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ABSTRACT OF DISSERTATION  

 
 
 
 

CONTRIBUTION OF NUCLEUS ACCUMBENS CORE TO IMPULSIVE CHOICE: 
ROLE OF DOPAMINE AND GLUTAMATE SYSTEMS 

 
Impulsive choice refers to the inability to delay gratification and is associated with 
increased drug abuse vulnerability.  Understanding the underlying neural 
mechanisms linking impulsive choice and drug abuse can contribute to improved 
treatment options for individuals with substance use disorders.  Evidence 
suggests a major role for nucleus accumbens core (NAcc) in impulsive choice 
and the reinforcing effects of drugs of abuse.  The neurotransmitters glutamate 
(Glu) and dopamine (DA) are implicated in the neural adaptations observed in 
drug addiction; however, the role of intra-NAcc Glu and DA in impulsive choice is 
unclear.  Rats were trained in a delay discounting task, in which animals chose 
between a small, immediate reinforcer and large, delayed reinforcer.  
Consistently choosing the small, immediate reinforcer was considered to reflect 
increased impulsivity.  Following delay discounting, in vitro receptor 
autoradiography was performed to quantify the number of N-methyl-D-aspartate 
(NMDA) receptors and dopamine transporters (DAT) in NAcc and nucleus 
accumbens shell (NAcSh).  In a separate experiment, rats were trained in delay 
discounting and were implanted with guide cannulae into NAcc.  Following 
surgery, rats received microinfusions of either a) the Glu-selective ligands MK-
801 (noncompetitive NMDA receptor channel blocker; 0, 0.3, and 1.0 µg), AP-5 
(competitive NMDA receptor antagonist; 0, 0.3, and 1.0 µg), ifenprodil (NMDA 
NR2B subunit antagonist; 0, 0.3, and 1.0 µg), and CNQX (AMPA receptor 
antagonist; 0, 0.2, and 0.5 µg) or b) the DA-selective ligands SKF 38393 (D1-like 
receptor agonist; 0, 0.03, and 0.1 µg), SCH 23390 (D1-like receptor antagonist; 
0, 0.3, and 1.0 µg), quinpirole (D2-like receptor agonist; 0, 0.3, and 1.0 µg), and 
eticlopride (D2-like receptor antagonist; 0, 0.3, and 1.0 µg).  In NAcc and NAcSh, 
NMDA receptor and DAT expression did not differ between high and low 



	
   	
   	
  

impulsive rats.  Furthermore, intra-NAcc administration of NDMA and DA 
receptor ligands did not significantly alter impulsive choice.  These results 
suggest that Glu and DA systems within NAcc do not directly mediate impulsive 
decision making.  Future work is needed to determine the precise role of NAcc in 
mediating impulsive choice.        

KEYWORDS: Impulsive Choice, Nucleus Accumbens Core, Glutamate, 
Dopamine, Rat 
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Chapter 1: Introduction 

Impulsivity 

 Impulsivity is a multifaceted construct that includes lack of inhibitory 

control, lack of forethought, and inability to delay gratification (see Evenden, 

1999; Whiteside & Lynam, 2001 for reviews).  The construct of impulsivity can be 

measured using personality questionnaires and behavioral studies.  Numerous 

personality questionnaires have been developed to measure impulsivity.  Some 

of the most widely used questionnaires include the Barratt Impulsiveness Scale-

11 (BIS-11; Patton, Stanford, & Barratt, 1995), which encompasses the 

subscales attentional impulsiveness, motor impulsiveness, and non-planning 

impulsiveness; the I-7 Impulsiveness Questionnaire (Eysenck, Pearson, Easting, 

& Allsopp, 1985), which is composed of the subscales impulsiveness, 

venturesomeness, and empathy; and the UPPS Impulsive Behavior Scale 

(Whiteside & Lynam, 2001), which includes urgency, (lack of) premeditation, 

(lack of) perseverance, and sensation seeking.  

Dickman (1990) emphasizes two broad types of impulsivity: functional and 

dysfunctional.  Functional impulsivity is defined as the tendency to act with little 

forethought when the situation is optimal.  In contrast, dysfunctional impulsivity is 

defined as the tendency to act with less forethought, which can lead to 

problematic decisions.  Distinguishing between functional and dysfunctional 

impulsivity is important because this distinction illustrates that impulsivity is not 

always disadvantageous.   
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One criticism of personality measures is that they can suffer from the 

“jingle and jangle” fallacies (Block, 1995; see Whiteside and Lynam, 2001 for a 

discussion).  According to Whiteside and Lynam (2001), the jingle fallacy refers 

to situations in which two different impulsivity constructs are given the same 

label, and the jangle fallacy refers to situations in which different labels are used 

to describe the same construct.  These fallacies are problematic because they 

can impede our understanding of the underlying processes involved in 

impulsivity.  One way to avoid the jingle and jangle fallacies is to use behavioral 

studies to test the various types of impulsivity.  

Impulsive Action and Impulsive Choice 

Most of the behavioral procedures measuring impulsivity can be fractioned 

into two broad categories: impulsive action and impulsive choice (see 

Winstanley, Olausson, Taylor, & Jentsch, 2010 for a full review).  Impulsive 

action is conceptualized as motor impulsivity; humans and animals that fail to 

inhibit prepotent responses are considered to have higher levels of motor 

impulsivity.  The primary behavioral tasks used to measure impulsive action are 

the stop signal reaction time (SSRT), the go/no-go, and the five-choice serial 

reaction time (5CSRT) tasks (see Winstanley et al., 2010).  In the SSRT, 

subjects are required to inhibit responses they have already initiated when 

presented with a cue (Logan, Cowan, & Davis, 1984).  In go/no-go tasks, 

subjects are required to either initiate a response (go) or inhibit a response (no-

go) when presented with different cues (Newman, Widom, & Nathan, 1985).  In 

the 5CSRT task, animals are trained to respond to a stimulus that is presented in 
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one of five apertures.  The animal is required to wait for a period of time before 

initiating a response (Carli, Robbins, Evenden, & Everitt, 1983).   

The SSRT and go/no-go tasks can be used with human (Logan et al., 

1984; Newman et al., 1985) and animal subjects (Eagle & Robbins, 2003; Feola, 

de Wit, & Richards, 2000; Iverson & Mishkin, 1970; Liu, Heitz, & Bradberry, 2009; 

Terman & Terman, 1973), but the 5CSRT is currently only measured in animals. 

However, the 5CSRT is considered to be an animal analog of the continuous 

performance task, in which humans are required to scan a 5-digit sequence and 

respond when the number matches a target stimulus (Rosvold, Mirsky, Sarason, 

Bransome, & Beck, 1956; see Winstanley et al., 2010 for a discussion).  

Impulsive choice is conceptualized as the inability to delay gratification 

and is often measured with delay discounting tasks.  The term discounting refers 

to the decrease in subjective value of a reinforcer as a function of the delay to its 

delivery.  In a typical delay discounting procedure, humans and animals choose 

between a small magnitude reinforcer delivered immediately and a large 

magnitude reinforcer delivered after a delay.  Consistently choosing the smaller, 

immediate reward over the larger, delayed reward is often considered to reflect 

impulsive behavior (Ainslie, 1975).  Discounting of delayed rewards is observed 

in various species, including humans (e.g., Rachlin, Raineri, & Cross, 1991), 

pigeons (e.g., Mazur, 1987), mice (e.g., Mitchell, Reeves, Li, & Phillips, 2006), 

and rats (e.g., Richards, Mitchell, de Wit, & Seiden, 1997).  
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Delay Discounting Paradigms  

Delay discounting is often measured in humans by asking participants to 

choose between two hypothetical monetary rewards differing in magnitude 

(Rachlin et al., 1991).  The value of the larger, delayed monetary reward is held 

constant, whereas the value of the smaller, immediate reward is decreased 

systematically.  The indifference point is the point at which a person switches 

their preference from the small, immediate reinforcer to the large, delayed 

reinforcer.  While there may be some concern about the validity of delay 

discounting when hypothetical rewards are used, results indicate similar rates of 

delay discounting when hypothetical or real rewards are used (Johnson & Bickel, 

2002; Madden, Begotka, Raiff, & Kastern, 2003).  

Multiple procedures can be used to measure delay discounting in animals.   

In the T-maze (Bizot, Le Bihan, Puech, Hamon, & Thiebot, 1999; Rudebeck, 

Walton, Smyth, Bannerman, & Rushworth, 2006), one arm of the maze is 

associated with a small magnitude reinforcer, whereas one arm is paired with a 

larger reinforcer.  If the rat chooses the arm with the larger reinforcer, a gate is 

lowered, and the animal is confined to the arm for a fixed delay before receiving 

reinforcement.  Delays to the larger reinforcer are increased across sessions.  

Because the T-maze paradigm is more labor intense relative to using an 

automated operant procedure, it is infrequently used (Madden & Johnson, 2010). 

Procedures testing delay discounting often rely on the use of operant 

conditioning procedures.  As discussed by Madden and Johnson (2010), there 
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are several common features among studies measuring delay discounting using 

an operant procedure.  Typically, the animal must perform a response that places 

the subject equidistant from the two choice alternatives.  Without this control, an 

animal may respond on a manipulandum because it is closer to that 

manipulandum relative to the alternative manipulandum.  Another common 

feature is the inclusion of forced-choice trials.  During these trials, only one 

alternative is available.  These trials are included to expose the animal to both 

contingencies of reinforcement. 

In the adjusting delay procedure, animals are trained to make choices 

between a large amount of food delivered after an adjusting delay and a smaller 

amount delivered after a fixed delay (Mazur, 1987).  Generally, subjects complete 

blocks of trials, which consist of two forced-choice trials followed by two free-

choice trials.  If the subject chooses the smaller reinforcer on both free-choice 

trials, the delay to the larger reinforcer is decreased (usually by 1 sec).  

Conversely, if an animal chooses the larger reinforcer on both free-choice trials, 

the delay to the larger reinforcer is increased.  The delay to the larger reinforcer 

is not altered if the subject chooses each reinforcer during a block of trials.  Upon 

achieving stability, the mean adjusting delay is calculated and it is termed as the 

“indifference point”.  This procedure is repeated across several fixed delays to 

the smaller reinforcer, and adjusting delays are plotted as a function of the fixed 

delay to the smaller, sooner reinforcer.  

The adjusting delay procedure has received some criticism.  In one study 

Cardinal, Daw, Robbins, and Everitt (2002) trained rats to complete thousands of 
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trials in an adjusting delay task.  Despite the extensive training, rats never 

reached a constrained range of adjusted delays (i.e., adjusted delays never 

stabilized).  Cardinal et al. (2002) concluded that animals are not sensitive to the 

adjusting delay.  It is important to note that Cardinal et al. (2002) adjusted the 

delay to the large magnitude reinforcer by 20%-30% (range: 0.4 – 9.0 seconds), 

whereas Mazur (1987) adjusted the delay in 1-second increments.  The large 

adjustments to the delay to the large reward in the Cardinal et al. (2002) study 

may have resulted in instable indifference points (see Madden & Johnson, 2010).      

The adjusting amount procedure developed by Richards et al. (1997) is 

similar to the adjusting delay procedure.  However, delays stay constant within a 

session, whereas the size of the delayed reinforcer varies depending on the 

animal’s response on the previous trial.  Evidence suggest that the rate of 

discounting in an adjusting amount procedure is similar to the discounting 

observed in an adjusting delay procedure, suggesting that these tasks share 

similar underlying processes (Green, Myerson, Shah, Estle, & Holt, 2007).   

 Evenden and Ryan (1996) developed a discounting procedure that is 

commonly used to measure impulsive choice in both humans and animals.  This 

task incorporates blocks of trials, in which the delay for obtaining the larger 

reward increases within a single session (Evenden & Ryan, 1996), although the 

delay for obtaining the large reinforcer can be manipulated between sessions 

(Mobini, Chiang, Ho, Bradshaw, & Szabadi, 2000).  As the delay of obtaining the 

large reinforcer increases, animals switch their preference to the smaller, 

immediate reinforcer (Evenden & Ryan, 1996).  Importantly, the increased 
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discounting observed across a session is not due to satiation, as animals 

consistently choose a large reinforcer over a small reinforcer when delivery of the 

larger reinforcer is not delayed (Evenden & Ryan, 1996).  One advantage of this 

procedure is that it provides a measure of sensitivity to delayed reinforcement 

during each session.  Also, a measurement of sensitivity to reinforcer amount 

can be measured each session by examining choice for the large reinforcer 

during no-delay trial blocks (i.e., delay = 0 sec).  

Although the original study conducted by Evenden and Ryan (1996) 

increased the delay across blocks of trials, some studies have examined whether 

increasing or decreasing the delay to the larger reinforcer across trial blocks 

alters the rate of discounting of that reinforcer.  Studies with human participants 

have generally shown that increasing the delay within session produces greater 

discounting relative to decreasing the delay within session (Robles & Vargas, 

2008; Robles, Vargas, & Bejarano, 2009; Stillwell & Tunney, 2012; but see 

Robles & Vargas, 2007).  Studies with animals have been mixed; Fox, Hand, and 

Reilly (2008) reported increased discounting using a descending sequence 

relative to an ascending sequence, whereas Slezak and Anderson (2009) 

observed no difference in discounting rate using an ascending or a descending 

sequence.  

Mathematical Models of Discounting  

 Several mathematical models have been proposed to describe the 

relationship between delay and subjective value of a reinforcer.  The exponential 
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discounting model postulates that the subjective value of a good decreases by a 

constant percentage per unit time and can be modeled with the following 

equation:   

V = Ae-kD 

In this equation, V is the subjective value of the delayed reinforcer, A represents 

the amount of the reinforcer, D is the delay to the delivery of the reinforcer, and k 

is a parameter measuring the rate at which delayed reinforcers are discounted 

(Samuelson, 1937).  A higher k value indicates a preference for small, immediate 

reinforcement.  

The exponential model assumes that if a reinforcer is preferred over 

another reinforcer at one point in time, it will be preferred at all other points in 

time.  However, results from studies with humans (Green, Fristoe, & Myerson, 

1994) and animals (Ainslie & Hernstein, 1981; Green & Estle, 2003; Green, 

Fisher, Perlow, & Sherman, 1981) do not support this hypothesis.  For example, 

human participants given a choice between a small hypothetical monetary 

reward (e.g., $20) delivered immediately and a large hypothetical monetary 

reward (e.g., $50) delivered in 1 year often choose the small, immediate reward; 

however, if a delay is added to both rewards (e.g., $20 delivered in 1 year vs. 

$50 delivered in 2 years), participants often switch their preference to the larger 

reward (Green et al., 1994).  The exponential model of discounting does not 

predict these preference reversals (see Green & Myerson, 2004; Madden & 

Johnson, 2010 for reviews).  
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To account for preference reversals, the hyperbolic discounting model 

proposed by Mazur (1987) is often used, which is modeled with the equation:  

V = A/(1 + kD) 

The parameters are identical to those described in the exponential function.  

There is evidence to suggest that the hyperbolic model provides a better fit of 

discounting data relative to the exponential model in humans (Rachlin et al., 

1991; Vuchinich & Simpson, 2000) and animals (Mazur, 1987).  

