since the baseline problem instance only encompasses

a twenty-four hour (Monday night to Tuesday night) period, any volume outside of

that time period is also removed. If relevant to the experiment, additional filtering

may be performed to test a smaller problem instance such as the reduced airport set

and reduced product set sensitivity studies performed on the monolithic approach in
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Chapter 6, or problems with a larger temporal scope may be considered by expanding

the time period to additional days.

Third, the package routings and aircraft movement options are generated as de-

scribed in sections 6.2 & 6.1 of Chapter 6. For all of the experiments in this disser-

tation, the package routing and aircraft movement options are always generated in

the same fashion. This ensures that each solution strategy, whether it be monolithic,

exact decomposition or heuristic, is presented with the exact same option set given a

particular problem instance, and the results are purely due to the solution strategy

itself.

Fourth, solutions are generated using a monolithic, heuristic decomposition or

exact decomposition approach. When a problem instance is solved in a purely mono-

lithic approach, the full problem instance is given to a commercial MIP optimization

software (Gurobi 7.5) and solved for a given period of time or until completion. For

the heuristic decomposition solution generation approaches, in this dissertation, all of

the approaches considered and developed all use mixed integer programming subprob-

lems which are relaxations of the original ESSND problem formulation. These MIP

subproblems are also solved using Gurobi 7.5 and different arrangements of these

subproblems are studied. Finally, for the exact decomposition solution generation

approach, Benders decomposition, which is composed of a master problem IP and a

subproblem LP, is implemented. These two problems are solved using CPLEX 12.7,

a different commercial MIP solver.

Finally, each solution generation method produces an objective function value,

package routings, an aircraft schedule, and an optimality gap. If an optimal solution

is found, then the optimality gap will be zero, otherwise, it will be the optimality

gap at the time of termination. The optimality gap for the heuristic algorithms are

calculated using on the best-found lower bound value from the equivalent monolithic

problem instance.
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The dataset filter and the solution generation are the only procedures that are

altered for experiments, and often either one or the other is altered, not both. That

is, either the dataset is filtered to study an different-size problem instance or the

solution generation procedure is altered. Since the generation of the optimization

model itself is considered part of the solution generation procedure for the purposes

of the diagram in Figure 9, an alteration to the solution generation procedure could

constitute either a change to the optimization model (i.e. a relaxation) or the use

of a heuristic or exact decomposition method. The inputs, package routing option

generation, aircraft movement option generation, and types of outputs are the same

in every experiment.

5.5 Summary

In this chapter an overview of the research questions, hypothesis and experiments

were presented. The primary objective of this work is to develop a quick and effective

algorithm that generates low-cost vehicle schedules to completely route one days

worth of domestic express shipment packages. To that end, approaches within each

of the three solution method classes were discussed – monolithic using Gurobi, a

heuristic decomposition, and Benders decomposition. The monolithic approach is

taken to be the baseline and the fundamental hypothesis is that either a heuristic

decomposition or exact decomposition approach will be able to out-perform it.

Cross-disciplinary inspiration is taken from Multidisciplinary Design Optimiza-

tion, a field mostly-commonly used in aerospace and mechanical engineering, to pro-

vide guidance on certain implementation questions for the heuristic approach. Al-

though the results of initial experiments led to hypothesis 3.1 being reposed and

the refinement of the PRAP, ultimately a heuristic capable of solving the baseline

single-day problem instance significantly faster than the monolithic approach was

developed.

109



The next chapter, Ch. 6, will outline the monolithic approach and the results of

some sensitivity studies related to how its performance scales with problem size. Fol-

lowing that, Ch. 7 will describe the development of the heuristic approaches in detail.

Finally, Ch. 8 will cover the Benders decomposition implementation and results.
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CHAPTER VI

SOLVING THE ESSND PROBLEM USING A

MONOLITHIC APPROACH

As shown in Chapter 3, the express shipment problem can be formulated as a variant

of the service network design problem (SNDP) called the express shipment service

network design problem (ESSND). The primary research objective of this work, as

presented in Chapter 5, is to develop an algorithm that quickly and effectively solves

the ESSND problem for a single day’s worth of volume. In Chapter 4, three classes

of methods for solving mixed integer programs like the ESSND were discussed –

monolithic, exact decomposition and heuristic. The implementation of a monolithic

approach is presented in this chapter as well as sensitivity studies that motivate the

consideration of alternative approaches.

First, the creation of the time-space graph is described in Section 6.1. Next,

heuristics are described which dramatically reduce the size of the optimization prob-

lem, and make the single-day problem computationally tractable for a monolithic

approach. This reduced-size problem is solved using the commercial Gurobi optimiza-

tion software. Finally, the results of solving an ESSND problem with this reduced

option space are presented and some sensitivity experiments are performed.

This specific monolithic approach, including the means of creating the time-space

graph and the problem-reduction heuristics, was developed as part of a multi-year

collaboration between the Georgia Tech and FedEx. I had the privilege of being a

member of the Georgia Tech team for several years, but cannot claim this monolithic

approach to be my own – it was a team effort. The exact decomposition approach

(Bender decomposition) presented in Chapter 8 and the heuristic MDAO-inspired
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decomposition approach presented in Chapter 7 were implemented solely by the au-

thor using the framework (i.e. time-space graph and commodity routing creation

algorithms) built for this monolithic approach. This monolithic approach will pri-

marily serve as the non-decomposition benchmark as well as the original motivation

for pursuing alternative solution methods.

6.1 Creation of the Time-Space Graph

Time-space graphs were briefly introduced in Section 3.3.1 to handle the time-related

aspects of the express shipment service network design problem. In a time-space

graph, the spatial graph is “expanded” by discretizing time and representing space

and time at each node in the graph. Each arc then represents connections between

points in space that can be feasibly connected in space and time. In the basic imple-

mentation, time is evenly discretized according to a uniform time step, and a node at

each time step and point in space is created. When the chosen time step is large and

the number of locations is small, this approach is manageable, but when the problem

necessitates a small time step, this strategy results in a dramatic increase in problem

size.

6.1.1 Network Creation in the Literature

In many applications, many of the nodes and arcs are unnecessary and this dramatic

increase in problem size is problematic, so more nuanced ways of generating the time-

space graph are commonly used when considering a large time-space graph. These

methods create a smaller time-space graph by having different time steps throughout

the graph, as appropriate. For instance, if it is known that a connection may occur

within a 30 minute time window, then inside that time window it may be important to

have a small time discretization, but outside of that time window, the discretization

can be very coarse because nothing will be happening. To identify the appropriate

time step in different parts of the time-space graph, network preprocessing is employed
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to reduce the node set. The problem of generating the necessary node set has been

approached in two ways, 1) network refinement, and 2) network reduction.

Network refinement starts with a coarse time discretization and selectively de-

creases the time step in parts of the time-space network that require more granularity.

Boland et al. (2017) introduce an approach for solving the Continuous-Time Service

Network Design Problem (CTSNDP) which uses an iterative refinement algorithm

to appropriately split nodes in a time-space network, thus selectively decreasing the

time step without requiring the same level of detail throughout the entire network.[33]

Network reduction is a more common approach. It starts with a highly granular net-

work and selectively consolidates unnecessary nodes and their related arcs. Some

implementations of network reduction have been applied by Berge and Hopperstad

(1993)[28], Hane et al. (1995)[108] and Kim and Barnhart (1999)[132].

6.1.2 Network Creation for the Express Shipment Problem

Within the express shipment problem, it is important to know, to a fine degree of

detail, when aircraft take off and when they land, so a small time step is necessary

during those times. However, at many locations there may be hours during which

no aircraft will be taking off or landing so it is not necessary to provide fine time

granularity during those times. Therefore, a reduced time-space network is necessary.

Thanks to the specific qualities of the express shipment problem, neither the net-

work refinement nor network reduction techniques need to be undertaken as they are

outlined in their respective sources. Instead, the time-space network can be generated

by building it essentially backwards. First, the package routings1 are created, then

the vehicle arcs are created based on the needs of the package routings, and finally,

nodes are created based on the times required by the arcs. This is possible because

of some features of the express shipment problem,

1A package routing is synonymous with a commodity routing.
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1. Operations are strongly periodic, which means that similar activities happen at

similar times.

2. Commodities have fixed times when they are available and when they are due.

3. It is not important to know precisely when a commodity arrives to or departs

from a location as long as the movement respects the level-of-service restrictions.

4. It is important that aircraft movements be precisely timed so that potential

connections are not missed.

These qualities, particularly number 3, mean that it is possible to know approximately

when greater resolution is needed in the time-space network and when a coarse dis-

cretization is permissible. To make it more clear how this works, let us go into more

detail.

First, the package routings are created. This process is detailed in Section 6.2, but

for now it is sufficient to know that a package routing is defined as the unique pairing

of a commodity and an ordered list of lanes. A lane is an ordered pair of activity

instances. For example, a priority package originating in Atlanta and terminating in

Seattle on the fifteenth day of the month would have the routing: {(ATL/PM1[15],

MEM/N1[15]), (MEM/N1[15], SEA/AM1[16])} where PM1 is the evening priority

pick up activity, N1 is the night sort activity and AM1 is the morning priority delivery

activity. Each commodity can have several routings. Additional routings could send

the commodity through a different sorting hub or make an intermediate stop.

The concept of a lane is important because some lanes can be grouped together

if it is possible to move all of their packages at the same time without delivering any

of them late. This situation arises when handling the economy volume. For example,

both priority and economy volume originate in the evening, but priority volume is

available earlier. If the priority volume can wait to depart until the economy volume

is available without being late for its next activity, the two lanes can be grouped.

A group of one or more lanes that can feasibly be moved together is called a
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(a) Lanes for Overnight, Deferred, and Same-Day Products Prior to Splitting

(b) Lanes After Splitting Lane for Deferred Products

Figure 10: An Example of Lane Splitting for Deferred Products

package arc. For pick up phase package arcs, the destination activity instances for

all of the lanes are the same, and for delivery phase package arcs, the origin activity

instances for all of the arcs are the same. This means that for economy products,

which have more time to move than priority and postal products, ground lanes are

added to their routings so that the appropriate activity instances will match with

their faster-moving counterparts.

Extending the previous example, the economy volume will be available at ATL

slightly later than the priority volume and is intended to sort during the day. If

time allows, it could move with the priority volume to the sort and wait there for

the day sort to occur, or it could wait on the ground at ATL to move with the day-

time postal volume. Therefore, as illustrated in Figure 10, the lane (ATL/PME[15],

MEM/D1[15]) is split into the routing segments {(ATL/PME[15], MEM/N1[15]),

(MEM/N1[15], MEM/D1[16])} and {(ATL/PME[15], ATL/PM8[16]), (ATL/PM8[16],

MEM/D1[16])} to represent these two options, where D1 is the day sort activity and

PM8 is the morning postal volume pick up activity. Using the ground lanes, the

flight lanes can be grouped with priority and postal volume into package arcs.
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Once the package arcs have been created, vehicle arcs associated with the package

arcs are created in order to provide options for moving the volume. The vehicle arcs

are created by determining the appropriate takeoff time for each feasible vehicle type

and each package arc. There are various ways this takeoff slot could be determined,

but in this implementation, the takeoff time is chosen such that it splits the difference

between the earliest possible time and the latest possible time. This means that there

will be an equal amount of time between the latest package arc available time and

the vehicle arc departure time as there is between the vehicle arc arrival time and the

earliest package arc due time. An example is shown in Figure 11 for a pick up phase

package arc with two lanes.

time +

Lane 1
Avail

Lane 2
Avail

Takeoff
Slot

tslack tslacktflight

Lanes 1&2
Due

Figure 11: Example Takeoff Slot Calculation

Once the vehicle’s takeoff time is set, the vehicle arc’s arrival time is calculated

using the sum of the vehicle’s transit time and ground time2. Since the ground time is

included in the vehicle “arrival” time calculation, the arrival time actually represents

when the vehicle can first leave the destination location. Additionally, takeoff slots

for repositioning arcs are added to each location at six-hour intervals that align with

the times when package-carrying aircraft will be flying.

Now that all of the arrival and departure times for a location are known, the nodes

are created by splitting the location timeline according to the arrival and departure

times required by the vehicle arcs. Once these nodes have been created, they are

associated with the appropriate vehicle arcs. The only stipulation on the node size is

2A vehicle’s ground time is the minimum amount of time that an aircraft has to spend on the
ground for refueling, unloading and loading, crew change, etc. before it can take off again. Trucks
do not have a ground time.
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that they be at least one minute long. There is no maximum length. Finally, after all

of the nodes are created and associated with the vehicle arcs, ground arcs are created

between the nodes, and the time-space graph has been fully created. This results in

a time-space graph like the notional example shown in Figure 12 where locations A

and B are spoke airport and location C is a hub airport.
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Figure 12: Notional Time Space Graph for ESSND Problem

This discussion of package arcs and vehicle arcs may raise the question, “which

are the arcs of the time-space graph according to the mathematical formulation?”

The answer is both, depending on the application. The exact definition of an arc in

the ESSND problem was intentionally left a little loose in Chapter 3 so parallels to

the problem heritage could be seen. This murkiness arises from the fact that different

vehicles have different transit times between the same two locations.

In the forcing constraint, the arcs are best thought of as package arcs, because

what is important is that all of the packages can be feasibly carried by the vehicles. If

all vehicle types are feasible, small variations in time are inconsequential and so the

vehicle arcs should be handled on an aggregate level and the constraint should exist

for all package arcs. However, for all of the other constraints involving arcs, such as

the hull balance, hull count and feeder limit constraints, vehicles are being tracked

through the network so it does need to be applied on a vehicle arc level. Of the two

arc types, the package arcs most closely align with the intent of the time-space arcs

but the vehicle arcs are necessary to accommodate vehicular variations. This creates

a small notation issue, but the intention is typically obvious from context.
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6.2 Defining Commodity Routing Options

In the arc-path formulation, such as the ESSND problem formulation, commodity

routings are defined explicitly before the optimization. In a pure node-arc formu-

lation, any feasible routing is an option, but the burden of ensuring the feasibility

of a routing falls to the optimizer. This increased burden can increase runtime and

may result in modeling difficulties if feasibility rules are non-linear. The arc-path

formulation ensures that all package routings are time- and equipment-feasible, but

the disadvantage of the arc-path formulation is that enumerating every possible rout-

ing is computationally unappealing and results in many more variables. Fortunately,

enumerating the full set of feasible options is rarely necessary, and only a subset of

the options needs to be created. Failing to enumerate all possible commodity options

does run the risk of missing the true optimal solution, but the magnitude of this risk

is largely determined by how aggressive and sophisticated the approach for cutting

down the option space is. Ultimately, it comes down to a trade-off between an aver-

sion to excluding the optimal solution and runtime or tractability. In the express

shipment problem, which is otherwise intractable when given the full option space for

even a day, the risk omitting the true optimum is acceptable in order to produce a

solution.

As mentioned in Section 6.1, a package routing is an ordered sequence of lanes,

which are, themselves, ordered pairs of activity instances. Section 6.1 also introduced

the concept of a package arc, which is a grouping of one or more similarly-timed

lanes. For this implementation, rules for generating routings were based on a few

observations of the system and some corresponding assumptions,

1. All origin and destination activities are timed such that there exists a feasible

routing through a sorting activity at the primary hub.

2. Only the primary sort connects to all markets, therefore all commodities must

have at least one routing through the primary sort.
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3. Only the primary sort connects to all markets, therefore small markets, partic-

ularly those which could not fill more than one small trunk aircraft, should only

route through the main sort.

4. Same-day commodities, which are picked up in the morning and delivered in

the evening of the same calendar day, only have the option to sort during the

day.

5. Overnight commodities, which are picked up in the evening and delivered on

the morning of the next calendar day, only have the option to sort during the

night.

6. The night cycle is more heavily constrained in terms of time and sorting capac-

ity than the day cycle, therefore two-day commodities, which could otherwise

feasibly be sorted during the night or day sorting activity, must sort during the

day.

These observations and corresponding rules provide the basis for how routings are

created. First, it is necessary that all commodities have at least one routing. Since

only the primary hub is the only hub that connects to all spoke airports, appropriate

routings are generated through the primary hub. To do this, first, all commodities

that can sort during the day (i.e. postal and economy volume) are given a routing

through the daytime sort activity instance. The remaining commodities (i.e. priority)

are given a routing through the primary nighttime sorting activity instance. This

ensures that all commodities have at least one routing.

Next, all of the commodities from large markets are given routings through all

secondary sorting facilities that are time-feasible with respect to pick up and delivery

times. It is assumed that the best use of secondary sorts will be from markets that

require (or could require) two aircraft to serve it. Large airports are defined as those

that originate or terminate 10,000 cubic feet or more of volume on either the night

or day cycle for one day.
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Finally, after secondary sort-based routings are generated for large markets, con-

solidation routings are generated for small markets. Small markets are defined as

those that originate less than 20,000 cubic feet of volume in a phase. Consolidation

is subject to several logical rules,

1. Both the origin and the intermediate location must connect to the same sort.

2. Spokes that can truck to a sort cannot consolidate at an intermediate location.

3. Consolidation cannot occur at locations that can truck to a sort because those

locations will not fly an aircraft.

4. Consolidation cannot occur between two locations that would require a feeder

flight longer than two hours.

5. Consolidation cannot occur at an intermediate location that originates less vol-

ume than the spoke.

6. Consolidation cannot occur at a hub, else it would be equivalent to arriving

early to a sort activity and therefore useless.

These rules are used to create a set of consolidation options for each small market.

In an effort to keep the option space small, only one of the consolidation options is

retained for each consolidation-eligible spoke, the spatially closest, and these routings

are added to the set of package routings.

After all of the commodity routings have been generated, they are assigned a flow

variable, xkp. In the mathematical formulation, the flow variables are continuous on

the range [0, 1], but based on experimental results, Gurobi solves the fully integral

problem, where xkp ∈ B, faster than the mixed integer program. Therefore, the flow

variables are implemented as a binary variable. This choice ultimately makes sense

for practical reasons as well since it is preferable to express shipment carriers to move

all of a commodity together rather than splitting it up.
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6.3 Generating Vehicle Movement Options

Each vehicle arc (i, j) represents a vehicle movement decision variable, yfij, in the

ESSND formulation. In the mathematical formulation, those decision variables are

defined as non-negative integers, with no upper bound. That variable definition

is sufficient for the mathematical formulation, but in practical implementations it

is beneficial to have tighter bounds on the variables to help contain the branch-and-

bound tree. Since vehicle arcs are associated with package arcs, the maximum possible

flow on the arc is known. This maximum flow is used to determine the bounds on

each design variable, which are

0 ≤ yfij ≤
⌈
bmaxij

uf

⌉
(6.1)

where bmaxij is the maximum possible volume that could flow on the arc (i, j) and

uf is the capacity of vehicle type f . Even if the ratio bmaxij /uf is small, the design

variable is included in the model because it may be necessary to use a larger aircraft

to serve an arc due to the hull count and hull balance constraints. Repositioning

arcs, which do not have any associated volume are restricted to a single aircraft, and

ground arcs which need to be able to accommodate many aircraft on the ground at

one time (particularly at hub facilities during the sort activities) are given a higher

upper bound.

Additionally, there are a couple details in the vehicle arc creation that were omit-

ted in Section 6.1 to avoid distractions in the time-space network creation discussion.

First, a non-physical, rule-breaking vehicle type is included in the equipment set to

aid the optimizer in finding feasible solutions. This vehicle is the size and speed of

a 757 aircraft, it does not obey hull balance or hull count constraints, and it is very

expensive. Since it is a rule breaker, it will be called a “pirate ship” for some fun.

Pirate ships are treated the same as any other vehicles for the purposes of vehicle
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arc creation. In practical terms, it is most akin to buying belly space on passenger

aircraft, which is referred to as “interline.” These vehicles are so expensive that they

are soon removed after a solution is found, but they help the optimizer start the B&B

tree which results in a faster overall runtime.

Second, if any package arc can be feasibly moved via truck, then only a truck

vehicle arc is created. This forces any lane that can truck to truck. This is done

because trucks are much less expensive and much more numerous than aircraft. It is

assumed that any trucking option will be cheaper than any flying option, and since

FedEx has so many trucks, there will be a truck wherever one is needed.

6.4 Results

Once the commodity routings and time-space graph, and their associated variables,

are created the resulting integer program is solved using the state-of-the-art commer-

cial optimization solver Gurobi 7.5. This section outlines the computational testbed

used for all experiments in this work and outlines the baseline problem instance. So-

lutions for the baseline problem instance are generated using the option-reduction

heuristics and without them. In comparing the performance of these two cases, the

use of these heuristics are justified and some summarizing metrics are tabulated for

the baseline solution so that it may be compared to other, similar problems and

solution methods.

6.4.1 Computational Testbed

Ample computational power, in terms of the current state of the art, was used to

run the experiments of this dissertation. A summary of the hardware and software

properties of the computational testbed are found in Table 5. These properties are

used for all experiments in this work unless otherwise noted.
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Table 5: Hardware and Software Properties of Computational Testbed

Property Specification
Processor Dual CPU Intel Xeon E5-2680 V3
Number of Cores 12 cores per CPU die (24 cores total)
Processor Speed 2.5 GHz
RAM Size 240 GB
RAM Speed 2133 MHz
Operating System Red Hat Enterprise Linux 6.7
Optimization Software Gurobi 7.5.1
Optimization Settings 48 hr time limit, default otherwise
Implementation Language Java 8

6.4.2 Baseline Problem Instance

The baseline problem instance used in this work is summarized in Table 6. This

Table 6: Baseline Problem Instance

Property Value
Number of Airports 115 (all)
Number of Product Types 15 (all)
Number of Commodities 74,660
Temporal Scope 1 day (Mon to Tues)
Consolidation Options 1 per eligible spoke
Secondary Sort Threshold 10,000 lbs

problem instance includes all of the domestic airports and products described in

Section 2.7. It encompasses one day’s worth of volume but spans two calendar days.

Specifically, it includes all of the volume that is picked up on Monday evening and

Tuesday morning. With the operations of the carrier, this is a more natural day

definition than a calendar day. The settings for the problem-reduction heuristics

are the same as described in Section 6.2. It is important to note that this baseline

problem instance is the baseline in large part because it is the largest useful problem

that can be solved with the monolithic approach. Realistically, a full-week problem

instance would be more useful for an express shipment company because the weekend

provides a more natural break than a day, but comparing one intractable result to

another does not lend itself well to analysis. Therefore, a single day will be taken
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Figure 13: Convergence in Baseline Problem Instance

as the baseline problem instance with the understanding that a full week would be

preferable but not possible (at least for most approaches).

The convergence behavior of the baseline problem instance is shown in Figure 13.

After an initial dramatic decrease in the optimality gap, the progress is relatively flat.

Gurobi finds a solution with a lower than 20% gap within the first hour but spends

the remaining forty-seven hours reducing the gap an additional ten percent.

This convergence behavior is primarily driven by the problem size and the poor

quality of the LP relaxation. The LP relaxation is a fundamental part of the underly-

ing branch-and-bound algorithm, and its quality has a large impact on the efficiency of

the algorithm. Its effect is best explained in the following proposition from Nemhauser

and Wolsey[160] for maximization problems,

Proposition. If node t of the enumeration tree with constraint set St is such that

max{cx|x ∈ StR} < zIP , then node t cannot be pruned.

They go on to comment, “[this proposition] indicates that, regardless of how we

develop the tree, the bounds (quality of the relaxations) are the primary factor in
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the efficiency of a branch-and-bound algorithm.” The same property holds for the

ESSND with just a change of signs. The bounds of the ESSND problem are poor

and as a result, after a brief period of success in finding high-quality solutions, the

algorithm has difficulty improving on that solution or proving that it is optimal. If

branches cannot be pruned from the B&B tree, the algorithm becomes more akin to

an explicit enumeration technique, and its progress dramatically slows down.

The ESSND problem bound is poor because one of the fundamental challenges

of the problem, to load aircraft as efficiently as possible, is not captured in the LP

relaxation. Instead, the optimal solution of the LP solution will assign a fractional

number of the most cost-efficient (best cost-to-capacity ratio) aircraft to move the

volume. This assignment typically has little bearing on the real-world solution and

results in a poor bound.

Despite the fact that the monolithic approach does not terminate within the 48-

hour time limit, it produces a good-quality solution. Some problem and result metrics

are summarized in Table 7. The best found solution had an optimality gap of 9.76%

Table 7: Baseline Problem Instance Results

Metric Value
Number of Rows 136,379
Number of Columns 249,586
Final Optimality Gap 9.76%
Total Trunk Hulls 207 aircraft (of 252)
Trunk Flight Hours 945.6 hours
Total Feeder Hulls 51 aircraft (of 70)
Feeder Flight Hours 167.7 hours
Total Used Trucks 330 trucks

and used fewer hulls than it had available. In regards to optimality gap, recall that

this metric indicates that this solution is no more than 9.76% worse than the true

optimum. It is possible that the solution is closer than 9.76%, particularly since the

optimality gap is based on the lower bound set by the LP relaxation.

It is also notable that the solution does not include all of the aircraft available in
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Figure 14: Convergence in Unreduced Problem Instance

the fleet. A lower fleet usage is appealing to the carrier since aircraft are expensive to

buy, own and repair. These costs are not included in the objective function so they

are not explicitly considered, but it is attractive that the whole fleet does not need

to be used.

6.4.3 Unreduced Problem Instance

To underscore the necessity of reducing the routing options and the associated time-

space graph, an experiment was run that included all of the possible routing options

for the baseline single-day problem instance. It’s convergence behavior, or rather lack

thereof, is shown in Figure 14.

This case was run for a month and it made no progress. At the end of its run

period, the solution still included 161 pirate ships (rule-breaker vehicles). By contrast,

the baseline problem instance, with option-reducing heuristics took only about thirty

minutes to find a solution without pirate ships. The convergence behavior is extremely

flat. Some initial, very modest progress was made during the first day, but after that

point, no appreciable gains were made. This is likely a product of the same pruning
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problem that plagued the baseline case, though on a much greater scale. Table 8

summarizes some problem size and result metrics. The number of rows is similar,

but the unreduced case has nearly three times as many variables. This translates to

a massive size increase in the B&B tree, and since the poor LP bound means that its

pruning is limited, the algorithm is very ineffective.

Table 8: Comparison of the Baseline and Unreduced Problem Results

Case Rows Columns LB Diff.
Obj.
Diff.

Optimality
Gap

Run
Time

Unreduced 169,271 732,417 -20.24% 837.82% 91.6% 30 days
Baseline 136,379 249,586 0% 0% 9.76% 48 hrs

This ineffectiveness is highlighted most strongly in the objective value difference.

The unreduced case’s objective value is over eight times higher than the baseline. The

lower bound difference between the two cases shows that theoretically, if the routings

were not heuristically reduced, a better optimum could be found, but the problem is

completely intractable.

6.5 Sensitivity Studies

To fully explore how the problem size, heuristic thresholds, and constraints affect

the algorithm performance, a number of sensitivity studies were performed. Those

studies are summarized in Table 9. The baseline values are in bold.

Table 9: Monolithic Approach Sensitivity Studies

Focus Studies
Number of Airports 10, 25, 50, 75, 100, 115
Product Set Boxes, Overnight, All
Temporal Scope 1 day, 2 days, 3, days, 4 days, full week
Consolidation Options 0/spoke, 1/spoke, 2/spoke, 3/spoke
Secondary Sort Threshold 7,500 lbs, 10,000 lbs, 12,500 lbs
Constraint Relaxation Hull Balance, Hull Count, Feeder Limit, Sort Capacity
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Each experiment is a deviation from the baseline in one metric. Given how com-

putationally intensive each run is, studying the cross effects of more than one consid-

eration was not possible. However, valuable insight can still be generated from these

sensitivity studies.

In order to protect some sensitive parts of the data, particularly cost-related val-

ues, some metrics are represented as a percent difference from the baseline, which is

calculated,

difference =

(
value− baseline value

baseline value

)
× 100

Therefore, negative differences indicate that the value is smaller than the baseline

and likewise with positive differences. This also means that the baseline case is easily

identifiable as the one with the 0% difference.

6.5.1 Number of Airports

Experiments with a subset of the airport set were performed to explore how the

monolithic approach performs with increased problem size. The aircraft subsets were

selected randomly. Each airport set is a subset of all of the larger sets to ensure that

each larger set is truly larger (and more difficult) than the smaller sets. Additionally,

the primary hub airport, MEM, was included in the smallest subset (and therefore all

others) since most of the volume would be routing through MEM anyways. Only the

commodities that have origin and destinations within the airport subset are included,

so there are dramatic increases in problem size as the airport subset size increases. As

appropriate, routings involving secondary sorts are created regardless of whether the

sort airport is included in the airport subset. The results of the sensitivity experiments

are shown in Table 10.

The most dramatic result from Table 10 is the sharp jump in runtime between

the 25 airport and 50 airport cases. Doubling the number of airports makes the run

time increase from a couple minutes to a couple days, and, although it was close, the
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Table 10: Results of Number of Airports Sensitivity Studies

No. Airports Rows Columns LB Diff.
Optimality

Gap
Run Time

10 airports 9,402 16,335 -95.82% 0% 9 sec
25 airports 21,734 35,472 -89.17% 0% 135 sec
50 airports 49,625 85,856 -67.51% 0.44% 48 hrs
75 airports 77,613 138,506 -46.76% 6.03% 48 hrs
100 airports 113,251 205,883 -14.05% 7.00% 48 hrs
115 airports 136,379 249,586 0% 9.76% 48 hrs

50 airport case did not even finish. Otherwise, the problem scales as expected. There

are dramatic increases in the problem size as the number of airports in the airport

subset is increased as seen in the number of rows and columns, and, implicitly, in

the lower bound difference. As expected, the increase in problem size makes it more

difficult for the optimizer to finish, as seen with the in the increase in the optimality

gap as the problem size increases.

6.5.2 Product Set

Two alternatives from the baseline were studied in the product set sensitivity test – a

case with just box products and a case with just overnight volume. Since the baseline

case is a weekday, this means that the box product case only includes priority, first

overnight, two-day and postal boxes, for a total of four product types. The overnight

product set is first overnight boxes and priority boxes, documents and freight, for a

total of four product types. The results are shown in Table 11.

Table 11: Results of Product Set Sensitivity Studies

Product Set Rows Columns LB Diff.
Optimality

Gap
Run Time

All Products 136,379 249,586 0% 9.76% 48 hrs
Boxes 105,462 176,865 -3.68% 7.78% 48 hrs
Overnight 81,324 138,535 -45.79% 5.16% 48 hrs

As would be expected, since both of these product sets are subsets of the baseline,

both the lower bound and optimality gap are smaller than the baseline. Of the
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two, the overnight product set is smaller and that is reflected in the problem size and

optimality gap. Initially, this large difference in problem size is somewhat unexpected

since both cases had four product types. However, the discrepancy arises primarily

from the fact that not all markets, particularly small markets, have document or

freight volume. Every market does send volume to every other market in some form,

but not all markets send volume in all forms to each other market. Between box,

document, and freight product types, box volume is, by far, the largest. There is also

the secondary effect that day volume, particularly two-day volume has much more

time to consolidate and so there may be some markets that have a consolidation

routing during the day but not during the night. This would further explain the

differences in the problem sizes.

It is notable that the overnight product set case did not terminate before the time

limit. This was the problem that MIT and UPS studied two decades ago, and despite

the impressive advances in both computational power and optimization solvers since

that time, it has not been enough on its own to overcome the challenges of express

shipment problem. This does come with the caveat that it is not clear exactly which

product types MIT and UPS included. First Overnight3 products are too new to have

been part of the product set, but whether their approach explicitly tracked document

and freight products as well as boxes is not clear.

6.5.3 Temporal Scope

Several expanded-scope experiments were run to study how the run time scaled with

increased temporal scope. The results of these studies are found in Table 12. The

problem instances encompassed two, three, four, and seven days worth of volume. The

two, three and four-day cases are all weekday cases, and the seven-day case is the only

one that includes weekend volume. The weekend volume, including Friday, is small

3First Overnight products are similar to priority box products for the purposes of line-haul
transportation, but are delivered earlier in the morning.
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compared to the weekday volume (see Figure 4 on page 26, §2.7) so solving individual

five and six-day problem instances does not lend much to the discussion. The primary

Table 12: Results of Temporal Scope Sensitivity Studies

Days Rows Columns LB Diff.
Optimality

Gap
Run Time

1 day 136,379 249,586 0% 9.76% 48 hrs
2 days 266,739 489,735 89.10% 80.60% 48 hrs
3 days 395,619 723,532 176.88% 99.1% 48 hrs
4 days 521,043 923,803 267.36% 99.1% 48 hrs
7 days 686,102 1,153,267 364.70% No Sol. 48 hrs

takeaway from these experiments is that a problem instance encompassing more than

a single day’s worth of volume is not solvable with a monolithic approach. The

solutions for the two, three and four-day cases are extremely poor and the full-week

problem instance did not even find a single solution after running for two days.

