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ABSTRACT 

 

A HYBRID TABU/SCATTER SEARCH ALGORITHM FOR SIMULATION-BASED 

OPTIMIZATION OF MULTI-OBJECTIVE RUNWAY OPERATIONS SCHEDULING 

 

Bulent Soykan 

Old Dominion University, 2016 

Director: Dr. Ghaith Rabadi 

 

As air traffic continues to increase, air traffic flow management is becoming more 

challenging to effectively and efficiently utilize airport capacity without compromising 

safety, environmental and economic requirements. Since runways are often the primary 

limiting factor in airport capacity, runway operations scheduling emerge as an important 

problem to be solved to alleviate flight delays and air traffic congestion while reducing 

unnecessary fuel consumption and negative environmental impacts. However, even a 

moderately sized real-life runway operations scheduling problem tends to be too complex 

to be solved by analytical methods, where all mathematical models for this problem belong 

to the complexity class of NP-Hard in a strong sense due to combinatorial nature of the 

problem. Therefore, it is only possible to solve practical runway operations scheduling 

problem by making a large number of simplifications and assumptions in a deterministic 

context. As a result, most analytical models proposed in the literature suffer from too much 

abstraction, avoid uncertainties and, in turn, have little applicability in practice. On the 

other hand, simulation-based methods have the capability to characterize complex and 

stochastic real-life runway operations in detail, and to cope with several constraints and 

stakeholders’ preferences, which are commonly considered as important factors in practice. 

 

This dissertation proposes a simulation-based optimization (SbO) approach for multi-

objective runway operations scheduling problem. The SbO approach utilizes a discrete-

event simulation model for accounting for uncertain conditions, and an optimization 

component for finding the best known Pareto set of solutions. This approach explicitly 

considers uncertainty to decrease the real operational cost of the runway operations as well 



 

 

as fairness among aircraft as part of the optimization process. Due to the problem’s large, 

complex and unstructured search space, a hybrid Tabu/Scatter Search algorithm is 

developed to find solutions by using an elitist strategy to preserve non-dominated solutions, 

a dynamic update mechanism to produce high-quality solutions and a rebuilding strategy 

to promote solution diversity. The proposed algorithm is applied to bi-objective (i.e., 

maximizing runway utilization and fairness) runway operations schedule optimization as 

the optimization component of the SbO framework, where the developed simulation model 

acts as an external function evaluator. To the best of our knowledge, this is the first SbO 

approach that explicitly considers uncertainties in the development of schedules for runway 

operations as well as considers fairness as a secondary objective. 

 

In addition, computational experiments are conducted using real-life datasets for a major 

US airport to demonstrate that the proposed approach is effective and computationally 

tractable in a practical sense. In the experimental design, statistical design of experiments 

method is employed to analyze the impacts of parameters on the simulation as well as on 

the optimization component’s performance, and to identify the appropriate parameter 

levels. The results show that the implementation of the proposed SbO approach provides 

operational benefits when compared to First-Come-First-Served (FCFS) and deterministic 

approaches without compromising schedule fairness. It is also shown that proposed 

algorithm is capable of generating a set of solutions that represent the inherent trade-offs 

between the objectives that are considered. The proposed decision-making algorithm might 

be used as part of decision support tools to aid air traffic controllers in solving the real-life 

runway operations scheduling problem.  
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CHAPTER 1 

INTRODUCTION 

 

Economic growth has been broadly influencing air transportation demand and pushing the 

industry’s infrastructure and resource capacities to its limits. However, in terms of 

infrastructure, it is one of the most neglected industries (Wensveen, 2015). The essential 

physical infrastructure of air transportation are the airports where a modal transfer is carried 

out from the air mode to land mode and vice versa. As demand for air transportation 

continues to increase throughout the world, air traffic volume in major airports approaches 

airport infrastructure capacity. Consequently, delays are becoming inevitable in air 

transportation facilities as the demand for services exceeds its capacity. The resulting high-

volume air traffic typically leads to airport congestion and long queues for both arrivals 

and departures, and in turn, results in additional fuel costs, passenger dissatisfaction, as 

well as environmental pollution.  

 

In airport infrastructure, runways have been typically identified as the primary limiting 

factor (bottleneck) that causes congestion and delays. Hence, the capacity of an airport 

heavily depends on the runways in use. Air traffic congestion and delays stem from the 

scarcity of runways pose safety risks, and also increase operational and environmental 

costs. Although one may think that investing in airport infrastructure can solve the problem, 

most of the time it is not practical or feasible. Since majority of the busy airports are 

constrained by the lack of physical space for new runways and newly promulgated 

environmental restrictions, this prevents adding more runways as a way to increase 

capacity. As a result, it is significantly important to utilize terminal maneuvering area 

(TMA) effectively to increase the overall capacity of the airports and to smooth the flow 

of air traffic.  

 

To improve TMA utilization and ensure air traffic flow safety, runway operations need to 

be scheduled effectively and efficiently. This real-life combinatorial problem is commonly 

referred to as runway operations scheduling problem. Over the past several decades, 
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researchers and practitioners have developed various models and tools for this real-life 

problem. However, for major airports, it is still a challenge to schedule runway operations 

considering the complexity and uncertainty inherent to these operations. In 2015, air traffic 

volume accounted for 34.58 percent of all aircraft delays in the United States (US) (FAA, 

2016a); therefore, the problem is motivated by a clear evidence of a steady increase in air 

traffic congestion and delays at the major airports.  

 

One of the main reasons for this inefficiency is that currently available operational planning 

models and decision support tools used by air traffic controllers do not consider explicitly 

the stochastic nature of runway operations and the interests of different stakeholders, 

particularly airlines. However, uncertainty is an integral part of runway operations, which 

usually renders the deterministic models sub-optimal or even infeasible in practice, and 

also in real-life there are several stakeholders related to runway systems where each may 

have separate and possibly conflicting interest. Hence, there is an apparent need for 

improving these models and tools for planning and controlling the air traffic flow in runway 

operations to a level applicable for practical use.  

 

This dissertation investigates an effective way for optimizing the multi-objective runway 

operations scheduling while explicitly considering the uncertainties inherent in runway 

operations and fairness among all aircraft in a natural way by utilizing a simulation-based 

optimization (SbO) approach. Furthermore, due to the problem’s large, complex and 

unstructured search space, a hybrid Tabu/Scatter Search algorithm is designed and 

implemented as the optimization engine of this SbO framework, which is the main focus 

of this dissertation. This chapter is dedicated to present the background of the study 

focusing specifically on the problem definition and fundamental characteristics to set up 

the foundation, followed by the research philosophy and methodology. A summary of the 

contributions and outline of the dissertation are also provided. 
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1.1 Motivation 

 

According to a Federal Aviation Administration (FAA) aerospace forecast, US carrier 

combined domestic and international passenger growth is estimated to be an average of 2.2 

percent per year over the next two decades, and system capacity in available seat miles 

(both domestic and international) is estimated to increase by 2.6 percent in 2016 and by 2.5 

percent of the average annual rate through 2036. By 2036, US commercial air carriers are 

projected to transport 1.24 billion enplaned passengers, as shown in Figure 1 (FAA, 

2016b). According to a similar forecast study done by Eurocontrol (European Organization 

for the Safety of Air Navigation) for Europe, average annual air traffic growth rate is 

projected to be 3 percent through 2021 (Eurocontrol, 2015). 

 

 

 

Figure 1: US Commercial Air Carriers Passenger Enplanement (2008-2036) 

(Source: https://www.faa.gov/data_research/aviation/aerospace_forecasts) 
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As the upward trend in air traffic is expected to continue and outpace the capacity, the 

possibility of delays is likely to increase. According to FAA supported study on the total 

delay impact in the US, the total cost of all US air transportation delays in 2007 was 

estimated to be $31.2 billion. In addition to these direct costs imposed on the airline 

industry and passengers, aircraft delays have indirect effects on the US economy. It was 

also estimated that air transportation delays reduced the US GDP for that year by $4 billion 

(Ball et al., 2010). In another study, the FAA estimated that increasing congestion in the 

US air transportation system, if not addressed, would cost the economy $22 billion annually 

in lost economic activity by 2022 (FAA, 2007). Hence, flight delays are a growing 

challenge not only for air transportation industry but also for the environment and the 

whole economy. 

 

The Bureau of Transportation Statistics (BTS) categorizes causes of air traffic delay into 

five broad groups: extreme weather, air traffic volume in the TMA, equipment problems, 

runway closure, and other. Figure 2 shows the causes of flight delays in the National 

Aviation System (NAS) between 2010 and 2015, where the largest contributor was 

weather, causing more than half of delays. The next major factor is the air traffic volume, 

which accounts for more than 31 percent, and this leaves a large room for improvement by 

increasing the effectiveness of TMA utilization. 

 

 

 

Figure 2: Causes of National Aviation System Delays (2010-2015) 

(Source: http://www.transtats.bts.gov/) 
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The negative impact of high air traffic volume in TMA is exacerbated mainly by two 

factors. The first factor is the hub-and-spoke flight network structure widely adopted by 

airlines to enable more efficient use of their resources and improve service frequency. 

However, to offer a large variety of possible connections for passengers and limit waiting 

times at a hub airport, it is necessary for airlines to schedule as many runway operations 

(landings and take-offs) as possible during a short time frame, which are not equally spread 

throughout the day. This situation results in high traffic peaks during these times and often 

causes delays due to the scarcity of airport resources. The second factor is the unforeseen 

disruptions that cause sudden capacity drop. Due to the network structure of airport 

operations, delays propagate throughout the entire network and cause a knock-on effect of 

system-wide delays especially at major airports. Hence, these factors highlight the 

importance of finding robust solutions for better practical resource utilization. 

 

Out of various resources in TMA, runways have been the main constrained resource that 

requires special attention. Hansman and Idris (2001) investigated the underlying dynamics 

of the aircraft departure process based on field observations and data obtained from a major 

US airport. They concluded that the largest delays and queues are mainly manifested in 

runways. In a more recent study, Mehta et al. (2013) analyzed the runway queues and 

sequences with both human-in-the-loop simulations and during operational tests at a major 

US airport. They concluded that given a significant diversity of aircraft; delay savings can 

range approximately up to four hours a day by optimizing landing and take-off sequences 

(Mehta et al., 2013).  

 

It is primarily air traffic controllers’ responsibility to ensure the safe and efficient flow of 

air traffic on the ground and in the close vicinity of airports. This task requires air traffic 

controllers to consider three dimensions of space and maintain a safe flow of operations 

and at the same time airport capacity has to be utilized efficiently with reduced fuel 

consumption. In order to accomplish this challenging task, they partially utilize automation 

and decision support tools to avoid human errors and achieve better resource utilization. 

Most of these tools require incorporation of operational data manually or cognitively by 
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air traffic controllers. One of the significant tasks air traffic controllers perform is to 

schedule mixed departures and arrivals, due to the cognitive complexity in considering 

various operational constraints, such as wake turbulence separation requirements, time 

constraints of landing aircraft, etc.  

 

The real-life combinatorial problem of scheduling runway operations (landing and take-

off) is commonly referred to as runway (airport) operations scheduling problem. This 

problem includes determining the optimal landing/take-off sequence and start times over 

each arrival/departure runway in order to improve runway utilization, decrease delays, etc. 

This scheduling process is significantly important for achieving efficiency and 

effectiveness in runway operations, ensuring safety, improving passenger satisfaction, 

reducing air traffic delays, fuel burn and negative environmental impacts, etc.  

 

Despite the vast body of knowledge related to runway operations scheduling, there are still 

literature gaps that need to be addressed. In particular, there is a clear knowledge gap on 

developing a methodology that explicitly take into consideration the inherent uncertainties, 

reflecting the stochastic and complex nature of runway operations. The quasi-optimal 

schedules that are obtained in the planning stage without considering uncertainties become 

far from optimal or even infeasible in practice. Usually, external factors, such as inclement 

weather or equipment failures, are held responsible for delays. However, certain delays are 

predictable and avoidable uncertainties are considered in the schedules at the planning 

stage. Mehta et al. (2013) provided clear evidence that there is a need for effective and 

efficient algorithms for recommending runway operations schedules that are robust to 

uncertainties. 

 

Due to the complexity of this real-life problem, and in order to apply analytical methods, 

it has been inevitable to make numerous assumptions to reduce the complexity. As a 

consequence, the solutions acquired from the analytical models are far from practical. On 

the other hand, considering less simplifying assumptions for the sake of more realistic 

modeling usually lead to intractable analytical models, where results can only be estimated 

via some heuristic or approximation techniques. Therefore, appropriate modeling 
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techniques and solution algorithms need to be employed. The simplifying assumptions, 

which had been made in many previous researches, often render the underlying model 

analytically tractable. These analytical models are quite often not validated because it is 

assumed that it is intrinsically valid since it is analytical. Therefore, the applicability of the 

analytical models seems quite narrow because of the assumptions made. 

 

In addition, analytical models tend to oversimplify the dynamic and stochastic nature of 

the complex and nonlinear real-life problem; otherwise they will be computationally 

intractable. Also, it is a challenging task to develop a stochastic optimization model since 

even for a small-scale problem a large number of scenarios exist. On the other hand, 

simulation-based methods have proved to be a powerful tool to account for complex and 

stochastic nature of scheduling problems and have become an area of extensive 

investigation over the past decades. Hence, a simulation-based approach has the potential 

to overcome difficulties related to stochastic nature of the problem to address air traffic 

growth and reduce delays.  

 

In comparison with a large number of publications on applying deterministic approaches 

to the runway operations scheduling problem, it seems that the exploration of using a SbO 

approach, especially within the context of multi-objective optimization (MOO), is 

promising. Therefore, the core motivation for this research is the need to improve decision-

making in the TMA by developing a practical and operationally feasible optimization 

approach for scheduling runway operations. To this end, a SbO approach is proposed to be 

utilized as part of operational planning models and decision support systems used by air 

traffic controllers in order to find solutions to real-life multi-objective runway operations 

scheduling problem. Since several stakeholders are involved, decisions require considering 

interests of these stakeholders. Therefore, two potentially conflicting objective functions 

are considered simultaneously, namely maximizing runway throughput by exploiting 

separation requirements between aircraft, and maximizing fairness among airlines. These 

objectives are commonly considered as important in providing an operationally useful 

capability.  
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It is evident that the development of a SbO approach for runway operations requires an 

understanding of the air traffic management architecture and air traffic control practices. 

Hence, a brief overview of the air traffic management architecture and current air traffic 

control procedures are presented in the next section due to their high relevance, and also, 

inefficiencies are highlighted as a research motivation. 

 

1.2 Air Traffic Management 

 

Air traffic management (ATM) system is an essential component of airport operations, and 

it provides a set of services to guarantee the safety and efficiency of air traffic flows (De 

Neufville & Odoni, 2013). The smooth functioning of the ATM system is the primary task 

provided by the air navigation service providers (ANSPs). In the US, the FAA is the 

primary ANSP, whereas the Eurocontrol assumes this responsibility for the Europe. The 

operational side that directly interacts with the aircraft crew is commonly referred to as air 

traffic control (ATC). The specific purpose of ATC is to ensure the safety of aircraft by 

guaranteeing conformance to minimum separation requirements and maximize efficiency 

by increasing resource utilization. 

 

In the US, FAA utilizes a hierarchically organized structure to implement ATC system, 

which is a large scale and multi-layered system with a single air traffic control system 

command center (ATCSCC) supervising the overall air traffic flow. This system has three 

components where these components interact with each other constantly. These 

components of the ATC system are listed below and illustrated in Figure 3:  

 

(a) Air route traffic control centers (ARTCC) control the en-route airspace with 

generally low traffic density away from airports.  

 

(b) The high traffic density region around an urban airport within a radius of 5 

to 40 nautical miles (NMs) or below an altitude of 10,000 feet is called the terminal radar 

approach control (TRACON) area. The TRACON handles departing and approaching 

aircraft within its space.  



 

 

9 

 

(c) Air traffic control tower (ATCT) is located at every airport that has 

regularly scheduled flights. ATCT controls aircraft during takeoff, landing and ground 

traffic, and in the air within 5 NMs.  

 

 

Push-back, taxi-out, 

take-off and in the air 

within 5 NMs
En-route

ATCT ATCTTRACON TRACONARTCC

5 to 40 NMs 

from the airport 

or until 10,000 

feet altitude

5 to 40 NMs 

from the airport 

or when below 

10,000 feet 

altitude

Final approach, 

landing, taxi-in

 

Figure 3: Components of Air Traffic Control System  

 

 

Airport operations are traditionally divided into landside and airside operations. The 

landside operations comprise of operations that are directly related to passenger access to 

aircraft. On the other hand, the airside operations consist of aircraft operations in the 

runways, taxiways, spots, ramp areas, and gates. ATCT is responsible for the airside 

operations, i.e. safe and efficient handling of aircraft on the ground and in the close vicinity 

of an airport for both departing and arriving air traffic.  

 

The airside operations are very complex and difficult to handle as a whole service; hence, 

it is partitioned into several services. The primary objectives of these services are to ensure 
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the safety of the operations and to maximize the effectiveness of the system. In major 

airports, the air traffic controllers commonly consist of four groups of controllers: (1) gate 

controller (assigns gate to aircraft and grants pushback clearance), (2) ramp controller 

(provides clearance for ramp and sequences aircraft at the ramp), (3) ground controller 

(issues taxi clearances and arranges departure/arrival taxi queue), and (4) local (tower) 

controller (assigns runway and start times for landing/take-off of arriving/departing 

aircraft). The arrival and departure air traffic is controlled by the gate controller in the gate 

area, by the ramp controller in the ramp area, by the ground controller between the spot 

and the holding area/runway exit, and by the local controller between the holding 

area/runway exit and the runway. Responsibilities of these air traffic controllers are 

illustrated in Figure 4. 
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Figure 4: Responsibilities of Air Traffic Controllers 

 

 

In ATCT, local controllers are the ones who are responsible for ensuring the safe and 

smooth flow of air traffic, while trying to minimize the delays and congestion on runways. 

The volume of runway operations, especially during peak hours, combined with some 

disruptions stem from uncertainties result in a very complex and dynamic operational 
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environment. However, local controllers commonly utilize low-level of automation in this 

critical scheduling process. In an ideal situation, the local controllers should conduct this 

scheduling job interactively via a decision support system that is linked to a wider 

information system and databases. The development of efficient algorithms to be used in 

these decision support systems for runway operations scheduling is a significant and active 

area of research.  

 

Furthermore, currently in practice, local controllers deal with uncertainties via a reactive 

approach by updating the initially planned aircraft schedules with unplanned event 

occurrence. However, the TMA is an extremely busy environment and rescheduling 

aircraft highly increases the workload of local controllers, and also, every intervention to 

the initial plans impacts the entire air traffic flow one way or another. One may think that 

adding buffer (slack) times to all aircraft separations may produce solutions robust to 

uncertainties; however, such schedules will lead to suboptimal solutions, and in turn, 

underutilization of runways and degrade in airport capacity. Therefore, uncertainty needs 

to be explicitly incorporated into the models to obtain robust schedules and realize better 

utilization of runways. 

 

Existing air traffic flow operations heavily rely on local controllers to sequence aircraft, 

schedule the landing/take-off times and issue clearance instructions to each aircraft, and 

adjust the schedules when necessary to maintain minimum separations between aircraft. 

However, a paradigm shift has been pursued to change this reliance on local controllers as 

part of complete Air Traffic Management (ATM) system transformation both in the US 

and in Europe. FAA’s Next Generation Air Transportation System (NextGen) program in 

the US and Eurocontrol’s corresponding Single European Sky ATM Research (SESAR) 

program in Europe are still under development. These new systems adopt new 

technologies, such as 4-dimensional ATM (trajectory control), performance-based ATM, 

satellite-based navigation as well as collaborative decision-making (CDM) concepts.  

 

The primary benefit of NextGen and SESAR technologies and concepts is that aircraft are 

expected to fly more exact routes in a more automated manner, thus improving system 
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predictability and reliability, and increasing runway throughput and efficiency under 

varying demand and weather conditions. Therefore, the new concept of operations 

envisaged by NextGen and SESAR for the near future presents new opportunities for 

dealing with air traffic flow management on the current operational environment. 

 

In NextGen and SESAR, it is envisaged that in major airports runway operations will be 

conducted using pre-determined surface trajectories for all aircraft. These pre-determined 

trajectories are planned to be a coordinated effort among all stakeholders especially ANSPs 

and airlines. Also, it is aimed to improve information sharing between the trajectory 

automation tools and airlines’ automation systems. However, it is evident that substantial 

uncertainty in airport and runway operations stems from various sources as well as 

unexpected events will still be existent as they exist currently. Therefore, in the current as 

well as in NextGen’s operational environment, it is highly important to take into account 

uncertainties during scheduling runway operations. 

 

Recently, several air traffic tower automation tools have been developed to assist air traffic 

controllers in managing air traffic flow. The Airport Surface Detection Equipment-Model 

X (ASDE-X), which is a surface surveillance system, is used in major airports to help air 

traffic controllers maintain safe separation of aircraft and vehicles on the airport surface. 

Local controllers mainly use this surveillance system (if available in that airport) and voice 

communication systems to issue control clearances to aircraft. Another tool that is 

developed for scheduling arrivals is the Center TRACON Automation System, Traffic 

Management Advisor (CTAS/TMA) (this tool was developed by NASA), which is already 

in-service at many US major airports. As part of FAA NextGen efforts, the CTAS/TMA is 

planned to be replaced by an advanced decision support tools suite called the Tower Flight 

Data Manager (TFDM). The primary aim of TFDM is to serve as a platform for air traffic 

controllers to manage aircraft operations on the airport surface and in the TMA. There are 

some runway sequencing and scheduling related decision support tools considered under 

TFDM. The capabilities of ASDE-X and TFDM should be integrated to schedule runway 

operations better in the near future. 
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In Mehta et al. (2013), a recent study performed by the Massachusetts Institute of 

Technology (MIT) Lincoln Laboratory and sponsored by the FAA, the decision support 

functions of the latest TFDM prototype is analyzed and evaluated, and several gaps in 

performance are identified. This study indicates that the greatest potential operational 

benefits would come from decision support tools that facilitate managing runway queues 

and sequences. In addition, the same study provides evidence that outputs of the 

optimization approaches proposed in the literature are not operationally feasible, and in 

practice air traffic controllers still rely on first-come-first-served (FCFS) strategy, which 

usually yields suboptimal aircraft schedules and fails to utilize the available runway 

capacity completely. In the same study, two major issues have been identified to be 

addressed to make the proposed approaches applicable to practical runway operations, 

which include: (1) computational time for finding a feasible schedule, and (2) the impact 

of uncertainties on the resulting optimization algorithms (Mehta et al., 2013). 

 

1.3 Problem Statement 

 

1.3.1 Formal Problem Definition 

The prominent problem in operations research literature which deals with scheduling 

aircraft for landing and take-off is referred to as runway operations scheduling problem. 

This real-life problem can be briefly defined as follows. Given a set of departing aircraft 

and another set of arriving aircraft, where each aircraft belongs to a weight class, we need 

to assign each aircraft to a runway, and then determine the start time for each runway 

operation (landing or take-off) on the assigned runway, while considering operational 

constraints, such as minimum separation times, time windows etc. This large-scale 

scheduling problem consists of a three-step process. The first step involves allocating 

aircraft to different runways; the second step is sequencing the aircraft allocated to each 

runway, and the third step is determining the operation start times for each aircraft. This 

problem usually arises at busy airports where runway utilization needs to be optimized to 

prevent delay-related costs. 
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The runway operations scheduling problem has a short planning horizon, which is usually 

20-30 minutes. For arriving aircraft, each aircraft is considered as soon as it arrives at the 

extended TMA, which is about 30-40 minutes before its target landing time, and scheduled 

landing time is assigned before it reaches the final approach path, (about 20-30 minutes in 

advance of landing). For departing aircraft, each aircraft is considered as soon as it enters 

the holding area, and this time period varies among airports depending on the 

characteristics of taxiway, holding area, and runways. But, most of the time, take-off 

sequence for a runway should be determined before an aircraft enters the taxiway, since it 

is not possible to change the sequence during taxiing or at the holding area. Hence, take-

off operations are scheduled approximately 20 minutes before target take-off time (Bennell 

et al., 2013). Therefore, from a practical standpoint, a solution method to the problem 

should generate a runway operations schedule within the mentioned short planning 

horizon. 

 

Since the 1960s, developing efficient methods for tackling runway operations scheduling 

problem has been of great interest for both academic researchers and practitioners. Several 

techniques have been formulated to solve various forms of the problem. Bennell et al. 

(2013) identified the primary modeling approach as mapping the problem to a machine 

scheduling (job shop or parallel machine scheduling) problem, and the main solution 

techniques as dynamic programming (DP), branch-and-bound (B&B), and heuristics. 

Nearly the entire literature addresses the problem as a deterministic problem with the 

assumption that all the input data is known with certainty. However, there are numerous 

sources of uncertainty that need to be considered during scheduling, such as adverse 

weather, ground speed variations caused by the wind, piloting indecisions, unexpected 

delays, etc. In such cases, the quasi-optimal schedules become far from optimal in practice 

because of challenges posed by uncertainty. Hence, there is still an apparent shortage of 

study that takes uncertainty into account with a proactive approach.  

 

From a local controller’s point of view, the easiest scheme to use for scheduling runway 

operations is through the FCFS order. At the same time, FCFS is perceived as reasonably 

fair by most airlines. For the landing operation, this order is based on the order the aircraft 



 

 

15 

enter the radar range, and for the take-off operation, it is based on the order of the aircraft 

queuing at the holding area. Although FCFS is an efficient strategy in terms of 

implementation, it does not typically produce the best schedule for runway utilization 

(Caprı̀ & Ignaccolo, 2004). For major airports, low level of runway utilization leads to 

traffic congestion and delays, which, in turn, leads to inefficiency and waste of resources 

as well as environmental pollution. 

 

The runway operations scheduling problem is usually modeled as a mixed integer program 

(MIP), a set partitioning problem or an asymmetric traveling salesman problem with time 

windows, and solved by utilizing mathematical programming methods where the obtained 

solutions are guaranteed to be optimal. However, since the minimum separation 

requirements are dependent on the aircraft order in terms of their weight class and runway 

operations type, the problem is combinatorial in nature. Therefore, for the practical large-

scale problem sizes, the solution time is often prohibitive for these mathematical 

programming methods. 

 

The computational complexity of the single runway operations scheduling problem has 

been shown to be Non-Deterministic Polynomial-time Hard (NP-Hard), which means that 

there is no known algorithm for efficiently finding optimal solutions to real-life problem 

sizes in polynomial time (Garey & Johnson, 1979). The multiple runways case of the 

problem is also NP-hard because it is a generalization of the single runway scheduling 

problem. In addition to the problem’s inherent computational complexity, the magnitude 

of the problem’s difficulty is exacerbated by considering uncertainties and multiple 

conflicting objectives. Therefore, exact (optimal) solution methods are not capable of 

solving practical problem sizes, and one of the main alternative solution methods is to use 

heuristic or metaheuristic algorithms. 

 

 

1.3.2 Problem Characteristics 

There are several dimension of classifying the runway operations scheduling problem, and 

most prominent ones are listed below: 
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Static vs. dynamic: This characteristic of the problem relates to time. The static (offline) 

case is solved before actual operations with known or predicted information while the 

dynamic (online) case is solved to generate schedules in real time as aircraft arrive in real 

time. The most common researched case in the literature is the static case where it is 

assumed that all data including ready times, target times and due times is known upfront 

and can be taken into account in the process. For this case, it is commonly assumed that a 

target time for landing or take-off is provided by another tool, such as Runway Scheduler 

(Balakrishnan & Jung, 2007). On the other hand, in dynamic case, all these data become 

known only when an aircraft is ready to land or take-off. Modeling approaches for dynamic 

case tend to be quite different from the ones for the static case, which requires some 

additional considerations about which aircraft to reschedule and when to reschedule the 

sequence of the aircraft. Therefore, in the dynamic case, fast computation times are 

necessary. In this research, the static case of the problem is considered. 

 

Runway configurations and procedures: These characteristics are related to the number of 

runways that are considered (single or multiple), the interaction between the runways 

(interacting or independent), and the mode in which each runway is operated (mixed-mode 

or segregated-mode). In interacting runways, the separation requirements on one runway 

are affected by the operation at the other runway, and in independent runways this is not 

the case. In mixed-mode, each runway is utilized for arrival and departure at the same time. 

On the other hand, in segregated-mode, each runway is utilized only for either arrival or 

departure. Airport capacity can potentially be increased in mixed-mode, especially when 

there exist multiple runways, the opportunity is even greater. Arrival and departure aircraft 

inevitably interact through the common use of taxiways and runways. Thus, managing the 

air traffic flow successfully requires considering both arriving and departing aircraft in the 

TMA.  

 

The runway operations scheduling problem is a challenging task both from a technical and 

an implementation point of view like most of the real-life scheduling problems. The major 

challenges on the technical part are considering uncertainties and multiple conflicting 
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objectives in modeling the actual scheduling problem. On the other hand, implementation 

challenges are typically related to the fidelity and accuracy of the model developed for the 

analysis of the actual scheduling problem. In this research, uncertainties that are inherent 

to practical operations and multi-objective nature of the problem is taken into 

consideration, and detailed in the rest of this section. 

 

1.3.3 Operational Constraints and Typical Objectives 

The commonly considered operational constraints and typical objectives for the runway 

operations scheduling problem are briefly presented below: 

 

Time windows: Once an aircraft enters the radar range for landing or pushbacks from the 

gate for take-off, air traffic (local) controllers assign a runway to it and a start time for 

landing/take-off. The start time has to be between the predetermined earliest and latest 

land/take-off time, so-called “time windows”, which is a hard constraint. Also, there is a 

target time to land/take-off within this time window, which is the time that aircraft can land 

if it flies at its cruise speed for landing, and the most probable time for take-off considering 

the taxi-out and holding times for take-off. 

 

Minimum separation requirements: This is the principal safety constraint that needs to be 

taken into account in a runway sequence, which is the spacing (time interval) between 

successive aircraft and it has to be equal or greater than the minimum requirement stated 

by the FAA. This spacing requirement is required for the wake vortices to dissipate. Wake 

vortices are turbulences of air which are caused by a leading aircraft as a result of its lift 

force. The FAA and other Civil Aviation Authorities around the world specify a set of 

minimum separation requirements in units of distance or time. The FAA enforced 

minimum separation requirements are largely determined by the type of operation and 

weight class of the leading and trailing aircraft. In the presence of multiple interdependent 

runways, these separation requirements are asymmetric (non-triangular), where the 

sequence of operations determines the actual separation time. Therefore, generating 

efficient aircraft schedules by exploiting the asymmetric separation times has the potential 
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to increase runway utilization and delay reduction. However, the existence of asymmetric 

separation times between aircraft makes this scheduling problem a non-trivial one. 

 

Limited flexibility in deviating from the FCFS order: In practice, local controllers often 

simply depend on FCFS strategy, which is the most straightforward and widely used 

approach. Although FCFS order eases local controllers’ workload, maintains a sense of 

fairness among airlines and is easy to implement, usually it is not capable of providing the 

best schedule in terms of runway utilization. In practice, deviating from FCFS order is not 

common. 

 

Typical Objectives: Different objectives are utilized in the literature considering various 

stakeholders’ point of view. It is not practical to address the interests of all the stakeholders 

at the same time. Hence, the most commonly used ones are related to ANSPs’ interests, 

such as minimizing the total delay (tardiness), minimizing the total deviation from the 

target time (earliness and tardiness), minimizing the average delay per aircraft, maximizing 

the throughput (makespan which is the landing or take-off time of the last aircraft), and 

minimizing the maximum delay. Total weighted tardiness measures the cost of delay that 

is a function of the length of delay multiplied by a weight (penalty) value related to each 

aircraft, and it is capable of addressing different stakeholders’ needs. This objective is also 

very important for airline companies since every second the aircraft waits to land or take-

off increases operating costs. From airlines’ point of view, schedules for runway operations 

should ensure some degree of fairness, where FCFS sequence is typically perceived as 

relatively fair by airlines. 

 

1.3.4 Consideration of Practical Aspects  

A comprehensive literature survey, presented in Chapter 2, shows that there is a 

considerable gap between practitioners and academic researchers in the field of runway 

operations scheduling. Academic researchers are often not aware of the real-world 

complexities encountered by the industry practitioners, namely local controllers, and, in 

turn, they usually do not take into account most of the practical aspects of the problem. 

Most of the academic research conducted have the following assumptions: 
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(a) They assume that all aircraft are already present on the final approach and 

holding area for landing and take-off, respectively. They also assume to have precise and 

reliable data on the aircraft and operating environment. 

 

(b) They consider mostly the deterministic problem in which the presence of 

uncertainties in actual runway operations is ignored to limit the computational complexity 

of the problem.  

 

(c) They highly focus on considering a single objective for optimizing the 

runway operation schedules, and they commonly do not consider Collaborative Decision 

Making (CDM) aspects and interests of different stakeholders at the same time.  

 

However, local controllers are faced with daily challenges where uncertainties are real, and 

a trivial change in environmental conditions or small variations in implementation can be 

critical to operational safety and performance. In addition, finding the trade-offs between 

interests of different stakeholders is a key characteristic of the real-life problem. For 

example, concentrating only on runway utilization can cause unacceptable delays for 

individual aircraft, and in turn, this can impair the operational efficiency of the airline to 

which the aircraft belongs. Hence, the real-life problem involves several contradicting 

objectives that need to be satisfied simultaneously, and the most important ones are 

maximizing runway utilization, and maximizing fairness among all aircraft. 

 

Essentially, runway operations scheduling problem is an applied area of research, and its 

benefits are ultimately derived from the results it achieves. However, by no means does 

this imply that the theoretical elements of this problem are not worthy of rigorous and 

careful treatment. Therefore, both theoretical and practical aspects of the problem are 

attempted in this research. To this end, the following practical elements have been taken 

into account to bring the problem closer to the practical real-life applications: (1) 

uncertainties inherent to runway operations, (2) multi-objective nature of the problem, and 

(3) ensuring fairness among aircraft. 
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Uncertainties: In practice, there are numerous sources of uncertainty that need to be 

considered during scheduling runway operations, such as inclement weather, airport 

congestion, equipment failure, unexpected delays in pushback or taxiing and so on; 

however, the main sources of uncertainty are push-back times, taxi times and wheels-on 

times for arrivals. These uncertainties are often very difficult, if not impossible, to avoid in 

practice. In such cases, the quasi-optimal schedules become far from optimal in practice 

because of challenges posed by uncertainty impacts. Uncertainty in runway operations 

usually manifests in the TMA in the form of traffic queues, and such queues typically result 

in operational inefficiencies, additional costs, such as fuel costs and environmental 

consequences. As a result, the methods to solve this scheduling problem should be robust 

enough to consider uncertainties, and efficient enough to produce solutions in a reasonable 

time.  

 

Stakeholders and Their Desired Interests: There are various stakeholders in scheduling the 

aircraft landings and take-off on runways, and each has different interests. The most 

important of these stakeholders include ANSPs, airlines, airport managements and 

government agencies. The viewpoints of the various stakeholders who affect or be affected 

by the scheduling of aircraft over runways differ substantially. Moreover, each stakeholder 

is usually concerned with multiple performance measures. For example, ANSPs are 

primarily focused on the safe flow of air traffic and runway utilization. On the other hand, 

airlines are mainly concerned with resource utilization, punctuality, air traffic and on-time 

performance, etc.  

 

As a relatively recent concept, airport CDM has been proposed as a means to deal with 

challenges at major airports, which has a potential to improve runway operations. CDM 

allows airlines to participate in air traffic decision-making that affects them. It also 

enhances collaboration between stakeholders, especially between ANSPs and airlines, to 

improve the operational efficiency of air traffic flow and satisfaction of the airlines by 

taking both stakeholder’s interests into account.  
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In order to integrate CDM concept into models, the objective functions for the practical 

runway operations scheduling problem should reflect the preferences of interested 

stakeholders as precisely as possible, in particular, the interests of airlines. Provided that 

runway operations scheduling problem are multi-objective in nature as a result of CDM 

concept, the problem should be handled in an MOO context that considers more than one 

objective simultaneously to avoid imbalances among them. Therefore, there is an 

increasing need for considering multiple objectives as a way of taking into account various 

stakeholders’ interests. One of the prominent objectives that is an integral part of CDM is 

ensuring fairness among airlines. 

 

In the presence of multiple conflicting objectives, the resulting MOO problem gives rise to 

a number of optimal solutions, known as Pareto-optimal solutions. Since these are all trade-

off solutions, the initial task for solving the MOO problem is to find as many such Pareto-

optimal solutions as possible. There exist several traditional methods that convert the MOO 

problem into single optimization problem by utilizing some user-defined parameters. 

However, the key challenge for this is the fact that most of these objectives are non-

commensurable, and it is hard to aggregate them into one synthetic objective. Therefore, 

finding near Pareto-optimal solutions is important in terms of facilitating effective trade-

off decision-making. 

 

The presence of uncertainty and multi-objectives introduces further challenges and 

additional computational complexity to the modeling and solution process. The difficulty 

is two-fold: (1) how to model the uncertainty, and (2) how to deal with computational 

complexity resulting from the existence of uncertainty and multiple objectives. Stochastic 

and dynamic nature of the runway operations renders simulation modeling as the only 

viable alternative for modeling uncertainty explicitly with a computationally tractable 

manner. The SbO approach is a widely utilized method for certain settings where analytical 

methods are not capable of optimizing complex models. The major downside of this 

method is the required computation time for simulation runs. Therefore, metaheuristic 

algorithms are commonly incorporated into the optimization component to deal better and 
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efficiently with real-life, large-scale problems, such as multi-objective runway operations 

scheduling problem. 

 

1.4 Research Philosophy and Methodology 

 

The motivation and problem statement discussed in the previous sections have laid a 

foundation from which this dissertation research is formulated. This section describes the 

research philosophy, and then, outlines the aim, objectives, and scope of the research, 

guided by the forming of research questions. 

 

The philosophy of science underlying this dissertation research, which pertains to the 

knowledge development and assumptions with regards to how the reality and knowledge 

are perceived, guided the research from problem definition to the conclusion in order to 

minimize researcher biases. In ontological consideration, critical realism is preferred due 

to our belief that even though there exist some form of reality that is external to the 

observer, it is yet to be perfectly understood. In epistemological consideration, post-

positivism is embraced, since we believe that reality can be agreed upon by independent 

observers whereas the idea of relativity is respected. In methodological consideration, 

largely quantitative methods are utilized, and the following research methods are employed 

to achieve the research objectives: literature review, prototyping, and a case study. During 

the research, we tried to put emphasis on the validation of the proposed models and the 

whole SbO framework to address the epistemological question of “how we can know 

something to be true.” 

 

1.4.1 Research Questions 

The runway operations scheduling problem is an important and challenging real-life 

problem; yet it has significant merit to be addressed efficiently as better utilization of the 

runways typically the only option left in response to the increasing demands for air traffic 

as most major airports are located close to residential areas, and in turn, there are concerns 

related to environmental issues, such as noise and pollution. A substantial number of 
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models and approaches have been developed over the years. However, as the conducted 

literature review indicates, there is still room for improvement, especially regarding closing 

the gap between academic research and practice. The research in this dissertation is an 

effort to partially fill this gap. 

 

The research described in this dissertation, which is based on the aforementioned research 

philosophy, is guided by the main and sub-research questions that can be summarized as 

follows: 

 

Main research question:  

“How to design and implement a hybrid Tabu/Search Scatter algorithm that is capable of 

generating best Pareto-optimal solutions for multi-objective runway operations scheduling 

problem within a SbO framework while considering the requirement of reasonable solution 

time enforced by the practical problem’s planning horizon?” 

 

Sub-research questions: 

(a) How to help local controllers to alleviate delays and increase runway 

utilization for future runway operations by explicitly incorporating uncertainties inherent 

to runway operations such that schedules are robust with respect to changes in the input 

data? In addition, how to formulate and incorporate fairness among aircraft into the 

scheduling process, which is perceived as an important factor by airlines? 

 

(b) Considering that multi-runway operations scheduling problem under 

uncertainty is a difficult problem to solve, does SbO approach generate robust solutions 

fast enough to be used in a real-life situation? How to develop a SbO framework for solving 

more realistic runway operations scheduling problem?  

 

(c) How to design and implement a discrete-event simulation model that 

simulates runway operations with an appropriate level of fidelity? How to develop methods 

to provide an effective initial solution? How to deal with the challenges posed by the 

simulation noise? 
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(d) To what extent the SbO approach can contribute to the practical scheduling 

process where there are multiple conflicting objectives? What are the benefits that this 

approach can provide in comparison to deterministic and FCFS approaches in solving real-

life runway operations scheduling problem? 

 

1.4.2 Research Scope 

The formulated research questions provide the conceptual framework that guides the scope 

of this research. The scope is delineated by forming a set of guidelines which ultimately 

result in achieving the practical application of the proposed methodology. The scope of the 

research in this dissertation is detailed as follows: 

 

(a) The static case of the runway operations scheduling problem with multiple 

interacting runways operating in mixed-mode with non-triangular separation times is 

considered. This is a more constrained problem than the single runway case or multiple 

runways operating in segregated-mode case. This version of the problem is addressed 

because it offers a better opportunity to generate operational benefits through effective 

runway operations scheduling. 

 

(b) In order to model the uncertainty in the problem, some of the input data are 

assumed to have a random element. Although taxi times are one of the main sources of 

uncertainty, the taxi routing problem is not integrated with the runway operations 

schedules. Therefore, the information related to the aircraft on the taxiways is accepted as 

inputs to the system, rather than as a part of the problem to be solved. 

 

(c) The simulation methodology used for the SbO framework is based on 

discrete-event simulation, which is an approach that models the runway operations as a 

network of activities, and where the system state is changed at the discrete point of time. 

In this approach, each entity, i.e. aircraft, is individually represented and specific attributes 

are attached to these entities in order to follow and collect some performance measures 

during the simulation. 
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(d) In terms of multi-objective optimization (MOO) component of the SbO 

framework, best Pareto (trade-off) solutions are considered instead of aggregating the 

objectives into a single objective as trade-off solutions allow decision-makers to 

compromise between multiple objectives and make decisions that consider different 

stakeholders’ interests simultaneously. 

 

1.4.3 Research Aim and Objectives 

Given the complexity and practical requirements of the runway operations scheduling 

problem, a SbO approach seems to be one of the best suitable methods for solving it. The 

main advantage of integrating simulation into optimization is that it can include less 

modeling assumptions, resulting in a more realistic and valid model and, in turn, leading 

to a better decision-making process. In SbO approach, a simulation model is commonly 

utilized for evaluating the performance of a solution which provides a convenient means 

to capture more realistic aspects of runway operations. However, this approach still faces 

challenges in terms of optimization especially when there exist multiple and conflicting 

objectives as well as the burden of computational time resulting from the simulation runs. 

Due to the complexity of this MOO, metaheuristic algorithms are practical and suitable 

techniques to find optimal or near-optimal solutions without much computational 

intractability issues. 

 

The overall aim of this research effort is to fill a portion of the knowledge gap between 

theory and practice in runway operations scheduling by accounting for some practical 

complexities while keeping the computational tractability at a reasonable level, and to 

develop a hybrid Tabu/Scatter Search algorithm based on for approximating the Pareto-

optimal solutions of the multi-objective runway operations scheduling problem in a SbO 

framework. The algorithm tries to evolve the reference set of solutions towards the Pareto-

frontier in each iteration and distribute it over the Pareto-frontier to maintain a diverse set 

of solutions. To the best of our knowledge, this is the first attempt in the literature to employ 

a SbO approach for solving this real-life scheduling problem that considers uncertainties 

as well as fairness among aircraft as a secondary objective.  
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The proposed algorithm, which is the optimization component of the SbO framework, is a 

novel algorithm that takes advantage of the structural details of the problem, and can be 

distinguished from the current algorithms in the way it uses an elitist strategy to preserve 

non-dominated solutions, a dynamic update mechanism to produce high-quality solutions 

and a rebuilding strategy to promote diversity across the Pareto-frontier. Furthermore, the 

proposed SbO approach designed to be utilized as part of decision support tools used by 

local controllers, capable of finding reasonably good quality solutions in a relatively 

considerable time. 

 

The thesis statement is defined as follows: develop a hybrid Tabu/Scatter Search algorithm, 

which is capable of handling multiple conflicting objectives and stochastic noise, can 

efficiently and effectively tackle the multiple runway operations scheduling problem 

within a simulation-based optimization (SbO) framework. 

 

The following key research objectives have been identified as the main steps in addressing 

the aforementioned aim of the research (the chapter that describes the related activities of 

each particular objective is given in parentheses): 

 

(a) Since the motivation of this dissertation is to propose a more practical and 

efficient problem solving approach, a comprehensive literature review is performed to 

identify the knowledge gaps, inefficiencies in existing models, and their causes to mitigate 

them to a practical level. (Chapter 2) 

 

(b) Design a SbO framework to tackle the challenges posed by stochastic and 

multi-objective nature of runway operations. First, related concepts and methods are 

reviewed for coping with SbO as well as MOO. Compared to published literature, some of 

the simplifying assumptions related to runway operations are reduced, and additional 

practical considerations are included. (Chapter 3) 
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(c) Design and implement a discrete-event simulation model with an object-

oriented architecture to replicate uncertainties to a realistic extent so as to evaluate and 

integrate it into a SbO framework. (Chapter 4) 

 

(d) Design and implement a new hybrid Tabu/Scatter Search algorithm to 

search for best known Pareto-optimal solutions within reasonable computational times 

considering the planning horizon of the practical runway operations scheduling problem. 