A hyperboloid function can also be used to model discounting of delayed 

reinforcers (Green, Fry, & Myerson, 1994).  This function is similar to the 

hyperbolic function proposed by Mazur (1987), with the exception that the 

denominator of the hyperbola is raised to a power of s, which is a nonlinear 

scaling of amount and/or time and is generally equal to or less than 1.0 (see 

Green & Myerson, 2004 for a review).  According to Myerson and Green (1995), 

the hyperboloid function provides a better fit of delay discounting behavior 

relative to the hyperbolic, although studies with animals show no reliable 

difference between hyperbolic and hyperboloid functions (Green et al., 2007; 

Mazur, 2000; Richards et al., 1997).  

Given the debate surrounding the different theoretical discounting 

functions, Myerson, Green, and Warusawitharana (2001) propose a “theoretically 

neutral” model of discounting.  Instead of using parameter estimates derived from 

theoretical models of discounting, Myerson et al. (2001) advocate the use of area 

under the curve (AUC) to determine sensitivity to delayed reinforcement.  One 
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advantage of using AUC is that the distribution of AUC values are normally 

distributed, whereas parameter estimates derived from discounting functions 

tend to be positively skewed (Myerson et al., 2001), thus allowing the use of 

parametric statistical analyses to compare discounting rates in different groups of 

subjects.  

Relationship between Impulsive Choice and Drug Abuse  

Clinical cross-sectional studies indicate that drug users are more 

impulsive compared to nonusers (Moeller et al., 2001; Sher & Trull, 1994).  In 

humans, greater delay discounting is observed in opioid-dependent individuals 

(Kirby, Petry, & Bickle, 1999; Madden, Petry, Badger, & Bickel, 1997), cocaine 

users (Coffey, Gudelski, Saladin, & Brady, 2003; Heil, Johnson, Higgins, & 

Bickel, 2006), methamphetamine-dependent individuals (Hoffman et al., 2006), 

alcohol abusers (Field, Christiansen, Cole, & Goudie, 2007; Kollins, 2003; Petry, 

2001a, Vuchinich & Simpson, 1998), and cigarette smokers (Bickel, Odum, & 

Madden, 1999; Mitchell, 1999; Ohmura, Takahashi, & Kitamura, 2005; Reynolds, 

Richards, Horn, & Karraker, 2004).  Furthermore, individuals with a history of 

substance abuse show greater discounting of crack/cocaine, heroin, and 

cigarettes relative to monetary rewards (Bickel et al., 1999; Coffey et al., 2003; 

Madden et al., 1997), reflecting the importance of drug reward over monetary 

rewards in these individuals.   

Although individuals with a history of substance abuse are more impulsive 

relative to matched controls, it is unknown if enhanced impulsivity predisposes an 
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individual to substance abuse or if prolonged drug use increases impulsivity.  

Evidence suggests a bidirectional relationship between impulsivity and drug 

abuse (see de Wit, 2009), and preclinical research has been valuable in this 

regard.  Using a T-maze paradigm to access impulsive choice, Poulos, Le, and 

Parker (1995) found that high impulsive (HiI) rats consume more ethanol relative 

to low impulsive (LoI) rats.  Since the seminal study conducted by Poulos et al. 

(1995), others have examined if impulsive choice predicts vulnerability to 

different stages of drug seeking.  HiI rats acquire cocaine self-administration at a 

faster rate (Perry, Larson, German, Madden, & Carroll, 2005; Perry, Nelson, & 

Perry, 2008), show greater escalation of cocaine self-administration (Anker, 

Perry, Gliddon, & Carroll, 2009), and show greater resistance to extinction (i.e., 

increased responding on a lever in the absence of reinforcement) to cocaine self-

administration (Broos, Diergaarde, Schoffelmeer, Pattij, & De Vries, 2012a) 

relative to LoI rats.  Also, HiI rats self-administer more nicotine and 

methylphenidate relative to LoI rats (Diergaarde et al., 2008; Marusich & Bardo, 

2009), and impulsive choice is predictive of reinstatement to nicotine self-

administration (Diergaarde et al., 2008).  Thus, increased impulsivity is a 

predictor of increased substance abuse vulnerability.   

Some studies have used a behavioral economic approach to measure 

whether impulsivity is associated with inelastic demand for drugs of abuse.  In 

this approach, total consumption of a reinforcer, rather than response rate, is 

measured.  Consumption is measured at a variety of prices (i.e., response 

requirements); if an animal continues to respond for the reinforcer as the price 
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increases, the demand for the reinforcer is considered to be inelastic.  Impulsive 

choice is predictive of inelastic demand for cocaine (Koffarnus & Woods, 2011) 

and nicotine (Diergaarde, van Mourik, Pattij, Schoffelmeer, & De Vries, 2012).  

Interestingly, impulsivity does not predict inelastic demand for alcohol 

(Diergaarde et al., 2012), which contrasts with previous research demonstrating 

that impulsive choice predicts increased alcohol consumption (Poulos et al., 

1995).  These inconsistencies demonstrate the importance of using various drug 

self-administration paradigms to determine the precise relationship between 

sensitivity to delayed reinforcement and drug abuse vulnerability.    

Some caution needs to be taken when interpreting previous studies 

examining delay discounting and operant drug self-administration.  Stephens et 

al. (2010) present one confound to self-administration paradigms.  Self-

administration for psychostimulant drugs may not reflect increased motivation to 

obtain the drug reinforcer; instead, these drugs produce hyperactivity, which may 

increase the likelihood that an animal responds on the drug-paired 

manipulandum.  Rats that show increased cocaine-induced hyperactivity are 

more impulsive in a delay discounting task relative to rats that show an 

attenuated response to cocaine (Stanis, Burns, Sherrill, & Gulley, 2008).  Thus, 

HiI rats may respond more for psychostimulant drugs due to increased drug-

induced hyperactivity.  

Another potential interpretational problem with previous studies assessing 

the role of impulsive choice in drug self-administration is that HiI animals may not 

respond more for drug because of its reinforcing properties; instead, they may be 
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more sensitive to reward-associated stimuli.  For example, HiI rats exhibit more 

sign-tracking conditioned responses compared to LoI rats (Tomie, Aguado, 

Pohrecky, & Benjamin, 1998; but see Lovic, Saunders, Yager, & Robinson, 

2011).  Also, Diergaarde, Pattij, Nawijn, Schoffelmeer, and De Vries (2009) 

showed that high impulsive rats nose poke more for a discrete cue formerly 

paired with sucrose delivery.   

To avoid these potential confounds, Yates, Marusich, Gipson, Beckmann, 

and Bardo (2012) used a non-operant conditioned place preference (CPP) 

paradigm to measure drug reward in HiI and LoI rats.  Impulsive choice was 

predictive of amphetamine CPP; that is, HiI animals spent more time in an 

environment previously paired with amphetamine relative to LoI animals (Yates 

et al., 2012).  These results demonstrate that the increased drug self-

administration of psychostimulants is not simply the result of drug-induced 

hyperactivity or increased sign-tracking.     

Although increased impulsive choice is predictive of different stages of 

psychostimulant addiction, there is little evidence that delay discounting is 

associated with opioid self-administration.  HiI and LoI rats acquire heroin self-

administration at the same rate and self-administer similar amounts of heroin 

(Schippers, Binnekade, Schoffelmeer, Pattij, & De Vries, 2012).  Furthermore, 

impulsive choice is not predictive of extinction to heroin self-administration or 

reinstatement to heroin self-administration (Schippers et al., 2012).  Although the 

relationship between drug addiction and impulsive choice is postulated to be 
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bidirectional (de Wit, 2009), these results suggest that impulsivity is not a 

determinant of opioid abuse.  

Conversely, despite the clear evidence for impulsive choice being a 

predictor of stimulant abuse, research also has demonstrated that drug exposure 

affects impulsive decision making.  Cocaine administration (systemic and self-

administered) increases impulsive choice in rats (Dandy & Gatch, 2009; 

Hernandez et al., 2014; Mendez et al., 2010; Simon Mendez, & Setlow, 2007; but 

see Broos et al., 2012a), as does chronic self-administration of amphetamine or 

heroin (Gipson & Bardo, 2009; Schippers et al., 2012).  Finally, withdrawal from 

phencyclidine increases impulsive choice (Carroll, Kohl, Johnson, & La Nasa, 

2013; Carroll, Mach, La Nasa, & Newman, 2009).  In conclusion, exposure to 

drugs of abuse increases impulsive decision making.  

Underlying Neuromechanisms Linking Impulsive Choice and Drug Abuse 

 Understanding the potential underlying neural mechanisms linking 

impulsive choice and drug reinforcement can help explain why HiI individuals are 

prone to drug abuse.  Such information is important for the development of better 

treatment options for individuals with substance use disorders.  

Neuroanatomical Regions Implicated in Impulsive Choice  

To identify the neuroanatomical structures involved in discounting, 

techniques such as focal excitotoxic or neurochemical lesions and temporary 

inactivation are often used.  Several brain regions have been implicated in 

impulsive choice, including amygdala (Churchwell, Morris, Heurtelou, & Kesner, 
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2009; Winstanley, Theobald, Cardinal, & Robbins, 2004b), dorsal striatum 

(Dunnett, Heuer, Lelos, Brooks, & Rosser, 2012), and hippocampus (Abela & 

Chudasama, 2013; Cheung & Cardinal, 2005; Mariano et al., 2009).  However, 

structures within the mesocorticolimbic pathway have received particular interest 

due to the major hypothesis that chronic drug exposure augments stimulus-

reward learning and impairs inhibitory control functions, facilitating relapse-like 

behavior (Jentch & Taylor, 1999; Robinson & Berridge, 2003).  This portion of the 

dissertation will focus on three regions within the mesocorticolimbic pathway: 

orbitofrontal cortex (OFC), medial prefrontal cortex (mPFC), and nucleus 

accumbens (NAc).  

Orbitofrontal cortex (OFC). OFC is implicated in various forms of 

decision making, most importantly in updating the value of an expected reward 

on the basis of past experience (Gallagher, McMahan, & Shoenbaum, 1999; 

Izquierdo, Suda, & Murray, 2004; Roesch & Olson, 2004; Schoenbaum, Chiba, & 

Gallagher, 1998; Schoenbaum, Setlow, & Ramus, 2003; see Wallis, 2007 for a 

review).  OFC also is implicated in drug abuse, as hypoactivity within this region 

is observed in individuals with cocaine addiction (Volkow et al., 1993, 1991) and 

re-exposure to a drug-paired context activates OFC in nonhuman animals 

(Hearing, Miller, See, & McGinty, 2008; Neisewander et al., 2000).  Lesions to 

OFC decrease cocaine self-administration in rats (Hutcheson & Everitt, 2003; but 

see Grakalic, Panlilio, Quiroz, & Schindler, 2010), and inactivation of OFC 

attenuates cue-induced cocaine seeking behavior (Fuchs, Evans, Parker, & See, 

2004).  
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Studies examining the role of OFC in delay discounting behavior have 

produced variable results.  During performance in an adjusting-delay procedure, 

an increase in Fos expression in OFC is observed (de Costa Araújo et al., 2010).  

Also, several studies have found an increase in the rate of discounting following 

lesions to OFC (Mobini, Chiang, Ho, Bradshaw, & Szabadi, 2002; Kheramin et 

al., 2002, 2004; Rudebeck et al., 2006).  However, other studies have observed 

either a decrease in discounting (Mar, Walker, Theobald, Eagle, & Robbins, 

2011; Winstanley et al., 2004b) or no effect in discounting behavior following 

temporary inactivation via GABA agonists or permanent lesions (Abela & 

Chudasama, 2013; Churchwell et al., 2009; Jo, Kim, Lee, & Jung, 2013; Mariano 

et al., 2009; Stopper, Green, & Floresco, 2014).  These discrepancies may result 

from differential destruction of subregions of OFC, as lesions to medial OFC 

increase sensitivity to delayed reinforcement, whereas lesions to lateral OFC 

decrease discounting (Mar et al., 2011).  

Other methodogical factors that can potentially explain the discrepancies 

observed across studies include baseline levels of impulsive choice and cues 

that signal the delay to the larger reinforcer.  For example, inactivation of OFC 

increases impulsive choice in LoI rats when the delay is signaled, but decreases 

impulsivity in HiI rats when the delay is not signaled (Zeeb, Floresco, & 

Winstanley, 2010).  

Medial prefrontal cortex (mPFC). mPFC can be subdivided into 

prelimbic cortex (PrLC) and infralimbic cortex (ILC) and is involved in reward-

related learning (Balleine & Dickinson, 1998; Richardson & Gratton, 1998).  
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mPFC is implicated in the reinforcing effects of drugs of abuse, as well as drug 

relapse (see Perry et al., 2011; Tzschentke, 2000 for reviews).  

Some studies have shown that mPFC mediates delay discounting.  In 

humans, decreased impulsive choice is associated with increased thickness in 

mPFC (Bernhardt et al., 2014).  Also, impulsive choice is negatively correlated 

with mPFC activation (Antonelli et al., 2014).  In animals, mPFC inactivation 

increases sensitivity to delayed reinforcement (Churchwell et al., 2009), although 

whole mPFC lesions and ventral mPFC inactivation have no delay-specific 

effects on choice between small, immediate and large, delayed rewards 

(Cardinal, Pennicott, Sugathapala, Robbins, & Everitt, 2001; Feja & Koch, 2014).  

Nucleus accumbens (NAc). NAc is composed of the core (NAcc) and 

shell (NAcSh) subregions (Voorn, Gerfen, & Groenewgen, 1989; Zaborsky et al., 

1985) and responds to anticipated rewards (Bjork et al., 2004; Breiter, Aharon, 

Kahneman, Dale, & Shizgal, 2001; Francois, Conway, Lowry, Tricklebank, & 

Gilmour, 2012; Martin & Ono, 2000; Richardson & Gratton, 2008; Schultz, 

Apicella, Scarnati, & Ljungberg, 1992) and mediates the reinforcing effects of 

various drugs of abuse (see Chen, Hopf, & Bonci, 2010; Di Chiara, 2002; Di 

Chiara et al., 2004; Willuhn, Wanat, Clark, & Phillips, 2010 for reviews).  In 

general, lesions to NAc attenuate drug self-administration in animals (Corrigall, 

Franklin, Coen, & Clarke, 1992; Dworkin, Guerin, Goeders, & Smith, 1988; 

Gerrits & Van Ree, 1996).   
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Animals performing a delay discounting procedure show an increase in 

Fos expression in NAcc (da Costa Araújo et al., 2010).  Also, NAcc lesions 

increase impulsive choice (Bezzina et al., 2007; Cardinal et al., 2001; da Costa 

Araújo et al., 2009; Pothuzien, Jongen-Relo, Feldon, & Yee, 2005; Valencia-

Torres et al., 2012; but see Winstanley, Theobald, Dalley, & Robbins, 2005), 

whereas combined NAcc/NAcSh lesions increase preference for a large, delayed 

reinforcer (Acheson et al., 2006).  The findings obtained by Acheson et al. (2006) 

do not appear to be the result of damage to NAcSh, as selective lesions to this 

subregion do not alter sensitivity to delayed reinforcement (Pothuzien et al., 

2005).  

