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SUMMARY

Completing the development process and getting to first-flight has become

a difficult hurdle for launch vehicles. Program cancellations in the last 30 years

were largely due to cost overruns, schedule slips, and a lack of congressional support.

Since the Space Shuttle retirement in 2011, cancellations have plagued launch vehicle

development programs. A recent example is the cancellation of the Constellation

program in 2010, in favor of the new Space Launch System (SLS). SLS is scheduled

for its first manned flight in 2021, and the United States now faces a 10 year gap

in the ability to independently launch people into space. Despite the demonstrated

consequences of cost overruns, the current NASA budgetary environment is imposing

even more constraints on SLS than previous launch vehicle programs. A shifting

focus to reducing the cost and schedule during the design, development, testing and

evaluation (DDT&E) process is necessary to give these programs the opportunity to

succeed.

Comparing the life cycle progression of NASA programs to their cost and schedule

history illustrates that the largest percentage of growth occurs during NASA Phases

C and D. During these phases the system is undergoing verification, validation, and

testing (VVT) to eliminate defects and gain knowledge about the system. Unplanned

rework cycles that take place during these phases can account for up to 75% of total

development cost. Current industry standard VVT planning is largely subjective with

no method for evaluating the impact of rework. Although a few academic studies have

looked into VVT planning, weaknesses exist in their evaluation of rework cycles and

overall assessment of individual VVT activities. This research aims to address the

gap of estimating the impact of rework during VVT planning to help improve the
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launch vehicle Design, Development, Testing & Evaluation process.

The Rework Impact on Verification, Validation, and Test Strategies (RIVVTS)

methodology was developed to meet this goal by quantitatively capturing the effects

of unplanned rework during VVT for launch vehicle systems and subsystems. Using

the strengths of existing reliability growth techniques, rework cycles are first esti-

mated using FMEA failure distributions. A dependency structure matrix is used to

model the impact of rework cycles using the relationships between VVT activities. To

provide a complete assessment, four metrics were chosen to evaluate a VVT strategy:

reliability, cost, schedule, risk. This approach allows for a quantitative cost, sched-

ule, and reliability projection to be generated. The resulting output distributions are

then used to calculate the risk level of a given VVT strategy using a quadratic impact

function.

The method developed is first tested on a case study, comparing the method out-

put to actual data from the RS-68 engine. The purpose of this example is to illustrate

that this methodology accurately captures the occurrence and impact of rework cycles

seen during VVT. The secondary purpose of the example is to validate the develop-

ment of the cost, schedule, and reliability assumptions for future applications of this

method.

Finally, this method is applied to evaluate alternative VVT strategies for a rele-

vant launch vehicle subsystem. First, the method outputs are compared against the

overall research objectives to confirm that they are met. Then the alternative VVT

strategies are evaluated to determine how the impact of rework can be mitigated. The

results give interesting observations regarding the benefit of comprehensive compo-

nent testing versus early integrated testing. Ultimately, this final application problem

demonstrates the merits of the RIVVTS methodology in evaluating VVT strategies.

RIVVTS provides a risk-informed decision making tool to reduce the impact of rework

cycles on the verification, validation, and testing process of launch vehicle systems
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CHAPTER I

INTRODUCTION

1.1 Motivation

The National Aeronautics and Space Administration (NASA) Authorization Act of

2010 established the development of a heavy lift launch vehicle (LV) to be a part

of the new Space Launch System (SLS) [7]. As a follow on to the Space Shuttle

Program, the human rated SLS will be the first exploration class LV since the Saturn

V over 40 years ago [133]. The design of such a large and complex system requires

the integration of multiple disciplines, many of which have conflicting objectives. To

ensure the optimal design, compromises are necessary to attain a balance among the

performance, reliability, cost, and schedule requirements. In addition to the innate

difficulties of designing such a system, the SLS is placing particular emphasis on

improving the affordability and sustainability of the program [133, 39]. Affordability,

in this context, is defined as the ability to develop and operate the SLS within the

national means to sustain funding for the program [133]. Therefore, it will be critical

to understand the cost and schedule risks as well as the technical risks during the

design, development, test and evaluation (DDT&E) period.

Launch vehicles are inherently expensive to develop and produce, and often do

not reach first flight [27, 132]. The space industry has become a ‘start-stop-restart’

process in the last few decades, filled with programs that never make it out of the

DDT&E phase. As far back as the late 1980s, the length of the required develop-

ment time for these complex systems is too extensive to keep up with changes in

requirements and national priorities. An example of this is the Advanced Launch

System (ALS) which was a joint NASA and Department of Defense (DoD) program
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with the aim of reducing the cost of putting large payloads in orbit [86]. Two years

after the start of the ALS development, reductions in funding and a shift of focus

to lightweight weapons lead to its cancellation in 1989. Following that, the Na-

tional Launch System (NLS) program was created to support the goals described by

the Bush administration’s National Space Policy Directive 4, National Space Launch

Strategy, to develop a new Expendable Launch Vehicle with a focus on improving

reliability, cost, and responsiveness [86]. The NLS program was also canceled after

two years due to poor communication and differing priorities between NASA and the

Air Force. From 1995-2000, NASA focused on the development of Reusable Launch

Vehicles (RLV). Two RLV flight test programs were initiated, X-33 and X-34. The

X-33 was a joint program with Lockheed Martin that was pushing the boundaries

in composite fuel tanks [67]. After suffering technical set backs and failing to meet

its goals, the program was deemed too costly and canceled [86]. The X-34, a joint

program with Orbital Sciences Corporation, was similarly canceled after initial flight

tests determined that additional costs did not justify the potential benefits [86]. Af-

ter funding for the X-33 and X-34 was cut, focus shifted to the new Space Launch

Initiative (SLI). The SLI was a joint industry-government effort from 2000-2004 to

determine the best approach to developing a Space Shuttle replacement [43]. It was

yet another example of a program that did not make it out of the DDT&E phase as

it was canceled in favor of the Orbital Space Plane [43]. OSP was also canceled when

NASAs Exploration System Architecture Study (ESAS), which later evolved into the

Constellation Program, was formed [43]. Figure 1 highlights these short lived space

transportation programs over the last three decades.

This ‘start-stop-restart’ cycle that space transportation programs have endured

does little to improve confidence in NASA’s ability to develop the necessary tech-

nologies for advanced space flight. Program efforts to achieve significant advances

in technology are being stifled in support of a more risk adverse environment, just
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Figure 1: Canceled space transportation programs.

to ensure a program successfully completes the DDT&E phase and makes it through

to a first flight. Looking further into the effects of canceling the Constellation pro-

gram shows that it is more than simply a monetary loss. The Constellation program

was formed in 2005 and consisted of the Ares-I and Ares-V launch vehicles, and the

Orion Multi-Purpose Crew Vehicle (MPCV) [138]. The original program schedule

allowed for a two year gap between the retirement of the Space Shuttle in 2010 and

the availability of the Ares-1 and Orion to support the International Space Station

(ISS) in 2012 [109]. In 2009, the schedule slipped to 2015, resulting in a five year gap.

When the program was canceled in 2010 due to poorly phased funding and additional

schedule slips, the U.S. was left without the ability to independently launch people

into space. The current Space Launch System (SLS) is not expected to launch a

manned mission until 2021, resulting in a 10 year gap. This will be the longest gap

in America’s manned space flight presence since the Apollo-Shuttle gap in the late

70s [109]. Until the SLS or a commercial alternative becomes available, NASA will

pay Russia between $50-$70 million per seat to train and transport crew members
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to the ISS [109]. NASA has not had the political inertia to sustain the funding nec-

essary to back their complex programs [86], and their current budget environment

imposes even more constraints on the new SLS program than previous launch vehicle

programs [39]. Creating a sustainable development plan is critical to the long term

success of a program. These additional demands highlight a gap in the ability to

create a sustainable DDT&E plan for these complex systems, and that is the primary

motivation for this research. The following section goes into more detail about the

risks of a DDT&E plan to further scope the goals of this research.

After determining the need for the development of a sustainable DDT&E plan, it

is necessary to identify where improvements to DDT&E planning can be made. The

lifecycle of a project is divided up into phases to help plan and manage development

of the system [131]. Figure 2 illustrates how NASA defines the life cycle phases for its

projects, lettered Pre-Phase A, Phase A, Phase B, Phase C, Phase D, Phase E, and

Phase F. The phase boundaries are defined at natural points for progress assessment

and design reviews to determine if the project should continue to the next phase.

Examples of these key decision points include Preliminary Design Reviews (PDR),

Critical Design Reviews (CDR), and Launch Readiness Reviews (LRR).

Figure 2: NASA lifecycle phases [131].

Many studies have been conducted to improve the quality of early conceptual

design, particularly on expanding the ability to explore more architecture space during

Pre-Phase A and Phase A [22, 26, 91]. These methods focus on the design and
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development portion of the DDT&E phase, while testing and evaluation of large

systems has been shown to represent 40% of the total life cycle cost [21]. In particular,

technical failures uncovered during testing account for a significant portion of the

development schedule, cost, and effort across many industries. A Rocketdyne review

of the F-1 and J-2 advanced engine programs found that 73% of total development

cost was absorbed in eliminating failure modes [64]. Of that 73%, 75% of the effort to

eliminate the failure modes was spent on rework, i.e. re-design, re-manufacturing, and

re-testing. A semiconductor manufacturing company found similar trends, estimating

that unplanned design and manufacturing iterations account for between 33%-66%

of total development time [110]. Software projects also state that 40%-50% of their

efforts are spent avoiding rework [21]. Unplanned rework dominates much of the

development cost and schedule because it is seldom explicitly considered. NASA’s

Discover and New Frontiers Programs found that no analysis is performed during

Phase A and B to determine the amount of redesign or additional testing that might

be necessary during the course of Phase C and D design implementation [67].

A previous study investigated the mass, power, cost, and schedule growth of 20

NASA missions [56]. Figure 3 shows that the majority of cost and schedule overrun

for these projects are not seen until Phase C and Phase D, the implementation phases

or test and evaluation portion of DDT&E [131]. NASA’s Phase C is Final Design

and Fabrication where hardware fabrication is initiated, and engineering test units

that closely resemble actual hardware are tested to establish confidence in the design.

A series of CDRs are conducted during Phase C, at the system-level and subsystem

levels, prior to fabrication [131]. Phase D is the System Assembly, Integration and

Test, Launch, and Check Out. During this phase the complete system goes through

a verification, validation, and testing (VVT) process. VVT is a systems engineering

tool that is meant to increase knowledge about the system and ensure it is high

quality, functionally sound, meet the user’s needs [50].
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Figure 3: Comparison of average system growth over time [56].

Recognized by the major launch vehicle developers and the International Council

on Systems Engineering (INCOSE) as a vital part of the development process, VVT

planning currently relies heavily on subject matter experts and does not consistently

include statements of risk and uncertainty [108, 131, 153]. Generally, a fully com-

prehensive VVT procedure is not realistic due to cost and schedule constraints [136].

The lack of structure in developing an efficient VVT plan has been addressed in the

literature, which is presented in Chapter 2. Many authors have concluded that un-

planned rework efforts can have a significant effect on the success of a development

program, but few methods exist to quantify these effects during VVT. While some

of these methods recognize the importance of rework, few include the impacts of re-

work cycles, and no VVT planning methods provide a direct approach to obtain the

probability that rework will occur.

1.2 Research Focus and Organization

The primary motivation for this research is the difficulty launch vehicle programs have

seen historically in successfully completing DDT&E and making it to first flight. The
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previous section identified the importance of creating a sustainable VVT plan and

considering the impact that rework cycles can have on that process. Therefore the

focus of this thesis is on the development of a methodology for modeling the verifica-

tion, validation, and testing plan for launch vehicle programs that will quantitatively

capture the effects of rework cycles. VVT is an iterative process that takes place to

different degrees during each design phase. This research is strictly focused on the

formal VVT that occurs during Phase C/D, and will simply be referred to as VVT

for the remainder of the document [131, 2].

Chapter 2 provides a review of the different approaches for VVT planning. Each

technique is introduced, and the strengths and weaknesses of how they assess the value

of VVT activities, and how they address the impact of rework cycles is discussed.

Following this section, observations are drawn from these existing techniques and the

objective for this research is defined. Research questions are posed in the remaining

sections of Chapter 2 to introduce the components necessary to build the Rework

Impact on Verification, Validation, and Test Strategies (RIVVTS) methodology and

meet the objective. Using a combination of research questions, literature review,

and experimentation, the components of RIVVTS are formulated in Chapter 3. The

experiments are designed to test the hypotheses formulated in Chapter 2. The setup

of each experiment is introduced first, followed by the results and observations of that

experiment, and conclusions are drawn to either support or refute the hypothesis.

Chapter 4 presents a detailed description of each step in this methodology. At

the end of Chapter 4 a case study is presented to validate the output of this method.

Following the case study, Chapter 5 presents an application of this methodology

to alternative VVT strategies for one system. A detailed discussion of the method

outputs are discussed, and the completion of the research objective is verified. The

final chapter concludes the thesis by presenting a summary of the findings from the

literature review, experiments, and application problem. Finally, the contributions
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of this work are discussed, and future research or extensions of this methodology are

suggested.
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CHAPTER II

BACKGROUND RESEARCH

This chapter contains a literature review of launch vehicle VVT process planning

and is intended to identify the gaps by establishing what the current state-of-the-

art is and how it can be improved. The first section reviews the VVT requirements

and current industry standards in planning a VVT strategy. The next section is

an in-depth review of the academic research that has been done to advance VVT

planning methodologies and addresses some of their shortcomings. Section 2.4 covers

the specific elements of VVT that are necessary for decision making, and discusses

how they have been treated individually in the literature. Sections 2.5-2.8 discuss

those specific elements individually. The last section reviews the current methods

that exist in estimating the rework probabilities and impacts.

2.1 Definitions and Purpose of VVT

As mentioned previously, verification, validation, and testing is a set of activities

and processes that are chosen to increase knowledge of the system and demonstrate

that the system or product meets all requirements. The definitions of verification

and validation differ slightly between organizations, but have a common goal. These

definitions from the major launch vehicle developers and systems engineering organi-

zations are stated below:

Verification

NASA [131] “..process of confirming that deliverable ground and flight hardware

and software are in compliance with design and performance require-

ments.”
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DoD [108] “...process used to demonstrate that the system design meets appli-

cable requirements and is capable of sustaining its operational role

during the life cycle.”

ECSS [4] “...process which demonstrates through the provision of objective

evidence that the product is designed and produced according to its

specifications and is free of defects.”

INCOSE [153] “...addresses whether the system, its elements, its interfaces, and

incremental work products satisfy their requirements.”

Validation

NASA [131] “...process of determining the effectiveness and suitability of the

product for use in mission operations by typical users.”

DoD [108] “...process used to ensure the project has confidence that the as-

built product will perform its intended functionality in its intended

operational environment.

ECSS [4] “...process which demonstrates that the product is able to accom-

plish its intended use in the intended operational environment.”

INCOSE [153] “...confirms that the system, as built, will satisfy the user’s needs.”

The trend in these definitions is that verification deals with satisfying the speci-

fied requirements and ensuring the system was built correctly; and validation deals

with ensuring that the right system was built regardless of what the exact specifica-

tions were in the beginning. Although these two processes address different issues,

they use a common set of activities. The verification and validation methods include

[102, 53, 7]:

10



1. Inspection - Visual examination or other non-destructive evaluation to deter-

mine product conformance with characteristics best determined by observation

(e.g. weight, dimensions, color, or other physical characteristics).

2. Analysis - Evaluation of data by generally accepted analytical techniques to

determine the system will meet specified requirements (i.e. modeling and sim-

ulation, systems engineering analysis, or probabilistic calculations). Typically

used when physical testing in the actual environment cannot be achieved or is

cost-prohibitive.

3. Demonstration - Determination of product conformance through the operation

of a test article, relying on observation and no or minimal special test equipment

and instrumentation.

4. Test - Operation of the system under controlled conditions to quantitatively

determine if design or performance requirements are met in applicable envi-

ronments. Testing is the preferred requirement verification method when the

system contains critical failure modes that could result in loss of life or loss of

mission.

Testing can serve multiple purposes and be a subset of both verification and validation.

Primarily, testing is an activity where the system is employed to verify the design,

validate the operational unit, or identify as many defects as possible [61]. Compiling

these definitions, the general purpose of a VVT strategy is to gain knowledge about

the system while eliminating as many manufacturing and design defects as possible

within the allotted time and budget.

VVT planning is the process of determining which activities to use (e.g. analysis,

test, inspection, or demonstration) based on the required system performance, risks,

and cost and schedule impacts. A review of how VVT planning is currently done by
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these organizations is provided in the next section, followed by an in depth review of

the advances made in process planning in the literature.

2.2 Verification, Validation, and Test Planning

To understand how VVT planning is currently done for launch vehicle programs,

a review of NASA, the Department of Defense (DoD), and the European Coopera-

tion for Space Standardization (ECSS) documentation was conducted. In addition,

because VVT is fundamentally a System’s Engineering component, a review of doc-

umentation from the International Council On Systems Engineering (INCOSE) was

also completed. These organizations have published multiple requirements documents

for verification and testing standards. The VVT planning process is largely based on

expert opinion, and therefore no standard planning methodology was found. Another

indication of a lack of uniformity is the publication of VVT standards by individual

NASA centers. What can be assembled from these requirements are common VVT

tools and terminology.

2.2.1 Industry Standards and Requirements Definition

NASA’s System’s Engineering Handbook contains the primary guidelines for pro-

gram verification and validation [131]. The design process at NASA consists of seven

phases, Pre-Phase A and Phases A-F. The verification planning is done in more detail

progressively throughout the design life cycle [131]. Phase D includes the implemen-

tation of verification and validation of the system, including testing the system in

its operational environment. It states that each program’s verification and validation

plan should be tailored to the specific project it supports. The methods used may

depend on payload classification, cost, schedule, risk implications, or many other as-

pects. Due to the individualization of each VVT process, this handbook and other

documents only contain guidelines for developing an effective VVT plan. Another
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handbook with guidelines and requirements is the Marshall Space Flight Center Ver-

ification Handbook, Volumes I and II [2, 1]. Even within the one NASA center, the

verification documentation and processes are not uniform. Each project is allocated

the responsibility of developing a VVT program that considers the cost, schedule, and

risk impacts of their specific project. While the actual verification process activities

do not begin until Phase C, preliminary methods are planned during Phase B.

The DoD documentation on launch vehicle VVT are military standards MIL-

STD-1540, Product Verification Requirements for Launch, Upper Stage, and Space

Vehicles, and MIL-HDBK-340, Test Requirements for Space Vehicles [108, 106]. MIL-

STD-1540 directly addresses launch vehicle verification plan development to demon-

strate that the system design meets its requirements. It contains more specifics than

the NASA documents because it is directly written for space vehicles, but similarly

specifies that the final VVT plan should be tailored to each project [108] according

to various factors. MIL-HDBK-340 details the government requirements for each test

level, e.g. qualification and acceptance tests, at the unit, subsystem, and system-levels

[106].

INCOSE System’s Engineering Handbook also describes the progression of the

VVT process during a project’s development phases [153], as illustrated in Figure

4. As the system transitions from early development phases into final system design

and operations, the V&V requirements also change. It mentions a Verification Cross

Reference Matrix, also referred to as a Verification Requirements Matrix (VRM) by

NASA and the DoD documents [131, 108]. The VRM is a matrix that lists the

system requirements and any required tests for verifying that particular requirement.

INCOSE goes further by giving each requirement a unique identifier to be used to

improve traceability while developing test plans and procedures [153]. Although these

organizations provide different levels of detail regarding the VVT planning process,

and define their life cycle phases differently, the fundamental purpose of VVT is the
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same.

Figure 4: Progression of system verification and validation during design lifecycle
[153].

The only consistency in this documentation is the lack of a developed methodol-

ogy for developing a VVT plan. The current best practice is to use expert judgment

in conjunction with the VRM to create a VVT plan while ‘considering’ cost, schedule,

and performance risk impacts. Rework and retesting are not explicitly addressed in

this documentation. Academic research has assumed the task of researching method-

ologies that will enable a more robust and improved VVT planning process in terms

of cost, schedule, and performance. These studies are discussed in the next section.

2.2.1.1 Observations

A review of the literature search on VVT planning and evaluation techniques, a few

observations about the current state-of-the art can be made. The successive can-

cellation of launch vehicle programs suggests that a more sustainable DDT&E plan

is required, with a focus on reducing cost and schedule overruns during phases C
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and D during development. The primary government launch vehicle developers, i.e.

NASA, DoD, INCOSE, and ESA, each have their own individual set of guidelines

and definitions that address verification and validation, and VVT planning. While

there are similarities and trends, no industry standard VVT development procedure

is currently in use. Uncertainty and risk are recognized as important factors by each

individual organization, but are not consistently evaluated during VVT planning pro-

cess. Each organization addresses uncertainty with different methods and to different

degrees during the development phases. Rework cycles and their impact on the pro-

gram are not explicitly addressed in these documents. The main observation to be

made from the review of industry standard approaches, is the lack of continuity of

the VVT planning and evaluation techniques.

• Launch vehicles require the development of a more sustainable DDT&E plan

• No industry standard VVT development procedure is currently in use

• While uncertainty and risk are recognized as important factors, they are not

consistently evaluated during the VVT planning process

• Rework cycles are not explicitly addressed

2.3 Research Objective

The primary motivation for this research is the gap identified by these observations.

It has been identified that current VVT planning and evaluation techniques do not

adequately account for rework cycles, and the resulting cost and schedule overruns

often lead to program cancellation. Therefore, it is important to evaluate the impact

unplanned rework can have on VVT activities, and determine how VVT planning can

mitigate these effects. These observations lead to the following research objective:

15



Research Objective

Reduce cost and schedule overruns by modeling the effects of unplanned

rework on the verification, validation, and testing of launch vehicle systems,

and determining how VVT strategies can mitigate those effects.

The research objective can be achieved through the formulation and implementa-

tion of a structured process, or methodology that meets requirements derived from

the identified weakness of industry standard VVT planning and evaluation. First,

the qualitative nature, and lack of structure, in evaluating VVT activities does not

provide a complete assessment. This leads to the first requirement, which states that

a quantitative means for comparing alternative VVT strategies is desired. The sec-

ond requirement stems from the gap in current approaches to consider the impact of

rework cycles. The cost and schedule overruns that result from the additional design

and testing activities have been recognized as significant hurdles for launch vehicle

programs, but are still excluded from the VVT planning. This leads to the second

requirement, that a quantitative estimate for the explicit impact of rework cycles on

cost and schedule be produced. The final requirements is derived from the complex

nature of launch vehicles. Individual program requirements and testing activities can

often become bogged down in details due to the complexity of the system. Therefore,

this method must scalable and flexible enough to enable its use at the subsystem and

system levels.

Derived Requirements:

1. The method shall produce quantitative means for comparing alternative VVT

strategies.

2. The method shall produce quantitative estimates for the impact of rework cycles

on cost and schedule during VVT.

3. The method shall be scalable and flexible enough to enable use for large complex
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systems.

The methodology that is formulated to meet the research objective and derived

requirements provides the foundation for a risk-informed VVT evaluation framework

that will aide decision makers in selecting the best set of VVT activities according

to specific program goals. This decision support tool for VVT planning is there-

fore developed to follow a generic set of decision-making steps to enable its seamless

integration in the overall decision-making process. For this research, th Georgia In-

stitute of Technology Integrated Product and Process Development (IPPD) approach

will be used [129]. A graphical overview of the IPPD methodology is presented in

Figure 5. The center column of this umbrella chart represents a generic top-down

decision-support process that can be applied to any type of problem.

Figure 5: Georgia Tech integrated product and process development approach [129].

There are six steps in the IPPD methodology: establish need, define the prob-

lem, establish value, generate feasible alternatives, evaluate alternatives, and make

decision. Chapter 1 established the need for this research by identifying the gaps in

current methods to reduce cost and schedule overruns caused by unplanned rework.
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In defining the problem, the primary objective and requirements for this research

were derived through observations and identified weaknesses in the industry standard

VVT planning and evaluation techniques discussed in Sections 2.1 and 2.2. The first

two steps of this methodology are necessary to understand the expectations of the

RIVVTS methodology and how it can be used to mitigate the effects of unplanned

rework. To establish value, performance measures or metrics of interest need to be

selected. A standard set of metrics allows for a traceable and fair comparison between

alternative VVT strategies. The next two steps are two generate feasible alternative

VVT strategies and evaluate the alternatives using the previously defined value cri-

teria. The final step is to make a decision, or a risk-informed alternative selection

based on the previous evaluation. The first two steps of the IPPD approach were

completed through the development of the research objective and derived require-

ments. Establishing value for this problem leads to the first research question for the

RIVVTS method, which is stated below.

Research Question: 1

What metrics should be used to evaluate the impact of rework on a VVT

plan?

The metrics that are considered to some degree in industry VVT planning are

cost, schedule, and risk, but there is no consensus on how these metrics should be

evaluated or how they are impacted by rework cycles. A literature review of the VVT

planning and evaluation techniques is presented in the next section to determine if

there are other methods that have been developed to account for rework, and further

assess which metrics are needed to evaluate a VVT strategy.
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2.4 Literature Review of VVT Planning Techniques

The research efforts on improving VVT planning can be divided into qualitative or

quantitative techniques. The qualitative methods focus more on standardizing the

process by providing a common format to evaluate VVT activities. The quantitative

techniques, alternatively, use various methods to evaluate the actual cost, schedule,

and performance value of an individual activity. The following section contains a

discussion on the existing methods to help answer research question 1.

2.4.1 Qualitative VVT Planning Techniques

Meussig and Laack present a formal process of what is currently the industry stan-

dard to establish the value of verification, validation, and accreditation (VV&A)

of modeling and simulation (M&S) environments [98]. The first step is to system-

atically identify the risk scenarios and quantitatively determine the probability of

occurrence and the severity of impact each scenario will have on the system. Meussig

uses an established impact and probability discretization described in MIL-STD-882C

[107]. The severity of the impact is divided into four categories catastrophic, critical,

marginal, and negligible. The probability of occurrence is similarly divided into five

categories frequent, probable, occasional, remote, and improbable. When combined,

these categories create a Risk Matrix (RM), which is a commonly used risk assessment

tool [107, 131] shown in Figure 6a. This method differs by assigning similar categories

to the benefits of VV&A activities, shown in Figure 6b. Using the risk and benefit

matrices, the best VV&A activities can be selected by SMEs from a well-defined list

of all the available VV&A activities.

Haimes, Kaplan, and Lambert suggest a more structured decision making process

for filtering and ranking the identified risk scenarios [61]. A hierarchical holographic

modeling approach is used to subdivide the system into more manageable sections for

risk identification. Each subtopic then becomes a category of risk scenarios. After
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(a) Risk Matrix. (b) Benefit Matrix.

Figure 6: MIL-STD 882C defined risk matrix and associated benefit matrix [98, 107]

an exhaustive list of risk scenarios is created, Haimes uses multiple steps to rank

and filter the scenarios to a more manageable number. The first phase of filtering

is based on the expert opinion of the risk manager. Then the remaining risks are

categorized according to MIL-STD-882 and arranged in a RM, where the low-priority

risks are filtered out. From here the scenarios are filtered based on military system

priorities and risk management is introduced to determine the most cost-effective

ways to counter the risk scenarios that constitute the most risk to the system.

The last qualitative technique discussed in this section is a methodical approach

to the tracking and documenting of verification activities [99]. To improve the veri-

fication process of space systems, a modular management process was recommended

to be distributed to any and all teams working on the system, from contractors to the

system’s engineering team. This standardization of the process is meant to ensure

that all requirements are sufficiently verified, and nothing is overlooked or underval-

ued. While not necessarily a study intended to find the optimal VVT strategy, it does

elude to the need for a more formal and structured VVT program planning approach.
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2.4.2 Quantitative VVT Planning Techniques

The next few methodologies quantitatively determine the value of different VVT

strategies. One of these methods was an investigation into the optimal mix of par-

allel and sequential testing [85]. Uncertainty analysis is used as a measure of value,

while cost and schedule are minimized. The iterative nature of the design process is

represented by the use of sequential testing, where each test cycle can account for any

learning achieved in the previous cycle. Parallel test cycles, on the other hand, do not

account for any learning and are conducted as planned. If two cycles are unrelated,

then parallel testing is preferred. Each test has a fixed cost and a target uncertainty

reduction value. Full tests yield full uncertainty reduction, while any partial tests

(e.g. scaled prototypes or wind tunnel testing) leave residual uncertainty relative to

the level of testing performed. Loch et al. found that the financial cost and cost of

time available to perform tests had a major impact on the testing strategy, where

expensive tests are best used sequentially and slower tests are more optimal in par-

allel. The use of parallel testing does not take full advantage of the possible learning

between tests, making it less optimal when using partial tests, which are already lim-

iting the maximum uncertainty reduction available. Rework cycles are not addressed

as a form of uncertainty here, but it does highlight the effect that iteration can have

on the VVT strategy.

Thomke and Bell addressed the most effective way to incorporate high fidelity

tests into the product development process [144]. Test costs were modeled as a func-

tion of fidelity, and the cost of rework to correct problems discovered during testing

was modeled as a function of time. The authors developed a metric referred to as

the Economic Test Frequency, which is a function of the test cost, number of cumu-

lated faults discovered, and rework cost, to determine the optimal test frequency and

occurrence for a development program. It was determined that the optimal strategy
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was highly dependent on the correlation of sequential tests, where mostly uncorre-

lated test portfolios benefited from more tests at mixed fidelities, and correlated test

portfolios only needed a small number of higher fidelity tests. Because only sequential

testing was considered, actual test durations were not a factor in determining testing

strategies. While the trends discovered during this study provide useful knowledge

for moving forward, the general application of this method does not lend itself to

more complex systems. Launch vehicles, for instance, will utilize both sequential and

parallel testing, and rework costs can vary from minor to significant based on more

than just the time it is conducted.