(Chapter 5) 

 

(e) Evaluate the robustness and effectiveness of the proposed optimization and 

simulation components as well as the whole SbO approach as a proof-of-concept by 

conducting computational experiments using real-life data from a major US airport. 

Analyze the experimental results in terms of potential operational benefits compared to 

deterministic and FCFS approaches. Derive conclusions based on the solutions obtained 

through statistical analysis of the outputs. (Chapter 6) 

 

(f) Analyze the whole problem-solving methodology, and the overall approach 

on the basis of the computational results, and propose extensions that can be done as a 

future research. (Chapter 7) 

 

1.5 Summary of Contributions 

 

The proposed approach in this research expands the current models by integrating a 

simulation model to consider explicitly the uncertainties related to some variables that have 

been treated as deterministic in order to limit the computational complexity thus far. It also 

contributes to filling the literature gap by taking into account two conflicting objectives 

simultaneously such that fairness among aircraft is considered as a secondary objective. 

This approach provides more realistic and robust solutions that can be applied to practical 

runway operations scheduling.  
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Therefore, this research effort provides novel contributions originate from the development 

and integration of optimization and simulation models. The main contributions (theoretical 

and practical) and scientific novelty of this dissertation, and how these relate to the research 

questions can be summarized as follows: 

 

(a) A hybrid Tabu/Scatter Search algorithm is designed and developed that 

consider multiple conflicting objectives. The primary contribution of this dissertation 

research lies in a novel hybrid Tabu/Scatter Search algorithm. The proposed algorithm 

utilizes a Pareto approach to deal with multiple conflicting objectives where a set of best 

trade-off solutions is searched for and presented to the local controllers. The algorithm is 

based on a population-based metaheuristic in order to capture multiple trade-off solutions 

in a single run since they are capable of maintaining a set of solutions. 

 

(b) A modeling framework based on SbO is proposed for the real-life runway 

operations scheduling problem, which addresses the identified knowledge gap. A SbO 

framework is developed with a potential to generate better runway utilization than 

deterministic optimization procedures under certain conditions. Although both the 

scheduling problem and incorporating the uncertainty is complex, the SbO approach is 

simplified by using an appropriate decomposition approach, thereby enabling the design of 

an effective solution system. Therefore, computational efficiency is achieved through the 

utilization of metaheuristic algorithm. 

 

(c) A simulation component consists of a discrete-event simulation model 

developed based on an object-oriented architecture. Unlike many works in the literature 

that focus mainly on developing simulation models with the help of existing commercial 

or open-source simulation software packages, a modular and flexible discrete-event 

simulation model is designed and implemented by an object-oriented programming 

paradigm. 

 

(d) Computational experiments are conducted using data from a major US 

airport, and the obtained results are presented as a proof-of-concept. Furthermore, in order 
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to demonstrate that the proposed approach can lead to higher quality runway schedules 

over current methodologies, the computational evidence is provided with the help of 

computational experiments. Also, it is shown that the proposed approach is 

computationally feasible for large-scale real-life problem instances. The results show that 

the proposed approach improves the overall performance of the runway operations 

scheduling for better runway utilization, low-level of delays and fairness among airlines. 

Along with these results, a discussion on how characteristics of an airport can affect the 

strategy is provided. 

 

(e) A comprehensive literature review of academic research and practical 

applications in runway operations scheduling and solution approaches for the problem are 

performed. This literature review provides an insight into the needs for further development 

of modeling and solution approaches for runway operations scheduling as well as SbO and 

MOO methods. This review is not by any means as a comprehensive treatment to literature 

in SbO and MOO methods; its only purpose is to identify the knowledge gaps in the 

literature. 

 

1.6 Outline of the Dissertation 

 

The structure of this dissertation is organized as follows. The first (this) chapter has briefly 

introduced the motivation behind this research, the basics of the air traffic management 

and the problem statement, followed by the research scope, aim, objectives, and a summary 

of the contributions of the dissertation.  

 

Chapter 2 provides general background information and presents the review of the 

extensive literature on current research pertaining to the runway operations scheduling 

problem including approaches that explicitly consider uncertainties as well as the concept 

of CDM. An additional literature review is given on machine scheduling under uncertainty 

since it relates to the area of research. Also, existing mathematical programming models 

related to the problem are presented along with the notation. Furthermore, alternative 

approaches for optimization under uncertainty are reviewed and compared. Finally, based 
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on the information gleaned from the literature review, knowledge gaps are identified, 

which eventually motivated this research.  

 

Chapter 3 outlines the important theoretical and practical underpinnings of the SbO 

framework. Also, the specific factors that shaped the development of this framework are 

provided. Basic concepts, principles, and terminology of SbO are also given for the sake 

of completeness. In addition, an overview of the definition and characteristics of MOO are 

described, and an overview of different MOO techniques are given. Next, simulation-based 

multi-objective optimization is discussed, and the currently utilized methods for dealing 

with noise in the simulation are outlined. It is noteworthy to mention that the primary aim 

of this chapter is not an in-depth analysis and treatment of SbO and MOO but to give a 

basic understanding of the related fields’ principles. Then, this chapter sets out the 

methodology on which the proposed approach depends, and addresses the considerations 

and rationale for the overall SbO approach, which comprises an optimization and a 

simulation model as well as a greedy heuristic algorithm to generate an initial solution. 

 

Chapter 4 explains the discrete-event simulation model in detail, setting out the key 

elements of the model. The main focus is to outline the design and implementation of the 

simulation model including assumptions. First, an overview of the state-of-the-art airport 

and runway simulation models is provided. Then, the purpose and a high-level framework 

of the model are presented along with a conceptual model. Also, the quantitative modeling 

process, object-oriented design architecture, and implementation specifics are explained. 

Finally, how the verification and validation study conducted before the experimental stage 

is described. 

 

Chapter 5 details the proposed hybrid Tabu/Scatter Search algorithm. First, metaheuristic 

algorithms and their foundational concepts are provided because the proposed algorithm is 

based on these concepts. In particular, basic design elements including initialization, 

representation, search operators, fitness function, and search strategies are presented. The 

multi-objective search components, namely fitness assignment, diversity preservation and 
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elitism, are discussed. This chapter is concluded with the object-oriented design and 

implementation specifics of the proposed algorithm. 

 

Chapter 6 presents conducted computational experiments as well as their detailed results. 

Computational experiments are reported in two separate parts as it is conducted: first, 

multi-objective optimization, and then, simulation-based optimization (SbO) experiments. 

The SbO experiments are based on actual historical operational data from a major US 

airport. Prior to presenting the experimental results, the way the experiments are designed 

and setup are also provided. The results demonstrate both that the proposed approach can 

provide significant benefits in practice compared to FCFS sequence and deterministic 

schedule, and also it is computationally tractable.  

 

Finally, Chapter 7 provides a summary of the research and derives several conclusions 

from the proposed approach. Also, several areas deserving further investigation are 

discussed, and a few potential directions for future research are pointed out. 

 

The dissertation flow and each component’s corresponding chapters are shown in Figure 

5, which better illustrates the outline of the dissertation. 
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Chapter 5 Hybrid Tabu/

Scatter Search Algorithm 

Chapter 4 Discrete-

Event Simulation Model

Chapter 1 Problem Definition, Research Philosophy 

and Methodology

Chapter 2 Background and Literature Review

Chapter 3 Conceptual Modeling and Multi-objective 

SbO Framework

Chapter 6 Design of Experiments, Case Study, 

Computational Experiments and Results

Chapter 7  Conclusions and Future Research 

Directions

 

Figure 5: Dissertation Flow and Chapters 

 

 

Throughout the dissertation, scalar quantities are denoted as lowercase, non-bold face 

symbols (e.g., x ∈ ℝ), vector quantities are denoted as lowercase, boldface symbols (e.g., 

x ∈ ℝn, n > 1), and matrices are denoted as uppercase, boldface symbols (e.g., A ∈ ℝn×n,   

n > 1). 
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CHAPTER 2 

BACKGROUND AND LITERATURE REVIEW  

 

This chapter is dedicated to present the background information to answer the research 

questions that are formulated in the previous chapter. The outcome of a wide but non-

exhaustive literature review that focused specifically on the recent publications is also 

provided. The presented literature review in this chapter mainly contributes to defining the 

scope and focus of this research. More specific literature reviews are provided in the 

context of the different subsequent chapters when necessary.  

 

The first section presents the review of the existing literature to have a better understanding 

in various aspects of the runway operations scheduling problem. Also, the existing robust 

and stochastic approaches to the problem, and proposed approaches that consider CDM 

aspects and fairness are presented concisely. Then, the literature review on machine 

scheduling under uncertainty is provided briefly, since it relates to the area of research. In 

addition, mathematical modeling formulations along with the notation are presented. The 

full details of the existing mathematical models are relegated to references cited to avoid 

getting immersed in unnecessary detail. Also, alternative modeling approaches for 

optimization under uncertainty are identified to consider necessary practical aspects of the 

problem that supports the assumed methodology. The chapter concludes by providing a 

summary of the findings obtained from the literature review, discussing the knowledge 

gaps in the existing literature, and justifying the need of employing a SbO approach for the 

problem. 

 

2.1 Runway Operations Scheduling Problem 

 

Since the 1960s, developing efficient methods for tackling runway operations scheduling 

problem has been of great interest to both academic researchers and industry practitioners. 

It is a large-scale scheduling problem consists of a three-step process. The first step 

involves allocating aircraft to different runways; the second step includes sequencing the 
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aircraft allocated to each runway, and the third step consists of determining the start times 

for each aircraft. This problem usually arises at busy airports where runway utilization 

needs to be optimized to reduce air traffic congestion and minimize delay, which would 

eventually provide the benefit of increasing flight safety and decreasing delay-related costs. 

For most of the major airports that operate with multiple concurrently active runways, 

scheduling multiple runway operations is a difficult task that local (air traffic tower) 

controllers face in a daily basis. Carefully scheduling runway operations has a potential to 

result in substantial improvements in runway utilization and safety. Therefore, reducing 

the high costs of aircraft delays, pollution (both regarding fuel consumption and 

environmental effects) and passenger dissatisfaction is a key motivator for this area of 

research. 

 

The previous research identified on runway operations scheduling problem differ in terms 

of both scope and modeling perspective, but they share some foundational facts and 

assumptions. The identified research trends for the problem include the following: (1) 

developing models for various aspects of the problem, (2) developing assessment tools and 

performance measures (particularly simulation models for evaluating different scheduling 

approaches), and (3) conducting empirical studies and experiments to solve a particular 

airport’s runway operations scheduling problem. In this dissertation research, all three 

areas for the problem are taken into consideration, since a SbO approach necessitates all 

these trends to be addressed. 

 

Bennell et al. (2011); (2013) have provided a comprehensive review of the runway 

operations scheduling problem. The solution methods for the problem can be classified as 

exact and heuristic algorithms. Exact algorithms, such as branch-and-bound (B&B), 

dynamic programming (DP), etc., guarantee optimal solutions, but they are extremely 

computationally intensive for large-scale problem instances. On the other hand, heuristic 

algorithms generate solutions which are not guaranteed to be close to the optimum and the 

performance of heuristics is often evaluated empirically. These algorithms are often more 

time efficient. The heuristic algorithms are usually classified as constructive and 

improvement heuristics. The composite dispatching rules, such as Apparent Tardiness Cost 
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with Setups (ATCS) rule, are examples of constructive heuristics whereas the local search 

methods are examples of improvement heuristics. 

 

Although aircraft take-off problem is regarded as more difficult to solve compare to the 

landing problem (De Maere & Atkin, 2015), aircraft landing problem has received greater 

interest than take-off problem in the literature (Bennell et al., 2013). Therefore, the 

literature review for aircraft landing problem is presented first. 

 

2.1.1 Aircraft Landing Problem 

Bianco et al. (1987) and Bianco et al. (1997) mapped aircraft landing problem to a machine 

scheduling problem (job shop scheduling problem) on a single machine formulation with 

earliest release time for the jobs, and sequence-dependent setup times. They solved the 

single runway problem with a mixed integer linear programming (MILP) model. 

 

C. R. Brinton (1992) utilized a B&B tree search algorithm to find the optimum landing 

sequence which minimizes the total delay assigned to a group of aircraft. The proposed 

algorithm first obtains an upper bound on the delay by computing the delay associated with 

an FCFS sequence. Then, it simply expands the tree, whose nodes correspond to aircraft 

within the arrival sequence, while keeping track of the total incremental delay assigned 

until the last expansion.  

 

Abela et al. (1993) studied the aircraft landing problem with a single runway and proposed 

a B&B algorithm based upon a 0–1 MIP formulation, where a cost component for each 

aircraft is included in the objective function that is related to either speeding up or holding. 

Also, they proposed a heuristic based on genetic algorithm, and reported computational 

results for problem instances with up to 20 aircraft. 

 

NASA Ames Research Center developed the Final Approach Spacing Tool (FAST) for 

assisting air traffic controllers in the management and control of landing aircraft. FAST 

includes a fuzzy decision logic that computes a new runway operations sequence, each time 

a new aircraft arrives the TMA at a given entry fix (point). The first aircraft in the outermost 
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flight segments are sequenced, and then, sequences are merged repetitively at intermediate 

flight segments until it finally determines the aircraft sequence at the runway threshold. 

FAST consist of several major components: route analyzer and trajectory synthesizer, a 

sequencer and scheduler, a conflict resolver, a runway allocator, and a controller interface 

(Davis et al., 1997). 

 

Ernst et al. (1999) also considered the single runway aircraft landing problem and pointed 

out that the single runway problem could be extended to multiple runways scheduling 

problem. They suggested a B&B algorithm and a genetic algorithm, where the objective 

function consists of penalty costs for landing before and after target times. Proposed 

algorithms are tested via problem instances available in the literature involving up to 50 

aircraft on both a single runway and multiple runways.  

 

Beasley et al. (2000) built and analyzed a MIP model and solved it by a technique based 

on the relaxation of binary variables by adding additional constraints such as limits on the 

maximum number of position shifts. In addition, an effective heuristic algorithm is 

presented. Also, they reported computational results presenting that their formulation 

produces optimal results within reasonable time limits for the problem instances found in 

the OR-Library (Beasley, 1990) involving up to 50 aircraft and four runways. However, 

their MIP model is not capable of addressing all real-life instances. 

 

Bäuerle et al. (2007) modeled the landing problem as a special queueing system and 

utilized M/SM/1 queues with dependent service times to model a single runway. They 

considered the case of two runways with some heuristic routing strategies. They also 

analyzed and compared these strategies numerically with respect to the average delay for 

assigning aircraft to two runways. 

 

Artiouchine et al. (2008) proposed an approach based on a general hybrid branch-and-cut 

(B&C) framework, based on constraint programming and MIP, to solve the single runway 

problem with arbitrary time windows.  
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M. J. Soomer and Franx (2008) studied a collaborative strategy where airlines assign a cost 

function for each of their flights, and these cost functions are scaled per airline to achieve 

fairness between airlines. They also developed a local search heuristic to incorporate the 

fairness into the schedule. 

 

Yu et al. (2011) proposed a two-stage algorithm based on cellular automata. In the first 

stage, a good sequence of aircraft is found using cellular automata with updating rules in 

order to enforce separation and reach a good objective value. In the second stage, a local 

search heuristic is utilized to determine the start times for landing. 

 

Although the majority of the literature have focused on aircraft landing scheduling over a 

single runway, there are several published research for multiple runways. Ciesielski and 

Scerri (1998) suggested a genetic algorithm for scheduling aircraft on two runways. Cheng 

et al. (1999) developed a genetic algorithm for multiple runways.  

 

Wen et al. (2005) addressed the aircraft landing problem and formulated it as a set 

partitioning problem with side constraints. They suggested a branch-and-price (B&P) 

algorithm, which is similar to the B&B, but column generation is applied at each node of 

B&B tree. A combination of a genetic algorithm and an ant colony optimization algorithm 

for multiple runways has been proposed by G Bencheikh et al. (2009).  

 

Pinol and Beasley (2006) suggested two population-based metaheuristics for multiple 

runways: Scatter Search and Bionomic algorithm. Their objective was to achieve effective 

runway utilization, where two different objective functions (a non-linear and a linear) were 

used during the experiments.  

 

Boeing developed the multiple runway planner (MRP), which is introduced by Berge et al. 

(2006), to address multiple runways landing problem including the features of both last 

phase of the en-route and runway operations. The MRP calculates runway assignments and 

schedules at the fixes and at the assigned runways for a given set of landing aircraft with 

pre-assigned meter fixes and estimated times of landing (ETL). 
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Liu (2011) presented a genetic local search algorithm, where a local search procedure is 

incorporated into a genetic algorithm framework, for solving the aircraft landing problem 

with runway dependent attributes. They conducted several numerical experiments to test 

the validity of their genetic algorithm based on test instances from the literature. 

 

Ghizlane Bencheikh et al. (2011) studied the aircraft landing problem in the multiple 

runway case and developed an ant colony optimization algorithm. They also proposed a 

new heuristic algorithm for scheduling aircraft landing times on a single runway from an 

order determined by a priority rule, and they compared several priority rules to test their 

heuristic algorithm. They tested their ant colony optimization algorithm with the OR-

Library problem instances involving 10 to 50 aircraft and 1 to 5 runways.  

 

Xiao-rong et al. (2014) considered the multiple runways aircraft landing problem with the 

objective of minimizing the total deviation from the target time and suggested a hybrid bat 

algorithm, where several local search procedures are integrated into the framework.  

 

Faye (2015) proposed a method based on an approximation of the separation time matrix 

by a rank two matrix and on the discretization of the planning horizon. They suggested an 

exact method based on a dynamic constraint generation algorithm and also a heuristic 

method used to solve the model. 

 

Girish (2016) developed a hybrid particle swarm optimization algorithm in a rolling 

horizon approach as a solution method for single and multiple runways cases of the aircraft 

landing problem. The considered objective function is to minimize the total penalty cost 

due to deviation of landing times of aircrafts from the respective target landing times. They 

assessed the performance of the proposed algorithm using OR-Library benchmark 

instances involving up to 500 aircrafts and 5 runways, and concluded that their algorithm 

produce high-quality solutions in short computational times. 

 

 



 

 

39 

2.1.2 Aircraft Take-Off Problem 

As previously mentioned, aircraft take-off problem has received less attention in the 

literature compare to aircraft landing problem due to the fact that this problem includes 

more operational constraints, and it is heavily related to taxi-out scheduling problem, which 

requires these two problems to be integrated. However, this integration commonly renders 

the problem complex and intractable. 

 

Anagnostakis and Clarke (2003) introduced a two-stage optimization algorithm for solving 

the take-off problem. In the first stage, throughput maximization is addressed to determine 

the best take-off class sequence to be used in the second stage, while ignoring the 

operational constraints. In the second stage, an integer programming formulation is utilized 

that generates a solution representing the assignment of aircraft to class slots while 

considering the related constraints.  

 

Atkin et al. (2007) and Atkin et al. (2008a) dealt with the take-off scheduling with the 

objective of maximizing the runway throughput. They proposed different metaheuristics 

(Steeper Descent, Tabu Search, and Simulated Annealing) and analyzed their performance. 

As a result, it is reported that Tabu Search outperformed the others but with a small margin. 

 

Atkin et al. (2008b) addressed the dynamic aircraft take-off problem and proposed a 

scheduling algorithm and a decision support system where taxi times are considered as 

uncertain. The main drive of their research is to study how the uncertainty influences the 

proposed scheduling algorithm. Also, experimental results are presented where the effect 

of taxi times are measured explicitly, and real data is utilized from different times of the 

day, showing how the performance of the aircraft departure system differs according to the 

volume of traffic and the accurateness of the provided taxi time estimations.  

 

Rathinam et al. (2009) proposed a generalized DP approach to solve the take-off problem 

optimally, which exploits the chain-like ordering of the aircraft and tries to minimize total 

delay. Also, they used simulation to evaluate if their approach is fast enough to be 

considered for implementation in a real-time decision support tool and the quality of the 
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solutions compare to FCFS order. After the computational results, they concluded that their 

approach is fast for a real-life implementation and can be used to reduce the aircraft delays 

at an airport. 

 

Stiverson (2009) developed a greedy algorithm and a k-interchange heuristic algorithm to 

find improved take-off sequences. They also provided lower bounds on an optimal solution 

with the help of a MIP model. The proposed heuristic algorithms were tested using 

randomly generated datasets, and it was reported that, in general, the heuristic solutions 

were within 10–15 percent of the optimal solution. 

 

2.1.3 Integrated Aircraft Landing and Take-Off Models 

Trivizas (1998) considered a DP approach based on the Constrained Position Shifting 

(CPS) concept for solving the static aircraft landing and take-off scheduling problem for 

multiple runways in mixed and segregated-mode. They also conducted computational 

experiments with real data and reported that even a modest maximum position shifting 

(MPS) value is capable of increasing the runway capacity up to 20 percent with respect to 

FCFS. 

 

Bianco et al. (2006) carried out a study examining the incorporation of a practical 

consideration which consists of constraining the set of feasible positions in the sequence 

for the new aircraft to prevent too many perturbations to the schedule.  

 

Hancerliogullari et al. (2013) proposed three greedy algorithms and two metaheuristics 

including Simulated Annealing and Meta-RaPS (Metaheuristic for Randomized Priority 

Search) to solve static case of the multiple runway operations scheduling problem.  

 

Ravidas et al. (2012) considered the two-runway scheduling problem where total delay 

tried to be minimized subject to operational constraints such as timing, safety, and chain-

type precedence restrictions. A solution approach based on generalized DP is developed to 

solve the problem optimally. The presented computational experiments illustrate that their 

algorithm is capable of generating solutions in a reasonable computational time. 
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Ghoniem et al. (2014) addressed aircraft scheduling problem over a mixed-mode single 

runway or close parallel runways for the static case. They proposed a MIP formulation 

based on asymmetric traveling salesman problem with time-windows. They further 

embedded this model within the framework of two heuristics. They also tested the proposed 

exact and heuristic solution methods with real data and simulated instances and over 50 

percent computational time savings were reported.  

 

A novel branch-and-price (B&P) algorithm has been recently introduced by Ghoniem et 

al. (2015), where the set partitioning formulation is used. The model decomposed into a 

master problem and a pricing sub-problem, and the pricing sub-problem is formulated as 

an elementary shortest path problem and solved with a specialized DP approach, which is 

identified as the main factor for accelerating the solution process substantially. 

 

D'Ariano et al. (2015) extended the existing job shop scheduling models proposed in the 

literature for integrated aircraft landing and take-off problem by considering additional 

practical constraints: (1) holding circle constraints, (2) separation time interval constraints 

for air segments, (3) blocking constraints for run-ways, and (4) time windows constraints 

for the aircraft travel time in air segments. They proposed several exact and heuristic 

algorithms to handle the constraints of the specific formulation. After conducting 

computational experiments, they concluded that their optimization models and algorithms 

has a significant potential for enhancing the performance of the TMA and decreasing the 

workload of air traffic controllers. 

 

Lieder and Stolletz (2015) presented a MIP model and a dynamic programming solution 

approach for integrated aircraft landing and take-off problem with interdependent runways. 

They also proposed a rolling planning horizon (RPH) heuristic for solving large-scale 

instances. They conducted numerical experiments to evaluate the performance of their both 

exact and heuristic approach, and reported that both approaches yield high computation 

performance. They concluded that additional runway capacity can be obtained from 

optimized runway schedules compared to FCFS schedules using realistic runway settings. 
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In the literature, there is very few research that considers the multi-objective version of the 

problem. Montoya et al. (2014) proposed a multi-objective DP algorithm that minimizes 

the total delay of aircraft and the makespan of a sequence to find a set of Pareto-optimal 

solutions that completely represent the non-dominated frontier. The simulation results to 

validate the proposed algorithm were also provided. 

 

Related literature on deterministic runway operations scheduling problems is tabulated and 

presented in Table 1. The table is divided into five sections: “Source” column indicates the 

article’s reference; “Research Scope” column displays the problem characteristics 

considered in the article; the column “Modeling Approach” shows the approach used to 

model the problem; “Solution Approach” column illustrates the solution technique 

employed; and “Objective(s)” column presents the objective or the various objectives 

studied in the surveyed article. 
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Table 1: Related Literature on Deterministic Runway Operations Scheduling Problem 

 

Source Research Scope Modeling Approach Solution Approach 
Objective 

Function(s) 

(Beasley et al., 2000) 
Single and multiple 

interdependent 

runways 

MIP and time-indexed MIP B&B 
Minimize weighted 

earliness and 

tardiness 

(Bianco et al., 2006) 
Single and two 

interdependent 

runways 

No-wait job-shop scheduling 

model with sequence dependent 

machine set-up times and job 

release dates 

Local search heuristic 
Minimize makespan 

and minimize average 

delay 

(Pinol & Beasley, 2006) 
Single and multiple 

interdependent 

runways 

MIP 
Scatter Search and 

Bionomic algorithms 

Minimize weighted 

earliness and 

tardiness 

(Balakrishnan & Chandran, 

2010) 
Single runway 

Constrained position shifting 

network 

Dynamic 

programming 

Minimize makespan 

and minimize total 

delay 

(Ghizlane Bencheikh et al., 

2011) 

Single and multiple 

interdependent 

runways 

MIP 
Ant Colony 

Optimization 

Minimize weighted 

earliness and 

tardiness 

(Hancerliogullari et al., 

2013) 

Multiple 

interdependent 

runways 

MIP 
Dispatching rules and 

Simulated Annealing 

Minimize weighted 

total delay 

(Salehipour et al., 2013) 
Single and multiple 

interdependent 

runways 

MIP 

Simulated Annealing 

and Variable 

Neighborhood Search 

Minimize weighted 

earliness and 

tardiness 

(Ghoniem et al., 2014) Single runway Asymmetric TSP-TW Dispatching rules Minimize makespan 

(Farhadi et al., 2014) Multiple independent 

runways 
MIP 

Dispatching rules and 

MIP-based heuristics 

Minimize weighted 

total delay 
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Source Research Scope Modeling Approach Solution Approach 
Objective 

Function(s) 

(Ma et al., 2014) Single runway MIP Ant Colony Optimization Minimize makespan 

(Samà et al., 2014) Two interdependent 

runways 
Decomposition approach 

B&B and Rolling Horizon 

Approach (RHA) 

Minimize maximum 

delay 

(Furini et al., 2015) Single runway MIP position-based RHA 
Minimize weighted 

total delay 

(Ghoniem & Farhadi, 

2015) 

Multiple independent 

runways 
Asymmetric TSP-TW Column generation 

Minimize weighted 

earliness and 

tardiness 

(Lieder et al., 2015) Multiple independent 

runways 
MIP Dynamic Programming 

Minimize weighted 

total delay 

(Ghoniem et al., 2015) Multiple independent 

runways 
Asymmetric TSP-TW Branch-and-price 

Minimize weighted 

total delay 

(Sabar & Kendall, 2015) 
Single and multiple 

interdependent 

runways 

MIP 
Iterated local search 

algorithm 

Minimize weighted 

earliness and 

tardiness 

(Samà et al., 2015) Multiple independent 

runways 

MIP based on job shop 

scheduling 

Mathematical 

programming 

Minimize maximum 

tardiness and total 

travel time spent 

(D'Ariano et al., 2015) Two interdependent 

runways 

Integrated modeling 

arrivals and en-route 

traffic 

B&B and greedy heuristic 

algorithms 

Minimize maximum 

delay 

(Lieder & Stolletz, 2015) 
Single and multiple 

interdependent 

runways 

MIP Dynamic Programming 
Minimize weighted 

total delay 

(Girish, 2016) Single and multiple 

independent runways 
MIP 

Hybrid Particle Swarm 

Optimization-local search 

algorithm in an RHA 

Minimize weighted 

earliness and 

tardiness 
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2.1.4 Approaches for Considering Uncertainties 

There is substantial uncertainty in airport and runway operations stem from ground speed 

variations, piloting indecisions, delays in pushback or taxiing, arrival prediction error, 

airport congestion, flight cancellations, etc. Also, unexpected events, such as safety 

incidents, equipment failure, inclement weather, increase the uncertainty. As a result, most 

of the time these uncertainties render the schedules suboptimal or even infeasible that are 

found with a deterministic approach.  

 

Even though most of the previous research  have been focused on deterministic runway 

operations scheduling, there are two models in the literature that consider explicitly the 

uncertainties inherent to runway operations: (1) robust model of NASA Ames Research 

Center (Chandran & Balakrishnan, 2007; Gupta et al., 2011), and (2) stochastic model of 

Georgia Institute of Technology (Solveling & Clarke, 2014; Solveling et al., 2011). 

 

NASA Ames Research Center researchers considered a runway schedule as “robust” if 

there is a high probability that an air traffic controller does not have to interfere once the 

schedule has been determined. They considered two conflicting objectives: maximizing 

runway throughput (or minimizing makespan) and maximizing reliability. They only 

considered the landing problem on a single runway and, therefore, assumed that the 

separation times satisfy the triangle inequality for all aircraft types. As a solution algorithm, 

they proposed a DP approach which is computationally efficient enough for a real-time 

application, which schedules aircraft while limiting the number of positions an aircraft can 

move from its FCFS position. Their algorithm calculates a trade-off curve between 

throughput and reliability, which is defined as the probability that random deviations of 

aircraft from the scheduled landing times that violate operational constraints.  

 

Georgia Institute of Technology researchers addressed the stochastic airport runway 

scheduling problem in which a set of aircraft are to be scheduled on a single or multiple 

dependent runways. They developed a two-stage stochastic integer program and a solution 

method using scenario decomposition based on Lagrangian relaxation. Also, a stochastic 

B&B algorithm is proposed, which is a sampling-based approach in which the stochastic 
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upper and lower bounds are generated. The proposed models of the stochastic runway 

scheduling problem correspond to a single machine scheduling problem with probabilistic 

release times (and due dates) and sequence-dependent setup times. 

 

In both of the robust and stochastic approaches, instead of actual operational distributions, 

representative probability distributions were utilized for computational experiments. In 

addition, these approaches were not applied to real-life, large-scale problem instances. The 

fundamental consequence of such assumptions is that these approaches are not yet mature 

enough for operational deployment (Mehta et al., 2013). In particular, the effect of 

uncertainties related to push-back times, wheels-on times and taxi predictions are not taken 

into account explicitly by the robust approach (NASA Ames Research Center).  

 

On the other hand, the main issue with the two-stage stochastic integer programming 

(Georgia Institute of Technology) model is that it is not feasible to develop such a model 

for a problem instance in a practical size since numerous scenarios exist even for a small 

number of aircraft. Also, it is assumed in this model that the deviation from earliest runway 

time is independent between aircraft, whereas delay is usually dependent between aircraft 

in practice. Furthermore, this model assumes that the probability distributions and 

realizations of runway landing/take-off times are independent; specifically, there is no 

correlation between aircraft. However, in practice when the arrival and departure rates are 

high, deviations from scheduled landing/take-off times will presumably be correlated 

between aircraft, which makes this assumption invalid in actual runway operations.  

 

Consequently, considering the shortfalls of the robust and stochastic optimization 

approaches, a simulation-based approach seems to be a promising methodology in terms 

of dealing with real-life, large-scale problem sizes as well as with the impact of dependent 

runway operations. 
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2.1.5 Collaborative Decision Making and Fairness 

Collaborative Decision Making (CDM) concept is a means to collaborate and share real-

time operational information to improve situational awareness and decision-making. It has 

the potential to improve TMA operations by allowing airlines to participate in air traffic 

decision-making that affects them. In the implementation of the NextGen, CDM concept 

is considered important for enhancing operational effectiveness through increased 

information exchange among stakeholders and consideration of desired intents. Even 

though final decision-making authority is the Air Navigation Service Provider (ANSP), the 

involvement of other stakeholders, in particular, airlines have the potential for considerable 

benefits.  

 

In the CDM context, the air traffic decision-making responsibilities are shared mainly 

among four distinct stakeholders: the ANSPs, the airport operators, airlines, and 

government authorities. Each of these stakeholders has different interests. In order to 

integrate CDM concept into models, interests of these stakeholders have to be taken into 

consideration, and the key challenge for this is the fact that most of these interests are 

conflicting and non-commensurable, and it is often hard to aggregate them into one 

synthetic objective. As an example, for ANSPs, safe flow of air traffic and runway 

utilization are the primary concerns. On the other hand, airlines are mainly concerned with 

resource utilization, punctuality, operational costs and on-time performance, etc.  

 

One of the main considerations within CDM concept is that ANSPs need to ensure that the 

outcome of runway operations scheduling is perceived by all airlines as fair. However, 

fairness is a significant challenge in terms of clearly defining what is considered as fair by 

airlines. Roger George Dear (1976) developed a heuristic methodology referred as 

Constrained Position Shifting (CPS), which limits the number of positions an aircraft can 

be moved from its FCFS ordered position, to make the scheduling scheme fair. The 

maximum allowable number of position shifts is determined through a parameter called 

maximum position shifting (MPS). They examined and tested its effectiveness for several 

objective functions and concluded that by limiting the MPS to a small number, typically 2 

or 3, it is possible to achieve most of the potential benefits.  
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Roger G Dear and Sherif (1991) and Venkatakrishnan et al. (1993) presented DP 

algorithms based on CPS. Recently, Balakrishnan and Chandran (2010) developed a 

shortest path algorithm based on CPS using a discretized network. M. Soomer and Koole 

(2008) demonstrated various definitions of fairness by using aircraft landing problem, 

which includes absolute fairness, relative fairness, and fairness measured by the delay. The 

proposed MIP formulations that include fairness is solved by local search heuristics. Also, 

computational experiments are conducted to assess how the fairness definitions and 

solution heuristics behave with real-life problems. The results of these experiments 

demonstrate that it is possible to attain more fairness while still obtaining considerable cost 

compared to the FCFS schedule. 

 

Bertsimas and Gupta (2009) formulate three integer programming models that 

accommodate fairness considerations and demonstrate challenges corresponding to 

fairness considerations in the solutions obtained from these models. The first model tries 

to control the total number of pairwise reversals in the resulting order of aircraft landings. 

The next model attempts to control the difference between airline flight delays. The last 

model incorporates both notions of fairness proposed in the other two models. After 

computational experiments where national-scale, real-life datasets are used, it is concluded 

that last model is capable of fulfilling both notions of fairness at a less than 10 percent 

increase in total delay costs. Y. Wang et al. (2012) proposed a fairness definition which 

considers the historical fairness information for aircraft landing problem. They consider 

fairness as the average affected additional cost of an airline.  

 

Although CDM concept’s main focus is on information exchange among stakeholders of 

the air traffic flow management to enhance shared situational awareness, fairness is an 

integral part of CDM processes for all stakeholders. However, recent studies are short of 

fairness considerations, especially in scheduling runway operations. Although there exist 

several different fairness definitions and notions, the most commonly embraced definition 

of fairness in terms of runway operations scheduling is the “sequence equity” among 

aircraft, which limits position shifts from the FCFS sequence. 
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2.2 Machine Scheduling under Uncertainty 

 

Although separation requirements for take-off are substantially more complex than landing 

problem in practice, both segregated or mixed-mode operation problems can be modeled 

as a machine scheduling problem with asymmetric sequence-dependent setup times. 

Commonly used objective functions for this problem are minimizing the makespan 

(maximizing throughput) and minimizing the total weighted tardiness. It is worth to 

mention that the single machine scheduling problem can be transformed into a traveling 

salesman problem, if the objective function is makespan minimization.  

 

Deterministic machine scheduling problems with sequence-dependent setup times are 

studied extensively in the literature. However, the same problem under uncertainty has not 

received much attention. Skutella and Uetz (2005) considered identical parallel machine 

scheduling problems, where the processing times of jobs are ruled by independent 

probability distributions. Their model’s objective function is to minimize the expected 

value of the total weighted completion time.  

 

Cai and Zhou (2005) studied a single machine scheduling problem, where each job has a 

random processing time, a general stochastic cost function, a random due date, and a weight 

value. The processing times are assumed to be exponentially distributed, whereas the 

stochastic cost functions and the due dates are assumed to follow any distribution. The 

objective is to minimize the expected sum of the cost functions.  

 

Anglani et al. (2005) proposed a robust approach for solving the parallel machine 

scheduling problem with sequence-dependent set-up costs. They formulated a fuzzy 

mathematical programming model by considering the uncertainty in processing times to 

provide the optimal solution as a trade-off between total set-up cost and robustness in 

demand satisfaction. 
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Wu and Zhou (2008) addressed single machine scheduling problem with random due dates 

to minimize the expected maximum lateness. They first developed a deterministic 

equivalent to the expected maximum lateness, and then, proposed a DP algorithm to obtain 

the optimal solutions. However, sequence-dependent setup times are not included in the 

model. 

 

Contrary to the literature on machine scheduling under uncertainty, the modeling structure 

in runway operations scheduling problem relates to machine scheduling models with 

probabilistic release times with sequence-dependent setup times, which have received very 

limited attention in the literature. 

 

2.3 Mathematical Modelling Approaches 

 

Several methods proposed in the literature for modeling the runway operations scheduling 

problem, which can be considered as a three-stage process. First, aircraft landings and take-

offs have to be allocated to the available runways; next, the sequence of aircraft for each 

runway has to be determined; and then, start times of runway operations have to be 

determined. Depending on the objective(s) of the problem one of these stages are more 

important. For instance, only the allocation stage is important for the makespan 

minimization objective (completion time of the last aircraft take-off or landing which 

implies the runway utilization). The principal mathematical programming formulations and 

objective functions are identified below.  

 

Considering its similarities with production scheduling problems, multiple runway 

operations scheduling problems can be viewed as an identical parallel machine scheduling 

problem where “aircraft” and “runways” represent “jobs” and “machines,” respectively. 

Classical parallel machine scheduling problem consists of assigning a number of jobs on a 

set of parallel machines where the release time, start time and latest finish time for each 

job and sequence-dependent setup times are given. These setup times include the activities 

depending on both the job to be processed and the immediately preceding job. The mapping 

of the identical parallel machine scheduling to runway operations scheduling problem 
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relies on the following assumptions: (1) if an aircraft begins to land or take-off, it cannot 

be interrupted by another aircraft, (2) at most one aircraft is allowed to land on or take-off 

from each runway at any time, (3) runways are available and reliable at all times, (4) any 

aircraft can land on or take-off from at most one runway at any time, and (5) all input data 

are known with certainty. 

 

In the literature, the three-term notation, α | β | γ, is commonly adopted, which is proposed 

by Graham et al. (1979), as the classification scheme for scheduling problems. In three-

term notation, α indicates the machine environment; β describes the job and the resources 

characteristics, and γ defines the objective function to be minimized. As a result, the 

runway operations scheduling problem is denoted by Pm|sij,tw|ΣwjTj where Pm denotes the 

parallel machine scenario; sij, denotes the sequence-dependent times between aircraft i and 

j, respectively; tw denotes the time windows, and the objective is to minimize total 

weighted tardiness costs.  

 

Total weighted tardiness is a widely used performance measure in parallel machine 

scheduling problems. Tardiness is commonly defined as the amount of time by which a 

job’s completion time exceeds its target time. In the tardiness problem, there is no benefit 

from completing jobs early, and the delay penalty is proportional to the length of the delay 

and the weight associated with each job, which refers to a late penalty for an individual job 

in case this job is tardy. 

 

Even the problem of single machine scheduling with total tardiness objective function is 

proved to be NP-Hard, i.e., it is unlikely that there can be developed a polynomial-time 

algorithm for finding an optimal schedule. The computational complexity of the identical 

parallel machine scheduling problem with total weighted tardiness objective function is 

still NP-Hard due to its combinatorial nature. Since exact algorithms require long 

computation times, different heuristics and metaheuristics are commonly employed to find 

near optimal values in a shorter amount of times. Therefore, this justifies the use of 

heuristic and metaheuristic methods over exact methods for solving the runway operations 

scheduling problem.  
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The literature presents three mathematical programming formulations for the problem, 

which include a 0-1 MIP formulation, a set partitioning formulation and an asymmetric 

traveling salesman problem with time windows (TSP-TW) formulation. Before presenting 

these formulations, the notation used throughout the formulations is given below. 

 

Notation: 

 

M : set of m independent runways, M={1,2, ..., m} 

N : set of n aircraft, N={1,2, ..., n} 

P : set of all feasible columns 

i, j : aircraft indices 

r : runway index 

p : column (sequence of aircraft) index 

rj : ready time for aircraft j 

δj : target time for aircraft j 

dj : due time for aircraft j  

Oj : operation type of aircraft j 

Cj : class of aircraft j 

wj : weight value assigned to aircraft j based on its operation 

type and class 

sij : separation time between aircraft i and j 
p

ja  : 1 if aircraft j is covered by column p, 0 otherwise 

 

Decision Variables: 

 

tj : start time of aircraft j 

Tj : piecewise tardiness of aircraft j with respect to δj 

zjr : 1 if aircraft j is assigned to runway r, 0 otherwise 

yij : 1 if aircraft i and j is assigned to the same runway and tj > ti 

( , ,i j N i j    ), 0 otherwise 

xp : 1 if column p is involved in the solution, 0 otherwise 

vij : 1 if aircraft i directly precedes aircraft j ( , ,i j N i j    ), 0 

otherwise 

v0i : 1 if aircraft i is first in the sequence ( i N  ), 0 otherwise 

vi0 : 1 if aircraft i is last in the sequence ( i N  ), 0 otherwise 

 

 

The 0-1 MIP formulation that is given below for the runway operations scheduling 

problem, which is commonly referred as Beasley model in the literature, is based on the 
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formulation presented in Beasley et al. (2000). The main difference with the original 

formulation is that two auxiliary binary variables, one related to precedence on the same 

runway and the other related to whether aircraft pair assigned to the same runway, are 

merged into one. 
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where the objective function (Eq. 2.1a) is to minimize the total weighted tardiness. 

Constraints in Eq. 2.1b ensure that each aircraft land on or take-off from exactly one 

runway. Constraints in Eq. 2.1c are load balancing constraints that enforce lower and upper 

bounds on the number of aircraft. Constraints (Eq. 2.1d) guarantee that each aircraft land 

or take-off within its time windows. Constraints (Eq. 2.1e) ensure required separation times 

between any pair of aircraft. Constraints in Eq. 2.1f actuate the sequencing variables 

between any pair of aircraft that are assigned to the same runway. With the help of 

constraints in Eq. 2.1f, constraints in Eq. 2.1e enforce separation only between aircraft that 

are assigned to the same runway. Constraints (Eq. 2.1g) specify aircraft tardiness, with 

respect to target times. Constraints in Eq. 2.1h enforce non-negativity restrictions and upper 

bounds on aircraft tardiness. Constraints (Eq. 2.1i) define binary decision variables. 
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The alternative mathematical programming formulation for the problem is a set partitioning 

model. The set partitioning model aims to partition all elements into a number of subsets, 

and each binary variable (column) represents a subset of elements defined by the 

coefficients. In this formulation, each column p represents a feasible sequence of aircraft 

with an aggregated cost. The set partitioning formulation can be stated as follows: 
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where the objective function (Eq. 2.2a) minimizes the total weighted tardiness. Constraints 

in Eq. 2.2b, which are the set partitioning constraints, ensure that each aircraft is assigned 

to exactly one runway. The constraint in Eq. 2.2c guarantees the limit on the number of the 

runways and constraints in Eq. 2.2d are the integrality constraints on the decision variables 

xp. Set partitioning problem is one of the first problems shown to be NP-Hard; therefore, 

no polynomial time solution algorithm is likely to exist also for this formulation. 

 

There are two major challenges related to the set partitioning model which are outlined 

below:  

 

(a) The number of binary variables corresponding to feasible sequences of 

aircraft usually reaches into millions for most real-life applications, which eventually 

renders the model computationally intractable.  

 

(b) Each column p does not give the information related to the order of aircraft 

in that sequence. For this reason, it is computationally impractical to enumerate all the 

columns for large-scale problems. 
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The third formulation, which is an asymmetric TSP-TW formulation is based on Ghoniem 

et al. (2014) and given below. The major difference from the 0-1 MIP formulation (Beasley 

model) is the introduction of the binary variable v to build the tours. This decision variable 

enforces the sequential precedence order of the aircraft on each runway. 
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y y z z r M i j N i j           (2.3k) 

           
j j j

T t j N      (2.3l) 

           
j jj

T d j N      (2.3m) 

  , ,        0,1            
jr ij ij

r M i j Nz y v          (2.3n) 

 

where the objective function (Eq. 2.3a), the constraints Eq. 2.3b-3d and Eq. 2.3j-3n are the 

same as the 0-1 MIP formulation. The assignment constraints in Eq. 2.3e-3f guarantee that 

each aircraft to be followed by, and to follow, exactly one aircraft. Constraints in Eq. 2.3g 
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and 3h ensure that exactly one aircraft will be assigned to the first place in the sequence, 

and one to the last place for all runways, respectively. Constraints in Eq. 2.3i actuate the 

sequencing variables between any pair of aircraft that are assigned to the same runway. 

 

The triangle inequalities are not violated by the separation requirements when only landing 

or take-off operations are considered. The main advantage of this is that all separation 

requirements can be met by only taking into account the separation times between 

consecutive operations. The triangle inequality for given i, j, and k weight classes is shown 

below: 

 

            
ik ij jk

s s s   (2.4) 

 

The key issue with the triangle inequalities that needs to be addressed is that in mixed-

mode operations on the same runway or close parallel runways the triangle inequality does 

not always hold. 

