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ABSTRACT OF DISSERTATION 
 
 
 
 

AN ANALYSIS OF BEHAVIORAL FLEXIBILITY AND CUE PREFERENCE IN 
PIGEONS UNDER VARIABLE REVERSAL LEARNING CONDITIONS 

 
Behavioral flexibility, the ability to change behavior in accordance with the 

changing environment, was studied in pigeons using a series of reversal learning 
paradigms. All experiments involved a series of 5-trial sequences and I was interested in 
whether pigeons are sensitive to the reversal by switching to the other alternative after a 
single error. In Experiments 1 and 2, the overall probability of the two stimuli was 
equated over sequences, but the probability correct of the two stimuli changed across 
trials. In both experiments, subjects showed no sensitivity to the differences in sequence 
type. Instead they used the overall average of the probability of reinforcement on each 
trial as the basis of choice. 

 
In the final two experiments, the likelihood that a reversal would occur on a given 

trial was equated such that there was an equal overall probability that the two stimuli 
would be correct on a given trial, but the overall probability of each stimulus being 
correct across sequences favored the second correct stimulus (S2). In Experiment 3, the 
overall probability of S2 correct was 80%, and results showed that subjects consistently 
chose S2 regardless of sequence type or trial number. In Experiment 4, the overall 
likelihood of S2 correct was 65%, and results showed that subjects began all sequences at 
chance, and as the sequence progressed, began choosing S2 more often. 

 
In all experiments, subjects showed remarkably similar behavior regardless of 

where (or whether) the reversal occurred in a given sequence. Therefore, subjects 
appeared to be insensitive to the consequences of responses within a sequence (local 
information) and instead, seemed to be averaging over the sequences based on the overall 
probability of reinforcement for S1 or S2 being correct on each trial (aggregate 
information), thus not maximizing overall reinforcement. Together, the results of this 
series of experiments suggest that pigeons have a basic disposition for using the overall 
probability instead of using local feedback cues provided by the outcome of individual 
trials. The fact that pigeons do not use the more optimal information afforded by recent 
reinforcement contingencies to maximize reinforcement has implications for their use of 
flexible response strategies under reversal learning conditions. 



KEYWORDS:  Behavioral flexibility, Reversal learning, 
Discrimination learning, Probability learning, Timing 

 
 
 
 
 
 
 
 
 
 
 
 
 

    Rebecca Marie Rayburn-Reeves 
Name 

 
November 17, 2011 

Date 
 



 
 
 
 
 
 
 
 
 
 
 

AN ANALYSIS OF BEHAVIORAL FLEXIBILITY AND CUE PREFERNCE IN 
PIGEONS UNDER VARIABLE REVERSAL LEARNING CONDITIONS 

 
 
 
 
 

BY 
 

Rebecca Marie Rayburn-Reeves 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Thomas R. Zentall 
Director of Dissertation 

 
David Berry, Ph. D. 

Director of Graduate Studies 
 

November 10, 2011 
Date 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

DEDICATION 
 

This paper is dedicated to my mother, Linda Rayburn, who taught me to never 

give up on myself, or the things I have a passion for, and to treat each challenge as an 

opportunity for greatness. 



iii 
 

ACKNOWLEDGMENTS 
 

I would like to thank Dr. Tom Zentall for his thoughtful guidance and ongoing 

patience, support, and expertise during the course of my graduate studies and especially 

through the dissertation process. I have learned from Dr. Zentall more in these past four 

years, both about the importance of comparative cognition to our understanding of 

evolution and of the rudiments of human behavior, and also about my own strengths as a 

researcher and as an academic. Thank you Z, for everything you have helped me to be. 

I would also like to thank Dr. Philipp Kraemer for his advice and support during 

this last year of my graduate studies. He has been a wonderful person to work for and has 

been integral in developing and broadening my research skills in various aspects of 

psychology. It has been a pleasure to work with him. 

I would like to extend a thank you to my other committee members, Dr. Ramesh 

Bhatt, Dr. Phil Crowley and Dr. Yang, as their advice and thoughtful comments about my 

work undoubtedly helped to create a more cohesive dissertation. 

And of course, I would like to sincerely thank my cohorts, Dr. Holly Miller, 

Kristina Pattison, Jenifer Laude and Jessica Stagner, for their continued support and 

advice through the years, as well as their love and respect for me through it all. 

I’d like to thank my family and friends as well, for without them, this experience 

would have been significantly more difficult. To my friend Judy Strosnider, for her 

amazing support and confidence in me. To my father, James Reeves, for being such an 

inspiration through my life and an amazing mentor. To my brother, Danny Rayburn- 

Reeves, for always challenging me to think critically and thoroughly about everything, 



iv 
 

and last but not least, to my mother, Linda Rayburn, for being my biggest supporter in 

life. 

Finally, I would like to thank my partner, Brandi Lowe, for encouraging me 

through the final year of school and throughout the dissertation process. The challenges 

in life are welcomed when you have people in your life who make it all worthwhile and 

who support and love you even when the chips are down. 



v 

 

TABLE OF CONTENTS 

Acknowledgments..............................................................................................................iii 

List of Tables.....................................................................................................................vii 

List of Figures...................................................................................................................viii 

Section 1..............................................................................................................................1 
Discrimination Learning..........................................................................................1 
Discrimination Learning Set....................................................................................3 
Reversal Learning....................................................................................................4 

 
Section 2.............................................................................................................................24 

Experiment 1.................................................................................................................24 
Method...................................................................................................................24 

Subjects......................................................................................................24 
Apparatus...................................................................................................25 
Procedure...................................................................................................25 

Results....................................................................................................................26 
Discussion..............................................................................................................32 

 
Section 3.............................................................................................................................36 
Experiment 2......................................................................................................................36 

Method...................................................................................................................37 
Subjects......................................................................................................37 
Apparatus...................................................................................................37 
Procedure...................................................................................................37 

Results....................................................................................................................37 
Discussion..............................................................................................................44 

 
Section 4.............................................................................................................................47 
Experiment 3......................................................................................................................47 

Method...................................................................................................................48 
Subjects......................................................................................................48 
Apparatus...................................................................................................48 
Procedure...................................................................................................48 

Results....................................................................................................................50 
Discussion..............................................................................................................54 

 
Section 5.............................................................................................................................55 
Experiment 4......................................................................................................................55 

Method...................................................................................................................57 
Subjects......................................................................................................57 
Apparatus...................................................................................................57 
Procedure...................................................................................................57 



vi  

Results....................................................................................................................58 
Discussion..............................................................................................................61 

 
Section 6............................................................................................................................64 
           General Discussion.................................................................................................64 

 
References.........................................................................................................................76 

 
Vita....................................................................................................................................84 



vii  

LIST OF TABLES 
 

Table 1, Experiment 1........................................................................................................27 
 

Table 2, Experiment 2........................................................................................................38 
 

Table 3, Experiment 3........................................................................................................49 
 

Table 4, Experiment 4........................................................................................................56 



viii  

LIST OF FIGURES 
 

Figure 1…………………………......................................................................................11 
 

Figure 2…………………..................................................................................................12 
 

Figure 3………………......................................................................................................15 
 

Figure 4………………......................................................................................................16 
 

Figure 5………………......................................................................................................18 
 

Figure 6………………......................................................................................................19 
 

Figure 7………………......................................................................................................21 
 

Figure 8………………......................................................................................................28 
 

Figure 9………………......................................................................................................30 
 

Figure 10………………....................................................................................................31 
 

Figure 11………………....................................................................................................40 
 

Figure 12………………....................................................................................................41 
 

Figure 13………………....................................................................................................43 
 

Figure 14………………....................................................................................................51 
 

Figure 15………………....................................................................................................52 
 

Figure 16………………....................................................................................................53 
 

Figure 17………………....................................................................................................59 
 

Figure 18………………....................................................................................................60 
 

Figure 19……………...,....................................................................................................62 
 

Figure 20……………...,....................................................................................................72 



1  

Section 1 
 

Behavioral flexibility, described by Bond, Kamil, and Balda (2007), is the ability 

to respond rapidly to environmental changes and to be ready to seek out alternative 

solutions to problems encountered, if initial strategies are not effective. The term 

flexibility has been defined in various ways and has been used as a synonym for other 

concepts such as ‘adaptability’ or ‘plasticity’ (Peters, 1981). Stenhouse (1974) made use 

of the term flexibility when he described intelligence as “…the built-in flexibility that 

allows individual organisms to adjust their behavior to relatively rapidly changing 

environments” (p. 61). For comparative psychologists, the study of the ways in which 

animals learn about the environment and adjust their behavior in accordance with 

changing conditions is one way in which we can study the various aspects of their 

cognitive capabilities. Learning itself involves behavior that can be modified in order to 

adjust to new events in the environment based on previous experience. Papini and Ishida 

(1998) argued that studies investigating the comparative analysis of learning “…help us 

understand how learning capacities evolved, what function they serve, and what types of 

specialized abilities are there in different animals” (p. 3). 

Discrimination Learning 
 

The development of simple learning processes, such as discrimination learning, 

require the use of flexible behavior because the organism must learn to respond 

differentially to two stimuli on the basis of learning which stimulus results in 

reinforcement (Hulse, Egeth, & Deese, 1980). One type of discrimination learning 

problem is called a simultaneous discrimination, in which an organism is presented with 

two stimuli at the same time and is allowed to choose between them. In this task, choice 
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of one stimulus (S+) is designated as correct and results in reinforcement, whereas choice 

of the other stimulus (S-) is incorrect and results in the absence of reinforcement. A 

subject is typically given repeated trials with the same contingencies in effect until it is 

responding to only the S+ stimulus. The learning of a discrimination can be explained by 

the build-up of associative strength (excitation) through the repeated pairing of a 

particular response (e.g., pecking a red key light) with reinforcement and the pairing of 

another response (e.g., pecking a green key light) with the absence of reinforcement 

(inhibition), through a process called trial and error learning. The number of trials it takes 

to reach a criterion of performance (e.g., 90% correct over a block of trials) can be used 

as a measure of the difficulty of the discrimination as well as the rate at which an 

individual is able to form an association between the stimulus and the response associated 

with the presence of that stimulus, which signals the availability of reinforcement. 

The rate of simple discrimination learning may depend largely on certain aspects 

of the stimuli, (the modality, dimension, and how far apart the stimuli are along the 

chosen dimension), how the stimuli are presented (simultaneously or successively), 

response topography (key pecking or lever pressing), the methodological conditions (the 

inter-trial interval, delay of reinforcement) and reinforcement (duration and magnitude). 

