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ABSTRACT 

The overall goal of this research is to measure drivers’ attitudes towards uncertain 

and unreliable routes. The route choice modeling is done within the discrete choice 

modeling framework and involved use of stated preference data. The first set of analysis 

elicits travelers’ attitudes towards unreliable routes. The results of the analysis provide 

useful information in relation to how commuters value the occurrence/chances of 

experiencing delay days on their routes. The frequency of days with unexpected delays 

also measures the travel time reliability in a way that is easy to understand by day-to-day 

commuters. As such, behaviorally more realistic values are obtained from this analysis in 

order to capture travelers’ attitudes towards reliability. Then, we model attitudes toward 

travel time uncertainty using non-expected utility theories within the random utility 

framework. Unlike previous studies that only include risk attitudes, we incorporate 

attitudes toward ambiguity too, where drivers are assumed to have imperfect knowledge 

of travel times. To this end, we formulate non-linear logit models capable of embedding 

probability weighting, and risk/ambiguity attitudes. A more realistic willingness to pay 

structure is then derived which takes into account travel time uncertainty and behavioral 

attitudes. Finally, we present a conceptual framework to use a descriptive utility theory, 

i.e. cumulative prospect theory in forecasting the demand for a variable tolled lane. We 

have highlighted the issues that arise when a prescriptive model of behavior is applied to 

forecast demand for a tolled lane. 
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ABSTRACT 

The overall goal of this research is to measure drivers’ attitudes towards uncertain 

and unreliable routes. The route choice modeling is done within the discrete choice 

modeling framework and involved use of stated preference data. The first set of analysis 

elicits travelers’ attitudes towards unreliable routes. The results of the analysis provide 

useful information in relation to how commuters value the occurrence/chances of 

experiencing delay days on their routes. The frequency of days with unexpected delays 

also measures the travel time reliability in a way that is easy to understand by day-to-day 

commuters. As such, behaviorally more realistic values are obtained from this analysis in 

order to capture travelers’ attitudes towards reliability. Then, we model attitudes toward 

travel time uncertainty using non-expected utility theories within the random utility 

framework. Unlike previous studies that only include risk attitudes, we incorporate 

attitudes toward ambiguity too, where drivers are assumed to have imperfect knowledge 

of travel times. To this end, we formulate non-linear logit models capable of embedding 

probability weighting, and risk/ambiguity attitudes. A more realistic willingness to pay 

structure is then derived which takes into account travel time uncertainty and behavioral 

attitudes. Finally, we present a conceptual framework to use a descriptive utility theory, 

i.e. cumulative prospect theory in forecasting the demand for a variable tolled lane. We 

have highlighted the issues that arise when a prescriptive model of behavior is applied to 

forecast demand for a tolled lane. 
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CHAPTER I. 

INTRODUCTION 

Understanding human behavior and what drives people’s choices has been a 

subject of research in the field of economics, psychology, transport, and beyond. Many 

mathematical tools and analytical frameworks are used to model people’s existing 

behavior and predict likely choice outcomes in varying settings. Analysis of travel 

behavior is no different. Traveling is one of the most important activities people engage 

in to serve various purposes of everyday life. People travel for going to work, shopping, 

recreation, tourism, and so on and choose different modes to get to the places they want. 

However, the dependence on automobiles, especially in United States, in everyday travel 

has augmented in the last few decades. This has led to the problems related to congestion, 

lost man-hours, serious environmental and health consequences, and road safety. As 

such, understanding travelers’ attitudes and their behavior is a key to developing 

sustainable transport policies that meet user needs and promote modal shifts.     

The study of travel behavior is a broad topic that provides insights into the 

choices that individuals and households make about their travel needs. Within this broad 

area lie various sub-categories like study of mode choice, destination choice, route 

choice, and so forth. The interplay of these different choice dimensions is what makes the 

analysis of travel behavior so complex and yet interesting.  Over the years, travel 

behavior researchers have worked toward the development of increasingly sophisticated 

quantitative models, often used in conjunction with qualitative approaches, which could 

offer us powerful tools for helping us to understand those complexities.  

The focus of this thesis is understating route choice behavior, especially from 

automobile drivers’ viewpoint. Although, understanding route choice behavior is only a 

dimension to overall travel behavior analysis, it does provide very useful insights into 

travelers’ decision making process which can eventually be tied back to broad travel 
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behavior assessment. Route choice modeling is also essential in terms of transportation 

planning which requires predicting future traffic conditions on transportation networks 

and understanding travelers’ response and adaptation to sources of information.  

Route choice modeling involves evaluating travelers’ perception of route 

characteristics that include travel time, cost, distance, safety, reliability, to name a few 

(Bekhor et al., 2001). These perceptions and preferences based on route characteristics 

are then tied to travelers’ personal attributes such as income, age, gender, and other 

socio-economic characteristics. Modeling route choice is however, not as simple as it 

sounds, given the intricacies involved in representing human behavior, travelers’ 

imperfect knowledge about the transportation network composition, and the uncertainty 

and heterogeneity associated with travelers’ perceptions about route characteristics. 

Nevertheless, recent advancements in both quantitative and qualitative methodologies 

have made it possible to understand travelers’ route choice behavior to a large extent. 

Knowledge of travelers’ route choice behavior can be applied in various areas of 

transportation: transportation forecasting, traffic management and control, design of road 

infrastructure, and development of road navigation technologies. The direct application of 

route choice modeling is in forecasting traffic flow on certain road networks. 

Understanding route choice behavior results in more realistic traffic forecasts would 

eventually lead to fewer traffic gridlocks and less congestion on roads. Thus, the results 

of this research are expected to contribute to the society in terms of reduction of air 

pollution, reduced man-hours in traffic, and effective use of road infrastructure.  

In what follows, we first provide the need of this research followed by research 

objectives and scope. Finally, we highlight the contribution of this research to the 

existing literature. The last section gives the structure of the thesis. 
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Need of the Study 

The transportation network consists of various links and nodes. As a driver, the 

traveler has a number of paths/routes available to make a trip. The results of route choice 

analysis, however, answer a simple question: Under given conditions (that may include a 

plethora of variables), what route a traveler would take to get to the place he/she wants 

to? 

As mentioned earlier, travelers’ route choice depends on the attributes of the 

route, such as travel time, cost, type of roadway and on the characteristics and 

perceptions of the travelers themselves. Now, several aspects of the route choice problem 

make it rather complex. Nevertheless, previous studies have shown that the most 

important factor that influences route choice is expected travel time (Bekhor et al., 2001; 

Outram and Thompson, 1977). However, traffic networks are inherently uncertain and 

what makes them more so are random disruptions. An unexpected and prolonged traffic 

disruption in travelers’ commuting route is commonplace especially in areas with higher 

traffic density. The frequency of experiencing uncertain travel times can vary from one 

day in a week to several days in a week. These random disruptions can take any forms 

including planned activities or unplanned weather related events and other unforeseen 

emergencies. Travelers’ route-choice behavior is difficult to gauge in this context because 

of increase in travel time uncertainty. An uncertain environment is referred as risky if the 

probability distribution of the outcomes is known, while it is called ambiguous if 

uncertainties cannot be reduced to simple probabilities or when the true probability 

distribution of outcomes is unknown. Apart from travel time uncertainty, several other 

sources of uncertainty exist in route choice context. Overall, traveler’s preference among 

available routes depends on the utilities associated with each route and if the utilities are 

perceived to be uncertain then the decision making is influenced by travelers’ attitude to 

that uncertainty (Avineri and Prashker, 2005). 
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Current route-choice models used in practice simplify the decision process such 

that uncertainty is assumed away by bestowing travelers with the ability to memorize 

travel times on all practical routes and constantly reassess this close-to-perfect 

information to a select route that maximize their utilities. Most often the models’ 

underlying framework is economic rationality, which brings with it the adherence to the 

strictures of rational theory (Avineri and Prashker, 2004). Given the stochastic nature of 

the transportation networks, the assumption of a driver’s close-to-perfect knowledge is, 

however, questionable. Common analytical non-behavioral route choice models, which 

are based on either network risk, to take into account randomness of network utilities, or 

perception errors, to account for imperfect information of travelers, or both, are as 

follows: deterministic network, deterministic user equilibrium model; deterministic 

network, stochastic user equilibrium model; stochastic network, deterministic user 

equilibrium; and stochastic network, stochastic user equilibrium model (Chen and 

Recker, 2001).  However, these models lack psychological underpinnings and therefore, 

are not well suited to analyze drivers’ cognitive decision making process. As a result, rule 

based models that are more representative of drivers’ behavior are being used in 

understanding route-choice behavior from drivers’ perspective. These models are based 

on the assumption that drivers follow latent decision rules for evaluating the attributes of 

available routes and decide on a specific route based on this evaluation. There is need to 

improve existing route choice models by adding more behavioral realism from travelers’ 

viewpoint. Lacking in contemporary research efforts to model route choice under 

uncertainty is the inclusion of non-expected utility framework which incorporates some 

very important behavioral attributes. It is imperative to improve existing route-choice 

models by integrating the theory and empirical findings from fields of science, like 

psychology, where it has been repeatedly shown that decisions and behaviors are often 

determined by perceptions that may not be in accordance with traditional rational 

theories. Therefore, travelers’ route choice attitudes toward risk and ambiguity add 
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important dimension to the existing empirical methodologies (discrete choice framework 

in this case). The resulting specifications which add behavioral rigor to the existing 

discrete choice modeling framework would also fill the gap by providing more plausible 

willingness to pay values.  

Objectives and Scope 

The long range goal of this research is to measure travelers’ attitudes towards 

uncertain and unreliable routes. More specifically, we aimed to understand drivers’ 

attitudes to uncertainty in their commuting routes. The route choice modeling is done 

within the discrete choice modeling framework and involved use of stated preference 

data.  
The objectives of this thesis are summarized under the following three 

paragraphs: 

1. The stated preference (SP) surveys (also known as choice experiments) are based 

on responses to hypothetical choice situations and have been important survey 

instruments to understand behavioral responses and consumer preferences for 

various transportation services. Within SP surveys, travel time 

variability/uncertainty is usually presented in terms of statistical distributions and 

probabilities. Although it provides an efficient way of measuring travel time 

variability/uncertainty from an analyst’s point of view, it is not easy to 

communicate statistical distributions to general public in order to get realistic 

behavioral responses. Therefore, one of the objectives of the study is to design SP 

surveys such that uncertainty in travel time is presented in easy to understand way 

for non-technical respondents.  

2. Travelers’ attitudes toward uncertainty in travel time are mostly modeled through 

the use of expected utility models. The use of non-expected utility behavioral 

theories that can be embedded within the traditional discrete choice modeling 
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framework to understand route choice behavior is almost non-existent. To the best 

of our knowledge, most route choice experimental studies consider only risky 

route choices, e.g., precise information on probability of delay. Therefore, an 

objective of this research is to simultaneously elicit people’s attitude toward both 

risky and ambiguous routes and compare the results of both expected utility based 

models and non-expected utility based models. The specific hypothesis driving 

the proposed research is that drivers’ do not always make rational decisions in 

route-choice situations and factors such as uncertainty in travel time and monetary 

cost play a significant role in route selection.  

3. Willingness to pay (WTP) or marginal rate of substitution for travel time is an 

important output of studies based on discrete choice models. The other main 

objective of this research is to derive WTP measures that are more behaviorally 

appealing and take into account drivers’ attitudes toward uncertainty and travel 

time variability.  

Contributions 

 General 
People make route-choice decisions on a daily basis. Knowledge of travelers’ 

route choice behavior and related research methodologies can be applied in various areas 

of transportation: transportation planning, traffic management and control, design of road 

infrastructure, and development of road navigation technologies. This research would 

help in predicting travelers’ behavior under travel time uncertainty which has a direct 

implication in forecasting traffic flow on certain road networks. More realistic traffic 

forecasts would eventually lead to fewer traffic gridlocks and less congestion on roads. 

Thus, the research would contribute to the society in terms of reduction of air pollution, 

reduced man-hours in traffic, effective use of road infrastructure, and so on. 
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Measurement of heterogeneity in WTP values that are more behaviorally sound would 

have direct influence on estimating toll roads’ demand and revenue.  

Specific 

This study presents models to understand drivers’ route choice attitudes under 

uncertainty. The research contributes to the existing knowledge of route choice behavior 

in three ways. First, we add behavior rigor to the existing random utility framework by 

incorporating important features of non-expected utility models such as probability 

weighting, and risk attitudes. Second, previous studies have mostly incorporated one 

aspect of uncertainty, risk that is, where drivers are assumed to have known the 

probability distribution of travel times. In this study, we study route choice attitudes 

towards ambiguity too, where drivers are assumed to have imperfect knowledge of travel 

times. Third, we derive WTP measures that are more behaviorally appealing and take into 

account drivers’ attitudes toward uncertainty and travel time variability.     

Thesis Structure 

The thesis is divided into seven chapters. The first three chapters provide 

background material and a detailed SP survey methodology. Chapters 4, 5, and 6 contain 

analysis and main results. Chapter 7 concludes. 

 Chapter 2 provides a review of literature related to use of behavioral theories in 

understanding travelers’ route choice under uncertainty. We further review the 

theories that are well embedded within psychology and economics literature but 

are not yet incorporated within discrete choice modeling framework. 

 Chapter 3 includes our SP survey methodology with detailed discussion on survey 

design and survey administration.  
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 Chapter 4 includes the first set of analyses focusing just on behavioral responses 

to travel time reliability and calculation of drivers’ WTP values. The analysis is 

done using panel mixed logit modeling framework. 

 Chapter 5 formulates non-linear logit models capable of embedding probability 

weighting, and risk and ambiguity attitudes (two aspects of uncertainty). Also, a 

willingness to pay structure is derived which takes into account travel time 

uncertainty and behavioral attitudes. 

 Chapter 6 provides a potential application of a behavioral theory in the context of 

variable tolling. We illustrate the application of a behavioral choice model 

(Cumulative Prospect Theory) versus a rational choice model (Expected Utility 

Theory) in predicting the use of variable toll lanes.  

 Chapter 7 concludes and highlight future research needs. 
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CHAPTER II. 

LITERATURE REVIEW 

Over the last few years there has been a growing recognition that traditional 

models of travelers’ decision making need to be broadened to include situations involving 

uncertain travel time outcomes. Therefore, a natural extension of this field is analysis of 

choices under uncertainty. An uncertain environment is referred as risky if the set of 

outcomes and probability distribution of the outcomes is known, while it is called 

ambiguous if uncertainties cannot be reduced to simple probabilities or when the true 

probability distribution of outcomes is unknown. The application of these uncertainty 

models in transportation decision analysis is rare, though drivers and travelers face risky 

and ambiguous situations in their travel quite often. Travelers make route choice 

decisions on a daily basis and random disruptions like accidents, vehicle break-downs, 

weather closures, maintenance activities, community and social events, etc. make traffic 

networks inherently uncertain (Gao et al., 2010). Travelers’ route-choice behavior is 

difficult to gauge in this context because of increase in travel time variability. Traveler’s 

decision to take particular routes depends on the utilities associated with these routes and 

in case of uncertain travel conditions, the utilities can be affected based on travelers’ 

attitude to that uncertainty (Avineri and Prashker, 2005).  

After an extensive application of the conventional expected utility (EU) model of 

von Neumann and Morgenstern (1944) and the subjective expected utility model (SEU) 

of Savage (1954) in modeling uncertain behaviors,  researchers have come to a 

conclusion that decision makers often do not make choices in a way consistent with the 

EU and SEU models. For example, the Allais paradox (overweighing high consequence 

low-probability cases) and the Ellsberg paradox (ambiguity aversion attitude) have 

challenged the underlying axioms of the EU and SEU models even in context of simple 

decision making situations. Consequently, researchers have resorted to more generalized 
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models also known as non-expected utility models (and random utility models). A 

general trend in these studies now is the increasing use of behavioral theories that are 

already well established in economics and psychology literature, however still in early 

phases in transportation decision making. Therefore, the intent of this chapter is to 

provide a review of contemporary thinking in the use of these emerging behavioral 

theories in explaining travelers’ route choice behavior. Some important theories are 

described, followed by a broad, but by no means exhaustive, discussion of pertinent 

studies. 

Earlier Theories for Route Choice under Uncertainty 

The most common analytical non-behavioral route choice models (Chen and 

Recker, 2001) which are based on  either network uncertainty (to take into account  

randomness of network utilities) or perception errors (to account for imperfect 

information of travelers) or both are as follows: deterministic network, deterministic user 

equilibrium (DN-DUE) model, deterministic network, stochastic user equilibrium (DN-

SUE) model, stochastic network, deterministic user equilibrium (SN-DUE), and 

stochastic network, stochastic user equilibrium (SN-SUE). However, these models lack 

psychological underpinnings and are not well suited to analyze travelers’ cognitive 

decision making process. As a result, other rule-based models which are more suitable 

from travelers’ behavioral point of view have been used over the years. The approach is 

based on the fact that decision makers follow certain decision rules to evaluate the 

attributes of various route choices available and then determine a choice. Earlier models 

in this realm used in gauging travelers’ choice behavior were basically derived from 

Expected Utility Theory and Random Utility Theory (RUT). However, to accommodate 

rationality violations, other theories have been proposed, including elimination by aspects 

(Tversky, 1972), cumulative prospect theory (Tversky and Kahneman, 1992), fuzzy logic 

(Zadeh, 1965), and dynamic learning models.  
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Expected Utility Models 

Expected Utility (EU) theory states that in situations involving uncertainty and 

risk, the decision maker (DM) chooses outcomes on the basis of their expected utility 

values, i.e., the weighted sums of the utility values of outcomes multiplied by their 

respective probabilities. Therefore, the DM selects the alternative with the maximum 

utility (Einhorn and Hogarth, 1981; von Neumann and Morgenstern, 1944).  The three 

main assumptions about the decision making process under the EU theory include: 

 Consistency of preferences for alternatives;  

 Linear decision weights for alternatives; and  

 Judgment in reference to a fixed frame of reference (Kahneman and Tversky, 

1979). 

Assume Ej, j = 1,…., n denote possible events, each with a probability of 

occurring of P(Ej), such that P(Ej) ≥ 0, and 1 
j

j )E(P . Let xj designate be the 

realization of some random variable (or any similar source of utility), which is the 

outcome of the event Ej , j = 1,…,n. For example, in Lam and Small (2001) and in de 

Palma and Picard (2006), the Ej denote traffic conditions and the xj refer to travel times. 

The utility of an outcome is given by u(xj). Finally, the EU theory states that if DMs 

behave rationally and exhibit above-stated three criteria, then they will behave as if they 

maximize the expected value of their utility given as: 





n

j
jj )x(u)E(P)]x(u[E

1

                             Equation II-1 

The probabilities need not be objective, but may instead reflect subjective 

judgments of the decision maker. If objective probabilities are known we write pj for 

P(Ej). Application of EU and subjective expected utility model (SEU) models in route 

choice modeling is widespread. Travelers are assumed to behave as if they correctly 

assign probabilities to random travel times and choose a route that maximizes the 
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expected value of their. However, after an extensive application of the conventional EU 

models in modeling uncertain behaviors, researchers have come to a conclusion that 

decision makers often do not make choices in a way consistent with the EU and SEU 

models. For example, the Allais paradox (overweighing high consequence low-

probability cases) and the Ellsberg paradox (ambiguity aversion attitude) have challenged 

the underlying axioms of the EU and SEU models even in context of simple decision 

making situations. Avineri and Prashker (2004) conducted simple route-choice 

experiments and found two violations of EU theory. They found presence of certainty 

effect (Allais paradox) and the inflation of small probabilities in a stated-preference 

single-route experiment.  