Engel and Barad used a probabilistic approach to determine the cost of risks

during VVT [51]. The canonical VVT baseline test strategy is considered an ideal

test scenario with no resource constraints. Varying test strategies with different levels

of partially performed tests are then compared to the canonical example. Using

only sequential testing, any partially performed test is considered increased risk, and

a Monte Carlo simulation is used for a stochastic risk assessment. The value is

determined by the amount of risk reduction achieved. This method is based on

expert opinion of expected cost and duration for each activity, and does not include

rework probabilities.

The concept of risk reduction as a measure of value has also been applied to

the overall product development process [25, 24]. Browning et al. used a risk value

method to track reduction in product performance uncertainty [26]. Multiple tech-

nical performance measures are tracked and treated as random variables to measure

their uncertainty. In addition to uncertainty, the impact of failure to meet the tar-

get performance goals is modeled as a quadratic impact function. Overall product

performance risk is measured as a weighted sum of the technical performance mea-

sure impact failures. In another study, Browning further expands his ideas on adding

22



value to the product development process [24]. In a risk reduction exercise, each prod-

uct development activity is assigned a value based on the measure of risk reduction

achieved. These values are used to create a predicted value trajectory for the planned

activities. Browning suggests that eliminating activities where the value trajectory

is flat, indicating significant expenditures with limited risk reduction, is a better ap-

proach to reducing costs during product development. Although this strategy is not

directly applied to VVT processes, the idea to base VVT strategies on performance

improvements could yield insightful results.

The SysTest project, sponsored by INCOSE, developed a generic VVT method-

ology with regard to its impacts on cost, schedule, and performance risk. A series

of papers were published to review the initial outcomes of the project [51, 68, 83].

Hoppe et al., reviewed the results of applying the SysTest methodology across five de-

sign phases for six industrial projects [68]. A questionnaire given to the six projects

evaluated the effectiveness of SysTest based on test and rework costs. Given the

small sample size and inconsistent results, it was difficult to conclude that there

was a substantial improvement. Although rework was a measure of success for this

methodology, rework probabilities were not considered during the VVT strategy de-

velopment. There was also no measure of product quality increase shown in the six

sample projects. The cost avoidance strategy used in SysTest and other methodolo-

gies does not consider the value added by different testing activities [51, 83, 85, 144].

One important distinction between SysTest and the other methodologies described

previously is in the output. While cost and/or schedule are factors in all of the

studies, many only evaluate trends in the cost and schedule impacts based on VVT

strategies. SysTest produces a quantified cost and schedule estimates.

2.4.3 Observations

• Few studies exist that consider both cost and benefit risk for VVT strategies
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• A consistent method for estimating rework probabilities does not exist

• No studies quantitatively address the impact of rework on cost and schedule

The academic literature provides a variety of ways to evaluate VVT or testing

plans. The approaches discussed in Section 2.4, qualitative and quantitative, can be

categorized as either cost or cost vs. benefit. Cost categories found in the literature

include the actual cost of testing, the cost of rework cycles, and the time spent

testing. These techniques only address half of the VVT definition given in Section

2.2.1, regarding the program’s resource constraints. The other half of the definition

is to gain knowledge and eliminate defects from the system. The cost vs. benefit

approaches account for the full VVT definition by including some measure of quality

improvement to the system. The benefit categories for VVT activities are performance

demonstration, reducing rework cycles, and risk reduction. Only a few methods were

identified that fall into this category, and even fewer included the probability of

rework. While there are suggested methods to generate rework probabilities, none of

these studies quantitatively addressed the impact of rework on cost and schedule.

2.4.4 Conjecture for Research Question 1

Research question 1 asks the fundamental question for this research objective. In

trying to select a launch vehicle VVT strategy, the first step is determining where

the value lies in the VVT process and how others have modeled it in the past. A

review of the industry standard practices in VVT process planning found a lack of a

structured methodology, instead depending on expert opinion to individually tailor

the VVT plan. Documentation from the two main U.S. launch vehicle developers and

an international systems engineering organization all emphasized the need to consider

the cost, schedule and risk impacts when planning is being conducted. These three

parameters are then recognized as significant in the process, and need to be considered

when assessing VVT value.
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The academic literature search similarly focused on those parameters to different

degrees, and also suggested that performance value should be included since cost and

schedule should not be the only drivers for VVT strategy selection. The studies that

address process planning fall into a cost vs. benefit proposition. What is considered

a cost to the system and what is considered a benefit is what varies primarily. The

methods are divided into two categories, qualitative and quantitative, to determine a

‘best’ process planning strategy.

The qualitative methods can be dismissed because they do not provide enough

information to differentiate between distinct VVT strategies. However, the cost and

benefit considerations of these approaches are still of interest. These methods focus on

risk identification and SME input for VVT activity selection. The goal is to identify

the biggest risks to the system by estimating the probability of risk occurrence and

the severity of its impact should it occur. A RM is one of the tools used to assess

the risks and down select from an exhaustive list of risks to focus on the high priority

ones. The value, then, is in risk reduction through VVT activities. Cost, schedule,

and rework are not explicitly addressed, and are only considered qualitatively in terms

of risk occurrence impact.

The quantitative methods are more diverse. Again risk or uncertainty reduction is

the most common goal in process planning methodologies. Research into sequential

and parallel testing determined the value of a test based on the number of design

problems uncovered as a function of test fidelity. The later in the testing process

defects were uncovered, the most costly the rework effort, but no information was

given on how to determine the probabilities of defects being uncovered or on the

impacts of rework efforts on activity duration. Correlation between tests was shown

to be an important factor in overall process duration when both parallel and sequen-

tial testing was included. Browning’s work was the first to offer an estimation of

actual cost and schedule duration when considering design iterations during product
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development processes. The goal of the product development process planning was

to reduce the risk in technical performance using a risk value method. Rework was

considered, but only the probability of one task causing rework in another task. The

probability of repeating a task, referred to as internal rework, was implicitly included

in the cost/schedule distribution for that task. For design activities internal rework

implies that a certain portion of the activity is repeated, but testing activities require

a repeat of the full activity. Explicitly addressing internal rework would provide a

more accurate model for VVT activities. SysTest also produced cost and schedule

predictions, but did not consider rework as an uncertainty input.

There have been a wide variety of methods introduced in evaluating VVT strate-

gies. Many have a purely cost driven motivation, while others use an uncertainty

or risk reduction technique. Only two methods produce an actual cost and sched-

ule prediction, but neither fully address rework cycles and how to determine their

probabilities. From this review, it can be seen that the main VVT parameters are

a quality improvement measure (i.e. reduction in rework cycles or improvements

in performance), cost, schedule, and risk. Although few of the methods address all

four of these parameters, they collectively summarize the value of a VVT strategy.

This review of current methods leads to the development of a conjecture to answer

research question 1. The following sections and research questions will investigate

these parameters further and determine what current methods exist for evaluating

them.

Conjecture: 1

If quality, cost, schedule, and risk are used as metrics to evaluate the impact

of rework during VVT, it will provide the most complete assessment of

VVT activities, and will enable a quantitative comparison of alternative

VVT strategies.
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The selection of quality, cost, schedule, and risk creates a foundation for the

overall methodology. These metrics can be defined or evaluated in different ways

depending on the system, and the current state of development. For example, the

most applicable cost estimation technique is heavily dependent on the development

phase and the amount of information available about the system at that time. A

measure of quality, on the other hand, is dependent on the type of system being

developed. The following sections will review existing methods for evaluating each

of these metrics, and determine their applicability to launch vehicle systems during

Phase C and D VVT.

2.5 Quality

The cost vs. benefit methods discussed in Section 2.4 each use a different measure of

quality for the evaluation of VVT activities. Reduction in rework cycles or reduction

in uncertainty can be applied broadly to a variety of systems, but certain performance

measures are more applicable than others for launch vehicle systems. This broad

definition of quality in the literature requires further research to determine the most

appropriate definition for the RIVVTS methodology, and is addressed by the following

research question:

Research Question: 2

What is the most appropriate measure of quality for assessing the impact

of rework on launch vehicle VVT strategies?

The previous VVT strategies touched on two different approaches to measuring

the quality of a system defect elimination and performance. SysTest used the number

of rework cycles as a measure of success for their project, suggesting that the imple-

mentation of the SysTest model improved the quality of the product by reducing the

unnecessary rework. Although this was not shown explicitly in the results, the use
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of rework cycles that were required to eliminate defects were identified as a represen-

tation of quality in their VVT strategy [68]. Thomke and Bell also used number of

defects as a measure of quality in their investigation of the optimum testing strategy.

Their use of fidelity to determine the number of uncovered defects allowed them to

directly assess the impact of individual activities [144].

Browning’s product development process model assigns a value of overall perfor-

mance to each activity by determining whether that activity improves or worsens the

expected performance value and whether that activity reduces or increases the un-

certainty of the expected performance value [26]. These two measures are combined

similar to the risk matrix defined in Section 2.4 and is shown graphically in Figure

7. The combined effect on performance and uncertainty measures is used to rank

the impact an activity will have on performance, which is then tracked throughout

the product development model. An advantage of this method is that it could the-

oretically be used for any performance measure that is most relevant to the system.

Another advantage is that it is designed to explicitly show the effects of a particular

activity on performance, enabling a better comparison between alternative develop-

ment process selections. A disadvantage of this technique is the qualitative nature of

the assessment. A general indication of improvement or decline does not provide a

very detailed level of analysis.

Bjorkman uses a model based systems engineering approach to improve the value

of test and evaluation through uncertainty reduction by tracking relevant technical

performance measures (TPM) [19]. This approach is similar to Browning’s in that it

supports the modeling of individual activity effects on system performance through-

out the process. While a TPM trajectory can be represented as a smooth curve,

performance improvements are more realistically modeled as step functions, where

each VVT activity provides a shift in the curve. In this framework, the added value

is the amount of uncertainty reduction, as opposed to performance improvements, but
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Figure 7: Qualitative activity-based performance effects [26].
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the significance of relating the value to the activities is determined to be beneficial.

TPMs are identified as an important part of the systems engineering process by

NASA and INCOSE [153, 131]. They are used to evaluate progress during the design

and development process and provide a way for project managers to track the success

of a project without relying solely on cost and schedule [153]. The selection of relevant

TPMs is determined by the particular mission as they relate to key mission success

parameters. The following section will give a brief overview of some of the priorities

that NASA has identified for the SLS program.

2.5.1 NASA’s Launch Vehicle Priorities

As seen in section 1, programs have been canceled due to combinations of cost, sched-

ule, and performance failures. Referring back to Figure 3, it was shown that the av-

erage cost growth, even above the programmatic reserves, was 57% and the average

schedule slip was 38%. This growth is typically not seen until after the Critical De-

sign Review (CDR). Bitten suggests that this lag in programmatic cost and schedule

realization could be due to overly optimistic estimates produced in the early design

stages [56]. Other studies of historical NASA missions have been conducted by the

United States Government Accountability Office (GAO) and the Congressional Bud-

get Office (CBO) [59]. Programmatic failures noted by these organizations include

inadequate definition of technical and management aspects of a program, funding in-

stability, lack of emphasis on technological readiness, program redesign, and budget

constraints. The effects of these programmatic failures can have a devastating effect

on the life of a program. To overcome these common pitfalls during development

the SLS program is prioritizing affordability and scheduling [100]. Reliability is also

becoming increasingly important as significant reliability constraints are being imple-

mented. The Space Shuttle had a demonstrated reliability of over 1 in 100 flights for

loss of crew, and the SLS is now requiring 1 in 1000 flights [55, 29]. Typically U.S
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launch vehicles only see a 85-90% reliability over their lifetime [30, 79].

A full magnitude improvement over historical launch vehicle reliabilities is a con-

siderable task. Other performance measures mentioned in the literature are more

suitable for other systems or during earlier design phases. For example, detectabil-

ity is more suitable for a military system, and thrust levels are verified earlier in

the design process. All launch vehicle subsystems are subject to reliability require-

ments during both assembly and testing. Based on this information, reliability can

be considered a system-level metric that is a key performance parameter for launch

vehicles. A conjecture can be made here to answer research question 2, which leads

to a follow-up research question.

Conjecture: 2

If reliability is used as a quality metric for launch vehicle systems, it will

provide a quantitative representation and accurate measure of quality for

VVT activities.

Research Question: 2a

What is the most appropriate method to track and assess reliability during

VVT?

The following section provides a discussion of existing reliability analysis methods,

and addresses their applicability for this methodology.

2.5.2 Reliability Techniques

Reliability analysis provides tools for assessing the probability that components, parts,

or systems will perform as expected in a given environment and for a given time

without failure. This is particularly important for crewed launch vehicles, where the

most critical failure level is Loss of Crew. The combination of high complexity and
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high reliability requirements for launch vehicle development programs, is typically

managed by dedicated reliability teams whose focus is to identify and eliminate as

many defects as possible. The most common techniques for reliability assessment are

discussed in this section. A thorough review of these and other methods is available

in Dodson’s Reliability Engineering Handbook [44].

2.5.2.1 Fault Tree Analysis

Fault Tree Analysis (FTA) is a system level reliability assessment tool. It is used to

determine top-level failure events, i.e. loss of mission or loss of crew, and then identify

all of the smaller contributing events in a trickle-down fashion. Figure 8 provides a

notional example of the visual representation of a FTA diagram. The numbered circles

represent the lower-level events that contribute to higher-level failures, connected by

logical ‘gates’ [149]. The gate with a rounded top, like the one joining events 3, 4, and

5, represents an “AND” gate, where all three contributing events must occur to lead

to the higher-level failure. The pointed gate, like the one joining events 1 and 2, is an

“OR” gate, where in the higher-level failure will occur as a result of either lower-level

event. This is essentially a root-cause analysis of the top-level failure that the FTA is

designed around. It can provide qualitative evaluation of functional relationships and

identify weaknesses in the design. It can also provide quantitative results in the form

of probability of occurrence for the top-level failures [81]. Similar to the graphical

activity network diagrams, FTA diagrams can become intractable for large complex

systems.

2.5.2.2 Reliability Block Diagram

Another graphical reliability method is the Reliability Block Diagram (RBD) [16].

Where FTA is an event-oriented layout, RBD is a physical-oriented layout of the

system. Figure 9 shows a simple RBD example. The blocks represent physical system

components that are strung together according to their physical interaction. In this
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Figure 8: Notional FTA diagram.

example, components A and B work in parallel where if one component fails the

system can continue through the other component in parallel. The probability of a

parallel system is calculated as follows, where Ri is the reliability of an individual

component:

R = 1−
n∏
i=1

Ri (1)

The component group A/B, and components C and D work together in series. If a

component in series fails, the process is blocked and cannot proceed. The reliability

of a system in series is calculated as follows:

R =
n∏
i=1

Ri (2)

While FTA computes the probability of failure, RBD computes the probability of

successfully completing the process. However, RBD presents the same weakness as
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other graphical representations, i.e. it can be difficult to create and follow when

dealing with complex systems.

Figure 9: Notional RBD diagram.

2.5.2.3 Failure Mode and Effect Analysis

Failure Mode and Effects Analysis (FMEA), or Failure Mode, Effects and Criticality

Analysis (FMECA), is a qualitative reliability assessment technique. The purpose of

FMEA is to identify all of the potential failure modes in order to improve the reli-

ability and safety of the system. This technique is common practice during launch

vehicle development, and is referred to in both NASA and DoD reliability require-

ments documentation [3, 105]. FMEA begins with the identification of any known or

potential failure modes by a team of subject matter experts. Then the cause and ef-

fect of each failure mode is determined through criticality analysis. Three risk factors

are isolated:

• Occurrence (O) the probability a failure mode will occur

• Severity (S) the impact a failure mode will have on the system if it occurs

• Detection (D) the probability that a failure mode will be detected during

inspection or test

These three factors are used to prioritize the failure modes identified by calculating

a Risk Priority Number (RPN) [44]:
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RPN = O ∗ S ∗D (3)

The failure modes with higher RPN pose the most risk to the system and need to

be reexamined. Corrective actions are then recommended for the failure modes iden-

tified. DoD MIL-STD-1692, Procedures for Performing a Failure Mode, Effects and

Criticality Analysis, provides guidelines to systematically perform FMEA. A sample

worksheet, recreated from [105], can be seen in Figure 10 . FMEA has historically

Figure 10: DoD FMEA worksheet [105].

been an important step in preventing failures from occurring and increasing the reli-

ability of the system [84]. However, there are two common criticisms of FMEA. The

first is the significant amount of time that goes into performing FMEA. Complex

systems can have a vast amount of components that require major effort to analyze.

The other criticism is in the value of the RPN metric. The three risk factors that

are used to calculate the RPN are considered equally, with no relative weightings.

This means different combinations of O, S, and D can yield the same RPN, but have

varying level of risk implications [32, 152].

2.5.2.4 Probabilistic Risk Assessment

Probability Risk Assessment (PRA) is a quantitative reliability analysis that uses

other reliability techniques in its formulation [137]. The fundamental steps of PRA

are listed below:
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1. Identify a list of initiating failure events

2. Create an event sequencing diagram from the initiating events

3. Convert event sequencing diagram into an event tree

4. Calculate probability of initiating event

Each of these steps can be completed with another reliability technique. For example,

identifying the initiating failure events can be done by leveraging FMEA if it has been

completed. Probability distributions are assigned to the initiating events, typically

exponential distributions, which can be used in a Monte Carlo Simluation to find

the probability density function (PDF) of failure probabilities [137]. While NASA

has traditionally preferred qualitative reliability assessments, like FMEA, PRA has

become more common since the Challenger accident [114]. Despite the benefits of

having a quantitative probabilistic reliability assessment, PRA also has drawbacks

stemming from the limitations of the other reliability techniques utilized.

2.5.2.5 Parts Count Method

The Parts Count Method (PCM) is a reliability estimation technique used during

early design when detailed information about the system is limited. The part count

is defined as the number of physically separate parts [57, 116]. The functional rela-

tionships between parts, locations, and attributes are not relevant in this reliability

calculation. The advantage of PCM is the rapid reliability prediction enabled by its

simplicity. For this reason, it is useful for generating comparisons between different

configurations of a system during preliminary design [158].

The failure rate of the system is calculated by multiplying the generic failure rate

of a generic part by a quality factor, and then summing the failure rates for number

of generic parts. The generic failure rates for specific components can be obtained

from failure rate databases, such as the electronic equipment failure rate database
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contained in MIL-HDBK-217F [104]. The quality factor can be applied when quality

level data exists, and defaultd to 1 when it does not [104]. Equation 4 below gives

the generic form of the PCM equation for the total system failure rate [104].

λSystem =
n∑
t=1

Ni(λgπQ)i (4)

where λSystem is the overall system failure rate, n is the number of different generic

parts, Ni is the quantity of the ith generic part, λgi is the failure rate for the ith generic

part, and πQi is the quality factor for the ith generic part. The PCM approach could

be used to estimate launch vehicle reliability for architecture comparisons, but the

actual reliability estimates have been shown to be imprecise [116, 158].

These common reliability techniques have all been considered for this research.

While FMEA provides a considerable amount of information on specific risks, its

qualitative nature makes it unsuitable for use as a TPM. FTA, RBD, PRA, and PCM

could be used probabilistically by determining appropriate probability distributions

for the component failures, but they are not typically used to predict reliability over

time.

2.5.2.6 Reliability Growth Models

Another quantitative reliability projection technique is reliability growth models [20].

The idea behind these models is that reliability is increased as defects are uncov-

ered and corrected, also referred to as the test-analyze-and-fix (TAAF) process. The

existing reliability growth models are classified as either continuous or discrete. Con-

tinuous models typically consider mean time between failure (MTBF) data to track

reliability over time. In discrete reliability growth models, the data represents relia-

bility in terms of number of trials, or a Bernoulli process, where the possible outcomes

37



Table 4: Practical reliability growth rate parameters [103]

α Reliability Effort Launch Vehicle α
0-0.2 No priority given. Corrective action only taken for crit-

ical modes.
0.2 Routine attention given to reliability improvement. Atlas [12] 0.2
0.3-0.4 Priority. Analysis and corrective action for important

failure modes.
0.4-0.6 Program dedicated to failure elimination. It has top

priority, and corrective action is given for all failures.

are either success or failure [58]. The following paragraphs discuss continuous and dis-

crete reliability growth models that have been successfully applied to launch vehicle

systems or subsystems.

Duane’s model is one of the most widely used continuous reliability growth models

[46]. His formulation for reliability growth is shown below,

λ = KTα (5)

where λ is the total number of failures per total test time, K is a proportionality

constant, T is total test time, and α is the growth rate parameter. In practical use,

Duane asserts that a log-log plot of test hours vs. test failures can graphically provide

α and K. Practical growth rate parameter values were later suggested based on the

reliability effort required to attain a desired growth rate [103], seen in Table 4.

While Duane’s model is used to track reliability across test phases, the Army

Material Systems Analysis Activity (AMSAA) model was developed by Crow to track

reliability growth within a test phase [23]. Reliability growth is modeled as a non-

homogeneous Poisson processes that results from design fixes being introduced into

the system. The expected cumulative number of failures at time t is given by:

E[N(t)] = θ(t) = λtβ (6)

where λ and β are shape parameters, t is the cumulative test time, and N(t) is the

cumulative number of failures [23]. A discrete version of the AMSAA model was
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Table 5: Morse reliability growth model parameters [97]

Parameter Definition
dk Initial number of defects of type k.
λk Conditional probability a defect is triggered if it is present.
τk Conditional probability a defect leads to loss of mission if it is

present and triggered.
νk Conditional probability a defect is observed if it caused a partial

anomaly.
ϕk Conditional probability a defect is reported if it is triggered and

observable.
γk Conditional probability a defect is eliminated if it is uncovered.
pmin Minimum probability of failure of the system.

later developed by Crow, referred to as the AMSAA-Crow model [38]. The discrete

model substitutes cumulative test time with trial number and is calculated using this

equation:

Rk = 1− λ(Nβ
k −N

β
k−1)/nk (7)

where k is the configuration number, nk is the number of trials in configuration k,

λ and β are shape parameters, and N0 = 0. The derivation of this model is based

on the assumption that the number of trials is fixed for each configuration, and the

distribution of successes and failures is random. These assumptions imply that, for

each configuration, the full set of planned tests are carried out, regardless of the

number of failures that occur. The result of the test series is then used to determine

design fixes at the end of that phase.

Another discrete approach, introduced by Morse, models launch vehicle reliability

growth as defect elimination by directly identifying the drivers of reliability growth

in new systems [97]. In this model, the failure probability is derived from a set of

probabilities for each identified defect type. The calculation of system reliability

follows the flow chart shown in Figure 11, with the characteristic parameters required

to define the model provided in Table 5 .

Following the diagram flow in Figure 11, reliability is derived using the following
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Figure 11: Morse reliability growth flow chart [97].

equation [97]:

R(N) = (1− pmin)
D∏
k=1

[1− δk(N)pk]
dk (8)

where pmin is the mature probability of failure of the system with D defect types,

δk(N) is the probability that a defect of type k remains in the system at flight or test

number N , pk is conditional probability of system failure from a defect of type k if it

is still present, and dk is the initial number of defects of type k.

While Morse’s reliability growth model is primarily a discrete model, projecting

vehicle reliability versus number of flights, it also offers suggestions on how it could be

applicable during testing phases. The same defect detection mechanisms are present

during testing, implying that the same model equations will hold with small changes

to the input parameters. Those changes are listed below:
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1. Reduce a portion of risk due to the limited number of defects that can be

exposed during ground tests, when fully integrated test flights are not viable.

Risk is the contribution of a defect to the probability of loss of mission (LOM).

2. Improve the probability of defect detection and reporting due to extensive in-

strumentation available during testing:

ρ = νϕ (9)

where ν is the conditional probability that a defect is observed after it occurs,ϕ

is the conditional probability that it is reported after it is observed, and ρ is

the conditional probability that a defect is eliminated after it is observed and

reported.

3. Optionally, increase the probability of triggering some defect types, λk during

certain test types.

Hall’s discrete reliability growth model for one-shot systems has also been shown to

accurately represent launch vehicle systems [62, 158]. The characteristic parameters

to define the Hall model are listed in Table 6, with the five main assumptions used

to derive the model being [62]:

1. A trial results in a dichotomous success/failure outcome, such thatNi,j∼ Bernoulli(pi)

for each failure mode i and each trial j

2. Distribution of the number of failures in T trials for each failure mode is bino-

mial, such that Ni∼ Binomial(T ,pi) for each failure mode i

3. Initial failure mode probabilities of occurrence, p1,...,pk, constitute a realization

of a simple random sample, P1,...,Pk, such that Pi∼ Beta(n,x) for each i=1,...,k.

4. Potential failure modes occur independently of one another and their occurrence

is considered to constitute a failure
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Table 6: Hall reliability growth model parameters [62]

Parameter Definition
k Initial number of failure modes in the system.
T Number of trials during testing phase.
di Fix effectiveness factor.
pi∼Beta(n, x) Failure mode probabilities of occurrence, Beta distribu-

tion shape parameters.

5. There is at least one repeat failure mode

Each trial, or test, is considered an independent Bernoulli trial according to as-

sumption 1, and the history of failure mode occurrences is tracked using an indicator

function defined as:

Ii(t) =


1 if failure mode i is observed on or before trial t

0 otherwise

(10)

Assuming the trials are statistically independent, the expected value of the indicator

function at trial t is:

E[Ii(t)] = 1− (1− pi)t (11)

Reliability on trial t is given by the following equation, given failure mode mitigation

has occurred:

r(t|−→p ) =
k∏
i=1

(1− [1− Ii(t− 1) ∗ di] ∗ pi) (12)

where di is the Fix Effectiveness Factor (FEF) for failure mode i, a measure of how

effective the corrective action was in eliminating the failure mode once it has occurred.

FEF = 1 implies the failure mode was completely eliminated from the system, and

the resulting probability of failure occurrence is 0. FEF = 0 indicates that no

corrective action was taken when the failure mode occurred.

Zwack’s reliability growth model for conceptual launch vehicles utilizes Hall’s

mathematical model [158]. Hall’s model is applied at the subsystem level, and a

fault tree analysis is used to propagate the subsystem reliabilities to the system level
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for the entire launch vehicle. By generating lower level reliability growth curves,

Zwack provides more insight into the reliability of the system than other models, and

enables reliability to be considered in architecture trades at the conceptual design

phase [158]. However, the additional reliability growth curves require more assump-

tions to be generated, i.e. Hall’s FEF, p(i), and the number of failure modes for each

subsystem.

2.5.3 Hypothesis for Research Question 2a

The reliability growth models reviewed in Section 2.5.2.6 have been applied to either

a full launch vehicle or a launch vehicle subsystem, primarily liquid rocket engines.

The first two models — Duane and AMSAA-Crow — were continuous, and have been

used to represent the Space Shuttle Main Engine reliability over its 110,000 sec hot-

fire engine test history [142]. Both models use a growth parameter approach, which

can be derived using data from a similar or surrogate system. AMSAA-Crow also

requires an assumption about the number of test configurations and number of tests

per configurations, which may not be known in advance. Although they show an

accurate prediction of the SSME Mean Time Between Failure (MTBF), these models

do not provide any insight on the effect of individual tests on the reliability of the

system.

The other models discussed, Hall, Zwack, and Morse, were discrete reliability

growth models that have been shown to accurately predict launch vehicle reliability.

The primary difference in these models is the assumptions that they are built on.

Morse requires more probability parameters to calculate the reliability of the sys-

tem. These include the number of failure modes, probability of occurrence, detection,

action, and correction. Hall’s model only requires the number of failure modes, prob-

ability of occurrence, and the fix effectiveness factor. The number of failure modes

and probability of occurrence are common to both models. Morse’s probability of
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correction can be equated to Hall’s fix effectiveness factor. An assumption could be

made for the additional Morse parameters of action and correction by considering

that this methodology is modeling activities during testing. It can be assumed that

a significant amount of special test equipment and instrumentation is being used to

detect any anomalies, and that action is always taken due to the increased reliability

requirements of the system. The Morse model detection and action probabilities could

be defaulted to 100% based these assumption, negating the additional parameters.

However, the traceability of this methodology is negatively affected by adding these

assumptions. The complexity of this model is also a drawback. Implementing this

model across testing phases requires the evaluation of each input according to the spe-

cific activities. By requiring fewer inputs, Hall’s model would more easily be adjusted

to varying testing activities. While CONTRAST utilizes Hall’s model, it requires that

the input assumptions be generated for each subsystem that is being considered. The

added complexity of Zwack’s model is not necessary for the RIVVTS methodology

because the subsystems are not changing. Based on this evaluation, Hall’s reliability

growth model was selected for assessing reliability during VVT.

Zwack, Hall, and Morse state that their respective models can be used during

the testing phase, but are primarily used to model launch vehicle test flights where

all failure modes are observable in a fully integrated system. Development testing

for launch vehicles and launch vehicle subsystems does not always allow for fully

integrated tests. Due to the extreme operating environment, lower fidelity testing is

more common because it is less cost-prohibitive, and only a handful of flight tests

are conducted. The fidelity level of development tests gets progressively higher as

the system develops. This implies that each ‘trial’ or test cannot be treated equally.

To enable the use of Hall’s model during development testing, when the fidelity of

VVT activities varies, it will have to be adapted to include a function of test fidelity,

leading to a hypothesis for this research question.
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Hypothesis: 2a

If Hall’s reliability growth model is adapted to include defect elimination

as a function of test fidelity, it will provide reliability projection with quan-

titative insight into individual VVT activities.

2.6 Schedule

Schedule slippage was identified as primary contributor to the cancellation of launch

vehicle development programs in Section 1.1, and was determined to be a necessary

metric for the evaluation of the rework impact on VVT strategies in Section 2.2.

Rework can affect program schedule on multiple levels depending on the severity of

the defect being corrected. Figure 12 illustrates the full potential impact of a single

rework cycle on schedule slippage. Once a fault is detected, the cause of the fault is

traced back to either a design or manufacturing defect. If it is a design defect, the

rework cycle will start with redesign, and then remanufacturing, and finally retesting

the design change for verification of fault correction. Between each of these activities,

any number of delays could occur. For example, required parts could be unavailable

or test facilities could be occupied. Because rework cycles are typically unplanned,

the impact on total development schedule can be significantly impacted [64].