Neurochemical Systems Involved in Impulsive Choice 

Several techniques can be used to study the involvement of 

neurotransmitter systems in impulsive choice.  A common method for 

determining the role of a neurotransmitter in discounting behavior is to administer 

a drug that acts at specific receptors.  Typically, the drug is administered 

systemically, although receptor ligands can be directly injected into a brain region 

of interest.  Another technique that can be used is microdialysis, in which a 

neurotransmitter of interest is collected during task performance and later 

quantified.  Through these techniques, serotonin (5-HT) and dopamine (DA) 

systems have been implicated as important mediators of impulsive choice and 

will be discussed in detail below.  
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Serotonin (5-HT). 5-HT is a monoamine synthesized from tryptophan.  5-

HT released from a presynaptic neuron can bind to different receptor families, 

which are primarily G protein-coupled.  Currently, there are 14 known 5-HT 

receptor subtypes within 7 different families (see Barnes & Sharp, 1999; Filip & 

Bader, 2009 for full reviews).  For brevity, only the first three 5-HT receptor 

families will be discussed in detail.  5-HT1 receptors can be divided into five 

subtypes (5-HT1A,B,D,E,F) which are distributed throughout the brain, particularly in 

the raphe nuclei, hippocampus, cerebral cortex, and basal ganglia (Pazos & 

Palacios, 1985; Weissmann-Nanopoulos, Mach, Magre, Demassey, & Pujol, 

1985; Vergé et al., 1986).  5-HT1 receptors inhibit cyclic adenosine 

monophosphate (cAMP; Fargin et al., 1989) and are autoreceptors in the raphe 

nuclei and postsynaptic receptors in the limbic system (see Albert, Lembo, 

Storring, Charest, & Saucier, 1996; Barnes & Sharp, 1999).  5-HT2 receptors can 

be subdivided into three subtypes (5-HT2A-C), and like 5-HT1 receptors, are 

distributed throughout the brain, such as hippocampus, cortex, basal ganglia, 

amygdala, hypothalamus, and cerebellum (Bonhaus et al., 1995; Pazos, Cortes, 

& Palacios, 1985; Pazos, Probst, & Palacios, 1987).  5-HT2 receptors are 

coupled to phospholipase C and lead to increased inositol 1,4,5-trisphosphate 

and intracellular Ca2+ (Nakaki, Roth, Chuang, & Costa, 1985; Xu & Chuang, 

1987).  The 5-HT3 receptor is the only 5-HT receptor subtype that is a ligand-

gated ion channel (Derkach, Surprenant, & North, 1989) and is mainly located in 

limbic structures such as the hippocampus and amygdala (Tecott, Maricq, & 

Julius, 1993).  
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Low 5-HT activity has been linked to impulsive behavior, as individuals 

prone to suicide often display impulsive behavior and have decreased levels of 

the 5-HT metabolite 5-hydroxyindoleacetic acid (5-HIAA; Åsberg, 1997; 

Cremniter et al., 1999; Träskman-Bendz, Åsberg, & Schalling, 1986).  Forebrain 

5-HT depletion also increases impulsive decision making in humans 

(Schweighofer et al., 2008; but see Crean, Richards, & de Wit, 2002) and 

animals (Bizot et al., 1999; Mobini et al., 2000; Wogar, Bradshaw, & Szabadi, 

1993; but see Winstanley, Dalley, Theobald, & Robbins, 2003, 2004a). 

Pharmacological studies also support the role of 5-HT in delay discounting 

behavior, although discrepancies are reported in the literature.  Inhibiting the 

synthesis of 5-HT with para-chlorophenyl-alanine methyl ester increases 

impulsive choice in a T-maze paradigm (Denk et al., 2005).  The 5-HT indirect 

agonist fenfluramine decreases impulsive choice (Poulos, Parker, & Le, 1996), 

whereas 5-HT1A receptor agonists dose-dependently promote choice of the 

small, immediate reinforcer over the large, delayed reinforcer (Blasio et al., 2012; 

Liu, Wilkinson, & Robbins, 2004; Stanis et al., 2008; Winstanley et al., 2005).  5-

HT1A receptor agonists also decrease choice for the larger reinforcer when the 

delay to its delivery is set at 0 sec (Liu et al., 2004; Winstanley et al., 2005); thus, 

sensitivity to reinforcer magnitude may be altered, as well as sensitivity to delay.  

Stimulating 5-HT2A/C receptors decreases the capacity for rats to wait for 

delivery of a large magnitude reinforcer (Blasio et al., 2012; Hadamitzky, Feja, 

Becker, & Koch, 2009), whereas antagonism of these receptors does not alter 

discounting behavior (Hadamitzky et al., 2009; Paterson, Wetzler, Hackett, & 
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Hanania, 2012; Talpos, Wilkinson, & Robbins, 2006).  Conversely, antagonism of 

5-HT2B/C receptors decreases impulsive choice (Paterson et al., 2012; Talpos et 

al., 2006).  

 There is limited evidence that 5-HT3 receptors are involved in impulsive 

choice.  Administration of the 5-HT3 receptor antagonist tropisetron decreases 

impulsive choice in animals with high baseline levels of impulsivity, whereas 

tropisetron increases impulsive choice in animals with low baseline levels of 

impulsivity (Cervantes, Biggs, & Delville, 2010).  

Stereotaxic techniques show that 5-HT within the mesocorticolimbic 

pathway is involved in impulsive decision making.  Using in vivo microdialysis, 

performance in delay discounting significantly increases 5-HT efflux in mPFC 

(Winstanley, Theobald, Dalley, Cardinal, & Robbins, 2006b).  Furthermore, 

microinjection of 5-HT2A/C receptor antagonists into the OFC increases impulsive 

choice (Wischhof, Hollensteiner, & Koch, 2011), whereas 5-HT1A receptor 

agonists into the OFC decreases impulsive choice (Yates et al., under review).  

Finally, HiI animals have increased 5-HT3 receptor expression in amygdala, 

prefrontal cortex (PFC), and NAc (Cervantes, & Delville, 2009).  Taken together, 

the results of these studies indicate that 5-HT mediates impulsive decision 

making.  

Dopamine (DA). DA belongs to the catecholamine family and is 

synthesized from the amino acid tyrosine.  DA released from a presynaptic 

neuron can bind to two different types of DA receptors: D1-like and D2-like.  D1-
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like receptors (D1 and D5) are located on postsynaptic neurons, are G protein-

coupled (Gs), and increase cAMP levels (Dearry et al., 1990; Sunahara et al., 

1991; Tiberi et al., 1991).  D1 receptors are primarily located in the striatum, NAc, 

cortex, olfactory tubercle, amygdala, and hippocampus (Dearry et al., 1990; 

Savasta, Dubois, & Scatton, 1986), whereas D5 receptors are primarily located in 

the olfactory tubercle and hippocampus, although these receptors are observed 

in other regions, such as striatum, NAc, and cortex (Ciliax et al., 2000; Sunahara 

et al., 1991).  

Like D1-like receptors, D2-like receptors (D2, D3, and D4) are G protein-

coupled (Gi); however, these receptors are located on both presynaptic and 

postsynaptic neurons and decrease cAMP when stimulated (Dal Toso et al., 

1989).  D2 receptors are primarily located in the striatum, NAc, olfactory tubercle, 

amygdala, hippocampus, hypothalamus, ventral tegmental area, and substantia 

nigra (Camus, Javoy-Aqid, Dubois, & Scatton, 1986; Charuchinda, Supavilai, 

Karobath, & Palacios, 1987).  D3 receptors are located in the nucleus 

accumbens, hypothalamus, and olfactory tubercle (Bouthenet et al., 1991; 

Sokoloff, Giros, Martres, Bouthenet, Schwartz, 1990).  D4 receptors are located 

in the cortex, amygdala, hypothalamus, hippocampus, and substantia nigra 

(O’Malley, Harmon, Tang, & Todd, 1992; Wedzony, Chocyk, Maćkowiak, Fijał, & 

Czyrak, 2000).  

The role of DA in delay discounting is of particular interest because many 

drugs of abuse, as well as medications used to treat impulse-control disorders 

(e.g., ADHD; see Biederman & Faraone, 2005 for a review), increase 
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extracellular DA levels (Caillé & Parsons, 2003; Creese & Iverson, 1975; Jones, 

Gainetinov, Wightman, & Caron, 1998; Kuczenski & Segal, 1997; Moghaddam & 

Bunney, 1989; Volkow, Fowler, Wang, Ding, & Gatley, 2002).  As expected, 

psychostimulant medications such as amphetamine and methylphenidate 

decrease impulsive choice (e.g., Broos et al., 2012a; Cardinal, Robbins, & 

Everitt, 2000; de Wit et al., 2002; Pitts & McKinney, 2005; van Gaalen, van 

Koten, Schoffelmeer, & Vanderschuren, 2006b; Winstanley et al., 2003).  

Based on the findings observed with ADHD medications, drugs that 

stimulate DA neurotransmission should decrease impulsive choice, whereas 

drugs that inhibit DA release should increase impulsive choice.  More specifically, 

drugs that stimulate postsynaptic D1-like receptors or inhibit presynaptic D2-like 

receptors should decrease impulsivity, whereas inhibiton of D1-like receptors and 

stimulation of D2-like autoreceptors should increase impulsivity.  There is some 

support for this hypothesis, as systemic administration of the nonselective DA 

receptor antagonist flupenthixol (Cardinal et al., 2000; Floresco, Tse, & Ghods-

Sharifi, 2008; Wade, de Wit, & Richards, 2000), as well as selective antagonism 

of D1 receptors promote impulsive choice (Broos et al., 2012a; Koffarnus, 

Newman, Grundt, Rice, & Woods, 2011; van Gaalen et al., 2006b; but see Wade 

et al., 2000).  However, contrary to the hypothesis that DA stimulation decreases 

impulsive choice, systemic administration of D1-like receptor agonists do not 

alter delay discounting (Koffarnus et al., 2011).  

Research examining the role of DA D2-like receptors has yielded mixed 

results.  A couple of reports found increases in impulsive choice following 
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antagonism of D2-like receptors (Denk et al., 2005; Wade et al., 2000), whereas 

others did not observe changes in delay discounting (Evenden & Ryan, 1996; 

Koffanus et al., 2011; van Gaalen et al., 2006b).  Considering that D2-like 

receptors are composed of three subtypes, perhaps D3 and D4 receptors have a 

more specific role in mediating impulsive decision making.  Administration of the 

D3 agonist 7-OH-DPAT and the D4 partial agonist ABT-724 increase delay 

discounting (Koffarnus et al., 2011; van den Bergh, Bloemarts, Groenink, Olivier, 

& Oosting, 2006).  However, it is important to note that administration of D3 

receptor agonists do not necessarily affect sensitivity to delayed reinforcement, 

as choice for the large reinforcer decreases when its delivery is immediate 

(Koffarnus et al., 2011; Madden, Johnson, Brewer, Pinkston, & Fowler, 2010; van 

den Bergh et al., 2006).  

DA activity specifically in prefrontal cortical regions has been associated 

with impulsive choice.  Using microdialysis, an increase in intra-OFC 3,4-di-

hydroxyl-phenylacetic acid (DOPAC) is observed in rats performing a delay 

discounting task (Winstanley et al., 2006b).  HiI rats show reduced DA release in 

mPFC and NAc relative to LoI rats (Diergaarde et al., 2008).  Depleting DA levels 

in mPFC also increases impulsive decision making (Loos et al., 2010; Pardey et 

al., 2013), and overexpression of the DA transporter (DAT) gene in NAc is 

associated with increased impulsive choice (Adriani et al., 2009).  As with 

systemic drug administration, one unexpected finding is that antagonism of DA 

D2-like receptors within OFC and mPFC increases impulsive choice (Pardey, 

Kumar, Goodchild, & Cornish, 2013; Yates et al., under review; Zeeb et al., 2010) 
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and administration of a D1-like agonist into mPFC increases impulsive choice 

(Loos et al., 2010).  Thus, while some inconsistencies exist, results overall 

suggest that decreased DA levels is associated with increased impulsive choice.  

In addition to DA specifically, Winstanley et al. (2005) argue that 5-HT and 

DA interactions within NAc contribute to impulsive decision making.  For 

example, the 5-HT1A agonist 8-OH-DPAT decreases choice for a large, delayed 

reinforcer; however, this effect is not observed in rats with intra-NAc 6-

hydroxydopamine lesions (Winstanley et al., 2005).  The results obtained by 

Winstanley et al. (2005) are difficult to interpret because 8-OH-DPAT decreases 

choice for the large reinforcer when its delivery is not delayed.  Therefore, DA 

and 5-HT interactions within NAc may be important for discriminating reinforcers 

of differing magnitudes, as opposed to discriminating delays to reinforcement.  

Although 5-HT and DA have received considerable attention in delay 

discounting research, there is evidence that other neurotransmitter systems are 

important in mediating impulsive decision making, including norepinephrine 

(Robinson et al., 2008; van Gaalen et al., 2006b), acetylcholine (specifically 

muscarinic receptors; Mendez, Gilbert, Bizon, & Setlow, 2012), opioid peptides 

(Pattij, Schetters, Janssen, Wiskerke, & Schoffelmeer, 2009; Schippers et al., 

2012), and glutamate (Glu; Cottone et al., 2013; Floresco et al., 2008; Sukhotina 

et al., 2008). Thus, multiple neurotransmitter systems working in an interactive 

fashion are involved in impulsive choice. 
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Glutamate (Glu).  Glu is the major excitatory neurotransmitter in the 

mammalian brain and acts at both metabotropic (mGluR, G protein-coupled) and 

ionotropic receptors (iGluR, ion channel-coupled; see Ozawa, Kamiya, & 

Tsuzuki, 1998 for a review).  mGluRs can be subdivided into three classes: group 

I mGluRs consists of mGluR1 and mGluR5, which are located on postsynaptic 

terminals and are stimulatory; in contrast, group II and group III mGluRs consist 

of mGluR2-8, which are mainly presynaptic and are inhibitory (Ozawa et al., 

1998; Riedel, Platt, & Micheau, 2003).  Like mGluRs, iGluRs can be subdivided 

into three groups: α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA), 

kainate, and N-methyl-D-aspartate (NMDA), which are discussed in more detail 

below.  

AMPA receptors are tetramers composed of four subunits (GluR1-4) and 

are found ubiquitously throughout the brain, with high levels observed in the CA1 

and CA3 regions of the hippocampus, as well as cerebral cortex, basal ganglia, 

thalamus, hypothalamus, cerebellum, and spinal cord (Blackstone et al., 1992; 

Dure & Young, 1995; see Ozawa et al., 1998; Riedel et al., 2003 for reviews).  

Activation of AMPA receptors increases Na+ and Ca2+ influx and K+ efflux (see 

Forman, Chou, Strichartz, & Lo, 2008 for a discussion), and these receptors are 

responsible for the fast, immediate postsynaptic response to glutamate release 

(see Riedel et al., 2003).  Like AMPA receptors, kainate receptors are tetramers 

composed of various subunits (GluR5-7 and KA1-2), with high levels located in 

the CA3 region of the hippocampus and in the cerebellum (see Ozawa et al., 
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1998).  Because dissociating AMPA and kainate receptors can be difficult, these 

receptors are often labeled as “non-NMDA” receptors (see Riedel et al., 2003).    