Discrete Choice Models and Random Utility 

Random utility based discrete choice models extend the conventional expected 

utility models and provide a somewhat stronger econometric interpretation of travelers’ 

behavior. Random utility models (RUMs) are based on the premise that decision-makers 

have incomplete knowledge of various alternatives and thus they have discrimination 

capabilities. Therefore, unlike utility maximization theory, the utility function of the 

alternative is divided into two components: i) deterministic part i.e. portion observed by 

the analyst, and ii) stochastic part which is the portion of the utility unknown to the 

analyst. The random utility equation is given by: 

ininnin εxβU                               Equation II-2 

where: 

 Uin: is the observed utility of the alternative i to the decision maker n, 

 inn xβ : is the deterministic or observable portion of the utility estimated by the 

analyst, and inx  represents a )Q( 1  vector of observed attributes along with 
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their interaction with other observable attributes. βn is the parameter vector 

associated with inx . 

 inε : is the error or the portion of the utility unknown to the analyst. 

Over the years, many other similar forms of choice modeling have been proposed 

based on different assumptions for error term, but the multinomial logit (MNL) and 

conditional logit (CL) models, proposed by McFadden (1974) are the most widely used 

tools for analyzing discrete dependent variables. The numerical expression for the 

probability of choosing an alternative ‘i’ (i = 1,2,.., J) from a set of J alternatives is for a 

decision maker n: 

  ij UUobPrP njnini                              Equation II-3 

The algebraic calculation of this probability results in a closed-form logit choice 

probability and can be written simple as (where Vni  is the deterministic part of the utility): 

 
  


I

i ni

ni
ni

Vexp

Vexp
P

1

   Equation II-4 

For more than a decade now, RUMs have been the front runners in behavioral 

analysis in transportation and especially in route choice modeling. A great deal of 

theoretical advancement has taken place over the years since the classic Multinomial 

Logit Model of Daganzo and Sheffi in1977. C-logit model and Path-Size logit followed 

and provided simple modifications to Multinomial Logit Models. A big breakthrough 

came with McFadden’s General Extreme Value models that led to various flexible 

modeling structures including Nested Logit (Ben-Akiva and Lerman, 1985), Cross 

Nested Logit (Vovsha, 1997) and Paired-Combinatorial Logit (Chu, 1989; Koppelman 

and Wen, 2000). The other remarkable improvement providing greater flexibility within a 

random utility framework took place with the introduction of the Mixed Logit models 

(Ben-Akiva and Bolduc, 1996; Bhat, 2000; McFadden and Train, 2000). Several studies 

have used Mixed Logit specification in analyzing route choice behavior over the years 
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now primarily due to its flexibility in accounting for correlation structure for repeated 

responses in panel settings (Bekhoret al., 2001; Jou et al., 2008; Srinivasan and 

Mahamassani, 2003 ).  

The conventional RUM assumes that travelers have perfect information and show 

rational behavior to maximize their utility (or satisfaction). Rationality of travelers has 

been challenged in many recent studies (Avineri and Prashker, 2004; Bogers et al.,2007; 

Fujii and Kitamura, 2000). Moreover, the theory is concerned with the valuation of 

certain and riskless outcomes (i.e. Vij is riskless). However, recent developments in the 

RUM framework have incorporated EU principles to model individual travel choice 

under risk (Noland and Small, 1995; Polak et al., 2008). Maximum Expected Utility 

Theory was introduced as a way to take into account travel time variability in which it 

was assumed that drivers select the alternative with the highest value of expected utility. 

This approach became one of the standard approaches to account for travel time 

uncertainty in terms of risk for quite some time (Bateset al., 2001; Small et al., 1999). 

Furthermore, although EU has been extensively used within RUM, a linear utility 

specification has been the dominant approach to account for risk in travel time 

occurrences (see Hensher et al., 2011 for a review). Recent developments in route choice 

modeling are now acknowledging non-linearities in both utility specification and 

probability weighting under uncertain travel times. 

Behavioral Theories for Route Choice Modeling 

Over the last few years a great deal of advancement has taken place in behavioral 

theories explaining what drives people’s choices. The roots of behavioral research lie in 

psychology and neighboring social sciences. The results of various practical experiments 

conducted in these realms have shown that assumptions about the absolute rationality of 

individuals often get violated in real-life situations (Camerer, 1998). The following are 

some of the important behavioral theories that have been used in route choice studies. 
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Elimination by Aspects 

This paradigm was first underlined by Kahneman and Tversky (1979) and 

hypothesizes that in uncertain and complex choice situations, instead of maximizing 

utility, individuals are more inclined to use heuristics. They are simple principles of 

reasoning individuals use to arrive at an ‘approximate’ solution without any complex 

computational effort. The elimination by aspect (EBA) procedure proposed by Tversky 

(1972) is one of these heuristics. In this case, the decision making process is seen as a 

sequential elimination process in which: (a) the common aspects of the choices set are 

first eliminated, (b) an aspect (attribute) is randomly selected and all alternatives not 

possessing the aspect are eliminated. The probability of selecting this characteristic is 

based on its utility to the decision maker, and (c) first two steps are performed till the 

residual alternatives have the same characteristics. In case, only single choice is left, it is 

selected; otherwise, all remaining choices have the same chances of getting selected. The 

order in which various aspects are considered and eliminated is the main driver of 

decision making. However, since a person’s ordering of attributes depends on the 

individual and is essentially unobserved, the model itself selects attributes randomly with 

probabilities of being selected proportional to weights. A quick review of the formal 

decision process discussed above in econometric terms is given in (Manrai, 1995). 

Several links exist between the EBA and random utility models (Laurent, 2006). Batley 

and Daly (2003) established formal mathematical conditions under which a hierarchical 

EBA model is equivalent to a nested logit model. The authors did not come across any 

route choice study that explicitly considered EBA modeling strategy. Takao and Asakura 

(2006), however, relied on EBA principles to some extent in analyzing route choice 

behavior using open-ended questionnaire texts.  

In spite of the fact that EBA was one of the first few behavioral theories to come 

into the picture, it remained unexploited for a long period of time. Part of the reason was 

the influx of well entrenched alternative models. Also, lack of recognition of the 
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tractability of more sophisticated forms of EBA led to decline in its use and popularity. 

Overall, the applicability of EBA models in route choice deem more research and they 

might have potential of opening interesting prospects for research in route choice 

modeling, both on theoretical and empirical levels. As highlighted in previous research, 

EBA models allow for the construction of discrete choice models and may offer more 

flexibility as compare to probit or nested logit models.  

Fuzzy Logic 

First introduced in Zadeh (1965), the idea of fuzzy sets relies on the degree of 

membership instead of dealing with some simple black and white answers. A fuzzy set is 

defined by its membership function and the elements of the set have degrees of 

membership that ranges from 0% to 100%. Therefore, membership value assigned to an 

element is no longer restricted to just two values, but can be 0, 1 or any value in-between. 

A major advantage of this theory is that uncertainty can be presented in linguistic terms 

rather than describing a problem in terms of precise numerical values (i.e. probabilities). 

An important distinction between membership function and probability distribution 

function is that the membership function is not based on some repeatable observations 

but rather on the judgment of the domain expert.  Following are a couple of examples of 

how rules can be expressed: 

IF travel time on route 1 is very short and travel time on route 2 is intermediate 

THEN I will certainly choose route 1 (Henn and Ottomanelli, 2006) 

IF times on route 1 and 2 are very high THEN I will probably take route 3 

(Lotan and Koutsopoulos, 1993) 

In route choice modeling arena, Teodorovic and Kikuchi (1990) were first to 

design a set of fuzzy rules in a binary route choice problem. A plethora of studies have 

been done since then using these principles in order to account for uncertainty and 

imprecision in route choice modeling. Overall, the fuzzy logic approaches in route choice 
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modeling can be broadly categorized into: fuzzy rule base and fuzzy arithmetic 

assignment models. Examples of studies based on fuzzy rules are Lotan (1992), Lotan 

and Koutsopoulos (1993), and Murat and Uludag (2008). The route choice modeling 

based on fuzzy assignment can be found in Chang and Chen (2000), Henn (2000), and 

Wang and Liao (1999). More recent studies combining other uncertainty theories with 

fuzzy logic are done by Quattrone and Vitetta (2011) and Ramazani, Shafahi and 

Seyedabrishami (2011).   Although fuzzy logic has been used in route choice modeling 

over a decade now, it is still a young field. Fuzzy logic field itself was not very well 

accepted among academics circles when it was first implemented. The main reasons were 

under-developed mathematics and a somewhat vague construction of membership 

functions.  Henn and Ottomanelli (2006) argued that fuzzy logic based models though 

easy to construct, and robust to small variations are not helpful in understanding the 

actual behavioral and decision making process of drivers. They also mention that the 

proposed models are only problem specific and are only applicable in a particular 

network. Xu and Akiva (2009, unpublished) conclude that these models not only lack 

theoretical basis to simulate travelers’ actual behavior but it can be hard to explain 

drivers’ route choice behavior from the results. They also agree that implementation of 

fuzzy logic in complex networks is non-existent and thus the applicability in real network 

is still questionable. 

Dynamic Models 

Most of the above models can be categorized as static models. The dynamic 

models, however, assume that the route choice decision making process is a dynamic 

process, involving some sort of information acquisition mechanism and learning over 

time. Some of the simple learning models that can be found in route choice literature are 

weighted average (Horowitz, 1984) and myopic models (Mahamassani and Liu, 1999; 

Srinivasan and Guo, 2004) which state the perceived travel time is a function of weighted 
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average of past travel times, Bayesian learning models (Jha et al., 1998; Nakayama, 

2009) where it is assumed travelers’ choices in current period may be based (and 

updated) on information related to utilities in previous time periods, and reinforcement 

learning models (Avineri and Prashker, 2005; Ben-Elia and Shiftan, 2010; Bogers et al., 

2007; Roth and Erev, 1995) where a decision maker is an adaptive learner who makes 

choices with respect to rewards that were obtained for each alternative in the past.  

Overall, the learning models confirm violations of rationality and suggest that 

uncertainty in route choice problems essentially results in indifference and more of 

random choice behavior. Interestingly none of above mentioned studies explicitly 

highlights any blatant issues with using dynamic learning models in understanding 

travelers’ route choice behavior. However, the main limitation as noted by Nakayama, 

Kitamura and Fujii (2001) is that underlying assumptions in many of the learning models 

lack strong psychological underpinnings and are not always based on observed behavior.  

Also, this field of research is still in its early stages and lack empirical and experimental 

evidence to further bolster the claimed hypothesis that learning (both in short term and in 

long term) has significant effect on route choice behavior. 

Cumulative Prospect Theory 

The Cumulative Prospect Theory (CPT) of Tversky and Kahneman (1992) which 

was the extension to their original Prospect Theory (Kahneman and Tversky, 1979) 

provides empirical evidence from several choice experiments in which preferences 

violate the axioms (mostly three stated above) of expected utility theory. As per CPT, 

DMs prefer to simplify their choices cognitively whenever possible, satisficing rather 

than maximizing. DMs in this case consider choices from a personal reference point and 

tend to be risk averse with respect to gains, and risk seeking with respect to losses. Also, 

DMs tend to overweight unlikely events and underweight likely events when assigning 

probabilities. Therefore, the manner in which alternatives are presented can influence the 
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choice made by DMs. Of the various non-expected utility theories, CPT has received the 

most attention in travel behavior research and especially in route choice modeling under 

uncertainty (Avineri and Prashker, 2004; Connors and Sumalee, 2009; Gao et al., 2010; 

Razo and Gao, 2010; Viti et al., 2005; Xu et al., 2011). Therefore, we think it deems a 

more detailed discussion. 

A prospect  f  is represented as a sequence of pairs (xj, pj), where xj is the jth 

outcome and pj is the associated objective probability. A prospect can also be treated as a 

set of choices. Preferences are modeled jointly with a value function and a weighting 

function. The value function is given by: 
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The value function is concave for gains (α ≤ 1) and convex for losses (β ≤ 1). 

Kahneman and Tversky (1979) proposed an inverted S-shaped specification of the 

weighting function which overweights small probabilities and underweights moderate 

and high probabilities. The functional form of this weighting function for gains and 

losses, are respectively given as: 

  and  ,
)p(p

)p(
)p(w

/

jj

j
j 



1
1

    Equation II-6 

  



/

jj

j
j

)p(p

)p(
)p(w

1
1

    Equation II-7 

where  w+(pj) is the weighting function in case of gains and w-(pj)  is the weighting 

function in case of losses. Therefore, CPT allows for different attitudes towards 

probability depending on whether a DM is in gain frame or loss frame. Now, let us 

suppose the outcomes are such that nkk x...xx...x  11 0 . In other words, the 

outcomes kx...x1  are outcomes in loss frame and nk x...x 1 are outcomes in gain frame. 

Then, the CPT value of the prospect  nn px;...;px 11  is given as: 
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where 
ii  and   are the decision weights for losses and gains, respectively. They are 

defined as: 
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  Equation II-9 

If the decision weights are not weighted or linear i.e.  i are all equal to objective 

probabilities ip  , then CPT collapses to traditional EU theory. A common finding in 

route choice studies (cited above) using CPT is that travelers do show aversion to risk 

when confronted with the prospect of gains and risk seeking when choices are framed as 

losses. Also, they are more sensitive to losses than gains. Therefore, CPT confirmed that 

travelers’ decision making has bounded rationality and CPT as a theory can add to the 

understanding of route choice behavior. Also, the concepts of reference points and loss 

aversion provide useful insights in decision making under risk. The application of CPT as 

a whole is still missing in all route choice studies. For example, none of the above 

mentioned studies include probability weighting functions and non-linearities in them 

(except Hensher et al., 2011). Part of the reason is limited scope of stated-preference 

surveys most of these studies rely on. Secondly, the fact that CPT was originally 

proposed to analyze choice situations that were framed as lotteries and gamble, its 

applicability in route choice scenarios where the environment of decision making is more 

complex is not easy. The other conceptual problems with the application of CPT are 

identification of reference points, it’s limitation to allow only analysis of decision making 

under risk only i.e. it is assumed that travelers know the probabilistic distribution of 

travel times, and its applicability only in some areas of travel behavior. But we think that 

CPT has a lot to offer in understanding travelers’ route choice behavior under 
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uncertainty, and as a theory it is still undergoing various advancements so that it can be 

generalized to other fields of studies for which it was not initially proposed (like route 

choice). More research is needed in terms of designing experiments (like stated 

preference methods) that facilitate quantitative analysis of CPT in terms of estimation of 

CPT parameters and reference point values of attributes of interest.  

The tables at the end of the chapter provide a synopsis of various behavioral 

theories that have been used over the years and their main advantages and limitations. 

Behavioral Models for Ambiguity 

Uncertainty usually takes two forms: risk or ambiguity (Knight, 1921). An 

uncertain environment is referred as ‘risky’ if the set of outcomes and probability 

distribution of the outcomes is known, while it is called ‘ambiguous’ if uncertainties 

cannot be reduced to simple probabilities or when the true probability distribution of 

outcomes is unknown. Now the problem arises of how to apply EU models (or even CPT 

models) if no objective (and even subjective) probabilities of the outcomes are available, 

say due to lack of information to establish these.  

After the Ellsberg’s experiment, the term ambiguity was used to refer to 

imprecisely specified probabilities. However, Budescu et al. (1988) promoted the use of 

vagueness or imprecision to capture the essence of ambiguous decision problem. Most 

experimental studies on ambiguity and risk aversion consider only cases involving no 

information or precise information of the probability distribution. There is no room for 

true ambiguity (or imprecision) in the standard EU models and therefore attitudes like 

ambiguous aversion or ambiguous neutral cannot be reconciled with the EU or SEU 

models efficiently. It is believed that non-expected utility models like CPT, Max-min 

expected utility models, and Choquet expected utility models are more efficient in 

modeling people’s decision making under ambiguous situations.  



22 
 

 

Gilboa and Schmeidler (1989) developed the maxmin expected utility (MEU) 

model, also known as multiple-prior model, to address the Ellsberg paradox (Ellsberg, 

1961) and generalize the axiomatic framework to explain ambiguous decision problems. 

The MEU assumes that DMs obtain probabilities based on their personal experience and 

replaces the classic independence axiom of the EU models with the introduction of an 

axiom of uncertainty aversion.  Thus, MEU-rational agents make choices over a non-

unique set of probability distributions, thereby yielding the utility representation: 


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dP)t(uminMEU    Equation II-10 

where C is the set of probability measures on the set of possible states (similar to 

prospects in PT) S. Under MEU, the DM considers only the worst-case scenario. 

Ghirardato et al. (2004) proposed α-maxmin model for ambiguity in a very general 

context. The model nests many previously proposed models of ambiguity, including 

MEU, and Choquet expected utility models of Schmeidler (1989). The model allows 

DMs attitude to vary from extremely ambiguity averse to extremely ambiguity loving. 

That is, 
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where α can vary from 0 to 1 and gives the ambiguity attitude index i.e., the weight that 

the DM put on the most pessimistic probability in C.  When α = 1, decisions are entirely 

determined by the worst-case scenario, and the α- MEU model coincides with MEU. In 

case of α = 0, the DM is absolutely ambiguity loving. In general, for α > 0.5, the DM is 

ambiguity averse, for α < 0.5, he/she is ambiguity loving, and at α = 0.5, the DM is 

ambiguity neutral.  

Ambiguity attitudes (specifically in route choice) have been less researched in 

choice situations. This is due to the fact that the models which have been developed so 
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far are still in emerging stages. Moreover, there are not many tractable models and 

theories that are well established to analyze ambiguity empirically (de Palma et al., 

2008). However, this doesn’t mean learning about ambiguity attitudes is irrelevant and 

these attitudes coincide with risk attitudes.  The multiple-priors model by Gilboa and 

Schmeidler (1989), as explained above, can be a starting point to disentangling risk 

attitudes from ambiguity attitudes. Since the above-stated model also assumes utility 

based decision making, it possible to incorporate it within the RUM framework with, 

needless to say, additional assumptions.  
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Table II-1. Features of expected utility model 

Theory Main Assumptions Advantages Limitations 

EU Consistency of preferences 

for alternatives; Linear 

decision weights for 

alternatives; Judgment in 

reference to a fixed frame 

of reference 

Most popular 

because of its 

completeness and 

strong axiomatic 

foundations; 

Easy to estimate 

Limited usefulness as a 

descriptive model under 

uncertainty (e.g. Allais 

paradox and Ellsberg 

paradox) 
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Table II-2. Features of expected utility model 

Theory Main Assumptions Advantages Limitations 

RUT Decision makers are rational 

agents; Utility of each 

alternative based on both 

systematic and stochastic 

components; Other structural 

assumptions for different 

models within random utility 

Flexible in terms of 

embedding various utility 

specifications; Mixed logit 

framework allowing for 

flexible correlation 

structures and preference 

heterogeneity  

Rationality 

violations; 

Valuation of 

certain and 

riskless 

outcomes 
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Table II-3. Features of dynamic models 

Theory Main Assumptions Advantages Limitations 

Dynamic 

Models 

Decision making a dynamic 

process, involving 

information acquisition and 

learning over time; Relation 

between the travel utilities 

in previous time periods and 

travelers’ current choices; 

decision maker is an 

adaptive learner 

Addresses repeated 

decision tasks such as 

route-choice; Strong 

conceptual basis 

 

Lack of 

empirical 

basis 
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Table II-4. Features of elimination by aspects 

Theory Main Assumptions Advantages Limitations 

Elimination 

by Aspect 

Decision making process a 

sequential elimination 

process based on simple 

heuristics; Individuals arrive 

at an ‘approximate’ solution 

without any complex 

computational effort 

Assumptions 

are the main 

advantages 

Lacking experimental 

and empirical evidence 

of its applicability in 

route choice modeling; 

Low levels of model 

awareness and 

convenience of use 
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Table II-5. Features of cumulative prospect theory 

Theory Main Assumptions Advantages Limitations 

CPT Reference dependence, i.e., 

separate value functions 

defined over gains and losses; 

Diminishing sensitivity (i.e., 

the curvatures of value 

functions suggesting 

decreasing marginal value of 

both gains and losses) and 

loss aversion; Non-linear 

probability weighting 

Allows for non-

linearities in both 

utility and probability 

weighting; Useful for 

choices involving time 

variability such as 

arrival and departure 

time, travel time, delay 

time, etc. 