 

Objective functions: There are various stakeholders in scheduling the aircraft landings and 

take-offs on runways, and each has different objectives. The most important stakeholders 

and their desirable objectives are listed below, and these desirable objectives are given in 

a mathematical form in Appendix B: 

 

(a) Air navigation service providers (ANSPs) or air traffic controllers: They 

are mainly responsible for flight safety and runway utilization, and they execute the actual 

scheduling process. Their key objectives are maximizing runway throughput as possible, 

minimizing landing and take-off delay. 

 

(b) Airlines: They are typically concerned with operational costs, on-time 

performance and reputation (goodwill). They have a preference on minimizing delay and 

fuel cost, minimizing total passenger delays, maximizing fairness. 
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(c) Airport management: They are commonly focused on the smooth flow of 

traffic both in air-side and land-side of the airport. Their main interests are maximizing 

punctuality relative to the operating schedule and minimizing the need for gate changes 

due to delays. 

 

(d) Government agencies: They primarily deal with reducing environmental 

effects, such as noise disturbance, air pollution, etc. Therefore, their main objective is 

minimizing environmental effects. 

 

It is noteworthy to mention that delay is typically considered as the deviation of actual 

landing/take-off time from the estimated landing/take-off time calculated by the FCFS 

principle instead of the planned aircraft schedule. From air traffic controllers’ point of 

view, throughput and average delay are important objective functions, while from airlines’ 

point of view, the operating costs, especially fuel costs, are important (Hanbong & 

Balakrishnan, 2008). Runway throughput is commonly defined as the number of aircraft 

landings or take-offs during a specific time (usually an hour) that an airport’s runways able 

to sustain during periods of high demand. 

 

2.4 Alternative Approaches for Optimization under Uncertainty 

 

By and large, there are two primary approaches to deal with uncertainty in a scheduling 

environment: proactive and reactive scheduling. Proactive scheduling involves predictive 

schedules that account for statistical knowledge of uncertainty. On the other hand, reactive 

scheduling comprises of rescheduling or recovering the schedule when an unpredicted 

events occur (Figure 6). 
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Figure 6: Scheduling Approaches for Operational Uncertainty  

 

 

In reactive scheduling the schedules are re-optimized after disruptions occur as a result of 

uncertainties by rescheduling from scratch or recovering the schedule as possible. The main 

drawback of this approach is the fact that a solution is expected immediately. In addition, 

they require considering several complex constraints at the same time, which typically lead 

to intractability issues. Because of the need of an immediate response, practitioners 

currently employ manual or heuristic methods that yield sub-optimal solutions. On the 

other hand, in proactive scheduling the uncertainty is integrated into the schedules during 

schedule optimization stage so that schedule adjustments can be made more easily and 

more conveniently. While reactive scheduling tries to find the most appropriate way to 

react to disruptions on the day of operations, the proactive approach seeks to consider the 

effects of uncertainties in advance. Thus, schedules that are robust and less susceptible to 

effects of uncertainties could be generated with optimization. 

 

Regarding runway operations scheduling in practice, existing operational planning models 

and decision support tools depend on frequent rescheduling to deal with uncertainty with 

the expectation that updating the schedules repeatedly with the latest data will mitigate the 
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negative impacts of uncertainty. However, this approach is not proved to provide 

considerably high-quality and computationally efficient solutions. Therefore, uncertainty 

should be considered explicitly during optimization with one of the alternative approaches 

for optimization under uncertainty. 

 

Three main alternative modeling approaches currently exist that consider uncertainty in 

schedule optimization, which are briefly explained below:  

 

Stochastic optimization: The most widely applied stochastic programming model to 

address schedule optimization under uncertainty is the two-stage linear stochastic 

programming, where the objective functions and the constraints are both assumed to be 

linear. The basic idea of this model is that decisions should be based on data available at 

the time the decisions are made, and these decisions should not depend on future 

observations. In this model, the decision-maker takes some action in the first stage, after 

which a random event occurs affecting the outcome of the first stage decision. Then, a 

recourse decision can be made in the second stage that compensates for any bad effects 

that might have been experienced as a result of the first stage decision. This method 

necessitates probability distributions of random variables or sample approximate methods 

that need to be employed to account for the randomness (Shapiro & Philpott, 2007).  

 

To utilize stochastic optimization approach, uncertain data needs to be considered as a 

second stage data that can be modelled as a random (not just uncertain) variable with a 

known probability distribution. The main drawback of this approach is the difficulty in 

measuring the quality of obtained solutions and finding an optimal solution in a reasonable 

time for large-scale real-life problems. 

 

Robust optimization: The basic idea of robust optimization is based on the fact that while 

individual uncertainties may be unpredictable as the number of random variables grows 

large, uncertainties tend to cancel out, and the averages can be predicted fairly well (Ben-

Tal & Nemirovski, 2000). In this approach, there is no need to know the exact probability 

distributions of the uncertain data. This situation will potentially result in increased 
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tractability properties, and also eliminate the need to assign such distributions artificially 

to the random quantities (Bertsimas & Sim, 2004). The main challenge associated with 

achieving robust solutions is deciding what constitutes robustness and how to capture these 

in the optimization model. One possible approach may be to make an aircraft schedule 

robust by using a metric, such as total expected delay, etc. This metric can be calculated 

based on historical data, and this will also allow uncertainty to be modeled in the objective 

function.  

 

Simulation-based optimization (SbO): The SbO approach is a form of optimization in 

which simulation experiments are used to find the optimal values for the decision variables 

(Fu, 2015). In this approach, the simulation model functions as the external evaluator of 

the objective functions that are to be optimized by the optimization algorithm. This 

approach is detailed in Chapter 3. 

 

Each of these alternative approaches has strengths and weaknesses, and each has its own 

assumptions. The primary strength of stochastic optimization is the explicit incorporation 

of uncertainty into the optimization model. The main assumptions of this approach are that 

the underlying probability distributions of the uncertain parameters have to be known, and 

these distributions will not change over the considered planning horizon. If these 

assumptions are met and the stochastic model is tractable, then stochastic optimization is 

the right optimization approach for applying.  

 

Although robust optimization is computationally more tractable than stochastic 

optimization, it is more conservative, since it is worst-case-oriented. The main assumptions 

of this approach are that the constraints of a given problem must be satisfied for all 

realizations of the uncertain parameters in a so-called uncertainty set, and these uncertainty 

sets are readily available, which are typically derived by expert opinion or using historical 

data.  

 

In the context of multi-objective runway operations scheduling problem, the most 

promising methodology seems to be the SbO approach. Stochastic optimization is not a 
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suitable methodology since it introduces many additional variables which eventually 

renders the model computationally intractable for real-life problem sizes. Robust 

optimization is also not an appropriate methodology to pursue because it generates too 

conservative solutions which are usually too far from Pareto-optimal solutions. Because of 

its flexibility and effectiveness, a SbO approach is applied to the multi-objective runway 

operations scheduling problem in this research.  

 

2.5 Summary of Findings and the Knowledge Gaps 

 

From the comprehensive literature survey presented above, the following findings may be 

asserted: 

 

(a) Recently scheduling researchers and practitioners have been devoted more 

attention to the runway operations scheduling problem. Most of the studies in the literature 

consider only a single runway or a single type of operation; however, it is usually not 

possible to extend them to apply multi-runway and mixed-mode situations. Although 

multiple runways and mixed-mode operations introduce additional complexity into the 

problem, there is a potential to obtain operational benefits, such as increasing the efficiency 

of the runway operations and decreasing the delays and, in turn, reducing delay related 

operational and environmental costs.  

 

(b) The literature review demonstrates that from both a mathematical and 

practical perspective, multiple runway operations scheduling is a challenging problem even 

in the deterministic context. The computational complexity of the problem is classified as 

NP-Hard for almost all of its configurations and instances. Therefore, a polynomial time 

exact algorithm for this scheduling problem is very unlikely to exist. As a result, most of 

the research conducted on the problem concentrated on using heuristics and metaheuristic 

algorithms to obtain acceptable solutions to the real-life instances of the problem promptly. 

In the literature, the exact methodologies have been used as a reference to benchmark the 

performance of heuristic methodologies rather than as a practical method applicable to real-

life problem instances. 
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(c) There have been numerous publications based on research completed in this 

particular field; however, very little research has been undertaken to solve the problem 

under uncertainty conditions in a timely manner. Nearly all of the methods related to 

aircraft scheduling on runway proposed in the literature assume that all the input data are 

known with certainty. In addition, there are existing models that consider uncertainty for 

machine scheduling problems; however, they also do not take into account all the problem 

characteristics involved in runway operations scheduling problem. 

 

(d) Most of the proposed algorithms in the literature have not been tested and 

validated using real-life, large-scale datasets as a proof-of-concept. They mostly tried to be 

validated against benchmark problem instances that are available in the literature, which 

are not representative of practical problem instances. 

 

(e) Most of the published research have considered the problem with respect to 

a single performance measure (objective function). Commonly employed ones include 

total delay and runway throughput. However, the focus should be on finding the trade-off 

solutions between conflicting objectives that reflect various stakeholders’ interests. 

 

(f) A number of analytical and simulation models have been developed for 

modeling runway operations in the TMA. The analytical models are typically macroscopic 

in nature while most of the simulation models are tend to be microscopic. Cost-effective 

solutions can be obtained promptly by utilizing analytical models. However, when model 

details influence solutions, simulation models provide a more suitable mechanism for 

handling system complexity. Also, simulation models are capable of generating various 

scenarios related to uncertainty and examining the impacts of delays. Therefore, a 

simulation-based methodology is much more appropriate in addressing the complexity of 

the runway operations, which is not adequately captured when using analytical models. 

 

(g) Stochastic optimization approaches are only suitable to solve problems 

where the scale of the problem is relatively small compared to problems emerge in real-
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life. Although a two-stage stochastic programming approach for addressing runway 

operations scheduling problems have been proposed, the main drawback of this approach 

is that it is very computationally expensive such that it is not applicable to real-life problem 

sizes. Another drawback of this approach is the fact that it is not capable of taking into 

account the dynamic nature of scheduling environment, and for the sake of tractability 

some limiting assumptions are required related to probability distributions in the model, 

which might not be true in actual runway operations. By the same token, robust 

optimization approaches generate too conservative solutions considering the worst-case 

possibilities of the uncertain data, which result in solutions far from optimal. On the other 

hand, SbO approaches are more computationally efficient in handling large-scale problems 

that explicitly consider uncertainties inherent to practical runway operations.  

 

Given the above findings gleaned from the literature review, there is a requirement for a 

model that brings the runway operations scheduling problem closer to practice. Previously 

proposed deterministic models are so simplified that they are not capable of capturing all 

relevant aspect of the actual problem. The complexity of the problem increases with the 

extra restrictions and conditions added to the problem. Two aspects that increase the 

complexity of the problem significantly is the consideration of uncertainty and multiple 

conflicting objectives to be optimized, which is essential for closing the gap between 

academic research and practice related to the problem.  

 

Uncertainty is inevitable in runway operations schedule optimization and can significantly 

degrade the performance of an optimized solution or even render it infeasible. There are 

various factors that cause uncertainty in runway operations, the most notable of these 

factors are ground speed variations caused by the wind, piloting indecisions, delays in 

pushback or taxiing, arrival prediction error, airport congestion, flight cancellations, etc. 

Also, unexpected events such as safety incidents, equipment failure, inclement weather, 

etc. also contribute to uncertainty. All these sources of uncertainty can result in variability 

in landing/take-off sequence and/or time windows (earliest, latest possible target 

landing/take-off times or target times) (C. Brinton & Atkins, 2009). Therefore, due to these 

sources of uncertainty, deviations from the estimated input parameters are unavoidable. 
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As a conclusion, based on the literature review and to the best of our knowledge, there is 

no work reported that deals with the runway operations scheduling problem under 

uncertainty with utilizing a simulation-based approach. Also, fairness is not taken into 

consideration during the optimization process as a second objective along with runway 

utilization, which converts the problem to a bi-objective optimization problem. Although 

there exist several approaches for modeling this real-life scheduling problem, it is evident 

that these different modeling approaches force different solution methods and resulting in 

inefficiencies in the schedules and computational challenges. However, a simulation-based 

optimization (SbO) approach seems to be the most promising one because of its capability 

in dealing with the stochastic and dynamic nature of this scheduling problem. It also 

considers uncertainty explicitly such a way that it is capable of reducing the negative 

impact of randomness on the optimized solutions and increasing the reliability of these 

solutions in practice. 
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CHAPTER 3 

SIMULATION-BASED OPTIMIZATION FRAMEWORK 

 

Simulation studies are conducted to determine an estimate of the system output from a set 

of system input configuration. However, the simulation does not include the capability to 

search for a set of system inputs that can produce the optimal or near-optimal system 

output. Hence, an optimization procedure needs to be incorporated into simulation models 

to empower it with an optimization capability. Numerous cases have been reported in the 

literature in which simulation and optimization methods were combined successfully, and 

these efforts extended the growth of research in the field of simulation-based optimization 

(SbO).  

 

SbO approaches try to determine the exact combination of system parameters which 

produce the optimal or near-optimal performance measures. The main strength of SbO 

approaches is that they can consider the dynamic and stochastic nature of the real-life 

problem while optimal or near-optimal solutions can be obtained without much of 

computational intractability. However, these methods still face challenges especially when 

there exist multiple and conflicting objectives, and they typically require costly 

development and challenging verification & validation process. Due to the fact that 

simulation is not an optimization tool, in essence, simulation experiments require to be 

designed in a systematic way for analysts to understand the simulation model’s behavior. 

 

This chapter presents what is to the best of our knowledge the first SbO approach to solve 

runway operations scheduling problem under uncertainty. First of all, basic concepts, 

terminology and a concise classification of the SbO are presented for use throughout the 

rest of the dissertation. Also, such concepts, terminology and taxonomy help to define and 

clarify the framework for the SbO approach we have proposed and justify the decision to 

move into that direction. Afterwards, the principles of multi-objective optimization (MOO) 

are outlined and basic concepts are formally defined. This is followed by a discussion on 

simulation-based multi-objective optimization. Finally, an overview of the SbO framework 
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is presented, and each component is outlined to provide a high-level understanding of the 

whole methodology.  

 

3.1 Simulation-based Optimization 

 

Simulation can be defined as the process of designing an abstract model of a real-life 

system and conducting experiments with this model for either understanding system 

behavior or evaluating various strategies within the limits imposed by a set of criteria for 

the operation of the system (Shannon, 1975). Simulation is usually considered as an 

effective performance evaluation tool especially when the real system is stochastic and 

dynamic in nature, and too complex to be presented by mathematical terms. However, 

despite its capabilities, simulation retains its downsides when it is used individually to 

deliver the optimal schedule. In order to mitigate this shortcoming, simulation and 

optimization need to be integrated. Integration of simulation models with optimization 

procedures, which is commonly referred as a simulation-based optimization (SbO), has the 

potential to enable more realistic modeling and produce more robust solutions. From an 

optimization point of view, SbO tries to find a set of decision variable values that optimize 

(minimize or maximize) an objective function that is estimated by a simulation component. 

 

In recent years, SbO has been an active area of research with many important applications, 

such as planning, scheduling, etc. Also, it has become the method of choice for optimizing 

complex models due to the following advances in simulation technologies: (1) latest 

developments in computational capabilities, modeling paradigms, software and techniques 

for developing simulation models, and (2) latest improvements in the methods and the 

software for statistical design and analysis. As a result, it has been increasingly utilized in 

practice and incorporated into commercial and non-commercial simulation packages. For 

example, in Arena simulation software package, optimization of simulation is carried out 

by using OptQuest package, which uses Scatter Search, Tabu Search, and Neural Networks 

(F. Glover et al., 1999). 
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3.1.1 Basic Concepts of Simulation-based Optimization 

Many real-life problems, including runway operations scheduling problem, involve 

uncertainty and their solutions highly depend on these uncertain input parameters. The 

constructed models of such problems are stochastic in nature. Simulation is an 

indispensable operations research method for analyzing such problems. One of the 

limitations of simulation models, in general, is that they act as a black-box system such 

that they can only evaluate the model for the decision variables that are pre-specified. 

Therefore, to use a simulation model for evaluating the performance of a process, the values 

of decision variables need to be set, and then, a simulation run needs to be conducted to 

forecast the performance of that particular input parameter configuration. Manually 

adjusting these input parameter configuration values is not practical due to the 

combinatorial nature of the process.  

 

Moreover, it is often not clear how to adjust the decision variables from one simulation run 

to the next. In such cases, finding an optimal solution for a simulation model requires 

searching in a heuristic or ad hoc fashion. This situation usually involves running a 

simulation for an initial set of decision variables, analyzing the results, changing one or 

more variables, running the simulation again, and repeating this process until a satisfactory 

solution is obtained. As mentioned above, the simulation itself can not automatically adjust 

the decision variables so as to reach an optimum solution. This issue was one of the main 

problems of simulation which left large-scale models unresolved in the past (Law, 2014). 

 

Until the last two decades, the two operations research methods - optimization and 

simulation - were kept largely separated in practice, even though there was a large body of 

research literature relevant to combining them (Fu, 2002). However, recent developments 

in both disciplines already herald a commonality between these two distinct disciplines. 

Moreover, in time, it already became a necessity to integrate optimization techniques into 

simulation practice. In the last couple of decades, such cooperation appeared between well-

known optimization routines and simulation software packages. SbO is an invaluable tool 

when there is a need for a systematic and efficient method to find which of a large number 
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of system configurations leads to an optimal or near-optimal value for an output 

performance measure (Law, 2014). 

 

3.1.2 Simulation-based Optimization Terminology 

Simulation-based Optimization (SbO) is the process of combining different input 

parameter values that can be controlled to find the combination that provides the most 

desirable output from the simulation model. In SbO terminology, different keywords for 

the terms related to inputs and outputs are used. They all express the same meaning either 

intentionally or inadvertently. The terms related to the inputs and outputs of a SbO 

problem, which are defined in Fu (2002), are as follows:  

 

(a) Inputs are referred as (controllable) parameter settings, values, variables, 

(proposed) solutions, designs, or configurations. 

(b) Outputs are referred as performance measures, or criteria (see Figure 7). 

 

 

Simulation Model
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Figure 7: Simulation-based Optimization Terminology 
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In statistical terms, the input parameters typically refer to “factors”, and the output 

performance measures refer to “responses”. In the area of optimization, the factors turn 

into “decision variables” and the responses are used to model an “objective function” and 

“constraints”. The SbO process seeks to find the combination of factor levels that 

minimizes or maximizes a response subject to constraints imposed on factors and/or 

responses.  

 

The input parameters of the real system are set to the “optimal” parameter values 

determined by the SbO process, rather than in an ad hoc manner based on qualitative 

insights gained from exercising the simulation model. A very general formulation of the 

SbO problem is to minimize the expected value of the objective function with respect to its 

constraint set. Therefore, a SbO problem can be formulated as a classical mathematical 

optimization model as follows: 

 

𝑚𝑖𝑛 𝑧 =      𝔼 < 𝑓(𝑥) >                     (Objective function) (3.1a) 

𝑠. 𝑡.                𝑨𝑥 ≤ 𝒃   (Constraints on input variables) (3.1b) 

𝑔𝑙 ≤ 𝐺(𝑥)  ≤  𝑔𝑢               (Constraints on output measures) (3.1c) 

𝑙 ≤ 𝑥 ≤ 𝑢                          (Upper and lower bounds) (3.1d) 

 

where the objective function (Eq. 3.1a) represents the expected value of a key output 

performance measure obtained from the simulation model, and it is a mapping from a 

vector x of decision variables to a real value. The inequality in Eq. 3.1b represents the 

constraints, where both the coefficient matrix A and the right-hand-side values 

corresponding to vector b are known. The inequality in Eq. 3.1c represents the constraints 

enforce simple upper and/or lower bound requirements on an output function G(x), where 

the values of the bounds are known constants. As imposed by Eq. 3.1d, all decision 

variables (x) are bounded, and some may be restricted to be discrete. Each evaluation of 

the objective function and G(x) requires an execution of a simulation of the system.  
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3.1.3 Simulation-based Optimization Methods 

There are several optimization methods to be used in a SbO framework; hereafter these 

methods will be referred to as SbO methods. Depending on their various criteria SbO 

methods are classified in a number of different ways in the literature (Carson & Maria, 

1997), (Azadivar, 1999), (Fu, 2002), (L.-F. Wang & Shi, 2013). There is a gap for a 

classification which covers the full spectrum of the approaches and launches the discussion 

on the different strategies. Since the possibilities of linking an optimization method with a 

simulation model are so vast, it is very essential to have a good overview of the different 

approaches. A possible classification for SbO methods, based on the structure of the 

problem and search scheme is shown in Figure 8. These methods are first partitioned 

depending on the criteria type of the variables (discrete or continuous). 
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Figure 8: Classification of Simulation-based Optimization Methods 

 

 

If the decision variable of the optimization problem is continuous, then it may be 

appropriate to utilize a method based on a metamodel, or a gradient method to search the 
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solution space in an iterative way. If the decision variable is discrete and the solution space 

is large, then metaheuristic algorithms are the most suitable ones. Otherwise, if the solution 

space is small, statistical selection methods, such as ranking & selection method, are the 

best choice; hence, parameter inputs to be comprehensively examined and what-if 

questions answered. Due to their common utilization in the literature, some of the SbO 

methods, in particular, response surface methodology, metaheuristic algorithms, and 

stochastic approximation, are briefly outlined below: 

 

Response Surface Methodology (RSM): The basic idea of RSM is to construct a metamodel 

to approximate the objective function based on a set of input decision variables. A 

metamodel, also referred to as a surrogate model, is a mathematical model that 

approximates the response space (solution space) of a simulation model and is used to 

provide information concerning the system without the need for costly simulation runs. By 

utilizing a metamodel, the objective function can be evaluated efficiently for each 

parameter setting, since optimization procedures are executed over the metamodel instead 

of the objective function that is expensive to evaluate. The two most widely used 

techniques for obtaining the metamodel are regression and neural networks. Regression, as 

a statistical technique, summarize how the simulation model’s output reacts to changes in 

the model’s input. On the other hand, neural networks act as a screening device to eliminate 

points where the objective function value is predicted to be low-quality by the neural 

networks model without actually searching additional iterations. 

 

Metaheuristic Algorithms: The main advantages of metaheuristic algorithms are that they 

do not require any gradient information, and they are not problem dependent. Despite these 

advantages, these algorithms still possess drawbacks. These methods typically suffer from 

local optimality, and they pose several challenges in tuning parameters and dealing with 

multiple objectives. Chapter 5 presents a detailed treatment of these algorithms along with 

a brief explanation of the most popular ones. 

 

Stochastic Approximation: These methods are gradient-based, and they typically divided 

into two categories: (1) techniques that are based on direct gradient estimation techniques, 
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and (2) techniques that are based on indirect gradient estimation. The main challenge in 

these methods is that a large number of iterations is required before obtaining the optimum 

value.  

 

Although early research on the SbO field is more focused on exact methods, such as 

gradient search methods or statistical inference techniques, more recent research has been 

more focused on metaheuristic algorithms. The main reason for this is that recent real-life 

simulation models become so complex to be optimized with exact methods, where 

metaheuristic algorithms are capable of solving this type of problems more conveniently. 

The metaheuristic algorithms are preferred to exact methods mainly for their efficiency in 

terms of computation time; however, they do not guarantee optimal solutions. So, the 

quality of the result needs to be balanced with the time spent on computation. Also, it is 

worth to mention that while it is rare, on certain instances, metaheuristic algorithms 

methods fail to find any result, particularly in the presence of multiple objectives. 

 

Unlike other optimization methods such as linear programming or MIP, the main 

difficulties of SbO method include, but not limited to, the following: 

 

(a) There may not exist an analytical expression of the objective function and 

in some cases, even the feasible region may not be explicitly described. 

(b) The stochastic nature of the simulation model makes it difficult to estimate 

the objective function values of solution points. Therefore, there exist various levels of 

noise. Usually, multiple simulation replications are needed to ensure the estimation 

accuracy and to handle simulation noise. 

(c) Most of the time, simulation runs are very expensive in terms of overall 

computation time, which may result in longer solution times. 
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3.2 Multi-Objective Optimization 

 

Multi-objective optimization (MOO) problems require the simultaneous optimization of 

more than a single objective function, which is intrinsic to many real-life problems. In 

MOO, there is no accepted definition of optimum as it is in the single-objective case; hence, 

the notion of optimality is different where there is a set of optimal solutions instead of a 

single optimal solution. One of the primary challenges regarding MOO problems is that 

since two or more conflicting objectives are optimized simultaneously, the search space 

often becomes partially ordered, which requires a special treatment. Before delving into 

the details of MOO, the principles of MOO are outlined and basic concepts are formally 

defined in the following sub-section. 

 

3.2.1 Basic Concepts of Multi-Objective Optimization 

Several basic principles and formal definitions are required for proper analysis of MOO 

structures and related evaluation of these structures. These principles and definitions are 

introduced below. 

 

Let’s consider an MOO problem with k objectives as an example: 

 

𝑚𝑖𝑛 𝑧 =  {

𝑓1(𝑥) =  𝑐1𝑥

𝑓2(𝑥) =  𝑐2𝑥
:

𝑓𝑘(𝑥) =  𝑐𝑘𝑥

 

(3.2) 

𝑠. 𝑡.            𝑨𝑥 ≥ 𝑏      

    𝑥 ≥ 0 

 

where A is an m × n matrix, b is an m-vector, c1, c2, ..., ck are n-vectors and x is a n-vector 

of the decision variables of the problem. The feasible set of the above problem is    X = {x 

| Ax ≥ b, x ≥ 0}. Here k objective functions zi: X → ℝ, 1 ≤ i ≤ k, mapping a solution x in 

decision space X to its objective vector f(x) = (f1(x), ..., fk(x)) in the objective space ℝk, 
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have to be minimized concurrently. Contrary to single-objective optimization, in most 

MOO problems, no solution exists that optimizes all objective functions simultaneously.  

 

As opposed to finding or approximating the optimal objective function value, MOO is 

mainly concerned with finding or approximating the set of so-called Pareto-optimal 

solutions representing the best trade-offs between the objectives. For that purpose, the 

Pareto dominance relation is defined. A solution x* is called Pareto-optimal (vector 

maxima or efficient), if there is no other solution which is at least as good as x* on all 

objectives and strictly better with respect to at least one. The concepts of dominance and 

Pareto-optimality are fundamental in MOO due to the fact they constitute the foundation 

of solution quality. Definition of the Pareto-optimal solution in a more formal way is given 

below, and illustrated in Figure 9. 

 

Definition 3.2.1 (Pareto-optimal solution) A feasible solution x* is called Pareto-optimal 

or efficient, if there is no other x ∈ X such that fi(x) ≤ fi(x
*), ∀i ∈ {1, 2, 3,…, k} and fi(x) ≠ 

fi(x
*) (Pareto-optimal solutions are also referred as non-dominated solutions.) (Ehrgott, 

2006). 

 

A solution x ∈ X is said to dominate another solution y ∈ X if and only if (iff)∀1 ≤ i ≤ k : 

fi(x) ≤ fi(y) and ∃1 ≤ i ≤ k : fi(x) < fi(y). This can also be written as x ≺ y. A solution x∗ ∈ X 

is then called Pareto-optimal iff there is no other solution in X that dominates x∗. By the 

same token, the weak dominance relation is defined below.  
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Figure 9: Illustration of Pareto-optimal Solutions and Pareto-frontier 

 

 

Definition 3.2.2 (Weak Dominance Relation) A solution x ∈ X weakly dominates a 

solution y ∈ X (x ≼ y) iff ∀1 ≤ i ≤ k : fi(x) ≤ fi(y). Two solutions that are mutually weakly 

dominating each other are called indifferent whereas they are called non-dominated iff 

none is weakly dominating the other.  

 

The definitions above can be used to define two different non-dominated sets: strongly and 

weakly non-dominated set. Strongly non-dominated set can be defined as follows: Among 

a set of solutions P, the strongly non-dominated set of solutions P′ are those that are not 

weakly dominated by any member of set P. Likewise, weakly non-dominated set can be 

defined as follows: Among a set of solutions P, the weakly non-dominated set of solutions 

P′ are those that are not strongly dominated by any member of set P. 

 

These dominance relations can be generalized to relations between sets of solutions. For 

instance, a solution set A ⊆ X weakly dominates a solution set B ⊆ X iff ∀b ∈ B ∃a ∈ A : a 
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≼ b. Specific sets of pairwise non-dominated solutions are called Pareto set 

approximations (Ehrgott, 2006). 

 

From scheduling perspective, a multi-objective scheduling procedure generates a solution 

set in the objective space in which some of the solutions are optimal trade-off solutions 

among the optimization objectives. These optimal solutions are known as Pareto-optimal 

schedules, which together constitute the so-called Pareto-frontier. A formal definition of 

Pareto-optimal schedule is given below. 

 

Definition 3.2.3 (Pareto-optimal schedule) A schedule is called Pareto-optimal if it is not 

possible to improve the value of one objective without deteriorating the value of the other 

(Pinedo, 2016). 

 

In Figure 10, the search space (solution or decision space), and the objective space are 

illustrated for bi-objective optimization, where four solutions are shown in decision space 

with their corresponding location at the objective space after applying to them the function 

f(x). As shown in Figure 10, the location of the solutions in the search space does not hold 

any correspondence with their location at the objective space. 
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Figure 10: Illustration of Search and Objective Space in MOO 

 

 

Coello et al. (2007) identified four essential goals for optimizing multiple objectives: (1) 

to find a set of solutions as close as possible to the true Pareto-optimal solutions and 

preserve progress towards the Pareto-frontier in objective space, (2) to find well-distributed 

Pareto-optimal solutions that cover the entire Pareto-optimal region in order to ensure a 

good set of trade-off solutions and retain diversity of Pareto-frontier in objective space and 

diversity of Pareto-optimal solutions in decision space, (3) to maintain non-dominated 

points in objective space and accompanying solution points in decision space, and (4) to 

provide the decision-maker “enough” but limited number of Pareto points for selecting the 

resulting decision variable values (Coello et al., 2007).  

 

Effective design of MOO algorithms requires considering both of these goals since the 

fulfillment of one goal does not necessarily guarantee the other goal. Thus, not only it is 

important for mechanisms guarantee convergence to the Pareto-optimal region but they 

should also maintain a diverse set of solutions. This requirement renders the MOO as more 

challenging than the single-objective optimization. 
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MOO problems can be tackled by either exact or metaheuristic methods where both have 

different strengths and weaknesses. Selecting the most suitable method heavily depends on 

the characteristics of the problem at hand. However, in either case, the concept of Pareto-

optimality is commonly embraced.  

 

3.2.2 Classification of Multi-Objective Optimization Methods 

Even though there exist several different classifications of MOO methods, the one based 

on the extent of preference information proposed by Hwang and Masud (1979) and later 

modified by Miettinen (1999) is the most accepted classification in the literature. In this 

classification, MOO methods are categorized into four classes according to the 

participation of the decision-maker in the solution process: (1) no-preference methods (no 

articulation of preference information is used), (2) a posteriori methods (a posteriori 

articulation of preference information is used), (3) a priori methods (a priori articulation 

of preference information is used), (4) interactive methods (progressive articulation of 

preference information is used). 

 

To better explain the differences among these methods, the MOO process can be 

decomposed into three phases as follows: model building, optimization, and decision-

making. In no-preference methods, as the name indicates, without any preference 

information, all the non-dominated solutions are enumerated with optimization and 

presented to the decision-maker. In a posteriori methods, the decision-making stage comes 

after optimization. In a priori (scalarization) methods, first the decision-maker articulates 

preference information, and then, the optimization phase tries to find the optimal solution 

by converting the MOO problem into a single-objective optimization problem. Lastly, in 

interactive methods, decision-making phase is interlaced with optimization in an iterative 

manner.  

 

The most widely used MOO approach in the literature is the a priori methods where the 

multiple objectives are aggregated into a single objective. However, in the decision-making 

phase, the possibilities and limitations of the problem may not necessarily be known in 
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advance, and this may result in too optimistic or pessimistic expectations. Also, this 

approach does not account for identifying the best trade-offs between contradicting 

objectives that can provide useful insights to the decision-maker. The primary task in MOO 

is to identify a set of Pareto-optimal solutions that helps to understand the problem structure 

better and provides a basis for decision-makers in picking the best trade-off solution. 

 

On the other hand, a posteriori methods produce a set of Pareto-optimal solutions from 

which the decision-maker selects a solution based on post-preference assessment. These 

methods often lead to a more conscious and better choice. Moreover, resulting Pareto-

optimal solutions can be analyzed to identify interdependencies among decision variables, 

objectives, and constraints. The focus of this dissertation is on a posteriori methods, in 

particular, metaheuristic algorithms where it is tried to generate an approximation of the 

Pareto-optimal set. However, first, a priori methods are explained briefly in order to give a 

basic understanding of the MOO field’s principles. 

 

3.2.3 Scalarization (A Priori) Methods 

Scalarization (also referred as a priori or traditional) methods update a single solution in 

each iteration, and that utilizes a deterministic transition rule for generating the Pareto-

optimal set. These methods convert a MOO problem into a single-objective optimization 

problem by scalarizing the objective vector into a single composite objective function, and 

thus, a single trade-off optimal solution can be sought effectively (Deb, 2001). The most 

frequently used a priori methods for handling MOO problems are the weighted sum 

method, the ε-constraint method, goal programming, Tchebycheff methods, and the 

minimax approach. Due to their wide utilization in the literature, the weighted sum and the 

ε-constraint methods are briefly discussed below. 

 

Weighted Sum Method: This method might be the most intuitive approach for solving MOO 

problems. The basic idea of weighted sum method is to combine all of the objective 

functions into a single functional form with a weighted linear sum of the objectives. In this 

method, scalar weights are specified for each objective to be optimized, and then, they are 

combined into a single function that can be solved by any single-objective optimizer. 
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Clearly, the solution obtained depends on the values of the weights specified. A weighted 

sum version of the multi-objective linear programming problem with k objectives can be 

formulated as follows: 

 

𝑚𝑖𝑛 𝑧 =  𝜆1𝑐1𝑥 +  𝜆2𝑐2𝑥 + ⋯ + 𝜆𝑘𝑐𝑘𝑥 

(3.3) 
𝑠. 𝑡.            𝑨𝑥 ≥ 𝑏      

𝜆1 +  𝜆2 + ⋯ +  𝜆𝑘 = 1 

𝜆1, 𝜆2, … , 𝜆𝑘 , 𝑥 ≥ 0 

 

where λ1, λ2,…, λk are the weights. The main drawback of weighted sum method is the fact 

that it is essentially subjective, where decision-maker needs to provide the weights, and in 

order to accomplish this, different weight vectors have to be evaluated perpetually. The 

process of specifying and fine-tuning the weight vector is usually a tedious and inefficient 

task. Also, this approach cannot identify all efficient solutions. These drawbacks render 

this method very inefficient to be used in a SbO framework because running a simulation 

to evaluate the objective functions takes significantly long computation time. Therefore, 

setting the appropriate weight vector until finding an acceptable solution may take longer 

than a considerable solution time. 

 

ε-Constraint Method: In this method, one of the objective functions is optimized using the 

other objective functions as constraints. Incorporating objective functions in the constraint 

part of the linear programming problem is shown below: 

 

𝑚𝑖𝑛  𝑧 =  𝑐1𝑥 

(3.4) 

𝑠. 𝑡.            𝑨𝑥 ≥ 𝑏      

𝑐2𝑥 ≤ 𝜀2  

𝑐3𝑥 ≤ 𝜀3 

      ⋮ 

𝑐𝑘𝑥 ≤ 𝜀𝑘 



 

 

81 

 𝑥 ≥ 0 

 

The parameters ε2, ε3, …, εk are used to represent the upper bound values for the 

corresponding objective function values. The efficient solutions of the problem can be 

obtained by parametric variation of the right-hand-side of the constrained objective 

functions. 

 

The main strengths of traditional (scalarization) methods include the proof of convergence 

to the Pareto-optimal set, simplicity, and easy implementation. Despite these advantages, 

they all suffer from a number of difficulties in common when finding multiple Pareto-

optimal solutions. First of all, they necessitate several runs to find an approximation of the 

Pareto-optimal set. Second, because the optimization runs are done independently from 

each other, interdependencies typically cannot be exploited. Finally, they require some 

problem knowledge, such as weights or ε values, etc. (Deb, 2001).  

 

3.2.4 Approximate Methods 

Recently, approximate algorithms have become established as an alternative to traditional 

methods for several reasons, including the following: (1) large search spaces can be 

handled, and (2) multiple alternative trade-off solutions can be generated in a single run. 

Due to the complexity of the MOO problems, approximate algorithms are a very practical 

and suitable approach. The main drawback of these algorithms is that even if the solutions 

found are non-dominated in the recent population, they may not necessarily be the actual 

Pareto-optimal set of solutions. Since these objectives are conflicting, trade-offs need to be 

found between objectives to obtain satisfactory results.  

 

Among approximate methods, the multi-objective evolutionary algorithms (MOEA) are 

the most popular metaheuristic algorithms, which have been increasingly dominating the 

literature for solving practical multiple objective problem optimization in recent years. This 

is mainly due to their capability of dealing with multi-objectives in a natural way and 

capturing multiple trade-off solutions in a single optimization run since multiple solutions 

are simultaneously generated in each iteration, and a population of solutions is maintained. 
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Applying the principle of “survival-of-the-fittest” in natural selection, MOEAs have the 

unique feature of sampling multiple solutions concurrently.  

 

In a study done by Jones et al. (2002), it is concluded that majority of the MOO approaches 

proposed in the literature to approximate the true Pareto-frontier were utilizing a 

metaheuristic algorithm, and 70 percent of all metaheuristic approaches are based on 

MOEAs. Even though a large variety of MOO algorithms have been suggested in the 

literature, there is still room for improvement to develop computationally efficient 

algorithms with an enhanced capability to converge non-dominated solutions along the 

Pareto-frontier for complex and large-scale MOO problems. 

 

3.3 Simulation-based Multi-Objective Optimization 

 

Simulation-based multi-objective optimization is an evolving area of research that 

integrates optimization techniques into simulation modeling and analysis, where 

optimization deals with multiple conflicting objectives simultaneously. Numerous real-life 

applications in different fields demonstrate the potential of the SbO with a single objective; 

however, multiple conflicting objectives are usually not taken into account. It is only 

recently that the research community has initiated experimentation with MOO in 

combination with simulation. This situation is because of the fact that in addition to the 

challenges inherent to the SbO models (high computational cost and stochastic noise), 

considering the additional complexity of multiple and possibly conflicting objectives 

makes the solution process more challenging and tedious.  

 

Because solution evaluations are expensive in terms of time, traditional (a priori) methods 

may not be feasible to solve simulation-based multi-objective optimization problems. The 

classic MOO methods avoid the complexity originated from the existence of multiple 

conflicting objectives by utilizing traditional techniques by converting the MOO problem 

into a single-objective optimization problem. In general, the optimal solution to this single-

objective problem is expected to be a Pareto-optimal solution. However, such a solution 

highly depends on the parameters used in the conversion method. In order to find different 
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Pareto-optimal solutions, the parameters should be changed, and the resulting single-

objective problem should be solved again. Therefore, traditional MOO methods require 

solving single-objective optimization problems multiple times to find the Pareto-frontier, 

which is not analytically tractable in many real-life settings. On the other hand, MOEAs 

only require a limited number of fitness evaluations, which usually do not suffer from the 

computational tractability issues. 

 

The objective function of a simulation-based multi-objective optimization problem with 

noise can be defined as follows: 

 

𝑚𝑖𝑛 𝑧 =      𝔼 < 𝒇(𝑥) > =  𝒇(𝑥) +  𝜹 , 

(3.5) 

𝒇(𝑥) = [
𝑓1(𝑥)

:
𝑓𝑛(𝑥)

] ,             𝜹 =  [
𝛿1

:
𝛿𝑛

]. 

 

where objective function value is the expected value of sampled fitness value (E<f(x)>), 

which consists of true fitness value (f(x)) and noise value (δ). 

 

The primary issues with considering a simulation-based multi-objective optimization 

approach are individual objective ranges and noise involved in the objective functions. 

First difficulty can be mitigated conveniently by normalizing the objective functions. 

However, several issues stem from the noise include the following: (1) fitness evaluation 

component of the optimization component often becomes unstable, and in turn, it results 

in dismissal of high-quality solutions and premature convergence, (2) the diversity of 

solutions becomes biased because of the inappropriate allocation of the diversity measure, 

and (3) the risk of treating a dominated solution as a non-dominated solution due to the 

dominance comparison based on the sampled fitness value. These issues, if not addressed 

appropriately, easily decrease the performance of the approach, and lead to weak Pareto-

frontier (Figure 11).  
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Figure 11: Illustration of Weak Pareto-frontier Resulting from Noise 

 

 

In order to overcome the aforementioned issues inherent to simulation-based multi-

objective optimization, several methods have been suggested. Joines et al. (2002) proposed 

a GA-based approach by adapting the enhanced (elitist) version of Non-Dominated Sorting 

Genetic Algorithm (NSGA-II) and applied it to a real-life supply chain optimization 

problem with two objectives. Eskandari et al. (2005) incorporated a simulation model with 

a stochastic non-domination-based MOO method and GA. New operators, which include 

elitism, dynamic expansion, importation operators, for GA are introduced to improve the 

performance of the algorithm in terms of both effectiveness and efficiency. 

 

As a conclusion; although there exist several difficulties inherent to simulation-based 

multi-objective optimization, this field has become a significant research field with its 

specific theoretical foundations, which leads to a better understanding of the fundamental 

principles, and in turn, development of practical algorithms. Considering these difficulties 

in the context of the runway operations scheduling problem, it is evident that a framework 
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that structures effective design and implementation of simulation-based multi-objective 

optimization is necessary.  

 

3.4 Overall Simulation-based Optimization Framework 

 

The overall problem-solving approach is based on a SbO framework, as presented in Figure 

12. SbO is utilized for obtaining optimal system settings from sets of decision variables, 

i.e., input parameters, where the objective functions and performance of the system are 

evaluated through the output results of the simulation model over the system. The multi-

objective metaheuristic algorithm and the discrete-event simulation model are separated 

into individual modules. 

 

 

 

Figure 12: The Overall Problem Solving Approach 
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The flow-chart diagram of the SbO framework is given in Figure 13. The SbO framework 

starts with a greedy heuristic algorithm to produce a relatively good initial solution 

compared to a random one. The simulation model outputs the performance measures from 

a single simulation run where it is treated as a black-box model that evaluates the 

performance of a particular configuration of system parameters and provides these 

performance measures as bi-objectives. The optimization component employs a 

metaheuristic algorithm, which is discussed later, to search for the values of system 

parameters. It is an iterative process initiated by the optimization algorithm starting with 

inputting the initial solution and generating a set of candidate solutions which act as input 

values for the simulation model. After receiving the input values from the optimization 

algorithm, the simulation model is executed to compute the performance measures 

(including optimization objectives and other output parameters of interest) which are then 

fed back into the optimization algorithm.  
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Figure 13: Schematic Representation of the SbO Framework 
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The proposed SbO framework is comprised of two main components: an optimization 

model for managing the search process, and a simulation model for evaluating the 

performance of candidate solutions. The results of the performance evaluation are used to 

refine the optimization process and return the best set of solutions at the end. In this method, 

a simulation model is utilized as a replacement for an analytical fitness function to better 

mimic the behavior of the real-life runway system as well as to account for uncertainty 

explicitly.   

 

The whole SbO process treats the simulation model as a black-box where the optimization 

algorithm feeds candidate solutions to the simulation model which then generates the 

performance measures back to the optimization model. Since metaheuristic algorithms do 

not make explicit assumptions about the underlying structure of the objective function, the 

black-box nature of the simulation model does not create any difficulty.  

 

3.4.1 Main Steps of the Simulation-based Optimization Framework 

The proposed simulation-based optimization framework includes the following main steps: 

 

Step 1: Build an initial feasible solution S0 , with the greedy heuristic algorithm. 

Step 2: Improve the solution Sk , with the hybrid Tabu/Scatter Search algorithm. 

Step 3: Given Sk invoke a simulation procedure to generate random variable 

realizations and compute an estimate of the corresponding performance measure. 

Step 4: Determine if any termination criterion is satisfied. If yes, stop the algorithm 

and output the best set of solutions found so far; otherwise, set k←k+1 and go to 

step 2. 

 

In the first step, the initial feasible solution is obtained from the greedy heuristic algorithm, 

and then, sent to the metaheuristic optimization algorithm as its starting point. In the next 

step, a metaheuristic algorithm generates a neighborhood of solutions and selects a 

candidate solution from them with a number of techniques and this candidate solution is 
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sent to the simulation model to be evaluated. Subsequently, the simulation model estimates 

candidate solution’s performance measure by running several replications the result is sent 

back to the optimization component. Then, optimization component continues improving 

the solution through information that is obtained from the simulation model. These steps 

are repeated iteratively until the termination condition is met.  

 

The simulation model, which is a discrete-event simulation, further complicates the 

optimization process because information needs to be sent between the simulation and 

optimization algorithms in every iteration. 

 

The main objective of the SbO framework is to determine the runway assignments, and 

find the best sequence of aircraft in each runway and the landing/take-off times for each 

aircraft. For the SbO framework, the following information is considered as given:  

 

(a) A set of arriving aircraft with pre-determined meter fix assignments and 

estimated time of landing (ETL). Meter fixes are the points along the established route 

from over which aircraft is metered prior to entering TMA. 