Although solving a single day’s worth of volume, both the night and day oper-

ations, is of great value and more than most studies in the past, ideally, a solution

approach would be able to produce a good solution for a week’s worth of volume. A

week is a more natural unit of time in express shipment operations because the slow

weekend period allows for more of a break and “reset” period for the network. The

results of the temporal scope sensitivity study show that this monolithic approach is

ill-equipped to deal with any time period greater than a single day, let alone a full

week.

6.5.4 Consolidation Opportunities

The effect of including consolidation was studied through experiments that allowed a

maximum of zero, one, two or three consolidation options per eligible spoke location.

In the case where zero options were permitted, only flights to and from the network

hubs were allowed. In cases where at least one consolidation option was allowed, the

consolidation options for a spoke were those that were spatially closest to it. The
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results for this set of experiments are shown in Table 13.

Table 13: Results of Consolidation Opportunity Sensitivity Studies

Opportunities
Per Spoke

Rows Columns LB Diff.
Optimality

Gap
Run Time

0 Consol. 132,891 211,677 9.56% 5.22% 48 hrs
1 Consol. 136,379 249,586 0% 9.76% 48 hrs
2 Consol. 137,128 255,377 -0.05% 8.11% 48 hrs
3 Consol. 138,370 280,102 -0.76% 7.63% 48 hrs

Unsurprisingly, the number of rows and columns scale with the number of consol-

idation opportunities per spoke and including more consolidation improves the lower

bound. What is a little surprising is the fact that of the three experimental and one

baseline cases, the baseline case had the largest optimality gap at the end of the time

limit. Given the increased size of the the two and three option cases, it is expected

that those cases would have had a more difficult time finding good solutions and

therefore a higher optimality gap.

Table 14: Solution Details of the Consolidation Opportunity Sensitivity Studies

Opportunities
Per Spoke

Trunk
Hours

Trunk
Hulls

Feeder
Hours

Feeder
Hulls

Trucks
Objective

Diff.
0 Consol. 994.2 237 186.7 70 223 4.32%
1 Consol. 945.6 207 167.7 51 330 0%
2 Consol. 915.2 203 183.6 54 341 -1.86%
3 Consol. 905.7 248 177.3 54 366 -3.05%

Table 14 shows that the quality of the solutions does improve as more consoli-

dation options are added, which is expected, and the increase in problem size does

not prevent the optimizer from finding good solutions, which is less expected. One

interesting result is that the number of trucks used increases while the number of

truck flight hours decreases with an increased number of consolidations. This does

indicate that expensive trunk aircraft use is being replaced by cheaper intra-spoke

ground transportation and shows that good solutions do take advantage of consoli-

dation opportunities.
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6.5.5 Secondary Sort Threshold

Two sensitivity experiments were performed to study the effect of the secondary sort

threshold on the monolithic approach’s performance. The secondary sort threshold is

the dividing line between those markets whose commodities are given routing options

to multiple sorts and those whose commodities are only given routing options through

the primary sort. Any commodities originating from a market that originates and

terminates less volume than the threshold amount for all phases of the day is only

given routings through the primary sort. This means that a problem instance with a

higher secondary sort threshold will have fewer commodity routings. The results are

shown in Table 15.

Table 15: Results of Secondary Sort Threshold Sensitivity Studies

Secondary
Sort Thresh.

Rows Columns LB Diff.
Optimality

Gap
Run
Time

7,500 lbs 138,210 265,158 -1.17% 12.1% 48 hrs
10,000 lbs 136,379 249,586 0% 9.76% 48 hrs
12,500 lbs 134,624 238,155 0.03% 7.90% 48 hrs

As expected, allowing more markets to sort products at secondary hubs results in

a larger problem and a lower lower bound. The lower bound difference between the

7,500 lbs threshold and the baseline threshold is larger than the difference between

the 12,500 lbs threshold and the baseline. This suggests that a better solution could

be found if the sort threshold were lowered, but this comes at the cost of increased

runtime. On other hand, the secondary sort threshold could be reasonably increased

without much detriment to solution quality with respect to the baseline while also

reducing the problem size. The problem size does have an impact on the solution

quality for this study as seen in Table 16.

The solution details in Table 16 shows the disadvantage of including more options

in the problem. Although the 7,500 lbs case has the lowest lower bound of the three

cases, and therefore potentially the best optimal solution, in a given time period it
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Table 16: Solution Details of the Secondary Sort Threshold Sensitivity Studies

Secondary
Sort Thresh.

Trunk
Hours

Trunk
Hulls

Feeder
Hours

Feeder
Hulls

Trucks
Objective

Diff.
7,500 lbs 948.5 214 194.3 51 336 1.48%
10,000 lbs 945.6 207 167.7 51 330 0%
12,500 lbs 916.8 208 170.3 52 330 -1.99%

produces the worst solution. On the other hand, the 12,500 lbs case has the highest

lower bound but produces the lowest cost solution after two days of runtime. This is

because of the difficulty of finding good solutions within the branch-and-bound tree.

As long as good solutions are not removed from the branch-and-bound tree when the

problem size is reduced, they will be more easily found if the tree is smaller. The

options of the 12,500 lbs case are a subset of those in the baseline case, which are a

subset of those in the 7,500 lbs case, so the good solution found by the 12,500 lbs

case exists in both the baseline and the 7,500 lbs cases but because of the size of the

branch-and-bound tree it had not been found within the allowed runtime.

However, the problem size is not the only factor in play. When compared to

the problem sizes of the consolidation sensitivity experiments, the secondary sort

threshold cases are similarly sized. The consolidation sensitivity experiments were

able to find better solutions when given more options; unlike the secondary sort

threshold experiments. This is a result of the difficulty of the decisions that were

added. Both added (or removed) commodity routings, but those commodity routings

had different impacts on the network as a whole. With consolidation, the impact of

choosing to consolidate or not is relatively localized. It will affect the spoke and the

intermediate stop directly, and there may be some secondary hull balance effects, but

that is about the extent of the effect.

The secondary sort threshold affects the sort membership of the network, which

can have major ripple effects. This is because the inclusion or exclusion of a spoke

from a secondary sort’s membership will affect the volume coming in to and out of
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every other spoke in that sort’s membership set. For example, say that CLT4 volume

is allowed to sort at secondary sorts. Sending volume to all of the sorts is out of the

question so a subset must be chosen. Let’s imagine that CLT connects to MEM and

IND, and that BWI5 also connects to MEM and IND. Let’s say, for the sake of this

example, that with this configuration, BWI can send one exactly full aircraft to MEM

and one to IND, and all of the CLT-bound volume is routed through IND. If this is

changed, perhaps CLT only sorts at MEM, then BWI will have to either upgauge its

MEM-bound flight to carry the CLT volume or route all of its volume through MEM,

thus having cascading effects on all of the other markets that connect to IND. In this

implementation, the burden of deciding the secondary sort membership falls to the

optimizer.

Getting the sort membership right has the potential to realize great efficiencies

in the network, but finding these efficiencies is very difficult thanks to the network

effects. Therefore, when more markets are forced to sort at exclusively at MEM (i.e.

higher secondary sort threshold), the number of these difficult decisions is reduced

and it is easier to find good solutions, but at the risk of missing the true optimal

solution.

6.5.6 Formulation Relaxations

The final sensitivity study what was performed focused on the effect of relaxing

constraints within the formulation. The forcing and cover constraints cannot be

relaxed, but the sort capacity, hull balance, hull count and feeder limit constraints

were relaxed. The results are shown in Table 17.

Of the relaxations, the hull balance constraint has the largest impact. The num-

ber of constraints is drastically smaller when hull balance is not enforced, and the

lower bound and the optimality gap are the lowest of all the relaxations. The next

4Charlotte Douglass International airport
5i.e. Baltimore-Washington International Thurgood Marshall airport
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Table 17: Results of Secondary Sort Threshold Sensitivity Studies

Relaxed
Constraint

Rows Columns LB Diff.
Optimality

Gap
Run Time

Hull Balance 76,129 249,586 -6.74% 7.09% 48 hrs
Hull Count 136,369 249,586 -4.42% 7.79% 48 hrs
Feeder Limit 136,034 249,586 -0.11% 8.60% 48 hrs
Sort Capacity 136,369 249,586 -0.17% 8.26% 48 hrs
Baseline 136,379 249,586 0% 9.76% 48 hrs

most significant relaxation is the hull count relaxation, despite the fact that it only

reduces the number of rows by ten from the baseline (there are ten constrained vehicle

types). The hull count has such a large impact because it allows new vehicles to be

used wherever there needed without penalty, thus essentially bypassing the balance

constraint. The hull balance and hull count constraint work together to enforce the

realistic use of the vehicle fleet and when one is missing the other is left toothless.

The other two relaxations, the sort capacity, and feeder limit constraints, have sig-

nificantly less impact. This is not surprising since the feeder limit only applies to a

small subset of the arcs, and FedEx has put significant effort into their network to

make sure that the sorts are appropriately sized and located.

Since these relaxations will produce a solution that is, in some way, infeasible with

respect to the original formulation, it is interesting to quantify the degree to which

these relaxations deviate from the baseline. For the hull balance and hull count

constraints, this can be done by looking at the number of hulls used in each solution

compared to the baseline and the real-world hull limit. Those hull counts are found

in Table 18. The aircraft are listed from largest to smallest.

Interestingly, the total number of trunk hulls is very similar across all three cases,

but the real deviation from the baseline is in the composition of the fleet. The hull

balance relaxation uses exclusively the newest, and most cost-effective, aircraft. The

hull count relaxation fleet is more diverse, but it also prefers newer aircraft to older

aircraft.
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Table 18: Hull Usage in the Hull Balance and Hull Count Constraint Relaxations

Aircraft
Number in

Fleet
Baseline

Balance
Relaxation

Count
Relaxation

B777F 5 5 47 20
MD-11 43 30 0 5
MD-10-10 37 7 0 1
B767-300F 30 30 100 85
A-300 49 49 0 37
A-310 8 8 0 0
B757-200 80 75 62 60

ATR-72 10 10 48 38
ATR-42 10 10 22 20
C-208 50 31 21 21

Trunk Total 252 207 209 208
Feeder Total 70 51 91 79

Violations of the feeder count constraint can be tabulated by counting the number

of times that more than one feeder is used on an arc. Table 19 tallies the usage of

multiple feeders on a single arc. In total, there were thirty-five instances in which

Table 19: Feeder Usage in the Feeder Limit Constraint Relaxation

Aircraft 2/arc 3/arc 4/arc 5/arc
ATR-72 6 0 0 0
ATR-42 3 0 0 0
C-208 16 8 1 1

multiple feeders were used on an arc. The C-208 was the only feeder to be used more

than twice on a single arc, because it was the most numerous feeder. The ATR-72

and ATR-42 were both limited to ten hulls so there were not many available to double

or triple up on an arc.

As for the sort capacity constraint relaxation, only two sort activity instances

were over capacity – the MEM night sort and the IND day sort. They were assigned

110% and 106% of their capacity, respectively. These numbers are not egregious from

a relative sense, but given the huge capacities of these two sorts, it does equate to

a large amount of volume. Handling the additional volume would be particularly
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difficult for the MEM night sort since it is so time constrained.

6.6 Summary

This chapter focused on the monolithic approach for solving the express shipment

service network design problem. Attempting to solve the ESSND problem without

any reduction in the problem size is shown to be intractable, and a heuristic approach

for creating a subset of good commodity routings is explained. When this heuristic

approach is used, Gurobi is capable of producing good solutions for the single-day

problem instance involving all of the product and commodities. This problem instance

is taken as the baseline problem instance for this chapter and the remainder of this

work. Finally, a number of sensitivity studies were performed to explore the effect

of the problem size, thresholds on the heuristics and formulation constraints. Of

particular note was the fact that the monolithic approach was incapable of solving

any problem instances encompassing more than a day worth of volume. In the next

chapter, Chapter 7, the heuristic approach will be developed, implemented and the

results will be compared to those of the monolithic approach.
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CHAPTER VII

HEURISTIC DECOMPOSITION

In the previous chapter, the monolithic approach, which was developed through a

collaboration between researchers at Georgia Tech and FedEx, was described and

sensitivity studies were performed. That approach will serve as the baseline approach

in this dissertation. After using a heuristic method to generate package routing and

aircraft movement options, the monolithic approach uses a commercial solver, Gurobi

7.5, to solve the full-sized problem instance as one, single optimization problem. It

is capable of producing high-quality solutions, but it requires a longer-than-preferred

runtime to do so. If it were run to convergence (i.e. the integer solution value equals

the lower bound), it would produce an optimal solution, but given the convergence

behavior, reaching convergence would likely require a very long runtime.

Recall that the primary objective of this work is to,

Research Objective 1. Develop a quick and effective algorithm that generates low-

cost vehicle schedules to completely route one day’s worth of domestic express ship-

ment packages.

and my fundamental hypothesis in light of that research objective was,

Hypothesis 0. Based on the evidence in the literature that heuristic and exact de-

composition approaches can out-perform monolithic approaches, I hypothesize that a

heuristic approach or exact decomposition approach will able to produce solutions for

the Express Shipment Service Network Design problem of comparable quality to the

baseline monolithic approach in significantly less time.

This chapter will focus on the development of a heuristic approach to solve the
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express shipment problem. The sensitivity studies performed on the monolithic ap-

proach in Chapter 6 showed that smaller-sized problem instances could be solved

considerably faster than larger-sized instances. Based on this observation, a heuristic

decomposition algorithm is developed to solve the express shipment problem. First,

in Section 7.1, a set of implementation-based research questions are posed. Next,

in Sections 7.2 & 7.3, those research questions are studied through exploratory ex-

periments, hypotheses are generated based on the observations of those experiments,

those hypotheses are then tested in additional experiments, and finally re-posed when

necessary based on the results of those experiments. This results in the development

of an effective, though basic, heuristic decomposition algorithm. In Sections 7.4 & 7.5,

options for improving the basic heuristic algorithm are posed and evaluated. Ulti-

mately, through these improvement explorations, a heuristic algorithm is developed

that is capable of producing comparable and better solutions to the express shipment

problem then the baseline monolithic approach was capable of finding after forty-eight

hours of runtime. Finally, scalability and sensitivity studies are performed on using

this new, improved heuristic algorithm to show its applicability to problems beyond

the baseline problem instance used during its development.

All of the experiments performed in this chapter use the experimental testbed

described in Section 5.4, the computational testbed summarized in Table 5, and use

Gurobi 7.5 as the commercial MIP optimization software.

7.1 Research Questions for the Development of the Heuris-
tic Decomposition Approach

For any researcher wishing to develop or implement a heuristic algorithm, the funda-

mental question is,

Research Question 1. What should the heuristic algorithm be?

This question is not always easy to answer, particularly for applications like the
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express shipment problem for which there is comparatively little other work. One

of the advantages of exact general approaches like branch-and-bound or Benders de-

composition is that they are well-established algorithms that provide at least a firm

foundation for development if not a complete algorithm in themselves. Heuristic ap-

proaches, however, are not general and must be designed for the specific problem at

hand. This does allow for greater levels of customization and exploitation of problem-

specific characteristics, but also a potentially more difficult development process since

much, if not all, of the algorithm may need to be developed “from scratch.”

To develop a heuristic approach for the express shipment problem, let us first

recall the results of the sensitivity studies performed in section 6.5 for the monolithic

approach. Of particular note are results of the studies focused on the number of

airports (§6.5.1), temporal scope (§6.5.3), and formulation relaxations (§6.5.6). These

studies show that the monolithic approach is very sensitive to problem size. Very

small problems, such as the ten-airport and twenty-five-airport cases could be solved

on the order of seconds and minutes, but even moderately larger problems such as

the fifty-airport case did not converge to the optimal solution even after two days.

Problem instances larger than the baseline single-day problem instance were found

to be completely intractable using a monolithic approach. Additionally, relaxing

the problem formulation by removing constraints, particularly the vehicle balance

constraint, was also found to result in lower optimality gaps after a two-day runtime

compared to the baseline approach.

The fact that Gurobi can solve smaller problem instances considerably faster than

it can solve the full-sized problem instance suggests that a decomposition approach

in which several smaller problems are solved individually and then intelligently re-

combined into a consistent, feasible solution may likely produce a good heuristic

algorithm. Therefore, I hypothesize,

Hypothesis 1.1. Based on the observation that the sensitivity studies performed
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on the monolithic approach show that smaller problem instances can be much more

quickly solved than the full-sized problem instance, I hypothesize that a decomposition-

based heuristic will be capable of quickly producing high-quality solutions to the express

shipment problem.

Hypothesizing that a heuristic decomposition approach will be successful in solving

the express shipment problem gets us one step closer to the development of a heuristic

algorithm, but observing that a decomposition approach may be successful is not

enough to start implementing an approach. At the very least, questions remain

concerning how the problem should be decomposed, and how the subproblems should

be arranged and recombined to produce a feasible final solution to the original problem

instance. For guidance on the design questions, I drew some inspiration from my

personal background in aerospace engineering.

Within aerospace and mechanical engineering, there exists a field of optimization

techniques called Multidisciplinary Design Optimization (MDO) which has arisen to

help engineers grapple with the large, complex optimization problems encountered

when designing physical vehicles, machines, and components. The primary objective

of MDO is to leverage numerical optimization techniques in the design of complex

engineering systems which feature interrelated subsystems so as to produce a better

final design than if the subsystems were designed in isolation. The motivating ap-

plication for MDO methods is the optimization of systems for which, “the sum of

optimum components is not an optimum system.”[194]

MDO is essentially a field of study for designing heuristic decomposition ap-

proaches in the context of engineering design, though it is not typically described

in that exact terminology. To understand how it is typically described, let us consult

several definitions from the literature. Sobieszczanski-Sobieski and Haftka (1997)[182]

define MDO as, “methodology for the design of systems in which strong interaction

between disciplines motivates designers to simultaneously manipulate variables in
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several disciplines.” Alexandrov (2005)[6] defines MDO as, “an area of research con-

cerned with developing systematic approaches to the design of complex engineering

artifacts and systems governed by interacting physical phenomena” Finally, Martins

and Lambe (2013)[154] define MDO as “a field of engineering that focuses on the

use of numerical optimization for the design of systems that involve a number of

disciplines or subsystems.”

From these definitions, it is clear that MDO is intended for engineering design

problems that include several interacting disciplines. In MDO terminology, disciplines

are the individual subproblems to be solved. Although it is not explicitly mentioned

in the Sobieszczanski-Sobieski and Haftka (1997) and Alexandrov (2005) definitions,

numerical optimization typically plays an important role in almost all MDO appli-

cations. Due to the nature of engineering design problems, constrained non-linear

optimization techniques are commonly used. Finally, it is important to note that

a fundamental part of MDO is the development of “systematic approaches to the

design of complex engineering artifacts and systems.” These systematic approaches

are typically formalized as architectures and are, in a way, “meta-algorithms.” They

describe how the numerical optimization algorithms and other computational tools

should be used together to produce high-quality designs.

Given that the purpose of Multidisciplinary Design Optimization is to address

optimization problems with multiple disciplines (i.e. decomposed problems), I hy-

pothesize that taking some inspiration from MDO will be useful in designing a

decomposition-based heuristic for the express shipment problem. However, an ap-

proach that completely implements an MDO architecture is unlikely to be successful

because MDO is intended for engineering design problems, and therefore typically

employs techniques designed to handle the highly non-linear functions, the wide va-

riety of shared and local variables, and the black-box analyses common to design

problems. Those techniques would be out of place for solving the ESSND problem
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which is a MIP and therefore has a linear objective function and constraints which

are linear inequalities, only two types of variables, all of which are shared (i.e. no

“local” variables), and no black-box analyses.

Employing an MDO architecture as it was originally conceived for an engineer-

ing design problem would bring with it unnecessary algorithmic infrastructure and

complexity when a simple, fast, and effective algorithm is what is desired for this

application. Although the established architectures of MDO are not directly appli-

cable to the ESSND problem, the mindset that is employed in developing an MDO

architecture is valuable and applicable to this application. In particular, MDO is

concerned with how disciplines are defined and how disciplines interact with each

other.

Since MDO will be used more for its mindset and inspiration in techniques, and not

for the implementation of a pre-existing architecture, a full survey of MDO would be

out of place here. Several extensive surveys of MDO have been performed, and there

are countless journal and conference papers detailing architectures, techniques, and

applications in the literature today. It is recommended that the reader interested in

learning about MDO in more depth than the cursory treatment here peruse the works

by Martins and Lambe (2013)[154], Balesdent et al. (2012)[19], Allison (2004)[8],

Tosserams, Etman and Rooda (2009)[185], Alexandrov and Hussaini (eds.) (1997)[7],

and Sobieszczanski-Sobieski and Haftka (1997)[182].

Despite the fact that MDO is typically used to solve problems that mathemat-

ically look very different from the ESSND problem, I believe that some inspiration

can still be gained from approaches that MDO has found useful in generating good-

quality solutions in problems with multiple interacting disciplines. Therefore, I refine

hypothesis 1.1 to be,

Hypothesis 1.2. An MDO-inspired decomposition-based heuristic will be capable of

quickly producing high-quality solutions to the express shipment problem based on the
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observation that the sensitivity studies performed on the monolithic approach show

that smaller problem instances can be much more quickly solved than the full-sized

problem instance, and Multidisciplinary Design Optimization is an optimization field

focused on developing heuristic decomposition algorithms.

This hypothesis sets the context for the heuristic decomposition approach. Two

major implementation questions still remain. Those questions are, first,

Research Question 2. How should the disciplines be defined in the heuristic decom-

position approach?

And, second,

Research Question 3. How should the disciplines be arranged relative to each other

in the heuristic decomposition approach?

More simply, the questions are “how should the problem be broken up?” and,

“how should it be put back together?”. The next two sections will explore these two

questions in more depth.

7.2 Discipline Definition

The first implementation question is how the disciplines should be defined. In many

MDO applications, this question may already be addressed, at least partially, thanks

to historical precedent, physical limitations, or the availability of analysis software

and experimental testbeds. Since MDO has been developed to improve the design of

engineering systems, MDO discipline definitions are often either physical or functional

in nature. For example, if designing an aircraft, a natural discipline definition would

follow the major traditional design areas such as aerodynamics, structures, propulsion,

controls, etc., or specific parts of the aircraft such as the tail, fuselage, wings, etc.

In the express shipment problem, a historical precedent does not exist for defin-

ing the disciplines so, one must be formulated by considering the properties of the
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problem. Using the MDO practices as guidance, let us propose three discipline def-

initions along physical and functional boundaries. A physical decomposition of the

express shipment problem is one which breaks up the time-space graph. Therefore,

it is one which is either spatially or temporally-based. As a result, each subprob-

lem would solve the full ESSND problem formulation for each subproblem problem

instance which is smaller than the whole, un-decomposed problem instance. A func-

tional decomposition is one in which the ESSND problem formulation is broken up

and the full-sized problem instance is solved for each subproblem formulation.

From this observation from the MDO literature, I make the following hypothesis

in response to research question 2,

Hypothesis 2.1. Based on the successful use of functional and physical discipline

definitions in the MDO literature, I hypothesize that either a functional or physical

discipline definition can be used in a heuristic decomposition approach for the express

shipment problem.

These different discipline definitions need to be evaluated in order to further refine

this hypothesis. When choosing an appropriate decomposition definition, there are

three important considerations. They are,

1. The time it takes to solve each subproblem.

2. Whether the subproblems can be solved in parallel.

3. The nature of the coupling.

First, the time it takes to solve each subproblem is an important consideration, par-

ticularly in this application, because the primary goal of implementing a heuristic

algorithm is to generate good solutions more quickly. Second, long subproblem run-

times may be more acceptable if the problems can be easily solved in parallel, thus

reducing the total wall time to generate a solution. Some problems lend themselves

more naturally to parallelization than others.
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Finally, coupling is a natural byproduct of almost any non-trivial discipline def-

inition and it must be taken into account to ensure that consistent, feasible final

solutions can be found in a reasonable amount of time. Coupling is the shared in-

formation that exists between subproblems. For example, when designing a wing,

the aerodynamics and structures are coupled since the aerodynamics affects the loads

on the wing, and the stiffness and weight of the wing affect the aerodynamic per-

formance and requirements. If coupling were not present, each subproblem could be

solved completely independently and there is no reason to have solved the combined

problem in the first place. For most problems, however, coupling exists and, both

the amount and type, are important because each can have a large impact on how

difficult it may be to reconcile the individual subproblem solutions into a final, con-

sistent, feasible solution. If there is a lot of coupling between the subproblems, it

may be very difficult to find a consistent solution. However, some types of coupling

may be harder to satisfy than others, even if there is less coupling overall. These

three considerations listed above will be the primary criteria for evaluating the three

discipline definitions posed in the following subsections.

7.2.1 Physical Decomposition: Temporal

A temporal decomposition definition is a physical decomposition which breaks up the

time-space graph into periods of time which can be solved independently and then

recombined into a cohesive solution. The appeal of this approach is that it can exploit

the periodic nature of the express shipment problem. Unlike many other airline or

cargo problems, the express shipment problem is strongly periodic.

These periods are centered around the sorting activity instances and divide the

day into four distinct phases – night pick up, night delivery, day pick up, and day de-

livery. During the periods between the phases, particularly during the sort activities,

the domestic airline fleet sits on the ground, waiting to be reloaded. These periods of
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inactivity provide good opportunities for discipline boundaries, whether they be dur-

ing the sorting activities or between the nighttime and daytime operations. Figure 15

shows a notional temporal decomposition defined according to cycles.
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Figure 15: Temporal Decomposition

The advantages and disadvantages of a temporal approach can be weighed in terms

of the three considerations introduced in section 7.2. Those considerations were the

runtime of the subproblems, whether the subproblems could be solved in parallel, and

nature of the coupling between the subproblems. The runtime of the subproblems can

be determined experimentally, but let us first define appropriately-sized subproblems,

and consider the nature of the coupling.

Type and Degree of Coupling The absolute smallest possible time unit that

could be considered for a temporal decomposition is a single phase. If the time unit

were any smaller, it would no longer be capitalizing on the natural breaks in oper-

ations provided by the periodic nature of express shipment operations. However, a

phase-based temporal decomposition would result in extremely heavy coupling be-

tween the subproblems since package and aircraft flow balance would need to be

enforced between them. In a phase-based require an extremely large number of bal-

ance constraints for both the packages and the aircraft. In fact, every package routing

variable would require a balance constraint between subproblems since a phase only

defines, at most, half of a routing, and nearly every aircraft movement would also
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require a balance constraint between subproblems.

The amount of coupling between subproblems can be greatly reduced by using

a cycle-based temporal decomposition definition instead of a phase-based temporal

decomposition. With a cycle-based temporal decomposition, flow balance constraints

are not needed for the same-day and overnight package routing variables since those

products are moved entirely within a single cycle. Coupling would still arise, how-

ever, from the package routings of the two-day products and the aircraft movements

between cycles, but the coupling would be considerably lower than the coupling in

the phase-based temporal decomposition.

Potentially, a “wrap-around” constraint, which is an extended balance constraint

from the end of the day to start of the day, could be used for each subproblem to

reduce the conflicts between the subproblems. The wrap-around constraint ensures

that each airport has the same number and type of planes at the end of the cycle

as it had at the beginning of the cycle. Assuming that each cycle is similar to its

predecessor and successor, this would reduce the number of aircraft balance constraint

violations between the subproblems and potentially make it easier to reconcile the

differences between the subproblems.

Parallelization Fortunately, the temporal decomposition approach does generally

lend itself to parallelization. Since each cycle-based subproblem is still modeled using

the full ESSND problem formulation, a solution can be generated for each subproblem

independently. The individual subproblems would then need to be recombined and

reconciled to produce a final solution. The difficulty of this subproblem reconciliation

would be largely affected by how flexible each subproblem would be to changes, which

is closely related to the type and degree of coupling present in the subproblems.

Subproblem Runtime The runtime of the subproblems can be tested with an

exploratory experiment. There are two cycles per day, 1) a night cycle, during which
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the overnight commodities are moved, and 2) a day cycle, during which the same-day

and two-day commodities are moved1. That means, that for the baseline problem

instance (summarized in Table 6), there are two subproblems to test, a night-cycle

subproblem and a day-cycle subproblem.

These two experiments are tested in the experimental testbed described in Sec-

tion 5.4, where the problem instance is filtered to include only overnight products

(night-cycle) or two-day and same-day products (day-cycle). These reduced-size prob-

lem instances are solved using Gurobi using a monolithic solution generation approach

and run for 24 hours. The results of this experiment are summarized in Table 20.

Table 20: Temporal Decomposition Subproblem Runtimes

Problem Rows Columns Optimality Gap Total Runtime
Night-Cycle 81,324 138,535 5.20% 24 hrs
Day-Cycle 56,947 117,828 4.98% 24 hrs

After 24 hours, the optimal solution for neither problem had been found. Consid-

ering that these subproblems would still need to be reconciled, potentially iteratively,

this long runtime is a major disadvantage. One of the key shortcomings of a tempo-

ral decomposition is that it is limited in it’s “resolution.” Problem instances smaller

than a cycle would be burdened by prohibitively large and difficult coupling between

the subproblems, but cycle-sized and larger problem instances cannot be solved in

reasonable periods of time.

7.2.2 Physical Decomposition: Spatial

The express shipment problem could also be decomposed spatially. In a spatial decom-

position, the time-space graph is divided along geographical boundaries into regions.

The most straight-forward regional definition would be to divide the United States

geographically according to the areas local to the five sorting hubs - an airport would

1Strictly speaking, two-day commodities could be moved during the night cycle but in practice
two-day volume is predominantly moved during the day cycle with the same-day volume.
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Figure 16: Sort-Based Regional Decomposition

“belong” to whichever sorting hub was closest. Airports in those regions would then

sort all of their volume at their regional hub. This sort-based spatial decomposition

is shown for the baseline problem instance in Figure 16.

Since there are five sorting hubs in the problem instance, there are five regions.

Thanks to the geographical distribution of these hubs, this translates to regions lo-

cated roughly in the Northeast (EWR), Southeast (MEM), Midwest (IND), Southwest

and Mountain West (AFW), and West Coast (OAK).

Parallelization Like the temporal decomposition, the spatial decomposition lends

itself to parallelization. Each of the regional subproblems can be solved independently

without knowledge of the other subproblems since each subproblem is modeled with

the whole ESSND problem formulation.

151



Subproblem Runtime Each of these regions only encompasses between eighteen

and thirty-two airports. The airport-set sensitivity studies performed in Section 6.5

showed that problems of this size could be solved extremely quickly, even when the

spokes can connect to multiple hubs. The runtime of each regional subproblem can be

tested experimentally where each subproblem is defined as one of the regions shown

in Figure 16.

These five experiments are tested in the experimental testbed described in Sec-

tion 5.4, where each problem instance is filtered to include only those products whose

origin and destination are both in the region. Since this is an exploratory experiment,

the routing option generation method was not modified to force the use of the re-

gional hub. Each problem instance is solved using Gurobi using a monolithic solution

generation approach. The results of this experiment are summarized in Table 21.

Table 21: Spatial Decomposition Subproblem Runtimes Without Interregional Vol-
ume

Region Number of Airports Runtime
AFW 18 10 sec
EWR 23 120 sec
IND 32 367 sec
MEM 19 17 sec
OAK 23 9 sec

Consistent with the results of the airport-set sensitivity studies in Section 6.5,

these regional subproblems can be solved very quickly. The longest case, the IND

region case, took only about six minutes to solve to optimality. However, and this

is critical, none of these subproblems consider the interregional volume, which is

substantial and extremely difficult to reconcile. Ultimately, although the runtimes

of the strictly-regional subproblems are encouraging, the interregional volume cannot

be ignored and presents major challenges.
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Type and Degree of Coupling The question of how to handle the interregional

volume is a significant hurdle that does not have an obvious answer. Since every

airport sends volume to every other airport, there is a massive amount of interregional

volume. This interregional volume gives rise to a large number of vehicle and package

flow balance issues that must be reconciled between the subproblems.