Due to the stochastic nature of failure modes and rework cycles, the technique

used to model VVT schedule must be flexible and have the ability to incorporate

the stochasticity of rework cycles. The overall objective of this research to develop

a quantitative means to compare alternative VVT strategies, imposes the additional

criterion that the method selected produce a quantitative schedule estimate. The

following research question is posed to determine the most appropriate schedule esti-

mating technique for this methodology.
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Figure 12: Total impact of a single rework cycle on schedule slippage.

Research Question: 3

How can the schedule of a VVT strategy be evaluated to include the impacts

of rework cycles?

The following section will review current schedule requirements and development

techniques, including the use of activity network diagrams to represent the sequential

relationships of activities.

2.6.1 Schedule Requirements

NASAs Schedule Management Handbook details what is required to develop the

Integrated Master Schedule (IMS) for a program. The IMS is considered the baseline

schedule and is created using industry best practices [102]. A Logic Network is also

created as a time-phased sequence of project tasks and milestones. The ‘best practice’

referred to here is called the Critical Path Method (CPM). The level of schedule detail

and insight increases throughout the life cycle of a program. During the formulation

phases, typical schedules will only include major milestones and general time phasing

of high-level tasks. As the program flows into the implementation phases, and system

details become formalized, more detailed tasks and milestones are required.

Developing a project schedule starts with determining which tasks are required.
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This task definition is typically derived from a Work Breakdown Structure (WBS),

where each input is broken down into measurable tasks. The level of detail required in

the schedule depends on the current design phase and intended stakeholders. Program

managers, for example, would need less schedule detail than a project manager [102].

These tasks or activities are then logically arranged into a network based on their

relationships and constraints. Basic activity relationships are shown in Figure 13.

Figure 13: Types of activity interdependencies.

The next step is to estimate the duration of each activity. There are several ways

to accomplish this. One way to estimate activity duration is to use historical data,

either strictly using the historical data to compare activity durations of previously

completed similar activities or with parametric analysis. Parametric analysis incorpo-

rates the duration of historical activity data and other related project data to estimate

activity duration, for example system mass, power, cost, etc. Parametric analysis is

a commonly used method to estimate high level tasks during conceptual design, i.e.

development and production. Another method to estimate activity duration using

historical data is the analogy method, where duration is directly associated to rele-

vant historical data and adjusted for complexity or other system metrics. The last
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two methods to mention for activity duration estimation are team brainstorming and

Subject Matter Experts (SME). With these methods, it is important to pull from a

highly experienced work force. Team members that are familiar with the nature of

the project can provide quality duration estimates. It is recommended that three du-

rations be estimated for each activity, a pessimistic, optimistic, and most likely time.

Having a range for the durations enables uncertainty calculation in the schedule. The

last step is to determine the sequencing of the tasks and activities. Relationships

between activities, i.e. finish-to-start, start-to-start, start-to-finish, etc., and activity

constraints, i.e. as soon as possible, must start on date, must start before date, etc.,

are the kind of information required to determine activity sequencing.

Current industry standards rely heavily on subject matter expert opinion and

do not incorporate any activity iterations. The following section will describe the

most commonly used scheduling methods, all of which do not consider unplanned

iterations. The remaining section will introduce methods that do consider iterations,

but are less common in practice.

2.6.2 Non-Iterative Scheduling Methods

The most well-known scheduling method is the Critical Path Method (CPM), which

has been used for project planning since the 1950s [47]. The main elements for

CPM are the same as the basic elements discussed above, e.g. a list of required

activities (WBS), duration for each activity, and activity interdependencies. Using

those elements, CPM calculates the longest path to project completion using the

relationships between the planned activities. It essentially determines which activities

are critical, or are on the longest path, and which can ‘float’, or be delayed, without

extending to total project completion time. An important distinction for CPM is that

the activity durations are fixed and deterministic. Iterations are not modeled with

CPM unless two of the same activities are called out in the WBS initially. While this
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method is widely used due to its direct and easily understood nature, these aspects

limit its usefulness when uncertainty and risk calculations are necessary.

There are many risks that lead to uncertain activity durations, i.e. late deliveries,

changes in project scope or requirements, unplanned rework, resource constraints,

etc. The PERT method, Program Evaluation and Review Technique, was developed

to deal with this imprecise data [88]. Also a widely used technique in industry,

PERT requires three time estimates for each activity, a pessimistic, optimistic, and

most likely. These estimates, usually given by SMEs, are used to determine the

expected value and variance for each activity duration. PERT then calculates a

probability distribution for the likely overall project duration based on the probability

distributions of the activities. The system is visually represented by a series of nodes

and arcs. A sample of a PERT activity network can be seen in Figure 14, where each

arc represents an activity and each node represents an event.

Figure 14: Notional PERT network.

There are a few recognized drawbacks to PERT in the literature. One significant

criticism is in the ability to generate meaningful estimates for the activity durations.

Obtaining estimates for each activity can be time consuming and it may be difficult

to find experts that are familiar with the problem when dealing with novel concepts.

Because the three time estimates are given by SMEs, they are purely subjective and

sensitive to the judgment of the expert. A study by Swanson and Pazer (1971) was

conducted to determine the sensitivity of the expected value and variance for the

project duration to imprecise estimates and determined that the upper and lower

49



bounds are ambiguous [141]. Another disadvantage of this method is the visual

nature of the system representation. For complex systems it can quickly become

overly complicated, making it difficult to compare alternative network options.

Another non-iterative technique is the Probabilistic Network Evaluation Tech-

nique (PNET) [12]. PNET evaluates overall project duration based on the number

of failure modes in the network. A notional PNET chart is shown in Figure 15. Each

independent path is represented as a different color, and each represents a possible

failure mode in the network. ‘Failure’ in this context is anytime the project takes

longer to complete than the initial estimate. Similarly to PERT, PNET starts with

a probability distribution for the duration of each individual activity. Using these

distributions, the probability distribution of each complete path duration is calcu-

lated. A correlation matrix is calculated based on the number of common activities

between two paths and their respective standard deviations. This correlation matrix

is used to reduce the number of paths by eliminating ones that are highly correlated

with paths that have a longer duration. From this reduced set, the probability of

the network duration being longer than the target duration, T, is found using the

following equation:

P (t > T ) = 1− p(t1 < T ) ∗ p(t2 < T ) ∗ ... ∗ p(tn < T ), (13)

where p(ti < T ) is the probability that the ith path will have a duration less than T

[42].

Figure 15: Notional PNET network.
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2.6.3 Iterative Schedule Methods

There are a handful of scheduling methods that do include iterations. One of these

methods is the Graphical Evaluation and Review Technique (GERT), a network anal-

ysis technique which was developed as an extension of PERT [119]. To overcome

the PERT shortcomings, GERT was designed to allow for looping and probabilistic

branching. These features make it more versatile than CPM or PERT. Figure 16

provides an example of a GERT network. Each arc is considered individually with

its own probability of choosing that arc. The sum of probabilities from a single node

is always equal to one. The visual system representation comes with the same disad-

vantage as PERT, in that it quickly becomes overly complicated for complex systems.

Also, the order of each activities remains fixed, limiting its ability to compare alter-

native system process plans. Although it improves upon certain aspects of PERT,

GERT has not been embraced by industry and is not often used [143].

Figure 16: Notional GERT network.

Markov Chains are another method used to represent iteration in a system [11].

Markov Chains uses a state space representation that consists of various states and

the transitions to/from those states. Figure 17 provides a simple example of a Markov

Chain. The states {A,B} represent activities in the process flow, and the arcs rep-

resent the transition between states. The numbers associated with the states are

activity duration, and the fractions associated with the arcs are the transition proba-

bilities. An advantage of this method is the ability to account for stochastic activity
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durations and branching. It is also an established model that is mathematically simple

and well understood. However, like GERT, it can quickly become overly complicated

for complex systems. Another disadvantage is that the activities must be predefined

and cannot be altered once the model is created.

Figure 17: Notional Markov Chain.

The most commonly used tool to model iterations is the design structure matrix

(DSM). The DSM is designed to represent the interactions between the matrix com-

ponents, showing how tasks and information flow affects other tasks [139]. A basic

DSM consists of a square matrix with activities down the left side and identically

across the top, as shown notionally in Figure 12. The matrix entries represent a

dependency between the tasks. This creates a manageable format for representing

complex processes graphically. From this representation, the schedule can be con-

verted into an activity network diagram, like GERT or PERT. Karniel and Reich

published a comprehensive review of DSM-based planning which can be referred to

for more detail [72].

A traditional DSM only establishes the existence of a relationship between tasks.

The upper half of the matrix represents feed-forward dependency, and the lower

half represents feed-back dependency (or vice versa depending on convention). The

program DeMAID (Design Manager’s Aide for Intelligent Decomposition) used this

form of DSM to improve product development by rearranging the tasks to minimize

feedback, a process known as partitioning [125]. This has been shown to reduce the

sensitivity of overall process time to changes in individual activity durations [76], but
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Figure 18: Notional DSM.

further evaluation has shown that this strategy does not always yield the minimum

project duration [8, 25, 99]. DSM was improved by developing the numeric DSM

(NDSM), where the matrix entries were replaced by numbers representing the level

of relationship between activities [52]. Browning used the DSM off-diagonal entries

as rework probabilities between the activities and utilized the on-diagonal entries as

the activity duration [25]. His methodology was assessing the impact of architecture

selection on the performance, cost, and schedule risk in product development, of

which VVT is just a small piece. Internal rework was assumed to be included in

the on-diagonal activity duration probability distributions, and only inter-activity

rework was considered. Internal rework is more of a concern during VVT due to the

probabilities of test failures causing rework [53]. Including these probabilities in the

VVT activity durations limits the fidelity of the uncertainty measures. The utility

of DSMs to model variations in activity relationships is an advantage for this study.

Smith and Eppinger have shown it can be used to model only sequential activities,

only parallel, or a combination of both [135]. A disadvantage of the DSM is its

inability to represent stochastic activity durations and rework probabilities. Another

disadvantage is its limited use on VVT activities, where most of the research has been

done on overall product development processes.

53



2.6.4 Hypothesis for Research Question 3

The first set of schedule management techniques introduced in Section 2.6.2 is the

non-iterative methods, which include CPM, PERT, and PNET. CPM and PERT are

the most commonly schedule management tools used in industry today. CPM allows

for the identification of ‘critical activities in the schedule, and PERT extends that to

include the calculation of an overall project duration probability distribution. PNET,

while being less popular, also includes probabilistic by considering all the possible

failure modes in the network. These methods are well established and understood, but

can be dismissed because they do not allow for iterations and require a predetermined

set of activities.

The graphical techniques introduced are all capable of stochastic assessment, and

differ only on how they represent the system. GERT is a basic iterative model that is

based on the PERT method, but has the ability to model iterations. Markov chains

serve a similar purpose, but use a state space representation of the system. GERT

is generally only used as an academic tool, and has not really gained traction in

industry, while Markov chains is a well established and understood activity network

model. These techniques all share the same weaknesses, however. Their graphical

representation can be difficult to generate for complex systems and quickly becomes

intractable. This limits their flexibility and traceability for use on launch vehicle

systems.

The final schedule management technique that was introduced was the design

structure matrix. DSMs are a matrix representation of the information that is graph-

ically displayed in the other methods, making it much more concise and easily under-

stood. The transition to numerical DSMs by Eppinger further increased its usefulness

and led the way for other studies to adapt the DSM in different ways. Brownings

use of DSM to represent rework probabilities and impacts in the product develop-

ment process is particularly useful. The matrix representation makes DSM more
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flexible and traceable than the other techniques reviewed previously, leading to the

development of hypothesis 3, stated below.

Hypothesis: 3

If a DSM is adapted to explicitly account for the probability of internal re-

work, it will provide a stochastic and quantitative model of rework impacts

that is more accurate for VVT processes than if internal rework is implicitly

included in the activity duration distribution.

2.7 Cost

Cost overrun due to rework cycles was identified as another primary contributor to the

cancellation of launch vehicle development programs in Section 1.1, and determined

to be a necessary metric for the evaluation of the rework impact on VVT strategies in

Section 2.2. Like schedule, rework cost can vary due to when the fault is detected and

the severity level of the fault. As discussed in Section 1.1, up to 75% of development

cost can be spent on eliminating failure modes through unplanned rework. Figure 19

shows the percent of peak funding that is spent during the F-1 engine development as

a function of development time. The amount spent on rework cycles increases through

the first 6 years, where it reaches its peak. The last three years show a decrease in the

amount of total spending attributed to rework, but the cost per rework cycle is not

obvious. Reliability growth models show that failure modes occur more frequently

during early testing, and then slow down as confidence in the design increases. It

is necessary to determine the cost per rework cycles by itemizing the total cost for

eliminating failure modes based on the rate that they occur.

The cost per rework cycle for the F-1 engine development program is illustrated in

Figure 20. The first two years are excluded because the rework cycles that are being

considered occurred during engine-level testing, which did not begin until 2 years
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Figure 19: F-1 engine percent funding used to eliminate rework cycles during devel-
opment.

into the program. Except for the one data point above 80%, the previous assumption

can be confirmed. An exponential fit for this data shows that the cost per rework

increases from 7% to as high as 42% near the end of the development cycle. This is

to be expected because when the engine enters certification tests, any failures require

that the engine start the certification cycle from the beginning.

While the data used in this example is from the F-1 engine, it illustrates a trend

commonly found when dealing with complex systems. The general assumption is that

the cost per rework cycle increases as the design progresses and nears production.

The foundation for this assumption is based on the well-known design curves shown

in Figure 21. This illustrates that the design freedom, or ability to make changes

to a design, decreases rapidly from the start of the design process. The other curve

illustrates that actual design knowledge increases slowly at first, then rapidly increases

in the middle of the process, and gradually levels out towards the end. The early

decrease in design freedom implies that any changes to the system, like those that

would occur during rework cycles, are more and more difficult to implement as the
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Figure 20: Percent of funding used per rework cycle during development.

system progresses in the design process.

Figure 21: Design freedom and design knowledge during development.

When selecting a cost estimating approach for this methodology, it is important

that the method be detailed enough to account for an individual rework cycle, but also
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flexible enough to allow for the stochastic nature of failure modes and rework cycles.

Like the criteria for schedule estimation, the cost estimating approach must produce

a quantitative result to support the overall research objective. The following research

question is posed to determine the most appropriate cost estimating technique for

this methodology.

Research Question: 4

How can the cost of a VVT strategy be quantified to include the impacts

of rework cycles?

Section 2.4 described various approaches to determining the cost of a VVT strat-

egy. Some only considered the direct cost of activities, while some modeled every

VVT risk driver as a system cost. Section 2.7.1 reviews the general cost estimating

methodologies currently being used to determine if existing methods can satisfy the

criteria for this methodology. In addition to traditional methods, reliability-based

cost estimating methods are reviewed in Section 23 due to the choice of reliability as

a measure of quality.

2.7.1 Cost Estimating Methodologies

The three primary cost estimating methods for launch vehicles are parametric, anal-

ogy, and engineering build-up [101]. Figure 22 shows that these methods are used

during different stages of the design process. Parametric and analogy methods are

top-down approaches geared toward generating a gross estimate [147]. Conversely, en-

gineering build-up is a bottom-up approach conducted at the lowest level of available

detail. These main cost estimating methods are described in detail below.

Parametric cost estimation is applied predominantly during the early phases of

the design process when little detail is known. Notably, Pre-Phase A and Phase A

cost estimates are used by NASA to secure funding [101, 131]. The foundation of this
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Figure 22: Standard cost estimating methods [101].

approach is the mathematical relationships, known as cost estimating relationships

(CERs), developed to relate historical cost data to physical and performance param-

eters that are proven to be cost drivers for the system. Examples of these parameters

include, weight, power, design life, and technical maturity, among others. The im-

plicit assumption here is that the same cost drivers of past systems will continue to

drive cost in the same manner for new systems. Parametric cost estimates can be

versatile and quick once a sufficient amount of relevant data has been collected. The

reliance on historical data gives the method defensibility by increasing objectivity

and eliminating the need for expert opinion. This reliance is also a detriment due

to the time and effort required to initially collect the data. Availability of such data

can also be a challenge, especially when working with novel concepts. Because launch

vehicles, and all space systems, are at the least proprietary and at the most classi-

fied, a sufficient amount of relevant data can be challenging or even impossible to

gather. Another drawback of this method is that parametric relationships lose their

predictive capability when applied to inputs outside of the data ranges used to create

them. This can limit the usefulness of the cost model when a system is applying new

technologies [73, 126]. This is the case for reusable launch vehicles (RLV), as the

majority of LVs are expendable.

Analogy cost estimation is performed by identifying an existing system that is

technically similar to the new system, and adjusting the cost data up or down to
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account for any differences in their complexity or requirements. This method is also

used during early design phases because it does not require full program details. It

relies on historical data to provide a defensible and traceable estimate. If a strong

analogy can be found, then adjustments on the technical parameters related to cost

will be small, further increasing the accuracy of the cost model. However, this method

is contingent on there being a sufficient amount of technical and programmatic detail

available for the analogous system. Lack of relevant historical data is one reason

why it can be difficult to find an appropriate analogy. Another drawback of this

method is that the cost estimate relies on a single data point for predicting the cost

of a new system. This limits the accuracy of the cost model if the cited analogous

system is unsuitable. In this sense, the method is largely subjective. It relies on expert

judgment to determine not only the analogy, but also to make the relative comparison

between the two systems. This can create problems when initial technical or heritage

estimates are too optimistic to maintain throughout the design life cycle, resulting in

cost or schedule overruns [31].

Engineering build-up, also referred to as a grassroots or bottom-up, is performed

by creating cost estimates for the system at the lowest level of detail and rolling

those up to create an overall estimate. These detailed cost estimates come from

the work breakdown structure (WBS) that includes material and labor costs, often

with added overhead costs and fees. This method is typically used during detailed

design because the required detail is not available during early design. Because it

requires so much detail to create, engineering build-up cost models are intuitive and

defensible. Their credibility is provided from the visibility of the WBS. The low

level cost estimates often come from the cost engineer working directly with technical

experts who are familiar with the activities. However, this also makes this method

inherently costly, requiring a significant amount of time and effort to collect all of the

necessary information. The breadth of the WBS also makes it easy to either duplicate
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or omit cost elements from the estimate. Another disadvantage of this method is its

inability to easily adapt to any design changes or answer ‘what if’ questions. Each

time there is design modification or alternative scenario, a new estimate must be built

from the beginning.

Other, less renowned methods include expert opinion, extrapolation, and process-

based estimating [82]. The expert opinion approach solicits opinions from subject

matter experts. While often used, it is generally not preferred because it is prone to

errors due to bias from the expert [126]. Extrapolation uses past program costs to

estimate a future program costs. Learning curves are an example of a technique used

to extrapolate cost. This is only applicable when little has changed from the previous

project. Process-based, or activity-based, costing uses the relationships between pro-

cesses and the resources used to complete that process to build a cost estimate [112].

It is similar to the engineering build-up method in that they both roll up smaller

costs to create an overall cost estimate.

2.7.2 Reliability-Based Cost Estimating Methodologies

Based on the identification of reliability as a system-level performance metric, a review

of reliability-based cost estimates was also conducted. Figure 23 provides a notional

illustration of the cost vs. reliability curve, also referred to as ‘contractor’s cost vs.

reliability’ and ‘dependability vs non-dependability cost’ [20, 69]. This figure shows

that investing in increasing the reliability of a product corresponds to a decrease

in the operation and support cost and vice versa. Another interpretation is that

development cost represents the cost spent to avoid failure, or prevention cost, and

operations and support represent the cost of failure or having to correct mistakes

[118]. This leads to a total cost curve with an optimal total life cycle cost. Classic

examples of this include Juran’s Cost-of-Quality Model and Crosby’s Cost-Of-Quality

Model [37, 71]. Crosby’s model considers quality as conformance costs. Conformance
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costs include appraisal and prevention costs, where non-conformance costs include

the cost of rework or scrapping failed parts. Juran’s model introduces the idea of

benefits to the system, considered intangible or opportunity costs. A weakness of

these qualitative cost models is that they do not allow for differentiation between

VVT strategies. There is no indication of how or when a certain quality or reliability

is reached, so two very different VVT strategies could have the same cost but using

vastly different methods.

Figure 23: Generic cost of quality model.

One example of a quantitative cost model uses generic cost functions to relate cost

and reliability. These can be used when the actual cost function is unknown. They are

used to enable comparisons between alternatives with different reliabilities by using

the same cost function on the alternatives. These functions have four requirements

[10]:

1. The cost must be a monotonically increasing function of reliability.
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2. The cost of high reliability is very high.

3. The cost of low reliability is very low.

4. The derivative of cost (with respect to reliability) is a monotonically increasing

function of reliability.

While other cost functions have been used, one example of applying the generic

cost function is the use of an exponential cost function in the reliability cost model de-

veloped by the ReliaSoft Corporation [93]. In their model the component reliabilities

of a system are optimized to construct the maximum reliability for the minimum cost.

The exponential cost function used for each component contains three parameters,

fi, R(i,min), and R(i,max):

ci(fi, Ri,min, Ri,max) = e
[(1−fi)

Ri−Ri,min
Ri,max−Ri

]
(14)

The feasibility parameter, fi, also known as the traditional rate parameter of an expo-

nential distribution, represents the difficulty in increasing the component reliability,

R(i,min) is the initial or current component reliability, and R(i,max) is the maximum

achievable reliability. The feasibility here can depend on the design complexity, tech-

nological limitations, or weighting factors. The lower the feasibility value, the faster

it approaches infinity. ReliaSoft has created a well-developed model for assessing

the cost of increasing reliability. Although this model does not include any perfor-

mance impacts on the reliability or cost, the feasibility parameter is a useful tool in

differentiating the system components.

Another study performed by Krevor optimizes launch vehicle architecture selection

based on performance, reliability, and cost [74]. The goal of Krevor’s environment is

to select the optimal cost and final reliability configuration for a given performance

requirement. Beginning with feasible launch vehicle configurations, the reliability

is tuned by altering the number of engines, increasing the thrust-to-weight ratio and
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adding redundant subsystems. The development and production costs are determined

using an initial NAFCOM (NASA Air Force Cost Model) estimate for the system as

is, and then multiplying the subsystems by their level of redundancy, ri. For example

the final cost of a launch vehicle with subsystem redundancies ri = 1, 2, 3 would be:

CTotal =
∑
i

riCi (15)

Although the main focus of Krevor’s methodology is the mature reliability of the

system, a reliability growth technique is included. Using Duane’s reliability growth

model, the reliability for the optimal architectures are compared using the same

growth rate parameter, α, and the same number of flights to maturity [46]. The

only differences between the configurations are the initial and mature reliabilities.

The initial costs for each configuration include the development and theoretical first

unit cost. The cost for each subsequent flight is calculated by adding the cost of the

average production unit.

Another method to link reliability and cost is the Technical Uncertainty Rework

Cycle (TURC) and Production Development Control Lever (Prodecol) developed by

Rocketdyne to help control cost and schedule of their technically innovative product

[64, 65, 66]. This model is an extension of their TURC model, which uses a technical

uncertainty factor (TUF) to estimate the number of rework cycles during develop-

ment. To create the chart in Figure 24, SMEs were asked to reflect on the J-2 and F-1

advanced technology engine programs and estimate the starting TUF. Then the cost

of rework (CRW) required during each program was researched along with the causes

of each rework cycle. The result is the relationship between the TUF and CRW in

the Prodecol chart.

Although this study shows the strong correlation between increasing cost and

rework cycles, the process to create the TURC and Prodecol charts is very labor
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Figure 24: Rocketdyne TURC-Prodecal chart [65].

intensive. It requires sorting through historical documents to obtain all of the re-

work cycles and their causes and costs for an entire program, which are not always

available [65]. Rocketdyne suggests other methods to estimate these values, but they

are subject to bias and the experience limitation of the focus group [66]. Another

limitation of this model is the cost of rework cycles. To calculate the cost of rework

cycles, the total development cost was multiplied by the percent of cost that was used

for corrective actions, and then that total was divided by the number of rework cycles

documented. The benefit to this cost assessment is its simplicity, but in reality all

rework cycles are not created equal. Depending on how late in the phase the defect

is found or how critical the component, some rework cycles can cost much more to

complete [144]. Finally, despite the fact that schedule slips are noted as a consequence

of unplanned rework, this study does not directly address the schedule impact.

2.7.3 Conjecture for Research Question 4

To select the most appropriate method for determining the impact of rework cycles on

cost during VVT, the techniques discussed in Sections 2.7.1 and 2.7.2 are compared

to the criteria introduced in the beginning of this chapter — quantitative, stochastic,
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and flexible. The first three methods that were reviewed in Section 2.7 are the three

standard cost estimating methodologies. Parametric and analogy cost estimating is

typically used in the earlier design phases and rely on relevant historical data. Once

the model is developed, these methods produce estimates rapidly and are flexible

enough to use for rapid design trades. However, their accuracy is contingent on the

quality and quantity of historical data collected. A lack of relevant data for launch

vehicles and VVT processes limit the use of these methods. The engineering build-up,

or grass-roots, method is a more detailed approach that would increase the accuracy

of the cost estimate, but decreases the flexibility compared to parametric and analogy

costing. It could be used to account for the stochasticity in rework cost because the

individual rework cycles can be assessed individually and rolled-up to a final cost

estimate.

The reliability based cost models are less established, but directly assess reliability.

The generic cost functions provide a flexible and rapid approach to cost estimating

based on reliability improvements. While convenient for understanding the effects

of increasing reliability, they only allow for comparisons between different levels of

reliability. They also do not consider how the reliability is attained. For example,

two different VVT strategies could reach the same reliability using vastly different

activities, but still appear to have the same cost. This and the qualitative nature of

the approach make it less suitable to this problem.

Rocketdynes Prodecol method explicitly addresses the impact of rework cycles on

cost. The development of the chart requires extensive effort, but once developed it is

a rapid tool that would be flexible enough to determine how sensitive the system is to

rework efforts. It does provide a quantitative cost estimate, but only for rework cycles.

It does not consider the cost of testing to uncover the need for rework, reducing its

accuracy for the complete VVT process. It also includes two simplifying assumptions

that would not apply to launch vehicles. The first is the use of a linear cost curve,

66



which would only be accurate over many rework cycles. The second is using a constant

average cost per rework cycle, when in reality the costs for rework cycles can vary

widely, as discussed at the beginning of this section. The Prodecol method could

be used to provide an estimate of the average cost per rework cycle, and then an

assumption could be made on how rework costs increase throughout VVT based on

historical trends.

After comparing these five cost estimation approaches, a conjecture for research

question 4 can be made. Engineering build-up method would produce the most

accurate cost estimate compared to the other four. Although it is less flexible and

rapid than the others, it can account for the stochasticity of rework cycles by assessing

their costs individually. it has been selected as the most suitable costing approach to

use for this methodology.

Conjecture: 4

Using engineering build-up to calculate cumulative cost will give a quanti-

tative estimate that is more accurate than historical data based methods

and accounts for the stochastic nature of rework cycles.

2.8 Risk

The final VVT evaluation metric identified in Section 2.2 is risk, which yields the

following research question.

Research Question: 5

How can cost, schedule, and reliability risk be quantified?

In Systems Engineering, risk is considered to be the combined effect of the proba-

bility of an undesirable event and the consequence of that event. According to NASA’s

Risk Management Handbook, risk is characterized by the following questions [41]:
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1. What can go wrong?

2. What is the likelihood that it will go wrong?

3. What are the consequences if it does go wrong?

Figures 25 and 26 illustrate the difference between uncertainty and risk in a risk

analysis of alternatives example [41]. In this example, the outcome is analyzed for all

significant possible input decision alternatives. The input variable ranges are defined

based on the uncertain conditions of these alternative scenarios. Given the presence

of uncertainty, any one decision alternative will produce only one outcome in a range

of forecasted outcomes. A distribution of outcomes is characterized by a probability

density function over the performance measures. Figure 26 illustrates the performance

risk portion of the risk analysis of alternatives example [41], or the probability of

not meeting a performance requirement. By incorporating the individual risks and

aggregating their effects, the risk of not meeting the requirement can be quantified.

Figure 25: Performance uncertainty defined in the NASA Risk Management Hand-
book [41].
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Figure 26: Performance risks defined in the NASA Risk Management Handbook [41].

The risk of a single event is quantified by multiplying the uncertainty by its

consequence. Many studies that address either product development processes or

VVT processes directly, quantify ‘risk’, but actually define risk as uncertainty. It is

important to consider both uncertainty and its impacts to accurately estimate risk.

The following sections will address both of these topics.

2.8.1 Uncertainty

Chapter 1 discussed the uncertainty in launch vehicle design over multiple disciplines.

While cost and schedule overrun and performance shortfalls do happen, the degree

to which they happen are uncertain. It is not a launch vehicle specific problem.

For example, schedule slippage is a prevalent issue for construction companies and

shipbuilding is sensitive to mass growth uncertainty [113, 123]. To quantify these

uncertainties and better estimate them, it is necessary to understand where they

come from and how they relate to each other.
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2.8.1.1 Sources of Uncertainty

Morgan and Granger provide a good discussion on sources of uncertainty relating

to policy and how to handle them, including probability distributions and statistical

techniques [96]. They state that a major benefit of addressing uncertainty is that

it requires the planners and experts to focus on the problem and think specifically

about the issues involved with proceeding. Schrader, Riggs, and Smith discuss the

uncertainty involved in technical problem solving and make the distinction between

uncertainty and ambiguity [128]. They specify uncertainty as lack of knowledge about

the value of recognized variables relevant to the problem. In this context uncertainty

is related to a problem with a well-understood model and representation. Ambiguity

arises from a lack of problem definition, where the functional relationships between

variables are not understood and sensitivities have not been determined [128]. Thun-

nissen also recognizes ambiguity as a primary type of uncertainty, but defines it as

a linguistic imprecision where terms are not clearly defined leading to uncertainty

[145]. His framework includes three other primary types of uncertainty for a com-

plex system, e.g. interaction, aleatory, and epistemic. Interaction uncertainty is

defined as unknown or unanticipated interactions between disciplines or subsystems.