(b) A set of departing aircraft with estimated time of take-off (ETT). 

(c) A set of attribute for each arriving and departing aircraft, which include 

aircraft identification number, operation type, weight class, a maximum delay time for each 

aircraft as a hard constraint.  

(d) The minimum separation times between aircraft weight classes and runway 

occupancy times for each aircraft weight class.  

(e) Arrival times to entry points and holding area for arriving and departing 

aircraft, respectively. 

 

In practice, runways used for mixed operations are operated in one of the following three 

ways: (1) arrival priority, (2) alternating runway operations, and (3) departure priority. In 

arrival priority, landing operation has higher priority over take-off operation, where take-

offs are fitted in between landings whenever enough time space is available. In alternating 
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runway operations, additional spacing is used among landing aircraft to allow at least one 

take-off between consecutive landings. In departure priority, take-offs are given priority 

over landings. This mode of operation is typically used only when there are many take-offs 

in the holding area queued for take-off. The SbO framework is designed to work in all 

configurations.  

 

In the SbO framework, the following two primary objectives are considered: 

 

(a) ATC-driven objective: Minimizing makespan, which means maximizing 

runway utilization (throughput), where landings are weighted by importance. 

 

(b) Airline-driven objective: Minimizing unfairness, which corresponds to 

minimizing aircraft’s position shift from their FCFS position. This is an important interest 

for airlines because FCFS order considered a fair rule among airlines. Also, this objective 

usually helps airlines to reduce operational costs and improve their on-time performance. 

 

The decision variable configurations are evaluated in the simulation model, which can be 

seen as a black-box; the simulation model is fed with the decision variables and the 

objective function values are provided by running the simulation model. This iterative 

process is demonstrated in Figure 14. The main objective of this SbO process is to 

iteratively refine the objective values by adjusting the decision variables. 
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Figure 14: Simulation-based Multi-Objective Optimization Iterations 

 

 

The resulting multi-objective problem is harder to deal with because a significantly larger 

portion of the search space needs to be explored to obtain a set of Pareto-optimal solution. 

The proposed multi-objective approach tries to deliver a Pareto-frontier (a set of optimal 

solutions), where decision-makers can use them to choose the appropriate solution based 

on different conditions and priorities. Therefore, a hybrid Tabu/Scatter Search algorithm is 

embedded in the optimization component to find decision variables configuration points in 

the decision space for which the corresponding points in the objective space reside on or 

close to the Pareto-frontier. The primary requirement for the metaheuristic algorithm is the 

ability to generate diverse solutions, which means solutions that cover a large area in the 

objective space, and to converge effectively towards the Pareto-frontier, i.e. solutions 

evolve iteratively.  

 

The ultimate aim of the SbO framework is to generate a robust solution, which can be 

defined as the solution that has a low probability of violating the constraints in actual 

operations while being reasonably close to optimal. Robustness (reliability) of a schedule 

is measured in terms of the probability that none of the minimum separation times 
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constraints will be violated, or in other words, the probability that an air traffic controller 

intervention will not be required. SbO approach allows evaluating the robustness of the 

solutions provided by the optimization method under near-real conditions. If the solution 

is not robust, its objective function value is used as a lower bound and the simulation 

optimization iteration will be repeated. 

 

3.4.2 Design and Implementation Methodology 

Before designing and developing the aforementioned SbO framework, the following 

activities are concluded.  

 

(a) Various sources of uncertainty in runway operations that influence the 

runway utilization performance are identified. 

(b) These uncertainty factors are embedded into the simulation model. 

(c) The impacts of these uncertainties are investigated by running simulations. 

(d) Depending on the degree of uncertainty, the landing/take-off delay changes 

are quantified through simulations for each uncertainty factor.  

 

The design and implementation methodology of the SbO framework is shown as follows 

(depicted schematically in Figure 15): 

 

Step 1: Understand the stochastic nature of the runway operations scheduling 

problem that the air traffic (local) controllers face on a daily basis. Define the 

problem and delineate the abstraction level for modeling. 

Step 2: Analyze the properties and fundamental characteristics of the practical 

problem with consideration of the uncertainty systematically. 

Step 3: Design and develop a rigorous, computationally tractable SbO approach. 

Step 4: Implement and test an initial version of the SbO framework and test it. 
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Step 5: Develop an improved version of the solution approach, which can produce 

a robust and efficient solution.  

Step 6: Conduct computational experiments, analyze the results and perform 

sensitivity analysis.  

 

 

Define the problem and determine the borders

Analyze the properties of the problem

 Design and develop a SbO approach

Implement and test the initial version

Develop an improved version of the solution 

approach

Conduct computational experiments and analyze the 

results

 

Figure 15: Design and Implementation Methodology  

 

 

3.5 Components of the Simulation-based Optimization Framework 

  

3.5.1 Initial Solution Generation Component 

Initial solution generation component consists of a greedy heuristic algorithm based on a 

composite dispatching (priority) rule to efficiently construct a starting solution for the SbO 
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framework. A heuristic algorithm is a rule of thumb used for finding a solution to a 

mathematical problem where it is usually based on a simple logical idea that does not need 

a detailed mathematical foundation to explain. The main advantages of a heuristic 

algorithm are relative simplicity, fast solution times and easy implementation. Also, it does 

not need significant time to adjust parameters to fit a problem instance. On the other hand, 

the main inherited shortcomings are that in most cases they do no guarantee optimal 

solution, and they may generate solutions with poor quality. Solutions obtained from a 

heuristic algorithm are typically used as an initial solution for a more advanced solution 

method, such as a metaheuristic algorithm. 

 

In the past several decades, heuristic algorithms based on a dispatching (priority) rule not 

only have been studied extensively in the operations research literature but have also been 

applied to different scheduling problems successfully in practice. Dispatching rules can be 

classified into two main categories: static and dynamic rules. As it is evident from the term, 

dynamic rules are time dependent, static rules are not. A combination of elementary 

dispatching rules is typically called as composite dispatching rule (Pinedo, 2016). 

Typically, a look-ahead parameter scales the contribution of each part of the composite 

dispatching rule relative to the total, which has to be suitable for the problem instance at 

hand to get good quality solutions, look-ahead (scaling) parameters are often determined 

with an empirical study. 

 

The composite dispatching rule utilized in the greedy heuristic algorithm exploits the 

structure of the problem. Basically, it is a function of aircraft (i, j) attributes, such as earliest 

time (rj), latest time (dj) and separation times (sij) as parameters. The overall priority of an 

aircraft is influenced by an attribute of the aircraft that is mainly determined by a look-

ahead parameter. This parameter is determined empirically and validated in terms of its 

suitability for practical problem instances to get high-quality solutions (Hancerliogullari et 

al., 2013). In their composite dispatching rule, aircraft are scheduled one at a time, i.e. 

when a runway becomes free, a priority index is computed for each remaining aircraft and 

the aircraft with the highest priority index is then selected to be scheduled next. The priority 

index (ηjr), that is a function of the time t, is defined as follows: 
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where j is the aircraft to be scheduled; i is the previous aircraft; r is the runway; wj is the 

weight parameter for j, and k1, k2 and k3 are scaling parameters. As a result of an empirical 

study, the parameters k1, k2, and k3 are determined to be 2, 0.75, 1.7, respectively. 

 

The main idea in the greedy heuristic algorithm is to generate a better quality initial solution 

in which the aircraft are sorted by the priority index and are considered to be landing or 

take-off on the runway at its best available time one after another. The pseudo-code of the 

greedy heuristic algorithm is given below. 

 

 

Algorithm 1 Greedy Heuristic Algorithm for Initial Solution Generation 

(Hancerliogullari et al., 2013) 

Input: List of aircraft and number of runways, M 

1: begin 

2: sort all aircraft according to the look-ahead priority index (1 to N) 

3: for i = 1 to N 

4: for r = 1 to M 

5: calculate Eir (Earliest feasible time that aircraft i can land or take-off 

from runway r) 

6: end for 

7: calculate start time for aircraft i, si = min {Eir | r in M} 

8: assign aircraft i to the runway related to calculated si  

9: end for 

10: calculate the fitness value (obj.fn.value) 

11: end 

Output: A feasible solution consists of runway operations schedule with a fitness value 

and start time for each aircraft 
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The greedy heuristic algorithm generates the initial solution by assigning aircraft to 

runways, determining the aircraft sequence in each runway and start time of each runway 

operation, considering the minimum separation requirements and time windows for 

landing and take-off. The runway assignment step tries to balance the air traffic on multiple 

runways, and the aircraft sequencing and scheduling steps attempt to generate a solution 

accounting for minimum separation times and time windows.  

 

In addition, a fitness value is calculated based on the start time of the last runway operation, 

which is the objective function value corresponding to maximizing throughput (runway 

utilization). This simple heuristic algorithm provides a reasonably good solution in a 

relatively short computational time without guaranteeing an optimal solution. 

 

3.5.2 Simulation Component 

It is easy to measure the performance of a runway operations schedule once it has been 

executed, by measuring the associated performance measure, such as the runway 

utilization, or the total delay occurred during the runway operations. However, it is difficult 

to estimate these performance measure related to the particular schedule in advance at the 

planning stage. Therefore, simulation is commonly considered as a powerful method for 

dealing with these difficulties especially for scheduling problems which are dynamic and 

stochastic in nature. 

 

In general, simulation is considered as an algorithmic technique for conducting 

experiments on dynamic numerical models. The internal representation of the simulation 

model utilizes a number of state variables which are employed to define the system state 

and mimic the dynamic behavior of the real runway system by changing these variables 

accordingly. 

 

The simulation component of the proposed SbO framework is a discrete-event simulation 

model based on an aircraft trajectory model, and runway operations are approximated to 

fit the model. It mimics the movement of individual aircraft with an acceptable level of 

accuracy, and simulates the stochastic processes to reflect the uncertainty in runway 
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operations. The data that the entities (aircraft) need as they move through the model include 

release times into the system, separation times, runway occupancy times (ROTs), 

probability distributions associated with release times and ROTs. Entities carry some of 

the data with them as they move, and some of the information are shared across entities, 

which belong to the system as a whole.  

 

The simulation model simulates the arrival and departure segments through reasonable 

trajectory states at key points along the path of the aircraft, and they are represented by a 

network of nodes and arcs. Aircraft move on this network along prescribed trajectories that 

are made up of strings of nodes and arcs, where each arc can be occupied by a single aircraft 

at a time. The landing and take-off operations are broken into segments, and each segment 

forms a node of the simplified runway operations.  

 

In the simulation model, these stochastic processes are simulated by utilizing random 

variables to reflect the stochastic behavior observed in actual runway operations. Given a 

solution (a runway operations schedule), the performance measures are evaluated 

stochastically with simulation runs by using particular values (realizations) of these random 

variables (sources of randomness). A detailed treatment of the simulation component is 

given in Chapter 4. 

 

3.5.3 Optimization Component 

The optimization component consists of a hybrid Tabu/Scatter Search algorithm. The main 

reasons for selecting a metaheuristic algorithm include the following: 

 

(a) Metaheuristics are capable of generating high-quality near-optimal 

solutions to multi-objective problems in a relatively short computational times. 

 

(b) Metaheuristics are more flexible to be adapted to different multi-objective 

optimization problem structures. 
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(c) Metaheuristics do not require gradient or derivative information which is 

not easy to find for real-life multi-objective problems. 

 

(d) The decision-maker does not have to make beforehand preferences 

regarding the objectives until the alternative solutions are presented (Marler & Arora, 

2004). 

 

Although metaheuristic algorithms offer these advantages, their application is not 

completely straightforward. The dynamic balance of intensification and diversification has 

to be considered, where intensification refers to the exploitation of the best solutions found 

and convergence to the Pareto-optimal solution sets while diversification refers to the 

exploration of the search space and diversity of the obtained solutions around the optimal 

set. 

 

The other aspect that needs to be considered is that in MOO problems a significantly larger 

portion of the search space needs to be explored to obtain a set of Pareto-optimal solutions. 

Considering that even a single simulation run may take considerable amount of 

computation time (ranging from a couple of minutes to hours), the solution process is 

computationally expensive when a large number of simulation evaluations are needed. 

 

The optimization component generates a set of Pareto-optimal approximations, which are 

superior to all dominated solutions in the objective space and inferior to other Pareto-

optimal approximations in at least one objective; thus, it provides the decision-maker with 

a whole set of alternative solutions that represent the trade-offs to choose from. The design 

and implementation details of the optimization component are given in Chapter 5. 

 

3.5.4 Interfacing Optimization and Simulation Components 

One way to interface optimization and simulation components is to provide a specific 

interface layer for taking care of the communication between two components. Most of the 

existing simulation environments provide some ways to integrate the simulation model 

with other applications with the help of different technologies, such as specialized 
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application programming interfaces (API), component object model (COM) interfaces for 

inter-processing, or web services. The primary challenge in these specialized interfaces is 

that they have to be developed for each simulation environment and underlying technology. 

 

In order to avoid the burden of developing a specialized interface, both optimization and 

simulation components are designed with an object-oriented architecture, and implemented 

with a common development environment and programming language. Therefore, 

interfacing optimization and simulation components are accomplished using direct calls. 

When an evaluation of a candidate solution is needed, a simulation model is called directly. 

Then, the simulation model runs with the parameter values supplied by the optimization 

algorithm, calculates the quality of the candidate solution and returns it to the optimization 

algorithm.  

 

The main advantages of this interfacing scheme are: (1) the effort for interfacing the 

components is minimum, (2) it allows tight coupling of optimization and simulation 

components, (3) it is more efficient compared to specialized interfaces by reducing inter-

processing overhead, and (4) complex interactions between components are applied 

conveniently. 
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CHAPTER 4 

DISCRETE-EVENT SIMULATION MODEL 

 

Simulation modeling is a powerful and widely accepted method for analyzing complex and 

stochastic systems. Hence, in the literature, there exist several simulation models and tools 

that simulate airport and runway operations, and these models and tools are often utilized 

for evaluating some performance measures, such as airport capacity, resource utilization, 

etc. However, these existing simulation models for quantifying runway operations’ 

performance necessitate a vast amount of detailed data. Also, they are not open source and 

cannot be used as a simulation component in a SbO framework. Therefore, a new discrete-

event simulation model is developed that is capable of capturing the essential interactions 

of key system components, representing the system with sufficient detail, and reflecting 

the uncertainties associated with the runway operations.  

 

In order to realistically represent the components of the real runway system and their 

complex interactions, system approach is adopted in developing the simulation model. This 

approach allows decomposition of the real system into functional components and 

application of an object-oriented architecture. Furthermore, applying this type of 

architecture yields advantages in the design as well as in the implementation of the 

simulation model. This discrete-event simulation model is designed to simulate the flow of 

air traffic for both arrivals and departures, where aircraft are generated as objects that move 

through the airspace segments and the runways. It is built to compute the performance 

measures, which are the inputs for the optimization component, by tracking the flow of 

aircraft in specific points. 

 

In this chapter, first, the most widely used airport and runway simulation models are 

reviewed. Then, the purpose and high-level framework of the simulation model, which is 

a fast-time simulation model that quantify performance measures of runway operations for 

different runway operations schedules, are presented. Next, an abstract representation of 

the TMA, which describes the elements, relationships, borders and assumptions without 
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reference to the specific implementation details, is described. Afterwards, the data sources 

and input analysis for the simulation model are given. In addition, the object-oriented 

design, and implementation specifics are provided. Finally, details of the verification & 

validation process is presented. The verification process is necessary to show that the 

simulation model operates as expected and provides an accurate, logical representation of 

the conceptual model. On the other hand, the validation process is conducted to determine 

if the model’s behavior validly represents the real runway system being simulated. 

 

4.1 Airport and Runway Simulation Models 

 

During the past few decades, many analytical, as well as macroscopic and microscopic 

simulation models, have been developed for modeling the airside and/or landside 

operations of an airport, and analyzing the related statistics. The models developed so far 

span from basic queuing models and Monte Carlo simulations to sophisticated, 

comprehensive computer simulation models, and they differ broadly in their objectives, 

scope, level of detail, fidelity and complexity. Some of these models are publicly available 

and open source while others are proprietary. The primary objectives of these existing 

models include, but not limited to the following: (1) providing performance data of airport 

capacity evaluation, (2) bottleneck analysis of critical airport resources, (3) estimating the 

capacities of the runways, and (4) analyzing various strategies in air traffic flow 

management (ATFM) and airline operations.  

 

FAA Airport Capacity Models: These models are developed for airport and runway systems 

that focus on strategic aspects of ATFM, namely airport and runway capacity. They 

estimate arrival and departure capacity by utilizing various parameters, such as minimum 

separation standards, runway occupancy times, fleet mix, availability of exit taxiways, etc. 

These models consist of the following two models to conduct specific and focused airport 

capacity studies: (1) Airfield Delay Simulation Model (ADSIM) is designed to calculate 

travel time, delay, and flow rate data to analyze airport airfield components, airport aircraft 

operations, and operations in the immediate terminal airspace for measuring service delays. 

(2) Runway Delay Simulation Model (RDSIM) is primarily developed to provide runway 
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capacity/delay analysis and models the final approach, runway threshold, and runway exits. 

This tool simulates runway operations and provides both capacity and delay information. 

It is simply a critical-event stochastic model that employs Monte Carlo sampling 

techniques (Odoni et al., 1997b). 

 

Airport and Airspace Delay Simulation Model (SIMMOD): SIMMOD is a microscopic, 

discrete-event simulation model that tracks the movement of individual aircraft as they 

travel through the airspace and on the ground. SIMMOD consists of a network of nodes 

and links to represent the aircraft paths throughout the area being simulated. The nodes 

represent the decision points, physical locations or logic changes along the path, whereas 

the links define the route of travel. Each aircraft is allowed transit from one link to another 

depending on the link’s attributes and rules related to the analysis. In SIMMOD, there are 

five input categories: airspace definition, airfield (airport) definition, schedule events, 

flight banks (to model the dependency of arriving and departing flights in the hub), and 

aircraft definition. SIMMOD generates highly detailed output including individual flight 

level data. It has been widely employed in air traffic surface operations and capacity studies 

(Kleinman et al., 1997). 

 

Total Airspace and Airport Modeler (TAAM): TAAM is a large-scale detailed fast-time 

simulation tool that models the layout of an airport, the operating rules for every aircraft 

type, and the dynamics of every gate, taxiway, and runway with high fidelity. TAAM is 

widely considered as a flexible tool that can assist airport operators to estimate and analyze 

the impact of present and future airspace and runway operations precisely as well as 

enhance the safety and efficiency of these operations. It also includes an interactive user 

interface that provides a 2D or 3D view of the airspace or airport; a real-time air traffic 

monitoring tool with simulation capability; and a reporting tool which can be used to create 

graphs and tables from data produced by the simulation model (Bazargan et al., 2002). 

 

MIT Extensible Air Network Simulation (MEANS): MEANS is a macroscopic, discrete-

event simulation framework for analyzing various strategies in air traffic flow management 

and airline operations. It is also capable of capturing the effects of uncertainty in the 
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operating environment. MEANS has seven modules, where each module simulates a 

particular section of the air transportation network. Four of these modules (en-route, tower, 

taxi, and gate) are state modules since they deal with the movement of entities (aircraft, 

crews, and passengers) through several states. The en-route (airspace) module simulates 

the national airspace as a whole. Two other modules (Air Traffic Control System 

Command Center (ATCSCC) and airline) are the decision-making modules since they 

control the desired changes to the flight schedule that are then performed by the state 

modules. The last module, which is the weather module, provides weather and weather 

prediction information to the other modules. (Clarke et al., 2007). 

 

The MITRE Corporation runwaySimulator: This simulation tool is developed by the 

MITRE Corporation, and it is employed by various organizations which have an interest 

in understanding the capacity of airport runways, such as air traffic service providers, 

airlines, airport operators, etc. The main functionality of this tool is to estimate the capacity 

of the runways, and it enables rapid analysis of airport capacity by combining a package of 

different methodologies including analytical and simulation methods. It randomly 

generates flights according to a specified fleet mix and combines a trajectory model, airport 

and fleet characteristics, and separation rules to estimate hourly capacity. The main output 

of the tool is a capacity curve showing the efficient capacity as a Pareto-frontier of arrival-

departure throughput. The runwaySimulator is coded in Java and shared publicly for 

analysis of only US airports (Kuzminski, 2013).  

 

Existing microscopic simulation models, such as TAAM and SIMMOD, can simulate 

detailed airport and runway operations; however, these models require extensive 

adaptation of both the airport layout and the traffic scenarios to produce statistically 

significant results. Therefore, it is difficult to use these microscopic models to as part of 

our SbO framework since they require a simulation study over long periods of time and 

extensive data (Odoni et al., 1997a).  

 

On the other hand, the existing macroscopic models, such as airport capacity models, have 

generally been utilized for the purpose of supporting policy decisions regarding the best 
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runway utilization, assisting the design of airports, and simulating air traffic with 

significant fidelity. Although these simulation models are very useful for studying system 

behavior as well as capable of considering stochastic airport processes including runway 

operations, they have several drawbacks: (1) these models require long computation times 

to produce results, (2) they are not open source, and (3) they are not flexible enough to be 

used as a simulation component in a SbO framework.  

 

4.2 Objective and Simulation Modeling Approach 

 

The previous section provided the evidence that there is no one-size-fits-all simulation 

model for different decision levels (strategic, tactical and operational) in air traffic flow 

management, and the existing simulation models cannot be utilized as the simulation 

component in our SbO framework. Therefore, a simulation model is developed that is 

capable of capturing the essential interactions of key system components, representing the 

system with sufficient detail, and reflecting the uncertainties associated with the runway 

operations. 

 

The main purpose of the simulation model is to evaluate the given runway operations 

schedule in terms of runway utilization and fairness among aircraft. Several other 

performance measures can also be estimated by utilizing the simulation model, such as 

hourly delays, travel times, and queueing data, but the optimization component in our SbO 

framework only requires these two measures. Since a relatively small number of aircraft 

needs to be simulated, a discrete-event, microscopic and stochastic simulation model is 

considered which is suitable for our SbO framework. It is noteworthy to mention that 

discrete-event simulation, where system state changes happen discretely at isolated times 

so-called events, is the most widely used kind of simulation for design and analysis of 

runway operations. 

 

In developing the discrete-event simulation model, system approach is adopted to represent 

the components of the real runway system and their complex interactions accurately. This 

approach allows decomposition of the real system into the functional components and 
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application of an object-oriented architecture, which is a powerful approach for coping 

with the development of complex computer simulations. Furthermore, employing an 

object-oriented architecture to the simulation of real runway system yields advantages in 

the design as well as in the implementation of the simulation model. In this architecture, 

the simulation model is seen as a collection of objects with attributes that interact with each 

other via messages. The primary benefit of this architecture is that it partially mitigates the 

challenges presented by large computational time and memory requirements for the 

simulation of runway operations. Based on the object-oriented architecture, the simulation 

model developed according to the following steps:  

 

Step 1: Identification of objects and collections of objects in the problem domain. 

Step 2: System evaluation and the identification of the problem in a clear statement. 

Step 3: Problem analysis, formulation, and identification of variable relationships. 

Step 4: Determining the appropriate level of modeling sophistication, model 

building, and definitions of performance measures.  

Step 5: Data acquisition and abstraction.  

Step 6: Model translation into computer code (implementation).  

Step 7: Model verification (whether the model does what it is intended for) and 

validation (whether the model is an accurate representation of the real system). 

 

4.3 Structural Modeling 

 

The most important part of simulation studies is considered as finding the right abstraction 

of the real-life system for the simulation model. This section lays out the abstraction and 

fundamental logic of the simulation model, and presents the conceptual model, which is 

developed to display the structure and the abstract behavior of the runway operations 

consistent with the purpose of the simulation model outlined in the previous section. 

Limitations and assumptions of the structural modeling are also discussed. 
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4.3.1 Outline and Conceptual Design 

The simulation model simulates the arrival and departure segments i.e. both landing and 

take-off modes of runway operations are simulated, and they are represented by a network 

of nodes and arcs. Aircraft move on this network along prescribed trajectories that are made 

up of strings of nodes and arcs, where each arc can be occupied by a single aircraft at a 

time. Accordingly, whenever an aircraft tries to use an arc that is already occupied by 

another aircraft, delay takes place.  

 

In actual runway operations, both arrival and departure aircraft, which fly under instrument 

flight rules (IFR) or visual flight rules (VFR) conditions follow a filed flight plan while it 

is in the terminal maneuvering area (TMA). This flight route is represented by a sequence 

of fixes (waypoints) in the airspace, and they have to attain approval and clearances from 

air traffic controllers throughout the flight, in practice. Based on the actual runway 

operations the abstraction and fundamental logic of runway operations in the simulation 

model is outlined below. 

 

As shown in Figure 16, the arrival segment begins when aircraft enters the TMA (freezing 

horizon) through entry points. After entering the TMA, it remains in it until it arrives one 

of the available meter fixes. For each of these fixes an initial approach segment is defined, 

starting from the initial approach fix. In practice the length of the initial approach segment 

differs depending on the approach conditions (IFR or VFR); however, in the simulation 

model only IFR conditions are considered because these conditions depend on air traffic 

controllers to maintain adequate separation. Then, the initial approach segments lead 

aircraft into final approach segments. These segments differ in length according to the 

direction from which the aircraft approaches to runway. After landing aircraft exits from 

the runway, aircraft leaves the system and arrival segment concludes. Briefly, arrival 

aircraft starts from the entry points and it follows the sequence of fixes including meter fix, 

initial approach fix, final approach fix and stabilized approach fix through the runway, as 

given in a flow chart diagram in Appendix D.  
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Figure 16: Sequence of Fixes in Airspace for Arrival Aircraft 

 

 

As for departing aircraft, the departure segment begins when the aircraft enters to the 

holding area and ends when aircraft leaves TMA in a departure fix. After receiving runway 

clearance, aircraft starts moving with the intent to take off. As soon as it receives take-off 

clearance, aircraft wheels-off the runway, where take-off time corresponds to the wheels-

off time for the aircraft. Then, it enters the initial climb segment, where at the end it reaches 

enough level of speed, and next, it enters the en-route climb segment, where aircraft 

maintain en-route speed. The departure segment concludes when an aircraft arrives 

departure fix and leaves the TMA. Similar to the arrival segment, a flow chart diagram of 

the departure segment given in Appendix D. 
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For arrivals, the primary nodes that are located in the network representation are shown in 

Figure 17 in which the flow of air traffic for arrival is represented as a network based on 

the arrival procedures. The primary nodes that are located in this network representation 

are listed below:  

 

(a) Aircraft generation node is the entry point that represents the point where 

aircraft are created and fed into the simulation. 

(b) Meter (merge) fix node represents the fix along an established route over 

which aircraft is metered prior to entering the TMA, where it is established at a distance 

from the airport which facilitate a profile descent. 

(c) Initial approach fix (IAF) node represents the fix that identifies the 

beginning of the initial approach segment, where aircraft flows merge and enter the holding 

pattern. 

(d) Final approach fix (FAF) node represents the fix from which the final 

approach to an airport is executed and which identifies the beginning of the final approach 

segment. The glide slope/path starts at this node, which is the location where all landing 

aircraft are required to pass before landing. The airspace between FAF and the runway is 

referred as final approach.  

(e) Stabilized approach fix (SAF) node represents the fix that starts maintaining 

constant flight conditions, such as speed, for the approach phase. 

(f) Runway threshold node represents the point across the runway that denotes 

the beginning and end of the designated space for landing.  

(g) Touchdown node represents the point at which the nominal glide path 

intercepts the runway and aircraft first make contact with the landing surface of the runway. 

(The landing time corresponds to the touchdown time for the aircraft.) 

(h) Runway exit node represents the point where aircraft depart the runway, and 

simulation model stops tracking them. 
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Figure 17: Primary Nodes for Arrival 

 

 

For departures, the primary nodes that are located in the network representation are shown 

in Figure 18 in which similar to arrivals, the flow of air traffic for departures are represented 

as a network based on the take-off procedures. The primary nodes that are located in this 

network representation are listed below: 

 

(a) Aircraft generation node represents the point where aircraft are created in 

the holding area.  

(b) Start of roll node represents the point where an aircraft is aligned with the 

runway centerline and the aircraft starts to move with the intent to take off.  

(c) Take-off node represents the point at which aircraft wheels-off the runway. 

(The take-off time corresponds to the wheels-off time for the aircraft.) 

(d) Initial climb node represents the point that aircraft reach enough level of 

speed at the beginning of the initial climb segment.  
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(e) En-route climb node represents the point at the beginning of the en-route 

climb segment where aircraft maintain en-route speed.  

(f) Departure fix node represents the point where aircraft leaves the TMA, and 

the simulation model stops tracking the aircraft. 
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Figure 18: Primary Nodes for Departure   

 

 

The primary advantage of this network structure is the detailed representation of the 

runway operations in the TMA and convenience in collecting various statistics. Essentially, 

the state of the simulation model changes only in discrete points in times, which is typically 

referred to as event times.  

 

In the simulation model, the runway system is recognized as a terminating system and, 

hence, it is modeled as a terminating simulation where there is a specific starting and 

stopping conditions to reflect the actual operation of the real runway system. Aircraft are 
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considered as dynamic objects (entities) that flow through the simulation model, and 

runways are considered as the main resource.  

 

In arrival procedure, the scope of analysis includes the landing procedure starting from the 

arrival to the entry points, up to aircraft exit from the runway. Likewise, in departure 

procedure, the scope of analysis includes the take-off procedure starting from the arrival to 

the holding area, up to the departure fix where aircraft exit from the TMA. In each node 

that is located in this network representation, the separation time between the aircraft is 

checked based on time-based distance. If the separation time is not obeyed, then the 

following aircraft is delayed until the separation time is obeyed.  

 

For arrivals, the holding pattern, which is an airspace section for aircraft waiting to 

continue the final approach to the runway, is modeled as the queue for the arrival aircraft 

where aircraft fly at a certain speed. In the simulation model, the holding pattern is used as 

an indicator for infeasibility. If more than a specific number of aircraft exist in the holding 

pattern at the same time or if any aircraft spends more than a threshold of time in the 

holding pattern that schedule is considered infeasible. Likewise, for departures, the holding 

area, which is an area close to the runway for aircraft waiting to start to roll, is modeled as 

the queue for the departure aircraft.  

 

4.3.2 Assumptions and Parameters 

Several assumptions are made to simulate the dynamic nature of the arrival and departure 

operations outlined in the previous sub-section. The primary assumptions are listed below:  

 

(a) The number of runways is assumed to be more than one, and in the runway 

configuration, it is assumed that there are no crossing active runways or closely spaced 

parallel runways.  

(b) A constant nominal approach and climb speed assumed depending on 

aircraft weight class. To simulate the practical variations in the system arrival times and 

introduce related practical uncertainty into the model, perturbations are imposed on the 

system arrival times for both arrivals and departures.  
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(c) Weather restrictions, especially effect of wind is not considered because the 

data of wind grid is not available. Therefore, aircraft airspeed is assumed to be equal to 

ground speed. Also, change in runway configuration because of the crosswind is not taken 

into consideration.  

(d) It is assumed that there are four weight classes of aircraft and each aircraft 

belongs to one of these class. These four classes include the following: “Heavy”, “B757”, 

“Large”, and “Small”. In a recent change, FAA added a new weight class, designated as 

“Super” (FAA, 2014). However, this weight class is not considered in the simulation 

model, because this weight class of aircraft is not included in the fleet mix data that we 

obtained from FAA databases.   

(e) All arrival and departure aircraft assume to follow pre-defined trajectories 

through entry points to runway exit for arrivals, and through holding area to TMA exit for 

departures. Also, aircraft are not allowed to change their trajectory during the arrival or 

departure procedure once they are assigned a trajectory. 

(f) Air traffic (local) controllers’ workload is not taken into account. Therefore, 

it is assumed that complexity of the air traffic control environment does not increase the 

controllers’ workload. 

(g) Air traffic (local) controllers do not add buffer times to minimum 

separations requirements. The buffer is the additional spacing applied by air traffic 

controllers to account for the variability inherent in controlling aircraft. It is noteworthy to 

mention that even though buffer increases safety margins, it reduces runway throughput. 

(h) Minimum separation times and runway occupancy times are dependent on 

the type of aircraft weight, and the runway is equipped with a dedicated rapid exit for each 

type of aircraft. 

 

4.3.3 Performance Measures 

As in many real-life problems, the performance measures are not easy to capture in runway 

operations scheduling, but it is key for obtaining practically applicable results to the 
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problem. The main performance measures to be collected via the simulation model are 

runway utilization and fairness, which are detailed below. 

 

Runway utilization: Although most of the previous research on runway operations 

scheduling problem have been focused on minimizing delay, maximizing runway 

utilization (throughput) is not the same as minimizing delay. In practice, air traffic (local) 

controllers try to maximize runway utilization instead of to minimize total delay directly. 

Minimizing the delay will maximize the throughput over the long term but the opposite is 

not valid. Hence, maximizing runway utilization (minimizing makespan) is selected as one 

of the performance measures. 

 

The runway utilization is defined in terms of the period of time that can accommodate a 

given number of runway operations, and it is calculated as the actual landing or take-off 

time of the last runway operation. 

 

Fairness: Several models for Collaborative Decision Making (CDM) aspects of air traffic 

flow management have been proposed in the literature where information related to 

stakeholders (primarily airlines) is integrated to enhance decision-making process. Among 

the CDM aspects, fairness is typically considered as an important factor for all the 

stakeholders and a runway schedule that preserves the FCFS order has been agreed upon 

as fair.  

 

Therefore, the second performance measure is motivated by social justice, where 

scheduling using the arrival order is considered fair. This metric attempts to measure the 

deviation from the FCFS order, in particular, fairness is calculated in the simulation model 

through the concept of “position shift” compared to FCFS sequence and the value of the 

difference between target landing/take-off time and start time. For the position shift 

concept, suppose a landing aircraft sequenced in the 4th position according to FCFS order. 

If it gets scheduled in the 7th position, then its position shift is +3 (behind), and likewise, if 

it is scheduled in the 2nd position, then its position shift is -2 (ahead) (Figure 19).  
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A1 A2 A3 A4 A5 A6 A7 A8FCFS 

Sequence 1

1 2 3 4 5 6 7 8

A1 A2 A3 A5 A6 A7 A4 A8 Position shift +3

Sequence 2 A1 A4 A2 A3 A5 A6 A7 A8 Position shift -2

 

Figure 19: Representation of Position Shift Concept 

 

 

The fairness is modelled by the square deviation from the target times with absolute values 

of aircraft j position shifts as the weights as shown in Eq. 4.1, where δj represents the target 

landing/take-off time of aircraft j, tj represents the start time of aircraft j, and wj represents 

the position shift value of aircraft j. 

 

 
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j N
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Since FCFS order generates aircraft groups that are closely sequenced with larger gaps 

between individual groups, it deteriorates runway utilization. On the other hand, in order 

to schedule aircraft for maximum runway utilization, total position shift from the FCFS 

order has to be increased. Therefore, there is a requirement to find trade-off solutions. 

 

4.4 Quantitative Modeling (Input Data Analysis) 

 

4.4.1 Data Sources and Design Parameters 

Multiple types of data sources are utilized for Input Data Analysis of the simulation model. 

These data sources are listed below: 
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(a) FAA Operations & Performance database (provides publicly available real-

world historical data, and available online at https://aspm.faa.gov). 

(b) Bureau of Transportation Statistics (BTS) database (provides data reported 

by airlines, and available online at www.rita.dot.gov). 

(c) Flightstats (available online at www.flightstats.com) database. 

(d) Data obtained as a result of simulation runs with a validated and FAA 

approved simulation tool, namely the MITRE Corporation runwaySimulator. 

 

FAA Operations & Performance database provides access to historical traffic counts, 

forecasts of aviation activity, and delay statistics, and this database consists of several 

FAA-based core databases. For input data analysis, only Aviation System Performance 

Metrics (ASPM) and the Airline Service Quality Performance (ASQP) core databases are 

used. The ASPM database includes information on individual flight performance, airport 

efficiency, and runway configurations for every quarter hour. The ASPM database is 

structured into two groups of data: (1) the Out of the gate, Off the ground, On the ground 

and Into the Gate (OOOI) flight data, as reported by the airlines, and (2) non-OOOI flight 

data.  

 

As illustrated in Figure 20, OOOI data consist of the times of aircraft pushback from the 

gates, their take-off and landing times, and the gate-in times. Most of the airlines report 

OOOI data for the majority of their flights. OOOI data is commonly considered as reliable 

because the data is collected automatically using input from Aircraft Communications 

Addressing and Reporting System (ACARS) sensors mounted on the aircraft. However, 

OOOI data is only reported to FAA by the airlines that have the aircraft with ACARS 

sensors, which are commonly referred as OOOI airlines. 

 

On the other hand, the ASPM database estimates OOOI data for flights of non-OOOI 

airlines and for OOOI airlines where OOOI data are not available, which include the non-
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OOOI data. Considering that ASPM database estimation may not be accurate, non-OOOI 

data is detected and corrected by using the Flightstats database when it is available.  
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Figure 20: Illustration of OOOI Data  

 

 

In addition to the aforementioned OOOI and non-OOOI data, ASPM database provides 

airport-level aggregate data, which enumerates the total number of arrivals and departures 

in 15-minute increments. This data is used only for validating the simulation model. The 

transit times between nodes in the simulation are obtained by analyzing the navigation 

information obtained by experimenting with the MITRE Corporation runwaySimulator. 
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The design parameters for the discrete-event simulation model are listed in Table 2. Among 

these design parameters of the simulation model, runway layout, procedures and initial and 

final approach segment length and speed are airport specific parameters. On the other hand, 

minimum separation requirements and runway occupancy times are not airport specific 

parameters, and the details of these two parameters and how they are determined are 

outlined in the following sub-sections. The remaining design parameters, fleet mix and 

operating sequence, is given as part of input data. 

 

 

Table 2: Simulation Model Design Parameters 

 

Design Parameter Description 

Runway layout Number of runways and configuration 

Runway procedures The way runways are operated 

Fleet mix and operating sequence 
The percentage of operations among all aircraft 

based on weight classes and their arrival/departure 

sequence 

Minimum separation requirements 
The required minimum distance/time between 

leading and trailing aircraft 

Runway occupancy times 
The time difference between when an aircraft 

crosses the runway threshold, and when it clears 

the runway 

Initial and final approach segment 

length and speed 

The distance of the initial and final approach 

segments and the speed of the aircraft  

 

 

The following are given as an input to the simulation model: (1) number of aircraft and a 

set of attributes for each aircraft including aircraft identification number, operation type, 

weight class, a maximum delay time for each aircraft as a hard constraint, arrival times to 

entry points and holding area for arriving and departing aircraft, respectively, (2) aircraft 

sequence for each runway (runway assignments), and (3) estimated landing and take-off 
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times for each aircraft. And the output of the simulation model is the performance measures 

associated with the given schedule, which are runway utilization and fairness. 

 

These input data are used in the simulation model as they are specified in the schedule 

generated by the optimization model since there is no internal mechanism in the simulation 

model logic that can change these attributes during simulation run. For instance, runway 

operations schedule and runway assignments cannot be changed to maximize utilization or 

to increase fairness since the input schedule is utilized as a base for evaluating its 

performance. The overall working mechanism of the simulation model is explained below. 

 

A set of arrival and departure aircraft is generated at each iteration of the simulation, where 

each aircraft is defined by two features: a scheduled runway operations time (landing or 

take-off) and a weight class from among the four FAA weight class based on the provided 

fleet mix. The scheduled runway operations time corresponds to the time at which the 

aircraft can cross the runway threshold for arrival aircraft. By the same token, this time, 

corresponds to the time at which the flight can begin its take-off roll for departure aircraft. 

 

4.4.2 Minimum Separation Requirements 

Minimum separations are required by FAA to maintain the safety of runway operations, 

and they are intended to prevent aircraft collisions as well as eliminate the hazard to aircraft 

that subject to wake turbulence of a leading aircraft. According to FAA safety regulations, 

there exist two types of minimum separation requirements enforced by the FAA: (1) an 

airborne minimum longitudinal separation, which is mostly given as distance, and (2) a 

minimum separation at the runway threshold, which is typically given as time. The second 

type of minimum separation requirements are especially important for controlling the risk 

of simultaneous runway occupancy and collision. 

 

The most important factor that needs to be ensured during the simulation is that the aircraft 

are separated by at least the minimum distance from the previous ones on the same runway 

and all other dependent parallel runways. In the simulation model, separation requirements 

are utilized in accordance with the FAA Aircraft Wake Turbulence Advisory Circular 90-
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23G as a default. The FAA wake separation standards are given in Table 3. The FAA uses 

five aircraft weight classes for wake turbulence separation minima: “Super”, “Heavy”, 

“B757”, “Large”, and “Small”. “Super” is a relatively new class added to the classification 

that has been approved on an interim basis for aircraft type, such as the Airbus A380. Also, 

the Boeing “B757” was previously classified as a “Large”, but because special wake 

turbulence separation criteria apply to this type of aircraft, it is classified as a separate 

weight class. 

 

 

Table 3: FAA Minimum Separation Standards in NMs 

(Source: FAA (2014)) 

Leader/Follower Super Heavy B757 Large Small 

Super MRS 6 7 7 8 

Heavy MRS 4 5 5 6 

B757 MRS 4 4 4 5 

Large MRS MRS MRS MRS 4 

Small MRS MRS MRS MRS MRS 

MRS: Minimum Radar Separation 

 

 

The FAA minimum separation standards depend on runway operations type (landing or 

take-off), the weight class sequence, the runway configuration and runway assignments, 

and the flight rules in use (IFR or VFR). For runway operations under VFR rules, the FAA 

does not enforce numerical minimum separation, where pilots are responsible for 

maintaining the separation visually. In the simulation model, only runway operations under 

IFR conditions are simulated rules since these conditions depend on air traffic controllers 

to maintain adequate separation. 

 

Most of the FAA minimum separation standards are described distance-based instead of a 

time-based separation. Since time-based separation requirements are expected to be 
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implemented, distance-based separations are converted to time-based separations. This 

conversion is done by assuming a 5 NMs final approach path and a nominal approach 

speed, i.e. each aircraft flies at a constant speed over the final approach path. This 

assumption is commonly used in the literature and apparently adequate for converting the 

distance-based separation into time-based one. 

 

The ground speed through the final approach depends on the headwind; as the headwind is 

higher, aircraft needs less thrust to maintain the necessary lift. Table 4 is the summary of 

the observed samples of average ground speed for different types of aircraft from the FAF 

to the runway threshold when instrumental landing system is in use. “Super” weight class 

is excluded from the minimum separation requirements table, because this weight class of 

aircraft is not included in the fleet mix data that we obtained from FAA databases.  

 

 

Table 4: Nominal Approach Speeds in knots 

 

Runway 

Operation Speed 
Heavy B757 Large Small 

Arrival Speed 150 130 130 90 

Departure Speed 170 150 150 100 

 

 

The calculated minimum separation requirements for runway operations on the same 

runway are given in seconds in Table 5a, where the leading aircraft is given by the rows, 

and the trailing aircraft is given by columns. In Table 5b the separation requirements for 

parallel runways depending on their spacing are shown. 
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Table 5: Minimum Separation Times in seconds 

 

Departure → Departure Departure → Arrival 

Leader / 

Follower 

Heavy B757 Large Small Leader / 

Follower 

Heavy B757 Large Small 

Heavy 60 90 120 120 Heavy 50 53 55 65 

B757 60 60 90 90 B757 50 53 55 65 

Large 60 60 60 90 Large 50 53 55 65 

Small 60 60 60 60 Small 50 53 55 65 

Arrival → Departure Arrival → Arrival 

Leader / 

Follower 

Heavy B757 Large Small Leader / 

Follower 

Heavy B757 Large Small 

Heavy 75 75 75 75 Heavy 96 133 157 196 

B757 65 65 65 65 B757 74 107 133 157 

Large 55 55 55 55 Large 60 65 69 131 

Small 40 40 40 40 Small 60 65 69 82 

(a) Minimum separation times for operations on the same runway 

 

Runway spacing 
Departure → 

Departure 

Departure → 

Arrival 

Arrival → 

Departure 

Arrival → 

Arrival 

up to 2500 ft 

(up to 760 m) 
As on single 

runway 

As on single 

runway 
Independent 

As on single 

runway 

2500 ft – 4300 ft 

(760 m – 1310 m) Independent Independent Independent 40 

more than 4300 ft 

(more than 1310 m) Independent Independent Independent Independent 

(b) Minimum separation times for operations on parallel runways 

 

 

In the simulation model, arrival and departing aircraft are generated at discrete times as 

specified by the given runway operations schedule. Whenever an aircraft’s scheduled time 

of landing does not respect the minimum separation requirements, this aircraft is delayed. 

Likewise, if a departing aircraft’s scheduled time of take-off violates the minimum 

separation times, it is delayed at the holding area. 
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4.4.3 Runway Occupancy Times 

Although in the literature few research considered runway occupancy in scheduling runway 

operations, runway occupancy has a strong impact on runway throughput. In the simulation 

model, a couple of logical requirements are taken into account related to runway 

occupancy. First of all, aircraft are not allowed to occupy the same runway at the same 

time. Second, in order for an aircraft to execute a runway operation (landing or take-off), 

the previous aircraft must have exited the runway. This required time period that is the time 

an aircraft occupies the runway is commonly referred as runway occupancy time (ROT). 