Therefore, the rate of discrimination learning is susceptible to differences in various 

aspects of the procedure, which means that rates of learning across species tells us more 

about the appropriate elements of the procedure than the cognitive capacities of various 

species. 
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Discrimination Learning Set 
 

A more complex discrimination learning procedure is one that presents a series of 

simple simultaneous discriminations over time. For example, in learning set procedures, 

an animal is presented with a simultaneous discrimination for a particular number of 

trials (e.g., 6), after which, a novel pair of stimuli are presented and a new discrimination 

must be learned. The benefit of providing multiple discrimination problems is to evaluate 

whether an animal can learn to use relevant information from previous discriminations to 

improve learning of new discriminations. For example, the learning set procedure, 

originally developed by Harlow (1949), tested monkeys on a series of simple 

simultaneous discrimination problems. Subjects were presented with a series of problems 

involving a choice between two three-dimensional objects. Choice of one object but not 

the other resulted in reinforcement. After a number of trials with the same discrimination, 

the objects were replaced with novel objects and, again, one of them was arbitrarily 

assigned as correct. In this manner, Harlow’s monkeys received 344 pairs of novel 

objects. He observed that with early problems, subjects showed a gradual increase in 

choice of the correct stimulus over consecutive trials, a type of behavioral pattern 

indicative of trial and error learning. With later problems, however, Harlow (1949) 

observed that the monkeys consistently chose the correct stimulus on the second trial of a 

problem. He explained this change in accuracy as the acquisition of a ‘learning set’, 

which he defined as “learning how to learn efficiently in a situation an animal frequently 

encounters” (p. 51). Schrier and Thompson (1984) described ‘learning set’ formation as a 

steady, progressive improvement across problems, often to the point where only one trial 

is necessary to form the discrimination. That is, an animal that shows evidence of 
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‘learning set’ uses the information from Trial 1 as a basis for choice of stimulus on Trial 
 

2 (Thomas, 2006). In this way, the animal learns that the information afforded by the 

outcome is the cue that allows the animal to maximize reinforcement on subsequent 

trials. This ability to maximize reinforcement after the first trial within a problem and 

across problems in a similar manner has been called as a “win-stay, lose-shift hypothesis” 

(Levine, 1965). Specifically, a win-stay, lose-shift strategy would be one in which the 

animal forms two specific rules; choose the stimulus to which responding was reinforced 

on the previous trial (win-stay), and switch to the alternative stimulus following a single 

unreinforced response (lose-shift). In this way, an animal must learn to treat each new 

problem independent of the last, even (and especially) when objects are used repeatedly 

over problems, because the value of that stimulus is based solely on the outcome of the 

first trial of a new problem. However, the animal must also learn that trials within a given 

problem are not independent of one another, as the outcome of the previous trial serves as 

a signal for the positive (S+) stimulus on the next. Harlow’s research demonstrates how 

complex forms of learning, such as win-stay/lose-shift rules, can gradually develop over 

time, when an animal is given multiple examples of a particular problem (Schrier, 1984). 

Reversal Learning 

A task related to learning set is reversal learning. Behavioral flexibility studied in 

reversal learning tasks measures sensitivity to changing reinforcement conditions 

involving a simple set of stimuli, typically two. The most frequently used reversal 

learning task is one in which two stimuli are simultaneously presented to a subject, with 

one stimulus arbitrarily assigned as correct and the other as incorrect. Subjects are 

presented with this pair of stimuli until they reach a criterion (e.g., 9 out of 10 
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consecutive trials correct) at which point the contingencies are reversed such that choice 

of the previously incorrect stimulus is now reinforced and choice of the previously 

correct stimulus is no longer reinforced. This new contingency remains in effect until 

subjects reach criterion, at which time the contingencies are again reversed. In this serial 

reversal task (also called habit reversal learning; see Bitterman, 1965) the same two 

stimuli are always presented but their values change with each reversal (Mackintosh, 

McGonigle, Holgate, & Vanderver, 1968). The question is, will animals show improved 

reversal learning with successive reversals. If one uses original learning as a baseline 

against which to measure improvement, one should be able to control for the difficulty of 

the original discrimination. That is, the degree of improvement relative to baseline should 

be a measure of the animal’s cognitive flexibility (Bitterman, 1965, 1975). As with 

learning set tasks, the development of a win-stay/lose-shift rule would provide the 

maximum amount of reinforcement. 

Serial reversals allow the same pair of stimuli to be used repeatedly, with just the 

change in contingency used as a basis of information for subsequent behavior. Therefore, 

an animal that can reverse rapidly (within a few trials) to the newly reinforced stimulus 

shows strong evidence that it has freed itself from the constraints of association-based 

trial and error learning and has learned instead to respond based on the immediate 

feedback associated with the most recent trial’s outcome. That is, as with learning set 

tasks, the information afforded by the outcome serves as the cue for which response will 

be reinforced on the next trial. One advantage of learning set tasks is that there should be 

less interference from stimuli that appeared in previous problems; however, a 

disadvantage is that the discriminability across problems is likely to vary. Therefore, in 
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learning set tasks, performance across problems is confounded with the level of 

discriminability of the stimuli within a problem. In the serial reversal task, however, the 

level of discriminability is held constant because the same two stimuli are used 

repeatedly across reversal problems. Serial reversal tasks also require a greater level of 

flexibility because subjects have to learn to inhibit responses to a stimulus that has been 

repeatedly paired with reinforcement and to respond to the other stimulus that has gone 

unreinforced for a number of trials. In serial reversal tasks, animals must therefore learn 

to ignore all other cues accept for the outcome following the stimulus to which the most 

recent response was made, which means that regardless of how many trials a particular 

response has gone reinforced, the first trial on which it is paired with nonreinforcement is 

a cue to switch to the alternative stimulus. 

Research has shown that a variety of animals, including apes and monkeys (Beran 

et al., 2008; Warren, 1966), sea lions (Schusterman, 1966), horses (Martin, Zentall, & 

Lawrence, 2006), echidnas (Saunders, Chen, & Pridmore, 1971) rats (Bushnell & 

Stanton, 1991; Mackintosh & Holgate, 1969; Reid & Morris, 1992; Williams, 1972), 

weasels (Doty & Combs, 1969) crocodiles (Williams, 1967), turtles (Holmes & 

Bitterman, 1966), octopuses (Mackintosh & Mackintosh, 1964), and birds (Benowitz & 

Teng, 1973; Bond, Kamil, & Balda, 2007; Gossette, Gossette, & Riddell, 1966; Ploog & 

Williams, 2010; Wilson, 1978), show improvement across reversals, with some species 

showing greater improvement than others (Bitterman, 1969; Gonzalez, Brehend, & 

Bitterman, 1967; Woodward, Schoel, & Bitterman, 1971) and a few eventually often 

needing only one trial to learn the reversal of a discrimination (Dufort, Guttman, & 

Kimble, 1954; Staddon & Frank, 1974; Warren, 1965); however, the level of 
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improvement varies both within and between species and depends also on the sensory 

modality of the stimuli, the nature of the stimuli within a modality, and the apparatus 

(Bullock & Bitterman, 1962; Deterline, 1957; Durlach & Mackintosh, 1986; Mackintosh, 

1988; Mackintosh & Little, 1969; Mackintosh, Wilson, & Boakes, 1985). For example, it 

has been shown that rats show substantially more improvement in reversal learning tasks 

with olfactory stimuli than with visual stimuli (Duncan & Slotnick, 1990; Nigrosh, 

Slotnick, & Nevin, 1975; Slotnick, Kufera, & Silberberg, 1991; Slotnick & Katz, 1974). 

Serial reversal tasks have taken many forms and have been used under a variety of 

different methodologies (Rajalakshmi & Jeeves, 1965). Studies requiring predetermined 

criterion levels of performance prior to a reversal have received the most attention 

(Bitterman, Wodinsky, & Candland, 1958; Cronholm, Warren, & Hara, 1960; Dews, 

1957; Dufort, Guttman, & Kimble, 1954; Kay & Sime, 1962; Macphail, 1972; 
 

McDowell, Brown, & White, 1961; Pubols, 1956; Reid, 1958; Siedman, 1949; Wodinsky 
 

& Bitterman, 1957). Other serial reversal designs introduce reversals after a 

predetermined number of trials, regardless of the animal’s performance (Datta, Milstein, 

& Bitterman, 1960; Kirk & Bitterman, 1963; Mackintosh, et al., 1968; North, 1950; 

Pubols, 1956; Reid, 1958). Serial reversal tasks can also be studied using a between- or 

within-session design. A between-session design is one in which, upon reaching criterion 

(or a specified minimum number of trials), the session is either continued under the same 

contingencies of reinforcement until completed, or terminated until the following session, 

at which point the contingencies are reversed on Trial 1 of the following session. A 

within-session design is one in which the reversal occurs on the trial immediately 

following the one in which the subject reaches criterion (or a specified number of trials) 
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on the previous discrimination. Both between- and within-session reversal learning have 

been studied and the general finding is that between-session reversal learning is typically 

an easier task to learn. 

For example, Mackintosh et al. (1968) compared reversal learning performance in 

rats using either a between- or within-session reversal task in which the number of trials 

to the reversal was fixed. Two groups of rats were trained on a spatial discrimination in 

which reversals occurred on the first trial (between-session reversal) or in the middle of a 

48-trial session (within-session reversal), such that, for the within-session group, each 

session began with the S+ stimulus that was reinforced for the last half of the previous 

session. It was found that both groups began sessions responding to both stimuli with a 

probability of .5; however, the between-session group performed better overall than the 

within-session group. The most popular explanation for the chance performance on Trial 

1 for both groups is that subjects come to have an equal amount of experience with each 

stimulus being both an S+ and an S- on Trial 1 over sessions and, thus, an increase in 

proactive interference (interference from previous learning on new learning) develops 

(Gonzalez, Brehend, & Bitterman, 1967; Staddon & Frank, 1974). However, the most 

likely reason why the between-session group performed more accurately overall was 

because it was easier for the rats to make the same response throughout the session than 

to have to learn two different discriminations within the same session. In a sense, even 

though the only difference between the two procedures was the placement of the reversal 

(at the beginning or in the middle of the session), the fact that one required learning a 

single discrimination whereas the other required learning two opposite discriminations 

suggests that the within-session task was inherently more difficult. Other research using 
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between versus within-session reversal learning has found similar results (Watson, 

Sullivan, Frank, & Stanton, 2005).  In light of the differences in task difficulty, a 

comparison across groups in terms of performance seems inappropriate. 

Another type of within-session reversal task is a midsession reversal task in which 

the same stimulus is correct for the first half of each session and the alternative stimulus 

is correct at the end of each session, which is a small, but important difference from 

previous within-session reversal tasks in which the S+ stimulus at the start of each 

session alternates between the two stimuli. If all sessions begin with the same S+ 

stimulus, subjects can learn over sessions to respond to that stimulus with a high level of 

accuracy, instead of beginning at chance and having to learn over trials which stimulus is 

initially correct that session. Therefore, performance should be relatively stable across the 

first half of the session up to the reversal point, whereas when beginning at chance, 

subjects might not reach a stable level of accuracy prior to the reversal. 

Rayburn-Reeves, Molet & Zentall (2011) conducted a midsession reversal 

learning experiment using a simple simultaneous discrimination. In this task, two stimuli 

(red and green hues) were presented simultaneously on each trial, one being the correct 

(positive, S+) stimulus, and the other being the incorrect (negative, S-) stimulus. During 

the first half of each 80-trial session (Trials 1-40), responses to one stimulus, S1, were 

reinforced and responses to S2 were not (S1+, S2-).  During the last half of the session 

(Trials 41-80), the contingencies were reversed such that responses to S2 and not S1 were 

reinforced for the remainder of the session (S1-, S2+). After 50 sessions of training, we 

found that subjects began to respond to S2 prior to the change in contingency (an 

anticipatory error) and also maintained responding to S1 after the change in contingency 
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(a perseverative error). The results from sessions 41-50 (after stability had been reached) 

are plotted in Figure 1 as the percentage choice of the first correct stimulus as a function 

of trial number. The results for each of the ten pigeons’ last ten sessions averaged across 

sessions can be seen in Figure 2. As can be seen in Figure 2, all ten subjects showed 

markedly similar behavior across the session, indicating that the function obtained in 

Figure 1 was not due to an averaging artifact. Almost all subjects showed a decline in 

accuracy between Trials 30-40 and very similar rates of switching to S2 (indicated by 

overlapping functions). This finding was interpreted as evidence that subjects were using 

the time into the session as a discriminative cue. Interestingly, subjects did not appear to 

be using the more immediately valid information afforded by the outcome of the previous 

trial(s) as a primary cue. Therefore, they did not obtain the maximal amount of 

reinforcement that they could have during the session. Although overall errors were quite 

low (less than 10%) on average, the fact that these errors persisted across sessions 

suggests that temporal control may be a difficult strategy to abandon. Had the pigeons 

used the information afforded by the outcome of their choice on the previous trial as a 

cue (a win-stay/lose-shift strategy), they could have obtained reinforcement on every trial 

except for the first trial in which the reversal occurred during the session, achieving much 

greater overall accuracy (less than 2% errors). Therefore, it seems that, when pitting 

feedback from reinforcement and its absence, along with time into the session, pigeons 

seem to rely more on time, suggesting that time may be a more natural cue than the recent 

history of reinforcement contingencies. 