Aleatory and epistemic are two of the most commonly used uncertainty categoriza-

tions [90, 115, 123]. Aleatory uncertainty consists of variables that cannot be precisely

known or are inherently random. Examples include the wind speed on launch day or

manufacturing imprecision. These variables can be treated as random variables [69].

Epistemic uncertainty is due to a general lack of knowledge about the system and

can be reduced through testing. While other frameworks exist, a general consensus

on aleatory and epistemic uncertainty can be made. Ambiguity is treated separately

in some instances, but can be considered as epistemic since it comes from a general

lack of knowledge.
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Epistemic uncertainty is often further partitioned into more specific classes of un-

certainty. Thunnissen divided it into model, phenomenological, and behavioral uncer-

tainties [145]. Model uncertainty is related to the accuracy of a mathematical model

used to describe the system and includes uncertainty from approximations or pro-

gramming errors. Phenomenological uncertainty is defined as the lack of knowledge

of particular phenomena behavior of the system. The third classification is behavioral

uncertainty which is uncertainty related to choices made by people or organizations

involved in system development, including design errors or requirements changes.

Robertson uses some of these same sources of epistemic uncertainty, but categorized

them broadly as either exogenous or endogenous before individually addressing them

[123]. Exogenous uncertainty is defined as being out of the control of the program

development office, such as funding availability or requirements changes. Conversely,

endogenous uncertainty is within the control of the program. It includes uncertainty

associated with technical development challenges, test failures, overly optimistic as-

sumptions about heritage, and technology readiness levels [123]. This endogenous

epistemic uncertainty is directly reduced through efficient VVT processes. These

sources of uncertainty can be quantified and modeled in different ways to determine

the overall uncertainty level in a project. The next section discusses some of the

methods that are used to represent and propagate uncertainty to the system level.

2.8.1.2 Quantifying Uncertainty

Overall uncertainty in the system can be quantified using a variety of techniques.

These techniques can vary in accuracy, traceability, and speed. While some are

rooted in historical data that can be difficult to acquire, others require an extensive

framework to implement. The first set of techniques determines a range of uncertainty

based on a deterministic initial prediction. The rest of the methods are probabilistic,

treating the future value as a random variable and using statistical techniques to
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quantify uncertainty.

Deterministic uncertainty analysis techniques are based off a single point estimate

or a set of point estimates. Then the uncertainty is informally evaluated using his-

torical data or expert opinion. Historical analogies are used to determine a range

of uncertainty based on historically similar projects [13]. Based on a projected final

value, the uncertainty is determined by the range of values for historically similar

projects. While simple to implement, this method is sensitive to the availability of

historical data, which can be difficult to obtain for launch vehicles. Additionally, the

selection of ‘similar’ projects can be subjective and hard to define. Another method

that uses a deterministic initial estimate is empirically derived growth factors [13].

This method typically uses a linear regression of initial estimates to final value ra-

tios from similar historical projects to determine the mean and variance of the new

estimate uncertainty. This method has been used by the Air Force to assess weapon

system cost growth [45]. Similar to the historical analogy technique, growth factors

are easy to use, but are entirely dependent on the availability of historical data.

Expert opinions are commonly elicited to determine uncertainty values for a par-

ticular project [41]. This method is used in many organizations and utilizes the

experience of subject matter experts who are familiar with the system. Uncertainty

estimates can be made at the system level or at the subsystem level and rolled up to

the system level [94]. This flexibility enables it to be used at any level of detail. While

the use of experts eliminates the need for historical data, its accuracy can be affected

by the subjectivity of the expert [134]. Cost estimation is particularly susceptible to

overly optimistic assumptions due to program pressures to reduce cost [67].

Probabilistic uncertainty techniques are used to develop a probability distribution

function of the final value. They typically begin with an estimate of the probability

distribution for each input variable, which can be gathered using expert opinion as

discussed previously. The more detailed the problem breakdown can be, the better
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the estimates will be. For example, the engineering build-up cost method discussed

in Section 2.7.1 uses individual cost estimates for each entry in the work break down

structure. The probabilistic techniques differ in their method to aggregate these

individual uncertainties.

Propagation of errors is an analytic version of a sensitivity analysis. It is a sum-

mation of the errors in each input multiplied by the partial derivatives of the function

with respect to that input variable [13]. It is a well-known method that is commonly

used for calculating error and uncertainty related to spatial modeling with geographic

information systems [95]. One advantage of this method is that it does not require

the computational overhead of simulation. However, for complex systems the partial

derivatives can be difficult to evaluate analytically. Another analytic technique is the

method of moments. This method is used in the parametric cost model NAFCOM,

NASA Air Force Cost Model [35]. The total cost estimate is equal to the sum of the

individual cost estimates, so the final cost probability distribution is similarly equal

to the sum of the individual distributions. This method can be used to sum the

means and variances assuming any reasonable distribution [13]. Similar to propaga-

tion of errors, the method of moments does not require simulation and can be easy

to compute for less complex systems with few components.

Simulation is another probabilistic technique that is being used more and more

as the computational effort required to complete it is being reduced. It is especially

suited for problems with no known closed-form solution that cannot be analytically

evaluated. A Monte Carlo Simulation (MCS) generates a random number from each

input variable distribution and computes the final value. This is considered a single

run, which is then repeated thousands of times to generate a probability distribution

of the final value. The probability distribution can also be displayed as a cumulative

distribution illustrating the probability that the variable is less than or equal to that

value. An advantage of using MCS is that it is a common numerical technique that is
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well-understood and accepted. Also, advances in computer simulation have reduced

the computational expense of using this method. One assumption that is often used in

MCS is that the inputs are independent of each other, which may not always be true.

To account for the relationship between input variables, a correlation matrix must be

defined, adding to the complexity of this method. Another disadvantage is that it is

dependent on the accuracy of the input distributions. Another simulation method is a

discrete event simulation (DES) which models the time-based, or dynamic, behavior

of a system. Using mathematical or logical models of the physical system, DES

portrays state changes at precise points in simulated time. Similarly to MCS, it also

can handle probability distributions for the input variables to generate a probability

distribution of the output variables. The advantage of DES is the addition of a

time component that does not exist for MCS, resulting in more information about

the system. Consequently, this additional information requires more effort in the

beginning to develop the model. The various distributions that can be used for

inputs into these simulation models are discussed in the next paragraph.

Cost and schedule distributions tend to have a right hand skew, implying that

they are more likely to go above the expected value than below [34]. Because of

this, a normal distribution will not be used. Three commonly used distributions for

cost and schedule uncertainty are the Beta, Weibull, and Triangular distributions

[13]. The Beta probability density function is shown in Figure 27 and defined by the

equation below [150]:

f(x;α, β) =


xα−1(1−x)β−1

B(α,β)
x ≥ 0

0 x < 0

(16)

where α and β are shape parameters that define the skew and variance of the distri-

bution. B(α, β) is Beta function that is shown here:
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B(α, β) =

∫ 1

0

tα−1(1− t)β−1dt (17)

Figure 27: Beta probability density function.

The Weibull probability distribution function is shown in Figure 28 and described

by the following equation [150]:

f(x;λ, k) =


k
λ
(x
λ
)k−1e−(x/λ)

k
x ≥ 0

0 x < 0

(18)

where k and λ are shape parameters.

The simplest PDF that can represent the cost and schedule skewness, is the Tri-

angular distribution, which is shown in Figure 29 and described by the following

equation [150]:
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Figure 28: Weibull probability density function.

f(x; a, b, c) =



0 for x < a or x > b

2(x−a)
(b−a)(c−a) for a ≤ x < c

2
b−a for x = c

2(b−x)
(b−a)(b−c) for c < x ≤ b

(19)

where a is the pessimistic estimate, c is the most likely estimate, and b is the optimistic

estimate.

2.8.2 Consequence of Uncertainty

The other half of risk is the consequence of undesirable events occurring. One method

for evaluating these consequences is the risk matrix introduced in Section 2.4. Based

on the previous identification of individual risk scenarios, that method directly mea-

sures the impact of each scenario. Advantages of this method are that it is very

traceable and simple to develop. However, it is limited by the ability of experts to

predict possible risk scenarios.

Another method to determine the consequences of undesirable events is the use
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Figure 29: Triangular probability density function.

of risk impact functions, as shown below.

R =

∫ ∞
T

f(x0)Idx0 (20)

where R is the total risk of exceeding the target value, T , f(x0) is the PDF of variable

x, and I is the impact function. Impact functions can be constant, linear, or quadratic

depending on the nature of the problem. Quadratic quality loss functions were first

highlighted by Taguchi, and have been used in similar models [26, 68]. This implies

that the risk experiences quadratic growth as it gets further away from the target,

which would be appropriate for a cost and schedule model.

2.8.3 Conjecture for Research Question 5

The first section for the literature review on risk discussed the general definition of

risk, and identified that both uncertainty and consequences of undesirable outcomes

are necessary to evaluate risk. Section 2.8.1.1 discussed different frameworks for

uncertainty. Although a wide variety of uncertainty sources are described by different

authors, in general, most agree that uncertainty can be broadly classified as epistemic
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uncertainty and aleatory uncertainty. Aleatory uncertainty can only be classified and

always exists within the system. VVT activities are designed to reduce sources of

endogenous epistemic uncertainty.

Section 2.8.1.2 reviews deterministic and probabilistic methods to quantify uncer-

tainty. The deterministic techniques include historical analogy, growth factors, and

expert opinion. For all of these methods, uncertainty is estimated based on a single

deterministic value. While most of these are fast and easy to implement, they depend

heavily on the availability of historical data, which is not always available for novel

systems. Expert opinion can be used for deterministic risk analysis or probabilistic

risk analysis. For the probabilistic approach, the expert provides a distribution for

the individual inputs, compared to providing a distribution for the final value. In

both cases it can be a fast technique, but is not very traceable. While it does elim-

inate the reliance on historical data, it is affected by the biased experiences of the

expert. The two analytic probabilistic techniques reviewed were propagation of errors

and method of moments. These methods are not well suited for complex models and

would not fare well for launch vehicle risk analysis. The remaining probabilistic un-

certainty quantification technique is simulation. It is a fast and traceable technique

that provides a quantitative measure of uncertainty. The ability to represent a time

component with DES, enables the evaluation of stochastic rework cycles and adds

one more level of comparison between alternative VVT strategies, making it the most

suitable choice.

The final discussion for uncertainty quantification is the choice of input probability

distribution functions. For cost and schedule it is necessary to use a distribution with

the ability to represent skew. The three distributions discussed were triangular, beta,

and Weibull. While all of them are used in practice, the triangular distribution is

the simplest of the three with the most intuitive inputs. If the cost and duration

estimates are gathered from experts, it is more reasonable to ask for a pessimistic,
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most likely, and optimistic estimate than for shape parameters. This will increase the

traceability of the uncertainty quantification.

Finally, Section 2.8.2 discusses the evaluation of the impact or consequence of

undesirable outcomes. A quadratic impact function has been used for activity process

modeling, and to assess VVT cost risk. Due to its application in similar problems,

it can be chosen for the proposed research based on the literature review. This

review of uncertainty and uncertainty quantification techniques leads to the following

conjecture:

Conjecture: 5

• Using triangular input distributions, the assumptions required will be

more traceable than if beta and Weibull distributions are used.

• If DES is used for simulation, the results will allow for quantitative

comparisons between VVT strategies and account for stochasticity of

rework cycles.

With the structure in place to model the effects of rework cycles, the remaining

research question addresses how rework cycles can be estimated.

2.9 Rework Probabilities

The VVT methodologies currently in existence lack a consistent method for identify-

ing the rework probabilities during VVT. While many authors acknowledge the effect

rework cycles have on a product development life cycle [51, 64, 68, 110], very little

attention is given to determining their likelihood and impact. This leads to the final

research question:

Research Question: 6

How can the probability of rework cycles be estimated?
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The following section provides a review of the causes for rework and discusses

some of the methods for determining rework probabilities during various phases of

development.

2.9.1 Rework Drivers

Iteration can be a useful and necessary process during product development, but when

unplanned, it often leads to cost and schedule overruns. In order to determine rework

probabilities, it is first important to understand what drives the need for rework.

Arundachawat conducted a literature review to determine the causes of rework during

design phases [15]. The first driver captured from this review is project complexity.

Programs that utilize lessons learned from previous projects by taking advantage of

design heritage for future designs are considered less complex and see fewer rework

cycles. This approach has been taken by NASA SLS, which is designing the launch

vehicle to progress with block upgrades. Programs that take advantage of computer

aided engineering tools to eliminate critical defects are also considered less complex.

Subsystem dependency was also identified as a design rework driver [15]. Rework

effort was found to be reduced when programs managed the sequence of subsystem

design based on relevant subsystem dependencies.

The last two rework drivers identified can be classified as programmatic design

issues. Early communication between design teams was shown to affect the amount

of rework. Teams that were more cooperative and had clearly defined objectives were

able to reduce the amount of rework that arose during development. Lastly, the

presence of resource constraints was also shown to affect rework during design [15].

Complexity was also found to be a rework driver during the later development

phases [64]. Another driver that caused rework during design and manufacturing

was design maturity. Designs that had a higher degree of heritage experienced fewer

unplanned iterations during all development phases. The operating environment and
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addition of advanced technologies were two rework drivers identified during the im-

plementation phases, but not explicitly identified as drivers during design. These

could be related to complexity, but are addressed separately. The last rework driver

identified in the literature is the amount of activity overlap [151]. It was found that

dependent activities create more rework as the overlap between them increases. The

purpose of overlap is to reduce the amount of time required for the project, but it

decreases the amount of information that is available at the start of the later activ-

ities. This idea of information exchange appears in some of the approaches used to

determine the probability of rework effort. These are discussed in the next section.

2.9.2 Approaches to Determine Rework Probabilities

A Rocketdyne study of their F-1 and J-2 engines discussed in Section 1.1 developed

a quantitative measure of technical uncertainty for estimating the number of rework

cycles during the development of technically innovative products [64]. The Technical

Uncertainty Factor (TUF) is a function of design maturity, complexity, technology,

and system environment. TUF is intended to be an improvement over the Technology

Readiness Level (TRL) implemented by NASA which some consider inefficient due

to its lack of cardinal meaning [34]. The four criteria used to determine the TUF

value are similarly categorized, but the ratings assigned to the system are a relative

measure of the respective criteria. A heuristic relationship is then created between

TUF assessments and rework cycles, as seen in Figure 9. In future projects, once a

TUF assessment is made, the TUF-Rework Cycle Chart will give an estimate of the

rework cycles that can be expected during VVT. The simplicity of this approach is

appealing in estimating rework cycles. However, this relationship is only valid for the

Rocketdyne team and would need to be recreated for use by other teams. Creating the

relationship between TUF and expected rework cycles would require extensive effort

and rely heavily on subjective input by SMEs. Another disadvantage of this approach
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is the lack of detail in the uncertainty definition and absence of any time components.

While efforts can be made to reduce the overall number of rework cycles, this method

generalizes the rework cycles, making it impossible to differentiate between the rework

cycles that have a higher impact on the system.

Figure 30: Rocketdyne TUF-Rework cycle chart [64].

An analogous methodology to estimate design rework cycles based on the relative

influence of common drivers was suggested by Arundacahawat et al [14]. After a

survey of three automotive industry projects, six rework drivers were identified and

used to predict the probability of rework occurrence and degree of rework efforts. The

relative influence of the rework drivers to a new product can then be determined, and

analogous rework probabilities and impacts evaluated. The narrow sampling for data

collection limits the applicability of this method, but a unique method to represent the

rework probabilities was also introduced. A design structure matrix (DSM), which

was discussed in Section 2.6.3 was used to model the system components. More

commonly seen in the literature is an activity-based DSM where the system’s activity
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network relationships are represented [72]. Here, it is used to model component

interactions. The component-based DSM entries represent the probability that change

in one component will cause rework in another.

Engel and Barad suggest the use of historical data to determine risk probabilities,

but highlight the lack of relevant historic data related to systems VVT [51]. Another

method for estimating rework probabilities during product development processes

uses a subjective expert assessment [157]. The risk of rework in this method contains

two components, the variability of the input information for a given task and the

sensitivity of the task to that change in information. SMEs are asked to categorize

each task as low, medium, or high. Then these values are mapped and calibrated to

probabilities using project specific proportionality constants. This representation of

rework as two information components is similar to the approach used by Browning

and Eppinger, but no method to determine these components is given in that study

[25]. Another subjective approach used in literature is a straightforward subject

matter expert opinion of rework probabilities. Roemer et al. and Krishnan et al.

use this strategy to reduce cost and schedule for projects with overlapping design

and development phases [75, 124]. The lack of structure to this approach, however,

creates the opportunity for bias.

While discussing reliability analysis techniques, Failure Mode and Effects Analysis

(FMEA), or Failure Mode, Effects and Criticality Analysis (FMECA) was introduced

in Section 2.5.2.3. The purpose of FMEA is to identify potential failure modes and

determine the cause and effect of each mode. Three risk factors are defined during

FMEA [105]:

• Occurrence (O) the probability a failure mode will occur

• Severity (S) the impact a failure mode will have on the system if it occurs

• Detection (D) the probability that a failure mode will be detected during
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inspection or test

These three factors are used to prioritize the failure modes identified by calculating

a Risk Priority Number (RPN) [44]:

RPN = O ∗ S ∗D (21)

The RPN is used to categorize failures by their level of criticality. Some analysts

use 3 levels of criticality, from the most critical level 1 to the least critical level 3,

while others further differentiate from 1-10 [44, 146]. In either case, critical 1 failure

modes will lead to top level risk events, like Loss of Crew (LOC) or Loss of Vehicle

(LOV). Lower critical failure modes can lead to damage or reduce performance of the

system. FMEA has historically been an important step in preventing failures from

occurring and increasing the reliability of the system [84].

The information provided by FMEA can be directly applied to rework cycles dur-

ing VVT. The probability of failure modes can be used in the reliability growth model

to predict when rework will occur. The impact of rework cycles can also be deter-

mined by the RPN or criticality level of the failure modes. The Complex systems can

have a vast amount of components that require major effort to analyze. The failure

modes with higher RPN pose the most risk to the system and need to be reexamined.

These critical 1 failure modes can be assumed to result in redesign efforts due to their

increased probability of LOC or LOV. The lower risk failure modes can be assumed

to be resolved with remanufacturing. The percentage of failure modes that fall into

these categories can be used in the DSM to represent the relationship between testing

activities and design or manufacturing activities, enabling differentiation between the

impact of redesign and remanufacturing on reliability, cost, and schedule.
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2.9.3 Hypothesis for Research Question 6

From the literature review, it appears that many of the methods used to estimate

rework cycles are largely subjective and subject to bias by the expert. The expert

opinion method can lack traceability. It has been shown that SMEs are often hesitant

to provide any quantitative predictions and are biased by their own experiences. This

can reduce the accuracy of the probabilities they provide. Basing the estimates on

historical data can be limiting for launch vehicles because there is a lack of relevant

data available. The Rocketdyne TUF method requires either historical data or ex-

pert opinions based on relevant previously completed projects to develop, limiting its

usefulness. The analogy method has similar draw backs due to the lack of available

historical projects to use as the foundation of the estimate for launch vehicles.

Another method that was discussed is the representation of rework as two infor-

mation components. Again, SMEs are used to determine the qualitative assessment

initially, but these estimates are then mapped to quantitative values. This model of

rework is more suitable to design than VVT activities, but the use of SME knowl-

edge to map qualitative opinions to quantitative rework probabilities improves on the

weakness of the expert opinion method. A disadvantage of this method is the lack of

quantitative impacts on cost and schedule.

While conducting the literature review of reliability methods to derive Hypothesis 2,

FMEA/FMECA was discussed. This method was identified as a possible technique

for identifying rework probabilities. FMEA/FMECA data provides a more struc-

tured approach for garnering expert opinions. As a well-established and commonly

used technique, it is less sensitive to data availability than the other methods. It also

is more traceable than simply asking an expert for direct estimates of rework proba-

bilities. Cost and schedule impacts can also be determined based on FMECA data.

For each failure mode identified, the severity and effects are given. The completeness

of this technique makes it ideal for gathering rework probabilities and impacts.
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FMEA appears to provide a more traceable approach to gather rework probabili-

ties and assess their impacts than the other methods and will be the least sensitive to

data availability. Consequently, the following hypothesis for research question 6 can

be formulated.

Hypothesis: 6

If subsystem and system level FMEA is performed, then the resulting data

will provide quantitative rework probabilities that are more traceable than

expert opinion and the data will be more readily available than expert

opinion and all historical data based methods.

2.10 Background Research Summary

The research questions posed in this chapter identify the components necessary to

build a methodology to meet the research objective. Each question addresses a specific

element of the RIVVTS methodology. After the need for a methodology to assess the

impact of rework during VVT was established, the first research question was used

to determine how the value of a VVT strategy can be defined. A review of industry

standard VVT planning approaches and academic studies on improving VVT and

reducing rework cycles led to the formulation of conjecture 1 that selected quality,

cost, schedule, and risk as the four metrics that would provide the most complete

assessment of rework impact on VVT activities and enable a quantitative comparison

between alternatives. Through literature search and additional research questions in

Sections 2.5 - 2.8, hypotheses and conjectures were developed to further define these

metrics and select existing techniques or suggest improvements on existing techniques.

The last research question is posed to address the gap identified in Section 2.4.3 for

estimating the probability of rework cycles. Section 2.9 discusses the primary rework

drivers during development, and reviews existing techniques for estimating rework

probabilities and impacts. Hypothesis 6 was formulated to provide a more traceable
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approach to estimating rework during VVT.

Chapter 3 discusses these research questions and introduces experiments that

have been design to test the hypotheses formulated in this chapter. The setup of each

experiment is introduced first, followed by the results and observations of that exper-

iment, and conclusions are drawn to either support or refute the hypothesis. Using

a combination of literature review and experimentation, the individual components

of this methodology are developed. Following the formulation of these components,

a detailed description of the complete methodology is provided in Chapter 4.
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CHAPTER III

METHOD DEVELOPMENT

The development of the research objective for this thesis identified the need for im-

provement in the planning and evaluation of VVT activities during Phases C/D. The

previous chapter determined the components needed to model and support trade-offs

between distinct VVT strategies and presented hypotheses for some of these com-

ponents. This chapter discusses the experiments that were designed to test these

hypotheses, and either support or refute them based on the results. The first section

describes the system that has been selected for use in these experiments.

3.1 Launch Vehicle Subsystem Design Problem

A launch vehicle subsystem design problem is used to test the accuracy of the com-

ponents of this methodology during development and enable a comparison of the

model to actual vehicle data. The Space Shuttle Main Engine (SSME) is identified

for use in the following three experiments. The SSME is an example of a liquid rocket

engine, which makes it an ideal candidate for this methodology because the largest

percentage of historical launch vehicle failures can be attributed to failures of liquid-

rocket propulsion systems, approximately 40-47% [89]. Additionally, the SSME has

a lengthy and well documented development history. An introduction to the SSME

system and its testing history is given in this section.

3.1.1 SSME

The Space Shuttle Main Engine, also known as the RS-25, is the first large, reusable

liquid rocket engine built [17]. It burns liquid oxygen (LOX) and liquid hydrogen
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(LH2) in a staged-combustion cycle. Figure 31 illustrates the simplified power pro-

pellant flow schematic and identifies the major components, which include two tur-

bopumps for the fuel and oxidizer (i.e. low pressure and high pressure), hot gas

manifold, fuel and oxidizer preburners, main combustion chamber, heat exchanger,

and nozzle. The staged combustion cycle partially combusts a portion of the pro-

pellants at a fuel-rich mixture ratio, and then uses that mixture to drive the high

pressure turbopump turbines prior to being completely burned in the main combus-

tion chamber. This cycle was chosen for increased efficiency, but utilizing the high

and low pressure turbopumps also increased complexity. These four turbopumps con-

tained 47.3% of the total 5,807 component parts for the original SSME configuration,

known as the First Manned Orbital Flight configuration [87]. Over the course of its

40-year history, it underwent six major ‘phase’ or ‘block’ changes [148]. The final

engine configuration performance parameters are listed in Table 7.

Table 7: SSME Performance Parameters [17]

Propellants LOX/LH2
Rated power level (RPL) 469,448 lb
Nominal power level (104.5% RPL) 490,847 lb
Full power level (109% RPL) 512,271 lb
Chamber pressure (109% RPL) 2,994 psia
Specific impulse at altitude 452 sec
Weight 7,748 lb
Service life 55 flights

27,000 sec
Total program hot-fire time 3,171 starts

1,095,677 sec

3.1.2 SSME Development

Since the first Space Shuttle flight in 1981, the SSME has been used in clusters of three

to provide propulsion during the entire program. At a cost of $40 million each, a total

of 46 engines were flown. Because of its long flight history, NASA plans to continue

using the SSME to power the SLS core stage [40]. The flight-proven reliability of the
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Figure 31: Simplified SSME Schematic [148].
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SSME can be attributed to its extensive test program [17].

Aerojet Rocketdyne began development of the engine in 1971 when it was awarded

the contract to design, develop, and produce the SSME. Engine testing began in 1975

with a series of short ignition tests. The dual fuel and oxidizer turbopumps required

a sensitive initial control sequence to safely start and shut down the engine [17]. A

summary of the major test failures for the program is shown in Figure 32. Other

engine cutoffs resulted in additional rework and redesign, but the eight problems

shown here were identified as the most critical to ensuring flight safety. Management

instituted a dedicated effort for solving these problems by assigning full-time ‘spe-

cial team’ members to eliminate failure modes. These multi-disciplinary teams were

tasked with identifying the cause of the problem, establishing a path to safely resume

testing, and ultimately redesigning and reworking a solution [17].

Figure 32: Summary of engine test problems during development [17].

The complete failure history of the SSME during testing is shown in Figure 33,

recreated from [138]. The cumulative failures plotted against test numbers show the

reliability growth expected during development as engine improvements are made
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and test-analyze-and-fix cycles correct problems. The growth curve is steeper at

the beginning and flattens out as the number of tests increase. The causes of these

premature engine cutoffs include failure modes of all criticality levels.

Figure 33: Accumulated engine cutoffs verses test number for the SSME development.

When the Space Shuttle’s first flight occurred, the SSME had accumulated 726

hot-fire engine tests and over 110,000 seconds of operation [148]. Table 8 lists the

number of tests conducted and average test duration per test for each group. Thirteen

tests and 5,000 seconds of operation were required to certify the engine, including

both normal and the longer abort mode flight profiles. Should any test fail during

certification, the entire cycle would have to be repeated.

This review of the SSME development history is provided to support the three

experiments presented in the remaining sections of this chapter. Due to its well-

documented test history, it provides an excellent foundation for testing the hypothe-

ses formulated in Chapter 2. Each experiment will address a different aspect of the

SSME test program. The first experiment tests the use of fidelity levels to improve
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Table 8: SSME Test History

Average Duration (s) Number of Tests
2 27
21 107
97 184
158 132
183 121
283 128
400 21
520 6

the reliability growth projection during VVT by comparing Hall’s discrete reliability

growth model with and without test fidelities. The demonstrated SSME reliability

growth during testing is used to evaluate the result. The second experiment tests the

use of FMEA to provide traceable and accurate probabilities for rework cycles. A

comparison of FMEA to historical-based data and expert opinion is provided to eval-

uate the traceability of each approach. Following this discussion, the SSME FMEA

data is used to test the accuracy of estimating the total number of rework cycles

and the occurrence of rework cycles. The results of this experiment are compared

to the actual SSME rework history to determine the validity of this approach. The

final experiment addresses the weakness of current DSM approaches to estimate over-

all schedule during testing phases. A discrete event simulation is run first with the

probability of internal rework explicitly included in the DSM, and then with the prob-

ability of internal rework implicitly included in the individual activity duration. The

results are compared the SSME development schedule to either support or refute the

hypothesis made in Section 2.6.4. The results of these three experiments are used

in conjunction with the conjectures made in Chapter 2 to formalize the RIVVTS

methodology.
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3.2 Experiment 1

After reliability was selected as an appropriate measure of quality in Conjecture 2, re-

search question 2a was posed to determine which analysis technique is most suited for

tracking reliability during VVT. A review of several techniques identified reliability

growth models, specifically Hall’s discrete model for one-shot systems, as a possible

approach for predicting launch vehicle reliability during the testing phases. The as-

sumption that every test is equivalent was identified as a weakness in the Hall model

when applied over the entire testing phase. Hypothesis 2a was formulated in Section

2.5.3 to address this weakness, and is restated below. To test this hypothesis, Exper-

iment 1 addresses two primary considerations for the growth model: 1) the ability

of Hall’s reliability growth model to accurately assess reliability during development

testing, and 2) given that the accuracy of the model is acceptable, the level of insight

provided into individual testing activities.

Hypothesis: 2a

If Hall’s reliability growth model is adapted to include defect elimination

as a function of test fidelity, it will provide reliability projection with quan-

titative insight into individual VVT activities.

The first part of Experiment 1 is set up to run Hall’s reliability growth model

without any modifications for the SSME. The results are compared to the SSME

demonstrated reliability. It is expected that as is, the model will over predict reliabil-

ity due to the varying fidelity level of tests that occur during development. Section

3.2.3 discusses existing approaches that are used to apply Hall’s and other reliability

growth models during testing phases. Typically, these take the form of combining

multiple tests into a single trial to support the assumption made in the model of

identical trials. This approach limits the insight into the individual testing activities
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Table 9: Hall reliability growth model parameters [62]

Parameter Definition
k Initial number of failure modes in the system.
T Number of trials during testing phase.
di Fix effectiveness factor.
pi∼Beta(n, x) Failure mode probabilities of occurrence, Beta distribu-

tion shape parameters.

in favor of modeling the overall test phase. An adaptation to Hall’s model that in-

cludes a test fidelity measure for each test is introduced at the end of Section 3.2.3.

The intent is to allow the model to be used for the full testing phase and maintain in-

sight into individual tests by including the test fidelity level. Three fidelity measures

are tested with Experiment 1b to determine their accuracy in predicting reliability

growth during test phases. The amount of information provided by the approaches

in Experiment 1a, 1b and the existing approaches in Section 3.2.3 is compared to

determine if more insight into testing activities can be gained by including the test

fidelity level during reliability projection.