To illustrate this point, imagine four locations divided into two regions with two

locations in each region as seen in Figure 17. To keep the example simple, hubs

are omitted. The full ESSND problem is solved within both of these regions for the

packages that originate and terminate within that region.

A

B D

C

Region 1 Region 2

Figure 17: Coupling Between Regions in a Spatial Decomposition

The issue arises in what to do with the commodities that bridge regions 1 and 2.

Commodities that originate within the one region but are delivered in the other

region must be treated as coupled variables between the two subproblems. As a result,

region 1 has only two local arcs, but eight shared arcs, which require coupled variables,

and similarly for region 2. As a result, a spatial decomposition as a massive number

of coupled packaged variables would exist between the subproblems, and because the

aircraft fleet is shared across the United States, aircraft balance and hull count would

also be coupled between the subproblems.

The use of hubs as consolidation points would reduce the number of interregional

arcs, but this is not a complete fix either. One option is that each region consolidates

all of its originated volume at its regional hub, and then it sends several large flights
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to each other regional hub where it is distributed to delivery flights. Not only is

this “solution” is impossible with the current time constraints, it would require each

interregional package to visit two sorting activities, which would dramatically increase

costs and risk of package delays.

A different option would be to again consolidate all of the volume originated at the

regional hubs but, rather than fly to a second hub, fly the volume to its destination.

While it might be time-feasible (though not universally), it would be impossible from

an operational and fleet-size perspective. This arrangement would require each hub

to have full connectivity within the network, each spoke would have to accommodate

at least five aircraft (one from each sort), and many of those flights would likely be

underloaded. It would fail to take advantage of the economies of scale that express

shipment companies depend on.

A third option would be to send all of the interregional volume through the pri-

mary hub at MEM since it is the only hub to have connectivity with all of the spokes.

Unfortunately, the interregional volume is so large that this approach would over-

whelm the sort and greatly exceed its capacity.

There are, of course, other possible schemes for dealing with the interregional

volume, but the most compelling argument against solving the express shipment

problem according to regional subproblems is that it does not faithfully capture the

current operations and strategy of express shipment airlines today. In reality, regional

hubs exist to take some of the burden off the primary hub by providing a local sorting

capability for the large markets in a particular area. Small markets only route through

the primary sort. This strategy is a reflection of the advantages of a pure hub-and-

spoke network. In terms of the number of flights needed to fully connect a network,

a pure hub-and-spoke network is the most efficient network topology. Keeping the

number of flights low is important because it allows for a smaller fleet and it means

that those aircraft are more fully loaded. Physical limitations in the sorting capacity,
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as well as transportation costs (e.g. SEA to LAX via OAK instead of MEM), requires

a multi-hub-and-spoke approach, but express shipment companies prefer to operate

in a pure-hub-and-spoke-like strategy for small markets in order to fill aircraft. The

markets that can fill multiple aircraft are those that take advantage of the secondary

hubs. This strikes a compromise between the pure-hub-and-spoke topology and the

multi-hub-and-spoke topology where every hub is fully-connected.

Thought of another way, a spatial decomposition scheme reduces to a sort-assignment

problem. That is, it is the problem of assigning commodities to the sorting facility

that they will route through. The difficulty of this problem was previously discussed in

the secondary sort threshold sensitivity study in Section 6.5. To summarize that pre-

vious discussion, the sort assignments for every market impacts every other market,

and these “network effects” makes sort assignment an extremely challenging problem

to solve, despite appearing superficially simple.

In summary, the spatial and temporal decompositions are based on breaking up

the time-space network into smaller subgraphs and solving several smaller problem

instances using the full ESSND problem formulation, then recombining them. The

problem formulation itself remains unchanged, it is only the subproblem scope that

changes. However, these decomposition approaches, at best, both face the significant

challenge of reconciling the vehicle and package balance constraints between the sub-

problems, not to mention issues with resolution limitations and interregional volume

challenges. An alternative approach would be to decompose the problem formula-

tion itself, which is a functional decomposition strategy and is discussed in the next

section, Section 7.2.3.

7.2.3 Functional Decomposition

Within the express shipment problem, there are two fundamental questions, “how

should packages be routed?” and “how should aircraft be scheduled in order to move
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these packages?” These two questions capture the two interconnected fundamental

functions within package delivery – the routing of packages and the flying of aircraft

to move them. The functional distinction is so ingrained in the problem that it is

captured in the mathematical formulation as the flow (package routing) and design

(aircraft movement) variables.

Therefore, a functional decomposition of the express shipment problem would be

to define two problems – one that captures the package routing considerations, and 2)

one that captures the aircraft movement considerations. Since this discipline defini-

tion is captured in the two variable types of the ESSND problem formulation, it will

be called the variable-based decomposition. Since the discipline definition splits the

ESSND problem according to variable type, the two resulting optimization problems

look very similar to those of the ESSND problem implementation of Benders decom-

position. The problem formulated to answer the “how should packages be routed?”

question, which will be called the Package Routing Problem (PRP), is

min φ(xkp) (7.1a)

s.t.
∑
k∈K

∑
p∈Pk

δpijb
kxkp ≤

∑
f∈F

uf ȳfij ∀(i, j) ∈ A (7.1b)

∑
p∈Pk

xkp = 1 ∀k ∈ K (7.1c)

∑
k∈K

∑
p∈Pk

δphnkx
k
p ≤ eh ∀h ∈ H (7.1d)

0 ≤ xkp ≤ 1 ∀p ∈ P k, k ∈ K (7.1e)

where φ(xkp) is a stand-in objective function. The problem formulated to answer the

“how should aircraft be scheduled to move these packages?” question, which will be
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called the Aircraft Movement Problem (AMP), is

min
∑

(i,j)∈A

dfijy
f
ij (7.2a)

s.t.
∑
k∈K

∑
p∈Pk

δpijb
kx̄kp ≤

∑
f∈F

ufyfij ∀(i, j) ∈ A (7.2b)

∑
j:(i,j)∈A

yfij =
∑

j:(j,i)∈A

yfji ∀i ∈ N, f ∈ F \ F̃ (7.2c)

∑
(i+,j)∈A

yfi+j ≤ nf ∀f ∈ F \ F̃ (7.2d)

∑
f∈F̂

yfij ≤ 1 ∀(i, j) ∈ A (7.2e)

yfij ∈ Z+ ∀(i, j) ∈ A, f ∈ F (7.2f)

In Chapter 8, we will see that the PRP is very similar to the Benders decomposi-

tion subproblem, and the AMP is very similar to the Benders decomposition master

problem. One notable exception, however, is that the forcing constraint is contained

in both the master and subproblems in the functional decomposition whereas in Ben-

ders decomposition it is only present in the Benders subproblem and enforced in the

master problem through the iterative addition of Benders cuts, a specific type of

cutting plane.

Type and Degree of Coupling Whereas in the temporal and spatial decompo-

sitions, coupling was primarily a result of the balance and hull count constraints, in

the functional decomposition, coupling is a result of the forcing (capacity) constraint.

Since the forcing constraint contains both aircraft movement and package routing

variables, it is present in both subproblems and gives rise to coupling. The Aircraft

Movement Problem must know the package routings in order to assign aircraft and

the Package Routing Problem must know the aircraft schedule and capacities in order

to route packages. Since every variable in the optimization problem is involved in the
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forcing constraint, the amount of coupling is very high. However, the coupling is a

different type than that of the physical decompositions. Of particular note is that, if

either the package routings or aircraft capacities are known, then the other problem

is significantly easier to solve. The physical decomposition approaches did not have

that relationship.

Parallelization As a result of the type of coupling between the subproblems, the

functional decomposition is not amenable to parallelization. The Aircraft Movement

Problem, if it is not provided with package routings, will not fly any aircraft, and the

Package Routing Problem, if it is not provided aircraft movements, will be infeasible.

As a result, the two problems depend on each other too directly to be solved in

parallel.

Subproblem Runtimes The runtimes of the Package Routing Problem and the

Aircraft Movement Problem can be tested experimentally, but before these two prob-

lems can be reasonably tested, values for x̄kp and ȳfij must be determined. If they are

set to zero, then the PRP will be infeasible and the AMP will be trivial, which does

not meaningfully test whether or not a monolithic solution method is appropriate for

solving the PRP and AMP. Therefore, for the purposes of this experiment, x̄kp was

set to be,

x̄kp =


1 if p is the shortest path in P k, and

0 otherwise

(7.3)

for the Aircraft Movement Problem.

In the original Package Routing Problem formulation (7.1), if there is insufficient

capacity in the aircraft network, the problem will be infeasible and no packages will

be routed. It would be more useful if, instead, packages were routed such that they

minimize the infeasiblility if there is insufficient aircraft capacity assigned. To do this,
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the fictional pirate ship vehicles are used to provide fictional capacity, and the PRP

objective is to minimize their use, which is a function of both distance and volume.

Real-world aircraft that are added as fixed variables yfij to the PRP do not incur a

cost. Trucks may also be assigned in the PRP since some commodities only have a

trucking option, but since they are real-world vehicles, those trucks do not incur a

cost. This resulting modified Package Routing Problem is,

min
∑

(i,j)∈A

d̃fijy
f
ij (7.4)

s.t.
∑
k∈K

∑
p∈Pk

δpijb
kxkp ≤

∑
f∈F

ufyfij ∀(i, j) ∈ A (7.5)

∑
p∈Pk

xkp = 1 ∀k ∈ K (7.6)

∑
k∈K

∑
p∈Pk

δphnkx
k
p ≤ eh ∀h ∈ H (7.7)

0 ≤ xkp ≤ 1 ∀p ∈ P k, k ∈ K (7.8)

yfij ∈ R+ ∀(i, j) ∈ A, f ∈ F ◦ (7.9)

(7.10)

where, F ◦ = {pirate ship, truck}, and

d̃fij =


(i,j) distance if f is a pirate ship, and

0 otherwise.

The objective function is set to be a penalty function on the number of pirate-ship

vehicles used in the solution. For this purpose, the pirate ship variables are set to be

continuous variables and their cost is only a function of distance and volume (i.e. no

cycle cost). Since pirate ships are fictional vehicles, any volume “moved” by pirate

ships can be considered un-routed. Since the goal is to move all packages, the PRP
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objective is to minimize the use of pirate ships. Trucks are included in the vehicle

set F ◦ because the lanes that can truck are forced to truck, but since trucks are real

vehicles, their use is not penalized.

Although the objective function is not actually a function of xkij, it still scales di-

rectly with the total volume-miles traveled on non-physical vehicles, which is directly

linked to the package routing choices. The objective function was written this way

in order to avoid introducing quadratic terms in the objective function. By keeping

the pirate ship variables continuous, their magnitude is proportional to the amount

of volume assigned to them.

If no aircraft are added to the PRP, as in the experiment performed in this sec-

tion, the problem reduces to selecting the shortest path option for each commodity

that must fly. Since trucks do not incur a cost in the PRP objective function, the

commodities that can truck will do so. In the following section (§7.3.1) where the

PRP is used in a fixed-point iteration scheme, this objective function will be slightly

more meaningful and incentivize the use of the company aircraft that were assigned

in the previous AMP iteration. The assignment of those real vehicles is fixed and

using them is penalized.

Experiments exploring the runtime of the PRP and AMP were then run on the ex-

perimental testbed described in Section 5.4. The full-sized baseline problem instance

was used (i.e. no additional dataset filtering was performed), which can be found in

Table 6 of Ch. 6. Since the PRP and AMP are relaxations of the original ESSND

problem formulation, the solution generation procedure was slightly adjusted. Instead

of generating the full set of constraints, only the appropriate subset was generated for

the two problems. That is, for the Package Routing Problem, only the forcing, rout-

ing cover, sort capacity, and variable bounding constraints added to the optimization

model, along with the penalty function objective function mentioned above. For the

Aircraft Movement Problem, only the forcing, vehicle balance, hull count, feeder limit,

160



and variable integrality constraints were added to the optimization model, along with

the original ESSND objective. Both of the resulting optimization models were then

solved using Gurobi.

Several experiments on the PRP and AMP were run, and these experiments were

run on a smaller computational testbed since they were not expected to need the

full computational resources of the monolithic testbed (Table 5). The properties

of the smaller computational testbed are tabulated in Table 22. The most notable

differences are the significant reductions in cores and RAM, an increase in processor

speed, and the change of operating system.

Table 22: Hardware and Software Properties of Smaller Computational Testbed

Property Specification
Processor Intel i7-2600
Number of Cores 4 (of 8 total physical and virtual cores)
Processor Speed 3.4 GHz
RAM Size 24 GB
Operating System Windows 7 Enterprise
Optimization Software Gurobi 7.5.1
Optimization Settings 48 hr time limit, default otherwise
Implementation Language Java 8

Several different factors were explored in these runtime experiments. Specifically,

the effect of including consolidation and the effect of the routing variable domain

(continuous vs. binary) are studied. The results of the PRP and AMP experiments

are summarized in Table 23. The results are generally as expected. All of the exper-

Table 23: Runtime of the Package Routing Problem and the Aircraft Movement
Problem

Problem Name w/ Consol. Routing Variable Runtime
Package Routing Problem True Continuous 7.75 sec
Package Routing Problem True Binary 22.86 sec
Aircraft Movement Problem True Fixed 660.42 sec
Package Routing Problem False Continuous 9.66 sec
Package Routing Problem False Binary 12.51 sec
Aircraft Movement Problem False Fixed 368.18 sec
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imental cases were solvable in a reasonable time frame, with the longest run taking

eleven minutes. The aircraft routing problem did take significantly longer to solve

than the Package Routing Problem, but considering that the full-size problem did

not even converge in two-days, a runtime of over ten minutes is not cause for concern

at this point. The exclusion or inclusion of consolidation options did have an effect

on both problems, though the effect was much more pronounced in the AMP, for

which including consolidation nearly doubled the runtime. This is likely a result of

the increased size of the time-space graph.

7.2.4 Refinement of the Discipline Definition Hypothesis

In the introduction to this section, three considerations for evaluating discipline def-

initions were presented. Those were,

1. The time it takes to solve each subproblem.

2. Whether the subproblems can be solved in parallel.

3. The nature of the coupling.

The three discipline definitions, temporal decomposition, spatial decomposition, and

functional decomposition, were then evaluated based on those considerations. In an

ideal situation, each subproblem would be quick to solve, amenable to parallelization,

no coupling would exist between the subproblems. Without coupling the subproblems

could be trivially recombined and generating the solution would be simple. Unfortu-

nately, this is not the reality, and the best solution is often the one whose challenges

can be most easily overcome.

Of the three discipline definitions considered, I believe that the challenges of the

functional decomposition will be the easiest to overcome. Its primary challenge is the

large number of coupling variables, since every variable is a coupling variable. The

subproblems also cannot be run in parallel, but this is not necessarily a deal breaker.

162



The temporal decomposition was found to have very long subproblem runtimes,

thus casting doubt on its suitability as an effective decomposition definition. The

spatial decomposition subproblems were considerably faster to solve, but the question

of what to do with the large number of interregional commodities is very challenging

to answer, and the hull count and vehicle balance constraints must also be reconciled

between regions, which is potentially problematic. Based on the observations from

the exploratory experiments for the three discipline definitions, I refine hypothesis 2.1,

Hypothesis 2.2. Based on the results of the exploratory experiments conducted on

the temporal, spatial, and functional decomposition definitions, and the success of

physical and functional discipline definitions in the MDO literature, I hypothesize

that a functional decomposition, which features a Package Routing Problem and an

Aircraft Movement Problem, will be an appropriate discipline definition for a heuristic

decomposition approach for the express shipment problem.

This hypothesis addresses research question 2, which focuses on how the problem

should be broken up. The next section (§7.3), focuses on how the subproblems should

be arranged relative to each other to produce a full solution.

7.3 Discipline Arrangement

Now that the disciplines have been defined, their arrangement relative to each other

must be determined. Given that there are two disciplines and they are coupled, they

must somehow be “made aware” of the needs of the other in order to produce a

consistent, feasible, and, preferably, high-quality, solution. If the Package Routing

Problem and Aircraft Movement Problem are considered in isolation, the lack of

aircraft capacity in the PRP network will result in an infeasible problem, and the

lack of demand in the AMP will result in zero aircraft movements. Therefore, the

interaction between the problems must be taken into account. Here is where MDO

can lend some inspiration.
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The primary purpose of MDO architectures is to describe how disciplines should be

arranged relative to each other. These architectures, however, are designed for prob-

lems that mathematically look very different from the express shipment problem. In

particular, MDO architectures are typically formulated to handled large non-linear

problems with a variety of variables, some of which are local to the disciplines and

some of which are coupled and shared between disciplines. As a result, a lot of the

“infrastructure” included in MDO architectures is oriented towards addressing dif-

ficulties associated with these types of problems which are irrelevant to the express

shipment problem. Implementing one of these architectures directly would be mis-

guided and likely ill-fated. However, some simple techniques from MDO may still be

useful.

In their survey of MDO architectures, Martins and Lambe (2013)[154] categorized

architectures according to whether a Multidisciplinary Analysis (MDA) method was

used to enforce consistency between coupling variables or whether consistency was

enforced through the use of coupling variable copies and consistency constraints.

The former was described as being MDF-like (Multidisciplinary Feasible) and the

latter was described as IDF-like (Individual Disciplinary Feasible). MDF and IDF

are single-level MDO architectures in which a single master-level optimizer is used

to find the optimum of a problem containing several disciplinary analyses. Martins

and Lambe (2013) draw parallels between these single-level architectures and the

more complex distributed architectures which typically contain optimization at the

discipline-level as well as at the master-level.

Of the two classes of architectures, the MDF-style approaches are more appealing.

This is because, with the discipline definition just established in Hy. 2.1, every variable

of the ESSND problem would be a coupling variable. This would result in an enormous

number of consistency constraints that would need to be handled by a master level

optimizer.
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There is also another consideration. One of the goals in developing the heuristic

decomposition approach is to keep the algorithm as simple as possible, and to only add

complexity2 as it is necessary to provide additional performance. In general, this is a

good rule of thumb when designing an algorithm. Complexity should not be added

simply for its own sake; it should be added because it is necessary. With this in mind,

many of the MDO approaches appear more complex than is necessary for the ESSND

problem. Since the disciplines (PRP and AMP) are mixed integer programs, the

optimization of those problems is inseparable from the practical means of generating

feasible solutions to that problem. This is unlike many MDO applications in which

there exists an analysis code that simply calculates the physical property given a set

of inputs. The point is somewhat subtle, but the important piece is that this means

that if MDO is used as a direct analogy for constructing this heuristic decomposition

algorithm, a distributed architecture should be built. That is, one in which there is

a master-level optimizer overseeing the progress of discipline-level optimization.

However, from an algorithm complexity view, one must ask whether this master-

level optimization is necessary for the ESSND heuristic. Optimization is already being

performed on the discipline-level, why introduce another level of optimization if it is

not necessary? Furthermore, what would that master-level optimizer act on? What

would be the design variables and what would be the local variables, if any? In the

interest of only including things to the algorithm as they are found to be necessary,

I make the conjecture that a master-level optimizer will not be necessary for the

ESSND heuristic.

This conjecture means that the MDF-like approaches, or more specifically, the

MDA techniques they employ, are more suitable. A common way of producing mu-

tually feasible consistent solutions between two coupled disciplines is through fixed

2Algorithmic complexity is only meant in terms of how intricate the algorithm is, not the com-
putational complexity, which is a separate though important consideration.
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point iteration (FPI). In fixed point iteration, the coupled variables of one disci-

pline are held fixed while a solution is produced by the other discipline. Then, the

other discipline is solved, holding the variables of the other discipline fixed to their

previously-found values. This iterative process continues until a consistent solution

has been found.

Based on these observations, I make the hypothesis,

Hypothesis 3.1. Since the Package Routing Problem and the Aircraft Movement

Problem are coupled, I hypothesize that feedback will be required to produce a mutu-

ally feasible solution, and, given that fixed point iteration is a common way to handle

coupled disciplines in the MDO literature, the Package Routing Problem and Air-

craft Movement Problem should be arranged in a fixed point iteration scheme in the

heuristic decomposition approach for the express shipment problem.

This hypothesis addresses research question 3, and will be tested in the following

Section 7.3.1.

7.3.1 Fixed-Point Iteration-Based Solution Generation Approach

In Section 7.2.3, the exploratory experiments showed that the Package Routing Prob-

lem (PRP) and the Aircraft Movement Problem (AMP) could be solved relatively

quickly. This section tests hypothesis 3.1 that a fixed point iteration scheme is an

appropriate discipline arrangement for this discipline definition.

In order to test this hypothesis, an FPI scheme must be implemented using the

Package Routing Problem (7.4) and the Aircraft Movement Problem (7.2) that were

formulated previously. Thanks to the slight modifications to the PRP introduced in

Section 7.2.3, no further modifications to either the PRP or AMP were necessary.

The FPI implementation is outlined in algorithm 1.

In the FPI implementation, the Package Routing Problem is solved first, and all

volume is moved via pirate ships and trucks as in runtime experiments conducted in
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Algorithm 1 Fixed Point Iteration Scheme

1: µ←∞
2: while µ > 0 do
3: Package Routing Problem:
4: Solve Eq. 7.4 with a monolithic approach
5: x̄kp ← xkp
6: Aircraft Movement Problem:
7: Solve Eq. 7.2 with a monolithic approach
8: µ← number of changed aircraft movements
9: ȳfij ← yfij

10: end while

Section 7.2.3. Then, using these package routings, which will be the shortest-path

routings, the Aircraft Movement Problem is solved. This assigns real aircraft to move

the packages along the routings assigned in the PRP. The algorithms iterates, con-

secutively solving the PRP and the AMP. At each iteration, the scheduled aircraft

movements are compared to the previous iteration’s aircraft movements. If the move-

ments are identical, then the approach has converged to a consistent solution and

is terminated. The number of changed movements was chosen as the termination

criterion because the routing problem is degenerate so solutions with identical cost

may have different routings.

7.3.1.1 Testing the Fixed Point Iteration Approach

Two FPI experimental cases were run for the baseline problem instance (Table 6),

one in which the package routing variables xkp were continuous (0 ≤ xkp ≤ 1) and one

in which they were binary. These cases were run on the experimental testbed de-

scribed in Section 5.4 using the same computational testbed used for the monolithic

approach (Table 5). Since the experiments are run on the baseline problem instance,

no additional dataset filtering is performed. The fixed point iteration algorithm de-

scribed in Algorithm 1 is used in the Solution Generation step, and the individual

MIP problems (PRP and AMP) are solved using Gurobi. The convergence behavior

of the FPI scheme is shown in Figure 18 for the two experiments.
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Figure 18: Convergence Behavior of the Fixed Point Iteration Scheme

In Figure 18, the convergence behavior of the FPI algorithm with binary routing

variables is shown in blue and the convergence behavior of the FPI algorithm with

continuous routing variables is shown in red. The convergence behavior is shown

in terms of the hundreds of changed movements from one run to the next, which

was the termination criterion. The behavior of the two algorithms is very similar,

although the FPI with continuous routing variables required one more iteration and

a few more minutes to converge compared to the FPI with binary routing variables.

The summary of the two experiments is shown in Table 24.

Table 24: Results of Fixed Point Iteration-Based Solution Generation Approach

Routing Var. Iter. Runtime Opt. Gap Obj. Diff.
Continuous 7 24.85 min 31.07% 25.78%
Binary 6 23.30 min 30.34% 30.76%

Both cases took nearly the same amount of time, though the continuous case

took a little over a minute longer and required an additional iteration to converge.

Although it is not explicitly shown in the table, both experiments have similar ob-

jective values, but unfortunately, those objective values are not very good compared
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to the monolithic values. The optimality gap for these cases is calculated relative to

the lower bound of the equivalent monolithic case. That calculation is,

Optimality Gap =

(
objective value− lower bound

objective value

)
× 100

Of the two, the binary case has the marginally better optimality gap, but the differ-

ence is not enough to be significant for these purposes. The similarity is because the

objective values are similar to each other and the lower bounds are also similar to

each other. There is a more significant difference in the objective function differences.

That value was calculated in the same manner as the differences in the monolithic

chapter,

Difference =

(
value− baseline

baseline

)
× 100

To calculate the objective value difference, the baseline value was taken as the best-

found objective value of the baseline monolithic case. Of the two cases considered

in this experiment, the continuous routing variable case had a better objective value

difference, but this is primarily a relic of the relatively poor performance of the

equivalent monolithic case. The monolithic case with continuous routing variables

only achieved a 13.3% gap after 48 hours and despite having a slightly lower lower

bound than the monolithic case with binary routing variables, it had a higher objective

value. Since the continuous and binary routing variable FPI implementations found

solutions with similar objective values, the continuous case only looks better because

the baseline value was higher.

Ultimately, the fixed point iteration approach is not satisfactorily capable of

producing high-quality solutions to the express shipment problem in an acceptable

amount of time. A solution with an objective function value that is 25-30% higher

than the corresponding monolithic solution translates to a several million dollar dif-

ference for a single day of operations. This makes the FPI approach suitable for only
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the roughest solution estimates. It succeeds in finding a consistent solution, but that

solution is not particularly good. This poor performance of the fixed point iteration

approach means that hypothesis 3.1 is rejected, and it necessitates a re-evaluation of

the hypothesis. This is discussed in the following two sections (§7.3.2 & §7.3.3).

7.3.2 Package Routing with Aircraft Problem

Before deciding how to proceed, the cause of the poor FPI performance must first

be discussed. The primary cause of the FPI’s lackluster performance is the fact that

decision for how to route packages is completely separated from the decision for how

to schedule the aircraft, and the FPI is not adequately capable of reconciling that

separation. The secondary cause of the FPI algorithm’s performance is the Package

Routing Problem objective function. When there are no real aircraft scheduled, the

PRP becomes a shortest path problem, and when there are real aircraft scheduled in

the PRP, those aircraft do not incur a cost to use.

To see how these two factors result in the FPI’s poor performance, let us perform

a brief thought experiment on how the FPI algorithm would assign package routings

and aircraft movements for a single pick up phase. Imagine the first step of the

FPI algorithm. No real aircraft are scheduled for the Package Routing Problem so

the shortest routing is chosen for each of the commodities. Since every airport sends

commodities to every other airport, that means that every airport will be connected to

every hub that it is allowed to connect to. Then, in the Aircraft Movement Problem,

aircraft movements are assigned to move as many of those packages as possible. These

aircraft movements are then held fixed in the PRP. Since routing packages on these

real aircraft does not incur a cost, all package routings that can use a real aircraft

will use one. These routings are given to the AMP, and the algorithm continues to

iterate.

The problem arises in the situation in which it would be more efficient to use a
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single large aircraft rather than several small aircraft. Because the starting point

of the algorithm results in the connection of each spoke airport to potentially many

hubs, the resulting initial AMP solution will be to assign aircraft to move these many

small flows. The next iteration of the PRP may assign more packages to fly on the

real aircraft, but it will not assign more volume to fly on the aircraft than there is

capacity, as a result of the forcing constraint. As a result, on the next iteration of the

AMP, there is no reason for the aircraft selection to be changed since the originally-

assigned capacity is sufficient for the assigned package routings. Neither problem has

the incentive to make the tradeoff to move more packages to a single sort via a larger

aircraft and as a result, many aircraft are used and they are used inefficiently.

In short, the problem is that the Package Routing Problem and the Aircraft

Movement Problem do not know enough about each other. It is not sufficient to

provide xkp and yfij values to the relevant problems, there must be some mechanism

for them to recognize the types of trade-offs that the FPI approach misses. To put

it colloquially, the algorithm must be able to see the forest and the trees. The FPI

approach is too myopic, and it misses the forest for the trees.

There are two potential avenues for addressing this issue. One approach would be

to use a master-level optimizer that would, somehow, take a “higher-level” view of the

optimization problem, and be able to identify these beneficial trade-offs. This would

make the heuristic decomposition algorithm more akin to an MDF-like architecture

(Multidisciplinary Feasible). The other approach would be to, somehow, reintroduce

part of either the Package Routing Problem or the Aircraft Movement Problem in

the other problem.

Of the two options, the second option would be more straight-forward to imple-

ment. The first option faces a number of implementation-based questions. Primary

amongst them is, “What would the master-level optimizer operate on?” If it operated
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on the package routing and aircraft movement variables directly, it could easily de-

volve into the monolithic approach, but if new variables are used in the master-level

optimizer, what should those variables be and how would you know they were valid

additions to the problem? Furthermore, the master-level optimizer would need to be

capable of finding very high-quality solutions in a relatively few number of iterations

because each FPI analysis takes approximately twenty-five minutes on this compu-

tational testbed3 (assuming this remains constant). Based on the implementation

challenges and the goal to not unnecessarily complicate the algorithm, which led to

the related conjecture in introduction to this section (§7.3), this first option will not

be pursued.

The second option could be implemented by adding aircraft movement variables

to the Package Routing Problem. Of the two subproblems, it makes more sense to

preserve the arrangement that the Package Routing Problem is solved prior to the

Aircraft Movement Problem since demand is needed to assign aircraft movements.

In the current arrangement, the primary difficulty is that package routings are being

assigned without any regard to how they affect the Aircraft Movement Problem. Since

the ESSND problem objective is only a function of the aircraft movements, the best

solution to the express shipment problem will be one that most efficiently uses the

aircraft. To efficiently use aircraft, package routings must be assigned such that the

total volume on a lane is close to but does not exceed the capacity of an available

aircraft. This consideration is not taken into account in the current Package Routing

Problem.

To introduce the incentive to assign package routings such that they full whole

aircraft, the integral aircraft movement variables and some of the aircraft-specific

constraints can be added to the original Package Routing Problem. Additionally,

3On the smaller computational testbed described in Table 22 the FPI approach with integer
variables took 64 minutes to find a consistent solution.
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since integral aircraft movement variables will be present in the Package Routing

Problem, the original ESSND problem objective can be used for the new Package

Routing Problem. This solves the question of how to define an objective for the

Package Routing Problem. Since this new version of the Package Routing Problem

will contain aircraft movement variables, it will be called the Package Routing with

Aircraft Problem (PRAP).

In order to implement and test the PRAP, its formulation must be established,

which means that a decision must be made regarding which AMP-specific constraints

to include. First and foremost, the purpose of including aircraft movement variables

in the Package Routing Problem was to ensure that package routings were assigned

in such a way that whole aircraft would be filled in the final solution. Therefore, it is

essential that the aircraft movement variables be integral, which is expressed in the

constraint,

yfij ∈ Z+ ∀(i, j) ∈ A, f ∈ F (7.11)

For additional guidance on what to include in the PRAP, the sensitivity stud-

ies performed on the monolithic approach provide some insight. Most notably, the

balance constraints constitute the majority of the purely-aircraft-related constraints

and removing these constraints resulted in the greatest runtime improvement of the

relaxations. Additionally, the balance and hull count constraints work together, and

without one, the other is ineffective. Finally, the feeder limit has only a small effect

on the solution and the runtime.

If the most important contribution of the AMP surrogate is to emphasize the

advantage of filling integral aircraft, the balance and hull count constraints can be

relaxed. The feeder limit constraint can and should remain because without it, feeders

could be used in overabundance where a trunk aircraft would be the better choice.
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The feeder limit constraint is,

∑
f∈F̂

yfij ≤ 1 ∀(i, j) ∈ A (7.12)

Including these two constraints, the objective and the aircraft movement variables in

the Package Routing Problem, the Package Routing with Aircraft Problem formula-

tion is,

min
∑

(i,j)∈A

dfijy
f
ij (7.13a)

s.t.
∑
k∈K

∑
p∈Pk

δpijb
kxkp ≤

∑
f∈F

ufyfij ∀(i, j) ∈ A (7.13b)

∑
p∈Pk

xkp = 1 ∀k ∈ K (7.13c)

∑
k∈K

∑
p∈Pk

δphnkx
k
p ≤ eh ∀h ∈ H (7.13d)

∑
f∈F̂

yfij ≤ 1 ∀(i, j) ∈ A (7.13e)

xkp ∈ B ∀p ∈ P k, k ∈ K (7.13f)

yfij ∈ Z+ ∀(i, j) ∈ A, f ∈ F (7.13g)

where equations 7.13e&7.13g are the two additional aircraft-related constraints. Of

the two, the aircraft integrality constraint (7.13g) is much more significant both in

terms of its contributions to runtime and influencing the solution. The feeder limit

constraint (7.13e) is included primarily because it is helpful and not expensive to do

so.

