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ABSTRACT 

Snow loads govern roof design in many parts of the United States.  These loads are large-

ly prescribed by the American Society of Civil Engineers ASCE 7 Standard for minimum design 

loads.  Where ASCE 7 does not specify snow loads due to extreme local variability, such as in 

the West, many state jurisdictions have developed individual roof snow load documents and 

maps.  However, among the western states border discrepancies and a general lack of uniformity 

in the methodology for developing such loads indicates a need for a unified approach. 

This paper proposes a methodology to develop ground snow loads for the western United 

States, the application of which is illustrated for the state of Colorado.  An innovative approach 

is taken which utilizes a hydrological snowpack model, Snow Data Assimilation System 

(SNODAS), developed by NOAA.  This model provides estimates of ground snow depth and 

snow water content, easily convertible into loads, at 588 SNODAS weather stations in Colorado.  

The methodology proposed here then incorporates statistical techniques such as principal com-

ponent analysis (PCA) and multivariate cluster analyses to regionalize the SNODAS stations by 

key shared properties.  Several types of cluster analyses are evaluated including agglomerative 

hierarchical clustering (AHC), k-means, and a PCA-based method.  Using various statistical and 

practical measures of quality, a step-wise hybrid method combining both AHC and k-means 

techniques is found to be the most statistically sound and robust clustering method.  A relation-
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ship is then developed between ground snow depths and ground snow loads for each cluster of 

SNODAS weather stations.   

This paper proposes the following additional steps.  A database of National Weather Ser-

vice CO-OP stations with snow depth only measurements is gathered for the state of interest.  

The 50-year ground snow depths are extrapolated by testing the goodness-of-fit of several prob-

ability distributions.  The ground snow depth-load relationships for each cluster produced by the 

hybrid method are then coupled with these 50-year ground snow depths to produce 50-year 

ground snow loads.  Finally, these ground snow loads are mapped in GIS software using a 

Kriging geostatistical interpolation method to create continuous snow load isolines.  
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1.0 DESIGN SNOW LOADS 

1.1 Current State of Design Snow Loads  

Snow loads govern roof design in many parts of the United States, from the Northeast to 

the high-elevations of the Mountain and Pacific West.  The Midwest and West are particularly 

critical, however, due to extreme variability in snowfall depth and density coupled with the scar-

city of snow load research and measurements compared to the Northeastern part of the country.   

In the United States ground snow loads, which are the basis for the computation of design 

roof snow loads, are largely prescribed by a code-adopted standard, ASCE/SEI 7, authored by 

American Society of Civil Engineers’ Structural Engineering Institute.  At the time of writing, 

the current version is the ASCE 7-10 publication.  The International Building Code (IBC) pub-

lished by the International Code Council, which is widely referenced by jurisdictions in the Unit-

ed States, also prescribes ground snow loads among many other building design requirements.  

Section 1608 of its current version, IBC 2012, refers its user to the ASCE 7 Standard and simply 

duplicates its ground snow load maps which are used in the computation of roof snow loads (IBC 

2009).  Therefore, ASCE 7 is the primary national reference for snow loads in the country.  

State-produced snow load publications will be discussed in Chapter 1.2.  

 The ASCE 7 ground snow load maps read absolute load in pounds per square foot dis-

cretized into regions of loading at designated elevations (ASCE/SEI 2010). Roof snow loads are 

generated by factoring the ground snow load value to account for roof exposure, roof thermal 

conditions, slope and other effects.  Due to the potential effects of wind, unbalanced snow loads, 

partial loading, snow drifts, and extra loads from rain on snow, additional modification factors 

may be required. The resulting roof load is incorporated into applicable load combinations for 

structural design of roofs.  The governing load combination for roof snow loads, per Chapter 2 of 
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ASCE 7, apply a load factor of 1.6 to the roof snow load for use with LRFD (strength) design 

such that the ultimate snow load for the design life of the roof is 1.6 times the nominal roof snow 

load determined from Sections 7.3-7.10.  The overall foundation of design roof snow loads, 

however, hinges on the initial ground snow load values that are modified to obtain these roof 

loads.     

There are various issues with the construction of the ground snow load maps of ASCE 7, 

particularly for the western United States.  A close examination of the snow load maps reveals 

some peculiarities in the arrangement of ground snow load regions; a portion isolating the state 

of Colorado is shown in Figure 1.1 

(refer to Appendix A for the map in 

its entirety).  As it can be seen, 

snow load boundaries seem to trace 

irregularly through the state some-

times resulting in adjacent regions 

where prescribed loadings are dou-

ble in value (indicated by the arrow 

in Figure 1.1). By contrast the 

ground snow load map of the east-

ern United States has smooth, continuous contours of increasing load consistent with increasing 

latitude and elevation (particularly for the Appalachian Mountain Range).  According to ASCE 

7, the snow loads depicted on the map are only valid at or below the denoted elevation.  This 

specified elevation, shown in parentheses on the map, creates confusion to engineers trying to 

understand its implications on roof design.  Since the topography of many western states is dom-

 

Figure 1.1: Ground Snow Load Contour Map for 

Colorado (Excerpted from ASCE 7, Figure 7-1) 

20 

(6600) 

20 

15 
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inated by mountain ranges of the West, local elevation variations are prevalent.  Therefore within 

a single snow load region, sites considerably below the specified elevation may be subject to in-

flated ground snow loads per ASCE 7.  For sites above the specified elevation, ASCE 7 requires 

site-specific case studies to develop ground snow loads.  Additionally, the map designates sever-

al regions that are labeled ‘CS’ indicating that extreme variability of snow depths and loads has 

precluded the official mapping of such regions.  In these regions, case studies are also required to 

develop ground snow loads (ASCE/SEI 2010).  Of all the ‘CS’ regions on the map, the vast ma-

jority is in the Mountain and Pacific West.   

There are other issues with the construction of the snow load map related to the statistical 

analysis of the snow load data that supports it.  The ASCE 7 commentary on the snow loads sec-

tion details the measures taken to quantify the mapped ground snow loads.  First, concurrent 

measurements of maximum annual snow depth and snow load were gathered from 204 weather 

stations where both had been measured for at least 11 years between 1952 and 1992.  The same 

lognormal probability model was used for all stations.  At each station, a lognormal distribution 

was fit to the annual maxima data to determine ground snow depths and a ground snow loads 

each with a two-percent probability of being exceeded.  These two-percent depths and two-

percent loads from each station were then plotted together and a nonlinear equation was fitted to 

them (ASCE/SEI 2010).  This equation, developed by Tobiasson and Greatorex (1996), is shown 

in Eq.(1).   

           
    

 
 

(1) 

where Pg is the two-percent ground snow load in pounds per square foot and hs is the two-percent 

ground snow depth in inches.  This equation was used to derive snow loads at approximately 

9,200 other weather stations where only snow depth had been recorded.  At these stations, the 
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two-percent ground snow depths were first estimated using the lognormal distribution. These 

two-percent depths were converted to loads using Eq. (1).  Thus, the mapped ground snow loads 

are all based on a 50-year mean recurrence interval (MRI), equivalent to a two-percent annual 

probability of being exceeded.  Both sets of snow load data (actual measurement sites and de-

rived sites) were plotted on a map of the United States.  Regions of equal snow load were drawn 

by connecting points of equal snow load.  Although the ground snow load map represents statis-

tical values, the maximum load at each of the 204 stations was used in positioning snow load iso-

lines so as to be representative of most of the encompassed stations (ASCE/SEI 2010).  Position-

ing the ground snow load isolines using the maximum values helped to ensure that the map 

reflected most of the statistical station load values of each snow load region.        

According to the commentary, the snow load map is a revision of that published by the 

1993 edition of ASCE 7 but has not been changed since the 1995 edition.  The snow loads de-

rived at the 9,200 depth-only stations and those measured directly at the 204 weather stations 

were generally in agreement and all stations had an average of 33 years of records (ASCE/SEI 

2010).  Where discrepancies did arise, the actual measurements from the 204 weather stations 

governed.  While the general agreement of the two sources does give merit to the snow load de-

velopment process as a whole, numerous issues can be expected when a single probability model 

is used throughout the entire country.  These issues stem from local meteorological variations 

throughout the country.  These known variations have led many jurisdictions to perform their 

own case studies of ground snow loads to provide a more detailed analysis for comparison to the 

mapped ASCE 7 values. 
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Tobiasson and Greatorex (2000) performed a statewide snow load case study for New 

Hampshire.
1
  A majority of the towns in New Hampshire are within ‘CS’ regions, so this effort 

was required to produce ground snow load for those towns.  The authors, in association with the 

Cold Regions Research and Engineering Laboratory (CRREL), collaborated with Structural En-

gineers of New Hampshire (SENH) to independently develop snow load case studies for every 

town (Tobiasson, Buska and Greatorex 2000).  The engineers performing the case studies first 

established geographic centers for each of the 140 towns studied along with elevations repre-

sentative of the tallest building in each town.  Six other descriptive elevations within each town 

were also determined to help develop an elevation-load correction.  Data analyzed in the investi-

gation included snow load data from official and non-official sources (i.e. airport and voluntary 

observer stations, respectively), of varying record lengths.  The case studies consisted of analyz-

ing graphs of maximum recorded snow load vs. elevation plotted from all available records.  For 

each town two graphs of snow load vs. elevation were analyzed: 1) a plot including only the 

nearest six to eight snow measurement stations and 2) a plot of all stations within 25 miles plus 

an official weather station.  A snow load-elevation relationship was derived at each town by sub-

jectively evaluating the validity of the two plots and selecting one judged to be representative.  

Separate teams of engineers from both CRREL and SENH worked on each town, creating linear 

best-fit relationships between elevation and snow load based on both graphical and analytical 

methods.  The case study forms allowed for individual judgment on several issues such as 

whether or not to include stations with short records or stations with unusually high recorded 

maximum snow loads.  The results of the study were tabulated values of snow load for each town 

                                                

 

1 Tobiasson and Greatorex (2000) have significantly contributed to ASCE 7 ground snow load maps. 
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with a corresponding snow load correction factor for high-elevations.  Upon completing the case 

studies, the authors compared the prescribed ASCE 7 mapped ground snow loads, Pg, to the 

highest snow loads that were ever recorded at each town, Pmax.  The authors noticed several 

towns with either markedly high or low ratios of Pg to Pmax.  After constructing probability plots 

for the towns with the high and low ratios, it was clear that the ground snow loads in these towns 

were being over and under predicted, respectively.  After the analysis of the data, the authors de-

scribed how the lognormal distribution poorly predicted such extremes at either end (Tobiasson, 

Buska and Greatorex 2000).  Since the national map is based on this distribution, this finding 

calls into question the universal applicability of the ASCE 7 ground snow load map.  

1.2 Snow Load Design in the West 

Due to the aforementioned ‘CS’ regions in the western U.S. where ground snow loads are 

not officially prescribed by ASCE 7, many western states perform individual studies to deter-

mine appropriate ground snow loads.  In these western states, inclusive of Colorado, Wyoming, 

Montana, Arizona, Nevada, Utah, Idaho, California, Oregon, and Washington, the Structural En-

gineering Associations within each state produce their own ground snow load maps with accom-

panying reports.  These state engineering associations use locally available snow data from 

measuring stations that vary in record length from state to state.  Also, each state may have a 

unique philosophy for extrapolating 50-year ground snow loads including the choice of probabil-

ity distribution type to fit the data, sources of such data, and consideration of elevation.  The fol-

lowing section details the basic methodology used by the western states to determine ground 

snow loads with an emphasis on the state of Colorado, which is the case study for this investiga-

tion. 
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1.2.1 Ground Snow Loads for Colorado 

The Structural Engineers Association of Colorado (SEAC) develops ground snow loads 

for Colorado.  The current version of the snow load report for the state is the 2007 version enti-

tled “Colorado Ground Snow Loads” (SEAC 2007).  The information summarized in this section 

is adapted from that report.  SEAC also produced an accompanying ground snow load map, a 

portion of which is illustrated in Figure 1.2.  The ground snow load map in its entirety is availa-

ble in Appendix B.  The minimum state ground snow load is 20 pounds per square foot, which 

has been incorporated into the analysis and the map construction.  

In order to determine ground snow loads, SEAC analyzed numerous sources of ground 

snow data.  SEAC used data from nearly 800 statewide weather measurement stations with at 

least 12 years of records.  These stations include those which only record snow depth as well as 

those which record concurrent measurement of snow depth and snow load.  Weather stations 

whose records showed predominant snow depths less than 20 inches were eliminated from the 

analysis since such values generally do not produce loads that are above the minimum state snow 

load of 20 psf.  For analysis, the weather stations were divided into regions above and below an 

elevation of 8,000 feet, in order to represent both compacted and settled conditions, respectively.  

Compacted conditions result from several snow events where snow depth accumulates through-

out the winter season, while settled conditions result from single snow events with near complete 

melting in-between.  The reason for the division between these regions lies in the mechanics of 

snowfall and also the seasonal processes of snow accumulation that influence snow density and 

thus weight.  Most notably, compaction due to self-weight of several snow layers from succes-

sive storms is the most crucial process that influences density; this process is prevalent in com-

pacted regions and almost nonexistent in settled ones.   
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For regions of the state where settled snow conditions exist, such as the plains east of the 

foothills of the Rocky Mountains, the following methodology was used by SEAC.  Snow depth 

data was gathered from roughly 440 NWS CO-OP stations and concurrent snow depth and snow 

load data was gathered from NWS First Order stations in Denver, Grand Junction, and Pueblo 

(these station types are defined in Chapter 2.2). The station record lengths for all stations ranged 

from 1-110 years.  The analysis was then divided into two phases: 1) analysis of the snow depth 

data from the CO-OP stations, and 2) analysis of the concurrent measurements from the First Or-

der stations.  For the CO-OP stations, an annual series distribution of maximum snow depths was 

then extracted, eliminating those with a significant amount of missing data or less than 12 years 

of measurements.  After testing the goodness-of-fit of several probability distribution functions, 

the Generalized Pareto Distribution (GPD) was chosen to be the best fit for the annual maxima 

data.  Specifically the GPD fit was tested using the Denver station data since this provided the 

longest record at the time (110 years).  Further statistical tests of the GPD revealed that it was the 

most suitable distribution to use.  Using this distribution, 50-year MRI ground snow depths were 

determined at all of the CO-OP stations.     

The NWS First order stations were analyzed to determine a snow depth-snow load rela-

tionship.  Two of the original three stations (Grand Junction & Pueblo) were eliminated due to 

absence of sufficiently large snow events in the station records (i.e. snow events with greater 

than 20 inches) leaving the Denver First Order station as the only station used in the analysis.  

The Denver station has nearly 60 years of simultaneous snow depth and load measurements.  A 

nonlinear power curve was fit to the Denver data using linear regression.  The resulting power 

equation has the following form. 
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 (2) 

 

In Eq. (2) Pg is a 50-year ground snow load and hs is a 50-year ground snow depth. 

Eq. (2) was then compared to that used by the ASCE 7 to produce the national ground 

snow load map, referenced in Eq. (1).  Due to the similarity of the two equations, and the more 

conservative nature of the ASCE 7 depth-load relationship (i.e. predicting higher loads for the 

same depth), the ASCE-7 power equation was chosen.  However, the form of the equation was 

transformed into a format widely used by European snow load committees, namely that used by 

the Joint Committee for Structural Safety (JCSS).  This equation is has the following form: 

              [  
      

      
(   (

  

 
)   )] (3) 

In Eq. (3)         and        are the minimum and maximum snow densities of the dataset in 

pounds per cubic foot, respectively.  Also,   is a depth parameter determined, along with the 

density parameters, by using regression analysis of the depth data.  The JCSS equation was cho-

sen for its inclusion of site-specific variables such as minimum and maximum snow density.  

SEAC fit the JCSS equation to the ASCE 7 power equation and the above parameters were esti-

mated using regression analysis.  This equation was then applied at all of the CO-OP stations 

(whose 50-year ground snow depths had been extrapolated using the GPD) in order to compute 

50-year ground snow loads at these locations. 

 For regions of the state where compacted snow conditions exist, such as mountainous re-

gions of the state, the following methodology was used by SEAC.  In these regions, SNOTEL 
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and Snow Course sites provided concurrent snow depth and equivalent snow load measure-

ments
2
.  For the analysis of the SNOTEL and Snow Course stations, a relationship between the 

50-year depths and 50-year loads was developed, similar to that for the settled snow regions.  

However, compared to the single First Order station used in that analysis, there are more numer-

ous SNOTEL and Snow Course stations in compacted regions.  The same GPD was employed 

here because it also fit the data well.  A nonlinear power curve was then fit to the 50-year loads 

and depths using linear regression; the resulting relationship is shown in Eq. (4):  

           
     (4) 

This equation, being different than that for settled snow regions, in that it predicts markedly 

higher snow loads for the same depth, validates the application of two distinct relationships for 

each region.  Again, the same transformation was made to this equation so that it resembled the 

JCSS relationship depicted in Eq. (3).  The parameters of this equation for compacted snow re-

gions were also determined by regression analysis.  Both sets of parameters for Eq. (3) are pre-

sented in Table 1.1.  CO-OP stations scattered throughout the mountains provided snow depth 

only measurements.  The 50-year ground snow depths were extrapolated from these stations us-

ing the same GPD.  Finally, ground snow loads for compacted sites were obtained by applying 

Eq. (4) to all of the mountainous CO-OP stations.  For the SNOTEL and Snow Course stations, 

50-year ground snow loads were extrapolated from the snow water equivalent data.   

 The final step was to construct the ground snow load map.  Using Geographic Infor-

mation System (GIS) software, the latitudes, longitudes, and two-percent ground snow loads for 

                                                

 

2 SNOTEL and Snow Course stations record snow water equivalent. Refer to Chapter 2.2 for a description of these 

stations and Chapter 4.1 for a conversion to ground snow load. 
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each station were overlaid on a topographical map of Colorado.  Finally, isolines were drawn 

connecting regions of equal snow load. 

 A comparison of the ASCE 7-10 and the SEAC mapped Colorado ground snow loads re-

veals some major discrepancies in prescribed snow load values.  The only portion that is compa-

rable between the two maps (i.e. non-CS regions) is at approximately the 104° longitude, parallel 

to the eastern border of Wyoming.  For this eastern portion of Colorado, there are some regions 

where the SEAC mapped ground snow loads are more than double those from ASCE 7 (e.g. 50 

psf vs. 20 psf in the southeastern potion of the state).  These “hot spots” appear to coincide with 

locations of CO-OP stations used in the SEAC study.  The reason for such a deviation from 

ASCE 7 prescribed ground snow loads is most likely due to the CO-OP snow depth records used 

in the SEAC study that include several recent extreme winter snow storms such as the March 

2003 storm that brought as much as three feet of snow to the Colorado plains.         

Table 1.1: Variables Used to Define Ground Snow Depth-Load Equations for Colorado 

(SEAC 2007) 

Type of 

Variable 

Compacted 

Snow Regions 

Settled Snow 

Regions 

       31.4 pcf 30.5 pcf 

       18.0 pcf 10.0 pcf 

  44.1 in 48.2 in 

1.2.2 Ground Snow Load Summaries for Other Western States 

The aforementioned western states have their own Structural Engineering Associations 

that prescribe statewide design snow loads.  The methodology used varies significantly from 

state to state.  Table 1.2 summarizes the philosophies of each methodology, including the major 

differences between the developed snow load maps.  As noted, for many of these states ground 

snow loads are explicitly related to elevation; usually ground snow load is positively correlated 
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to elevation.  Also, there is some consensus in the general usage of some sort of snow density re-

lationship which is applied to records of snow depth to determine loads.  Nonetheless, there is 

considerable variation in the exact parameters and form of the ground snow depth-load relation-

ship and type of probability distribution chosen by each state, particularly which will predict a 

two-percent ground snow depth. 

Table 1.2: Basis of Design for Ground Snow Loads for Western U.S. Adapted from R. Sack (2012) 

State No. of 

Stations 

Snow Depth-

Load 

Relationship 

Probability 

Distribution 

Year Last 

Updated 

Remarks 

Montana 712 Elevation-Based LP-III, LN 2004 

Snow loads prescribed 

for 6 different regions, 4 

different elevation ranges 

Arizona 89 Elevation-Based N/A 1981 

Snow loads prescribed 

for 5 different regions 

based on elevation 

Utah 413 
RMCD

†
, 

Elevation 
LP-III 1992 

Rocky Mountain  

Conversion Density for 

snow depth-snow load 

Idaho 514 RMCD
†
 LP-III 1986 

Ground snow loads are 

mapped statewide,  

normalized by elevation 

Northern 

California 
32 Elevation-Based N/A 1964 

75% of maximum 

recorded ground snow 

load as basis of design 

Oregon 689 

Snow Density 

Prescribed for 

East/West 

LN 2011 

PRISM
††

 computer 

algorithms used to 

produce state map 

Washington N/A 
RMCD

†
, 

Elevation 
LP-III 1995 

Rocky Mountain  

Conversion Density for 

snow depth-snow load 

† Rocky Mountain Conversion Density  

†† Parameter Regression on Independent Slopes analysis program 

LN = Lognormal; LP-III = Log-Pearson Type III; N/A = Information not available 

A number of states employ what is known as the Rocky Mountain Conversion Density 

(RMCD) to convert their records of ground snow depth measurements to ground snow loads.  

This relationship was developed at the University of Idaho by Sack and Sheikh-Taheri in order to 
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produce ground snow loads for Idaho (1986).  This relationship was developed using ground 

snow depth and load measurements from nearly 3,000 Snow Course stations throughout the West 

with at least five years of records.  A Log-Pearson Type III distribution was considered in the 

development of the RMCD.  Using regression techniques, a bi-linear equation was fit to the plot-

ted 50-year snow load vs. 50-year snow depth data.  For this equation, two ground snow specific 

gravities were chosen for the bi-linear fit: one representative of greater snow depths and one rep-

resentative of shallow snow depths.  Eq. (5) was the result of the effort, along with the design 

snow load document that is still in use in Idaho (Sack and Sheikh-Taheri 1986).  This equation is 

still widely used today in the noted western states listed in Table 1.2. 

                                               
(5) 

                                     

 

The above mentioned RMCD depth-load relationship in addition to the ASCE 7 and the 

two SEAC relationships are plotted together in Figure 1.3.  This plot provides a visual compari-

son of all the ground snow depth-load relationships and highlights some of the differences be-

tween all of them.  Figure 1.3 illustrates that the RMCD always predicts higher snow loads than 

the ASCE 7 power equation for the same snow depth.  This is expected since the data supporting 

the RMCD originates from high-elevation sites with generally higher density snowfall.  As it can 

be seen, the SEAC depth-load equation for settled sites has been fitted to the ASCE 7 equation 

since the latter provided a more conservative estimate of ground snow loads as previously men-

tioned.  The SEAC density equation for compacted sites, however, predicts much greater ground 

snow loads for the same depth than both ASCE 7 and the RMCD depth-load relationships.  This 

highlights the need to update the ground snow load development methodologies in order to align 

them more closely. 
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Figure 1.3: Comparison of RMCD, ASCE-7, and SEAC Ground Snow Depth-Load Relationships 

 

1.3 The Need to Unify State Ground Snow Load Methodologies  

The different philosophies adopted by all of the states in the West to determine 50-year 

ground snow loads have created a subtle yet unsettling dilemma.  Mapped ground snow loads at 

the boundaries of all the western states do not coincide in value at most state borders.  This is the 

case for several state borders such as that of Washington-Idaho, Oregon-Idaho, Idaho-Montana, 

Idaho-Utah, and Utah-Colorado.  A few of the significant border differences in ground snow 

loads are discussed in detail below.  The following discussion references R. Sack who originally 

amassed the values for comparison (2011).    
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A significant border discrepancy exists at the border of Washington and Idaho near the 

48° latitude, where there is a significant deviation in nominal 50-year ground snow load predict-

ed by the Structural Engineers Association of Washington (SEAW) and the Structural Engineers 

Association of Idaho (SEAI).  About 14 miles west of the boarder, the SEAW nominal ground 

snow load is 34 psf for the cities of Dishman and Opportunity, WA.  Proceeding east, in Idaho 

right on the border the 50-year ground snow load predicted by SEAI is 53 psf for State Line, ID 

and 56 psf for Post Falls, ID (five miles east of the border).  Figure 1.4 illustrates a topographical 

map of the vicinity of these four cities annotated with the associated ground snow loads.  Major 

ground elevation isolines bracketing the mountains and foothills to the north and south are also 

denoted with elevation in feet.  As it may be seen, there is only about a 100-ft elevation differ-

ence between all four of the cities.  Yet, the ground snow loads between Opportunity and Post 

Falls is some 19 psf apart, a difference of nearly 55%.  That the ground snow loads are so differ-

ent, considering the negligible elevation difference and a spatial difference of less than 10 miles, 

indicates a serious problem with how information is shared among states and how different the 

ground snow load methodologies are.   

This same issue is encountered across other state borders, such as the border of Utah and 

Idaho, on the western edge of Bear Lake, which overlaps both states.  The affected cities are St. 

Charles, ID which is approximately eight miles north of the border and Garden City, UT, approx-

imately five miles south of the border.  A topographical map of the vicinity of these two cities in 

Figure 1.5 is annotated with the associated ground snow loads (Figure 1.4 and Figure 1.5 were 

created with ArcGIS 10.1).  Major ground elevation isolines are denoted for the Wasatch and 

Bear River Mountain Range to the west of both cities.  The Structural Engineers Association of 

Utah (SEAU) prescribes a ground snow load of 50 psf for Garden City, UT whereas 13 miles 
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north SEAI prescribes a ground snow load of 90 psf for St. Charles, ID.  As apparent from the 

elevation isolines, both cities are just below 6000 feet in elevation and both cities are just west of 

Bear Lake.  The location relative to the lake is significant because it eliminates the phenomenon 

of lake-effect snow as an explanation for the vastly different ground snow load values.
3
  Since 

the prevailing direction for snow storm systems in this region is west-east, lake-effect snow does 

not explain the difference in ground snow loads, leading to the conclusion that the difference in 

prescribed design ground snow loads are therefore methodological.  There are many other similar 

situations between other states where ground snow loads do not agree at the border.  The magni-

tude of the disparities in ground snow loads at state borders speaks to the gravity of the problems 

with state approaches to ground snow loads. 

In addition to the discrepancies at state borders, there are significantly different method-

ologies used by the Structural Engineering Associations.  Some of these methodologies were de-

veloped several decades ago and are in need of updating.  These issues point to a major short-

coming of the systems by which states determine their snow loads.  All of these states are in the 

same region of the United States and they all experience the effects of the same winter storm sys-

tems.  These challenges point to a need for a close inter-state relationship between the commit-

tees that govern snow loads.  Also lacking is a unified methodology which all state engineering 

associations follow to develop ground snow loads.  This unified process, independent of local 

climatology or type of snowfall experienced, should set a standard that can be adopted in juris-

dictions where aging snow load documents need updating or be used as a tool for evaluating ex-

                                                

 

3 Lake-effect snow generally deposits heavier snow on the far edge of a body of water from where the cold air mass 

originates, due to the absorption of moisture from the body of water that condenses as snow on the leeward side 

(Eichenlaub 1970) 
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isting state ground snow loads.  Ideally, the methodology should embrace the advantages of 

modern technology such as advances in weather monitoring equipment and computational abili-

ties and utilize resources from other disciplines of the fields of science and engineering.  This 

methodology can ignite the type of inter-state collaboration needed in this field and serve as a 

platform for future development and improvement.  This thesis proposes such a unified process 

for determining probabilistic ground snow loads, using modern statistical tools and resources 

from the fields of hydrology and climatology.  It will be robust, statistically sound, and one that 

can be integrated easily into the current ground snow load regimes of the western states.  
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Figure 1.4: Topographical Map of the Washington-Idaho Border at Latitude 48 (west to east, 

ground snow loads shown for Dishman, WA, Opportunity, WA, State Line, ID, and Post Falls, ID) 

 

Figure 1.5: Topographical Map of the Idaho-Utah Border (south to north ground snow loads 

shown for Garden City, UT, and St. Charles, ID). Maps created using data from Sack (2011). 
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2.0 WEATHER STATIONS & CLIMATOLOGICAL DATA 

2.1 Background 

The data measured by weather stations across the United States is of great use in forecast-

ing not only major weather events, but also patterns of major snow events and climatological 

trends that coincide with these snow events.  In this chapter a brief description of the history and 

development of various types of weather stations is discussed.   The data recorded from these 

stations will be used in the development of probabilistic ground snow loads.    

The history of systematic collection of weather and climatological data in the United 

States dates back nearly to the founding of the country itself.  In 1870, President Ulysses S. 

Grant signed into law a proposal establishing an agency responsible for the widespread collec-

tion of weather observations across the United States (NWS 2012b).  This agency became known 

as the National Weather Service (NWS).  The primary motivation behind the establishment of 

the NWS, initially responsible for taking basic meteorological observations and reporting of ma-

jor storm systems, was the safety of maritime vessels along the seacoast and in The Great Lakes 

(NWS 2012b).  Similar agencies such as The United States Coast and Geodetic Survey (formed 

in 1807) and the Bureau of Commercial Fisheries (formed in1871) helped to define the scientific 

heritage of the country (NOAA 2006).   

Together, these three historic agencies were united in 1970 under a declaration to Con-

gress by President Nixon who wanted to “protect life and property from natural hazards 

[and]…better understand the total environment” (NOAA 2006).  This agency, the National Oce-

anic and Atmospheric Administration (NOAA) realizes that mission by researching and monitor-

ing all natural phenomena.  NOAA is the parent government agency under whose authority the 

NWS and the National Climatic Data Center (NCDC) now operate.  The current responsibilities 
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of these divisions of the NOAA are to research and monitor a wide range of meteorological 

events in the United States (the role of the NWS) and to analyze and archive such data (the role 

of the NCDC) (2012b).  The data and services produced by NWS and archived by NCDC will be 

relied on heavily in this paper; refer to Chapter 2.2 for further discussion.   

Weather monitoring and research, however, is not solely of interest to government agen-

cies that endeavor to study the environment and protect society from natural hazards.  A rather 

different need to research and monitor the climate emerged from the demands of the agriculture 

economy of the United States.  Formally established in 1862, the USDA is primarily responsible 

for protecting the viability and safety the nation’s food and agricultural sectors, as well as devel-

oping sound public policy in these areas and natural resource and forest conservation (USDA 

2012).  The farming industry in the mid-19
th

 century was steadily growing, becoming the prima-

ry livelihood for nearly half of Americans at the time of the census (Kennedy 1864).  Therefore, 

the USDA’s initial role was to sustain the future of the agriculture industry and protect farmers 

from the devastating effects of drought.  This is a very real concern in the Mid-West and Pacific 

Western regions of the U.S., where much of the region is semi-arid or arid.  In these dry regions, 

a small number of winter weather systems provide most of the yearly precipitation; as a result, 

anywhere from 50-80% of the region’s potable water supply comes from spring melt off of 

mountain snowpack that gets allocated either east or west of the Great Divide (NRCS 2009).  

Although these states have water management agreements that stipulate which state or munici-

pality is entitled to the outflows of each catchment, a centralized organization with the resources 

and technical capabilities was needed to provide specific water resource forecasting for these 

states.  The National Resource Conservation Service (NRCS) was created within the USDA as a 

focused department dedicated to helping agricultural producers sustain the health of their crops 
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and conserve precious natural resources (NRCS 2012).  Specifically of interest to this paper are 

the programs NRCS has implemented to forecast water supply, such as the SNOTEL stations and 

products; they are defined in Chapter 2.2. 

Since the inception of the historic agencies described above, the use of weather 

measurements of all kinds has pervaded every discipline of the engineering and applied science 

communities.  For instance, one discipline that has benefited significantly from advancements in 

weather measurements is the field of hydrology.  Manual and more recently automated snow 

surveys are being collected with increasing frequency as a means for forecasting water supply 

derived from snowmelt (NRCS 2012).  These measurements are used directly to predict outflows 

from rivers into basins and thus the availability of water to municipalities.  These forecasts allow 

federal, state, and local governments to produce legislation directed at maintaining the 

availability of potable water, sustaining the health of ecosystems, mitigating the effects of flood 

scenarios and also improving general water management policy (NRCS 2012).  More recently, 

surveys and other related climatological observations have become invaluable to other scientists 

and engineers.  The scope of this investigation is limited to applications to the structural 

engineering community and the preclusion of snow-related roof collapse and casualties.  The use 

of snow surveys and other measured climatological variables now plays a critical role in such an 

endeavor.  

The sections to follow detail three main classifications of acquired climatological data 

and their associated instrumentation, relevance, and validity.  Each source of data comes with its 

own advantages, limitations, and bias; however when combined properly the limitations and bi-

ases can be mitigated. 
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2.2 Observed Ground-Based Measurements 

Ground-based measurement of climatological data can be defined broadly as any 

firsthand, physical collection of the data of interest.  These types of measurements are the most 

accurate forms of collecting data since they do not rely on indirect inferences from other 

measurements.  As the name implies, the instruments associated with such measurements are 

located on the ground.  One of the most ubiquitous ground-based devices is the weather station.  

The photo on the right of Figure 2.1 is an example of an Automatic Surface Observation Station 

(ASOS).  A network of thousands of ASOS stations monitor and record weather at airports 

(NWS 2012b).  Ground-based measuring stations such as these are permanently fixed to the 

ground and contain several instruments for recording real-time measurements of weather in the 

immediate vicinity of the station.  Wind speed and direction are measured via anemometers, 

temperature readings via shielded thermistors, and relative humidity via chilled mirror 

hygrothermometers, though additional features may be available.   

  

Figure 2.1: Then and Now: First Automatic Weather Station, left (Wood 1946) and Modern 

ASOS Weather Station, right (NWS 2012b).    
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ASOS and other similar stations are descendants of the original weather stations, shown 

on the left of Figure 2.1.  These original automatic weather stations (AWS) were first 

implemented in 1941 under the direction of the Bureau of Aeronautics, U.S. Navy.  

Advancements in radio broadcasting technology quickly led to the capability of these stations to 

transmit data to weather offices around the world (Wood 1946).  The limited technological 

capabilities of the 1940’s forced these stations to be designed around ease of installation and 

maintenance.  A technician could easily perform these tasks on a device accessible from the 

ground.  The first of these stations was quite bulky and required an internal power plant to drive 

the internal components and measurement devices.  This enabled the collection of atmospheric 

pressure, temperature, relative humidity, wind direction and speed, and rainfall (Wood 1946).   

U.S meteorological measurements are based on two primary sources: a network of 274 

NWS “First Order” weather stations and 32,000 NWS Cooperative Observer (CO-OP) Stations 

(NCDC 2012b).  However, several other agencies exist that are responsible for many other types 

of weather stations.   First Order is the term the National Weather Service gives to the class of 

manned, official weather stations which offers a suite of measurements including: temperature 

(daily max., min., avg.), snow depth, snow water equivalent (in. of water), precipitation, baro-

metric pressure, sky cover (using cloud radar data), and several wind speed and direction statis-

tics.  These measurements are taken 24-hours per day, year-round by certified NWS-trained ob-

servers (Quayle 2013).  Snow water equivalent (SWE) is defined in Chapter 4.0; a concise 

description here is that it is a measurement of the amount of water in snow.  Figure 2.2 shows a 

certified NWS observer recording the official snow depth at a weather forecasting office.  In con-

trast to First Order stations, CO-OP stations are technically not stations but rather residences, 
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farms, commercial facilities, etc. where individuals have agreed to voluntarily record measure-

ments of temperature, precipitation, barometric pressure, and sky cover (NWS 2012a).   

 

Figure 2.2: Trained NWS Staff Recording Official Snow 

Depth at First Order Weather Station (NWS 2012b). 

Another substantial network of cooperative observer stations comes from the Community 

Collaborative Rain, Hail, and Snow Network (CoCoRaHS) which was created in response to a 

devastating flash-flood in Fort Collins, CO in 1997 (Cifelli, et al. 2005, CoCoRaHS 2011).  The 

CoCoRaHS network now comprises nearly 44,650 volunteer stations nationwide, 331 of which 

are in Colorado.  Volunteers record and report precipitation (liquid and solid) and hail quantities 

to the CoCoRaHS website (www.cocorahs.org).  Several other maps and types of data are avail-

able such as significant weather reports, drought impact reports, and water year summaries for 

each station.   A high level of measurement quality is maintained since all stations receive stand-

ard equipment including 4-in. rain gauges and hail pads.  These combined qualities have made 

the CoCoRaHS network an invaluable source of climatological data.          
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Finally, there is the GHCN database, compiled by the NCDC, which combines numerous 

surface weather station databases such as: 

(1) United States Collection: composed of several datasets archived at 

NCDC that originate from U.S. Forts, Air Force installations, and 

Observer Stations 

(2) International Collection: composed of roughly 20,000 global weather 

stations from 100 different countries 

(3) Government Exchange Collection: composed of records obtained by 

bilateral agreements with federal weather reporting offices from 76 

different countries 

The types of measurements taken vary widely from station to station, and the database 

consists of several types of stations.  However, common baseline measurements taken by all 

GHCN stations include liquid precipitation, snow depth, and temperature.  These datasets are 

subjected to a rigorous set of quality control processes including a screening phase to ensure all 

required data fields are present; an assimilation phase to remove duplicates, prioritize certified 

source stations, and homogenize reporting frequency; and a final quality control phase where 

checks for unusual streaks, world records, and gaps are made (NCDC 2012a).  While the GHCN 

database consists of international sources, the NWS First Order and CO-OP stations are all Unit-

ed States-based and are not subject to as tight scrutiny of the data as the GHCN database.  There 

are no duplicate stations between the NWS First Order and CO-OP networks, and GHCN station 

databases; however, records are maintained separately to varying levels of quality control.   