The anticipatory errors made by the pigeons suggest that subjects were using a 

reference memory for the reversal event occurring during the session, and using a time- 



11  

P
er

ce
nt

ag
e 

C
ho

ic
e 

of
 S

1 

100 
 

90 
 

80 
 

70 
 

60 
 

50 
 

40 
 

30 
 

20 
 

10 
 

0 
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 

Trial Number 
 
 

Figure 1. Percentage choice of S1 as a function of trial number averaged across subjects 

and sessions 41-50. Data are plotted in blocks of 5 trials. The black dotted line indicates 

the reversal location. 
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Figure 2. Percentage choice of S1 as a function of trial number for individual subjects 

averaged across sessions 41-50. Data are plotted in blocks of 5 trials. The black dotted 

line indicates the reversal location. 
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based strategy to gauge the point at which the reversal would occur within the session. 

Interestingly, if pigeons were anticipating the reversal event, it would seem that, once the 

event occurred, they would rapidly switch to the other stimulus; however, the number of 

perseverative errors was strikingly similar to the number of anticipatory errors. A 

possible reason for the continued responses to S1 after the reversal could be that pigeons 

were being reinforced on a partial reinforcement schedule prior to the reversal, thereby 

making the reversal less salient or discriminable than if they had continued to choose S1 

prior to the reversal (continuous reinforcement). 

As the pigeons appeared to use the time into the session as a cue rather than basing 

their response on the consequences of their choice on the most recent trials, a second 

preliminary experiment (Rayburn-Reeves, Molet, & Zentall, 2011; unpublished data) was 

conducted to reduce the validity of time as a cue to reverse and therefore, to encourage the 

pigeons to be more sensitive to the consequences of their choice on the immediately 

preceding trials. Thus, if timing was adopted as a strategy in the previous experiment 

because it could easily be used, then discouraging timing as a strategy might encourage a 

strategy that affords more sensitivity to the reinforcement contingencies. In the second 

preliminary experiment, the point at which the reversal occurred within the session was 

varied across sessions in an unpredictable manner. The reversal could occur in one of five 

different temporal locations during the session (after Trial 10, 25, 40, 55, or 

70) with one location randomly selected on each session. In this task, adopting a win- 

stay/lose-shift strategy would still result in an overall accuracy score of 98.75% (79/80 

correct each session). The same subjects were used and given a considerable amount of 

training (100 sessions; 20 at each reversal location). Results showed that when the 
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reversal occurred early in the session (after Trial 10) subjects made few anticipatory 

errors but they continued to make many perseverative errors. That is, they continued to 

respond to S1 long after the reversal had occurred (see Figure 3). Additionally, when the 

reversal occurred late in the session (after Trial 70) subjects made a substantial number of 

anticipatory errors to the point where, just prior to the change in contingency (when S1 

was still correct), subjects were responding to S2 approximately 65% of the time. The 

large amount of overlap seen across reversal locations suggests that subjects were still 

using the time within the session as a cue for stimulus choice on a given trial; however, 

the fact that the reversal locations produced separate functions means that there was some 

sensitivity to the reinforcement contingencies. As compared with the overall percentage 

correct for a win-stay/lose-shift strategy (98.75), the average percentage correct for all 

birds on this task was 81.93. 

In a third experiment (Rayburn-Reeves, et al., 2011; Experiment 2), a new group 

of pigeons (N = 8) were tested on the variable reversal procedure for 100 sessions, as in 

the second experiment. In the third experiment we found that, when trained from the start 

on the variable reversal procedure, pigeons showed greater sensitivity to the 

reinforcement contingencies than when tested on the variable reversal procedure after 

being trained on the consistent procedure (an average percentage correct of 86.67 as 

opposed to 81.93); however, a large number of perseverative and anticipatory errors still 

were found when the reversal came early in the session and a large number of 

anticipatory errors occurred when the reversal came late in the session (see Figure 4). 
 

Previous research has shown that increasing the response requirement associated 

with a particular stimulus can help to increase the saliency of the reinforcement 
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Figure 3. Percentage choice of S1 as a function of trial number averaged across subjects 

and Sessions 75-100 (last 5 sessions at each reversal location). Each dotted line 

represents the reversal location corresponding to the data line matching in color. 
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Figure 4. Percentage choice of S1 as a function of trial number averaged across subjects 

and Sessions 75-100 (last 5 sessions at each reversal location). Each dotted line 

represents the reversal location corresponding to the data line matching in color. 
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contingencies associated with that stimulus (Rayburn-Reeves, Miller, & Zentall, 2010) 
 

and there is evidence that it may facilitate serial reversal learning in pigeons (Williams, 
 

1971). Therefore, we conducted an additional midsession reversal experiment (Rayburn- 

Reeves, Molet, & Zentall, 2010; Experiment 3) in which the response requirement was 

increased from 1 to 20 pecks (the first key to which 20 pecks were made determined the 

pigeon’s choice). As in the second and third preliminary experiments, subjects were 

given 100 sessions with the reversal point varying across sessions. The results indicated, 

however, that the increase in response requirement did not significantly affect the 

accuracy of the birds (overall average percentage correct was 83.81). That is, subjects 

showed very similar results as those found in the third preliminary experiment with the 

variable reversal procedure, when only one peck was required to either stimulus (see 

Figure 5). The percentage errors as a function of reversal location for the variable 

reversal procedure are shown in Figure 6. As can be seen in the figure, the birds that 

received prior training with the reversal occurring in the middle of the session (red line) 

showed the most number of errors across all reversal locations, indicating that the prior 

experience interfered with their performance. For the other two experiments in which 

subjects were naïve to the task, the FR1 group (blue line) performed more accurately than 

the FR20 group (green line) across all reversal locations. Therefore, the increase in 

response requirement did not facilitate performance on the task and, in fact, seemed to 

make the task more difficult. 

In our final preliminary experiment, we tested the hypothesis that it may be more 

difficult for the pigeons to remember the color of the most recently chosen stimulus (as 
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Figure 5. Percentage choice of S1 as a function of trial number averaged across subjects 

and Sessions 75-100 (last 5 sessions at each reversal location). Each dotted line 

represents the reversal location corresponding to the data line matching in color. 
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well as the outcome on the preceding trials) by changing the task to a spatial 

discrimination (Rayburn-Reeves, Stagner, Kirk, & Zentall, in press; Experiment 1). In 

this experiment, a white key light was displayed on the left and right side keys. One side 

key was designated as S1 and the other as S2 and the reversal occurred after Trial 40. 

Pigeons were given 50 training sessions. Results showed that the pigeons’ performance 

on the spatial reversal task was quite similar to their performance on the visual reversal 

task (overall percentage correct was 91.35). That is, they still made many anticipatory 

errors prior to the reversal as well as many perseverative errors after the reversal (see 

Figure 7). For comparison purposes, the data from the initial experiment using a visual 

discrimination task has been included in the figure. Therefore, whether tested on a visual 

or a spatial discrimination, pigeons continued to use the time into the session as a cue 

rather than base their response solely on the feedback from the preceding response and 

therefore they used a cue that was sub-optimal compared with cue that potentially would 

have provided them with considerably more reinforcement. 

Given the results from the initial experiments in our lab using the simultaneous 

within-session reversal procedures, it appears that pigeons are not able to refrain from 

using average time (or number of trials) into the session as a cue for reversal of the 

discrimination. In the limit, the efficient use of the local history of reinforcement, if 

applied to this single-reversal simultaneous discrimination, would result in the use of a 

win-stay/lose-shift response strategy. That is, if subjects based their choice on each trial 

on the outcome of the choice from the preceding trial, it would have resulted in a high 

level of accuracy (ideally only one error per session). 

The following experiments were proposed to investigate what cues pigeons use 
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Figure 7. Percentage choice of S1 as a function of trial number averaged across subjects 

and Sessions 41-50 for both the spatial (blue line) and visual (red line) midsession 

reversal tasks. Data are plotted in blocks of 5 trials. The black dotted line indicates the 

reversal location. 
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when performing tasks of this kind and to determine if pigeons can be encouraged to use 

the outcome of the most recent trials as a basis for their future behavior in that session. 

These experiments attempted to maximize the saliency of each trial’s outcome to 

encourage the pigeons to be more sensitive to the consequences of their behavior on the 

most recent trials. 

In our initial experiments with pigeons, each session was comprised of 80 trials. 

The fact that there were so many trials might have reduced the saliency of the 

consequences of a response on any given trial. This may have contributed to the subjects’ 

use of timing to help predict the reversal instead of the contingencies of reinforcement 

associated with the stimuli on a given trial. After all, it worked reasonably well, resulting 

in reinforcement ranging from 81-90% across all the within-session reversal tasks. 

However, the use of timing resulted in less than optimal performance because subjects 

began reversing too early and maintaining responses to the previously reinforced stimulus 

even after multiple non-reinforced trials. 

With 80 trials per session, each incorrect response results in only a small 

reduction in overall reinforcement. In the following experiments, each session consisted 

of a series of 5-trial sequences to emphasize the local history of reinforcement. With a 5- 

trial sequence, an incorrect response would result in a reduction of 20% of the possible 

reinforcements, which may increase the saliency of the reinforcement contingencies on 

each trial. Additionally, because the number of trials was reduced from 80 to 5, we were 

able to have a session in which multiple sequences were presented with long delays 

between sequences to make the sequences discriminable. In this manner, we were able to 

present several reversals per session as opposed to just a single reversal each day. With 
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the 5-trial sequences, it was possible to increase the number of reversal events from 1 to 
 

16 while still keeping the number of trials per day at 80. It was our hypothesis that the 

increase in exposure to reversal events would possibly allow the subject to learn to attend 

to the change in contingencies as a cue to reverse. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Copyright © Rebecca M. Rayburn-Reeves 2011 
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Section 2 

 
Experiment 1 

 
Variable reversal procedure without end points 

 
The first proposed experiment used a variable reversal procedure similar to that 

used in the second preliminary experiment, but with only five trials in each sequence. 

Using only five trials in the initial experiment allowed us to see more directly whether the 

reduction in trials within a session would create more sensitivity to local reinforcement 

history when the reversal was somewhat unpredictable. In Experiment 1, the reversal 

point could occur at one of four different locations during each sequence (after Trial 1, 2, 
 

3 or 4). Therefore, in this paradigm, just as in the variable reversal paradigm with 80 

trials, S1 was always correct at the start of the session (Trial 1 for the 5-trial sequences 

and Trials 1-10 for the 80-trial sessions) and S2 was always correct at the end of the 

session (Trial 5 for the 5-trial sequences and Trials 71-80 for the 80-trial sessions). 

Additionally, the reduction in the number of trials from 80 to 5 allowed us to assess the 

previous hypothesis that pigeons were using the time from the start of the session and 

averaging across sessions to estimate the overall probability that S1 or S2 was correct on 

a given trial, as they appeared to be doing in the variable reversal procedures. 

 
Method 

 
Subjects 

 
Four White Carneaux pigeons (Columbia Livia) and two Homing Pigeons 

(Columbia Livia) served as subjects. The White Carneauxs ranged between 2 to 12 yrs 

old, while the Homing pigeons were approximately 1 yr old at the start of the experiment. 

All subjects had experience in previous unrelated studies involving simultaneous color 

discriminations but had not been exposed to a reversal learning task. Throughout the 
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experiment, the pigeons were maintained at 85% of their free-feeding weight. They were 

individually housed in wire cages with free access to water and grit in a colony room that 

was maintained on a 12-hr/12-hr light/dark cycle. The pigeons were maintained in 

accordance with a protocol approved by the Institutional Animal Care and Use 

Committee at the University of Kentucky. 
 