For arrival aircraft, ROT starts when aircraft passes runway threshold and ends when 

aircraft exits the runway. For departure aircraft, ROT starts when aircraft enters the runway 

and ends when the aircraft passes the departure end of the runway.  

 

Several researches have been conducted recently on estimating and measuring ROT. In 

earlier researches, observational data occasionally was not sufficient to conclude 

statistically significant results, and there was considerable uncertainty in measurements. 

Lee et al. (1999) analyzed ROTs at a busy US airport using the NASA Dynamic Runway 

Occupancy Measurement System (DROMS), which is an automated tool that collected 

ROTs for over 3000 arriving aircraft. They concluded that ROTs are dependent only on 

aircraft weight and speed, and there is no significant difference between airlines or head-

wind/tail-wind conditions. Therefore, in the simulation model ROTs are considered as 

dependent only on aircraft weight class and aircraft speed. 

 

The missed approach procedure (procedure to be followed if an approach cannot be 

completed to a full-stop landing) and Land and Hold Short Operations (LAHSO) 

(procedure that requires pilot participation for landing and holding short of an intersecting 

runway or point on a runway to balance airport capacity and system efficiency with safety) 

are not modeled in the simulation model, since these procedures are rarely utilized in 

practical runway operations, and they require control mechanisms which further 

complicates the model unnecessarily. 
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4.4.4 Random Variables 

There are various factors that cause uncertainty in runway operations, such as ground speed 

variations caused by the wind, piloting indecisions, delays in pushback or taxiing, airport 

congestion, etc. Also, unexpected events such as safety incidents, equipment failure, 

inclement weather, etc. also contribute to uncertainty. All these factors can result in 

variability in target landing/take-off times, runway occupancy times, etc. (C. Brinton & 

Atkins, 2009). In the simulation model, these stochastic processes are simulated by 

utilizing random variables to reflect the stochastic behavior observed in actual runway 

operations. Given a solution (a runway operations schedule), the performance measures are 

evaluated stochastically with simulation runs by using particular values (realizations) of 

the following random variables (three sources of randomness). 

 

(a) Arrival times to entry points and holding area: In order to simulate the 

practical variations in the system arrival times and introduce related practical uncertainty 

into the model, perturbations are imposed on the system arrival times, i.e. arrival times to 

holding area for take-offs and arrival times to entry point for landings. In each simulation 

run, the input schedule generated by the optimization component is used to control the 

insertion of aircraft into the simulation model. In each simulation replication, the system 

arrival times for both arrival and departure aircraft are perturbed by the addition of a 

random lateness distribution, which may include negative values. In both current and 

previous works, the perturbations to both arrival and departure aircraft are assumed to 

follow a truncated normal distribution, which is confined between an upper and a lower 

bound. Departing aircraft have a mean of -30 seconds and a standard deviation of 1.5 

minutes; arriving aircraft have a zero mean with a standard deviation of 30 seconds (Xue 

& Zelinski, 2014). 

 

(b) Transit times between nodes: In order to account for practical uncertainties 

that stem from ground speed variations caused by the wind, piloting indecisions and other 

unexpected events during transit times, an additive perturbation imposed to average transit 

times. The transit times between each node in the network are estimated as a function of 

the aircraft weight class. The values for these transit times are approximated by 
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determining the vectoring the nodes and using approach profiles and standard fix speeds. 

The aircraft are assumed to fly directly from one node to another. The transit times are 

obtained by analyzing the navigation information obtained from www.airnav.com, and 

experimenting with the MITRE Corporation runwaySimulator.  

 

As a result of the analysis, additive perturbations are assumed to be normal distributed with 

a zero mean and a standard deviation of 1.8 minutes. The statistical validity of this 

assumption is analyzed with a chi-square goodness of fit test. The chi-square test confirmed 

that perturbations are normal distributed at significance level of α = 0.05. 

 

(c) Runway occupancy times: As mentioned previously, runway occupancy 

times (ROT) is the length of time required for a landing aircraft to proceed from the runway 

threshold to a point clear of the runway, and for a take-off aircraft to proceed from the 

runway and to a point when the aircraft passes the departure end of the runway. In order to 

account for uncertainties stemming from unexpected events during landing and take-off, 

perturbations are imposed to average ROTs calculated by the analysis of historical data for 

the airport under consideration (only for IFR conditions). 

 

Ghalebsaz-Jeddi et al. (2009) provided statistical analysis of the ROT for a major US 

airport, and preferred the beta distribution for ROT because it has lower and upper bounds 

as in real situations for ROT. For both the early and late exits, the normal distribution is 

rejected at significance level of α = 0.05. Distribution of ROT depends on the aircraft 

weight class as smaller aircraft exit earlier and larger ones later. The beta distribution shape 

parameters (β, α) of ROT for each aircraft weight class is given in Table 6 (Kolos-Lakatos, 

2013; Kumar et al., 2009). 

 

 

 

 

 



 

 

124 

Table 6: Beta Distribution Shape Parameters for ROT 

 

Shape 

parameters 
Heavy B757 Large Small 

Beta (β) 12.03 12.03 12.42 12.42 

Alpha (α) 27.48 27.48 26.86 26.86 

 

 

4.5 Object-Oriented Design  

 

In general, developing a simulation model for runway operations requires analysis of many 

complex factors including airport’s layout, runway operation procedures, fleet mix, the 

characteristics of the various aircraft using the runway, etc. However, the complexity of 

the simulation is minimized by employing an object-oriented design, which has been 

applied in a wide variety of domains to simulate real-life complex systems. The object-

oriented design of the simulation model is based on Leathrum (2014).  

 

The primary advantages of this kind of design are that it allows managing the inherent 

complexity by breaking the system into various objects, and it promotes reusability of 

existing objects. Objects are the data structures that encapsulate a state, which is the value 

of its attributes, and behavior, which constitutes its methods. This kind of design also 

provides a high-level of flexibility through its modular design, which can be employed to 

model any runway system, operating in any configuration. The general structure and design 

of the components and the whole simulation model is illustrated with block diagrams. In 

these diagrams, objects are represented by rounded boxes, while methods of individual 

objects are represented by ovals or circles. 

 

The simulation model consists of two interconnecting and interrelated modules, namely 

“Simulation Executive” and “Simulation Application”, which are detailed below:  
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Simulation Executive: This module acts as the main controller of the simulation model that 

manages the model when executing. It schedules the events and runs the simulation by 

providing a set of events as objects. Simulation Executive maintains an “Event List” where 

the future events are stored in a list ordered by their execution time. The time interval for 

advancing the simulation time is determined by the events in the Event List, which is the 

foundation of the event-driven simulation approach. Simulation time is incremented at the 

execution of the next event without considering the time interval between consecutive 

events. The execution time of a current event becomes the value of the simulation time. As 

soon as Event List becomes empty, simulation terminates. The architecture of the 

Simulation Executive is illustrated in Figure 21. As shown in this figure, the Simulation 

Executive has two main methods: Schedule Event and Run Simulation. Event List object 

maintains the event queue, updates the simulation time and schedules changes of states 

throughout the simulation period. 

 

 

Simulation Executive

Schedule 

Event

Run 

Simulation
Event List

 

Figure 21: Architecture of the Simulation Executive 

 

 

Simulation Application: This module includes all the application elements that are 

controlled by the Simulation Executive. Simulation Executive and Simulation Application 

components are interfaced by using objects named “Simulation Object”, which provide 

connection to the Simulation Executive. This object is inherited by all application objects 

need access to the functionality of the Simulation Executive. Architecture of the simulation 

application is illustrated in Figure 22. 



 

 

126 

 

Simulation Application

Airport
Landing     Take-OffApproach Departure

Runways (Resource Pool)           

Simulation Object

Aircraft

Simulation 

Object

Arrival to 

System

Departure 

from System

 

Figure 22: Architecture of the Simulation Application 

 

 

The object-oriented design of the Simulation Application consists of the following object 

types: 

(a) Aircraft object: This object is the main active process object flows through 

the simulation. 

(b) Airport object: This object maintains the tasks (Approach, Landing or Take-

off, Departure) for the aircraft objects. 

(c) Resource pool object: This object represents the runways. If any aircraft 

object needs a resource instance from a resource pool, it requests a resource from the 

resource pool object. If any resource is available, then resource pool acknowledges the 

aircraft object to acquire the resource; otherwise, this request will be put in the queue inside 

the resource pool object. As soon as the resource utilization is done by the aircraft object, 

it releases the acquired resource. Resources in the resource pool can only be acquired by 

an aircraft object at a time. A representation of the resource pool is given in Figure 23. 
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Airport

Landing     Take-Off

Runways (Resource Pool)           

 

Figure 23: Representation of the Resource Pool 

 

 

All objects have their data structures and methods that represent their attributes and 

procedures, respectively. Also, all objects interact with each other via messages during the 

simulation period. 

 

The high-level block diagram (architecture) of the discrete-event simulation model is given 

in Appendix C. 

 

4.6 Implementation Specifics 

 

The object-oriented design extremely simplying the implementation, due to the fact that 

functional modules are self-sufficient and connected with each other through well-defined 

interfaces. The implementation is capable of controlling simulation model externally and 

passing data in real-time. Several implementation specifics are described below. Unified 
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Modeling Language (UML) is used to describe object-oriented elements, which includes a 

set of logical rules for representing the real system in a semi-graphical form. 

 

The main challenges faced during the implementation phase are listed below: 

 

(a) How to instantiate the simulation executive once and provide a reference to 

the resulting object on each subsequent instantiation for scheduling events? 

(b) How to schedule execution of an event at some point in future which is the 

main feature of the Simulation Executive module? 

(c) How to assign unique identifiers to each entity (object) of a given class 

within the simulation? 

 

The first two challenges mentioned above are dealt with two design patterns: “singleton” 

and “command design patterns”, and the third challenge is overcome by “static attributes”. 

Design patterns are abstract structures of classes and commonly utilized in object-oriented 

design and implementations. As explained below, these design patterns and static attributes 

facilitate corresponding implementation difficulties in a more systematic way. 

 

Singleton Design Pattern: This design pattern involves a single class which is responsible 

for generating an object while ensuring that only a single object is generated. This design 

pattern allows creating a single simulation executive. In the first initiation of the singleton 

class, simulation executive is created. In the next initiations of the class, instead of creating 

an instance of the class it only provides a reference to the simulation executive. As 

illustrated by a UML diagram in Figure 24, design pattern does not allow access to the 

class constructor; rather it allows access to a static method, which creates a single object 

when it is called the first time and in the subsequent calls it provides a reference to that 

single object. In the implementation of the simulation model, the Simulation Executive 

component is created as soon as the simulation is initialized, and then, whenever a 

simulation object is created that needs access to the Simulation Executive for scheduling 

events, it receives a reference to the Simulation Executive. 
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SimulationExecutive

-instance: static int

-Simulation Executive()

+getInstance():static Simulation Executive

 

Figure 24: UML Representation of Singleton Design Pattern 

 

 

Command Design Pattern: The main feature of the Simulation Executive component is 

that execution of an event has to be scheduled at some point in future, which requires 

separating the object that triggers the event from the object that executes the event. In order 

to fulfill this requirement, the Simulation Executive component has to possess the 

capability to encapsulate all information needed to execute an event in future and trigger 

an event at a later time. This information includes the object and method to be called as 

well as the values for method parameters. The command design pattern is employed to 

implement this requirement conveniently. 

 

The command design pattern is a behavioral design pattern which is driven by data. It 

achieves the required separation in the Simulation Executive component by creating an 

abstract base class that maps a receiver (an object) with an action (a pointer to a member 

function). The base class contains an “Execute” method that simply calls the action on the 

receiver. As illustrated by a UML diagram in Figure 25, “Event” class is defined such that 

the class inheriting it defines the functionality of the “Execute” method. 
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Event

+Execute()

SimulationExecutive

-ScheduleEvent()

-RunSimulation()

 

Figure 25: UML Representation of Command Design Pattern 

 

 

Static Attributes: Static attributes are the ones that are associated with a class, not objects 

of that class, and these attributes are shared by all objects (instances) of that class. Static 

attributes fulfill the need for assigning unique identifiers to each entity (object) of a given 

class within the simulation. In particular, static attributes are utilized to identify an entity 

during collection of statistics related to this entity. Therefore, a static attribute is defined 

for the next available identifier to facilitate the access of all objects created from the class, 

which assigns a unique identifier to each object and increments this identifier as soon as 

the object is created. 

 

All necessary input parameters as well as control parameters, such as random number 

seeds, are provided by the user through the parameter list section of the code. After 

simulation initiation, it executes the same model several times with different input and 

control parameter settings; thus, it provides an automated execution of multiple 

experiments. In addition, all necessary probability functions are implemented in order to 

simulate various statistical distributions, particularly the uniform, Poisson, normal, beta 

and exponential distributions.  
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The “Event List”, which contains all events that are scheduled during the time of a 

simulation run, is implemented with a data structure based on a simple linked-list. Since 

events on the Event List need to be ordered depending on each event’s scheduled execution 

time at each update, the linked-list implementation provides more efficient execution 

compare to other data structures.  

 

A low-level programming language, namely C++, is selected as the implementation 

language for several reasons including the following: (1) it is an object-oriented 

programming language, (2) it has powerful features, such as pointers and Standard 

Template Library, and (3) it is capable of implementing system level designs such as the 

simulation executive. No graphic representation or Graphic User Interface (GUI) is 

implemented as part of the simulation model to avoid further complexity of the 

implementation. 

 

4.7 Verification and Validation Study 

 

As part of simulation model development, an iterative verification and validation process 

is used to determine whether the simulation model is valid to an acceptable level. Several 

versions of the simulation model were developed until a valid simulation model was 

obtained. The simulation model’s validity was gradually improved through the process by 

increasingly building confidence in the accuracy of the model by applying verification and 

validation tests.  

 

4.7.1 Verification Study 

Verification study is done to ensure that computer implementation works as described in 

the conceptual model. Because a general-purpose programming language, i.e. C++, is 

utilized for implementation instead of a simulation software package, development time as 

well as verification time increased substantially. However, it reduced the simulation 

execution time significantly.  
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Since simulation model is designed and implemented using the object-oriented technique, 

verification study is mainly focused on ensuring that the simulation model functions (the 

time-flow mechanism, pseudo-random number generator, and random variate generators) 

and the computerized simulation model are implemented and coded correctly. Also, since 

implementation is done in Microsoft Visual Studio 2013 environment, debugging 

capabilities of this environment is used to check for logical errors at various stages of the 

implementation. 

 

As part of verification study, each member function of the classes is debugged separately 

to ensure it works in accordance with the corresponding function in the conceptual model. 

In addition, simulation experiments are performed with the known deterministic data 

instead of stochastic data to verify that simulation model outputs plausible results. Finally, 

structured walk-throughs of outputs and deterministic run techniques are used to determine 

that the model is programmed accurately, and to test whether pseudo random number and 

random variate generators are implemented correctly. Furthermore, the outputs are 

compared with outputs of simulation runs performed by the MITRE Corporation 

runwaySimulator using the same airport data. Consequently, adequate evidence obtained 

from the verification study to conclude that computer implementation is an accurate 

representation of the logical behavior of the conceptual model.  

 

4.7.2 Validation Study 

Validation commonly regarded as a crucial step in simulation studies, since it tests 

simulation model predictions against reality and ensures that model is an accurate 

representation of the real system. Therefore, special emphasis is given to the validation 

study. 

 

The validation study is conducted in two phases of validity analysis, including face validity 

and statistical validity checking. In face validity, an independent assessment of the 

appropriateness of the model structure and plausibility of the assumptions is conducted 

with the help of two subject matter experts. One of the experts is an aviation professional 

with more than 20 years of experience as an operator, and the other one is an experienced 
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analyst in the industry. Both experts evaluated the model structure, where their judgment 

constituted a crucial component of the validation study. As a conclusion, the subject matter 

experts concluded that results produced by the simulation model are appropriate and 

reasonable, and model is a valid representation of the real-life runway system. 

 

Statistical validity checking is conducted by comparing model outputs with the actual data 

obtained from the real system outputs. The actual data is obtained from FAA Aviation 

System Performance Metrics (ASPM) database, which is a part of FAA Operations & 

Performance Data. This database consists of 15-minute arrival and departure counts, 

weather conditions, and detailed information on individual flights based on runway 

operation times as provided by airlines through Airline Service Quality Performance 

(ASQP) data or Enhanced Traffic Management System (ETMS) messages. The data is 

obtained only for Washington Dulles International Airport (IAD) covering the year 2015. 

Given the complexity of runway operations, validating the discrete-event simulation model 

was a challenge, and statistical comparison of numerical values of the output performance 

measures to the real-life runway system was conducted to overcome this challenge. 

 

Statistical validity checking divided into different steps. In the first step, the hours to be 

analyzed are determined by simply bundling 15-minute arrival and departure counts into 

hourly counts, and eliminating the non-busy hours according to certain criteria. These 

criteria include the following: (1) if the primarily used runway configuration was not used 

for the entire hour, and (2) if the demand for the hour is not the highest average demand 

for the day. In the second step, 20 hours are selected from the remaining set of hours 

randomly. In the third step, runway utilization estimates are obtained by running the 

simulation model. The actual data and simulation outputs are compared based on only 

runway utilization as an index for the simulation accuracy. Since the data related to the 

position shifts of aircraft compared to FCFS sequence is not available, this output measure 

of the simulation model is not evaluated. 

 

After simulating 20-hour period in the simulation model, runway utilization values are 

collected (Let Yj be the random variable defined on the jth set of simulation model data). 
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Then, actual runway utilization values are extracted from the historical data (Let Xj be the 

random variable defined on the jth set of actual data). In order to determine if simulation 

model is a valid representation of the real runway system, a confidence interval approach 

is employed to identify the statistical difference between two sets of data. Since a 

confidence interval approach provides more information, it is preferred to corresponding 

hypothesis test.  

 

It is assumed that Yj’s were generated by independent replications, and Xj’s are 

homogeneous with mean μy and μx, respectively. We compared the simulation model with 

the real system by constructing a 95 percent confidence level for ζ = μx - μy. The results of 

the paired-t test are given in Table 7, where it is assumed that Wj is the difference between 

actual value and simulation model value (Wj = Xj – Yj). 

 

 

Table 7: Results of the Paired-t Test 

 

Statistics 
Real Values 

(Xj) 

Simulation 

Values 

(Yj) 

Mean 3286 3192 

Variance 241 213 

Number of observations 20 20 

95 percent confidence interval for ζ -94 ± 107 

 

 

As a result, since the 95 percent confidence interval for ζ (-201, 13) contains 0, the observed 

difference between the mean runway utilization for the real system and the mean runway 

utilization for the simulation model is not statistically significant.  

 

Similar to runway utilization, simulated flight delays are compared with the real system 

flight delays, which are calculated by the difference between the actual landing/take-off 

time and the corresponding scheduled time. Likewise, a confidence interval approach is 
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employed to identify the statistical difference between two sets of delay data. After 

applying the paired-t test, it is concluded that the difference between the mean delays for 

the real system and the mean delays for the simulation model is not statistically significant 

at a significance level of α = 0.05.  

 

Furthermore, the practical significance of the differences is evaluated by the two subject 

matter experts, who also supported the face validity, and they concluded that the 

differences are not practically significant as well. 
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CHAPTER 5 

HYBRID TABU/SCATTER SEARCH ALGORITHM 

 

Over the last several decades, interest in metaheuristic algorithms in solving multi-

objective optimization (MOO) problems has risen considerably among researchers, and 

they have become more widely accepted as a viable alternative to exact methods. However, 

it is still a challenging task to develop an efficient metaheuristic algorithm for generating 

Pareto-optimal solutions, even for relatively easy bi-objective optimization problems. 

Furthermore, this difficulty is exacerbated in the context of simulation-based optimization 

(SbO) because of the noise stemming from the simulation component, which can easily 

render the optimization process unstable. This additional challenge can be compensated for 

by performing multiple simulation runs for each optimization iteration; however, this 

compensation will most probably result in long computational times. Therefore, 

developing an efficient metaheuristic algorithm for simulation-based multi-objective 

optimization requires finding a balance between intensification and diversification 

mechanisms in the design of such an algorithm. 

 

This chapter presents the novel hybrid Tabu/Scatter Search algorithm, which is capable of 

finding a compromise between the quality of the obtained solution and the computational 

time requirements when used for simulation-based multi-objective optimization. The 

proposed algorithm generates solutions by using an elitist strategy to preserve non-

dominated solutions, a dynamic update mechanism to produce high-quality solutions and 

a rebuilding strategy to promote solution diversity. 

 

The first section presents a short introduction to the field of metaheuristics in order to 

provide a basis for terminology and a general classification, and also, foundational 

metaheuristic algorithms are discussed for the sake of completeness and better 

understanding the capabilities of these algorithms. Then, details of the Scatter Search (SS) 

algorithm template are outlined. In addition, salient features of Multi-Objective 

Evolutionary Algorithms (MOEAs) are briefly described, and a MOEA, namely the Elitist 
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Non-Dominated Sorting Genetic Algorithm (NSGA-II), is presented due to its wide 

utilization in the literature. Afterwards, mechanics of the proposed hybrid Tabu/Scatter 

Search algorithm along with its main methods as well as its differences from the traditional 

SS algorithm template are provided. Finally, implementation specifics of the algorithm are 

presented, concentrating on object-oriented design elements of the proposed algorithm. 

Validation of the algorithm is done in the context of computational experiments and 

provided in the next chapter. 

 

5.1 Metaheuristic Algorithms 

 

Metaheuristic algorithms are general-purpose heuristics that utilize more advanced 

intensification (i.e., procedures that exploit previously found solutions) and diversification 

(i.e., procedures to explore the search space) mechanisms to find near-optimal solutions 

with low computational effort. Over the last few decades, a wide variety of metaheuristics 

has been proposed, and this area of research has developed rapidly both from a theoretical 

and practical standpoint. These algorithms are commonly considered as flexible enough to 

tackle NP-Hard problems, and they can achieve good quality solutions promptly. Given 

that the computational complexity of the problem of optimizing multiple objectives in a 

SbO setting is NP-Hard, metaheuristic algorithms seem to be the most promising approach 

for finding the best trade-off solutions efficiently. Recently, metaheuristic algorithms have 

become an important and integral part of the state-of-the-art SbO tools especially when the 

use of exact algorithms is impractical, and they dominate the optimization routines of 

simulation software packages.  

 

In general, metaheuristic algorithms can be categorized in a number of different ways 

depending on their various properties. The most commonly used categorization is based on 

the number of candidate solutions maintained and improved simultaneously: single 

solution-based, population-based and set-based (see Figure 26). In single solution-based 

(also referred as trajectory-based) algorithms, a single state is preserved during the 

optimization process, and a search procedure is utilized for local improvement. In 

population-based algorithms typically a population of candidate solutions is kept and 
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updated at each iteration instead of following a single path in the search space. On the other 

hand, in set-based metaheuristics, a global sampling strategy is utilized that is continuously 

adapted using partitioning the search space into sets. 

 

 

Single 

solution- based 

Population-

based

Metaheuristic 

Algorithms

Set-based

 Simulated Annealing

 Tabu Search

 Genetic Algorithm

 Evolutionary Strategy

 Scatter Search

 Nested Partitions

 

Figure 26: A Classification of Metaheuristic Algorithms 

 

 

As No Free Lunch Theorems state, there is no single algorithm which is suitable for all 

optimization problems (Wolpert & Macready, 1997), which is also valid for SbO 

approaches. There are two major issues need to be addressed to employ metaheuristic 

algorithms in a SbO approach: (1) the necessity to consider the simulation noise in the 

implementation of metaheuristic method, and (2) difficulty in the analysis of convergence 

and diversity (Henderson & Nelson, 2006). 

 

The metaheuristic methodology to SbO is grounded on treating the simulation model as a 

black-box function evaluator, which makes the search procedure problem independent. 

When combining the metaheuristics with simulation models some input parameters are 

given to the black-box, then the simulation models will give some feedbacks or responses, 
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which can be used to guide the search process in metaheuristic algorithms. In general, 

metaheuristic methods require more simulation runs than metamodel methods to obtain 

near optimal solutions due to the simulation noise. Therefore, the main challenge is that a 

large number of simulation runs is required, which may result in long computation times. 

Also, failing to find a balance between intensification and diversification mechanisms will 

eventually result in an inefficient SbO, which may cause premature convergence and 

finally trapping in a local optimum (Fred Glover & Kochenberger, 2003) and (Michalewicz 

& Fogel, 2004). 

 

The behavior of a metaheuristic algorithm is largely determined by the intensification and 

diversification mechanisms for the search. Intensification is the mechanism for exploring 

intensely the most promising search areas, and it is commonly implemented with local 

search techniques. On the other hand, diversification is the mechanism for diversifying the 

search process to move towards new areas of the search space, and it is commonly 

implemented with tracking the search history such as long-term memory utilization. In 

metaheuristic algorithm design, it is significantly important to find a good trade-off 

between these two mechanisms.  

 

In recent years, hybrid metaheuristics have been widely used to solve large-scale real-world 

MOO problems because systematic combination of different metaheuristics has the 

potential to provide more efficient and flexible solutions (E. G. Talbi, 2015). One of the 

most widely used ways of hybridization is the utilization of single-solution based 

metaheuristic algorithms in population ones. The main strength of population-based 

metaheuristic algorithms is their capability to generate new solutions by recombining 

current ones, which enhance the convergence rate. On the other hand, single-solution based 

metaheuristic algorithms explore a promising area in the search space more systematically 

than population-based ones. Thus, hybrid metaheuristics combine the strength of 

population-based ones (the identification of promising areas) with the advantage of single-

solution based ones (exploration of promising areas). 
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Scatter Search (SS) and its generalized version Path Relinking (PR) are one of the most 

promising population-based metaheuristics for SbO, and recent applications of both SS and 

PR utilize adaptive memory principles of Tabu Search (TS). Also, all three have a shared 

history, since their basic principles are suggested by Fred Glover (1977). In addition, SS 

has numerous similar attributes with Genetic Algorithms (GAs), where both of them are 

evolutionary methods and evolve over a set of solutions. Therefore, before delving into 

SS’s details, brief descriptions of TS, PR and GAs are provided in the rest of this section. 

 

5.1.1 Tabu Search 

As previously mentioned, Tabu Search (TS) is a single solution-based metaheuristic 

proposed by Fred Glover (1989); (1990) and has been applied successfully to solve many 

combinatorial optimization problems. TS is an iterative improvement algorithm based both 

on neighborhood search methods and the use of diverse types of memories/strategies to 

guide the search. The idiosyncratic characteristic of TS is its utilization of memory to guide 

the local search to escape from the local optimum. When a local optimum is faced, a move 

to the best neighbor is done even if this move may cause to worsen the objective function 

value. In order to avoid cycling, a tabu list is utilized, which tracks attributes of recent 

moves and forbids any recurrence of such moves. Fundamental components of any basic 

TS algorithm are described below: 

 

Search Space: Determining a search space along with a neighborhood structure is the most 

significant step of any TS implementation. The search space of TS is the space of all 

solutions that can be visited during the search. To allow the search to move infeasible 

solutions is usually desirable in order to escape from local optimum.  

 

Neighborhood Structures: Considering that the quality of the final solution relative to 

global optimum heavily depends on the structure of the neighborhood, a problem specific 

neighborhood structure needs to be defined to cover all search space. There are several 

options for the neighborhood structures of the solution, such as adjacent pairwise 

interchange, swapping, insertion, etc. Adjacent pairwise interchange requires exchanging 

positions of two elements directly next to each other. Swapping or all pairwise interchange 
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entails exchanging positions of two different elements. Insertion is related to removing an 

element from its original position and placing it immediately after another one. Previously 

done computational experiments indicate that the neighborhood insertion structure 

produces better quality solutions than the swapping neighborhood structure (Laguna & 

Glover, 1993). However, a hybrid neighborhood structure including both swapping and 

insertion has the potential to yield better solutions (Barnes & Laguna, 1991). 

 

Memory Structures: Memory structures are the basic elements of TS and in general there 

are two types of memory, namely, explicit and attributive. Explicit memory keeps complete 

solutions, which is typically utilized for memorizing very good (elite) solutions 

encountered during the search. In contrast, attribute memory keeps the modifications that 

were done while proceeding from one solution to the next solution. Both explicit and 

attribute memory are used to build the short term and the long term memory of TS. For 

short term memory, a tabu list is retained in order to avoid cycling back to previously 

visited solutions. For long term memory, typically a frequency matrix is employed to detect 

more promising areas in the search space. It is noteworthy to mention that short term 

memory is used to store recency information; on the other hand, long-term memory is used 

to store frequency information. The number of iteration that an attribute remains in the tabu 

list, which is referred to as tabu tenure, is also an important search parameter for TS. If the 

tabu tenure is too small, preventing the cycling might not be achieved; on the other hand, 

too long tabu tenure might create so many restrictions. 

 

Aspiration Criteria: Since a move or an attribute that is in the tabu list, may forbid moving 

to attractive unvisited solutions, it is necessary to overrule the tabu status of this move or 

attribute in certain situations, which is typically achieved by an aspiration criterion. The 

most commonly used aspiration criterion consists of releasing the restrictions on a move 

or an attribute, which is in the tabu list, if the current objective function value is better than 

the best objective function value found so far. 

 

Termination Criteria: The most commonly used termination criteria in TS are as follows: 

(1) if the current iteration is equal to the maximum allowable iterations or the maximum 
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allowable CPU time, (2) if the current iteration is equal to the maximum allowable 

iterations without an improvement in the fitness value, and (3) if the best fitness value 

found so far is equal to a pre-determined threshold value. 

 

Main steps of a generic TS algorithm are given below (It is important to note that the term 

“solution” does not necessarily correspond to a final solution of the problem, it is just a 

component in the search space.): 

 

Step 1: Generate all candidate solutions which are reachable by applying one move. 

Step 2: Choose the best candidate solution based on tabu restrictions (which is not 

in the tabu list) and aspiration criteria. 

Step 3: Update the current solution and the best solution found so far. 

Step 4: Determine if any termination criterion is satisfied. If yes, stop the algorithm; 

otherwise, go to step 2. 

 

The performance of the basic version of TS, which is explained above, often needs to be 

improved to tackle difficult problems, because it tends to get stuck in a local optimum in 

the end. In order to escape from local optimum, additional components for intensification 

and diversification have to be included in the search. Intensification is a myopic approach 

and it is done by implementing some strategies to explore more thoroughly the areas of the 

search space that seem promising. On the other hand, diversification is done by either 

performing several random restarts or implementing some strategies to penalize frequently 

performed move attributes.  

 

It is crucial to find a balance between the diversification ability to move towards new areas 

of the solution space and the intensification ability to explore intensely the most promising 

areas. In TS, balancing the intensification and diversification mechanisms is usually done 

by controlling the length of the tabu list when fixed-length tabu lists are used or by 

controlling the tabu tenure. The diversification effect will be stronger if the tabu list is 
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longer or the tabu tenure is, and intensification effect will be stronger if the tabu list is 

shorter or the tabu tenure is relatively small. 

 

 

5.1.2 Path Relinking 

Path Relinking (PR) was originally proposed as a strategy in TS to integrate intensification 

and diversification mechanisms (Fred Glover, 1994b). PR produces new solutions simply 

by identifying paths that link high-quality solutions. The PR procedure starts from one of 

the high-quality solutions, referred as “initiating solution”, and identifies a trajectory in its 

neighborhood that guide through the other solutions, referred as “guiding solutions.” This 

is commonly achieved by selecting moves that introduce attributes that are present in the 

guiding solutions. 

 

After PR procedure initiated with high-quality solutions, these solutions are ordered with 

respect to their quality. Then, new solutions are created by exploring trajectories between 

and beyond the selected solutions in the neighborhood space. The characteristics of the 

guiding solution are progressively transferred to the intermediary solutions in order to 

ensure that these solutions include more characteristics from the guiding solution rather 

than the initial solution as search moves along the trajectory. At each step, procedure 

incorporates attributes of the guiding solutions as well as keeps track of the objective 

function values.  

 

PR can be regarded as an extension of the Solution Combination method of SS. In PR, a 

trajectory is produced between and beyond the chosen solutions in the neighborhood, 

instead of generating a new solution by combining two or more original solutions as in the 

Solution Combination method of SS. The primary difference between SS and PR is that 

PR procedure typically starts from a set of given high-quality solutions rather than building 

a reference set as in SS. Hence, even though both algorithms operate on a set of reference 

solutions or a set of high-quality solutions, they simply differ in the way in which these set 

of solutions are created, maintained, updated and improved (Laguna & Marti, 2003). 
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5.1.3 Genetic Algorithms 

Genetic algorithms (GAs) were introduced by Holland in the 1970s, and they belong to the 

class of evolutionary methods that adopt the evolution theory of genetic variation and 

natural selection (survival of the fittest), where successful individuals have a high 

probability to participate in reproduction for the next generation. Inspired by these 

principles, low-quality solutions are eliminated from the population, and fitter individuals 

reproduce to guarantee successful offspring. GAs are less susceptible to premature 

convergence to a local optimum compare to single solution-based metaheuristic 

algorithms, but they often tend to be computationally expensive. 

 

In GAs, a solution to the problem at hand is often referred to as a “chromosome”, which is 

analogous to the genetic material of an organism. They search the solution space first by 

generating a set of solutions called a “population.” Then, they evolve this population over 

a number of iterations by using genetic operators such as selection, crossover, and 

mutation, where each iteration is called a “generation.” The selection operator chooses 

parent solutions based on their fitness function. The crossover operator combines parent 

solutions to produce new trial solutions (offsprings). The mutation operator perturbs a 

solution to maintain diversity in the search, and to avoid premature convergence. There are 

various schemes for implementing these operators; the appropriate one should be chosen 

that best fit the problem at hand. The general framework of GAs is presented below: 

 

Step 1: Generate an initial set of solutions (population). 

Step 2: Select individuals from the population to be parents. 

Step 3: Create offsprings (new individuals) as combinations of selected parents.  

Step 4: Mutate some offsprings. 

Step 5: Select the offsprings to insert into the population and the individuals to 

remove from the population. 

Step 6: Update the best solution found so far. 
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Step 7: Determine if any termination criterion is satisfied. If yes, stop the algorithm; 

otherwise, go to step 2. 

 

5.2 Scatter Search 

 

Scatter Search (SS) was first introduced by Fred Glover (1977) as a heuristic for integer 

programming. SS has been commonly considered as a flexible and adaptable metaheuristic 

algorithm because it offers various implementation alternatives by exploiting its 

foundational strategies. Although SS shares some features with evolutionary approaches, 

its principles were established by concepts developed independently from the evolutionary 

paradigm. SS is based on the methodology of combining available solutions to generate 

new ones, which was originated from strategies for creating composite decision rules and 

surrogate constraints. SS has captured the attention of numerous researchers and 

practitioners. Recently, SS has been successfully applied to a wide range of real-life 

combinatorial optimization problems, such as vehicle scheduling, linear ordering, 

quadratic assignment, production scheduling problems, etc. 

 

SS has several common features with Genetic Algorithms (GAs), even though it also has 

some differences. Similar to GAs, SS maintains a “reference set” derived from a population 

and new candidate solutions are generated by weighted linear combinations. As opposed 

to GAs where the population updating mechanism depends on random selection rules that 

select solutions with respect to their fitness value, in SS, the reference set update 

mechanism relies on adaptive memory structures where a balance between intensification 

and diversification tried to be maintained. Trial solutions are selected for reference set 

based on this memory structures. The number of solutions in the reference set is usually 

smaller than a “population” in GA, which is typically around 100. In general, the reference 

set has at most 20 solutions. The other fundamental difference between SS and GAs is the 

fact that SS has more deterministic rules about how to combine candidate solutions and 

how to improve them at each iteration (Deb et al., 2002). 
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In fact, SS is one of the most suitable metaheuristic algorithms for simulation-based multi-

objective optimization. Since each simulation experiment is time-consuming, the chosen 

optimization algorithm should require as few simulation replications as possible for 

efficiency without compromising from effectiveness too much. Suitably, SS require too 

less fitness evaluation compare to other evolutionary methods such as GAs. The other 

important aspect is the existence of multiple conflicting objectives and the need for finding 

the Pareto-optimal solution set efficiently. Because SS maintains a reference set of 

solutions in each iteration, it is capable of dealing with multiple objectives. Therefore, SS 

has a high potential to address challenges stem from a large number of lengthy simulation 

runs as well as multiple objectives.  

 

It is should be mentioned that SS has transformed since it was first introduced, and has 

been continuing to evolve over time. The first introduced version in 1977 is commonly 

referred as the “original SS algorithm” (Fred Glover, 1977). Fred Glover (1994b) extended 

the basic SS by combining it with adaptive memory structures of Tabu Search to balance 

search intensification and diversification, which is usually referred as the “hybrid 

Scatter/Tabu Search algorithm”. Finally, Fred Glover (1998a) provided a simplified “SS 

algorithm template” that has been serving as the main reference for recent SS applications. 

These three versions of the SS algorithm and some prominent advanced design strategies 

are briefly presented in the following sub-sections. 

 

5.2.1 Original Scatter Search Algorithm - 1977 

 

In a nutshell, the working mechanism of the original SS algorithm is as follows: SS starts 

with generating an initial population of candidate solutions. The initial population of 

solutions is generated by considering features in different parts of the solution space 

without randomization. Then, it reduces this population to a reference set of solutions. In 

the next phase, it builds, maintains and evolves this reference set throughout the search 

where preferred subsets of solutions in the reference set are combined to generate new trial 

solutions. The reference set is updated by selecting the promising solutions from the trail 
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solutions by finding a convex combination of the solutions in the reference set, which is 

referred as the central point.  

 

The original SS algorithm relies on combining more than two candidate solutions to 

produce central points. Although the algorithm does not consider randomization, there is 

no guidance on how to select proper weights to generate biased central points. Also, there 

is no method mentioned for distribution of reference points relative to each other (Laguna 

& Armentano, 2005). 

 

5.2.2 Hybrid Scatter Search Algorithm - 1994 

Although the general description of the Scatter Search (SS) was first published in 1977, 

the original SS algorithm was not discussed or applied until the 1990s. In Fred Glover 

(1994a), the original proposal was extended by providing some implementation details. 

Also, in Fred Glover (1994b), nonlinear, binary and permutation problems are included as 

the application areas, and the algorithm is combined with Tabu Search by utilizing adaptive 

memory structures and aspiration criteria. This hybrid Scatter Search version gives 

emphasis to line searches and utilizing weighted combinations to create new solutions from 

the lines that connect reference points. The main advantage of integrating adaptive memory 

structures to the SS is that it provides a proper balance between diversity and quality. 

 

This hybrid Scatter Search version of the SS served as the basis for many SS 

implementations proposed previously, and it is commonly considered as a hybrid 

evolutionary approach. In this version, the solutions are generated using combination 

strategies as opposed to probabilistic learning approaches, where these combination 

strategies facilitate the connection between diversification and intensification mechanisms. 

 

5.2.3 Scatter Search Algorithm Template - 1998 

A template algorithm for Scatter Search (SS) was provided by Fred Glover (1998a), which 

is a simplification of the hybrid Scatter Search version. The SS algorithm template has been 

commonly considered as the main reference for SS implementations so far. 
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As illustrated in Figure 26, SS algorithm template consists of two main phases (initial and 

SS) and five methods. In the initial phase, SS starts with generating a set of solutions 

(population) to ensure a high level of dispersion. Then, a subset of the best solutions is 

designated to be reference solutions. In the SS phase, new solutions are created by 

combining the subsets of the current reference solutions. The basic idea is to select the 

better quality and better dispersion solution from the reference set, using the reference set 

to produce the next generation of the solutions, in order to enhance the algorithm 

diversification capability. Typically, a new solution is formed by the combination of at 

least two reference solutions. Reference set evolves by deleting old solutions and adding 

new solutions. The theoretical underpinnings and basic principles of SS are based on the 

following five methods (Fred Glover, 1998b): 
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Figure 27: Illustration of Initial and Scatter Search Phases  

 

 

Diversification Generation Method: The method is used to generate a set of diverse trial 

solutions using a seed solution or an arbitrary trial solution as an input. In general, the 

quality of the solutions is not important, instead main focus is to ensure a level of diversity. 

The method is often needed to be customized for the specific problem at hand and its 

effectiveness highly depends on the solution representation. The size of the set of diverse 

solutions generated by the diversification generation method is usually set to five to ten 

times the size of the reference set (5×b to 10×b), where b refers to the size of the reference 
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set. The number of solutions in the initial population needs to be large enough to guarantee 

that solution space is diversely covered. 

 

Improvement Method: This method transforms an input trial solution into one or more 

improved output trial solutions. It must be able to handle both feasible and infeasible 

solutions. If the resulting output trial solution after applying this method is not improved, 

then the output trial solution is considered to be same as the input solution. This method is 

the only component that is not necessary to implement an SS algorithm. 

 

Reference Set Update Method: This method tries to create a set of both high quality and 

diverse solutions by building and maintaining a reference set consist of b solutions. The 

number of solutions contained within the reference set is usually not more than 20. 

Solutions are accepted to the reference set according to their quality or diversity.  

 

Subset Generation Method: This method produces a subset of its solutions as a basis for 

creating combined solutions with the Solution Combination method by operating on the 

reference set. In general, subsets are constructed by including two solutions, although it is 

possible to include three, four or more solutions in the construction of subsets. 

 

Solution Combination Method: This method is used to transform a given subset of solutions 

whose production is mentioned in the previous method into one or more combined 

solutions. This method is often problem-specific, and it can generate more than one 

solution at a time, where infeasible solutions can also be generated. Implementation of this 

method is systematic rather than probabilistic. For problems that have permutation type of 

representation, an adaptive structured combination based on the absolute position of the 

elements is presented as effective in Campos et al. (2000). 

 

The pseudo-code and a detailed treatment of the SS algorithm template are given below, 

which is often implemented using a number of parameters. Before the pseudo-code and 

details of the algorithm, the necessary notation of these parameters and their definitions are 

given below: 
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P the set of diverse solutions generated (population) 

Psize the size of the set of diverse solutions generated  

RefSet the set of reference solutions 

b the size of the reference set (RefSet) 

xi the ith solution in the RefSet 

b1 the size of the high-quality solutions in RefSet 

b2 the size of the diverse solutions in RefSet 

MaxIter maximum number of iterations 

NewSolution boolean variable that indicates whether or not a new 

solution has become a member of RefSet 

NewSubsets list of subsets of reference solutions that are subject to 

the Solution Combination Method 

s subset of reference solutions 
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Algorithm 2 Scatter Search Algorithm Template  

1: Initialization 

2: P={} 

3: while |P|<Psize do 

4: generate a solution x with Diversification Generation Method 

5: improve x with Improvement Method 

6: if x∉P then P=P ⋃ x else discard x 

7: end while 

8: build RefSet with b (b1 high-quality and b2 diverse) solutions from P 

9: sort the solutions in RefSet according to their fitness in ascending order (RefSet={x1,...,xb}) 

10: NewSolution = TRUE 

11: while (NewSolution or iter<MaxIter) do 

12: update the iteration counter, iter=iter+1 

13: generate NewSubsets with Subset Generation Method 

14: NewSolution = FALSE 

15: while (NewSubsets ≠ {}) do 

16: select the next subset s in NewSubsets 

17: apply Solution Combination Method to s to obtain a new solution x 

18: improve the generated new solution x with Improvement Method 

19: if (x is not in RefSet and f(x)<f(xb)) then  

20: insert x into RefSet and reorder RefSet (Reference Set Update Method) 

21: NewSolution = TRUE 

22: end if 

23: delete s from NewSubsets 

24: end while 
25: end while 

26: return best solution found so far 

 

 

The SS template procedure starts with the generation of Psize solutions with the 

Diversification Generation method. These solutions are originally generated to be diverse 

and subsequently improved by the application of the Improvement method. Psize is usually 

five to ten times the size of RefSet. RefSet is constructed by Reference Set Update method 

with the first b1 solutions in P according to quality and b2 solutions that are diverse with 

respect to the members in RefSet. Then, the value of True is assigned to the boolean variable 

NewSolution.  

 

In the next step, the generation of the subsets occurs by applying the Subset Generation 

method, and the boolean variable NewSolution is switched to False. All subsets are 
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subjected to Solution Combination method to generate new solutions. Then, these solutions 

are improved with the application of the Improvement method. If any of the improved 

solutions from the previous step is better (in terms of the objective function value) than the 

worst solution in RefSet, then the improved solution replaces the worst solution, and 

becomes a new element of RefSet. If any of the improved solutions is not admitted to the 

RefSet due to its quality, the solutions are tested for their diversity merits. If one of the 

solutions is diverse, then the solution is added to the RefSet and the less diverse solution is 

deleted.  

 

The SS template procedure stops when a termination criterion met. The commonly used 

termination criteria include: (1) the maximum number of iterations, MaxIter, has reached, 

(2) the reference set does not change, or improvement does not warrant further iterations, 

and (3) the maximum allowed CPU time has passed. 

 

Figure 28 presents a schematic representation of the SS algorithm template by illustrating 

the roles of five SS methods.  
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Figure 28: Schematic Representation of Scatter Search Template  

 

 

Although previous SS applications often result in good performance and high-quality 

solutions, for complex problems, problem-specific considerations have to be integrated 

into the design of the algorithm. Out of these five components of the SS algorithm template, 

Reference Set Update method is not a problem-specific method, where it can be employed 

in different problem contexts. However, the remaining methods often have to be designed 

from scratch. 