One of the main sources for ground-based measurements of snow properties comes from 

a proven method for measuring descriptive snow properties in mountainous areas.  Snow Cours-

es have been around since 1906 and are permanent mapped locations in mountainous regions 

where professionally trained Snow Course personnel ski to and manually record snow depth and 

SWE (NRCS 2012).  The instruments used to record snow course measurements at are not high-
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tech, nor even digital, yet the quality of the data has made the method a benchmark in the field of 

hydrology.  In fact, it was a Congressional mandate in the mid-1930’s to measure snowpack in 

the mountains and forecast the water supply, motivating the installment of Snow Courses.  Fig-

ure 2.3 illustrates the proper technique used to obtain the SWE measurement, adapted from the 

Snow Survey Sampling Guide (Soil Conservation Service 1984).  First, a hollow aluminum 

measuring rod is inserted into the snowpack and removed with a core of snow plus a cork of sod 

at the end.  Then, using a spring scale calibrated with the rod empty weight, the filled rod is 

weighed (less the cork of soil that must be removed).  The spring scale reads inches of water di-

rectly, so no calculations are required by the observer.  A typical Snow Course consists of 10 

permanently labeled sampling sites stretched across roughly half of a mile of mountainous ter-

rain, in an effort to decrease the effect of local variations in measurements (NRCS 2012).  The 

data obtainable from Snow Courses is very valuable to structural engineering much like that 

from NWS First Order weather stations, since SWE is directly recorded.   

As the need arose to forecast water supply at an increasing level of certainty, especially in 

the arid western parts of the country, specialized stations were designed for remote, mountainous 

regions of the western United States.  These SNOTEL stations (short for SNOwpack TELeme-

try) were introduced by the NRCS in 1978 (NRCS 2009).  Unlike NWS First Order stations, 

these stations only measure a few climatological properties related to precipitation.  The standard 

configuration of SNOTEL stations includes instrumentation to measure air temperature (shielded 

thermistor), liquid precipitation (rain gauge), snow water content (snow pillow, pressure trans-

ducer), and snow depth (sonic sensor).  These stations are part of a comprehensive system that is 

operated and maintained by NRCS, encompassing the states of New Mexico, Colorado, Wyo-

ming, Montana, Idaho, Utah, Arizona, Nevada, California, Oregon, Washington, and Alaska.  
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Figure 2.4 illustrates the current sites of operational SNOTEL stations in the western U.S. as of 

2012.  The sites are clustered in the peaks of the Cascades, Rocky Mountain, and Sierra Nevada 

Mountain Ranges. The central feature of these stations that allows them to efficiently transmit 

such valuable data from such remote mountainous sites is remote telemetry via meteor burst 

technology.  Meteor burst technology is a reliable means of transmitting data by means of VHF 

radio frequencies that are bounced off an ever-present band of ionized gas in the Earth’s atmos-

phere (NRCS 2009).  Consistent records of SNOTEL measurements are available from the early 

1990s through the present, although scattered interruptions in records may exist due to stations 

being decommissioned or upgraded from snow courses.   

The most important of the measurement capabilities of SNOTEL stations is water content 

of snowpack and it is measured via a snow pillow platform upon which snowfall accumulates.  

The snow pillow, filled with an anti-freeze solution and pressure transducers, measures average 

pressure along its surface and back calculates the equivalent water content (NRCS 2009).  A 

ground snow depth measurement is made with a sonic device.   According to NRCS, the accura-

 
 

 

Figure 2.3: Proper Technique for Measuring SWE at Snow Courses from the Snow Survey 

Sampling Guide (Soil Conservation Service 1984) 

Calibrated 

SWE Gauge 
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cy and percentage of time operational is usually around 99%.  For this investigation, the station 

records obtained are invaluable to describing properties of the snow in the highly variant moun-

tainous terrain.  Their application is discussed in Chapter 3.0.  

 
Figure 2.4: SNOTEL Site Locations Operated and Maintained by NRCS (2012) 

A current catalog of all ground-based weather stations including governing agencies and active 

station counts is available from the NCDC Historical Observing Metadata Repository (HOMR) 

website (NCDC 2012c).  Table 2.1 lists all of these active U.S. weather stations plus active Snow 

Course and SNOTEL stations, with associated statistics such as governing agency, station de-

scription, station count, year of establishment, and measurements recorded. 
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The future of snow measuring instrumentation is depicted in Figure 2.5.  This modern 

GPS snow gauge is intended for snow-related measurements in high, mountainous environments.  

It receives GPS signals from different satellites and uses them to measure descriptive properties 

of the snow (such as depth and water content).  Aside from providing technological gains over 

Table 2.1: Ground-Based Weather Station Descriptive Information (NCDC 2012b) 

Station 

Type 

Agency Description Station 

Count 

Active 

Since 

Meas. 

CO-OP NWS National Weather Service Voluntary             

Cooperative Observer Program 

32,000 1900
†
 E,T,P,S 

LCD NWS National Weather Service (First Order)  

Local Climatological Data Program 

274 1903
†
 C,P,T,S

SWE 

CoCoRaHS CCC, 

NOAA 

Community Collaborative Rain, Hail, 

and Snow Network 

44,644 1998 H, P 

GHCN-D NCDC Global Historical Climatology Network   

Daily (database) 

80,000 1763
††

 T,P,S 

AWOS FAA Automated Weather Observation  

Stations (airports) 

700+ 1987 C,P,PR,

S,V,W 

ASOS NWS NWS/FAA/DoD Operated Automated  

Surface Observation Stations (airports)  

900+ 1990 C,P,PR,

S V,W 

USCRN NOAA U.S. Climate Reference Network  

(database) 

120+ 2002 T,P,RH 

SR,W 

USRCRN NOAA U.S. Regional Climate Reference    

Network (database) 

60+ 2002 T,P,RH 

SR,W 

USHCN NOAA Subset of NWS CO-OP Stations  

(long records) 

1,219 1980s T,P 

SC NRCS Snow Course Manual Ski Stations   

(mountains) 

1,200 1906 S,SWE 

SNOTEL NRCS Snowpack Telemetry Automated      

Stations (mountains) 

750 1978 T,P,PR,

S,SWE 

†   date is best available estimate  

†† earliest available record globally 

C = cloud cover; E = snow evaporation; H = Hail; P = precipitation; PR = air pressure 

RH = relative humidity; S = snow depth; SR = solar radiation; T = temperature  

V = visibility; W = wind speed/direction; SWE = snow water equivalent  

CCC = Colorado Climate Center  
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the standard weather station, this technology offers solutions to data processing issues facing 

ground-based observations such as sampling bias due to scatter in the location of weather sta-

tions.  According to the owner and developer of the GPS snow gauges, the National Center for 

Atmospheric Research (NCAR) located in Niwot Ridge, CO, the new GPS gauges are capable of 

measuring the noted snow properties for 100 by 100 meter region of ground around the station 

(2011).  When fully implemented on a larger scale, these stations will be able to provide area 

measurements of snow properties, offering improved interpolations between adjacent stations 

over point measurements from standard weather stations.  While data from these stations will not 

be used in this study, future research in this field can benefit from the data obtained from these 

gauges.  

 

Figure 2.5: Modern GPS-Enabled Snow Gauge at Niwot Ridge, CO (NCAR 2011) 

2.3 Observed Remotely-Sensed Measurements 

Recent advancements in satellite imagery and microwave scanning technologies have led 

to new methods of taking measurements of various atmospheric and climatic variables.  These 
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are obtained from the field of remote sensing.  In the scope of this investigation, remotely-sensed 

observations are defined as expansive measurements taken from great distances.  Measurements 

from these distances rely on correlations to other known variables.  A simple example of remote 

sensing is temperature measurement using an infrared (IR) temperature gun, which is widely 

used by geologists and firefighters.  IR temperature guns detect the amount of infrared energy 

radiating from a warm body; coupled with the estimated emissivity of that body, they can calcu-

late the temperature (Zhang, Tsai and Machin 2010).  Since an estimation of emissivity is re-

quired to calculate the desired temperature, the reading of IR energy alone cannot determine the 

temperature.  In this sense, remote sensing can be considered inferred measurements and are 

highly dependent on the quality and certainty of other variables.  The following are examples of 

remotely-sensed measurements related to snowpack properties.     

   The first type of remotely-sensed snow measurements is satellite imagery analysis, 

which includes obtaining high-resolution digital imagery and subsequently processing it to ob-

tain snowpack properties.  This process, known as passive microwave remote sensing, involves 

reflecting microwave energy from satellites off the Earth’s surface and measuring the reflec-

tance. One example is the Moderate Resolution Imaging Spectroradiometer (MODIS) system 

(Parajka 2012).  Using two NASA satellites, Terra and Aqua, MODIS is capable of producing 

daily, 8-day and monthly estimates of snow cover.  The input data is high resolution, digitally-

encoded imagery with coded values assigned to individual pixels based on color.  This data is fed 

into the MODIS computer algorithms that can discern between clouds and snow using 36 differ-

ent bands of spectral energy emitted by the two scanning satellites.  The quality of this product 

depends somewhat on the clarity of the sky at the time the images are taken.  To overcome this 

dependency, MODIS incorporates a technique wherein multiple images for the same location are 
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taken and each pixel value is scored to best represent the true snow cover at that location 

(Parajka 2012).  The score is based on quality of the image, solar effects, angle of imagery, and 

several other properties.  This practice is intended to eliminate the bias from any one image 

where cloud cover could be mistaken for snow.   

Applications of MODIS are widespread, but are mostly based on some form of hydro-

logic watershed modeling.  Several local studies have incorporated its output into snow cover 

mapping while global initiatives have incorporated its output as input for major climate models.  

For instance, the ambitious Snow and Sea Ice Global Mapping Project, under the management of 

the National Snow and Ice Data Center (NSIDC), implements several MODIS products to pro-

duce global snow and ice coverage maps (NASA 2012).  Beyond snow coverage, research using 

MODIS products has shown promise in the reconstruction of SWE at a watershed for previous 

seasons, explored by Durand et al. for the Rio Grande basin in the U.S. (Durand, Molotch and 

Margulis 2008).  As well spatial interpolation of SWE is possible and practical, as shown by the 

efforts of Bocchiola in the Italian Alps (Bocchiola and Groppelli 2010).     

Despite the promising results from such applications of MODIS its interpolations of SWE 

present bias when compared to ground-based measurements.  Recently De Lannoy et al. com-

pared SWE observations from remote sensing to CO-OP and SNOTEL datasets during a study of 

SWE in the Northern Colorado Rockies (2012).  The study compared SWE interpolation from 

ASMR-E combined with snow cover fraction (SCF) products produced by MODIS against in-

situ measurements at the ground-based stations.
4
  In this study, the MODIS output provided only 

data regarding the physical extent of snow covered regions while the ASMR-E data provided 

                                                

 

4 ASMR-E is a remote-sensing technology that uses microwave energy to interpolate SWE directly. 
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SWE interpolations.  Daily datasets for both the remotely-sensed and ground-based observations 

through eight winter seasons from 2002 to 2010 were analyzed.  Even after assimilating MODIS 

and ASMR-E, equalizing the spatial output scaling (down to 1 km), and applying data filters the 

interpolation of SWE was found to be inaccurate at locations with patchy and deep snowpack.  In 

general, interpolating SWE from the SCF output from MODIS alone experienced problems 

which were only slightly mitigated with assimilation of the ASMR-E data.  

A second type of remote-sensing that also uses imaging is the suite of GOES (Geosta-

tionary Operational Environmental Satellite) satellites that have been in service 1994 (Olsen 

2007).  GOES satellites have provided key monitoring products such as tracking of major weath-

er systems, cloud coverage analysis, wind speed/direction, surface and atmospheric temperature 

profiles, and atmospheric water content analysis.  The first two of its products are aimed at moni-

toring images taken of the earth, performed by onboard optical equipment similar to that of 

MODIS.  The more complex products, such as temperature profiles, cloud height, atmospheric 

water content, and wind speed/direction at various atmospheric altitudes are performed using 

specific sensors coupled with highly sophisticated analysis.  For instance, the interpolation of 

cloud temperature and atmospheric water content requires an EM (electromagnetic) emitter ca-

pable of radiating five wavelengths (from 0.65µm to 12.0 µm) (Olsen 2007).  For interpolation 

of water content, a specific wavelength of EM is chosen which liquid water in the atmosphere 

absorbs.  The energy absorbed by the water in the atmosphere may not be reflected back to the 

GOES receivers, or may be reflected back partially depending on the amount of water in the at-

mosphere.  GOES detects this reflection and relates the returned energy to the amount of water 

that must be present in the atmosphere.   



35 

 

The most useful applications of predicting snowpack properties using GOES data involve 

relationships between the snow cover properties obtained from remote measurements to deter-

mine snow depth.  Some of these studies also incorporate land cover and vegetation to refine the 

measurement of snow depth.  An investigation into establishing such a relationship between 

snow reflectance and ground snow depth using GOES output was made in 2004 for a study area 

including the U.S. Great Plains and the Canadian prairies (Romanov and Tarpley 2004).  The re-

lationship developed contrasted the reflectance – or energy reflected back to GOES – of the 

ground against the known reflectance of snowpack.  This difference was used to determine depth 

of snow for 12 km square grid cells throughout the study area.  Comparisons of the predicted 

ground snow depths to observed ground snow depths (at over 1400 snow depth measuring 

weather stations in the study area) produced varied results.  Provided that observed ground snow 

depths were below 30 cm, the relationship developed produced errors less than 30%.  The results 

indicated limited usefulness for greater snow depths.  Since ground snow depths in mountainous 

regions frequently exceed hundreds of centimeters, the model produced by Romanov and 

Tarpley is not useful at all to this investigation.  Moreover, since the output spatial resolution 

was so coarse its usage in this study doesn’t agree with regional scale interpolations.  Therefore, 

the concept of ground snow depth derived from satellite data alone is not mature enough to be 

used alone.  

Active remote sensing, such as radar, is a promising remote sensing technology that pre-

dicts SWE directly from the obtained measurements, instead of relating fractional snow cover or 

snow depth, first to estimate SWE (Nolin 2010).  Therefore, radar is not subject to the secondary 

sources of error in the interpolation of SWE.  Radar remote sensing of snowpack whether by 

plane or by observing satellites also has the advantage of finer spatial resolutions (closer to 1km).  
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Basically, radar devices used in remote sensing of snow detect the difference in scattering of re-

flected energy (known as backscatter) between snow and non-snow bodies across different bands 

of wavelength.  This is illustrated by Figure 2.6 which depicts radar interference graphs created 

by two bands of energy (L- and C-band).  While usually used to obtain topographical elevation 

models, this technology can also be adapted to interpolate values of SWE in snowpack provided 

the radar is calibrated to experimental testing (Olsen 2007).  Relationships between the differ-

ence in backscatter and the SWE of the snowpack can be constructed, resulting in spatial interpo-

lations of SWE. 

 

Figure 2.6: Interference Patterns of L-Band and C-Band Obtained from 

SAR Flown Radar over the Mojave Desert, CA (Olsen 2007). 

Estimating properties of snowpack derived from radar, microwave emission, or processed 

satellite imagery has great potential in supporting the prediction of ground snow depth and SWE.  

Considering the simplicity and advantages over other technologies, radar would appear to be the 

standard for remote sensing of snowpack properties.  However, radar is subject to the same 

sources of error that troubles all remote sensing technologies.  Many bands of radar are particu-

larly prone to problems distinguishing snow backscatter from non-snow backscatter when the 

C-BAND 

L-BAND 
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density is very low and the snow is very dry (Nolin 2010).  In these instances, the radar energy 

passes through the snow layer too easily and the measured reflectance is only a function of the 

properties of the ground surface.  Also, radar backscatter is related to SWE in a nonlinear rela-

tionship that varies with climatic and also geographic variables (e.g. humidity, type of underlying 

soil reflecting radar energy).  This increases the estimated error in predicting SWE over large re-

gions.  In general, remote sensing technologies cannot yet overcome the inherent errors in meas-

urement such as backscatter issues associated with radar, coarse resolution issues associated with 

GOES, and cloud interferences associated with MODIS.  Consequently, remote sensing should 

be coupled with more reliable but perhaps less informative types of measurements such as snow 

depth.  This is discussed further in the next section.        

2.4 Evaluation of Ground-Based and Remotely-Sensed Observations 
for Structural Engineering Applications 

The sources of climatological data described in Chapters 2.2 and 2.3 provide valuable da-

ta, the utility of which depends on the application.  For ground-based weather measurement sta-

tions such as NWS First Order and CO-OP stations, the intended users are weather forecasting 

offices around the country.  For SNOTEL and Snow Course stations the intended users are hy-

drologists and water forecasting officials.  Lastly, remote sensing is tailored to scientists studying 

climate changes on a global scale.  While none of this data is tailored specifically to the structur-

al engineering community, many pieces can be extracted which are useful when combined to-

gether.  A few of the strengths and limitations of each source are described below, along with 

recommendations on how to mitigate these limitations for the specific applications of this thesis.   

Out of all the station types that provide firsthand snow measurements, the network of 

NWS First Order stations provides data that is most meaningful to the structural engineering 

community since these stations record SWE.  A measurement of SWE can be conveniently trans-
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lated into a ground snow load.  The utility of these stations is even greater considering regular 

ground snow depth measurements are concurrently recorded.  The caveat, however, is that these 

stations are rather sparse in comparison to the related NWS CO-OP stations that record snow 

depth (among other measurements).  The only current NWS First Order stations in Colorado are 

Alamosa (ALS), Colorado Springs (COS), Denver (DEN), Grand Junction (GJT), and Pueblo 

(PUB) (NCDC 2012c).  Furthermore, several studies (Robinson 1989, Schmidlin 1990) have in-

dicated the existence of observer error at various NWS stations wherein zero-depth measure-

ments were recorded at stations where analysis revealed significant snow accumulation at nearby 

stations.  Missing entries and assumed snow depth or density are also common.  Unfortunately 

the uncertainty in the extent of these errors complicates any corrective measures. 

  The networks of the NWS CO-OP and CoCoRaHS programs boast quantity of stations 

and significantly increased spatial coverage of the country compared to any other weather station 

network.  This is especially useful from a statistics point of view, although the usable data from 

these stations for this investigation are limited to ground snow depth measurements.   Neverthe-

less, station data from these programs cannot be disregarded.  The strength of their spatial cover-

age makes them important for the development of ground snow load maps.  

The other sources of climatological data have roughly equal strengths and weaknesses.  

The GHCN database is significantly larger in station count than either NWS First Order or CO-

OP, but lacks informative measurements (only records of temperature and precipitation are 

available).  Data originating from Snow Course and SNOTEL products are very reliable and 

consistent due to proven history and automation, respectively.  However, data obtained from 

these two sources can only shed light on snow properties in a small subset of relatively remote, 

mountainous regions of the country.  Finally, remote sensing techniques are useful in describing 
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characteristics of very broad regions and are able to produce continuous digital maps, something 

not possible through analysis of any other source of weather station data.  Their limitations have 

been discussed but most of them stem from the long distances between the source and the 

equipment.     

In order to achieve optimum data fidelity and objectivity all sources must be incorporated 

into an analysis that attempts to model snow loads from the available data.  All of these sources 

should be incorporated in a manner that permits a type of check and balance so that the strengths 

of one dataset overcome the weaknesses of another.  Historical archived datasets from all of the 

sources in Chapters 2.2 and 2.3 are therefore employed in this analysis of ground snow loads.  

Specifically all such weather stations within Colorado, as well as other types of measurements, 

are used in the development of a case study for the state.  These stations are assimilated into a 

sophisticated computer snowpack model, introduced in the next chapter.   
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3.0 SNOW DATA ASSIMILATION SYSTEM (SNODAS) 

3.1 Objectives of the SNODAS System 

The National Operational Hydrologic Remote Sensing Center (NOHRSC) of NOAA has 

developed a climate prediction computer model that utilizes and assimilates various types of 

measured data.  SNODAS, or Snow Data Assimilation System, produces modeled estimates of 

snowpack and associated properties/variables.  These estimates are used to support national hy-

drologic analysis (Barrett 2003).  The SNODAS system accepts a variety of meteorological data 

as input, combining different sources, conducts quality control of the data, and produces a com-

puter-based snow model with several snow-related variables as output.  SNODAS input includes 

measurements from ground-based sources (as described in Chapter 2.2), satellite and airborne 

sources (as described in Chapter 2.3) and numerical weather prediction models.  SNODAS out-

put are mapped values of snowpack variables for the conterminous U.S.  It is advanced at six 

hour intervals under the direction of analysts and meteorologists who decide which sources to 

use during each interval.  The current output is available at a spatial resolution of 1km and tem-

poral resolution of 1hr.  Spatial resolution refers to the size of the geographic square plot of land 

for which output is modeled; temporal resolution indicates how frequently the output is pro-

duced.  These plots of land within the model are referred to as grid cells that collectively form a 

complete grid of the U.S.   

3.2 Variables Modeled by SNODAS 

There are three basic types of variables that are used by the SNODAS computer snow 

model: driving, state, and diagnostic (Barrett 2003).  These variables quantify descriptive proper-

ties of the atmosphere, snowpack, or precipitation.  Table 3.1 lists the major variables modeled 
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and describes the general role of each on the produced output.  Only the major contributing vari-

ables are shown; some have been omitted for conciseness.  The initial parameters are somewhat 

site-dependent properties and are necessary for the spatial interpolation of modeled variables be-

tween observation points.  Driving variables are climatological factors which directly affect each 

state variable – descriptive properties of snowpack at each output interval.  Finally, the diagnos-

tic variables are modeled to cross-reference other driving and state variables.  They are used to 

assist the analysts in deciding which data to include/exclude each time the model is advanced, 

and are also important for validating the correctness of the model. 

Table 3.1: SNODAS Model Parameters and Variables (Barrett 2003) 

Type of Variable Variable Properties/Processes Influenced 

Initial Parameters Forest Cover Fraction Site-specific thermal properties 

Soil Bulk Density Water transport properties 

 Soil Plasticity Thermal/mechanical properties 

Driving Variables Surface Zonal Wind Snowpack sublimation losses 

Surface Air Temperature Snowpack composition/melting 

Surface Relative Humidity Snowpack composition/melting 

Snow/Non-Snow Precipitation Affects snow water equivalent  

Solar Radiation Affects snowpack melting 

State Variables Snow Water Equivalent** Water yield of snowpack 

Snowpack Thickness** Water yield/thermal properties 

Snowpack Average Temperature Snowpack composition 

Diagnostic Variables Snow Sublimation Rates Mass-energy balance 

Conductive/Latent Heat Flux Validate average temperature 

Snowpack Melt Rate Mass-energy balance 

Long Wave Radiation Flux Compare with solar radiation/flux 

* This list of model parameters/variables is only partial; some have been omitted for conciseness. 

The number of input variables listed in Table 3.1 demonstrates the complexity of the 

SNODAS climate modeling platform.  This complexity reflects the complicated climatic pro-

cesses that affect snowfall properties.  Due to the large number of variables that impact the out-

put, no single variable carries significant weight such that an outlier in a particular variable (e.g. 
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abnormally high, erroneous temperature measurement) would drastically alter the output.  Also, 

since diagnostic variables are also produced as output, they are used validate the other variables 

and ensure the model is working properly.  The variables denoted with asterisks in Table 3.1 are 

of particular importance in this investigation and are the principal output variables that will be 

gathered for selected grid cells in Colorado for developing ground snow load maps.  These vari-

ables, SWE and snowpack thickness (depth), directly affect the density of the snowpack at each 

grid cell and are useful for determining probabilistic ground snow loads in the state. 

3.3 Identification of SNODAS Input 

The SNODAS snowpack model assimilates various different sources of weather station 

data that are otherwise not compiled together.  Specifically, SNODAS input includes all of the 

types of measurements described in Chapters 2.2 and 2.3; weather station input comes from most 

of the stations listed in Table 2.1.  SNODAS uses a unique weather station identification system 

to archive its modeled output.  The numerous agencies which operate and maintain the weather 

stations that are inputs to SNODAS have unique identification systems as well.  These station 

identification systems are distinct, so a weather station identified by one system might possess a 

completely different name associated with its SNODAS modeled output.  A brief explanation of 

the SNODAS weather station identification system is presented.  Also, all SNODAS weather sta-

tions within Colorado that are used in this investigation are identified.     

3.3.1 SNODAS Station Identification System  

The NOHRSC branch of the National Weather Service has created a unique exchange 

format for storing modeled or observed meteorological data.  This format allows interoperability 

and exchange of data across computer platforms and agencies, through a format known as SHEF 

or Standard Hydrometeorological Exchange Format (NWS 2012c).  The SHEF format is applied 
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to all assimilated weather station data that SNODAS uses and it serves as a method of standard-

izing data that may have originated from numerous sources.  While the coding and features of 

this format is not of interest here, the application of the SHEF format reduces all assimilated 

weather station identifiers into a string of five alphanumeric characters.  The SHEF format 

adopts the naming convention of the NWS meteorological and climatological programs.  This 

naming convention incorporates the first three letters of the city or town in which the station re-

sides plus a two character ‘SID Code’.  The SID Code is an alphanumeric code assigned by 

NWS to represent the state or regional area.  The SID Code for Colorado, for instance, is ‘C2’.  

An example of a SNODAS station SHEF ID is the station at the Arkansas River in Granite, CO 

named ‘ARGC2’.   

To visualize the spatial coverage of stations included in the SNODAS model, Figure 3.1 

displays all of the 588 stations modeled by SNODAS and considered in this investigation.  They 

are plotted by their geographical coordinates on a topographical map of Colorado.  Note that the 

weather stations plotted in Figure 3.1 do not represent the complete inventory of weather stations 

for which SNODAS models output; this investigation only considers SNODAS stations in Colo-

rado with complete records from water year (WY) 2003 through 2012.
5
  Refer to Chapter 6.3 for 

more details on the procurement of station data.  A partial inventory of SNODAS stations used in 

this investigation is presented in Appendix C.  To supplement this, a table which lists concise de-

scriptions of each SNODAS station type is presented in Appendix D.     

                                                

 

5 A hydrological water year begins on October 1st and ends on September 30th of the following year.  
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3.4 SNODAS Data Assimilation  

As previously mentioned, SNODAS assimilates various types of measured climatological 

data from ground-based, satellite, and airborne sources.  All of these sources are either manually 

assimilated by trained analysts or numerically assimilated by the model algorithms.  Data assimi-

lation involves regulation of spatial and temporal variations in the source data as well as resolv-

ing discrepancies between modeled versus observed values.  As introduced by Figure 3.1, each 

of the pins represents a station whose modeled SNODAS output is utilized in this investigation. 

The main challenge for SNODAS is that ground-based sources provide point spatial ob-

servations while remotely-sensed observations provide gridded estimates (which is also the form 

of the final SNODAS output).  All input, ground-based data are assimilated into SNODAS and 

each point source is responsible for the nearest grid cell or group of grid cells (Barrett 2003).  

This depends on the spatial distribution of the weather stations.  Airborne or remotely-sensed da-

ta naturally produces gridded observations, so their coordinate systems need only be aligned with 

that of the SNODAS model.  The SNODAS documentation does not describe in detail the pro-

cess of combining point or areal source data into the grid cells, specifically in the event of une-

ven spatial distributions of weather stations.  However, all sources are eventually assimilated into 

a single gridded model.  To represent land cover, it incorporates a digital elevation model and al-

so terrain features such as forest cover fraction and vegetation properties available from satellite 

and radar data (Barrett 2003).  These site-dependent properties facilitate model interpolation be-

tween grid cells.  An example of model input from satellite and radar that provides forest density 

and land use estimates of each station, vital to estimating the soil bulk density and other driving 

variables, is Landsat relief imagery.  An example of a Landsat imagery analysis for station 

BOUC2 in Boulder, CO that feeds into SNODAS is available in Appendix E.       
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Another issue to consider is the selection of the temporal structure of the model, such as 

when model output is published and what timescales of the input sources are used.  This is im-

portant since all sources of information do not publish data at the same time intervals.  Also, es-

tablishing a standardized timeframe for reporting estimates is crucial since the time of the day 

significantly affects many output variables.  Regardless of individual reporting times for all of 

the input sources such as ground-based and remotely-sensed, the model uses daily measure-

ments/observations that coincide the closest to 6:00 UTC, or coordinated universal time (Barrett 

2003, NOHRSC 2012).  Despite the fact that SNODAS produces hourly modeled data, most of 

the snowpack properties such as snow depth and SWE are only updated once a day at this time.  

This standardized time roughly coincides with the beginning of the day for the central U.S. 

which eliminates measurement or observation errors that may arise from increased temperature 

and humidity during the daytime.    

SNODAS may produce estimates of snowpack properties that differ slightly from the ob-

servations at the input stations.  Modeled estimates must be balanced with observations from all 

of the sources of data in order to produce the most accurate output.  The manner by which 

SNODAS handles discrepancies between modeled versus observed values is described in the 

next section.  The general structure of the modeling procedures is first described. 

3.5 SNODAS Snowpack Model Structure  

SNODAS is a multi-layered, mass-energy balance snowpack model which is spatially 

distributed but uncoupled (Barrett 2003).  This means that the redistribution of energy and mass 

inputs/outputs from one grid cell to another, due to snow drifting for instance, is not considered 

by the model.  Energy inputs include radiation fluxes, surface temperatures, etc. while mass in-

puts include snow depth, modeled precipitation, SWE, etc. The snowpack model is most accurate 
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when used to estimate the current or previous properties of the snowpack; however, it has the 

ability to forecast at least one week into the future (NOHRSC 2012).  The model is intended to 

provide the best estimate of snow cover and snowpack properties for prediction of hydrological 

modeling and water forecasting.  However, between all of the driving, state, and diagnostic vari-

ables the model is capable of producing much more.  The model can handle and incorporate a 

wide variety of meteorological conditions such as rain-on-snow, discrete snowfall accumulation, 

and freeze-thaw cycles while accounting for other phenomenon such as water transport, taking 

into account absorption and transpiration.  Other processes such as the compaction of snow and 

its metamorphosis after deposition on the ground are also considered in the model.   

The core of the SNODAS snowpack model is a set of governing differential equations 

that are based on the laws of energy balance and thermodynamics, which allow the preceding 

meteorological processes discussed above to be modeled (CRREL 1991).  Due to the complexity 

of the constituents involved, which include snow and soil layers of spatially varying composition 

with properties (thermal conductivity, density, porosity, etc.) that vary with depth, the model is 

divided into layers of snow and soil.  This allows computationally intensive equations to be 

solved incrementally with time and simultaneously for each layer. 

There are three snow layers and two soil layers considered in the model (Barrett 2003).  

The snow layers define those representing the atmosphere-snow boundary layer, the insulated 

snow later, and the soil-snow boundary layer.  The two soil layers reflect porosity and density 

variations, differing with depth, that affect water transport.  The top soil layer is subject to ther-

modynamic fluxes while the deeper soil layer is isolated from such fluctuations.  SNODAS uses 

this model of the soil-snow layers and applies horizontally infinite control volumes around them.  

These control volumes behave similar to Gaussian surfaces.  Figure 3.2 illustrates the fractional 
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volumes of soil and snow which the model considers.  Since air represents less than one percent 

of the mass of the soil or snow mixture, the layers that include fractions of air are excluded from 

the model equations (Figure 3.2 illustrates these two additional layers, however).  The five-layer 

concept and control volume approach is coupled with the application of governing heat and mass 

conservation equations that are adapted from thermodynamics (CRREL 1991).  Mixture theory, a 

specific branch of thermodynamics, is used here to account for the different layers which com-

prise matter of both different phases and different constituents (liquid and solid precipitation, 

plastic and frozen soil matrix).   

Thus, a large set of equations are imposed on each layer and boundary conditions are set.  

These boundary conditions originate from the driving variables listed in Table 3.1 in addition to 

data assimilated from numerical weather prediction models (Barrett 2003).  An example of a 

weather prediction model that is incorporated into SNDOAS is the RUC2 model used by mete-

orologists in near-term weather forecasting.  The output from this model provides the driving 

variables of temperature, wind, relative humidity, air pressure, and precipitation that help the 

model initiate.  By imposing the boundary conditions around the control volume and applying 

the conservation equations, a set of solvable differential equations is produced.  These equations 

rely on the premise that the time rate of change of the state variables must equal their net flow 

across the boundary surface of the control volume, plus any internal production (CRREL 1991).  

The equations themselves are complex and require considerable background in advanced ther-

modynamics, fluid flow, and mixture theory.  Thus, a detailed description of them is omitted for 

this paper.  However, a brief discussion of the solution procedure is presented later. 
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Figure 3.2: Phase Diagram Illustrating Five Soil/Snow Layers Incorporated into SNODAS 

Model. The five layers considered in model equations are denoted by asterisks.  

Adapted from CRREL (1991). 

SNODAS output variables are modeled for discretized square grid cells of the Earth 

measuring 30 arc-seconds of length in latitude and longitude which roughly equate to a 1km × 

1km model grid (Barrett 2003).  Model output from SNODAS is estimated at the center of each 

grid cell.  The coordinates of each grid cell and their boundaries are known from geophysical re-

lationships, so they can be mapped internally within the model.  These mapped grid cells are in-

tegral since they essentially represent control volumes themselves; their boundaries define which 

nearby sources are considered.    

The general process of the SNODAS snowpack model is as follows (Barrett 2003):  

(1) The model is initiated with the RUC2 numerical weather model using 

Driving Variables. 

(2) At each grid cell, a mass-energy balance is computed in order to produce 

State Variables. 

(3) All available ground-based station data are input and assigned grid cells in 

the snowpack model [UPDATE State Variables]. 
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(4) All available airborne or remotely-sensed observations are input and 

aligned with the SNODAS grid, then assigned grid cells in the snowpack 

model [UPDATE State Variables]. 

(5) Difference fields are calculated between all observed vs. modeled 

quantities, in other words items (3), (4) vs. item (2).  

(6) Difference fields are analyzed manually to determine if regions should or 

should not be updated with observations. 

(7) Difference fields deemed necessary to update are interpolated through the 

entire gridded model. 

(8) Model ‘nudging fields’ are created by dividing difference fields over a 6-

hour period. 

(9) Finally, SNODAS is re-run for the preceding 6 hours and ‘nudging fields’ 

are applied to the model to produce final State Variables. 

In the preceding description of the SNODAS model process, the notation [UPDATE] denotes pe-

riods where state variables from ground-based and remote sources are introduced into the model.  

While not explicitly mentioned, the diagnostic variables are used throughout the entire process to 

validate proper operation of the model.  During the model updating, any observation from 

ground-based or remotely-sensed sources from the preceding 18 hours is a candidate for the 

model run.  If none exist or only a sparse distribution of update sources is available, a decision is 

made by the model analysts on which sources to include.  Also, satellite imagery is incorporated 

into item (6) to determine regions that require updating; cloud cover usually indicates which re-

motely-sensed observations are to be included (usually only when mostly clear skies are present).  

Items (5) through (9) require a specialized process that is essentially the basis of the SNODAS 

model.  These steps involve an assimilation procedure known as Newtonian Nudging, hence the 

term ‘nudging fields’ in (7) through (9).  This assimilation procedure specifically addresses the 

disparities that can arise between the different sources, both spatially and temporally.   

Newtonian Nudging or Relaxation is a four-dimensional assimilation process whose aim 

is to drive (or ‘nudge’) model-based output variables towards observed ones by taking into ac-
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count spatial and temporal influences (Paniconi, et al. 2003).   It can be performed on any model 

where various observation sources, such as grid-based (i.e. remotely-sensed) and scattered (i.e. 

ground-based) sources, need to be transformed and standardized so that they can all be incorpo-

rated into the model.  The transformation includes forcing the model state variables towards ob-

servations by adding an additional forcing function to the model equations.  This forcing func-

tion has the following form (Paniconi, et al. 2003). 

  

  
  (     )     (   )  ( )  (    ) (6) 

In Eq. (6),   is the assimilated state variable of interest and its subscript ‘o’ denotes observed 

quantities while the nominal form denotes model estimates.  Also,   and   are the spatial and 

temporal coordinates of the state variable and thus the first term   represents the model forcing 

of the state variables from step (1) in the model process description.  This forcing is for a particu-

lar variable at a particular point in space and time.  The term   is a strength term applied to the 

weighting function,  , which varies spatially and temporally for each ground-based station.  

This weighting function determines the influence of nearby sources.  Finally,   is the usual error 

term that explains measurement error and reliability of the various sources.  Since difference 

fields are determined first at observation points (i.e. ground-based weather stations) the Newto-

nian Nudging process is performed first at the ground-based stations.  The rightmost term in Eq. 