 

Identification of 

reference points; 

Limited to decision 

making under risk 

only (known 

probabilities) 
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CHAPTER III. 

 DATA COLLECTION 

An important feature of any behavioral research is its dependence on experiments 

to carefully test basic assumptions and mechanisms underlying decision making. 

Understanding route choice behavior from travelers’ perspective warrants similar 

experimental analysis. We use stated preference (SP) surveys (also known as choice 

experiments) which have been important survey instruments to understand behavioral 

responses and consumer preferences for various transportation services.  The purpose 

behind conducting these experiments is to determine the independent influence of 

different variables (attributes or factors) on observed outcome and their willingness to 

pay (WTP) for specific attributes. More detailed discussion on SP experiments can be 

found in Bliemer and Rose (2006) and Hensher et al. (2005). Following sub-sections 

provide a detailed discussion of the survey management and design. 

Survey Management 

The SP surveys were conducted online. However, before publishing the survey 

online, a paper-based pilot survey was conducted. The pilot survey provided valuable 

input and feedback related to content, attributes, and design of the survey. The web-based 

survey was then carefully constructed using traditional programming languages. Since 

the surveys were conducted online without any supervision, they were kept as simple as 

possible by carefully removing any ambiguity in questions.  

We used the University of Iowa Alumni e-mail list to send out a mass e-mail 

inviting people to complete a web survey. The e-mail contained a short description of the 

research and a link to the web-survey. The e-mail was sent to the alumni living in the 

following areas: Chicago-Naperville-Joliet Metropolitan Division (Illinois), Dallas-Fort-

worth-Arlington Metropolitan area (Texas), Harris County (Texas), Miami Dade County 

(Florida), New York, and New Jersey. The reasons for selecting above-mentioned study 
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areas were twofold. First, these regions included large metropolitan cities (like Chicago, 

Dallas, Houston, New York City, and Miami) where chances of commuters experiencing 

unexpected delays are high. Second, the study areas have some of the busiest toll roads in 

the nation. The e-mails were sent out to a pool of about 8,500 people and we had about 

292 valid responses.  Subjects had to be 18 years of age and had to drive to work at least 

three times a week.  

Survey Design 

Based on existing literature, our study objectives, and the fact that the web-survey 

was not supervised, only the most important route characteristics were included in the SP 

experimental design. The attributes included were:  

 Usual travel time: It is the one-way travel time (in minutes) from home to work 

assuming no unexpected delays. 

 Frequency/Chances of delay: Frequency of delay means number of days travelers 

can experience unexpected delays out of 10 travel days (10 days means two 

weeks assuming 5 working days in a week). For example, '5 days out of 10 days' 

means that one can experience delays on that route 5 times out of 10 times he/she 

decided to take that route. Therefore travel time reliability in experiencing delay 

is presented in a more familiar and contextual way rather than giving survey 

respondents a statistical value. 

 Average delay: It is the mean delay (in minutes) on the days travelers experience 

any unexpected delays. 

 Toll cost: Amount of tolls (if any) travelers pay for their one way commute to 

work.  

Each participant was asked to fill out three sections. The first section had four 

questions (choice questions in the next section were pivoted off the responses to these 

questions) including their one-way travel time from home to work, the frequency and 
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amount of unexpected traffic delays, and amount of tolls (if any) they pay for their 

commute to work. In the second section each respondent was given a series of 12 choice 

scenarios. Each scenario has two questions. In the first question they had to make a 

choice between three routes including their existing route (based on the information they 

entered in the first section) and two hypothetical routes. In the second question they were 

to make choices only between two hypothetical routes assuming that the existing route is 

no longer feasible due to some long term construction. Since we are interested in 

analyzing travelers’ commuting behavior when they are forced to take a different route 

than usual, we only analyze the responses to the second question in this paper. Finally, 

the third section consisted of socio-demographic questions. 

In order to maintain realism in the choice experiments the levels of the route 

attributes were based on (pivoted off) the respondent’s current trip. Hypothetical routes 

are constructed with factors that are somewhat above and below those of the recent trip, 

and the respondent is then asked to choose among these hypothetical routes. The levels 

for each attribute are given in Table III-1. Note that, however, the frequency of the 

unexpected delay attribute is not pivoted off the respondents’ current route attributes. 

This was done in order to measure people’ attitudes toward different reliability measures 

(more discussion is available in the next section).  

We created blocked fractional-factorial designs and randomly selected choice sets 

in such a way that none of the choice sets has a dominant alternative. Three different 

designs comprising of four questions were created and each design was blocked into six 

subsets of four questions each. For the first design, the levels for usual travel time and 

average delay are such that they only have higher values than their current times (i.e. 

+50%, +25%, and +10% for usual travel time and +50% and +20% for average delay). 

The frequency of delay attribute only consisted of levels with known chances i.e. (‘1 out 

of 10 days’ to ‘9 out of 10 days’). The toll cost had all five levels shown above. The 

second design was similar to the first one except that now the levels for usual travel time 



32 
 

 

and average delay are such that they only have lower values than their current times (i.e. -

50%, -25%, and -10% for usual travel time and -50% and -20% for average delay). In 

other words, the first design have the hypothetical routes that are worse than their 

existing routes in terms of travel times and in the second design the hypothetical routes 

are better than their existing routes. In the third design, the frequency of delay was fixed 

to ‘Unknown’ in one of the two hypothetical routes and had same levels as shown in the 

table for rest of the attributes. Finally, the four questions from each design were 

combined and the respondents were given 12 choice questions in all and the order of 

questions (from the three designs discussed above) is randomized in order to avoid any 

response bias. Appendix includes the details on the generated SP designs. Figure III-1 to 

Figure III-5 provide screenshots of the web-survey.  

Finally, we want to highlight some of the caveats and limitation of this survey 

methodology. First, the survey was sent out to a group of University of Iowa’s alumni 

which means the survey participants had at least a college degree. This results into a 

survey pool which may be biased toward medium to higher income groups. Secondly, we 

didn’t collect the location information of the participants as per the Institutional Review 

Board’s guidelines to protect the privacy of the participants. Therefore, in modeling 

exercises we couldn’t control for effects with respect to participants’ location. However, 

we assume that most of the participants belong to Chicago-Naperville-Joliet Metropolitan 

Division (Illinois) area. Because of these limitations, the results are applicable to our 

sample of employed, higher than median income, college graduates, and living in major 

urban metropolitan areas. The conclusions of the study are limited to this population and 

not statistically valid as generalizations to the population as a whole.  
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Table III-1. Attributes and levels in the survey design 

  

Levels Usual Travel 

Time 

Frequency of 

Unexpected 

Delays 

Average Delay 

if Occurs 

Toll Cost 

Level 1 -50%  1 out of 10 days -50%  -100%  

Level 2 -25%  3 out of 10 days -20%  -50%  

Level 3 -10%  5 out of 10 days +50%  + $1 

Level 4 +50%  7 out of 10 days +20%  + $2 

Level 5 +25%  9 out of 10 days  + $3 

Level 6 +10%  Unknown   
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Figure III-1. Screenshot of the commuters’ existing travel characteristics 

 

Figure III-2. Screenshot of instructions 
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Figure III-3. Screenshot of the web-survey (risky routes only) 

 

Figure III-4. Screenshot of the web-survey (with one of the routes as ambiguous) 
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Figure III-5. Screenshot of the commuters’ socio-economic characteristics 
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CHAPTER IV. 

THE IMPACT OF DELAY OCCURRENCE AND DURATION AS A MEASURE OF 

RELIABILITY ON COMMUTER CHOICE 

Behavioral responses to travel time reliability has become an important dimension 

of understating travelers’ route choice attitudes.  In simple words, travel time reliability 

can be regarded as the stability in travel time for a given trip. Several sources of 

disruption, both random and predictable, constitute variations in the traffic conditions 

leading to increased travel time unreliability. These random disruptions can take any 

form, including planned activities like construction and maintenance work, and 

community and social events or unplanned events such as weather closures, natural 

disasters, and other unforeseen emergencies. The result of these incidents is limited or a 

total loss of capacity on particular corridors and lead to poor transportation network 

performance. The spillover effects of inconsistent network performance can be seen in 

other sectors, including lost man-hours, air-pollution, and negative psychological effects 

on the drivers. Therefore, in the last two decades the measurement of transportation 

system reliability has become one of the central topics of travel demand studies. A more 

recent addition to this growing literature is the measurement of value of travel time 

reliability which provides a monetary cost of avoiding unpredictable travel time. 

The first step to improve travel time reliability and to put a monetary value on it is 

to correctly measure it. The concept of travel time reliability has been historically linked 

with the concept of travel time variability where travel time is assumed to have a 

statistical distribution. The travel time reliability is then quantified in terms of the 

measure of spread of the assumed distribution. Although it provides an efficient way of 

measuring travel time reliability from an analyst’s point of view, it is not easy to 

communicate statistical distributions to general public in order to get realistic behavioral 

responses to travel time reliability. Furthermore, using these methods to get travelers’ 
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willingness to pay measures can be challenging and may lead to biased estimates.  

Federal Highway Administration (FHWA) recommends using four possible measures of 

measure travel time reliability because of their technical merit and their simplicity to 

communicate to travelers. These measures are 90th or 95th percentile travel time, buffer 

index, planning time index, and frequency that congestion exceeds some expected 

threshold. The advantage of using these measures in eliciting traveler preferences for 

travel time reliability lies in the fact that these methods simply compare days with high 

delay to days with usual travel time. As such, it is easy to obtain travelers’ attitudes 

toward travel time reliability by using methods similar to the ones recommended by the 

FHWA. In this study, we present travel time reliability as the frequency/chances that 

travel time exceeds commuters’ usual travel time for a typical trip.  

The goal of this chapter is to measure travelers’ behavioral responses to travel 

time reliability and their willingness to pay to avoid unreliable routes. The route choice 

behavior is studied in the context of commuting trips. A typical person is unable to 

meaningfully understand numerical distributions and associated terms (like mean and 

variance). Therefore, we use the frequency of days with unexpected delays as a means of 

measuring people’s attitudes to travel time reliability. The preferences are elicited 

through a stated preference (SP) survey technique where commuters were to choose 

between different routes with different levels of travel time reliability. The details on the 

data collection can be found in Chapter 3. 

We divide our review of literature into two parts. The first part provides 

definitions of travel time reliability and how it is measured. The second part is on the 

value of travel time reliability and various empirical methodologies that have been used 

to put a monetary value on travel time reliability within route choice context.  
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Measurement of Travel Time Reliability 

The definition of travel time reliability varies and different authors have used 

different definitions based on the study context. Lomax et al. (2003) define reliability in 

terms of consistency of transportation services for a given time period. As such, it can be 

defined for a mode, a trip, a route or a corridor. Emam and Al-Deek (2006) and Iida 

(1999) argue that travel time reliability can be expressed as the probability of completing 

a trip between a given origin-destination pair within a specified range of time interval. 

van Lint and van Zuylen (2005) extend the definition further and argue that travel time 

reliability for a route depends on the time of day, day of the week, month of year, and 

other external factors. In spite of differences in definitions, a well accepted notion is that 

travel time reliability considers the distribution of travel time probability and higher the 

variance is, the more unreliable is the route. From a behavioral perspective, travelers are 

more averse to higher variability in travel time than higher mean travel time (van Lint 

and van Zuylen, 2005).  

In order to effectively communicate the idea of travel time reliability by avoiding 

statistical terms, FHWA measures travel time reliability in a more practical way. 

Following are the definitions/concepts used by the FHWA: 

 Percentile travel times: It provides information on how bad delay will be on the 

busiest travel days. In most cases, a 95th percentile travel times is used, however, 

85th, 90th, or 99th percentile travel times can be used depending upon the context. 

 Buffer index: This is the extra time cushion travelers should take into account to 

ensure on-time arrival. The extra buffer time corresponds to any unexpected 

delays. 

 Planning time index: The measure gives the total travel time including both 

typical delays and any unexpected delays. Therefore, it provides near-worst case 

travel time as compared to usual (or free flow) travel time.  
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 Frequency that congestion exceeds some expected threshold: This is presented as 

the percent of days or time that average (or usual) travel time (speed) exceeds 

(falls) a certain value. 

In a nutshell, these methods simply compare days with high delay to days with 

usual travel time. For example, on typical weekdays the average travel time from an 

origin to a destination could be 15 minutes. However, when random disruptions like 

weather closures, accidents, or any other unforeseen emergencies cause unexpected 

delays, the travel time could be 25 minutes.  The measures listed above essentially 

capture travel time reliability in an easy to understand (from a user’s point of view) 

procedure. Agencies like FHWA, Minnesota Department of Transportation (Mn/DOT), 

and the Washington State Department of Transportation (WSDOT) have already used 

these measures in their travel demand studies as supplement to other congestion 

measures. A number of studies have been conducted to calculate these measures and have 

highlighted the importance of calculating travel time reliability. Chen, Skabardonis and 

Varaiya (2003) investigated the importance of measuring travel time reliability as a 

measure of freeway service quality. The study argued that the level of service (LOS) 

measure doesn’t necessarily capture the variability in travel time and user’s experience 

during the trip, rather just aids in ensuring proper geometric design of road networks. 

Lyman and Bertini (2008) proposed adding travel time reliability measures to the 

currently used measures of congestion. They calculated percentile travel times, buffer 

indices, and planning time indices for various interstate corridors in the Portland, Oregon 

metropolitan. The study used 20-second resolution count, speed and occupancy data from 

more than 500 freeway sensors to calculate these different measures. Susilawati et al. 

(2010) conducted a similar study and investigated the buffer time indices and planning 

indices for the ten corridors of the Adelaide Metropolitan road network. All these studies 

had a focus on traffic engineering aspects of improving network performance.  
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However, lacking in these studies is the understanding of travelers’ behavior from 

a user point of view. How do commuters assess these reliability measures and how do 

they decide which route to take when faced with different choice scenarios? We aim to 

fill this gap by analyzing commuters’ route choice behavior in response to travel time 

reliability.  

Value of Travel Time Reliability 

Willingness to pay (WTP) or value of travel time (VOT) has been studied 

extensively from the viewpoint of consumer theory. Wardman (2004), and Small and 

Verhoef (2007) provide a good review of VOT estimates as applied in the field of 

transportation demand. WTP for travel time reliability is, however, still an emerging 

concept. Nevertheless, a fair amount of studies have been done that measure the VOT 

together with the value of travel time reliability. The empirical approaches followed by 

the researchers mostly interrelate the concept of travel time reliability with that of travel 

time variability where reliability (or variability) is assumed to be a function of the spread 

of the travel time distribution.   

Various utility frameworks have been proposed and used over the past few years 

to account for and measure the value of travel time variability. The earlier efforts aimed 

to capture travel time variability (or unreliability) within utility maximization framework 

involved use of mean-variance approach which was first proposed by Markowitz (1952). 

The approach was primarily devised to measure the risk attitudes of decision makers 

within finance literature. Jackson and Jucker (1982) used the mean-variance models in 

route choice in which the utility value, U(x) of a route is modeled as a trade-off between 

the expected travel time ॱ(x) and the variability in time (risk) Var(x), such that U(x) = 

ॱ(x) − θVar(x). The parameter θ expresses the decision-maker's risk attitude.  Similar 

methodology was adopted by Black and Towriss (1993), however they looked at the 

tradeoff between average travel time and standard deviation instead of variance. Like 
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Jackson and Jucker (1982), study, they also used a stated preference data and estimated a 

generalized traveled cost function with travel time, its standard deviation and travel cost 

in the utility function to capture the effect of travel time variability. These studies not 

only confirm the disutility associated with travel time variability but also indicate a 

considerable heterogeneity in travelers’ response to this variability. Despite its simplicity, 

the mean–variance approached is applicable only in cases where the random variables 

approximate normal distributions (Samuelson, 1970). de Palma and Picard (2006) further 

confirm the inconsistency in mean-variance models and suggested alternative utility 

specifications.  

After the mean-variance approach, Expected Utility (EU) theory has been well 

recognized to capture uncertainty and travel time variability in route choice context. 

Maximum Expected Utility Theory was introduced as a way to take into account travel 

time variability in which it was assumed that drivers select the alternative with the 

highest value of expected utility. Various authors followed this methodology in the 

context of scheduling delays (Bates et al., 2001; Noland and Small, 1995; Small et al., 

1999). Most of the studies based on expected utility theory relied on stated preference 

methods. On the other hand, Small, Winston and Yan (2005) successfully combined 

reveled preference (RP) data with SP data to measure the value of travel time reliability. 

The data was collected from morning commuters on California State Route 91 (CA-91) 

via telephone surveys and mail-back questionnaires. The authors used advanced random 

utility framework to estimate the value of time and value of reliability (VOR) where these 

measures were calculated as the marginal rates of substitution between travel cost, travel 

time and travel reliability. The unreliability of travel time was measured as the difference 

between the 80th and 50th percentiles of the travel time distributions. In order to get more 

accurate and realistic estimates, Carrion and Levinson (2011) used Global Positioning 

System (GPS) devices to collect travel data and to obtain VOR measures. Recent 

development in calculations of the VOT and VOR estimates have used advanced utility 
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frameworks acknowledging non-linearities in utility specification within discrete choice 

modeling frameworks (see Hensher et al., 2011 and Carrion et al., 2011 for a detailed 

review).  

However, there is a mismatch between how agencies like FHWA and state DOTs 

measure (or recommend to measure) travel time reliability and how existing literature 

measure the value of travel time reliability. The main issue with abovementioned 

empirical methodologies is that it is very difficult to elicit accurate behavioral responses 

from subjects (or non technical day-to-day commuters) when travel time reliability is 

presented in terms of statistical distributions and probabilities. The goal of this chapter is 

to present travel time reliability in a more simplified way so that more realistic WTP 

measures for travel time and reliability can be obtained.  As such, travel time reliability is 

presented as the frequency of days with unexpected delays. Finally, we aim to calculate 

travelers’ WTP measures that not only take travel time into account but also the 

frequency of experiencing unexpected delays on their routes. The WTP measures are 

calculated using a panel mixed logit formulation.  

Empirical Framework 

We used discrete choice modeling framework and in particular, a panel mixed 

logit model which is based on the fact that different agents behave differently and 

responses from the same individual are correlated. We formulate the mixed logit model in 

preference space.  The utility function in preference space can be written as follows: 

nsinsinnsi εxβU     Equation IV-1 

where we use the index n (n = 1, 2,…, N) for the respondents, s for the choice set, i.e. SP 

choice scenarios for a particular respondent, (s = 1, 2, …, S). and i for the route 

alternative (i = 1, 2,…, I). In our case I = 2 and K = 8. nsix  is a )Q( 1  vector of route 

attributes, and their interaction with the traveler characteristics measuring the observable 

utility of individual n for alternative i at the sth choice scenario. βn is a corresponding 
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)Q( 1 parameter vector. We measure preference heterogeneity by allowing parameter 

vector βn to vary over individuals according to both observed characteristics and 

unobserved influences. Thus βn can be specified as: 

'
n

'
n v       Equation IV-2 

where '  is the )Q( 1 is the vector of the mean effects of the observed variables nsix  

and '
nv  is another )Q( 1  randomly distributed vector which captures unobservable 

heterogeneity among individuals. In this analysis, we assume that the heterogeneity 

distribution from which nv is drawn is a normal distribution with mean zero and variance

2
q . Finally, nsiε  is the usual idiosyncratic random error term independently and 

independently distributed according to extreme-value distributions. Therefore, the 

probability of an individual n selecting alternative i (i = 1, 2,…, I) in choice scenario s (s 

= 1, 2, …, S) conditional on the unobservable vector nv  is: 
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Now, in order to take into account the probability of each respondent’s sequence 

of observed choices in SP setting, we can write the likelihood function conditional on nv  

as: 
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where ynsi  is equal to one if respondent n chooses alternative i in choice situation s and 0 

otherwise. However, in order to calculate the model parameters, we calculate the 

likelihood function unconditioned on the unobservable elements. Therefore, the 

unconditional likelihood function is given as: 

n

v

nnnn vd)|v(f)v|(L),(L
n

     Equation IV-5 
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where f is the multivariate normal distribution and  is a vector that populates the q

elements for all q. Therefore, the parameters to be estimated are the β and  vectors. 