Apparatus 
 

The experiment was conducted in a BRS/LVE (Laurel, MD) sound attenuating 

standard operant test chamber measuring 34 cm high, 30 cm from the response panel to 

the back wall, and 35 cm across the response panel. Three circular response keys (3 cm in 

diameter) were aligned horizontally on the response panel and were separated from each 

other by 6.0 cm but only the side response keys were used in these experiments. The 

bottom edge of the response keys was 24 cm from the wire-mesh floor. A 12-stimulus in- 

line projector (Industrial Electronics Engineering, Van Nuys, CA) with 28-V, 0.1-A 

lamps (GE 1820), that projected red and green hues (Kodak Wratten Filter Nos. 26 and 
 

60, respectively), was mounted behind both side response keys. Mixed-grain 

reinforcement (Purina Pro Grains - a mixture of corn, wheat, peas, kafir and vetch) was 

provided from a raised and illuminated grain feeder located behind a horizontally 

centered 5.1 x 5.7 cm aperture, which was located vertically midway between the 

response keys and the floor of the chamber. Reinforcement consisted of 2 s access to 

mixed grain. A white house light, which provided general illumination between 

sequences, was located in a central position on the ceiling of the chamber. The 

experiment was controlled by a microcomputer and interface located in an adjacent room. 
 

Procedure 
 

At the start of each sequence, one side key was illuminated red and the other 

green; the same as in previous experiments using red and green hues. The location of the 
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hues (left vs. right) varied randomly from trial to trial. The red and green hues were 

randomly assigned as S1 and S2 stimuli over subjects such that for half of the subjects, 

red was designated as S1 and green as S2 and for the other half, green was S1 and red 

was S2. On a given sequence, the reversal point randomly occurred on one of four 

different trials in each 5-trial sequence (after Trial 1, 2, 3, or 4), thereby making the 

overall probability of S1 and S2 correct equal across each session (see Table 1). A single 

response to the correct stimulus resulted in both stimuli turning off and 2 s access to grain 

followed by a 3 s dark inter-trial interval whereas a response to the incorrect stimulus 

turned off both stimuli and resulted in a 5 s dark inter-trial interval. Immediately 

following the inter-trial interval, each hue was randomly presented on either side key, 

indicating the start of the next trial. Each 5-trial sequence was separated by a 1-minute 

inter-sequence interval during which the house light was illuminated. Subjects were tested 

on the variable reversal paradigm for a total of 16 sequences per session (4 at each 

sequence type) for a total of 60 days (240 sequences at each reversal point for a total of 

960 reversals). 

Results 
 

The results of Experiment 1 indicate that when pigeons are given a session with 

multiple sequences in which the point of the reversal is made variable across sequences, 

but where S1 is always correct on Trial 1 and S2 is always correct on Trial 5, the percent 

choice of S1 is systematically reduced as a function of trial number, regardless of the trial 

on which the reversal occurs (see Figure 8). Whether the reversal occurred after Trial 1, 

2, 3, or 4, the shape of the choice functions for each reversal location was almost 

identical. Figure 8 shows the percentage choice of S1 as a function of trial number in the 

sequence averaged across subjects for Sessions 41-60 combined (a total of 80 reversals 

for each reversal point; 240 reversals total per subject). A repeated measures analysis of 
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Table 1 

 
Experiment 1: Probability of S1 Correct as a Function of Sequence Type and Trial 
Number 

 

Sequence 
Type 

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 S1 Corr. Per 
Sequence 

1 S1 S1 S1 S1 S2 80% 

2 S1 S1 S1 S2 S2 60% 

3 S1 S1 S2 S2 S2 40% 

4 S1 S2 S2 S2 S2 20% 

S1 Corr. 
Per Trial 

100% 75% 50% 25% 0%  

 
Note. S1 = the first correct stimulus. S2 = the second correct stimulus. 
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Figure 8. Experiment 1. Percentage choice of S1 as a function of sequence trial number 

averaged across subjects and across Sessions 41-60 for each sequence type. 
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variance (ANOVA) was conducted on the four reversal locations as a function of the five 

trials within a sequence, and we found a significant main effect of trial number F(4, 20) = 
 

51.218, p < .0001, but no main effect of reversal location F(3, 15) = 2.04, p = .151, and 

no trial x reversal interaction F(12, 60) = .681, p = .763. 

Due to the lack of variability, we collapsed across reversal locations to take a 

measure of the average percentage choice of S1 on each trial as compared with a 

theoretical measure of the overall probability of S1 being correct as a function of trial 

number (see dashed line in Figure 9). This corresponds to the probability of being correct 

for each trial location in the sequence pooled over each of the 16 sequences per session. 

That is, without regard for the feedback from reinforcement or its absence from preceding 

trials in the sequence. A single sample t-test was conducted on the data from each trial 

relative to the mean overall probability that S1 was correct, independent of the location of 

the reversal in the sequence. The average choice of S1 (M, 95.36; SEM, .459) was 

significantly lower than the mean for Trial 1 (100%), t(5) = -10.09, p < .001; however, 

the average choice of S1 was not significantly different on Trial 2 (M, 61.93; SEM, 7.28) 

than the overall mean (75%), t(5) = -1.80, p = .13. On Trial 3, the average choice of S1 

(M, 34.58; SEM, 5.26) was again significantly lower than the overall mean (50%), t(5) = 

-2.93, p = .03; however on Trial 4, the average choice of S1 (M, 21.15; SEM, 4.23) was 

not significantly different from the overall mean (25%), t(5) = -0.91, p = .403. Finally, on 

Trial 5, the average choice of S1 (M, 17.24; SEM, 4.42) was significantly higher than the 

overall mean (0%), t(5) = 3.90, p = .01. 

Data for individual subjects are depicted in Figure 10. Each figure is plotted as the 

percentage choice of S1 as a function of sequence trial number for sessions 41-60. The 

data were pooled over Sessions 41-60 due to the lack of variability or improvement as a 

function of experience with the task and to gain power. Overall, there was some between- 
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Figure 9. Experiment 1. Percentage choice of the first correct stimulus as a function of 

trial number collapsed across sequence types. The black dotted line indicates the overall 

probability of S1 correct as a function of trial number independent of reversal location. 
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Figure 10. Experiment 1. Percentage choice of S1 as a function of sequence trial number 

for individual subjects averaged across Sessions 41-60 for each sequence type. 
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subject variability for when subjects began to shift responses to S2 during a sequence; 

however, there was hardly any within-subject variability across reversal locations. 

Additionally, overall percentage correct for the two homing pigeons (M= 69.125) was not 

significantly different from that of the white carneauxs (M= 70.407), t < 1. Only one of 

the six subjects showed some sensitivity to the within-sequence reinforcement 

contingencies. Specifically, as one can see in Figure 10, the functions depicted for each 

reversal location for subject 19229 varied on different trials, somewhat consistent with the 

reversal location for the sequence. For example, for the sequences in which the reversal 

occurred after Trial 1, the percentage choice of S1 dropped from 94% on Trial 2 (the first 

feedback trial) to 29% on Trial 3, while the functions for the other reversal locations 

dropped to only 60%. Similarly, for the sequences in which a reversal occurred after Trial 

2, the percentage choice of S1 dropped from 65% on Trial 3 to 6.2% on Trial 

4, whereas for functions for reversals after Trials 3 or 4, the percentage choice of S1 

averaged 21% on Trial 4. 

Discussion 
 

It was hypothesized that with a 5-trial sequence in which the reversal point could 

occur at one of four locations within the sequence (after Trial 1, 2, 3, or 4), but in which 

S1 was always correct on Trial 1 and S2 was always correct on Trial 5, subjects may 

show greater sensitivity to the local feedback cues due to the fact that the reversal may be 

more salient with fewer trials. Because responses to S1 were always reinforced for the 

first trial of every sequence, subjects learned to consistently respond to that stimulus at 

the start of every sequence. Regardless of when the reversal occurred during a given 

sequence, results showed that on average, percentage choice of S1 on Trial 1 was 95.4%. 

Therefore, the 1-minute inter-trial interval was sufficient to allow proper discrimination 
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across sequences. After the first trial, because the reversal point could not be consistently 

predicted across sequences, subjects should have continued to respond to S1 until the first 

nonreinforced trial. However, because a reversal always occurred during each sequence, 

subjects began to anticipate this event and therefore were more likely to respond to S2 as 

the sequence progressed. 

The fact that all pigeons showed similar functions with increasing trials in the 

sequence suggests that they were not sensitive to the reversal location in a given 

sequence. Therefore, it appears that pigeons (with the exception of 19229) did not use the 
 

information afforded by the most recent trial’s outcome as a basis choice of stimulus, but 

instead appeared to use a reference memory for the overall probability that S1 or S2 

would be correct on a given trial within the sequence. On Trial 2, four out of the six 

subjects began to choose S2 at almost the same rate as S1, whereas only two subjects 

showed a preference for S1 on Trial 2 (the actual probability that S1 was correct on Trial 

2 was .75). The main effect of trial number suggests that as the trial number increased in a 

sequence, the preference for responding to S2 also increased. The overall probability that 

S1 would be correct on Trials 1, 2, 3, 4, or 5 when averaged across reversal locations was 

1.0, .75, .50, .25 and 0. Therefore, if subjects were solely responding to the overall 

probability that S1 was correct on a given trial, the functions should not have been 

significantly different from the overall probability at each trial. However, it was found 

that choice of S1 on Trials 1, 3, and 5 were significantly different from the overall 

probability, suggesting that the subjects were using an additional cue aside from the 

overall probability of reinforcement given the trial number. On Trial 1, the main reason 

there was a significant difference between the percentage choice of S1 (95.4%) and the 

overall probability of S1 correct (100%) was because there was very little between- 

subject variability. The significant difference between the percentage choice of S1 on 
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Trial 3  (34.58%) and the overall probability of S1 correct (50%) is a bit more difficult to 

explain, but may have been due to uncertainty as to which trial the subject was on, Trial 3 

or Trial 4.  It is also possible that a bias to choose S2 may be analogous to foraging in 

patches in which one patch becomes less and less likely to provide food, whereas another 

patch becomes more and more likely. In this sense, S2 becomes more likely to be correct 

as the sequence progresses. It is possible that pigeons may be biased in this circumstance 

to begin to choose the stimulus that more often than not gets reinforced over time. 

Finally, the significant difference between the percentage choice of S1 (17.24%) and the 

overall probability of S1 correct on Trial 5 (0%) could also be due to the uncertainty 

about which trial the subject was on, Trial 5 or Trial 4. 

If subjects had adopted the win-stay/lose-shift strategy to solve this task, and had 

learned to begin sequences responding to S1 on Trial 1, they would have received all but 

one reinforcer during each sequence for an average of 80% correct overall (refer to Table 

1). An average of the percentage correct overall across subjects and reversal locations was 

69.97% (Range = 63.13-75.5%), significantly worse than the 80% that could have been 

obtained with a win-stay/lose-shift rule t(5) = -4.9, p < .005. Additionally, the functions 

for each of the reversal locations would have looked different from one another (they 

would not have overlapped). All but one of the subjects, however, showed similar 

percentage choice responses to S1 as a function of trial number for all reversal points. 

Only 19229 showed an effect of nonreinforcement on the preceding trial (see Figure 10). 