(6) comprises the ‘nudging’ term or forcing.  This equation is applied over all of the state varia-

bles at all SNODAS stations in order to create the nudging fields in step (8) of the process de-

scription.  The weighting functions described above vary in form based on the philosophy chosen 

to account for spatial inconsistencies in observation points, as noted in Figure 3.1.  Although the 

SNODAS documentation does not divulge the specific type of weighting function incorporated 
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in the Newtonian Nudging process, it is assumed to be Cressman-type or distance-weighted since 

these methods are very common  in hydrologic modeling.  A form of Eq. (6) specifically de-

signed to handle unevenly distributed observation points, particularly for situations where values 

are not available at every point, was developed by Houser et al. (Paniconi, et al. 2003).  This var-

iant is not specifically discussed in this paper.   

The SNODAS modeling process can be concisely summarized as follows.  For a given 

six hour window of estimation, the model is initiated using numerical weather prediction models.  

Then, the model is updated with observations from both ground-based and remotely-sensed 

sources.  Differences between model estimates and observations are computed at the ground-

based stations.  Difference fields are analyzed by meteorologists and model analysts to determine 

which regions to update.  These differences are pushed or interpolated through to the entire grid-

ded model.  Hourly averages of these differences are computed and then forced into the model 

using Newtonian Nudging.  This nudging process is performed at the ground-based stations first, 

then interpolated through the entire gridded model.  The entire SNODAS model is then re-run 

and nudged at hourly increments for the preceding six hour window.  This process is repeated 

every six hours, producing hourly modeled output.   

3.6 Modeled Output Variables 

The SNODAS model produces output available hourly for all stations with a SHEF ID 

(refer to Chapter 3.3).  For each SNODAS station there are eight plots of modeled output pro-

duced, each of which plot several related snowpack model diagnostic and state variables.  Table 

3.2 lists the output plots and various diagnostic and state variables included in each. 
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Table 3.2: Output & Plots for Each SNODAS Station Available from SNODAS Snowpack Model 

(NOHRSC 2012) 

Plot Title of Plot 
Diagnostic & State 

Variables Presented 

1 Snow Water Equivalent, Snow Depth and Snow Melt DEN,MLT,SD,SWE 

2 Precipitation, Snow Water Equivalent and Snow Depth P,SD,SWE 

3 Time Window Cumulative Precipitation P,SD 

4 Snow Pack Temperature and Density by Layer DEN,LD,T 

5 Snow Surface, Mean Snow Pack, and Air Temperatures MST,T,TS 

6 Snow Melt, Sublimation, and Weather Forcing MLT,RH,SUB,W 

7 Snow Surface Energy Exchanges HF,LF,SF 

8 Snow Surface Radiation Fluxes Net SF, Net LF 

DEN = snow density; HF = heat flux; LD = snow layer depth; LF = longwave flux 

MLT = snow melt; MST = mean snowpack temperature; P = precipitation (liquid/solid) 

RH = relative humidity; SD = snow depth; SF = shortwave flux; SUB = snow sublimation 

SWE = snow water equivalent; T = air temperature; TS = snow surface temperature 

Out of the available data and plots produced by SNODAS, plots 1 and 2 are the most val-

uable for the purposes of this study because they include the two important output variables: 

SWE and snow depth.  The SNODAS station BURC2 (a SNOTEL station) is geographically il-

lustrated in Figure 3.3 with its output for WY 2005-2006 (plot 2) shown in Figure 3.4.  This sta-

tion is at an elevation of roughly 2850 meters, or 9350 feet.  This station also provides input to 

the model, so both modeled and observed output are available and plotted.  As it can be seen in 

Figure 3.4, the observed data and modeled data are remarkably close.  The SNODAS model is 

intelligent enough to neglect the extreme outliers of observed snow depth (teal squares) when 

computing the time series of the plotted data.  These outliers most likely represent erroneous 

readings due to rain on snow or some object obstructing the SNOTEL snow pillow.  It is also 

worth noting that the plots for SWE and snow depth in Figure 3.4 accurately reflect the typical 

accumulation of both in high mountainous terrain during the winter months, with a sudden melt-

off period starting in April and lasting until sometime in June (Doesken 2012).  This provides 
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some validation of the model performance.  The other available plots provide useful information 

for forecasting or monitoring a variety of climatological measurements.  Notice that in Figure 3.4 

the modeled time series for ground snow density appears to deviate considerably from the ob-

served densities at the end of the water year.  It is apparent that SNODAS encounters difficulty 

in predicting snowpack density at this time.  This issue is likely associated with the larger varia-

bility and inconsistencies with snow density as a function of snow depth or SWE, as discussed in 

Chapter 4.3.  Therefore, to avoid such issues with inaccuracy in modeled snow density, its output 

is avoided in this investigation.  

 

Figure 3.3: Location of SNODAS Station BURC2 in Colorado (NOHRSC 2012). 

Examples of the other plots listed in Table 3.2 for SNODAS station BURC2 are available 

in Appendix F.  Due to the elevation and most likely the heavy forested nature of the station, 

complete melt-off of the snowpack does not usually occur until late in the April-June timeframe 

since temperatures before that time period remain at levels below that needed to initiate melting.  

Temperature is not solely responsible, however, for melting of the snowpack; radiative energy 

from whatever sunlight the station sees also plays a role (Doesken 2012).  A particularly interest-

BURC2 
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ing observation made from scanning the plots in Appendix F is that the peak intensity of snow-

pack melting modeled by SNODAS in plot 1 (April-May) corresponds to the peaks of both the 

longwave and latent heat fluxes of the snowpack (Plot 7).  These heat fluxes are indicators of en-

ergy absorption of the snowpack from radiative energy from the sun, which ultimately lead to 

melting.  As well, this peak in melting also corresponds to the period of time when the daily av-

erage observed high temperature recorded by the SNOTEL exceeds 10-12 degrees C (50-54 de-

grees F), noted in Plot 5.  This is consistent with temperatures necessary for moderate snowpack 

melting (Doesken 2012).     

 
Figure 3.4: SNODAS Model Output Plot Showing Precipitation, SWE, and Snow Depth for 

Station BURC2 for WY 2005-2006 (NOHRSC 2012)  

The variables graphed in the various plots of Appendix F are very useful to provide not 

only a means of validation of the output but also to indicate significant meteorological and phys-

ical processes that correspond to snowpack accumulation, melting, as well as those that possess 
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seasonal characteristics.  Variables such as radiative fluxes, air temperatures, and wind speed 

may be used in the future as alternative means of correlating ground snow depth to density or 

water content.     

3.7 SNODAS Modeled Output Validation 

Validation of SNODAS output accuracy is difficult since the modeled output has only 

been available for roughly nine years to-date.  According to the SNODAS documentation pro-

duced by the NSIDC, tens of years of data will be needed in order to make a proper evaluation of 

model output using observations available on the ground (Barrett 2003).  This evaluation is com-

plicated by the fact that the data sets that would normally be used to validate SNODAS output 

are actually model inputs.  It is also not likely that independent validation data sets are available 

at the same spatial or temporal resolution as SNODAS (which should be aligned with validation 

data).  However, a possible way to compare the output would include using records of data from 

stream gauges or other similar hydrologic instrumentation whose data is not currently assimilated 

into the model.  Then, the simulated runoff interpolated from SNODAS output could be com-

pared to the observed stream gauge data, for annual timescales (Barrett 2003).    

 This type of effort has recently been made in a region of the Rocky Mountains Range 

that lies within Colorado, using an independent dataset provided by the U.S. Geologic Survey 

(USGS) (Clow, et al. 2012).  The study area included the roughly 660 hectare Loch Vale drain-

age basin located near the southern portion of the Rocky Mountain National Park, CO, illustrated 

in Figure 3.5.  The basin area encompassed forested, subalpine, and alpine environments.  This 

particular basin was chosen due to its involvement with ongoing research directed by the USGS 

related to hydroclimatic research, and the availability of independent data with which to validate 

SNODAS. 
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    Data to be evaluated in the study included gridded model output from SNODAS from 

January 2007 through July 2007.  Utilizing GIS software, modeled estimates from SNODAS 

such as SWE and precipitation at the center of each grid cell were plotted along with basin 

boundaries.  Modeled water-balance calculations were performed at the center of each grid cell. 

The calculations determined the differences between modeled April 1
st
 SWE outflow minus sub-

limation, transpiration, and ground transportation, totaled for the entire basin.  

 Independent validation data came from snow surveys conducted by the research team 

and water-balance calculations performed at the 31 headwater gauges in the watershed.  The 

snow surveys closely followed current snow course standards for extracting observed SWE 

measurements.  Sites were chosen that correlated to roughly the center of each grid cell 

SNODAS models for the Loch Vale watershed.  The independent validation water-balance cal-

culations came from a USGS watershed model developed specifically for the Loch Vale water-

shed.  These water-balance calculations were compared to interpolated water-balance estimates 

as modeled by SNODAS. 

 

Figure 3.5: Loch Vale Watershed Study Area Used by Clow et al. for SNODAS Model Validation 

(2012). 
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The results of the comparison indicated that SNODAS performed quite well in most for-

ested regions. The correlation coefficient between the measured SWE and snow depth and 

SNODAS modeled SWE and snow depth in forested regions was 0.77 and 0.72, respectively.  

However, for alpine regions within Loch Vale SNODAS accuracy suffered, with correlations be-

tween measured and modeled SWE and snow depth reducing to 0.30 and 0.16, respectively.  The 

modeled water-balance correlated relatively well to the runoff calculations at the headwater 

gauges.  For these calculations, the correlation between actual and modeled water-balance was 

acceptable (R
2 

= 0.52) with a root mean square error of only 9.5 cm of SWE.  Alpine regions 

with poor correlation were included in the overall estimates of modeled runoff by SNODAS, re-

ducing the overall correlation to actual runoff. 

The study determined a method for correcting the SNODAS model estimates in the al-

pine regions where correlation to actual measurements was poor.  Since the results indicated that 

wind redistribution of snow in alpine regions most likely resulted in the poor performance of the 

model in these areas, an error correction was applied in the alpine regions of modeled output.  

Recall that since the model is spatially uncoupled, redistribution of any mass variable is not con-

sidered, so this is a viable concern.  Using a ‘wind index’ derived from the terrain slope in the 

upwind direction as a predictor, a multiple regression analysis was performed on the model er-

rors in alpine regions.  The corrected SNODAS estimates resulted in significant improvement to 

model performance for the averaged results of all sites.  Averaged SWE and snow depth correla-

tions increased by 0.67 and 0.37, respectively.  Root mean squared errors were nearly cut in half 

after model adjustments were applied.  The unadjusted and adjusted comparisons of measured 

versus modeled SWE are illustrated in Figure 3.6. 
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Figure 3.6: Comparison of Measured SWE to SNODAS Modeled SWE, Before Model Adjust-

ments, left, and After, right (Clow, et al. 2012). 

The study did validate usage of SNODAS in forested areas, which account for the majori-

ty of the stations in Colorado.  A criticism of the study, however, is that for the watershed runoff 

water-balance correlations, the spatial resolution of the validation set was much finer than that of 

SNODAS.  As previously mentioned, these spatial resolutions should be aligned since SNODAS 

was not designed to predict such localized estimates of SWE and runoff.  Second, it is not feasi-

ble to assess the efficacy of the SNODAS model using less than one year of data from one 

source.  However, the adjustment methodology is noted as a viable way to correct SNODAS es-

timates in extremely unprotected, alpine regions.  Overall, the results of this study indicate good 

performance of SNODAS on the regional level, which is in accordance with its usage in this in-

vestigation.   

Another widely-used snowpack assimilation model is the NOAH LSM/HRLDAS (Land 

Surface Model/High Resolution Land Data Assimilation System) model (Barlage, et al. 2010).  

This coupled system, referred to simply as NOAH, is very similar to SNODAS.  It also utilizes a 

mass-energy balance in its model to estimate snow state variables, assimilates input from a varie-
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ty of sources, and initiates with a Weather Research Forecast (WRF) model similarly to the 

weather prediction model used by SNODAS.  A significant difference between NOAH and 

SNODAS is that the former is quite less complex in terms of its model algorithms.  It only con-

siders a single layer of mixed soil/snow, and lacks the capability to model snow grain metamor-

phism, multi-dimensional snowmelt factors, or water retention among other differences.  

SNODAS incorporates all of these elements into its snowpack model.  This lack of complexity 

has likely resulted in the under prediction of snowpack accumulation/ablation and SWE by 

NOAH.  Recently, the SNODAS snowpack model was used as a validation to the coupled model. 

Barlage et al. (2010) used an independent dataset composed of SNODAS output as well 

as SNOTEL ground-based station data to validate and help improve the temporal prediction of 

SWE by the NOAH model.  They considered several model modifications such as the adjustment 

of solar radiation for varying terrain slope and aspect, the addition of time-varying snow albedo 

(reflective coefficient), and other enhancements to improve snow/soil boundary layer processes 

(Barlage, et al. 2010).  To test their effects, individual model modifications were successively 

implemented, in addition to a final trial with all modifications, and compared with the SNOTEL 

and SNODAS output/observations.  

The SNOTEL station dataset used as verification was independent from that used as 

model input.  Validation with both SNODAS and SNOTEL was performed separately for the 

timeframe between November 2007 and August 2008.  In each effort, elevation was used to sep-

arate out groups of validation output points (for SNODAS) or stations (for SNOTEL); four to 

five elevation groups were created for comparison to NOAH model output.  

 The modifications to the NOAH model resulted in significant reductions in SWE under 

prediction when compared to SNOTEL and SNODAS data, when all modifications were imple-
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mented (Barlage, et al. 2010).  The reductions were nearly identical for the comparison of the 

model to either SNOTEL (36% reduction) or SNODAS (34% reduction).  When snow cover pre-

dictions were compared to MODIS and SNODAS, agreement between both of those models and 

NOAH was generally greater than 80% after the implementation of the modifications. 

In relation to this investigation, the results of this study give merit to SNODAS as a 

snowpack model.  The nearly identical performance gains between NOAH and both SNOTEL 

and SNODAS implies some sort of relationship between the latter two.  The high reliability of 

SNOTEL data and its usage alongside SNODAS in a validation capacity furthers the reliability 

of SNODAS.  Furthermore, the modifications made to the NOAH LSM/HRLDAS model which 

resulted in significant performance gains are already implemented into the SNODAS platform.  

Finally, the fact that SNODAS is being used as validation for other less-developed snowpack 

models speaks to its own strength as a modeling platform.  
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4.0 APPLICATIONS OF SNOW WATER EQUIVALENT AND SNOW 
LOAD RESEARCH   

4.1 Snow Water Equivalent 

The parameter of interest for this investigation is a ground snow load that can be deter-

mined and mapped at all locations in Colorado.  However, even at specialized stations such as 

SNOTEL, Snow Course, First Order NWS, and modeled SNODAS stations, a measurement of 

ground snow load itself is not obtained directly.  What is directly measured (or modeled in the 

case of SNODAS output) at the aforementioned stations is a particularly useful measurement of 

the snow water equivalent (SWE) of the snowpack.  A value of ground snow load can easily be 

obtained with this quantity, as discussed in the following sections. 

As briefly defined in Chapter 2.2, SWE is a measurement of the equivalent water content 

of the snowpack.  More specifically, a measurement of SWE is a depth of water that would result 

from melting a column of snow with a unit cross-sectional area (Schmidlin 1990).  It is directly 

related to snow depth and density via the following relationship: 

       (
  

  
) 

(7) 

In Eq. (7), SWE is typically reported in inches,    is the depth of the snowpack in inches,    is 

the bulk density of the snowpack in pounds per cubic foot, and   is the density of water (Sturm, 

et al. 2010).  By inspection, the weight of the snowpack can be directly calculated by re-

arranging Eq. (7) and solving for     , the ground snow load, Pg.  Thus, for stations where SWE 

and snow depth are directly measured, the ground snow load can be computed by multiplying the 

measured SWE by the unit weight of water.  Since the ratio (
  

  
) is unit-less, unit weights can be 
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substituted in place of densities in Eq. (7) in order to arrive at a ground snow load per unit area.  

Equations (8) and (9) below illustrate this (specialized for English units):  

            (8) 

   (   )  
    (  )

   (    ⁄ )
       (   )          (9) 

Where SWE is not directly obtainable it must be implicitly determined in order to derive 

a ground snow load using Eq. (9).  Recall from Chapter 1.2 that SEAC performed an analysis of 

annual records from SNOTEL and NWS First Order stations.  That analysis included translating 

the SWE measurements at these stations into ground snow loads using Eq. (9).  A relationship 

between this ground snow load and the recorded ground snow depth was then made and applied 

to other stations throughout the state where only depth was recorded.  Recent research regarding 

the estimation of SWE using climatological and meteorological data has been conducted by nu-

merous federal agencies within the United States as well as international agencies throughout the 

world.  This research could perhaps be adapted and applied to weather stations where ground 

snow loads or SWE are not directly measured.  The research performed here will build on such 

previous work outlined below.    

4.2 Mechanics of Snowfall that Affect its SWE, Density, and Load 

Snow precipitation varies greatly in water content (SWE) and density, depending on var-

ious atmospheric factors and processes before snowfall and after deposition on the ground.  

These factors greatly affect the supersaturation of water and density of the snowfall (Judson and 

Doesken 2000).  Immediately after its formation within clouds, the quantity of SWE in the snow 

crystals will typically remain constant unless the crystals encounter warm moist atmospheric lay-

ers.  Conversely, the density of the snow is greatly affected by the atmospheric temperature and 
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pressure as it falls.  After deposition on the ground, both the SWE and density of a unit volume 

of exposed snow are products of numerous time-dependent factors.  Since both SWE and density 

are closely related to ground snow load, the mechanics of snowfall and the factors that affect 

these snow properties are of significant interest to this investigation.  The composition of snow 

and its subsequent metamorphosis both prior to and after deposition on the ground is discussed.    

Snow begins as droplets of supercooled water in clouds that condense in the cold atmos-

phere, nucleate around dust particles, and form smooth plates of ice (Caltech 1999).  The habits, 

or shapes, of the ice crystals during formation have been studied extensively (Baxter 2005).  

Four main habits of ice crystals have been identified that depend on the temperature during crys-

tal formation and the water supersaturation within clouds.  These configurations include dendrite, 

plate, column, and needle habits, as depicted in Figure 4.1.  The most familiar shape of snow 

crystal is the ubiquitous snowflake which assumes a plate or dendrite habit.  Various other con-

figurations which are permutations of these basic habits are possible as well.   

The habit is of particular interest because it determines the amount of pore space (or en-

trapped air) within the newly formed crystal (Judson and Doesken 2000).  This pore space dic-

tates the initial density of the snow as it is falling.  For instance, when ice crystals of snow form 

at colder temperatures they typically form smaller, less dense habits as illustrated by the right 

hand side of Figure 4.1.  Thus, the habits formed at these conditions are smaller, less dense, and 

usually of the dendrite variety which has a higher surface area to volume ratio.  Conversely, 

warmer and thus moister conditions are associated with the more dense needle and solid column 

habits.  Between ice crystal formation and deposition on the ground, riming or crystal growth by 

accretion of supercooled water droplets can greatly affect the snowfall’s initial density or water 

content (Alcott and Steenburgh 2010).  The degree of riming is largely dependent on weather 
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patterns, presence of warm atmospheric layers, or updrafts and most often highly variable. Last-

ly, a factor that greatly affects both density and SWE during formation is the storm track taken 

by winter snow events.  Storm tracks in which low pressure systems originate from the Gulf of 

Mexico and travel northeast differ greatly from those that originate in the Arctic and travel 

southeast across the Plains of the United States (Baxter 2005).  Winter storms taking the former 

track tend to carry more warm moisture from the Gulf while those taking the latter tend to be dri-

er and colder.  Colorado is situated in a longitude range where both types of systems impact the 

state; however, this varies throughout the winter season.   

 

Figure 4.1: Types of Snow Ice Crystal Habits as Functions of Temperature & Supersaturation 

(Caltech 1999) 

A study performed by Judson and Doesken
6
 (2000) examined the density of snowfall in 

the Central Rocky Mountains, from sites across Colorado and Wyoming.  Thus study provided 

insight into the mechanics of snow after it has been deposited.  This study investigated the evolu-

                                                

 

6 Dr. Nolan Doesken is the State Climatologist of Colorado. 
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tion of several properties of snowfall during the most crucial timeframe after snow falls (1 to 24 

hours).  Data was collected from daily snow core sample measurements taken from 11 sites of 

varying type (avalanche research facilities, snow research institutes, etc.) through four winters.  

The measurements were taken on standardized National Weather Service snow boards and SWE 

measurements were obtained using official sampling tools.  Throughout the four winters sampled 

from each site, the range of densities of all the snow cores was between 10 and 257 kg/m
3 
(0.624 

to 16.0 lb/ft
3
) with a standard deviation of as high as 41 kg/m

3
 (2.56 lb/ft

3
).  This underscores the 

variability of the type of snowfall experienced throughout Colorado, where the majority of the 

study sites were located.   

An additional component of the Judson and Doesken (2000) study was the investigation 

of overburden effects (compaction due to self-weight) on snow density.  The analysis of snowfall 

events with moderate accumulation (greater than 30 cm) at five sites in the Central Rockies re-

vealed that a subset of the data (events with a minimum of 2.5 cm SWE) indicated very high 

densities at the 24 hour mark.  These densities were on average 16% higher than average densi-

ties for shallow snowfalls (less than 15 cm); some sites had densities 200% higher than the shal-

low sites.  These data reaffirmed that compaction (and densification) due to self-weight is a 

prominent process even for snowfalls with relatively low water content.   

Judson and Doesken (2000) also studied spatial variations in snowpack properties.  From 

Colorado stations excerpted from the dataset, they determined the correlation of SWE data be-

tween pairs of stations with varying separation distance.  The correlation coefficient as a function 

of separation distance was then plotted on a graph as seen to the right of Figure 4.2.  The authors 

noted that beyond 10 km of separation, the correlations of any two stations fell uniformly below 

0.7.  Much further than this, the correlation was of little statistical significance.     
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Figure 4.2: Weather Stations in Colorado Used by Judson and Doesken and Corresponding Plot 

of Correlation Coefficient vs. Station Separation for the Dataset (2000). 

Overall the study showed that there were sizeable spatial variations in the daily fresh 

snow densities at the analyzed sites (Judson and Doesken 2000).  Two main observations were 

that temperature was positively correlated to snow density for fresh snow and that compaction 

due to self-weight of the snowpack generally led to increased density.  However, since the au-

thors could not find a correlation of statistical significance for either assertion, they concluded 

that extreme spatial and temporal variations in density and SWE precluded such relationships.  

Therefore, in the Central Rockies snowpack density, SWE, and subsequently snow load are 

properties largely the result of highly variable weather and climatic processes that are not fully 

understood.  This last statement was also confirmed by a separate study of long-term annual 

snowpack patterns across the entire Rocky Mountain Range (Changnon, McKee and Doesken 

1993).  In that study, various seasonal climatic patterns were discovered from more than 30 years 

of snowpack measurements at snow course sites from 1951-85.  They discovered three predomi-

nant climatic patterns affecting snow pack properties: (1) abnormally wet or dry seasons for the 

entire region, (2) abnormally wet or dry seasons for the northern/southern Rockies, or (3) nor-
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mally wet or dry seasons for the entire region.  The high spatial and temporal variability of these 

patterns precluded the development of any trend or forecast of the patterns, be it spatial or tem-

poral.  The authors could, however, explain the climatic mechanisms behind them.   

4.3 Recent Research on Ground Snow Depth-SWE Relationships 

4.3.1 Development of a Model for SWE 

The field of applied meteorology is saturated with research work concerning snow water 

equivalency in mountain snowpack.  As defined in Eq. (9), a model to predict SWE is mathemat-

ically equivalent to one for ground snow load.  A massive project was recently undertaken in-

volving both the U.S. Army Cold Regions Research and Engineering Laboratory (CRREL) and 

NRCS, among other international organizations, which attempted to estimate density at a given 

site using inputs of snow depth, day of the year, and climate class (Sturm, et al. 2010).  This 

study used a statistical model, grounded in Bayesian methods, trained by a set of 25,688 records 

of snow depth, density, and SWE obtained from weather stations in the United States, Canada, 

and Switzerland (Sturm, et al. 2010).  The climate classification of each station was based on 

physical attributes of snowpack (depth, density, and type of snow layers) as well as information 

on vegetation, scrutiny of aerial photographs, and location (Sturm, et al. 2010).  After an exhaus-

tive effort to narrow down potential predictor variables, regression analyses yielded models that 

predicted density from the aforementioned inputs; an independent blind verification dataset con-

firmed the robustness and validity of the model.  An interesting decision made by the research 

team here is to attempt to model bulk density of the snowpack (instead of SWE itself), and then 

convert that to SWE, presumably by the direct relationship indicated by Equation (9).  Figure 4.3 

illustrates the underlying reasoning for estimating bulk density.  There is simply a smaller range 

of values for density as opposed to SWE.  By studying the range of dependent variables in the 
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two plots, it is clear that the range of bulk density is several orders of magnitude smaller than the 

range of SWE.  Thus, even though there is a very good correlation in the lower range of the 

Depth-SWE plot in Figure 4.3, an attempt to estimate SWE directly from depth would invariably 

incur more error in estimation than one in which density is first estimated from depth simply due 

to the substantial range of values for SWE.  With that said, the correlation of snow depth to den-

sity is still quite poor although not explicitly noted in Figure 4.3.   

 
Figure 4.3: Depth-SWE and Depth-Bulk Density Relationships from Station Data 

(Sturm, et al. 2010) 

Overall, the research by Strum et al. yielded a relatively good model to predict SWE from 

depth and relatively few inputs.  The required inputs (snow depth, day of year, climate class) are 

readily available at most weather monitoring stations dating back to historic time periods. How-

ever, despite the large sample size, it did not encompass a variety of snow types and densities 

and hence was not truly a random sampling.  As it can be seen by Figure 4.4, numerous sites are 

clustered in northern Alaska and the northern part of the Rocky Mountain Range.  Furthermore, 
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according to the data presented, a disproportionate percentage of both the model training data set 

and the blind verification training set favored the same climate region (Sturm, et al. 2010).  Last-

ly, while the climate classes (indicated by the key in Figure 4.4) were assigned by studying cli-

mate and topographical patterns, the class assignments is not supported by quantitative evidence.   

The authors do not discuss the assignment of stations where two or more classes are viable 

choices.  This is generally problematic in that reproducibility of this effort would likely produce 

different climate class assignments.    

 
Figure 4.4: Locations of U.S. and Canada Stations Used by Sturm et al. (2010) 

4.3.2 International Research on Depth-SWE Relationship 

Similar research performed in the Swiss Alps attempted to combine the strengths of 

Sturm et al. with additional research interests and safeguards against sampling bias.  A recent 

study performed in coordination with the WSL Institute for Snow and Avalanche Research in 

Davos, Switzerland attempted to estimate the spatial and temporal distribution of SWE in the 

Swiss Alps.  The objective was to determine a relationship between snow depth and snowpack 

density that included both a time and location component, and later use this depth-density rela-
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tionship to calculate SWE using the methods similar to Sturm et al. The Jonas et al. (2009)  da-

taset used to produce the model was also quite large (11,147 records), as well as statistically ro-

bust (average 35 years of record per site).  The records consisted of snow cores sampled bi-

weekly since 1960 by trained personnel at the Swiss Federal Institute of Technology, equivalent 

in measurement type to Snow Course practices in the U.S. described in Chapter 2.2.  Tight con-

trol of the standards and quality of measurements was available considering that a single regional 

entity was responsible for the data, and also since all measurements were snow cores and not 

mixed types.   

Through descriptive statistics and preliminary temporal analysis of the site data, the au-

thors were able to narrow down four factors which had a notable effect on density: (1) season, 

(2) snow depth, (3) site altitude, and (4) region (Jonas, Marty and Magnusson 2009).  Factors (2) 

and (3) are intuitively linked to snowpack density since increasing snow depth inevitably results 

in increased compaction and also because elevated, colder mountain peaks generally experience 

greater snow accumulation.  With regard to item (4), the snow core sites scattered throughout the 

Swiss Alps were apparently segregated into regions according to the basin or catchment in which 

they resided; however, the article did not precisely describe how sites were assigned to classes.  

Figure 4.5 illustrates the assigned regions with dark lines representative of region boundaries that 

appear to trace mountain ridges and valleys, indicative of typical basin catchments.  A total of 

seven snow-climate regions were established, which ranged from wet-alpine to dry-alpine, also 

encompassing a range of nearly 1800 meters in elevation gain from the highest to lowest site 

(860 m. – 2690 m. asl.).  The results of the investigation, after formulating a snow density model, 

indicated that season and snow depth were the two most important ones.  Several experimental 

trials of model performance were conducted, varying the included factors (1) through (4) above.  
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The authors compared each trial model to an independent validation dataset.  When season and 

snow depth were excluded the greatest model bias and root-mean-square error (RMSE) was ob-

served (RMSE of nearly 38 inches of SWE).  In contrast, the baseline model with only season 

and snow depth only had a RMSE of approximately 3 inches of SWE.  Overall, the most im-

portant finding from this research is that temporal variations in addition to snow depth affect the 

depth-density relationship (Jonas, Marty and Magnusson 2009).   

The model as created by Jonas et al. reportedly presented difficulties with low-altitude, 

early season, and shallow snowpack – a significant drawback for snow research in non-alpine re-

gions, such as Colorado.  Nonetheless, the effort to regionalize the stations is significant and 

should be taken into consideration for this investigation.  

A similar study performed in the Italian Alps supported the concept of weather station re-

gionalization by studying the spatial distribution of SWE in the Alps (Bocchiola and Rosso 

2007).  The initial objective of the research was to determine the statistical distribution that best 

described observed patterns of SWE.  The dataset included 14 years of SWE measurements that 

were spatially distributed and covered the majority of the Italian Alps. The results of this study 

were that the scaled values of SWE showed homogeneity of the coefficient of variation in space, 

indicating a significant spatial variation of SWE.  Bocchiola and Rosso therefore recommended a 

regional approach (i.e. one where stations were grouped prior to a statistical analysis) for fre-

quency estimation of SWE (2007).         
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4.3.3 Early Approaches to Regionalization of Weather Stations 

The regionalization of weather stations has been studied for decades.  A study performed 

in the northeastern U.S. in the early 1990s attempted to create a simplified model to predict SWE 

using only a few input variables.  The study was performed prior to the era of sophisticated 

weather instruments, so basic model inputs were necessary.  The model, developed by Samelson 

and Wilks, was designed to predict SWE at 15 NWS First Order stations in the Northeast U.S. 

using basic inputs that could also be obtained at CO-OP stations (1992).  Such inputs included 

daily snow depth, precipitation, and temperature readings.  The 15 NWS First Order stations had 

between 33 and 35 years of SWE records that were used as model validation.  After evaluating 

various test models, the authors narrowed down four variables reasonably correlated to snow-

pack SWE.  These variables included both quantities readily available at CO-OP stations in addi-

tion to derived variables that are simply reconfigurations of the original ones.  For instance, one 

of the derived predictor variables used in the final model represented the number of consecutive 

days where the station recorded a maximum temperature below freezing.  This predictor was de-

 

Figure 4.5: Map of Snow Course Sites Throughout the Swiss Alps Used by Jonas et al. (2009) 
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rived from temperature readings taken during the month.   Other predictor variables used in the 

final model included the prior day’s precipitation, the prior day’s snowfall, and the square root of 

the current day’s snow depth.
7
  Due to the nature of the inputs, the model was designed to predict 

SWE daily.   

 The analysis first determined regression coefficients that defined prediction models relat-

ing the four aforementioned predictor variables to SWE at each of the 15 First Order stations.  

The four-variable model was then compared to daily historical records of SWE at the First Order 

stations.  Statistical testing revealed a sizeable range of coefficients of determination, R
2
, be-

tween the model and each station (0.43 to 0.88) but only a modest range of RMSE (0.13 to 0.27 

inches of SWE) (Samelson and Wilks 1992).  The authors refined the models by combining 

groups of stations together subjectively by climatic region.  Four climate regions (“coastal”, 

“mountain”, “western New York”, and “total”) were created.  Then, regression models for each 

climate region were developed by determining the model coefficients that best fit all of the 

members within the region.  The results showed improvement in R
2
 for each group (0.62 at the 

lowest) with virtually no change in the RMSE.   

 Using an independent set of verification data available in the form of Snow Course data 

at nearby sites (which provided useful SWE datasets), the models were assessed.  The results of 

this validation revealed that the developed models predicted SWE reasonably well at higher val-

ues.  Approximately 67% of all estimated SWE values fell within 50%, 25%, and 15% of ob-

served SWE when the estimated values were 2.5, 12.7, and 25.4 cm, respectively (Samelson and 

                                                

 

7 Previous work by Neter et al. (1985) had illustrated that the square root of snow depth was a better predictor of 

SWE than snow depth, so the authors incorporated this finding into their analysis.   
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Wilks 1992).  In other words, the model accuracy increased with increasing values of SWE.  

Overall, this study demonstrated the value of regionalization of weather stations and underscored 

the importance of retaining model simplicity. 

4.4 Recent Snow Load Research 

Recent research efforts to modernize and standardize the Eurorode have resulted in sig-

nificant improvements.  The Eurocode is a globally respected building code specifically adopted 

by the 31 European countries that comprise the European Committee for Standardization (CEN) 

(Gulvanessian, Calgaro and Holickây 2002).  The Eurocode is also widely promoted outside the 

EU.  The latest version of the code contains 10 separately published sections which govern the 

basis of design and the actions imposed on all structures (EN1990 & 1991), material specific re-

quirements (EN1992-1996, 1999) and geotechnical and seismic requirements (EN1997 & 1998).  

Snow load provisions are covered under EN1991: Actions on Structures.  Within it, there are 

now 10 ‘homogenous’ climatic regions whose geographic snow load maps are presented in An-

nex C of the code.  The methodology behind the development of snow loads of the Eurocode is 

important to this investigation due to the broad endorsement of the Eurocode by the CEN and the 

recent research efforts focused on improving its snow load provisions.  Therefore, any applicable 

philosophy that can be drawn from EN1991 regarding ground snow load analyses should be con-

sidered in this investigation. 

Prior to the research efforts the code was absent of standardization of the snow load 

maps.  There was no comprehensive European ground snow load map with individual country 

regions discretized.  Therefore, various countries chose different approaches for statistical analy-

sis, including different distributions to describe snow loads such as Gumbel, Weibull, and Log-

Normal (Formichi 2008).  Finally, much like the problems that plague the U.S. state-produced 
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snow load maps the national maps constructed by the Eurocode had inconsistencies at country 

borders.  After the updating efforts the European region increased its database of snow loads for 

analysis, standardized the usage of a Gumbel Type I cumulative distribution function, and re-

gionalized the CEN area into the current 10 climate regions.  Nearly 2600 weather station da-

tasets are included in its current version, which were used to develop snow load vs. elevation re-

lationships for zones established within each region.  These regions are illustrated in Figure 4.6 

alongside a sample plot of snow load vs. elevation for the Alpine region, produced by Formichi 

(2008).  The wide acceptance of the Gumbel Type I distribution was based on the evaluation of 

the three aforementioned distributions; the Gumbel distribution fit the dataset the closest after a 

comparison of correlation coefficients.  The code recognizes the issue where some regions expe-

rience winters with significant accumulation followed by no-snow winters, and has thus analyzed 

these regions according to a mixed distribution approach, initially proposed by Thom in 1966.  In 

the development of the ground snow load relationships within each zone of each region primary 

consideration is given to altitude, believed by the CEN to be the most crucial component.  Other 

contributing factors to ground snow load have been studied on the international level.  These 

studies introduce other variables while maintaining the significance of regionalized climate clas-

ses as in the Eurocode.                        
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Figure 4.6: Ten Climate Regions Established in Eurocode EN1991-1-3, top and Partitioning of 

Alpine Region into Zones 1-4 Showing Load-Elevation Relationship, bottom (Formichi 2008). 

  A research effort in the United States in 1982 by Ellingwood and Redfield examined ex-

treme annual ground snow loads at weather stations throughout the Northeast (1983).  Elling-

wood and Redfield performed a statistical analysis of extreme ground snow water equivalents in 

an attempt to suggest an appropriate type of probability distribution to describe these extreme 

events.  The research was performed just after the publication of ASCE 7-82; the objective of the 
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study was to prepare for modifications to the next publication of the standard, ASCE 7-88.  The 

study area included 76 NWS First-Order weather stations in the Northeast that had at least 10 

years of data, covering the winters of 1952-1980.  The two most widely accepted distributions in 

the literature at the time of the study, the lognormal and the Type 1 extreme value (Fisher-

Tippet) distributions were analyzed.  A third, the Type II extreme value distribution, was also 

considered.  These represented three probability distributions with considerable differences in the 

spread and upper tails of the density functions.   

In order to determine the appropriate probability distribution, goodness-of-fit was evalu-

ated using the maximum probability plot correlation coefficient (MPPCC) criterion (Ellingwood 

and Redfield 1983).  For each station, the dataset of water equivalents were rank-ordered and 

plotted on probability paper, and then an equation was fit by linear regression.  If the equation 

was approximately linear and the MPPCC was close to unity, then the probability distribution 

that produced the results was chosen as representative for that station.  The results of the analysis 

showed that 50 of the 76 stations were best fit by a lognormal probability distribution.  The Type 

II provided the best-fit at so few stations that the next best choice, the lognormal distributions, 

was selected as the best-fit at these stations.        