 

In basic SS algorithm template, the Reference Set Update method, which is based on 

improving the quality of the worst solution in the RefSet, and the Subset Generation 

Method, which consists of generating all pairs of solutions in RefSet that contain at least 

one new solution, are very simple mechanisms. More precisely, these procedures do not 

consider search diversity and do not allow for two solutions to be subjected to the Solution 

Combination method more than once. In the next section, several advanced SS design 

strategies that are proposed in the literature are presented.  



 

 

155 

 

5.2.4 Advanced Scatter Search Design Strategies  

There are many advanced design strategies of SS, one differing from another in the way 

that how the five methods of SS are implemented, instead of including or excluding some 

of these methods.  

 

Reference Set Rebuilding Strategy: The SS algorithm template terminates when there exists 

no new solution to be added to RefSet, which indicates convergence of the algorithm. This 

convergence might be premature, and search might have stuck in a local optimum. One of 

the possible ways to avoid such convergence situations is to enforce a form of diversity in 

RefSet by inserting a rebuilding step. This rebuilding step consists of creating a new 

population by applying Diversification Generation and Improvement methods again, and 

replacing half of the poor quality solutions in RefSet with the solutions from the newly 

generated population that increase the diversity in RefSet. When Solution Combination and 

Improvement methods are not able to generate solutions of adequate quality to enter the 

RefSet, this mechanism needs to be employed to rebuild the RefSet partially. The pseudo-

code for the SS algorithm template with reference set rebuilding strategy is given below. 

 

The working mechanism of reference set rebuilding strategy is as follows: After the final 

step is performed if NewSolution is False and iteration number has not reached maximum 

iteration number yet, the rebuilding step will be triggered. This step provides a seed for set 

P by a new application of the Diversification Generation method. That is, a new set of 

diverse solutions P is built by Diversification Generation method, and RefSet is 

reconstructed by the best solutions in the new set of diverse solutions P.  
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Algorithm 3 Advanced Scatter Search with Reference Set Rebuilding Strategy 

1: Initialization 

2: P={} 

3: while |P|<Psize 

4: generate a solution x with Diversification Generation Method 

5: improve x with Improvement Method 

6: if x∉P  then  P=P ⋃ x else discard x 

7: end while 

8: build RefSet with b (b1 high-quality and b2 diverse) solutions from P 

9: sort the solutions in RefSet according to their fitness in ascending order 

(RefSet={x1,...,xb}) 

10: while the termination criterion is not met do 

11: update the iteration counter, iter=iter+1 

12: generate subsets with Subset Generation Method 

13: while no more new subsets do 

14: select the next subset 

15: combine the solutions immediately with Solution Combination Method 

16: improve the generated new solution with Improvement Method 

17: apply Reference Set Update Method 

18: if solution quality is not sufficient to displace current RefSet  

19: then apply Rebuilding Mechanism 

20: end while 

21: end while 

22: return best solution found so far 

 

 

Figure 29 illustrates a schematic representation of the reference set rebuilding 

strategy. 
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Figure 29: Schematic Representation of Rebuilding Strategy 

(Adapted from Laguna and Marti (2003)) 

 

 

Dynamic Reference Set Update Strategy: In the SS algorithm template, new solutions that 

are selected as to become members of RefSet are not subject to Solution Combination 

method until the next iteration of the algorithm. This reference set update strategy is 

commonly referred as “static update” strategy. However, in dynamic update strategy, the 

primary objective is to apply Solution Combination method to new solutions that are 

accepted to the RefSet faster than the SS template. In other words, if a new solution is 

accepted to the RefSet, the aim is to allow this new solution to be subjected to Solution 

Combination method as quickly as possible. In order to accomplish this, the solution is 

immediately included in the RefSet, instead of waiting for the rest of parent solutions to be 

combined.  
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Figure 30 illustrates a schematic representation of the dynamic reference set update 

strategy with a hypothetical RefSet, which contains four solutions (x1, x2, x3 and x4) 

ordered according to their objective function value f(x). The figure shows the combination 

of the pair x1 and x2 in the current iteration where after applying the Improvement method, 

the solution y is generated. In the next iteration, the updated RefSet, which consist of 

solutions x1, x2, y and x4, will be used, and search will continue by combining the solutions 

x1 and y instead of x3 and x, which would have been made under the static reference set 

update method. 
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Figure 30: Schematic Representation of Dynamic Reference Set Update Strategy 

 

 

The main benefit of the dynamic update strategy is that poor quality solutions in the RefSet 

are immediately replaced with high quality solutions and solution combinations are 

immediately done with these high quality solutions. On the other hand, this strategy has 

some drawbacks that need to be considered: (1) promising combinations may be ruled out, 

(2) implementation of this strategy is more complicated compared to static update strategy, 

and (3) it increases the computational complexity since it requires more RefSet ordering, 

which is important for determining the solutions to be replaced. 
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Tiered Reference Set Update Strategy: This strategy tries to maintain diversity in the RefSet 

in a dynamic way by avoiding admittance of only high-quality solutions. In order to 

accomplish this in “two-tier update” mechanism, RefSet is partitioned into two subsets and 

updated not only with high-quality solutions (RefSet1) but also with diverse ones (RefSet2), 

where the first tier is ordered with respect to their fitness value, and the second tier is 

ordered with respect to their diversity value.  

 

𝑅𝑒𝑓𝑆𝑒𝑡1 =  {𝑥1, 𝑥2, … , 𝑥𝑎} 
(5.1) 

𝑅𝑒𝑓𝑆𝑒𝑡2 =  {𝑥𝑎+1, 𝑥𝑎+2, … , 𝑥𝑏} 

 

The two-tier update mechanism can be combined with the RefSet rebuilding strategy 

simply by preserving RefSet1 and rebuilding only RefSet2 with solutions diverse with 

respect to the whole RefSet. Similar to two-tier update, three-tier update mechanism RefSet 

is divided into three sub-sets, where the first two subsets (RefSet1 and RefSet2) are updated 

using the same rules as in the two-tier update. The third subset (RefSet3) is updated by 

tracking a g-value (g(x)), which is the objective function value of the best solution ever 

generated from a combination of solutions from RefSet1 and any other solution in the 

RefSet. The RefSet3 is ordered with respect to g-value. 

 

5.3 Multi-Objective Evolutionary Algorithms 

 

Multi-objective evolutionary algorithms (MOEA) take a population-based approach for 

solving MOO problems. For more than three decades, MOEAs have been widely adopted 

for solving MOO mainly because of its capability to exploit the diversified and 

comprehensive set of Pareto-optimal solutions simultaneously in every iteration. MOEAs 

start with a set of candidate solutions and by applying stochastic operators (such as 

selection, crossover, mutation operators, etc.) try to reach the most accurate approximation 

of the Pareto-frontier. 
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5.3.1 Common Characteristics and Prominent Algorithms 

The most widely-used MOEAs in the literature have three common features: fitness 

assignment based on Pareto-domination, elitism (archiving), and niching (Jensen, 2005).  

 

The “fitness assignment” is related to assigning fitness value according to the incomparable 

objectives. The most widely used method is “non-dominated sorting”, in which all the 

solutions from a population (set of solutions) are classified into different ranks or fronts. 

Each rank contains all the solutions that are dominated by at least one solution from the 

rank above it, but that dominate all the solutions in the ranks below it. “Crowding distance" 

is a parameter used by some MOEAs to promote the diversity within the population (set of 

solutions). It refers to a minimum distance that should be kept among all the solutions in 

the population. 

 

The high-quality solutions found during the search process are often called as “elite” 

solutions. The “elitism” strategy is conceptualized by Dejong (1975), which involves 

preservation of good candidate solutions and utilization of the combined population rather 

than just replacing the old population with the new solution, which prevents the loss of 

promising solutions. Unlike single-objective optimization, where the elite solution is 

always copied into the next population, in MOEAs integration of elitism is more 

complicated since there exist a set of best solutions instead of a single best solution at each 

iteration. The main issues with integration of elitism into MOO include the following: (1) 

to determine the solutions to be kept in the elite set of solutions, and (2) to determine the 

elite solutions to be sent back to the population (Zitzler et al., 2000). To overcome these 

issues, elitism is commonly implemented by utilizing an archive, which is used to store 

identified non-dominated solutions and also interact with the population of individuals.  

 

The concept of “niching” was originally proposed by Goldberg (1989) to promote 

population distribution to avoid genetic drift, and to search for potential multiple peaks. 

Niching tries to converge to more than one solution in a single iteration, which is 

accomplished by segmenting the population into disjoint sets so that at least one member 
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in each region of the fitness function is covered more than one local optimum. Niching 

enforces each niche (neighborhood) to have no more than a specified number of solutions.  

 

The main difficulties in developing MOEAs include the following: (1) quantifying the 

quality of a solution relative to other candidate solutions to update the population at each 

iteration, and (2) maintaining diversity among the non-dominated solution set in the Pareto-

frontier. In order to address the first difficulty, various ranking procedures are proposed to 

ensure the most successful individuals are selected to reproduce. For the second difficulty, 

a niching method is commonly utilized to maintain a diverse set of non-dominated 

solutions.  

 

Among the many MOEAs that have been introduced in the literature, the most popular and 

the ones that proved to be efficient in solving MOO problems are Non-dominated Sorting 

GA (NSGA-II), Strength Pareto Evolutionary Algorithm (SPEA, SPEA2), Pareto Archived 

Evolution Strategy (PAES), and Pareto Enveloped Based Selection Algorithm (PESA, 

PESA-II). Although the overall motivations of these algorithms are similar, they can be 

distinguished by the way in which the mechanisms of elitism and diversity preservation 

are implemented. These algorithms are discussed briefly in the rest of this sub-section 

except NSGA-II algorithm, which is presented in detail in the next sub-section. 

 

Zitzler and Thiele (1999) introduced the SPEA, and Zitzler et al. (2001) proposed an 

enhanced version of it, referred as SPEA2. For fitness assignment, SPEA2 initially 

calculates the dominance count for each solution, where the dominance count corresponds 

to the number of solutions in the population that a given solution dominates. Then, fitness 

for a given solution is calculated by adding the dominance count of a solution to all 

dominating solutions. SPEA2 maintains an archive of non-dominated solutions explicitly. 

The archive is updated with new non-dominated solutions from both the recent population 

and archive at each iteration. In case that the archive’s size exceeds a threshold, the 

solutions that have the poorest quality are deleted from the archive. 
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Knowles and Corne (1999, 2000) proposed the PAES, which is an elitist algorithm. In 

PAES, each generation comprises of a single parent and an offspring, and the selection 

between retaining the parent or the offspring as the parent solution is based on dominance. 

Also, a bounded archive of non-dominated solutions is maintained during the search. If the 

parent and the offspring are mutually non-dominating, and the offspring is not dominated 

by the archive, the one which resides in the less crowded region of objective space is chosen 

in order to maximize diversity. 

 

The PESA and PESA-II were introduced by Corne et al. (2000) and Corne et al. (2001), 

respectively. PAES is an evolutionary strategy where the emphasis is placed on local rather 

than global search. The main operator in PAES is the mutation operator, and an archived 

list tracks the non-dominated solutions. PESA-II also employs an archive population to 

keep track of the current Pareto-optimal solutions. PESA-II utilizes a hyper-box scheme 

for determining the spacing of individuals on the Pareto-frontier, where these hyper-boxes 

divide the search space uniformly. Selection mechanism operates by hyper-box instead of 

by the individual, i.e. first a hyper-box is selected, and then one of the parents in that hyper-

box is chosen at randomly. The main advantage of this selection mechanism is that it avoids 

search bias stem from having a high number of individuals in a given hyper-box. 

 

5.3.2 The Elitist Non-Dominated Sorting Genetic Algorithm (NSGA-II) 

Lately, the enhanced version of the NSGA-II has commonly been considered as one of the 

principal algorithms in the domain. Deb et al. (2002) proposed the NSGA-II, which 

implements a non-dominated sorting of a combined population with an elitist mechanism 

that helps to enhance the efficiency of the algorithm significantly. In addition to standard 

GA operators, NSGA-II algorithm uses a specialized non-dominated sorting operator that 

sorts and partitions the population into different Pareto-frontier approximations. Also, in 

addition to rank (fitness value), it utilizes crowding distance, which creates a fitness 

ranking for all of the individual solutions depending on each solution’s closeness to its 

neighbors. For a population, large average crowding distance denotes that this population 

has a better diversity. 
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The time complexity of NSGA-II in generating Pareto-frontier in one generation for 

population size n and m objective functions is O(mN2). It has been empirically shown that 

NSGA-II achieves better convergence and diversity of solutions close to the true Pareto-

frontier compared to PAES and SPEA (Deb, 2001). The distinct feature that characterizes 

NSGA-II is the incorporation of elitism. NGSA-II requires no parameters in addition to 

those required by a basic GA. 

 

In NSGA-II, solutions in the current population are ranked into several classes at each 

generation. Then, two values are assigned to each solution. The first value relates to the 

“rank” the corresponding solution belongs to and represents the quality of the solution in 

terms of convergence. The second value is the crowding distance that refers to the density 

of solutions neighboring a particular solution in the population, and it is typically computed 

by the average distance between two points on either side of this solution along each of the 

objectives. A solution is said to be dominating another one if it has a better rank value, or, 

in the case of equality, if it has a better crowding distance. The deterministic tournament 

method is used as the selection operator between two randomly selected solutions. At the 

replacement step, only the best solutions survive with respect to a predefined population 

size. 

 

The dominance process in NSGA-II operates as follows: All solutions in the population 

are searched to find non-dominated solutions, and these non-dominated solutions are all 

labeled with the front number “1” and not considered in the further iterations. Then, the 

remaining population is searched for non-dominated solutions again, and these solutions 

are labeled with the front number “2” and not taken into account in the further iterations. 

This process continues until all individuals in the population have been assigned a front 

number. Any solution with a lower front number is considered a fitter than a solution with 

a higher front number. Also, a hyper-boxed-based penalty function is utilized to reward 

solutions that are far apart so that solutions do not group in the same area on the Pareto-

frontier. 
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In conclusion, NSGA-II owes its outstanding performance to three major features (Ding et 

al., 2008): 

 

(a) The non-dominated sorting approach, which reduces the O(mN3) 

complexity of Multi-Objective Genetic Algorithm (MOGA) to O(mN2). 

 

(b) The λ + μ elitism selection procedure, where binary tournament selection 

method is used for parent selection and survival selection was handled collectively on both 

the parents and offspring. 

 

(c) The crowding distance, as a measure for comparison and selection after the 

non-dominated sorting, to preserve the diversity of the solutions in the population.  

 

5.3.3 Scatter Search-based Multi-Objective Algorithms 

Although there has been a pervasive interest in applying GA to MOO problems in the 

literature, there has been some attempt to propose MOO algorithms based on Scatter Search 

(SS). Some of the main motivations for using SS to solve MOO problems include the 

following: (1) it has several powerful features that are desirable for MOO, such as 

maintaining diversity in the reference set in a natural way, and (2) it operates on a relatively 

small set of solutions compare to other evolutionary algorithms, which eventually 

contributes to efficiency. The most prominent SS-based multi-objective algorithms in the 

literature are detailed below briefly. 

 

Rahimi-Vahed et al. (2007) suggested a non-dominated sorting procedure called MOSS 

(Multi-Objective Scatter Search), which ranks every solution of the reference set. In order 

to maintain non-dominated solutions uniformly dispersed along the Pareto frontier, an 

NSGA type of niching method is employed. In order to evaluate the generated solutions’ 

quality, MOSS uses a weighted sum approach. This algorithm is compared against NSGA-

II, SPEA-2, and PESA on a set of unconstrained benchmark test functions, and reported 

that MOSS outperforms the existing GAs, particularly in large-scale problems. Nebro et 

al. (2008) proposed a hybrid metaheuristic algorithm called AbYSS (Archive-based hYbrid 
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Scatter Search), which adapts the traditional SS algorithm template but utilizing mutation 

and crossover operators coming from the field of evolutionary algorithms. This algorithm 

is built on integrating the ideas of Pareto dominance, external archiving, and two different 

density estimators.  

 

These previous research on SS-based multi-objective algorithms indicates that SS is a 

promising approach for MOO problems. Some of the open areas for research related to 

integrating SS to MOO problems are: (1) how to reuse the obtained search information that 

is available in the non-dominated solutions found by the SS, (2) different update 

mechanisms for Reference Set Update method to improve the diversity of the solutions, 

and (3) setting the parameters to enhance the convergence to the Pareto-frontier (El‐

Ghazali Talbi et al., 2012).  

 

5.4 Mechanics of the Proposed Tabu/Scatter Search Algorithm  

 

The proposed hybrid Tabu/Scatter Search algorithm is based on Scatter Search (SS) 

algorithm template and it makes use of the adaptive memory structures of Tabu Search 

(TS). SS algorithm template is chosen as basis of the optimization engine for the 

simulation-based multi-objective optimization framework for the following reasons: 

 

(a) It generates and maintains a reference set of solutions at each iteration rather 

than a single solution and this mechanism gives the ability to search for multiple Pareto-

optimal solutions concurrently in a single run, without repeatedly finding each Pareto-

optimal point one at a time. 

 

(b) It improves the solutions increasingly at each iteration, and this facilitates 

evaluating and improving the candidate policies through simulation. 

 

(c) It is capable of handling non-differentiability and discontinuity that often 

appear in simulation-based approaches. 
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The proposed hybrid Tabu/Scatter Search algorithm’s general framework is similar to that 

of the traditional SS algorithm template. The primary additional procedure and 

mechanisms integrated into the SS template are listed below: 

 

(a) Adaptive memory structures are utilized explicitly to store complete 

solutions. After a new trial solution is created with the Solution Combination method, the 

memory structure ensures that this trial solution has not visited previously. Then, it is sent 

to the simulation model for performance evaluation. Since computational time is the 

limiting factor in any simulation-based approach, integration of adaptive memory 

structures is significantly important for efficiency. 

 

(b) A dynamic update procedure is employed in Reference Set Update method 

with the intention of producing high-quality solutions, where non-promising solutions are 

replaced immediately with more promising ones. 

 

(c) The fitness of each solution is computed with a non-dominating sorting 

approach, and a dominance procedure is utilized to classify solutions over the bi-objective 

domain, where both the objective value of the solution and its proximity to other solutions 

are considered. 

 

(d) A rebuilding mechanism is adopted to enhance and maintain the diversity 

of the Pareto-frontier approximations. 

 

(e) A two-step approach that includes a Tabu Search and a local search step is 

applied to improve solutions in the Improvement method. 

 

(f) An elitism mechanism is adopted where both dominated, and non-

dominated solutions are stored in a fixed-size archive. Also, a truncation procedure is 

employed based on density assessment by measuring the Euclidean distance in order to 

restrict the number of stored solutions. 

 



 

 

167 

The high-level scheme of the proposed hybrid Tabu/Scatter Search algorithm is as follows: 

SS procedure is initiated by constructing a population of solutions (P) by using the initial 

solution obtained from the greedy heuristic algorithm as its starting point (seed) and, then 

a reference set (RefSet) is built from the population. This initial RefSet is selected by 

identifying non-dominated solutions consecutively from the P with a dominance test 

procedure. The RefSet is then updated by applying the non-dominated criterion to the set 

of solutions that result from the union of the current RefSet. 

 

During the procedure, RefSet is evolved through Subset Generation, Solution Combination, 

and Improvement methods. RefSet consists of two distinct subsets H and D, representing 

the high-quality and diverse solution subsets, respectively (RefSet = H ⋃ D). RefSet is 

updated from iteration to iteration by Reference Set Update method. RefSet is always 

maintained in order, where x1 is the best solution and xb is the worst one. Hence, in each 

iteration, RefSet is updated by assigning the incumbent trail solution to xb and reordering 

the RefSet. The proposed algorithm has two main loops: (1) a “while loop” that controls 

the generation of the P, and (2) a “while loop” in which RefSet is evolved until a termination 

criterion is met (when the current iteration is equal to the maximum allowable iterations or 

the maximum allowable CPU time.) 

 

The mechanics of the proposed algorithm is illustrated in Figure 31. In the figure, circles 

represent solutions, where grey-colored ones represent solutions before Improvement 

method applied (trial solutions), and black-colored ones represent solutions after the 

application of Improvement method. 
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Figure 31: Schematic Representation of the Proposed Algorithm 

(Source: Laguna and Marti (2003)) 

 

 

5.4.1 Design Elements 

The four fundamental design elements that are incorporated into the proposed algorithm 

include the following: (1) the combination of representation and search operators, (2) the 

fitness function, (3) the initialization and the termination, and (4) the search strategy. 

Search strategies differ in the control of the intensification and diversification steps. These 

design elements typically depend on the problem context and search strategy which will be 

implemented. Each of these design elements is detailed below: 
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Representation and Search Operators: For the effective and efficient application of any 

metaheuristic algorithm, it is essential to find an appropriate representation for a candidate 

solution that largely depends on the nature of the problem at hand and search operators that 

conform well to the characteristics of the representation, and the proposed hybrid T/SS 

algorithm is no exception. The main requirement for the representation is the fact that it 

has to be capable of covering all candidate solutions in the search space since the design of 

appropriate search operators is closely related to representation. However, there are not 

many theoretical models available that explain how different types of representation impact 

algorithm’s success and to what extent. The related properties of representation that impact 

solution quality, convergence time, and diversity for the multi-objective problems have to 

be identified. The most commonly accepted properties are redundancy, scaling, and 

locality (Franz, 2006). 

 

A solution in the reference set corresponds to a set of decision variables for the optimization 

problem that is going to be simulated. Each iteration contains different input parameters 

that have to be experimented by the simulation model. Because generating and maintaining 

diversification effectively depends on the solution representation, a permutation encoding 

is employed where a solution is represented by a sequence of integers corresponding to the 

index of the aircraft, and each row corresponds to a runway and an aircraft sequence. In 

the literature, a number of representation types are proposed for encoding permutations, 

where integer numbers are utilized to represent a sequence directly. However, this 

representation type requires additional repair mechanisms in order to apply the Solution 

Combination method, which yields infeasible permutations with duplicate elements.  

 

In Figure 32, the representation of a solution with n aircraft is given, where Ai is the index 

of the aircraft i, Ri is the runway allocated to aircraft i, and Si is the sequence of aircraft i 

in its allocated runway. This representation is selected mainly for two reasons: (1) to avoid 

the difficulty in maintaining feasibility after applying Solution Combination method, and 

(2) to facilitate the calculation of distance measures, which is the key element in 

Diversification Generation method, and mostly depend on representation.  
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Figure 32: Representation of a Solution 

 

 

Fitness Function: The fitness function essentially links the algorithm to the problem at 

hand, and typically dependent on the problem description and representation. In the 

proposed algorithm, the fitness function is estimated by running the simulation model, and 

it is calculated based on a Pareto-based fitness assignment method, which will be detailed 

under multi-objective components of the algorithm. 

 

Initialization and Termination: The algorithm initiates by getting the initial solution 

provided by the greedy heuristic algorithm based on a composite dispatching rule. For the 

termination, various criteria have been used to terminate the optimization process of SS-

based algorithms including criteria that take into account the landscape of the response 

surface, the convergence speed towards the Pareto-frontier, the desired quality of the 

solution found, the maximum number of solution evaluations, and the required 

computation time. The termination criteria for the proposed algorithm is chosen such that 

when the current iteration is equal to the maximum allowable iterations or the maximum 

allowable CPU time, the algorithm terminates and outputs the best Pareto-optimal solutions 

found so far. 

 

Search Strategy: The search strategy is based on explicit memory approach of storing 

complete solutions. This approach is usually not preferred due to its time and memory 
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consumption which usually renders algorithms intractable. However, since the evaluation 

of a solution by running the simulation model necessitate a large computational time, 

tracking every solution produced and evaluated during the optimization process is a viable 

approach in this simulation-based optimization setting.  

 

The five SS methods of the proposed hybrid Tabu/Scatter Search algorithm are detailed 

below: 

 

5.4.2 Diversification Generation Component 

The Diversification Generation method is used both for initializing the reference set and 

also rebuilding the reference set during the search. The primary purpose of this method is 

to create a set of trial solutions systematically to guarantee a critical level of diversity both 

in initialization and rebuilding stages. 

 

The algorithm starts with generating a set of trial solutions, which are required to be 

diverse. Hence, a systematic procedure is used to generate those trial solutions. When a 

termination criterion is met, the algorithm provides the best Pareto-optimal solutions found 

during any iteration. As previously mentioned, SS utilizes a reference set by combining the 

solutions in the reference set to generate new solutions, where the reference set is the core 

element. In a case such that all solutions in the reference set are similar, then the whole 

procedure will probably not be capable of improving the best solution found so far.  

 

Modus operandi of Diversification Generation method is as follows: First, the output of the 

initial solution generation algorithm is used as a seed to generate subsequent trial solutions. 

Controlled randomization and frequency-based memory structures are employed to 

produce a collection of diverse solutions, where frequency-based memory structures are 

common Tabu Search mechanisms for implementing long-term memory strategies. 

Because too many high-quality solutions induce a premature convergence of the population 

into areas of the solution space containing only sub-optimal solutions, the main purpose of 

this method is to generate diverse solutions instead of high-quality solutions.  
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5.4.3 Improvement Component  

Improvement method is an important intensification method to further transfer the 

incumbent solutions into a set of enhanced solutions of reasonable quality and diversity. 

This method is comprised of two steps: a simple Tabu Search, and a local search 

(neighborhood search) procedure. In the Tabu Search step, only the solutions that dominate 

the other solutions are considered. This threshold value is an assumed parameter for the 

algorithm. In local search step, all trail solutions are considered. In this step, “insertion” 

technique is used for moving from one solution to another. This procedure terminates when 

exploration of the neighborhood fails to find an improving move. This method is applied 

to all solutions present in the set P initially, and then, to new solutions generated by the 

Solution Combination method.  

 

5.4.4 Reference Set Update Component 

Reference Set Update method is utilized to generate and maintain the RefSet. During the 

first application of this method (initial generation of RefSet from the population), a 

minimum diversity test is utilized, which operates as given in the following pseudo-code:  

 

 

Algorithm 4 Minimum Diversity Test for Initial RefSet Generation  

Input: A population of improved trial solutions (P)  

1: begin 

2: find the best solution according to dominance test in P 

3: select this solution to become x1 in the RefSet 

4: delete this solution, x1, from the P 

5: while (│RefSet│< b) do 

6: find the next best solution x according to Obj.Fn. value in P 

7: 
select this solution, x, to be included in the RefSet only if  

distancemin (x)>=tresholdDistance 
8: delete this solution, x, from the P 

9: end 

10: return RefSet 
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The minimum diversity test procedure for the initial RefSet generation starts with choosing 

the best solution according to the dominance test in the population, selected as the non-

dominated solution in the RefSet, and these solutions are extracted from the population. 

Then, at each iteration, the next non-dominated solutions in the population are selected 

only if the minimum distance between the selected solution x and the solutions currently 

in RefSet (distancemin (x)) is at least as large as the threshold value (tresholdDistance). 

 

In addition, an elitist sorting mechanism for the non-dominated solutions is utilized to sort 

the solutions in the RefSet according to the number of solutions they dominate. These 

solutions are then compared to each other to identify the distribution of solutions in the 

current Pareto-frontier. The decision for accepting a candidate solution to RefSet is made 

based on the dominance relation and the density of the RefSet (whether it improves the 

diversity of the set). The distance between solutions in RefSet is calculated based on the 

crowding distance from each member of RefSet. 

 

Finally, a rebuilding mechanism is employed to rebuild the RefSet partially when the 

Solution Combination and Improvement methods are not able to provide solutions of 

sufficient quality to displace the current RefSet. This mechanism reinitializes the 

Diversification Generation method to generate diverse solutions with respect to high-

quality solutions in the current RefSet. It consists of the b1 best solutions from the preceding 

step (solution combination or diversification generation). It also consists of the b2 solutions 

that have the largest Euclidian distance from the current solutions in the RefSet. At each 

iteration, a set of high-quality solutions replaces less promising solutions to improve the 

quality of the RefSet. 

 

5.4.5 Subset Generation Component 

Subset Generation method generates subsets from RefSet that will be used for creating new 

solutions where the subsets are constructed by including all pairs of RefSet solutions except 

the pairs that have already been included in previous iterations. Adaptive memory 

structures are utilized to exclude reference solutions during the application of this method, 

where the subsets that have already been processed by the Solution Combination method 
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are recorded. Since execution time of the simulation model is the limiting factor for the 

whole computation time, these memory structures help to avoid unnecessary simulation 

runs. Nevertheless, it is also important to ensure that these memory structures do not grow 

to an unmanageable size during the execution. In order to fulfill this requirement, 

appropriate data structures are used in the implementation of these memory structures. 

 

5.4.6 Solution Combination Component 

Solution Combination method utilizes the generated subsets to combine the elements of 

each subset to create new trial solutions. The input for this method is not limited to RefSet, 

an intermediate pool of solutions is utilized in the implementation to enhance quality and 

diversity. Also, a dynamic update strategy is utilized where a new solution is included in 

the RefSet as quickly as possible before the next combination is performed. Furthermore, 

an intensification strategy is integrated into this method to improve the search towards the 

Pareto-frontier.  

 

Solution Combination method also tracks the subsets of RefSet solutions that have already 

been exposed to this method in each iteration. Whenever a new trial solution is created 

with this method, by using memory structures, this trial solution is checked whether it has 

not been visited previously. Then, it is sent to the simulation model for performance 

evaluation. Since a ranking procedure is not appropriate to use due to small size of the 

reference set, which is typically 20, a dominance procedure is used to compare each 

candidate solution with the solutions in the RefSet and the pool. After an application of the 

Solution Combination method, the dominance test is applied to the solutions in the RefSet 

and the pool, and the reference set is updated with the solutions that have highest 

dominance value, where the two-tier RefSet prevent the optimization process from focusing 

on a given part of the Pareto-frontier.  

 

5.4.7 Multi-Objective Search Components 

The proposed Tabu/Scatter Search algorithm has three important multi-objective search 

components: (1) fitness assignment for better guiding the search towards the Pareto-
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frontier, (2) diversity preservation for maintaining well-spread non-dominated solution set 

and avoiding premature convergence, and (3) elitism for preserving high-quality solutions. 

Illustration of these multi-objective search components are shown in Figure 33. 
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Figure 33: Illustration of Multi-Objective Search Components 

 

 

Fitness Assignment: Due to the low-dimension (only two conflicting objectives) of the 

problem at hand, a Pareto-based fitness assignment method is employed to converge the 

solutions in a direction normal to the Pareto-optimal region and, at the same time, to 

promote diversity among solutions. This assignment method is applied together with a 

density measure, which is incorporated in such a way that adopts a two-stage process where 

first solutions are compared based on Pareto-fitness, then the density measure is applied. 

The main strength of this approach is that at the initial stages the force for diversity is 

higher, on the other hand, when the solutions begin to move to the Pareto-frontier, 

convergence force becomes dominant as most of the solutions that are equally fit.  
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Diversity Preservation: A diversity assessment scheme is adopted as the core element of 

diversity preservation component. Since the main goal of the proposed algorithm is to 

obtain a diverse Pareto-frontier, this diversity assessment scheme is applied in the objective 

space. And a distance-based assessment, in particular niching (niche sharing) is employed, 

which promote diversity in the reference set.  

 

Elitism: Besides the fixed-size reference set, an archive employed to store non- dominated 

solutions along the evolution. The main function of the archive is to store a record of the 

non-dominated solutions identified during the optimization process and maintaining them 

to generate a diverse Pareto-frontier. The archive is updated at each iteration by adding a 

candidate solution to the archive if it is not dominated by any solution in the archive. 

Similarly, any solution in the archive dominated by this solution is removed from the 

archive. When the predetermined archive size is reached, a recurrent truncation process 

based on niche count is used to remove the most crowded solution in the archive. The 

crowding distance is an approximation of the density of solutions neighboring a specific 

solution in the archive, and it is calculated by averaging the distance of two points on either 

side of this point with respect to each of the objectives. 

 

In the algorithm, elitism is applied by selecting solutions to a solution combination pool 

through a binary tournament selection of the combined archive and evolving reference set, 

where in case of a tie niche count is used. Similar to diversity preservation, niching (niche 

sharing) is employed in the tournament selection, where the crowding distance of NSGA-

II is utilized as a niching measure. 

 

 

 

 

 

 

 



 

 

177 

 

Reference Set Archive

Solution 

Combination Method

New solutions 

(pool)

Improvement Method

Dominance Test

Distance-based Assessment 

(Niching)

Subset Generation Method

 

Figure 34: Representation of Elitism Mechanism 

 

 

5.5 Object-Oriented Design and Implementation Specifics 

 

Integrating advanced strategies in any metaheuristic algorithm, especially in multi-

objective population-based algorithms, to improve the performance regarding 

effectiveness and computation time, typically comes with the burden of a design that has 

difficulties in implementation and parameter tuning. Also, these advanced designs more 

often add extra parameters and increase complexity. Therefore, a structured, two-stage 

approach is utilized for the design and implementation of the proposed hybrid Tabu/Scatter 

Search algorithm. First, the core data structures of the algorithm are created, and then, the 

algorithmic structure is built on top of them. Since adaptive memory structures heavily 

depend on data structures, object-oriented techniques are employed sensibly. 

 

The main challenges faced during the design and implementation phases are listed below: 
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(a) How to design and implement a multi-objective metaheuristic algorithm 

through incremental specification by first defining the skeleton of the algorithm in an 

abstract level and then building other aspects of it as soon as they become concrete? 

(b) How to reduce complexity by distributing the roles of algorithm and 

visualization components of the overall design, and simplify implementation? 

 

In order to overcome these two challenges, template method design pattern and Model-

View-Controller (MVC) architectural pattern are employed, which are presented briefly 

below: 

 

Template Method Design Pattern: The general framework of the algorithm is based on 

template method design pattern, which allows redefining certain steps of an algorithm 

incrementally without changing the algorithm’s overall structure. The template method 

design pattern has two components: (1) an abstract parent class, which is the template class 

used to define the algorithmic steps and preserve it across implementations, and (2) one or 

more concrete child classes, which extends the parent class and contains details of the 

abstract methods. In this way, the algorithm is defined as a skeleton of methods 

(operations) and leaving details to be implemented by the child classes, where the parent 

class preserves the overall structure and sequence of the algorithm. UML representation of 

an example of template method design pattern is given in Figure 35.  
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Figure 35: Example of Template Method Design Pattern 

 

 

For implementing the template design pattern, the following steps are followed: (1) the 

main process (the template) is created by establishing a parent abstract class, (2) the sub-

processes are created by defining abstract methods, (3) a special method is created that 

defines the sequence how the sub-process methods will be called, where child methods 

cannot override it, and (4) the child classes are created which can modify the abstract 

methods or sub-process to define a new implementation. 

 

Model-View-Controller (MVC) Architectural Pattern: The user interface and visualization 

architecture is design and implemented based on Model-View-Controller (MVC) 

architectural pattern. This architectural pattern is used to separate user interface and 

visualization component from the metaheuristic algorithm component. In application of 

MVC architectural pattern the model established the metaheuristic algorithm, the view 

handled the visualization of the data that model contains, and the controller operated on 

both the model and the view by controlling the data flow into a model object and updating 

the view whenever data changes. Hence, this structure allowed keeping the view and the 

model separate. Also, setting the input parameters is handled within a function of the 

Algorithm Handler class. The representation of MVC architectural pattern is given in 

Figure 36. 
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Figure 36: Representation of MVC Architectural Pattern 
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CHAPTER 6 

COMPUTATIONAL EXPERIMENTS AND RESULTS 

 

The main objective of the computational experiments is to study the quality and efficiency 

of the solutions generated by the proposed hybrid Tabu/Scatter Search algorithm and 

conduct a proof-of-concept (validation) of the whole simulation-based optimization (SbO) 

framework, in which the proposed algorithm is incorporated as an optimization engine. 

The experimental study is conducted in two phases. In the first phase, denoted as multi-

objective optimization (MOO) experiments, the proposed algorithm’s performance is 

evaluated based on multi-objective benchmark problems. In the second phase, denoted as 

SbO experiments, real-life historical datasets are utilized that belong to a major US airport. 

In experimental design, design of experiments approach is employed to analyze the impacts 

of parameters on the simulation as well as the optimization component’s performance, and 

to identify the appropriate parameter levels. After the experiments are conducted and 

output data are collected, data analysis and visualization methods are utilized to identify 

patterns and draw conclusions.  

 

This chapter initially discusses the experimental design including the objectives and the 

general framework of the computational study that is conducted. Next, exploratory MOO 

experiments are explained, which is conducted to locate algorithmic bottlenecks and guide 

parameter tuning efforts. Afterwards, exploratory simulation experiments are detailed, 

which investigate the most critical and sensitive parameters, and ensure the tolerance to 

which model outputs can be expected to alter with given input parameters. Then, 

experimental design and results of the MOO experiments are explained. Next, the 

performance metrics and experimental setup along with the considered scenarios for the 

SbO experiments are outlined. Then, the final SbO experiments are presented, and a 

statistical analysis of the results is provided. Next, key experimental results, as well as an 

analysis of these results, are presented. Finally, results of a safety risk assessment 

associated with our proposed approach is provided. 

 



 

 

182 

6.1 Computational Framework and Experimental Design 

The objectives and general framework for designing computational experiments are 

presented in this section. 

 

6.1.1 Objectives of the Computational Experiments 

The primary objective of the computational experiments is to assess the effectiveness and 

performance of the proposed hybrid Tabu/Scatter Search algorithm as well as to validate 

the whole SbO framework in different current and future operational conditions. In 

particular, this computational study seeks to answer the following questions: 

 

(a) Validation of models and the framework: Is the proposed algorithm able to 

find the best known Pareto set of solutions? Is the proposed SbO framework truly capable 

of handling real-life applications? Are there any conditions that would make the key 

assumptions invalid?  

(b) Effectiveness and computational tractability: Is the proposed algorithm and 

SbO approach computationally tractable and effective (able to generate solutions within a 

reasonable computation time)? 

(c) Practical contribution assessment: Do the results contribute to the actual 

problem in practice significantly? 

(d) Dealing with uncertainty and robustness: Is the proposed approach consider 

uncertainty explicitly and generate robust solutions that are applicable in practice? 

 

The proposed hybrid Tabu/Scatter Search algorithm, the simulation model and initial 

solution generation algorithm were all implemented in C++ and complied in a Microsoft 

Visual Studio 2013 Integrated Development Environment (IDE). All the experiments were 

performed on a standard PC machine with a 64-bit Intel(R) Core(TM) i5-3210M CPU 2.50 

GHz processor and 8 GB of RAM running Microsoft Windows 10 operating system. The 

statistics were collected, analyzed and visualized by using R Statistical Software Packages 

and R Studio IDE.  
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6.1.2 Experimental Design Framework 

Both the simulation and optimization (metaheuristic) components of the proposed SbO 

framework need some necessary parameter setting to adapt to the problem instances at 

hand, since the choice of parameter values has a significant effect on the quality of the 

solutions. Unfortunately, there is no one-size-fits-all parameter setting for any given 

simulation or optimization model. Because one-factor-at-a-time (OFAT) method does not 

consider the interactions between the parameters, which may significantly affect solution 

quality and performance, experimental designs are established according to formal 

procedures from the design of experiments (DoE) field. The DoE methods utilized for 

simulation experiments are commonly referred as “design of simulation experiments 

(DoSE)” methods; hence, these two terms are usually used interchangeably. Specifically, 

the DoE methods are employed for mainly two reasons: (1) to determine the various 

parameters’ main and interaction effects on the solution quality and algorithm efficiency, 

and (2) to identify the optimal combination of parameter levels.  

 

To this end, a DoE framework is developed which provides a step-by-step approach for 

formulating an experimental study and for evaluating the results to validate statistical 

significance. The main steps of the developed DoE framework are shown in Figure 37, and 

each step of this framework is described in further detail below: 

 

Step 1: Determine objectives and identify characteristics to be observed: In this 

step, objectives for the experimental design are determined and characteristics to 

be observed are identified. Also, the measurement methods are determined.  

Step 2: Define responses/factors: In this step, factors, factor constraints, and 

response(s) of interest are determined. Also, the factor settings (levels) that describe 

the experimental design space are identified. Since determination of the factors and 

their initial levels require a priori knowledge, an exploratory study is conducted. 

This exploratory study consists of several trials on a small subset of instances for 

preliminary analysis of the potential factors and their initial levels as a starting 

point.  
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Step 3: Generate and evaluate the design: In this step, design decisions, such as the 

number of experiments, and the number of replications, are specified. As a result, 

an experimental design is outlined, design matrix is constructed, and the order of 

experiments is determined. Also, estimation efficiency of the generated design and 

its power to detect effects are evaluated. Its prediction variance and the correlations 

between effects are also identified. 

Step 4: Conduct experiments: In this step, experiments are conducted in the pre-

determined order, and results are recorded.  

Step 5: Analyze the data: In this step, (linear) regression analysis is applied to the 

results obtained from each experiment to find a (linear) approximation of the 

response surface. The factors that have an effect on the response are identified by 

utilizing response tables and graphs etc.  

Step 6: Select optimum levels and run a verification experiment: In this step, 

optimum factor setting is selected, and a verification experiment is conducted. 

When verification experiment had failed, then the steps were repeated starting from 

Step 2. 
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Figure 37: Design of Experiments Framework 

 

 

6.1.3 Design of Optimization Experiments 

Tuning an optimization (metaheuristic) algorithm to the specific problem being considered 

is significantly important for achieving high performance in terms of both solution quality 

and computational time. In this regard, Central Composite Design (CCD), which is a well-

known and widely used DoE method, is used to determine the optimal values of the 

proposed hybrid Tabu/Scatter Search algorithm parameters. CCD allows to estimate all full 

second-order effects (i.e., main effects, two-way interactions, and quadratic effects) with a 

reasonable amount of experiments. 
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CCD typically consists of a full factorial or fractional factorial design (2k or 2k–p), a center 

point, and two points on axes for each factor at a particular distance from the design center 

which results 2k+2k+1 or 2k–p+2k+1 experiments in total. The experimental design for the 

optimization algorithm that we assumed (CCD) involves an “L16 Taguchi design” for 

factorial points (2k=16 experiments), a center point (1 experiment) and axial points (2k=10 

experiments), and in total 27 experiments. The experimental design that is used in 

optimization experiments is illustrated in Figure 38.  
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Figure 38: Assumed Central Composite Design 

 

 

Since the determination of the factors and their initial levels require a priori knowledge of 

the behavior of the metaheuristic algorithm on the problem instances, a preliminary 

analysis is performed. This analysis consists of several trials on a small subset of the dataset 

obtained as part of Input Data Analysis, which is described in Chapter 4. A one-hour period 

of data is selected randomly from the dataset for determining the potential design factors 
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and their initial levels. As a result of this preliminary analysis, factors that can influence 

the quality and computation time of the solutions, and their levels are determined as a 

starting point. Hence, the experimental ranges for each factor (parameter) are identified.  

 

To design our optimization experiments, we identified five design factors (k=5) as 

potentially critical factors. These factors consist of five algorithm parameters that need to 

be tuned, where each of these design factors has two possible levels. These design factors 

and their possible levels (low and high levels are denoted as -1 and +1, respectively) are 

given in Table 8. The first and the second design factors (A and B) are size of the population 

and the reference set, respectively. The third design factor (C) is the threshold value for the 

Tabu Search step of the Improvement method, and the fourth design factor (D) is the 

threshold distance for minimum diversity test procedure in Reference Set Update method. 

Finally, the last factor (E) denotes the archive capacity. 

 

 

Table 8: Optimization Algorithm Design Factors and their Possible Levels 

 

Design Factor 
Low level  

(-1) 

High level  

(+1) 

A - Population size 50 200 

B - Reference set size 10 30 

C - Improvement threshold value 2 10 

D - Threshold distance 5 20 

E - Archive capacity 30 80 

 

 

Exploratory optimization experiments are conducted based on this experimental design to 

determine appropriate parameter values, which are presented in the next section. 
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6.1.4 Design of Simulation Experiments 

Although discrete-event simulation is a widely accepted technique to estimate accurately 

the key output performance measures of complex systems, such as airport runways, the 

execution time of this kind of simulation is usually slow and can only evaluate one scenario 

at a time (except parallel simulations). Moreover, this kind of complex systems typically 

involves a large number of input parameters which potentially affect the system’s output 

performance. In order to overcome these difficulties design of simulation experiments 

(DoSE) methods are utilized to reduce the number of input parameters with eliminating the 

unimportant ones. As a result, a smaller set of input parameters can be examined in a more 

efficient and effective way, and the interactions between these parameters can also be 

identified.  

 

Since simulation responses typically have a random component, the input parameter 

strategy should have error control for misclassification of factors, which includes the 

probability of classifying a factor as important when it is not (Type I Error) and the 

probability of classifying a factor unimportant when it is important (Type II Error) (Law, 

2014). The main objective of DoSE is to find which factors (input parameters) have the 

greatest effect on the response (output performance measure), where the effect of each 

factor can be formally estimated, and for a small number of factors the interactions between 

factors can also be identified (Kleijnen, 2007).  

 

Space-filling designs are commonly considered as suitable for simulations that are complex 

and involve variables with complicated interrelationships. The main idea in this type of 

designs is to find a simpler empirical model that adequately predicts the behavior of the 

system over limited ranges of the factors. The most widely used space-filling design 

method for simulation experiments is the Latin Hypercube Sampling (LHS). Considering 

the challenges regarding simulation model’s complexity and involvement of interrelated 

variables, LHS is chosen for exploring the interior of the parameter space and for 

determining the parameters of the simulation model.  
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LHS design maximize the minimum distance between design points but requires even 

spacing of the levels of each factor, and it provides an orthogonal array that randomly 

samples the entire design space partitioned into regions of equal probability. LHS can be 

considered as a stratified Monte Carlo sampling method, where the pairwise correlations 

can be minimized to a small value that is necessary for uncorrelated parameter estimates. 