NMDA receptors are heteromeric complexes with the NR1 as the primary 

constitutive subunit and NR2 (A-D) as functional subunits that affect channel 

kinetics and sensitivity (Mori & Mishina, 1995).  Individual subunits are trafficked 

to synapses and can be substituted with one another.  For example, NR2B-

containing receptors can be replaced by NR2A-containing receptors (Barria & 

Malinow, 2002).  Like non-NMDA receptors, NMDA receptors are found 

throughout the brain, with the highest concentrations observed in the CA1 region 

of the hippocampus, thalamus, and cerebral cortex (see Ozawa et al., 1998; 

Riedel et al., 2003).  The NMDA receptor channel will open following voltage 

dependent removal of a Mg2+ ion (Novak Bregestovski, Ascher, Herbet, & 

Prochiantz, 1994), glycine binding to the NR1 subunit, and binding of Glu or 

NMDA receptor agonist to the NR2 subunit (see Lynch & Guttmann, 2001; 

Ozawa et al., 1998 for reviews).  Once the channel opens, Na+ and Ca2+ are able 

to enter the neuron, and there is an increase in K+ efflux (see Riedel et al., 2003).  

There is evidence that the glutamatergic system interacts with monoamine 

neurotransmitters.  Stimulation of 5-HT1 receptors inhibits Glu release (Choi, 

Cho, & Jang, 2013; Guo & Rainnie, 2010; Mauler, Fahrig, Horváth, & Jork, 2001). 

Furthermore, there is evidence that 5-HT1B and 5-HT1D receptors are 

heteroreceptors on glutamate neurons, which control the release of Glu (see 

Sari, 2013 for a discussion).  There is speculation that 5-HT2A regulates 

presynaptic release of Glu.  For example, lysergic acid diethylamide (LSD) 
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increases Glu levels in PFC, an effect that is blocked by a selective 5-HT2A 

antagonist (Muschamp, Regina, Hull, Winter, & Rabin, 2004).  Glu is proposed to 

modulate the release of DA, as stimulation of NMDA receptors within PFC 

decreases DA release in the same region (Del Arco & Mora, 2001).  

Furthermore, antagonism of NMDA receptors within PFC increases DA levels 

within NAc (Del Arco, Segovia, & Mora, 2008).  

Glutamatergic activity is important in learning (see Riedel et al., 2003 for a 

comprehensive review), and is hypothesized to be abnormal in several 

psychiatric conditions, including ADHD (MacMaster, Carrey, Sparkes, & 

Kusumakar, 2003).  Also, evidence suggests a role for Glu in the initiation, 

maintenance, and relapse of abuse-related behaviors (see Kalivas, 2009 for a 

review).  

Some evidence suggests a role for Glu in impulsive choice.  Antagonism 

of mGluR1 receptors decreases sensitivity to delayed reinforcement (Sukhotina 

et al., 2008).  Furthermore, administration of the mGluR2/3 receptor agonist 

LY379268 attenuates 5-HT2A-induced impulsive choice, although administration 

of LY379268 alone does not alter discounting (Wischof et al., 2011).  Blockade of 

NMDA receptors with the noncompetitive antagonists ketamine and/or 

memantine increase impulsive choice (Cottone et al., 2013; Floresco et al., 2008; 

but see Oberlin, Bristow, Heighton, & Grahame, 2010).  However, interpreting the 

results obtained by Cottone et al. (2013) and Floresco et al. (2008) is difficult 

because ketamine and memantine inhibit 5-HT receptors (Kapur & Seeman, 
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2002; Rammes, Rupprecht, Ferrari, Zieglgänsberger, & Parsons, 2001).  Overall, 

more work is needed to elucidate the role of Glu in impulsive choice.  

Overview of the Current Experiments 

Due to the complexity of impulsive decision making, there is a need to 

elucidate the underlying neuromechanisms of this facet of impulsivity.  

Understanding the precise role of Glu and DA in this behavior may shed light as 

to why increased impulsive choice is a predictor and consequence of substance 

use disorders.  Although NAcc is consistently shown to mediate impulsivity, it is 

unclear which neurotransmitters within this region are involved in discounting.  

Thus, the overall goal of the current experiments was to elucidate the role of 

NAcc glutamatergic and dopaminergic systems in mediating impulsive choice.  

 Studies using systemic drug administration have examined the role of DA 

receptors in discounting performance.  Although there are some discrepancies, 

findings generally support the hypothesis that increasing DA levels decreases 

impulsive decision making.  However, the role of Glu in delay discounting is not 

as clear.  Therefore, Experiment 1 was conducted to further clarify the role of 

ionotropic Glu receptors in impulsive decision making.  The effects of the 

noncompetitive NMDA channel blocker MK-801 and the AMPA receptor 

antagonist 6-cyano-7-nitroquinoxaline-2,3-dione disodium salt hydrate (CNQX) 

on delay discounting performance were examined.  It was hypothesized that 

blocking NMDA and AMPA receptors would increase impulsive choice.  
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  Experiment 2 was conducted to determine if NMDA receptor and 

dopamine transporter expression differed in HiI and LoI animals.  DAT was 

selected because drugs used to treat impulse control disorders exert their 

therapeutic effects by blocking DAT (see Biederman & Faraone, 2005 for a 

review).  The hypothesis was that high impulsive animals would have decreased 

NMDA receptor, but increased DAT, expression within NAcc relative to low 

impulsive animals.  

 The goal of Experiment 3 was to determine the role of NAcc NMDA and 

DA receptors in mediating impulsive choice.  Furthermore, the goal was to 

determine if NR2B containing NMDA receptors are important for controlling 

impulsive choice.  One group of rats received intra-NAcc bilateral infusions of the 

Glu-selective ligands MK-801, AP-5 (NMDA competitive antagonist), ifenprodil 

(NR2B antagonist), and CNQX.  Another group of rats received the DA D1-like 

ligands SKF 38393 (agonist) and SCH 23390 (antagonist) and the DA D2-like 

ligands quinpirole (agonist) and eticlopride (antagonist).  There were two major 

hypotheses.  First, antagonism of NMDA receptors, specifically NR2B containing 

receptors, would decrease impulsive choice.  Second, antagonism of D1-like and 

D2-like receptors would increase impulsive choice.  
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Chapter 2: Experiment 1 

Introduction  

 Although evidence shows that 5-HT and DA receptors are involved in 

impulsive choice (e.g., Cardinal et al., 2000; Floresco et al., 2008; Koffarnus et 

al., 2011; Liu et al., 2004; van Gaalen et al., 2006b; Winstanley et al., 2005), the 

specific role of iGluRs in this task is unknown.  Some evidence suggests that 

blockade of NMDA receptors with the noncompetitive antagonists ketamine and 

memantine increase impulsive choice (Cottone et al., 2013; Floresco et al., 

2008).  However, ketamine and memantine interact with 5-HT receptors (Kapur & 

Seeman, 2002; Rammes et al., 2001), thus complicating the results of these 

studies.  This study was performed to further clarify the role of NMDA receptors 

in impulsive choice by testing the effects of the noncompetitive NMDA receptor 

antagonist MK-801 in delay discounting.  To determine the potential role of 

AMPA receptors in delay discounting, a subset of rats were treated with the 

AMPA receptor antagonist CNQX.      

Materials and Methods 

Animals 

 Twelve male Sprague Dawley rats were obtained from Harlan Industries 

(Indianapolis, IN).  They were acclimated to a colony room held at a constant 

temperature and handled for 5 days upon arrival.  Rats had no prior operant 

training before the current experiment; however some were treated with 

amphetamine (1.0 mg/kg; 4 injections) or saline (4 or 8 injections) during 
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adolescence in a previous experiment.  Amphetamine treatment during 

adolescence did not significantly alter discounting of delayed or probabilistic 

reinforcement in the current study (data not shown).  Rats were individually 

housed during the current experiment.  Light and dark phases were on a 12:12 h 

cycle, and all experiments occurred in the light phase.  Rats were food restricted 

(approximately 80% of free feed body weight) during behavioral studies.  All 

procedures were in accordance with the “Guide for the Care and Use of 

Laboratory Animals” (National Research Council, 2011) and were approved by 

the Institutional Animal Care and Use Committee at the University of Kentucky.  

Drugs 

(+)-MK-801 hydrogen maleate and 6-cyano-7-nitroquinoxaline-2,3-dione 

disodium salt hydrate (Sigma, St. Louis, MO) were prepared in sterile 0.9% NaCl 

(saline) and subcutaneously injected in a volume of 1 ml/kg.  The doses were 

calculated based on salt weight.    

Apparatus  

 Operant conditioning chambers (28 × 21 × 21 cm; ENV-008; MED 

Associates, St. Albans, VT) located inside sound-attenuating chambers (ENV-

018M; MED Associates) were used.  The front and back walls of the 

experimental chambers were made of aluminum, while the side walls were made 

of Plexiglas.  There was a recessed food tray (5 x 4.2 cm) located 2 cm above 

the floor in the bottom-center of the front wall.  An infrared photobeam was used 

to record headentries into the food tray. A 28-V white cue light was located 6 cm 
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above each response lever.  A white houselight was mounted in the center of the 

back wall of the chamber.  All responses and scheduled consequences were 

recorded and controlled by a computer interface.  A computer controlled the 

experimental session using Med-IV software. 

Procedure  

Rats were given 2 days of magazine training, in which sucrose-based 45 

mg pellets (F0021 dustless precision pellet, Bio-Serve, Frenchtown, NJ) were 

noncontingently delivered into the food tray.  These sessions were used to 

habituate rats to the operant chamber. Following magazine training, rats were 

given lever press training.  Each session began with illumination of the 

houselight.  A head entry into the food hopper resulted in presentation of one 

lever.  Levers were presented semi-randomly, with no more than two consecutive 

presentations of the same lever.  A response on either lever resulted in delivery 

of one sucrose pellet.  Pellets were also delivered noncontingently on a random 

time 100-sec schedule of reinforcement.  Following a response on either lever, 

the houselight was extinguished, and the lever was retracted for 5 sec.  After 5 

sec, the houselight was illuminated.  Each session lasted 30 min.  

 After 3 sessions, rats received reward magnitude discrimination training, 

which consisted of 40 trials.  Each trial lasted 40 sec and began with illumination 

of the houselight.  A headentry into the food hopper extended one of the levers 

(semi-randomly presented, with no more than two consecutive presentations of 

the same lever).  A response on one lever resulted in immediate delivery of one 
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pellet, whereas a response on the other lever resulted in immediate delivery of 

four pellets (the lever associated with the large reward magnitude was 

counterbalanced across rats).  Following a response, the houselight was 

extinguished, and the lever was retracted for the remainder of the trial.  If a 

response was not made within 10 sec, the trial was scored as an omission, and 

the houselight was extinguished for the remainder of the trial.  After 7 days of 

reward magnitude discrimination training, rats were trained in a delay discounting 

task.    

 Delay discounting sessions consisted of 5 blocks of 9 trials, and each trial 

lasted 60 sec.  The first 4 trials in a block were forced-choice trials, in which only 

one lever was semi-randomly presented (no more than 2 consecutive 

presentations of the same lever).  The last 5 trials were free-choice trials, in 

which both levers were extended.  As in reward magnitude discrimination 

training, a response on one lever always resulted in immediate delivery of one 

food pellet.  A response on the other lever resulted in delivery of 4 pellets; 

however, the delay to the delivery of the large magnitude reward increased 

across blocks of trials (0, 5, 10, 20, 50 sec).  Following a response on either 

lever, the houselight was extinguished, and the lever was retracted for the 

remainder of the trial.  If a response was not made within 10 sec, the trial was 

scored as an omission, and the houselight was extinguished for the remainder of 

the trial.  

 After training, rats received various doses of the NMDA receptor 

antagonist MK-801 (0, 0.01, 0.03, 0.1, or 0.3 mg/kg, s.c.) 15 min prior to the 
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session.  The doses and pretreatment time were chosen based on previous work 

(Almasi-Nasrabadi et al., 2012; Fredriksson & Archer, 2002; Wooters, Dwoskin, 

& Bardo, 2011).  A subset of rats (n = 6) received additional training in the delay 

discounting task before receiving various doses of the AMPA receptor antagonist 

CNQX (0, 1, 3, or 5.6 mg/kg, i.p.) 20 min prior to the session.  The doses and 

pretreatment time were chosen based on previous work (Bäckström & Hyytiä, 

2004; Wooters et al., 2011).  In each experiment, pretreatments occurred once 

every 4 days, and dose order was randomized.  

Statistical Analyses 

To determine if MK-801 or CNQX altered delay discounting, two analyses 

were used.  First, the hyperbolic discounting function was used and was defined 

with the equation V = A/(1+kX), where V is the subjective value of the reinforcer, 

A is reinforcer amount, k is the rate of discounting, and X represents the delay to 

reinforcer delivery (Mazur, 1987).  Second, area under the curve (AUC) was 

calculated as previously described (Myerson et al., 2001).  The delay and 

subjective value for each data point were first normalized.  Delay was expressed 

as a proportion of the maximum delay, and the subjective value was expressed 

as a proportion of the nominal amount.  These normalized values were used as x 

coordinates and y coordinates, respectively, to construct a graph of the 

discounting data.  Vertical lines were drawn from each data point to the x axis, 

subdividing the graph into a series of trapezoids.  The area of each trapezoid is 

equal to (x2 – x1)[(y1 + y2)/2], where x1 and x2 are successive delays, and y1 and 

y2 are the subjective values associated with these delays.  The area under the 
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discounting function is equal to the sum of the areas of these trapezoids.  AUC 

values range from 0 to 1, with values closer to 0 indicating steeper discounting 

and values closer to 1 representing shallower discounting.  

K parameter estimates (log transformed) and AUCs were analyzed with 

repeated measures analyses of variance (ANOVA), with treatment as a within-

subjects factor.  Main effects were probed with Bonferroni post hoc tests.  

Cohen’s f was calculated as a measure of effect size, with 0.10, 0.25, and 0.40 

defined as small, medium, and large, respectively (Cohen, 1988).  Because 

omissions and A parameter estimates were not normally distributed, these data 

were analyzed with Friedman tests.  Main effects were probed with Wilcoxon 

signed-ranked post hoc tests.  Startisitical significance was defined as p < .05 in 

all cases, except for the use of Wilcoxon signed-ranked post hoc test, in which a 

Bonferroni adjustment was used to correct for multiple comparisons.  