The influence of limited sample size (i.e. less than 28 years of data) was also evaluated to 

see if the results were biased due to small historical records (Ellingwood and Redfield 1983).  

Simulations of snow water equivalents were produced at 38 selected stations using a Monte Car-

lo analysis.  After testing the hypothesis that the Type I distribution was the best for describing 

annual extreme water equivalencies at the 5% significance level, the probability that it was the 

best fit was determined to be negligible (10
-9

).   
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The results of the research suggested that the lognormal probability distribution was the 

best fit for all of the data.  These results were further supported by the results of a similar study 

of probability models of annual extreme SWE, performed the following year, which Ellingwood 

and Redfield also authored (1984).  These efforts were largely influential in the development of 

the ASCE 7-88 standard in which the same probability distribution was selected for the entire 

country.  Subsequent editions of the Standard, up to the recent ASCE 7-10, have adopted the 

same methodology and probability distribution.  However, a criticism of these research efforts is 

that they only considered a very limited region of the United States with very similar climatolo-

gy.  The best-fit distribution for the Northeast surely would not be the best-fit for the entire coun-

try.  The narrowing of the data to the northeastern quadrant of the country was necessitated due 

to limited availability of ground snow depth and snow water equivalency data for the western 

portions of the country, at the time of the study.  A solution to this issue is developed in this pa-

per and discussed further in the following chapters. 
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5.0 PROPOSED METHODOLOGY FOR QUANTIFYING GROUND 

SNOW LOADS 

The primary objective of this investigation is to develop a methodology for establishing 

ground snow loads that leads to mapped values for use in roof structural design.  The ground 

snow load map itself is the main product from which the potential end users, such as designers 

and engineers, will benefit.  The methodology described below focuses on those processes that 

collectively represent the transformation of raw snow data into a form that is suitable for con-

structing a snow load map.      

 The first component in this methodology is procurement of weather station measured da-

ta to be used in the analysis.  Station data used in this investigation includes historical station 

records (snow depth, SWE, etc.) as well as station properties (location, elevation, ground slope 

etc.).  Additionally, the procurement process covers the selection of the appropriate number of 

years of data, the data mining, and establishment of a local organizational system.  A key innova-

tion here is the use of modeled climatological data from SNODAS that provides a continuous 

field of output data.  The SNODAS output used here is from nearly 600 modeled stations which 

represent all the different climate regions of the state.  In addition, the SNODAS snowpack mod-

el is capable of producing continuous output fields that can be interpolated down to the 1km 

scale.  This possesses significant advantages in spatial coverage over the much less dense point 

source datasets of both snow depth and SWE currently used in various state snow load analyses.  

The data procurement process is described in further detail in Chapter 6.0.       

After the data has been procured, data processing can begin.  This includes several initial 

items such as file organization and data cleaning to facilitate the statistical analysis.  Statistical 

analysis of the data begins with preparation of the stations themselves, which includes perform-
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ing a principal component analysis to separate out the key station properties (and groups thereof) 

that greatly influence the data.  A critical aspect of the statistical analysis is the grouping of sta-

tions by similar climatology and topography so that members of each group can be expected to 

receive similar patterns of snowfall and snow loads.  This is accomplished through various mul-

tivariate clustering techniques that incorporate the results of the principal component analysis.  

Techniques are then employed to improve the quality of the clusters, such as the standardization 

of the variables by z-score.  This innovative approach to regionalizing station data is both robust 

and statistically grounded, resulting in highly reliable regions of similar stations.  Once group-

ings of stations are established, relationships between snow depth and snow load are developed 

for each newly created cluster through nonlinear regression.  These nonlinear relationships are 

tailored to each cluster and thus ensure that the relationship between ground snow load and depth 

accounts for the topography and climatology of each region.   

These relationships are then used in conjunction with observed snow depth data at CO-

OP stations to relate snow depth to snow load. At this stage, a probability distribution is fit to the 

snow depth data from CO-OP stations that reside in each cluster.  Several distributions are inves-

tigated for each station; the one with the best statistical measure of goodness-of-fit within a clus-

ter is then chosen for all stations in that cluster.  Once a probability distribution is selected, a 

ground snow depth at a target MRI can be estimated for each station.  This target MRI, histori-

cally taken to be 50 years, ideally is based on a reliability analysis as was done by ASCE 7.   Fi-

nally, the target MRI snow depths are paired with the associated snow depth-load relationship for 

that cluster to yield ground snow loads with that target MRI.  This process is described more 

thoroughly in Chapter 7.0. 
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The methodology proposed in this paper attempts to standardize and improve the overall 

process for determining and mapping ground snow loads.  Therefore, once the desired snow 

loads at each SNODAS station location are determined, the next logical step is to plot these 

points on a topographical map and perform some spatial analysis to produce accurate snow load 

isolines.  This spatial analysis is performed via geospatial information system (GIS) software.  

Several tools are available in GIS software packages that allow isoline and contour creation 

through the use of Kriging, inverse distance weighting, or nearest neighbor methods which pro-

vide spatial interpolation of values in regions where none exist.  Alternatively, a grouping analy-

sis using neural networks or a classification analysis, coupled with rolling-average mapping 

techniques can improve snow load mapping.  Since various methods employ quite different algo-

rithms to interpolate between the input point data, the results will be different.  The robust analy-

sis of ground snow loads performed in Chapter 7.0 would be undermined if an arbitrary method 

was used to map them.  Therefore an established method for spatial interpolation is recommend-

ed here.  Construction of a ground snow load map using spatial interpolation and GIS is de-

scribed in detail in Chapter 8.0.  

Figure 5.1 maps the entire process described above in the form of a flowchart.  The 

flowchart progresses from the procurement of the datasets through to the final activity of produc-

ing a snow load map (in the flowchart, ‘SD’ and ‘SWE’ denote snow depth and snow water 

equivalent, respectively). 
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Figure 5.1: Process Flowchart for Ground Snow Load Analysis 

  



84 

 

6.0 WEATHER STATION DATA PROCUREMENT 

6.1 Introduction 

The data procurement phase includes acquiring all of the station records necessary for 

analysis and post-processing.  The data collected for use in this investigation are composed of: 

(1) Descriptive properties of each SNODAS station 

(2) SWE and snow depth output from the SNODAS snowpack model   

(3) Snow depth records from National Weather Service CO-OP stations  

These sources alone are sufficient to accomplish the objectives laid out in Chapter 5.0.  

Item (1) above includes the input variables to flowchart element [2] from Figure 5.1.  Items (2) 

and (3) are used for the ground snow load and ground snow depth analyses, and reference 

flowchart elements [1] and [1a], respectively.  Since the SNODAS snowpack model readily as-

similates SNOTEL, Snow Course, NWS First Order, and CoCoRaHS station datasets into its 

snowpack model, from a procedural perspective there is no need to consider these sources sepa-

rately.  Records for CO-OP stations are available from the Western Regional Climatic Center 

(WRCC 2006), although a more comprehensive and trustworthy archive is available from the 

GHCN database through the National Climatic Data Center web page.
8
  The GHCN source of 

CO-OP station data is used in this investigation.  Recall that the GHCN database receives a thor-

ough review of its data to ensure accuracy and consistency of records (minimal missing data, da-

ta verification, etc.).  Records of model output for all of the SNODAS stations used in this inves-

tigation are available from the NOHRSC web page.
9
  Since SNODAS is under the jurisdiction of 

NOAA’s National Weather Service, its modeled station data is associated with a weather fore-

                                                

 

8 The NOAA NCDC web page: http://www.ncdc.noaa.gov/cdo-web/datasets/GHCNDMS/locations/FIPS:08/detail 
9 The NOAA NOHRSC web page: http://www.nohrsc.noaa.gov/shef_archive/wfo_stations.html 
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casting office (WFO).  For the state of Colorado, the NWS maintains three: a Boulder-Denver 

office (BOU), a Grand Junction office (GJT), and a Pueblo office (PUB).  Station output is que-

ried using the WFO at the NOHRSC website. 

6.2 Procurement of NWS CO-OP Station Data 

The NWS Cooperative Observer (CO-OP) weather stations provide data that is used di-

rectly in the snow depth analysis.  Of the NWS stations, both the First-Order and CO-OP station 

data are inputs to the SNODAS snowpack model, so both indirectly affect the output.  However, 

CO-OP stations also provide valuable, lengthy historical records not available by the SNODAS 

snowpack model.  Also, these numerous stations provide valuable data points that facilitate the 

creation of a ground snow load map, discussed later.  Historical records from CO-OP stations are 

first acquired from online archives, filtered to eliminate invalid entries or stations with too short 

of a measurement record, and lastly processed to minimize inconsistencies such as duplicate sta-

tions or station relocations.  Figure 6.1 shows a map of Colorado with all of the CO-OP station 

locations superimposed as squares.  There are a total of 331 NWS CO-OP stations in Colorado or 

in the nearby vicinity.  

The complete inventory of Colorado CO-OP stations is available on a separate web 

page.
10

 This inventory includes pertinent descriptive information about every CO-OP station 

such as its unique station ID number, location, name, timeframe of measurement, and location 

information (latitude, longitude, elevation).  A key piece of information provided, aside from the 

geographical location information, is the unique COOP number assigned by NWS that enables 

identification of each station.  The list is comprehensive and includes every documented instance 

                                                

 

10 The WRCC inventory of CO-OP stations web page: http://www.wrcc.dri.edu/inventory/sodco.html. 
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of creation, relocation, or decommissioning of a CO-OP station.  For example, there are seven 

entries for the ‘AKRON 4E’ station located in Washington, CO each with a beginning and end 

date of measurement for the six times the station moved.  Most of these relocations, on average, 

involved distances of less than one minute of latitude (less than one mile).  However, each entry 

for the same station must be assembled into one record so that no historical data is lost.     

 

Figure 6.1: Map of NWS CO-OP Weather Stations of Colorado and Vicinity Used in Ground 

Snow Load Analysis (WRCC 2006) 

For each CO-OP station, the NCDC offers various forms of datasets for these stations 

such as the annual summary, monthly summary, daily summary, 15-minute summary, or normal 

(averages) for the above timescales of temperature, precipitation, and ground snow depth.  Of the 

products available for each station, the monthly data summaries are the most useful for this anal-

ysis.  This is because the 2007 Colorado snow loads analysis and report published by SEAC ana-

lyzed station data with the same timescale.  Moreover, the daily summary format contains extra-

neous detail which may be full of missing values and the annual summary format does not 

provide sufficient detail for an analysis.  Since these stations are CO-OP stations they measure 

temperature, precipitation, and ground snow depth (refer to Table 2.1).  The NCDC CO-OP web 
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page mentioned in Chapter 6.1 directly leads to station data access for Colorado.  Data can be 

obtained by submitting a data request (the ‘add to cart’ hyperlink) free of charge.  On the follow-

ing web page the output date range, or start and end dates, is selected for the data of interest.  As 

far as the requested output format, the most convenient is a Comma Separated Values (CSV) file 

type, which can be easily opened in a variety of software packages such as MS Excel.  CSV files 

are composed of text strings with commas delineating separate types of entries that would nor-

mally be organized into columns of data.  The data can be downloaded directly, or in some cases 

must be sent via a large file transfer service from NCDC for lengthy date range requests.   

The CSV file contains a single header line describing the content of each column of data.  

The content includes the following: station (unique CO-OP ID number), station name (location, 

nearby city, etc.), elevation (feet above mean sea level), latitude, longitude, date on which meas-

urement was recorded (year and month), EMXP (extreme maximum precipitation within month, 

hundredths of inches), MXSD (maximum snow depth for the month, inches), TPCP (total precip-

itation for the month, hundredths of inches), and TSNW (total snowfall for the month, tenths of 

inches) (NCDC 2013).  At the present time, the fields EMXP, TPCP, and TSNW are not used in 

this investigation; however, it is possible that future efforts may find a use for precipitation or 

snowfall measurements.  For the measurement fields, values of ‘9999’ indicate that either miss-

ing values could not be reconciled or there was no data measured for that entry.  NCDC does at-

tempt to correct missing or erroneous entries by cross-referencing duplicate stations or using 

weighted averages of similar adjacent stations (NCDC 2012a).  See Table 6.1 for an example of 

CO-OP station AKRON, which lists these tabulated values for selected dates where the station 

relocated.  AKRON is located approximately 30 miles east of Fort Morgan, CO in the upper 

northeast quadrant of the state.  The city Akron, CO is at an average elevation of 1,400 m. 



88 

 

Upon reviewing the data, it is clear that some data cleaning is necessary.  First of all, 

there are instances of duplicate CO-OP stations that have resulted from station relocations.  At 

first glance there is no obvious way to distinguish true duplicate stations from relocated stations. 

Duplicate stations are those very close to one another that share the same CO-OP ID, while relo-

cated stations are those with the same CO-OP ID that have moved considerably far away.  One 

method would be to use the unique CO-OP station identification numbers to separate the dupli-

cates from mere relocations (since relocated stations sometimes are assigned new CO-OP IDs).  

However, this does not always resolve the issue.  This issue is important due to its implications 

on the snow depth analysis.  Say, for instance, a CO-OP station appeared to represent several 

distinct stations which possessed unusually high records of ground snow depths.  In performing 

the statistical analysis on the ground snow depths to determine the target MRI depth, the result 

would be artificially inflated due to the effects of an outlier that was essentially more heavily 

weighted.  Therefore, it is ill-advised to split a “single” station into two distinct stations.  Like-

wise, it is also dangerous to consider several separate stations as one, based solely on the CO-OP 

station ID number.    

Table 6.1 shows a portion of the dataset from the AKRON CO-OP station.  This station 

possesses two separate station IDs throughout its existence, suggesting it represents two distinct 

stations each with historical records.  The full dataset for AKRON includes all of the monthly 

entries for the station, most of which have been omitted.  As it can be seen in Table 6.1, stations 

50114 and 50109 are two distinct stations according to the National Weather Service.  However, 

in both cases the latitude and longitude of the sites differ by less than a tenth of a degree.  Most 

importantly, the elevation differs by less than 50 feet.  Therefore, the identification of distinct 

stations according to CO-OP ID is misleading; these instances represent localities that experience 
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the same weather patterns.  For this reason, the dataset of CO-OP station records must be careful-

ly scrutinized and several metrics established to test whether separate station entries actually rep-

resent the same locality or vice versa. 

Table 6.1: Historical Records for CO-OP Station AKRON Obtained from the NCDC Global    

Historical Climatological Network Database
†
 

ID 

No. 

Station  

Description 

Elev. Lat. Long. Date of  

Measurement 

EMXP MXSD 

  

(m) (deg-N) (deg-W) (yyyy) (mm) (in) (in) 

50114 AKRON WASH. 

CO AIRPORT 1384 40.157 -103.144 1937 03 9999 9999 

50114 AKRON WASH. 

CO AIRPORT 1398 40.117 -103.167 1947 12 9999 9999 

50114 AKRON WASH. 

CO AIRPORT 1423 40.167 -103.217 1960 07 93 0 

50109 AKRON 4 E CO 1384 40.150 -103.150 1982 01 10 2 

50109 AKRON 4 E CO 1384 40.155 -103.150 1990 08 180 0 

50109 AKRON 4 E CO 1384 40.157 -103.144 1996 09 178 0 

50109 AKRON 4 E CO 1384 40.155 -103.142 2002 02 2 1 

† Table shows only selected entries where station AKRON appears to relocate; many monthly 

measurement entries and some columns have been omitted for conciseness. 

To deal with the duplicate stations, first, the entire dataset sorted alphabetically by the 

station description field and then chronologically by date of measurement.  If station duplicates 

exist, they would reside in the same city and so the first part of the station description would be 

the same.  This step arranges the groups of station duplicates (if they exist) so that they are listed 

near each other chronologically.  Then, a code is written in MS Excel to test if the individual sta-

tion entries within each group differ in latitude or longitude by 0.05 decimal minutes.  This rep-

resents approximately 6 km of distance on the Earth at approximately the 40° latitude, near the 

center of Colorado (NWS 2010).  Specifically, it corresponds to instances of station relocations 

where there was also a significant elevation deviation (>30 meters).  This threshold distance has 
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been chosen after several trials of applying various cut-off distances and observing the effects on 

1) the total number of statewide stations produced, and 2) the maximum elevation differences be-

tween entries of a single station after each test.  It is desired to keep the elevation differences be-

low 50 meters, which resulted in the selection of 0.05 decimal degrees.   

 To deal with relocated stations presenting as singular stations, a second code is then writ-

ten in MS Excel to test whether stations, separated by more than 0.05 decimal degrees latitude or 

longitude, possess a single station ID.  Station instances separated by more than the threshold 

distance, regardless of station name, are considered unique.  The results of these tests are imple-

mented by aggregating or separating station entries accordingly. 

  The next operation performed on the dataset is to remove all entries where data is miss-

ing (i.e. where a value of ‘9999’ exists in the measurement field for snow depth).  Although 

NCDC performs quality checks on the GHCN database to correct missing values, not all of them 

can be replaced with data if, for instance, there are lengthy gaps of missing measurements.  In 

this case, the data is neither functional nor desirable.  Therefore, entire rows of data where the 

value ‘9999’ exists for the maximum snow depth are removed.   

The last operation performed on the dataset is a manual screening of the final list of CO-

OP stations that have been distilled.  The previous operations did not consider the possibility of 

missing station values such as elevation, latitude, and longitude that are needed for the later 

analysis of the dataset.  Therefore, the dataset is then reviewed for such missing values and the 

appropriate values of these parameters (i.e. elevations, latitudes, or longitudes) are replaced.  Ad-

jacent entries with exactly matching station descriptions are used to replace the missing values.  

Station descriptions are lengthy and rather unique so they provide a reliable source for matching 

missing values.  Now that the data cleaning has been performed, the stations are separated so that 
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their records can be analyzed later for extraction of target MRI snow depths.  The statistical 

analysis of snow depths is detailed in Chapter 7.10.     

6.3 Procurement of SNODAS Modeled Station Data 

Access to the SNODAS model output is provided by the NOHRSC and NSIDC, who 

have a joint agreement to produce and archive all historical output from the model.  Therefore, 

all data derived from SNODAS references these two sources (NOHRSC 2012, NSIDC 2004).  

Access to SNODAS resources is available by visiting the NOHRSC snow model output web 

page listed in Chapter 6.1.  This web page serves as the home page and hub for all modeled out-

put station web pages.  By entering each station’s SHEF ID into the ‘Station Query’ navigation 

pane, the browser is redirected to each station’s main web page.  There, station descriptive prop-

erties (elevation, latitude, longitude) as well as the modeled output variables (SWE, snow depth, 

precipitation, etc.) are accessible.  The procurement of SNODAS modeled station data includes 

acquiring both of these types of data for each station.  The procurement process for the above 

variables is described in the following sections.  

6.3.1 Modeled Output from Each Station 

The output variables SWE and snow depth from the SNODAS snowpack model are of 

particular interest to the analysis of ground snow loads in this investigation.  These variables plus 

precipitation are provided in plot 2 of the NOHRSC as listed in Table 3.2.  Therefore, the mod-

eled output from plot 2 is obtained for all 588 SNODAS stations considered in this investigation.  

While graphical representations such as plot 2 are useful for displaying general trends and visual-

ly observing model performance, the assimilated model data behind the plots are much more use-

ful for the statistical analysis.   
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The assimilated SNODAS output data in the NOHRSC plots is also available in down-

loadable a CSV file format, located at each SNODAS station’s webpage.  There are eight CSV 

files that correspond to plots 1 through 8, which contain output data directly from the SNODAS 

model.  Each file contains the hourly modeled SNODAS variables for a user-specified model 

timeframe.  This timeframe designates the start and stop dates as well as time of day for each.  

The start and stop dates of modeled output for each station encompass a single year and corre-

spond to October 1
st
 and September 30

th
, respectively.  This ensures that the data is consistent 

with the hydrologic water year.  Due to the design of the SNODAS model, specifically how it 

processes input data, the start and stop time of day is consistently chosen to be 6:00 AM.  The 

measurement format chosen for all output are English units.   

The CSV file download option provides the most flexibility for statistically analyzing the 

data on a local computer, as opposed to the web-based graphical output similar to Figure 3.4.  

However, with 588 individual stations and nine water years for which to obtain data, this task is 

too cumbersome for manual extraction.  Therefore, Microsoft Visual Basic (VB) code is written 

to automate the data mining task.  Specifically, a ‘WGET’ function is written in VB that succes-

sively parses through the NOHRSC station web pages for all of the 588 SNODAS stations.  This 

code takes advantage of the archival structure of each station’s modeled output data and the fact 

that each CSV file resides at a unique internet address.  Therefore, the VB code only needs to 

open each of the 588 station webpages, specifically hyperlinked to the each respective CSV file, 

to initiate the downloads.  A blank template of an internet protocol used with this Visual Basic 

WGET function is provided below:    

http://www.nohrsc.noaa.gov/interactive/html/graph.html?station=STATION&w=

600&h=400&o=a&uc=0&by=Y1&bm=M1&bd=D1&bh=6&ey=Y2&em=M2&ed

=D2&eh=6&data=12&units=2&region=us    
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In the above template internet address, “STATION” refers to each SNODAS station’s SHEF ID, 

and “Y1”, “M1”, “D1”, etc. refer to the year, month, and day of the start date for which the CSV 

file will contain modeled output.  The numbers 1 and 2 in the above address designate start and 

stop days, respectively.  The year is in a four-digit numerical format and the month and day are 

both in two-digit numerical formats. 

The WGET script cycles through all nine water years for each of the 588 SHEF IDs, 

downloading the associated CSV files into a hierarchical system of folders on a local computer.  

Each modeled water year from 2003 to 2012 for each station is archived into a separate folder.  

SNODAS stations that reside within the same WFO are also organized together in a larger folder.  

A sample of the downloaded CSV file for station BURC2, including modeled SWE and snow 

depth, for water year 2005-2006 is available in Appendix G. 

6.3.2 Descriptive Properties of Each Station   

SNODAS Station descriptive properties are relevant for distinguishing every station from 

neighboring stations and providing unique characteristics about the topography and climate pre-

dictors of the station vicinity.  Thus, regional patterns or differences in modeled output variables 

can be explained given an understanding of such properties.  For instance, major differences in 

historical records of modeled SWE and snow depth at two SNODAS stations in the Central 

Rockies (GRTC2 and JWGC2) separated by only 10 miles cannot be explained by location or 

separation distance alone, since they are so close.  However, supplemental information such as 

the elevations of the two stations, 8,720 ft. and 11,417 ft. respectively, does explain such differ-

ences.  This observed local increase in snow precipitation with increased elevation is due to the 

phenomenon known as the orographic effect (Daly, Neilson and Phillips 1994).  The sudden and 

sharp peaks of mountain ranges causes a retardation of the air masses of frontal weather systems 
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that, coupled with forced updrafts, result in localized increases in precipitation at higher eleva-

tions.  Therefore, increasing information about a station’s topography leads to increasing under-

standing of local and regional variations in snowfall properties.   

Basic geographic information of all stations such as elevations, latitudes, and longitudes 

of all stations are easily obtained through the individual SNODAS station webpages, listed on 

each station information page.  These basic descriptors are all recorded for all 588 stations for 

use later in the statistical analysis.  A list of these geographic properties for stations AGLC2 

through BRTC2 is available in Appendix C.  However, these are not the only significant descrip-

tive station properties that affect snowfall and SWE.  Various other properties that describe to-

pography and hydrologic properties are crucial in accounting for spatial variation in SWE and 

snow depth.    

The slope direction, or aspect of the terrain is the one of the most influential topograph-

ical features, second to elevation, that impacts the amount of snow precipitation that accumulates 

at a site.  The aspect of a site is the direction of the steepest downhill path, projected onto the 

horizontal plane, provided as an azimuth angle from geodetic north as illustrated in Figure 6.2 

(Leyk 2008).  Aspect is very good predictor of snow accumulation because winter storm patterns 

that trace easterly over the West deposit most of their snow precipitation on high elevation 

mountain west facing slopes (Doesken 2012).  While local conditions such as updrafts and wind 

disturbances provide snowfall to other facing slopes, those facing the west certainly see more 

pronounced snowfall and accumulation.  Therefore, aspect is used in this investigation as a pre-

dictor for snow depth and SWE. 
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Figure 6.2: Graphical Representations of Slope, Aspect, and Curvature for a Grid Cell. Terrain 

model adapted from Leyk (2008).  

Recently, a study performed by Kumar et al. demonstrated that the accuracy of snow 

cover forecasting models, like those that rely on MODIS remote sensing measurements, is great-

ly improved when terrain features such as aspect are included in the models (2013).  The study 

area was the Colorado headwater region, which includes the majority of the state.  From Novem-

ber 2007 to May 2010, MODIS snow cover predictions were compared to the ground-based 

SNOTEL stations located throughout the Colorado Rockies both with and without terrain correc-

tions that included incorporating the aspect of the terrain.  The authors theorized that since the 

aspect of the terrain greatly affects the amount of incident radiation from the sun absorbed into 

the snowpack, including it would assist MODIS in projecting true snow cover amounts.  This 

hypothesis was confirmed by the results, which indicated that much as a 58% improvement in 

detecting true snow cover was seen once the aspect of the terrain was incorporated into MODIS 
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(Kumar, et al. 2013).  Overall, this effort confirms the significance of terrain features such as as-

pect with respect to predicting snow properties.      

The slope and curvature of the terrain are also very significant factors in determining the 

amount of snow precipitation that accumulates at a site.  Slope and curvature of a particular site 

are topographical properties related to the inclination and shape of the terrain.  Slope is defined 

as the ratio of the change in elevation to the change in horizontal run (Leyk 2008).  The horizon-

tal run is oriented in the direction of the aspect, defined above.  Here, this ratio is referred to in 

shorthand as slope ratio.  Slope can either be expressed as a percentage (slope ratio × 100) or in 

terms of degree of inclination, computed as tan
-1

(slope ratio).  Mathematically, curvature is the 

derivative of slope; this same relationship applies to the geospatial properties of slope and curva-

ture of terrain.  Curvature describes the type of camber of the terrain at a site and can be ex-

pressed as convex or concave.  Intuitively, concave terrain is indicative of valleys that are in the 

precipitation shadows of mountain peaks, while convex terrain is indicative of mountain peaks.  

Slope and curvature are both illustrated graphically in Figure 6.2 for a grid cell, outlined in red.   

Slope has been studied extensively for its role in the accumulation, persistence, and abla-

tion of snow depth in mountainous terrain.  Particularly, a study performed within the Green 

Lakes Valley, located in the Arapaho-Roosevelt National Forest of Colorado, studied the effects 

various topographic features including slope on the effect of seasonal snow depth (Erickson and 

Williams 2005).  The dependent variable snow depth was chosen to represent generally the per-

sistence of snow accumulation.  Specifically, the study investigated the effects of elevation, 

slope, incident radiation, and wind sheltering as potential predictors of the spatial variability of 

snow depth in the Green Lakes Valley.  Using a type of geostatistical multiple linear regression 

technique known as complex mean geostatistical methodology, a geospatial model to estimate 
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the above parameters and their influence on snow depth was developed.  Independent snow sur-

veys were conducted by the research team for the winters between 1997 and 2003.  The authors 

considered constant, linear, and non-linear spatial models to describe the effects of each predic-

tor on snow depth.  The analysis of the three models suggested that slope was the third most cor-

related predictor to snow depth, behind wind sheltering and elevation.  A regression tree model 

analysis, however, resulted in slope being the best predictor (Erickson and Williams 2005).  In 

either case, slope and curvature (by association) are very good predictors of snow depth.  Nu-

merous other studies have corroborated these findings, demonstrating slope to be a key compo-

nent in hydrologic processes through the use of runoff models (Zhang, Drake, et al. 1997) as well 

as snowpack assimilation models (Barlage, et al. 2010).  Intuitively, steeper slopes, such as those 

at the crests of mountains, cannot accumulate great amounts of snow due to gravitational runoff 

and wind effects in alpine regions.  Conversely, flat terrain at the base of a peak likely accumu-

lates great amounts of snow that drift downslope.   

The Hydrologic Unit Catchment (HUC) number is a six-digit water resources region, as-

signed by the USGS, which delineates a region of land that drains to a single outflow (USGS 

2013).  In other words, all precipitation that falls within a given HUC drains to the same place, 

usually a major river.  The continental divide in the Rocky Mountain Range divides all precipita-

tion either to the Pacific Ocean or to the Gulf of Mexico, so the HUC assignments in Colorado 

are traced around the divide.  There are many subdivisions of the HUC assignments, from broad 

water resources regions of the U.S. (2-digit watershed regions) to state and county-level units (8-

digit cataloguing units).  A map of the 2-digit water resources regions, charted by the USGS, is 

presented in Figure 6.3.  Few studies have specifically investigated the use of HUC assignments 

as indicators of snowfall accumulation.  The HUC assignments, however, provide contrast to the 
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other types of topographical variables such as slope and aspect; therefore, HUC assignments are 

valuable experimental variables used in this investigation.  

 

Figure 6.3: Map of 2-Digit HUC Regional Watersheds in the U.S. (USGS 2013). 

The procurement of aspect, slope, and HUC assignment is facilitated by the GIS software 

utility ArcGIS 10.1.  Using this software, GIS raster files that contain digitally encoded spatial 

values of the above are superimposed on a topographical map of Colorado.  A KML file, encod-

ed with the SNODAS station geographical coordinates is also inputted into ArcGIS.  Then, using 

spatial analysis tools within ArcGIS, the encoded values are extracted at the SNODAS station 

points.  Finally, the extracted values are exported to an MS Excel spreadsheet for some minor da-

ta cleaning.  

For slope and aspect extraction, a digital elevation model (DEM) is superimposed on the 

topographical map of Colorado in ArcGIS.  The incorporated DEM provides digitally encoded 

elevation values at a spatial resolution of 30-arc seconds of latitude and longitude.  Based on this 

gridded DEM model, ArcGIS computes the slope using built-in algorithms, which is computed at 
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the center of each grid cell.  This slope, constant throughout the grid cell, is extracted at each 

SNODAS station as a percentage of rise to run.   

Aspect is also computed in ArcGIS using built-in algorithms and extracted at each 

SNODAS station as an angle from geodetic north, from 0-360 degrees.  In an MS Excel spread-

sheet, these angular measurements are translated into cardinal directions, specifically into four 

cardinal directions (north-facing, east-facing, south-facing, west-facing).  For analysis of Colora-

do, any aspect orientation that contains an east or west component (i.e. NE, SE, NW, SW), with-

in 45° of north or south, is assigned either ‘east’ or ‘west’ accordingly.  This reflects the influ-

ence of east and west-facing slopes on snowfall accumulation.  Each SNODAS station is 

assigned a number from 1 to 4, representing the four directions described.    

For HUC assignment a raster file that contains encoded HUC regional watershed infor-

mation, downloaded from NOHRSC 
11

, is imported into ArcGIS.  The raster file is imported as a 

superimposed layer that contains a HUC assignment for every pixel on the topographic map.  

These HUC assignments are then extracted, using the spatial analyst tool, to each SNODAS sta-

tion on the map and then imported into an MS Excel spreadsheet for later analysis. 

Illustrations of the DEM, aspect, and slope relief imagery produced by ArcGIS spatial 

analyst tools for the extraction of values at SNODAS station is available in Appendices H and I.  

Colors on the relief imagery represent elevations for the DEM, azimuth angles from north for the 

aspect imagery, and percentage of rise/run for the slope imagery. 

   

      

                                                

 

11 NOHRSC webpage with GIS raster files for HUC regional watersheds: http://www.nohrsc.noaa.gov/gisdatasets/ 
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7.0 STATISTICAL ANALYSIS OF WEATHER STATION DATA 

7.1 Introduction 

Analysis of weather station data begins after the receipt of the files acquired in Chapter 

6.0.  The initial files from each station must be consolidated and organized as well as summa-

rized by descriptive statistics prior to any analysis of the data.  Once the data is in a form that fa-

cilitates further evaluation, several statistical analyses and tests can then be performed which will 

ultimately lead to 1) the identification of clusters of stations, 2) relationships of ground snow 

depth to ground snow load within each cluster, and 3) the extraction of extreme probabilistic 

ground snow loads at all stations in Colorado.   

7.2 Management of SNODAS Station Data  

As stated in Chapter 6.0, the SNODAS model output was downloaded from the 

NOHRSC web-based archive to a hierarchical system of folders on a hard disk. These station 

outputs are organized first into weather forecasting office folders and then station name folders.  

The initial CSV format of the files needs to be converted into a more recognizable and user-

friendly file type.  Therefore, the industry standard software package Microsoft Excel is chosen 

as the platform for performing all analysis of the modeled output.  It is capable of reading CSV 

files and saving them as native Excel files allowing them to be universally distributed and 

viewed.   

The file preparation begins with consolidating each station’s yearly data into a single Ex-

cel file so that each modeled SNODAS station record can then be assessed collectively.  Recall 

that nine years (2003-2012) of modeled station records are currently available, each year aligned 

with the water year.  Also, these records for each year reside in separate CSV files within nested 
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folders.  Figure 7.1 illustrates the system of folders established to organize the 588 stations ac-

cording to the appropriate weather forecasting office (‘BOU’, GJT’, and PUB’).  The first three 

modeled stations within the folder ‘PUB’ are visible on the left in Figure 7.1, with the nine CSV 

files of modeled output for each year at station AGLC2 visible on the right.  These separate files 

are merged into a single file so that the nine years of model output could be collectively com-

pared and summarized.   

To accomplish this, several Microsoft VB macros are written within Excel which auto-

mates the process.  These macros reside in each station master files such as the one labeled 

‘AGLC2’ on the right side of Figure 7.1.  Once the macros are run, the master file contains all 

nine years of modeled data for a single station.  This macro is then automated to repeat this for 

each of the 588 stations.   

With all SNODAS station modeled output compressed into individual Excel files for each 

station, descriptive summaries and basic statistics of the modeled output can be created.  De-

scriptive summaries for all nine water years of each station include the variables listed in Table 

7.1.  The derived snow load denoted by item (3) can be quickly determined using the relationship 

  

Figure 7.1: Hierarchical Organization of SNODAS Files and Folders, left, with 

Associated Excel and CSV Files, right. 
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established in Eq. (9).  The annual maximum snow unit weight denoted by item (5) can be de-

termined from the relationship established in Eq.(10), specialized for English units. 

    (   )  
      

   
      (   ) (10) 

In this equation      is the annual maximum snowpack unit weight,        is the annual max-

imum snow water equivalent, and     is the snow depth associated with the annual maximum 

snow water equivalent.  Note that in Eq. (10) the units of both       and     must be similar, 

and usually are expressed in inches.  This relationship is not explicitly used to convert SWE and 

ground snow depth data in this investigation.  Item (6) will be discussed further in Chapter 

7.10.2.  It is an important scaling factor used to adjust the annual maximum ground snow depth. 

Table 7.1: Descriptive Summaries of Each SNODAS Station for each Water 

Year (2003-2011) 

Item Descriptive Summary Variable 

(1) The annual maximum SWE  

(2) The annual maximum snow depth  

(3) The derived snow load from the annual maximum SWE 

(4) The snow depth at the date of annual maximum SWE 

(5) The maximum snow unit weight derived from (1) and (4) 

(6) The ratio of items (4) to (2) 

 Once the descriptive summaries for all years and all stations are gathered, some basic sta-

tistics are determined for each station to represent all nine years of data.  These statistics are de-

termined for each of the descriptive variables listed in Table 7.1.  They help to describe general 

trends between different types of stations such as the variance of model output among stations at 

different elevations.  Some will be evaluated for use in later statistical analyses.  The descriptive 

statistics from each water year of each station include the mean, standard deviation, and vari-

ance.  A sample sheet containing these quantities compiled for each year of modeled output for 
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SNODAS station ‘AGLC2’ is presented in Appendix J.  Upon creating descriptive summaries 

and basic statistics, a separate VB macro is written which parses through each folder of each sta-

tion and populates a brand new Excel file with values of SWE, snow depth, snow density, and 

the basic statistics for all nine years of all 588 stations.  Now that the entire dataset is amassed in 

a single file the SNODAS stations are ready for the next phase of analysis in preparation for par-

titioning of them into statewide regions.      

Prior to a clustering analysis, used to regionalize weather stations by similarities, the 

clustering variables themselves need to be prepared.  These variables, which are obtained in the 

data procurement phase of Chapter 6.0, include properties related to the SNODAS station loca-

tion, site topography, and modeled snow measurements.  Table 7.2 lists all of the variables for 

each station used throughout the entire clustering process. 

Table 7.2: Descriptive SNODAS Station Properties Incorporated into Cluster Analysis 

Item SNODAS Station Variable Measurement Unit 

(1) Elevation Above Mean Sea Level Length (feet) 

(2) Latitude (WGS 84)
†
 GPS Coordinate (Deg.-N) 

(3) Longitude (WGS 84)
 †

 GPS Coordinate (Deg.-W) 

(4) USGS Basin HUC 
††

 6-Digit HUC (No.) 

(5) Slope of Terrain at Station Elevation Increase (%) 

(6) Aspect of Terrain at Station Cardinal Direction (Deg.) 