7.3.2.1 Testing the Package Routing with Aircraft Problem

The convergence behavior of the Package Routing with Aircraft Problem is tested for

the baseline problem instance on the experimental testbed described in Section 5.4
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using the computational testbed described in Table 5. Since the experiment is per-

formed on the baseline problem instance, no additional dataset filtering is performed,

and since the problem formulation has changed, the solution generation approach was

adjusted so that only the constraints present in the PRAP were included (i.e. the hull

balance and hull count constraints were omitted). Since the PRAP is a MIP, it was

solved with Gurobi with a walltime limit of 24 hours. The results are summarized in

Table 25 along with the PRP performance for reference.

Table 25: Package Routing with Aircraft Problem Runtime Results

Problem Optimality Gap Runtime
PRAP 7.73% 24 hrs
PRP 0% 22.86 sec

The inclusion of the integer aircraft movement variables to the PRP to form the

PRAP makes a dramatic difference in the runtime of the problem. The Package

Routing Problem can no longer be solved to optimality in a single day, let alone a

couple dozen seconds, like the original PRP. However, the integrality of the aircraft

movement variables, yfij, is necessary to ensure that package routings are assigned

which fill whole, integral aircraft, and the integrality constraint cannot be relaxed.

The long runtime of the PRAP presents a conundrum since any approach that depends

on solving the PRAP to optimality will inherit its long runtime.

However, it is important to recall that the PRAP is only, ever, an approximation

of the ESSND problem. Therefore, it is only ever going to produce an approximately

good solution, and reconciling the last remaining optimality gap is just an improve-

ment relative to that approximation. True, improving that approximate value may

result in an overall better value, but at what expense? At what point is the improve-

ment no longer worth the computational cost? Figure 19, which shows the normalized

objective function value and lower bound value as a function of time for the PRAP,

can help answer this question. In Figure 19, the black line is the objective function
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value and the gray line is the lower bound value over time. Both the objective value

and lower bound are normalized to protect proprietary information.

Figure 19: Normalized Objective Value and Lower Bound of the Package Routing
with Aircraft Problem

Figure 19 shows that there is an initial sharp drop in the objective function value

as the solver removes the high-cost pirate ships. Then, progress briefly flattens out

after about an hour before again making moderate progress for the next several

hours. After six hours, however, very little progress is made in reducing the objective

function value. Some improvement is made to the lower bound, but this is irrelevant

for the purposes of finding package routings. Since there is so little improvement in

the objective function value after six hours, there is very little incentive to run the

PRAP for longer than six hours.

If the PRAP were to be run in an iterative approach, even a six-hour runtime would

be potentially problematic. However, since the PRAP includes aircraft movement

variables, feedback may likely no longer be needed. The role of the feedback was

to introduce and update aircraft-related considerations into the Package Routing
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Problem. Since the Package Routing with Aircraft Problem already includes aircraft-

related considerations, the feedback is no longer necessary. Furthermore, in the FPI

scheme, the information that was being fed back to the Package Routing Problem

was aircraft movements. Since those are included as variables in the PRAP, it no

longer makes sense to feed them back. Therefore, I make the hypothesis,

Hypothesis 3.2. Since the addition of the aircraft movement variables to the Pack-

age Routing Problem adds aircraft-based considerations, I hypothesize that feedback

is not necessary between the Package Routing with Aircraft Problem and the Aircraft

Movement Problem, and a sequential algorithm that first solves the PRAP and then

the AMP will provide high-quality solutions.

Since feedback is hypothesized to no longer be necessary, the six-hour runtime for

the PRAP is less concerning. The AMP can be solved to optimality relatively quickly,

so the total runtime of the algorithm will be primarily sized by the PRAP runtime.

Also, the six-hour runtime is a practical upper limit on how long the PRAP should

be run. It is possible that high-quality solutions could be found with a sequential

approach even if the PRAP is terminated with a runtime shorter than six hours.

Experiments testing the suitability of a sequential algorithm and the appropriate

PRAP runtime are conducted in the next section (§7.3.3).

7.3.3 Basic Sequential Algorithm

As discussed in the previous section, the experiment conducted in Section 7.3.2.1

found that the optimal solution the PRAP could not be found in a reasonable period of

time, and therefore an approach that terminated the PRAP prior to find the optimal

solution was proposed. This section tests that idea by implementing a sequential

algorithm for a set of different of PRAP termination times. The dual purpose of

these experiments is to test the sensitivity of the approach to the runtime of the

PRAP and to also test whether the sequential approach can produce good quality
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solutions. This sequential algorithm is called the Basic Sequential Algorithm because

it will be modified further in following sections.

Figure 20: Basic Sequential Algorithm

Figure 20 shows the Basic Sequential Algorithm in the context of the compu-

tational testbed. All of the experiments are generated using the baseline problem

instance described in Table 6 so the first four steps are not modified for the exper-

iments. The package routing and aircraft movement option set generation processes

are the same as those described in Sections 6.1, 6.2 & 6.3 of Chapter 6, which focused

on the monolithic approach. The solution generation procedure, which is the Basic
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Sequential Algorithm, is what is being tested in the experiments of this section. In

the Basic Sequential Algorithm, the Package Routing with Aircraft Problem is solved

first for a given amount of time. Then, the Aircraft Movement Problem is solved to

optimality using the fixed package routings set in the PRAP. The PRAP provides

the package routings in the final solution, and the AMP provides the final objective

value (total cost) and the aircraft movements (schedule).

Both the PRAP and the AMP are mixed-integer programs and solved with Gurobi.

The entire algorithm is run on the computational testbed summarized in Table 5

for the baseline problem instance described in Table 6. Experiments were run for

different PRAP time limits from two minutes to six hours. The results are summarized

in Table 26. The second column is the optimality gap of the PRAP when it was

Table 26: Results of the Sequential Algorithm

PRAP
Runtime

PRAP
Opt. Gap

Objective
Difference

Absolute
Opt. Gap

AMP
Runtime

2 min 24.0% 18.27% 23.70% 320 sec
5 min 17.3% 13.46% 20.46% 362 sec
10 min 14.8% 9.80% 18.62% 230 sec
30 min 13.8% 9.46% 17.55% 283 sec

1 hr 13.0% 9.12% 17.30% 270 sec
3 hrs 12.4% 8.45% 16.79% 216 sec
6 hrs 9.8% 5.77% 14.68% 198 sec

terminated. The third and fourth columns pertain to the quality of the final solution

relative to the monolithic approach baseline. The fifth column is the time it took for

the AMP to solve to optimality after the PRAP had been terminated. Overall, the

algorithm actually performs quite well. The best optimality gap was less than 15%,

which was significantly lower than the optimality gap of the FPI-based approach,

which had an optimality gap of 30%. As expected, the longer the PRAP was run, the

better the final solution was, and the rate of improvement dropped off as the PRAP

runtime increased, thus requiring longer runtimes to produce the same amount of

improvement. These results and how they compare to the monolithic approach are
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summarized visually in Figure 21.

Figure 21: Sequential Algorithm Implementation Compared to Monolithic Approach
for Baseline Problem Instance

The solid black line is the convergence behavior of the monolithic approach for the

baseline problem instance. The blue dots are the individual Basic Sequential Algo-

rithm runs. The sequential algorithm is most successful compared to the monolithic

approach in the first hour of the runtime, and it is able to produce solutions during the

initial period when the monolithic approach is incapable of finding a feasible solution.

Of these solutions, the case in which the PRAP was run for five minutes out-paces

the monolithic approach by the widest margin – it takes the monolithic approach

nearly forty additional minutes to find a solution with the same optimality gap. The

case in which the PRAP was run for ten minutes is faster than the monolithic by a

slightly smaller margin, beating the monolithic approach by thirty-five minutes, and

the two-minute and thirty-minute cases both out-pace the monolithic approach by a

little less than thirty minutes. After the thirty-minute case, the sequential approach
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generally keeps pace with the monolithic approach, but it does not find better solu-

tions than the monolithic approach for a given period of time after the thirty-minute

mark.

The primary advantage of the sequential algorithm is that it does not struggle to

produce good feasible solutions, even when the PRAP is only run for a short period

of time. By comparison, the monolithic approach initially struggles to find its first

solution, but once it does, the improvement is dramatic for a short period of time,

after which the improvement rate is relatively flat. The solutions that the sequential

algorithm is able to find in that initial timespan during which the monolithic approach

has not found any good feasible solutions is where it has the advantage. And this is

to be expected, this niche of finding good solutions in a short time is exactly where

heuristics typically excel.

Additionally, since the PRAP does not include all of the aircraft-related consid-

erations (i.e. hull count and balance), there is a limit to the quality of solution that

can be produced using it. The monolithic approach surpasses the heuristic approach

when the shortcomings of the approximation outweigh its runtime benefits. For the

solution method domain of finding good solutions in a short time, the sequential

decomposition heuristic algorithm is more successful than the monolithic approach.

This means that hypothesis 3.2 is supported and, by extension hypotheses 1.2 and 2.2

are also supported.

The results of the Basic Sequential Algorithm are encouraging. The algorithm

is capable of finding good-quality solutions to the express shipment problem faster

than the baseline monolithic approach for nearly entire first hour of runtime, and

it is capable of keeping pace with the monolithic approach for runtimes longer than

an hour. The Basic Sequential Algorithm is, however, just a first prototype of a

sequential heuristic decomposition algorithm. This raises the question,

Research Question 4. How can the Basic Sequential Algorithm be improved?
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The sequential decomposition heuristic has been shown to satisfactorily produce

solutions in a satisfyingly simple approach, but perhaps with further refinement, it

could be improved. That discussion is handled in the next two sections (§7.4 & 7.5).

7.4 Collapsed Product Set Sequential Algorithm

As the first of the two problems in the sequential heuristic algorithm, the PRAP

has the greatest impact on the solution quality. In fact, since the AMP is solved to

optimality for the package routings it is given, the solution of the PRAP completely

determines the ultimate quality of the final solution. Therefore, the PRAP should be

the focus of improving the Basic Sequential Algorithm.

Since the PRAP is an approximation of the full ESSND problem formulation,

there are two natural avenues for improvements focused on the PRAP. One avenue

would be to further reduce the size of the PRAP problem. Since the problem is

a relaxed as it can be without sacrificing solution quality, this would be done by

reducing the size of the problem instance that the PRAP solves with the goal of

finding good solutions more quickly. The other avenue would be to improve the

PRAP approximation by adding additional constraints, but this would need to be

done without dramatically increasing the runtime required to obtain good solutions

from the PRAP. This section focuses on the first of the two options, and the next

section (§7.5) focuses on the second option.

7.4.1 Collapsed Product Set Package Routing Problem

To see how problem instances of the Package Routing with Aircraft Problem might

be reduced, let us first consider the fundamental role of the PRAP so that it may

be preserved while the extraneous details are identified and omitted. The key is

that the essential purpose of the Package Routing with Aircraft Problem is to assign

package routings, and at their simplest, a package only needs an assignment to a sort

activity instance to be complete since the origin and destination activity instances are
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known based on the commodity. Some more complex package routings may include

consolidation stops, but ultimately, the essential purpose of the PRAP is to solve the

underlying sort assignment problem.

The difficulty of the sort assignment problem has been previously discussed in

Section 6.5 in regards to the secondary sort threshold sensitivity study, and in Sec-

tion 7.2.1 in regards to the challenges of a spatial decomposition definition. To sum-

marize the discussions of those previous sections, sort membership is difficult because

it is subject to extensive network effects. Choosing to route a commodity through a

particular sort affects not only that commodity but also all of the other commodities

originating at that same origin, all of the commodities terminating at that com-

modity’s destination, and all of the markets that also connect to that sort. These

extensive ripple effects mean that even small changes may have wide-ranging effects

on the solution, and it may be very difficult to find the true optimal configuration.

A key element of this challenge is that a good solution is one in which the aircraft

are loaded as fully as possible, since aircraft, not packages, incur the cost and empty

cargo space is waste. This is what led to the inclusion of aircraft movement variables

in the Package Routing Problem.

This means that it is important to preserve the PRAP’s role and ability to make

sort assignments for commodities, but to identify which parts of the problem instance

can be pared away, let us consider several important characteristics of the express

shipment problem,

1. Express shipment volume and routing decisions are strongly driven by the box

volume. It, by far, constitutes the most volume of the three types (i.e. boxes,

documents, and freight).

2. Separate equipment is used to sort boxes, documents, and freight, and of the

three types, the box volume is consistently the most sorting-constrained of the

three types.
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3. Express shipment operations are strongly periodic and can be broken into two

daily cycles.

4. The night cycle moves more volume and is more time-constrained than the day

cycle.

To summarize, there are many commodities in the express shipment problem, but

many of these commodities constitute very little volume despite contributing variables

to the optimization problem. Therefore, while they increase the problem size, they

are not the primary drivers of the final solution (in particular, the aircraft schedule).

Of all the products, the box products constitute the bulk of the volume and are the

primary drivers of the aircraft size. Of the box products, priority boxes constitute

the most volume.

For all problem instances solved up to this point, commodities that were identical

in their origin-destination pair and differed only in their product type (i.e. box, doc-

ument or freight) and/or number of commit days4 were tracked separately because

they were handled differently at the sorting facilities. Since each commodity’s routing

options are represented as variables in the model, this results in a variable set that

may be significantly larger than necessary because many of the variables (i.e. those

corresponding to non-box products) will have little overall impact on the aircraft siz-

ing or final solution. Commodities that are similar in their origin-destination pair,

but dissimilar in their product type and/or commit days, will be called analogous

commodities.

Using the above observations of the express shipment problem, I make the hy-

pothesis,

Hypothesis 4.1. Based on the observations that 1) in an express shipment prob-

lem instance there exist many commodities that may only differ by the product type

4i.e. the time to deliver the commodity.
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and/or commit day, and 2) of these similar commodities, the priority box commodi-

ties constitute the largest volume, face the tightest sort capacities, and are the most

time-constrained, I hypothesize that the Basic Sequential Algorithm can be improved

by solving the Package Routing with Aircraft Problem for the problem instance that

only includes the overnight box volume, and assigning the routings for all commodities

based on the routing assigned for the analogous priority overnight commodity.

This strategy attempts improve the package routing assignment step of the se-

quential heuristic algorithm by reducing the size of the problem that the PRAP needs

solve, thereby generating good solutions more quickly. For example, if the solution

that the Basic Sequential Algorithm generates in sixty minutes of PRAP runtime

could be generated even ten minutes faster, then the heuristic approach would out-

pace the monolithic approach for the generation of a solution of that quality. By using

only the overnight priority box commodities to determine the routings for all other

commodities with the same origin-destination pair, the product set is collapsed for

the purposes of the Package Routing with Aircraft Problem. This is why this version

of the sequential algorithm is called the Collapsed Product Set Sequential Algorithm.

In order to begin to study hypothesis 4.1, experiments testing the runtime of

the Package Routing Problem with the collapsed product set need to be conducted.

However, before that can be done, one additional consideration needs to be taken

into account. Although priority box volume constitutes the bulk of the overnight box

volume, there are actually three different overnight box product types, priority box,

First Overnight box5, and overnight postal boxes.

The First Overnight and overnight postal box volume needs to be included in the

PRAP in order to not break the overnight box sort capacities (particularly at MEM),

even though their total volume is smaller than the priority volume. Including these

5First Overnight boxes are those that behave similarly to priority boxes for the purposes of line
haul but are delivered earlier in the morning for last mile service.
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products as free variables would defeat some of the advantages of solving a reduced-

size problem. Therefore, their routing options are constrained to be equal to their

analogous priority box product. That constraint is simply,

xk
†

p = xk
′

p ∀k′ ∈ K ′ (7.14)

where k† is the analogous priority box commodity for the First Overnight box or

overnight postal box k′ and K ′ is the set of all First Overnight and overnight postal

box commodities. This will be called the analogous commodity constraint.

The addition of this analogous commodity constraint modifies the PRAP for-

mulation so in order to differentiate the two formulations, and highlight when the

package routing problem is being solved over the collapsed product set, this new for-

mulation will be called the Collapsed Product Package Routing with Aircraft Problem

(CP-PRAP).

Several experiments on the CP-PRAP were conducted on the baseline problem

instance. All experiments were conducted on the experimental testbed described in

5.4 and using the computational testbed described in Table 5. In these experiments,

both the dataset filter and solution generation processes were altered from the mono-

lithic baseline approach. The dataset filter step, in addition to its normal reductions

to remove international, three-day and live-animal products, also removed any com-

modities that were not overnight box products. The solution generation process was

altered to generate the appropriate optimization model (i.e. CP-PRAP). The result-

ing MIP optimization model was solved using Gurobi.

Four experiments were conducted to test the CP-PRAP and potential variations

of it. Specifically, the effect of including consolidation was tested, and the effect of

including the vehicle balance and hull count constraints in the optimization problem

was tested. The effect of including consolidation opportunities in the package routing
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option set was tested because it is another potential way to reduce the size of the

problem. Consolidation is only applicable for some markets, but it does increase

the number of routing options. The effect of re-introducing the vehicle balance and

hull count constraints into the CP-PRAP optimization problem was tested to explore

whether collapsing the product set sufficiently reduces the runtime of the ESSND

without needing to omit the vehicle balance and hull count constraints. The resulting

optimization problem is called the Collapsed Product Set Express Shipment Service

Network Design (CP-ESSND) problem. The results of these experiments are shown

in Table 27

Table 27: Collapsed Product Set Package Routing Problem Experimental Results

Formulation Consolidation
Optimality

Gap
Time To
5% Gap

Total
Runtime

CP-PRAP True 4.72% 8.96 hrs 24 hrs
CP-ESSND True 2.80 11.96 hrs 24 hrs
CP-PRAP False 0.84% 6.93 min 24 hrs
CP-ESSND False 0.92% 1.26 hrs 24 hrs

Although none of the problem instances finished after 24 hours of runtime, both

of the consolidation-free instances were close. The cases with consolidation, which

were larger because they included consolidation, also performed well, but not nearly

as well as the cases without consolidation. The CP-PRAP case without consolidation

was the fastest of the four. It had found a solution with an optimality gap of less than

5% in under seven minutes. It did not converge to an optimal solution in less than

24 hours, but this is again a result of the difficulty to prune branches from the B&B

tree for problems with weak lower bounds. The CP-ESSND without consolidation

case had a similar optimality gap after 24 hours but took much longer to find its first

solution under a 5% gap, which indicates a slower rate of convergence. The cases

with consolidation, by comparison, took several hours to find solutions under a 5%

gap and did not achieve as low of an optimality gap as the cases with consolidation.

At this point, it is not clear whether the CP-PRAP or CP-ESSND would produce
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better package routings in a given time period, but it is clear that both problems can

be solved faster when consolidation is not included. This means that consolidation

would need to be re-introduced into the final solution at some point in order for the

solutions to be comparable to the baseline monolithic approach. In response to this

need, the Consolidation Assignment Problem (CAP) is developed in the next section

as well as the overall structure of the sequential algorithm using the CP-PRAP/CP-

ESSND to assign the (non-consolidating) package routings.

7.4.2 Collapsed Product Set Sequential Algorithm

In the Section 7.4.1, the idea of collapsing the product set when assigning package

routings was introduced. This section tests whether using that idea improves the

performance of the sequential algorithm. The resulting algorithm that is developed

is called the Collapsed Product Set Sequential Algorithm.

The Collapsed Product Set Sequential Algorithm is similar to the Basic Sequen-

tial Algorithm, but with two essential differences. First, the optimization problem to

assign the priority box routings only considers the overnight box products. Therefore,

an additional step must be performed after the priority box routings are assigned in

order to assign routings to all of the other commodities before the Aircraft Movement

Problem is run. Second, based on the results of the experiments in Section 7.4.1, con-

solidation is not included in the optimization problem to assign the package routings

so consolidation routings must also be assigned in a separate optimization problem

called the Consolidation Assignment Problem (CAP).

7.4.2.1 Consolidation Assignment Problem

In the baseline approach to including consolidation, options are generated when the

package routing options are made. These options are then part of the package routing

option set which is given to the solver. Part of the challenge in making these “a

priori” consolidation options is that consolidation is appropriate where it helps to
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more fully load an aircraft, but those aircraft loadings are not known until a solution

is generated. Therefore, unless the entire set of consolidation options is included in the

package routing option set, which was shown to be too burdensome on the optimizer,

the best that can be done is an educated guess on which options may be good options

to include. However, if consolidation is added after a solution has been generated,

it is trivial to find underloaded flights and identify good consolidation opportunities.

Since the experiments of Section 7.4.1 motivated me to remove consolidation options

from the CP-PRAP and CP-ESSND, there is some flexibility in when consolidation

can be performed. Thanks to the comparative ease of an “a posteriori” consolidation

approach, the Consolidation Assignment Problem is arranged to be the final step of

the Collapsed Product Set Sequential Algorithm, and consolidation-based routings

are assigned after an aircraft schedule has been generated in the Aircraft Movement

Problem.

This Aircraft Movement Problem produces a solution that does not include any

consolidation. Previously, when consolidation options were considered in the initial

routing option set, good consolidation candidates had to be inferred based on market

size. Now that aircraft movements have been determined, it is much easier to identify

flights that would be good candidates for consolidation or a two-legged flight6 because

the aircraft loadings are known. The problem of adding consolidation routings will

be called the Consolidation Assignment Problem (CAP).

To generate the option set for the CAP, first underloaded flights are identified.

A flight is considered a candidate for consolidation if it is less than 75% loaded in

the AMP solution. Then, the set of all feasible opportunities is generated. Next,

6The primary difference between a consolidation and a two-legged flight is the equipment involved.
A consolidation uses a truck or feeder aircraft to move volume from a small spoke to a larger spoke
for pick up phases (and similarly for delivery). That volume then moves to the hub on a trunk
aircraft. A two-legged flight moves all of this volume using a single trunk aircraft. For brevity, the
term “consolidation” will be used to refer to both true consolidation and two-legged flights because
the method of creating options is the same.
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where “chiral” options exist, the longer option is eliminated. For example, two chiral

options during a pick up phase might be MCO7 to ATL to MEM, and ATL to MCO

to MEM as shown in Figure 22. Both options may be time-feasible, but the second

option is clearly inferior to the first so it would be removed.

(a) Superior Consolidation Option (b) Inferior Consolidation Option

Figure 22: An Example of Chiral Consolidation Options

After the inferior chiral options are removed, the option set is additionally filtered

to only consider opportunities that have a symmetric delivery/pick-up option across

phases. That is, for the previous MCO to ATL to MEM opportunity pick up, the

option would be retained if the MEM to ATL to MCO option also existed on the

delivery side of the prior phase. Symmetric options are preferable because they are

more likely to be useful. If the pick-up-side consolidation opportunity did not exist,

two separate aircraft would be needed. If only one aircraft was used to serve both

markets in the delivery phase, where would this second aircraft come from? If it

would need to be repositioned, that defeats the benefit of using consolidation. To

avoid presenting this complication to the optimizer, asymmetric options are removed.

7i.e. Orlando International Airport
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Finally, after finding that a large number of options still existed even for a limited

number of consolidation-eligible markets, the shortest option for each consolidation-

eligible market was chosen. These new routing options were generated for the ap-

plicable commodities and the necessary arcs were added to the time-space graph.

Then, a modified version of the AMP was solved in which both the design (vehicle)

variables and the flow variables of the commodities with new consolidation options

were unfrozen. The commodities with no consolidation routings remained frozen.

The resulting problem was then solved with Gurobi. Since the CAP is larger than

the AMP thanks to additional flow variables, it is important to keep the number of

consolidation opportunities low so as to not overwhelm the CAP with options.

7.4.2.2 Structure of the Collapsed Product Set Sequential Algorithm

The Collapsed Product Set Sequential Algorithm is slightly more involved than the

Basic Sequential Algorithm. Rather than just two steps (PRAP and AMP), it has

four steps. The entire flow of the algorithm within the experimental testbed is shown

in Figure 23.

The first several steps of the experimental testbed are unchanged, except that

consolidation options are not included in the package routing option set. The methods

for generating the package routing and aircraft movement options sets are described

in Sections 6.2, 6.1, and 6.3. Then, within the solution generation step, there are

four sequential processes. First, the CP-PRAP or ESSND is run for a set period of

time. Determining which of the two optimization problems produces better package

routings will be one focus of the experiments, and exploring the effect of different

runtimes will be the other focus. Then, the priority box package routings from the

CP-PRAP or CP-ESSND are used to assign routings to all of the other commodities.

The process for assigning routings based on the analogous priority box routing is

straight-forward. If a commodity has the option to route in the same fashion that its
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Figure 23: Collapsed Product Set Sequential Algorithm
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analogous priority box product was assigned to route, then it is assigned that option.

If a commodity does not have the option to route in the same way, which can happen

when a market originates significantly less volume during the day than at night, then

that commodity is assigned to route through the primary hub at MEM.

All two-day volume must sort during the day, but since they originate at night,

those products have the option of moving either with the overnight volume and waiting

at the sort facility, or first waiting at the spoke and then moving with the daytime

volume to the daytime sort. This means that a two-day product may have two possible

routing options – one that moves early and one that moves late. Since the company

prefers that packages do not use the sorts as warehouses (i.e. wait there for the next

sort activity), and the total same-day volume is less than the total overnight volume,

all two-day commodities are assigned to move with the daytime (i.e. same-day)

volume to the sorting facility assigned by the analogous primary box commodity.

After all of the package routings are assigned, then the Aircraft Movement Prob-

lem is solved. The AMP is exactly the same as it was for the Basic Sequential

Algorithm. Finally, using the aircraft schedule generated by the Aircraft Movement

Problem, the consolidation options are generated as described in Section 7.4.2.1 and

the Consolidation Assignment Problem is solved.

7.4.2.3 Testing the Collapsed Product Set Sequential Algorithm

The Collapsed Product Set Sequential Algorithm experiments were performed on the

testbed described in Section 7.4.2.2. The CP-PRAP, CP-ESSND, AMP, and CAP

are all mixed integer programs and solved using Gurobi. The process of assigning the

package routings based on the analogous priority box package routings (Step 2 in the

Solution Generation) does not require optimization, and is performed as described.

Experiments are performed testing the effect of using the CP-PRAP versus the CP-

ESSND to assign the priority box package routings, and the effect of the runtime of
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those optimization problems on the final solution.

Since the monolithic approach surpassed the Basic Sequential Algorithm in per-

formance for cases in which the PRAP was run for an hour or more, the Collapsed

Product Set Sequential Algorithm experiments only include cases in which the CP-

PRAP or CP-ESSND was run for times between two minutes and one hour. All of the

experiments were performed on the computational testbed described in Table 5 for

the baseline problem instance described in Table 6. The results of those experiments

are shown in Table 28.

Table 28: Solution Quality Results of the Collapsed Product Set Sequential Algorithm

PR
Runtime

PR
Problem

PR Opt.
Gap

Abs. AMP
Opt. Gap

Final Opt.
Gap

Total
Time

2 min CP-PRAP 9.01% 23.81% 22.81% 7.95 min
5 min CP-PRAP 8.61% 23.36% 22.76% 18.59 min
10 min CP-PRAP 4.19% 22.26% 21.48% 21.23 min
30 min CP-PRAP 2.88% 20.95% 20.25% 38.76 min
60 min CP-PRAP 2.86% 20.95% 20.25% 71.97 min
2 min CP-ESSND 28.22% 24.58% 23.79% 9.07 min
5 min CP-ESSND 13.70% 21.76% 21.05% 16.05 min
10 min CP-ESSND 10.70% 20.77% 20.08% 14.48 min
30 min CP-ESSND 8.98% 20.99% 20.34% 43.64 min
60 min CP-ESSND 4.33% 20.13% 19.49% 68.90 min

In Table 28, the routing optimality gap column indicates the optimality gap of that

individual CP-PRAP or CP-ESSND problem when it was terminated. The absolute

AMP optimality gap and the final optimality gap (after the CAP is solved) are relative

to the best (highest) lower bound found through the monolithic approach. Except in

one case, running the package routing optimization problem for a longer time period

improved the quality of the solution, but the rate of improvement was much flatter

than that of the Basic Sequential algorithm. The exception was the case in which

the CP-ESSND was run for thirty minutes. The ten minute case actually performed

marginally better, but this may just be the result of a “lucky bounce” – it unknowingly

found a slightly better solution than the longer case. Additionally, it is interesting
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that for the CP-PRAP thirty and sixty minute cases, the additional thirty minutes

of runtime did not contribute to any solution quality improvement. This indicates

that a 20.25% gap may be the best solution that algorithm definition can accomplish.

Somewhat surprisingly, there is very little difference between the solutions generated

by the cases using the CP-ESSND versus the CP-PRAP. At most, they differ by a

couple percentage points on the final optimality gap.

Ultimately, however, the Collapsed Product Set Sequential Algorithm is inferior

to the Basic Full-Set Sequential algorithm for the baseline problem instance. This can

be best seen in Figure 24 where the results of the SAP experiments have been plotted

as well as the results of the Basic Full-Set Sequential algorithm and the convergence

behavior of the monolithic approach.

Figure 24: Collapsed Product Set Sequential Algorithm and Basic Sequential Algo-
rithm Compared to Monolithic Approach for Baseline Problem Instance

Except for a marginally better solution found for the CP-PRAP two-minute case,

the Basic Full-Set Sequential algorithm produces superior results to either of the

two Collapsed Product Set Sequential algorithm variants. Also, whereas the Basic
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Sequential Algorithm is on par with the monolithic approach for cases in which the

PRAP was run for sixty minutes or longer, the Collapsed Product Set Sequential

Algorithm produces solutions that are worse than the monolithic approach by a couple

percentage points.

These results are the direct result of forcing the daytime products to move the

same as the nighttime products. When the two phases are independent of each other,

that additional flexibility allows for routings to be more intelligently assigned to fill

aircraft. One of the fundamental assumptions of the SAP is that the daytime volume

will be similar, though smaller, than the analogous nighttime volume. That is not

necessarily true. Although in the aggregate sense, there is less daytime volume than

nighttime volume, some markets actually produce more volume during the day. This

disconnect between the nighttime and daytime products leads to sub-optimalities in

daytime aircraft loadings and therefore a worse solution. Additionally, all of the two-

day volume is required to wait at the spokes and move with the daytime volume

despite originating at night. This fails to use empty space on nighttime flights whose

cost is already committed. If a larger aircraft is needed to move all of the two-day

and same-day volume because the two-day volume is forced to move during the day,

this is also a likely source of sub-optimality.

Furthermore, the solution improvement produced by the CAP hardly seems worth

the additional computational cost. As seen in Table 29, the CAP takes longer to solve

than the AMP in all cases, but as seen in Table 28, it improves the solution by at

most a couple percentage points in the optimality gap. The fact that it takes longer

to run than the AMP is not a surprise since it is a larger problem, but it provides

so little improvement that it is hard to justify its inclusion as it is formulated and

implemented here.

In the next section, the Collapsed Product Set Sequential Algorithm will be

slightly modified to allow for the two-day volume to choose to move either with
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Table 29: Time Breakdown Results of the Collapsed Product Set Sequential Algo-
rithm

PR
Runtime

PR
Problem

AMP
Time

CAP
Time

AMP + CAP
Time

Total
Time

2 min CP-PRAP 139 sec 218 sec 5.95 min 7.95 min
5 min CP-PRAP 286 sec 530 sec 13.59 min 18.59 min
10 min CP-PRAP 238 sec 436 sec 11.23 min 21.23 min
30 min CP-PRAP 215 sec 311 sec 8.77 min 38.76 min
60 min CP-PRAP 291 sec 427 sec 11.97 min 71.97 min
2 min CP-ESSND 122 sec 302 sec 7.07 min 9.07 min
5 min CP-ESSND 303 sec 360 sec 11.05 min 16.05 min
10 min CP-ESSND 75 sec 194 sec 4.48 min 14.48 min
30 min CP-ESSND 288 sec 530 sec 13.65 min 43.64 min
60 min CP-ESSND 191 sec 343 sec 8.90 min 68.90 min

the night cycle or with the day cycle volume. This will test whether forcing the

two-day volume to move exclusively with the daytime volume is a serious source of

sub-optimality.

7.4.3 Collapsed Product Set Sequential Algorithm with Flexible Deferred
Volume

Since the choice to force all two-day volume to move during the daytime was identified

as a potential source of sub-optimality, experiments were run in which two-day volume

was given the choice, in the AMP, to move to its assigned sort either during the night

or the day. The algorithmic set up was nearly identical to the Collapsed Product Set

Sequential algorithm described in the previous section, with the exception that two-

day commodities had two routing options in the AMP rather than being completely

frozen. All other commodities’ routings were still fixed based on the results of the

package routing optimization problem.