Results 

Figure 2.1 shows the proportion of choices for the delayed reinforcer 

following all doses of MK-801 (Figure 2.1A) and CNQX (Figure 2.1B).  The 

proportion of choices for the large delayed reinforcer decreased as function of 

the delay to receiving reinforcement, although the highest doses of MK-801 (0.1 

and 0.3 mg/kg) flattened the discounting function.  The flattening of the 

discounting function following MK-801 (0.1 and 0.3 mg/kg) can be attributed to a 

loss in schedule control, as these doses significantly increased omissions (χ2(2) = 

41.02, p < .05; Figure 2.2A).  The highest dose of MK-801 (0.3 mg/kg) disrupted 
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behavior across all blocks of trials, whereas the 0.1 mg/kg dose suppressed 

behavior in the first three blocks of delay discounting (data not shown).  Because 

the higher doses of MK-801 produced a general suppression in behavior, 

hyperbolic discounting functions could not be generated for all animals; thus, 

these doses were excluded from subsequent analyses of parameters A and k, as 

well as AUC.  CNQX did not significantly alter omissions (Figure 2.2B), so each 

dose (1, 3, 5.6 mg/kg) was included in all subsequent analyses.  

Parameters k and A were derived and plotted in Figure 2.3 and Figure 2.4, 

respectively, for each drug dose, except for the two highest doses of MK-801 (0.1 

and 0.3 mg/kg).  MK-801 (0.03 mg/kg) decreased sensitivity to delayed 

reinforcement (F(2, 22) = 5.04, p < .05, Cohen’s f = .67; Figure 2.3A).  The 

overall nonparametric analysis indicated that MK-801 also increased sensitivity to 

reinforcer magnitude in the delay discounting task (χ2(2) = 7.64, p < .05); 

however, post hoc tests revealed no significant differences between doses (p’s > 

.025, Bonferroni correction; Figure 2.4A).  CNQX did not alter sensitivity to 

delayed reinforcement (Figure 2.3B) or reinforcer magnitude (Figure 2.4B).  

Figure 2.5 shows AUCs for each drug dose, except for the highest dose of 

MK-801 (0.3 mg/kg; this dose was excluded because AUCs were virtually 0 for 

all animals).  Repeated measures ANOVA revealed that MK-801 (0.03 mg/kg) 

significantly increased AUCs (F(2, 22) = 6.35, p < .01, Cohen’s f = .77; Figure 

2.5A), whereas CNQX did not significantly alter AUCs (Figure 2.5B). 
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Discussion  

There were two important findings from the current experiment.  First, 

NMDA receptor blockade with MK-801 dose-dependently decreased sensitivity to 

delayed reinforcement.  The decrease in sensitivity occurred at a dose of MK-801 

(0.03 mg/kg) that did not alter omissions, suggesting a specific effect on choice 

behavior.  Second, AMPA receptor blockade did not alter sensitivity to delayed 

reinforcement.  Together, these results demonstrate a differential involvement of 

NMDA and AMPA receptors in delay discounting, with NMDA receptors playing a 

more critical role.  

The current results show that the non-competitive NMDA receptor 

antagonist MK-801 decreases sensitivity to delayed reinforcement (k parameter).  

This finding contrasts with previous studies showing that the non-competitive 

antagonists ketamine and memantine increase delay discounting (Cottone et al. 

2013; Floresco et al. 2008).  However, in addition to the different NMDA 

antagonists used, a number of methodological differences exist which prevent 

direct comparisons across studies.  For example, in contrast to the current study, 

Cottone et al. (2013) used an adjusting delay procedure, whereas the current 

study used a progressive discounting procedure derived from Evenden and Ryan 

(1996).  Interpreting results from the adjusting delay procedure used by Cottone 

et al. (2013) is difficult because the dependent variable confounds sensitivity to 

delayed reinforcement and reinforcer magnitude, which are proposed to 

independently influence discounting of a reinforcer (Ho, Mobini, Chiang, 

Bradshaw, & Szabadi, 1999).  Additionally, there is evidence to suggest that 
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animals trained in an adjusting delay procedure may not be sensitive to the 

adjusting delay to reinforcement (Cardinal et al., 2002).  Although Floresco et al. 

(2008) used a similar discounting procedure as the current study, a maximum 

delay of 6.5 sec was imposed, which is considerably shorter than the maximum 

delay used in the current study (50 sec).  Importantly, ketamine administration 

produced a parallel negative shift in the discounting curve at each delay, 

suggesting that sensitivity to reinforcer magnitude, but not the rate of discounting, 

was altered.  Future studies employing discounting functions may be better 

suited to determine the effect of various drug treatments on sensitivity to 

reinforcer amount and/or sensitivity to delayed reinforcement within discounting 

tasks.  

Beyond these methodological differences, an important pharmacological 

consideration for comparing results across studies is that MK-801, ketamine, and 

memantine show differential selectivity for non-NMDA receptors.  For example, in 

contrast to MK-801, ketamine acts at sigma receptors (Robson, Elliott, 

Seminerio, & Matsumoto, 2012) and opioid receptors (Gupta, Devi, & Gomes, 

2011).  Similarly, in contrast to MK-801, memantine reduces the physical signs of 

opiate withdrawal (Maldonado, Cauli, Rodriguez-Arias, Aguilar, & Minarro, 2003).  

Ketamine also acts as an antagonist at 5-HT2 receptors (Kapur & Seeman, 

2002), and memantine blocks 5-HT3 receptors (Rammes et al., 2001), although 

antagonism of 5-HT receptors typically does not increase the rate of discounting 

(Hadamitzky et al., 2009; Liu et al., 2004; Talpos et al., 2006).  MK-801 also has 

non-NMDA activity, as it inhibits nicotinic acetylcholine receptors (Amador & 
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Dani, 1991; Briggs & McKenna, 1996); however, blockade of nicotinic receptors 

does not alter discounting of delayed reinforcement (Mendez et al., 2012).   

Another important consideration is that memantine and MK-801 block 

NMDA receptor channels in different ways and show differential affinity for 

synaptic and extrasynaptic NMDA receptors.  Specificially, memantine reduces 

NMDA receptor-mediated excitatory postsynaptic potentials in a voltage-

dependent manner, whereas the effects of MK-801 on postsynaptic potentials 

appear to be less voltage-dependent (Frankiewicz, Potier, Bashir, Collingridge, & 

Parsons, 1996).  Furthermore, memantine shows fast blocking and unblocking 

kinetics, whereas MK-801 shows slow blocking and unblocking kinetics (see 

Danysz, Parsons, Kornhuber, Schmidt, & Quack, 1997 for a review).  Finally, 

memantine preferentially blocks extrasynaptic NMDA receptors, whereas MK-

801 blocks extrasynaptic and synaptic NMDA receptors (Xia et al., 2010).  Thus, 

the different pharmacological profiles of memantine and MK-801 may account for 

the differential effects observed in delay discounting.  

As for DA activity, previous work has shown that acute administration of 

MK-801 (0.03 and 0.1 mg/kg) increases DA levels in PFC (Tsukada et al., 2005).  

Interestingly, drugs that increase DA levels typically decrease sensitivity to 

delayed reinforcement (Broos et al., 2012a; Cardinal et al., 2000; de Wit et al., 

2002; Pitts & McKinney, 2005; van Gaalen et al., 2006b; Winstanley et al., 2003).  

Thus, the decrease in discounting observed following MK-801 administration 

might be explained from its interaction with the prefrontal DA system.  
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Interpreting AUCs can be problematic because this measure does not 

take into consideration sensitivity to reinforcer magnitude.  For example, AUCs 

for MK-801 (0.1 mg/kg) and vehicle did not differ significantly, which might 

suggest that MK-801 did not alter task performance at this dose.  However, 0.1 

mg/kg MK-801 flattened the discounting curve, demonstrating a general 

disruption in task performance at the 0 sec delay.  Overall, these results show 

that AUCs do not always describe discounting performance accurately when 

sensitivity to reinforcer magnitude is altered.   

 In conclusion, results from the current study show that NMDA and AMPA 

receptors differentially mediate discounting of delayed reinforcement.  Blockade 

of NMDA receptors with the non-competitive antagonist MK-801 decreased 

sensitivity to delayed reinforcement, whereas antagonism of AMPA receptors 

with CNQX did not alter delay discounting.  Understanding the precise role of 

glutamate systems might be beneficial in developing treatments for disorders 

characterized by increased impulsivity, such as drug abuse. 
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Figure 2.1. Mean (± SEM) proportion of choices for the large magnitude 
reinforcer as a function of the delay to receiving reinforcement following 
pretreatments with MK-801 (Panel A) and CNQX (Panel B).  
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Figure 2.2. Mean (± SEM) omissions during free-choice trials following 
pretreatments with MK-801 (A) and CNQX (B).  *p < .05, relative to vehicle.  
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Figure 2.3. Mean (± SEM) parameter estimate k values (log transformed) 
following pretreatments with MK-801 (A) and CNQX (B).  *p < .05, relative to 
vehicle. 
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Figure 2.4. Mean (± SEM) parameter estimate A values following pretreatments 
with MK-801 (A) and CNQX (B). 

 

0 0.030.01
0

0.80

0.85

0.90

0.95

1.00
A

MK-801 Dose (mg/kg)

A
 p

ar
am

et
er

0 1.0 3.0 5.6
0

0.80

0.85

0.90

0.95

1.00
B

CNQX Dose (mg/kg)

A
 p

ar
am

et
er



 

	
  

	
   46 

 

Figure 2.5. Mean (± SEM) area under the curve (AUC) values following 
pretreatments with MK-801 (A) and CNQX (B).  *p < .05, relative to vehicle.  Note 
that MK-801 (0.1 mg/kg) is not connected to the line in the graph because this 
dose was not used in analyses due to the large increase in omissions. 
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Chapter 3: Experiment 2 

Introduction  

The results from Experiment 1 showed that blockade of NMDA receptors 

with MK-801 decreased impulsive choice.  However, it is unknown if NMDA 

receptor densities are altered in animals that show differential sensitivity to 

delayed reinforcement.  Therefore, the goal of the present experiment was to use 

in vitro receptor autoradiography to quantify NMDA receptor density in the NAcc.  

This region was chosen because it has been consistently shown to be involved in 

impulsive choice (Bezzina et al., 2007; Cardinal et al., 2001; da Costa Araújo et 

al., 2009; Valencia-Torres et al., 2012), and NAcc NMDA receptors play a critical 

role in addiction (see Kalivas, 2009 for a review).  Because damage to the 

NAcSh does not alter delay discounting (Pothuzien et al., 2005), this region was 

examined as a negative control.   

A secondary goal of the present experiment was to determine if DAT is 

altered in HiI and LoI impulsive rats.  DAT was also examined because 

psychostimulant medications exert their therapeutic effects by blocking DAT (see 

Biederman & Faraone, 2005 for a review).  Furthermore, there is evidence that 

overexpression of DAT within NAc leads to increased impulsive decision making 

in a delay discounting task (Adriani et al., 2009).  The hypothesis for this 

experiment was that HiI animals would have decreased NMDA receptor, but 

increased DAT, expression within NAcc relative to LoI animals.  
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Materials and Methods 

Animals 

 A total of 24 experimentally naïve (i.e., have not received any 

pharmacological treatments) male, Sprague Dawley rats were obtained from 

Harlan Industries (Indianapolis, IN).  Rats weighed approximately 250-275 g 

upon arrival to the laboratory and were housed individually.  Rats were 

acclimated to a colony room held at a constant temperature and were handled for 

5 days upon arrival.  Light and dark phases were on a 12:12 h cycle, and all 

experiments occurred during the light phase.  Rats were food restricted 

(approximately 80% of free feed body weight) 3 days before the beginning of 

behavioral training, and rats remained on food restriction during the remainder of 

the study, unless otherwise noted.  

Apparatus 

 The apparatus was the same as described in Experiment 1.  

Procedure 

 Pre-training was similar to the training described in Experiment 1, with one 

exception.  During the initial lever press training, sessions ended after 30 min or 

following 40 trials (20 trials for each lever), whichever occurred first.  The 

magnitude discrimination and delay discounting sessions were conducted as 

described in Experiment 1.  
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Following 28 sessions of delay discounting, rats were killed, and brains 

were removed and flash-frozen in chromasolv (Sigma Aldrich; St. Louis, MO) on 

dry ice and stored at -80°C until sectioning was completed.  Coronal brain 

sections (16 µm) were taken and used for in vitro receptor autoradiography.  

For NMDA receptor autoradiography, sections were first preincubated for 

30 min at room temperature (RT) in buffer containing 5 mM Tris HCL and 2.5 mM 

CaCl2 (pH 7.4), then incubated for 90 min at room RT in fresh buffer containing 

10 nM [3H]MK-801, 5 µM glutamic acid, 100 µM glycine, and 5 µM spermidine.  

After incubation, slides were washed three times in ice cold 5 mM Tris-HCl buffer 

for 20 min, followed by one wash in 0.5 mM Tris-HCl buffer and one wash in 

double distilled water.  Slides were air dried and stored overnight before filming.  

Slides containing the brain sections were placed into a light-proof cassette and 

exposed to Kodak film.  Films were developed following 6 weeks of exposure.    

For DAT autoradiography, sections were preincubated for 15 min at RT in 

buffer containing 50 mM Tris-HCL, 120 mM NaCl, and 5 mM KCl (pH 7.4), then 

incubated for 120 min in fresh buffer containing 50 pM [125I]-RTI-121, 120 mM 

NaCl, 5 mM KCl, .001% ascorbic acid, .025% BSA, and 1 µM fluoxetine.  After 

incubation, slides were washed four times in ice cold 50 mM Tris-HCl buffer for 

30 min, followed by one wash in 5 mM Tris-HCl buffer and one wash in double 

distilled water.  Slides were air dried and stored overnight before filming.  Slides 

containing the brain sections were placed into a light-proof cassette and exposed 

to Kodak film. Films were developed following 3 days of exposure.   



 

	
  

	
   50 

For NMDA receptor and DAT autoradiography, [3H]-MK-801 and [125I]-RTI-

121 binding data were analyzed with Image J (http://imagej.nih.gov/ij).  NAcc and 

NAcSh in each hemisphere were outlined manually, and mean binding density 

was calculated for each individual animal (4-6 coronal sections were analyzed for 

each animal). Binding densities in the left and right hemisphere were averaged to 

form one value for each animal.  

Statistical Analyses 

 For the autoradiography experiment, only the top third of impulsive rats 

(HiI; n =8) and bottom third of impulsive rats (LoI; n = 7; one brain for a LoI rat 

was destroyed during extraction) were used in data analysis.  To ensure that 

discounting in rats selected as HiI and LoI was different, parameter estimates k 

(log transformed; note: there were a couple of instances in which an animal 

chose the large magnitude reinforcer every single free-choice trial; therefore, 

their log-transformed k value had to be arbitrarily set at -5.0) and A were 

analyzed with a mixed-factor ANOVA, with session block (7 levels; 7 4-day 

blocks) as a within-subjects factor and impulsivity (HiI vs. LoI) as a between-

subjects factor (note: separate ANOVAs were conducted for k and A).  

For NMDA receptor and DAT binding, mean [3H]-MK-801 and [125I]-RTI-

121 binding densities in the NAcc and NAcSh were compared between HiI and 

LoI rats with independent-samples t tests.  Statistical significance was set at p < 

.05 in all cases.   
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Results 

 Figure 3.1 shows discounting performance in HiI and LoI rats at different 

time points during training.  During training, the proportion of choices for the 

large, delayed reinforcer decreased as a function of delay for both HiI and LoI 

rats, although HiI rats responded less for the large magnitude reinforcer relative 

to LoI rats as the delay to its delivery increased.  Figure 3.2 shows parameter 

estimates of k (log transformed) and A in HiI and LoI rats across 4-day blocks.  