(7) Curvature of Terrain at Station Inverse Length (1/feet) 

(8) Averaged Annual Maximum Snow Water Equivalent Depth (inches) 

(9) Averaged Annual Maximum Snow Depth Depth (inches) 

† GPS Coordinates use the World Geodetic System of 1984 

†† United States Geologic Survey – Hydrologic Unit Catchment Number 

As it can be seen from the Table 7.2, the variables that are to be used in the cluster analy-

sis do not carry the same units of measurement.  Consequently, the magnitudes of the variables 

will vary significantly, especially for elevation and HUC basin number.  If the clustering process 
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were to proceed with the variables as-presented in Table 7.2, then those with higher means and 

standard deviations would represent outliers in the clustering process and could highly skew the 

clustering (Tufféry 2011).  Therefore, to avert such a situation, the variables must be both cen-

tered and reduced.  The most widely used technique to accomplish this, which transforms the 

variables into unit less quantities with a mean of 0 and a standard deviation of 1, is standardiza-

tion by z-score (Ferris 2008).  The equation used to transform all of the variables into their re-

spective z-scores is depicted in Eq. (11) below: 

    
    ̅

  
 (11) 

where    is the ith term of the set of terms in  ,  ̅ is the mean of the set, and    is the stand-

ard deviation of the set.  Here, a set of terms refers to the 588 station values for each variable 

listed in Table 7.2.  Therefore, there are nine sets of terms that are standardized by z-scores.  

A portion of the complete table is presented in Appendix K, which lists only stations AGLC2 

through BRTC2 for conciseness.  The variables, now centered and reduced, are ready for further 

analysis in preparation for clustering. 

7.3 Principal Components Analysis 

At this point, a number of variables describing each station have been identified, cen-

tered, and reduced.  Altogether there are p = 9 variables (listed in Table 7.2).  Also, there are n = 

588 individuals of the population.  The term individuals shall denote the SNODAS stations, each 

of which possesses distinct values for each variable p.  Therefore, overall we have a 588 × 9 ma-

trix of data points discretized into p-columns and n-rows.  If graphed, the result would be a nine-

dimensional plot with separate ‘clouds of individuals’ (Tufféry 2011).  Obviously, this graphical 

representation becomes impossible whenever p > 3, so the amassed data here cannot be plotted 
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together.  This inability to plot the entire multivariate dataset graphically suggests an inability to 

effectively manipulate the data.  Also, clustering techniques are quite inefficient when dealing 

with the number of variables present here (Tufféry 2011).  The multivariate clustering techniques 

used to regionalize the stations will be discussed in Chapter 7.5.  For now, the data possesses too 

many dimensions to analyze in a practical manner.  Therefore Principal Component Analysis 

(PCA) is employed to reduce the dimensions of this problem, effectively decreasing the number 

of input variables without significant loss of information.  PCA is an important analysis that 

should be completed prior to a clustering (Jolliffe 2002, Tufféry 2011, Johnson and Wichern 

2007).  PCA can help determine which of the nine variables are the most crucial.  Upon complet-

ing this analysis, a reduction down to the core contributing variables is seen, with which a cluster 

analysis can be performed.   

The central purpose of PCA is to reduce the dimensionality of multivariate data, as previ-

ously mentioned, resulting in a projection of the original data onto a two or three-dimensional 

plane (Tufféry 2011).  This objective is accomplished by finding ‘axes of rotation’ of the data, 

which are distinct and successive rotations of the data which minimizes the loss of information.  

In mathematical terms, these axes of rotation are linear combinations of the variables, which are 

smaller in number than the original set of variables.  The criterion used to prevent significant loss 

of information is the concept of maximizing population inertia, I, to a level as close as possible 

to the original, unreduced dataset.  The inertia of a set of data points is the weighted sum of 

squares of the distances from each point to the group center of gravity (or arithmetic mean).  It is 

mathematically equivalent to variance.  It can be expressed mathematically by Eq. (12):     

   ∑       (    )
 

 

   

 
(12) 
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where i represents an index variable for the 588 individuals of the population,    is a weight as-

signed to each individual (usually 1/n for every i), c is the center of gravity of the population, and 

the function dist denotes the distance between the centroid and each individual X (Tufféry 2011).  

The centroids of centered and reduced (standardized) variables is zero, therefore    is zero.  The 

concept of distance here refers to the simplest mathematical distance, Euclidean distance.  For 

any two random variables, X and Y, Euclidean distance can be defined as follows. 

    (   )  (     )
  (     )

   (     )  
(13) 

The expressions in Eq. (12) and (13) are applicable for univariate data in order to illus-

trate the central concept of PCA.  In practice, and in this investigation, there are many variables 

on which to perform a PCA.  Therefore, in order to apply the concept of PCA on multivariate da-

ta, a covariance matrix is constructed.  A covariance matrix is appropriate since the act of max-

imizing population inertia effectively maximizes population variance.  And since all of the varia-

bles used in the PCA have been standardized by z-score (i.e. their means are 0 and standard 

deviations are 1), the covariance matrix is mathematically equivalent to a correlation matrix.  

Recall that the linear correlation coefficient between two variables,        (   ) (     )⁄  

and that a value of covariance is equal to the scalar product of the two centered variables 

(Tufféry 2011).  Thus, assembling this correlation matrix results in the following:   

      [

    

    
 

   

 
            

        

] (14) 

In the correlation matrix for this dataset the row and column labels represent the p standardized 

variables and the non-diagonal terms represent the correlations with each other.  The correlation 
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matrix is always square and symmetric, with ones along the diagonal, since a variable is perfect-

ly correlated with itself. 

 During a PCA, this matrix is populated with the correlation coefficients relating all of the 

pairs of variables.  At this point the concept of maximizing population inertia is implemented on 

the multivariate dataset.  The successive axes of rotation which maximize the inertia, I, of the 

correlation coefficients of the variables must therefore be found (Tufféry 2011).  These axes are 

determined using techniques of linear algebra to solve for the eigenvalues and corresponding ei-

genvectors of the       matrix.  The total sum of all of the eigenvalues equals the number of 

variables p.  This plays a critical role during the application of PCA in Chapter 7.4.  Finding the 

eigenvectors and eigenvalues maximizes both the correlation coefficients of the variables and the 

inertia of the individuals.    

Once the directions of the axes (i.e. the eigenvectors) are determined, the concept of fac-

tor loadings is defined.  There are p successive, orthogonal axes of rotation of the data, i.e. prin-

cipal components (Jolliffe 2002).  The first principal component possesses the highest inertia and 

explains most of the variance in the data.  The next PCs possess inertias, i.e. variance, of decreas-

ing value.  Since p distinct PCs exist, each individual in the dataset (i.e. each standardized 

SNODAS station value) has some projection onto each.  This projection is defined as a factor 

loading, Fi.  Mathematically, the factor loadings of each PC are calculated as the scalar multipli-

cation of each eigenvector with the square root of the associated eigenvalue. Conceptually, they 

represent the linear correlation of each variable with each principal component.  They are usually 

represented in a p × p table with PCs displayed column-wise and the factor loadings for each var-

iable displayed row-wise.  A property of factor loadings is that the sum of squares of all of the 
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coefficients for a given PC (i.e. the sum of squares of the rows in the table) is equal to the eigen-

value of that PC.         

         ∑  (   

 

   

  )
   (15) 

In Eq. (15),    (     ) is the correlation coefficient at the intersection of the    row and 

the    column of the table (Tufféry 2011).  An example of a factor loading table is presented with 

the PCA performed on the data in Chapter 7.4.  A convenient usage of factor loadings is to 

square each coefficient and divide it by the eigenvalue of that PC.  This results in the fundamen-

tal concept of variable contribution, in other words the percentage of influence each variable has 

on the given PC.  Since each variable p theoretically should carry a weight 1/p, logically a con-

tribution of more than this would be significant.  Quantifying the contribution of each variable 

helps to identify not only those variables which contribute the most to each PC, but also groups 

of variables which collectively contribute to the same PC.  This can set the framework for under-

standing which variables should belong together in a clustering analysis, and which can be ex-

cluded through a reduction in dimensionality.  

A final useful tool to introduce before applying these principles of PCA on the dataset 

herein is the idea of cumulative variance.  Recall that the first few PCs are the most significant 

and explain the majority of the variation in the data.  A logical question to ask is how many PCs 

are sufficient to explain the ‘majority’ of the variance.  Eq. (16) provides a metric for helping to 

determine this cut-off (Johnson and Wichern 2007).  Since the sum of all eigenvalues, one for 

each PC, equals p then it follows that: 
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   (  )         ∑    (  )  

 

   

∑     

 

   

   (16) 

The total variance in the data, the sum of each eigenvalue divided by the p number of variables, 

should equal 1.  This leads to a measure of cumulative variance that can be incrementally calcu-

lated which would indicate how many PCs (desirably < p) are required to reach a specified per-

centage of cumulative variance.  Previous studies using PCA have established a rule of thumb 

which states that a cumulative variance of anywhere from 70% to 90% of the total variance is a 

sufficient cut-off point, depending on how many variables this reduces to and whether it is a 

practical amount with which to work (Jolliffe 2002, Varmuza and Filzmoser 2009, Johnson and 

Wichern 2007).    

The applications of principal component analysis have pervaded every aspect of the fields 

of mathematics, engineering, computing, and the social sciences.  In the field of structural engi-

neering, PCA has offered a solution to the dilemma facing structural engineers trying to study 

and interpret acceleration and force data in the wake of seismic events.  Particularly, PCA has 

been employed to compress accelerometer sensor data from buildings post-earthquakes for 

quicker and more effective means of data recording and transmission (Zhang, Li and Chae 2007).  

This area of building health monitoring has benefited from the ability to reduce the dimensionali-

ty of large amounts of monitoring signals so that only the most crucial pieces are captured, with 

minimal loss of information.  Industrial processes, specifically those involving complex chemical 

reactions, have employed PCA to assist in process performance.  Chemical polymerization reac-

tors, for instance, utilize PCA to substitute expensive and time intensive quality control sampling 

techniques for monitoring critical outputs in the production of industrial and commercial com-

pounds (e.g. polyethylene and polyvinylchloride) (Kayihan, Cinar and Palazoglu 2007).  Finally, 
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PCA has been shown to be able to accurately predict the natural structure of a dataset (number of 

classes) and provide insight into the stability of clustering algorithms (i.e. sensitivity to normali-

zation, types of clustering variables, choice of algorithm) when performed a priori; in this man-

ner, PCA has greatly improved the analysis of gene expression in the field of human genomics 

(Ben-Hur and Guyon 2003). 

7.4 Principal Component Analysis Performed on SNODAS Dataset 

The principles of PCA previously described are now applied to the dataset of 588 

SNODAS stations and the nine station variables listed in Table 7.2.  The objective is to use the 

concept of cumulative variance as the criterion to define where to cut-off the analysis, thus ex-

cluding any further PCs.  Then, the contributions of each variable (elevation, latitude, longitude, 

etc.) are used to obtain relationships among variables and thus determine which variables should 

be clustered together.  The inputs to the PCA must first be assembled and organized.  These are 

the centered and reduced SNODAS station variables of Table 7.2, tabulated for each station.    

Next, the principal component analysis is performed on this input table with the assistance of the 

software program XLSTAT Pro version 2013.1.01 (Addinsoft 2013).  The results and interpreta-

tion thereof are discussed below. 

  The method of performing the PCA is chosen to be that developed by Pearson (1901) 

since it is widely understood to be the first and most widely used method of principal compo-

nents analysis (Jolliffe 2002).  Other PCA methods include those pioneered by Kendall and 

Spearman, which have applications for specific types of data.  The first product of the PCA is the 

correlation matrix.  Although a covariance matrix can be used to perform the analysis, the use of 

a correlation matrix reduces the effect of scale on the variables (Addinsoft 2013).   
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The Pearson correlation matrix for the dataset is shown in Table 7.3.  The primary insight 

that the correlation matrix provides at this point is that SWE and snow depth are highly correlat-

ed, implying that an increase in snow depth leads to an increase in the water content in the snow.  

This logically follows from the concept of snow compaction discussed in Chapter 4.2.  This ma-

trix also shows correlations between SWE and snow depth, and elevation of the station.  Clearly 

elevation seems to be an underlying factor affecting the properties of snow depth and water con-

tent, one that cannot be eliminated.  Finally, longitude and basin assignment of each of the sta-

tions appear closely linked, albeit inversely related to one another.  This relationship must be re-

lated to the fact that basin assignments in the state are generally segregated either east or west of 

the Great Divide.   

Table 7.3: Pearson (n) Correlation Matrix for the Principal Component Analysis 

  Elev. Lat. Long. Basin Slope Aspect Curv. SWE Depth 

Elev. 1.000 -0.163 -0.261 0.268 0.041 -0.031 -0.036 0.717 0.762 

Latitude -0.163 1.000 0.020 -0.208 0.050 0.073 0.019 -0.019 -0.036 

Longitude -0.261 0.020 1.000 -0.781 -0.018 -0.007 -0.028 -0.200 -0.191 

Basin 0.268 -0.208 -0.781 1.000 0.034 -0.002 0.000 0.312 0.309 

Slope 0.041 0.050 -0.018 0.034 1.000 0.095 -0.038 0.138 0.130 

Aspect -0.031 0.073 -0.007 -0.002 0.095 1.000 0.174 -0.043 -0.038 

Curvature -0.036 0.019 -0.028 0.000 -0.038 0.174 1.000 -0.021 -0.021 

SWE 0.717 -0.019 -0.200 0.312 0.138 -0.043 -0.021 1.000 0.990 

Depth 0.762 -0.036 -0.191 0.309 0.130 -0.038 -0.021 0.990 1.000 

Upon assembly of the correlation matrix, the eigenvalues and eigenvectors are computed, 

as reported in Table 7.4, Table 7.5 and Figure 7.2, where Fi indicates the i
th
 factor axis or princi-

pal component.  This crucial phase of the analysis sets the stage for the determination of the most 

critical principal components and the exclusion of the rest.  The computation of the eigenvalues 

allows the cumulative variance and factor loadings to be computed as well.  Graphical represen-

tations of the eigenvalues facilitate an accurate interpretation of their significance.  Scree plots 
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like Figure 7.2 consist of the plotted eigenvalues vs. principal components.  They were originally 

developed for the purpose of finding the principal component cut-off graphically.  Where there 

appears to be an ‘elbow’ on the Scree plot (point where the slope drastically changes from steep 

to shallow) is the optimal minimum number of successive PCs to consider (Johnson and Wichern 

2007).  However, data with a strongly dominating first PC would skew the line plot and render 

the graphical technique unreliable.  Scree plots are no longer used for this purpose, but now serve 

as a visual aid to interpret the cumulative variance.   

An important trait to take into account with regard to the eigenvalues and eigenvectors 

represented in Table 7.4 and Table 7.5 is that individual values of the coefficients by themselves 

provide little information for their interpretation.  Also, the three significant-digit precision noted 

in the tables does not speak to the precision required for PCA, but rather a convention for presen-

tation purposes.  The relative absolute magnitudes among neighboring coefficients and their 

signs are, however, significant in any PCA.  In other words, we look for high absolute magni-

tudes as initial indicators of relative importance.  To clarify what is essential to infer from Table 

7.5, coefficients whose absolute value is at least half of the maximum in each column are repre-

sented in bold text.  This practice has been used in many applications of PCA to simplify the in-

terpretation of the results (Jolliffe 2002).   

With this in mind, Table 7.4 and Figure 7.2 indicate that the first principal component 

dominates the others, representing nearly 34% of all the variance in the data itself.  This PC pri-

marily represents the effects of SWE, snow depth, and elevation which are the main contributors 

to it.  This is evident by relative magnitudes of their coefficients for F1 in Table 7.5.  Longitude 

and basin assignment while significant do not carry as much weight.  The next PC represents half 

of the variance as the first and only about 17% of the variance itself.  This represents the effects 
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of longitude and basin, and as it can be seen, they are the only major contributors to PC2. Their 

corresponding coefficients in Table 7.5 have opposing signs, which indicates they have a similar-

ly opposing relationship with one another. 

 

  
Figure 7.2: PCA Scree Plot of Eigenvalues and Cumulative Variability vs. Principal Component. 

Plot was created using XLSTAT Pro (Addinsoft 2013). 

 

 

Table 7.4: Eigenvalues and Variance for Each Principal Component of the PCA 

 F1 F2 F3  F4 F5 F6 F7 F8 F9 

Eigenvalue 3.02 1.49 1.22 1.04 0.940 0.783 0.350 0.159 0.007 

Variance (%) 33.5 16.5 13.5 11.5 10.5 8.70 3.89 1.77 0.079 

Cumulative (%) 33.5 50.0 63.6 75.1 85.6 94.3 98.2 99.9 100 
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Beyond this, the next three PCs contribute roughly the same amount of accumulated vari-

ance (between 10.5% and 13.5% each).  There is no need to look any further than the fifth PC 

since more than 80% of the overall cumulative variance has already been explained and also 

since the individual variance provided by the sixth is smaller than the theoretical weight of each 

variable (  ⁄  or 11.1%).  Thus, the first four PCs emerge as prominent factor axes that play sig-

nificant roles in describing the variance in the data.  The fifth can be eliminated for practical rea-

sons since it isn’t entirely needed; without it the remaining four still represent 75% of the vari-

ance in the data.  Furthermore, an additional variable to add to the clustering analysis will only 

complicate that analysis.  Similarly, PC5 through PC9 will not be considered further.   

Biplots are a useful visual tool for analyzing the results of a PCA.  They consist of factor 

loadings for any two PCs plotted against one another; they are also known as factor planes 

(Tufféry 2011).  A sample biplot illustrating factor axis F2 plotted against F1 is presented in Fig-

ure 7.3.  The values in parentheses on each axis indicate percent contributions.  As it can be seen, 

a circle of perfect correlation (r = 1.0) surrounds the plot, providing a visual indication of how 

much a variable contributes to a particular factor.  Factor loadings are plotted as vectors all 

Table 7.5: Eigenvectors for Each Principal Component of the PCA 

 
F1 F2 F3 F4 F5 F6 F7 F8 F9 

Elevation 0.477 0.190 -0.052 -0.157 -0.024 0.104 0.765 0.326 -0.079 

Latitude -0.091 0.184 0.374 0.424 0.771 -0.008 0.065 0.197 -0.002 

Longitude -0.300 0.620 -0.073 -0.176 -0.184 0.015 -0.281 0.613 -0.030 

Basin 0.350 -0.589 -0.005 0.100 -0.007 -0.005 -0.327 0.642 -0.019 

Slope 0.084 0.130 0.331 0.625 -0.542 -0.415 0.097 0.019 0.001 

Aspect -0.028 -0.048 0.680 -0.106 -0.248 0.678 -0.036 -0.023 -0.003 

Curvature -0.020 -0.095 0.526 -0.591 0.076 -0.598 0.023 0.027 -0.002 

SWE 0.518 0.288 0.043 -0.029 0.073 -0.009 -0.370 -0.221 -0.674 

Depth 0.524 0.295 0.036 -0.050 0.059 0.006 -0.278 -0.126 0.733 
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drawn from the origin of the plot.  The plot only indicates significant relationships between two 

variables if their plotted vectors on the biplot are reasonably close and near the circle of perfect 

correlation.  There are many combinations of biplots (F1vs.F2, F1vs.F3, F2vs.F3 etc.) which are 

all important.  The remaining biplots produced by the PCA are available in Appendix L.   

The final useful products of the PCA are the factor loadings and subsequent variable con-

tributions tables which provide definitive answers as to exactly which variables are critical for 

the next phase.  Factor loadings and variable contributions for each principal component are pro-

vided in Table 7.6 & Table 7.7.    

Table 7.6: Factor Loadings for Each Principal Component of the PCA 

  F1 F2 F3 F4 F5 F6 F7 F8 F9 

Elevation 0.829 0.232 -0.058 -0.160 -0.023 0.092 0.452 0.130 -0.007 

Latitude -0.158 0.224 0.413 0.432 0.748 -0.007 0.038 0.079 0.000 

Longitude -0.520 0.756 -0.080 -0.179 -0.179 0.013 -0.166 0.245 -0.003 

Basin 0.609 -0.718 -0.006 0.101 -0.007 -0.005 -0.194 0.256 -0.002 

Slope 0.146 0.158 0.366 0.636 -0.526 -0.367 0.057 0.008 0.000 

Aspect -0.049 -0.059 0.751 -0.108 -0.240 0.600 -0.021 -0.009 0.000 

Curvature -0.035 -0.116 0.580 -0.602 0.074 -0.529 0.014 0.011 0.000 

SWE 0.900 0.351 0.047 -0.030 0.071 -0.008 -0.219 -0.088 -0.057 

Depth 0.911 0.360 0.039 -0.051 0.058 0.005 -0.164 -0.050 0.062 

Table 7.7: Variable Contributions (%) for Each Principal Component of the PCA 

  F1 F2 F3 F4 F5 F6 F7 F8 F9 

Elevation 22.8 3.62 0.274 2.46 0.059 1.08 58.5 10.6 0.629 

Latitude 0.829 3.39 14.0 18.0 59.5 0.006 0.419 3.88 0.000 

Longitude 8.98 38.4 0.527 3.10 3.40 0.021 7.87 37.6 0.091 

Basin 12.3 34.7 0.003 0.991 0.005 0.003 10.7 41.3 0.037 

Slope 0.706 1.69 11.0 39.0 29.4 17.2 0.940 0.038 0.000 

Aspect 0.081 0.231 46.3 1.13 6.14 45.9 0.130 0.051 0.001 

Curvature 0.040 0.911 27.6 35.0 0.581 35.7 0.053 0.072 0.000 

SWE 26.8 8.29 0.185 0.084 0.537 0.009 13.7 4.90 45.5 

Depth 27.5 8.72 0.128 0.255 0.352 0.003 7.71 1.58 53.8 
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Again in Table 7.6 & Table 7.7, the values in bold indicate the coefficients whose abso-

lute value is equal to or greater than 50% of the maximum for the same column.  The factor load-

ings have been computed in accordance with the mechanics introduced in Chapter 7.3, specifi-

cally Eq. (15).  A similar pattern emerges in the variables that are highlighted as significant 

contributors, compared to the eigenvectors of Table 7.5. However, when the variable contribu-

tions are calculated in Table 7.7, it is evident that longitude and basin assignment are no longer 

major contributors to PC1 and latitude is neither a major contributor to PC3 nor PC4.  In addition 

to the overall contribution of the variables, a closer look at the individuals (i.e. each SNODAS 

station values) and their individual contribution to each principal component was made.  This 

check ensures that no single station represents a principal component by itself.  Inclusive of PC1 

through PC4, the highest percentage of contribution for a single individual is only 2.33% by sta-

tion MOHC2.  This result confirms the desired equal representation of all of the individual sta-

tions and justifies the overall usage of the PCA results.  

 
Figure 7.3: Biplot of PC1 Plotted Against PC2 Produced by the PCA. 
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Overall, the variable contribution table provides great insight into all of the key factors 

that underlie the data, specifically with respect to the groups of variables that collectively explain 

the variance and the order of these groups.  These groups, listed by corresponding principal 

component, are: 

(1) Elevation, SWE and snow depth 

(2) Longitude and basin assignment 

(3) Aspect and curvature of the terrain 

(4) Slope and curvature of the terrain 

Some of these results may be manually changed to eliminate duplicate variable consideration in 

preparation for the clustering analysis.  

The results of the PCA, culminating with the variable contributions to each principal 

component, need to be translated into decisions about the clustering analysis to follow.  Several 

nested clustering operations comprise the entire clustering analysis.  The main contributing vari-

ables determined for each principal component become the only variables used for each cluster-

ing operation.  Furthermore, the principal components in the order listed above represent the 

same order and clustering variables for each clustering operation.  In other words, the variables 

in PC1 (elevation, SWE and snow depth) will be used in the first clustering operation, the varia-

bles of PC2 (longitude and basin) for the second, and so on.  The variables in PC3 and PC4 will 

be merged into a single clustering operation, considering the close relationship between these 

variables (they are all descriptive topographic variables).  A more detailed description of the 

clustering process followed is presented in Chapter 7.6.       

7.5 Multivariate Cluster Analyses 

As previously mentioned in Chapter 4.0, partitioning the state of Colorado into regions of 

stations with similar climatology will greatly assist in the development of ground snow density 
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relationships (snow depth-load equations) tailored to each region.  Some form of regionalizing 

ground snow loads has been employed by several western U.S. states including Montana, Utah, 

California, Oregon, and Arizona.  Colorado has also made use of this method, although only 

‘compacted’ and ‘settled’ snow regions are currently distinguished, representing high and low-

elevations, respectively (SEAC 2007).  To the author’s knowledge, neither SEAC nor the other 

Structural Engineering Associations of the mentioned western states currently utilize rigorous 

multivariate clustering as proposed here.  

A multivariate cluster analysis is a statistical method for identifying homogenous subsets 

or classes of individuals; these individuals are assigned to a class based on similarity, as deter-

mined by a predefined criterion (Tan, Steinback and Kumar 2005).  This criterion is defined for 

each of the clustering methods discussed later.  The objective of any cluster analysis is to mini-

mize within-class variance and conversely maximize between-class variance.  Clustering anal-

yses can be classified as either partitional or hierarchical, and each of these methods can be fur-

ther defined as exclusive, overlapping, or fuzzy cluster analyses.  The major classification, 

hierarchical versus partitional, essentially describes the structure of the clustering.  In hierar-

chical clustering, the structure of the classes resembles a tree in which the root of the tree is a 

single class for the entire ensemble of individuals.  Conversely, the furthest branch defines the 

last sub-class in which all individuals belong to their own class.  In partitional clustering, there is 

no real clustering structure; the individuals are divided into one class or another.  To visualize 

the distinction between these two types of analyses, Figure 7.4 illustrates a graphic describing the 

results of each type of analysis.  It is clear that hierarchical clustering produces several levels of 

sub-classes that are related to each other via higher levels or branches.  Partitional clustering, on 
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the other hand, simply divides individuals into mutually exclusive classes, analogous to a hierar-

chical clustering with only a single branch.   

The other classifications described above as exclusive, overlapping, or fuzzy describe the 

individual memberships to each class.  Exclusive cluster analysis is a clustering option wherein 

individuals are assigned a single class.  An overlapping cluster analysis allows individuals to be 

members of multiple classes, based on the top choice(s).  Finally, fuzzy clustering is an option 

where each individual belongs to every class, related by a probability from 0 to 1 (Tan, Steinback 

and Kumar 2005). 

In this study, the individual SNODAS weather stations represent the individuals.  The de-

scriptive items such as station properties, station locations, and modeled snow measurements are 

the variables used as the basis for the clustering (the variables listed at the end of Chapter 7.4).  

Both hierarchical and partitional clustering analysis methods will be evaluated since the natural 

clustering structure of the individuals is not known a priori.  Therefore, it is inappropriate to as-

sume either a hierarchical or non-hierarchical structure by employing either one alone.  For prac-

 
 

Figure 7.4: Illustrations of Clustering Analyses - Partitional Clustering, left, and Hierarchical 

Clustering, right. Adapted from Tan, Steinback and Kumar (2005). 
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tical purposes exclusive clustering is necessary since discrete partitions of SNODAS stations into 

statewide regions are desired.  Fuzzy or overlapping memberships would complicate the produc-

tion of mapped snow loads after the clustering is complete.  The sections to follow describe the 

mechanics of each method of clustering discussed above.  To avoid confusion, the term “class” 

will be used to refer to a cluster and the term “individuals” will be used to refer to SNODAS sta-

tions    

7.5.1 Agglomerative Hierarchical Clustering 

Agglomerative Hierarchical Clustering (AHC) is a clustering approach which aims to 

seek a sequence of nested classes of increasing homogeneity with increasing quantity of classes 

and conversely increasing heterogeneity with decreasing quantity of classes (Tufféry 2011).  For 

instance, referring back to the right-hand graphic of Figure 7.4, the branches near the bottom rep-

resent more numerous classes with more similar members, whereas the first two branches repre-

sent only two classes with very dissimilar members.  The term agglomerative specializes this 

type of hierarchical clustering as one in which the clustering process combines individuals into 

newly created nested classes as it progresses.  In other words, for a sample space with n individ-

uals, there are similarly n clusters at the beginning of the clustering process (i.e. the bottom 

branches of Figure 7.4).  Also, at each agglomeration only two classes can be merged into one.    

The clustering process eventually groups all individuals into a single class.  A related hierar-

chical approach, divisive hierarchical clustering, begins completely opposite to AHC by initializ-

ing with one cluster.  AHC is by far the most widely used clustering technique for data mining so 

it is the method of choice for this investigation (Tufféry 2011). 

The mechanics of AHC are rather simple but the computing time can be rather resource 

intensive when the sample size becomes rather large.  In this investigation, the 588 SNODAS 
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stations represent all of the individuals, a rather small sample size relative to large databases ana-

lyzed in the financial industry (Tufféry 2011).  The main goal, as previously mentioned, is to 

partition individuals into nested classes.  The steps taken in an AHC process can be summarized 

by the following algorithm (Tan, Steinback and Kumar 2005). 

(1) Compute the proximity matrix for the dataset. 

(2) LOOP 

(a) Merge the closest two clusters. 

(b) Update the proximity matrix to reflect the changes. 

(3) END when only one cluster remains. 

Agglomerative Hierarchical Clustering initializes in step 1 by computing the effective 

distance between all of the individuals, thus creating a proximity matrix whose terms are the dis-

tances between the standardized variables of pairs of individuals.  This proximity matrix is re-

constructed, as seen in step 2b above, every time a new set of classes is created.  The choice of 

the measure of proximity is left to the analyst and is either based on similarities (such as Pearson 

correlation coefficient) or dissimilarities (such as Euclidean distance) (Addinsoft 2013).  For the 

purposes of this investigation, the dissimilarities metric is employed due to the fact that Euclide-

an distance is the simplest mathematical relationship between two individuals.  Once the type of 

proximity matrix is chosen and constructed, an AHC analysis then begins the process of merging 

two sets of individuals into a class based one of several methods.  An AHC analysis successively 

evaluates every individual and assigns its membership into a class during each loop of step 2. 

The various types of AHC methods are described and evaluated below.   

Several methods exist, each of which possess different sets of criteria for assigning indi-

viduals class memberships. These clustering outcomes of each criterion begin to diverge after the 

second loop in step 2; prior to this every individual belongs to its own class.  These methods in-

clude computing the distance between two of the closest individuals of two classes (MIN or sin-
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gle linkage), the distance between two of the furthest individuals of two classes (MAX or com-

plete linkage) or an average distance between all of the members (group average) (Tufféry 

2011).  Each of the above mentioned methods have particular sensitivities to properties of the da-

ta and also weaknesses in certain situations.  For instance, the MAX method is highly sensitive to 

outliers and generally results in classes of equal diameter, in terms of the distance between the 

two individuals furthest from the class centroid.  Many SNODAS stations at high-elevations 

have modeled output of SWE and snow depth that may resemble outliers, but are in fact the most 

important data points that describe the extreme value snow loads.  These stations would intro-

duce bias and would not be clustered properly when using the MAX method.  The MIN method 

has a weakness that is highlighted in certain situations where the dataset may actually comprise 

two distinct classes but also other individuals that are equally spaced from and close to both.  

Known as the ‘chain effect’, it results in one heterogeneous cluster because the MIN method es-

sentially followed a trail of individuals that connected the two classes (Johnson and Wichern 

2007).  

An alternative method, Ward’s method aims to optimize an ‘objective function’ other 

than distance between classes during the clustering process (Ward 1963).  For MAX, MIN, and 

group average methods the objective function is some type of distance measured between two 

classes.  The objective function for Ward’s method is the sum of squared error (SSE) that results 

from merging the pair.   
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In Eq. (17), i is an index variable for each individual in the population n (size of each class), and 

x in each summation denotes the ith individual under consideration.  At each successive cluster-
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ing step, or branch on the dendrogram, every possible pair of individuals (or classes later on in 

the clustering process) is evaluated against this objective function and the pair which, when 

combined, results in the least SSE is merged.  In other words, the goal of Ward’s method is to 

cluster the pair that results in the smallest decrease in between-class variance, since SSE is a 

measure of variance (Ward 1963).  Since AHC progresses from n clusters to a single cluster, the 

largest between-class variance is observed at initialization where every individual belongs to its 

own class.  Mathematically, this situation where each individual in in its own class represents the 

best clustering, but, for practical purposes a quantity of clusters k << n is desired.  Each cluster-

ing step beyond the first reduces the between-class variance by some amount, this amount de-

creasing in magnitude with each step.  Ward’s method seeks to keep the between-class variance 

(SSE) as high as possible, thus creating the most homogenous classes.  The philosophy behind 

Ward’s method, described above, explains why it is the most popular method for AHC.  The phi-

losophy of this method is to maximize heterogeneity between classes and thus minimize it within 

classes, which speaks to the greater purpose of clustering.   It is also more effective than the oth-

er described methods when applied to real world problems (Tufféry 2011).    

Ward’s method, and in general hierarchical clustering, is focused on locally optimizing 

the objective function at each clustering step.  Globally, once the clustering has concluded, the 

analyst needs to manually cut-off the analysis at the most favorable point, leaving an appropriate 

number of classes.  A Ward’s method algorithm finds this point by determining the clustering 

step after which the largest loss of between-class SSE is observed.  This can be graphically rep-

resented on a dendrogram, illustrated in Figure 7.5.  The lengths of the branches on a dendro-

gram represent the loss of between-class SSE.  The optimal cut-off point proceeding bottom up 

from the initialization of the analysis is at the dashed line denoted by point B, which results in 



124 

 

three classes.  Truncating the analysis at point A results in an impractical number of classes 

while truncating it at point C results in the largest loss in between-class SSE.  Thus, graphically 

the dendrogram should be trimmed at a rather large branch, which precedes the largest branch on 

the tree.  Since Ward’s method and other methods of AHC lack the ability to optimize a global 

objective function, care must be exercised after the process to ensure that the results are reliable 

and pass some tests of validity (discussed in the following sections).    

 
Figure 7.5: Dendrogram Produced by Agglomerative Hierarchical Clustering Analy-

sis Showing the Optimal Point of Termination (Addinsoft 2013) 

The applications of multivariate clustering in engineering are widespread.  Clustering 

techniques were employed in Korea to regionalize precipitation gauges in order to better estimate 

regional flood characteristics (Kim, et al. 2004), in the United States to identify distinct sub-

groups of bridges so that long-term monitoring of them could be used to better describe degrada-
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tion processes (Knight and Cooil 2005), and in the North Atlantic Ocean to group tidal gauge 

stations geographically by regional variability in order to understand sea level fluctuations 

(Scotto, Alonso and Barbosa 2010).  Thus, clustering analyses have been established as reliable, 

versatile statistical tools that have broad applications.  

Before any clustering is attempted, it is critical to define several indices of clustering va-

lidity.  That way once a clustering analysis is complete, an assessment of its quality both within-

classes and between-classes can be made.  Between-class quality refers to the ability of the clus-

tering algorithm (hierarchical, partitional) to differentiate classes into distinct subsets with mini-

mal overlap of adjacent classes.  Conversely, within-class quality refers to the ability of the algo-

rithm to combine similar, proximate members into the same class.  In both of these definitions, a 

measure of Euclidean distance is used to make a determination of quality.  A few widely used 

indices that measure both are defined below. 

The R
2 

index measures the proportion of SSE explained by the classes themselves (i.e. 

between-class SSE / total SSE) (Tufféry 2011).  Therefore, R
2 

can be used to indicate between-

class quality.  The complementary index of this measure is that which measures the SSE ex-

plained by the members of the classes (i.e. within-class SSE / total SSE).  The sum of both of 

these indices should equal 1.0.  However, only the former (R
2
) is reported in practice and in the 

literature.  The closer R
2 

is to 1, the higher the quality of clustering is for this index.  

The pseudo F statistic measures the separation between all of the classes.  It is not report-

ed for each class but as an aggregate, weighted sum of all of the classes.  The pseudo F statistic 

is defined by the following (Tufféry 2011). 

     
  (   )⁄

(    ) (   )⁄
  (18) 



126 

 

In Eq. (18) F
*
 is the pseudo F statistic, R

2 
is the weighted average index for all of the clusters, n 

is the total number of individuals in the population, and c is the number of classes.  The greater 

this statistic is for a particular clustering operation, the greater the separation between all of the 

classes and thus the higher the quality.  The pseudo F statistic is compared among all of the trials 

and all of the clustering methods.  It is not to be used for single-linkage clustering; however, 

since this method of AHC is not considered in this analysis pseudo F can be used here.  

7.5.2 K-means Clustering 

A k-means clustering is a type of partitional clustering that seeks to subdivide a dataset 

into k classes based on the centroids, or arithmetic means, of newly established classes (Tan, 

Steinback and Kumar 2005).  Unlike an AHC analysis, a k-means clustering analysis does not 

produce classes that are related to one another through hierarchical relationships since it only 

performs a single level of clustering.  This is equivalent to always producing a clustering at the 

“C” level as indicated in the sample AHC dendrogram in Figure 7.5, with the exception that 

more than two classes can be produced for k-means.  A k-means clustering analysis is iterative 

and is only complete once an objective function meets specified criteria, determined a priori.  