LHS is useful especially for exploring the interior of the parameter space and for limiting 

the experiment to a fixed or a user-defined number of combinations. This technique ensures 

that the entire range of each parameter is sampled. LHS has good space filling properties, 

so they are efficient ways of exploring unknown, but potentially complicated response 

surfaces with many quantitative factors. Furthermore, LHS is flexible enough for exploring 

complex simulation models when information about the response surfaces is limited 

(Sanchez, 2005).  

 

To design our simulation experiments, we listed five design factors as potentially critical 

factors. These design factors and assumed LHS design for simulation experiments are 

given in Table 9. These design factors include the following: seed for pseudo-random 

number stream (multiplied by 100) (A), minimum number of replications (B), percentage 

of relative error to achieve certain precision for performance measures (C), number of 

initial samples (D), and standard error threshold (E). It is worth mentioning that since in 

each optimization iteration multiple simulation runs are performed, seed for pseudo-

random number stream is considered as an important factor. 

 

It should also be stressed that the choice of LHS for the simulation model does not 

necessarily depend only on the power of the design and available resources, but also 

depends on the sample size (number of replicates), selection of a suitable run order for the 

experimental trials, and determination of whether or not randomization restrictions are 

involved.  

 

Exploratory simulation experiments are conducted based on this experimental design to 

determine appropriate parameter values, which are presented in the following section. 
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Table 9: Assumed LHS Design 

 

Design Factor A B C D E 

Low level (-1) 1 1 1 1 1 

High level (+1) 100 10 20 15 25 

Experiment 1 32 10 16 6 7 

Experiment 2 7 3 18 9 1 

Experiment 3 13 5 2 5 16 

Experiment 4 20 7 7 15 15 

Experiment 5 75 9 9 3 9 

Experiment 6 100 4 8 12 3 

Experiment 7 63 3 20 5 22 

Experiment 8 57 9 15 14 21 

Experiment 9 51 6 11 8 13 

Experiment 10 69 1 5 10 19 

Experiment 11 94 8 3 7 25 

Experiment 12 88 6 19 12 10 

Experiment 13 81 4 14 1 12 

Experiment 14 26 2 12 13 18 

Experiment 15 1 7 13 4 24 

Experiment 16 38 8 1 11 4 

Experiment 17 44 2 6 2 6 

 

 

6.2 Exploratory Optimization Experiments 

Exploratory optimization experiments are conducted to locate algorithmic bottlenecks and 

guide parameter tuning efforts for the proposed hybrid Tabu/Scatter Search algorithm. For 

these experiments, small-scale problem instances are randomly generated to reflect realistic 

schedules of runway operations. The empirical validation with this synthetic dataset is only 

an initial step for algorithmic improvements and accompanying validation. This real-like 

synthetic problem instances are generated according to the following guidelines. Aircraft 

are generated assuming a Poisson process with respect to exponential inter-arrival times, 
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because this assumption has been highly utilized and typically considered as acceptable in 

the literature (Balakrishnan & Chandran, 2010). The deviations from estimated 

landing/take-off times, the runway occupancy time distributions, and the transit time 

distributions are estimated by analyzing the FAA Operations & Performance database and 

by experimenting with the MITRE Corporation runwaySimulator.  

 

In exploratory optimization experiments, to verify the statistical validity of the results and 

to ensure that the effects of the different levels of the factors are statistically significant, 

Main Effects Plot is used to determine the level of each factor, where the mean values of 

each level of a factor are shown graphically. Also, Interaction Plots are used to determine 

the mean values for each level of a factor with the level of a second factor held constant, 

which specifies that the effect of one factor is dependent on a second factor. 

 

The parameter tuning is conducted in separate for MOO and SbO experiments in order to 

find the best parameter setting for each experimental setting. The primary difference 

between these two separate experiments is the termination criterion. In the MOO 

experiments, the algorithm terminates when 10000 function evaluations are computed. On 

the other hand, for the SbO experiments termination criterion is chosen in accordance with 

the planning horizon for the practical problem, which is 20 minutes.  

 

6.2.1 Parameter Setting for MOO Experiments 

According to the chosen experimental design for the optimization experiments, namely 

CCD, 27 experiments are performed and each of these experiments are replicated 30 times. 

These 30 replications are then averaged to obtain a response for each experiment. In order 

to statistically determine for each experimental condition if these design factors have a 

significant effect on the responses, an analysis-of-variance (ANOVA) test performed. 

Since an underlying assumption of the ANOVA test is that responses are samples from 

normally distributed populations, normal-scores plots are used to identify non-

conformance to this assumption. Each experimental configuration is examined for only the 

high level and the low level, and separate normal-scores plot is constructed for each test. 
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As a result, it is concluded that the assumption that the responses of the experimental design 

are sampled from normally distributed populations is valid. 

 

For the MOO experiments, the first design factors (A), i.e. size of the population (Psize) is 

set to 100. The second design factor (B), i.e. the size of the reference set (b) is set to 20, 

where half of the solutions in the reference set are selected according to their diversity 

(b2=10). The third design factor (C), i.e. the threshold value for the Tabu Search step of 

the Improvement method, is set to 7. The fourth design factor (D), i.e. the threshold distance 

for minimum diversity test procedure in Reference Set Update method, is set to 17. Finally, 

the last factor (E), which denotes the archive capacity is set to 55. Regression analysis 

conducted to determine if the fit was supported statistically, and results of the regression 

analysis yielded an adjusted R2 value of 0.901, which indicates a strong relationship 

between the variables. 

 

6.2.2 Parameter Setting for SbO Experiments 

A subset of real-life data that was used for Input Data Analysis (presented in Chapter 4) is 

selected randomly for the exploratory experiments. According to the chosen experimental 

design explained previously, namely CCD, exploratory experiments are performed, and 

solutions are found.  

 

For the SbO experiments, the first design factors (A), i.e. size of the population (Psize) is 

set to 120. The second design factor (B), i.e. the size of the reference set (b) is set to 22, 

where half of the solutions in the reference set are selected according to their diversity (b2). 

The third design factor (C), i.e. the threshold value for the Tabu Search step of the 

Improvement method, is set to 6. The fourth design factor (D), i.e. the threshold distance 

for minimum diversity test procedure in Reference Set Update method, is set to 14. Finally, 

the last factor (E), which denotes the archive capacity is set to 45. After completing 

regression analysis of the results, the adjusted R2 values is found as 0.926, which indicates 

a strong relationship between the variables. 
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6.3 Exploratory Simulation Experiments  

 

The main objective of the exploratory simulation experiments is to investigate the most 

critical and sensitive parameters, and to ensure the tolerance to which model outputs can 

be expected to alter with given input parameters, where this information also gives insight 

for determining the bounds beyond that application of the simulation model is not 

appropriate.  

 

6.3.1 Variance Reduction Techniques 

The simulation model is set up to implement two important variance reduction techniques: 

(1) common random numbers method is utilized to generate the sequence of pseudo-

random number streams for uncontrollable factors in simulation experiments, and (2) 

antithetic variates is utilized to generate antithetic samples between successive pairs of 

replications. These variance reduction techniques are employed primarily to enhance the 

refinement of the simulation model. 

 

Common random numbers method: The behavior of simulation model usually changes 

from one simulation run to next by simply changing the values utilized for the underlying 

pseudo-random number streams. Hence, to be confident that any observed differences in 

performance of alternative configurations are not due to fluctuations of the experimental 

conditions generated by pseudo-random numbers. We formed a 90 percent confidence 

interval for comparing the alternative configurations by using common random numbers 

method and observed 10.2 percent decrease in the variance. 

 

Antithetic variates: The basic idea in this technique is that the variance of the simulation 

outputs might be reduced by using pseudo-random numbers that are negatively correlated 

in each pair of simulation runs. This is achieved by pairing the simulation runs, and if one 

of the pairs uses a stream of (0, 1) random variables x(j), then the other pair should use 

stream of y(j), where y(j) = 1- x(j). After applying this technique, the simulation outputs of 

each simulation run cannot be considered as independent; however, each pair of simulation 
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run can be considered as independent. Therefore, the degrees of freedom in any average 

across n simulation runs is taken as (n/2)-1 instead of n-1, and as a result, any set of 

observations of an output across pairs of simulation runs is assumed to be normally 

distributed. 

 

6.3.2 Dealing with Noise 

One of the primary challenges in optimizing the simulation model is the fact that evaluation 

of each candidate solution is influenced by noise, where the source of this noise is the 

stochastic nature of the simulation model. The noise has a huge potential to undermine the 

performance of the proposed hybrid Tabu/Scatter Search algorithm by misleading the 

reference set to a local optimum and deteriorating the convergence rate. The proposed 

algorithm partially alleviates the effects of this noise by utilizing a set of solutions 

(reference set) and averaging these effects. Also, it does not require derivative and gradient 

information, which is a difficult task to approximate this information in the existence of 

noise.  

 

The main effect of this simulation noise is that a high-quality solution might be evaluated 

lower than its true fitness value, and likewise, a low-quality (poor) solution might be 

evaluated higher that its true fitness value. This effect typically leads the search to a non-

promising region in the search space, easily renders the optimization process unstable, and 

degrades the algorithm’s performance. One way to deal with the noise is to increase the 

number of iterations and to utilize fitness averaging simply by evaluating each candidate 

solution several times and using the average fitness of these evaluations as the fitness of 

the candidate solution. However, this approach comes with the expense of high 

computational costs.  

 

Several resampling schemes proposed in the literature that utilize resampling in order to 

reduce the noise of fitness evaluations in which fixed number of solution resampling 

simulation runs are distributed unevenly among the solutions. This unevenly distribution 

allow spending the biggest share of the computation time on the most promising solutions. 

This noise compensation technique is commonly referred as “dynamic resampling” 
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(Syberfeldt et al., 2010). In this method, the most critical step is to find the best compromise 

between the number of solutions evaluated and the number of samplings of each solution. 

If more solutions are evaluated, the search space can be explored more widely, and in turn, 

a probability of finding Pareto-optimal solutions will increase.  

 

To deal with the simulation noise, a dynamic resampling method, in particular Standard 

Error Dynamic Resampling (SEDR), is employed. SEDR is a sequential sampling method 

proposed by Pietro et al. (2004). It allocates sampling budget individually for each solution 

depending on the noise level (uncertainty) of the solution’s fitness which is calculated by 

determining the standard sample deviation of the samples taken. The standard error of a 

solution s decreases as the solution resampled (Eq. 6.1). The sample standard deviation is 

shown in Eq. 6.2. The solution is iteratively sampled until the standard error is below a 

threshold SEthreshold. 

 

𝑆𝐸𝑠𝑘 =
𝜎𝑠𝑘

√𝑛
, 𝑘 = 1,2. (6.1) 

𝜎𝑠𝑘 = √
1

𝑛 − 1
∑ (𝑠𝑘 − 𝜇𝑠𝑘)

𝑛

𝑖=1
  , 𝑘 = 1,2. (6.2) 

 

The pseudo-code for the utilized SEDR procedure is given below: 

 

 

Algorithm 5 Standard Error Dynamic Resampling (SEDR) (Pietro et al., 2004) 

Input: Solution s and parameters tmin and SEthreshold 

1: begin 

2: perform tmin initial samples of the fitness of s 

3: calculate mean of the available fitness samples for both objectives μs1, μs2 

4: calculate objective sample standard deviations with available fitness samples σs1, σs2 

5: calculate standard errors for both objectives SEs1, SEs2 

6: calculate average standard error ASEs 

7: if average standard error (ASEs) < standard error threshold (SEthreshold) 

8: then sample the fitness of s one more time and goto step 2 

9: end 
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6.3.3 Parameter Setting  

For setting the parameters, previously explained statistical experimental design (Latin 

Hypercube Sampling) is applied and experiments are performed. The performance 

characteristic of interest during parameter setting is the average CPU time. In order to 

achieve certain precision for performance measures, relative error is selected as 𝛾= 0.1. 

Before simulation runs, to warm up to reach steady state the simulation model run for 10 

minutes, and the system reached steady state after 8.5 minutes of simulation runs. Initially, 

the simulation model was run for each design factor configuration and the mean response 

for each configuration is estimated by the sample average of the output from the 

corresponding simulation run. The results are obtained from the simulation runs where all 

random number streams are seeded independently. 

 

After all the experiments are completed and the responses are calculated for each 

experiment, linear regression analysis is conducted to determine if the fit was supported 

statistically, and results of the regression analysis yielded an adjusted R2 value of 0.927, 

which is a measure of association between the variables with a value of zero indicating no 

correlation exists and a value of one representing the strongest correlation possible. In this 

case, the adjusted R2 value indicates a strong relationship between the variables. 

 

After finding a linear approximation of the response surface, the path of steepest descent 

on the response surface is calculated and small steps are made along this path by changing 

the parameter values. At each step, one trial is conducted and the process is continued until 

the limit of the experimental region is reached. The parameter vector associated with the 

best result found during this process is determined as the final parameter setting, where the 

most significant results are obtained with a medium level for A, C, D and E, and high level 

for B. As a result, the parameter values for the seed for pseudo-random number stream 

(multiplied by 100) (A) is set to 84, minimum number of replications (B) is set to 10, 

percentage of relative error to achieve certain precision for performance measures (C) is 
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set to 17, number of initial samples (D) is set to 14, and standard error threshold (E) is set 

to 22. 

 

6.4 Multi-Objective Optimization Experiments and Results 

 

Since the main focus of the dissertation is on developing a multi-objective hybrid 

Tabu/Scatter Search algorithm, Multi-Objective Optimization (MOO) experiments are 

conducted separately to evaluate the proposed algorithm’s performance based on multi-

objective benchmark problems. As mentioned in Chapter 3, the three primary goals of a 

MOO problem are minimal distance to the Pareto-optimal front, good distribution, and 

maximum spread. Hence, the proposed hybrid Tabu/Scatter Search is evaluated based on 

all of these three goals. In this section, related performance metrics, experimental setup 

and results of the experiments are presented. 

 

6.4.1 Performance Metrics for Multi-Objective Optimization 

It is a challenging task to evaluate the performance of a MOO algorithm since the algorithm 

generates a set of solutions instead of a single value, but several performance measures 

exist to evaluate approximations of the Pareto-optimal set generated by the algorithm. 

These measures are usually based on the convergence rate of the optimization and diversity 

of the solutions, where all of MOO objectives are considered. However, most of these 

measures are only suitable for problems where the Pareto-frontier is known. For real-life 

optimization problems, the Pareto-frontier is typically unknown, and an appropriate 

performance measure is required that does not rely on this information to assess the 

convergence and spread of solutions in the algorithm.  

 

As shown in Table 10, two primary performance metrics are selected for evaluating the 

performance of the proposed hybrid Tabu/Scatter Search algorithm, which are hyper-

volume metric and CPU time. The hyper-volume metric (also referred as S metric) is 

chosen for the evaluation in terms of convergence rate and diversity of solutions that are 

generated, which is the most popular and significant performance metric for MOO 
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algorithms in the literature. The second metric is related to computational performance, 

namely total CPU time, for finding near Pareto-optimal solutions. 

 

 

Table 10: Multi-Objective Optimization Performance Metrics 

 

Category Performance Metrics 

Convergence rate and 

diversity of solutions 
Hyper-volume metric 

Computational performance Total CPU time 

 

 

The hyper-volume measure is the area of the dominated region by a non-dominated 

solution set, and a reference point is needed for calculating hyper-volume measure, which 

is a point weakly dominated by all vectors in the Pareto-frontier (Deb, 2001). In the 

experiments, the origin of the objective space is used as the reference point. The hyper-

volume metric provides a single measurement to assess both the convergence and spread 

of a Pareto-optimal set of solutions, and it does not rely on knowledge of the Pareto-

frontier. The main strength of this measure is that it is strictly monotonic with respect to 

Pareto dominance. To avoid favoring for objectives with higher absolute value, the hyper-

volume metric is typically calculated in a normalized objective space, where each objective 

function value is normalized to a common interval. The hyper-volume metric (HVM) can 

be formulated as follows: 

 

𝐻𝑉𝑀 = ⋃ 𝑉𝑖
𝑅

|𝑃|

𝑖=1

 (6.3) 

 

where Vi is the volume of the objective space dominated by solution i∈P with respect to 

the reference point R.  
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In the objective space with only two objectives, the hyper-volume metric measures the area 

of the objective space that is weakly dominated by the image of the solutions of a non-

dominated set, where this area is bounded by the reference point R (Figure 39). The size of 

this area reflects the quality of the non-dominated set according to the hyper-volume 

metric. The larger this area, the greater the hyper-volume metric. An algorithm with greater 

hyper-volume metric is considered to be superior since it measures both the convergence 

and the spread of the solution to the Pareto-frontier. We applied the hyper-volume metric 

by utilizing normalized objective function values due to the possibility of arbitrary scaling 

of the objectives. It is worth to mention that the computational complexity of computing 

the hyper-volume metric for a set of n solutions with two objectives is O(nlog(n)).  
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Figure 39: Illustration of Hyper-Volume Metric 

 

 

The second metric, total CPU time, evaluates the computational performance of the 

algorithm by calculating total computation time spent for finding the approximate Pareto-
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frontier. This metric is significantly important for the solution time requirement based on 

the planning horizon of the practical runway operations scheduling problem.  

 

6.4.2 Experimental Setup and Results 

In MOEA literature, the performance of algorithms is widely evaluated by using 

standardized benchmark problems. Although computational time required to solve these 

benchmark problems is much lower than a real-life problem’s solution time, they allow to 

compare different algorithms as well as to replicate the experiments. The two benchmark 

problems that are chosen for MOO experiments are: (1) Fonseca and Fleming’s two-

objective minimization problem, denoted as “F&F,” and (2) Zitzler–Deb–Thiele's function 

number 3, denoted as “ZDT3.” The main motivation behind utilizing these problems is that 

they both have challenging characteristics regarding convergence to actual Pareto-frontier 

and maintain diversity, and they represent features of real-life problems. 

 

The first test function, Fonseca and Fleming’s bi-objective minimization test problem, has 

been widely used as a benchmark problem for MOO and suggested by Fonseca and 

Fleming (1996). The solution to the problem has large and non-linear trade-off curve that 

challenge the algorithm’s ability to find and maintain the entire Pareto-frontier uniformly. 

F&F benchmark function is shown below: 

 

min  𝑓1 (𝑥1, 𝑥2) = 1 − exp (− ∑ (𝑥𝑖 −
1

√2
)

22

𝑖=1
)  

(6.4) 
min  𝑓2 (𝑥1, 𝑥2) = 1 − exp (− ∑ (𝑥𝑖 +

1

√2
)

22

𝑖=1
)  

−4 ≤  𝑥𝑖  ≤ 4          ∀ 𝑖 = 1,2. 

 

Based on the guidelines proposed by Deb (1999) in the development of benchmark 

problems for MOO, Zitzler et al. (2000) proposed six ZDT series benchmark problems. 

ZDT3 is one of these six problems, which has two objective functions and two decision 

variables. The Pareto-optimal set for this benchmark function comprises several 
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discontinuous convex parts in the objective space. ZDT3 benchmark function is given 

below: 

 

min  𝑓1 (𝑥) = 𝑥1  

(6.5) 

min  𝑓2 (𝑥) = 𝑔(𝑥) ℎ(𝑓1(𝑥), 𝑔(𝑥))  

𝑔(𝑥) = 1 +
9

29
 𝑥2 

ℎ(𝑓1(𝑥), 𝑔(𝑥)) =  1 − √
𝑓1(𝑥)

𝑔(𝑥)
− (

𝑓1(𝑥)

𝑔(𝑥)
) sin(10𝜋𝑓1(𝑥)) 

0 ≤  𝑥𝑖  ≤ 1          ∀ 𝑖 = 1,2. 

 

In order to evaluate performance under noisy conditions, a noise (random variation) 

element is integrated into the test problems by applying noise as an additive normal 

distributed perturbation with zero mean (Eq. 6.6). To mimic the simulation noise, the noise 

element is assumed to have a disrupting effect on the value of each solution in the objective 

space. 

 

𝑓(𝑥)̅̅ ̅̅ ̅̅ = 𝑓(𝑥) + 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎2) (6.6) 

 

where Normal denotes the normal distribution, and σ2 represents the existing level of noise.  

 

The non-elitist and elitist versions of the proposed hybrid Tabu/Scatter Search algorithm 

are compared with respect to the magnitude of noise present. Computational experiments 

are performed at noise levels of σ2 = {0.01, 0.05, 0.1, 0.15, 0.2} to assess the performance 

under the impact of noise.  

 

The results from the noisy benchmark functions are shown in Table 11. The results are 

based on normalized objective values and constitute the average of 500 independent runs. 

Based on the reference point, the hyper-volume metric value is normalized between 0 and 

1, where the optimization is performed for 10000 function evaluations. 
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Table 11: Benchmark Results 

 

Metric 

Elitist HT/SS Non-Elitist HT/SS 

HVM 

CPU 

time 

(seconds) 

HVM 

CPU 

time 

(seconds) 

F&F + 0.01 noise 0.956 332 0.908 563 

F&F + 0.05 noise 0.805 465 0.753 741 

F&F + 0.10 noise 0.731 598 0.674 1102 

F&F + 0.15 noise 0.657 846 0.442 1681 

F&F + 0.20 noise 0.551 1278 0.367 1977 

ZDT3 + 0.01 noise 0.978 231 0.921 367 

ZDT3 + 0.05 noise 0.826 294 0.695 463 

ZDT3 + 0.10 noise 0.721 583 0.553 896 

ZDT3 + 0.15 noise 0.716 965 0.463 1430 

ZDT3 + 0.20 noise 0.664 1164 0.457 1731 

 

 

Average hyper-volume metrics and CPU times for (a) F&F and (b) ZDT3 attained by non-

elitist and elitist versions of the proposed hybrid Tabu/Scatter Search algorithm (HT/SS) 

under the influence of different noise levels are shown in Figure 40 and 41, respectively. 
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(a) F&F 

 

 
(b) ZDT3 

Figure 40: Hyper-Volume Metric under Different Noise Levels 
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(a) F&F 

 

 
(b) ZDT3 

Figure 41: Average CPU Time under Different Noise Levels 

 

 

One of the primary requirements for an effective optimization component in a SbO 

framework is that it should be able to effectively handle different levels of noise. As 
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Table11, Figure 36 and 37 illustrates, the elitist version of the proposed optimization 

algorithm outperforms the non-elitist version with respect to performance measures over 

several levels of noise. To compare the results whether the performance difference is 

statistically significant, we have applied a non-parametric Kruskal-Wallis test at a 

significance level α = 0.05. The Kruskal-Wallis test indicated that the values have a 

statistical confidence in the sense that the differences are unlikely to have occurred by 

chance with a probability of 95 percent. 

 

In addition, one-way ANOVA tests are performed to determine the effect of noise on the 

performance of both versions of the algorithm with respect to hyper-volume metric. The 

results of these one-way ANOVA tests revealed that the performance difference between 

versions of the algorithm is statistically significant with a significance level α = 0.05 for 

all noise levels. 

 

As a result, comparison of non-elitist and elitist HT/SS in terms of convergence rate and 

diversity of solutions as well as computational time shows that elitist version of the 

proposed algorithm yields greater values of hyper-volume metric and CPU times. It 

illustrates that solutions offered by the elitist version are closer to the Pareto-optimal front 

compared to the non-elitist version. Considering the efficiency of the algorithms, elitist 

HT/SS needs less time to complete all function evaluations. In summary, experiments 

provide evidence that elitist HT/SS presents better results than the non-elitist version in 

terms of both effectiveness and efficiency. 

 

Finally, the effect of dynamic update mechanism in the Solution Combination method and 

the rebuilding strategy on the proposed algorithm’s convergence rate is evaluated. To 

achieve this, a comparison is performed between the dynamic and the static update 

mechanisms in the Solution Combination method using the elitist version of the proposed 

hybrid Tabu/Scatter Search algorithm. Also, another comparison is conducted between the 

elitist version of the algorithm with and without the rebuilding strategy.  
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For these comparisons a commonly used measure for evaluating convergence, namely the 

Υ metric, is used. This metric measures the degree of convergence by calculating the 

average minimum Euclidean distances from each of the obtained non-dominated solutions 

to the closest solution in the true Pareto-frontier (Deb et al., 2002). It is worth to mention 

that the smaller the value of Υ, the better the convergence rate of the algorithm. Figure 42 

shows the comparison between the algorithm with the dynamic update mechanism and with 

the static mechanism in the Solution Combination under different noise levels, and Figure 

43 illustrates the comparison between the algorithm with the rebuilding strategy and 

without the rebuilding strategy under different noise levels.  

 

 

 

  (a) F&F     (b) ZDT3 

Figure 42: Comparison of the Proposed Algorithm with Different Update Mechanisms  
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  (a) F&F     (b) ZDT3 

Figure 43: Comparison of the Proposed Algorithm with and without Rebuilding Strategy  

 

 

The results illustrate that the dynamic update mechanism in the Solution Combination 

method is an effective scheme in terms of convergence strength for generating new Pareto-

optimal solutions compare to the static update mechanism. Also, results show that the 

rebuilding strategy, which partially rebuilds the reference set when the Solution 

Combination and Improvement methods do not provide diverse solutions, is an effective 

scheme in improving convergence towards the Pareto-frontier. We applied a non-

parametric Kruskal-Wallis test to compare the results whether the performance difference 

is statistically significant at a significance level α = 0.05, which indicated that the values 

have a statistical confidence in the sense that the differences are unlikely to have occurred 

by chance with a probability of 95 percent. 

 

6.4.3 Key Findings from Multi-Objective Optimization Experiments  

The above computational multi-objective optimization experiments led us to the following 

findings: 

 

(a) The computational results for two benchmark problems with different 

Pareto-optimality characteristics indicate that the proposed hybrid Tabu/Scatter Search 

algorithm is able converge to and provide diversity on the Pareto-frontiers of both 
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benchmark problems. The benchmark problems, where a noise factor is added to these 

problems, provided necessary complexity to evaluate the proposed algorithm.  

 

(b) During the experiments the elitist version of the proposed hybrid 

Tabu/Scatter Search algorithm was compared with the non-elitist version in terms of both 

hyper-volume metric and computation time. The results concluded that the performance of 

the algorithm improves significantly when elitism strategy is employed. However, elitism 

strategy should be applied carefully in presence of noise since noise enhanced solutions in 

the archive might prevent true high-quality solutions out of the archive, and in turn, the 

search process might be biased towards less promising regions in the search space.  

 

(c) Also, the effect of the magnitude of the noise on both versions of the 

algorithms is evaluated. The results show that noise has a detrimental effect on the 

algorithm’s performance in terms of convergence and diversity, which is observed as high. 

It is also observed that optimization process degrades as the level of noise increases. 

Simulating a solution multiple times reduces the noise by a factor of number of simulation 

runs, however, this comes at the expense of a higher computational time. 

 

(d) The dynamic update mechanism and the rebuilding strategy, which are 

employed in the proposed algorithm, significantly contribute to its convergence capability. 

The main strength of the dynamic update mechanism comes from its application in the 

Solution Combination method to new candidate solutions in such a way that it combines 

these solutions faster compare to a static update mechanism. On the other hand, the key 

strength of the rebuilding strategy stems from its capability of partially rebuilding the 

reference set when the Solution Combination and Improvement methods are not capable 

of generating solutions of satisfactory quality to dislocate current solutions in the reference 

set.  

 

(e) Utilizing adaptive memory structures is important for creating Scatter 

Search algorithms for solving practical MOO problem instances. This strategy observed to 



 

 

209 

be systematic in the sense that it progresses towards to Pareto-optimal rather than revisiting 

the earlier developed solutions too many times unnecessarily. 

 

(f) The evidence obtained from the experiments show that the proposed 

algorithm can converge to multiple solutions simultaneously by encouraging competition 

between solutions within the same local optimum neighborhood. This is achieved mainly 

by maintaining a good balance between quality and diversity in the reference set. Also, 

diversity preservation and two-tier structure of the reference set prevent the optimization 

process from focusing on a specific part of the Pareto-frontier while neglecting the rest. 

 

(g) Although the SS algorithm template defines the generic strategies, to 

develop an effective SS algorithm still requires many design decisions to be made and a 

balance between diversification and intensification mechanisms to be adjusted. 

Experiments revealed that the dominance procedure increases the exploration capabilities 

of the optimization process. 

 

(h) Finally, employing Scatter Search’s systematic and strategically designed 

mechanisms instead of probabilistic rules of evolutionary methods for solving multi-

objective optimization problems provides a robust framework for developing gradually 

improved methods. In addition, connecting Scatter Search with the Tabu Search setting, 

where adaptive memory structures and responsive exploration mechanisms are used, 

makes it suitable for simulation-based optimization, which requires a capability of 

searching the solution space economically and effectively. 

 

6.5 Experimental Setup for Simulation-based Optimization 

 

6.5.1 Runway Operations Performance Metrics 

As in any complex system, there is no single best performance metric that captures every 

aspect of runway operations. Therefore, different performance metrics are used for 

evaluation. Airport capacity and air traffic delays are two of the principal performance 
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metrics for airports in practice. Airport capacity is a measure of the maximum number of 

runway operations (landing or take-off) that can be accommodated on an airport within a 

given period, which is usually an hour, with 95 percent confidence level (Odoni et al., 

1997a). While estimating this measure, several assumptions required to be incorporated 

regarding minimum separation requirements, fleet mix, weather conditions and 

technological aides. A variety of tools and techniques are used in estimating airport 

capacity ranging from analytical models to simulation tools. However, it is commonly 

estimated with the help of simulation tools because certain aspects of the runway operations 

cannot be reasonably addressed by using existing analytical models.  

 

The airport capacity is usually illustrated by a Pareto-frontier, which shows the maximum 

number of arrivals and departures that can be performed within one hour. As shown on 

Figure 44, all observed runway throughput values are within the capacity frontier. 

Expanding runway infrastructure may expand the feasible region, but most of the time it is 

not feasible or practical. Due to this fact, the better option is to increase airport capacity by 

sequencing aircraft such a way that total separation requirements are minimum. 
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Figure 44: Typical Airport Capacity Curve 

 

 

The most commonly used definition of airport capacity is practical runway throughput 

(utilization), which is the number of runway operations that can be accommodated. Aircraft 

delays are also an important performance metric in practice because of costs associated 

with them and their undesirable consequences, such as missed flight connections, 

cancellations, and diversions, etc. Aircraft sequence changes are also considered as an 

essential metric since these changes account for the workload of air traffic controllers, and 

also, this metric is a representation of the fairness among aircraft. Therefore, average 

runway utilization, average and longest runway operation delays, and average sum of 

sequence changes are determined as the metrics for evaluating the performance of runway 

operations, as given in Table 12.  
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Table 12: Runway Operations Performance Metrics 

 

Category Performance Metrics 

Capacity Average runway utilization 

Delays 

Average landing delay 

Longest landing delay 

Average take-off delay 

Longest take-off delay 

Position shifts Average sequence change 

 

 

The runway utilization is calculated for every 5-minute interval as a percentage of time in 

each interval for which runways are being used for active runway operations. The types of 

active runway operations are listed as follows: (a) final approach, which is the time an 

aircraft enters to final approach fix to touchdown time, (2) runway occupancy for landing 

and take-off, which is the time between touchdown and leaving the runway for arriving 

aircraft, and the time between start of take-off roll to wheels-off for departing aircraft.  

 

The average landing and take-off delays are calculated by aggregating all aircraft delays 

for each runway operations, and then, averaging over total aircraft for landing and take-

off, respectively. The aircraft delay is calculated as the difference between the aircraft’s 

actual runway operation time and the estimated runway operation time. Average landing 

and take-off sequence changes are calculated based on the number of position shifts 

compared to FCFS sequence for both runway operations.  

 

6.5.2 Dataset 

The set of instances most often used in the literature for aircraft landing problems (Airland 

1-13) are certainly those in the OR-Library (Beasley, 1990). However, these instances do 

not reflect the actual real-life problem, and also, they are trivial for high-performance 

computers such that they can be easily handled in a reasonable time with state-of-the-art 
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MIP solvers. The second most commonly used benchmark problem instances are proposed 

by Ghoniem et al. (2015) for multiple runway aircraft scheduling problems. In these 

benchmark instances, each aircraft is characterized by its ready time, target time, due time, 

operation type (arrival or departure), weight class (“Heavy”, “Large”, and “Small”), 

priority (tardiness weight), and separation times with other aircraft. Every aircraft was set 

to a time window of 600 seconds. These instances are composed of M = {2, 3, 4, 5} 

runways and N = {15, 20, 25} aircraft. A set of 55 different instances is proposed, at the 

size (N×M) and they are denoted using the pair (n, m), where n is the number of aircraft 

and m is the number of runways.  

 

However, the benchmark problem instances of Ghoniem et al. (2015) are also not suitable 

for our experimental study for several reasons. First of all, these instances are structured in 

such a way that all data assumed to be deterministic. Second, aircraft weight classes were 

randomly generated without taking into account the fleet mix ratio in an airport, also 

without considering the weight classes “B757” and “Super” that are included in the official 

regulations issued by the FAA. Lastly, aircraft target times were calculated by adding 20 

seconds to ready times which is an invalid assumption in practice. Consequently, both 

benchmark instances, i.e. OR Library (Beasley, 1990) and Ghoniem et al. (2015), do not 

represent the practical situation in a way that it can be used for our validation (proof-of-

concept) study. Also, it is noteworthy to mention that although www.SimOpt.org website 

provides a testbed of simulation optimization problems and contains a variety of test 

problems for simulation optimization methods, aircraft or runway scheduling or any similar 

problem has not been included in the problem library yet. 

 

For experimental study, actual operations dataset was utilized, which is obtained from a 

case study airport, namely Washington Dulles International (IAD) airport. The dataset is 

primarily used for determining the operational benefits that would be achieved by utilizing 

the proposed approach for practical runway operations scheduling. The dataset is collected 

through the following data sources: 
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(a) Aviation System Performance Metrics (ASPM) and Airline Service Quality 

Performance (ASQP) databases: These core databases are part of FAA Operations & 

Performance database, which provides publicly available historical data, and they are 

available online at https://aspm.faa.gov. These databases provide flight-specific OOOI 

(Out of the gate, Off the ground, On the ground and Into the Gate) times and airport 

throughput in 15-minute interval, as reported by the airlines. The “Off the ground” times 

can be used to calculate the airport throughput in the same 15-minute interval. These 

databases also provide airport efficiency, runway configurations, and airport-level 

aggregate data, which enumerates the total number of arrivals and departures in 15-minute 

interval. Such data is commonly used to develop queuing models of airport operations or 

empirically estimate airport capacity envelopes. However, the level of detail is typically 

insufficient to investigate other factors that affect runway operations, such as interactions 

between landing/take-off aircraft, runway occupancy times, etc. 

 

(b) The Operations Network (OPSNET): This database is the official source of 

historical air traffic activity provided as part of FAA Operations & Performance database 

(also available online at https://aspm.faa.gov). Monthly and annual counts of aircraft 

operations are available at the facility, state, regional, and national levels. Also, the number 

of runway operations (take-offs and landings) at major airports can be obtained from this 

database.  

 

(c) Official airline guide (OAG): This database provides information only for 

scheduled flights, and also, fleet mix information is included, which is required for 

estimating the total runway activity by specific aircraft type, or aircraft grouping. This 

database is available online at www.oag.com, but most of the data is not publicly available. 

 

(d) Bureau of Transportation Statistics (BTS) database: This database provides 

T-100 Air Carrier Statistics, which is a monthly commercial aviation traffic data reported 

by airlines, and it includes not only scheduled passenger flights but also cargo and 

nonscheduled flights. This database is available online at www.rita.dot.gov. 
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(e) Flightstats database: This database provides flight performance data based 

on operational data obtained from airline operational data feeds and aggregated data from 

its historical databases. This database is available online at www.flightstats.com. 

 

(f) Data obtained as a result of simulation runs with a validated and FAA 

approved simulation tool, namely the MITRE Corporation runwaySimulator. 

 

We only considered scheduled flights in the dataset from IAD. Nonscheduled flights 

(general aviation and military) and other flights using IAD airport’s TMA without landing 

are not considered due to the fact that all the required input data for the simulation model 

are available only for scheduled flights. However, according to ASPM data, these 

nonscheduled and other flights account for only a small fraction. Therefore, it is reasonable 

to assume that the extracted scheduled flight information reflects all the arrival and 

departure operations at IAD. 

 

The scheduled arrival and departure flights data are mainly obtained from OAG database. 

Although OAG database includes the scheduled flights data, it does not include actual 

arrival and departure flight data and delay statistics. The limitations of OAG database is 

mitigated by obtaining actual arrival and departure flight data and delay statistics regarding 

individual flights from FAA Operations & Performance and BTS databases.  

 

As explained in Chapter 4, ASPM database provides the OOOI data in where this data is 

estimated for flights of non-OOOI airlines and for OOOI airlines where OOOI data are not 

available. Since ASPM database estimation may not be accurate, non-OOOI data is 

detected and corrected by using the Flightstats database when it is available. In addition, 

Flightstats database is used for finding the missing data gathered from various databases, 

and ensuring accuracy. Additional information, such as information regarding merge fixes, 

initial approach fixes, stabilized approach fixes, final approach fixes and departure fixes, 

is obtained through the airport’s website (www.flydulles.com) and through a commercial 

website www.airnav.com, which includes navigation and TMA related information. 

 



 

 

216 

After the analysis of the available data for IAD airport on its major runways, only peak 

demand time periods are considered. Total number of runway operation per hour in 2015 

for IAD is given in Figure 45. The data between 7 am and 11 pm local time at the airport 

is taken into consideration to avoid periods of low activity since runway throughput is 

usually lower during such periods. Also, air traffic controllers’ workload is usually high in 

such periods, and controllers can benefit the most from decision support tools in such 

periods. A time horizon of 20 minutes is considered for aircraft schedules mainly for two 

practical reasons: (1) for arriving aircraft, the scheduled landing time is assigned about 20-

30 minutes in advance of landing, and (2) for departing aircraft, take-off is scheduled 

approximately 20 minutes before target take-off time. 

 

 

 

Figure 45: IAD Total Number of Runway Operation per Hour in 2015 

 



 

 

217 

IAD is operating under arrival or departure priority configuration with north or south flow 

operations both in visual flight rules (VFR) and instrument flight rules (IFR) conditions. 

Due to the fact that air traffic controllers enforce minimum separation requirements in only 

IFR conditions, we focused on only the periods in which IFR conditions are applied. Also, 

for the air traffic direction of the flow, based on the most recent (2014) FAA airport 

capacity profile, hourly runway operations rate under IFR conditions and arrival priority 

configuration for south flow (109) is greater than north flow (108) (FAA, 2015a). 

Therefore, data that include south flow operations are selected for experimental study. The 

data included in the problem instances, which are extracted from the dataset, are listed 

below:  

 

(a) Meter fix assignments and estimated time of landing (ETL) for arriving 

aircraft. 

(b) Estimated time of take-off (ETT) for departing aircraft. 

(c) Operation type and weight class of both arriving and departing aircraft. 

(d) Actual arrival times to entry points and holding area for arriving and 

departing aircraft, respectively. 

 

Maximum delay time for both arriving and departing aircraft considered as 600 seconds, 

which is a hard constraint. Minimum separation times between aircraft weight classes are 

taken as calculated in Chapter 4. 

 

6.5.3 Case Study Airport 

As previously mentioned, historical data that belong to Washington Dulles International 

(IAD) airport is utilized in the experimental study. Historically, IAD has been ranked 

among the top 30 busiest airports in the US (FAA, 2015b). IAD has more than 150 runway 

operations per hour in VFR conditions and more than 100 runway operations per hour in 

IFR conditions. IAD has been suffering from a high level of delay that results from the 

scheduled demand exceeding the available capacity, which makes it an ideal case for 

experimental study.  
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IAD handles both domestic and international flights, and the traffic volume is relatively 

unstable throughout the day. IAD operates in either arrival or departure priority mode, as 

opposed to a single balanced operation between arrivals and departures to maximize 

capacity. Table 13 shows the capacity rates for arrivals and departures operations at IAD, 

presented as a range depending on the priority configuration mode (Jennifer Gentry et al., 

2014). 

 

 

Table 13: Runway Operations per hour in IAD 

 

Configuration 
Weather Conditions 

Visual Marginal Instrument 

Arrival Priority 150-159 112-120 108-111 

Departure Priority 156-164 136-145 125-132 

 

 

Table 14 presents the annual fleet mix percentage for 2014 by weight class for IAD airport, 

where fleet mix does not change with the weather since IAD do not have substantial 

number of VFR operations (Jennifer Gentry et al., 2014).  

 

 

Table 14: Annual Fleet Mix Percentage for 2014 by Aircraft Wake Class in Washington 

Dulles International Airport 

 

Heavy B757 Large Small 

10.1 3.8 74.3 11.8 
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IAD management has the authority and responsibility for controlling the IFR arrival, 

departure, and en-route aircraft within the IAD airspace. IAD operates in a north/south 

flow, and there exist four runways: (1) runway 01 Right (01R) – 19 Left (19L), (2) runway 

01 Center (01C) – 19 Center (19C), (3) runway 01 Left (01L) – 19 Right (19R), and (4) 

runway 30 – 12. IAD’s runway layout is illustrated in Figure 46. 

 

 

 

Figure 46: IAD Runway Layout 

 

 

The runway configuration in IAD is often determined based on wind direction and weather 

conditions. Hence, depending on the following general rules, the most advantageous 

runway configuration is commonly selected to facilitate the air traffic. Active runways 

depending on the wind conditions in IAD are shown in Table 15, and detailed below: 
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(a) Runway 12 can only be used for arrivals and can only be used when landing 

on the 19's.  

(b) Runway 30 can only be used for departures.  

(c) If using the 1’s and winds are between 210 clockwise to 030, runway 30 

will be active for departures only.  

(d) If using the 19’s and winds are between 030 clockwise to 210, runway 12 

will be active for arrivals only.  

(e) If using the 19’s and winds are between 030 counterclockwise to 210, 

runway 30 will be active for departures only. 

 

 

Table 15: Active Runways Depending on the Wind Conditions in IAD 

 

Wind Runways 

100 clockwise to 280 19R, 19L and 19C 

280 clockwise to 100 1R, 1L and 1C 

Calm (up to 5 knots) 19R, 19L, 19C and 12 

 

 

As can be seen from the IAD airport layout in Figure 46, the 19R and 1L runways have 

four exits, two of which are before the halfway of the runway and two others are after that; 

19L, 19C, 1R, and 1C runways have three exits, one in the middle, one before the halfway 

of the runway and the other is after that; 12 and 30 runways have only two exits, one of 

which is before the halfway of the runway and the other is after that. Average runway 

occupancy times are calculated by analysis of historical data for the IAD airport and shown 

in Table 16. 
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Table 16: Average Runway Occupancy Times in seconds 

 

Operation / 

Aircraft Type 
Heavy B757 Large Small 

Arrival 40 40 35 30 

Departure 50 45 40 30 

 

 

Average transit ground speeds between nodes in knots are shown in Table 17. Since this 

data is not available in any of the existing databases, ground speeds between each node in 

arrival and departure network are determined by experimenting the TMA of IAD airport 

with the MITRE Corporation runwaySimulator. 

 

 

Table 17: Average Transit Ground Speeds between Nodes in knots 

 

Operation Segment Heavy B757 Large Small 

Arrivals 

Entry point - Meter fix 185 185 190 191 

Meter fix - IAF 185 185 190 191 

IAF - FAF 170 170 174 170 

FAF - SAF 165 163 165 160 

SAF - Runway 135 133 134 120 

Runway - Runway Exit 35 35 34 25 

Departures 

Take-off - Initial Climb 173 166 154 126 

Initial Climb - En-route 

Climb 
184 177 175 141 

En-route Climb - 

Departure fix 
251 243 231 182 
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6.6 Simulation-based Optimization Experiments 

 

The simulation-based optimization (SbO) approach proposed in this dissertation is 

investigated in more details with three scenarios at Washington Dulles International (IAD) 

airport in order to conduct a proof-of-concept (validation) of the approach by analyzing the 

benefit of the approach over FCFS and deterministic approaches. For each scenario, these 

three optimization approaches (FCFS, deterministic, and SbO) are compared each other 

with regard to previously mentioned performance measures.  

 

For the FCFS approach, sequencing and scheduling is calculated by using a first-come, 

first-served order such that aircraft land or take-off in the same order they arrive in the 

entry points or the holding area for landing and take-off, respectively. Since FCFS 

sequence is considered as the fairest runway operations schedule, average sequence 

changes are not considered as a performance metric. For the deterministic approach, 

deterministic version of the proposed approach is employed, where performance measures 

are calculated by using the objective function values instead of obtaining them from the 

simulation component. In this deterministic approach, an internal fitness function is used 

to account for the objective function, which is minimizing the total cost for each aircraft 

linearly dependent on deviation from target time, i.e. minimizing the total deviation from 

the target time (earliness and tardiness). Both in FCSF and deterministic approaches, the 

time windows, minimum separation requirements and other constraints are considered as 

the same in the SbO approach. 

 

For the simulation-based optimization (SbO) approach, since it produces the best known 

Pareto set of solutions, i.e. a set of trade-off solutions, the best solution is determined by 

the following weights: runway utilization objective (f1) 3/4, and fairness objective (f2) 1/4. 