For sequences with the reversal occurring on Trial 2, 19229 showed a significant increase 

in responses to S2 on Trial 3 than on the other sequence types. However, late reversals 

(reversals occurring on Trial 4 or 5) were treated similarly, suggesting a lack of 

discriminability between reversals occurring on those two trials. This lack of 

discriminability was consistent across subjects and suggests that pigeons were having 
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difficulty discriminating whether they were on Trial 4 or 5. This difficulty is consistent 

with previous research that has shown that pigeons have difficulty discriminating more 

than three sequential events in counting studies (Rayburn-Reeves, Miller, & Zentall, 

2010). The apparent lack of discriminability between Trials 4 and 5 may be responsible 
 

for the greater than expected choice of S1 on Trial 5 (given the 0% probability of 

reinforcement for choice of S1 on Trial 5). 

The results of Experiment 1 indicate that, when the reversal location across 

sequences varies in an unpredictable manner, and when S1 is always correct on Trial 1 

and S2 on Trial 5, pigeons do not use the information afforded by the local contingencies 

of reinforcement as a basis for choice of responses to S1 or S2 on subsequent trials. 

Instead, it appears that pigeons use the average probability of reinforcement of S1 across 

a large number of sequences to gauge the likelihood that S1 is correct on a particular trial. 

It is interesting to note the significant bias to choose S2 on Trial 3 as opposed to the 

overall probability of S2 being correct on that trial. Overall, however, it appears that 

pigeons largely are basing their responses on the overall probability of reinforcement 

associated with the trial in the sequence and it is clear that the location of the reversal in 

the sequence is not being used as a basis for stimulus choice. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Copyright © Rebecca M. Rayburn-Reeves 2011 



36 

  

 

 
Section 3 

 
Experiment 2 

 
Variable Reversal with end points 

 
In Experiment 1, because a reversal always occurred during a sequence, the probability of 

a reversal increased as the pigeon progressed through the sequence (if it had not occurred 

by Trial 4 it would certainly occur on Trial 5). The results of Experiment 1 suggest that 

pigeons began to anticipate the reversal by choosing S2 more often than S1 with 

increasing trials in a sequence. Thus, pigeons in Experiment 1 did not adopt a win- 

stay/lose-shift strategy, nor did they seem sensitive to the information provided by local 

reinforcement on a given sequence. The second proposed experiment included two 

additional sequence types in which a reversal did not occur. In Experiment 2, one 

sequence type was added in which a reversal never occurred (S1 remained correct 

throughout the entire sequence). A second sequence type was added in which S2 was 

correct for the entire sequence (see Table 2). The main reason for the addition of these 

two sequence types was so that reversals during the sequence were no longer inevitable. 

Therefore, because the reversal could not be predicted to occur on any given sequence 

(S1 might be correct for all five trials), it was thought that subjects might therefore show 

less of a bias to choose S2 as a sequence progressed. This manipulation intended to help 

to reduce the number of anticipatory errors in such a way that Experiment 1 could not, 

while also equating the overall probability of S1 and S2 correct. Interestingly, the 

adoption of a win-stay/lose-shift strategy, where subjects began sequences responding to 

S1 on Trial 1 (the most optimal WSLS strategy), would result in an overall percentage 

correct of 83.33. 
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Method 
 

Subjects 
 

Four White Carneaux pigeons (Columbia Livia) ranging in age from 2 to 12 yrs 

and two homing pigeons (Columbia Livia), which were approximately 1 yr old at the start 

of the experiment, served as subjects.  All subjects had had previous experience similar to 

the pigeons in Experiment1. Subjects were housed and maintained in the same manner as 

in Experiment 1. 

Apparatus 
 

The experiment was conducted using the same apparatus as in Experiment 1. 
 

Procedure 
 

The procedure was the same as in Experiment 1 with the exception that the 

reversal point could occur after one of six points in the sequence (after Trial 0, 1, 2, 3, 4, 

or 5), instead of one of four points, using a semi-random order. Each reversal point was 

not repeated for more than two consecutive sessions. A reversal point after Trial 0 means 

that the reversal occurred before the sequence began and responses to S2 were reinforced 

for the entire sequence. A reversal point that occurred after Trial 5 indicates that responses 

to S1 were reinforced for the entire 5-trial sequence. Subjects were tested on the variable 

reversal paradigm for 18 sequences per day for a total of 60 days (180 sequences for each 

reversal location; a total of 1080 reversals overall). 

Results 
 

The results of Experiment 2 indicate that when pigeons trained with sequences in 

which the point of the reversal is made variable across sequences with no certainty of S1 

or S2 being correct on any given trial, the percentage choice of S1 was systematically 
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Table 2 
 

Experiment 2: Probability of S1 Correct as a Function of Sequence Type and Trial 
Number 

 

Sequence 
Type 

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 S1 Corr. Per 
Sequence 

1 S1 S1 S1 S1 S1 100% 
2 S1 S1 S1 S1 S2 80% 

3 S1 S1 S1 S2 S2 60% 

4 S1 S1 S2 S2 S2 40% 

5 S1 S2 S2 S2 S2 20% 

6 S2 S2 S2 S2 S2 0% 

S1 Corr. 
Per Trial 

83.33% 66.67% 50.00% 33.33% 16.67%  
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reduced as a function of trial number, regardless of the trial on which the reversal 

occurred. Additionally, whether the reversal occurred after Trial 0, 1, 2, 3, 4, or 5 (no 

reversal), the shape of the functions for each reversal location was almost identical, 

similar to the results of Experiment 1. Figure 11 shows the percentage choice of S1 as a 

function of sequence trial number averaged across subjects and over Sessions 41-60 (a 

total of 60 reversals for each reversal point; 360 reversals total per subject).  A repeated 

measures analysis of variance (ANOVA) was conducted on each of the six sequence 

types as a function of the five trials within a sequence, and we found a significant main 

effect of trial number, F(4, 20) = 28.76, p < .0001, but no significant main effect of 

reversal location, F(5, 25) = 2.095, p = .10, nor was there a significant trial x reversal 

interaction, F(20, 100) = 1.413, p = .134. 

Again, due to the lack of variability across reversal locations, as was found in 

Experiment 1, the data were pooled over reversal locations to assess the average 

percentage choice of S1 on each trial as compared with a measure of the overall 

probability of S1 correct as a function of trial number (see dashed line in Figure 12). 

This corresponds to the probability of being correct for each trial location in the 

sequence pooled over each of the 18 sequences per session. That is, without regard for 

the feedback from reinforcement or its absence from preceding trials in the sequence. 

A single sample t-test was conducted for each trial relative to the hypothetical mean 

associated with the overall probability of S1 correct. The average choice of S1 (M, 

85.22; SEM, 6.38) was not significantly different than the hypothetical mean for Trial 

1 (83.33%), t(5) = .2963, p= .77; however, the average choice of S1 was significantly 

lower on Trial 2, (M, 44.09; SEM, 4.98) than the overall probability that S1 
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Figure 11. Experiment 2. Percentage choice of S1 as a function of sequence trial number 

averaged across subjects and across Sessions 41-60 for each sequence type. 
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Figure 12. Experiment 2. Percentage choice of the first correct stimulus as a function of 

trial number collapsed across sequence types. The black dotted line indicates the overall 

probability of S1 correct as a function of trial number independent of reversal location. 



42 

  

 

was correct on Trial 2 (66.67%), t(5) = -4.53, p = .006. On Trial 3, the average choice 

of S1 (M, 31.49; SEM, 2.15) was again significantly lower than the overall probability 

that S1 was correct on Trial 3 (50%), t(5) = -8.61, p = .0003; however on Trial 4, the 

average choice of S1 (M, 28.40; SEM, 3.84) was not significantly different from the 

overall probability that S1 was correct on Trial 4 (33.33%), t(5) = -1.284, p = .256. 

Finally, on Trial 5, the average choice of S1 (M, 27.47; SEM, 3.73) was significantly 

higher than the overall probability that S1 was correct on Trial 5 (16.67%), t(5) = 2.89, 

p = .03. 

Data for individual subjects are depicted in Figure 13. Each figure is plotted as the 

percentage choice of S1 as a function of sequence trial number for sessions 41-60. The 

data from Sessions 41-60 were pooled due to the lack of variability or improvement as a 

function of experience with the task at that point in training. Overall, as in Experiment 1, 

there was some between-subject variability for when subjects began to shift responses to 

S2 during a sequence; however, as can be seen in Figure 13, there was hardly any 

within- subject variability across reversal locations for any subject. Additionally, overall 

percentage correct for the two homing pigeons (M, 58.42) was not significantly different 

from that of the white carneauxs (M, 60.02), t(34) = .039, p = .70. 

Five out of the six birds showed a large preference for S1, choosing it over 

80 percent of the time on Trial 1, whereas only one subject (Bird 15926) showed 

indifference to choice of S1, choosing it 55 percent of the time on Trial 1 (see Figure 

13); however, Bird 15926 was relatively indifferent between S1 and S2, regardless 

of the reversal location or trial number. Two of the subjects (Birds 18798 and 2361) 

showed similar functions beginning with a large preference for S1 on Trial 1 and 

responding increasingly more often to S2 as the sequence progressed. The other  
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Figure 13. Experiment 2. Percentage choice of S1 as a function of sequence trial number 

for individual subjects averaged across Sessions 41-60 for each sequence type. 



44 

  

 

 
 

three subjects showed a large drop from Trial 1 to Trial 2 in choice of S1 and 

maintained a relatively stable preference for S2 throughout the remaining trials, 

showing a floor effect due to strong anticipation of S2. 

In Experiment 2, if subjects had adopted the most appropriate win-stay/lose-shift 

strategy to solve this task (choosing S1 on Trial 1), they would have received an average 

of 83.33% correct overall; however, the overall average percentage correct was 59.49%, 

significantly worse than the maximum amount of reinforcement possible t(5) = -16.68, p 

< .0001. Therefore, the use of an overall probability of S1 or S2 correct on a given trial, 
 

with no sensitivity to differences in the reversal location across sequences, resulted in less 

than maximum reinforcement. 

Discussion 
 

Adding in sequences in which a reversal never occurred or in which it occurred 

before the sequence began did not decrease anticipatory responses, in spite of the fact that 

the reversal was no longer inevitable (that is, it was no longer predictable that S2 would 

be correct on Trial 5). There was no effect of early reversals (reversals occurring on Trial 
 

1 or 2) on preference for S1 or S2 on later trials. If subjects responded to S1 on Trial 1 

and were not reinforced, this information could have been used as a basis for reversing 

and for maintaining responses to S2 for the duration of the sequence, but it was not. That 

is, every sequence type produced similar functions for the percentage choice of S1 across 

trials for each subject. Therefore, as in Experiment 1, subjects were not treating the 

sequence types independently of one another. The average choice of S1 on Trial 1 was 

not significantly different from the overall probability that S1 would be correct across all 

sequence types, indicating that subjects may have been matching the overall probability 

of reinforcement on this trial. The average choice of S1 on Trials 2 and 3 showed 
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significant anticipation to S2 relative to the overall probability of S2 being correct on 

those trials, indicating a significant anticipatory bias for S2. By Trial 4, the average 

choice of S2 did not significantly differ from the overall probability of S2 correct across 

sequence types. Finally, the average choice of S2 on Trial 5 was significantly higher than 

the overall probability of S2 correct, indicating a possible lack of sensitivity to the trial 

number subjects were on at the time. That is, as in Experiment 1, subjects may have been 

uncertain whether they were on the last trial (for which there was a mean percentage S1 

correct of 16.7%) or the next to last trial (for which there was a mean percentage S1 

correct of 33.3%), thereby choosing S1 on Trial 5 more than would be expected, given 

the overall probability of S1 being correct, and treating Trials 4 and 5 similarly. 