This objective function and the mechanics of k-means in general are described below. 

A brief description of the k-means algorithm that describes how the analysis is imple-

mented into statistical computer software is provided below (Tan, Steinback and Kumar 2005).  

(1) Select k points as initial centroids (randomly or user defined) 

(2) LOOP 

(a) Form k classes by assigning each individual to nearest 

centroid. 

(b) Re-compute centroids based on current assignments. 

(3) END when defined criteria are met (i.e. convergence, minimal 

class change). 
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A k-means clustering analysis initiates in step (1) with the entire dataset and chooses a number of 

points as initial centroids of the dataset, chosen by the user.  There are k of these initial centroids, 

and since the number of centroids is fixed at the start of the analysis it follows that the number of 

classes, k, must be chosen beforehand.  Methods for choosing the appropriate number of classes 

are discussed later.  These centroids are simply coordinates on a Cartesian plane; the number of 

variables being supplied for each clustering operation defines their dimensionality.  For instance, 

in this investigation no more than three variables are clustered per operation so the k-means cen-

troids have x-, y-, and z- coordinates.  The locations of the centroids need not be individuals 

themselves.  There are many methods for choosing the initial centroids each with advantages and 

disadvantages that must be weighed prior to performing the analysis.  They can be chosen at ran-

dom or determined by performing an AHC analysis first and analyzing its class centroids (Tan, 

Steinback and Kumar 2005).   

The method of choosing initial class centroids randomly is logically the simplest and re-

quires the least amount of time and resources.  However, this method must be employed careful-

ly to ensure that sufficient runs of the analysis are performed to generate enough variability (Tan, 

Steinback and Kumar 2005).  Here the term runs refers to several complete k-means clustering 

operations performed end-to-end on the same dataset.  These operations combined constitute a k-

means clustering analysis (where the best clustering operation is chosen).  Figure 7.6 illustrates 

the need to consider many runs.  Here, stars denote the initial centroids of each class for four 

runs, or iterations.  As Figure 7.6 illustrates, it is possible that centroids chosen at random may 

be very close to each other, which may result in the erroneous partitioning of a truly single clus-

ter into multiple ones.  Moreover, because centroids don’t move significantly between iterations 

of a k-means analysis, self-correction isn’t possible.  To reduce the probability of very close ini-
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tial centroids, a number of clustering iterations (perhaps several hundred) each with randomly se-

lected initial centroids must be performed (Tufféry 2011).  The iteration with the best quality, as-

sessed by R
2
 and pseudo-F statistic, is the chosen clustering.  

Another method of determining initial centroids is to perform an agglomerative hierar-

chical clustering on the dataset and use the results of that analysis as the inputs to the k-means 

cluster analysis (Tan, Steinback and Kumar 2005).  In this method class centroids obtained from 

the results of an AHC analysis are used as the starting centroids of the k-means analysis.  The 

AHC analysis doesn’t require manual input of class quantity at initialization since it optimizes 

this quantity during the analysis.  One of the most common results from an AHC analysis per-

formed by standard statistical software is, among other things, the centroids of each class.  Once 

obtained, these centroids are used as the initial starting centroids for k-means.  When used be-

forehand, AHC can provide the k-means analysis with a good starting point and reliable estimate 

of the natural structure of the dataset as well.     

Once the initial centroids of the classes are chosen, step (2) in the k-means algorithm is 

executed.  Individuals are incrementally assigned to classes based on the distance from these 

centroids, usually Euclidean distance (Johnson and Wichern 2007).  In this clustering step all 

members are assigned to one of the k classes.  The centroids are then re-computed based on the 

current assignments since they may change slightly as individuals are assigned.  Once the tenta-

tive class memberships and re-computed centroids are determined, the entire process begins 

again.  Class assignments are re-evaluated based on distance to the class centroids and the class 

centroids are re-computed again.  Within this loop of step (2), some individuals roughly equidis-

tant to two centroids might change classes.  Ideally, the refinements of both class memberships 

and centroid coordinates would decrease as this step is repeated.  In fact, experience with per-
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forming many k-means analyses suggests that the majority of the reassignments occur during the 

first iteration (Johnson and Wichern 2007).  The algorithm stops upon acceptance of a predefined 

criterion.  Numerous types of stop criteria are available for commonly used statistical software 

and are discussed in detail below. 

 

Figure 7.6: Four k-means Clustering Runs Initializing with k Randomly Chosen Centroids 

 (Tan, Steinback and Kumar 2005) 

 

The statistical software utilized in this investigation, XLSTAT Pro, offers a variety of 

stop criteria for its k-means clustering analysis.  The most traditional is the Trace(W) criteria 

(Addinsoft 2013).  The Trace(W) criteria essentially seeks to minimize the within-class SSE, 

thus maximizing between-class heterogeneity.  It does this by re-arranging class memberships 

such that both the distance of each individual to the class centroid and the trace of the sum of 

squares and cross products (SSPC) matrix are minimized.  The SSPC matrix is defined as fol-

lows (Johnson and Wichern 2007). 
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In Eq. (19), n denotes the total number of individuals in each class, p denotes the total number of 

classes, and      represents a matrix of Euclidean distances of each individual to the class cen-

troids.  The      matrix is composed of these distances for the individuals displayed column wise 

and the different classes displayed row wise.  The multiplication of this matrix with its transpose 

produces a square SSPC matrix.  This matrix possesses within-class SSE along the diagonal and 

cross-product SSE values between different classes on the off-diagonals.  Thus, minimizing the 

trace of this matrix minimizes the within-class sum of squares.  The Trace(W) criterion is the 

proper partitional analog to Ward’s hierarchical clustering method (Tufféry 2011).  Trace(W) is 

sensitive to the effects of scaling, so the variables must be standardized otherwise the variables 

with the highest variance or standard deviation will be clustered together and the measures of 

clustering validity will be unreliable.  Also, this criterion tends to produce classes of similar size 

and shape. 

The second option of stop criterion offered by XLSTAT is Determinant(W).  This criteri-

on seeks to minimize the determinant of the pooled within-class covariance matrix for each class 

(Addinsoft 2013).  Since the variables are standardized, their means are equal to 0 and their 

standard deviations are equal to 1.  Therefore, Determinant(W) minimizes the determinants of 

the within-class correlation matrix due to its equivalence to the standardized covariance matrix 

(refer to the latter portion of Chapter 7.3).  When det(W) is zero, or close to zero, it indicates a 

linear dependency of the rows and the columns of the matrix.  In other words, it signals that there 

are statistically significant interaction effects within the class among the variables used in the k-

means clustering analysis (Johnson and Wichern 2007).  Thus, it is a measure of within-class 
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homogeneity.  The philosophy of this criterion is derived from the Wilk’s Lambda statistic for 

multivariate analysis of variance,   . 

    
| |

|   |
 (20) 

In Eq. (20), the matrix B is defined in a similar manner as W in Eq. (19) except that B accounts 

for the sum of squared error due to the clustering itself (i.e. total inertia).  The Wilk’s Lambda 

statistic therefore is the normalized form of the Determinant(W) criterion in XLSTAT that indi-

cates a proportion of variance to total population variance. Both stop criteria are available in 

XLSTAT, the only difference being that Determinant(W) indicates an absolute value while the 

Wilk’s Lambda criterion indicates a value between 0 and 1.  These two criteria are considerably 

less susceptible to the detrimental effects of variable scale.  Furthermore, they tend to produce 

class sizes that are less homogenous, which means that class sizes may better reflect the natural 

data structure if that structure possesses an uneven distribution of related individuals.   

 The measures of clustering validity for k-means are similar to those used in AHC.  Ac-

cordingly, for each clustering operation the R
2 

and pseudo-F statistic are reported to indicate 

quality of clustering. 

7.6 Multivariate Cluster Analyses Performed on SNODAS Dataset 

As previously mentioned, both hierarchical and partitional clustering methods are em-

ployed in this investigation.  In particular, purely hierarchical, purely partitional, as well as hy-

brid clustering analyses are performed on the SNODAS dataset.  A PCA-derived clustering is al-

so performed in order to judge its efficacy alone, without applying clustering techniques.  The 

results of the clustering analyses are evaluated based on statistical tests of clustering quality ap-

plicable to each of the different clustering methods.  The results are then mapped using Geo-

graphical Information System (GIS) capable software and the classes are evaluated visually for 
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suitability in a state ground snow load map.  This section is organized as follows. The results 

from the AHC analysis are presented first, followed by the k-means analysis, the PCA analysis, 

and finally the hybrid analysis.  Results, discussion, and topographical GIS-produced mapped 

classes are presented together in the section for each method. 

7.6.1 Results of Agglomerative Hierarchical Clustering 

The Agglomerative Hierarchical Cluster analysis is performed with the assistance of the 

software program XLSTAT Pro.  The AHC analysis is based on dissimilarities in the proximity 

matrix and the agglomeration method proposed by Ward.  The clustering proceeds using the 

standardized SNODAS variables prepared in Chapter 7.2 and partially listed in Appendix K as 

the clustering variables.  As previously mentioned the clustering process itself is phased into 

nested operations; each clustering operation is performed on the classes formed during the previ-

ous.  Clustering variables are chosen according to the results of the PCA performed prior.  In or-

der to establish a minimum number of classes as a guideline, experimental AHC trials were per-

formed in which an increasing quantity of classes was manually forced.  The R
2 
validity measure 

was computed for each so that a relationship between quantity of classes and clustering validity 

could be obtained (Tufféry 2011).  The results are plotted in Figure 7.7.  The quantity of classes 

after which there is an appreciable reduction in R
2
 gain should be taken to be the minimum, 

which in this case is four.  Four classes results in an acceptable level of between-class heteroge-

neity.  These experimental trials assisted in the development of a process flowchart for AHC, il-

lustrated in Figure 7.8.  In total, four trials of clustering are performed; a single trace through the 

flowchart elements [1] through [5] represents one trial.  

The first clustering operation in element [2] of Figure 7.8 is performed on the entire da-

taset using the clustering variables from set (a).  For each of the four trials, set (a) includes the 
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variables SWE, snow depth, and elevation.  Two classes are forced during the clustering opera-

tion in element [3] since there are generally great disparities in the standardized variables be-

tween high and low-elevation stations and it is desired to separate the stations as such.  However, 

the clustering algorithm is not otherwise altered.  The results are the first two classes produced 

by the clustering operation denoted by flowchart element [3] in Figure 7.8 (the circled numbers 1 

and 2).  

 The individuals in these two classes are evaluated separately to determine patterns (e.g. 

high/low-elevations, SWE, snow depth).  This evaluation determines which clustering input vari-

ables will be used for the clustering operations denoted by flowchart elements [4a] and [4b].  In 

performing several trials, one class generally contains low-elevation stations and so the cluster-

ing variables in set (b) are tailored to the low-elevations.  Accordingly, they generally include 

longitude and basin occasionally combined with elevation, SWE, or snow depth (for some trial 

runs).  The second class generally contains high-elevation stations (≈ 10,000 ft.).  For this class, 

the clustering variables in set (c) are tailored to mountainous sites.  Accordingly, they generally 

include slope, aspect, and curvature occasionally combined with elevation, SWE, or snow depth.     
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Figure 7.7: R

2
 as a Function of the Number of Classes Manually Forced in AHC Experimental 

Trials. 

 

Figure 7.8: Process Flowchart for Agglomerative Hierarchical Clustering 

The process laid out in Figure 7.8 is followed consistently throughout all AHC trials.  

The selected input variables for each clustering, however, are manually adjusted depending on 
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the quality of classes being achieved.  If classes of poor quality are produced by the input varia-

bles, other combinations are chosen.  This feedback mechanism results in trials with slightly dif-

ferent quantity/type of input variables and quantity of classes.  This is why optional classes are 

denoted by dashed lines proceeding from elements [5a] and [5b]; in these instances the AHC al-

gorithm determines the appropriate number of classes for clustering operations (ii) and (iii).  Ta-

ble 7.8 lists the trials of AHC analyses performed; input variables for sets (a), (b), and (c); the to-

tal number of resulting classes for each; and measures of clustering quality (R
2
 and pseudo F 

statistic).   

Table 7.8 indicates the clustering quality being achieved by various combinations of in-

put variables.  Each trial initiated with elevation, snow depth, and SWE as the input variables for 

clustering (i).  These three variables were the major contributors to principal component PC1.  In 

all trials, clustering operation (ii) ran with at least basin and longitude as input variables, since 

they were the major contributors to PC2.  In trials 1 and 2, the additional variables of SWE or 

snow depth resulted in similar between-class variance but rather different pseudo-F scores.  This 

indicates trial 2 is the more suitable of the two.  Trial 3 illustrates that while aspect and curvature 

were major contributors of PC3 and moderately correlated with each other, neither produces 

good clustering results.  Overall, as highlighted in bold, a combination of clustering results from 

trials 2 and 4 produces the best aggregate R
2
 and pseudo-F score.  A combination is possible 

since the class memberships produced by clustering (i) are identical for all four trials.  Thus the 

classes produced using the inputs of elevation, SWE, and snow depth for clustering (i), basin, 

longitude, and snow depth for clustering (ii), and basin and longitude for clustering (iii) are the 

most suitable.  This formation of classes is now referred to as the final AHC clustering.  Graph-

ical representations of each clustering are described below.    
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Classes 

Table 7.8: Results of Agglomerative Hierarchical Clustering Trials 

AHC 

Trial 
Clustering (i) [3] Clustering (ii) [5a] Clustering (iii) [5b] No. of 

Input (a) R
2
 F* Input (b) R

2
 F* Input (c) R

2
 F* 

1 
E, SD, 

SWE, 
0.635 203 

BA, LG, 

SWE 
0.831 572 

AS, CV, 

SL 
0.474 105 6 

2 
E, SD, 

SWE, 
0.635 203 

BA, LG, 

SD 
0.863 735 

BA, LG, 

SD 
0.614 185 6 

3 
E, SD, 

SWE, 
0.635 203 

BA, E, 

LG  
0.755 359 AS, CV 0.651 217 6 

4 
E, SD, 

SWE, 
0.635 254 BA, LG 0.820 664 BA, LG 0.848 813 5 

AS = aspect, BA = basin HUC, CV = curvature, E = elevation, LG = longitude,  

SD = snow depth, SL = slope, SWE = snow water equivalent   

F* = pseudo-F statistic, R
2 
= weighted average, between-class SSE 

Note: red numbers in brackets denote flowchart elements from Figure 7.8. 

The dendrograms for the final AHC clustering are presented in Figure 7.9.  Recall from 

Figure 7.8 that the clustering process resulted in the subsequent clustering of the original classes 

P1 and P2 from flowchart element [3]; accordingly their indices are replaced by the final six 

classes P1 through P6 (center and bottom dendrograms).  It can be seen that as the clustering op-

erations progress, the range of dissimilarity (Euclidean distance) decreases, indicating that each 

operation is producing more homogenous classes of individuals than the previous.  Also, for 

clustering (i) and (ii), the branches of the dendrogram are cut off before a significant loss of be-

tween-class SSE.  This signifies that the practice of nesting the clustering operations employed is 

successful, as well as the AHC itself.  While clustering (ii) could easily have been cut off at four 

classes, as noted by the branching in Figure 7.9, three classes are considered sufficient to explain 

the variability.  Also for practical purposes it is not desired to have an additional class.  A clus-

tering that produces many classes may present as a very efficient and statistically robust cluster-

ing; however, analyses with too many clusters ultimately prove too cumbersome and time-
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intensive to analyze and implement for the production of a ground snow load map.  This high-

lights the need for manual supervision of the data.  This is often accomplished by mapping the 

clusters on a topographical map using GIS-enabled software.  Then, visual evaluation of the 

mapped classes provides the final step in assessment of the clustering.  

The completed classes are then plotted on a topographical map, using the latitudes, longi-

tudes, elevations, and station identifiers as input.  Each class is input into ArcGIS and assigned a 

different colored pin to distinguish one class from another, as depicted in Figure 7.10.  From the 

map it is clear that generally the AHC algorithm properly distinguishes the lower plains from the 

high-elevations, separating stations east of the Front Range from the stations to the west (defined 

by the boundary of red pins, class P5).  Also, the mountain peaks of the Central Rockies, denoted 

as blue pins for P2, are well separated from others.  Classes P3 and P6 (orange and yellow pins, 

respectively) overlap considerably, however, and don’t clearly define distinct regions of the 

state.  It is likely that these classes were separated early on in clustering (i) and were never re-

combined.  Classes P4 and P5 (red and purple, respectively) appear to have been separated due to 

the physical distance between them.  Lastly, class P1 only contains 36 stations and would be too 

small to constitute its own class.  The intent of its creation is noted, though; this region defines 

the transition zone from relatively moderate snowfall and density in the plains to heavy deep 

snowfall in the mountains.  It is believed by the author to be a crucial zone. 

If chosen to be incorporated into a state snow load map, the arrangement of classes pro-

duced by the final AHC would need some modifications that would facilitate the formation of 

well-defined regions.  First, overlapping and mistakenly assigned stations (e.g. the single green 

pin in the upper right of Figure 7.10) would be reassigned manually.  Classes P4 and P5 would 

be combined into one. 
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Figure 7.9: Dendrograms Created by Final Agglomerative Hierarchical Clustering Created with 

XLSTAT. From Top to Bottom, Dendrograms of Clustering (i), (ii), and (iii). 

From 

flowchart 

item [3] 

From 

flowchart 

item [5a] 
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7.6.2 Results of k-means Clustering 

The k-means analysis is performed in the same manner as the previous AHC analysis.  

The process flowchart established for AHC and illustrated in Figure 7.8 is followed here as well.  

The nested clustering methodology is again employed since the clustering results thus far have 

proved successful.  Similar to the AHC trials, several experimental k-means trials are performed 

prior to the analysis trials in order to formulate a relationship between clustering quality and the 

number of classes.  This step is necessary for a k-means analysis since this method requires 

manual input of class quantity, k, at initialization.  Also, it is unclear whether the quantity of 

classes determined Figure 7.7 for the AHC analysis is applicable here as well.  The plot of R
2
 vs. 

class quantity, is illustrated in Figure 7.11, indicates that the minimum quantity of classes is four.  

The plot, similar to that produced by the AHC experimental trials, indicates that the optimal 

number of classes is independent of the type of analysis performed.   

The process followed in Chapter 7.6.1 is maintained for the k-means analysis, including 

the intermediate steps of choosing input variables for the various clustering operations.  The stop 

criterion for the k-means analysis is Determinant(W), described in Chapter 7.5.2.  This stop crite-

rion is appropriate since it does not produce homogenous class sizes, not anticipated to reflect the 

natural structure of the data.  For initialization, centroids are chosen by performing a preliminary 

AHC analysis to determine the appropriate number of classes and their corresponding centroids.  

The results of this preliminary analysis, including the dendrogram and initial centers, are availa-

ble in the upper portion of Appendix M.  This technique eliminates the unfavorable effects of 

choosing poor initial centroids by random.  Although initial centers are manually chosen at ini-

tialization, 500 iterations are performed during each operation for convergence of the stop crite-

rion.  The results of k-means are presented in Table 7.9.  
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Figure 7.11: R

2
 as a Function of the Number of Classes Manually Forced in k-means  

Experimental Trials 

 

Table 7.9: Results of k-means Partitional Clustering Trials 

k-means 

Trial 

Clustering (i) [3] Clustering (ii) [5a] Clustering (iii) [5b] No. of 

Classes Input (a) R
2
 F* Input (b) R

2
 F* Input (c) R

2
 F* 

1 E, SD, 

SWE 
0.789 544 BA, LG, 

SWE 
0.740 415 AS,CV, 

SL 
0.236 45 5 

2 E, SD, 

SWE 
0.789 544 BA, LG, 

SD 
0.718 371 BA, LG, 

SD 
0.449 119 5 

3 E, SD, 

SWE 
0.789 544 

BA, E, 

LG 
0.702 343 AS, CV 0.398 97 5 

4 E, SD, 

SWE 
0.789 544 BA, LG 0.791 552 BA, LG 0.721 376 5 

AS = aspect, BA = basin HUC, CV = curvature, E = elevation, LG = longitude,  

SD = snow depth, SL = slope, SWE = snow water equivalent   

F* = pseudo-F statistic, R
2 
= weighted average, between-class SSE 

Note: red numbers in brackets denote flowchart elements from Figure 7.8. 
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Table 7.9 indicates that the quality of clustering achieved by clustering operation (i) in all 

trials (F*
 
= 544) is moderately better than was achieved by the AHC analysis.  For clustering op-

erations (ii) and (iii) however, the highest measures of either R
2 
or pseudo-F (0.791 and 552, re-

spectively) are considerably lower compared to the AHC analysis.  Also, there is a much greater 

range of quality values for clustering (iii) for the four trials of k-means.  Nonetheless, the cluster-

ing analysis as a whole produced acceptable quality.  For trial 4, selected as the final k-means 

clustering, all of the clustering operations achieved greater than 70% between-class variance. 

For the clustering operation (ii), the results of the k-means analysis indicate that Basin 

and Longitude, when clustered alone, produce the highest quality clustering.  This finding con-

firms the results of the PCA, which found that longitude and basin were primary contributors to 

PC2.  Also, aspect and slope of the terrain do not appear to create suitable classes when included 

as variables for clustering operation (iii).  Several additional trials not listed in Table 7.9 were 

performed; however, in no case did the inclusion of slope, aspect, or curvature produce a cluster-

ing quality higher than the trials presented in Table 7.9.  For clustering operation (iii) the clear 

choice is again basin and longitude alone as the clustering variables.  Overall, the validity 

measures of the k-means clustering analysis indicate that the best formation of classes results 

from using the inputs of elevation, SWE, and snow depth for clustering (i), and basin and longi-

tude for both clustering (ii) and (iii).  Represented entirely by trial 4, this formation of classes is 

now referred to as the final k-means clustering. 

The final product of the k-means clustering analysis is a plot illustrating the value of the 

stop criterion, Determinant(W) as a function of each iteration performed.  XLSTAT Pro com-

putes the value of Determinant(W) after each k-means iteration using Eq. (19).  These plots of 

stop criterion vs. iteration are used like biplots of a PCA to visually evaluate the efficacy of the 
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clustering.  A convergence of the stop criterion value signals the end of the clustering operation.  

This plot for the final k-means clustering operation (i) is presented in Figure 7.12.  The relatively 

low value of Determinant(W) compared to before any clustering (iteration 0) indicates that the 

clustering is successful.  This particular k-means run converges after three iterations, indicating 

that no further class reassignments from the remaining 497 iterations would improve the cluster-

ing quality.  Other plots for k-means clustering operations (ii) and (iii), not shown, provide simi-

lar results for those operations.   

 
Figure 7.12: Plot of the Stop Criterion Determinant(W) as a Function of Iteration for the Final 

k-means Clustering. Plot was created using XLSTAT Pro. 

The completed classes for the k-means analysis are plotted on a topographical map, illus-

trated in Figure 7.13, with colored pins for the members of the various classes produced.  There 

are only four classes illustrated by Figure 7.13 because the original clustering produced an outli-

er class with very few SNODAS stations which were merged with another class.  The stations 

from the outlier class were all SNOTEL stations high in the Rocky Mountains that were manual-

ly reassigned to a similar class composed mainly of other SNOTEL stations. 



144 

 

     

 

F
ig

u
re

 7
.1

3
: 

T
o
p
o
g
ra

p
h
ic

a
l 

M
a
p
 o

f 
C

la
ss

es
 C

re
a
te

d
 b

y 
F

in
a
l 

K
-m

ea
n
s 

C
lu

st
er

in
g
 P

lo
tt

ed
 W

it
h
 A

rc
G

IS
. 

 

(G
re

en
 -

 P
1
, 
B

lu
e 

- 
P

2
, 

O
ra

n
g
e 

- 
P

3
, 
P

u
rp

le
 -

 P
4
) 



145 

 

From studying Figure 7.13 it is evident that the k-means clustering differentiated low and 

high-elevations well, specifically near the Front Range.  However, for class P1, some low-lying 

stations on the eastern plains were clustered with stations west of the Great Divide.  These two 

regions represented by P1 are expected to see different climatic patterns and snowfall so the 

merging of stations from these regions is undesirable.  However, all of the low-elevation stations 

east of the Front Range were clustered together, which is appropriate since east of the Rocky 

Mountains, climatic patterns are relatively constant through to the border with Kansas. 

Classes P2 and P4 appear to contain a mix of both high-elevation, alpine SNOTEL sta-

tions that probably experience deep snowfalls as well as lower elevations that appear to be in the 

shadows of other mountain peaks.  It appears that the k-means algorithm had a difficult time dif-

ferentiating between these two types of stations represented by the classes. 

In general, classes P1, P3, and P4 do not seem to be well differentiated west of the Great 

Divide.  This does not lend itself to a useful or practical ground snow load map since potential 

snow load isolines would cross over each other.  It also does not appear that the mix of classes in 

the western portion of the state can be separated manually or corrected.  In light of this and the 

fact that the measures of clustering validity were not extremely high, the k-means clustering 

analysis will not be considered further in this investigation. 

7.6.3 Results of PCA-Based Clustering 

PCA is very useful in reducing the dimensionality of a multivariate dataset (Jolliffe 2002, 

Johnson and Wichern 2007), and has been successfully shown to improve the quality of multi-

variate clustering methods when used a priori (Ben-Hur and Guyon 2003).  However, few studies 

have attempted cluster or classification analyses based solely on the results of a PCA.  While the 
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principal components themselves are not intended to be interpreted as classes, there is definitely 

a relationship between the principal components and the natural structure of the dataset. 

For instance, in both the AHC and k-means analyses performed thus far, the input varia-

bles representing the first few principal components resulted in exceptional clustering variables.  

For instance, the major contributing variables to PC1 (SWE, snow depth, and elevation) and PC2 

(longitude and basin) proved to be predictors of good clustering quality for clustering operations 

(i) and (ii), respectively.  Due to the relationship between the principal components and the clas-

ses formed based on them, clustering based on the results of the PCA is investigated.  Further-

more, by evaluating the performance of an unconventional PCA-based clustering analysis against 

the more traditional AHC and k-means methods, the efficacy of multivariate clustering methods 

in general can be gauged.  

Since PCA is not an established method for clustering itself, there is no practical statisti-

cal measure of clustering quality, compared to the R
2 

and pseudo-F statistics for AHC and k-

means.  Therefore, only a visual evaluation of the classes produced by the PCA-based clustering 

is used to measure the clustering quality.  For the results presented thus far, the visual test has 

generally corroborated the statistical measures of quality.  Visual evaluation of the clustering re-

sults is the most crucial element anyway since the method chosen to be implemented in a ground 

snow load map must pass the visual inspection. 

The method of extracting classes from the results of the PCA proceeds as follows.  First, 

a quantity of classes must be manually selected for the PCA-based method.  Four classes are 

chosen since the first four PCs explain 75% of the total variance in the dataset, as described in 

Chapter 7.4.  A matrix of the contributions of each individual to first four PCs is then created.  

This is similar to the variable contributions in Table 7.7, except that this matrix contains the con-



147 

 

tributions of the individuals to each PC.  This matrix, one of the products of XLSTAT output, in-

dicates the PC to which each individual is the strongest contributor.  By writing a simple code in 

MS Excel, this PC is determined for each individual, which then becomes the class to which the 

individual is assigned.  An inventory of classes of individuals with geographic coordinates is 

then plotted on a topographical map of Colorado, illustrated in Figure 7.14, for the visual evalua-

tion of the created classes.  

It can clearly be seen from Figure 7.14 that there is great dispersion in the geographic lo-

cations of all of the classes.  The only exception is class P2 which primarily is contained within 

the portion of the state to the west of the Front Range.  In addition to crossing latitude and longi-

tude boundaries, as observed for the multivariate clustering methods, the results of the PCA-

based classes appear to cross elevation and even climatic boundaries as well.  No class appears to 

exclusively represent regions of similar topography (longitude, elevation), climate (alpine vs. 

sub-alpine vs. prairie) or typical snowfall.  This results in the significant spatial overlap between 

classes across the state.  From a practical standpoint, it would be impossible to construct reason-

able ground snow load isolines for the class structure depicted in Figure 7.14.     

Due to the great spatial distribution of classes and the illogical assignment of stations to 

classes, the PCA-based clustering method is ruled out as a viable clustering technique.  There-

fore, this method will not be considered further.  However, the assessment of this method is val-

uable to the regionalization of the SNODAS weather stations; its inefficiency supports the usage 

of the established multivariate clustering techniques such as k-means and AHC.   
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7.6.4 Results of Hybrid Clustering Analysis: K-means Followed 
by AHC 

Hierarchical and partitional clustering techniques have been employed individually thus 

far to regionalize the SNODAS stations.  While either of these methods is useful and effective on 

its own, a hybrid clustering method combines the strengths of both while minimizing their defi-

ciencies.  For instance, agglomerative hierarchical clustering methods suffer from the lack of a 

global objective function; at each step the algorithm merges the pair of classes that best suits lo-

cal circumstances (Tufféry 2011).  Conversely, the k-means clustering method evaluates mem-

berships of the entire population at each iteration, but requires the quantity of classes and their 

centers beforehand.  Also, it cannot effectively handle non-globular classes or those of varying 

densities (Tan, Steinback and Kumar 2005).  The primary concern in applying one of these 

methods exclusively is that the natural structure of the data has not been ascertained.  Both mul-

tivariate clustering methods have produced adequate clustering results individually, so neither 

one can be eliminated yet.  Therefore, a hybrid clustering analysis is investigated, incorporating 

the strengths of both partitional and hierarchical methods in a step-wise manner.    

The hybrid analysis process can be summarized in the following list of steps. 

(1) Perform a preliminary AHC on entire dataset to obtain number 

of classes, k, and their centroids. 

(2) Perform a k-means clustering using the inputs determined in 

the first step. 

(3) Perform successive AHC analyses on each of the k classes; 

truncate the analyses at the optimal branch, per Ward’s 

method. 

Each phase of the hybrid analysis proceeds using the procedures for AHC and k-means 

analyses established in Chapters 7.6.1 and 7.6.2.  The results of the hybrid analysis are presented 

in Table 7.10, which lists the clustering trials performed; input variables for sets (a), (b), and (c); 
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the total number of resulting classes for each; and measures of clustering quality (R
2
 and pseudo 

F statistic). 

Table 7.10: Results of the Hybrid Clustering Trials 

Hybrid 

Trial 
Clustering (i) [3] Clustering (ii) [5a] Clustering (iii) [5b] No. of 

Classes 

Input (a) R
2
 F* Input (b) R

2
 F* Input (C) R

2
 F* 

1 
E, SD, 

SWE 
0.608 181 BA, LG 0.838 602 

BA, LG, 

SD 
0.617 188 6 

2 
E, SD, 

SWE 
0.608 226 

BA, LG, 

SD 
0.842 777 AS, CV 0.271 54 5 

3 
E, SD, 

SWE 
0.608 226 

BA, LG, 

SWE 
0.851 832 BA, LG 0.728 390 5 

AS = aspect, BA = basin HUC, CV = curvature, E = elevation, LG = longitude,  

SD = snow depth, SL = slope, SWE = snow water equivalent   

F* = pseudo-F statistic, R
2 
= weighted average, between-class SSE 

Note: red numbers in brackets denote flowchart elements from Figure 7.8. 

Table 7.10 demonstrates the progress of the hybrid analyses through all of the trials as the 

optimal clustering variables were isolated.  The final hybrid clustering is highlighted in bold as 

trial 3.  Overall, the statistical measures of quality for this clustering indicate that a good level of 

between-class variance is being attained, signifying that the hybrid analysis is successful.     

In comparison to k-means and AHC, the hybrid analysis appears to have measures of 

quality that are slightly less than either, for clustering operation (i).  However, the more im-

portant clustering operations (ii) and (iii) produce better classes.  In terms of the pseudo-F statis-

tic, the hybrid analysis (F* = 832) scored better than either AHC (F* = 735) or k-means (F* = 

552) for clustering operation (ii).  However, for clustering operation (iii), the hybrid analysis 

scored less than AHC, but better than k-means.  Recall that the pseudo-F statistic measures the 

separation between all of the clusters; it provides better contrast since its range of values is high-

er than R
2
.  These findings demonstrate that, statistically, the hybrid clustering analysis is one of 

the top performers of all of the methods considered thus far. 
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The class memberships for the hybrid analysis are plotted on a topographical map of Col-

orado, illustrated in Figure 7.15.  It is evident that this method produces a well discretized ar-

rangement of classes.  Aside from aesthetics, several desirable qualities are noted about the spa-

tial arrangement of classes. 

First, the low-elevation and prairie SNODAS stations of class P3, denoted by orange 

pins, are well-separated from all other stations.  They are even separated from the stations west 

of the Great Divide that are relatively similar in elevation.  Recall that the k-means and PCA-

based methods mixed these clearly separate climatic regions.  The AHC method further clustered 

the low-elevation stations into two classes, though this action seemed unfounded. 

Secondly, the intermediate region between low-elevation plains and high-elevation 

mountain peaks is distinguished by the hybrid analysis.  The only other clustering method to ap-

propriately separate this region into its own class is AHC.  However, this transition class pro-

duced by AHC in Figure 7.10 is not as well-defined nor is it as organized as the class produced 

here.  This transition region is believed to experience significantly greater snowfall than the 

plains but not the seasonal accumulation of snowpack like in the mountains (Doesken 2012).  It 

is therefore a critical class that should be differentiated in the regionalization effort. 

The hybrid analysis created the most uniform arrangement of classes in the mountains to 

the west of the Great Divide of all the clustering methods considered.  Classes P2 and P4 (blue 

and purple pins, respectively) do not have excessive overlap except in minor cases where the al-

pine mountain stations of P2 are adjacent to sub-alpine stations of P4.  Lastly, class P5 which 

represents the high desert of the San Luis Valley in the southern portion of the state was distin-

guished from other classes.  This region is known historically to experience quite dry conditions 

year-round, and is in a precipitation shadow which makes it a rather unique region in itself 
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(Harris 2013).  The hybrid analysis successfully captured this anomaly. The results of the hybrid 

clustering analysis, including the preliminary AHC dendrogram, k-means analysis results tables, 

and final AHC dendrograms are available in Appendix M. 

With the above qualities in mind, the hybrid analysis outperforms the other clustering 

methods from a holistic perspective.  It achieves very good statistical measures of clustering 

quality and produces classes that are well-differentiated and logically organized when plotted on 

a topographical map.  This facilitates the creation of a ground snow load map.  The spatial inter-

polation analysis to create snow load isolines, discussed in Chapter 8.0 would be the easiest for 

this method.  After examining Figure 7.15 it is clear that there are few places where that analysis 

could err due to extensive overlap or mixing of many classes.  Also, the class formation pro-

duced by the hybrid analysis would likely not result in a situation where two stations with ex-

tremely different elevations or snow loads are adjacent to one another.  This situation, encoun-

tered in the ground snow load map production for Colorado by SEAC, forced the interpolation 

between two stations that likely overestimated the lower elevation station (SEAC 2007).  

7.7 Developing Ground Snow Depth-Load Relationships for Each 

Class 

In addition to the statistical and visual assessments of each clustering method, an analysis 

of the modeled snow load and snow depth data is performed.  Specifically, annual maxima 

ground snow load data is derived from modeled SWE using Eq. (9), and is acquired along with 

the ground snow depth data from SNODAS output for every station.  This output data from the 

clustered stations is plotted and a linear regression of the snow depths and snow loads is per-

formed.  The method of least squares is used to produce model equations, which are plotted with 

the data.  The goodness-of-fit of each class is evaluated using the coefficient of determination, 

which is presented along with the model regression equation.  By comparing these plots across  
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all four methods (AHC only, k-means only, PCA-based, and hybrid), an additional measure of 

clustering efficacy can be used for evaluation.  The ideal method for regionalization of SNODAS 

stations would not only produce statistically robust and practical clustering results, as determined 

in Chapter 7.6, but also distinct and closely correlated load vs. depth relationships for each class.  

The absence of visual outliers in each class and a high measure of correlation coefficient for the 

regression equations are desired.  The regression equations for the SNODAS data assume the 

power form similar to the ASCE 7-10 equation, developed by Tobiasson and Geatorex (1996); in 

most cases this form resulted in the best fit for the data (compared to linear, polynomial, or other 

types of relationships).   

For comparison, in every plot, the bi-linear RMCD and exponential ASCE 7-10 density 

equations are plotted for reference.  Since these equations plot snow depths and snow loads at a 

50-year recurrence interval (compared to the nine years of SNODAS output data), they are only 

plotted to provide a reference line for comparing different methods, not for direct comparison to 

the SNODAS data.   

Due to the fact that each of these plots contains 588 individual data points and at least 

four different classes with separate regression equations, there is considerable obscurity when all 

of the data is plotted together.  For clarity, the original data points are removed from the analysis 

plots presented in the body of this section.  These plots for the AHC, k-means, PCA-based, and 

hybrid clustering methods are presented in Figure 7.16-Figure 7.19.  All of the best-fit regression 

lines have been extended through 190 inches on the x-axis only for comparison purposes.  Mag-

nified plots for each method with all of the data points are available in Appendices N through Q.  