Finally, the log-likelihood function for all respondents is given as: 

 



n

i
n

v

nnn vd)|v(f)v|(Llog),(L
n

1

    Equation IV-6 

Since the above integral does not have a closed form, we approximate it via 

simulated maximum likelihood and maximize its logarithm across all respondents to 

retrieve the parameters β and .  More details related to maximum simulated likelihood 

estimators can be found in McFadden and Train (2000).  

Results 

 Descriptive Analysis 

A total of 292 respondents submitted the survey online. We only included the 

responses where the existing commute time was at least 5 minutes. The final sample used 

in the analysis consisted of 273 respondents with 2088 choice occasions. Table IV-1 

shows the socio-economic characteristics of the respondents (who chose to provide that 

information) along with the characteristics of their existing commuting routes. We almost 

have an even distribution of males to females in our sample with an average age of 

respondents as 40 years. However, our sample is skewed towards the higher income 

groups. This is due to the fact that we sent out our survey to the alumni of the University 

of Iowa and almost all of them had at least four year college degree.  The average travel 

time to work was calculated as 29.9 minutes with average delay time of 13.7 minutes (on 

days respondents experience unexpected delays on their commuting route). The other 

important piece of information we collected was the frequency/chances of commuters to 

experience days with unexpected delays. Some interesting results were obtained. About 
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half of the respondents experience unexpected delays at least 4-5 times in two weeks with 

about 10 percent of them experiencing delays every day and about one-fourth of the 

respondents experience unexpected delays 2-3 times. Finally, about one-third of the 

respondents pay tolls for their commuting route and the average toll across our sample 

came out to be $0.45. We also asked respondents about how long they have been taking 

the existing route to work. As you can see in the table IV-1, travelers have strong 

tendency to take the same route to work. About three-fourth of the respondents have been 

taking the same route for more than a year. This also shows that travelers must have tried 

and formed mental representation of travel time distributions on other available routes in 

the network and stick to the one that potentially maximizes their utility.   

Empirical Analysis 

The mixed logit model estimated in this study included the four route attributes 

discussed earlier along with interaction effects. In order to have a parsimonious model we 

started with an elaborate model with various main and interaction effects and 

systematically eliminate the variables that deem highly insignificant. We assumed normal 

distributions for the random variables. Some researchers have used constrained 

distributions like log-normal or triangular distributions. However, the log-normally 

distributed parameters often have large tails and the constrained triangular distribution 

rely heavily on the mean. Therefore, we followed a more conservative approach by 

assuming normal distributions for the random parameters. The mixed logit model is 

estimated using BIOGEME software (Bierlaire, 2008) with DONLP2 as the optimization 

algorithm. Further, we used 500 pseudo random draws for randomly distributed 

parameters. Results of the estimation are shown in the table IV-2. The goodness-of-fit of 

the mixed logit model is good with an adjusted rho-square value of 0.14 (a value of 0.12 

or higher is considered good for panel data).  
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As expected, the coefficients on the usual travel time attribute and the toll cost are 

both negative and statistically significant. The travel time reliability effects are measured 

by including both the frequency/chances of delay attribute as a separate categorical 

variable (main effects) and by interacting each of its level with the amount of unexpected 

delay.  The category ‘1 day out of 10 days’ served as the base category. Therefore, the 

value of -0.741 in Table IV-2 shows that, on average, a route with chances of delay as ‘5 

days out of 10 days’ is 0.741 utility units less attractive than a route with chances of delay 

as “1 day out of 10 days” for a given delay time. Additionally, a significant interaction 

term between the frequency of delay and the amount of delay shows that a route with 

higher delays and chances of delay as ‘5 days out of 10 days’ is even preferred less by 

0.034 units.  These coefficients related to the reliability of a route reveal some important 

results. First, travelers prefer a route with less occurrence/frequency of unexpected delay 

days which is intuitive since it provides more stability to drivers in terms of on-time 

arrivals to their workplace. Secondly, significant interaction between the frequency of 

delay days and the amount of unexpected delay means it’s not only the frequency but also 

the amount of unexpected delay attached to it predict the preference over a particular 

route. We also found significant standard deviation corresponding to the ‘5 days out of 10 

days’ category.  

Similar results are obtained when the frequency of experiencing delay was either 

‘7 days out of 10 days’ or ‘9 days out of 10 days’ with significant negative estimates for 

these categories and their interaction with amount of delay.  However, the main effects 

for the category ‘3 days out of 10 days’ is insignificant as compared to the base category 

but the interaction effect of this category with delay time is significant indicating 

frequency of experiencing delay alone is not significant as compared to the base category 

unless a route has a higher delay time too. This is also intuitive because these two 

categories are quite similar in terms of the frequency of delay and travelers’ preferences 

are governed by both the frequency and the amount of delay when making a selection 
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between these two routes rather than just the frequency of delay. We do not find any 

significant standard deviation (or unobserved heterogeneity) in the categories ‘3 days out 

of 10 days’, ‘7 days out of 10 days’, and ‘9 days out of 10 days’. 

Interaction effects of route characteristics with commuters’ socio-economic 

characteristics, and travel characteristics were also considered, but to our surprise most of 

these other interaction effects were statistically insignificant. We initially hypothesize 

that commuters’ existing frequency of experiencing delays would have some kind of 

relationship with time and cost but we didn’t find any statistically significant coefficients 

for the same. However, we did find significant interaction effects between toll cost and 

whether a respondent pays tolls or not. A positive coefficient with magnitude 0.201 

reveals that respondents who already pay tolls are more likely to pay higher tolls to save 

time than respondents who don’t pay tolls. The interaction between income (we included 

only two income categories i.e. annual income above and below $60,000) and tolls was 

only significant at the 10% confidence level.  

Willingness to Pay Estimates 

In discrete choice models, the marginal rate of substitution expresses the 

willingness to pay (WTP) for various attributes. WTP estimates provide valuable 

information to transportation officials in terms of assessment of existing or proposed 

infrastructure facilities (tolls in our case) from a cost-benefit perspective. We calculate 

two different WTP measures. First, we calculate WTP for for travel time with respect to 

frequency of experiencing delay days. Second, we calculate WTP for travel time 

reliability expressed in terms of both the frequency of delay days and the amount of 

unexpected delay. 

Previous studies have calculated WTP measures using a range of methods. The 

most widely used mechanisms to calculate WTP measures are a) if both cost and the 

attributes of interest for which the WTP need to be calculated are randomly distributed, 
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one can simple take the ratio of the means of the assumed distributions, b) using 

simulation by taking random draws for each parameter from its assumed distribution and 

then computing the ratio. This method, however, can lead to a resulting distribution of the 

WTP measure which may have undefined population moments (Daly, Hess and Train, 

2011), c) using constrained distributions like log-Normal or triangular distributions which 

constraint the signs to be consistent and thus giving analytically tractable estimates of 

WTP measures, d) calculating the model directly in WTP-space by dividing the 

coefficients of interest with cost coefficient before estimating the model (more discussion 

can be found in Train and Weeks (2005) and Scarpa, Theine and Train (2008), and e)  

assuming a fixed parameter for cost coefficient and letting the coefficients of interests for 

which the WTP measures need to be calculated vary randomly. We follow this last 

approach in this study because of several reasons. First, the estimation becomes easy and 

the shape of the WTP distribution is same as the shape of the parameters used in the 

numerator. Second, we can avoid issues related to infinite values being observed for 

WTP measures. Third, it is not trivial to select an appropriate distribution for the cost 

coefficient. Normal distribution for the cost coefficient may lead to positive estimates for 

WTP measures and other constrained distributions like mentioned above can mask data 

issues and lead to biased estimates.  

Our final model takes following utility form: 

nsi654i

23i211nsi

ε  llExistingTo*Tollβ TollβayTimeAverageDel*elayFrequencyDβ

Delay)Frequencyv (β ayTimeAverageDelβelTime)UsualTravv (βU





 Equation IV-7 

where β’s are the corresponding coefficients for various attributes. v1 and v2 are the 

normally distributed random terms which capture unobservable heterogeneity in the usual 

travel time and frequency of delay parameters. Frequency of delay enters the equation as 

dummy variables for various categories (‘1 day out 10 days’, ‘3 days out of 10 days’, and 

so on). 3iβ  are the corresponding coefficients for these dummy variables (for i = 1, 
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2,…,5). Similarly, 4iβ are the dummy variable coefficients for the interaction effects 

between the frequency of delay and the amount of delay. The marginal utilities for time, 

cost and reliability are given by the partial derivatives of the utility function with respect 

to time (T), cost (C) and reliability (R).  
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   Equation IV-8 
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   Equation IV-10 

And the WTP for travel time and the WTP for travel time reliability is given as 

follows: 
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Therefore, for a commuter who already pays a toll has the following implied WTP 

distribution for time to avoid delay ‘5 days out of 10 days’ is given by: 

60*
0.537-

0.074- )v(-0.083
 60*  

0.2010.738-

0.0280.046- )v(-0.083
w 11

t1







   Equation IV-13 

where, t1w  is expressed in dollar/hour and v1 are randomly drawn values from a normal 

distribution with mean zero and standard deviation 0.082. Similarly, for a commuter who 

already pays a toll has the following implied WTP distribution for avoiding 10 minutes of 

delay possibly five times in 10 days as compared to 10 minutes of delay possibly once in 

10 days:  

0.537-

0.28- )v(-0.741
  

201.0.738-

10*0.028  )v(-0.741
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0

  Equation IV-14 
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where, r1w  is expressed in dollars and v2 are randomly drawn values from a normal 

distribution with mean zero and standard deviation 0.623. Table IV-3 shows the WTP 

estimates for different categories. The confidence intervals for WTP measures are 

calculated using Krinsky and Robb (KR) method when the numerator has a normally 

distributed parameter and the delta method is used in case there are no randomly 

distributed coefficients. See Hole (2007) for a detailed discussion on these methods. The 

table provides measures for respondents who do not pay tolls for their existing commute 

trips and for respondents who pay tolls for their existing commute trips. As noted earlier, 

the standard deviation came out significant only for the usual travel time attribute and the 

“5 days out of 10 days” category. Therefore, the WTP measures are normally distributed 

involving only these attributes. As evident from the table IV-3, the mean WTP estimates 

are much higher for respondents who already pay tolls for their commute trips as 

compared to respondents who don’t. Moreover, there is an increasing pattern for WTP 

measures as the reliability decreases. As evident from the marginal utilities, the WTP 

measures for travel time and reliability are both functions of the frequency of delay days. 

For respondents who do not pay tolls, the maximum estimate for the mean of WTP for 

travel time is observed when delay days could be ‘9 days out of 10 days’ at $17.14/hr. 

This mean value is about 1.7 times higher than the mean of the WTP corresponding to the 

base category i.e. ‘1 day out of 10 days’. Similarly, the WTP measures in terms of both 

the amount of delay and the frequency of delay are presented in the table. Respondents 

who don’t pay tolls are likely to pay $1.74 more to avoid 10 minutes of delay ‘9 days out 

of 10 days’ as compared to 10 minutes of delay ‘1 day out of 10 days’. Similar but higher 

values of the WTP measures are obtained for respondents who already pay tolls.   

Discussion and Conclusions 

The study used a stated preference survey methodology to elicit travelers’ 

attitudes towards unreliable routes. To circumvent the issue of presenting statistical 
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distributions to day-to-day commuters, we use the frequency of days with unexpected 

delays as the means of measuring people’s behavioral attitudes to travel time reliability. 

We calculated travelers’ WTP measures that not only take travel time and its variability 

into account but also the frequency of experiencing unexpected delays on their routes. 

The results show that travelers prefer a route with less occurrence/frequency of days with 

unexpected delays. Moreover, it’s not only the frequency but also the amount of 

unexpected delay attached to it that predicts the preference over a particular route. To our 

knowledge, no previous study has included frequency of days with unexpected delays as 

a means of eliciting behavioral response to travel time reliability. The study also 

contributes to the existing literature by calculating WTP measures that correspond to 

different levels of travel time reliability. The WTP measures for travel time and travel 

time reliability show significant heterogeneity and the mean WTP estimates are much 

higher for respondents who already pay tolls for their commute trips as compared to 

respondents who don’t. The mean of WTP corresponding to highly unreliable routes (i.e. 

frequency of delay days is ‘9 days out of 10 days’) ranges from $17.14 to $23.56 per hour 

as compared to $10.56 to $14.73 per hour for the reliable routes (i.e. frequency of delay 

days is ‘1 day out of 10 days’).   
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Table IV-1. Descriptive socio-economic characteristics of the respondents 

  

Female 54.1% 

Male 45.9% 

Age (Mean, Std. Deviation) (39.75, 11.29) 

Personal Income   

Up to $40,000 9.7% 

$40,001 to $60,000 17.5% 

$60,001 to $90,000 23.0% 

$90,001 to $120,000 17.5% 

Greater than $120,000 32.3% 

Time at the current route to work   

Up to 1 month 2.7% 

1 month to 6 months 14.4% 

6 months to 1 year 8.9% 

1 year to 5 years 40.5% 

Greater than 5 years 33.5% 

Usual Travel Time in Min. (Mean, Std. Deviation)  (29.90, 14.80) 

Delay in Min.  (Mean, Std. Deviation)  (13.71, 10.82) 

Toll in $ (Mean, Std. Deviation)  (0.45, 0.97) 

Frequency of Experiencing Unexpected Delay   

Never 4.7% 

Once in 10 days 20.6% 

2-3 times in 10 days 24.5% 

4-5 times in 10 days 18.3% 

6-7 times in 10 days 13.6% 

8-9 times in 10 days 8.2% 

Always 10.1% 
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Table IV-2. Panel mixed logit model 

  

Attributes Coefficient |t-values| 

Usual travel time -0.083 4.42 

Std. dev. usual travel time 0.082 2.55 

Average delay time -0.046 2.43 

Frequency of delay   

1 day out of 10 days ref. - 

3 days out of 10 days 0.098 0.66 

Std. dev. 3 day out of 10 days 0.002 0.12 

5 days out of 10 days -0.741 3.7 

Std. dev. 5 day out of 10 days 0.623 2.07 

7 days out of 10 days -0.749 3.75 

Std. dev. 7 day out of 10 days 0.275 0.77 

9 days out of 10 days -0.496 1.93 

Toll -0.738 8.16 

Interactions   

1 day out of 10 days * Delay ref. - 

3 days out of 10 days * Delay -0.021 2.01 

5 days out of 10 days * Delay -0.028 2.41 

7 days out of 10 days * Delay -0.056 3.61 

9 days out of 10 days * Delay -0.079 4.17 

Toll * dummy for low to med income (<$60K) -0.002 1.89 

Toll * dummy for who already pay tolls 0.201 2.04 

Final log-likelihood -1226.15  

Likelihood ratio test 442.28  

Adjusted rho-square 0.141  

Number of choices 2088  

Number of individuals 273   
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Table IV-3. Willingness to pay estimates 

Categories Mean Lower and Upper 95% 

For commuters who don’t pay tolls 

WTP in terms of frequency (Value of Time) 

Avoid delay ‘1 day out of 10 days’ $10.72/hr ($10.17, $11.27) 

Avoid delay ‘3 days out of 10 days’ $12.43/hr ($11.88, $12.98) 

Avoid delay ‘5 days out of 10 days’ $13.00/hr ($12.45, $13.55) 

Avoid delay ‘7 days out of 10 days’ $15.27/hr ($14.72, $15.82) 

Avoid delay ‘9 days out of 10 days’ $17.14/hr ($16.59, $17.69) 

WTP in terms of frequency and amount of delay (Value of Reliability) 

10 minutes of delay ‘1 day out of 10 ref. 

10 minutes of delay ‘3 days out of 10 Not significant 

10 minutes of delay ‘5 days out of 10 $1.40 ($1.32, $1.48) 

10 minutes of delay ‘7 days out of 10 $1.77 ($0.79, $2.75) 

10 minutes of delay ‘9 days out of 10 $1.74 ($1.15, $2.33) 

For commuters who pay tolls 

WTP in terms of Frequency (Value of Time) 

Avoid delay ‘1 day out of 10 days’ $14.73/hr ($14.18, $15.28) 

Avoid delay ‘3 days out of 10 days’ $17.07/hr ($16.52, $17.62) 

Avoid delay ‘5 days out of 10 days’ $17.86/hr ($17.31, $18.41) 

Avoid delay ‘7 days out of 10 days’ $20.99/hr ($20.44, $21.54) 

Avoid delay ‘9 days out of 10 days’ $23.56/hr ($23.01, $24.11) 

WTP in terms of amount of delay and frequency (Value of Reliability) 

10 minutes of delay ‘1 day out of 10 ref. 

10 minutes of delay ‘3 days out of 10 Not significant 

10 minutes of delay ‘5 days out of 10 $1.93 ($1.85, $2.01) 

10 minutes of delay ‘7 days out of 10 $2.44 ($0.85, $4.03) 

10 minutes of delay ‘9 days out of 10 $2.39 ($1.23, $3.55) 
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CHAPTER V. 

UNDERSTANDING DRIVERS’ ROUTE CHOICE BEHAVIORAL RESPONSE TO 

UNCERTAINTY IN THEIR COMMUTING ROUTES 

Current route-choice models used in practice simplify the decision process such 

that uncertainty is assumed away by bestowing travelers with the ability to memorize 

travel times on all practical routes and constantly reassess this close-to-perfect 

information to a select route that maximize their utilities. Most often the models’ 

underlying framework is economic rationality, which brings with it the adherence to the 

strictures of rational theory. Given the stochastic nature of the transportation networks, 

the assumption of a driver’s close-to-perfect knowledge is, however, questionable. 

Therefore, it becomes imperative to improve existing route-choice models by integrating 

the theory and empirical findings from fields of science, like psychology, where it has 

been repeatedly shown that decisions and behaviors are often determined by perceptions 

that may not be in accordance with rational theories. Common analytical non-behavioral 

route choice models, which are based on either network risk, to take into account 

randomness of network utilities, or perception errors, to account for imperfect 

information of travelers, or both, are as follows: deterministic network, deterministic user 

equilibrium model; deterministic network, stochastic user equilibrium model; stochastic 

network, deterministic user equilibrium; and stochastic network, stochastic user 

equilibrium model (Chen and Recker, 2001).  However, these models lack psychological 

underpinnings and therefore, are not well suited to analyze drivers’ cognitive decision 

making process. As a result, rule based models that are more representative of drivers’ 

behavior are being used in understanding route-choice behavior from drivers’ 

perspective. These models are based on the assumption that drivers follow latent decision 

rules for evaluating the attributes of available routes and decide on a specific route based 

on this evaluation.  
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Lacking in contemporary research efforts to model the travel time uncertainty is 

the inclusion of non-expected utility framework which incorporates two very important 

behavioral attributes including risk/ambiguity attitudes and probability weighting. 

Therefore, the goal of this chapter is to understand people’s attitudes towards uncertain 

situations when they make adjustments to their usual commuting route. To this end, we 

propose a non-linear logit model capable of embedding probability weighting, and 

risk/ambiguity attitudes. The model adds behavioral rigor to the existing random utility 

framework. Furthermore, a willingness to pay structure is derived which takes into 

account travel time variability and behavioral attitudes.  