The main reason for giving runway utilization objective much higher priority than fairness 

objective is that from air traffic controllers’ (decision-makers’) perspective runway 

utilization is typically much more important than fairness in actual runway operations. 
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After finding solutions (runway operations schedules) from both FCSF and deterministic 

approaches, these solutions are evaluated using our discrete-event simulation model in 

order to determine previously explained performance metrics associated with each 

solution. As illustrated in Figure 47, solutions obtained from both optimization approaches 

are subject to solution evaluation using the simulation model to evaluate their actual 

performance in real-life like environment, where there are several sources of uncertainties. 

Solution evaluation using the simulation model is done by inputting the schedule to the 

model and running it 50 times. The results are recorded by averaging the performance 

metric obtained over the simulation runs. It is worth to mention that the all previously 

mentioned performance metric are obtained from the simulation model. However, the 

additional metric for computational time is encompass only the optimization phase, the 

time for solution evaluation with the simulation model is not included in this metric. 
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Figure 47: Optimization Approaches and Solution Evaluation 
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In order to account for the real-life operational conditions, the simulation period in the 

experiments consisted of half an hour before and after the one-hour solution period. Within 

the scenarios the runway operations scheduling problem is dealt with periodically updating 

the previous schedule based on a rolling horizon approach, where a large one-hour instance 

is divided into several sub-problems (time windows) that are solved independently. After 

all sub-problems are solved, the obtained solutions that pertain to different time windows 

are combined together to find the one-hour solution. 

 

The three scenarios that are created for the experimental study are based on airport 

operation priority configuration, runway configuration and hourly air traffic demand rate, 

as shown in Table 18. The data required for the Scenario 1 and 2 are extracted from the 

dataset according to scenario configuration in order to reflect the current operation 

environment of IAD airport in arrival and departure priority configuration, respectively. 

On the other hand, the data required for the Scenario 3 is obtained from the MITRE 

Corporation runwaySimulator tool by simulating the future operating environment of IAD 

as given in the scenario data.  

 

 

Table 18: Scenarios for the Experimental Study 

 

Scenario 
Arrival 

Runways 

Departure 

Runways 

Hourly 

Rate 

Scenario 1 Current Operations 

in Arrival Priority 
19C, 19L 30 103 

Scenario 2 Current Operations 

in Departure Priority 
19C, 19L 19L, 30 108 

Scenario 3 Future Operations 19C, 19L, 19R 19L, 30 168 
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6.6.1 Scenario 1 - Current Operations in Arrival Priority 

This scenario reflects the current operation environment of IAD airport operating in arrival 

priority. IAD operates in the arrival priority configuration approximately 36 percent of the 

time in IFR conditions, which equates to less than 3 percent annually. 

 

The extracted data for this scenario from the dataset has a fleet mix consists of 9.7 percent, 

3.9 percent, 73 percent, and 14 percent of heavy, B757, large, and small aircraft, 

respectively. There are total of 103 flights in the data with 56 arrivals and 47 departures, 

which belongs to the busiest period of time between 16:00 and 17:00 in IAD. This hourly 

rate is a high traffic demand situation for IAD and close to its declared capacity in 

instrument conditions, namely 109 operations per hour, for south flow arrival priority 

configuration. Therefore, Scenario 1 is a realistic traffic demand for busy hours on a 

completely utilized runway system for IAD operating in arrival priority. 

 

Table 19 summarizes the aggregated computational results for Scenario 1. We solved 3 

problem instances each has 20-minute planning horizon with both FCFS, deterministic and 

simulation-based optimization (SbO) approaches and previously determined performance 

metrics are reported. We also report the average computational time, which is the CPU 

time consumed to find the solution.  
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Table 19: Aggregated Computational Results for Scenario 1 

 

Metric FCFS Deterministic SbO 

Average runway utilization 

(seconds) 
3471 3286 3189 

Average take-off delay (seconds) 87 81 62 

Longest take-off delay (seconds) 272 246 144 

Average landing delay (seconds) 63 48 36 

Longest landing delay (seconds) 241 217 127 

Average sequence change 0 24.8 11.2 

Average computation time 

(seconds) 
12 357 1200 

 

 

As shown in the computational results, in terms of runway utilization and average and 

longest runway operations delay, the SbO approach outperforms the FCFS and 

deterministic approaches. Since take-offs are cheaper to delay than landings, the average 

take-off delay is higher than the average landing delay. The number of average aircraft 

sequence change is higher in deterministic approach since this algorithm is not trying to 

minimize position shifts.  

 

For Scenario 1, the average delay from three different runway operations scheduling 

approaches are illustrated and compared each other in Figure 48. The solutions obtained 

from 3 problem instances (each 20 minutes) aggregated into one graph. According to the 

graph, the delay savings from the SbO approach steadily increases as scheduling time 

progresses. These additional savings are obtained by explicitly considering the 

uncertainties. The box-and-whisker plots for runway utilization, sequence change and 

computation time are shown in Figure 49-51, and normalized Pareto-frontier for Scenario 

1 is given in Figure 52. 
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Figure 48: Average Delay Plot for Scenario 1 

 

 

 

Figure 49: Box-and-Whisker Plot for Runway Utilization - Scenario 1 
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Figure 50: Box-and-Whisker Plot for Sequence Change - Scenario 1 

 

 

 

Figure 51: Box-and-Whisker Plot for Computation Time - Scenario 1 
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Figure 52: Normalized Pareto-frontier for Scenario 1 

 

 

6.6.2 Scenario 2 - Current Operations in Departure Priority 

This scenario reflects the current operation environment of IAD airport operating in 

departure priority. IAD operates in the departure priority configuration approximately 10 

percent of the time in IFR conditions, which equates to less than 1 percent annually. 

 

The extracted data for this scenario from the dataset has a fleet mix consists of 10.1 percent, 

5.6 percent, 73.2 percent, and 11.1 percent of heavy, B757, large, and small aircraft, 

respectively. There were total of 108 flights in the data with 46 arrivals and 62 departures, 

which belongs to the busiest period of time between 17:00 and 18:00 in IAD. This hourly 

rate is a high traffic demand situation for IAD and close to its declared capacity in 

instrument conditions, namely 110 operations per hour, for south flow arrival priority 

configuration. Therefore, Scenario 2 is a realistic traffic demand for busy hours on a 

completely utilized runway system for IAD operating in departure priority. 
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Table 20 summarizes the aggregated computational results for Scenario 2. We solved 3 

problem instances each has 20 minutes planning horizon with both FCFS, deterministic 

and simulation-based optimization (SbO) approaches and previously determined 

performance metrics are reported. We also report the average computational time, which 

is the CPU time consumed to find the solution.  

 

 

Table 20: Aggregated Computational Results for Scenario 2 

 

Metric FCFS Deterministic SbO 

Average runway utilization 

(seconds) 
3473 3321 3273 

Average take-off delay (seconds) 97 82 67 

Longest take-off delay (seconds) 295 211 178 

Average landing delay (seconds) 89 76 60 

Longest landing delay (seconds) 277 246 182 

Average sequence change 0 15.8 9.7 

Average computation time 

(seconds) 
17 731 1200 

 

 

As shown in the computational results, in terms of runway utilization and average and 

longest runway operations delay, the SbO approach dominates the FCFS and deterministic 

approaches. Compared to Scenario 1, where runway system is operating in arrival priority 

configuration, average runway utilization and average runway operation delays increased. 

This is mainly due to complex structure of departure operations as well as the existence of 

more uncertainty elements in departures. 

 

For Scenario 2, the average delay from three different runway operations scheduling 

approaches are illustrated and compared each other in Figure 53. The solutions obtained 

from 3 problem instances (each 20 minutes) aggregated into one graph. The result 
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presented in the graph validates that the SbO approach is able to generate schedules with 

significantly better average delay values than deterministic and FCFS approaches. The 

box-and-whisker plots for runway utilization, sequence change and computation time are 

shown in Figure 54-56, and normalized Pareto-frontier for Scenario 2 is given in Figure 

57. 

 

 

 

Figure 53: Average Delay for Scenario 2 
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Figure 54: Box-and-Whisker Plot for Runway Utilization - Scenario 2 

 

 

 

Figure 55: Box-and-Whisker Plot for Sequence Change - Scenario 2 
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Figure 56: Box-and-Whisker Plot for Computation Time - Scenario 2 

 

 

 

Figure 57: Normalized Pareto-frontier for Scenario 2 
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6.6.3 Scenario 3 - Future Operations 

This scenario attempts to reflect the future operation environment of IAD airport. The data 

for the Scenario 3 is obtained from a validated and FAA approved simulation tool (the 

MITRE Corporation runwaySimulator ). 

 

The data generated from the simulation tool for this scenario has a fleet mix consists of 

10.1 percent, 4.2 percent, 75 percent, and 10.7 percent of heavy, B757, large, and small 

aircraft, respectively. There were total of 168 flights in the data with 88 arrivals and 80 

departures. This hourly rate is a high traffic demand situation for IAD and close to twice 

its declared current capacity in instrument conditions for south flow arrival priority 

configuration. Therefore, Scenario 3 is a realistic traffic demand for busy hours on a 

completely utilized runway system in the future for IAD. 

 

Table 21 summarizes the aggregated computational results for Scenario 3. We solved 3 

problem instances each has 20 minutes planning horizon with both FCFS, deterministic 

and simulation-based optimization (SbO) approaches and previously determined 

performance metrics are reported. We also report the average computational time, which 

is the CPU time consumed to find the solution.  
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Table 21: Aggregated Computational Results for Scenario 3 

 

Metric FCFS Deterministic SbO 

Average runway utilization 

(seconds) 
3589 3473 3385 

Average take-off delay (seconds) 125 97 82 

Longest take-off delay (seconds) 373 321 235 

Average landing delay (seconds) 98 88 70 

Longest landing delay (seconds) 312 227 180 

Average sequence change 0 28.1 17.8 

Average computation time 

(seconds) 
32 843 1200 

 

 

As shown in the computational results, in terms of runway utilization and average and 

longest runway operations delay, the SbO approach performs better than the FCFS and 

deterministic approaches. It is worth to mention that in future operations there exist one 

more runway dedicated to arrivals compare to current operations. However, this additional 

runway is not able to handle additional air traffic demand completely. As a result, both 

runway utilization and air traffic delays are increased.  

 

For Scenario 3, the average delay from three different runway operations scheduling 

approaches are illustrated and compared each other in Figure 58. The solutions obtained 

from 3 problem instances (each 20 minutes) aggregated into one graph. According to the 

graph, SbO approach is able to generate schedules with significantly better average delay 

values than deterministic and FCFS approaches. The box-and-whisker plots for runway 

utilization, sequence change and computation time are shown in Figure 59-61, and 

normalized Pareto-frontier for Scenario 3 is given in Figure 62. 
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Figure 58: Average Delay for Scenario 3 

 

 

 

Figure 59: Box-and-Whisker Plot for Runway Utilization - Scenario 3 
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Figure 60: Box-and-Whisker Plot for Sequence Change - Scenario 3 

 

 

 

Figure 61: Box-and-Whisker Plot for Computation Time - Scenario 3 
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Figure 62: Normalized Pareto-frontier for Scenario 3 

 

 

6.6.4 Sensitivity Analysis 

Since the main purpose of this research study is to develop an optimization algorithm and 

propose a SbO approach rather than to conduct an actual analysis of a particular airport, 

sensitivity analysis is not done in an attempt to perform an extensive sensitivity analysis of 

all parameters. However, a sensitivity analysis is conducted in order to identify necessary 

features and to derive general conclusions regarding the relative sensitivity of the results 

to different planning horizons. 

 

We analyze the effect of planning horizon on the runway operations’ performance by 

comparing all scenarios. In order to evaluate the impact of the planning horizon and, in 

turn, the effect of computational times on runway operations, we considered five different 

planning horizons of 20, 25, 30, 35 and 40 minutes. Runway utilization (makespan) under 
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different planning horizons is shown in Figure 63. As expected, when the planning horizon 

increased, the quality of the solution improved. SbO approach produced schedules with 

increased runway utilization compared to FCFS approach. Also, regarding fairness among 

aircraft, the maximum position shift was calculated as 3. This indicates that better objective 

functions can be achieved if the allocated solution time increases. 

 

 

 

Figure 63: Runway Utilization under Different Planning Horizons 

 

 

6.7 Key Findings and Analysis 

 

The above computational simulation-based optimization experiments by using actual 

operations data from Washington Dulles International (IAD) airport led us to the following 

findings: 

 

(a) Realistic scheduling of runway operations with considering the 

uncertainties can be of valuable use for air traffic controllers. It can enhance controllers’ 
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tactical decision-making, and in turn, increase efficiency of the runway system and ensure 

safe flow of air traffic. The ad hoc decision-making based on FCFS, which is prevalent in 

many airports, and deterministic approaches that do not consider uncertainties can be 

improved with simulation-based approaches that provide optimized schedule 

recommendations to air traffic controllers.  

 

(b) The computational results show that the proposed SbO approach results in 

less average delay compared to both FCFS and deterministic approaches. This result 

provides evidence that these deterministic approaches for runway operations scheduling 

are essentially suboptimal in a stochastic environment. The runway utilization can be 

increased and runway operation delays can be reduced by using the proposed approach. 

However, the extent of benefits is strongly influenced by the dense of air traffic. 

 

(c) Since the primary computational bottleneck in the SbO framework is the 

simulation model, i.e. solution evaluation, utilization of problem-specific knowledge 

helped to keep the search effort confined within relatively reasonable limit of the solution 

space. As a result, approximate Pareto-optimal solutions were obtained within considerable 

low computation times. The computation time is an important metric since the scheduling 

algorithm should be able to support the air traffic controller’s decision-making within a 

practical planning horizon, which is typically 20 minutes. This computational time make 

the proposed approach suitable for practical use. 

 

(d) Despite various models for fairness and CDM aspects of the runway 

operations scheduling was proposed in the academic research literature, no schedule 

optimization model has been deployed as part of decision support tools for air traffic 

controllers. The computational results indicate that trade-off solutions can be found with 

the price of fairness for reducing runway utilization within reasonable computational times.  

 

(e) Experimental results show that the operational benefits can be achieved by 

considering uncertainties during schedule generation. These results justify the utilization 
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of simulation-based frameworks as part of operational planning models and decision 

support tools for air traffic (local) controllers, without increasing their workload.   

 

(f) Also, during the experiments it is observed that the computational times 

increased with increasing runway load. Since take-off delays are less costly compared to 

landing delays, the average take-off delay resulted higher than the average landing delay. 

Considering the fairness objective, it is also observed that the number of position shifts and 

the maximum position shifts to earlier or later positions are increased with increasing 

runway load. 

 

(g) Not all the airports are likely to benefit from these advanced runway 

scheduling optimization approaches compared to FCFS and deterministic approaches, but 

if the air traffic is dense, then there is potential to achieve benefits. However, considering 

the fact that airport infrastructures have been failing to keep pace with the growth in air 

traffic, and as a result, air traffic will be much denser in the future, developing and using 

simulation-based approaches that can produce much robust solutions seem to be a viable 

option for future operations. 

 

(h) According to the Bureau of Transportation Statistics (BTS) data between 

2010 and 2015, more than 30 percent of air traffic delays are caused by the volume of air 

traffic. This motivated this research of effective runway operations scheduling that can 

reduce air traffic delays, which is mainly caused by air traffic congestion. The 

computational experiments provided evidence that explicit consideration of uncertainties 

allows air traffic controllers to produce more robust runway assignments, aircraft 

sequences and time schedules to maximize the runway throughput and fairness among 

aircraft. The approach presented in this dissertation depart from the traditional ways of 

controlling flows of air traffic, in particular ground delay program (GDP) and miles-in-trail 

(MIT) restrictions. GDP is a measure taken by the FAA in order to decrease the arrival rate 

to a level that can be safely handled by air traffic controllers by delaying flights on the 

ground before their departure, which run in lengths of 4-6 hours. In a similar manner, MIT 

restrictions enforce greater separations, speed limits and prevent aircraft from passing each 
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other in the airways leading to a congested airport. These traditional approaches try to 

ensure that the air traffic demand is kept at a manageable level. On the other hand, the 

proposed scheduling approach try to increase the capacity of the runways by explicitly 

considering the uncertainties that may happen during runway operations and fairness 

among aircraft during optimization process. 

 

(i) Finally, the proposed SbO approach to runway operations schedule 

optimization is a proof-of-concept. In order to completely evaluate and operationalize the 

proposed SbO approach further improvements are required, and also, it should be validated 

by human-in-the-loop simulations before deployment. 

 

6.8 Safety Risk Assessment 

 

Since safety is the highest priority requirement in the airport industry, change in the 

existing procedures and process must be assessed in terms of safety risks according to the 

regulations enforced by the authorities. Therefore, an assessment of safety risk associated 

with our proposed SbO approach is conducted and results are presented below: 

 

The FAA Air Traffic Organization (ATO) Safety Management System Manual is one of 

the main safety documents that provides the procedures and guidance to manage safety 

risk, and tries to establish a mature and integrated Safety Management System (SMS). 

Considering the SMS detailed in this document, the proposed approach poses a low-level 

of safety risk at the same time mitigates the safety risk to some extent. 

 

There is a potential trade-off between capacity and safety. As a result of applying this 

approach, the number of aircraft operations per unit time will increase, and therefore, air 

traffic controller workload can potentially increase with a chance that the actual separation 

between aircraft to be violated compared to current practices. However, in computational 

experiments, the proposed design did not lead to changes in the air traffic control decision-

making process and operational procedures. If any application of the proposed design 

results in changes in the air traffic control decision-making process and operational 
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procedures, this application should be accompanied by a safety risk assessment 

documented in accordance with the policy outlined in the ATO SMS Manual.  

 

In addition, we have identified a few other low-level safety risks associated with the 

proposed approach that can easily be mitigated. One such risk is a poor runway operations 

schedule generated by the proposed approach, which could cause long delays in landing 

and take-off air traffic at the airport. In visual meteorological conditions (VMC), the main 

risk transfer strategy is to change the responsibility of maintaining the minimum separation 

requirements from air traffic controller to pilot. In instrument meteorological conditions 

(IMC), the air traffic controller can mitigate the risk by analyzing the performance 

measures generated by the simulation model. 

 

On the other hand, consideration of uncertainties in runway operation scheduling mitigates 

a level of safety risk, since any schedule that does not respect minimum separation 

requirements as a result of an unexpected event are considered as infeasible during the 

optimization process, which is commonly considered as high risk in practice due to 

simultaneous runway occupancy and collision risk. Therefore, the proposed approach has 

a potential to reduce safety risks to some extent, since it is capable of generating near-

optimal schedules to reduce landing and take-off delays. 
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CHAPTER 7 

CONCLUSIONS AND FUTURE RESEARCH 

 

The focus of this dissertation has been on solving multi-objective runway operations 

scheduling problem with the integration of simulation with optimization to deal better with 

uncertainties inherent in runway operations, and developing an efficient and effective 

metaheuristic algorithm that can deal with two conflicting objectives. The main 

contribution of this dissertation research is in the field of developing a hybrid Tabu/Scatter 

Search algorithm and applying it to a real-life scheduling problem, where solution 

methodology is based on a Simulation-based Optimization (SbO) framework. The main 

reason for employing a SbO framework is to capture the relevant intricacies of the practical 

operating environment, particularly the stochastic nature of this real-life problem as well 

as fairness among aircraft waiting for runway operations. 

 

This chapter presents the conclusions of this research including a brief summary of the 

dissertation and its main findings. Also, several indications and suggestions for future work 

are highlighted based on the research conducted in this dissertation. Lastly, the final 

conclusions that are drawn from this research effort are presented. 

 

7.1 Summary 

 

The steady increase in air traffic is expected to continue in the coming years; however, this 

growth has not been supported by the increase in the capacity of major airports. As a result, 

air traffic delays are becoming inevitable in major airports when the demand for services 

exceeds its capacity. Because runways are typically the primary bottleneck in air 

transportation system, the overall airport capacity is determined by the runways in use. In 

general, adding more runways to increase the capacity is often not feasible due to a number 

of reasons including physical limitations and environmental restrictions. The only practical 

option for enhancing the capacity of airports is to utilize the currently available runway 

capacity more efficiently. For that reason, it is significantly important to effectively utilize 
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resources, especially runways, to achieve significant improvements in air traffic delay and, 

in turn, to smooth the flow of air traffic. To accomplish this, effective and efficient 

algorithms are required for scheduling runway operations as part of operational planning 

models and decision support systems used by air traffic controllers.  

 

The runway operations scheduling problem is a decision-making process that deals with 

the allocation of runways to take-offs and landings over given time periods while 

considering operational constraints. The main challenges in solving this real-life problem 

are the pre-specified time windows, and the minimum separation requirements related to 

wake vortex which render the problem combinatorial in nature. In multiple runways case, 

these separation requirements are asymmetric and do not follow the triangle inequality. 

Therefore, appropriate modification of the aircraft sequence can greatly affect the 

throughput of the runway and the total flight delay. This practical problem is a 

computationally challenging problem faced by the local controllers, where decision 

support systems need to produce good quality solutions promptly and poorly utilizing 

runways might have severe economic and environmental consequences. 

 

This practical scheduling problem has been researched extensively in the past several 

decades, and there are numerous algorithms available for the deterministic version of the 

problem. However, the real-life scheduling problem that includes uncertainties remains 

challenging from a modeling and computational tractability standpoint. It is hardly ever the 

case that an aircraft schedule is executed in isolation. There are many sources of uncertainty 

that need to be considered during scheduling, such as inclement weather, airport 

congestion, equipment failure, ground speed variations caused by the wind, piloting 

indecisions, unexpected delays in pushback or taxiing, etc. In such cases, the quasi-optimal 

schedules become far from optimal in practice because of challenges posed by uncertainty 

impacts. Also, the viewpoints of the various stakeholders who affect or be affected by the 

scheduling of aircraft over runways differ substantially, which needs to be considered. 

 

 



 

 

246 

The literature review on runway operations scheduling identified the knowledge gap in the 

literature on scalable methods that address the challenges of runway operations scheduling 

problem under uncertainty and consider different stakeholders’ interests. Complex, 

dynamic and stochastic nature of the actual runway operations renders simulation-based 

optimization (SbO) as the only viable alternative approach for explicitly modeling 

uncertainty and considering multiple objectives with a computationally tractable manner. 

This dissertation proposes a SbO approach that tackles practical challenges of runway 

operations scheduling by incorporating simulation into optimization as an external fitness 

(objective function) evaluator. The primary advantage of this approach is in its robustness 

at incorporating complexity of the system to the required level of detail by application of 

simulation, and employing an optimization algorithm to find high-quality trade-off 

solutions promptly. 

 

This research can be differentiated from the previous works mainly in following ways. 

First, to the best of our knowledge, this is the first SbO approach that explicitly considers 

uncertainties in the development of schedules for runway operations as well as considers 

fairness as a secondary objective. This SbO approach provides more realistic and robust 

solutions that can be applied to practical runway operations scheduling. Second, this 

approach takes advantage of the flexibility of simulation to model complexities of runway 

operations and integrates with optimization methods to find reasonably good quality and 

computationally tractable solutions. In order to accomplish this, a trade-off made between 

the levels of abstraction that the model reflects the real system and the requirement to keep 

the model as simple as possible to solve it efficiently. Third, this approach involves an 

optimization component (metaheuristic algorithm) that generates the (near) Pareto-optimal 

set of schedules, which shows the trade-offs between considered objectives, within the 

practical planning horizon. 

 

Due to the problem’s large, complex and unstructured search space, a hybrid Tabu/Scatter 

Search algorithm is developed to find best trade-off solutions by using an elitist strategy to 

preserve non-dominated solutions, a dynamic update mechanism to produce high-quality 

solutions and a rebuilding strategy to promote solution diversity. The proposed algorithm 
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is applied to bi-objective (i.e., maximizing runway utilization and fairness) runway 

operations schedule optimization as the optimization component of the SbO framework, 

where the developed simulation model acts as an external function evaluator. Both the 

proposed algorithm and the discrete-event simulation model are developed by using an 

object-oriented architecture, which rendered the design and implementation of the models 

easier and more flexible. Also, a greedy heuristic algorithm is proposed to reinforce the 

approach by delivering promising initial solutions obtained from solving the deterministic 

version of the problem. 

 

Finally, computational experiments are conducted to quantitatively evaluate the quality and 

efficiency of the solutions generated by the proposed hybrid Tabu/Scatter Search algorithm 

incorporated in the SbO, and perform a proof-of-concept (validation) of the whole SbO 

framework. In experimental design, design of experiments methods are employed to 

analyze the impacts of parameters on the simulation as well as the optimization 

component’s performance, and to identify the appropriate parameter levels. In 

experimental study, first, the proposed hybrid Tabu/Scatter Search algorithm’s 

performance is evaluated based on multi-objective benchmark problems. Then, the 

applicability of the proposed SbO approach is investigated by using real-life data obtained 

from a major international US airport. As the experimental results have shown, the 

proposed algorithm is capable of finding the best known and diverse Pareto set of solutions 

in a relatively short time, and appropriate consideration of problem-specific knowledge is 

highly relevant for efficiency. The main quantifiable benefits of using the proposed SbO 

approach include an increase in the runway utilization, delay savings and improvement in 

fairness, which in turn, potentially lead to economic and environmental benefits, and 

increased on-time performance for airlines. 

 

7.2 Future Research Directions 

 

This dissertation provides several directions for future work based on the results obtained 

from the conducted research. These future research directions can be divided into three 

main areas: (1) considering further practical aspects of runway operations scheduling 
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problem, (2) developing high-fidelity simulation models and robust SbO approaches, and 

(3) extending the current multi-objective optimization algorithms. The following 

subsections discuss each of these main areas. 

 

7.2.1 Further Considerations on Runway Operations Scheduling Problem 

First of all, runway operations scheduling problem is still an active research field with 

numerous unexplored areas, and several research efforts are underway to enhance the 

effectiveness of runway operations in many ways. Some of these promising areas are 

detailed below: 

 

In this dissertation, the runway operations scheduling problem is considered with the 

assumption that all the problem data, probability distributions, etc. are known in advance 

(i.e. static or offline version of the problem is considered). However, in practice, usually 

limited amount of information is available in advance of actual operations. As previously 

mentioned, the version of the problem in which related information is available only when 

aircraft is released to the system is referred to as dynamic, online or online-over-time 

scheduling version. Therefore, it would be interesting to explore some of the dynamic 

behavior aspects of the problem, specifically rescheduling or recovering the schedules 

when local disturbances, such as mechanical problems, occur during the runway 

operations, especially considering the future operating environment envisaged by the 

NextGen.  

 

The runway operations’ efficiency in multiple runways case, especially in closely spaced 

parallel runways, is highly restricted by the interference of wake turbulences. The current 

FAA enforced minimum wake turbulence separation requirements are mainly based on 

aircraft weight. However, recent research to re-categorize these separation requirements 

indicates that along with aircraft weight, other aircraft characteristics, such as speed, 

wingspan, also affect the power of the wake turbulence it creates as well as its sensitivity 

to the wake turbulence created by other aircraft. Furthermore, another area where the 

researchers have been focusing more is the dynamic separation standards, which allows 

reduced separations in favorable weather conditions when wake turbulence dissipate and 
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actual hazardous distance becomes shorter. These new separation requirements could be 

considered as an extension to this dissertation research by utilizing dynamic separation 

standards instead of static ones. 

 

Also, the runway operations scheduling problem might be integrated with other airside 

operations, such as taxi routing, gate assignment, which have an explicit impact on the 

input factors for runway operations. For example, if both landing and take-off aircraft are 

using the same taxiways, the presence of landing aircraft could affect the taxi times for 

take-off. In the literature, there exists several analytical models that have been developed 

based on time-space analysis and queuing models or sequential approaches which try to 

integrate taxi routing and gate assignment problems into the runway operations scheduling 

problem, but these models and approaches are inadequate for practical use due to their low 

computational performance. Utilizing a simulation-based approach has a huge potential to 

handle this integrated airside operations problem, which considers these interrelated 

problems simultaneously, in a computationally efficient way. 

 

Another line of future research on runway operations scheduling could be to develop an 

optimization model that account for Collaborative Decision Making (CDM) aspects by 

incorporating both fairness and airline collaboration. Although fairness among aircraft is 

considered in our proposed SbO approach, there still remains opportunities for more 

complex models which consider different notions of fairness and airline collaboration, and 

allow for more sophisticated airline input. 

 

As pointed out throughout the dissertation, runway operations scheduling in the presence 

of uncertainty is still a challenge and, in turn, has received less attention both in academic 

research and practice. The approach proposed in this research that considers uncertainties 

can be generalizable to any airport. However, each airport has local rules, regulations, and 

procedures that need to be considered, such as different strategies on configuring landing 

and take-off aircraft on the same runway or intersecting runways. Therefore, these airport-

specific procedures could be added to better represent the actual runway operational 

environment for particular airports in future research extensions. Furthermore, weather 
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related data could be included in these research extensions that can capture the effect of 

strong wind or other inclement weather conditions on scheduling runway operations.  

 

In practice, it is commonly agreed that official FAA documents and airport standard 

operating procedures are more descriptive than algorithmic. These regulatory documents 

do not describe the whole business process in detail for scheduling aircraft in TMA. 

Considering that there exist numerous procedures for this complex scheduling process, 

another potential research area could be simulating and modeling all these procedures in 

an algorithmic way in order to evaluate utilization of air traffic controllers and to optimize 

controller workload distribution for managing the future air traffic flow and runway 

operations, particularly for complicated situations, such as intersecting runways, runway 

configurations involving more than two runways simultaneously. 

 

Finally, another direction of future research could be to leverage detailed surface 

surveillance data from the Airport Surface Detection Equipment, Model-X (ASDE-X) 

surveillance system to manage uncertainties and CDM aspects in scheduling runway 

operations. ASDE-X system, which has been recently installed most of the major US 

airports, continuously track each aircraft on the surface of the airport. Although the main 

purpose of ASDE-X system is to enhance safety, the historical and live data could be used 

for identifying the bottlenecks in the runway system, developing metrics to evaluate the 

operational performance and improving the efficiency of runway operations. Even though 

the FAA and commercial databases, such as Operations & Performance database that we 

utilized during the research provide OOOI and airport-level aggregate data, the level of 

detail in these databases are not enough to identify the interactions between different phases 

of the airside operations and derive insights regarding the characteristics of these 

operations. 

 

7.2.2 Develop Simulation Models and Simulation-based Approaches 

Future research could also explore different simulation models by incorporating human 

performance models of air traffic controllers. For example, neural network modeling 

methods could be a potential area of research to model cognitive and decision-making 
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behavior of air traffic controllers for high-fidelity. Since in this case, simulation models 

will most likely become more complicated and computationally expensive, these 

simulation models might be replaced with a computationally efficient surrogate models in 

order to avoid time-consuming calls of the high-fidelity models. 

 

Simulation-based optimization (SbO) is an emerging field that tackles the increasingly 

complex real-life problems that are currently considered unsolvable with analytical 

methods as well as that will appear in the near future. The simulation technique is capable 

of modeling complex interrelations and practical constraints conveniently. However, in a 

SbO framework, utilizing simulation as an objective function evaluator brings some 

challenges which include the following: (1) various levels of noise stem from stochastic 

nature of the simulation, and (2) consumption of relatively large amounts of computation 

time. In order to mitigate the difficulty that simulation runs often require large amounts of 

computation time, distributed and parallel computing infrastructures could be employed.  

 

Additionally, algorithm analysis and design for obtaining the Pareto-optimal solution set 

from a SbO framework in a computationally effective way is a relatively new field that 

also present a promising area of future research. The primary challenge in a SbO 

framework entailed by the noise stems from stochastic simulations. Therefore, different 

noise-handling features that mitigate the detrimental impacts of noise, such as a decrease 

in convergence rate, could also be investigated. 

 

Most of the research in the literature consider a single objective in a SbO model. However, 

most real-world problems involve multiple objectives. Simultaneously optimizing more 

than one conflicting objective is natural in many practical SbO problems, which make the 

problem harder to tackle. Because no one solution can be considered as “optimum” to 

multiple objectives, the resulting simulation multi-objective optimization problem resorts 

to a set of trade-off solutions. It is clear that in these situations the practice of linking an 

optimization method with a simulation model is not an easy task. Because stochastic nature 

of the simulation model makes it difficult on top of the ordinary deterministic optimization 

setting and the computation of the objective function values in each iteration is another 
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challenge that makes the process more daunting and time-consuming. These challenges 

could be partially overcome by integrating statistical factor screening techniques into the 

SbO framework. These techniques could be used to eliminate poor quality solutions, and 

in turn, the search space of the optimization could be reduced. Also, these approaches could 

be applied to practical problems in other domains such as production, logistics, defense, 

etc.  

 

7.2.3 Extensions on Multi-Objective Optimization  

Although most of the research on metaheuristic algorithms for MOO is dedicated to GA-

based algorithms, aforementioned capabilities of Scatter Search justify further work in this 

field. This dissertation illustrates the employment of elitism, rebuilding and dynamic 

update strategy to improve the capability of the SS algorithm template in MOO. By the 

same token, innovative mechanisms to incorporate learning ability of neural networks and 

the knowledge compression ability of fuzzy logic have a potential to generate more 

effective algorithms in a SbO context as well as other complex problem domains. 

 

Currently, there exist many open research lines on multi-objective evolutionary algorithms 

(MOEAs), which include developing more efficient algorithms, defining new performance 

measures, and integrating with simulation models. One of the possible solutions is to utilize 

common characteristics and subdomains of the search space, which are commonly referred 

as species and niches, respectively. By encouraging speciation and niching, an SS-based 

algorithm can facilitate simultaneous convergence to more than one solution in MOO. 

 

Also, in the field of multi-objective evolutionary algorithms, there are still improvements 

to be made especially in terms of hybridization. One of the promising hybridization areas 

is the “matheuristic” algorithms that combine metaheuristic algorithms with classical exact 

(mathematical programming) approaches, such as B&B, in order to improve solution 

quality and/or computation time. In this context, exact methods may be used to solve sub-

problems within a heuristic framework or metaheuristic algorithms may be used to increase 

the performance of exact methods.  
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Lastly, integrating multi-objective evolutionary algorithms into simulation-based multi-

objective optimization frameworks as the optimizer component seems to be an encouraging 

direction for both academic research and practice. Hence, further research in this area may 

explore the extent and ways in which the proposed hybrid Tabu/Scatter Search algorithm 

can be employed as the optimization engine in other potential real-life scheduling or 

planning problems. 

 

7.3 Conclusions 

 

The ATC system has been becoming gradually more complex and prone to disruptions. 

Hence, effective and efficient methods are required to increase runway utilization, improve 

safety, and reduce operating and environmental costs by addressing uncertainties. The 

conducted literature review has shown that although a great deal of work has been done 

and various novel modeling approaches have been proposed in runway operations 

scheduling field, only a couple work exist that explicitly consider stochastic nature of the 

problem and different stakeholders’ interests, and it is still an active research area.  

 

In addition, combinatorial nature of the problem, uncertainties, and multiple objectives 

render the practical runway operations problem intractable with analytical methods. Due 

to this complexity and based on the literature review of potential approaches, a simulation-

based optimization (SbO) approach employed for finding robust solutions to this real-life 

problem. The SbO is formulated as a multi-objective optimization in order to consider 

uncertainties as well as ensure fairness among aircraft. 

 

The experimental results indicated that the proposed hybrid Tabu/Scatter Search algorithm 

has a potential to exploit knowledge obtained from the search space, utilize strategic 

designs, and construct search paths from a reference set of solutions to approximate the 

Pareto-frontier efficiently. Since computational time is the limiting factor in SbO 

frameworks due to costly multiple simulation evaluations, SS-based hybrid metaheuristic 

algorithms seem to be promising. 
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As a conclusion, this dissertation has shown that explicitly considering the uncertainties by 

utilizing a SbO approach has the potential to increase the effectiveness of runway 

operations. The evidence obtained from the experiments illustrates that potential 

operational benefits can be achieved in runway operations scheduling by building realistic 

models that utilize available operational data and employing these models to design and 

implement optimization algorithms to enhance the effectiveness of a runway system. Also, 

the proposed hybrid Tabu/Scatter Search algorithm seems to be a promising research 

direction due to its efficiency in finding a set of non-dominated solutions in a SbO 

framework with multiple objectives. Finally, outlined future research directions could 

further reduce the gap between practice and academic research in runway operations 

scheduling, and explore open research lines in simulation-based multi-objective 

optimization field. 
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APPENDICES 

APPENDIX A: Additional Terminology 

This appendix is to present the additional terms and acronyms used throughout the 

dissertation. 

 

ASDE-X Airport Surface Detection Equipment Model X (ASDE-X) is a system 

that uses a combination of triangulation of aircraft transponder signals, 

also termed as multi-lateration (a technique to accurately locate 

aircraft), aircraft Automatic Dependent Surveillance-Broadcast (ADS-

B) broadcasts, and primary radar reflections to present an airport and 

surrounding airspace display of the position of all aircraft and includes 

individual data tags indicating flight identification, aircraft tail number, 

and other associated flight data. It provides a position in the active 

movement area (not ramp) at 1-second updates. ASDE-X is primarily a 

safety tool designed to mitigate the risk of runway collisions. 

GDP Ground Delay Program (GDP) is a traffic management procedure 

where aircraft are delayed at their departure airport in order to manage 

demand and capacity at their arrival airport. Flights are assigned 

departure times, which in turn regulates their arrival time at the 

impacted airport. 

FAF Final Approach Fix (FAF) is the point from which the final approach 

to an airport is executed and which identifies the beginning of the final 

approach segment. The glide slope/path starts at the FAF.  

IAF Initial Approach Fix (IAF) is the point where the initial approach 

segment of an instrument approach begins. An instrument approach 

procedure may have more than one Initial approach fix and initial 

approach segment. The initial approach fix is usually a designated 

intersection. The IAF may be collocated with the intermediate fix of the 

instrument approach. 

RNAV Area Navigation (RNAV) is a method of navigation which permits 

aircraft operation on any desired flight path within the coverage of 

ground or space-based navigation aids or within the limits of the 

capability of self-contained aids, or a combination of these. 

OOOI Out of the gate, Off the ground, On the ground, and Into the Gate 

(OOOI) is a capability that provides four data points to measure and 

measure the efficiency of aircraft ground movements. Avionics 

equipment on many aircraft automatically reports these times to the 

operator via avionics, which in turn provides this report to the FAA. 
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TMA Terminal Maneuvering Area (TMA), in Europe it is commonly referred 

as traffic control area, is a general term used to describe airspace in 

which approach control service or airport traffic control service is 

provided. 

Weather  

Conditions 

Air traffic rules are traditionally applied based on prevailing weather 

conditions. Visibility and cloud ceiling are the two primary factors in 

determining the weather category for an airport. Three specific weather 

scenarios - visual, instrument, and marginal will be considered, which 

are the fundamental scenarios utilized for airport capacity profiles 

(Jennifer Gentry et al., 2014). These scenarios are detailed below: 

 

(a) Visual meteorological conditions (VMC): Ceiling and visibility 

allow for visual approaches and visual flight rules (VFR) apply. These 

rules depend on pilots to visually maintain adequate separation.  

 

(b) Instrument meteorological conditions (IMC): Ceiling less than 

1,000 feet or visibility less than 3 statute miles. Instrument flight rules 

(IFR) apply and radar separation between aircraft is required. 

 

(c) Marginal meteorological conditions (MMC): Ceiling and 

visibility better than instrument conditions but without meeting criteria 

for visual approaches. It is basically an IFR environment, but with a 

better visibility so the 2 NM departure/arrival separation is superseded 

by visual separations. 
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APPENDIX B: Various Stakeholders and their Desired Interests 

 

This appendix is to provide some example objectives of various stakeholders in 

mathematical terms. Before presenting the objective functions that pertain to each 

stakeholder, the notation used throughout these objective functions are shown below: 

 

N : set of n aircraft, N = {1,2, ..., n} 

i,j : aircraft indices 

rj : ready time for aircraft j 

δj : target time for aircraft j 

dj : due time for aircraft j  

wj : weight value assigned to aircraft j based on its operation type and class 

Tj : piecewise tardiness of aircraft j with respect to target time for aircraft j 

Tmax : maximum tardiness 

Cj : landing/take-off time of aircraft j 

Cmax : makespan (the completion time of the last scheduled aircraft) 

Ij : air traffic controllers’ intervention counts to aircraft j 

cj(t) : landing/take-off cost of aircraft j at time t 

αj : penalty cost for aircraft j when it lands or takes-off after its target time 

βj : penalty cost for aircraft j when it lands or takes-off before its target time 

kj : penalty for aircraft j if its place in land/take-off sequence changes due to 

delays 

vj : fuel burn cost of aircraft j depends on its operation type and class 

hj : arrival time of aircraft j to the holding area for take-off 

pj : passenger capacity of aircraft j  

nj(t) : CO2 emission per unit time associated with tardiness of aircraft j 

tj : start landing/take-off time of aircraft j 

xj : 1, if aircraft j’s place in land/take-off sequence changes due to delays, 

0, otherwise. 
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ANSPs or air traffic controllers: 

- minimizing the arrival/departure delay (total weighted 

tardiness) 

.
j j

j N

min w T
 

   

- minimizing the sum of the costs of deviation from the 

target times 

. )
j j j j

j N

min T E 
 

    

- minimizing total prioritized land/take-off time (total 

weighted completion time) 

.
j j

j N

min w C
 

   

- maximizing the runway throughput max
.

j N

min C
 

   

- minimizing the maximum arrival/departure delay max
.

j N

min T
 

   

- minimizing air traffic controllers’ workload (air traffic 

controllers’ intervention) (A heuristic model can be built to 

simulate air traffic controllers’ intervention behavior. In 

each simulation run, this heuristic model can be called to 

check if there is any air traffic controllers’ intervention and 

count (I) will be accumulated.) 

.
j N

jmin I
 

   

- maximizing fairness among the aircraft operators (The 

Constrained Position Shifting (CPS) concept, first proposed 

by (Roger George Dear, 1976), helps maintaining fairness 

among the aircraft operators by preventing a specific flight 

from waiting longer relative to FCFS order.) 

 .
j N

jmin c t
 

   

- minimizing the aircraft waiting time in holding area for 

take-off 

.
j N

j jmin t h
 

    
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Airlines: 

- minimizing operating costs (minimizing the total fuel 

cost resulting from the deviation of aircraft start times 

from their respective ready times) 

. ( )
j N

j j jmin v t r
 

    

- minimizing total passenger delays (passenger capacity 

of each aircraft is considered as a weight factor) 

.
j N

j jmin p T
 

    

 

Airport management: 

- minimizing the aircraft sequence changes due to 

delays 

. j j

j N

min k x


   

 

Government agencies: 

- minimizing environmental effects (air pollution) 

(minimizing the CO2 emitted to achieve an aircraft 

schedule.) 

. tj j

j N

min n T


    
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APPENDIX C: High-level Block Diagram of the Simulation Model 
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APPENDIX D: Arrival and Departure Flow Chart Diagrams  
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APPENDIX E: Results for Multi-Objective Optimization Experiments  

 

This appendix is to provide the results for multi-objective optimization 

experiments, which include Pareto-frontiers after 20, 40, 60, 80, 100 and 120 Iterations for 

ZDT3 and F&F, respectively. 

 

 

 

Pareto-frontier after 20 & 40 Iterations for ZDT3 

 

 

Pareto-frontier after 60 & 80 Iterations for ZDT3 
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Pareto-frontier after 100 & 120 Iterations for ZDT3 

 

Pareto-frontier after 20 & 40 Iterations for F&F 

 

 



 

 

274 

Pareto-frontier after 60 & 80 Iterations for F&F 

 

 
Pareto-frontier after 100 & 120 Iterations for F&F 
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APPENDIX F: Results for Simulation-based Optimization Experiments  

 

This appendix is to provide the results for simulation-based optimization 

experiments, which include Pareto-frontiers after 20, 40, 60, 80, 100 and 120 iterations for 

Scenario 1, Scenario 2 and Scenario 3, respectively. Also, Pareto-frontiers after 300 and 

500 iterations for Scenario 3 are included. 

 

 

  
Pareto-frontier after 20 & 40 Iterations for Scenario 1 

(f1: runway utilization, f2: fairness) 

 

                                  

Pareto-frontier after 60 & 80 Iterations for Scenario 1 

(f1: runway utilization, f2: fairness) 



 

 

276 

 

                             
Pareto-frontier after 100 & 120 Iterations for Scenario 1 

(f1: runway utilization, f2: fairness) 

 

 
Pareto-frontier after 20 & 40 Iterations for Scenario 2 

(f1: runway utilization, f2: fairness) 
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Pareto-frontier after 60 & 80 Iterations for Scenario 2 

(f1: runway utilization, f2: fairness) 

 
Pareto-frontier after 100 & 120 Iterations for Scenario 2 

(f1: runway utilization, f2: fairness) 

 

   
Pareto-frontier after 20 & 40 Iterations for Scenario 3 

(f1: runway utilization, f2: fairness) 

 

 
Pareto-frontier after 60 & 80 Iterations for Scenario 3 
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(f1: runway utilization, f2: fairness) 

 
Pareto-frontier after 100 & 120 Iterations for Scenario 3 

(f1: runway utilization, f2: fairness) 

 

 
Pareto-frontier after 300 & 500 Iterations for Scenario 3 

(f1: runway utilization, f2: fairness) 
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