For each clustering method, two of these magnified plots are made; in each, different subgroups 

of data points are made partially transparent to improve clarity. 
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Figure 7.16:Regression of Snow Load on Snow Depth from AHC Clustering Method 

  

 

Figure 7.17: Regression of Snow Load on Snow Depth from k-means Clustering Method 
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Figure 7.18: Regression of Snow Load on Snow Depth from PCA-Based Clustering 

 
Figure 7.19: Regression of Snow Load on Snow Depth from Hybrid Clustering Method 
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Figure 7.16-Figure 7.19 show that each method generally produces good results in terms 

of the regression equations, with R
2 

values generally greater than 0.84, but mostly above 0.90.  

Looking more closely between the methods, it is apparent that the PCA-based clustering method 

produces regression models that best fit the data within each class, with values
 
between 0.92 and 

0.97.  However, from the results of Chapter 7.6.3 it is clear that this method is neither efficient 

from a clustering perspective nor practical from the perspective of producing a ground snow load 

map.  Aside from the PCA-based method, the next best methods as evaluated from the regression 

analysis are the AHC-only and hybrid clustering methods.  For these two methods, the majority 

of the classes have regression models that are well correlated to the data (R
2
 ≥ 0.92) with only a 

few that are less correlated (R
2
 ≥ 0.85).  However, the hybrid method regression equations for 

each class are better differentiated (their regression equations do not overlap as much); this 

method also has one fewer class than the AHC-only method, resulting in a less complicated 

model.  It is interesting to note that the regression models from these two methods, and in gen-

eral from all of the methods, produce a better fit for the high-elevation stations in the Front 

Range and Rocky Mountain regions (e.g. classes whose model regression equations fall between 

the ASCE 7 and RMCD equations).  Conversely, the classes that contained a mixture of low to 

mid-elevation stations from the plains and regions west of the Great Divide do not have as high-

ly-correlated model equations. 

To summarize the comparison between individual methods, all of the plots show some 

outliers (data points far from the majority in their class in Appendices N through Q) as well as 

overlap between classes.  The AHC-only method, however, exhibits an extensive amount of 

overlap to the point where there is little differentiation between classes, particularly for the high-

elevation classes.  The k-means and PCA-based analysis plots show good separation between 
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classes representing high-elevation stations noted in Appendices O and P, respectively.  Howev-

er, k-means regression models do not show a high degree of correlation to the data and the PCA-

based method has already been eliminated as a viable choice.  The method that produces strong 

snow depth-load relationships throughout all classes consistently is the hybrid method, whose 

plots are illustrated in Appendix Q.  The hybrid clustering technique is the method of choice 

based on the results of the regression analysis.  However, one refinement that can be made to the 

results would be to merge classes P1 and P2 into one due to their similarities revealed by the re-

gression analysis.  

7.8 Comparison of SNODAS Regression Models to ASCE and RMCD 
Ground Snow Depth-Load Equations 

As mentioned, no direct comparison can be made between the SODAS data and either of 

the two aforementioned density equations due to the disparity in recurrence intervals.
12

  Bearing 

this in mind, the model equations for at least two of the classes in Figure 7.16-Figure 7.19 predict 

ground snow loads in excess of those predicted by the ASCE density equation and only slightly 

less than those predicted by the RMCD density equation for the same ground snow depth.  These 

two classes consistently represent high-elevation mountainous regions where it is expected that 

measured ground snow loads should exceed those predicted by ASCE, but not RMCD.
13

  Since 

only nine years of modeled output is available from SNODAS, it is impossible to extrapolate 50-

year ground snow loads from the data for comparison to the RMCD.  However, considering that 

the SNODAS model has not experienced many extreme events, it is likely that the current re-

                                                

 

12 Plotted SNODAS data are annual maxima for nine years of modeled output compared to the RMCD and ASCE 7 

equations which are representative of 50-year ground snow depths and loads.  
13 The ASCE 7-10 ground snow load map only includes statistical data from low-elevation NWS offices. As men-

tioned previously, the high mountain stations observe higher ground snow densities and loads due to the accumu-

lation of snow over the winter season.     
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gression equations are rather under conservative.  Extreme snow events result in significant ac-

cumulation of snow over a short period of time (generally a few days), which increases compac-

tion due to self weight, as discussed in Chapter 4.2.   

As an example, the mountainous SNOTEL station BURC2 (geographically located by 

Figure 3.3) experienced its greatest modeled SWE and snow depth of all modeled years (2003-

2012) during the 2010-2011 water year.  This particular winter season is well known for having 

brought nearly three feet of snowfall to the plains and several more to the mountains in late 

spring.  The maximum modeled SWE and snow depth at station BURC2 for the 2010-2011 water 

year was 23.5 inches of water and 73.2 inches of snow, respectively (occurring on May 4).  For 

reference, the average annual maximum SWE and snow depth all modeled water years at station 

BURC2 was 16.3 inches of water and 53.5 inches of snow depth, respectively.  This extreme 

snow season represents nearly 150% of the average SWE and 140% of the average ground snow 

depth.  It is likely that this single data point from station BURC2 for this extreme event greatly 

influenced the regression model for the class to which it was assigned.    

As additional extreme winter storm events are captured by the model, all of the statistical 

parameters including the regression equations in Figure 7.16-Figure 7.19 will increase consider-

ably.  The extent of such increases is unknown but it can be argued that once extreme events are 

captured by the model, the snow depth-load relationships for the two leading classes (P1 and P2) 

of the hybrid clustering method will predict greater snow loads than the RMCD snow depth-load 

equation currently used in many western states.
14

 

                                                

 

14 Refer to Table 1.2 for states that currently employ the RMCD equation to develop ground snow loads. 
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By examining the plots in Appendices N through Q, it is obvious that the majority of the 

data points in low-elevation classes plot well above both the ASCE 7-10 and RMCD density 

equations.  This is problematic since both of these density relationships were developed for these 

types of low-elevation stations with relatively normal snowfall events (i.e. no significant annual 

accumulation or extreme localized climatic effects).  Furthermore, the future impact of extreme 

events mentioned above will only increase the disparity between the dataset and these density re-

lationships.   

7.9 Selection of Optimal Multivariate Clustering Method  

The selection of the optimal multivariate clustering method is based on a holistic ap-

proach that seeks the best clustering method from assessing scores in the following categories. 

(1) Examination of statistical measures of quality for overall clustering 

efficacy.   

(2) Visual assessment of the arrangement of mapped classes for utility 

in a ground snow load map.  

(3) Evaluation of the linear regression of the ground snow depth-load 

relationship for each class. 

These three criteria evaluate various aspects of the clustering analyses, together describing the 

ability of each method to create well-separated, homogenous classes with closely correlated 

ground snow depth-load relationships.  The final chosen method must also produce results that 

facilitate the construction of a ground snow load map.   

To compare each method against one another, a qualitative scoring rubric is created and 

scores are assigned to each method for each of the three aforementioned categories.  To simplify 

comparisons, a matrix of scores is constructed that will facilitate the final selection of the optimal 

multivariate clustering method, which is presented in Table 7.11.  Individual scores for each cat-

egory in this matrix are one of three possible values: a check denotes satisfactory results, a plus 
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denotes exemplary results, and a minus denotes poor results.  The scores are assigned subjective-

ly, however various categories rely heavily on statistical results from Chapter 7.6.   

Table 7.11: Scoring Matrix for Evaluating Clustering Methods 

Clustering Method Statistical 

Measures  

Visual                 

Assessment  

Regression 

AHC-only + i i 

k-means i i i 

PCA-based N/A ─ + 

Hybrid i + + 

As Table 7.11 indicates, with the exception of the PCA-based method which is not con-

sidered further as a viable method, the scores are somewhat close among the other clustering 

methods.  AHC ranks the best in the statistical measures category, although the R
2 
and pseudo-F 

scores are very close between AHC and the hybrid methods.  The hybrid is the clear choice in 

the visual assessment of the mapped classes.  No other clustering method produces as homoge-

nous classes nor clearly distinguishes the Front Range and San Luis Valley regions as does the 

hybrid method.  Finally, the hybrid and PCA-based methods are both superior in terms of pro-

ducing robust, well-correlated regression models for ground snow depth-load relationships.  

Since the PCA-based method has been eliminated, the hybrid method therefore ranks the highest 

in this category.  The plotted data points for each class produced by the hybrid method are better-

separated and there are fewer cases of overlapping model equations on the regression plots com-

pared to the AHC method, the next highest scoring method in this category.  The k-means meth-

od produced only satisfactory regression models when compared to the other methods that had 

model correlation coefficients well above 0.9 for most classes.   
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The ideal candidate method for regionalization of weather stations throughout Colorado 

possesses strengths in all of the above categories listed in Table 7.11.  The AHC and k-means 

clustering techniques are good methods individually; however, it is clear that their strengths are 

highlighted and their weaknesses minimized by combining them into the hybrid method.  The 

hybrid analysis therefore emerges as the premier clustering method.  It has consistently per-

formed well in all aspects of evaluation.  It is therefore the proposed method for regionalization 

of weather stations.  

7.10  Statistical Analysis of Ground Snow Depth Dataset 

7.10.1 Preparation of CO-OP Station Dataset 

Prior to developing ground snow loads at stations, the CO-OP depth data must first be 

prepared and 50-year ground snow depths be extrapolated.  At that point, a ground snow load can 

be determined at each station.  

Recall from Chapter 6.2 that the CO-OP station history datasets for all of the stations 

within Colorado were obtained from the GHCN database through the noted NOAA website.  The 

datasets have undergone an extensive cleaning procedure to remove duplicate stations, entries 

with missing or invalid entries, etc.  At this point, a single file now contains the entries of the 

remaining 492 stations, with monthly maximum values of ground snow depth.  At this point, the 

historical records of the remaining stations vary from a single year to 64 years.  The CO-OP sta-

tion dataset must be truncated into an annual series maximum format and some minimum length 

of record must be established to eliminate stations with too sort a record.  Within the hydrologi-

cal community, where precipitation modeling and flood forecasting have necessitated an under-

standing of the proper sample size for extreme value prediction, a rule of thumb is to at least 

have 20-30 years of data (Doesken 2012, Balaji 2012).  This window comes from recommenda-
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tions from experts in the fields of snow climatology
15

 and hydrology, specifically related to pre-

cipitation modeling and forecasting.
16

  Furthermore, several studies evaluated by Takara and 

Stedinger (1994) compared various probability distribution fitting methods and the sample size 

required to achieve a good distribution fitting.  A sample size of approximately 20 resulted in 

sufficient data for distribution fitting.  Therefore, the dataset of CO-OP monthly maximum snow 

depth data is truncated to retain only those stations with at least 20 years of data.  Furthermore, 

annual series data are extracted from the monthly series in preparation for the probability distri-

bution fitting in Chapter 7.10.3. A list of the remaining 234 Colorado NWS CO-OP stations, 

with geographic locations, annual maximum ground snow depths, and years of data is available 

in Appendix R.   

A topographical map of the hybrid clustering results, overlaid with the locations of the 

remaining 234 NWS CO-OP weather stations, is illustrated in Figure 7.20.  This map is useful 

for assigning CO-OP stations to the nearest classes so that the appropriate ground snow depth-

load equation can be applied to that CO-OP station’s snow depth data.  

Assignment of CO-OP stations to the classes produced by the hybrid clustering method 

should be done using GIS software such as ArcGIS, since the number of stations involved makes 

manual assignment too cumbersome.  A rough sketch of class boundaries, drawn manually, cre-

ates an initial delineation of classes.  An example of such an initial sketch, for the hybrid cluster-

ing method, is presented in Figure 7.21.  These boundaries can be refined by considering stations 

on or close to the boundaries and adjusting the boundary lines accordingly.   

                                                

 

15 Dr. Doesken, the state climatologist, has extensively studied snowfall patterns at Colorado State University and is 

the founder of the CoCoRaHS cooperative precipitation survey program.  
16 Dr. Balaji is a hydrology professor at the University of Colorado at Boulder and has extensively studied flood fre-

quency analysis and stream flow forecasting. 
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Experience and professional judgment will dictate such refinements, including the possible re-

assignment of individual stations manually or the exclusion of stations when drawing class 

boundaries.  Once the boundaries are established, key points along these boundaries are located 

on the map and geographical coordinates approximated for input into ArcGIS.  Several layers 

(one for each class) consisting of these key points connected by straight lines is then constructed 

in ArcGIS.  Finally, using the extraction of points to layers command, the associated CO-OP sta-

tions are assigned a value in ArcGIS from 1 to n (in this case n = 5) depending on the class to 

which they are assigned.            

7.10.2 Resolving Disparity between Annual Maximum Ground 
Snow Depth & Annual Maximum SWE 

The difference in the pattern of snow depth accumulation between the high-elevation 

mountainous and on the low-elevation plains regions was discussed in Chapters 1.2 and further 

in Chapter 3.6.  The accumulation of SWE exhibits a similar pattern.  The typical triangular ac-

cumulation pattern, on a time-series plot of snow depth, in the mountains is illustrated in Figure 

7.22 by the time-series output for SNODAS station BURC2 for the 2011-2012 water year.  

In addition to the triangular accumulation/ablation pattern of snowfall in the mountains, 

Figure 7.22 illustrates that the maximum SWE occurs roughly half a month after the maximum 

snow depth.  In fact, this pattern is exhibited by all of the mountainous SNODAS stations re-

viewed and is most likely due to the densification of the snowpack at maximum snow depth.  

The increasing amount of compaction due to the self-weight of the snowpack combined with sur-

face ablation (from wind, transpiration, etc.) leads to diminished depth; the water content, how-

ever will steadily increase as the last spring winter storms pass through the mountains.  Mountain 

snowpack can undergo drastic changes to its internal structure while retaining the majority of its 

water content until the rapid melt-off in late spring (Doesken 2012).     
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Figure 7.22: Time-Series Output of Ground Snow Depth and SWE for SNODAS Station 

BURC2 for WY 2011-2012. 

Quite a different story is seen in the low-elevation SNODAS stations, either east or west 

of the Great Divide.  Since there is nearly complete melting between winter snow storms the 

maximum SWE and maximum snow depth occur from the same storm, and are separated by just 

a few days.  A typical pattern for low-elevation stations is illustrated by Figure 7.23.    

This offset in the timing of the maximum snow depth and maximum SWE for high-

elevation stations has significant implications to the statistical analysis.  As apparent from Figure 

7.22, the snow depth at maximum SWE is 39 inches of water while the maximum snow depth is 

53 inches, more than a 30% increase.  This significant disparity results in an issue between the 

ground snow depth-load equations developed in Chapter 7.7 (based on annual maximum SWE) 



168 

 

and the CO-OP dataset (based on annual maximum snow depth) on which the depth-load equa-

tions are to be applied.  A snow depth-load model developed for the maximum SWE, coincident 

with a lower ground snow depth, would result in artificially inflated ground snow loads if this 

equation were to be applied to higher ground snow depths (the CO-OP annual maximums).  

 

Figure 7.23: Time-Series Output of Ground Snow Depth and SWE for SNODAS Station 

AGRC2 for WY 2011-2012. 

To correct for this inconsistency, a snow depth factor (SF) is computed from the modeled 

output of each of the 588 SNODAS stations.  This factor, from item (6) in Table 7.1, is a ratio of 

the modeled snow depth at the date of maximum SWE to the annual maximum modeled snow 

depth.  This factor is usually considerably less than unity for the mountainous stations and close 

to unity for the lower-elevation stations.  This factor is to be applied to adjust the GHCN histori-

cal record of CO-OP annual maximum snow depths so that the snow depth used in the statistical 
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analysis in the following section is representative of what it would be at the date of maximum 

snow water content.  Since the locations of most of the CO-OP stations coincide with SNODAS 

stations, the SF factor for each CO-OP station simply must be matched with its corresponding 

SNODAS station.  For other CO-OP stations, the nearest SNODAS station SF factor is used. 

7.10.3 Probability Distribution Fitting & Extrapolation of 50-

Year Ground Snow Depths 

The snow depth dataset, now transformed to an annual series maximum format and fac-

tored down by SF to better represent the snow depth at the date of maximum water content, can 

be used to compute the snow depth which occurs on average every 50 years.  This task correlates 

to flowchart activity [2a] from Figure 5.1.  In order to extract such values, a probability distribu-

tion must first be selected.  The statistical nature of this objective necessitates extreme value the-

ory as the appropriate philosophy for selecting a probability distribution.  Extreme value theory 

identifies several families of distributions from which to choose: Gumbel (Type I), Weibull 

(Type II) and Frechet (Type III). 

 The philosophy of the regionalization of the SNODAS stations in Chapters 7.6 through 

7.9 continues to be applied here for the selection of appropriate probability density functions 

(PDF) to fit the depth or load data at a particular site.  Therefore, for each class produced by the 

hybrid clustering method an appropriate PDF is fit to the data from all the sites belonging to the 

same class.  Various extreme value PDFs exhibit considerable differences in the nature of the 

tails.  Similarly, there are considerable differences in the magnitudes of the extreme value ground 

snow depths and loads for SNODAS stations within each class.  Therefore, the selection of an 

optimal PDF for each class is justified.    

Criteria for determining the domain of attraction of a parent distribution (i.e. the PDF that 

describes the snow depths or loads) are proposed here.  In particular, an overview of this meth-
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odology is presented, including distribution types, testing procedures, and evaluation for good-

ness-of-fit.  Details of parameter estimation, distribution plotting, and the actual implementation 

of this methodology are omitted.  In practice, this method would then be used at each site to de-

termine and appropriate PDF.  Since there are hundreds of stations per class and therefore poten-

tially multiple PDFs that can represent that class, the PDF which represents a majority of the sta-

tions within a class should be used to represent the entire class.  Due to the sizeable effort 

required to evaluate and fit PDFs to hundreds of CO-OP stations, the distribution fitting is not 

carried out here. 

The first step in distribution fitting is to decide on an initial selection criterion to narrow 

down potential PDF candidates.  Prevalent methods for determining the domain of attraction in-

clude the Pickands III method, the Galambos method, the curvature method, and a plotting 

method where the tails of the data sample are plotted on probability paper and the concavity is 

established (Castillo 1988).  A more comprehensive and practical method is to set up a system to 

test a wide range of extreme value theory distributions using the actual data and then use test sta-

tistics to determine the one with the best fit.  The latter method, implemented in the 2007 Ground 

Snow Load Report for Colorado produced by the Structural Engineers Association of Colorado, 

(SEAC 2007) is proposed here.  This system facilitates reproducibility since all distributions are 

tested each time the analysis is performed.     

The proposed method for testing distribution fit includes choosing viable candidate ex-

treme value PDFs and setting up code in computational software such as MathCAD, where each 

distribution is successively applied to the dataset and evaluated using appropriate test statistics.  

The candidate PDFs proposed in this paper are listed in Table 7.12.  They were specifically cho-

sen since they collectively represent many types of extreme value distributions with different pa-
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rameters.  Their associated parameters, which are required to describe the shape, scale, and more 

importantly the tail of the distributions, are also listed.
17

     

Table 7.12: Proposed Families of Probability Distributions and their Parameters to be 

Evaluated for Usage with Snow Depth Dataset (Bury 1999). 

No. Distribution Family Distribution Form Required Parameters 

(1) Normal Distribution 2-Parameter mean, μ(x); st. dev., σ(x) 

(2) Lognormal Distribution 2-Parameter mean, μ(x); st. dev., σ(x)  

(3) Gamma Distribution 3-Parameter mean, μ(x); st. dev., σ(x); shape, λ 

(4) Log-Gamma Distribution 3-Parameter mean, μ(x); st. dev., σ(x); shape, λ 

(5) Type II GEV (Frechet) 3-Parameter st. dev., σ(x); 2-shape, λ 

(6) Type I GEV (Gumbel) 2-Parameter mean, μ(x); st. dev., σ(x) 

Estimation of the above parameters of the probability density functions is required in or-

der to construct each of the distributions listed in Table 7.12.  There are various methods to esti-

mate parameters of distributions, with the most common methods being the method of moments 

and method of maximum likelihood (Ang and Tang 1984).   The method of moments involves 

estimation of the parameters of interest from the sample moments of the data; the number of 

sample moments required is the same as the number of unknown parameters.  The method of 

maximum likelihood involves estimating the value of parameters such that the likelihood func-

tion is maximized and therefore the slope of the function is zero.  The likelihood function defines 

the likelihood that the data observed came from the distribution with varying values of the un-

known parameters; those parameters that maximize the likelihood function are the parameters 

that define the distribution (Ang and Tang 1984).  The method of moments is appropriate where 

                                                

 

17 The primary distribution parameters are location, μ, scale, σ, skewness, γ1, and kurtosis, γ2 (skewness and kurtosis 

are collectively referred to as shape factors, λ). These parameters for the distributions are related to the moments 

of the data (Bury 1999).  
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a small sample of the data (n<100) is available.  Each method, however, is to be applied for each 

of the distributions listed in Table 7.12.
18

   

Once the parameters have been estimated, the distributions can be constructed and sever-

al test statistics can be evaluated in order to determine the quality of the fit to the given dataset.  

There are several test statistics commonly employed in extreme value engineering for testing dis-

tribution fit.  The most reliable and robust is the Anderson-Darling statistic, although others such 

as the Modified Kolmogorov-Smirnov statistic, Chi-square statistic, and von-Mises criterion are 

also frequently used.  The evaluation of several test statistics is critical since one or two may 

produce equal results or may not be valid in certain situations (e.g. the Chi-square is not appro-

priate when the data lacks normality) (Bury 1999).
19

    

 Now that that the distributions have been constructed and the test statistics evaluated, an 

optimal PDF is chosen for each class of stations produced by the hybrid clustering method.  Each 

optimal distribution is then applied to the snow depth dataset from the CO-OP stations that reside 

within each class.
20

  Finally, a 50-year ground snow depth is extrapolated from the CO-OP da-

taset, modified by Chapter 7.10.2, using the corresponding PDF. 

The final step is to apply the appropriate ground snow depth-load relationship defined by 

the hybrid method in Chapters 7.7 and 7.9 to the 50-year CO-OP ground snow depths in order to 

obtain 50-year ground snow loads.  However, it is critical to note that as of the writing of this 

paper, only nine years of SNODAS data are available and the ground snow depth-load relation-

                                                

 

18 Refer to Extreme Value Theory in Engineering for a description of both parameter estimation methods, including 
a definition of the likelihood function (Castillo 1988). 

19 Refer to Statistical Distributions in Engineering for a definition of the various test statistics and their appropriate 

usage (Bury 1999). 
20 Note that each station within the class will be defined by the same PDF, but different distribution parameters that 

define the data at that station.   
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ships determined in Chapter 7.7 do not represent depths and loads with a recurrence interval of 

50 years.  Therefore, they cannot directly be used with the 50-year snow depths from the CO-OP 

stations yet.  More years of output from the SNODAS snowpack model will be required before it 

can be used reliably in practice.  Refer to Chapter 10.0 for a discussion of future work. 
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8.0 GEOSPATIAL INTERPOLATION OF GROUND SNOW LOADS 

The methodology for creating a ground snow load map is a crucial deliverable produced 

by this investigation.  This last portion of the investigation is represented by flowchart element 

[6] on Figure 5.1.  Structural engineers and designers rely on such maps as a basis for roof snow 

load design calculations and structural layouts.  The effort and resources expended in the analy-

sis phase of this investigation would be irrelevant if the point ground snow loads could not be 

properly mapped in a manner that best represents actual ground snow loads everywhere.  The 

main issue is the uncertainty of ground snow load values at unsampled locations (i.e. locations 

without a modeled SNODAS or CO-OP station data point).  Another issue is the uneven spatial 

distribution of stations that results in most of the weather stations clustered near population cen-

ters of the state.  Therefore, in order to ensure that ground snow loads are mapped so that they 

best represent the actual values, some type of spatial interpolation method must be found that can 

resolve the issues above by providing the following. 

(1) Accurate spatial interpolation of ground snow loads at unsampled 

locations. 

(2) A methodology to account for unevenly distributed data points.  

GIS software that utilize a variety of geospatial interpolation methods have emerged 

within the last several years to improve the accuracy of interpolation of point values on a digital 

elevation model (DEM).  Currently there are several different methods of varying complexities 

that benefit specific applications.  These methods include Nearest Neighbor or Thiessen Polygon 

(NN), Inverse Distance Weighting (IDW), and Kriging (K) (Zhang and Srinivasan 2009).  NN 

and IDW methods are forms of pure spatial interpolation while Kriging involves statistical meth-

ods.  Since each methodology produces different results and possesses unique strengths for cer-
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tain applications (social sciences, hydrology, engineering) they must all be evaluated for suitabil-

ity to the interpolation of extreme value ground snow loads.  

8.1 Nearest Neighbor (Thiessen Polygons) Method 

The Nearest Neighbor interpolation method (also known as Thiessen Polygons) is a ra-

ther simple spatial interpolation method.  Specifically it is a local, deterministic method that 

seeks to interpolate values of variables in a continuous field based on the nearest sampled values 

(Burrough and McDonnell 1998).  It considers only local variability based on some neighbor-

hood of sampled points, N, ultimately developing an absolute value of some desired, spatially 

varying variable, z(x).  The value of N is determined by the analyst.  The NN method takes the 

concept of using neighboring sampled points (i.e. a moving window of neighbors) to the extreme 

by estimating values at unsampled points using only the single nearest data point.  This concept 

is graphically illustrated in Figure 8.1 whereby the dots represent sampling locations, such as 

weather stations, and the dark lines forming polygons represent the influence area around each 

sampling point, where the value of z(u) is equal to the value at the nearest sampled point z(x).   

Since the Thiessen NN method assumes that values of any variable do not vary within the 

polygon, it is impossible to gauge within-tile variance (Burrough and McDonnell 1998).  There-

fore, this method is impractical if an insufficient number of sampled points is available or if the 

distribution is such that there are very sparse sampling locations.  As a result, the Thiessen NN 

method may often mask small-scale spatial variability.  Nonetheless, this method is commonly 
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used to produce a variety of descriptive maps; also computing time to produce such maps is min-

imized due to the simplicity of the interpolation method.
 21

 

 

Figure 8.1: Thiessen Polygons for Randomly Distributed Sampling Points 

 (Burrough and McDonnell 1998). 

The simplicity of the Thiessen NN method is illustrated by its singular relationship for 

the value of the desired, unsampled variable Z(u) from the nearest sampled location Z(x) (the 

capital version Z refers to actual measured quantities of the variable). 

 ( )    (  )                           (21) 

Eq. (21) simply states that the value of the desired, unsampled variable is equal to the value at 

the nearest sampled location,  (  ) when the separation distance between the unsampled loca-

tion and this sampled location,     is the least of the distances to any other sampled location, 

     (Zhang and Srinivasan 2009).  

A Nearest Neighbor variant, the Pycnophylactic Method was developed by Tobler to ad-

dress the undesired effects of the NN method, specifically the tendency to produce sharp poly-

                                                

 

21 The Thiessen Polygons NN method is often used to construct choropleth maps which illustrate quantities of varia-

bles, such as contaminant levels or population densities, delineated by colored or shaded regions on a map.   
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gons with little relief or smoothing (Zhang and Srinivasan 2009).  A population density map, 

produced by Thiessen NN with Tobler’s Pycnophylactic Method, would produce smooth, con-

tinuous surfaces at the edges of the polygons while preserving the mass or volume component (in 

this case the total population).  This method relies on a ‘mass preservation’ condition that is im-

posed on each polygon to effectively smooth the boundaries between polygons while honoring 

the sum of the original quantities of the variables in each polygon.  This condition fits a surface 

to the polygon regions and constrains its gradient to be flat near the interfaces with other poly-

gons and maximized in the center, thereby smoothing values across the polygon. 

This method, while efficient and simplistic, is specifically useful where exact values are 

not always required.  Its applications include mapping population densities and contaminant lev-

els using GIS for quick and rather rough estimates used in decision-making.  Nearest Neighbor 

with the Tobler’s Pycnophylactic Method tends to produce maximum and minimum values 

above and below actual measured quantities at sampled locations, and therefore is not an exact 

interpolator (Burrough and McDonnell 1998).  This makes the Thiessen NN method rather unat-

tractive for the purposes of this investigation.   

8.2 Inverse Distance Weighting 

An improvement on the Thiessen Polygon NN method is the inverse distance interpola-

tion (IDW) method.  This method takes into consideration more than just the single neighboring 

sampled location, weighting all sampled locations within some window of neighboring stations 

(Burrough and McDonnell 1998).  This approach explicitly states that observations nearest to the 

unsampled location are to be weighted more heavily than observations farther away.  The value 

of the variable at the unsampled location is computed as the weighted sum of the surrounding 

sampled locations: 
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In Eq. (22), n and p refer to the neighborhood of sampled points considered around the unsam-

pled location and the power associated to the distances of these sampled points, respectively 

(Zhang and Srinivasan 2009).  The individual weights,     of each sampled location are comput-

ed based on the inverse weighting system. 

The values of n and p must be chosen by the analyst rather arbitrarily and often times ex-

perience dictates these values.  However, it is common to use inversely-squared distances, so p 

usually equals 2.  As for the number of neighboring stations n, common practice is to use three or 

four stations, although there is no hard fast rule.  This subjective selection of parameters speaks 

to a criticism of the IDW method and issues with its reproducibility.  Other issues may arise with 

IDW, for instance, where solitary sampled data points exist with few nearby sampled locations.  

In this circumstance, the single sampled location value may appear to be an outlier or anomaly 

compared to the interpolated values around it, which may only be influenced by other sampled 

locations.  This undesired effect, known as a ‘duck-egg’, is attributed to the analyst’s choice of 

neighborhood size and is relatively easy to fix (Burrough and McDonnell 1998).     

A recent research effort studied the effectiveness of various weighting interpolation 

methods, including IDW, in replacing missing rainfall gauge measurements throughout Ken-

tucky (Teegavarapu and Bajaj 2008).  This study used 15 rainfall gauges with data from 1971 to 

2002 and compared IDW to other weighted distance models developed by Teegavarapu and Ba-

jaj.  Similar to the study performed by Murphy et al., cross-validation was employed in the as-

sessment of the methods.  The results of this study supported the conclusions drawn by Murphy 

et al. that IDW is inferior compared to other more complex spatial interpolation methods.  None-
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theless, IDW is very widely used in hydrology to estimate missing values between sampled loca-

tions, and is the premier method employed by the National Weather Service (Teegavarapu and 

Bajaj 2008).  

8.3 Kriging  

Kriging is a method of spatial interpolation in which moving, local weighted averages of 

the observed values in a neighborhood, N are used to predict values of a desired variable at un-

sampled locations (Oliver 2001).  Unlike the preceding types of interpolation methods, Kriging 

is a type of geostatistical interpolation method that estimates the value of the desired variable 

based on an unbiased descriptor of the scale and pattern of spatial variation between sampling 

points.  The other methods discussed thus far make assumptions regarding the pattern (e.g. 

Thiessen Polygons NN) or the scale (e.g. Inverse Distance Weighting) of variation.  Kriging also 

provides an estimation of the quality of the prediction by way of an estimated variance for the 

predicted value.  The Kriging interpolation equation has three main components, as depicted in 

its nominal form (Oliver 2001). 

 ( )   ( )     ( )       (23) 

In Eq. (23),  ( ) is a structural component describing the trend of Z whose form is determined 

by the specific type of Kriging chosen.  Added to this are two terms, one of which describes the 

stochastic, spatially dependent residuals,   ( ), the other accounting for the spatially independent 

background noise (or normally distributed random error),    .  These last two terms take into 

consideration both short and long-range spatial variation.      

Kriging is a generic term that embraces many different forms of geostatistical interpola-

tion.  Therefore the trend function,  ( ) from Eq. (23) can take on many forms, depending on 

the type of Kriging being performed: ordinary, simple, block, Kriging with local means, Kriging 
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with external drift, etc. (Burrough and McDonnell 1998).  These numerous variants of Kriging 

will not be discussed in detail, but they all rely on the same universal fundamentals described be-

low.  

The aforementioned unbiased descriptor of the scale and pattern of the spatial variation, 

also referred to as the spatially dependent residual term   ( ) in Eq. (23), is the semivariogram 

(Oliver 2001).  As the most essential component of the Kriging formula, the semivariogram de-

scribes the degree of spatial correlation for a given region.  It uniquely describes this spatial cor-

relation between all of the sampling locations, x, at various “lag” distances from these sampling 

locations, h.  The form of the semivariogram is defined as follows (Burrough and McDonnell 

1998).  

   { ( )   (   )}    { ( )    (   )}      ( )  

 ( )   (
 

  
)  ∑  { ( )    (   )}  

 

   

 

(24) 

(25) 

In Eq. (25), E refers to expected value and n is the number of sampled locations, or stations. 

Conceptually, the semivariance term,  ( ), in Eq. (25) is half of the variance of the differences 

between all possible values of the desired variable spaced a constant distance apart, h.  By apply-

ing Eq. (25) successively for all sampled locations and incremental lag distances (inserting val-

ues of  ( ) and  (   )), an ordered set of pairs (h, ) is obtained.  When plotted, these pairs 

comprise the experimental variogram, which is used to describe the spatial variation of the entire 

viewing area encompassing all sampled locations.  A continuous mathematical model is then fit 

to these discrete, plotted pairs of data points in order to obtain a continuous variogram model.  A 

few examples of experimental variograms are illustrated in Figure 8.2. 

A few key components of any experimental variogram include the range, the nugget, and 

the sill.  The range is the lag distance from any sampled location at which nearly all of the vari-
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ance is explained; it is significant because it determines the critical number of sampled locations 

that contribute to the interpolation around any one station.  The nugget is the residual semivari-

ance at the y-intercept and is solely due to the background noise present in any spatially distrib-

uted dataset; it is accounted for by the rightmost term in Eq. (23).  It is important to note the rela-

tive size of this nugget; if too large of a contribution is made by the nugget then there is too 

much background noise to even perform a spatial interpolation.  The sill is the quantity of semi-

variance corresponding to a horizontal asymptote (if one exists) and can be thought of as nearly 

all of the total variance of the dataset.     

 
 

  

Figure 8.2: Examples of Common Types of Experimental Variograms. From Left to Right, 

Spherical, Exponential, and Linear (Burrough and McDonnell 1998). 

With the known, fitted model of the experimental variogram, a Kriging analysis can be 

performed on any dataset given all of the values of Z(x) and known distances h between all of the 

sampled locations.  As mentioned, various forms of Kriging determine the exact form of the 

trend function,  ( ), and the manner by which weights are assigned to neighboring sampled lo-

cations.  In general, however, the variogram is the key component that determines a) the size of 

the influence neighborhood, N, around a sampled location, and b) the semivariances between all 

of the sampled locations. 

Kriging has been employed in numerous research efforts for various disciplines.  Kriging 

is commonly employed in the field of hydrology where it has been shown to outperform many 
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other interpolation methods.  For instance, Kriging was selected from an evaluation of various 

types of spatial interpolation methods, to represent long-term precipitation fields for the Luhoe 

tributary of the Yellow River in China (Zhang and Srinivasan 2009).  That study evaluated sev-

eral methods, such as IDW, Thiessen NN, and several variants of Kriging
22

, using cross-

validation to evaluate performance.  Overall, Kriging produced the smallest coefficient of varia-

tion compared to the independent dataset (with the highest by the Thiessen NN method) and the 

least amount of absolute error (some 30% lower than the Thiessen NN method).  The IDW 

method performed modestly but ultimately not much better than Thiessen NN. 

Another research effort studied the distribution of water quality parameters in the Chesa-

peake Bay, the largest estuary in the United States extending from Maryland to Virginia, was 

studied using IDW as a potential method for interpolation (Murphy, Curriero and Ball 2010).  

Parameters including temperature, salinity, and dissolved oxygen were estimated using interpola-

tion methods including IDW and Kriging.  The authors found that IDW was intuitive and provid-

ed the benefits of efficiency and simplicity.  Specifically, Murphy et al. (2010) collected data 

from May 1992 to July 1993 for a 40 km portion in the northern region of the Chesapeake Bay 

that contained numerous gauges.  For two locations in this area (with corresponding depths of 

2m and 8m, respectively), the authors removed the actual observed measurements of tempera-

ture, salinity, and dissolved oxygen and tested the efficacy of the two interpolation methods.
23

  

Once the validation between the actual and interpolated data was complete, the results showed 

that Kriging outperformed the IDW method overall.  However, the validation results were rather 

                                                

 

22 The variants used in the study included Simple Kriging, Ordinary Kriging, Kriging with External Drift, and 

Kriging with Varying Local Means.  For a description of the mechanics and specific applications of these 

variants, refer to Zhang and Srinivasan (2009). 
23 This method, referred to as cross-validation, has been used extensively in the field of hydrology for performance 

evaluation of various types of models (Zhang and Srinivasan 2009, Murphy, Curriero and Ball 2010). 
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close, with both methods presenting above a 0.98 correlation coefficient with the actual dataset.  

However, the RMSE/SD (root-mean-square error divided by the standard deviation) evaluation 

parameter was considerably lower for Kriging than for the IDW method (0.20 and 0.26, respec-

tively), indicating better overall performance for Kriging. 