The results of Experiment 2 indicate that, when the location of the reversal was 

both variable and uncertain (2 sequence types did not involve a reversal), pigeons did not 

adopt a strategy indicative of win-stay/lose shift, but instead appeared to average across 

sequences to estimate the overall likelihood that S1 or S2 would be correct on a given 

trial within the sequence. It is possible that the anticipatory bias was due to uncertainty 

about where the subjects are in the sequence, but the fact that there was a bias to 

anticipate as opposed to perseverate (choosing S1 more often than S2) is interesting, 

especially because there was equal probability of S1 and S2 being correct across all 

sequences. It is not obvious why there should be a bias to choose S2 significantly more 

often than S1 on any given trial, especially when the contingencies of reinforcement had 

not reversed. It is equally interesting to speculate about why pigeons show no sensitivity 

to early reversals considering the fact that once the reversal occurred, S2 was correct for 

the remainder of the sequence. The fact that in both Experiment 1 and 2, there were 

significantly more responses to S2 on Trial 3 than would be expected if subjects were 

matching the probability correct for that trial, may suggest that they may have been 
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uncertain about what trial they were on in the sequence. As with the results of 

Experiment 1, the bias might also be attributed to the fact that, over time, S2 becomes 

more attractive due to its increasing value as an S+ stimulus, whereas S1 becomes less 

valued over time or trials. That is to say, the overall probability of S2 correct on Trials 1- 

5 was 16.67%, 33.33%, 50%, 66.67%, and 83.33%, respectively. This overall value of S2 
 

(the overall probability of reinforcement) from Trial 1 to Trial 2 is doubled and then 

increased again by 50% from Trial 2 to Trial 3. As each trial progresses, the likelihood 

that S2 is correct is increased, but by a decreasing proportion to the overall probability 

from the last trial. Therefore, it may be that the proportion of the increase in value of S2 

from Trial 1 to Trial 2, coupled with the decreasing value of S1 across trials, also 

contributed to the bias to choose S2 more often than what would have been predicted by 

the overall probability of S2 correct. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Copyright © Rebecca M. Rayburn-Reeves 2011 
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Section 4 
 

Experiment 3 
 

Variable reversal with equal probability of reversal on each trial 
 

The first proposed experiment was aimed at directly comparing the differences 

in variable reversal learning when the number of trials in a given session was reduced 

from 80 to five. The second proposed experiment was aimed at reducing the anticipatory 

responses seen in all previous experiments with pigeons, when a reversal always 

occurred during a session, by eliminating the certainty that a reversal would always 

occur on the last trial if it had not already occurred. Although the first and second 

experiments were also aimed at reducing the use of timing as a source of information for 

subsequent behavior, it can be argued that time within the 5-trial sequence had not been 

completely eliminated as a cue. In both experiments, the probability that S2 would be 

correct increased systematically over the trials in a sequence, ending with a 100 percent 

chance on Trial 5 in Experiment 1 and an 83.3 percent in Experiment 2. This increasing 

probability might have been the reason that subjects were biased to choose S2 more 

often than S1 after Trial 1, given that no subject showed evidence of being sensitive to 

the local history of reinforcement. 

Therefore, in Experiment 3, instead of each reversal point occurring an equal 

number of times throughout the experiment, the frequency of each reversal point was 

manipulated using a probability algorithm (hazard function) that controlled for the use of 

timing throughout the sequence such that the probability of a reversal or no reversal was 

equal at all trials. To accomplish this, the experiment consisted of 30 blocks of 32 

sequences (2 sessions per block; 16 sequences per session). In each block of sequences 

there was one sequence with a reversal occurring after Trial 4 and one sequence with no 

reversal, 2 sequences with a reversal after Trial 3, 4 sequences with a reversal after Trial 
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2, 8 sequences with a reversal after Trial 1, and 16 sequences in which the reversal 

occurred before the sequence began, meaning S2 was correct for the entire sequence (see 

Table 3). This manipulation ensured that after each trial, there was an equal probability 

that the reversal would occur or would not occur on the next trial. 

Method 
 

Subjects 
 

Four White Carneaux pigeons (Columbia Livia) ranging in age from 2 to 12 yrs 

and 2 homing pigeons (Columbia Livia), which were approximately 1 yr old at the start 

of testing, served as subjects.  All subjects had similar experience in previous 

experiments but had no prior experience in reversal learning tasks. Subjects were housed 

and maintained in the same manner as in Experiments 1 and 2. 

Apparatus 
 

The experiment was conducted using the same apparatus as in the previous 

experiments. 

Procedure 
 

The procedure in Experiment 3 was the same as in Experiment 2 with the 

exception that the number of presentations of each sequence type per block varied 

according to a hazard function that controlled for the probability of a reversal occurring 

after each trial, as outlined above. There were 2 sessions per block, with 16 sequences 

per session. For the first block, there were 8 sequences with a reversal on Trial 1, 4 with 

a reversal on Trial 2, 2 with a reversal on Trial 3, 1 with a reversal on Trial 4, and 1 with 

a reversal on Trial 5. For Block 2, the same number of sequences were presented across 

the session for reversals on Trials 1, 2, 3, and 4, but there was no reversal on Trial 5, 

instead there was a no-reversal sequence (reversal after Trial 5). Subjects were tested for 
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Table 3 

 
Experiment 3: Probability of S1 Correct as a Function of Sequence Type and Trial 
Number 

 

Sequence 
Type 

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 S1 Corr. 
Per Seq. 

Seq. Per 
Block 

1 S1 S1 S1 S1 S1 100% 1 
2 S1 S1 S1 S1 S2 80% 1 

3 S1 S1 S1 S2 S2 60% 2 

4 S1 S1 S2 S2 S2 40% 4 

5 S1 S2 S2 S2 S2 20% 8 

6 S2 S2 S2 S2 S2 0% 16 

S1 Corr. 
Per Trial 
Over Each 
Block 

50% 25% 12.5% 6.67% 3.13%  32 Total 
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a total of 60 sessions (480 sequences with a reversal on Trial 1, 240 with a reversal on 

Trial 2, 120 with a reversal on Trial 3, 60 with a reversal on Trial 4, 30 with a reversal on 

Trial 5, and 30 with a no reversal sequence) for a total of 960 sequences. 

Results 
 

The results of Experiment 3 indicate that, when the reversal location was varied 

such that the probability of a reversal or no reversal was equal across trials, all subjects 

showed a significant bias to respond to S2. Only on Trial 1 did the percentage choice of 

S1 deviate significantly from 0 (see Figure 14). As in previous experiments, due to the 

lack of variability, we pooled the data over reversal locations to compare the average 

percentage choice of S1 on each trial with the overall probability of S1 being correct as a 

function of trial number (see Figure 15). A single sample t-test was conducted for the 

data from each trial relative to the overall probability that S1 was correct. The average 

choice of S1 (M, 16.08; SEM, 9.34) was significantly lower than the overall mean for 

Trial 1 (50%), t(5) = -3.63, p = .02; and the average choice of S1 (M, .938; SEM, .90) 

was also significantly lower than the overall mean for Trial 2 (25%), t(5) = -26.85, p < 

.0001. On Trial 3, the average choice of S1 (M, 1.11; SEM, .95) was again significantly 

lower than the overall mean (12.5%), t(5) = -11.94, p < .0001; and on Trial 4, the average 

choice of S1 (M, .938; SEM, .90) was also significantly lower than the overall mean 

(6.25%), t(5) = -5.93, p = .002. Finally, on Trial 5, the average choice of S1 (M, 1.22; 

SEM, .88) was not significantly different from the overall mean (3.13%), t(5) = -2.18. p = 

.08. 
 

Data for individual subjects averaged across sessions 41-60 for each of the six 

sequence types appear in Figure 16. Four of the six subjects (birds 245, 278, 10534 and 

19389) chose S2 almost exclusively throughout sessions 41-60. Only two subjects (birds 
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Figure 14. Experiment 3. Percentage choice of S1 as a function of sequence trial number 

averaged across subjects and across Sessions 41-60 for each sequence type. 
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Figure 15. Experiment 3. Percentage choice of the first correct stimulus as a function of 

trial number collapsed across sequence types. The black dotted line indicates the overall 

probability of S1 correct as a function of trial number independent of reversal location. 
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Figure 16. Experiment 3. Percentage choice of S1 as a function of sequence trial number 

for individual subjects averaged across Sessions 41-60 for each sequence type. 
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19828 and 19836) showed any responding to S1 and this was only on the first trial, on 

which responses to S1 and S2 were approximately equal, and equal to the overall 

probability that S1 was correct. 

Discussion 
 

Although the manipulation of frequency of the point of reversal conducted in 

Experiment 3 allowed for the removal of timing as a valid cue by using a hazard function 

to produce an equal probability of a reversal occurring at each trial in the sequence, the 

total number of trials in which a response to S1 and S2 were reinforced varied 

dramatically such that a response to S2 was reinforced 80.6% of the time. Therefore, 

subjects did not learn to reverse their choice and instead developed a systematic 

preference for S2. 

These results suggest that, when the benefits of timing are eliminated (using this 

procedure), pigeons do not respond based on the local reinforcement history but instead 

develop a strong stimulus bias. Interestingly, the strategy of responding to the overall 

percentage correct for S1 or S2 was a slightly better strategy to maximize reinforcement 

in this experimental paradigm. The development of a win-stay/lose-shift response rule 

would have resulted in a maximum reinforcement of 80.6% whereas the average overall 

percent correct with this procedure was 80.17, which was a nonsignificant difference t(5) 

= .80, p = .46. Therefore, the preference to choose the S2 stimulus, which is arguably a 

less cognitively demanding task than the development of a win-stay/lose-shift rule, 

resulted in a comparable amount of overall reinforcement. 

 
 
 
 
 
Copyright © Rebecca M. Rayburn-Reeves 2011 
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Section 5 
 

Experiment 4 
 

Equal probability of reversal or no reversal after Trial 3 
 

In Experiment 3, the probability of a reversal occurring on a given trial within a 

sequence was equated, but with equal probability that a reversal could occur on any given 

trial, the total number of S2 correct trials was considerably greater than S1 correct trials. 

To reduce the bias to choose S2 and to provide a better comparison with the procedure 

used in the first 5-trial sequence experiment, Experiment 4 was designed such that a 

reversal occurred on Trial 1, Trial 4, or not at all; however, as in Experiment 3, the 

probability of a reversal or no reversal was equated at each point in the sequence at which 

a reversal could occur. Thus, in each block of 4 sequences there was one all S1 sequence, 

one sequence with a reversal at Trial 4, and 2 all-S2 sequences (see Table 4). The major 

difference between this procedure and the procedure used in Experiment 3 is that the 

overall probability that S2 was correct was reduced from 80.6% to approximately 60%. 

Therefore, it should have been less likely that subjects would develop a strong preference 

for the S2 stimulus rather than developing control by local reinforcement history. 

Because the ability to use time (or trial number) into the sequence was made unreliable as 

a cue, it was unlikely that the pigeons would use it as a basis of choice. 

Additionally, with this particular procedure, if a reversal did not occur on Trial 1, 

it would not occur on Trials 2 or 3, and if it did not occur on Trial 4, it would not occur at 

all. Therefore, given that S1 was correct on Trial 1, subjects also should respond to S1 on 

Trials 2 and 3, and given that S1 was correct on Trial 4 they also should respond to S1 on 

Trial 5 as well. Additionally, if S2 were correct on Trial 1, it would be correct throughout 

the sequence. Therefore, had the pigeons used the cues provided by local feedback, 

regardless of which stimulus was chosen on Trial 1, subjects should have shifted 
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Table 4 
 

Experiment 4: Probability of S1 Correct as a Function of Sequence Type and Trial 
Number 

 

Sequence 
Type 

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 S1 Corr. 
Per 
Sequence 

Number of 
Sequences 
Per Block 

1 S1 S1 S1 S1 S1 100% 1 
2 S1 S1 S1 S2 S2 60% 1 

3 S2 S2 S2 S2 S2 0% 2 

S1 Corr. 
Per Trial 
Over Each 

50% 50% 50% 25% 25%  4 Total 

  Block   
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responses to S2 on Trials 2-5. This final task was included as a way to assess whether 

subjects would treat the sequences differently, depending on the location of the reversal 

or whether a reversal occurred or not. 
 