All of the experiments were run using the experimental testbed described in Sec-

tion 7.4.2.2. The CP-ESSND was used, rather than the CP-PRAP because it gave

marginally better results for more of the cases in the experiments of Section 7.4.2.

Like the previous experiments on the Collapsed Product Set Sequential Algorithm,
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cases were run for different runtimes of the CP-ESSND, from two minutes to one

hour. All cases were run on the computational testbed described in Table 5 using the

baseline problem instance described in Table 6. The results are presented in Table 30

and the times of the individual parts are presented in Table 31.

Table 30: Solution Quality Results of the Collapsed Product Set Sequential Algorithm
with Flexible Two-Day Volume

PR
Runtime

PR Opt.
Gap

Abs. AMP
Opt. Gap

Final Opt.
Gap

Total
Time

2 min 28.22% 23.90% 23.12% 11.00 min
5 min 13.70% 21.20% 20.45% 16.47 min
10 min 10.70% 20.02% 19.32% 16.87 min
30 min 8.98% 20.38% 19.81% 42.07 min
60 min 4.41% 19.63% 19.21% 66.50 min

Overall, the trends are very similar to the Collapsed Product Set Sequential algo-

rithm without flexible two-day volume. This is hardly surprising since the CP-ESSND

solution is the same. Allowing the two-day volume to choose between moving at night

and moving during the day does have an effect, but it is low. Solution quality still

hovers at around a 20% optimality gap. Allowing the two-day volume to be flexible

does increase the AMP runtime, but the increase, while noticeable is not egregious.

Those runtimes are found in Table 31.

Table 31: Time Breakdown Results of the Collapsed Product Set Sequential Algo-
rithm with Flexible Two-Day Volume

PR
Runtime

AMP
Time

CAP
Time

AMP +
CAP
Time

Total Time

2 min 378 sec 162 sec 9.00 min 11.00 min
5 min 433 sec 250 sec 11.47 min 16.47 min
10 min 228 sec 184 sec 6.87 min 16.87 min
30 min 489 sec 235 sec 12.07 min 42.07 min
60 min 240 sec 150 sec 6.50 min 66.50 min

The overall, the trends are as expected. Allowing more flexibility in the AMP
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does increase that problem’s runtime, but it is not prohibitive. In general, the Col-

lapsed Product Set Sequential Algorithm with Flexible Two-Day Volume does pro-

duce slightly better solutions than the other Collapsed Product Set Sequential Algo-

rithm, as seen in Figure 25, but those solutions are still not as good as the solutions

produced by the Basic Sequential algorithm.

Figure 25: Template-Based Sequential Algorithm with Flexible Two-Day Volume
Compared to Other Sequential Algorithms and the Monolithic Approach for Baseline
Problem Instance

Ultimately, the idea to reduce the size of the Package Routing with Aircraft Prob-

lem which gave rise to the Collapsed Product Set Sequential Algorithm did not im-

prove the Basic Sequential Algorithm. Likely, the Collapsed Product Set Sequential

Algorithm was hampered by being too inflexible with the package routings, particu-

larly in the assumption that routings generated for the night cycle would be appropri-

ate for the day cycle. This inflexibility resulting in sub-optimalities and poor overall

performance. As a result, hypothesis 4.1 is rejected.

The other idea for improving the Basic Sequential Algorithm was to improve the

Basic Sequential Algorithm by adding additional constraints to the PRAP to make it
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better approximate the original ESSND formulation. This second idea will be studied

in the next section (§7.5).

7.5 Improved Sequential Algorithm

The experiments on the Basic Sequential Algorithm (Table 26) showed that it was

possible for a sequential decomposition-based heuristic algorithm to perform better

than a monolithic approach, at least in the realm where solutions are desired in

a short period of time. The resulting algorithm, although a satisfactory proof of

concept, still has some areas for improvement. Now that it has been established that

a sequential algorithm, developed as the Basic Sequential algorithm has, can provide

good solutions in a short period of time, explorations will be made into improving

that algorithm by improving the solutions generated in the Package Routing with

Aircraft Problem by adding additional constraints.

7.5.1 Phase-Based Hull Count Constraint

To improve the Basic Sequential Algorithm by improving the quality of the Package

Routing with Aircraft Problem, let us first consider the role and importance of the

PRAP. Imagine that, by some method, the PRAP assigned the package routings of

the optimal solution. In that case, since the Aircraft Movement Problem is solved to

optimality for those assigned routings, the problem optimum would be found. On the

other extreme, imagine that the PRAP assigned package routings corresponding to an

extremely poor solution. The AMP, since it cannot change package routings, would

find the best possible solution for that routing selection, but it would still ultimately

be a poor solution. Due to the relatively fast runtime of the AMP and the fact that

the AMP can be solved to optimality, the PRAP is the ultimate decider of solution

quality.

However, finding a high-quality package routing solution is not trivial, particularly

in a reasonable time frame. On the one end of the spectrum, if the full AMP problem
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was included in the PRAP, when an optimal solution was found, it would be the

guaranteed optimal solution because the PRAP would have become the full ESSND,

but as has already been established, this would take a very long time. On the other

end of the spectrum, if none of the AMP were included in the PRAP, fictional “pirate

ship” vehicles or fractional vehicles would be used to move all of the packages and

the solution would be completely out of touch with reality, but as was found in the

experiments in Section 7.2.3 when exploring different decomposition definitions, this

solution would take only seconds to find.

When formulating the Package Routing with Aircraft Problem, a balance was

struck between the two extremes of this spectrum. In the Basic Sequential algorithm,

the AMP surrogate was composed solely of the design (vehicle) variable integrality

constraint and the feeder limit constraint. The hull balance constraints were omit-

ted from the PRAP formulation because they constitute the vast majority of the

aircraft-related constraints, and relaxing the constraint was found, in the monolithic

sensitivity studies, to have the greatest effect on runtime. The hull count constraint

was omitted from the PRAP because it was ineffective without the balance constraint,

a result that was also found in the monolithic approach sensitivity studies.

The fundamental idea of the PRAP is to assign package routings for all of the

commodities while considering, in as much detail as possible, the needs and behavior

of the Aircraft Movement Problem, without severely affecting the runtime. The

balance that must be struck is between the quality of the solution and the time it

takes to obtain that solution. Additionally, the behavior of the underlying discipline

solution method must be taken into account. Due to the poor linear relaxation of the

ESSND problem and its subproblems like the PRAP, after an initial period of rapid

progress, the monolithic approach struggles to prune branches from the B&C tree

and devolves into something more akin to an enumeration approach, which produces

solution improvements but very slowly. Ideally, good solutions to the PRAP could
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be found prior to or in the early stages of this flattening of progress, because once

the progress begins to flatten out, longer and longer runtimes are necessary in order

to find meaningful improvement.

Up to this point, the sequential approach has been presented in terms of the two

disciplines – the Package Routing Problem and the Aircraft Movement Problem. It is

a subtle point, but a slightly different way to think of the sequential algorithm is that

the PRAP is an approximation of the original ESSND problem which will produce

an infeasible solution with respect to the original problem, and the AMP is used to

“tidy up” that solution in to something that is actually feasible and flyable. The

point is subtle because, with only two disciplines, adding more AMP considerations

to the PRAP automatically makes the PRAP a better approximation of the ESSND.

However, this slight change of thinking about the problem is useful in improving the

PRAP.

The more closely that the PRAP can capture the AMP (and in doing so, approxi-

mate the ESSND), the better the final solution of the sequential algorithm will be. In

order to do this, let us revisit the two constraints from the ESSND that were omitted

in the PRAP – the hull count and hull balance constraints. Of the two, the effect

of omitting the consideration of the hull count is more obvious. It is also the more

important of the two since the primary aim of the AMP surrogate is to encourage

the assignment of package routing such that whole real-world aircraft are efficiently

loaded. How those whole aircraft are positioned so that they carry those packages

(i.e. balanced) is a secondary issue that is important for the implementation of a

solution, but not as important for determining good package routings. The hull use

of the PRAP when it was given a five-minute runtime (i.e. the case that had the best

runtime margin relative to the monolithic approach) is shown in Table 32.

Recall that the linear relaxation of the AMP was considered an ineffective option
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Table 32: Hull Usage in the Basic Package Routing with Aircraft Problem

Aircraft
Number in

Fleet
Number

Used
B777F 5 52
MD-11 43 0
MD-10-10 37 0
B767-300F 30 98
A-300 49 0
A-310 8 0
B757-200 80 83

ATR-72 10 51
ATR-42 10 26
C-208 50 11

Trunk Total 252 233
Feeder Total 70 88

because that approach resulted only in solutions in which fractions of the most cost-

efficient aircraft were used to move the volume. As seen in Table 32, the most cost-

effective aircraft were also the most popular in the basic PRAP, though in integral

increments. Since there is no hull count constraint, the PRAP solution filled the most

cost-efficient aircraft, which in this case are the B777F, B767-300F, and B757-200,

the youngest aircraft in the fleet.

As a result, the PRAP is generating routings based on filling whole aircraft,

but it is filling the wrong aircraft. It is using more than ten times more B777F

aircraft than are available and three times more B767-300F aircraft. This results in a

more costly schedule because different aircraft will need to be scheduled to fly those

packages whose routings were assigned so that they would best fill a B777F, B767-

300F or B757-200. In the case of the B777F, this dramatic over-use of aircraft has

the additional effect of requiring two or more aircraft to fly those packages because

the B777F is the largest aircraft in the fleet. There is also a severe over-use of feeder

aircraft despite the feeder limit. The arc-based feeder limit is still effective, but feeder

aircraft are very cheap compared to trunk aircraft so they are a popular choice to

move small amounts of additional volume. However, they are also smaller than trunk
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aircraft so this will result in many poorly-loaded trunk flights in the AMP solution.

To improve the PRAP, and, by extension, the sequential algorithm, the hull count

issue should be addressed. This leads to the hypothesis,

Hypothesis 4.2. Based on the observation that the PRAP assigns package rout-

ings with little bearing on the available aircraft fleet, I hypothesize that including a

hull count constraint to the PRAP would improve the performance of the sequential

algorithm.

To understand why the original hull count constraint was ineffective without the

balance constraint, let us revisit it. That constraint, as it is written in the ESSND

problem formulation (3.4), is

∑
(i+,j)∈A

yfi+j ≤ nf ∀f ∈ F \ F̃ (7.15)

In the original formulation, the hull count constraint is enforced by totaling the hulls

out of a source node i+. The hull count constraint then depends on the balance

constraint to ensure that no additional hulls are added after this point. Without the

balance constraint, hulls can be added (or removed) at any point, thus rendering the

hull count constraint ineffective.

In order to improve the PRAP, the hull count constraint should be re-introduced,

but without the dependence on the balance constraint. To do this, the periodic

nature of the problem can be once again be exploited. The hull count constraint can

be enforced across any time-based cut in the time-space graph. In the original hull

count constraint (7.15), this cut was made over the arcs coming out of the source

node. To make the hull count constraint less dependent on the balance constraint,

the hull count constraint could be enforced multiple times over different time-based

cuts in the time-space graph. The periodic nature of the express shipment problem

provides good opportunities for making these cuts. This new hull count constraint
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will be called the phase-based hull count constraint, and written,

∑
(i,j)∈A

δψijy
f
ij ≤ nf ∀f ∈ F \ F̃ , ψ ∈ Ψ (7.16)

where ψ ∈ Ψ is a phase in the set of phases and,

δψij =


1 if (i, j) is an arc in phase ψ and either i ∈ H or j ∈ H, and

0 otherwise

Recall that F̃ is the set of truck vehicle types and H ⊂ N are the nodes corresponding

to sort activity instances at hubs. For a single day, Ψ is composed of the night pick up,

night delivery, day pick up and day delivery phases. A hull count constraint is created

for each of these phases which stipulates that the total number of aircraft of each type

flying from a spoke to a hub (or hub to a spoke for delivery phases) must be less than or

equal to the total number of those aircraft in the fleet. Spoke-to-spoke consolidation

flights were not counted so as to avoid double counting aircraft. However, this is

hardly an issue in reality since the bulk of the consolidation movements are done via

trucks which are not hull count-limited.

7.5.1.1 Testing the Impact of the Addition of the Phase-Based Hull Count Con-
straint to the Package Routing with Aircraft Problem

One concern with adding more constraints to the Package Routing with Aircraft

Problem is that it may increase the runtime of the PRAP and make it more difficult

to find good solutions in a timely manner. Therefore, the effect of adding the phase-

based hull count constraint to the PRAP is tested experimentally.

To test the effect, the PRAP with the phase-based hull count constraint is run

using the experimental testbed described in Section 5.4 and the computational testbed

described in Table 5. Only the solution generation method was slightly modified so
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as to reflect the PRAP formulation with the phase-based hull count constraint. Since

this problem is a MIP, it was solved with Gurobi. A single experiment was run using

the baseline problem instance (described in Table 6). The results of this experiment

are found in Table 33.

Table 33: Results of Including the Phase-Based Hull Count Constraint to the Package
Routing with Aircraft Problem

Problem Optimality Gap Runtime
Extended PRAP 7.17% 24 hrs
Basic PRAP 7.73% 24 hrs
Original PRP 0% 22.86 sec

Compared to the basic PRAP, the extended PRAP (i.e. the PRAP with the

phase-based hull count constraint) actually has a slightly lower optimality gap after

twenty-four hours. This indicates that the addition of the phase-based hull count

constraint actually helps the solver find good solutions, perhaps by aiding in excluding

sub-optimal solutions that would have otherwise been considered. The good progress

of the extended PRAP, even compared to the basic PRAP, suggests that using a

monolithic approach and terminating it early will be successful, as it was in the Basic

Sequential algorithm. The implementation of that algorithm is described and tested

in the next section.

7.5.2 Improved Sequential Algorithm with the Phase-Based Hull Count
Constraint

Now that the phase-based hull count constraint has been shown to not inhibit the

solve time of the PRAP, its effect on the sequential algorithm must be tested. The

resulting algorithm will be called the Improved Sequential Algorithm and it is very

similar to the Basic Sequential Algorithm, except that the phase-based hull count

constraint (Eq. 7.16) is included in the Package Routing with Aircraft Problem. Ex-

periments testing the effect of the PRAP runtime on the solution quality, from two
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minutes to six hours, were run on the experimental testbed described generally in Sec-

tion 5.4 and described specifically for the Basic Sequential Algorithm in Section 7.3.3.

The experiments were performed on the computational testbed summarized in Ta-

ble 5 using the baseline problem instance described in Table 6. The results of these

experiments are shown in Table 34 and Figure 26.

Table 34: Results of the Improved Sequential Algorithm with the Phase-Based Hull
Count Constraint

Instance
PRAP

Opt. Gap
Objective
Difference

Absolute
Opt. Gap

AMP
Runtime

2 min 28.8% 17.64% 23.29% 150 sec
5 min 24.1% 13.18% 20.26% 115 sec
10 min 14.4% 1.49% 11.08% 60 sec
30 min 12.3% 0.08% 9.82% 90 sec

1 hr 11.8% -0.27% 9.51% 92 sec
3 hrs 10.5% -1.24% 8.62% 97 sec
6 hrs 10.3% -1.27% 8.42% 190 sec

Adding the phase-based hull count constraint to the PRAP significantly improves

the performance of the sequential algorithm. The objective difference and the ab-

solute optimality gap are calculated relative to the best objective value and lower

bound found by the monolithic approach after forty-eight hours. The best-found

optimality gap of the monolithic approach was 9.75%. This means that within one

hour, the Improved Sequential Algorithm found a better solution than the baseline

monolithic approach found after two days. Whereas the Basic Sequential Algorithm

found better solutions than the monolithic baseline for only the first hour of runtime,

the Improved Sequential Algorithm significantly outperforms the monolithic approach

for all tested time periods. Figure 26 graphically compares the performance of the

Improved Sequential Algorithm to the Basic Sequential Algorithm and the monolithic

approach.

In Figure 26, the Basic Sequential Algorithm is shown in blue, the Improved
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Figure 26: Improved Sequential Algorithm with the Phase-Based Hull Count Con-
straint Compared to the Basic Sequential Algorithm and Monolithic Approach for
the Baseline Problem Instance

Sequential Algorithm is shown in red, the convergence behavior of the monolithic ap-

proach is shown with the solid black line, and the best-found optimality gap from the

monolithic approach is shown with the dashed black line. For the first couple of points

(the two and five-minute cases), the basic and extended sequential algorithms perform

similarly, although the Improved Sequential Algorithm is slightly faster with better

solutions in both cases. Then, after those first two points, the Improved Sequential

Algorithm performs significantly better than any other approach. The case in which

the extended PRAP was run for thirty minutes finds a solution only marginally worse

than the monolithic approach found after forty-eight hours, and the case in which

the extended PRAP was run for an hour finds a solution comfortably better than the

monolithic approach. In the case where the extended PRAP was run for six hours, a

solution was found that was 1.33 percentage points better in its optimality gap over

the forty-eight-hour monolithic solution. Considering that over the second day of

runtime for the monolithic approach the optimality gap only improved by only 1.04
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percentage points, the gap between the best monolithic approach solution and the

best Improved Sequential Algorithm solution is considerable.

The Improved Sequential Algorithm performs better than the Basic Sequential

Algorithm because the PRAP better approximates the full ESSND problem with the

phase-based hull count constraint. The primary advantage that the approximation

has over the original formulation is that it is not burdened with the numerous hull

balance constraints. By including the phase-based hull count constraint, package

routings are assigned which efficiently load real aircraft and have some bearing on

reality, but without the burden of the balance constraints. In a sense, adding the

phase-based hull count constraints adds the “right amount” of reality to the approxi-

mation – just enough to produce very good solutions but not so much that it becomes

burdensome and inhibits the finding of good solutions. The best solution found by

the Improved Sequential Algorithm exists in the feasible space of the problem solved

by the monolithic approach, but the additional burden of needing to satisfy all of

the constraints, including the hull balance constraints, in every solution makes it

much more difficult to find those good solutions. Additionally, the poor LP relax-

ation bound makes it even more difficult to find good solutions because it makes the

branch-and-bound approach much less efficient. Based on the results of the Improved

Sequential Algorithm with Hull Count, hypothesis 4.2 is supported.

7.5.3 Sort-Centric Balance Constraint

Given the significant performance enhancement found by including the phase-based

hull count constraint in the PRAP, the next question is whether the addition of

a version of the previously-omitted balance constraint would further improve the

performance of the Improved Sequential Algorithm. This leads to the hypothesis,

Hypothesis 4.3. Based on the observation that adding the phase-based hull count

constraint to the PRAP greatly improved the sequential algorithm, I hypothesize that
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including a modified vehicle balance constraint to the PRAP will further improve the

performance of the sequential algorithm by adding additional realism to the PRAP.

The original hull balance constraints, while effective in capturing reality, are also

numerous and burdensome to the solver. Therefore, adding the original hull balance

constraints would be more detrimental than beneficial, and a relaxed version of the

balance constraint would be more appropriate.

The potential addition of a relaxed hull balance constraint is also motivated by

the fact that while the phase-based hull count constraint is effective in enforcing

the hull count across a phase, it does not fully capture how many hulls would be

needed to actually implement that schedule. When trackings8 are created for the

extended PRAP, more hulls are needed than are available for some aircraft types. The

disparity is nowhere near as severe as that of the basic PRAP, but since reducing the

disparity through the phase-based hull count constraint improved the final solution

significantly, perhaps reducing it further through a relaxed balance constraint would

also have positive effects.

This relaxed balance constraint, called the sort-centric balance constraint is cen-

tered around each sort activity instance. It stipulates that the aggregate number of

aircraft of each type that fly into a sort activity instance must also fly out of that

sort activity instance. This precludes the possibility of an aircraft flying into the sort

and then sitting on the ground until the next sorting activity. In reality, aircraft do

not often sit on the ground at hubs because a certain amount of capacity is needed

to fly all of the volume into a sort so a similar amount of capacity should be needed

to fly out of a sort.

The sort-centric balance constraint was not similarly implemented around the

origin and destination activities at the spokes because it is much more common for

aircraft to sit on the ground for an entire cycle (typically the daytime operations) at

8Trackings are the assignment of specific tail numbers to a series of flights.
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the spokes, and because the timing at spoke airports does not always lend itself well

to this kind of accounting (i.e. at some spokes, the daytime origin activity occurs

before the nighttime delivery activity). The sort-centric balance constraint is written,

∑
j:(i,j)∈A′

yfij =
∑

j:(j,i)∈A′

yfji ∀i ∈ H ⊂ N, f ∈ F \ F̃ (7.17)

where H is the set of nodes corresponding to a sort activity instance at a hub, A′

is the set of flight arcs, and F̃ is the set of truck vehicle types. This constraint is

identical to the original hull balance constraint except that it is only enforced over

the node subset H, which is much smaller than N .

7.5.3.1 Testing the Impact of the Addition of the Sort-Centric Balance Con-
straint to the Package Routing with Aircraft Problem

As with the previous modifications to the Package Routing Problem, the effect of the

sort-centric balance constraint on the PRAP runtime was tested prior to implementing

it in the sequential algorithm. The experiments were performed on the experimen-

tal testbed described in Section 5.4 where the only alteration was the inclusion of

the sort-centric balance constraint to the PRAP formulation. Two experiments were

conducted – one in which only the sort-centric balance constraint was added to the

PRAP, and one in which the sort-centric balance and phase-based hull count con-

straints were added to the PRAP. The experiments were run on the computational

testbed described in Table 5 using the baseline problem instance described in Table 6.

The results are summarized in Table 35.

Adding the sort-centric balance constraint has a small effect on the PRAP optimal-

ity gap after 24 hours of runtime compared to the PRAP with only the phase-based

hull count constraint. However, the optimality gaps of all of the PRAP variants are

all within 0.88 percentage points of each other so there is nothing particularly dra-

matic in the addition of the sort-centric balance constraint in terms of the solver’s
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Table 35: Results of Including the Sort-Centric Balance Constraint in the Package
Routing with Aircraft Problem

Problem Optimality Gap Runtime
PRAP w/ Sort-Centric Balance 7.45% 24 hrs
PRAP w/ Balance & Count 8.05% 24 hrs
PRAP w/ Phase-Based Hull Count 7.17% 24 hrs
Basic PRAP 7.73% 24 hrs
Original PRP 0% 22.86 sec

progress in finding solutions for the problem.

7.5.4 Improved Sequential Algorithm with the Sort-Centric Balance and
Phase-Based Hull Count Constraints

The impact of adding the sort-centric balance constraint to the PRAP within the

sequential algorithm is studied next. The experiments testing this impact were con-

ducted in the same fashion as the experiments testing the phase-based hull count

constraints in Section 7.5.2. They were performed on the experimental testbed that

was described generally in Section 5.4 and more specifically for the sequential algo-

rithm in Section 7.3.3 using the computational testbed summarized in Table 5 and

performed on the baseline problem instance described in Table 6. The results are

shown in Table 36.

Table 36: Results of the Improved Sequential Algorithm with the Sort-Centric Balance
and Phase-Based Hull Count Constraints

Instance
PRAP

Opt. Gap
Objective
Difference

Absolute
Opt. Gap

AMP
Runtime

2 min 31.3% 20.49% 25.10% 190 sec
5 min 25.8% 15.09% 21.59% 95 sec
10 min 17.8% 7.77% 16.26% 100sec
30 min 14.0% 3.68% 12.96% 117 sec

1 hr 13.6% 3.19% 12.54% 110 sec
3 hrs 13.0% 2.63% 12.06% 223 sec
6 hrs 12.1% 2.57% 12.02% 147 sec

The results are good, but they are not as good as the extended PRAP without the
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sort-centric balance constraint. None of the cases find a solution better than the best-

found monolithic approach. The first couple cases actually produce worse solutions

than even the Basic Sequential Algorithm, but after those first couple cases, the

Improved Sequential Algorithm with Hull Count and Balance produces significantly

better solutions than the Basic Sequential Algorithm. How the Improved Sequential

Algorithm with Hull Count and Balance compares to the other sequential algorithms

and the monolithic approach can be best seen in Figure 27.

Figure 27: Comparison of the Full-Set Sequential Algorithms and Monolithic Ap-
proach for the Baseline Problem Instance

The Improved Sequential Algorithm with Hull Count and Balance cases are shown

in purple and the Basic Sequential Algorithm and Improved Sequential with Hull

Count cases are in blue and red, respectively. The monolithic convergence is repre-

sented by the solid black line and its best-found solution is shown with the dashed

black line. Figure 27 shows that the Improved Sequential Algorithm with Hull Count

and Balance performs better than both the Basic Sequential Algorithm aside from
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the first couple of cases, and performs consistently better than the monolithic ap-

proach for all cases considered. It does not, however, find a better solution than the

best-found monolithic approach and it consistently performs worse than the Improved

Sequential Algorithm with (only) Hull Count.

These results show that the addition of the sort-centric balance constraint is not

beneficial in finding high-quality solutions. While it does improve the hull usage, the

added realism of ensuring hull balance in and out of the sort activity instances proves

to be more of a burden than a boon. The constraint makes it more difficult for the

solver to find high-quality solutions and the improved quality of those solutions (rela-

tive to the original problem) does not make up for the difficulty in finding them. From

these results, it can be concluded that while the hull count constraint is necessary to

generate high-quality package routings, the hull balance constraint is not necessary

and is ultimately detrimental to quickly generating high-quality package routings. In

the end, this result makes sense since the hull count constraint has the most impact

on the goal to fill whole aircraft within the fleet. Ensuring that these aircraft are

balanced throughout the network is a secondary consideration to the actual loading

of those aircraft. Furthermore, since aircraft are not given the option to remain on

the ground after a sort activity instance, the sort-centric balance constraint also is

over-constraining the solutions, which also impinges on the Improved Sequential Al-

gorithm’s ability to find high-quality solutions. As a result, while the sort-centric

balance constraint slightly improves the realism of the PRAP approximation, it also

makes the problem more difficult to solve and it does not greatly improve the solution

quality.

Therefore, the Improved Sequential Algorithm with Hull Count is found to be

the best of the heuristic decomposition approaches for the baseline problem instance

encompassing a single day’s worth of volume and hypothesis 4.3 is rejected. It best

balances the dueling needs of approximation quality and problem difficulty, and is
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able to quickly produce high-quality solutions much faster than any other method,

heuristic or otherwise, studied in this work.

7.6 Sensitivity Studies

In order to test the robustness of the Improved Sequential Algorithm and find it’s

limits, several sets of sensitivity studies were performed on the algorithm. Studies

were performed on variations of the baseline problem instance in which the sort

capacity, fleet size or airport subset was reduced, a different day of the week was

solved, and for problems with larger temporal scope. The studies focused on the

sensitivity to sort capacity, fleet size and temporal scope all aimed to explore how

the Improved Sequential Algorithm performed on problem instances that were harder

or more constrained than the baseline problem instance. The studies focused on the

airport sensitivity to the size of the airport subset and different days of the week9

aimed to explore how the Improved Sequential Algorithm performed on problem

instances that were easier than the baseline problem instance.

All sensitivity studies were performed on the experimental testbed that was gener-

ally described in Section 5.4 and described for the sequential algorithm in Section 7.3.3

with the addition of the phase-based hull count constraint to the Package Routing

with Aircraft Problem. The sensitivity studies all focus on altering the problem in-

stance that is solved by the Improved Sequential Algorithm. The algorithm itself

is not changed. All of the experiments are performed on the computation testbed

described in Table 5.

7.6.1 Sort Capacity

The sort capacity sensitivity study explores how the Improved Sequential Algorithm

performs when it is more challenging to route packages. As the sort capacity gets

9The baseline problem instance was for a Monday, the day with the largest volume.
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tighter, it is more challenging to find a feasible set of package routings without sur-

passing the sort capacity. In the baseline problem instance, the sort capacity is already

very tight in part due to the real world challenges of the problem, and in part due to

the restrictions I included in the routing generation method (§6.2) in order to make

the sort capacity constraint meaningful with a reduced demand set.

To generate the reduced sort capacity instances, the baseline sort capacities were

reduced uniformly by 99 and 98 percent, and rounded to the nearest piece (since sort

capacities are in terms of pieces). A sort capacity that was any lower was found to

be infeasible. The results of those studies are shown in Figure 28.

For both problem instances, the Improve Sequential Algorithm outperforms the

monolithic approach for the runtime period considered. The heuristic algorithm sur-

passes the best-found monolithic solution after six hours for the problem instance

with a 99% sort capacity but it does not surpass the best-found monolithic solution

of the problem instance with a 98% sort capacity. The fact that it takes longer to

surpass the monolithic approach is likely due to the increased difficulty in finding

solutions in the PRAP. The optimality gap results are shown in Table 37.

Table 37: Optimality Gap Results of the Improved Sequential Algorithm with Re-
duced Sort Capacity

PRAP
Runtime

99% Capacity 98% Capacity

2 min 23.2% –
5 min 20.3% 21.0%
10 min 17.0% 19.1%
30 min 14.2% 13.1%

1 hr 13.4% 12.5%
3 hrs 10.4% 9.6%
6 hrs 9.3% 8.8%

Overall, despite the increased challenge to find feasible package routings, the Im-

proved Sequential Algorithm does well. It is still capable of finding high-quality

solutions in a reasonable amount of time. The only exception is for the two-minute
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(a) 99% Sort Capacity

(b) 98% Sort Capacity

Figure 28: Sort Capacity Sensitivity Study Results for the Improved Sequential Al-
gorithm

case on the 98% capacity problem instance in which the PRAP was not able to find

a solution before it was terminated. For both problem instances, solutions with op-

timality gaps below 10% were found in about six hours. Furthermore, although the

heuristic algorithm was not capable of finding a solution better than the best-found

solution from the monolithic approach in as short of a time period, it was still greatly

superior to the monolithic approach in finding high-quality solutions in the studied

time period.
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7.6.2 Fleet Size

The fleet size sensitivity study explores how the improved sequential algorithm per-

forms when it is more challenging to move packages. As the fleet size shrinks, it

becomes more important that packages be routed so that the aircraft are used more

efficiently, and the balance of the aircraft through the network through time becomes

more important. The fleet size in the baseline problem instance was relatively loose.

For the most cost-effective aircraft, the hull count constraint was restrictive, but

there were many less-cost-effective aircraft for which the hull count constraint was

not restrictive which resulted in surplus capacity in the available fleet.

To generate the reduced fleet problem instances, the fleet was reduced uniformly

by 5% increments from 95% to 70% and rounded to the nearest whole aircraft. Fleets

of 65% and smaller were found to have too little capacity. The results of the reduced

fleet studies are shown in Figure 29.

The Improved Sequential Algorithm performs well for all of the reduced fleet size

studies. It finds significantly better solutions than the monolithic approach for all

of the problem instances, although it does not find better solutions than the best-

found monolithic solutions for all of the problem instances. However, for the time

period considered, the heuristic algorithm produced superior solutions compared to

the monolithic approach. The optimality gaps of each case are tabulated in Table 38.

Cases that include pirate ships (i.e. are not flyable schedules) are marked with an

asterisk.

The Improved Heuristic Algorithm consistently out-performs the monolithic ap-

proach, even when the fleet size becomes very small. However, the effect of the

reduced fleet size does start to show in the short-runtime cases for the 70% to 80%

fleet size problem instances. The presence of pirate ships means that the algorithm

is struggling a bit to find flyable solutions. However, it should be noted that the

monolithic approach struggles even more to find flyable solutions as shown by its
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Table 38: Optimality Gap Results of the Improved Sequential Algorithm with Re-
duced Fleet Size

PRAP
Runtime

95% Cap. 90% Cap. 85% Cap. 80% Cap. 75% Cap. 70% Cap.

2 min 23.3% 22.7% 25.2% 38.1%* 53.3%* 65.6%*
5 min 19.8% 18.8% 18.9% 20.0% 47.8%* 48.1%*
10 min 15.2% 15.2% 16.5% 17.5% 34.5%* 12.5%
30 min 11.6% 10.9% 13.5% 13.3% 15.5% 12.1%

1 hr 11.2% 10.8% 13.1% 12.4% 15.3% 12.3%
3 hrs 11.2% 9.6% 11.7% 11.0% 13.1% 10.9%
6 hrs 9.9% 9.0% 11.1% 11.0% 12.7% 10.2%

higher optimality gap for all of those cases.