Empirical Approaches 

Previous studies have shown that the most important factor that influences 

travelers’ utilities and route choice is the expected travel time (Bekhor et al., 2001; 

Outram and Thompson, 1977).  However, a number of recent studies (Bates et al., 2001; 

de Palma and Picard, 2005; Lam and Small, 2001) have shown that travelers have an 

aversion to uncertainty about travel time too and understanding drivers’ attitudes towards 

travel time reliability has become an important aspect of travel demand studies (Madera 

and Levinson, 2010; Tilahun and Levinson, 2010). One aspect of travel time variability is 

the range and distribution of travel times on a particular trip. Usually drivers and 

especially daily commuters having repeated trips select a route that offers them least 

amount of variation around some mean time. The other aspect of travel time variability is 

how often commuters face unexpected traffic delays over a course of time. For example, 

a route may have a usual travel time of 15 minutes but has chances of experiencing an 

average delay of 10 minutes seven out of 10 days (this amounts to a 70% probability of 

delay). Whereas, there is another route available that has a usual travel time of 25 

minutes but has chances of experiencing an average delay of 10 minutes only one out of 

10 days (10% probability of delay). Moreover, when there is no reference time 
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distribution for a route due to complete unfamiliarity and no prior experience in taking 

that route. How do drivers select routes under this kind of uncertainty when they make 

changes in their usual commuting patterns?  

Most of the frameworks adopted by earlier studies to capture travel time 

uncertainty relied on utility maximization, in one way or the other. Mean-variance 

approach (Markowitz, 1952) was among the first ones that aimed to capture risky 

behavior within utility maximization framework. (Jackson and Jucker, 1982) studied 

route choice behavior by using a mean-variance model such that the utility of a route was 

given as U(x) = E(t) − θVar(t). E(t) represents the expected travel time on a particular 

route and the variability in time, Var(t), is the measure of risk. The parameter θ captured 

travelers’ attitudes toward risk. The used a stated preference survey methodology to elicit 

travelers’ route choice behavior. Black and Towriss (1993), used a similar approach to 

study route choice behavior, however, used standard deviation as the measure of travel 

time variability instead of variance. These studies showed that travelers are, in general, 

averse to travel time variability; however, they found a considerable heterogeneity in 

travelers’ responses. 

Following the mean-variance approach, Expected Utility Theory (EUT) has been 

widely used to understand drivers’ behavioral responses to travel time uncertainty. EUT 

states that in situations involving uncertainty, the decision maker (DM) chooses outcomes 

on the basis of their expected utility values, i.e., the weighted sums of the utility values of 

outcomes multiplied by their respective probabilities. As such, the DM selects the 

alternative with the maximum utility (Einhorn and Hogarth, 1981; von Neumann and 

Morgenstern, 1944).  Application of expected utility (EU) in route choice modeling is 

widespread. Travelers are assumed to behave as if they correctly assign probabilities to 

random travel times and choose a route that maximizes the expected value of their utility. 

However, after an extensive application of the conventional EU models in modeling 

uncertain behaviors, researchers have come to the conclusion that decision makers often 
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do not make choices in a way consistent with the EU models. For example, the Allais 

paradox (overweighing high consequence low-probability cases) and the Ellsberg 

paradox (ambiguity aversion attitude) have challenged the underlying axioms of the EU 

and subjected EU models even in context of simple decision making situations. Avineri 

and Prashker (2004) conducted simple route-choice experiments and found two violations 

of EU theory. They found presence of certainty effect (Allais paradox) and the inflation 

of small probabilities in a stated-preference single-route experiment.  

Similarly, the conventional Random Utility Models (RUM) assume that travelers 

have perfect information and show rational behavior to maximize their utility (or 

satisfaction). Rationality of travelers have been challenged in many recent studies 

(Avineri and Prashker, 2004; Bogers et al., 2007; Fujii and Kitamura, 2000). Moreover, 

the theory is concerned with the valuation of certain and riskless outcomes. However, 

recent developments in the RUT framework have incorporated EU principles to model 

individual travel choice under risk (Noland and Small, 1995; Polak et al., 2008; Senna, 

1994). Maximum Expected Utility Theory was introduced as a way to take into account 

travel time variability. This approach became one of the standard approaches to account 

for travel time uncertainty in terms of risk for quite some time (Bates et al., 2001; Small 

et al., 1999). Although EU has been extensively used within RUM, a linear utility 

specification has been the dominant approach to account for risk in travel time 

occurrences (see Hensher, Greene and Li, 2011 for a review). Recent developments in 

route choice modeling are now acknowledging non-linearities in both utility specification 

and probability weighting under uncertain travel times. For example, Hensher et al., 

(2011) investigated individual heterogeneity in value of travel time savings by 

incorporating non linear probability weights and risk attitudes, using a mixed multinomial 

model. We aim to further add behavioral realism in existing RUM framework by 

considering behavioral models available not only for risk analysis but also for ambiguity. 
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Behavioral Models for Risk and Ambiguity 

As mentioned earlier, there are two aspects to uncertainty that we aim to capture 

in the route choice context: risk and ambiguity. When drivers’ are operating in the risky 

space it is assumed that they have a prior knowledge of probabilities associated with 

possible outcomes. We rely on the principles of Prospect Theory, proposed by Kahneman 

and Tversky (1979), to capture the route choice attitudes in the risky space. Whereas, 

when drivers do not have knowledge of point probabilities, they operate in the ambiguity 

space. We use α-maxmin model, as proposed by Ghirardato et al. (2004), to untangle 

drivers’ ambiguity attitudes. These two models fall under the umbrella of ‘non-expected 

utility theories’ and the name is primarily given due to the fact that they usually do not 

adhere to the principles of economic rationality and the standard choice axioms of EUT. 

Following subsections provide a brief overview of these behavioral theories. 

Prospect Theory for Risk Analysis 

The Prospect Theory (PT) relaxes the linear assumption on the probability of 

outcomes to include decision weights to allow for under or over weighting of point 

probabilities of possible outcomes.  Another distinguishing feature of PT is the inclusion 

of risk attitudes via assigning non-linear utility function (also known as value function) to 

possible outcomes. A prospect (or a set of choices) is represented as a sequence of pairs 

(xj, pj), where xj is the jth outcome and pj is the associated objective probability. 

Preferences are modeled jointly with a value function and a weighting function. The 

value function is given by v(xj) and the weighting function is represented as w(pj), where 

w indicates the weighting of point probabilities. The utility under this framework can be 

written as: 

 )x(v)p(wU j
j

jj      Equation V-1 
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A further advancement to PT, also known as Cumulative Prospect Theory (CPT), 

was proposed by Tversky and Kahneman (1992) and introduced the concept of reference 

dependence. Of the various non-expected utility theories, PT has received the most 

attention in travel behavior research and especially in route choice modeling under 

uncertainty (Connors and Sumalee, 2009; Gao et al., 2010; Razo and Gao, 2010; Viti et 

al., 2005; Xu et al. 2011). 

Maxmin Expected Utility Theory for Ambiguity Analysis 

Gilboa and Schmeidler (1989) developed maxmin expected utility (MEU) model, 

also known as multiple-prior model, to address the Ellsberg paradox (Ellsberg, 1961) and 

generalize the axiomatic framework to explain ambiguous decision problems. The MEU 

assumes that DMs obtain probabilities based on their personal experience and replaces 

the classic independence axiom of the EU models with the introduction of an axiom of 

uncertainty aversion.  Thus, MEU-rational agents make choices over a non-unique set of 

probability distributions, thereby yielding the utility representation: 




S
CP

dP)t(uminMEU    Equation V-2 

where C is the set of probability measures on the set of possible states (similar to 

prospects in PT) S. Under MEU, the DM considers only the worst-case scenario. 

Ghirardato et al. (2004) proposed α-maxmin model for ambiguity in a very general 

context. The model nests many previously proposed models of ambiguity, including 

MEU, and Choquet expected utility models of Schmeidler (1989). The model allows 

DMs attitude to vary from extremely ambiguity averse to extremely ambiguity loving. 

That is, 
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where α can vary from 0 to 1 and gives the ambiguity attitude index i.e., the weight that 

the DM put on the most “pessimistic” probability in C.  When α = 1, decisions are 

entirely determined by the worst-case scenario, and the α- MEU model coincides with 

MEU. In case of α = 0, the DM is absolutely ambiguity loving. In general, for α > 0.5, the 

DM is ambiguity averse; for α < 0.5, he/she is ambiguity loving; and at α = 0.5, the DM 

is ambiguity neutral.  

The use of abovementioned behavioral theories that can be embedded within the 

traditional RUM framework to understand route choice behavior is almost non-existent. 

To the best of our knowledge, most route choice experimental studies consider only risky 

route choices, e.g., precise information on probability of delay. In this research, we use a 

stated preference experimental protocol to simultaneously elicit people’s attitude toward 

both risky and ambiguous routes. The specific hypothesis driving the proposed research 

is that drivers’ do not always make rational decisions in route-choice situations and 

factors such as uncertainty in travel time and monetary cost play a significant role in 

route selection.  

Empirical Framework 

We use a random utility framework, specifically, a panel mixed logit model in 

order to account for correlated responses from the same individual and to include any 

unobserved heterogeneity in preferences. A simple utility function can be written as 

follows: 

nsinsinnsi εxβU     Equation V-4 

where n (n = 1, 2,…, N) is used to denote respondents,  s (s = 1, 2, …, S) represents SP 

choice scenarios, and i indicates the route alternative (i = 1, 2,…, I). Our analysis 

involves two alternatives only, therefore, I = 2 in this case. nsix  represents a )Q( 1  

vector of observed attributes along with their interaction with other observable attributes. 

βn is the parameter vector associated with nsix . The unobserved term, nsiε , is assumed 
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independently distributed according to extreme-value distributions. In order to account 

for any unobserved heterogeneity, we allow the parameter vector βn to vary over 

individuals to follow a particular distribution. As such, βn can be written as: 

'
n

'
n v       Equation V-5 

where   is the )Q( 1  vector that captures the mean effects of the observed variables 

nsix  and the unobserved heterogeneity is given by the )Q( 1  randomly distributed 

vector, nv .  

For Risk Analysis 

Eight of the 12 questions in our SP survey involve respondents making choices 

between two risky routes (i.e. the chances of experiencing any delay is known). As such, 

we extend the above stated utility function into probabilistic utility framework. First, 

consider an expected utility framework where the respondent chooses outcomes on the 

basis of their expected utility values, i.e., the weighted sums of the utility values of 

outcomes multiplied by their respective probabilities, given by j
j

j UpEU   . 

Therefore, a random utility function with linear probability function (based on EUT) can 

be written as: 

  nsinsi ND,nsinsi,Dnsitnsinnsi ε)Tp - (1 TpβxβU    Equation V-6 

 

where ߚn are the coefficients on deterministic attributes and include interaction terms too, 

 t is the coefficient on travel time, ܶD is the travel time if delay occurs, ܶND is the travelߚ

time in case of no delay (usual travel time), and ݌nsi is the probability/frequency of delay. 

Now, as mentioned earlier, prospect theory posit that DMs tent to underweight or 

overweight probabilistic events when assigning probabilities. Therefore, we advance the 

EUT to include non-linear weights for objective probabilities. The utility under this 
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framework can be written as j
j

j U)p(wNEU   , where NEU stands for non-

expected utility, )p(w j  is a probability weighting function, and jU is a value function. 

The following equations adapt the standard EUT framework within RUM by 

incorporating a probability weighting function ݓሺ݌j).  

  nsinsi ND,nsinsi,Dnsitnsinnsi ε))T w(p- (1 T)w(pβxβU      Equation V-7 

where 

 

     



1

1 nsinsi

nsi
nsi

pp

p
)w(p


    Equation V-8 

The value of parameter γ signifies the non-linearity in the probability weighting. 

In case, 0 <γ <1 the probability function takes an inverted S-shape. This implies that 

when the function is concave low probabilities are over-weighted and when the function 

is convex high probabilities are under-weighted. On the other hand, all values γ>1 imply 

the probability function is S-shaped, in which small probabilities are under-weighted and 

high probabilities are over-weighted. The probability equation presented above was first 

proposed by Tversky and Kahneman (1992) and is extensively used in other literature in 

various domains.1 Several other probability functions have been proposed and used over 

the past few years and an application for various weighting functions within route choice 

can be found in Hensher et al. (2011). Finally, to include risk attitude parameters we 

specify a power function for the travel time attribute. The power function given by 

                                                 
1 We also tried reference dependence model, cumulative prospect theory that is, as 

proposed by Tversky and Kahneman (1992). Under cumulative prospect theory, decision makers 
consider choices from a personal reference point and tend to be risk averse with respect to gains, 
and risk seeking with respect to losses. Also, DMs tend to overweight unlikely events and 
underweight likely events when assigning probabilities. We assumed drivers’ existing travel 
characteristics as the reference points for usual travel time and average delay. However, we do 
not obtained results in accordance with cumulative prospect theory. The results are shown for 
both the gain frame and the loss frame in Tables V-6 and V-7 at the end of the chapter. 
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x  U(x) belongs to the family of constant relative risk aversion (CRRA) and is widely 

used in the economic, psychological, and health domain (Wakker, 2008). The model now 

becomes: 

  nsinsi ND,nsinsi,Dnsitnsinnsi ε))T w(p- (1 T)w(pβxβU     Equation V-9 

The ρ parameter lies between 0 and 1 for risk seeking respondents and is greater 

than 1 for risk-averse respondents. The parameter also provides a measure of decreasing 

marginal utility of travel time, that is, travel times have decreasing effects as the amount 

of time increases. For, γ = ρ =1, we have a standard linear expected utility model 

embedded within random utility framework. Now, the probability of an individual n 

selecting alternative i (i = 1, 2,…, I) in choice scenario s (s = 1, 2, …, S) is: 
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Equation V-10 

The algebraic calculation of this probability results in a closed-form logit choice 

probability and can be written simple as (where Vnsi  is the deterministic part of the 

utility): 

 
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
I

i nsi

nsi
nsi

Vexp

Vexp
P

1

   Equation V-11 

Let   is the parameter vector such that it contains the coefficients on various 

attributes, the probability weighting parameter, and the measure of decreasing marginal 

utility, i.e.,   = {βn, βt γ, ρ} Now, in order to take into account the probability of each 

respondent’s sequence of observed choices in SP setting, we can write the likelihood 

function conditional on knowing as: 
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    Equation V-12 

where ynsi  is equal to one if respondent n chooses alternative i in choice situation s and 0 

otherwise. In order to account for preference heterogeneity, we assume a normal 

distribution over subjects for the parameter vector Δ. The unconditional likelihood to 

calculate the model parameters is given by: 



 d)|(f)(L)(L nn(    Equation V-13 

where f is the multivariate normal distribution and  is a vector that populates the q

elements for all q. The equation can also be seen as the weighted average of logit 

probabilities evaluated at different values of parameter vector Δ. The log-likelihood can 

be defined as: 

 

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n

i
n d)|(f)(Llog)(LL

1




   Equation V-14 

and is numerically calculated via simulated maximum likelihood estimation. The 

simulated log likelihood function is calculated by taking r =1,….,R draws from the 

assumed distribution )|(f  . The simulated log likelihood is given as, 

)(L
R

log)(LL r
R

r
n

n

i
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
11

1
   Equation V-15 

More detailed discussion on retrieving parameters of interest via maximum 

likelihood estimation can be found in McFadden and Train (2000). 

For Ambiguity  

As mentioned earlier, four of the 12 questions asked in the SP survey involve a 

route where, the frequency of delay was fixed to ‘Unknown’ in one of the two 

hypothetical routes. In other words, one of the routes was ‘ambiguous’ and the other was 

‘risky’ (see Figure 2).  We use α-maxmin model to calculate the utility of the ambiguous 
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route. We embed the α-maxmin framework within the RUM framework to calculate the 

parameters of interest. A utility function for an ambiguous route (with α-maxmin 

specification) can be written as: 

   )T(U)p()T(pUmax )()T(U)p()T(pUmin MEU NDD
]c,[cp

NDD
]c,[cp 11




111
22



 Equation V-16 

where the respondent’s perception of ambiguity is denoted by C such that C = [c1,c2] = 

[0,1]. The α parameter is the weight the respondent put on worst possible travel time (or 

worst possible prior) and 1 - α is the weight on the best possible travel time (or best 

possible prior). In our SP surveys, the frequency of delay for ambiguous route is 

‘Unknown’ which means that the best possible prior is when c1 = 0, and the worst 

possible prior is when c2 = 1. Therefore, the respondent simply maximizes: 

 )U(T )()U(T MMEU NDD   1    Equation V-17 

We assign CRRA utility for travel time as we did in the case of risk analysis. The 

α-maxmin utility for travel time now becomes: 

  )(T )()(T MMEU NDD  1    Equation V-18 

where ρ is the estimate of the risk aversion coefficient from the risk analysis. Now, the 

probability of an individual n selecting the ambiguous alternative i over the risky 

alternative j in choice scenario s (s = 1, 2, …, S) is: 
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  Equation V-19 

The algebraic calculation of this probability results in a closed-form logit choice 

probability and can be written simple as: 
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 Equation V-20 

Now, in order to take into account the probability of each respondent’s sequence 

of observed choices in SP setting, we can write the likelihood function conditional on 

knowing Δ (the parameter vector) as: 
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Equation V-21 

The log-likelihood and the simulated log likelihood functions are calculated in a 

similar fashion as we did for Equations 13 to 15.  

Results 

Descriptive Analysis 

A total of 292 respondents submitted the survey online. We only included the 

responses where the existing commute time was at least 5 minutes. The final sample used 

in the analysis consisted of 283 respondents with 3,259 choice occasions. Table V-1 

shows the socio-economic characteristics of the respondents (who chose to provide that 

information) along with the characteristics of their existing commuting routes. We almost 

have an even distribution of males to females in our sample with an average age of 

respondents as 40 years. However, our sample is skewed towards the higher income 

groups. This is due to the fact that we sent out our survey to the alumni of the University 

of Iowa and almost all of them had at least four year college degree.  The average travel 

time to work was calculated as 29.8 minutes with average delay time of 13.8 minutes (on 

days respondents experience delays on their commuting route). The other important piece 
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of information we collected was the frequency/chances of commuters to experience days 

with unexpected delays. About half of the respondents experience unexpected delays at 

least 2-3 times in two weeks with about 10 percent of them experiencing delays every 

day. Finally, about one-third of the respondents pay tolls for their commuting route and 

the average toll across our sample came out to be $0.45.   

Empirical Analysis 

a) Risk Analysis 

We first estimated panel multinomial logit and panel mixed logit models based on 

expected utility theory as per Equation V-6. The results are shown in Table V-2 under the 

column headings EUT-MNL and EUT-MMNL. The mixed logit model is estimated using 

BIOGEME software (Bierlaire, 2008) with DONLP2 as the optimization algorithm. More 

details on algorithm can be found in Spelluci (1999). Further, after testing various 

number of pseudo random draws for randomly distributed parameters, we selected 250 as 

a balance between accuracy and speed of solution. The coefficients on expected travel 

time and toll cost are both negative, as expected. However, the mixed logit specification 

provides a better fit (as evident from the higher adjusted rho-squared value of 0.229 for 

mixed logit specification) with significant heterogeneity in both the expected travel time 

and the toll cost. 

The results based on cumulative prospect theory are presented in Table V-6 and 

Table V-7. However, the coefficient on travel time came out be insignificant. Therefore, 

we rejected the hypothesis that drivers operate differently in the gain domain as 

compared to the loss domain. We then estimated similar models based on prospect theory 

specification as per Equation V-9 (see Table V-3 under the column headings PT-MNL 

and PT-MMNL). The multinomial logit specification shows that coefficients on travel 

time and toll cost are both negative and statistically significant at 95% confidence level. 

The coefficient on risk parameter ρ (or marginal diminishing utility) is 0.84 meaning that, 
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on average, drivers are risk seeking. The standard error associated with this estimate is 

0.087, which means that the estimate is not statistically different than 1, at 95% 

confidence level. However, the multinomial specification does provide an evidence of 

risk seeking attitudes. The estimate of 1.41 for γ, confirms non-linearity in probability 

weighting, however, a value greater than one implies drivers under weigh small 

probabilities and over-weigh high probabilities. A value of 1.41 for γ, shows that drivers 

perceive a probability of 0.20 as 0.118, i.e. w(0.2) = 0.118, whereas a probability of 0.8 is 

perceived as 0.831, i.e. w(0.8) = 0.831. Surprisingly, we didn’t find significant interaction 

effects between route characteristics and drivers’ socio-economic and travel 

characteristics. The only statistically significant interaction effect is between toll cost and 

a dummy variable corresponding to whether a respondent pays tolls or not. We found a 

positive coefficient of 0.186 implying that respondents who already pay tolls for their 

commuting routes have a tendency to pay higher tolls than respondents who don’t pay 

tolls. 