Method 
 

Subjects 
 

Four White Carneaux pigeons (Columbia Livia) ranging in age from 2 to 12 yrs 

and two homing pigeons (Columbia Livia), which were approximately 1 yr old at the start 

of testing, served as subjects. All subjects had similar experience in previous experiments 

with discrimination learning but had not been exposed to a reversal-learning task. Subjects 

were housed and maintained in the same manner as in previous experiments.  

Apparatus 

The experiment was conducted using the same apparatus as in the previous 

studies. 

Procedure 
 

Subjects were exposed to the reversal procedure using the 5-trial paradigm in 

which a reversal occurred on Trial 4 of a sequence, or in which sequences were all S1+ or 

S2+. This manipulation eliminated the use of time as a reliable cue, as in Experiment 3; 

however, in Experiment 4, the only reversal that could be experienced during a sequence 

was in the middle of the sequence. Therefore, this procedure is a hybrid of the procedure 

used in the original experiment (Rayburn-Reeves, Molet, & Zentall, 2011; Experiment 1) 

in which a reversal occurred at a fixed location during the sequence and Experiment 3 in 

which a hazard function was used to equate for the probability of a reversal occurring on 

a given trial. In Experiment 4, subjects were exposed to blocks of 4 sequences in which 

two of the 4 sequences per block had a session in which only S2 was reinforced (reversal 
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on Trial 1), one sequence in which the reversal occurred on Trial 4, and one sequence in 

which S1 was correct for the entire sequence. Each session consisted of 4 4-sequence 

blocks and there were for 60 sessions of training (240 blocks total). 

Results 
 

The results of Experiment 4 indicate that when pigeons are given a series of 

sequences in which a reversal occurs on Trial 1 on half of the reversals, and on Trial 4 or 

no reversal on one fourth of the trials each, thus making the overall likelihood of S2 

correct approximately 60%, subjects show equal responding to S1 and S2 on Trial 1 and 

then show a slight bias to choose S2 on Trials 2-5 (see Figure 17). Furthermore, and 

consistent with the results of the previous three experiments, there was no difference in 

performance on sequences with reversals and no reversals. This finding is most surprising 

because only one of the four sequences involved a reversal. Therefore, if on Trial 1, S1 

was correct, it would always be correct on Trials 2 and 3. If it continued to be correct on 

Trial 4, then it would always be correct on Trial 5 as well. As with Experiments 2 and 3, 

if S2 were correct on Trial 1, it would be correct for the remainder of the sequence. 

Therefore, the outcomes of early trials provided certainties about the consequences of 

future responses; however, there was no indication that subjects were using that 

information. 

The data for each sequence type again was pooled over sequences to compare the 

overall probability of choice of S1 with the pigeon’s performance (see Figure 18). A 

single sample t-test was conducted on the data for each trial relative to the overall 

probability that S1 was correct. The average choice of S1 (M, 50.74; SEM, 1.38) was not 

significantly different than the overall mean correct for Trial 1 (50%), t(5) = 0.53, p = 

.62; however, the average choice of S1 for Trial 2 (M, 41.42; SEM, 2.88) was 

significantly lower than the overall mean correct (50%), t(5) = -2.98, p = .03. On Trial 3,  
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Figure 17. Experiment 4. Percentage choice of S1 as a function of sequence trial number 

averaged across subjects and across Sessions 41-60 for each sequence type. 
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Figure 18. Experiment 4. Percentage choice of the first correct stimulus as a function of 

trial number collapsed across sequence types. The black dotted line indicates the overall 

probability of S1 correct as a function of trial number independent of reversal location. 
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the average choice of S1 (M, 41.23; SEM, 2.68) was again significantly lower than the 

overall mean (50%), t(5) = -3.26, p < .02; and on Trial 4, the average choice of S1 (M, 

36.96; SEM, 3.96) was significantly higher than the overall mean (25%), t(5) = 3.02, p = 
 

.03. Finally, for Trial 5, the average choice of S1 (M, 33.58; SEM, 5.17) was significantly 

higher than the overall mean (25%), t(5) = 1.66, p = .10. The data from individual 

subjects averaged across Sessions 41-60 for the three reversal locations appears in Figure 
 

19. As can be seen in the figure, there was some variability across subjects in their 

preference for S1 or S2 across the 5 trials; however, there was virtually no variability 

across reversal locations for any subject, a finding that is consistent with the findings 

from Experiments 1, 2, and 3. 

Discussion 
 

Equating for the probability of a reversal occurring on a given trial during the 

sequence did not reduce the likelihood that subjects anticipated the reversal. There was a 

50 percent chance that S1 or S2 would be correct on the first trial of the sequence. Due to 

the saliency of the beginning of a given sequence, subjects showed equal responding to 

both S1 and S2 on Trial 1, most likely due to an increase in proactive interference as has 

been found in previous research (Gonzalez, Brehend, & Bitterman, 1967). However, 

Trials 2 and 3 showed more responding to S2 than the overall probability of S2 correct on 

those trials. Interestingly, subjects showed a significant bias to choose S1 on Trials 4 and 

5 as compared with the overall likelihood of S1 correct. Again, subjects showed no 

sensitivity to the information afforded by the outcome of the preceding trials even though 

this information could have provided a greater amount of overall reinforcement than was 

obtained in the current study. Regardless of which stimulus was chosen on Trial 1, 

subjects should have shifted responses to S2 from Trials 2-5 had they used the cues 
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Figure 19. Experiment 4. Percentage choice of S1 as a function of sequence trial number 

for individual subjects averaged across Sessions 41-60 for each sequence type. 
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provided by local feedback. The development of a win-stay/lose-shift rule would have 

resulted in an overall percentage correct of 85; however, the average overall percentage 

correct across subjects was 53.18, significantly lower than the maximum amount 

possible, t(5) = -31.69, p < .0001. Given these constraints, it is interesting that pigeons 

did not show differing functions for the three sequence types. This particular procedure 

should have given pigeons the best opportunity to use the information afforded by the 

consequences of preceding trials as a basis for which stimulus would be correct; however, 

as with the previous experiments, pigeons did not show sensitivity to the reinforcement 

conditions as it pertained to immediate feedback. 

It was also possible that, with the present procedure, the seldom occurrence of the 

reversal could have made the reversals difficult to discriminate. Because S2 was correct 

more often than S1 overall, it is possible that the subjects became sensitive to this 

difference and began to respond to S2 more often during early trials in the sequence; 

however, this does not explain the perseveration on later trials. Rather, it appears that 

subjects maintained responses to S1 and S2 equally on Trial 1 and then began responding 

to S2 somewhat more often as the trials progressed in a sequence. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © Rebecca M. Rayburn-Reeves 2011 
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Section 6 
 

General Discussion 
 

Taken together, the purpose of these four experiments was to explore procedures 

that might enhance pigeons’ sensitivity to the consequences of prior choices. Specifically, 

the goal of these experiments was to create a procedure that increased the saliency of the 

response and outcome on each trial to determine their effect on reversal learning. 

Additionally, these experiments investigated whether a particular source of control, local 

reinforcement history, which would maximize overall reinforcement, would be used with 

5-trial sequences instead of other sources of control, such as timing, which appeared to 

control choice in previous experiments with 80-trial sessions. In all four experiments, it 

was found that pigeons did not use the cues provided by the local history of reinforcement 

as evidenced by the fact that they responded in the same manner on all trials in each of 

the sequences, regardless of where (or whether) the reversal occurred. Instead, pigeons 

appeared to base their choices on the overall probability of reinforcement as a function of 

which trial they were on within the sequence. Experiment 1 showed this trend most 

clearly. In addition to probability matching, the pigeons also tended to show a bias to 

choose S2 more often than S1, a strategy not easily explained by probability matching 

alone. Experiment 3 was the only experiment in which pigeons obtained the maximum 

amount of reinforcement, and this was because subjects developed a preference for the S2 

stimulus which, overall, yielded approximately 80% reinforcement. 

It is not obvious why pigeons tended to use the overall probability of 

reinforcement for S1 or S2 across sequences as the basis of their choice when another 

cue, local reinforcement history, was available and would have produced a greater 

amount of reinforcement. What seems to be a consistent finding across all experiments 

conducted with pigeons on the within-session reversal task is that generally, pigeons are 
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not using the optimal (local) available information and instead, appear to rely on other 

cues, such as timing or overall probability of reinforcement, which involve averaging 

over sessions. 

In all experiments, the overall choice of S2 tended to increase as a function of trial 

number; however, the progressive choice of S2 across trials was most pronounced in 

Experiment 1, in which the overall probability of S2 increased from 0 to 100 across the 

five trials. It is possible that the within-session 5-trial sequence with which our pigeons 

were trained elicited a predisposed tendency to engage in foraging-like behavior. When 

foraging for food, where food is distributed in patches, the most appropriate behavior 

might be to remain at a particular patch for a particular time or based on some ratio 

between the amount of energy expended foraging and the amount of energy gained by the 

consumption of food (an optimal foraging account). These strategies may not be 

compatible with a procedure in which there is continuous reinforcement for the choice of 

one stimulus and then suddenly responding to a different stimulus is correct. 

In all of our experiments, pigeons did not seem to base their responses on cues 

provided by the immediate feedback of reinforcement from the previous trial, even 

though the outcome could have served as a reliable conditional cue for which stimulus 

could be correct on the next trial. Research has shown that pigeons can learn conditional 

discriminations, such as matching-to-sample and oddity-from-sample tasks, to a high 

level of performance, where choice of a comparison stimulus is contingent upon the most 

recently presented sample stimulus. Pigeons can also learn to choose a comparison 

stimulus based on hedonic samples (food or no food) after being trained to associate one 

stimulus with the presentation of food and another with the absence of food (Zentall, 

Sherburne, & Steirn, 1992). With a conditional discrimination, an animal must be able to 

employ simple rules to solve the task (e.g., if food was just presented, choose red; if no 
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food was presented, choose green). The ability for pigeons to learn to choose a 

comparison stimulus on the basis of the presence or absence of a food sample is 

especially interesting in light of the fact that in all of our experiments, the outcome from 

the previous trial, as well as the stimulus which was most recently chosen, which could 

have been used as a conditioned stimulus to indicate the next correct stimulus, was not 

used. 

An even more complex form of conditional discrimination learning (called a 

biconditional discrimination) is one where a particular context cue, such as a house light, 

signals the conditional discrimination that is in effect on a given trial. For example, if the 

house light is on, then choice of a red comparison will be reinforced when red is the 

sample whereas if the house light is off and the sample is red, choice of the green 

comparison is reinforced (Edwards, Miller, & Zentall, 1985). In the limit, this procedure 

requires the animal to form essentially four independent, 3-chained rules to solve the task 

(i.e., if house light on, if red, choose red; if house light on, if green, choose green; if 

house light off, if red, choose green; if house light off, if green, choose red). In a sense, 

the biconditional discrimination task is comparable to the within-session reversal task 

used in my previous experiments. The house light cue, which served as the conditional 

cue to signal which contingency was in effect on a given trial in the biconditional task, is 

analogous to the outcome of the previous trial in the reversal task as it is the conditional 

cue to signal which contingency is in effect on the following trial. Similarly, in the 

biconditional task, the sample following the house light cue is a signal for which 

comparison will be reinforced, and is analogous to the previously pecked stimulus in the 

reversal task. Therefore, the same 3-chained rule could be used to solve the reversal task 

as with the biconditional task (i.e., if red, if food, choose red; if red, if no food, choose 

green; if green, if food, choose green; & if green, if no food, choose red). Therefore, 
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although pigeons did not use these biconditional rules to solve the reversal task, there are 

a number of tasks that pigeons are able to perform that can be very complex and can 

require the use of rules to learn, which suggests that rule learning is not absent in the 

pigeon’s cognitive repertoire. 