One would expect that cases in which the fleet size is very tight would cause

problems for the Improved Sequential Algorithm since the Package Routing with

Aircraft Problem does not include any kind of vehicle balance. When there is some

flexibility in the fleet, this lack of balance is not a major issue since there are enough

aircraft available. However, imagine the situation in which there are exactly enough

aircraft available to move all of the packages. Since the PRAP does not balance

vehicles, it may route packages expecting the ATL to MEM pick up flight to be flown

by Aircraft A, and it may then expect the next delivery leg from IND to LAX to be

also flown by Aircraft A. This is impossible and, as a result, two aircraft are needed.

When there is some flexibility in the fleet, this is not a problem, but when the fleet size

is very tight, the fictional pirate ship vehicles would be needed to fill in the additional

capacity needs.
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(a) 95% Fleet Size

(b) 90% Fleet Size

(c) 85% Fleet Size

Figure 29: Fleet Size Sensitivity Study Results for the Improved Sequential Algorithm
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(d) 80% Fleet Size

(e) 75% Fleet Size

(f) 70% Fleet Size

Figure 29: Fleet Size Sensitivity Study Results for the Improved Sequential Algorithm
(Cont.)
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To further explore the performance of the Improved Sequential Algorithm, two

additional reduced fleet problem instances were generated and tested. These two

problem instances were created by using the smallest necessary fleets from two mono-

lithic solutions. The first monolithic solution fleet was from the baseline problem

instance. The second monolithic solution fleet was also run on the baseline problem

instance, but a hull count penalty was included in the objective function so that the

solver was incentivized to use as small of a fleet as possible. The results are shown in

Figure 30. The monolithic approach was re-run using the tighter fleet size, not the

original.

(a) Baseline Solution Fleet

(b) Hull Minimization Solution Fleet

Figure 30: Fleet Size Sensitivity Study Results for the Improved Sequential Algorithm
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In both cases, the Improved Sequential Algorithm out-performed the monolithic

approach for the considered time period, but for the minimum fleet problem instance,

the solutions were significantly worse than the best-found monolithic solution. The

poorness of the heuristic approach solutions is due to the presence of pirate ships in

the final solutions. It was not capable of finding a solution without pirate ships for the

minimal fleet problem instance. Interestingly, neither did the monolithic approach,

despite a 48-hour runtime, but eventually the monolithic approach did produce a

solution with fewer pirate ships. The optimality gaps of the individual cases are

summarized in Table 39. The solutions with pirate ships are again marked with an

asterisk.

Table 39: Optimality Gap Results of the Improved Sequential Algorithm with Re-
duced Fleet Size Based on Monolithic Solutions

PRAP
Runtime

Baseline
Fleet

Hull Min
Fleet

2 min 23.2% 81.8%*
5 min 21.0% 69.1%*
10 min 14.9% 65.8%*
30 min 11.4% 61.2%*

1 hr 11.0% 61.2%*
3 hrs 9.6% 54.0%*
6 hrs 9.3% 51.4%*

While every heuristic solution for the minimal fleet problem instance contained at

least a dozen pirate ships, none of the solutions for the baseline solution fleet problem

instance contained pirate ships. The baseline ESSND problem formulation does not

include any direct incentive for minimizing the number of hulls and as a result, the fleet

is larger and more flexible. Although the Improved Sequential Algorithm performs

well compared to the monolithic approach for a given time period, for problems in

which the fleet size is very tight, the heuristic algorithm will ultimately struggle to

find flyable solutions. Its primary advantage over the monolithic approach, the lack

of a balance constraint, is also its primary drawback for very tightly-constrained
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problems.

7.6.3 Airport Subsets

The airport subset sensitivity studies explore how the Improved Sequential Algorithm

performs for problem instances that are easier than the baseline problem instance.

The same randomly-generated subsets of airports that were used in the sensitivity

studies for the monolithic approach in Section 6.5 were used in the sensitivity studies

for the Improved Sequential Algorithm. In the previous airport subset sensitivity

studies, the monolithic approach was found to be capable of solving the ten and

twenty-five-airport problem instances in seconds and minutes, respectively. Realisti-

cally, for problems that can be solved so quickly to optimality, a heuristic approach

is neither necessary nor appropriate. Therefore, the airport subset sensitivity stud-

ies were only performed on the fifty, seventy-five, and one-hundred-airport subset

problem instances. Those results are shown in Figure 31.

For the considered time period, the Improved Sequential Approach out-performs

the monolithic approach, though it should be noted that the problem instance is easier

for the heuristic approach to solve, but it is also easier for the monolithic approach

to solve as well. Despite the increased performance of the monolithic approach,

the heuristic approach produces better solutions for a given period of time in all

cases. It does not, however, find a better solution in the considered time period

than the best-found monolithic solution. This is likely a side-effect of the improved

monolithic approach performance. The optimality gap results for each individual case

is tabulated in Table 40.
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(a) 50 Airport Subset

(b) 75 Airport Subset

(c) 100 Airport Subset

Figure 31: Airport Subset Sensitivity Study Results for the Improved Sequential
Algorithm
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Table 40: Optimality Gap Results of the Improved Sequential Algorithm on Airport
Subsets

PRAP
Runtime

50 Airports 75 Airports 100 Airports

2 min 7.6% 10.5% 13.8%
5 min 6.7% 10.0% 11.3%
10 min 4.8% 9.9% 10.9%
30 min 2.7% 8.9% 10.3%

1 hr 1.6% 7.9% 9.2%
3 hrs 0.8% 7.6% 8.7%
6 hrs 0.4% 7.5% 8.8%

For the smallest problem instance, fifty airports, the Improved Sequential Algo-

rithm found solutions with a less than 10% optimality gap in two minutes, and within

three hours, it found solutions with a less than 1% gap. Its performance was also good

on the larger problem instances. It found solutions with less than a 10% gap in ten

minutes for the seventy-five-airport case and one hour for the one-hundred-airport

case. This good performance of the Improved Sequential Algorithm shows that it

is not only adept at handling more difficult problem instances (until the problem

is very tightly-constrained), it is adept at handling easier problem instances in the

realm where the monolithic approach is good, but not capable of producing optimal

solutions in reasonable time frames.

7.6.4 Different Days of the Week

The different days of the week sensitivity studies also explore the Improved Sequential

Algorithm’s ability to solve easier problem instances than the baseline. The baseline

problem instance was a Monday. Specifically, it encompassed the 24-hour period

from the start of the night pick up activities on Monday evening to the end of the day

delivery activities on Tuesday afternoon. Of the days of the week, Monday has the

most volume and is the most difficult to solve. The weekend, Friday evening through

Sunday evening, despite encompassing several calendar days, is the easiest to solve
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because significantly less volume enters the network and since there is more time to

deliver the packages, more can be moved with trucks rather than aircraft. The results

of the Improved Sequential Algorithm for each day of the week, from Tuesday through

the weekend is shown in Figure 32.

(a) Tuesday

(b) Wednesday

Figure 32: Different Days of the Week Sensitivity Study Results for the Improved
Sequential Algorithm

For all of the days of the week, the Improved Sequential Algorithm out-performs

the monolithic approach. On the Tuesday and Wednesday problem instances, the

heuristic algorithm finds better solutions than the best-found monolithic solution

in under thirty minutes. It takes three hours for it to find a better solution than
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(a) Thursday

(d) Weekend (Friday-Sunday)

Figure 32: Different Days of the Week Sensitivity Study Results for the Improved
Sequential Algorithm (Cont.)

the monolithic for the Thursday case, and for the weekend case it never finds a

better solution than the monolithic approach because the problem is so easy that the

monolithic as very little trouble with it. The individual optimality gaps of the cases

are shown in Table 41.

For all but the Thursday problem instance, the Improved Sequential Algorithm

found solutions under a 1% gap, and for all problem instances it found solutions under

a 10% gap in five minutes. Of the problem instances considered in this sensitivity

study, the weekend case is clearly the easiest, with no solution having less than a

228



Table 41: Optimality Gap Results of the Improved Sequential Algorithm on Different
Days of the Week

PRAP
Runtime

Tuesday Wednesday Thursday Weekend

2 min 15.9% 16.4% 16.6% 1.4%
5 min 9.0% 6.7% 6.9% 1.1%
10 min 6.3% 3.3% 5.2% 1.0%
30 min 4.1% 2.5% 3.8% 0.7%

1 hr 3.2% 2.6% 3.9% 0.4%
3 hrs 1.6% 0.7% 3.2% 0.4%
6 hrs 0.7% 0.6% 2.9% 0.4%

1.4% gap, and the Thursday problem instance is the most difficult. This is due to the

Saturday-delivery products in addition to the usual commodities, which increases the

number of commodities and therefore increases the problem size. Still, the heuristic

approach found high-quality solutions quickly. These sensitivity studies show that

the Improved Sequential Algorithm performs well for slightly easier problems beyond

the baseline problem instance.

7.6.5 Temporal Scope

The expansion of the temporal scope sensitivity study explores the ability of the

Improve Sequential Algorithm’s ability to handle significantly more difficult problem

instances. When these studies were performed on the monolithic approach, no usable

solutions could be generated within two days of runtime. They were hopelessly in-

tractable for a monolithic approach. However, the heuristic approach is more capable

of solving these longer-scope problem instances. The results are shown in Table 42.

The cases marked with the dagger symbol (†) are those in which the PRAP did not

find a solution, aside from the starting heuristic solution, before being terminated.

Considering the intractability of these problems for a monolithic approach, the

results are not bad. The optimality gaps for the six-hour cases are all between 23%

and 28%. Although these gaps are not as good as the gaps for the single-day cases,

the fact that solutions can be generated at all is a significant improvement over the
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Table 42: Optimality Gap Results of the Improved Sequential Algorithm for Larger
Temporal Scope

PRAP
Runtime

2 Days 3 Days 4 Days 7 Days

2 min 37.0%† 38.0%† 37.7%† 36.8%†

5 min 27.5% 29.1% 37.7%† 36.8%†

10 min 26.2% 28.6% 37.7%† 36.8%†

30 min 26.2% 28.6% 37.7%† 36.8%†

1 hr 25.2% 28.6% 37.7%† 36.8%†

3 hrs 24.4% 26.7% 29.7% 25.9%
6 hrs 23.9% 26.7% 27.3% 25.9%

monolithic approach. These solutions would be valuable as rough estimates or as

starting places for planners.

Since the week-long case is an important time period for express shipment plan-

ning, an alternative approach to generating week-long schedules was also explored.

In this alternative approach, will be called the “reconstructed” approach, the PRAP

of each day of the week was run individually, in parallel. Then, the assigned routings

from each of these individual runs were combined and sent to the Aircraft Move-

ment Problem to produce a full-week flyable solution. This approach is very similar

to the approach employed in the Georgia Tech-FedEx collaboration for generating

week-long schedules, except in that approach the whole ESSND problem is solved for

each day. The results are significantly better than the previous approach in which a

single PRAP encompassing the entire time period was solved. The results are shown

in Table 43

With enough computational resources to run each PRAP in parallel, a solution

with a 13.4% optimality gap can be generated for the entire week in less than one

day of runtime (on average the AMP takes about thirteen hours). This is a major

improvement over the monolithic approach and a significant improvement over the

previous approach in which only a single PRAP instance was solved. Solutions with

only a 13.4% optimality gap that could be generated in only a few hours would be
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Table 43: Optimality Gap Results of the Improved Sequential Algorithm for the
Reconstructed Week

PRAP
Runtime

Opt. Gap

2 min 23.6%
5 min 19.1%
10 min 15.7%
30 min 14.7%

1 hr 14.3%
3 hrs 13.6%
6 hrs 13.4%

extremely valuable for an express shipment company.

7.6.5.1 Effect of Larger Temporal Scope on the Collapsed Product Set Sequential
Algorithm

Although the performance of the Collapsed Product Set Sequential Algorithm was

underwhelming for the single-day case, perhaps it’s ability to reduce the PRAP prob-

lem size would be useful for problems with larger temporal scope. The CP-PRAP

SAP only ever needs to be run for a single day’s worth of overnight box volume (as

long as that day has the largest volume), and the AMP is relatively easy to solve

compared to the full formulation. As suspected, the Collapsed Product Set Sequen-

tial Algorithm does perform well on multi-day problem instances. The full summary

of results are found in Table 44. For all cases, the CP-PRAP was used to generate

package routings and it was run for ten minutes on the Monday overnight box prod-

ucts. The two-day volume was assigned to move with the daytime volume and was

not flexible. Cases marked with an asterisk are those that broke sort capacity (sort

capacity is not constant throughout the week).

The Collapsed Product Set Sequential Algorithm produces solutions under a 28%

gap for all of the problem instances, and does so in well under a day of runtime. These

results are on-par with those produced by the Improved Sequential Algorithm, though

the CAP requires so much time to solve that the Collapsed Product Set Sequential
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Table 44: Results of the Template-Based Sequential Algorithm for Multi-Day Problem
Instances

Problem
Instance

AMP
Time

AMP
Opt. Gap

CAP
Time

Final Opt.
Gap

Total
Time

1 day 238 sec 22.26% 436 sec 21.48% 0.35 hrs
2 day 1666 sec 25.74% 4527 sec 25.26% 1.42 hrs
3 day 2584 sec 28.40% 18683 sec 27.91% 6.07 hrs
4 day 10675 sec 26.51%* 28176 sec 25.95% 10.96 hrs
7 day 11500 sec 23.88%* 43996 sec 22.71% 15.58 hrs

Algorithm is still inferior to the Improved Sequential Algorithm.

As with the single-day problem instances, the CAP added significant runtime in

exchange for very little solution improvement. In fact, its runtime impact was even

more severe than the single-day case, adding over a half-day of additional runtime

for the full-week case. This makes the compelling case that while consolidation can

be handled after the AMP, the CAP, as it is currently formulated, is not an effective

method for doing so. Still, the challenges of the CAP should not detract significantly

from the overall success of the approach.

Additionally, and this has not been mentioned up to this point since it was tangen-

tial to the discussion and not a hard requirement, express shipment companies enjoy

schedules and routings with consistency even at the expense of absolute optimality.

It is much easier to schedule crews and perform ground operations if, say, every night

ATL sends one plane to MEM and one plane to IND, rather than a schedule in which

the number of planes and the assignment of commodities to those planes changes each

night. A consistent schedule may not be the mathematically optimal solution, but it

may be much more implementable, which has significant, though difficult to quantify,

value.

Overall, the ability of these heuristic approaches to produce solutions for an entire

week of operations is an important contribution to both the literature and the ex-

press shipment community since it has not been (publicly) accomplished previously.
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These heuristic approaches are able to overcome the challenges of solving such a large

optimization problem and produce high-quality solutions for longer, more convenient

time periods for express shipment companies.

7.7 Summary

In this chapter, several heuristic algorithms were developed and tested. Ultimately,

the Improved Sequential Algorithm was found to be superior to the other heuristic

algorithms and monolithic approach. Since heuristic algorithms are problem-specific

and must be designed as such, research questions and hypotheses were posed as part

of the development process of the algorithm. First, two implementation-based re-

search questions were posed concerning the discipline definition and the discipline

arrangement. Then, based on the results of exploratory experiments, the functional

decomposition definition, which broke the express shipment problem into a Package

Routing Problem and an Aircraft Movement Problem, was hypothesized to be appro-

priate for a heuristic decomposition algorithm. Next, a fixed point iteration-based

approach was hypothesized as being an appropriate discipline arrangement, but ex-

perimental results led to the rejection of this hypothesis. Therefore, the package

routing problem was altered to include aircraft movement variables and a sequential

discipline arrangement was implemented and tested.

This sequential heuristic approach, called the Basic Sequential Algorithm, was ca-

pable of producing good-quality solutions more quickly than the monolithic approach

for the first hour of runtime, thus supporting the fundamental hypothesis of this

work. Its performance led to the next research question, which focused on whether

the Basic Sequential Algorithm could be improved. This led to the Collapsed Prod-

uct Set Sequential Algorithm, whose performance was inferior to the Basic Sequential

Algorithm for the single-day baseline problem instance but was relatively good for
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problems of larger temporal scope. Research question 4 and the Basic Sequential Al-

gorithm also led to the Improved Sequential Algorithm, which adds the phase-based

hull count constraint to the Package Routing with Aircraft Problem. Adding a relaxed

balance constraint, the sort-centric balance constraint, to the PRAP was also tested,

but it was found to worsen the algorithm’s performance. The final Improved Sequen-

tial Algorithm significantly out-performs the monolithic approach for the baseline

problem instance. The Improved Sequential Algorithm was also tested in a number

of sensitivity studies and it consistently out-performed the monolithic approach in

those problem instances as well, showing that it can handle a variety of problems and

maintain its superior performance. Importantly, it can also handle problems of larger

temporal scope, including the full-week problem which is an important planning time

frame for express shipment companies.

Based on the results of the algorithms developed in this chapter, particularly

the Improved Sequential Algorithm, the fundamental and primary hypotheses of this

work are supported. Additionally, thanks to their quick runtime and ability to provide

high-quality solutions to previously intractable problems, these heuristic algorithms

open the door for more tactical and strategic-level analyses for express shipment

companies, potentially having an impact in the millions of dollars annually. The next

chapter, Ch. 8 will introduce, implement and test the exact decomposition approach,

Benders decomposition.
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CHAPTER VIII

BENDERS DECOMPOSITION

In this chapter, an exact decomposition approach, Benders decomposition, will be

described, implemented and tested. This is the next step in the investigation of

hypothesis 0 which was first introduced in Chapter 5 in response to the fundamental

objective of this work. That hypothesis is,

Hypothesis 0. A heuristic approach or exact decomposition approach will able to

produce solutions for the Express Shipment Service Network Design problem of com-

parable quality to the baseline monolithic approach in significantly less time.

The heuristic decomposition approach was implemented and tested in the previous

chapter so now it is time to implement and test an exact decomposition method.

Based on a review of the literature (Ch. 4), Benders decomposition was determined

to be an appropriate exact decomposition approach for the ESSND problem due to

the presence of complicating variables. This is formalized as the research question,

Research Question 5. Can Benders decomposition be used to solve the Express

Shipment Service Network Design problem faster than the baseline monolithic ap-

proach?

Since the literature suggests that Benders decomposition would be appropriate

for the express shipment problem, my hypothesis in response to research question 5

is,

Hypothesis 5. Based on the fact that Benders decomposition was specially developed

to solved mixed integer programs, and it is commonly and successfully used for that

purpose in the literature for similar transportation planning problems, I hypothesize

235



that Benders decomposition will be capable of solving the Express Shipment Service

Network Design problem faster than the baseline monolithic approach.

The fundamental aim of Benders decomposition is to solve difficult problems that

contain complicating variables, which, if fixed, make the problem significantly easier

to solve. As a result, it is a very popular technique for solving challenging mixed

integer programs, since MIPs reduce to linear programs if their integer variables are

fixed. It was first introduced by J.F. Benders for linear and mixed-integer linear pro-

grams in 1962.[27] It has been since been expanded to additional problems such as to

nonlinear and mixed-integer nonlinear programs with certain properties (generalized

Benders decomposition [92]), and problems with logic relations, (logic-based Benders

decomposition [115, 116]) which may be challenging to model as a “conventional”

optimization problem.

Benders decomposition reformulates the original optimization problem into two

problems: a relaxed master problem which only contains the complicating variables,

and a subproblem in which the complicating variables are held fixed. The subproblem

is then used to iteratively add constraints to the master problem until an optimal

solution to the original problem is found. Since it iteratively adds constraints to the

master problem, Benders decomposition is sometimes known as “row generation.”

In this chapter, the theory-based mathematical basis for Benders decomposition is

presented first. Then, a review of applications of Benders decomposition to airline and

other freight problems are summarized. Next, Benders reformulation is applied to the

ESSND problem, and methods for improving the classical implementation of Benders

decomposition are discussed, including those tested for the ESSND problem. Finally,

the ESSND implementation of Benders decomposition and the selected improvements

are tested on the baseline problem instance and a smaller ten-airport subproblem.
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8.1 Benders Reformulation and Decomposition

Consider the following mixed-integer program,

min
x, y

cTx+ dTy

s.t. Ax+By ≥ b,

Dy ≥ e,

x ∈ R+,

y ∈ Z+

(8.1)

If the integer variables (i.e. complicating variables), y, are fixed, the resulting opti-

mization problem is,

min
x

cTx

s.t. Ax ≥ b−Bȳ,

x ≥ 0

(8.2)

Therefore, the original MILP can be rewritten as,

min
y∈Y

[
dTy + min

x≥0

{
cTx | Ax ≥ b−By

}]
(8.3)

where Y = {y | Dy ≥ e, y ∈ Z+}. The inner problem constitutes the decomposition

subproblem (also sometimes called the slave or worker problem). When the integer

variables are fixed, the subproblem is a continuous LP and can be dualized. Equa-

tion 8.3 can be rewritten as,

min
y∈Y

[
dTy + max

u≥0

{
uT (b−By) | uTA ≤ c

}]
(8.4)

where u is the appropriate vector of dual variables. Note that the space U ={
u | uTA ≤ c

}
is independent of the choice of y variables. Assuming that U is not
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empty, it is composed of extreme points u ∈ P and extreme rays u ∈ R.

Due to the duality relations, assuming that the original problem is not unbounded,

when the dual subproblem is optimized over the space U , it will either be unbounded

or optimal (corresponding to infeasibility or optimality in the primal, respectively).

In the former case, the vector u ∈ R corresponds to a ray in the direction of the dual

unboundedness and thus the primal infeasibility. In order to avoid this infeasibility,

the master problem is restricted from these areas using feasibility cuts,

ūT (b−By) ≤ 0 ∀u ∈ R ⊆ U (8.5)

where R is the set of the extreme rays of polyhedron U = {uTA ≤ c}. In the

case in which the dual subproblem is not unbounded (or infeasible), the subproblem

solution is an extreme point. This corresponds to a point with a feasible solution

to the original MIP (8.1), but that solution is not optimal. Therefore, an auxiliary

continuous variable, z, and (optimality) cuts,

ūT (b−By) ≤ z ∀u ∈ P ⊆ U (8.6)

are used to cut off this sub-optimal solution and drive the relaxed master problem

towards an optimal solution, where P is the set of the extreme points of the polyhe-

dron U . The resulting formulation is called the Benders reformulation, which, using
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the notation thus far, is

min
y

dTy + z (8.7a)

s.t. ūT (b−By) ≤ 0 ∀u ∈ R ⊆ U, (8.7b)

ūT (b−By) ≤ z ∀u ∈ P ⊆ U, (8.7c)

y ∈ Y, (8.7d)

z ≥ 0 (8.7e)

J.F. Benders showed that this reformulation is equivalent to the original MIP,

formulation 8.1.[27] However, the sets R and P are prohibitively large for all but the

smallest problems. Fortunately, only a subset of these constraints is active in the

optimal solution. So, rather than create all of the constraints corresponding to R

and P , these constraints are iteratively added to the master problem.

Initially, the master problem only includes constraints 8.7d and 8.7e,

min
y

dTy + z

s.t. y ∈ Y,

z ≥ 0

(8.8)

and the solution sets a lower bound. Then, the dual subproblem,

max uT (b−Bȳ)

s.t. uTA ≤ c,

u ≥ 0

(8.9)

is solved, keeping the ȳ values found in (8.8) fixed. If the master problem solution

found by (8.8) makes the subproblem (8.9) unbounded (i.e. the primal subproblem is

infeasible), a feasibility cut, ūT (b−By) ≤ 0, u ∈ R, is added to the master problem
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using an extreme ray u ∈ R pointing in the direction of the dual unboundedness.

On the other hand, if the solution ȳ found by the master problem (8.8) produces

a feasible subproblem, then (8.9) produces an optimal extreme point u ∈ P . This

extreme point is used to create an optimality cut, ūT (b−By) ≤ z, which is added to

the master problem. Additionally, the upper bound on the solution is updated using

this new ū ∈ P solution.

Then, the master problem is solved again using the new constraint, and a new

lower bound is calculated. If the lower bound is sufficiently close to the upper bound

(i.e. within a user-set tolerance, ε), the algorithm is terminated. Otherwise, the

subproblem is re-solved using the updated values for ȳ, and cuts are added until the

termination criterion is met. The details of the algorithm are outlined in Algorithm 2.

Algorithm 2 Classical Benders Decomposition (adapted from Kalvelagen [123])

1: LB← −∞, UB←∞
2: while UB− LB > ε do
3: Solve Subproblem:
4: max

{
uT (b−By) | uTA ≤ c, u ≥ 0

}
5: if Unbounded then
6: Get unbounded ray ū ∈ R
7: Add cut ūT (b−By) ≤ 0 to the master problems
8: else
9: Get extreme point ūp

10: Add cut ūTp (b−By) ≤ z to the master problem

11: UB← min
{

UB, dT ȳ + ūTp (b−By)
}

12: end if
13: Solve Master Problem:
14: min{dTy + z | cuts, y ∈ Y }
15: LB← max

{
LB, dTy + z

}
16: end while
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8.1.1 Formulation of ESSND Problem for Benders Decomposition

For the Express Shipment Service Network Design problem, the initial master integer

program is formulated,

min
∑

(i,j)∈A

dfijy
f
ij (8.10a)

s.t.
∑

j:(i,j)∈A

yfij =
∑

j:(j,i)∈A

yfji ∀i ∈ N, f ∈ F \ F̃ (8.10b)

∑
(i+,j)∈A

yfi+j ≤ nf ∀f ∈ F \ F̃ (8.10c)

∑
f∈F̂

yfij ≤ 1 ∀(i, j) ∈ A (8.10d)

yfij ∈ Z+ ∀(i, j) ∈ A, f ∈ F (8.10e)

where, in order, the constraints included are the vehicle balance, hull count and feeder

limit constraints. The other constraints are captured in the primal feasibility problem

which is,

min ∅ (8.11a)

s.t.
∑
k∈K

∑
p∈Pk

δpijb
kxkp ≤

∑
f∈F

uf ȳfij ∀(i, j) ∈ A (8.11b)

∑
p∈Pk

xkp = 1 ∀k ∈ K (8.11c)

∑
k∈K

∑
p∈Pk

δphnkx
k
p ≤ eh ∀h ∈ H (8.11d)

0 ≤ xkp ≤ 1 ∀p ∈ P k, k ∈ K (8.11e)
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and contains, in order, the forcing, cover and sort capacity constraints. The dual of

the primal formulation 8.11 is,

min
∑

(i,j)∈A

γijλij +
∑
k∈K

µk +
∑
h∈H

ehπh +
∑
k∈K

∑
p∈Pk

αkp (8.12a)

s.t.
∑

(i,j)∈A

δpijb
kλij + µk +

∑
h∈H

δhpnkπh + αpk ≥ 0 ∀k ∈ K, p ∈ P k (8.12b)

λij ≥ 0 ∀(i, j) ∈ A (8.12c)

πh ≥ 0 ∀h ∈ H (8.12d)

αkp ≥ 0 ∀k ∈ K, p ∈ P k (8.12e)

µk ∈ R ∀k ∈ K (8.12f)

where γij ≡
∑

f∈F u
f ȳfij for clarity, and the dual variable λij corresponds to the

forcing constraint, µk corresponds to the cover constraint, πh corresponds to the sort

capacity constraint, and αpk corresponds to the upper bound on xpk.

Since the ESSND problem objective function only contains design variables, the

primal Benders subproblem, Eq. 8.11, is a feasibility problem. This means that only

feasibility cuts will be added to the master problem. When the dual Benders sub-

problem returns an optimal solution, that indicates that an optimal master problem

solution has been found which is feasible in the subproblem and therefore feasible and

optimal in the original problem.

8.2 Relevant Applications of Benders Decomposition in the
Literature

As shown in the comprehensive survey paper by Rahmaniani et al. (2017)[168], Ben-

ders decomposition (BD) has attracted significant attention in the mathematical pro-

gramming community, particularly in recent years. It has been applied to a wide

variety of problems and applications, including those outside the original scope of
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Benders’ 1962 paper, in large part due to the generalization by Geoffrion (1972)[92].

Costa (2005)[56] presents a survey of the application of Benders decomposition

to fixed-charge network design (FCND) problems, including the capacitated FCND

problem, which is relevant to many transportation problems including the ESSND

problem. Costa found that “the relative ease of solving the auxiliary subproblem in

network design formulations make of Benders decomposition one of the most appro-

priate approaches.”

Rahmaniani et al. (2017)[168] present a thorough survey of the use of Benders

decomposition in a variety of applications. In particular, they identify and classify

the shortcomings of the approach as well as the various strategies that have been

employed to overcome those shortcomings. Additionally, they discuss the common

extensions of BD beyond its original LP and MIP scope.

Finally, Magnanti and Wong (1984)[146] provide an overview of the method, in

addition to other methods, in the context of network design and transportation prob-

lems. They discuss the algorithm and some improvements to it, particularly their

own “Pareto-optimal” Benders cuts, and illustrate the usefulness of the algorithm for

transportation applications.

8.2.1 Applications to Airline Problems

To my knowledge, only Li et al. (2006)[137] have explicitly applied Benders decom-

position to an airline problem involving cargo routing, though their application was

for a combination carrier rather than a cargo-only airline. Additionally, Kim and

Barnhart (1997, 1999)[129, 131, 132] present an approximate solution to the Service

Network Design and Express Shipment Service Network Design problems that, while

not stated explicitly, is similar to Benders decomposition.

Li et al. (2006) apply BD to a fleet assignment and cargo routing problem for a

combination carrier airline with a single hub. They solve an integrated model that
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encompasses passenger fleet allocation and cargo routing, given a flight schedule.[137]

In their application of BD, the cargo routing model constitutes the subproblem and

fleet allocation model is the master problem. They present results comparing a state-

of-the-art branch-and-bound solver, classical Benders decomposition, a BD variant

employing Pareto-optimal cut generation (from Magnanti and Wong (1981) [151]),

and a BD variant employing the ε-optimal approach (Geoffrion and Graves (1974)

[93]). They found the classical Benders variant to be the most successful of the four

approaches. It should be noted that this problem studied by Li et al. while displaying

a number of similarities to the ESSND problem studied in this work, is significantly

smaller and simpler thanks to a pre-set flight passenger flight schedule, a single-hub

network, a prohibition on cargo consolidation outside of the main hub, a smaller

vehicle set, and the overall size of the carrier.

Kim (1997)[129] and Kim and Barnhart (1999)[132, 131] present an approximate

formulation for the service network design problem and extend that formulation to

express shipment applications. Their approximate formulation implicitly models the

commodity flows using cut-set inequalities rather than explicitly using flow variables.

Including all of the potential cut-set inequalities to even a modestly-sized problem

would be computationally prohibitive so they add a subset of the inequalities, thus

leading to an approximate formulation and solution. Additionally, they present col-

umn generation, row generation, and synchronized column-and-row generation algo-

rithms for solving the exact and approximate formulations. Although not explicitly

stated, the row generation and synchronized column-and-row generation algorithms

are similar to Benders decomposition, particularly since Costa, Cordeau and Gen-

dron (2009)[57] later showed that cut-set inequalities are a subset of Benders feasi-

bility cuts.

Other applications of Benders decomposition to airline problems have focused on

passenger airlines, particularly the difficult problem of concurrently solving the fleet
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allocation, aircraft routing, crew scheduling and maintenance scheduling problems

(or some subset). Traditionally, these problems are solved sequentially in an attempt

to mitigate the computational intractability of an integrated model, which results in

suboptimal solutions. Several researchers found a combination Benders decomposi-

tion/column generation approach to work well for these airline problems.

Cordeau et al. (2001)[53] solve the simultaneous aircraft routing and crew schedul-

ing problem using an approach based on Benders decomposition. Due to the nature

of their problem, the master problem solves the aircraft routing problem and the sub-

problem solves the crew scheduling problem. Column generation was used to solve

both the master problem and subproblem, and a heuristic branch-and-bound algo-

rithm was used to compute integral solutions. They found their method provided

solutions that significantly reduced costs for a data set provided by an airline when

compared to a sequential planning process.

Mercier, Cordeau and Soumis (2005)[156] solve the integrated aircraft routing and

crew scheduling problem using an algorithm that, like the previous work of Cordeau

et al. (2001), uses a combination Benders-column generation algorithm. They found

that setting the crew scheduling problem as the master problem, rather than the

aircraft routing problem as in their previous work, resulted in significant run time

improvements. Additionally, they found the Pareto-optimal cuts introduced by Mag-

nanti and Wong (1981)[151] to improve the convergence time of the algorithm.