3.2.1 Experiment 1a Setup

After the SSME was identified for use in the following experiments, the first step is

to set up the Hall reliability growth model and determine appropriate ranges for the

required parameters listed in Table 6, which are restated here. As the first large,

reusable rocket engine, it is modeled as a new design with no historical data. To

avoid any bias in the experiment, the only engine data that are used to compare

model results are the demonstrated reliability data.

The first parameter to be considered is the number of failure modes that lead

to loss of crew, loss of vehicle, or loss of mission — the top level failure for launch

vehicle systems. Without historical data to generate this assumption, Zwack showed

that the simple parts count method, discussed in Section 2.5.2.5, can be used to

estimate number of failure modes [158]. In this context, the major components are
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used as the physically separate parts that contribute to the system level reliability. It

is assumed that each of these components will contain at least 1 catastrophic failure

mode, and can be equated to the number of top level failure modes for the system

[158].

Using the PCM approach, the ten major components listed in Section 3.1.1 rep-

resent ten failure modes. This estimate can be compared to the actual failure mode

count by looking at the detailed FMEA [146]. 190 failure modes are identified in the

report and are assigned a risk factor from 0 to 1.0, shown in Table 10. 7.5% of those

are given risk factors above 0.25, 14 failure modes, meaning they will likely lead to the

loss of the vehicle or loss of engine [146]. Ten of those failure modes are determined

to lead to a probable loss of vehicle. The other four lead to probable engine loss, and

are included for a conservative estimate. That gives a range of 10-14 critical 1 failure

modes. The parts count estimate falls within this range, confirming that it can be

used as a substitute for estimating the number of critical 1 failure modes if FMEA

data were not available.

Table 10: SSME FMEA risk factor definitions [146].

Severity Description
1.000 Loss of vehicle
0.500 Probable loss of vehicle
0.333 Loss of engine
0.250 Probable loss of engine
0.200 Extensive engine damage
0.167 Local engine damage
0.143 Minor damage
0.125 Very minor damage
0.111 Piece part damage
0.100 Part still ok

The next parameter to consider is the probability of occurrence for these failure

modes. The Morse model provides estimates for launch vehicles based on general

history [97]. Three defect groups are identified by their frequency of occurrence: high,
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medium, and low. Table 11 lists the number of defaults, and probability of occurrence

for each frequency based on historical launch vehicle reliability data. The probability

of occurrence is a conditional probability of loss of mission, given that the failure mode

is triggered. Table 11 lists this probability of occurrence calculated by multiplying λk

and τk from Table 5. Based on this assessment of failure probabilities, approximately

half will fall in the low frequency group, a third in the medium frequency group, and

the remainder in the high frequency group. If the SSME is assumed to have 10-14

failure modes as discussed previously, there will be 5-8 low frequency, 3-4 medium

frequency, and 0-2 high frequency.

Table 11: Morse general launch vehicle defect assumptions [97].

Characteristic High Medium Low
Number of defects 0-5 1-12 2-20

Prob. of occurrence 18%-71% .25%-7.5% .05%-1.5%

Hall provides a method to determine the failure probability of occurrence based

on failure data [62, 63]. These probabilities are modeled as a Beta distribution,

with shape parameters α and β. The procedures to estimate these parameters are

established for two cases. The first case is for a known number of failure modes, k,

and the second is for the number of failure modes approaching infinity. Hall uses an

air-to-ground missile system to demonstrate this procedure. A sample of the shape

parameters predicted for these one-shot systems is listed in Table 12.

Table 12: Hall Beta shape parameters for one-shot systems [62].

Beta Parameters (α,β) Mean Maximum
0.19, 23.31 0.008 0.3
0.36, 14.99 0.023 0.4
0.19, 8.03 0.022 0.52
0.22, 8.75 0.024 0.54

If Hall’s method of estimating failure mode probabilities is used with the SSME
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data in Figure 32, these values can be compared to the Morse assumptions to deter-

mine an accurate range for this Experiment. The last two Beta distributions given by

Hall fit well with the Morse failure probabilities. The majority of the failure modes

would fall within the low frequency failures, with a variance that provides 0-1 failure

modes in the high frequency range. Using the Method of Moments Estimate pro-

cedure suggested by Hall for the critical failures of the SSME, E[pi] = .02%. The

assumed number of failures used was x = 14 according to Figure 32, and the number

of trials was based on equivalent full duration tests. To determine equivalent tests,

the total number of test seconds is divided by the designed mission duration, 520 sec-

onds. This aligns well with the Hall and Morse probability of occurrence ranges. The

distribution chosen for this experiment is Beta(0.22, 8.75) to allow for the medium

and high frequency failure modes.

The final Hall model parameter to determine is the Fix Effectiveness Factor. As

discussed in Section 2.5.2, this is the percent reduction in probability of occurrence

of a failure mode, given that the mode has occurred and a fix has been implemented.

This parameter is equal to Morse parameter γk, which represents the probability that

a defect is eliminated from the system given that it has been detected and reported.

In practice, this value is difficult to derive from vehicle data. Hall states that the

fix effectiveness factor is typically assessed by subject matter experts and assigned

during failure prevention review boards [62]. For the purpose of this research, this

value is determined from the literature.

Morse states that the probability of eliminating a failure mode from the system,

γk, is high for launch vehicles. This is due to the large amount of post launch flight

data analysis that is typically performed after a launch. The large expense of flight

tests and the extreme reliability requirements for crewed vehicles demand that any

and all defects that have been detected within the system should be investigated and

mitigated. Morse calls out a range of between 75% and 90% for this value [97]. Hall
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provides a table of fix effectiveness factors from an air-to-ground missile program.

These factors are said to have been developed during a failure prevention and review

board for the program. The table presented by Hall shows a range of 70% to 95% for

this value.

A range for the fix effectiveness factor is determined for Experiment 1 based on

the proposed Hall and Morse models. As previously mentioned about verification and

validation testing, development tests will have a significant amount of instrumenta-

tion and sensors to collect data. Engine development takes up a significant portion

of launch vehicle development costs and is held to the same reliability requirements

because it is a crewed launch vehicle subsystem. Zwack suggests that the fix effec-

tiveness factor is impacted by a long flight history, which allows the designer to assess

the system many times and implement failure mode corrective actions [158]. Due to

the fact that the SSME had a long and detailed test program, a high fix effectiveness

is assumed, and a uniform range of U(90%, 95%) is used for Experiment 1.

All of the necessary parameters for the Hall model have now been defined, and the

model can be implemented for the SSME. The equations given by Hall [62] have been

coded in MATLAB for the initial analysis of Experiment 1. A Monte Carlo simulation

was run under these conditions. To determine the accuracy of this model during

development testing, it is compared to the SSME reliability calculated in reference

[138], where the AMSAA model was used to calculate the Mean Time Between Failure

(MTBF) based on failure modes of criticality 1. For an initial test of this method, it

is run as described, using the total number of SSME development tests as the number

of trials. The reliability is expected to be over estimated under these conditions. This

model assumes that each trial has an equal probability of uncovering all of the failure

modes. However, when considering a test phase that contains tests at different fidelity

levels, each test will not have an equal probability of detecting all of the failure modes.

Table 12 lists the values of each parameter in the initial run of the Hall model.
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Table 13: Reliability growth assumptions for Experiment 1

Parameter SSME Value
Number of Modes 10-14

Probability of Occurrence β(0.22,8.75)
FEF 90%-95%

Number of Tests 726

3.2.2 Experiment 1a Results

The results of the initial Hall run are plotted in Figure 34. To account for uncertainty

in the input assumptions, a Monte Carlo simulation was performed. For each of the

10,000 runs, a random number was drawn from each of the input variable distributions

in Table 13. The resulting output allowed for the calculation of a mean and percentiles

for the model to be used for comparison. From this plot, it is clear that the Hall model

over predicts the SSME reliability during the entire development phase. The result

of this initial run confirms the expectation that using the same probability of failure

occurrences for each flight will result in over prediction of reliability. There are some

methodologies to avoid this, but they lose insight into the effect of individual tests

on reliability. These methods are discussed in the following section, and a follow-on

experiment to determine the best way to model test fidelities for a more accurate

prediction of reliability during testing is presented.

3.2.3 Reliability During Testing

There are three methods to account for different levels of testing during development.

The first is to consider a group of similar tests as a phase and determine reliability

during that phase, and repeat for the number of test phases planned. The main

drawback for this approach is the additional work in predicting reliability growth

parameters for each phase. AMSAA and Duane models, discussed in Section 2.5.2.6,

use a growth parameter. This growth parameter is determined based on the reliability

growth of similar historical systems. While this model is simple enough to implement,
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Figure 34: Hall model growth predictions versus SSME data.

it does not provide any insight into how individual tests are affecting the reliability

of the system. It also does not allow for any changes in the development plan.

The last method to be discussed, is the use of equivalent flights. Zwack uses this

approach during the development of CONTRAST [158]. For engine development,

Zwack determines a number of equivalent flights to contribute to the reliability growth

before it is fully integrated into the launch vehicle. The total number of test seconds

is divided by the duration of a full mission to calculate this value. For the SSME,

this would be Eq. Flight Number = 110, 000s/(520s/flight) = 211 flights. Then the

reliability growth model is evaluated for 211 trials, instead of the full 726 because it

is assumed that there is an equivalent amount of testing effort applied. While this

approach can be used to model reliability growth during testing, it does not provide

any information about individual tests.

Another possibility for defining test fidelity is to consider the system performance.

For the SSME, the complicated start-up sequence due to the dual turbopumps would

imply that more failure modes are uncovered earlier in the cycle. Instead of using a
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linear fidelity model based on the test-duration/full-duration ratio, the fidelity would

show a growth curve similar to reliability growth, with a steeper increase in fidelity

during start-up and then a flatter increase as the test continues. This is supported

by SSME failure occurrence experience, where 60% of failures occur during start-up,

20% occur during the first third of the full duration, and the last 20% occur up to

flight mission completion [156].

Based on this discussion, Hall’s model is adapted to account for lower fidelity

tests. The probability of occurrence for failure modes is determined assuming a full

duration test. Lower fidelity tests will not be able to uncover all of the failure modes.

For example, a computer simulation would not be able to detect manufacturing failure

modes, and component testing would not detect any failure modes due to integration.

The definition of fidelity for this methodology is the percent of failure modes that

are able to be uncovered during a single test, ft. The test fidelity is defined for the

specific system and set of testing activities being modeled.

Mathematically, this is represented in the calculation of Hall’s indicator function,

Equation 11, restated here:

E[Ii(t)] = 1− (1− pi)t.

For the initial evaluation of Hall’s model in Section 3.2.2, the indicator function is

evaluated for each failure mode, i. It is calculated incrementally, until failure mode

i occurs, then the test number of the first occurrence, tn, of that failure mode is set,

Ii(tn) = 1. For example, the indicator function is evaluated at test t1, if the failure

mode does not occur, then the indicator function is evaluated for t2, t3, and so on

until the failure mode occurs (i.e. E[Ii(t1)], E[Ii(t2)], E[Ii(t3)] ). In the original

implementation, every test is considered for every failure mode. So at test t3 the

indicator function for failure mode i would be E[Ii(t3)] = 1 − (1 − pi)3. When this

model is adapted to include test fidelity, a test with only 50% fidelity will only be

considered for 50% of the failure modes.
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A simple example system with 10 failure modes can be used to further illustrate

this concept. The fidelity levels for the first three tests are t1 = 100%, t2 = 50%,

and t3 = 100%. Test t2 can only be evaluated in the indicator function for the first

5 failure modes because it is a 50% fidelity test. At test t2, the indicator function

for failure mode 6, assuming it did not occur in test t1 will be kept at 0, I6(t2) = 0.

At test t3, the indicator function for failure mode 6 will be E[I6(t3)] = 1− (1− p6)2.

Experiment 1b is setup to determine an accurate way to represent test fidelities for

this system.

3.2.4 Experiment 1b Setup

Three fidelity measures are tested with Experiment 1b to determine their accuracy in

predicting reliability growth during test phases. The Hall parameter values used in

Experiment 1a, listed in Table 13, are kept for Experiment 1b. Only the test fidelity

levels, fi, are changed. The first two cases are based on a linear fidelity profile,

calculated by dividing the test duration by the full mission duration:

fi =
di
D
, (22)

where di is the duration, in seconds, of test i, and D = 520s is full mission duration.

The profile of fidelity levels over the length of a full mission is illustrated in Figure 35.

This profile is a similar approach used in generating equivalent flights that was dis-

cussed in Section 3.2.3. When 520 seconds is considered one test flight, this implies

a linear fidelity profile.

Using these values for fidelity, the first case will assume all tests are of an average

length and as such, an average fidelity. For the 726 tests and 110,000 seconds of

SSME development, this means the Hall model is evaluated for 726 tests of 151

seconds duration and 29% fidelity. This is not expected to yield promising results,

because only 1/3 of the failure modes will ever have the opportunity to be uncovered,

and reliability is not expected to show much growth.
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The second model run also uses the linear fidelity profile, but the fidelity levels are

set using the average yearly test durations listed in Table 8, which steadily increase.

This is expected to provide a better reliability prediction capability than the first

case, but will likely still under predict reliability.

The third case will use a different profile of fidelity levels from the first two cases.

Here, the fidelity profile is modeled to emulate a reliability growth curve which takes

the form:

1− e−at (23)

where t is test number and a is a fit coefficient. The profile of fidelity levels over the

length of a full mission is shown in Figure 35. This curve more closely follows the

SSME failure history experience, and is therefore, expected to perform better than

the first two cases.

Figure 35: Linear and ‘1-Exponential’ fidelity level profiles.

Now that the fidelity profiles for the three cases have been defined, the models can

be implemented for the SSME. A Monte Carlo run was performed, providing a mean

104



Figure 36: Test profiles with three different fidelity definitions.

and percentiles for each case to be compared to the vehicle data. A root mean square

error was taken across the development testing to quantitatively compare profiles.

This is discussed in more detail in the following section.

Table 14: Fidelity profiles for Experiment 1b.

Case Fidelity Profile Test Durations
1 Linear Average
2 Linear Table 8
3 1-Exp Table 8

3.2.5 Experiment 1b Results

Section 3.1.1 presented a launch vehicle subsystem for use in testing the adaptation of

the Hall growth model for use during development testing with variable test fidelities.

After determining the initial assumptions required for the model in Section 3.2.1,

the three fidelity profiles to be used in Experiment 1b were defined in Section 3.2.4.

These assumptions were used to generate reliability growth models for each case using
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MATLAB. A Monte Carlo simulation was run for each case, and the resulting mean

and percentiles for each case are presented here.

To quantitatively determine the accuracy of these fidelity profiles, the Root Mean

Square Error (RMSE) of the model mean and SSME data is calculated using the

following equation:

RMSE =

√∑N
t=1(Ŷi − Yi)2

N
(24)

where Ŷi is the SSME data at test i, Yi is the model mean at test i, and N is the

number of tests — 726 in this experiment. The errors for the three fidelity cases are

shown in Table 15. This table shows that Case 3 performs the best in terms of RMSE.

The 1-Exp fidelity profile used in this case has nearly a full magnitude improvement

over Case 1 and 2. Based on this observation, it is expected that Case 3 will more

closely predict the SSME data.

Table 15: Mean square error for Experiment 1b.

Case 1 Case 2 Case 3
RMSE 0.1327 0.1367 0.0287

The results of the adapted Hall model using average fidelity levels as represented in

Figure 37 show a poor agreement with the actual reliability values. It shows an early

increase in reliability, up to test 10, where it then flattens out and no longer follows

the SSME reliability values. This can be explained by considering the test fidelities.

Each test has an average fidelity of 30%. As fidelity is defined for this engine system,

each test can only uncover the first third of all failure modes. The remaining failure

modes are never detected, and therefore reliability does not increase. This is not a

practical approach to development testing, and as illustrated by the model results it

does not accurately predict reliability.

The results of Case 2 are plotted in Figure 38. The linear fidelity levels increase

over the course of the development testing, and as a result the reliability shows more

growth than Case 1. Early reliability growth is expected to be steep, however, this
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Figure 37: Hall model growth predictions using average fidelity values.

case shows a slower, steadier increase. While the agreement to SSME data is better

than Case 1, it is still not a promising option because the values for reliability are well

below the actual. The gradual increase in reliability indicates that the linear fidelity

profile does not detect failure modes as quickly as the actual system.

Figure 39 shows the results of Case 3, where a 1-Exp fidelity profile is used.

In this case, the model captures the growth trend of the SSME very well. In the

early development tests, 1-400, the mean value follows the steep reliability curve

closely. The model appears to slightly under predict reliability towards the end of the

development program, but this provides a conservative estimate of mature reliability,

which is preferred to a risky over prediction. The low RMSE for this case listed in

Table 15 can easily be understood after plotting the results.

After considering the SSME results from these 3 cases, the appropriate fidelity

profile has become apparent. The adapted Hall model using 1-Exp test fidelities

tracks the actual data very well. For both cases where a linear definition of fidelity

was used, the reliability was grossly under predicted through the entire development
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Figure 38: Hall model growth predictions using linear fidelity values.

Figure 39: Hall model growth predictions using exponential fidelity values.
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testing history. From these results it is clear that the 1-Exp fidelity profile is able to

provide more accurate reliability growth predictions. In terms of accuracy, it is the

most appropriate for this methodology.

3.2.6 Experiment 1 Summary

Experiment 1 tested the adaptation of Hall’s reliability growth model with three dif-

ferent fidelity profiles, to determine which would be used in this method. Experiment

1a first showed the use of Hall’s model over the full development testing history of

the SSME without the use of fidelity levels. The results showed that this model over

predicts reliability because it assumes all tests are weighted equally. Section 3.2.4

describes the three options of fidelity that were tested to adapt the Hall model. The

results showed that Case 3 performed significantly better in terms of accuracy over

Case 1 and 2. Due to the fact that it was able to more accurately predict the ac-

tual SSME reliability, it can be officially chosen for use in this methodology. This

conclusion is in line with the original hypothesis, which identified the adaptation of

Hall’s model to incorporate test fidelity as a method for providing more insight into

VVT activities. Therefore, hypothesis 2 can be accepted based on the results of

Experiment 1.

3.3 Experiment 2

Section 2.9 reviewed the current approaches for estimating rework probabilities. Hy-

pothesis 6, which is restated below, was formulated to address the weaknesses iden-

tified in those techniques. Experiment 2 is designed to test the use of FMEA to

provide traceable and accurate probabilities for rework cycles. This experiment will

address the primary considerations for estimating rework cycles, the traceability and

availability of the data, and determine the accuracy of this approach. First, historical

data and expert opinion approaches for estimating rework cycles are compared to

FMEA data to evaluate the traceability of each approach. Following this discussion,
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the SSME FMEA data is used to test the accuracy of estimating the total number

of rework cycles and the occurrence of rework cycles. The number of rework cycles

is similar to the number of failure modes used in the Hall model, but also includes

modes with lower risk factors, or lower criticality failures. The results of this exper-

iment are compared to the actual SSME rework history to determine the validity of

this approach.

Hypothesis: 6

If subsystem and system level FMEA is performed, then the resulting data

will provide quantitative rework probabilities that are more traceable than

expert opinion and the data will be more readily available than expert

opinion and all historical data based methods.

3.3.1 Experiment 2 Setup

The three approaches to estimating the number of rework cycles are subject matter

expert opinion, similarity to historical systems, and failure mode and effect analysis.

All of these options rely on historical systems to some degree, but are considered

separately. The traceability and availability of data using these methods is discussed

first.

The first option for estimating rework cycles is to use the opinion of a subject mat-

ter expert. This approach uses assumptions about the system based on engineering

judgment. To apply this technique, a SME for the system needs to be identified, and

then the SME estimates the number of expected rework cycles that will occur during

development based on their prior knowledge and experience. The lack of structure

in this approach limits its traceability. There is no established standard for docu-

menting the justification or reasoning behind a SME opinion, nor is there a standard

practice in determining who is qualified to make assumptions about a system. The

traceability of the assumptions used in generating that data is limited to the fact that
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it comes from an accepted expert. The nature of using previous experiences to apply

engineering judgment also introduces bias into the estimate. For these reasons, this

approach is considered less traceable than the direct comparison to historical systems

and FMEA.

The next approach is comparison to a similar system. This method also requires

the use of engineering judgment, but provides an anchor point for comparison. The

first step in utilizing this method is to select an existing system that is similar to

the current system. An ideal candidate would be one that successfully completed

development and was taken into production. After a historical system is identified,

the number of rework cycles that occurred during Phase C/D for that system are

observed. Finally, someone that is knowledgeable about both systems, such as a SME,

predicts the number of rework cycles that will occur during development of the current

system based on similarities and differences between the two programs. Systems

can be compared based on things like design maturity at different life cycle stages,

complexity, commitment to reliability improvements, or programmatic differences (i.e.

management style or funding confidence).

The traceability of this approach is improved slightly over direct SME input due

to the fact that the existing system can be revisited to determine the reasoning behind

the estimate. It is still not ideal, however, because it is not a structured or quantifiable

comparison. Indeed, many of the program descriptors that are used for comparison

are qualitative and subjective in nature. The data availability of this approach is

also a concern, as this method is strongly dependent on the availability of a similar

system. This can be a particular problem for launch vehicle systems and subsystems

because so few are developed and even fewer are produced.

The last option considered for estimating rework cycles is the use of failure mode

and effect analysis data. As discussed in Section 2.5.2, FMEA is an existing reliability

technique that identifies all failure modes in the system and determines their effect
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and criticality level. This information directly relates to the number of expected

rework cycles, making it well suited for this purpose.

The number of failure modes can be determined directly from the FMEA data.

FMEA produces a comprehensive list of failure modes that result in various degrees of

damage. When assessing reliability, as in Experiment 1, only those that lead directly

to loss of mission and loss of crew are included, but even failure modes that result in

minimal engine damage will require rework. A comprehensive FMEA also provides

an assessment of the probability of occurrence. These are either quantitative proba-

bilities or a qualitative assessment that categorizes the failure modes from unlikely to

frequently occurring [44]. The quantitative probability of occurrence for each mode

can be estimated from the qualitative categories.

The traceability of generating an estimate of rework cycles from FMEA is clearly

an improvement over expert opinion or a similarity comparison. The detailed work-

sheets, shown in Figure 10 are very structured and each failure mode is well doc-

umented. Like the other two methods, it can also be based off of historical data.

FMEA worksheets are continually developed and improved upon throughout devel-

opment. Unlike the system comparison method, even if the historical system was

canceled before development was completed, the FMEA data are still be relevant.

In terms of data availability, a comprehensive set of FMEA worksheets may not be

completed when Phase C begins for a new engine with no design heritage.

If a complete FMEA is not available, another approach must be used to estimate

rework cycles. Havskjold argued a relationship between rework cycles and a complex-

ity metric he defined as the Technical Uncertainty Factor (TUF), shown in Figure 30

[64]. This metric is relatively subjective and requires a SME to accurately estimate.

Another possible complexity metric is the number of qualification tests required.

Qualification tests, also referred to as certification tests, are designed to formally ver-

ify compliance with performance requirements and specifications. An engine that has
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a less complex design will require fewer tests to accept that the development program

is producing flight hardware that meets specification, and design heritage gives the

program a significant advantage by allowing “qualification by similarity” to reduce

the number of qualification tests required [5].

The previous discussion determined that FMEA was the preferred method to

estimate the number of rework cycles a system will incur during development in

terms of traceability. The structured and standardized approach provides a quantified

estimate of both rework cycles and probability of occurrence. Hall’s model is designed

primarily to account only for the probability of high-level faults, like loss of mission

and loss of crew. The mathematical model it is based on, however, can be used in

this experiment to determine the accuracy of FMEA data to predict rework cycles.

The adapted indicator function described in Section 3.2.3 is used with the input

assumptions in Table 16 which are derived from the SSME FMEA [146]. To ensure

that the test fidelity levels are appropriate for use on failure modes of all criticality

levels, the Hall model is run with and without test fidelities included. A Monte

Carlo simulation was performed in both cases to account for the uncertainty in the

input distributions and to provide a distribution for when rework cycles occur. The

results are compared to the number of accumulated test failures that occurred during

the SSME development program which are shown in Figure 33 as a function of test

number.

Table 16: Reliability growth assumptions for Experiment 2

Parameter SSME Value
Number of Modes 160-182

Probability of Occurrence β(0.22,8.75)
Number of Tests 726

If detailed FMEA is not available, another complexity metric can be used to

estimate the number of rework cycles. The number of qualification tests, which are

called out in the Verification Requirements Matrix, discussed in Section 2.2.1, have
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been identified as a possible metric to represent the complexity of the engine. To

determine the appropriateness of this metric, the qualification tests and rework cycles

of four liquid rocket engines are compared: SSME, J-2, F-1, and RS-68. The SSME

was introduced in Section 3.1.1, and a brief introduction to the other three engines

is given next. The number of rework cycles is determined based on publicly available

data on the number of engine failures during development [60, 64].

The J-2 was developed by Rocketdyne in the 60’s to power two stages on the Saturn

V launch vehicle in the Apollo program. Five engines were used on the S-II second

stage, and a single engine was used on the S-IV-B third stage. Currently, an updated

version of this engine, the J2-X, is being developed for use on the SLS Earth Departure

Stage [54]. The gas generator engine cycle burned liquid oxygen/liquid hydrogen

propellants and was designed for a 500 second full duration flight. During its 6 year

development, 1,700 tests were completed through qualification [54]. The operating

schematic is illustrated in Figure 40, which identifies the primary components: fuel

and oxidizer turbopumps, heat exchanger, gas generator, feed control system, main

combustion chamber, and nozzle.

The F-1 engine was used to power the first stage of the Saturn V launch vehicle

to the moon in 1969. A total of 65 engines were used on 13 Saturn V flights, all

with no failures [36]. Also developed by Rocketdyne, the gas generator cycle used

rocket propellant-1 (RP-1) and liquid oxygen as propellants. Figure 41 shows the

operating cycle that consists of 8 primary subsystems: fuel feed, oxidizer feed, igniter

fuel, gas generator, vehicle pressurization, hydraulic control, electrical, and flight

instrumentation [54]. A single turbompump, powered by the gas generator, is used to

supply the fuel and oxidizer to the thrust chamber. The RP-1 is also used to fuel the

thrust vector control system. During its development, the F-1 went through 1,081

tests through qualification [54]. Only 278 of those tests were for 150+ seconds, full

mission duration tests.
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Figure 40: J-2 operating schematic [18].

Figure 41: F-1 operation schematic [155].
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The last engine that is used in this experiment is the RS-68. Rocketdyne began

development of this engine in 1997, and it was certified for use on the Delta IV

launch vehicle in 2001 [154]. The gas generator cycle, which is still in production

today, uses a liquid oxygen/liquid hydrogen propellant architecture that is based on

conceptual design studies of the NASA Space Transportation Main Engine (STME)

study. The focus of that program was to develop a new liquid rocket engine using

a cost-as-the-independent variable approach, but canceled in 1994. To reduce the

total development cost, the primary intent was to simplify the design by using fewer

unique components and reducing the overall parts count. The final design included

80% fewer parts than that SSME, and was produced with 92% less touch labor [154].

The result of this design was lower risk and higher reliability than a typical new

engine development program. The RS-68 was certified with only 183 tests and 18,945

seconds of operation [154]. A simplified schematic of the RS-68 operations is shown

in Figure 42. The primary components of the engine are two turbopumps, LOX and

LH2, gas generator, LOX tank pressurization system, combustion chamber, nozzle,

and flow control valves [154].

3.3.2 Experiment 2 Results

Figure 43 shows the results of the Hall model without including test fidelity levels.

From this plot, the same over prediction of reliability that was seen in Experiment 1a

is evident. When all tests are assumed to have an equal probability of uncovering all

of the failure modes, they are uncovered more quickly than they occur in the SSME

data. The total value of rework cycles that occur is in agreement with the actual

value, 150-170. This implies that the failure mode probability of occurrence values

are representative of the actual system.

Figure 44 shows a much better agreement for the number of rework cycles and
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Figure 42: RS-68 operating schematic [154].

Figure 43: SSME rework cycle predictions with fidelity.
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when they occur during development. The fidelity levels that were identified in Ex-

periment 1b results in rework prediction that follows the actual engine data much

more closely. The model does over predict slightly between tests 180-280. This could

be due to the use of yearly average test duration as a measure of fidelity. The actual

test durations could change throughout that year, but this model is not capturing

that. Without being able to obtain the actual length of each individual test, it is

not possible to adjust the fidelity of each test. However, the overall-growth trend

for the failure modes of all criticality levels is captured well, providing more insight

into testing activities than when each trial is considered equally. The total number of

rework cycles that occur is also in agreement with the actual value. This shows that

the test fidelity levels can be utilized to model failure modes of all criticality levels.

Figure 44: Hall model growth predictions using exponential fidelity values.

The last part of this experiment consists of identifying a traceable complexity

metric that can be used to estimate the number of rework cycles when a comprehensive

FMEA is not available. One possible option identified is the number of qualification

tests defined in the RVM. Figure 45 illustrates the relationship between the number
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of qualification tests and number of rework cycles from the four historical engine

programs discussed in Section 3.3.1: the SSME, RS-68, F-1, and J-2. This plot shows

that there is a trend in number of rework cycles and qualification tests. While the

RS-68 stands out, it is still within the general trend. One of the reasons the RS-

68 had a reduced number of rework cycles during Phase C/D was the advance of

computer analysis techniques that allowed the program to eliminate failure modes

before hardware production was initiated [154]. Because it is still in production, the

failure modes and probabilities for that engine are not publicly available for review.

Figure 45: Number of qualification tests versus number of rework cycles for historical
liquid rocket engines.

While there does appear to be a correlation between the number of qualification

tests and the number of rework cycles that occur during engine development, this

does not imply causation. With only four data points for comparison and no previ-

ously established link between rework and qualification tests, there is not evidence

to substantiate the use of qualification tests can be used as a complexity metric.

Based on this assessment, the previously identified Rocketdyne approach is used as a
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secondary method for estimating rework cycles if FMEA is unavailable. The Techni-

cal Uncertainty Factor (TUF), discussed in Section 2.9.2, is a measure of the design

maturity, system complexity, technology level, and environment [64]. Rework cycles

are caused by failure modes, both known and unknown, which directly relate to the

system metrics used to quantify the TUF value.