One main difference between studies that have used the presence versus absence 

of food as sample stimuli in conditional discrimination tasks (where pigeons show rapid 

acquisition) and the results of our series of experiments with the reversal task is that, in 

our tasks, the outcome of the previous trial and the onset of the stimuli signaling the start 

of the next trial were separated by a 5-sec inter-trial interval. It may be that even the short 

(e.g., 5-sec) delay between the outcome of the previous trial and the onset of the stimuli 

which signal the following trial is sufficient to interfere with pigeons’ ability to use the 

outcome of the previous trial as a conditional stimulus for choice of the correct 

comparison stimulus on the following trial. In light of the recent experiments with the 

within-session reversal task, it may be that pigeons do not readily develop rules based on 

local reinforcement history when the outcome of the preceding trial (and the stimulus 

associated with that outcome), which must be used as a basis for the next response, must 

be retained in short-term memory over a brief delay. 

However, other procedures specifically designed to assess the ability for pigeons 

to use information from the previously reinforced response to maximize reinforcement 

have had some success. Williams (1972) used a procedure in which the overall 

probability of reinforcement associated with two stimuli was .50, but the local probability 

of reinforcement for repeating the same response was varied across trials, depending on 

the outcome of the previous trial. Specifically, the probability of reinforcement for 

repeating a response that was reinforced on the previous trial was .80, whereas switching 

to the alternative stimulus was reinforced with a probability of .20 (win-stay), whereas a 



68 

  

 

non-reinforced response on the previous trial indicated that switching to the alternative 

stimulus resulted in a reinforcement with a probability of 1.0, while repeating the same 

response had a reinforcement probability of 0 (lose-shift).  Results showed that, even 

though both components were learned, the lose-shift component was learned faster and 

better than the win-shift component; however, the probabilities associated with the lose- 

shift component were better differentiated (1.0 vs. 0) and the delay between trials in the 

lose-shift component was half as long as in the win-stay component (3 s vs. 6 s overall).  

Shimp (1976), noting these differences, conducted a similar study in which the 

delay between trials was varied (2.5, 4, and 6 s) across trials for both components to 

assess the effects of delay between trials as a measure of the subject’s ability to use the 

stimulus and outcome from the previous trial on the following trial. Additionally, he used 

a correction procedure in which incorrect responses resulted in a 5 s correction interval. 

That is, at the end of the interval, the trial was recycled until the subject made the correct 

response, thereby creating a situation where all trials ended in reinforcement. Results 

showed that subjects performed very well on both components, and the longer the delay 

between trials, the less accurately the subjects performed. Therefore, control by local 

reinforcement probability on choice of the following trial was evident and it was less 

effective as the delay between trials increased. Shimp (1976) interpreted this finding as 

the ability for pigeons to use the short-term memory for recent events to predict the 

likelihood of reinforcement for future behavior. These two studies indicate that pigeons 

are able to use the outcome of the previous trial as a basis for subsequent behavior and 

that memory for the stimulus and outcome is susceptible to very small changes in the 

delay between trials. 

Further research has similarly suggested that improvement across reversals is 

greater with short (e.g., 6 s) as opposed to long (e.g., 60 s) inter-trial intervals (Ploog & 
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Williams, 2010; Randall & Zentall, 1997; Williams, 1971, 1976). Williams (1976) 

explained this finding as evidence that subjects can use the conditional cue of the 

previous trial’s outcome as a basis for response and that the cue is forgotten with longer 

intervals between trials. Williams further added that the ability to utilize previously 

presented outcomes as conditional stimuli may differ greatly across non-human animals 

and that this difference might, in part, contribute to the differences in improvement of 

reversal learning across species (p. 429). Support for this claim has come from studies 

showing significantly more rapid learning by corvids over problems in learning set tasks, 

as well as more rapid improvement over reversals in a serial reversal task by rooks, as 

compared with pigeons (Wilson, 1978). Similarly, it has been shown that jackdaws 

perform more accurately than pigeons over a series of delays on conditional 

discrimination tasks using food and no food samples (Wilson & Boakes, 1985). 

The fact that pigeons did not seem very sensitive to the information afforded by 

local feedback in all of our experiments but seemed to rely on the overall probability of 

reinforcement across multiple sequences, suggests that the procedures under which we 

tested our pigeons did not evoke a rule-based strategy using cues from the local history of 

reinforcement. In the Williams (1972) and Shimp (1976) studies, however, the only 

information that could have been used to deviate from chance performance was the 

information afforded by the previous trial’s outcome. In our studies, other variables, such 

as timing and probability learning, could have also been used to facilitate learning about 

the changes in contingencies. In our original experiment, in which the reversal 

consistently occurred in the middle of the session, pigeons achieved above 90% accuracy 

overall using a time-based strategy. Even with the variable reversal procedures in 
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Experiments 1 and 2 with 5-trial sequences, the use of the overall probability of 

reinforcement on a given trial served to create above chance performance across 

sequences (70% overall reinforcement in Experiment 1, and 59.2% in Experiment 2), 

even though the maximum amounts of reinforcement (80, and 83.33%) were not 

achieved. Therefore, it is possible that alternative sources of control that increased the 

probability of overall reinforcement above 50% in the reversal procedures served to 

interfere with the use of local reinforcement cues. Additionally, it is possible that the 

delay between the outcome of the previous trial and the onset of the stimuli signaling the 

start of the next trial is sufficient enough to cause confusion about the use of information 

of a previous trial as the basis for the correct response on the following trial. That is, it 

may not be apparent that the trials separated by a dark delay are not independent of one 

another. The saliency of the dark delay between trials may serve as a cue indicating trial 

separation and therefore interfere with the use of the outcome of one trial as a conditional 

cue for the next correct response. 

In the variable, within-session reversal procedure, it appears that pigeons were 

using an aggregate reinforcement history for S1 and S2, with the values of those 

aggregates changing as a function of time or trial number in the sequence. This type of 

behavior more closely resembles rules for abandoning a particular patch in lieu of another 

based on a fixed amount of time and energy consumption (Valone & Brown, 1989). 

Although one might think that keeping track of overall probability based on the time or 

trial number within a session or sequence would seem more difficult than employing the 

use of a win-stay/lose-shift rule, it may be that this ability for tracking changing 

probabilities as a function of time or events is a more natural ability for pigeons than one 
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that requires the use of rules based on cues provided by the immediate feedback of the 

preceding trial’s outcome. 

Based on the series of experiments conducted using the within-session reversal 

learning task in pigeons, one might argue that the task may be too difficult for a non- 

human animal to solve using rules based on the immediacy of reinforcement; however, it 

is important to note that we have conducted a spatial midsession reversal experiment with 

rats under very similar procedures (with the exception that rats responded to levers 

instead of key lights) and found qualitatively different results (Rayburn-Reeves, Stagner, 

Kirk, & Zentall, in press; Experiment 2a). Specifically, rats showed no anticipation prior 

to the reversal and very rapid switching to S2 after the reversal (see Figure 20), 

suggesting that rats were using the immediate feedback afforded by the consequences of 

recent trials as a basis for responding to S1 and S2 and they were not using the time 

within the session as a cue. We also ran the variable within session reversal task with rats 

and found that, regardless of where the reversal occurred during the session, rats 

responded to S1 until the reversal trial, and then began responding to S2 almost 

immediately. Therefore, rats showed no evidence of using the time within the session as a 

cue and instead appeared to use the most appropriate cue to maximize reinforcement 

(Rayburn-Reeves, et al., in press; Experiment 2b). 

Consistent with our findings that pigeons were not able to perform as accurately 

on the within-session reversal task as rats, other research has shown that rats also display 

a faster rate of reversal learning on serial reversal tasks (Bitterman, 1975; Mackintosh & 

Cauty, 1971) and often achieve a higher asymptote of performance (fewer errors to 
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Figure 20. Midsession spatial reversal with rats. Percentage choice of S1 as a function of 

trial number averaged across subjects and Sessions 41-50. Data are plotted in blocks of 5 

trials. The black dotted line indicates the reversal location. 
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criterion performance over reversals) than pigeons, especially when rats are trained using 

olfactory cues as opposed to visual or auditory cues (Nigrosh, Slotnick, & Nevin, 1975). 

Consistent with the results of our research with rats, other research on serial 

reversal learning has found evidence that rats eventually learn to reverse responding in 

fewer than two trials (Dufort, Gutman & Kimble; 1954; Mackintosh, et al., 1968; 

Nigrosh, Slotnick, & Nevin, 1975). The benefit of the midsession reversal task, as 

opposed to the traditional serial reversal task that has been the most popular paradigm to 

study differences across species, is that in the serial reversal task, any differences found 

between species have been in the amount of improvement across reversals, which is an 

inherently quantitative measure. That is, if it is found that rats show greater improvement 

across reversals and eventually make fewer errors than pigeons, this difference does not 

say anything about the cognitive mechanisms behind the different performances. With the 

midsession reversal procedure, however, we found that the differences in performance 

between pigeons and rats were suggestive of a qualitative difference in the cognitive 

mechanism or information that was used to solve the task. Therefore, although not 

initially intended as such a procedure, the midsession reversal task might provide a more 

sensitive measure for the differences across species in their ability to maximize 

reinforcement, based on particular strategies. 

One possibility for why rats might be more efficient at switching responses from 

one alternative to the other, based on limited experience with the reversed contingencies, 

may be due to the differences between pigeons and rats’ foraging strategies. Rats are 

omnivores, which mean that the types of foods they can eat are extremely diverse. 

Additionally, the primary foods that they eat are often located in small quantities and in a 
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variety of different and often irregular (unpredictable) locations in which they inhabit 

(Bond, Cook, & Lamb, 1981). Due to the diversity in location, quantity, and the nature of 

the food (plant or animal), rats therefore may more readily abandon locations or 

responses that previously provided reinforcement within a single or a few experiences 

with nonreinforcement. In contrast to rats, pigeons are granivores, which means that their 

food sources are not only more limited in kind, but also in location. Typically, pigeons 

will flock to certain locations in which food is available in abundance (e.g., open 

grasslands and agricultural areas) and in which a single visit does not deplete all of the 

food available in that location (Bond, et al., 1981). Additionally, pigeons, unlike rats, rely 

on the presence of other members of their species to signal the availability of foods and 

rarely forage to unknown places on their own.  As Bond et al. (1981) state, “…individual 

flocks develop traditional feeding sights, areas that have proved in the past to provide 

abundant food and safety from predation” (p. 575). It is possible that the difference in the 

flexibility between the types of food eaten and the location of that food between rats and 

pigeons may contribute to their propensity to use particular strategies in tasks that require 

a very flexible behavioral strategy. 

Other avian species that have also been shown to improve across serial reversals 

more rapidly and show greater improvement in learning set tasks than pigeons are certain 

species of corvid, such as rooks and crows (Wilson, 1978). This finding is particularly 

interesting because both of these corvid species, similar to rats, are omnivores. It may be 

that animals that have evolved to consume extremely diverse foods evolved to be able to 

more readily use flexible cognitive strategies, such as rule learning, with certain tasks that 

use food as reinforcement (Bond, Kamil, & Balda, 2007). It would be interesting know if 
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other avian species whose food repertoires and foraging strategies are more diverse than 

pigeons would more readily adopt the appropriate strategies on the within-session reversal 

task, or whether other available cues, such as timing or probability matching, would gain 

control of behavior. In the limit, it appears that the design of our tasks, which require the 

pigeon to use an outcome from a previous trial to solve the next, does not appear to allow 

pigeons to readily adopt that cue in lieu of other cues that may provide information about 

patterns of reinforcement. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
Copyright © Rebecca M. Rayburn-Reeves 2011 
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