For k (log transformed) parameter estimates, results from the mixed-factor 

ANOVA indicated main effects of session block (F(6, 84) = 6.96, p < .05, ηp
2 = 

.33) and impulsivity (F(1, 14) = 12.79, p < .05, ηp
2 = .48).  The session block × 

impulsivity interaction approached statistical significance (F(6, 84) = 2.17, p = 

.054, ηp
2 = .13).  These results show that across training, both HiI and LoI rats 

became more sensitive to delay; however, HiI rats showed greater sensitivity to 

delay reinforcement relative to LoI across training (Figure 3.2A).  For A 

parameter estimates, results from the mixed-factor ANOVAs revealed a main 

effect of impulsivity (F(1, 14) = 4.80, p < .05, ηp
2 = .26; Figure 3.2B).  Overall, HiI 

rats were less sensitive to reinforcer magnitude relative to LoI rats.  This 

difference was most pronounced during the first three session blocks.  A 

separate Mann-Whitney t test was conducted to compare A parameter estimates 

in HiI and LoI rats during the final block of sessions.  Results from the t test 

revealed no differences in sensitivity to reinforcer magnitude.     

  Figure 3.3 shows a schematic of the NAcc and NAcSh, and Figure 3.4 

shows representative autoradiograms for [3H]-MK-801 (Panel A) and [125I]-RTI-
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121 binding (Panel B).  For NMDA receptor binding (Figure 3.5A), there were no 

differences between HiI and LoI rats in NMDA receptor binding within NAcc or 

NAcSh.  

For DAT binding (Figure 3.5B), there were no differences between HiI and LoI 

rats in DAT binding within NAcc or NAcSh.  

Discussion 

 In the current experiment, there were no statistically significant differences 

in NMDA receptor or DAT expression in HiI and LoI rats.  Overall, these results 

suggest that differences in delay discounting do not result from baseline 

differences in NAc NMDA receptor or DAT expression.  

 There is a growing interest in the role of Glu, particularly the NMDA 

receptor, in impulse control disorders such as attention deficit hyperactivity 

disorder (ADHD; see Chang, Lane, & Tsai, in press for a recent review).  A 

recent pilot study showed that the noncompetitive NMDA receptor antagonist 

memantine is efficacious in reducing the inattentive and hyperactivity subtypes of 

ADHD (Surman et al., 2013).  Also, atomoxetine, a norepinephrine reuptake 

inhibitor, acts as an NMDA receptor antagonist at clinically relevant 

concentrations (Ludolph et al., 2010).  Recent evidence suggests that drugs 

currently used to treat ADHD decrease NMDA receptor expression (Udvardi et 

al., 2013; Urban, Li, & Gao, 2013).     

Given the growing interest in NMDA receptors in impulsivity, the current 

experiment sought to determine if NMDA receptor binding is altered in HiI and 
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LoI impulsive rats.  The results showed that NMDA receptor density within NAcc 

and NAcSh did not differ significantly in HiI and LoI rats.  Considering NMDA 

receptors are upregulated following MK-801 administation (McDonald, 

Silverstein, & Johnston, 1990), the hypothesis of the current experiment was that 

HiI rats would have decreased NMDA receptor expression in NAcc relative to LoI 

rats.  The current results suggest that differential sensitivity to delayed 

reinforcement does not result from baseline differences in NMDA receptor 

expression in NAc.   

Interpreting the current results is somewhat difficult for a couple of 

reasons.  First, NMDA receptors are composed of different subunits: NR1 and 

NR2 (A-D; see Ozawa et al., 1998).  Using the current protocol, [3H]MK-801 

binding does not show selectivity for NMDA receptor NR2 subunits.  Examining 

NMDA subunit expression (e.g., using [3H]ifenprodil to target NR2B containing 

receptors) in HiI and LoI rats may provide some insight for the individual 

differences observed in delay discounting performance.  Second, MK-801 blocks 

synaptic and extrasynaptic NMDA receptors (Xia, Chen, Zhang, & Lipton, 2010). 

Synaptic NMDA receptors are functional receptors that are activated by Glu 

released during low-frequency synaptic events, whereas extrasynaptic receptors 

are not activated during low-frequency synaptic events are found at various 

locations on a neuron (see Hardingham & Bading, 2010 for a review).  Future 

work will need to determine if HiI and LoI rats differ in the number of synaptic or 

extrasynaptic NMDA receptors.  
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Studying DAT binding in the NAc was of interest because DAT is believed 

to mediate impulsive behavior, as administration of DAT inhibitors are efficacious 

in treating impulse control disorders (see Biederman & Faraone, 2005) and 

decrease impulsive choice in humans (de Wit et al., 2002; Pietras, Cherek, Lane, 

Tcheremissine, & Steinberg, 2003; Shiels et al., 2009) and animals (Baarendse & 

Vanderschuren, 2012; Broos et al., 2012; Floresco et al., 2008; Pitts & McKinney, 

2005; van Gaalen et al., 2006).  Also, DAT binding is lower in individuals with 

ADHD (Krause, Dresel, Krause, Kung, & Tatsch, 2000).  In the current 

experiment, there were no differences in DAT density within NAcc and NAcSh 

between HiI and LoI rats.  These results were somewhat surprising because 

previous studies have shown that lentiviral-mediated overexpression of DAT in 

the NAcc increases impulsive choice (Adriani et al., 2009) and that LoI rats have 

greater electrically evoked DA release within NAcc and NAcSh (Diergaarde et al., 

2008).  Despite these discrepancies, the current findings are consistent with data 

showing no correlation between impulsive choice and DAT function (as assessed 

with kinetic analysis of [3H]DA uptake) within OFC or mPFC (Marusich, Darna, 

Charnigo, Dwoskin, & Bardo, 2011).  Directly comparing the current results with 

previous studies is difficult because the methodologies used to assess the 

relationship between DAT and impulsive decision differed across studies (e.g., in 

vitro receptor autoradiography vs. electrically evoked DA release).  

One major caveat of in vitro autoradiography needs to be discussed. 

Autoradiography provides a measure of the number of receptors/transporters in a 

brain region but does not identify functional differences.  Although the number of 
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NMDA receptors or DATs did not differ in the NAcc between HiI and LoI rats, 

there is a possibility that functional differences exist.  For example, Diergaarde et 

al. (2008) found reduced DA release in mPFC and NAc of HiI rats relative to LoI 

rats.  Using alternative approaches that measure receptor/transporter function 

are needed to determine the precise phenotypic differences in HiI and LoI 

animals.  Despite this caveat, the current results show that differences in delay 

discounting are not necessarily the result of baseline differences in NAc NMDA 

receptor or DAT expression.    
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Figure 3.1. Delay discounting performance in HiI rats (Panel A) and LoI rats 
(Panel B) across session blocks (average of four sessions per block). 
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Figure 3.2. Mean (± SEM) k parameter estimates (log transformed; Panel A) and 
A parameter estimates (Panel B) in HiI rats and LoI rats across session blocks 
(average of four sessions per block). *p < .05, relative to LoI rats.  
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Figure 3.3. Schematic showing the location of NAcc (outlined in solid line) and 
NAcSh (outlined in dashed line).  
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Figure 3.4. Representative autoradiograms of [3H]-MK-801 radioligand NMDA 
receptor binding (Panel A) and [125I]-RTI-121 radioligand DAT binding (Panel B).   
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Figure 3.5. Binding densities of [3H]-MK-801 to NMDA receptors (Panel A) and 
[125I]-RTI-121 to DAT (Panel B) in HiI and LoI rats.  
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Chapter 4: Experiment 3 

Introduction  

Although MK-801 decreased impulsive choice in Experiment 1, 

interpreting the results can be difficult considered MK-801 blocks nicotinic 

acetylcholine receptors (Amador & Dani, 1991; Briggs & McKenna, 1996) and 

increases DA levels within the prefrontal cortex (Tsukada et al., 2005).  To better 

evaluate the role of Glu NMDA receptors in impulsive decision making, a drug 

that shows higher selectivity for NMDA receptors can be administered.  One such 

drug is AP-5, which is competitive antagonist at NMDA receptors (Crunelli, 

Forda, & Kelly, 1983).  

Another issue is that using MK-801 as a pharmacotherapy for impulse 

control disorders is not ideal because MK-801 disrupts learning in animals 

(Harder, Aboobaker, Hodgetts, & Ridley, 1998; Li et al., 2011; Rapanelli, Frick, 

Bernardez-Vidal, & Zanutto, 2013; van der Staay, Rutten, Erb, & Blokland, 2011) 

and is often used to model symptoms of schizophrenia (see Lim, Taylor, & 

Malone, 2012 for a review).  One potential alternative approach is to use an 

antagonist that targets a specific splice variant of the NMDA receptor, as eight 

variants of the NR1 subunit (1a-4a; 1b-4b) and four variants of the NR2 subunit 

(A-D) have been identified (Hollmann et al., 1993; Monyer et al., 1992; see 

Ozawa et al., 1998 for a review).  One such drug is ifenprodil, which selectively 

antagonizes NR2B-containing NMDA receptors (Perin-Dureau, Rachline, Neyton, 

& Paoletti, 2002).  Ifenprodil is neuroprotective in in vivo models of ischemia 

(Gotti et al., 1988), but lacks the psychomimetic-like effects observed with NMDA 
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receptor antagonists like MK-801 (Narita, Aoki, & Suzuki, 2000).  Furthermore, 

ifenprodil attenuats the rewarding effects of opiates (Ma, Yu, Guo, & Cui, 2011; 

Ma et al., 2006; Suzuki, Kato, Tsuda, Suzuki, & Misawa, 1999), suggesting that 

NR2B subunits are important mediators of the drug addiction process.  

Thus, the primary goal of Experiment 3 was to determine the effects of 

intra-NAcc infusions of MK-801, AP-5, and ifenprodil on delay discounting 

performance.  Animals also received infusions of the AMPA receptor antagonist 

CNQX.  CNQX was included as a negative control, as the results from 

Experiment 1 showed that CNQX does not alter impulsive decision making.  The 

primary hypothesis of this study was that intra-NAcc infusions of NMDA receptor 

antagonists would decrease impulsive choice.  

A secondary goal was to examine the effects of intra-NAcc infusions of 

selective DA receptor ligands on impulsive choice.  Typically, increasing DA 

levels decreases impulsive choice (e.g., Broos et al., 2012a; Cardinal, Robbins, 

& Everitt, 2000; de Wit et al., 2002; Pitts & McKinney, 2005; van Gaalen, van 

Koten, Schoffelmeer, & Vanderschuren, 2006b; Winstanley et al., 2003).  Thus, 

the hypothesis was that stimulating D1-like receptors with SKF-38393 or blocking 

D2-like autoreceptors with eticlopride would decrease impulsive choice.  

Materials and Methods 

Animals 

 A total of 24 male, individually-housed Sprague Dawley rats (Harlan 

Industries; Indianapolis, IN) were used in the experiments.  Rats weighed 
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approximately 250-275 g upon arrival to the laboratory.  Rats were acclimated to 

a colony room held at a constant temperature and were handled for 5 days upon 

arrival.  Light and dark phases were on a 12:12 h cycle, and all experiments 

occurred during the light phase.  Rats were food restricted (approximately 80% of 

free feed body weight) 3 days before the beginning of behavioral training, and 

rats remained on food restriction during the remainder of the study, unless 

otherwise noted. 

Drugs 

(+)-MK-801 hydrogen maleate, D(-)-2-amino-5-phosphonopentanoic acid, 

6-cyano-7-nitroquinoxaline-2,3-dione disodium salt hydrate, (±)-SKF-38393 

hydrochloride, (±)-SCH-23390 hydrochloride, (-)-quinpirole hydrochloride, and S-

(-)-eticlopride hydrochloride were purchased from Sigma Aldrich (St. Louis, MO).  

Ifenprodil hemitartrate was purchased from Tocris Bioscience (Ellisville, MO).  

Each drug was prepared in sterile 0.9% NaCl (saline), and concentrations were 

calculated based on salt weight.    

Apparatus  

 The apparatus was identical to the one used in the Experiment 1.  

Procedure  

 The procedures were identical to those described in Experiment 2.  
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Surgery 

 After 32 sessions of delay discounting, rats were treated with the 

nonopioid analgesic carprofen one day prior to surgery.  Rats were anesthetized 

with a mixture of ketamine, xylazine, and acepromazine (75, 7.5, and 0.75 mg/kg, 

i.p., respectively) and were secured into a stereotaxic frame.  Cannulae were 

implanted bilaterally into NAcc (+1.6 AP, ± 1.5 ML, -5.5 DV) at the 10° angle off 

the midline; Paxinos & Watson, 1998).  Following surgery, rats were treated with 

carprofen for two days.  

Microinfusions 

Rats recovered for 3-5 days and were food restricted before receiving 12 

additional training sessions in the delay discounting task.  This additional training 

was important to ensure that surgery did not alter discounting behavior.  For 

intracranial infusions, rats were gently restrained by the experimenter, and a 

stainless-steel injection cannula (33 gauge; Small Parts, Inc, Miramar, FL) was 

inserted 2 mm below the tip of the guide cannulae.  The cannulae were 

connected to 10 µl syringes (Hamilton, Reno, NV) via PE10 tubing (Small Parts, 

Inc, Miramar, FL).  The Hamilton syringes were mounted on an infusion pump 

(KDS Scientific, Holliston, MA).  Half of the rats (n = 12) received direct infusions 

of ionotropic glutamate receptor ligands MK-801 (noncompetitive NMDA channel 

blocker; 0.0, 0.3, and 1.0 µg/0.5 µl; Bakshi & Geyer, 1998; Zhang, Bast, & 

Feldon, 2000), AP-5 (competitive NMDA antagonist; 0.0, 0.3, and 1.0 µg/0.5 µl; 

Baldwin, Holahan, Sadeghian, & Kelley, 2000; Dar, 2002; Sombers, Beyene, 
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Carelli, & Wrightman, 2009), ifenprodil (NR2B subunit antagonist; 0.0, 0.3, and 

1.0 µg/0.5 µl; Parkes & Balleine, 2013; Laurent & Westbook, 2008), and CNQX 

(AMPA antagonist; 0.0, 0.2 and 0.5 µg/0.5 µl; Hitchcott & Phillips, 1997; 

Mesches, Bianchin, & McGaugh, 1996).  The other half of the rats (n = 12) 

received direct infusions of the dopamine receptor ligands SKF 38393 (D1-like 

agonist; 0.0, 0.03 and 0.1 µg/0.5 µl; Loos et al., 2010; Yates et al., under review), 

SCH 23390 (D1-like antagonist; 0.0, 0.3, and 1.0 µg/0.5 µl; Loos et al., 2010; 

Yates et al., under review; Zeeb et al., 2010), quinpirole (D2-like agonist; 0.0, 0.3, 

and 1.0 µg/0.5 µl; Yates et al., under review), eticlopride (D2-like antagonist; 0.0, 

0.3, and 1.0 µg/0.5 µl; Yates et al., under review; Zeeb et al., 2010).  Each drug 

was infused over 2 min at a rate of 0.25 µl/min.  Injectors were left in place for 1 

min following the infusion.  Rats were placed into the operant chamber 

immediately following the infusion.  Treatments were randomly administered, and 

rats were given 2 days of washout following each infusion; rats were tested in 

delay discounting during these washout days.   