Mercier and Soumis (2007)[157] revisited their problem once more, this time

adding flight re-timing to their integrated problem. As in their previous work, they

utilized a combination Benders-column generation approach but added an additional

dynamic constraint generation procedure. They found their Benders decomposition-

based methodology to significantly improve the solution time and solution quality

of their problem compared to a sequential optimization approach and their previous

work.
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Papadakos (2009)[164] also applied a combination Benders-column generation al-

gorithm to an airline scheduling problem which included fleet assignment, aircraft

maintenance routing and crew scheduling problem. It was first solved using a sequen-

tial optimization approach, which produced suboptimal solutions. In order to find

optimal solutions, an enhanced Benders decomposition combined with accelerated col-

umn generation algorithm was used. Papadakos found the combination BD-column

generation algorithm to produce high-quality solutions to the problem, which was

previously considered intractable for realistic problem instances.

8.2.2 Applications to other Transportation and Network Design Prob-
lems

Üster and Agrahari (2011)[188] use Benders decomposition to solve a freight-forwarding

network design problem that includes the selection of consolidation and de-consolidation

centers as well as line haul routing. In order to improve the quality of their Benders

cuts, they utilize a two-phase approach similar to the approach presented by Van

Roy (1986)[190]. Their two-phase solution method allows them to generate stronger

Benders cuts compared to the classical BD method. They found their method to

be an improvement over solving the same model using a state-of-the-art branch-and-

bound solver (CPLEX), particularly when solving large models which quickly run out

of available computational resources when using CPLEX.

Agarwal and Özlem (2008)[2] implement and compare the performance of a greedy

heuristic, a column generation and a two-phase Benders decomposition to the liner

shipping service network design problem that sought to simultaneously solve the

ship scheduling and cargo routing problems. The column generation is a “pure”

column generation approach, and the Benders decomposition uses column generation

solve the master problem. They find that the greedy heuristic is the fastest, but

it produces significantly worse solutions than the other two approaches. The pure

column generation approach produced solutions on par with the quality of the Benders
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decomposition implementation but took longer to generate them.

Cordeau, Pasin and Solomon (2006)[52] develop an integrated framework for the

deterministic logistics network design problem (LNDP), and present a simplex-based

branch-and-bound approach and a Benders decomposition approach for solving the

problem. They describe the LNDP as the problem that aims to “satisfy customer

demands while minimizing the sum of fixed and variable costs associated with pro-

curement, production, warehousing, and transportation.” They find the two-phase

Benders decomposition approach to be “somewhat” superior to the branch-and-bound

technique, and the inclusion of valid inequalities to improve the performance of both

solution methods significantly. Additionally, they found the use of Pareto-optimal

Benders cuts (Magnanti and Wong (1981)[151]) improved the overall performance of

the Benders decomposition even at the expense of increasing the subproblem runtime.

Huang, Lee and Xu (2006)[117] employ Benders decomposition to balance the

workload at two air cargo terminals in order to improve the performance of the airline.

Since the air cargo loads were found to be difficult to predict, they used a stochastic

MILP to model the system. They then used Benders decomposition accelerated by

a modified feasibility cut to successfully solve the problem, resulting in operating

improvements for the carrier.

Geoffrion and Graves (1974)[93] applied a BD to a multicommodity distribution

system design problem with minor modification. Namely, they relaxed the require-

ment that the master problem be solved to optimality at each iteration. Additionally,

they found that problem formulation could play a large role in the performance of

the algorithm. In particular, for their problem, they found that a formulation that

reduced the number of constraints (which is generally favorable for LPs) performed

significantly worse when solved using Benders decomposition because the resulting

cuts were weaker than those of the other formulation. Overall, they found their

application of Benders decomposition to satisfactorily solve their multicommodity
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distribution system design problem for large (for the day) realistic problem instances.

They credited their success to the fact that relatively few Benders cuts were required

for their problem, which they largely attributed to the tightness of their formulation.

Magnanti, Mireault and Wong (1986)[145] focus on the application of Benders

decomposition to uncapacitated network design. They explore five Benders cuts be-

yond the “classical” Benders cut. Three of the cuts were from the literature and

were derived as lower bounds for uncapacitated network design problems. Magnanti,

Mireault and Wong show that these can be interpreted as Benders cuts. They addi-

tionally introduce a new Benders optimality cut, which they call a “strong” cut, and

review the Pareto-optimal Benders optimality cut from their previous work. Addi-

tionally, a pre-processing method using the dual ascent heuristic is used to reduce the

size of the original problem. They find that the BD application using “strong” cuts

outperforms the classical BD application, and the Pareto-optimal cuts outperform

other cuts on difficult problems.

The applications of Benders decomposition to a variety of problems are wide-

ranging and extensive. Only a subset of the hundreds of papers is mentioned here.

For a wider survey, the previously mentioned recent survey paper by Rahmaniani et

al. (2017)[168] is an excellent place to start.

8.3 Enhancements to Benders Decomposition

Although Benders decomposition has been shown to provide improvements in so-

lution quality over heuristic approaches and improvements in runtime over branch-

and-bound approaches, as seen in the previous section, many past researchers have

found it necessary to alter or enhance the original algorithm in order to realize these

improvements. That is, for many problems Benders Decomposition as it was origi-

nally formulated does not perform well. Rahmaniani et al. (2017)[168] comment that

“a straightforward application of the classical BD algorithm may require excessive

248



computing time and memory.” The same paper identifies several common problems

with classical BD: “time-consuming iterations; poor feasibility and optimality cuts;

ineffective initial iterations; zigzagging behavior of the primal solutions and slow con-

vergence at the end of the algorithm; and upper bounds that remain unchanged in

successive iterations because equivalent solutions exist.”

This prompts the second Benders-based research questions,

Research Question 6. Which, if any, enhancements to Benders decomposition from

the literature improve its performance when solving the Express Shipment Service

Network Design problem?

To classify the approaches that previous researchers had taken to improve Ben-

ders Decomposition in light of these shortcomings, Rahmaniani et al. employ a four-

category taxonomy. Those categories are,

1. Decomposition Strategy : the initial master and subproblem definitions.

2. Solution Procedure: the choice of algorithms for solving the master and sub-

problems.

3. Solution Generation: the method to generate values for the complicating vari-

ables.

4. Cut Generation: the strategy for obtaining optimality and feasibility cuts.

The first category, the decomposition strategy, encompasses approaches that al-

ter the decomposition definition in an effort to improve the convergence behavior of

the algorithm. In particular, Crainic et al. (2014,2016)[62, 63] comment that the

traditional Benders decomposition “causes the [master problem] to lose all the infor-

mation associated with the non-complicating variables,” and “the problem structure

associated with the linking constraints is lost, and thus many classical VIs [valid in-

equalities] are not applicable.”[168] However, in practice, altering the decomposition
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definition is not very common. Rahmaniani el al. (2017) note that only four percent

of the papers they reviewed implemented this technique.

The second category, the solution procedure, concerns methods for solving the

master problem (MP) and subproblem. The most common way to solve the MP

is to use branch-and-bound and the most common way to solve the subproblem is

with simplex. However, in problems where either of these problems is particularly

difficult to solve, these traditional approaches may be insufficient. Column generation

is sometimes undertaken in either the MP or subproblem, but it requires a difficult

integration if used in the master problem because of the simultaneous generation of

columns and rows.[159] Other subproblem approaches typically focus on exploiting

problem-specific features and the opportunity to split the subproblem into multiple

subproblems that can be solved in parallel.

Other MP solution techniques include metaheuristics, constraint programming,

and, of particular interest for this application, “single search tree” Benders decom-

position. Single search tree BD, also called, “modern Benders,” “one-tree Benders”

and “Branch-and-Benders-cut (B&BC),” takes advantage of the properties of modern

optimization solvers to avoid revisiting parts of the branch-and-bound tree in mas-

ter problem. Rather than solving the MP to completion at every iteration, modern

Benders generates Benders cuts for integer and fractional solutions within the branch-

and-bound tree. This can save considerable computational effort since parts of the

B&B tree are not visited again with each iteration.

The third category, solution generation, focuses on ways to improve the master

problem so that it solves more quickly and/or produces better solutions. Rahmaniani

et al. (2017)[168] categorizes these approaches as, 1) using alternative formulations,

2) improving the MP formulation, and 3) using heuristics to generation solutions or
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to improve those already found. The use of alternative MP formulations involves tem-

porarily changing the MP. Notable approaches include the two-phase, cross decompo-

sition and regularized decomposition approaches. The two-phase approach first solves

a relaxed version of the MP, generates cuts, and then, at a certain point, re-introduces

the integrality constraint. The cross decomposition approach combines Lagrangian

relaxation and Benders decomposition. Finally, the regularized decomposition ap-

proach seeks to reduce instability that may arise in the algorithm by introducing a

quadratic term in the MP objective function that keeps the subsequent solution close

to a reference point.

The second subcategory, improvements to the MP formulation, is handled through

the addition of valid inequalities to the master problem before the traditional BD al-

gorithm begins. The types and effectiveness of these valid inequalities depends on the

problem. Finally, the third subcategory, heuristics, includes approaches that warm-

start the MP to obtain better initial cuts, or “repair” solutions so that optimality

cuts, rather than the less-desirable feasibility cuts, can be added.1

Finally, the fourth and final category is concerned with cut generation. In the

original Benders decomposition algorithm, the optimality and feasibility cuts are gen-

erated based on the solution point or ray generated in the subproblem. However, if

the subproblem is degenerate, which is a common occurrence, there may be many

possible cuts that could be added to the master problem, and some of these cuts

will be more effective than others. In the classical Benders decomposition, the point

or ray is chosen at random. Improved Benders cuts seek to choose the best (or at

least a very good) possible Benders cut. The first and best-known cuts of this kind

are the “Pareto-optimal” Benders cuts, which were introduced in the seminal paper

by Magnanti and Wong (1981)[151]. Since that time, additional improved Benders

cuts have been formulated. The primary drawback of these improved cuts is that

1Optimality cuts are more desirable than feasibility cuts because they improve the upper bound.
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they often require more difficult subproblems or even additional auxiliary problems.

However, despite these drawbacks, they are a very popular approach for improving

the performance of Benders decomposition.

The ESSND problem is not immune to the shortcomings of a basic Benders decom-

position implementation, as will be shown in Section 8.4. In an effort to improve the

performance of the Benders decomposition, three modifications were implemented: a

solution procedure improvement, a solution generation improvement, and a cut gen-

eration improvement. The solution procedure was modified by using the “modern”

Benders decomposition algorithm rather than the classical. All implementations of

BD in this work, including the baseline application, include this modification. Ad-

ditionally, valid inequalities based on cut-set inequalities were added to the master

problem to improve the solution generation. Finally, two types of improved Benders

cuts were explored, 1) an updated version of Magnanti and Wong’s Pareto-optimal

cuts by Papadakos (2008,2009)[163, 164], and 2) Minimal Infeasible Subsystem (MIS)

cuts by Fischetti, Salvagnin and Zanette (2010)[82]. A decomposition strategy modi-

fication was not considered because it is a much less common approach than the other

three.

8.3.1 Modern Benders Decomposition

The “modern” Benders decomposition algorithm, also called single search tree Ben-

ders decomposition and branch-and-Benders-cut algorithm, takes advantage of the

ability of modern B&C solvers to accept additional constraints during the progres-

sion of the B&C algorithm. Additionally, Geoffrion and Graves (1974)[93] found that

sub-optimal, and even fractional, MP solutions can be used to produce valid Benders

cuts. These two factors form the foundation of the single-tree BD.

Unlike the classical Benders decomposition algorithm, in which the MP is solved

to integrality at every iteration before the subproblem is solved, in the single search
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tree BD, the subproblem is solved whenever the MP B&C algorithm finds a new

incumbent integral solution. Some implementations take this a step further and solve

the subproblem for fractional solutions as well, particularly at the root node. This

approach of adding constraints throughout the progression of the master problem

branch-and-cut solution algorithm has several advantages. First, a large amount of

rework can be avoided by only solving one B&B tree. In the classical BD, a new B&B

tree is created and solved at every iteration. This means that there may be certain

branches containing poor-quality solutions that appear in several trees and those

branches must be revisited and pruned with every resolve of the MP. The single-tree

BD algorithm avoids this potentially substantial rework.

Second, because the single-tree BD solves the subproblem each time a new in-

cumbent solution is found, there is a chance that an optimal solution may be found

that would have otherwise been pruned in the classical algorithm. In other words, in

the classical BD, the true optimum solution of the original problem may be pruned

from the MP B&B tree because it is suboptimal for that that particular iteration

of the master problem, which is a relaxation of the original problem. It is not until

the MP is sufficiently tightened with additional cutting planes that the previously

“suboptimal” solution is recognized as optimal. In the single-tree BD, this solution

can be identified more quickly.

The potential disadvantage of the single-tree BD is the fact that time may be

spent generating cuts that would have otherwise been unnecessary if the MP were

solved to “optimality” at every iteration. This consideration may be particularly

important if the subproblem is difficult to solve, or if it results in such a dramatic

increase in the size of the MP that it slows down the progress of the B&B algorithm.

However, in most situations, this is not an issue thanks to the way that modern solvers

handle user-generated cuts, and if it is an issue, the frequency of cut generation can

be tailored in the algorithm itself.
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In the single-tree BD, Benders cuts are added to the MP branch-and-bound

through the use of so-called “lazy constraint” callbacks. Callbacks are opportunities

provided by the solver to interact, either actively or passively, with the branch-and-

cut algorithm. Passive callbacks are used to gather information about the state of the

algorithm while active callbacks are used to change the progression of the algorithm,

most commonly to add cutting planes.

These user-provided cutting planes come in two forms, 1) “user cuts,” and 2) “lazy

constraints.”2 They are both similar to the cutting planes added in the course of the

typical B&C algorithm in that they are additional “constraints” that are added to

the formulation with the purpose of cutting off parts of the LP hull that produce

fractional solutions.

The difference between user cuts and lazy constraints lies in how much each cuts

off. The user cuts act just like the general cutting planes presented in Section 4.1.2.1.

They cut off parts of the LP hull in order shape it to be closer to the convex hull. User

cuts are most commonly used when a problem has a certain structure that allows for

specialized cutting planes to be added to the problem.

Lazy constraints cut off much more of the space, and specifically, may cut off

integer solutions. This gives rise to the name – they are constraints that presumably

should have been included at the start of the algorithm, but the user was “too lazy”

to include them. Since they cut off previously “feasible” integer solutions, certain as-

sumptions made in the branch-and-bound tree may no longer be valid so the handling

of the branch-and-bound tree must be more sophisticated. One notable drawback of

lazy constraints is that the valuable problem reductions typically performed by solvers

prior to the creation of the branch-and-bound tree cannot be performed to the same

extent for risk of producing a wrong solution. As a result, even if no integer solutions

2This terminology is specific to modern solvers, but fairly standardized across the most popular
solvers today. Gurobi and CPLEX both use this terminology.
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are cut off through the use of lazy constraints, the solver will typically require more

time to solve the problem than if these cuts were added as “user cuts.”

Since the Benders cuts are added to the MP for the express purpose of cutting off

integer solutions, they are added as lazy constraints in the single-tree BD algorithm.

In practice, the algorithm is similar to that presented for the classical BD, Algorithm 2

on page 240 except that the master problem is not solved to completion at every

iteration and the Benders cuts are added when a new integer feasible solution is

found. This is the way that the single-tree BD is implemented in this work, although

some implementations additionally add cuts from fractional solutions and/or use a

two-phase approach in which the algorithm is started, then stopped and restarted

after a certain number of cuts have been generated.

Additionally, the implementation of single-tree BD in this work uses the parallel

B&C algorithm in order to take advantage of the significant runtime improvements

it offers. The primary drawback of using the parallel B&C algorithm is the potential

difficulty in implementation. Thread safety must be handled by the user since it is

not guaranteed by the solver. In cases where solving the subproblem may take a

long time, this means that a separate subproblem must be maintained for each of the

computational threads. Fortunately, in this implementation, the subproblem is solved

very quickly and so simply putting a temporary “lock” on the thread was found to

be sufficient without greatly stalling other threads.

8.3.2 Improved Benders Cuts

In the classical Benders decomposition, when the subproblem is solved and a cut

is generated, there is no consideration of the relative quality of an optimality or

feasibility cut relative to the other potential cuts that could have been generated

from that subproblem. This difference in the relative quality of cuts arises as a result

of degeneracy in the subproblem. All cuts generated from a particular subproblem
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will cut off the infeasible or suboptimal master problem solution from the space, but

some cuts will stronger than others. The strength of the Benders cuts is important

since it has a direct bearing on the total number of iterations that will be necessary

for the algorithm to converge. Unfortunately, finding the strongest possible cut is

typically not an easy problem. Approaches to finding the best possible Benders cuts

typically feature an auxiliary problem or modify the original subproblem in such a

way so as to perturb it towards a better solution. Some approaches are heuristic in

nature, while others attempt to find the provably best cut.

8.3.2.1 Pareto-Optimal Cuts

By far, the best-known improved Benders cut is Magnanti and Wong’s “Pareto-

optimal” Benders cut.[151] If implemented exactly as it is outlined, it will produce the

strongest possible optimality cut. Unfortunately, it can be very difficult to implement

without significant computational expense.

To understand these Pareto-optimal cuts, three definitions must first be estab-

lished (all three are restated from Papadakos (2008)[163]). First, the criteria for

comparing two cuts,

Definition 1. A cut, uT (b− By) ≤ z, u ∈ P corresponding to u1 ∈ U , dominates

that corresponding to u2 ∈ U , if:

uT1 (b−By) ≥ uT2 (b−By), ∀y ∈ Y ,

with strict inequality for at least one point y ∈ Y .

This means that a cut that dominates another is stronger than the other. Second,

this definition of dominance is used in the definition of Pareto-optimality for Benders

optimality cuts,

Definition 2. A cut is Pareto-optimal if it is not dominated by any other cut.

Similarly, the point u corresponding to that cut is called Pareto-optimal.
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Finally, the definition of a core point,

Definition 3. A point y0 ∈ ri(Y c) is called a core point of Y, where ri(S) and Sc

are the relative interior and convex hull of set S ⊆ Rk, respectively.

That is, the core point is a point that is strictly inside the convex hull of Y . Using

these definitions, Magnanti and Wong (1981) provide the following theorem (also

restated from Papadakos (2008)[163]),

Theorem 1. Let y0 be a core point of Y , and let ū be the optimal solution of the dual

subproblem (8.9), then the optimal solution u0 of the problem:

max uT (b−By0)

s.t. uT (b−Bȳ) = z(ū),

uTA ≤ c

(8.13)

is Pareto-optimal.

The proof of this theorem can be found in the original paper.[151] The implication of

this theorem is that after the subproblem is solved, an additional auxiliary problem

(8.13) can be solved to produce the Pareto-optimal optimality cut. Using the core

point y0 and the previously found subproblem objective value z(ū), this auxiliary

problem finds the strongest optimality cut (i.e. closest to the convex hull) to add to

the Benders master problem.

From a theory-based point of view, Theorem 1 is a very important finding. It

shows that the Pareto-optimal point can be found and provides a framework for how

to find it. From an implementation point of view, however, it faces a number of

challenges. First, the fact that an additional problem must be solved may outweigh

the benefits of producing a superior cut. If solving the Benders subproblem is difficult

or expensive, then solving a second, similar problem may not be worth the effort.
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Second, to make matters worse, this secondary problem may suffer from instability,

making it even more challenging. Third, finding core point y0 may be very difficult

and/or computationally expensive. In many situations, finding a core point may

require yet another auxiliary problem, which must be carefully formulated so as to

provide a point inside the convex hull. Approximate core points can be used, but the

resulting cut is no longer guaranteed to be Pareto-optimal.

Finally, and this is the most critical for the ESSND application, Pareto-optimal

Benders cuts are only optimality cuts as they were originally conceived. In Magnanti

and Wong’s improved Benders decomposition algorithm using these Pareto-optimal

cuts, feasibility cuts, which are the only cuts produced in the ESSND implementation,

are produced using the classical BD method. This is because the cut-generating

auxiliary problem (8.13) uses the optimal value of the subproblem z(ū) to ensure

that Pareto-optimal point is an optimal point. Since Benders feasibility cuts are only

produced when the dual Benders subproblem is unbounded, no meaningful objective

value exists. As a result, using Pareto-optimal cuts as they were originally formulated

is impossible when solving the ESSND without altering the mathematical formulation

However, Papadakos (2008)[163] makes several observations and adjustments to

the method for generating Pareto-optimal cuts that extends the approach to both

optimality and feasibility cuts. Specifically, in his re-formulation of the Magnanti and

Wong subproblem, the problematic equality constraint (i.e. uT (b − Bȳ) = z(ū)) is

omitted. This results in the following theorem (restated from Papadakos (2008)[163]),

Theorem 2. Let y0 be a core point of Y , then the optimal solution u0 of the following

problem:

max uT (b−By0)

s.t. uTA ≤ c

(8.14)

is Pareto-optimal.

The proof can be found in the original paper.[163] Papadakos (2008) calls (8.14) the
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Independent Magnanti-Wong problem. Since the problematic equality constraint is

excluded, this problem can be solved without first needing to solve the subproblem

or even the master problem. Additionally, and critically for the ESSND BD imple-

mentation, this also means that Pareto-optimal feasibility cuts can be generated.

Thanks to the modifications made by Papadakos (2008) which allow for the cre-

ation of Pareto-optimal feasibility cuts, the impact of these improved cuts on the

ESSND Benders decomposition implementation is explored. The results are found in

Section 8.4.

The removal of the equality constraint allows for the creation of Pareto-optimal

feasibility cuts, but two of the implementation challenges still remain – the poten-

tially significant runtime detriment of solving the additionally auxiliary problem, and

finding a core point. Fortunately, the subproblem and the Magnanti-Wong problem

both solve quickly so that issue is not limiting. However, finding a core point is still

challenging. To this end, another definition and theorem provide some assistance.

First, is the definition of a Magnanti-Wong point as defined by Papadakos (2008),

Definition 4. A Magnanti-Wong point is a point y0 for which the optimal solu-

tion of the Magnanti-Wong problem (8.13) or the independent Magnanti-Wong prob-

lem (8.14) gives a Pareto-optimal u0.

This definition expands the scope of the possible points that can be used to find

Pareto-optimal points. Although core points are still valid Magnanti-Wong points,

Papadakos (2008) proves that core points are not the only points that can be used to

find Pareto-optimal cuts. The precise details of what constitutes a Magnanti-Wong

point can be found in the original paper.[163] Additionally, for cases in which it may

still be challenging to find a Magnanti-Wong point, he provides this theorem,

Definition 5. If y0 is a Magnanti-Wong point, and y ∈ Y , then any convex combi-

nation of y0 and y is also a Magnanti-Wong point.
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The proof of this theorem can be found in the original paper.[163] This theorem means

that if one Magnanti-Wong (M-W) point is found, then the convex combination of

that M-W point and the most recent MP solution will produce a valid M-W point.

For this implementation of Pareto-optimal cuts for the ESSND problem, this process

was approximated. The initial point was not chosen to be an M-W point, but rather

a known feasible point. Once again, pirate ships are used as rule-breaking vehicles to

produce a “feasible” solution. Convex combinations of this y∗0 and the most recent y

were used to produce approximate M-W points. This approximation means that the

cuts are not guaranteed to be optimal. Additionally, as in the Independent Magnanti-

Wong algorithm of Papadakos (2008)[163], both classical Benders feasibility cuts as

well as “Pareto-optimal” cuts are added to the master problem at each iteration.

8.3.2.2 Minimal Infeasible Subsystem (MIS) Benders Cuts

In addition to the Pareto-optimal cuts from Papadakos (2008), the effectiveness of

Minimal Infeasible Subsystem (MIS) cuts from Fischetti, Salvagnin and Zanette (2010)

was explored for the ESSND problem. MIS cuts were developed based on the obser-

vation that “finding a most-violated optimality cut is equivalent to finding an op-

timal vertex of a polyhedron with unbounded rays, which is a strongly NP-hard

problem.”[82, 89] Additionally, they observe that “Benders separation can always

be rephrased as a pure feasibility problem.”[82] Using these observations, Fischetti,

Salvagnin and Zanette (2010) alter the dual Benders subproblem to be similar to
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cut-generating linear program (CGLP) by Balas, Ceria and Cornuéjols[17],

max uT (b−Bȳ)− u0z̄ (8.15a)

s.t. uTA ≤ u0c, (8.15b)

m∑
i=1

wiui + w0u0 = 1, (8.15c)

(u, u0) ≥ 0 (8.15d)

Where z̄ is the current value of z in the master problem and w is a vector of normal-

ization coefficients. Several alterations are made to the classical Benders subproblem.

The u0z̄ term in the objective function is a result of having made the Benders sepa-

ration problem a pure feasibility problem. The normalization constraint, Eq. 8.15c,

makes it possible to select a violated cut minimal infeasible subsystem. The w vector

“models the quality measure that one wants to apply for a clever cut selection.”[82]

The case where w0 = 1 and w1 = · · · = wm = 0 produces the original Benders

CGLP. Instead of the classical scheme, Fischetti, Salvagnin and Zanette (2010) sug-

gest w0 = · · · = wm = 1 in order to heuristically find a minimum cardinality MIS.

They further refine their statement by observing that the multipliers, wi, of “static”

conditions (i.e. those with null rows in the matrix B), which are always active, should

not be penalized and therefore those wi should be set to zero. Finally, they make

one additional refinement and set w0 = 1. With these suggestions, Constraint 8.15c

becomes, ∑
i∈I(t)

ui + u0 = 1

where I(t) is the index set of the non-zero rows of B. The generated cut for a ray

(ū0, ū) from the MIS Benders separation problem (8.15) is,

ūT (b−By)− ū0z ≤ 0 (8.16)
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which reduces to the classical Benders feasibility cut when ū0 = 0 and the clas-

sical Benders optimality cut when ū0 > 0. This arrangement allows both opti-

mality and feasibility cuts to be generated from the same framework. When com-

pared with classical cuts and lightly improved classical cuts, Fischetti, Salvagnin and

Zanette (2010)[82] find significant improvements with the use of MIS Benders cuts,

particularly for problems with both feasibility and optimality cuts.

The MIS Benders cuts are attractive for the ESSND problem formulation because

they, like Papadakos (2008)’s Pareto-optimal cuts, improve the quality of feasibility

cuts. The improvements to optimality cuts in both of these approaches are irrelevant

in the ESSND problem application, but approaches that improve the feasibility cuts

are rare in the literature. Most cut improvement approaches focus on optimality cuts

rather than feasibility cuts and are therefore irrelevant for the ESSND problem.

8.3.3 Valid Inequalities

Valid inequalities are part of the “solution generation” category according to the

classification system by Rahmaniani (20017)[168]. In contrast to the single-tree BD

modification and the improved cut generation modifications, which could be applied

to a wide variety of Benders decomposition implementations, valid inequalities are

tailored to the problem at hand. Their specific purpose is to improve the master

problem relaxation so that fewer Benders cuts are required to find the optimal so-

lution, and thereby reduce the total runtime. The goal of the most effective valid

inequalities is to inform the master problem of qualities of the subproblem that have

been “lost” to the master problem through the relaxation.

In the ESSND problem, the master problem, which is only concerned with aircraft

movement variables, has lost all information about the package routing variables and

the forcing constraint which links the two types of variables together. Consider the

master problem relaxation prior to the addition of any Benders cuts. Since there is
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no forcing constraint informing the MP that packages need to be moved, the MP

“optimal” solution will be to move zero vehicles since doing nothing is the cheapest

solution. This means that every vehicle movement that needs to occur must somehow

be captured in cuts added to the MP, and this will likely require many iterations. If,

instead, the master problem relaxation can be strengthened prior to the addition of

the first Benders cut, fewer cuts will likely need to be added.

Ideally, a valid inequality could be added to the MP to inform it of the package

routing needs and forcing constraint. Fortunately, such a valid inequality has already

been developed. Kim (1997)[129], develops valid inequalities for an approximate

formulation of the SDNP and his version of the ESSNDP wherein the package flow

variables are removed and the forcing constraint is replaced with valid inequalities.

These valid inequalities are based on the aggregate capacity demand inequalities of

Magnanti, Mirchandani and Vachani (1995)[150] and the cut-set inequalities described

by Magnanti, Mirchandani and Vachani (1993,1995)[149, 150] and Magnanti and

Mirchandani (1993)[148].

The valid inequalities added by Kim (1997)[129] are cut-set inequalities. That

is, they are defined according to a cut in the graph {S, T}. As a minor aside, note

that the term “cut” is used in two distinct ways in this section due to an unfortunate

collision of terminology – a cut in the graph is used to make formulate a cut in

the master problem. These are two separate meanings of the term “cut” that must,

unfortunately, be used in close proximity. A cut in a graph is a partition of the vertices

into two disjoint subsets. A cut added to a mixed integer program is a cutting plane

that is used to strengthen a relaxation. Often this relaxation is the LP relaxation and

the LP hull is strengthened to be closer to the convex hull. In Benders decomposition,

Benders cuts strengthen the master problem relaxation to capture the requirements

of the subproblem.

A cut-set is the set of edges in which one vertex is in one partition of the cut
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and the edge’s other vertex is in the other partition of the cut. That is, for a cut

C = {S, T} in a graph G = (V,E), the set {(u, v) ∈ E | u ∈ S, v ∈ T} is a cut-set.

In Figure 33, which depicts a cut C = {{1}, {2, 3, 4}}, the cut-set is shown as black

edges, {(1, 2), (1, 3), (1, 4)}. Within the SNDP and ESSNDP, cut-set inequalities are

Figure 33: Notional Cut In a Graph of Four Nodes

generated based on the fact that across any cut in the graph, the total capacity

assigned to the cut-set arcs must surpass the total demand traveling on those arcs.

Mathematically, for the cut C = {S, T}, the valid inequality is,

∑
f∈F

ufY f
S,T ≥ DS,T (8.17)

where Y f
S,T equals

∑
(i,j)∈{S,T} y

f
ij, the total number of vehicles of type f assigned to

arcs of the cut-set, uf is the capacity of vehicle type f , and DS,T is the demand

across the cut-set. Kim (1997)[129] defines DS,T as “the demand of all commodities

with O(k) ∈ S and D(k) ∈ T or O(k) ∈ T and D(k) ∈ S” where Ok and D(k)

represent the origin and desination airports of the commodity k, respectively. This

definition is satisfactory for the purely overnight problem that Kim is solving, but

for this application of the express shipment problem, a little more care is necessary

due to the flexibility of two-day packages. Since two-day packages can be moved

during either the night or the day, their demand should be included in the DS,T term

only when they must travel on the arcs of that cut-set {S, T} to avoid over -assigning
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capacity.

In this work these cut-set inequalities from Kim (1997)[129] were modified slightly,

and valid inequalities defined over phase-based cut-sets were added to the Benders

master problem. Additionally, to avoid an explosion in the number of inequalities

added to the MP, only a limited number of cuts were made on the graph. One of the

disadvantages of cut-set inequalities is that there are far too many possible cuts in

a real-world graph to possibly enumerate them all. For any graph with N vertices,

there are 2N − 2 possible cuts. Without even considering the time aspects of the

express shipment problem, this means that ∼ 1034 cuts could be made on the graph

of the baseline problem instance (Table 6) which includes 115 airports. This is clearly

not a viable option.

Therefore, only a small fraction of these cuts were generated. Specifically, only the

cut defined as one airport to all others was considered. That is, C = {{X}, {A\{X}}}

where X is a single airport and A is the set of all airports. Additionally, cuts were

generated based on the phases of the express shipment day.3 As a result, inequalities

were generated such that, for a pick up phase, the total vehicle capacity leaving a

spoke must be greater than the minimum volume leaving that spoke, and similarly

for delivery phases, the total vehicle capacity entering a spoke must be greater than

the minimum volume terminating at that spoke. The structure of the inequality is

the same as the aggregate demand inequality in Kim (1997)[129], Eq. 8.17, but the

definition of DS,T is modified slightly to reflect this phase-based approach and the

handling of two-day volume.

8.4 Results

In response to the findings of the review of enhancements to Benders decomposition

in the literature, I hypothesize, in response to research question 6,

3The four phases of the day in the express shipment problem are: night pickup, night delivery,
day pick up, and day delivery.
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Hypothesis 6. Based on this literature review of previously-developed methods for

improving Benders decomposition, I hypothesize that implementing a single-tree Ben-

ders decomposition algorithm (i.e. improving the solution procedure), including the

cut-set valid inequalities developed by Kim (1997)[129] (i.e. improving the solution

generation), and implementing an approximate version of the Pareto-optimal Benders

cuts from Papadakos (2008)[163] or the minimal infeasible subsystem (MIS) Benders

cuts from Fischetti et al. (2010)[82] (i.e. improving the cut generation) will improve

the performance of the Benders decomposition algorithm in solving the express ship-

ment problem.