PT-MMNL (Table V-3) shows results of the mixed logit model with same 

variables as we have for the MNL specification. The estimates from the MNL model 

entered as the starting values for the mixed logit model. The estimation of a non-linear 

mixed logit model incorporating unobserved heterogeneity in probability weighting 

parameter, risk attitudes, and other parameters is rather complex and time taking. 

Although it is possible to assume various distributions for the random variables, we 

decided to follow a more conservative approach by allowing the random parameters to be 

distributed normal. Researchers have used constrained distributions like log-normal or 

triangular distributions. However, the log-normally distributed parameters often have 

large tails and the constrained triangular distribution rely heavily on the mean. The 

goodness-of-fit of the mixed logit model is better as compared to the MNL model as 

evident from the higher adjusted rho-squared value of 0.238 for mixed logit specification. 

A lower value for the final log-likelihood of -1136.06 for mixed logit also implies a 



71 
 

 

superior fit. As expected, the coefficients on the mean estimates of expected travel time 

and toll cost are both negative and statistically significant. We found significant 

unobserved heterogeneity in the toll cost parameter, though, not for the coefficient on 

expected travel time. The mean estimate of risk parameter, in this case, is found to be 

0.75 and is statistically different than one. This confirms that, on an average, drivers have 

risk seeking behavior in the context of route choice. A significant measure of standard 

deviation confirms unobserved heterogeneity in risk attitudes. An estimate of 0.153 for 

the standard deviation suggests that about 94.5% of the respondents have ρ estimates less 

than one (risk taking) while 5.5% have estimates ρ greater than one (risk averse). Hensher 

et al. (2011) found similar results with their survey respondents showing risk seeking 

behavior on average, however, their study showed a higher proportion of risk averse 

drivers (34.3%). Another interpretation of this measure is in terms of diminishing 

marginal utility. An estimate less than one for ρ, indicate a significant decrease in 

sensitivity to travel time (in other words a delay of 2 min for a 20 min trip hurts more 

than a delay of 2 min for a 50 min trip). In our case, about 94.5% of respondents have 

decreasing sensitivity to travel times and only 5.5% of the respondents have increasing 

sensitivity to travel times. The estimation of probability weighting parameter γ in the 

mixed logit specification is similar to the MNL specification at 1.40. Figure V-1 further 

illustrates the probability weighting functions for γ = 1.40, γ = 0.69, and γ =1. This again 

confirms that drivers under-weigh small probabilities and over-weigh high probabilities. 

We tried including random effects for the probability weighting parameter but the 

standard deviation coefficient was not only insignificant but the model was also poorly 

identified. 

Interesting conclusions can be drawn if we simultaneously consider the CRRA 

utility function (which turns out to be a convex function in our case with ρ less than one) 

and the probability weighting function. For example, when the probability of delay travel 

time is small, say 0.2, the drivers tend to under weigh this probability, w(0.2) = 0.112 and 
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over weigh the probability of usual travel time, i.e. 1 – 0.112 = 0.888, meaning they show 

optimism in perceiving the chances of delay and thus may reflect risk seeking attitudes. 

On the other hand, if the probability of delay travel time is high, say 0.8, the drivers 

would over weight this probability, w(0.8) = 0.831, and under weigh the probability of 

usual travel time. This shows pessimism when the chances of delay are high, and drivers 

may act risk averse even with a convex CRRA utility function.  

Comparing EUT based models with PT based models, we found that PT based 

models with probability weighting parameter and non-linear utility specification provide 

better fit and confirm that drivers do show behavior that departs away from rationality 

assumptions within traditional expected utility theory. 

b) Ambiguity Analysis 

Similar analysis is done for calculating drivers’ ambiguity attitudes. The 

respondents answered up to four questions in the ambiguity domain where one of the 

routes had ‘Unknown” for the frequency/chances of delay attribute and the other route 

was a risky route with known chances of delay. We again assumed CRRA utility for 

travel time for both the ambiguous route and the risky route. We used the fixed value for 

the risk attitude parameter and the probability weighting parameter calculated from the 

risk analysis.  Table V-4 shows the results of ambiguity analysis based on the α-maxmin 

utility function for the ambiguous route. The results of MNL are shown under the column 

heading AMB-MNL. The negative coefficients on both the expected travel time and the 

toll cost are as expected. The ambiguity parameter is calculated as 0.57 and is statistically 

different than one, implying that drivers are ambiguous averse on average. However, the 

parameter is not statistically different than 0.50 (when alpha = 0.50, it means that drivers 

are ambiguity neutral). Also, the estimated parameter for the alternative specific constant 

is insignificant, indicating that after controlling for all the observed factors, drivers are 

indifferent between a risky route and an ambiguous route. We again found a significant 
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interaction effect between toll cost and a dummy variable corresponding to whether a 

respondent pays tolls or not.  

We finally extend the ambiguity analysis to the mixed logit framework (AMB-

MMNL). We find significant unobserved heterogeneity in both the expected travel time 

and the toll cost. More importantly, we found significant standard deviation for the 

ambiguity parameter α. The mean estimate of ambiguity parameter is calculated as 0.574, 

which again shows ambiguity averse attitudes in general. As mentioned earlier, a value of 

0.50 for the ambiguity parameter signifies ambiguity neutral attitudes and drivers put 

equal weight on their best and worst travel times. An estimate of 0.242 for the standard 

deviation for alpha parameter shows that about 37.9% drivers exhibit ambiguity seeking 

attitudes and about 62.1% exhibit ambiguity averse attitudes (given they are risk seeking 

in general).   

c) Willingness to Pay Measures 

Willingness to pay (WTP) or marginal rate of substitution for travel time is an 

important output of studies based on discrete choice models. The models presented in this 

study both in terms of risk and ambiguity can add behavioral rigor and sufficient travel 

time variability in the calculation of WTP measures. Equation V-22 gives the value of 

time or WTP equation for expected utility model. 

toll

time
EUT,riskyWTP




    Equation V-22 

where time  and toll  are the coefficients on expected travel time and toll cost, 

respectively. Based on our non-linear utility specification, the value of time for risky 

routes based on prospect theory is given as: 
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where time  is the coefficient on expected travel time, ρ is the risk attitude measure 

(diminishing marginal utility), )p(w is the weighting function parameterized by γ, DT and 

NDT  are delayed and usual travel time respectively, and toll  is the coefficient on toll cost. 

Similarly, WTP for an ambiguous route is given by: 

 
toll

NDDtime
ambigous

T)(T 
WTP


  11

1
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   Equation V-23 

Table V-5 shows the measures of WTP for different scenarios based on Equation 

V-23 through V-24. Since, the WTP is a function of the probability of experiencing 

delays; we considered different cases ranging from 10% to 90% chances of delay 

occurrence. The table gives corresponding weighted measures as well, based on our 

estimated weighting parameter γ.  We first calculated ‘average’ WTP estimates by taking 

only the means of the assumed distributions for various parameters involved in the 

calculation of WTP. We then calculated the WTP measures based on simulation which 

takes into account the distributions of various parameters involved2. The results show that 

simulation produced higher estimates for WTP than the average values. Nonetheless, 

based on these estimates, we can see a systematic decrease in WTP values (although not 

by much) as the chances of delay increase. For example, drivers’ mean WTP when the 

chance of delay is 10% is $12.18 per hour, on the other hand, their WTP is $11.46 per 

hour when the chance of delay is 90%. However, the standard deviations associated with 

the distributed WTP measures are quite large. This is due to the fact that the cost 

parameter is distributed and drawing parameter values during simulation that may be 

close to zero lead to extremely large positive and negative values.    

Similarly, we calculated WTP values in case of ambiguous routes. As can be see 

seen in Table V-5, the mean WTP for ambiguous route is $9.36 per hour. This value is 

                                                 
2
 The mean, standard deviation, and median values are calculated after removing 5% 

from each tail of the resulting distribution (see Sillano and Ortuzar, 2005 for more details).  
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lower than the WTP values for risky routes. It shows that drivers are not only ambiguity 

averse, in general, but also are willing to pay less if they are not familiar with the route. 

Figure V-2-6 show WTP distributions for different probability values.  

Discussion and Conclusions 

This study presents models to understand drivers’ route choice attitudes under 

uncertainty. The paper contributes to the existing knowledge of route choice behavior in 

three ways. First, we add behavior rigor to the existing random utility framework by 

incorporating important features of non-expected utility models such as probability 

weighting, and risk attitudes. Second, previous studies have mostly incorporated one 

aspect of uncertainty, risk that is, where drivers are assumed to have known the 

probability distribution of travel times. In this study, we study route choice attitudes 

towards ambiguity too, where drivers are assumed to have imperfect knowledge of travel 

times. Third, we derive WTP measures that are more behaviorally appealing and take into 

account drivers’ attitudes toward uncertainty and travel time variability.     

A stated preference methodology was used in this research using a web-based 

survey to collect behavioral data in the context of route choice. The main objective of the 

paper was to elicit drivers’ attitudes toward ‘risky’ and ‘ambiguous’ routes. The results of 

the empirical analysis provide several valuable insights. It was found that when drivers 

are operating in risky domain, they tend to be risk seeking in general, with a small 

percentage of drivers showing risk averse behavior. Results also show that drivers tend to 

under weigh small probabilities of experiencing traffic delays and over-weigh high 

probabilities of experiencing traffic delays. The empirical findings from models capturing 

ambiguity attitudes further offer important insights. Assuming drivers are risk seeking in 

general, the estimation of ambiguity parameter shows that drivers are ambiguity averse, 

in general. This means that drivers tend to avoid taking routes about which they don’t 

have prior knowledge of experiencing delays. However, significant heterogeneity is 
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found in ambiguity attitudes. About 62.1%  drivers exhibit ambiguity averse attitudes and 

about 37.9% exhibit ambiguity seeking attitudes. Finally, WTP measures are calculated 

that are based on drivers’ behavioral attitudes and possible chances of experiencing 

delays. The mean WTP measures for routes with known probability distribution range 

from $11.46 to $12.18. In case of ambiguous routes, drivers’ WTP for tolls is $9.36 per 

hour.  
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Table V-1. Descriptives of survey participant 

Female 54.95% 

Male 45.05% 

Age (Mean, Std. Deviation) (40.18, 11.23) 

Personal Income   

Up to $40,000 10.0% 

$40,001 to $60,000 16.9% 

$60,001 to $90,000 21.4% 

$90,001 to $120,000 18.4% 

Greater than $120,000 33.2% 

Usual Travel Time in Min. (Mean, Std. Deviation)  (29.78, 14.63) 

Delay in Min.  (Mean, Std. Deviation)  (13.77, 10.64) 

Toll in $ (Mean, Std. Deviation)  (0.42, 0.95) 

Frequency of Experiencing Unexpected Delay   

Never 4.4% 

Once in 10 days 20.8% 

2-3 times in 10 days 25.1% 

4-5 times in 10 days 18.6% 

6-7 times in 10 days 13.7% 

8-9 times in 10 days 8.2% 
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Table V-2. Model results based on EUT 

Attributes 

EUT-MNL EUT-MMNL 

Coefficient S.E Coefficient S.E 

Risk parameter (Rho) - - - - 

Std. dev. risk parameter - - - - 

Probability weighting parameter (lambda) - - - - 

Travel time -0.121 0.009 -0.266 0.023 

Std. dev. travel time - - 0.163 0.022 

Toll cost -0.670 0.044 -1.380 0.120 

Std. dev. toll cost - - 1.020 0.099 

Toll * dummy for who already pay tolls 0.170 0.052 0.305* 0.160 

Final log-likelihood -1317.59 -1153.61 

Likelihood ratio test 368.93 696.73 

Adjusted rho-square 0.121 0.229 

Number of choices 2167 2167 

Number of individuals 283 283 

All estimates are significant at 5% significance level.  

*Not significant 
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Table V-3. Model results based on PT 

Attributes 

PT-MNL PT-MMNL 

Coefficient S.E Coefficient S.E 

Risk parameter (Rho) 0.845 0.087 0.755 0.097 

Std. dev. risk parameter - - 0.153 0.022 

Probability weighting parameter (lambda) 1.41 0.152 1.40 0.112 

Travel time -0.239 0.103 -0.712 0.335 

Std. dev. travel time - - 0.107* 0.183 

Toll cost -0.700 0.047 -1.51 0.127 

Std. dev. toll cost - - 1.02 0.104 

Toll * dummy for who already pay tolls 0.186 0.0537 0.268* 0.163 

Final log-likelihood -1311.61 -1136.06 

Likelihood ratio test 380.88 731.98 

Adjusted rho-square 0.123 0.238 

Number of choices 2167 2167 

Number of individuals 283 283 

All estimates are significant at 5% significance level.  

*Not significant 
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Table V-4. Model results based on alpha-maxmin 

Attributes 

AMB-MNL AMB-MMNL 

Coefficient S.E Coefficient S.E 

Alternative Specific Constant 0.139* 0.136 0.286* 0.251 

Travel time -0.607 0.069 -1.12 0.169 

Std. dev. travel time - - 0.805 0.187 

Toll cost -1.37 0.096 -2.48 0.283 

Std. dev. toll cost - - 1.20 1.20 

Ambiguity parameter (Alpha) 0.567 0.041 0.574 0.057 

Std. dev. ambiguity parameter - - 0.242 0.05 

Toll * dummy for who already pay tolls 0.561 0.109 0.571 0.239 

Final log-likelihood -537.28 -503.32 

Likelihood ratio test 439.28 507.2 

Adjusted rho-square 0.284 0.324 

Number of choices 1092 1092 

Number of individuals 283 283 

All estimates are significant at 5% significance level. 

*Not significant 
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Table V-5. Willingness to pay measures 

Probability 

of Delayed 

Travel Time 

Probability of 

Usual Travel 

Time 

Weighted 

Probabili

ty of 

Delayed 

Travel 

Time 

Weighted 

Probabili

ty of 

Usual 

Travel 

Time 

WTP 

(per 

hour) 

Mean 

WTP 

(per 

hour) 

S.D. 

WTP 

(per 

hour) 

Median 

WTP 

(per 

hour) 

Average Simulation 

10% 90% 7.17% 92.83% $9.25 $12.18 $11.36 $8.83 

30% 70% 28.32% 71.68% $9.10 $12.01 $11.27 $9.10 

50% 50% 53.81% 46.19% $8.90 $11.81 $11.17 $8.61 

70% 30% 78.11% 21.89% $8.69 $11.61 $11.01 $8.43 

90% 10% 95.72% 4.28% $8.51 $11.46 $10.99 $8.30 

Unknown  Unknown  42.60% 57.40% $8.55 $9.36 $7.27 $8.00 

50% 50% 50% 50% $11.57 $11.65 $13.07 $9.23 
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Table V-6. Risk analysis in gain frame 

Attributes 

Model 1 Model 2 

Coefficient S.E Coefficient S.E 

Risk parameter (Rho) 0.663 0.145 0.738 0.191 

Std. dev. risk parameter - - 0.104 0.047 

Probability weighting parameter (lambda) 1.410 0.242 1.530 0.199 

Travel time -0.602* 0.418 -1.130* 0.980 

Std. dev. travel time - - 0.752* 0.658 

Toll cost -0.890 0.074 -1.97 0.229 

Std. dev. toll cost - - 1.31 0.177 

Toll * dummy for who already pay tolls 0.320 0.083 0.413* 0.222 

Final log-likelihood -648.87 -603.54 

Likelihood ratio test 227.18 380.89 

Adjusted rho-square 0.142 0.250 

Number of choices 1100 1100 

Number of individuals 282 282 

All estimates are significant at 5% significance level.  

*Not significant 
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Table V-7. Risk analysis in loss frame 

Attributes 

Model 1 Model 2 

Coefficient S.E Coefficient S.E 

Risk parameter (Rho) 0.764 0.142 0.799 0.189 

Std. dev. risk parameter - - 0.126 0.033 

Probability weighting parameter (lambda) 1.410 0.207 1.390 0.156 

Travel time -0.344* 0.261 -0.500* 0.488 

Std. dev. travel time - - 0.137* 0.137 

Toll cost -0.575 0.060 -1.08 0.133 

Std. dev. toll cost - - 0.753 0.134 

Toll * dummy for who already pay tolls 0.118* 0.072 0.065* 0.170 

Final log-likelihood -655.25 -607.89 

Likelihood ratio test 168.69 263.44 

Adjusted rho-square 0.107 0.167 

Number of choices 1067 1067 

Number of individuals 276 276 

All estimates are significant at 5% significance level.  

*Not significant 
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Figure V-1. Probability weighting function 
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Figure V-2. WTP distribution with 10% chances of delay 
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Figure V-3. WTP distribution with 30% chances of delay 
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Figure V-4. WTP distribution with 70% chances of delay 
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Figure V-5. WTP distribution with 90% chances of delay 
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Figure V-6. WTP distribution with unknown chances of delay 
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CHAPTER VI. 

BEHAVIORAL ANALYSIS FOR VARIABLE TOLL LANES  

A variable toll provides information that is used by drivers to reduce travel time 

uncertainty. The information signaled by the toll amount is either perceived as a gain or 

loss; a gain if the drivers believe the information costs less than the travel time savings 

and as a loss if they believe that using the tolled lane will not save them time. 

Additionally, in the case of a gain the driver must value the travel time savings as being 

in excess of the information cost, whereas, it would be viewed as a loss if the travel time 

savings does not exceed the cost of information.   

Complicating the decision processes is the quality of the information, as perceived 

by the driver, conveyed by the toll in reducing the travel time uncertainty. A perfect 

signal would require the toll to flawlessly correlate with travel speed —assuming every 

driver values monetary amounts identically, the chosen increment that the toll increases 

would map precisely to the increase in travel speed, for example, every one dollar 

increase guarantees an increase of one mile per hour. Should the information perfectly 

signal travel time savings, that is reducing uncertainty to zero, and the drivers are rational 

then expected or random utility theory could be applied using fixed risk averse, risk 

seeking or risk neutral utility functions. However, when the information is imperfect, 

containing uncertainty, the drivers will react differently based on the level of 

imperfection. 

Application of Cumulative Prospect Theory in Variable 

Tolling 

Information uncertainty occurs when drivers either do not understand the exact 

relationship between the toll and speed, assuming it exists,  do not trust that the 

relationship holds, perhaps based on experience using the tolled lanes, or do not have 

experience with the given toll lanes. Under this condition, traditional utility theory does 
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not model actual choice behavior sufficiently. Cumulative prospect theory, the theory 

descriptive of actual choice behavior, posit that drivers will react to uncertainty 

differently based on their current condition and perceived likelihood of improving their 

situation. Under cumulative prospect theory, there is a mid-range of uncertainty, taken as 

a range 25 to 75 percent, within which drivers will react with risk aversion to perceived 

improvements, whereas if the drivers view the toll a loss, they will react with risk seeking 

behavior (Tversky and Kahneman, 1992). Under extreme uncertainty in the information, 

the drivers would swap their reactions to risk. That is when the toll is signaling a travel 

time savings relative to the general purpose lanes with a chance above or below 25%, 

drivers will be risk seeking and if the toll signals slower travel times they will be risk 

averse.  Table VI-1 summarizes the reactions of drivers to possible outcomes, both gains 

and losses, to tolled lanes for given ranges of probabilities. The following discussion 

expands the summary.  

Why would drivers be risk averse under mid-range levels of uncertainty of 

improving their travel speed by switching to the tolled lane from the general purpose 

lane? When drivers are in the general purpose lanes, according to cumulative prospect 

theory they will react in a risk adverse manner towards switching into the tolled lane if 

they perceive they will be traveling near an acceptable speed, gauged by past experience 

or relative to the posted speed limit. Typically, consumers will tend not to gamble on 

improving their situation when the gamble has a moderate chance of producing a gain 

because they shy away from the chance of decreasing their positive situation. People like 

the known and are content when we are pleased. 