3.3.3 Experiment 2 Summary

After considering the results from Experiment 2, it is apparent that FMEA data

can provide quantitative rework probabilities that are more traceable than expert

opinion or comparison to historical systems. It was also confirmed that the test

fidelity levels are applicable when failure modes of all criticality levels are considered.

When fidelity is not included in the Hall model, the reliability is over predicted.

This can be seen by the number of rework cycles that are predicted to occur early

on in development testing when compared to the actual SSME data. Using test

fidelity levels to adapt the indicator function in Hall’s model more closely follows

the accumulated test cutoffs from the SSME program history. Due to this improved

performance, FMEA data can be selected for use in this methodology as a method

for estimating rework cycles and their probability of occurrence. The results of this

experiment are in line with the original hypothesis, which identified FMEA as a

method for providing quantitative rework probabilities. Therefore, hypothesis 6 is

valid based on the results of Experiment 2.

An additional analysis was done to determine an appropriate complexity metric

that can be used if FMEA data is unavailable. The number of qualification tests

outlined in the program’s RVM were shown to create a general trend when plotted

against the number of rework cycles for four historical engine programs. While these

two values are correlated, there is not enough evidence to support the use of quali-

fication tests as a complexity metric for estimating rework cycles. The TUF metric
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defined in [64] will be used as a secondary approach if FMEA data are unavailable.

3.4 Experiment 3

The final experiment addresses three aspects of the RIVVTS methodology. The first

is to test Hypothesis 3 that was introduced in Section 2.6.4, and is restated below.

Experiment 3 will also provide support for the use of triangular distributions and

improve the accuracy of activity relationships in the DES which were both identified

in Conjecture 5, discussed in Section 2.8.3. The final goal of this experiment is to

support the cost distribution assumption for the cost of rework as a function of test

number that was discussed in Section 2.7. The two main tasks in Experiment 3 are:

1. To develop the DSM, which includes identifying the testing activities, defining

their fidelities, cost and schedule distributions, and rework probabilities

2. To develop the discrete event simulation in order to propagate the uncertainty

of the input variables to generate a distribution on the outputs.

Hypothesis: 3

If a DSM is adapted to explicitly account for the probability of internal re-

work, it will provide a stochastic and quantitative model of rework impacts

that is more accurate for VVT processes than if internal rework is implicitly

included in the activity duration distribution.
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Conjecture: 5

• Using triangular input distributions, the assumptions required will be

more traceable than if beta and Weibull distributions are used.

• If DES is used for simulation, the results will allow for quantitative

comparisons between VVT strategies and account for stochasticity of

rework cycles.

3.4.1 Experiment 3 Setup

The first step in Experiment 3 is to set up the DSM for the SSME VVT activities.

A truncated version of this DSM is shown in Table 18. The first two rows are design

and manufacturing. The rest of the rows are the 726 hot-fire engine tests. The off

diagonal rows indicate the probability that when a failure mode occurs, if it will

require redesign, rework or retest. These probabilities were determined based on the

failure mode criticality levels in the SSME FMEA data during Experiment 2.

Redesign implies the failure was introduced during product design and the rework

cycle will include a redesign, rework or re-manufacture, and retest. Rework implies

a manufacturing defect of some kind and the rework cycle only requires rework and

retest. There is also the possibility that the failure is unrelated to the test article,

for example a test facilities failure, and the rework cycle will only require a retest.

Between 7-8% of failure modes are assigned a risk factor around 0.250, meaning those

failures would lead to loss of crew, loss of mission, or loss of engine. Failure modes

with a risk factor of 0.100 or less do not cause damage and can be excluded from

consideration. A risk factor between 0.100 and 0.111 means there is possible piece

part damage and may or may not require rework. Consequently, a probability between

70-85% can be assumed for rework, which would include the failure modes with a risk

factor below 0.250 and the upper half of the percentage of failure modes with a risk

factor 0.111 and 0.123. This would mean the remaining 7-23% could be considered
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facility failures. An analysis of the SSME premature engine cutoffs found that 16%

of the cutoffs were the fault of the test facility or controller [146]. The percentage of

SSME facility or controller failures would fall directly into this range.

Table 17: Cumulative percentages of SSME FMEA risk factors [146].

Severity Cumulative Percentage
1.000 1.5%
0.500 5.0%
0.333 7.0%
0.250 7.5%
0.200 10%
0.167 17.5%
0.143 43%
0.125 71%
0.111 96.5%
0.100 100%

Table 18: DSM for SSME activities

.
1 2 3 4 ... 728

Design 1 U(.07,.10) U(.07,.10) U(.07,.10)
Mfc. 2 U(.70,.85) U(.70,.85) U(.70,.85)

Test 1 3 U(.07,.23)
Test 2 4 U(.07,.23)

... U(.07,.23)
Test 726 728 U(.07,.23)

The next step is to define the cost, duration, and fidelity for each activity. The

fidelities were determined in Experiment 1 based on the test fidelity levels. Cost

and schedule distributions require a pessimistic, most likely, and optimistic estimate

to generate the triangular distributions discussed in Section 2.8.1.2. The schedule

durations in this experiment are defined by the actual test length plus the time

between tests. The amount of time between tests is a number of days, which will

dominate the actual test time. By looking at the number of tests per year in Table 8,

a distribution can be determined. The first test was conducted in June 1975 and last

test was in March of 1981, just prior to STS-1 on April 12, 1981 [17]. By dividing the
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number of tests per year by the number of days testing occurred during that year,

a range of 3 to 6 days between tests is found. The tests were more often closer to 3

days apart than 6 days, so the triangular distribution can be set to f(x; 3, 4, 6) days.

This time scale is similar to testing schedules for other engine development programs

with at least two dedicated test facilities [154, 120].

Test costs can be estimated by considering the overall cost of the SSME devel-

opment program and the percent of that cost that is associated with testing. The

distribution of development costs for rocket engine programs by discipline is shown

in Figure 46 [60]. The following costs are in 1996 dollars to enable comparison with

reported development costs [64]. Design will include the cost of engineering and

management, approximately 25% of development cost: $2.5B ∗ 0.25 = $625M . Man-

ufacturing cost is between 50% and 55%: $2.5B ∗ [0.5, 0.55] = [1.25, 1.38]M$. Testing

is approximately 20-25% of total development cost, giving the following range for

testing costs:

SSME Cost/Test = ($2.5B ∗ [.20, .25])/726 = $[0.69, 0.86]M. (25)

The actual most likely value for testing costs of liquid rocket engines is not available.

In lieu of this data, the median of the test cost range is chosen as the most likely

estimate to complete the triangular distribution for testing cost. This results in an

estimated test cost range of f(x; 0.69, 0.77, 0.86)$M .

The total cost of rework, or the ‘test-fail-fix’ portion of a development program

has previously been reported as the total cost of testing, engineering, and hardware

that is required during development. A further breakdown of cost distributions dur-

ing development is shown in Table 19. The weakness in this approach, as applied to

the RIVVTS methodology, is the limitation in evaluating alternative testing strate-

gies. By grouping the engineering, hardware, and test costs associated with rework

into a single value, the mitigating effects of alternative VVT strategies cannot be

determined. Rocketdyne’s Prodecol methodology, introduced in Section 2.9.2 used
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Figure 46: Historical development cost distributions recreated from [60].

this assumption in estimating rework cost [64] as follows:

CTotalRework = Total Development Cost ∗ 0.75÷ Number of Rework Cycles

$ / Rework Cycle = (Total Development Cost * 75%) / Number of Rework Cycles

where 75% is a conservative estimate for the percent of rework cost. To allow the

assessment of alternative VVT strategies, the cost of rework is divided into test costs

and rework cost for this methodology. The average cost per rework is calculated with

the same equation using 54% in place of the 75% used by Rocketdyne, based on the

cost breakdown of engineering and hardware cost during the ‘test-fail-fix’ phase given

in Table 19.

The average cost of rework using the previous formulation is $8.2 M in 1996 dollars.

To evaluate the change in rework cost throughout development testing, the F-1 cost

per rework cycle curve is fit using an exponential equation: a ∗ expb∗x, where x is the

percentage of tests completed, a is the fit coefficient that changes the mean value of

the curve and b is the fit coefficient that changes the shape of the cost distribution
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Table 19: Historical development cost breakdown [154]

Conceptual
Design %

Final
Design
%

Validation
%

Fail-Fix
&

Engineering 2 15 1 7 25
Hardware 3 47 50
Test 9 19 25

2 15 10 73

over time. After establishing the fit from the data in Figure 20, the fit coefficient b

is kept constant, while a is adjusted according to the estimated average rework cost.

The indicator function determines when failure modes occur based on the probability

of occurrence for each failure mode, and this curve determines the cost per rework

cycles at that time.

CPerRework(t) = 3.45 ∗ exp2.52t

The triangular distribution for the duration of tests is determined from historical

data of the SSME program illustrated in Figure 47. This figure shows the average

number of days between tests during the SSME development testing program. The

minimum value is approximately 3 days, the maximum value is 6 days, and the

average of the seven points provided is 4 days. Based on these values, the triangular

distribution for duration is f(x; 3, 4, 6) days. This distribution is used to represent the

duration for Case A, where internal rework is explicitly considered. Case B represents

the duration with internal rework implicitly considered in the distribution. For Case

B, the maximum estimated duration is 12 to represent this implicit possibility of

rework.

Developing the discrete event simulation is the last primary task for this Experi-

ment. Simio is used to develop the DES environment. Simio is a production planning

and scheduling software that is well-suited to this problem. The Simio Standard

Library contains the common objects that are required for a typical simulation, i.e.

entities, resources, servers, nodes and connectors. The standard object behaviors are
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Figure 47: SSME average number of days between tests during development [17].

used in this model, but the option exists to augment objects as necessary. The process

logic is developed specifically for this scenario and is outlined in Figure 48. During

the simulation an internal clock is managed to track the passage of simulated time

and resources used. Each case is replicated 1,000 times using the Simio experiment

tools.

The DES inputs are the fully defined activities (i.e. fidelity, cost, and duration)

and activity relationships (i.e. DSM). The DES logic is outlined in Figure 48. After

the completion of a test, the indicator function is evaluated as described in Section

3.2.3. If a failure mode does not occur based on the failure mode probabilities defined

in Section 3.3.2, there are no state changes in the DES and it continues onto the

next activity. If a failure mode event is triggered, the DSM probabilities are used to

determine the total impact of the failure mode. If the failure mode requires redesign,

it is considered a criticality 1 failure mode that would lead to LOC or LOM and its

impact is included in reliability calculation, cost and schedule. If the failure mode

requires rework or retest, it is not included in the reliability model and will only
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impact cost and schedule.

To determine the more accurate way to represent the impact of internal rework, the

DES is evaluated under two conditions. As mentioned in Section 2.6.3, when DSMs

are used for product design processes, this internal rework is represented in the overall

uncertainty for the cost and duration of that particular activity. For this methodology,

if a test fails and requires retest, the entire test will need to be repeated as opposed to

just a portion of a design process. An example of this would be a premature engine

cutoff due to something unrelated to the actual test article, like a test facilities failure.

For Experiment 3, the discrete event simulation is run with two different distributions

on the activity durations. Only duration is changed because it is assumed that the

results also apply to the cost distribution. The activity duration distribution in Case

A is narrower and does not implicitly include the probability of rework. For this

case, tests are repeated based on the separate probability of retest. The DES is run

1,000 times to determine an output distribution on the schedule. Then, the activity

distributions are rest for Case B, with the possibility of internal rework included in

the individual activity durations A separate probability for retesting is not included

in the second case. The duration distributions and retest probabilities for each case

are listed in Table 20.

Table 20: Internal rework assumptions for Experiment 3

Case Duration Distribution (days) Retest Probability
A f(x; 3, 4, 6) 16%
B f(x; 3, 4, 12) N/A

3.4.2 Experiment 3 Results

Section 2.6.4 identified a DSM as an appropriate method to model activity relation-

ships during VVT. Most often used for product design, the probability of internal

rework is included in the actual activity cost and schedule duration. After evaluating
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Figure 48: Discrete event simulation logic.
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its use for VVT processes, it was suggested that internal rework be considered inde-

pendently of the activity distributions to generate a more accurate cost and schedule

model. A DES was developed to stochastically determine the impact of internal re-

work in both cases. The fidelity, cost, and duration for each activity and the activity

relationships were defined in Section 3.4.1. 1,000 runs for each case were run, and the

resulting mean and percentiles are presented here.

Figure 49 shows the results of Experiment 3, and the mean and variance for each

case are listed in Table 21. In this plot, it is clear that including the probability of

internal rework, or retest, decreases both the mean and the variance of the schedule

estimation. The actual SSME development test program lasted 6 years, from the

first ignition test in 1975 to the first Space Shuttle flight in 1981 [17]. By limiting the

duration distributions in Case A, and determining retests by probability, the schedule

estimate is more accurate and less uncertain. The mean schedule estimate for Case

A is 6.25 years, and the variance is 8.24e-4 square years. The overly broad duration

distribution for every activity in Case B, results in an over estimation of the schedule.

The mean for Case A is 8.45 years, and the variance is 0.0051 square years.

Table 21: Schedule distributions with and without the probability of internal rework.

Case Mean Variance
A 6.25 8.24e-4
B 8.45 0.0051

The total rework cost and test cost results are plotted in Figures 50 and 51,

respectively. Using the rework cost distribution assumed in Section 3.4.1 provides a

mean total rework cost of $1,388 million in 1996 dollars. This value is 2.8% higher

than the $1,350 million projection based on the historical distribution of rework costs

over development phases. The mean total test cost is $561 million in 1996 dollars,

which falls with in the estimated range of $500 to $625 million based on the same

distributions. The test cost is expected to be accurate because it does not vary
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Figure 49: Schedule distributions with and without the probability of internal rework.

stochastically, and the input distributions are based on the historical distribution

range. The result does provide verification that the test cost is modeled accurately

in the discrete event simulation.

The result of the total rework cost is more significant because it does vary stochas-

tically with the occurrence of rework cycles based on the failure mode probability of

occurrence. Experiment 2 confirmed that using Hall’s indicator function accurately

predicted rework cycles when compared to the SSME test history. When used in

conjunction with the assumed rework cost distribution, the resulting rework cost is

within 3% of the estimated rework cost. This confirms the assumption of rework cost

increase as a function of test number identified in Section 3.4.1.

131



Figure 50: SSME total rework cost distribution in 1996 dollars.

Figure 51: SSME total rework cost distribution in 1996 dollars.
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The results of Experiment 3 were primarily intended to support hypothesis 3, but

an observation about conjecture 5 and the assumption for rework cost distribution

can also be made. The triangular distribution was chosen for the cost and duration

of VVT activities because generating the assumptions for the distribution is more

traceable than for a Weibull of Beta distribution. The importance of traceable and

accurate assumptions is illustrated in this experiment. When an overly broad distri-

bution is used to generate a schedule estimate, the additional uncertainty is carried

over into the output distributions. It is necessary then, to ensure that reasonable

assumptions can be made to determine inputs. When the distribution for an activity

is unknown or too few data points exist to generate a statistically significant distri-

bution, as is often the case, an expert can be consulted to provide an assessment.

The triangular distribution requires a minimum, maximum, and most likely value.

These are fairly reasonable estimates for a person to make because they are intuitive.

A Beta distribution, on the other hand, requires two measures of central tendency, a

mode and a mean, and two percentiles. Subjective assessments of these values make it

harder to guarantee an accurate result because they are not as intuitive. In practice,

many experts have a difficult time producing this information and their responses

can vary widely. This experiment supports the use of a triangular distribution by

illustrating the importance of using accurate input distributions.

3.4.3 Experiment 3 Summary

Experiment 3 tested the adaptation of a design structure matrix to explicitly include

the probability of internal rework, referred to as retest. After defining the fidelity,

cost, and duration of each activity, the activity relationships were represented with the

DSM. A discrete event simulation was created to run the model for two cases. The

first with narrower distributions and an explicit retest probability, and the second

with a broad duration distribution on each activity and no probability of retest.
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The result showed that the second case provided a more accurate and less uncertain

schedule estimate than the first case. The inclusion of retest probabilities is a more

realistic model of how testing activities would occur and gives more insight into the

actual processes. This conclusion is in line with the original hypothesis, and this

adaptation of the DSM to explicitly consider internal rework can be selected for use

in this methodology.

3.5 Method Development Summary

The experiments presented in this chapter addressed specific components of RIVVTS

methodology by testing the hypotheses formulated in Chapter 2. The first experiment

compared the use of Hall’s reliability growth model in four different set ups to the

demonstrated SSME reliability growth during development testing.

1. No fidelity levels

2. Average fidelity levels

3. Linear fidelity levels

4. ‘1-Exp’ fidelity levels

The results in Section 3.2.2 demonstrated the over prediction of reliability using Hall’s

model over testing phases when no fidelity levels were included. Section 3.2.5 showed

a similar result with the average and linear fidelity definitions. The ‘1-Exp’ fidelity

level was able to predict reliability more accurately, which is attributed to its physical

representation of failure mode occurrence. Ultimately, hypothesis 2a was accepted

based on these results.

Experiment 2 tested the use of FMEA to provide traceable and accurate prob-

abilities of rework cycles. Using the indicator function from Hall’s methodology to

track rework cycles during development testing proved to be an accurate approach

when the fidelity levels identified in Experiment 1 were included. The model results
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closely followed the accumulated test cutoffs from the SSME program history. This

result allowed hypothesis 6 to be accepted. A secondary approach to estimating the

number of rework cycles was also considered, in case FMEA data were not available

during VVT planning. The number of qualification tests were considered as a more

traceable metric for complexity than the Rocketdyne TUF value. To determine the

validity of this metric, the number of qualification tests for four liquid rocket engine

test programs were plotted against the number of rework cycles those programs in-

curred. While the result was interesting, the relationship was not strong enough to

support the use of qualification tests as a metric for program complexity. The TUF

metric was, instead, chosen as a secondary approach for estimating rework cycles due

to the established relationship between rework cycles and technical uncertainty of a

program.

Experiment 3 tested the adaptation of a design structure matrix to explicitly

include the probability of internal rework, referred to as retest. After defining the

fidelity, cost, and duration of each activity, the activity relationships were represented

with the DSM. The result confirmed that the explicit probability of internal rework

provided a more accurate schedule estimate. When the probability of internal rework

was implicitly included in the individual activity duration distribution, the schedule

was over estimated. The result of this experiment allowed hypothesis 3 to be accepted.

The results of these three experiments, and the conjectures formulated in Chapter

2 are used to solidify the components of the RIVVTS methodology. Chapter 4 pro-

vides a detailed discussion of the complete method and describes how the components

work together to evaluate the impact of rework on VVT. A case study is conducted to

further validate the use of this method on a different liquid rocket engine, the RS-68.
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CHAPTER IV

METHODOLOGY

Chapter 3 presented three experiments to define specific steps within this methodol-

ogy. A combination of research questions and literature review presented in Chapter

2, along with observations from the three experiments in Chapter 3 help define the

steps of the methodology presented herein. This chapter discusses in detail each of

these steps and how they work together to help meet the overall research objective.

This methodology is divided up into five primary elements discussed in more detail

in the following sections.

System
Definition

System
Assessment

Rework
Impact

Projection

Risk
Assessment

Strategy
Comparison

4.1 System Definition

The first element of this methodology is to define the system that is being analyzed.

A system can be characterized at different levels. INCOSE defines these levels as

a system, subsystem, assembly, subassembly, or component [153]. The levels create

a hierarchical decomposition of the system from the detailed part level to the top

system level. For this methodology, any of these levels can be included as long as

the test fidelity can be accurately determined to that level of detail. The SSME used

for comparison in the Chapter 3 is an example of a launch vehicle subsystem. The

functional assemblies include the propellant feed assembly, and the pressurization

assembly, among others [17]. The parts count method used to identify critical 1
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failure modes (i.e. high and low pressure turbopumps) in Section 3.1.2 were examples

of components. The analyst must define the system and functionally decompose

it to the appropriate level, which can be determined by the VVT activities being

considered.

Based on the system selected, a list of VVT activities need to be identified and

defined. The verification requirements matrix and designed test plan for that system

should be used to identify the baseline set of activities. To understand the impact of

rework on different test plans, alternative sets of VVT activities should be selected

for comparison. The next step is to define each activity being considered. For this

methodology, a fully defined activity requires a fidelity level based on the estimated

percent of failure modes that can be uncovered during that specific activity, and a

pessimistic, optimistic, and most likely estimate for cost and schedule to generate

triangular distributions.

The most reliable way to assess fidelity levels is by previous failure mode occur-

rence experience of the system. For new systems, the previous failure mode occur-

rences of similar systems can be used and adjusted based on an analogy approach.

If a similar system does not exist, expert opinion or a physical decomposition of the

system could be used. An example would be defining the fidelity based on the number

of individual components that are used during a given test — either a percentage of

the components, or using the individual component failure contributions if they are

known. The last approach is utilized in the sample problem presented in this chapter.

Cost and schedule distributions can also be elicited from experts, comparison to his-

torical programs, or can be generated using industry standard tools like NAFCOM

or SEER.
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4.2 System Assessment

After the VVT activities are defined, the analyst must assess the system to generate

the data required to project the impact of rework. The system data are used to define

the VVT activity relationships and to estimate the number of rework cycles that will

occur during development.

Two sets of probabilities are required to define the system. The first set is the

probability of failure mode occurrences required for the indicator function and relia-

bility growth model, shown below:

pi = p1, ..., pk for k failure modes (26)

The second set of probabilities are conditional probabilities that determine the

type of rework cycle given that a failure mode has occurred. These probabilities,

listed below, are used in the DSM to represent the relationship between testing and

development activities — design and manufacture.

P (redesign) = P (c = 1) = pc1

P (remanufacture) = P (c = 2) = pc2

P (retest) = P (c = 3) or else = pc3

(27)

Finally, the probability for a specific rework cycle is given by the following equa-

tion:

P (RWCc) = (pi)(pc) (28)
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where pi is the probability of occurrence for failure mode i, and pc is the conditional

probability of redesign (pc1), remanufacture (pc2), or retest (pc3) given that a failure

mode has occurred.

The method to generate this data depends on the design heritage of the system

and its elements. Systems with extensive flight history and derivative systems, for ex-

ample, could utilize prior development, test, and production experience. FMEA data

are ideal for estimating the number of rework cycles and the activity relationships. A

complete FMEA can also provide the probability of occurrence (p1, ..., pk for k rework

cycles) assumptions for the reliability growth model used in this methodology.

If FMEA does not exist, two methods can be used in conjunction to generate the

required data. The failure modes that directly lead to loss of crew, loss of mission,

or loss of vehicle, can be assessed using the part count method based on the phys-

ical decomposition of the system. The total number of failure modes can then be

estimated based on the Technical Uncertainty Factor (TUF), which was identified

in Section 3.3.2 as a secondary approach should FMEA data be unavailable. The

TUF assessment of a system was shown to be a good indicator for the number of

failure modes of all criticality levels. The probability of occurrence assumptions can

be determined based on previous test data or can be developed based on information

in the literature. An example of this is the derivation of failure probabilities used in

Experiment 1.

The activity relationships used in the DSM can be derived using the number

of critical 1 failure modes and the total number of failure modes. If the FMEA is

available, the percentage of critical 1 failure modes can be used as the probability

of redesign. The percentage of the remaining failure modes, not including the ones

that do not cause any damage, gives the probability of rework, and the remaining

percentage is assigned to retest. In the absence of FMEA data, dividing the number

of critical 1 failure modes by the number of total failure modes estimated using the
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TUF metric can be used for the probability of redesign. The probability of retest can

be determined based on previous systems’ testing failures or expert opinion, and the

remaining failures will result in rework. Because the actual distributions of redesign,

rework, and retest are unknown, these probabilities should be expressed as a uniform

distribution with a max and min, U(min,max).
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4.3 Rework Impact Projection

The next step in this methodology is to run a discrete event simulation to assess the

impact of rework on reliability, cost, and schedule projections. At the beginning of

each case, a random number is drawn from the Beta distributions for the probability

of occurrence for each rework cycle. At each step in the DSM, the state of the system

is evaluated. The indicator function, given in Equation 11, is used to determine

if a failure mode occurs during the current state using the array of probabilities

generated at the beginning of the case. If a Failure Mode Event is flagged, based on the

probability of occurrence and current fidelity level, then the probability of redesign,

rework, or retest is assessed using a random draw from the uniform distributions.
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The system evaluates the column of the current activity from row 1 in the DSM. The

row at which the rework cycle occurs determines how far back the system must go to

correct that failure mode. If the failure mode requires redesign, based on the DSM

probabilities, a Reliability Event is flagged. This event is used to track the number of

critical 1 failure modes, their probability of occurrence and the first test in which they

occur for calculating reliability. When the rework cycle is completed, the system flags

a return event to continue onto the next VVT activity in the DSM. The cumulative

cost and schedule are tracked during the simulation. When the model is evaluating

an activity, a random number for cost and duration is drawn from the respective

distributions. The cost of a rework cycle is dependent upon how far along the system

is in the overall VVT plan. The assumption for cost distribution of rework cycles

during development is described in Section 2.7.

At the end of each case, the adapted Hall growth model is called. This is done at

the end of the simulation because the number of critical 1 failure modes that occur will

not be determined until the end of the simulation due to the probability of redesign.

Each critical 1 failure mode that was flagged during the simulation has two properties:

the probability of occurrence that was drawn randomly from the Beta distribution

and the test number where it occurred for the first time. The reliability model inputs

include the number of primary failure modes, their associated properties, the number

of tests, and the fidelity of each test. The reliability growth model is evaluated at

each test, where the indicator function for each failure mode is assigned I = 1 if the

failure mode occurred before that test, and I = 0 if it did not. The fix effectiveness

factor is determined by randomly drawing a number from its uniform distribution.

The result of one case is a reliability growth curve, cumulative rework cycles,

cost, and schedule estimate. The simulation is repeated 1,000 times to generate

distributions for each of these outputs. The number of repetitions is the number of

random draws taken from the failure mode probability distributions, and the activity
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cost/duration distributions. This parameter will have an effect on the overall run

time of the model and the granularity of the output. A large enough number must

be used to ensure the resulting distributions are accurately represented.
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4.4 Risk Assessment

The next step in this methodology is to assess the risk for the selected VVT activities

and to evaluate the testing strategy. The risk is assessed using the quadratic impact

function chosen in Section 2.8.3. Risk assessment outputs a single value based on the

simulation outputs for mature reliability, cost, and schedule. In the rework impact

projection step, the discrete event simulation generates distributions for these values

that are used to calculate the risk that these metrics do not meet the required baseline.

The baseline for cost and schedule can be determined using NAFCOM or SEER —

industry standard cost estimating tools. It is assumed that the baseline cost accounts

for 2.5 years of engine-level testing at two dedicated testing facilities conducting 30
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tests each per year. The cumulative distribution functions of the cost and schedule

outputs from the simulation are used to determine the risk of exceeding that baseline.

The mature reliability goal for the system is used as the reliability baseline. Unlike

cost and schedule, the reliability risk is calculated based on the probability of not

reaching the baseline, as opposed to exceeding it.
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4.5 Strategy Comparison

After the risk has been assessed for a given VVT strategy, a number of alternative

strategies can be evaluated for comparison. The primary research objective for this

methodology is to produce a quantitative estimate of the impact of rework cycles

on alternative VVT strategies to assist in the decision making process. The rework
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impact projection and risk assessment steps provide metrics that allow alternative

VVT strategies to be compared to one another. The following section discusses the

implementation of this methodology in order to demonstrate the approach on an

actual system. Chapter 5 will present a full application of this method to further

demonstrate the attributes and trends that can be utilized by the decision maker.
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4.6 Case Study

The method is applied to the RS-68 liquid rocket engine, which was introduced in

Section 3.3.1. This example serves to validate the capability of this methodology to

accurately predict the impact of rework cycles on VVT activities. The RS-68 was

chosen because it was developed relatively recently, but has a complete development
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testing history that can be used for comparison.

4.6.1 System Definition

The first step of this methodology is to define the system. A brief description of the

RS-68 liquid rocket engine was given in Section 3.3.1. Certified in 2001, the RS-68

is used on the Delta IV launch vehicle and is still in production today [154]. The

engine burns liquid hydrogen and liquid oxygen in a gas generator cycle that can

oscillate between power settings of 101% or 58% during different mission profiles.

The turbopumps are driven by a single shaft with direct drive turbines. The turbines

are powered in parallel by high-pressure hot gases from the gas generator. The thrust

chamber assembly consists of a combustion chamber and ablative nozzle designed to

dissipate heat as the engine is running. Thrust vector and roll control is performed

by gimbaling the thrust chamber assembly and the fuel turbine exhaust roll control

nozzle [154]. The engine’s operating characteristics are listed in Table 22 and the

schematic is shown in Figure 42.

Table 22: RS-68 Operating Characteristics [154].

Full Power Min Power
Thrust, vac (KN) 3,341 1,922
Thrust, s/l (KN) 2,918 1,499
Chamber pressure (MPa) 9.79 5.62
Propellants LOX/LH2
Engine mixture ratio 6.0
Isp vac (sec) 409
Isp s/l (sec) 357

The development program was ‘designed to cost’ in an attempt to reduce the

non-recurring costs associated with the typical rework cycles seen in other engine

programs. A concentrated effort was made to reduce risk prior to engine-level test-

ing. The testing began with 71 component-level tests that progressively increased in

fidelity by adding components. This incremental testing approach started with gas

generator component testing, then advanced to the turbopump assembly, and finally
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powerpack (gas generator and turbupump subassembly) testing. The number of tests

completed at each stage are shown in Table 23. These are the VVT activities that

are used for this example problem.

Table 23: RS-68 development test program [154].

Test Level Number of Tests
Component Gas Generator 62
Component Turbopump 11
Component Power Pack 6

Prototype Engine 7
Engine 176

After identifying the activities that have been selected to verify and validate the

design, each activity needs to be further defined. This can be done on an individual

basis, or in groups if they can be categorized. Only one VVT strategy is analyzed to

validate this model against the actual RS-68 test history.