Following the last day of infusions, rats were anesthetized with ketamine, 

and brains were removed and flash-frozen in chromasolv (Sigma) on dry ice and 

stored at -80°C until sectioning was completed.  Brain sections (40 µm) were 

sliced to determine the location of guide cannulae.  Probe placements were 

evaluated according to the atlas of Paxinos and Watson (1998).  Only data from 

rats with correct probe placements in NAcc were used in statistical analyses.  
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Statistical Analyses 

 To determine if implantation of guide cannulae into NAcc altered 

sensitivity to delayed reinforcement or sensitivity to reinforcer magnitude, 

discounting performance before surgery (average of final four sessions) was 

compared to discounting performance after surgery (average of final four 

sessions before first microinfusion).  Parameter estimates of k (log transformed) 

and A were analyzed with a mixed-factor ANOVA, with surgery (Pre vs. Post) as 

a within-subjects factor and experiment (Glu vs. DA) as a between-subjects 

factor.  For each individual experiment, omissions and parameter estimates from 

the hyperbolic discounting function were analyzed as described in Experiment 1. 

Results 

 Figure 4.1 shows the proportion of choices for the large, delayed 

reinforcer as a function of delay averaged across the final four sessions before 

surgery and averaged across the final four sessions after surgery, prior to the 

first microinfusion of either Glu-selective ligands or DA-selective ligands.  

Analysis of k and A parameter estimates revealed that surgery did not alter 

sensitivity to delayed reinforcement or sensitivity to reinforcer magnitude (Figure 

4.2).  Furthermore, baseline levels of discounting were similar for animals 

selected to subsequently receive Glu-selective ligands and DA-selective ligands 

(Figure 4.2).   

Figure 4.3 shows a representative image of bilateral guide cannulae 

implantation into NAcc.  Four rats in Experiment 1A (Figure 4.4) and six rats in 
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Experiment 1B (Figure 4.5) had probe placements outside of NAcc, and were 

thus excluded from further analyses  

Figures 4.6 and 4.7 show the proportion of choices for the delayed 

reinforcer following all concentrations of MK-801, AP-5, ifenprodil, and CNQX.  

The proportion of choices for the large delayed reinforcer decreased as function 

of the delay to receiving reinforcement. 

 Figures 4.8 and 4.9 show omissions following all concentrations of MK-

801, AP-5, ifenprodil, and CNQX.  AP-5 increased overall omissions (χ2(2) = 

8.00, p < .05), although Wilcoxon post hoc tests did not reveal significant 

differences between vehicle and either dose (each p > .025; Bonferroni 

correction; Figure 4.8B).  MK-801 (Figure 4.8A), ifenprodil (Figure 4.9A), and 

CNQX (Figure 4.9B) did not alter omissions.  

 Figures 4.10 and 4.11 show k parameter estimates following all 

concentrations of MK-801, AP-5, ifenprodil, and CNQX.  None of the Glu-

selective ligands produced a statistically significant change in k parameter 

estimates.   

 Figures 4.12 and 4.13 show A parameter estimates following all 

concentrations of MK-801, AP-5, ifenprodil, and CNQX.  None of the Glu-

selective ligands significantly altered sensitivity to reinforcer magnitude. 

 Figures 4.14 and 4.15 show the proportion of choices for the delayed 

reinforcer following all concentrations of SKF 38393, SCH 23390, quinpirole, and 
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eticlopride.  The proportion of choices for the large delayed reinforcer decreased 

as function of the delay to receiving reinforcement.  

Figures 4.16 and 4.17 show omissions following all concentrations of SKF 

38393, SCH 23390, quinpirole, and eticlopride.  Intra-NAcc infusions of DA-

selective ligands did not alter omissions. 

Figures 4.18 and 4.19 show k parameter estimates following all 

concentrations of SKF 38393, SCH 23390, quinpirole, and eticlopride.  None of 

the DA-selective ligands produced a statistically significant change in k 

parameter estimates.   

Figure 4.20 and 4.21 show A parameter estimates following all 

concentrations of SKF 38393, SCH 23390, quinpirole, and eticlopride.  None of 

the DA-selective ligands altered sensitivity to reinforcer magnitude.  

Discussion  

In the current experiment, intra-NAcc infusions of NMDA-selective ligands 

and DA-selective ligands did not significantly alter delay discounting.  Although 

none of the ligands infused into NAcc caused a statistically significant difference 

in the rate of discounting using traditional statistical methods, this does not mean 

that Glu and DA receptors within this region do not necessarily mediate impulsive 

choice.  Large effect sizes were reported for MK-801, ifenprodil, SKF 38393, and 

eticlopride (Cohen’s f’s > .60), indicating that these drugs decreased impulsive 

choice.  One potential reason a statistical difference was not detected for these 

drugs is the small sample sizes used in each experiment (Glu experiment: n = 8; 
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DA experiment: n = 6).  Similarly, baseline levels of impulsive choice may 

influence the effects of intra-NAcc infusions.  For example, administration of 

methylphenidate increases delay discounting in LoI rats, but decreases 

discounting in HiI rats (Perry, Stairs, & Bardo, 2008b).  Due to the relatively small 

sample sizes, examining the effects of Glu-selective and DA-selective drugs on 

discounting in HiI and LoI rats was not feasible.  

It has been argued that research needs to switch from null-hypothesis 

testing (i.e., reporting p values) to using effect sizes estimates (i.e., Cohen’s d, 

Cohen’s f, eta squared; Cumming, 2014; Kirk, 2003).  Other critics of null-

hypothesis testing argue that hypothesis testing impedes scientific progress 

(Kirk, 2003), and some have even suggested that some research findings are 

false because hypothesis testing creates bias in data interpretation (Ioannidis, 

2005).  Based on effect size estimates, the current data provide some evidence 

that blockade of NR2B containing NMDA receptors and DA receptors within 

NAcc mediate impulsive decision making.  

In Experiment 1, systemic administration of MK-801 significantly 

decreased impulsive choice.  However, intra-NAcc MK-801 infusions did not 

significantly decrease sensitivity to delayed reinforcement.  One possibility for 

this discrepancy is that direct infusion of MK-801 (1.0 µg) lesioned the NAcc (see 

Olney, Labruyere, & Price, 1989 for a discussion).  However, this interpretation 

does not seem likely, as lesions to NAcc increase impulsive choice (e.g., 

Cardinal et al., 2001).  Also, considering that the effect size estimates obtained 

for MK-801 in Experiment 1 (Cohen’s f = .67) and the current experiment 
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(Cohen’s f = .61), the current results provide some support that intra-NAcc 

infusions of MK-801 decrease impulsive choice.  

The current experiment provided some evidence that direct administration 

of ifenprodil decreased impulsive choice (Cohen’s f = .62).  Thus, the NR2B 

subunit may be an important mediator of impulsive decision making.  This 

interpretation is further supported by the finding that intercereboventricular and 

intra-NAcc administration of the competitive NMDA receptor antagonist AP-5 

does not affect delay discounting (Cottone et al., 2013; current experiment).  

Considering that selective blockade of NR2B subunits does not produce 

amnesiac or dissociative effects like noncompetitive channel blockers (e.g., MK-

801; Narita et al., 2000), ifenprodil may be a promising pharmacotherapy for 

treating impulse control disorders.  Furthermore, ifenprodil has been shown to be 

effective in attenuating the rewarding effects of opiates (Ma et al., 2011; Ma et 

al., 2006; Suzuki et al., 1999).  Future studies will need to test the efficacy of 

ifenprodil in reducing the reinforcing effects of psychostimulants, although one 

report showed that ifenprodil blocks the discriminative stimulus effects of cocaine 

in monkeys (Fujiwara et al., 2007). Furthermore, future work is needed to test the 

effectiveness of therapeutically relevant doses of ifenprodil in reducing 

impulsivity.    

DA systems are thought to play a critical role in impulsive choice, 

especially in delay discounting (see Winstanley, 2011 for a review).  Considering 

that medications used to treat impulse control disorders release DA levels (see 

Biederman & Faraone, 2005) and decrease impulsive decision making (Broos et 
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al., 2012a; Cardinal et al., 2000; de Wit et al., 2002; Pitts & McKinney, 2005; van 

Gaalen et al., 2006b; Winstanley et al., 2003), it was hypothesized that 

increasing SKF 38393 (D1-like agonist) and eticlopride (D2-like antagonist) 

would decrease impulsive choice.  Increasing DA levels by stimulating D1-like 

receptors and inhibiting D2-like autoreceptors did not significantly alter delay 

discounting.  Similar to the results with MK-801 and ifenprodil, the effect sizes 

reported for SKF 38393 (Cohen’s f = .64) and eticlopride (Cohen’s f = .61) were 

large, which provides some support for the hypotheses.  Regardless, these data 

do not corroborate previous research examining the role of DA receptor ligands 

in impulsive decision making.  A previous study found increased discounting 

following intra-mPFC infusions of SKF 38393 (Loos et al., 2010).  Loos et al. 

(2010) also observed increases in impulsive choice after blocking D1-like 

receptors with SCH 23390, an effect not observed in the current experiment.  

Given that the discounting procedure used by Loos et al. (2010) was similar to 

the current procedure, it is not entirely clear why discounting was differentially 

altered following SKF 38393 administration.  However, intra-mPFC administration 

appears to have produced a slight decrease in choice for the large magnitude 

reinforcer when its delivery was immediate (Loos et al., 2010), an effect observed 

following systemic administration (Koffarnus et al., 2011).  Thus, D1 receptors 

within mPFC and NAcc may differentially mediate sensitivity to reinforcer amount 

and delayed reinforcement.   

DA D2-like receptors are autoreceptors, which decrease DA synthesis and 

packaging (Onali, Oliansa, & Bunse, 1988; Pothos, Davila, & Sulzer, 1998).  
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Therefore, blocking these receptors should decrease the rate of discounting. 

However, previous studies have observed increases in impulsive choice following 

intra-mPFC or intra-OFC administration of the D2-like receptor antagonists 

raclopride and eticlopride (Pardey et al., 2013; Zeeb et al., 2010).  One 

discrepancy between the current experiment and previous studies is the use of a 

discriminative stimulus to signal the delay to delivery of the large magnitude 

reinforcer.  In the current experiment, no cue was used to signal the delay, 

whereas Pardey et al. (2013) and Zeeb et al. (2010) used a cue light.  Zeeb et al. 

(2010) found that eticlopride increased impulsive choice when a cue was used, 

whereas impulsive choice was unaltered if a cue was not used.  Thus, future 

studies are needed to understand how intra-NAcc administration of DA D2-like 

antagonists affect impulsive decision making when cues are used to signal the 

delay to reinforcement.   

One limitation to this study was the use of two concentrations for each 

drug tested.  The number of drug concentrations was limited because the 

number of microinfusions needs to be limited in order to minimize damage to the 

brain region.  Future work will be needed to assess a wider range of drug 

concentrations of NMDA and DA receptor ligands within NAcc and NAcSh to 

further elucidate the role of NAc Glu and DA systems in controlling impulsive 

choice.  Furthermore, examining the role of other neurotransmitter systems within 

NAc is merited.  For example, NAc contains 5-HT and GABA receptors (Biegon, 

Rainbow, & McEwen, 1982; Bowery, Hudson, & Price, 1987), and these 
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neurotransmitters influence impulsive decision making (Bizot et al., 1999; Liu et 

al., 2004; Zeeb et al., 2010).    

Another important consideration is that several brain regions have been 

implicated in impulsive decision making, such as OFC (Mobini et al., 2002; 

Winstanley et al., 2004b; but see Churchwell et al., 2009), mPFC (Churchwell et 

al., 2009; but see Cardinal et al., 2001), amygdala (Churchwell et al., 2009; 

Winstanley et al., 2004b), dorsal striatum (Dunnett et al., 2012), and 

hippocampus (Abela & Chudasama, 2013; Cheung & Cardinal, 2005; Mariano et 

al., 2009).  Also, DA receptors within OFC and mPFC are known to contribute to 

delay discounting performance (Loos et al., 2010; Yates et al., under review; 

Zeeb et al., 2010).  Future studies are needed to assess the role of NMDA 

receptors in other brain regions (e.g., frontal cortices and hippocampus) in 

mediating impulsive behavior.  
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Figure 4.1 Mean (± SEM) proportion of choices for the large magnitude 
reinforcer as a function of the delay to receiving reinforcement before and after 
surgery in rats subsequently given Glu-selective ligands and DA-selective 
ligands.  
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Figure 4.2 Mean (± SEM) k parameter estimates (log transformed; Panel A) and 
A parameter estimates (Panel B) before and after surgery in rats subsequently 
given Glu-selective ligands and DA-selective ligands.  
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Figure 4.3. Representative image of bilateral guide cannulae implantation into 
NAcc.  
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Figure 4.4. Schematic of coronal sections showing probe placements for rats 
infused with Glu-selective ligands. Black circles indicate probe placements within 
NAcc, whereas crosses indicate probe place placements outside of NAcc. Note 
that rats with probe placements outside of NAcc were excluded from data 
analysis. Numbers beside each plate correspond to mm anterior to bregma.  
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Figure 4.5. Schematic of coronal sections showing probe placements for rats 
infused with DA-selective ligands. Black circles indicate probe placements within 
NAcc, whereas crosses indicate probe place placements outside of NAcc. Note 
that rats with probe placements outside of NAcc were excluded from data 
analysis. Numbers beside each plate correspond to mm anterior to bregma.  
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Figure 4.6. Mean (± SEM) proportion of choices for the large magnitude 
reinforcer as a function of the delay to receiving reinforcement following intra-
NAcc infusions of MK-801 (Panel A) and AP-5 (Panel B).  