Why would a driver be risk averse under extreme uncertainty of improving their 

travel speed by switching to the tolled lane? When drivers view that staying within the 

general purpose lane will be much slower than the tolled lane, as measured by travel 

speed, switching into the tolled lane would be appealing because they seek to reduce a 

large perceived loss if they stay in the general lane. They are willing to pay the toll price 
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with the hope, although small, that switching into the toll lane will be faster and protect 

them from a larger loss of the general lane. This parallels consumers’ choice of 

purchasing insurance to safeguard a large loss even though there is an extremely small 

probability that the loss will occur. 

Why would a driver be risk seeking under mid-range levels of uncertainty of 

improving their travel speed by switching to the tolled lane? When drivers view the 

general purpose lanes as moving slower than they desire, could be based on their 

experience or based on the rate of speed related to the posted speed limit, they will be 

more likely to switch into the tolled lane if they believe there is a mid-range chance that 

the tolled lane will be faster. In this case, the drivers are saying that they are already 

losing by staying in the general lane and will continue to lose if they stay in the lane, so 

why not take a chance by paying the toll and switching lanes. People tend to look for a 

way to reduce known losses by taking more chances at improving their situation even 

though it is possible to increase their loss (optimism bias). 

Why would a driver be risk seeking under extreme levels of uncertainty of 

improving their travel speed by switching to the tolled lane? Drivers will tend to select 

the tolled lane when they believe they will gain much higher travel speeds by switching 

into the tolled lane than staying within the general purpose lane. Similar to the tendency 

for consumers to ignore the purchase price of a lottery tickets even though the ticket has a 

very low probability of winning, the drivers will select the tolled lane hoping for the 

larger pay-off of fast speeds. 

Numerical Illustration 

Using cumulative prospect theory as the theoretical underpinning of actual choice 

behaviors, we would need to apply (Hens and Rieger, 2010) 

 
ሺ ሻܶܲܥ ൌ ∑ ሻ௡ݔሺݒ

௜ୀଵ  ሻ൯   Equation VI-1݌ሺܨ൫ݓ
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where: 

ܶܲܥ ൌ subjective utility 

ݔ ൌ outcome value of selecting route 

ሻݔሺݒ ൌ value function evaluated at x  

ሺݓ ሻ ൌ probabilty weighting function 

ሻ݌ሺܨ ൌ cumulative probability function evaluated at p. 

Multiple value function formulations have been suggested in the literature, which 

represents a person’s utility for a given outcome. The advancement of cumulative 

prospect theory is the ability of the value function to model choices when the person is in 

either a gain or loss frame. That is when a driver perceives switching into the tolled lane 

will improve or decrease their current speed. Increasing the fidelity to actual decision 

making, cumulative prospect theory allows for the subjective weighting of probabilities 

to correlate to the driver’s perceived probability. This allows for the underweighting of 

large probabilities and the overweighting of small probabilities of outcome occurrence. 

For this illustration, we have chosen common functional forms and parameter values 

given by Tversky and Kahneman (1992). 

ሻ݌ሺݓ ൌ
௣ം

ሺ௣ംାሺଵି௣ሻംሻభ/ം
   Equation VI-2 

௜ሻݔሺݒ ൌ  ఈ when x ≥ 0,   Equation VI-3ݔ

௜ሻݔሺݒ ൌ െߣሺെݔሻఉ when x < 0.   Equation VI-4 
 

Three scenarios (Figure VI-1-VI-3) are shown below to illustrate the impact of 

using cumulative prospect theory versus expected utility theory in modeling drivers’ 

choice between a general purpose and a tolled lane. Scenario 1 consists of a hypothetical 

choice between general purpose lane and a toll lane where there is an equal probability of 

a 10 minute delay in either type of lane and a possibility of a 10 minute improvement in 

the tolled lane that occurs with equal probability as the delay previously stated. All the 



94 
 

 

scenarios use a $1.50 toll. The expected utility is calculated as the sum of the probability 

multiplied by the outcome. For the three scenarios, a constant value of $16.31 is used for 

the dollar value of travel time per hour. A logit formulation is used to calculate the 

probability of a driver staying in the general purpose lane separately for the cumulative 

prospect utility value and expected utility values.    

Comparing the modeled results reveal that the expected utility method over 

estimates the probability of a driver switching to a tolled lane. Expected utility would 

forecast more than a 0.27 point increase in those opting for the tolled lane and it grows in 

scenario 2 to an increase of 0.40. The striking difference between the applications of the 

two theories is the result of drivers overweighting the extreme probabilities for losses. If 

the cumulative prospect theory is correct, it reflects drivers’ hesitancy of changing from a 

known state—general purpose lane—even if they are likely to sustain a loss by not 

switching. The third scenario reveals a closing of the difference between the forecasted 

probabilities of switching into a tolled lane. The gap is 0.06, which is the result of 

increasing the positive outcome of the tolled lane—the possible gain in travel time 

savings doubles from scenario 2 to 3 with the other attributes held constant. 

Discussion and Conclusions 

The introduction of tolled lanes as a means to reduce congestion, thereby, 

functionally increase capacity and its ability to supplement the fuel tax revenue highlights 

the need to move from proscriptive theories, such as expected and random utility theory, 

that detail how rational drivers should decide, to a behavioral model. The move should be 

towards a descriptive behavioral theory, such as cumulative prospect theory that will 

allow for improved lane usage and revenue forecasts. Today, the most popular descriptive 

theory of decision making under risk and uncertainty is cumulative prospect theory. Its 

advantages over standard expected utility and random utility theories is in its ability to 

forecast decisions based on observed outcomes that are grounded in actual psychological 
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behavior. Cumulative prospect theory encompasses our risk aversion and risk seeking, 

our differing actions depending on perceived negative or positive outcome, and our miss-

application of extreme probabilities—it accounts for framing effects and over and 

underweighting of extreme probabilities. The cumulative prospect theory now has a firm 

axiomatic foundation and its formulation makes it tractable. 

As illustrate in the simple scenarios presented in the previous section, ignoring the 

tendency to overweight low probabilities when negative outcomes are possible greatly 

impacts forecasts. The examples show that when drivers perceive a delay is equally as 

likely as a travel time savings, the behavioral models shows we would greatly 

overestimate the probability drivers will switch from a general purpose to a tolled lane. 

The overestimation is the result of the traditional models that reveal how a rational driver 

ought to act. Congestion and revenue forecast would suffer. Granted, the illustrations 

above are simplified in the sense that the model parameters are those accepted in the 

literature, but are not specifically derived for the context of lane tolling. 

To overcome the limitations of using existing parameters, we are proposing in 

future work to estimate parameters within the context of variable tolling. The purpose 

behind conducting these experiments is to determine the independent influences on 

observed behavior and their use of varying tolls as information regarding likely 

outcomes—delays or travel time savings.  

This chapter provided a review of traditional decision theories based in 

rationality—expected and random utility and their extensions—along with contemporary 

thinking on the use of emerging behavioral theories as applied to travelers’ route-choice 

behavior. We have highlighted the issues that arise when a prescriptive model of behavior 

is applied to forecast demand for a tolled lane. Mostly, when actual behavior is ignored in 

route-choice estimates of demand for tolled lanes, the estimates will be extremely 

misleading. As shown, the application of cumulative prospect theory, the leading 

descriptive behavioral model, better forecasts demand when the probability for a loss or 
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gain is extreme. Using accepted model parameters, when drivers are facing low 

probabilities of experiencing delays or travel time savings on a tolled lane, it is more 

likely that the drivers will not opt to use such lanes. Finally, we proposed that cumulative 

prospect theory could be one of the more useful analytic frameworks in analyzing route- 

choice behavior since it corrects for the errors of applying traditional prescriptive models.  
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Table VI-1. Travel behavior based on CPT 

  Outcome 

  Slower travel speed (loss) Faster travel speeds (gain) 

P
ro

ba
bi

li
ty

 o
f 

O
ut

co
m

e 
O

cc
ur

ri
ng

 

Mid-range of 

perceived 

information 

uncertainty 

(25% to 75%)  

Risk seeking – more likely to 

select the toll lane if they are 

currently in a general 

purpose lane and traveling at 

a slower than desired speed. 

They will gamble on 

switching lanes, paying the 

toll for the potential 

improving their travel speed. 

Risk averse – more likely to 

stay in the general purpose 

lane when traveling at a 

desired speed even if they 

could travel faster in the 

tolled lane. They will not 

gamble on switching lanes, 

paying the toll for the 

potential improving their 

travel speed. 

Extreme range 

of perceived 

information 

uncertainty 

(above or below 

25%) 

Risk averse – more likely to 

stay in the general purpose 

lane even if they are 

traveling at a slower than 

desired speed. They will not 

gamble on switching lanes, 

paying the toll for the 

potential improving their 

travel speed. 

Risk seeking – more likely to 

select the toll lane if they are 

currently in a general purpose 

lane. They will gamble on 

switching lanes, paying the 

toll for the potential 

improving their travel speed. 
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Table VI-2. Assumed CPT parameters 

Power of gain      0.88 

Power of loss     0.88 

Loss aversion     2.25 

Probability weighting parameter for gains  0.61 

Probability weighting parameter for losses  0.69 
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Figure VI-1. Illustration 1 
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Figure VI-2. Illustration 2 
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Figure VI-3. Illustration 3 
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CHAPTER VII. 

CONCLUSIONS 

The overall goal of this research is to measure drivers’ attitudes towards uncertain 

and unreliable routes. The route choice modeling is done within the discrete choice 

modeling framework and involved use of stated preference data. This chapter highlights 

the main results from the analysis and possible directions for future research. 

Chapter 3 presents the stated preference survey methodology we used in this 

research. The stated preference surveys were conducted online. The advantages to 

publishing a survey online are many. The greatest benefit from a researcher’s viewpoint 

is that they are quite inexpensive to conduct and the turn-around time is quick since it can 

be disseminated to a large group via single e-mail. The data can also be readily available 

in electronic format for the analysis purposes. Moreover, it saves time for respondents 

who can do the survey at their convenience without having to travel to a centralized 

location or having to fill them out manually and sending through mail.  We created 

pivoted blocked fractional-factorial designs and randomly selected choice sets in such a 

way that none of the choice sets has a dominant alternative. Three different designs 

comprising of four questions were created and each design was blocked into six subsets 

of four questions each. Apart from some background information, each respondent was 

given a series of 12 choice scenarios. Each choice scenario has four attributes, including 

usual travel time, chances/frequency of delay, average delay, and toll cost. The e-mails 

were sent out to a pool of about 8,500 people and we had about 292 valid responses.  

Subjects had to be 18 years of age and had to drive to work at least three times a week. 

We only included the responses where the existing commute time was at least 5 minutes. 

The final sample used in the analysis consisted of 283 respondents with 3,259 choice 

occasions.  
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We almost have an even distribution of males to females in our sample with an 

average age of respondents as 40 years. However, our sample is skewed towards the 

higher income groups. This is due to the fact that we sent out our survey to the alumni of 

the University of Iowa and almost all of them had at least four year college degree.  The 

average travel time to work was calculated as 29.8 minutes with average delay time of 

13.8 minutes (on days respondents experience delays on their commuting route). The 

other important piece of information we collected was the frequency/chances of 

commuters to experience days with unexpected delays. About half of the respondents 

experience unexpected delays at least 2-3 times in two weeks with about 10 percent of 

them experiencing delays every day. Finally, about one-third of the respondents pay tolls 

for their commuting route and the average toll across our sample came out to be $0.45.  

Finally, it should be noted that that there are some caveats and limitations related to our 

survey methodology. Because of these limitations, the results are applicable to our 

sample of employed, higher than median income, college graduates, and living in major 

urban metropolitan areas. The conclusions of the study are limited to this population and 

not statistically valid as generalizations to the population as a whole. 

Chapter 4 includes the first set of analysis for the stated preference data we 

collected. The aim of this chapter is to elicit travelers’ attitudes towards unreliable routes. 

The results of the analysis provide very useful information in relation to how commuters 

value the occurrence/chances of experiencing delay days on their routes. The frequency 

of days with unexpected delays also measures the travel time reliability in a way that is 

easy to understand by day-to-day commuters. As such, behaviorally more realistic values 

are obtained from this analysis in order to capture travelers’ attitudes towards reliability. 

The results provide a valuable input to cost-benefit analysis of roadway pricing tools like 

tolling facilities. Results show that travelers’ are not only averse to how likely they are to 

experience delays on their commuting routes but also to the amount of unexpected delay 

on those days. The goal of pricing the roadway system should not only be reducing the 
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average travel time but also to reduce the occurrence of worst few days. From a 

viewpoint of supply side agencies, this would increase the expected revenue from the 

tolling facilities and from the travelers’ viewpoint they will have more on-time arrivals to 

their work and fewer unexpected delays.  

The other valuable output from this analysis is travelers’ WTP for travel time 

reliability. We measured travelers’ WTP not only for travel time but also in terms of 

frequency of experiencing unexpected delays. We found that travelers’ mean estimation 

of WTP increases with increasing unreliability. Higher the chances of unexpected delays, 

higher are the WTP values for travel time and reliability. We also found significant 

differences between the mean WTP estimates for travelers who already pay tolls for their 

commute and the mean WTP estimates for travelers’ who don’t. People in the latter 

category have noteworthy lower WTP for travel time and reliability. This can be 

attributed to the fact that commuters who already pay tolls value on-time arrivals more 

and that’s why they chose to take toll roads in the first place. Moreover, they become 

aware of the benefits of using tolls in a long-term. 

In Chapter 5, we model attitudes toward travel time uncertainty using expected 

and non-expected utility theories within the random utility framework. Unlike previous 

studies that only include risk attitudes, we incorporate attitudes toward ambiguity too, 

where drivers are assumed to have imperfect knowledge of travel times. To this end, we 

formulated non-linear logit models capable of embedding probability weighting, and 

risk/ambiguity attitudes. Finally, a more realistic willingness to pay structure is derived 

which takes into account travel time uncertainty and behavioral attitudes. 

The results of the empirical analysis from this chapter provide several valuable 

insights. It was found that when drivers are operating in risky domain, they tend to be risk 

seeking in general, with a small percentage of drivers showing risk averse behavior. 

Results also show that drivers tend to under weigh small probabilities of experiencing 

traffic delays and over-weigh high probabilities of experiencing traffic delays. The 
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empirical findings from models capturing ambiguity attitudes further offer important 

insights. Assuming drivers are risk seeking in general, the estimation of ambiguity 

parameter shows that drivers are ambiguity averse, in general. This means that drivers 

tend to avoid taking routes about which they don’t have prior knowledge of experiencing 

delays. However, significant heterogeneity is found in ambiguity attitudes. About 62.1% 

drivers exhibit ambiguity averse attitudes and about 37.9% exhibit ambiguity seeking 

attitudes. Finally, WTP measures are calculated that are based on drivers’ behavioral 

attitudes and possible chances of experiencing delays. The mean WTP measures for 

routes with known probability distribution range from $11.46 to $12.18. In case of 

ambiguous routes, drivers’ WTP for tolls is $9.36 per hour.  

Chapter 6 presents a conceptual framework to use a descriptive utility theory, i.e. 

cumulative prospect theory in forecasting the demand for a variable tolled lane. We have 

highlighted the issues that arise when a prescriptive model of behavior is applied to 

forecast demand for a tolled lane. Mostly, when actual behavior is ignored in route-

choice estimates of demand for tolled lanes, the estimates will be extremely misleading. 

As shown in the chapter, the application of cumulative prospect theory, the leading 

descriptive behavioral model, better forecasts demand when the probability for a loss or 

gain is extreme. Using accepted model parameters, when drivers are facing low 

probabilities of experiencing delays or travel time savings on a tolled lane, it is more 

likely that the drivers will not opt to use such lanes. Finally, we proposed that cumulative 

prospect theory could be one of the more useful analytic frameworks in analyzing route- 

choice behavior since it corrects for the errors of applying traditional prescriptive models.  

Tractable models measuring behavioral attitudes where uncertainty extends 

beyond risk and known probabilities is the most investigated topic in behavioral analysis 

today (Wakker, 2010). Because probabilities are rarely known in real life, looking for 

pragmatic ways of measuring uncertainty should indeed be of most interest in drivers’ 

behavioral analysis too (specifically in case of route choice modeling). In this research, 
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an effort has been made to cross-fertilize state-of-the art behavioral theories and RUM-

based route choice models. One of the lasting contributions of behavioral economics is 

that we now have an affluent set of competing models of behavior in many settings. At 

the same time recent developments in discrete choice modeling with widespread use of 

mixed logit models offer researchers greater flexibility in terms of including behavioral 

and psychological factors like risk/ambiguity preferences, probability weighting, 

learning, and so on. Different structural forms of utility functions based on behavioral 

theories can be embedded within discrete choice RUM models. Moreover, mixed logit 

specifications can incorporate correlations of repeated choice sequences allowing for 

participant heterogeneity. This study is a first attempt to understand drivers’ ambiguity 

attitudes. More research is needed in terms of including models that can include drivers’ 

attitudes toward imperfect knowledge. We also recommend designing new and better 

choice experiments that provide flexibility and add behavioral realism in understanding 

drivers’ attitudes. In terms of policy implications, the results of this study would provide 

help policy makers to make correct decisions in terms of pricing the user costs for 

transport infrastructure. For the evaluation of any transportation infrastructure project 

(like road tolling) that may lead to heterogeneous impacts across the relevant population, 

economic assessment should ideally control for behavioral attitudes to any changes 

proposed.  

Future Research Directions 

This research is expected to impact the future research efforts in two ways. First, 

advancing the applicability of tractable models, measuring behavioral attitudes where 

uncertainty extends beyond risk and known probabilities, into discrete choice modeling 

framework. Second, instigating national interest in strengthening behavioral based 

forecasts that pertain to sustainable funding of our transportations systems. Moreover, the 

introduction of managed lanes as a means to reduce congestion and increase funding for 
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road infrastructure improvements, highlights the need to move from proscriptive theories, 

such as expected and random utility theory, to descriptive behavioral models, such as 

cumulative prospect theory. The move should be towards a descriptive behavioral theory 

that will allow the introduction of ambiguity alongside risk for the purpose of improving 

lane usage and revenue forecasts.  

This research is based on stated preference survey data to elicit travelers’ 

attitudes, however, in future research efforts we propose to use real-time, and real-

consequence choice data. This can be done using custom designed application in 

traditional smart phones. The application can be designed to record data related to route 

choice, particularly in relation to switching to a managed lane. The dynamic data will 

include time and location of choice to switch or not into the managed lane, price of the 

toll at that time, and verbal response to prompts regarding the thought of why they did or 

did not switched. In prompting the driver, one can request their guess at the expected 

delay—or expected time savings—and if they think the current toll is a bargain for the 

conditions. The dynamic data can be merged with drivers’ socio-economic attributes 

along with other known attributes of the trip underway, such as trip type and passengers. 

Additional traffic data, such as vehicle volume by location and time of day, can be 

obtained via the web portals administered by state departments of transportation. 

There is also a need to improve the vehicle monitoring and navigation systems, 

and design new smart phone applications that can assist drivers with up-to-date real time 

information about possible travel times on various route networks. The goal of these 

navigations systems and applications should be to decrease the uncertainty in travel time 

as much as possible so that drivers can make more informed decisions.   
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APPENDIX 

This appendix contains the blocked fractional factorial designs generated for the 

Stated Preference surveys. In total, there are six blocks with 12 questions in each.  
 