The first 71 tests were component tests. To define the fidelity of those tests, the

historical contribution of components to US liquid rocket propulsion failures is re-

viewed in Table 24 [89]. A significant percent of the failures, 34.2%, cannot be directly

attributed to a single component. The largest component contributors to propulsion

failures are the fuel feed and control subsystem, and the hydraulic/pneumatic con-

trol subsystem which contribute to around 15% each. The pressurization, electrical

control, and oxidizer feed and control are the next largest, contributing around 10%.

The remaining subsystems contribute less than 5% each. The components tested

first can all be attributed to the fuel and oxidizer feed and control assemblies. The

maximum fidelity for these components tests is then the sum of those two component

contributions from Table 24, 22.5%.

The remaining 183 tests are engine-level tests. The fidelity can be determined

based on the duration of the test. The percent of failure modes that can be uncovered

as a function of operating duration could not be found in the literature. This is likely
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Table 24: Component Contribution to US Liquid Rocket Propulsion Failure [89].

Subsystem Percent Contribution
Fuel feed and control 15.0%
Oxidizer feed and control 7.5%
Combustion Chamber 4.2%
Nozzle 0.8%
Pressurization 10.0%
Lubrication 1.7%
Electrical Control 8.3 %
Hydraulic/pneumatic control 16.7%
Thrust vector control 0.8%
Engine structure 0.8%
Others 34.2%

because the engine is still in operation, and some data has not been released. Like the

SSME, the J-2 engine shows a similar early growth in the number of failure modes

that can be uncovered during the early operating environment, which was observed

to accurately represent engine fidelity in Experiment 1 in Section 3.2.5. The failure

experience for the J-2 is used to estimate the RS-68 test fidelities because they are

both gas-generator cycle engines, while the SSME is a staged combustion engine.

The failure experience for the J-2 given in [156] is plotted versus the actual engine

test duration. To adapt this profile for the case study, the data are replotted versus

normalized mission duration and scaled to the RS-68 mission duration of 250 seconds.

The resulting RS-68 fidelity profile is provided in Figure 52. The RS-68 test groups

and associated fidelities are listed in Table 25 [154, 156, 140].

The rework and test costs are combined for the case study to enable comparisons

to the reported cost data in [154]. The Rocketdyne Prodecol method was applied to

the RS-68 to estimate the number of rework cycles and the average cost per rework

cycle prior to development. From this assessment, the rework cost curve fit discussed

in Section 3.4.1 is adjusted to the estimated $5 million per rework cycle in 2001 year

dollars. No distribution was provided to estimate testing costs. This does not affect

the case study because only one testing strategy is evaluated, and the divided test
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Figure 52: RS-68 fidelity profile versus test duration.

Table 25: RS-68 test durations and fidelity levels [154, 156, 140].

Test Level Number of Tests Average Duration (s) Fidelity
Component 62 0.08
Component 11 0.15
Component 6 0.225

Engine 78 28 0.58
Engine 18 136 0.8
Engine 28 139 0.8
Engine 24 163 0.84
Engine 15 173 0.88
Engine 20 195 0.91
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and rework costs would be summed for comparison regardless. The rework cost is

calculated as follows:

CPerRework(t) = 2.1 exp 2.523t

The triangular distribution for the activity duration is determined using the pub-

licly available data on the RS-68 engine development history time line illustrated in

Figure 53. From this time line, the average number of days between system-level

engine tests is 6 days, the least number of days between tests is 4 days, and the

most days between tests is 9. The resulting distribution is f(x; 4, 6, 9) days. The test

schedule for component-level tests is approximately twice as frequent as engine-level

tests, resulting in a distribution of f(x; 2, 3, 4.5) days for component-level tests [154].

Figure 53: RS-68 engine development history [154].

4.6.2 System Assessment

The next step in this methodology is to assess the system and estimate the number

of critical 1 failure modes, total number of rework cycles, and the activity relation-

ships. As mentioned in the previous section, this engine is still in production and a

comprehensive FMEA has not been released. The parts count approach is utilized to

determine a range for the critical 1 failure modes. The primary components are:
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• Gas generator

• Fuel turbopump

• Oxidizer turbopump

• LOX tank pressurization system

• Combustion Chamber

• Nozzle

• Heat Exchanger

Without the full FMEA, the relationship between the technical uncertainty factor

assessment and number of rework cycles for historical engines can be used to determine

the total number of rework cycles. The RS-68 was assessed using the TUF metric,

and 30 rework cycles were estimated based on the risk level using the Rocketdyne

Prodecol chart [154, 64]. Based on this assessment, the probability of redesign (pc=1)

can be determined: 7/30 = 23%. To account for uncertainty, a range of 20-25% for

redesign is used. The historical range for test failures is used because no actual data

is available. The SSME showed 16% of premature engine cutoffs were attributed to

test facility failures, so a slightly lower range is used to the RS-68 because of the

emphasis on reducing complexity and improving the test facility [154]. A range of

5-10% is used for this example, and the remaining percentages are the probability

of rework, 65-75%. The RS-68 test program had 32 test malfunctions, and only 20

engine failures [154]. The other 12 malfunctions are attributed to facility failures,

approximately 7% of the 183 tests. This is consistent with the 5-10% used for the

case study.

The other inputs required for the reliability growth model are the probability of

failure occurrence and the fix effectiveness factor. Again, without a comprehensive
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FMEA, these values have to be based on similar systems or found in the literature.

Woods assumed a mature reliability of 0.9982 based on a system comparison to the

SSME [154]. The assessment was based on total parts count, design complexity,

fabrication processes, and operating environment. This is slightly higher than the

SSME reliability at first flight of 0.9952 [17]. The reliability at first flight is close

enough that the same system-level probability of occurrence used for the SSME in

Experiment 1 can be used for the RS-68, Beta(0.22, 8.75). This can be verified by

considering the test and failure history of the RS-68. Summing the fidelity levels

defined in Figure 52 gives a weighted number of equivalent flights. For the 254

tests at the fidelity levels listed in Table 25, the equivalent number of flights is 146.

The mean demonstrated probability of failure for the system is calculated as follows:

numberoffailuremodes/equivalentflights = 26/146 = 0.1844. Assuming the indi-

vidual failure mode probability of occurrences are randomly selected from the beta

distribution in Table 26, the reliability of the system is calculated using the following

equation:

Rsystem = (1− psystem) = (1− (p1 + ...+ pk)) (29)

where psystem is the probability of failure at the system level, pi is the probability

of failure for each critical 1 failure mode k [158]. While the summation of these

probabilities isn’t strictly correct, it is a ‘rare event’ approximation that be made for

these independent top level failure modes. The number of failure modes ranges from

5 to 7 based on the probability of redesign determined during system assessment. To

estimate the system-level probability of failure, first an integer is randomly selected

from a uniform distribution of primary failure modes, k, then k random probabilities

are drawn from the beta distribution and summed. This is repeated 10,000 to gen-

erate a distribution for the system-level probability of failure. The resulting mean

of this exercise is 0.1772, which is 4% less than the demonstrated reliability of the

system during development testing. This difference is negligible, and the assumed
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beta(0.22.8.75) distribution can be accepted.

The last input assumption that needs to be determined for the reliability pro-

jection is Hall’s Fix Effectiveness Factor. Expert opinion was identified as the ideal

way to estimate this value in Section 2.5.2.6. In Experiment 1 a uniform distribution

between 90-95% was used based on the increased focus to eliminate defects during

development testing. This value is kept for the RS-68 because the same focus on

reliability can be assumed for its development program. In addition, because this

value is difficult to estimate, keeping it the same will reduce any bias in the results.

Table 26: RS-68 reliability growth assumptions.

Parameter Value
Number of Rework Cycles 25-35
Probability of Occurrence β(0.22,8.75)
FEF 90%-95%
Number of Tests 254

The RS-68 engine and test program are fully defined in Sections 4.6.1 and 4.6.2.

The next step in this methodology is to use the information gathered in the first two

steps and determine the impact of rework cycles on the reliability, cost and schedule

for the program. Once output distributions for these metrics are generated using the

techniques defined in Chapter 3, the final step is a risk assessment to determine the

program risk with respect to the target goals.

4.6.3 Rework Impact Projection

The discrete event simulation model inputs are defined during the system definition

and assessment. The DSM represents how the model entity traverses the simulation

according to the flow chart illustrated in Figure 48. The cost, schedule, and reliability

input distributions are used to evaluate the system at each state during the simulation.

The events are test failure, redesign, remanufacture, and retest. The probability of

the test failure event being triggered is determined by the Hall indicator function
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and the fidelity level of the current activity state. If the event is triggered, then

the DSM probabilities determine which level of fault correction will occur: redesign,

remanufacture, or retest. After the fault correction is complete, the system continues

on to the next activity and the state is evaluated again.

The DES was run 10,000 times to generate distributions on the model outputs.

These distributions enable the calculation of output means, percentiles, and risk levels

that are assessed in the next section. Figure 54 shows the results of the cumulative

number of rework cycles predicted by the model during developmental testing com-

pared to the actual premature cutoffs due to engine anomalies [154, 138]. The actual

RS-68 data do not begin until engine-level testing, but the number of failures that

occurred during component testing are reported. The red line represents the actual

data that start after the 6 failures that occurred during the 71 component-level tests.

The model follows the actual RS-68 engine cutoffs fairly closely. The component tests

capture as many as 8 failure modes, which is more than the actual component tests

uncovered, but this can be attributed to the range of rework cycles used as input. A

range of rework cycles is used to model the uncertainty in rework prediction. The

simulation gave a final number of rework cycles ranging from 20-35. The number of

rework cycles that occurred, 26, falls directly in this range. This indicates that the

model was able to capture the actual cumulative rework cycles for the RS-68 engine

using test fidelity levels.

Figure 55 illustrates the results of the reliability prediction from the DES, which in-

clude the mean, 5th percentile, and 95th percentile. No RS-68 demonstrated reliabil-

ity data has been released except for the mature reliability assessment of 0.9982 [154].

The resulting mature reliability prediction provided by the model is P5 = 0.9685,

P50 = 0.991,and P95 = 0.9991. The 0.9982 reliability assessment falls within this

range. Another verification of the model accuracy is the number of redesign or crit-

icality 1 failure modes that are predicted. The parts count method determined 7
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Figure 54: RS-68 cumulative rework cycles versus test number.

primary failure modes and the model shows an agreement with between 6-9 redesign

cycles and an average of 6.9, or approximately 7. This suggests that the DSM per-

centages used to calculate reliability are accurately estimating the reliability growth

during development testing for the RS-68 engine.

The final results from the DES are cost and schedule estimates. Figure 56 shows

a histogram of the total rework costs. The rework costs from the F-1 engine were

normalized to represent the rework cost as a function of the percent total development

time. This exponential curve fit was then adjusted to scale for the RS-68 program

costs of $355 million in 2001 dollars [154]. The actual program reported a total

of $156 million for the fix-fail cycles. This is 1.3% lower than the average of $158

million resulting from the simulation, which is negligible. This is the only cost value,

other than total program cost, provided by the RS-68. This alignment of the cost

prediction for rework cycles confirms the cost distribution used for rework cycles

accurately predicts the total rework cost during development.

Figure 57 shows a histogram for the total testing schedule for the RS-68. Including
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Figure 55: RS-68 reliability growth versus test number.

Figure 56: RS-68 total rework cost in 2001 dollars.
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component testing, the engine was certified for first flight in 4.5 years. This is 2%

lower than the average simulation schedule of 4.6 years. The result of the schedule

duration including the probability of internal rework accurately predicts the total

development time for this program.

Figure 57: RS-68 schedule.

4.6.4 Risk Assessment and Strategy Comparison

The final steps in this methodology is to use the quadratic risk impact function to

determine the overall risk in reliability, cost, and schedule for the RS-68 engine. The

risk impact function is used to calculate the risk that a target value is not met and

applying a quadratic risk growth as the estimate moves away from the target. For

cost and schedule, the risk is going over the target values. The risk for reliability

is to not meet the target value. Figures 58 to 60 illustrate the reliability, cost, and

schedule risk for this program, respectively. On their own, the risk values do not hold

much meaning. Their primary purpose is to allow comparisons of PDFs for different

VVT strategies. They are shown here to illustrate the meaning behind the risk value.
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Figure 58: RS-68 reliability risk, RR.

Figure 59: RS-68 cost risk, RC .
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Figure 60: RS-68 schedule risk, RS.

4.6.5 Case Study Conclusions

The RS-68 case study was set up as a validation exercise for this methodology. The

primary goal was to demonstrate the ability of the method to accurately predict the

impact of rework cycles on reliability, cost, and schedule, and to assess the risk of a

VVT strategy. The example was also used to further support the conclusions drawn

from the experimental observations in Chapter 3.

First, the case study illustrated the accuracy of this methodology to predict the

occurrence of rework cycles. Figure 54 shows the cumulative rework cycles predicted

by this method compared to the actual RS-68 rework cycles during development.

The simulated results match the actual data very well. By using test fidelity levels

in conjunction with the reliability indicator function, the level of insight into the

effects of individual tests is increased. The accuracy of the model to predict rework

cycles also validates the probability of occurrence assumption for the reliability growth

model.
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Because FMEA data for this system were not publicly available, alternative meth-

ods were used to estimate the number of total rework cycles and the percentage of

critical 1 failure modes. The number of rework cycles is estimated based on the Rock-

etdyne Technical Uncertainty Factor metric. For this case study, the total number of

rework cycles was known. The percent of failure modes that result in redesign was es-

timated based on the parts count approach, where the number of primary components

was used as a substitute for the number of failure modes that would lead to LOC or

LOV. When using this percentage in the DSM, the average number of redesign cycles

simulated was used as the number of failure modes input in the reliability growth

model.

The final conclusion from the case study was the confirmation in assumptions and

techniques used to estimate rework cost and development schedule. When compared

to the actual cost of rework reported from the RS-68 program, the exponential growth

of rework costs used in this methodology very closely predicted the actual rework.

Similarly, the schedule penalty applied to rework also accurately predicted the total

testing duration. This further supports the conclusions drawn from Experiment 3.

The RS-68 case study illustrated the utility of this methodology and verified its

ability to accurately assess the impact of rework cycles on the reliability, cost, and

schedule of VVT activities. This method will now be applied to different VVT strate-

gies for one system to confirm that the overall research objective has been met. The

following chapter will discuss the details of this larger scale problem.
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CHAPTER V

APPLICATION & RESULTS

Chapters 3 and 4 presented the development of this methodology through experimen-

tation and observations made from the literature review in Chapter 2. The exper-

iments were designed to test the research questions posed in Chapter 2 and either

accept or reject the associated hypotheses. An additional experiment is necessary to

verify that the overall research objective has been met and demonstrate the RIVVTS

methodology. The research objective and derived requirements are restated below:

Research Objective

Reduce cost and schedule overruns by modeling the effects of unplanned

rework on the verification, validation, and testing of launch vehicle systems,

and determining how VVT strategies can mitigate those effects.

The research objective can be achieved through the formulation and implementation

of a structured process or methodology that meets the following requirements:

Derived Requirements:

1. The method shall produce quantitative means for comparing alternative VVT

strategies.

2. The method shall produce quantitative estimates for the impact of rework cycles

on cost and schedule during VVT.

3. The method shall be scalable and flexible enough to enable use for large complex

systems.
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In order to test the completion of the research objective, this methodology is

applied to a real world system and alternative VVT strategies are compared to deter-

mine the impact of unplanned rework during VVT. The baseline VVT strategy used

for this problem is the Space Shuttle Main Engine, which was introduced in Section

3.1.1. Its well-documented test history makes it ideal for this application problem.

Although originally developed in the 70’s, the current SSME configuration is still

in use today. The SLS plans to modify RS-25D engines for the core stage on early

flights, and transition to a cheaper, expendable version at a later date [133]. For this

reason, the SSME was determined to still be a relevant example system for the appli-

cation of this method. First, a review of historical liquid rocket engine test programs

is discussed in the following section to determine how different VVT strategies are

created.

5.1 Liquid Rocket Engine Test Strategies

The objectives of a testing program vary depending on experience, analytical ca-

pabilities, and the technological maturity of the program, measured by Technology

Readiness Level (TRL). Low TRL level programs, i.e. TRL 1-3, are focused on gath-

ering sufficient test data for proof-of-concept hardware to support the development

of a more sophisticated test article. Mid TRL level programs, i.e. TRL 4-6, use pro-

totype hardware and engineering test units that closely resemble actual hardware [1].

Once the program reaches high TRL levels, i.e. TRL 7-9, testing of engine compo-

nents and systems is done with emphasis on quality and rigor applied to both the test

facilities and test hardware. For Phase C/D VVT, it is assumed that only upper-mid

to high TRLs are considered, e.g. TRL 6-9.

An overview of the potential testing elements for a new engine development pro-

gram are illustrated in Figure 61 [120]. Each element reduces risk and generates data

to support the next testing phase — from prototype testing, to development testing,
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qualification testing, and finally integrated system testing. The confidence gained by

incrementally increasing the testing fidelity validates the commitment of additional

resources for full-scale hardware to be built and tested. Subscale component tests

likely include testing of subscale combustion devices, such as pumps, preburners, or

the thrust chamber. After subscale testing is completed on hardware with the desired

attributes, the resulting data are used to reduce risk for the full scale component

tests. Complex components, such as turbopump assembly and combustion devices,

can only undergo development testing due to the high level of system interaction at

the engine-level. These components cannot be qualified on an individual basis because

the component-level testing environment cannot adequately represent the intended

operating conditions [5]. From full-scale component testing, prototype engines are

built and tested. The full scale engine development and qualification tests are used

to demonstrate that the engine can operate under flight representative conditions.

The ‘test-as-you-fly’ philosophy suggests that the test program should encompass as

much of the flight envelope as possible, including worst-case scenarios [5]. Flight

readiness is often determined based on both the development and qualification test

efforts due to the complexity of liquid rocket engines. Upon completion of flight en-

gine qualification tests, also referred to as certification tests, an integrated systems

flight stage qualification test can be performed. Each unique flight engine must be

acceptance tested before it is committed to a flight vehicle.

Designing an engine test program is largely subjective. General guidelines have

been created to help successfully develop, test, qualify, and accept liquid rocket en-

gines for launch vehicles [5]. The primary cost drivers for these programs are the

number of engine samples and total number of tests performed. NASA-STD 2015,

a technical standard for liquid-fueled space propulsion engines, requires six qualifica-

tion units for pump-fed engines and a minimum of one for pressure-fed engines [6].

Standards like this one describe qualification and acceptance test guidelines for space
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Figure 61: Notional test program elements recreated from [120].

systems, but are difficult to apply to testing.

The necessary number of tests can be difficult to ascertain. The test program must

be comprehensive enough to ensure that all performance requirements and functional

objectives have been met, but is also subject to programmatic influences. Two ap-

proaches have been suggested to determine the total number of tests: statistically

relevant based and functional objective based [5]. The first approach uses statisti-

cal analysis to determine the minimum number of tests that must be performed to

statistically demonstrate engine reliability based on an assumed failure distribution.

Weibull failure distributions with different shape parameters are used to model the

occurrence of random and wear-out failure modes [9]. Reliability is shown to increase

faster for wear-out failure modes with longer duration testing, and for random fail-

ure modes with more test units. The number of additional test units required to

demonstrate statistically high reliability for random failure modes of launch vehicles,

however, often exceeds budget requirements [5]. The second approach is to verify

that all functional objectives have been met efficiently and with minimum testing. In
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doing so, it is still necessary to test the engine within the full flight envelope, both

nominal and off-nominal conditions [5]. The specific test plan and functional objec-

tives will vary based on the type of engine. A complete list of functional objectives,

and the recommended development and qualification tests to verify them, are given

in Appendix A.

Early hot-fire test programs used a formal reliability demonstration approach to

qualification, e.g. F-1 and J-2. During these programs, each engine accumulated

thousands of starts and improved reliability directly through test-fail-fix cycles [48].

The SSME opted to use design verification specifications as a foundation for test

program development [17]. The goal of each test was not to simply demonstrate

reliability, but to verify that the design had met a specific requirement. This approach

was intended to reduce the cost of testing [92]. The prohibitively high cost of hot-

fire engine tests has continued to drive the evolution of liquid rocket engine test

programs. The RS-68 was successfully certified in 183 tests, the least number of tests

to qualification to-date [154]. This can be attributed to the advancement of computer

analysis techniques that identify failure modes prior to hardware fabrication and their

design-to-cost, objective based variable test/time approach [154].

A summary of the J-2, F-1, SSME, and RS-68 test programs is provided in

Table 27. The testing philosophy evolution that occurred between these projects

can be seen by the total number of tests, and total seconds of operation during de-

velopment and qualification. The formal reliability demonstration approach of earlier

engines required a significantly larger number of tests than later programs. The de-

sign verification specifications of the SSME reduced the total number of tests despite

being a human-rated, reusable engine. The RS-68 further reduced the number of

tests and test seconds by learning from past programs and focusing on risk reduction

during design. The objective-based approach used during testing allowed multiple

objectives to be accomplished in a single test, essentially increasing the fidelity of a
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given test [154]. The trend that can be seen in these programs is the push to reduce

rework cycles and increase the fidelity of tests earlier in the development process.

Table 27: Engine development and qualification summaries [49, 48, 154, 17].

Engine Cycle Year
Burn
Time (s)

Development
Tests

Qualification
Tests

Tests Seconds Tests Seconds
J-2 GG 6 450 1,700 160,000 30 3,807
F-1 GG 8 165 2,805 252,958 20 2,255

SSME SC 9 520 726 110,253 13 5,000
RS-68 GG 4 250 183 18,945 12

5.2 Baseline Strategy

To determine how a VVT strategy affects the reliability, cost, and schedule risk of

a program, alternative strategies are compared to the SSME baseline. Parts of the

SSME baseline were introduced in Chapter 3, but a complete definition of the system

is discussed in this section to provide the baseline for this application.

5.2.1 System Definition

The first step in defining the baseline is to define the system. Section 3.1.1 provided

a discussion on the operating characteristics and major components of the SSME.

Section 3.1.2 discussed the development test program details. The total number of

development tests, including qualification tests, is 726. For this application, the tests

are grouped by year and their fidelity is defined by the average duration. The number

of tests per year, average duration, and fidelity are restated in Table 28.

5.2.2 System Assessment

The next step in the process is to assess the system and determine the reliability

growth model assumptions and activity relationships. The availability of a compre-

hensive FMEA for the SSME provides most of this information in detail, enabling a
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Table 28: SSME Test History

Average Duration (s) Number of Tests Fidelity
2 27 0.15
21 107 0.51
97 184 0.74
158 132 0.82
183 121 0.84
283 128 0.91
400 21 1.0
520 6 1.0

well defined baseline for this application. The reliability growth model requires three

parameters: number of failure modes, probability of occurrence, and fix effectiveness

factor. The number of critical 1 failure modes was determined to be 7-8% of the total

failure modes based on the number of high risk failure modes identified in the FMEA

that would lead to LOC or LOV. The probability of occurrence beta distribution used

in Experiment 1 is used for these failure modes. The results of Experiment 1 and

2 demonstrated the accuracy of this assumption for predicting rework cycles during

SSME development history. These values are listed in Table 29.

These probabilities could be extracted directly from FMEA, if provided. Assump-

tion 3 for the Hall model, listed in Section 2.5.2, states that the initial failure mode

probabilities of occurrence constitute a realization of a simple random sample such

that Pi∼Beta(n, x). To represent the FMEA probabilities as a beta distribution,

maximum likelihood estimation is used to estimate the shape parameters x and n.

More current FMEA worksheets directly provide these probabilities or likelihoods of

failure modes. The SSME FMEA, however, provides a frequency of failure factor

based on the number of Unsatisfactory Condition Reports (UCR) [146]. A separate

study of SSME and J-2 engine failure data found that no empirical relation between

the number of UCRs and the number of premature engine cutoffs exists [33]. The

number of UCRs is instead driven by the number of inspections or tests that oc-

curred. For this reason, the assumed beta distribution given by Hall is used in this
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application.

Table 29: Reliability growth assumptions for application baseline

Parameter Value
Number of Failure Modes 160-182
Probability of Occurrence β(0.22,8.75)

FEF 90%-95%
Number of Tests 726

The activity relationships can also be extracted from the FMEA data. The total

number of failure modes was determined to be between 160 and 182 based on the

number of failure modes that would cause at least some damage. As stated previously,

the probability of those failure modes requiring redesign is 7-8%, i.e. the same number

of high risk failure modes used to calculate reliability growth. The percentage of those

failure modes that fall into the criticality 2 category is 70-85%. The remaining 7-23%

are considered the probability of retest. The SSME DSM used for this application

problem is provided in Figure 30.

Table 30: DSM for application baseline

1 2 3 4 ... 728
Design 1 U(.07,.10) U(.07,.10) U(.07,.10)
Mfc. 2 U(.70,.85) U(.70,.85) U(.70,.85)

Test 1 3 U(.05,.18)
Test 2 4 U(.05,.18)

... U(.05,.18)
Test 726 728 U(.05,.18)

After the baseline VVT strategy is fully defined, alternative strategies are identi-

fied for the SSME. Section 5.3.1 discusses the system definition and assessment of the

VVT alternatives for this application problem. The rework impact projection and

risk assessment of the baseline strategy and the alternative strategies are compared

in Section 5.4.
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5.3 Alternative Strategies

5.3.1 System Defintion

The RIVVTS methodology is used to evaluate each of the individual fidelity profiles.

The first step of system definition is not required because the alternative strategies

use the same system as the baseline VVT strategy. While this is necessary to enable

a fair comparison of the rework impact on different VVT activities, defining the VVT

activities for each strategy is still required.

The alternative VVT strategies are generated by deviating from the baseline strat-

egy. A curve fit was created using the test fidelity profile of the baseline using a

f(t) = 1− exp(a ∗ t) fit in MATLAB, where f(t) is the fidelity for test t = 1, ..., 726,

and fit coefficient a = 0.0059. The fit coefficient determines the shape of the fidelity

profile. For example, a lower coefficient would increase reliability at a less steep slope

and a higher coefficient would increase the fidelity earlier with a steeper slope. A

range of a values are used to generate the alternative testing strategies. Figure 62

illustrates the test fidelity profiles, where ai = mia for each alternative i = 1, ..., 35.

The multiplier, mi, ranges from 0.30 to 2 in 0.1 increments, resulting in 35 alternative

test profiles. For the baseline strategy a = 1. The minimum value for the multiplier

was selected as the test profiles begin to become less distinguishable from one another

as the multiplier approaches zero. At the minimum value of 0.3, the VVT strategies

are still distinguishable from one another. The maximum value was selected because

it is the first strategy that reaches over 1,000 tests, which is assumed to be excessive

for modern test programs as determined by the review of historical test strategies in

Section 5.1.

To determine the total number of tests for a given profile, Tai , an Effective Test

Effort (EFE) is calculated for the baseline test program. EFE is calculated by inte-

grating the area under the curve of the test profile, which is defined by the fidelity
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Figure 62: Alternative test fidelity profiles for SSME testing.

level of each test in the baseline VVT strategy:

EFE =

∫ T

1

f(t)dt (30)

where T is the total number of tests for the baseline case, and f(t) is the fidelity

at each test t. This value gives an indication of the level of effort that was applied

throughout testing, or a weighted equivalent flight calculation that accounts for the

nonlinear nature of fidelity during mission duration that was observed in Experiment

1b. The alternative fidelity profile is then integrated from 1 to t until the baseline

EFE is reached, and then Tai = t for profile ai. The 35 profiles plotted in Figure

62 range in total number of tests from 640 to 1029. After the fidelity level of each

activity in each of the alternative VVT strategies is defined using this method, the

cost and duration of the activities is determined.

The generic testing strategies developed for this application problem require as-

sumptions to be made for cost and duration based on historical testing costs. A review

of historical rocket propulsion testing determined the following to be the primary cost
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drivers for a test program [92, 121]:

1. Engine thrust class

2. Facility upgrade requirements

3. Project-specific modifications to the test facility

4. Number of tests and test duration

A comparison of various propulsion testing projects showed a positive correlation

between test project cost and the engine thrust level [121]. This does not apply to

this analysis because only a single engine is being considered. Similarly, the non-

recurring costs associated with the second and third drivers are equivalent to any

testing strategy for a given engine. The recurring cost of testing is addressed in

the last item. Increasing the number of tests allows the non-recurring costs to be

amortized over a greater number of tests, resulting in a lower cost per test when more

tests are conducted. The test duration increases cost due to the length of time the

test facility is used.

The use of generic testing strategies leads to two assumptions in regards to test-

ing cost and schedule. In this context, lower fidelity tests could represent different

component-level tests, short duration engine-level tests, or single-objective tests. Ad-

ditionally, not enough information is provided to assess the cost of component-level

tests. To enable a fair comparison between the alternative strategies, the first as-

sumption is that test costs will vary with fidelity level in relation to the test cost

distribution used in Experiment 3, Section 3.4.1. The equation for test cost is shown

below:

Test Costi = f 2
i ci (31)

where fi is the fidelity level of test i, and ci∼triangular(0.50, 0.55, 0.63)$M in $1996.

The fidelity squared term is included to represent the project testing cost driver

associated with recurring costs.
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The second assumption is related to the duration input for testing activities. The

testing schedule for the RS-68 program indicates that component-level tests occur

roughly twice as frequently compared to engine-level tests. This is illustrated in the

program gantt chart of the development testing phase [154]. An assumption for this

application problem is made based on the RS-68 test history. VVT activities with a

fidelity less than 0.225 are given a duration discount based on the component testing

rate experienced during the RS-68 development program. The fidelity value is also

selected based on the RS-68 case study, where component-level tests reached a fidelity

of 0.225. Activity duration is represented as follows:

Test Durationi =


fi <= 0.225 ∼triangular(3, 4, 6) ∗ 0.5 days

fi > 0.225 ∼triangular(3, 4, 6) days

(32)

5.3.2 System Assessment

In the system assessment, any required parameters that define the system are also held

constant. This includes the number of failure modes and the failure mode probability

of occurrence. The fix effectiveness factor is also kept the same since it is assumed

that the same approach to eliminating failure modes and increasing reliability is used

for any testing strategy for the same system. The only parameter that changes is the

total number of tests. This value is determined using the effective test effort, and is

different for each alternative. The reliability growth assumptions for the alternative

strategies are listed in Table 31. The DSM probabilities used in evaluating the baseline

are used for the alternative strategies.