0 5 10 20 50
0.0

0.2

0.4

0.6

0.8

1.0

Saline
MK-801 0.3
MK-801 1.0

A

Delay (sec)

P
ro

po
rt

io
n 

of
 

C
ho

ic
es

 
fo

r 
La

rg
e 

R
ew

ar
d

0 5 10 20 50
0.0

0.2

0.4

0.6

0.8

1.0

Saline
AP-5 0.3
AP-5 1.0

B

Delay (sec)

P
ro

po
rt

io
n 

of
 

C
ho

ic
es

 
fo

r 
La

rg
e 

R
ew

ar
d



 

	
  

	
   80 

  

Figure 4.7. Mean (± SEM) proportion of choices for the large magnitude 
reinforcer as a function of the delay to receiving reinforcement following intra-
NAcc infusions of ifenprodil (Panel A) and CNQX (Panel B).  
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Figure 4.8. Mean (± SEM) omissions during free-choice trials following intra-
NAcc infusions of MK-801 (Panel A) and AP-5 (Panel B). 
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Figure 4.9. Mean (± SEM) omissions during free-choice trials following intra-
NAcc infusions of ifenprodil (Panel A) and CNQX (Panel B).  
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Figure 4.10. Mean (± SEM) k parameter estimates (log transformed) following 
intra-NAcc infusions of MK-801 (Panel A) and AP-5 (Panel B).  
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Figure 4.11. Mean (± SEM) k parameter estimates (log transformed) following 
intra-NAcc infusions of ifenprodil (Panel A) and CNQX (Panel B). 
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Figure 4.12. Mean (± SEM) A parameter estimates following intra-NAcc infusions 
of MK-801 (Panel A) and AP-5 (Panel B).  
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Figure 4.13. Mean (± SEM) A parameter estimates following intra-NAcc infusions 
of ifenprodil (Panel A) and CNQX (Panel B). 
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Figure 4.14. Mean (± SEM) proportion of choices for the large magnitude 
reinforcer as a function of the delay to receiving reinforcement following intra-
NAcc infusions of SKF 38393 (Panel A) and SCH 23390 (Panel B). 
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Figure 4.15. Mean (± SEM) proportion of choices for the large magnitude 
reinforcer as a function of the delay to receiving reinforcement following intra-
NAcc infusions of quinpirole (Panel A) and eticlopride (Panel B).  
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Figure 4.16. Mean (± SEM) omissions during free-choice trials following intra-
NAcc infusions of SKF 38393 (Panel A) and SCH 23390 (Panel B). 

0.0 0.03 0.1
0

1

2

3

4

5
A

SKF 38393 (microgram)

O
m

is
si

on
s

 (f
re

e-
ch

oi
ce

 tr
ia

ls
)

0.0 0.3 1.0
0

1

2

3

4

5
B

SCH 23390 (microgram)

O
m

is
si

on
s

 (f
re

e-
ch

oi
ce

 tr
ia

ls
)



 

	
  

	
   90 

  

Figure 4.17. Mean (± SEM) omissions during free-choice trials following intra-
NAcc infusions of quinpirole (Panel A) and eticlopride (Panel B).  
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Figure 4.18. Mean (± SEM) k parameter estimates (log transformed) following 
intra-NAcc infusions of SKF 38393 (Panel A) and SCH 23390 (Panel B). 
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Figure 4.19. Mean (± SEM) k parameter estimates (log transformed) following 
intra-NAcc infusions of quinpirole (Panel A), and eticlopride (Panel B).  
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Figure 4.20. Mean (± SEM) A parameter estimates following intra-NAcc infusions 
of SKF 38393 (Panel A) and SCH 23390 (Panel B). 
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Figure 4.21. Mean (± SEM) A parameter estimates following intra-NAcc infusions 
of quinpirole (Panel A) and eticlopride (Panel B).  
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Chapter 5: General Discussion 

 The primary goal of the current set of experiments was to elucidate the 

role of the glutamatergic and dopaminergic systems in impulsive choice.  The 

NAcc has been consistently linked to impulsive decision making (Bezzina et al., 

2007; Cardinal et al., 2001; da Costa Araújo et al., 2009; Pothuzien et al., 2005; 

Valencia-Torres et al., 2012); however, studies examining the role of NAcc in 

impulsive choice have relied on excitotoxic lesions.  Lesion studies do not 

indicate which specific neurotransmitter systems mediate this behavior.  

Therefore, the current experiments sought to determine if NAcc Glu and DA 

systems are a) altered in HiI and LoI animals, and b) to determine if NAcc Glu 

and DA receptors differentially alter impulsive choice.  The results from these 

studies demonstrated that: 1) systemic administration of MK-801, but not CNQX, 

decreases impulsive choice (Experiment 1); 2) differences in discounting do not 

result from baseline differences in NAc NMDA receptor or DAT expression 

(Experiment 2); and 3) intra-NAcc infusions of Glu-selective and DA-selective 

ligands do not significantly alter impulsive choice (Experiment 3).   

 In the current experiments, the term “impulsive choice” has been used to 

describe performance in delay discounting.  Although delay discounting is often 

described as a measure of impulsive choice (e.g., Ainslie, 1975; see Winstanley 

et al., 2010 for a review), some argue against this assertion.  For example, 

Blanchard, Pearson, and Hayden (2013) show that monkeys often fail to 

associate postreward delays with their choices and systematically underestimate 

the delay to reinforcement.  Blanchard et al. (2013) propose that discounting 



 

	
  

	
   96 

does not necessarily reflect impulsivity, but may reflect other unrelated mental 

processes.  Furthermore, Killeen (2011) postulates that animals do not discount 

future rewards; instead, the data observed in discounting experiments merely 

reflects decay in memory traces.   

Despite these criticisms, studying delay discounting is important because 

performance in this task is often linked to maladaptive behaviors, such as 

pathological gambling (Petry, 2001b) and substance use disorders (Bickel et al., 

1999; Coffey et al., 2003; Madden et al., 1997; Mitchell, 1999; Vuchinich & 

Simpson, 1998).  As discussed in Chapter 1, animals showing increased 

sensitivity to delayed reinforcement are more likely to acquire psychostimulant 

self-administration at a faster rate (Perry et al., 2005, 2008a), to respond more 

for drug reinforcers (Diergaarde et al., 2008; Marusich & Bardo, 2009), and to be 

more susceptible to relapse-like behaviors (Diergaarde et al., 2008).   

It should be noted that delay discounting is not the only measure of 

impulsivity that is linked to drug abuse.  As with impulsive choice, the construct of 

impulsive action (i.e., behavioral disinhibition or motor impulsivity) has received 

considerable attention in the drug abuse field.  Cocaine (Fillmore & Rush, 2002; 

Li, Milivojevic, Kemp, Hong, & Sinha, 2006) and methamphetamine (Monterosso, 

Aron, Cordova, Xu, & London, 2005) users display inhibitory deficits in a SSRT 

task relative to nonusers. Furthermore, cocaine users (Hester & Garavan, 2004; 

Kaufman, Ross, Stein, & Garavan, 2003; Verdejo-Garcia, Perales, & Perez-

Garcia, 2007) and alcoholics (Noel et al., 2007) show increased inhibitory deficits 

on a go/no-go task compared to controls.  Impulsive action is predictive of drug 
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abuse vulnerability, as rats that exhibit increased impulsivity in the 5CSRT task 

show escalation of cocaine self-administration (Dalley et al., 2007), compulsive 

cocaine self-administration (Belin, Mar, Dalley, Robbins, & Everitt, 2008), and 

reinstatement of cocaine self-administration (Economidou, Pelloux, Robbins, 

Dalley, & Everitt, 2009).  

Like impulsive choice, motor impulsivity is altered by various drugs, and 

this effect is observed in humans and animals. Alcohol generally impairs 

inhibitory control in humans (de Wit, Crean, & Richards, 2000; Easdon, Izenberg, 

Armilo, Yu, & Alain, 2005; Fillmore & Vogel-Spott, 1999; Marczinski, Abroms, 

Van Selst, & Fillmore, 2005; Marczinski & Fillmore, 2003, 2005a, b; Mulvihill, 

Skilling, & Vogel-Sprott, 1997; but see Ortner, MacDonald, & Olmstead, 2003) 

and animals (Feola et al., 2000).  Also, cocaine administration increases 

impulsive action in humans (Fillmore, Rush, & Hays, 2002) and animals (Paine & 

Olmstead, 2004; van Gaalen, Brueggeman, Bronius, Schoffelmeer, & 

Vanderschuren, 2006a; Winstanley et al., 2009).    

Although impulsive choice and impulsive action are both linked to 

substance abuse, it should be emphasized that there is evidence that these 

facets of impulsivity are dissociable.  In humans and animals, impulsive choice 

and impulsive action are not correlated (Broos et al., 2012; Marusich et al., 

2011).  Also, lesions to the subthalamic nucleus decreases impulsive choice 

(Winstanley, Baunez, Theobald, & Robbins, 2005) but increase impulsivity as 

assessed in the 5CSRT task (Baunez et al., 2001) and impair prepotent 

response inhibition (Weiner, Magaro, & Matell, 2008).  Also, damage to OFC 
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alters delay discounting performance, albeit discrepancies have been reported in 

the literature (Mar et al., 2011; Mobini et al., 2002; Kheramin et al., 2002, 2004; 

Rudebeck et al., 2006; Winstanley et al., 2004b), whereas damage to OFC does 

not affect performance in the 5CSRT task (Chudasama et al., 2003).  

Furthermore, Experiment 2 showed that HiI and LoI rats had similar DAT densitiy 

within NAc, whereas a recent study found differential NAcSh DAT density in LoI 

rats relative to HiI rats performing a 5CSRT task (Jupp et al., 2013).  

Understanding the precise underlying neuromechanisms involved in distinct 

facets of impulsivity is important for providing effective pharmacotherapies for 

those who display different types of impulsive behavior.  Results from Experiment 

3 suggest that ifenprodil may be an effective treatment for reducing impulsive 

decision making.  It is unknown if ifenprodil will reduce motor impulsivity, 

although there is evidence that blockade of NR2B subunit with Ro 63-1908 

increases impulsive action (Burton & Fletcher, 2012; Higgims, Ballard, Huwyler, 

Kemp, & Gill, 2003).  Thus, targeting NR2B subunits may not be an effective 

treatment for those who display increased motor impulsivity.  

Although the current experiments focused on delay discounting, it is worth 

mentioning that other discounting procedures exist.  Specifically, the probability 

discounting procedure has received some attention.  This procedure is similar to 

delay discounting, but the odds against obtaining the large magnitude reinforcer 

increase (i.e., the probability of obtaining the reinforcer decreases).  There is 

some dispute as to whether delay and probability discounting measure similar 

constructs of impulsivity.  It has been proposed that delay and probability 
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discounting reflect a similar underlying process (Myerson & Green, 1995; Rachlin 

et al., 1991).  In support of this proposal, the same mathematical functions (e.g., 

hyperbolic) can be used to model delay and probability discounting (Rachlin et 

al., 1991).  Also, administration of amphetamine produces similar shifts in delay 

(van Gaalen et al., 2006b; Winstanley et al., 2003) and probability discounting 

(Floresco & Whelan, 2009; St Onge & Floresco, 2009).  Furthermore, lesions to 

NAc increase the rate of discounting for delayed (Cardinal et al., 2001) and 

probabilistic reinforcement (Cardinal & Howes, 2005).   

An important consideration is that similar shifts in delay and probability 

discounting following pharmacological manipulations does not necessarily mean 

that these tasks reflect the same process.  Evidence suggests that delay and 

probability discounting involve distinct processes, with delay and probability 

discounting reflecting impulsive choice and risky decision making, respectively 

(Ainslie, 1975; Kahneman & Tversky, 1979).  Although increased delay 

discounting is postulated to reflect impulsive choice (Ainslie, 1975), decreased 

probability discounting is proposed to reflect risky decision making (Kahneman & 

Tversky, 1979).  Thus, drugs that decrease the rate of discounting of delayed 

and probabilistic reinforcement differentially alter impulsive behavior, with 

decreased delay discounting reflecting higher self control and decreased 

probability discounting reflecting increased risky decision making.  

In line with this hypothesis, there is some support that delay and 

probability discounting are dissociable, as manipulating reinforcer magnitude 

differentially alters discounting of delayed and uncertain reinforcement (Green, 
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Myerson, & Ostaszewski, 1999), and forebrain depletion of 5-HT increases 

sensitivity to delayed reinforcement without altering sensitivity to probabilistic 

reinforcement (Mobini et al., 2000).  In addition to the data collected in 

Experiment 1, a separate group of rats were administered MK-801 and CNQX 

before performing a probability discounting task.  As in delay discounting, MK-

801 (0.03 mg/kg) increased responding for the large, uncertain reinforcer, 

whereas CNQX (5.6 mg/kg) decreased responding.  Overall, these results 

suggest that iGluRs differentially mediate impulsivity, with MK-801 decreasing 

impulsive choice but increasing risky decision making and CNQX increasing 

probability discounting without altering delay discounting.  Future work will need 

to assess the effects of ifenprodil on risky decision making to determine if 

selective NR2B antagonists attenuate risky decision making. Moreover, perhaps 

probability discounting would be an alternative approach for examining the 

specific role of DA and Glu systems in impulsive decision making using the 

current autoradiographic and microinjection techniques.   

One caveat to the current studies is that the delay to the large magnitude 

reinforcer increased across each block of trials.  The rate of discounting can be 

influenced by the order in which delays/odds against are presented (e.g, 

ascending, descending, or mixed order; Fox et al., 2008; Robles and Vargas 

2007, 2008; but see Slezak and Anderson 2009).  Furthermore, drug effects can 

be dependent on the order in which delays are presented (Tanno, Maguire, 

Henson, & France, 2014).  Specifically, Tanno et al. (2014) show that 

amphetamine and methylphenidate increase choice for the large, delayed 
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reinforcer when delays are presented in an ascending order, whereas a decrease 

in choice for the large reinforcer is observed when delays are presented in a 

descending order.  One could argue that the increase in responding for the large 

magnitude reinforcer observed in Experiments 1 and 3 following NMDA and DA 

D2-like receptor blockade or DA D1-like receptor activation could reflect an 

increase in the persistence of choice behavior rather than a change in sensitivity 

to delay.  Future work will need to randomize the order in which delays are 

presented in order to avoid this potential confound.   

 Another caveat to the current study relates to the upward shift in the 

discounting function following MK-801, ifenprodil, SKF 38393, and eticlopride 

administration.  Interpretation of these findings is difficult because we cannot rule 

out the possibility that the upward shift in discounting was attributed to increased 

sensitivity to reinforcer magnitude.  Indeed, a change in the A parameter 

(sensitivity to reinforcer magnitude) was observed following MK-801 

administration in the delay discounting task in Experiment 1. Because the 

proportion of choices for the large magnitude reinforcer is close to a ceiling (near 

1.0) when the delay to its delivery is set at 0 sec, an increase in responding for 

that reinforcer is difficult to observe following pharmacological manipulations.  

For example, certain drugs decrease responding for a large, delayed/uncertain 

reinforcer, even when the delay to its delivery is set at 0 sec (Cardinal et al., 

2000; Koffarnus et al., 2011; Mendez et al., 2012; van Gaalen et al., 2006b; 

Winstanley et al., 2005).  
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 Although promising, results from the current experiments are not fully 

conclusive about the specific role DA and Glu in NAcc, if any, in delay 

discounting and follow-up experiments are needed.  Considering the complex 

interactions between Glu and monoamine neurotransmitters (DA and 5-HT) 

within the mesocorticolimbic pathway (see Tzschentke, 2001 for a review), future 

studies should examine how these interactions control impulsive choice.  For 

example, there is evidence for DA:5-HT interactions to  mediate impulsive 

choice, as DA depletions within NAc block impulsivity induced by a 5-HT1A 

receptor agonist (Winstanley et al., 2005).  Also, there is some evidence for 

Glu:5-HT interactions, as administration of a mGluR2/3 receptor agonist 

attenuates 5-HT2A-induced impulsive choice (Wischof et al., 2011).  These 

studies can help further our understanding of the role of the glutamatergic system 

in impulsive choice.   
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