Benders decomposition and the four enhancements discussed in Section 8.3 to it

were implemented and tested on two problem instances, the small ten-airport problem

instance used as a sensitivity study in Section 6.5, and the full-size problem instance

outlined in Table 6. These experiments were performed on the experimental testbed

described in Section 5.4 using the computational testbed described in Table 5. The

time-space graph and package routing options were generated exactly as they were in

the monolithic approach (refer to §6.1, §6.2 and §6.3 for details). This ensures that

the results are solely the product of the solution method.

There was one important difference in the computational testbed. For the Benders

decomposition experiments, CPLEX 12.7.1 from IBM was used rather than Gurobi.

CPLEX, like Gurobi, is a state-of-the-art commercial mathematical programming

solver. It was used for the Benders decomposition experiments instead of Gurobi

because CPLEX recently included a built-in Benders decomposition.[118]

This CPLEX-developed Benders decomposition has the advantage of being im-

plemented and rigorously tested by highly-skilled researchers and developers in the

core inner workings of the solver. The disadvantage of this Benders implementation

is that, like CPLEX’s underlying branch-and-cut algorithm, the implementation is

completely opaque. CPLEX does not indicate what kind of improvements to the
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classical Benders decomposition algorithm it may be using although it is clear that

some improvements have been made. From the information that can be gleaned from

the outputs, the CPLEX Benders implementation takes a multi-phase in which the

algorithm is stopped, re-presolved and restarted. Additionally, it can be safely as-

sumed that it is a single-tree implementation. Finally, given the popularity of using

improved Benders cuts and the relatively few cuts it needs, it would be shocking if

some or several improved Benders cuts were not used. The exact variety of those cuts,

however, is unknown. Despite these disadvantages stemming from the opacity of the

implementation, it still provides a valuable baseline for the Benders decomposition

implementations.

The initial results from the CPLEX version of Benders decomposition were not

as good as hoped - for realistic problem instances, only a few, poor solutions were

found. Therefore, Benders decomposition was also implemented “from scratch” using

CPLEX as the MIP and LP solver, and the improvements chosen from the litera-

ture. Including the CPLEX Benders implementation, there are four Benders varieties

tested, 1) basic with classical feasibility cuts, 2) approximate Pareto-optimal cuts

generated with the Papadakos (2008)[163] approach, 3) MIS cuts from the work of

Fischetti, Salvagnin and Zanette (2010)[82], and 4) the CPLEX Benders implemen-

tation. All of the varieties are implemented using a single-tree Benders approach.

Finally, the effect of the cut-set valid inequalities is also tested on these four Benders

varieties. Of the two problem instances, the results of the ten-airport instance will

be discussed first, followed by the full-sized problem instance.

8.4.1 Results of the Ten-Airport Problem Instance

The ten-airport problem instance is composed of the same ten airports as the airport

subset sensitivity test described in Chapter 6, §6.5. Those airports are AUS, CLE,

CVG, MEM, MSP, RST, SAT, SMF, STL, and SWF. They were randomly chosen
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and feature a mix of sizes and geographical diversity. The eight cases were run using

this problem instance and the results are summarized in Table 45. Additionally, a

monolithic case was run on this problem instance with continuous routing variables

so as to have a commensurable baseline case.

Table 45: Benders Decomposition Results for Ten-Airport Problem Instance

Implementation With VI
Total Run

Time
Benders

Cuts
Subproblem

Time
Basic Benders False 1784.62 sec 129 8.21 sec
Basic Benders True 4339.57 sec 95 5.98 sec
Papadakos Benders False 2262.00 sec 93 5.92 sec
Papadakos Benders True 3213.40 sec 133 8.43 sec
MIS Benders False 238.33 sec 82 5.33 sec
MIS Benders True 443.29 sec 76 4.93 sec
CPLEX Benders False 2.58 sec 37 -
CPLEX Benders True 3.35 sec 48 -
Monolithic False 5.86 sec - -
Monolithic True 7.54 sec - -

All of the cases solved to optimality and produced the same solution value. There

are a number of intriguing results in Table 45. First, the “basic” Benders decom-

position implementation takes nearly 30 minutes to solve a small problem instance

that the monolithic approach solves in under six seconds. To say there is a significant

difference in runtime is an understatement. Aside from the CPLEX Benders cases, all

of the Benders decomposition implementations took considerably longer to solve the

problem than the monolithic approach, however, the minimal infeasible subsystem

(MIS) Benders implementation was substantially faster than the basic and approxi-

mate Pareto-optimal (Papadakos) implementations. Ultimately, it is not altogether

surprising that the monolithic approach outperforms the Benders decomposition in

such a small problem instance. Benders decomposition has significantly more over-

head and must iteratively refine the master problem before coming to a solution. The

monolithic approach enjoys more powerful preprocessing algorithms which can have a

dramatic effect on the runtime, and as shown in Chapter 6, the monolithic approach
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excels at small problems. What is somewhat surprising is the degree to which Benders

decomposition lags behind the monolithic approach.

Additionally, it is surprising that the CPLEX Benders decomposition actually

outperforms the monolithic approach for this problem instance. Unfortunately, the

opaque nature of the CPLEX Benders decomposition implementation makes it nearly

impossible to tease out the exact reason for this excellent performance, but the out-

puts do indicate that a multi-phase Benders decomposition is being implemented and

the algorithm is stopped and restarted twice with additional preprocessing reductions

being performed at each restart. These preprocessing steps could be responsible for

significant speed up. Additionally, the CPLEX Benders implementation uses many

fewer Benders cuts which indicates that they are probably stronger cuts and less time

must be spent in the subproblem.

The other surprising result is that the valid inequalities which were supposed

to improve the MP relaxation and thereby reduce the runtime actually made the

runtime worse in every case, including the monolithic implementation. This result is

somewhat confounding. The solution of every case in Table 45 has the exact same

objective value regardless of whether valid inequalities were added or not so the valid

inequalities are not leading to the wrong value. The other interesting aspect is that

for the basic and MIS BD implementations, including the valid inequalities did reduce

the number of cuts and the time spent in the subproblem, but still the total runtime

was greater than the cases in which valid inequalities were not added. Since the valid

inequalities are not cutting off the optimal solution and are therefore not wrong, the

most probable explanation is that they are too weak to be meaningfully useful and

instead their largest impact is to interfere with whatever preprocessing reductions

and/or solution-finding heuristics are performed within the solver.

Finally, of the three types of Benders cuts implemented (classical, approximate

269



Papadakos and MIS), the MIS-generated cuts performed the best by far. This un-

derscores the weakness of the classical Benders cuts for degenerate subproblems such

as that of ESSNDP. Additionally, the poor performance of the approximate Pareto-

optimal (as formulated by Papadakos) cuts do not perform better than the classical

cuts. In fact, for the case without valid inequalities, the implementation of the Pa-

padakos Pareto-optimal cuts using an approximate Magnanti-Wong point performs

worse than the implementation using classical cuts. This strongly suggests that the

approximate Magnanti-Wong point was poor. On a larger view, it also suggests that

using an approximate Magnanti-Wong point is not without its risks and that the

quality of the Magnanti-Wong point does have bearing on the quality of the gener-

ated cuts. As a whole, randomly choosing the extreme ray produced better cuts than

producing approximate Pareto-optimal cuts with a bad Magnanti-Wong point.

8.4.2 Full-Problem Results

One major drawback of Benders decomposition, particularly for problems like the

ESSNDP, is that every MP solution is infeasible until the optimal solution is found.

This is not necessarily true for problems that add both optimality and feasibility

cuts, since BD may find solutions that are feasible but sub-optimal with respect to

the subproblem objective. For the ESSND problem, however, in which the sole role

of the subproblem is to ensure that the master problem solution is feasible, if the

algorithm is terminated before that feasible solution is found, the “solution” will

be infeasible with respect to the original problem. When Benders decomposition is

modified to the single-tree implementation, feasible suboptimal solutions may also be

found, even when solving a problem that only adds feasibility cuts, because Benders

cuts are generated whenever a new integer feasible solution is found, regardless of

whether or not that integer solution is optimal for the MP.

Unfortunately, Benders decomposition, as it has been implemented in this work
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and even as it has been implemented in the version by CPLEX is ineffective at solving

the full-size ESSND baseline problem instance. The results each Benders decompo-

sition implementation are shown in Table 46. Since the valid inequalities produced

worse results in the ten-airport case, they were omitted in these experiments. Of

Table 46: Benders Decomposition Results for Full-Size Baseline Problem Instance

Implementation
Total Run

Time
Failure Cause

Optimality
Gap

Basic Benders 45.48 hrs RAM Limit -
Papadakos Benders 21.53 hrs RAM Limit -
MIS Benders 0 hrs Prob. Size -
CPLEX Benders 6.23 hrs RAM Limit 98.32%
Monolithic 48 hrs Time Limit 13.3%

the Benders decomposition approaches, only the CPLEX implementation found any

feasible solutions, but those solutions were so poor that they were completely useless.

The other three Benders implementations were even worse. Not a single one found a

feasible solution. The MIS Benders implementation curiously failed immediately due

to an issue that seemed to stem from the problem size. When the total demand in the

network surpassed a certain threshold, the approach failed immediately. The exact

cause of this failure is unknown. The other three Benders implementations all failed

as a result of surpassing the 240 GB of RAM available on the computational testbed.

Of the three, the CPLEX Benders implementation was the most memory-hungry and

it consumed its memory resources hours before the other two.

It is difficult to comment meaningfully on these results which fail to produce solu-

tions despite generous computational resources and time, but what can be definitively

determined is that for the ESSND problem, Benders decomposition is inferior to the

monolithic approach. Ultimately, these Benders implementations were doomed by

several factors. First, the baseline ESSND problem instance is very large. There are

many commodities and aircraft that must be assigned in order to produce a feasible

solution. Second, the master problem relaxation is extremely weak and when this
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was partnered with the large problem size, the algorithm could not cope. Third, one

of the major disadvantages of Benders decomposition, particularly for problems such

as the ESSND problem in which only feasibility cuts are added, there is no solution

until the optimal solution. This is not strictly true for the single-tree Benders imple-

mentation, but the chances of finding a feasible solution to the ESSND through luck

are slim. Finally, because it depends so heavily on the B&C algorithm to solve the

master problem, Benders decomposition is still susceptible to the same pruning issues

that hampered the monolithic approach. The convenience of the monolithic approach

though is that the solutions are always feasible so the algorithm can be terminated

early without resulting in a complete loss of effort.

8.4.3 Reflections on the Benders Decomposition Results

Based on the results of the Benders decomposition experiments, for the purposes of

this work, hypothesis 5 is rejected. Four modifications to the classical Benders decom-

position were implemented based on the findings in the literature in addition to the

implementation recently included in the CPLEX optimization software. Although all

of these implementations were capable of successfully finding the optimal solution for

the small, ten-airport, problem instance, thus indicating that they were implemented

correctly, even this small case took much longer to solve using Benders decomposition

(except for the CPLEX implementation) compared to the monolithic approach. None

of the Benders decomposition implementations were capable of producing solutions

for the full-sized baseline problem instance.

Realistically, the implementation of Benders decomposition was an attempt to get

the best of both worlds – an approach that produced the optimal solution and pro-

duced it quickly. Unfortunately, Benders decomposition struggled in the application

to the express shipment problem, even with improvements from the literature. How-

ever, this does not mean that the research conducted in this chapter was conducted

272



in vain. Several lessons can be learned from this experience, particularly from the

results of the smaller ten-airport problem instance.

The improvements from the literature did have an effect on the performance of

the algorithm. Of the custom-developed Benders decomposition implementations, the

BD algorithm which used the MIS Benders cuts without the cut-set valid inequalities

performed the best. This tells us several things about the enhancement strategies

for Benders decomposition. First, “enhancements” do not always improve the per-

formance of Benders decomposition. The valid inequalities based on those developed

by Kim (1997)[129] actually hampered the progress of the algorithm, and the BD

algorithm using the approximate Pareto-optimal cuts was worse than the classical

Benders implementation in the case where there were no valid inequalities included

in the master problem. In both of these cases, the implementation was weaker than

the ideal. Due to the presence of two-day volume, the cut-set inequalities could not

be implemented to the same strength as they were in Kim’s work, who only solved

the overnight problem instance.

In the case of the approximate Pareto-optimal cuts, finding a core point was

very difficult so an approximate core point was used. This turned out to hinder the

algorithm, leading the algorithm to choose worse cuts than the classical Benders

implementation. Approximating the core point is not an uncommon practice in the

literature considering how challenging it can be to generate a true core point, but

based on the results of this work, care should be exercised when using an approximate

core point because it could end up leading to worse performance.

Second, one of the primary drawbacks of Benders decomposition is that there are

no intermediate solutions that are generated as the algorithm progresses, since every

potential solution is infeasible until the optimal solution is found. This presents a

serious issue since this means that the algorithm cannot be terminated early. For

very large applied problems such as the express shipment problem, the expectation of
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finding true optimal solutions is, in reality, rather low. Applied problems are usually

so large and/or complex that it is typically very difficult to obtain exact optimal

solutions in a timely manner. As a result, perhaps a better approach would be to

partner Benders decomposition with a heuristic that could perturb the infeasible

solutions in order to find feasible intermediate solutions as the algorithm progresses.

Third, for the express shipment problem, improving the cut-generation scheme had

the most positive impact on the Benders decomposition algorithm of the approaches

implemented. The linear subproblem is extremely degenerate since there can be

many feasible ways to assign packages to aircraft. As result of this high-degeneracy

it is important that good Benders cuts be chosen. Unfortunately, there are very few

improved feasibility cuts in the literature. The two most notable improved feasibility

cuts were implemented in this work, and since the Benders subproblem is a feasibility

problem, the improved optimality cuts, which are more common in the literature, are

meaningless. In general, more research into improved Benders feasibility cuts could

greatly improve the performance of a Benders decomposition algorithm for problems

like the ESSND.

Finally, in the literature, it is typical for Benders decomposition implementations

to be heavily modified from the original, “classical” algorithm. This is especially true

for applied problems like scheduling for passenger airlines. These implementations

are non-trivial and the development of one for the express shipment problem out of

the scope of this work. However, from the results of the experiments in this work,

perhaps this is what is necessary for applied problems to be solved exactly. For the

purposes of this work, the original and moderately-modified Benders decomposition

has been suitably investigated and found to be inferior to the monolithic baseline and

heuristic decomposition approaches for the express shipment problem.
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8.5 Summary

This chapter focused on the theoretical background, common enhancements and the

application to the express shipment problem of Benders decomposition. The primary

aim of this chapter was to investigate the performance of an exact decomposition

approach so that it could be ultimately compared to the monolithic approach pre-

sented in Chapter 6 and the heuristic approach that was presented in Chapter 7. This

investigation and comparison was focused on testing hypothesis 0, the fundamental

hypothesis, that either a heuristic algorithm or exact decomposition algorithm would

be capable of finding high-quality solutions to the express shipment problem more

quickly than a monolithic approach. The Benders decomposition was found to be

inferior to the monolithic approach for the full-sized baseline problem instance, but

several lessons were learned in the process. The next and final chapter of this work,

Ch. 9 will discuss the final conclusions and make suggestions for future work.
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CHAPTER IX

CONCLUSIONS

9.1 Summary and Discussion of Results

The primary research objective of this dissertation was to develop a quick and effec-

tive algorithm that generates low-cost vehicle schedules to completely route one day’s

worth of domestic express shipment packages. To this end, the express shipment

problem was mathematically captured as a mixed integer program called the Express

Shipment Service Network Design problem (ESSND), and three classes of solution

approaches were studied, implemented and compared. The three solution method

classes were a monolithic approach, for which the Gurobi commercial optimization

software was used, an exact decomposition approach, for which Benders decompo-

sition was chosen, and a heuristic approach, which was designed in this work. Of

these three approaches, the monolithic approach, which had been developed through

a collaboration between Georgia Tech and FedEx, served as the baseline, and it was

hypothesized that either a heuristic approach or an exact decomposition approach

would be capable of producing solutions to the express shipment problem of compa-

rable quality to the monolithic approach in less time. This was formally expressed as

the fundamental hypothesis,

Hypothesis 0. Based on the evidence in the literature that heuristic and exact de-

composition approaches can out-perform monolithic approaches, I hypothesize that a

heuristic approach or exact decomposition approach will able to produce solutions for

the Express Shipment Service Network Design problem of comparable quality to the

baseline monolithic approach in significantly less time.
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In order to test this fundamental hypothesis, all three classes of methods were im-

plemented. The monolithic approach, which was developed as part of a collaboration

between Georgia Tech and FedEx, served as the baseline approach and was presented

first. In order to make the baseline single-day domestic problem tractable, a set of

heuristics were used to generate the set of package routings, omitting the options

that were unlikely to be present in an optimal solution. Additionally, the methods

for generating the time-space graph and vehicle movement options were presented

as well. This resulted in a problem that was solvable using a monolithic approach.

These same methods for generating the package routing options, time-space graph,

and vehicle movement options were used again in the Benders decomposition and

heuristic algorithm implementations in order to ensure that the option space was the

same for all three studied solution methods. The optimization itself for the mono-

lithic approach was handled through the use of a commercial branch-and-cut-based

optimization software (Gurobi 7.5).

The monolithic approach was found to produce high-quality solutions for the

baseline single-day problem instance but the optimal solution remained elusive after

two-days of runtime. Additionally, after an initial sharp improvement in solution

quality, progress dramatically slowed, with only an improvement of 1.04 percentage

points on the optimality gap for the entire second day of runtime. This slow progress

is primarily due to the weakness of the LP relaxation of the ESSND problem and the

size of the problem instance being solved. Sensitivity studies showed that all but the

smallest problem instances failed to converge after running for forty-eight hours, and

problem instances encompassing more than a single day of volume were hopelessly

intractable.

Next, in Chapter 7, a heuristic approach was developed and implemented. Since

sensitivity studies of the monolithic approach showed that smaller problem instances

and relaxed formulations could be more easily solved than the full-sized, un-relaxed

277



problem instance, it was hypothesized that a heuristic decomposition approach would

be successful. The ESSND problem was decomposed functionally into a Package

Routing Problem (PRP) and an Aircraft Movement Problem (AMP). Physical de-

compositions that partitioned the time-space graph were considered but deemed less

appealing due to the type of coupling that would have to be reconciled between the

subproblems, among other drawbacks.

However, there was still coupling between the Package Routing Problem and the

Aircraft Movement Problem. Initially, it was hypothesized that a feedback-based

approach was necessary in order to produce a consistent, feasible high-quality solu-

tion. Therefore, a fixed point iteration-based approach was implemented, with the

subproblems solved using a monolithic approach. The results were unsatisfactory. It

took over twenty minutes to find a solution with a 30% optimality gap. The iterative

optimization approach did not drive itself towards a good solution as hoped, and

attempting to provide master-level guidance to this FPI approach was unappealing

because it would require many calls to a slow analysis method.

In response to the results of the feedback-based approach, a sequential algorithm

was implemented. The FPI-based approach produced poor results because the pack-

age routings were assigned without regard to the need to fill whole aircraft. Therefore,

the Package Routing Problem, the first of the two disciplines in the sequential algo-

rithm, was modified to include aircraft movement variables, the constraint requiring

those variable to be positive integers, and the feeder limit constraint. This new prob-

lem was called the Package Routing with Aircraft Problem (PRAP).

The addition of these variables and constraints dramatically increased the run time

of the PRAP compared to the PRP. Therefore, the sequential algorithm terminated

the PRAP early but solved the unmodified Aircraft Movement Problem after it to op-

timality. This sequential algorithm called the Basic Sequential Algorithm was found

to be effective in solving the express shipment problem. It generated high-quality
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solutions more quickly than the monolithic approach for runtimes less than one hour

and performed on par with the monolithic approach after that point. The success

of the sequential approach to quickly generate high-quality solutions supported the

fundamental hypothesis (Hy. 0) and showed that indeed a heuristic approach could

produce high-quality solutions more quickly than the monolithic (or exact decompo-

sition) approach.

This original sequential algorithm was only a basic implementation so although

the fundamental hypothesis had been supported, further improvements to the algo-

rithm were explored. This ultimately resulted in two improved sequential algorithms,

1) the Collapsed Product Set Sequential Algorithm, and 2) the Improved Sequential Al-

gorithm. The Collapsed Product Set Sequential Algorithm sought to exploit the idea

of “analogous commodities” in the problem to reduce the size of the Package Routing

with Aircraft Problem. Rather than assign package routings to the full set of com-

modities in the problem as in the Basic Sequential Algorithm, the Collapsed Product

Set Sequential Algorithm used the overnight priority box commodities, which consti-

tute the most volume of all the products, as templates to assign the routings of all of

their analogous commodities. Commodities that shared the same origin-destination

pair were considered analogous. This allowed a considerably smaller PRAP to be

solved, and resulted in an algorithm that was much less sensitive to problem size

than any other algorithm studied in this work. Compared to the Basic Sequential

Algorithm, it does not perform as well on the single-day baseline problem instance,

though it does provide better solutions than the monolithic approach for the first

hour of runtime. The real advantage of the Collapsed Product Set Sequential Algo-

rithm is in its ability to solve problem instances encompassing much a much larger

temporal scope. These problems are otherwise completely intractable, but now, with

the Collapsed Product Set Sequential Algorithm, they are accessible.
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The Basic Sequential Algorithm was also enhanced by improving the approxima-

tion of the PRAP to the original ESSND problem. In the original PRAP, only the

vehicle variable integrality constraint and feeder limit constraint were included. The

aim of including these aircraft-related considerations in the PRAP was to encour-

age the assignment of package routings that would lend themselves well to efficiently

packaging aircraft. Although this was happening in the original PRAP, solutions only

utilized the more cost-efficient newer aircraft, which resulted in massive over-use of

these aircraft. As a consequence, in the AMP solution, which respected hull count

and balance constraints, most packages were moved on different vehicles than the

PRAP had used in its planning.

In order to correct this behavior, it was hypothesized that re-introducing a hull

count constraint would improve the solution quality. The original hull count con-

straint could not be added to the PRAP because it was ineffective without the bal-

ance constraint. Therefore, the phase-based hull count constraint, which enforces the

hull count for each phase was developed and added to the PRAP. This addition had

a substantial impact on the solution quality. This version of the sequential algorithm,

called the Improved Sequential Algorithm, was capable of finding a better solution to

the baseline problem instance in an hour than the monolithic approach found in two

days. The sort-centric balance constraint was also developed and tested but found to

inhibit rather than help the PRAP find exceptionally high-quality solutions.

The most significant contributions of this work is the Improved Sequential Algo-

rithm. It’s ability to reduce the time to find high-quality solutions by days is massive

improvement over the monolithic baseline. Additionally, the Template-Based Sequen-

tial algorithm opens the door to solving problems of a much larger temporal scope

than before. Using this algorithm, good solutions to the full-week problem instance,

which is much more useful for express shipment companies than the single day prob-

lem instance, can be found in relatively little time.
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Finally, Benders decomposition was chosen and implemented as the exact decom-

position approach due to the “complicating variables” found in the ESSND problem

formulation. Benders decomposition is a “row generation” technique that attempts

to exploit the fact that only a subset of constraints is typically active in an optimal

solution. If these constraints can be efficiently identified and added to the problem,

a smaller optimization problem can be solved. In order to identify these constraints,

the original formulation is decomposed into a master problem and a subproblem. The

master problem contains all of the complicating variables and the subproblem is used

to generate constraints to add to the master problem.

In this dissertation, several modifications to the classical Benders decomposition

algorithm were made from the literature based on known shortcomings of Benders

decomposition. First, the single-tree Benders decomposition was implemented. In

the single-tree Benders decomposition, a single branch-and-bound tree is made and

Benders cuts are added to the master problem any time a feasible integer solution

is found. Additionally, valid inequalities based on the cut-set inequalities presented

by Kim (1997)[130] were added to the master problem too in order to better shape

the otherwise poor master problem relaxation. Finally, two improved Benders cuts

were implemented – the Pareto-optimal cuts as modified by Papadakos (2008)[163]

to produce feasibility cuts, and minimal infeasible subsystem (MIS) cuts developed

by Fischetti et al. (2010)[82].

These improvements to Benders decomposition and a commercial implementation

of Benders decomposition by CPLEX 12.7 (a commercially-developed optimization

software) were tested on a small ten-airport subproblem and the full-sized single-day

subproblem. For the small ten-airport case, although optimal solutions were found by

all of the Benders decomposition implementations, all except the CPLEX implemen-

tation took much longer than the monolithic baseline case. For the full-sized baseline

problem instance, only the CPLEX implementation was able to find any solutions,
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but those solutions were extremely poor. Ultimately, Benders decomposition as it

was implemented in this work was found to be ineffective.

Two primary factors were responsible for this poor performance. First, the Ben-

ders master problem relaxation is extremely poor and as a result, every aircraft move-

ment must be expressed through a Benders cut. This requires a large number of cuts

and iterations, leading to a long run time. Second, since only feasibility Benders cuts

are added to the master problem in this application of Benders decomposition, all

master problem solutions will be infeasible until the optimal solution is found. Tech-

nically, it would be possible in the single-tree Benders implementation for a feasible

solution to be found and retained, but ultimately this is unlikely due to the poor

master problem relaxation and the size of the problem.

Although the Benders decomposition implementation was not superior to the

monolithic approach, these results are still a contribution. In particular, it is note-

worthy that the minimal infeasible subsystem (MIS) Benders cuts provided the most

significant improvement to Benders decomposition compared to the “basic” Benders

implementation. Additionally, the cut-set valid inequalities and approximate Pareto-

optimal Benders cuts actually hampered the performance of the algorithm rather than

enhanced it, showing that “improvements” that cannot be fully or strongly imple-

mented may end up being detrimental. Benders decomposition is currently enjoying

a relatively large amount of popularity in the literature but is important to recognize

that even popular approaches are not necessarily suitable for all problems. It is also

important to recognize that most of these recent implementations of Benders decom-

position modify the original algorithm, sometimes heavily. It is possible that with

the recent buzz around Benders decomposition that a technique will be developed

that makes it more capable of solving the express shipment problem. Additionally, it

is possible that a more heavily-modified version of Benders decomposition, such as a

hybrid column generation/row generation approaches would be more successful.
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For the baseline single-day problem instance that was the focus of this work, the

Improved Sequential Algorithm is, by far, the best approach. It is successful because it

first adequately approximates the full ESSND problem formulation to assign package

routings, and then it schedules aircraft to optimally move the package along those

pre-assigned routings. In the monolithic approach, both the package routings and the

aircraft movements are changed at the same time, which makes it more difficult to

find good solutions. The Improved Sequential algorithm dramatically outperforms the

monolithic approach, which ended up the second-best overall approach. It produces,

in one hour, a solution of better quality than the solution that took the monolithic

approach two days to generate.

This significant enhancement in performance makes the Improved Sequential Al-

gorithm much more useful than the monolithic approach. By shaving hours off the

analysis runtime, it is useful for a variety of applications for express shipment com-

panies. It could be used at the operational level for contingency planning the case of

disruptions to the normal network such as inclement weather. It could also be used

at the tactical level to produce daily good-quality schedules. These solutions could be

used as-is or taken as a high-quality starting place for the human planners. Finally,

it could be used at the strategic level to run studies for major business decisions such

as investments in new aircraft, sorting facility capacity upgrades, and the placement

of new potential sorting facilities. Given the scope of express shipment companies,

potential improvements to their operations could easily range in the millions or tens

of millions of dollars annually.

9.2 Avenues for Future Work

There are several avenues for future research based on the findings of this work.

First, gateway volume could be incorporated into the problem. Gateway commodities

are those with one international city in its origin-destination pair and one domestic
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city. That volume is more difficult to accommodate because only part of the package

routing is domestic, customs inspections must be considered for incoming volume, and

incoming and outgoing international flights do not always follow the strong periodic

nature of the purely domestic flights. However, including gateway volume would make

the solutions more realistic and more useful. It would tie the domestic problem into

the larger global network and thus be able to provide more directly implementable

solutions.

Second, the Collapsed Product Set Sequential Algorithm currently produces good-

quality solutions, but further research could potentially improve its performance.

In particular, the consolidation assignment problem (CAP) as it is implemented in

this work does not offer significant improvements considering its runtime. This is

particularly problematic for problem instances with a larger temporal scope. For

instance, the Collapsed Product Set Sequential Algorithm produces a solution to the

full-week problem instance without consolidation in just over three and a half hours

but requires an additional twelve hours to solve the CAP, which only reduced the

optimality gap by 1.1 percentage points. For the single-day problem instance, the

CAP only took slightly longer to run than the Aircraft Movement Problem, and this

was acceptable, but for longer problem instances, a more scalable approach would

be better. Perhaps a heuristic solution would be more successful than solving a

subproblem of the ESSND with a B&C solver as it was implemented in this work.

Additionally, it would be valuable to explore ways of improving the solution quality

for the larger scope runs, perhaps through a local improvement heuristic.

Finally, as mentioned in the previous section, although the implementations of

Benders decomposition in this work did not produce satisfactory results, it would be

interesting to investigate whether a more heavily-modified version of Benders decom-

position would be successful. In particular, the work of Cordeau, Mercier and Soumis

(2001,2005,2007)[53, 156, 157] as well as Papadakos (2009)[164] for passenger airlines

284



suggests that a hybrid column generation/row generation approach is a powerful ap-

proach for difficult to solve problems. However, implementing such an approach is

not a trivial undertaking and would likely require quite a bit of sophistication and

care.

In the end, the primary objective of this work, to develop an algorithm that

quickly and effectively routed one day’s worth of domestic express shipment volume

and assigned the best possible vehicles to move them, was satisfied. The Improved

Sequential Algorithm is capable of producing in one hour the high-quality solutions

that the baseline monolithic approach requires days to find. This relatively simple

heuristic is straight-forward to implement and capitalizes on the natural decompo-

sition of the problem between the package-related decisions and the aircraft-related

decisions. Together, these two considerations make the express shipment problem

very difficult to solve, but by solving the problems semi-independently, high-quality

solutions can be found much more quickly. Additionally, the full-week problem, a

previously intractable problem that is more valuable than the single-day schedule for

express shipment companies, can be solved with the Improved Sequential and Col-

lapsed Product Set Sequential Algorithms. Together, these two heuristic algorithms

greatly reduce the time it takes to produce high-quality solutions to the express ship-

ment problem, and in doing so opens the door to more sophisticated planning. The

scale of these companies means that even small improvements as a result of studies

enabled by these heuristic algorithms could range in the millions of dollars.
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[38] Büdenbender, K., Grünert, T., and Sebastian, H.-J., “A hybrid tabu
search/branch-and-bound algorithm for the direct flight network design prob-
lem,” Transportation Science, vol. 34, no. 4, pp. 364–380, 2000.

[39] Bunte, S. and Kliewer, N., “An overview on vehicle scheduling models,”
Public Transport, vol. 1, no. 4, pp. 299–317, 2009.
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[45] Chvátal, V., Linear Programming. Macmillan, 1983.

[46] Clarke, G. and Wright, J. W., “Scheduling of vehicles from a central depot
to a number of delivery points,” Operations Research, vol. 12, no. 4, pp. 568–
581, 1964.

[47] Clausen, J., “Branch and bound algorithms-principles and examples,” De-
partment of Computer Science, University of Copenhagen, pp. 1–30, 1999.

[48] Clerc, M., Particle Swarm Optimization, vol. 93. John Wiley & Sons, 2010.

[49] Cohn, A., Root, S., Wang, A., and Mohr, D., “Integration of the load-
matching and routing problem with equipment balancing for small package
carriers,” Transportation Science, vol. 41, no. 2, pp. 238–252, 2007.

[50] Cohn, A. E. M., Composite-Variable Modeling for Large-Scale Problems in
Transportation and Logistics. PhD thesis, Massachusetts Institute of Technol-
ogy, 2002.

289

https://stanford.edu/class/ee364b/lectures/decomposition_notes.pdf
https://stanford.edu/class/ee364b/lectures/decomposition_notes.pdf


[51] Conejo, A. J., Castillo, E., Mı́nguez, R., and Garćıa-Bertrand, R.,
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