The final two steps of the RIVVTS methodology, rework impact projection and

risk assessment, are presented in the following section. The results of these two steps

are compared to the baseline strategy and conclusions are drawn on the effect of VVT

strategies to mitigate the impact of rework cycles.
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Table 31: Reliability growth assumptions for alternative VVT strategies.

Parameter Value
Number of Failure Modes 160-182
Probability of Occurrence β(0.22,8.75)

FEF 90%-95%
Number of Tests vary

5.4 Results

The results of the RIVVTS evaluation of alternative VVT strategies are provided

in Figures 63-68. In each of these figures, the x-axis is labeled test number. This

value is the total number of tests required for each alternative VVT strategy to reach

the baseline Effective Test Effort, Equation 30. The total test number for a given

alternative is common to all figures.

Figure 63 provides the mean reliability projections for all of the strategies. From

this plot, it is clear that using the EFE to determine the total number of tests ensures

that every alternative meets the same reliability target, within 3%. The reliability

risk is presented in Figure 64 and demonstrates the similar reliability risk for each

alternative when compared to the baseline. This result is expected due to the tight

range of mature reliability estimates.

Figures 65 and 66 represent the total rework cost and total test cost, respectively,

for each of the 35 alternatives. The total cost of rework increases at the total number

of tests increases. The baseline rework cost for the SSME is $1.35 B in 1996 dollars.

The shaded region indicates the 5% and 95% confidence levels of rework cost for

the alternatives. As the total test number increases towards the baseline, the cost

of rework increases rapidly. This continues until approximately 800 tests, when the

cost of rework continues to increase with the test number, but at a less rapid pace.

The uncertainty of rework also increases with test number. The uncertainty range at

the lowest test number is 35% smaller than at the highest test number. This result

implies that the fewer number of tests required, the less total rework cost is incurred
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Figure 63: Mature reliability estimate for alternative VVT strategies.

Figure 64: Reliability risk for alternative VVT strategies.
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and this cost can be estimated with a greater level of certainty.

The alternative strategies that require a greater number of total tests, corre-

spondingly include a greater number of lower fidelity tests, which can be seen from

the alternative test profiles in Figure 62. This is relevant when considering the rate

at which rework cycles are uncovered. Based on the assumption established in Sec-

tion 2.7, that rework cycles cost more the later they occur, slower progressing test

programs will not perform as well in terms of rework cost. The F-1 and J-2 engines

are examples of this testing strategy, completing extensive component testing and a

large number of single-objective engine-level tests [92].

Figure 65: Total rework cost for alternative VVT strategies.

Figure 66 provides the total test cost for each alternative. The alternatives that

requirer fewer total tests have a higher total test cost. This is expected based on the

test cost assumption stated in Section 5.3.1. The more high fidelity tests in a given

test program, the higher the overall test cost. The lower fidelity tests are assumed to

cost less, and therefore, the slower progressing test programs will have a lower overall

test cost. The uncertainty on the test cost is low and consistent regardless of the total
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number of tests. The magnitude of test costs is significantly lower than the total cost

of rework for all of the alternatives. The impact of rework cost on the program is

in line with the historical cost distribution that was provided in Figure 46. The test

cost is typically 25% of the total development cost, almost half of the hardware costs

[154]. From this assessment, the rework cost is expected to drive the cost risk.

Figure 66: Total test cost for alternative VVT strategies.

The total duration for the alternative VVT strategies is provided in Figure 67,

and is plotted with the 5% and 95% percentiles. The test program duration increases

with total number of tests, as expected. The shorter duration, lower fidelity tests do

not provide enough of a schedule discount to overcome the higher number of tests

for the slower progressing test strategies. While the schedule prediction results are

not particularly interesting, the schedule risk results provide additional information

when compared to the cost risk.

The cost and schedule risks are plotted in Figure 68 versus the total test number.

The shape of the cost risk curve confirms the expectation that rework cost drives

the overall cost risk of the system. As the total number of tests required begins to
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Figure 67: Total duration for alternative VVT strategies.

exceed the baseline, the cost risk increases suddenly. Towards the end of the curve,

the last five or six scenarios, the cost risk begins to level out. The rework cost of

those alternatives also begins to level out, but the testing cost actually decreases.

Consequently, the cost risk increases less rapidly towards the slower progressing test

program alternatives and decreases slightly for the four alternative strategies with the

most tests. The total cost risk for the four strategies with the most tests decreases due

to the continuing decrease in test cost and lack of corresponding increase in rework

cost. By evaluating multiple alternative VVT strategies, a conclusion can also be

drawn on how VVT strategies can mitigate the impact of rework cycles. The total

cost and total cost risk curves indicate that fewer total tests with higher fidelities can

reduce the cost of unplanned rework. By increasing the fidelity of tests when possible,

the program incurs less rework cost.

The schedule risk axis is on the right axis of Figure 68. The schedule risk also

increases as total test number increases, but to a different degree than the cost risk.

The linear relationship between schedule and test number allows the quadratic risk
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impact function relationship to become evident in the schedule risk plot. While cost

risk begins to increase suddenly around the baseline value and level off towards the

longer test programs, the schedule risk does not increase until approximately test

number 850, where it begins to rapidly increase and continues to rapidly increase

towards the longer test programs. The schedule risk is based on the total duration

for the baseline case. The strategies with fewer tests than the baseline do not incur

schedule risk because they do not exceed the total baseline duration. This comparison

implies that cost risk due to rework is a bigger driver in liquid rocket engine test

programs than both test cost and schedule.

Figure 68: Cost and schedule risk for alternative VVT strategies.

The previous results for the alternative VVT strategies consider the individual

outputs of the RIVVTS methodology. The final step of the generic decision-making

process discussed in Section 2.3 is to select a VVT strategy. The ‘best’ VVT strategy

can depend on the overall risk profile for the program and the program priorities.

For example, some programs are more sensitive to cost than schedule, and can accept

additional tests to reduce overall test cost. Figure 69 provides an easier way to
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compare the RIVVTS output metrics by arranging them in a scatter plot matrix.

The scatter plot matrix is used to assess the relationship between multiple variables

simultaneously.

Reliability and reliability risk are excluded due to their uniformity for the alter-

native strategies. From this matrix, it can be shown that test cost is the only metric

with a negative correlation to the other metrics. Since early test planning is typically

based on only test cost and test schedule, a trade-off between increasing schedule and

increasing test cost could be made. If a program is being pressured to produce results

quickly, the VVT strategies with fewer total tests can be chosen up to the point where

the test cost becomes prohibitively high. Similarly, if cost is the primary driver of

VVT planning, the VVT strategies with more tests at lower fidelity have a lower test

cost, but require more time to complete.

While rework cost drives the overall program risk, as discussed previously, it is not

considered during test planning because it results from unplanned rework [64]. This

indicates that early VVT planning is performed with insufficient information regard-

ing the impact of rework cycles. Figure 70 illustrates the benefit of incorporating the

cost of rework during VVT planning. The highlighted point represents the strategy

with the fewest total number of tests. The total test cost for this strategy is the

highest, due to the increased number of high fidelity tests included in the strategy.

However, it has the lowest overall cost and schedule. It can be seen here that a short

test program with more high fidelity testing can mitigate the impact of unplanned

rework on the program. By including the impact of rework on a VVT strategy, the

scatter plot matrix allows for an additional metric to be used for strategy comparisons

and ultimately, the selection of a ‘best’ VVT strategy.
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Figure 69: Scatter plot matrix for cost, schedule, reliability, and risk of alternative
VVT strategies.
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Figure 70: Scatter plot matrix for cost, schedule, reliability, and risk of alternative
VVT strategies.
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5.5 Application Problem Summary

The application problem was designed to confirm that the research objectives were

met and to demonstrate the potential benefits of the RIVVTS methodology in re-

ducing the impact of unplanned rework cycles during VVT. Section 5.5.1 provides

a summary of the results from Section 5.4, and Section 5.5.2 reviews the overall re-

search objective requirements to confirm that they have been met by the application

problem.

5.5.1 Summary of Results

The SSME was selected as the system for this problem due to its long test history

which allowed for a detailed baseline to be used for comparison. The alternative

strategies were generated by first creating a curve fit of the actual SSME test fidelity

profile, and then perturbing that by small increments using a fit coefficient, which

equals one for the baseline. Fit coefficients less than one created VVT strategies

that consisted of more lower fidelity tests, and longer overall test programs. These

test strategies can be compared to the F-1 and J-2 engine programs that had a

comprehensive component test program and a high number of engine-level tests aimed

at reliability demonstration. Fit coefficients greater than one created VVT strategies

that required fewer overall tests, and increased test fidelity earlier in the test program.

These strategies can be compared to the RS-68 test program that utilized multiple-

objective tests and was able to certify the engine in a historically low number of

tests.

A total of 35 alternative test strategies were modeled for this application problem

using the RIVVTS methodology. These alternatives were compared based on the

estimated mature reliability, rework cost, test cost, and overall program schedule.

The mature reliability projection was relatively stable, all of the alternatives were

within 1% of the target value. This was expected due to the total number of tests
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being determined by the effective test effort. The total cost of rework increased rapidly

as the total number of tests increased, and continued to increase at a slower rate after

approximately 850 total tests. The uncertainty of rework cost also increased as the

test programs got longer, with the shortest test program uncertainty range being 35%

smaller than the uncertainty range for the longest program.

The cost of rework was determined to be the primary driver of risk because it

was the most sensitive to the total number of tests and the time at which rework

occurred. By using lower fidelity tests, failure modes took longer to uncover and

therefore, rework cycles to fix them were more costly. A greater number of tests also

resulted in an increase in schedule risk, but this increase was not observed until the

last 6 alternatives, wherein the total number of tests was greater than 850.

5.5.2 Research Objective Requirements

The application problem presented in this chapter was designed for two primary

purposes: first, to verify that the overall research objective and criteria are met,

and second, to demonstrate the possible benefits of the RIVVTS methodology on a

relevant launch vehicle subsystem. To verify that the research objective has been

met, the application problem outputs are compared to each criteria, and then to the

overall research objective.

The first criterion states that the method must produce quantitative means for

comparing alternative VVT strategies. This criteria can be confirmed by observing

the application problem results in Section 5.4. The use of four metrics to assess the

value of a single VVT strategy provides four distinct quantitative means for decision-

makers to compare strategies depending on the program priorities. A criterion for

quantitative outputs was included for all four metrics, having been derived from the

overall objective, to ensure this result.

Figures 63 - 68 illustrates the quantitative result of mature reliability, reliability
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risk, total rework cost, total test cost, total program schedule, and cost/schedule risk

for each VVT alternative strategy. Each point in Figure 63 provides the average ma-

ture reliability prediction which accompanies a complete reliability growth prediction

over the full test program. Similarly, the total rework cost plotted in Figure 65 can

be calculated as a cumulative cost over the length of the test program for additional

information. Figure 68 illustrates a quantitative trade that can be made by compar-

ing cost and schedule risk. By observing these outputs, it can be confirmed that the

first overall research criterion is met.

Figures 65 and 67 can also be used to confirm that the second overall criterion

is met. It states that a quantitative estimate for the impact of rework on cost and

schedule be provided by the RIVVTS methodology. These figures demonstrate the

ability of the engineering build-up cost methodology and DSM schedule representation

to provide realistic and quantitative estimates for the impact of rework during VVT.

The final requirement is that the method be scalable and flexible enough to use for

large complex systems. The application problem included testing strategies that range

from 600 to over 1,000 tests at different fidelity levels. This range demonstrates the

flexibility and scalability of the RIVVTS methodology. The run-time for changing the

discrete event simulation model was evaluated to address the issue of flexibility. While

a single simulation run only takes 2-4 seconds for a given test strategy, changing the

model to a different test strategy takes between 15 minutes to an hour, depending

on the number of activities being modeled. A Simio add-on allows an automated

transition between strategies. The full test problem included 1,000 runs each for 35

alternative strategies. At approximately 3 seconds per run and 30 minutes between

alternatives, the test problem was completed in less than 2 days. This physical

evaluation of the RIVVTS model demonstrates its adaptability to a wide range of

fidelities and activities.

The results of the application problem can therefore be used to verify that the

183



original requirements for the research objective have been met. The application prob-

lem provides quantitative metrics to select between VVT alternatives, two of these

metrics include quantitative estimates for the impact of rework during VVT, and the

overall methodology is scalable and flexible for large complex systems.
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CHAPTER VI

CONCLUSION

6.1 Summary of Findings

The goal of this research was to develop a methodology for evaluating the impact of

rework cycles on the verification, validation, and testing of launch vehicle systems. In

Chapter 1 the difficulty of achieving first-flight for launch vehicle programs in recent

history was discussed. Excessive cost overruns and schedule slippages have resulted in

program cancellations and left the U.S. without the ability to independently launch

people into space since 2011. The unplanned rework that occurs during VVT was

shown to be a significant contributor to these overruns, but has not been explic-

itly considered during VVT planning. This observation led to the overall research

objective for this thesis with is restated below.

Research Objective

Reduce cost and schedule overruns by modeling the effects of unplanned

rework on the verification, validation, and testing of launch vehicle systems,

and determining how VVT strategies can mitigate those effects.

The first research question posed in Section 2.3 addressed the foundation of this

methodology by asking what are the necessary components to provide a complete

assessment of the value of a VVT strategy. In Section 2.4 the academic efforts to

improve VVT planning and the current industry standard approach were discussed

and categorized into cost or cost versus benefit approaches. The cost versus benefit

approaches were determined to provide a more comprehensive value according to the

formal definition of VVT stated in Section 2.2.1. To provide a complete assessment,
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four metrics were chosen to evaluate a VVT strategy: quality, cost, schedule, and risk.

The literature review and background research conducted to determine the necessary

output of this methodology led to the following conjecture:

Conjecture: 1

If quality, cost, schedule, and risk are used as metrics to evaluate the impact

of rework during VVT, it will provide the most complete assessment of

VVT activities, and will enable a quantitative comparison of alternative

VVT strategies.

After selecting the four metrics for evaluating a VVT strategy in conjecture 1,

existing techniques for evaluating each metric were reviewed and discussed to further

develop those components of the overall methodology. The measure of benefit pro-

vided by VVT — referred to as quality — was inconsistently defined in the existing

VVT planning approaches. Technical performance measures, risk reduction, rework

reduction and other measures of quality were discussed in Section 2.5. Section 2.5.1

discussed the current priorities for NASA’s SLS development program to provide

context in determining an appropriate quality measure for this research. NASA’s

current focus on improving the reliability of SLS by an order of magnitude over pre-

vious launch vehicles led to the formulation of conjecture 2.

Conjecture: 2

If reliability is used as a quality metric for launch vehicle systems, it will

provide a quantitative representation and accurate measure of quality for

VVT activities.

The selection of reliability as a measure of quality for launch vehicle VVT strate-

gies led to a review of the following commonly used reliability analysis techniques in

Section 2.5.2: fault tree analysis, reliability block diagrams, failure mode and effect
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analysis, and reliability growth models. The merits of these techniques were discussed,

and ultimately, discrete reliability growth projection was chosen to evaluate reliabil-

ity during development testing phases. A number of models that had already been

proven to accurately estimate launch vehicle reliability growth were then reviewed,

and Hall’s discrete reliability growth model was selected for use in this methodology.

Experiment 1a was designed to test the accuracy of Hall’s model during VVT. The

assumption that all trials or tests were equivalent was found to be a weakness when

using Hall’s approach across the full testing phase, where tests of different fidelity

levels were conducted. An adaptation of Hall’s model was suggested in Section 3.2.3,

in which the fidelity of each test would be defined by the percentage of failure modes

that could be uncovered during a given test. Experiment 1b was conducted to test

the use of different fidelity levels to determine if an appropriate fidelity measure could

be identified and used to improve upon Hall’s model for use during VVT. Three fi-

delity definitions were used as comparison, based on identified approaches to defining

equivalent flights in the literature. The results substantiated hypothesis 2a.

Hypothesis: 2a

If Hall’s reliability growth model is adapted to include defect elimination

as a function of test fidelity, it will provide reliability projection with quan-

titative insight into individual VVT activities.

After it was determined that the adapted discrete reliability growth model could

be used to accurately project reliability during VVT, additional research questions

were posed to further define the remaining evaluation metrics. Section 2.6 reviewed

common schedule projection techniques and discussed their strengths and weaknesses

as applied to this problem. For VVT schedules, a DSM was identified as a concise

way to represent activity relationships and allow for the stochastic nature of rework

cycles to be modeled. A weakness in the current use of DSMs to represent rework
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was identified in the implicit evaluation of internal rework within an activity. Exper-

iment 2 was designed to address this weakness, and verify that the use of internal

rework probabilities would result in a more accurate schedule estimate. The results

of Experiment 2 substantiated hypothesis 3.

Hypothesis: 3

If a DSM is adapted to explicitly account for the probability of internal re-

work, it will provide a stochastic and quantitative model of rework impacts

that is more accurate for VVT processes than if internal rework is implicitly

included in the activity duration distribution.

The cost of VVT activities is a necessary consideration when choosing a VVT

strategy. Additionally, the cost of rework during VVT was identified as a significant

contributor to the cancellation of launch vehicle programs in recent history. There-

fore, a cost metric is included in VVT strategy assessment. Current cost estimating

techniques and reliability-based cost estimating techniques were reviewed for use in

this methodology. The reliability-based methods were generic in general, and the

Rocketdyne method did not account for the stochasticity of rework cycle occurrence.

The bottom-up, engineering build-up approach was determined to be flexible enough

to account for stochasticity, and more accurate than historical data-based methods.

The following conjecture was made to assess cost of VVT activities and the impact

of rework cost.

Conjecture: 4

Using engineering build-up to calculate cumulative cost will give a quanti-

tative estimate that is more accurate than historical data based methods

and accounts for the stochastic nature of rework cycles.
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After techniques for reliability, cost, and schedule assessment were identified, re-

search question 5 was asked the most appropriate use of different input distribu-

tions and uncertainty quantification techniques for risk assessment. Section 2.8.1.1

discussed the commonly used uncertainty categorizations to determine the type of

uncertainty present during VVT. The presence of aleatory uncertainty, by definition,

cannot be eliminated, while VVT activities are designed to reduce the endogenous

epistemic uncertainty that exists during early design. Section 2.8.1.2 reviewed the

necessary components for quantifying uncertainty to determine an approach for this

methodology, starting with the input variable distributions. The triangular distribu-

tion parameters — pessimistic, optimistic, and most likely values — are more intuitive

than the abstract shape parameters required for a Beta or Weibull distribution. For

this reason, the triangular distribution was determined to be a more traceable option

for assessing the input distributions of the cost and schedule for an individual activity.

In quantifying the uncertainty of rework impact, a discrete event simulation was

chosen to allow for the stochastic nature of rework cycle occurrence and impact to

be captured. Section 2.7 discussed the change in rework cycle cost as the system

progresses through the development phase. The DES evaluates the system at discrete

steps in time to determine if rework has occurred and assess the impact. The ability to

account for the stochastic nature of rework cycles, as well as the quantitative output

of reliability, cost, and schedule distributions makes the DES the best choice for this

methodology. The resulting output distributions are then used to calculate the risk

level of a given VVT strategy using a quadratic impact function. This led to the

formulation of conjecture 5 in response to this research question.
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Conjecture: 5

• Using triangular input distributions, the assumptions required will be

more traceable than if beta and Weibull distributions are used.

• If DES is used for simulation, the results will allow for quantitative

comparisons between VVT strategies and account for stochasticity of

rework cycles.

The last research question was posed in Section 2.9 to determine how the probabil-

ity of rework can be determined. Many approaches to estimating design rework cycles

were presented in Section 2.9.2, but few address the rework during VVT. Historical

data-based methods and expert opinion were the most commonly used approaches,

but can be subject to bias by the estimator. The Rocketdyne TUF metric was a more

relevant approach, but is limited to estimating the total number of rework cycles and

neglects their stochasticity. FMEA was identified as a possible technique that is more

traceable than expert opinion and historical data-based methods and can be used to

predict when rework occurs. As a commonly used reliability analysis technique, uti-

lizing FMEA for this purpose requires no additional effort on the part of the designer.

A comprehensive FMEA provides total number of failure modes, failure probabilities,

and severities. Experiment 3 was designed to test the use of FMEA for estimating

the probability and impact of rework cycles. Utilizing Hall’s indicator function to de-

termine when rework cycles occur based on the failure mode probabilities proved to

be an accurate prediction of rework cycles when compared to the actual rework data

from an existing system. The results of this experiment substantiated hypothesis 6,

which is restated below.
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Hypothesis: 6

If subsystem and system level FMEA is performed, then the resulting data

will provide quantitative rework probabilities that are more traceable than

expert opinion and the data will be more readily available than expert

opinion and all historical data based methods.

These research questions, literature review, and experiments were used to develop

the individual components of the RIVVTS methodology. The complete method was

tested on a case study, where the output was compared to actual data from the

RS-68 engine. The purpose of this example was to illustrate that this methodology

accurately captures the occurrence and impact of rework cycles seen during VVT.

The secondary purpose of the example was to validate the development of the cost,

schedule, and reliability assumptions for future applications of this method.

Finally, this method was applied to alternative VVT strategies for a relevant

launch vehicle subsystem, the Space Shuttle Main Engine. The alternative VVT

strategies were evaluated to determine how the impact of rework can be mitigated

through VVT activities. The results give interesting observations regarding the ben-

efit of comprehensive component testing versus early integrated testing. Ultimately,

this final application problem demonstrates the merits of this methodology in evalu-

ating VVT strategies and provides a risk-informed decision making environment to

reduce the impact of rework cycles on the verification, validation, and testing process

of launch vehicle systems and subsystems.

6.2 Contributions

The work in this thesis provides multiple contributions to improve the test planning

process for launch vehicles. These contributions relate to the overall research objective

and to the individual techniques used to address it.

The first contribution is in the field of reliability projection across testing phases.
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A discussion of reliability growth models in Section 2.5.2 identified weaknesses in the

use of discrete models during testing. Many authors suggest that their method can

be used during testing, but the assumption that each test has an equal probability of

uncovering all failure modes is a limiting assumption when applying it to tests with

varying fidelity levels. A hypothesis was made to adapt an existing discrete reliability

growth model to account for test fidelity levels to provide more insight into the effect

individual tests have on reliability. Experiment 1 tested the use of different test

fidelity definitions to model the reliability of an actual system during development

testing, and ultimately substantiated that a functional fidelity level definition could

be used to accurately project reliability growth across test phases. The following

case study in Chapter 4 further validated the use of this adapted reliability growth

model on an actual system. This contribution is an improved method of predicting

reliability growth during testing with varying levels of fidelity while the effects of

individual tests are represented.

The second contribution is in the prediction of unplanned rework occurrence and

impact. In Section 2.9, research question 6 was introduced and options for estimating

the probability of rework cycles were discussed. During this discussion, weaknesses

in the existing methods were identified. FMEA was suggested as a method to over-

come these weakness and improve the traceability of rework estimates. Experiment

2 was designed to test the use of FMEA for estimating the number of rework cycles,

and probability of failure occurrences when combined with Hall’s adapted reliabil-

ity indicator function. Previous attempts to estimate rework failed to account for

the stochasticity of their occurrence and impact. The results of this experiment il-

lustrated the usefulness of this approach. The case study presented in Section 4.6

further demonstrated the ability of this approach to accurately estimate the cumula-

tive rework cycles of the RS-68 engine development program. The results from the

experiment and case study validated the use of FMEA and the adapted indicator
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function as an accurate and traceable approach to predicting rework cycles during

VVT.

The third contribution is provided by the actual RIVVTS methodology. The

research objective was to reduce cost and schedule overruns by modeling the effects

of unplanned rework on the verification, validation, and testing of launch vehicle

systems, and determining how VVT strategies can mitigate those effects. The criteria

for this objective were generated through a discussion on what constitutes a complete

assessment of a VVT strategy and what is the desired output of this methodology.

Ultimately, it was determined that this research must provide a quantitative means

of comparing alternative strategies that assesses the impact of rework cycles for a

risk-informed decision making environment. These derived requirements were based

on identified weaknesses of the industry standard approach in VVT planning, and

therefore, represent improvements on the current state-of-the-art approach.

The RIVVTS methodology provides a much needed link between VVT planning

and the impact of rework cycles. Typically, VVT planning is based one subjective

expert opinion while considering overall cost, schedule, and risk to the program. A

lack of structured assessment and no explicit rework impact projection limits the

ability to quantitatively compare alternative VVT strategies. With the RIVVTS

method, decision makers can now consider the impact of rework cycles throughout the

development testing process when planning VVT activities. The application problem

presented in Chapter 5 demonstrates that this method is well suited for conducting

cost versus benefit trades for alternative strategies, which can help decision makers

during VVT planning.

This method also provides a flexible and traceable approach to assessing a VVT

strategy depending on the current phase of the design process. For early design test

planning, the assumptions can be made at the system level and test definitions can be

grouped according to test phases. This provides the design team with a quantitative
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assessment of rework impact on a given system earlier in the design process. As the

program progresses and enters detailed design, the assumptions can be generated at

the component level and test can be defined individually. This flexibility allows the

method to be applied throughout the development process, and updated as more

information becomes available.

6.3 Future Work

During the development of this research, several additional areas of interest were

identified for future work. These areas concern both the specific components within

the RIVVTS methodology, but also directions to expand upon the foundation this

method has created.

The first area for improvement of the RIVVTS methodology is to expand the

DSM to incorporate parallel testing activities. Testing often occurs simultaneously at

multiple sites. For example, engines testing is assumed to be conducted at a minimum

of two sites. While this reduces the overall schedule, it increases the uncertainty in

reliability and rework estimation. By assuming sequential testing activities, the full

capability of discrete event simulation was not utilized. The benefit of using DES over

Monte Carlo Simulation is the ability represent state changes at discrete times in the

system, making it ideal for navigating two parallel test executions that start and

stop at different time steps. Increasing the capability of the RIVVTS methodology

to include parallel testing would provide a more accurate assessment of reliability in

real-time.

The second area for potential research would be to implement a more complex

reliability growth model. The adapted Hall model represents component testing as

a subset of system reliability. A more complex reliability growth model could enable

reliability projections at the component level. The CONTRAST method discussed

in Section 2.5.2 would be well suited to supplement this research. Already based on
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the Hall model, CONTRAST uses the reliability growth models at the subsystem

level, and then uses FTA to aggregate the lower level reliabilities to the system level.

It was considered for the initial development of this methodology, but the additional

assumptions required to generate the lower level reliability growth curves were deemed

unnecessary. Combining CONTRAST and RIVVTS would provide more insight into

the cost, schedule, and reliability of complex systems during development testing.

The third, and perhaps, simplest area for future work would be to include an

optimization routine to find an optimal VVT strategy based on the rework impact

evaluation provided by RIVVTS. A discrete, multi-objective optimization routine

like the NSGA-II would be ideally suited for this problem. NSGA-II is a popular

non-domination based genetic algorithm that was identified as a potential option for

optimizing this problem during preliminary research. With the model in place, an

optimization based on weighted objectives of minimizing cost, schedule, and reliability

risks would provide another tool for risk-informed decision making.
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APPENDIX A

DEVELOPMENT AND QUALIFICATION TEST MATRIX

[5]
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Component Engine
Objective Dev Qual Dev Qual

P
er

fo
rm

an
ce

Steady State Performance Characterization X X
Repeatability X X
Run-time Trends X X
Engine Influence Coefficients X X
Mixture Ratio Excursions X X
Thrust/Mixture Ratio Margin Demonstration X X
Ignition System X X X X
Turbomachinery X X X
Combustion Devices X X X

L
if

e

Operational Life/Durability X X X X
Single Burn Endurance Test X X
Service Live, Number of Starts X X
Acceptance Test Validation X X

F
u
n
ct

io
n
al

C
h
ar

ac
te

ri
st

ic
s

Cold Shock Tests X
Cold Flow Tests X X X
Propellant Conditions
- Pre-start Chilldown X X
- Start Propellant Conditions X X
- Steady State X X
- Shutdown Propellant Conditions X X
Transient Characterization
- Start Transient X X
- Restart X X
- Throttle Transient X X
- Shutdown Transient X X
- Abort Shutdown X X
NPSP Margin and Cavitation X X X
Pogo and Compliance Characterization X X X
Ancillary Subsystems
- Autogenous Pressurization X X
- Valve Actuation X X X X
- Purges X X X X
- Electrical Power and Integration X X X X
Thrust Vector and Gimballing
- Gimbal Limits X X X X
- Roll Control Limits X X
- Ambient Environment X X
- Inspections X X X X
- Heat Flux X X
- Clearance X X
- Interface Compatibility X X
- Thrust Vector Alignment X X
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Component Engine
Objective Dev Qual Dev Qual

C
on

tr
ol

s Functional Tests X X X X
Eng. Control System Malfunction Logic Check X X X X
Engine Health Management X X X X

O
p

er
at

io
n
s

Pre-Test Inspections and Checkouts X X X X
Leakage X X X X
Post-Test Inspections X X X X
Drying Purges X X
Line Replaceable Unit Demonstrations X X
Reusability X X X X
Operability X X
Preflight Procedures and Flight Sequences X X

E
n
v
ir

on
m

en
ts

Thermal Environment X X X X
Climatic Tests X X X X
Vibration/Shock/Acoustics
- External Vibration X X X
- Self-induced Vibration X X X
Modal Surveys/Testing X X
Vehicle Interface Loads X X
Electromagnetic Interference/Compatibility X X X

D
es

ig
n

Proof Pressure X X
FOD/DOD Tolerance X X
Structural Model Validation X X
Margin Testing X X
Human Rating X X X X
Hardware Discrepancy Tracking X X X X

P
h
y
si

ca
l

Gas Liquefaction Control X X X
External Icing Control X X
Mass Properties
- Mass X X X X
- Center of Gravity X X X X
- Moments of Interia X X X X
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