Table A- 1: Block 1 Scenario 1 

Attributes Route 1 Route 2 

Usual Travel Time (min) -10% -10% 

Frequency of Delay 1 out of 10 days 3 out of 10 days 

Average Delay Time (min) -20% -50% 

Toll Cost ($) $1 -50% 

 

Table A- 2: Block 1 Scenario 2 

Attributes Route 1 Route 2 

Usual Travel Time (min) +25% +25% 

Frequency of Delay 3 out of 10 days 7 out of 10 days 

Average Delay Time (min) +50% +50% 

Toll Cost ($) $2 -50% 
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Table A- 3: Block 1 Scenario 3 

Attributes Route 1 Route 2 

Usual Travel Time (min) -10% -25% 

Frequency of Delay 1 out of 10 days 9 out of 10 days 

Average Delay Time (min) -20% -20% 

Toll Cost ($) $2 -50% 

 

Table A- 4: Block 1 Scenario 4 

Attributes Route 1 Route 2 

Usual Travel Time (min) +10% +25% 

Frequency of Delay 5 out of 10 days 3 out of 10 days 

Average Delay Time (min) +50% +20% 

Toll Cost ($) $1 $1 
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Table A- 5. Block 1 Scenario 5 

Attributes Route 1 Route 2 

Usual Travel Time (min) +25% +25% 

Frequency of Delay 7 out of 10 days 3 out of 10 days 

Average Delay Time (min) +20% +50% 

Toll Cost ($) -50% $3 

 

Table A- 6. Block 1 Scenario 6 

Attributes Route 1 Route 2 

Usual Travel Time (min) -25% -10% 

Frequency of Delay 5 out of 10 days Unknown 

Average Delay Time (min) -20% -20% 

Toll Cost ($) $3 -50% 
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Table A- 7. Block 1 Scenario 7 

Attributes Route 1 Route 2 

Usual Travel Time (min) -10% -10% 

Frequency of Delay 1 out of 10 days 3 out of 10 days 

Average Delay Time (min) -20% -50% 

Toll Cost ($) $1 -50% 

 

Table A- 8. Block 1 Scenario 8 

Attributes Route 1 Route 2 

Usual Travel Time (min) +25% +50% 

Frequency of Delay Unknown 3 out of 10 days 

Average Delay Time (min) +20% +20% 

Toll Cost ($) $1 $1 
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Table A- 9. Block 1 Scenario 9 

Attributes Route 1 Route 2 

Usual Travel Time (min) +25% +25% 

Frequency of Delay 5 out of 10 days 1 out of 10 days 

Average Delay Time (min) +50% +50% 

Toll Cost ($) -50% $3 

 

Table A- 10. Block 1 Scenario 10 

Attributes Route 1 Route 2 

Usual Travel Time (min) -25% -50% 

Frequency of Delay 7 out of 10 days 1 out of 10 days 

Average Delay Time (min) -20% -20% 

Toll Cost ($) -50% $2 
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Table A- 11. Block 1 Scenario 11 

Attributes Route 1 Route 2 

Usual Travel Time (min) +10% +10% 

Frequency of Delay 5 out of 10 days Unknown 

Average Delay Time (min) +20% +20% 

Toll Cost ($) $1 -100% 

Table A- 12. Block 1 Scenario 12 

Attributes Route 1 Route 2 

Usual Travel Time (min) -25% -25% 

Frequency of Delay 3 out of 10 days Unknown 

Average Delay Time (min) -50% -50% 

Toll Cost ($) $1 -50% 
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Table A- 13. Block 2 Scenario 1 

Attributes Route 1 Route 2 

Usual Travel Time (min) -10% -10% 

Frequency of Delay 5 out of 10 days 7 out of 10 days 

Average Delay Time (min) -50%     -20% 

Toll Cost ($) $2 -100% 

Table A- 14. Block 2 Scenario 2 

Attributes Route 1 Route 2 

Usual Travel Time (min) +50% +25% 

Frequency of Delay 1 out of 10 days 3 out of 10 days 

Average Delay Time (min) +20% +50% 

Toll Cost ($) $1 -50% 
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Table A- 15. Block 2 Scenario 3 

Attributes Route 1 Route 2 

Usual Travel Time (min) -25% -25% 

Frequency of Delay 1 out of 10 days 3 out of 10 days 

Average Delay Time (min) -20% -20% 

Toll Cost ($) $1 -100% 

Table A- 16. Block 2 Scenario 4 

Attributes Route 1 Route 2 

Usual Travel Time (min) +25% +50% 

Frequency of Delay 5 out of 10 days Unknown 

Average Delay Time (min) +20% +20% 

Toll Cost ($) -50% -50% 
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Table A- 17. Block 2 Scenario 5 

Attributes Route 1 Route 2 

Usual Travel Time (min) +25% +25% 

Frequency of Delay 7 out of 10 days 5 out of 10 days 

Average Delay Time (min) +50% +20% 

Toll Cost ($) $2 $3 

Table A- 18. Block 2 Scenario 6 

Attributes Route 1 Route 2 

Usual Travel Time (min) +25% +50% 

Frequency of Delay 9 out of 10 days 3 out of 10 days 

Average Delay Time (min) +50% +50% 

Toll Cost ($) -50% $1 
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Table A- 19. Block 2 Scenario 7 

Attributes Route 1 Route 2 

Usual Travel Time (min) -25% -25% 

Frequency of Delay 9 out of 10 days 1 out of 10 days 

Average Delay Time (min) -20% -20% 

Toll Cost ($) -50% $1 

Table A- 20. Block 2 Scenario 8 

Attributes Route 1 Route 2 

Usual Travel Time (min) +10% +10% 

Frequency of Delay 7 out of 10 days 3 out of 10 days 

Average Delay Time (min) +20% +50% 

Toll Cost ($) $3 $3 
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Table A- 21. Block 2 Scenario 9 

Attributes Route 1 Route 2 

Usual Travel Time (min) -25% -10% 

Frequency of Delay Unknown 1 out of 10 days 

Average Delay Time (min) -20% -20% 

Toll Cost ($) $2 $1 

 

Table A- 22. Block 2 Scenario 10 

Attributes Route 1 Route 2 

Usual Travel Time (min) -25% -25% 

Frequency of Delay Unknown 5 out of 10 days 

Average Delay Time (min) -20% -20% 

Toll Cost ($) $2 $1 
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Table A- 23. Block 2 Scenario 11 

Attributes Route 1 Route 2 

Usual Travel Time (min) -50% -50% 

Frequency of Delay 9 out of 10 days 1 out of 10 days 

Average Delay Time (min) -20% -20% 

Toll Cost ($) -100% $3 

Table A- 24. Block 2 Scenario 12 

Attributes Route 1 Route 2 

Usual Travel Time (min) +25% +10% 

Frequency of Delay 7 out of 10 days Unknown 

Average Delay Time (min) +20% +20% 

Toll Cost ($) $2 $3 
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Table A- 25. Block 3 Scenario 1 

Attributes Route 1 Route 2 

Usual Travel Time (min) -50% -50% 

Frequency of Delay 1 out of 10 days 7 out of 10 days 

Average Delay Time (min) -20% -50% 

Toll Cost ($) $1 -100% 

Table A- 26. Block 3 Scenario 2 

Attributes Route 1 Route 2 

Usual Travel Time (min) +25% +50% 

Frequency of Delay Unknown 5 out of 10 days 

Average Delay Time (min) +20% +20% 

Toll Cost ($) $1 $1 
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Table A- 27. Block 3 Scenario 3 

Attributes Route 1 Route 2 

Usual Travel Time (min) -25% -25% 

Frequency of Delay 5 out of 10 days 7 out of 10 days 

Average Delay Time (min) -50% -20% 

Toll Cost ($) $2 $1 

Table A- 28. Block 3 Scenario 4 

Attributes Route 1 Route 2 

Usual Travel Time (min) +25% +10% 

Frequency of Delay 3 out of 10 days 7 out of 10 days 

Average Delay Time (min) +20% +50% 

Toll Cost ($) -100% -100% 
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Table A- 29. Block 3 Scenario 5 

Attributes Route 1 Route 2 

Usual Travel Time (min) +25% +50% 

Frequency of Delay 9 out of 10 days 1 out of 10 days 

Average Delay Time (min) +50% +20%  

Toll Cost ($) $1 $3 

Table A- 30. Block 3 Scenario 6 

Attributes Route 1 Route 2 

Usual Travel Time (min) -10% -10% 

Frequency of Delay 7 out of 10 days 9 out of 10 days 

Average Delay Time (min) -20% -50% 

Toll Cost ($) $1 -50% 
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Table A- 31. Block 3 Scenario 7 

Attributes Route 1 Route 2 

Usual Travel Time (min) +25% +50% 

Frequency of Delay Unknown 5 out of 10 days 

Average Delay Time (min) +20% +20% 

Toll Cost ($) $3 $1 

Table A- 32. Block 3 Scenario 8 

Attributes Route 1 Route 2 

Usual Travel Time (min) +50% +25% 

Frequency of Delay 5 out of 10 days 1 out of 10 days 

Average Delay Time (min) +20% +20% 

Toll Cost ($) $1 $2 
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Table A- 33. Block 3 Scenario 9 

Attributes Route 1 Route 2 

Usual Travel Time (min) +50% +25% 

Frequency of Delay 7 out of 10 days 9 out of 10 days 

Average Delay Time (min) +20% +50% 

Toll Cost ($) -100% -50% 

Table A- 34. Block 3 Scenario 10 

Attributes Route 1 Route 2 

Usual Travel Time (min) -10% -10% 

Frequency of Delay 5 out of 10 days Unknown 

Average Delay Time (min) -20% -20% 

Toll Cost ($) $1 -50% 
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Table A- 35. Block 3 Scenario 11 

Attributes Route 1 Route 2 

Usual Travel Time (min) -25% -25% 

Frequency of Delay 9 out of 10 days 3 out of 10 days 

Average Delay Time (min) -50% -20% 

Toll Cost ($) -100% $2 

Table A- 36. Block 3 Scenario 12 

Attributes Route 1 Route 2 

Usual Travel Time (min) -50% -50% 

Frequency of Delay 7 out of 10 days Unknown 

Average Delay Time (min) -20% -20% 

Toll Cost ($) -100% $1 
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Table A- 37. Block 4 Scenario 1 

Attributes Route 1 Route 2 

Usual Travel Time (min) +25% +25% 

Frequency of Delay 3 out of 10 days 9 out of 10 days 

Average Delay Time (min) +50% +20% 

Toll Cost ($) $3 $1 

Table A- 38. Block 4 Scenario 2 

Attributes Route 1 Route 2 

Usual Travel Time (min) -25% -10% 

Frequency of Delay 7 out of 10 days 3 out of 10 days 

Average Delay Time (min) -20% -50% 

Toll Cost ($) $2 $1 
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Table A- 39. Block 4 Scenario 3 

Attributes Route 1 Route 2 

Usual Travel Time (min) -25% -25% 

Frequency of Delay 7 out of 10 days 3 out of 10 days 

Average Delay Time (min) -50% -20% 

Toll Cost ($) -50% $2 

Table A- 40. Block 4 Scenario 4 

Attributes Route 1 Route 2 

Usual Travel Time (min) -25% -25% 

Frequency of Delay 7 out of 10 days 9 out of 10 days 

Average Delay Time (min) -20% -20% 

Toll Cost ($) $1 -100% 
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Table A- 41. Block 4 Scenario 5 

Attributes Route 1 Route 2 

Usual Travel Time (min) +50% +25% 

Frequency of Delay 5 out of 10 days 9 out of 10 days 

Average Delay Time (min) +20% +50% 

Toll Cost ($) $2 -50% 

Table A- 42. Block 4 Scenario 6 

Attributes Route 1 Route 2 

Usual Travel Time (min) +25% +10% 

Frequency of Delay Unknown 7 out of 10 days 

Average Delay Time (min) +20% +20% 

Toll Cost ($) $2 -50% 
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Table A- 43. Block 4 Scenario 7 

Attributes Route 1 Route 2 

Usual Travel Time (min) -10% -10% 

Frequency of Delay 7 out of 10 days 5 out of 10 days 

Average Delay Time (min) -20% -20% 

Toll Cost ($) $1 $3 

Table A- 44. Block 4 Scenario 8 

Attributes Route 1 Route 2 

Usual Travel Time (min) -50% -25% 

Frequency of Delay 5 out of 10 days Unknown 

Average Delay Time (min) -20% -20% 

Toll Cost ($) -50% $2 
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Table A- 45. Block 4 Scenario 9 

Attributes Route 1 Route 2 

Usual Travel Time (min) +10% +25% 

Frequency of Delay 1 out of 10 days 3 out of 10 days 

Average Delay Time (min) +20% +50% 

Toll Cost ($) $3 -100% 

Table A- 46. Block 4 Scenario 10 

Attributes Route 1 Route 2 

Usual Travel Time (min) +25% +50% 

Frequency of Delay 9 out of 10 days 1 out of 10 days 

Average Delay Time (min) +50% +50% 

Toll Cost ($) $1 $3 
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Table A- 47. Block 4 Scenario 11 

Attributes Route 1 Route 2 

Usual Travel Time (min) -25% -10% 

Frequency of Delay Unknown 5 out of 10 days 

Average Delay Time (min) -20% -20% 

Toll Cost ($) $1 -50% 

Table A- 48. Block 4 Scenario 12 

Attributes Route 1 Route 2 

Usual Travel Time (min) +10% +25% 

Frequency of Delay 5 out of 10 days Unknown 

Average Delay Time (min) +20% +50% 

Toll Cost ($) $3 -50% 
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Table A- 49. Block 5 Scenario 1 

Attributes Route 1 Route 2 

Usual Travel Time (min) -10% -10% 

Frequency of Delay 3 out of 10 days 1 out of 10 days 

Average Delay Time (min) -20% -20% 

Toll Cost ($) -100% $1 

Table A- 50. Block 5 Scenario 2 

Attributes Route 1 Route 2 

Usual Travel Time (min) -25% -10% 

Frequency of Delay 7 out of 10 days 3 out of 10 days 

Average Delay Time (min) -50% -20% 

Toll Cost ($) $2 -100% 
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Table A- 51. Block 5 Scenario 3 

Attributes Route 1 Route 2 

Usual Travel Time (min) +25% +10% 

Frequency of Delay 3 out of 10 days Unknown 

Average Delay Time (min) +20% +20% 

Toll Cost ($) $3 $1 

Table A- 52. Block 5 Scenario 4 

Attributes Route 1 Route 2 

Usual Travel Time (min) -25% -50% 

Frequency of Delay 5 out of 10 days 1 out of 10 days 

Average Delay Time (min) -20% -20% 

Toll Cost ($) $1 $2 
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Table A- 53. Block 5 Scenario 5 

Attributes Route 1 Route 2 

Usual Travel Time (min) +10% +10% 

Frequency of Delay 1 out of 10 days 5 out of 10 days 

Average Delay Time (min) +50% +50% 

Toll Cost ($) $1 -100% 

Table A- 54. Block 5 Scenario 6 

Attributes Route 1 Route 2 

Usual Travel Time (min) -25% -25% 

Frequency of Delay 1 out of 10 days 7 out of 10 days 

Average Delay Time (min) -50% -20% 

Toll Cost ($) $1 -100% 
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Table A- 55. Block 5 Scenario 7 

Attributes Route 1 Route 2 

Usual Travel Time (min) +25% +10% 

Frequency of Delay 9 out of 10 days 7 out of 10 days 

Average Delay Time (min) +20% +20% 

Toll Cost ($) -50% $3 

Table A- 56. Block 5 Scenario 8 

Attributes Route 1 Route 2 

Usual Travel Time (min) -25% -50% 

Frequency of Delay 5 out of 10 days Unknown 

Average Delay Time (min) -20% -20% 

Toll Cost ($) -100% $1 
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Table A- 57. Block 5 Scenario 9 

Attributes Route 1 Route 2 

Usual Travel Time (min) +50% +50% 

Frequency of Delay 5 out of 10 days 3 out of 10 days 

Average Delay Time (min) +50% +20% 

Toll Cost ($) $2 $3 

Table A- 58. Block 5 Scenario 10 

Attributes Route 1 Route 2 

Usual Travel Time (min) +25% +25% 

Frequency of Delay 3 out of 10 days 7 out of 10 days 

Average Delay Time (min) +50% +20% 

Toll Cost ($) $1 -100% 
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Table A- 59. Block 5 Scenario 11 

Attributes Route 1 Route 2 

Usual Travel Time (min) -10% -25% 

Frequency of Delay 5 out of 10 days Unknown 

Average Delay Time (min) -50% -20% 

Toll Cost ($) -100% $2 

Table A- 60. Block 5 Scenario 12 

Attributes Route 1 Route 2 

Usual Travel Time (min) +10% +25% 

Frequency of Delay Unknown 5 out of 10 days 

Average Delay Time (min) +20% +20% 

Toll Cost ($) $3 $3 
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Table A- 61. Block 6 Scenario 1 

Attributes Route 1 Route 2 

Usual Travel Time (min) -10% -25% 

Frequency of Delay 3 out of 10 days 1 out of 10 days 

Average Delay Time (min) -50% -20% 

Toll Cost ($) $1 $2 

Table A- 62. Block 6 Scenario 2 

Attributes Route 1 Route 2 

Usual Travel Time (min) +10% +10% 

Frequency of Delay 1 out of 10 days 5 out of 10 days 

Average Delay Time (min) +20% +20% 

Toll Cost ($) $2 -50% 
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Table A- 63. Block 6 Scenario 3 

Attributes Route 1 Route 2 

Usual Travel Time (min) -50% -25% 

Frequency of Delay Unknown 7 out of 10 days 

Average Delay Time (min) -20% -50% 

Toll Cost ($) $2 $1 

Table A- 64. Block 6 Scenario 4 

Attributes Route 1 Route 2 

Usual Travel Time (min) -25% -25% 

Frequency of Delay 9 out of 10 days 1 out of 10 days 

Average Delay Time (min) -50% -20% 

Toll Cost ($) -50% $1 
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Table A- 65. Block 6 Scenario 5 

Attributes Route 1 Route 2 

Usual Travel Time (min) -50% -25% 

Frequency of Delay 3 out of 10 days 7 out of 10 days 

Average Delay Time (min) -50% -20% 

Toll Cost ($) $3 $1 

Table A- 66. Block 6 Scenario 6 

Attributes Route 1 Route 2 

Usual Travel Time (min) +10% +10% 

Frequency of Delay 9 out of 10 days 5 out of 10 days 

Average Delay Time (min) +20% +50% 

Toll Cost ($) -100% $1 
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Table A- 67. Block 6 Scenario 7 

Attributes Route 1 Route 2 

Usual Travel Time (min) -25% -25% 

Frequency of Delay Unknown 5 out of 10 days 

Average Delay Time (min) -20% -20% 

Toll Cost ($) $1 $2 

Table A- 68. Block 6 Scenario 8 

Attributes Route 1 Route 2 

Usual Travel Time (min) +25% +25% 

Frequency of Delay 7 out of 10 days Unknown 

Average Delay Time (min) +20% +50% 

Toll Cost ($) -100% $1 
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Table A- 69. Block 6 Scenario 9 

Attributes Route 1 Route 2 

Usual Travel Time (min) -50% -50% 

Frequency of Delay 1 out of 10 days 7 out of 10 days 

Average Delay Time (min) -20% -50% 

Toll Cost ($) -100% -100% 

Table A- 70. Block 6 Scenario 10 

Attributes Route 1 Route 2 

Usual Travel Time (min) +25% +10% 

Frequency of Delay 1 out of 10 days 9 out of 10 days 

Average Delay Time (min) +50% +50% 

Toll Cost ($) $2 $1 
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Table A- 71. Block 6 Scenario 11 

Attributes Route 1 Route 2 

Usual Travel Time (min) +25% +25% 

Frequency of Delay 9 out of 10 days 7 out of 10 days 

Average Delay Time (min) +50% +20% 

Toll Cost ($) $1 $3 

Table A- 72. Block 6 Scenario 12 

Attributes Route 1 Route 2 

Usual Travel Time (min) +25% +25% 

Frequency of Delay 5 out of 10 days Unknown 

Average Delay Time (min) +50% +20% 

Toll Cost ($) $2 $1 
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