8.4 Implementation of Optimal Geospatial Interpolation Method in 
the Production of a 50-Year Ground Snow Load Map 

Though there exist other spatial interpolation methods not discussed in this paper, an ac-

curate and suitable method is all that is needed for the purposes of this investigation.  Of the in-

terpolation methods discussed thus far, Kriging fits this criterion the best.  First of all, it is the 

only geostatistical method introduced; it appropriately optimizes the number and weights of the 

neighboring sampled locations considered for each interpolation while providing unbiased esti-

mates (Burrough and McDonnell 1998).  Also, it considers all sources of spatial variation (e.g. 

local, regional, and background noise) in the values of such variables.  The Kriging analysis it-

self provides estimates of errors, or variances, which can be used to assess individual interpola-

tion operations (Oliver 2001).  Kriging has been shown in numerous research studies to outper-

form other less complex interpolation techniques (Murphy, Curriero and Ball 2010, Zhang and 

Srinivasan 2009, Teegavarapu and Bajaj 2008).  Lastly, Kriging is a common interpolation algo-

rithm built into many GIS software platforms and therefore is readily available.  

To implement Kriging with the proposed method in this paper for mapping ground snow 

loads all that are needed are the ground snow loads at each sampled location
24

 (SNODAS and 

CO-OP stations), the geographical coordinates of these stations, and a GIS-based application 

                                                

 

24 These ground snow loads have been determined in accordance with Chapter 7.10.3. These snow loads, derived 

from SNODAS output, should only be implemented once there is sufficient modeled data from which to extrapo-

late a relationship between 50-year modeled snow depths and 50-year modeled snow loads.    
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such as ArcGIS.  First, a terrain map of the area of interest is initiated in GIS with a digital eleva-

tion map overlaid, in order to provide elevation details.  A raster file is then constructed within 

the GIS software using the latitudes and longitudes of each SNODAS station coupled with the 

corresponding 50-year ground snow load values determined in accordance with Chapter 7.10.3.  

A raster file converts a dataset composed of geographical locations and snow loads into a digital-

ly encoded format recognizable by the GIS software.  At this point, SNODAS stations are locat-

ed geographically, each with a corresponding ground snow load value. 

A Kriging analysis is then performed by the GIS software so that a continuous field of in-

terpolated ground snow loads is computed for the terrain map.  Once the analysis is complete, the 

GIS software can provide an extraction of values for any point(s) at any desired spatial distribu-

tion.  The extraction is performed either by an extract to layer or extract to points command.  For 

instance, a user can either construct a layer in the GIS software composed of a regularly-spaced 

grid of points (besides the sampled locations) or provide geographical coordinates of pre-defined 

points and the GIS software will populate a spreadsheet with the coordinates and associated in-

terpolated values (50-year ground snow loads). 

The optimal method extraction would utilize a fine enough mesh of points such that after 

the GIS Kriging interpolation is complete, a series of straight splines, or isolines connecting 

equal ground snow load points, can be constructed with sufficient resolution for map production.  

Isolines at equally-spaced snow load intervals of 5 psf are then retained while the rest of the data 

points and lines are removed for clarity.  The final step in the production of a ground snow load 

map is the delineation of county, road, and natural landmark markings.       

  



185 

 

9.0 CONCLUDING REMARKS 

This thesis develops an innovative approach for determining ground snow loads based on 

a hydrological snowpack model that assimilates various sources of climatological data, a robust 

statistical analysis of the output to regionalize those sources, and a geostatistical interpolation 

method that is able to produce mapped ground snow loads.  Using the state of Colorado as a case 

study, a proposal to unify the methodology for developing ground snow loads in the West has 

been offered.  This thesis is summarized as follows. 

Chapter 1.0 examined the current philosophies in place for developing ground snow loads 

at the national level prescribed by the ASCE 7 Standard, as well as various efforts in the West to 

develop state-level snow loads where excluded by ASCE 7.  Also, various discrepancies in 

methodology and agreement at state borders revealed the need to update and unify the ground 

snow load regimes of the western United States.  Chapter 2.0 introduced the types of weather 

measurement stations whose datasets are often employed in snow load analyses.  The evaluation 

of all sources led to the conclusion that a union of all types of measurement techniques would 

provide the most benefit, highlighting the strengths and mitigating the biases and limitations of 

each.  Chapter 3.0 described how various types of measurements could be used by employing a 

relatively new hydrological tool used to forecast the availability of water, the SNODAS snow-

pack model developed by NOAA.  SNODAS is a validated model that can predict SWE and 

snow depth at sites throughout the state, providing an ideal data source for the investigation.  

Chapter 4.0 reviewed several pertinent research efforts studying the correlation between ground 

snow depth and snow water equivalent.  These research efforts often employed several predictor 

variables such as season, altitude, region, temperature, etc. into regression analyses.  These stud-
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ies greatly influenced the decision to regionalize weather stations across the state into distinct 

climate regions using parameters such as elevation, snow depth, and various other variables.   

Chapter 5.0 provided a road map for the proposed method for determining ground snow 

loads and a description of the necessary data analysis.  It introduced a process flowchart that dic-

tated how data was to be acquired, whether it be SNODAS or NWS CO-OP data, and also the 

order and type of statistical analyses to be performed on the data.  This flowchart provided the 

framework for the rest of the analysis in this investigation.  Chapter 6.0 detailed the procedure 

for acquiring the SNODAS and NWS CO-OP data, including datasets, modeled output, and de-

scriptive station variables such as aspect, slope, basin HUC number, etc.  Chapter 7.0 provided 

the description and results of all the statistical analyses performed on the data in order to region-

alize the SNODAS stations, from the principal component analysis to the various cluster anal-

yses.  The principal component analysis facilitated the selection of clustering variables to be used 

in various clustering analyses.  After an evaluation of several clustering methods, a hybrid meth-

od was selected as the most appropriate clustering method and ground snow depth-load relation-

ships were developed.  Chapter 7.0 concluded with a proposed method for selecting probability 

distributions so that 50-year ground snow depths can be extrapolated at the depth-only CO-OP 

stations.  Finally, the snow depth-load relationships developed earlier in the chapter are coupled 

with the 50-year ground snow depths to produce 50-year ground snow loads.  Chapter 8.0 evalu-

ated three different types of spatial interpolation methods, Thiessen Polygon Nearest Neighbor, 

Inverse Distance Weighting, and Kriging.  Ultimately, Kriging was determined to be the most 

accurate interpolation method, and was proposed as the method for mapping ground snow loads. 

The overall objective of this investigation was to propose a sound methodology for de-

termining probabilistic ground snow loads using modern tools and resources from other disci-
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plines in an effort to improve the quality of design snow loads.  This objective was accomplished 

in several ways.  

First, the methodology developed in Chapter 5.0 and incorporated throughout the rest of 

the paper is intuitive and based on the principles of the scientific method.  The components of 

this method are embodied in the process flowchart in Figure 5.1.  Initially, a theory of the rele-

vant factors that affect ground snow depth and snow load at a particular site were developed us-

ing support from previous studies and research efforts.  These factors, such as site elevation, ter-

rain slope and aspect, HUC number, etc. were then tested by constructing trials of various 

statistical analyses such as PCA and clustering.  Finally, analyses of the results of the quantita-

tive and qualitative measures of performance were made, facilitating the determination of the op-

timal solution.  This proposed model is intuitive and simple to follow, which will promote wide-

spread usage.  This flowchart has provided a model for developing ground snow loads that can 

readily be adopted in any region.  Moreover, this model can be used as a standard for ensuring 

the consistency of every aspect of ground snow load development, from initial procurement of 

raw data to the final snow load map.  Having a comprehensive model such as this allows contin-

ual improvements to be made to it by modifying certain aspects while holding the rest constant.          

Second, the resources chosen to augment the proposed methodology have proven to be 

valuable tools that demonstrate the significant advancements in technology as well as enhance 

the capabilities of traditional structural engineering methods.  For instance, the SNODAS model 

utilized in this study represents tens of years of research in hydrology, climatology, and thermo-

dynamics, coupled with numerical methods and modern computing capabilities.  The snowpack 

model itself has been validated and provides a continuous field of modeled ground snow depths 

and loads at a much finer spatial resolution than current methods.  Current methods in use by the 
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western states to determine ground snow loads only utilize historical point source data that often 

results in large unsampled regions; this eventually translates into errors in mapping the ground 

snow loads.   The usage and endorsement of the SNODAS model in this paper promotes a multi-

ple-disciplinary approach.  

Lastly, the quality of design loads can be improved by implementing the methodology 

proposed in this paper.  The model developed herein is supported by mathematical techniques 

that ensure a high level of quality and reproducibility.  These techniques are not subject to the bi-

as that would result from using subjective methods alone such as manual clustering or manual 

selection of clustering variables.  However, this model also recognizes and accounts for the 

shortcomings of any approach rooted purely in mathematics.  The dual approach presented in 

this paper allows cross-validation, using the mathematical PCA and clustering techniques to pro-

vide an initial solution that can either be confirmed or rejected by the subjective, visual assess-

ment. 
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10.0 FUTURE WORK 

This thesis provides a framework for improving the process by which snow loads are de-

veloped.  The approach developed herein is innovative and unique; hydrological water forecast-

ing models have never been used in this particular fashion.  Accordingly, the methodology estab-

lished in this investigation has not gone through an assessment and review process from the 

engineering community as have the methodologies currently in practice.  Nonetheless, this pro-

posal is crucial to updating aging snow load design philosophies both on a state and national lev-

el.  Below are some considerations for future improvements to the proposed framework. 

The SNODAS snowpack model output incorporated into this investigation utilized nine 

years of modeled data from the water years of 2003 through 2012.  This record length is limited 

by the fact that the model has only been operational since 2002 and its records are only available 

since 2003.  The recommended minimum length of record for the purposes of SNODAS valida-

tion and statistical robustness is at least 20 years, as established by climatologists and hydrolo-

gists in this paper.  Efforts to utilize SNODAS datasets in the same fashion as this investigation 

should therefore wait until at least 20 years of modeled output is available, or until additional 

validation studies have been performed similar to Clow et al. (2012).  Additionally, there are 

numerous other stations modeled by SNODAS that were omitted due to record lengths less than 

the full nine years.  This inconsistency would have presented unique challenges to the statistical 

analysis.  The complete inventory of SNODAS stations should be utilized for future efforts since 

additional stations are constantly being added to the model, improving the spatial coverage. 

The multivariate statistical analyses performed in this investigation were based on several 

descriptive station properties that were considered influential in describing patterns of snow 

depth, density, and SWE.  The majority of the properties such as elevation, latitude, longitude, 
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slope, aspect, and curvature were derived from geographical characteristics while the remaining 

three (basin HUC number, modeled snow depth, modeled SWE) describe other characteristics.  

The introduction of more variables related to climatological processes or patterns may permit 

development of an increasingly accurate model for ground snow depth and density.  For instance, 

variables derived from long-term weather patterns or regional climatological characteristics 

could provide insight into describing patterns of snowfall depth or density.  Future efforts to im-

prove the work of this investigation should consider the assignment of climatological properties 

to SNODAS stations, perhaps based on long-term climatic patterns as studied by Changnon, 

McKee, and Doesken (1993).  Consideration of climatological processes in developing ground 

snow loads will prove increasingly important in the future, especially considering the potential 

effects of global climate change. 

The most critical component of a ground snow load analysis is the dataset used in the 

analysis.  Increasing either the spatial or temporal coverage of an ensemble of weather stations 

provides by far the greatest benefit to the analysis.  A dataset archived by the Colorado Ava-

lanche Information Center (CAIC) could perhaps augment or help validate the SNODAS snow-

pack model.
25

  The CAIC network consists of stations that record information vital to predicting 

and mitigating avalanches.  Most of these stations are independent of the stations assimilated into 

the SNODAS model.  Furthermore, routine recordings of climatological variables are available 

for modest lengths of uninterrupted measurements.  These records could eventually be used vali-

date SNODAS at specific temporal intervals, once there are sufficient years of CAIC measure-

ments.   

                                                

 

25 Records from CAIC avalanche stations can be obtained from the following website:   

https://avalanche.state.co.us/obs_stns/stns.php 
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APPENDIX 

A Ground Snow Load Map for the Conterminous U.S. 
(ASCE 7, Fig.7-1)            
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A (Continued) 
 

 

 Reproduced with permission from the American Society of Civil Engineers 
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B Colorado State Ground Snow Load Map Produced by the   
Structural Engineers Association of Colorado (SEAC 2007) 
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B (Continued) 
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C SNODAS Stations in Colorado Used for Snow Load Analysis 
(AGLC2 through BRTC2 shown)   

SNODAS STATION TYPE ELEV. LAT. LONG. 

ID 
 

(feet) (deg-N) (deg-W) 

AGLC2 COOPB 6690 37.38 -104.65 

AGRC2 COOPB 8652 37.32 -104.95 

AKNC2 UCOOP 4590 40.14 -103.20 

AKO ASOS 4678 40.17 -103.21 

AKRC2 COOPBC 4541 40.16 -103.14 

ALAC2 AHOS, COOPB, GOES, RFCSIM 7546 37.48 -105.88 

ALEC2 COOPB, GOES 8045 38.66 -106.85 

ALKC2 COOPB, GOES 8314 40.19 -105.50 

ALS ASOS, COOPAB 7543 37.44 -105.87 

ANTC2 COOPABC, GOES 8944 38.99 -105.89 

APA ASOS 5869 39.56 -104.85 

APNC2 COOPB, GOES 8054 39.18 -106.80 

APSC2 SNOTEL 10039 37.33 -105.07 

ARBC2 COOPAB 6181 37.02 -107.44 

ARGC2 GOES 8944 39.04 -106.27 

AROC2 SNOTEL 9672 39.92 -105.76 

ARPC2 SNOTEL 11004 40.35 -106.38 

ASE AHOS, ASOS, LAWRS, SAWRS 7759 39.22 -106.87 

ASIC2 UCOOP 9213 39.83 -105.48 

ASPC2 COOPAB 8054 39.19 -106.84 

ATBC2 AHOS, COOPAB 5699 39.50 -108.38 

AVNC2 UCOOP 8458 39.67 -106.55 

BALC2 AMRAD, GOES 8766 39.51 -105.52 

BAWC2 AMOS, GOES 7877 39.38 -105.34 

BAYC2 UCOOP 7933 37.30 -107.66 

BCKC2 GOES 4281 38.18 -103.76 

BCRU1 GOES 5531 39.30 -109.22 

BCVC2 SNOTEL 8543 39.60 -106.51 

BEDC2 COOPAB 5000 38.33 -108.88 

BHRC2 GOES 8593 37.02 -106.20 

BKFC2 COOPAB 6975 39.03 -104.80 

BKRC2 COOPB, GOES 10256 39.41 -106.05 

BLKC2 SNOTEL 9452 40.31 -105.64 

BLNC2 COOPAB 7762 37.44 -105.52 

BLPC2 GOES 10367 37.79 -106.78 

BLRC2 GOES 8802 39.63 -106.07 

BLSC2 AHOS, SNOTEL 10955 39.76 -107.36 

BMKC2 COOPAB 7602 38.47 -107.16 

BNVC2 COOPAB 7979 38.85 -106.13 

BOSC2 COOPB 4603 38.17 -104.31 

BOUC2 COOPAB 5515 39.99 -105.27 

BPRC2 COOPB, GOES 5367 40.80 -108.92 

BREC2 UCOOP 9531 39.51 -106.06 

BRIC2 COOPAB 5036 39.94 -104.84 

BRMC2 AHOS, SNOTEL 10633 39.09 -106.54 

BRTC2 AHOS, SNOTEL 11598 37.71 -107.51 
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D Description of SNODAS Station Types (NWS 2012b)  

 

STATION 

TYPE 
DESCRIPTION OF STATION TYPE 

AHOS AUTOMATED HYDROLOGICAL OBSERVING STATION 

ALERT AUTOMATED LOCAL EVALUATION IN REAL TIME (EVENT) 

AMOS AUTOMATED METEOROLOGICAL OBSERVING STATION 

ARC AUTOMATIC REMOTE COLLECTOR 

ASOS AUTOMATED SURFACE OBSERVING SYSTEM 

AUTOB AUTOMATED METEOROLOGICAL OBSERVING SYSTEM 

AWIPS ADVANCED WEATHER INTERACTIVE PROCESSING SYSTEM 

AWOS AUTOMATED WEATHER OBSERVING SYSTEM 

BASIC BASIC (CONTRACT OBSERVING STATION) 

BSAWRS SUPPLEMENTAL AVIATION WEATHER REPORTING STATION (AWOS BACKUP) 

CADAS CENTRALIZED AUTOMATIC DATA ACQUISITION SYSTEM 

COOPA COOPERATIVE OBSERVER STATION CLIMATE 

COOPAB COOPERATIVE OBSERVER STATION CLIMATE: HYDRO. 

COPABC COOPERATIVE OBSERVER STATION CLIMATE: HYDRO./METEOR. 

COOPAC COOPERATIVE OBSERVER STATION CLIMATE: METEOR. 

COOPB COOPERATIVE OBSERVER STATION: HYDRO. 

COOPBC COOPERATIVE OBSERVER STATION: HYDRO./METEOR. 

COOPC COOPERATIVE STATION HYDRO. OR METEOR. 

CRS CONSOLE REPLACEMENT SYSTEM 

GOES GEOSTATIONERY OPERATIONAL ENVIRONMENTAL SATELLITE 

LAWRS LIMITED AVIATION WEATHER REPORTING STATION 

NWR NOAA WEATHER RADIO TRANSMITTER 

NWRP NOAA WEATHER RADIO PERIPHERAL EQUIPMENT 

NWRTS NOAA WEATHER RADIO VHF TRANSMITTING STATION 

NWW NOAA WEATHER WIRE 

OTHER ALL OTHER PROGRAMS 

RAMOS REMOTE AUTOMATED METEROLOGICAL SYSTEM 

RFCSIM RIVER FORECAST CENTER SIMULATION STATION 

S SYNOPTIC OBSERVATION 

SAWRS SUPPLEMENTARY AVIATION WEATHER REPORTING STATION 

SAWRS II SUPPLEMENTAL AVIATION WEATHER REPORTING STATION (ASOS BACKUP) 

SCAN SOIL CLIMATE ANALYSIS NETWORK 

SNOCOR SNOW COURSE 

SNOTEL SNOW TELEMETRY 

UA UPPER AIR OBSERVATION 

UCOOP UNOFFICIAL COOPERATIVE STATION 

WSF WATER SUPPLY FORECAST 

WSR88D WEATHER SURVEILLANCE RADAR (NEXRAD) 
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E Landsat Remote Sensing Analysis for Station BOUC2 Used to 
Obtain Driving Variables for SNODAS (NOHRSC 2012) 

 

 

LANDSAT FOREST COVER  

DIGITAL ELEVATION MODEL 
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F SNODAS Output Plots for Station ‘BURC2’ for WY 2005-2006 
(NOHRSC 2012) 

 

 

PLOT 1 PLOT 2 

PLOT 3 PLOT 4 
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F (Continued)  

 

 

PLOT 5 PLOT 6 

PLOT 7 PLOT 8 
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G Plot 2 CSV File of SNODAS Model Output for Station ‘BURC2’ 
for WY 2005-2006 (April 2-May 1 Shown)  

Date (Modeled) 

Snow       

Precipitation  

(Modeled) 

Snow Water 

Equivalent  

(Modeled) 

Snow Depth  

Date w/o 

Time 

Hour 

  (in) (in) (in) (m/d/yyyy)   

4/2/2006 6:00 0.02 18.19 57.37 4/2/2006 6 

4/3/2006 6:00 0.00 18.16 56.84 4/3/2006 6 

4/4/2006 6:00 0.00 18.07 54.21 4/4/2006 6 

4/5/2006 6:00 0.00 17.79 52.05 4/5/2006 6 

4/6/2006 6:00 0.03 17.40 50.99 4/6/2006 6 

4/7/2006 6:00 0.00 17.69 56.52 4/7/2006 6 

4/8/2006 6:00 0.00 19.00 60.36 4/8/2006 6 

4/9/2006 6:00 0.00 18.90 57.70 4/9/2006 6 

4/10/2006 6:00 0.00 18.49 55.18 4/10/2006 6 

4/11/2006 6:00 0.00 18.13 53.58 4/11/2006 6 

4/12/2006 6:00 0.00 17.98 53.64 4/12/2006 6 

4/13/2006 6:00 0.00 17.54 51.28 4/13/2006 6 

4/14/2006 6:00 0.00 16.84 48.60 4/14/2006 6 

4/15/2006 6:00 0.00 16.17 46.36 4/15/2006 6 

4/16/2006 6:00 0.00 16.28 48.82 4/16/2006 6 

4/17/2006 6:00 0.00 15.90 46.34 4/17/2006 6 

4/18/2006 6:00 0.01 16.07 47.20 4/18/2006 6 

4/19/2006 6:00 0.00 15.89 48.16 4/19/2006 6 

4/20/2006 6:00 0.00 15.78 47.78 4/20/2006 6 

4/21/2006 6:00 0.00 15.70 46.36 4/21/2006 6 

4/22/2006 6:00 0.00 15.46 44.62 4/22/2006 6 

4/23/2006 6:00 0.00 14.82 41.91 4/23/2006 6 

4/24/2006 6:00 0.00 14.01 39.25 4/24/2006 6 

4/25/2006 6:00 0.00 13.55 38.61 4/25/2006 6 

4/26/2006 6:00 0.00 13.35 37.85 4/26/2006 6 

4/27/2006 6:00 0.00 13.08 36.61 4/27/2006 6 

4/28/2006 6:00 0.00 11.62 32.21 4/28/2006 6 

4/29/2006 6:00 0.00 11.22 31.53 4/29/2006 6 

4/30/2006 6:00 0.00 11.00 30.62 4/30/2006 6 

5/1/2006 6:00 0.00 10.53 29.34 5/1/2006 6 
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H Digital Elevation Model of Colorado Generated by ArcGIS 

 Note: white indicates very high elevations whereas green indicates low elevations 
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I Spatial Analysis of Colorado with Aspect & Slope Relief 

Imagery Generated by ArcGIS 

 

 Note: red indicates steeper slope whereas green indicates shallow slope. 

Note: colors represent azimuth angle from geodetic north, 0-360 degrees. 

ASPECT  

SLOPE  

Denver 

Denver 



211 

 

J Descriptive Summaries & Basic Statistics for SNODAS Station 

‘AGLC2’ (WY2003-WY2012)   
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K Standardized SNODAS Station Variables for Cluster Analysis 
(stations AGLC2-BRTC2 shown)  

SNODAS 

ID. 
STATION TYPE ELEV LAT LONG BASIN SLOPE ASP. CURV. SWE DEPTH 

AGLC2 COOPB -0.33 -1.62 0.96 -0.73 0.36 -1.62 1.27 -0.55 -0.49 

AGRC2 COOPB 0.62 -1.69 0.78 -0.73 -0.96 -0.67 -0.09 -0.40 -0.38 

AKNC2 UCOOP -1.35 0.99 1.83 -1.29 -0.92 -0.67 -0.28 -0.64 -0.62 

AKO ASOS -1.31 1.02 1.82 -1.29 -0.90 -0.67 0.34 -0.64 -0.63 

AKRC2 COOPBC -1.37 1.01 1.87 -1.29 -0.80 -1.62 -1.22 -0.64 -0.63 

ALAC2 AHOS, COOPB † 0.08 -1.53 0.22 0.40 -0.59 -0.67 -1.27 -0.69 -0.83 

ALEC2 COOPB, GOES 0.33 -0.41 -0.36 0.96 -0.95 -0.67 0.04 -0.20 -0.16 

ALKC2 COOPB, GOES 0.46 1.04 0.45 -1.29 -0.40 1.22 -0.07 -0.32 -0.18 

ALS ASOS, COOPAB 0.08 -1.58 0.23 0.40 -0.81 1.22 -0.41 -0.69 -0.83 

ANTC2 COOPABC, GOES 0.76 -0.10 0.22 -1.29 -0.92 1.22 0.04 -0.64 -0.69 

APA ASOS -0.73 0.44 0.84 -1.29 0.84 -0.67 0.22 -0.59 -0.61 

APNC2 COOPB, GOES 0.33 0.08 -0.33 0.96 -0.25 0.28 -0.73 0.68 0.85 

APSC2 SNOTEL 1.29 -1.67 0.71 -0.73 -0.55 -0.67 -2.06 0.42 0.60 

ARBC2 COOPAB -0.58 -1.97 -0.71 0.96 -0.79 -0.67 -0.06 -0.59 -0.63 

ARGC2 GOES 0.76 -0.05 -0.01 -0.73 -0.63 -1.62 0.95 -0.48 -0.46 

AROC2 SNOTEL 1.12 0.78 0.30 0.96 0.06 1.22 0.18 1.40 1.56 

ARPC2 SNOTEL 1.76 1.19 -0.08 0.96 -0.22 -0.67 -0.07 2.53 2.36 

ASE AHOS, ASOS † 0.19 0.12 -0.37 0.96 2.68 1.22 0.00 0.31 0.43 

ASIC2 UCOOP 0.89 0.70 0.46 -1.29 -0.96 -0.67 -0.04 -0.40 -0.20 

ASPC2 COOPAB 0.33 0.09 -0.35 0.96 -0.70 -0.67 0.14 0.60 0.71 

ATBC2 AHOS, COOPAB -0.81 0.39 -1.27 0.96 0.23 0.28 0.14 -0.51 -0.53 

AVNC2 UCOOP 0.53 0.54 -0.18 0.96 -0.96 -0.67 -0.11 0.02 0.11 

BALC2 AMRAD, GOES 0.68 0.39 0.44 -1.29 -0.73 1.22 -0.12 -0.37 -0.23 

BAWC2 AMOS, GOES 0.24 0.27 0.55 -1.29 -0.82 1.22 0.00 -0.43 -0.38 

BAYC2 UCOOP 0.27 -1.70 -0.85 0.96 -0.98 -0.67 0.05 -0.23 -0.12 

BCKC2 GOES -1.50 -0.87 1.50 -0.73 -0.85 1.22 0.13 -0.70 -0.80 

BCRU1 GOES -0.89 0.19 -1.78 0.96 -0.75 1.22 -0.18 -0.61 -0.72 

BCVC2 SNOTEL 0.57 0.48 -0.15 0.96 -0.66 0.28 -0.04 0.86 1.00 

BEDC2 COOPAB -1.15 -0.72 -1.58 0.96 -0.72 0.28 -0.01 -0.75 -0.96 

BHRC2 GOES 0.59 -1.97 0.03 0.40 -0.40 -0.67 -0.24 -0.31 -0.29 

BKFC2 COOPAB -0.19 -0.06 0.87 -0.73 -0.80 -1.62 -1.38 -0.62 -0.62 

BKRC2 COOPB, GOES 1.40 0.30 0.12 0.96 -0.84 -0.67 -0.84 0.67 0.90 

BLKC2 SNOTEL 1.01 1.15 0.37 0.96 1.42 1.22 -0.22 1.91 1.77 

BLNC2 COOPAB 0.19 -1.57 0.44 0.40 -0.67 0.28 -1.00 -0.63 -0.67 

BLPC2 GOES 1.45 -1.24 -0.31 0.40 -0.85 1.22 0.06 0.69 0.73 

BLRC2 GOES 0.69 0.50 0.11 0.96 -0.89 -0.67 -1.05 -0.19 -0.04 

BLSC2 AHOS, SNOTEL 1.74 0.64 -0.66 0.96 -0.80 1.22 -0.39 3.26 2.76 

BMKC2 COOPAB 0.11 -0.60 -0.55 0.96 -0.86 1.22 -0.09 -0.24 -0.21 

BNVC2 COOPAB 0.29 -0.23 0.08 -0.73 -0.86 -1.62 3.34 -0.66 -0.71 

BOSC2 COOPB -1.34 -0.88 1.17 -0.73 -0.74 1.22 -0.08 -0.71 -0.84 

BOUC2 COOPAB -0.90 0.85 0.59 -1.29 -0.88 1.22 2.20 -0.58 -0.52 

BPRC2 COOPB, GOES -0.97 1.62 -1.60 0.96 -0.68 -0.67 0.24 -0.69 -0.83 

BREC2 UCOOP 1.05 0.39 0.12 0.96 0.09 -0.67 0.25 0.57 0.85 

BRIC2 COOPAB -1.13 0.81 0.85 -1.29 -0.39 1.22 1.39 -0.65 -0.72 

BRMC2 AHOS, SNOTEL 1.58 -0.01 -0.17 0.96 -0.92 1.22 -0.24 0.85 1.12 

BRTC2 AHOS, SNOTEL 2.05 -1.31 -0.75 0.40 -0.84 1.22 -0.29 2.47 2.59 

† Station operated and maintained by numerous authorities; some assignments have been omitted for clarity  
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L Biplots for All Factor Axes Produced by the PCA 

 

 

 

Prepared using XLSTAT Pro Statistical Software (Addinsoft 2013) 
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M Results from Hybrid Clustering Analysis  

 

 



215 

 

M  (Continued) 
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N Supplemental Plots of Snow Depth-Load Regression Analysis 
for AHC Method  
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O Supplemental Plots of Snow Depth-Load Regression Analysis 
for k-means Clustering Method  
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P Supplemental Plots of Snow Depth-Load Regression Analysis 
for PCA-Based Clustering Method  
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Q Supplemental Plots of Snow Depth-Load Regression Analysis 
for Hybrid Clustering Method  
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R NWS Cooperative Observer Stations in Colorado with 
Greater than 20 Years of Measured Snow Depths 

No. CO-OP ID # STATION NAME ELEV. LAT. LONG. YEARS 

1 050102 AGUILAR CO US 1951 37.4 -104.7 25 

2 050114 AKRON 4 E CO US 1385 40.2 -103.2 40 

3 050114 AKRON WASHINGTON CO  1421 40.2 -103.2 48 

4 050130 ALAMOSA SAN LUIS VALLEY  2296 37.4 -105.9 64 

5 050185 ALLENSPARK 3 NW CO US 2591 40.2 -105.5 56 

6 050214 ALTENBERN CO US 1730 39.5 -108.4 64 

7 050228 AMES CO US 2652 37.9 -107.9 38 

8 050242 AMY CO US 1598 38.9 -103.7 25 

9 050263 ANTERO  2719 39.0 -105.9 46 

10 050310 ARBOLES 1 W CO US 1891 37.0 -107.4 49 

11 050372 ASPEN 1 SW CO US 2456 39.2 -106.8 64 

12 050437 AYER RANCH CO US 2205 39.0 -104.6 22 

13 050454 BAILEY CO US 2356 39.4 -105.5 64 

14 050674 BERTHOUD PASS CO US 3448 39.8 -105.8 35 

15 050776 BLANCA 4 NW CO US 2390 37.5 -105.5 58 

16 050797 BLUE MESA LAKE CO US 2307 38.5 -107.2 45 

17 050825 BONHAM RESERVOIR CO US 3003 39.1 -107.9 49 

18 050834 BONNY DAM 2 NE CO US 1142 39.6 -102.2 46 

19 050848 BOULDER CO US 1672 40.0 -105.3 64 

20 050895 BRANDON CO US 1196 38.5 -102.4 44 

21 050898 BRANSON CO US 1914 37.0 -103.9 26 

22 050909 BRECKENRIDGE CO US 2920 39.5 -106.0 64 

23 050945 BRIGGSDALE CO US 1473 40.6 -104.3 48 

24 050950 BRIGHTON 3 SE CO US 1529 39.9 -104.8 39 

25 051017 BROWNS PARK REFUGE CO  1632 40.8 -108.9 31 

26 051060 BUCKHORN MOUNTAIN 1 E 2256 40.6 -105.3 23 

27 051071 BUENA VISTA 2 S CO US 2422 38.8 -106.1 64 

28 051121 BURLINGTON CO US 1266 39.3 -102.3 48 

29 051157 BUTLER RANCH CO US 1479 38.0 -104.5 25 

30 051179 BYERS 5 ENE CO US 1595 39.7 -104.2 22 

31 051179 BYERS 5 ENE CO US 1555 39.7 -104.1 42 

32 051186 CABIN CREEK CO US 3054 39.7 -105.7 44 

33 051268 CAMPO 7 S CO US 1255 37.0 -102.6 45 

34 051294 CANON CITY CO US 1636 38.5 -105.2 64 

35 051401 CASTLE ROCK CO US 1936 39.4 -104.8 43 

36 051443 CEDAREDGE 3 E CO US 2075 38.9 -107.9 64 

37 051458 CENTER 4 SSW CO US 2339 37.7 -106.1 61 

38 051528 CHEESMAN CO US 2097 39.2 -105.3 64 

39 051547 CHERRY CREEK DAM CO US 1721 39.6 -104.8 52 

40 051564 CHEYENNE WELLS CO US 1314 38.8 -102.4 64 

41 051609 CIMARRON CO US 2137 38.4 -107.6 45 

42 051660 CLIMAX CO US 3442 39.4 -106.2 63 

43 051713 COCHETOPA CREEK CO US 2439 38.4 -106.8 64 

44 051745 COLLBRAN 3 ENE CO US 1970 39.3 -107.9 22 

45 051772 COLORADO NATIONAL  1762 39.1 -108.7 64 

46 051778 COLORADO SPRINGS AIR. 1884 38.8 -104.7 64 

47 051886 CORTEZ CO US 1880 37.3 -108.6 64 
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48 051928 CRAIG CO US 1914 40.5 -107.6 28 

49 051932 CRAIG 4 SW CO US 1980 40.5 -107.6 35 

50 051948 CREEDE WATER TREATMENT  2629 37.8 -106.9 33 

51 051959 CRESTED BUTTE CO US 2702 38.9 -107.0 64 

52 051964 CRESTONE 2 SE CO US 2440 38.0 -105.7 30 

53 051977 CRIPPLE CREEK 3 NNW CO US 2815 38.8 -105.2 64 

54 052178 DELHI CO US 1552 37.6 -104.0 26 

55 052184 DEL NORTE 2 E CO US 2397 37.7 -106.3 64 

56 052196 DELTA 3 E CO US 1532 38.8 -108.0 44 

57 052220 DENVER STAPLETON CO US 1611 39.8 -104.9 64 

58 052281 DILLON 1 E CO US 2763 39.6 -106.0 64 

59 052286 DINOSAUR NATIONAL MNMT 1820 40.2 -109.0 47 

60 052312 DOHERTY RANCH CO US 1564 37.4 -103.9 32 

61 052326 DOLORES CO US 2118 37.5 -108.5 56 

62 052441 DURANGO CO US 2061 37.3 -107.9 64 

63 052446 EADS CO US 1284 38.5 -102.8 64 

64 052454 EAGLE CO AIRPORT CO US 1980 39.7 -106.9 46 

65 052761 ESTES PARK 1 SSE CO US 2373 40.4 -105.5 64 

66 052790 EVERGREEN CO US 2129 39.6 -105.3 51 

67 052932 FLAGLER 1 S CO US 1516 39.3 -103.1 49 

68 052947 FLEMING 3 SW CO US 1297 40.6 -102.9 64 

69 052965 FLORISSANT FOSSL BED CO  2554 38.9 -105.3 23 

70 052997 FORDER 8 S CO US 1458 38.6 -103.7 31 

71 053002 FORT CARSON BUTTS ARMY  1781 38.7 -104.8 22 

72 053005 FORT COLLINS CO US 1525 40.6 -105.1 64 

73 053016 FORT LEWIS CO US 2329 37.2 -108.1 64 

74 053027 FORT LUPTON 2 SE CO US 1531 40.1 -104.8 27 

75 053038 FORT MORGAN CO US 1329 40.3 -103.8 64 

76 053063 FOUNTAIN CO US 1695 38.7 -104.7 49 

77 053079 FOWLER 1 SE CO US 1320 38.1 -104.0 64 

78 053116 FRASER CO US 2609 39.9 -105.8 64 

79 053146 FRUITA CO US 1373 39.2 -108.7 64 

80 053222 GARDNER CO US 2123 37.8 -105.2 23 

81 053246 GATEWAY CO US 1401 38.7 -109.0 64 

82 053258 GENOA CO US 1709 39.3 -103.5 64 

83 053261 GEORGETOWN CO US 2597 39.7 -105.7 64 

84 053359 GLENWOOD SPGS NUMBER 2  1797 39.5 -107.3 62 

85 053489 GRAND JUNCTION 6 ESE CO  1451 39.0 -108.5 49 

86 053500 GRAND LAKE 6 SSW CO US 2526 40.2 -105.9 58 

87 053530 GRANT CO US 2644 39.5 -105.7 49 

88 053541 GREAT SAND DUNES NAT CO  2494 37.7 -105.5 62 

89 053553 GREELEY UNC CO US 1437 40.4 -104.7 64 

90 053592 GREEN MOUNTAIN DAM CO  2359 39.9 -106.3 64 

91 053629 GROSS RESERVOIR CO US 2429 39.9 -105.4 34 

92 053643 GROVER 10 W CO US 1551 40.9 -104.4 22 

93 053656 GUFFEY 10 SE CO US 2620 38.7 -105.4 56 

94 053662 GUNNISON 3 SW CO US 2323 38.5 -107.0 64 

95 053742 HAMILTON 1 SSE CO US 1945 40.4 -107.6 64 

96 053828 HASWELL CO US 1378 38.4 -103.2 64 

97 053850 HAWTHORNE CO US 1806 39.9 -105.3 27 

98 053867 HAYDEN CO US 1971 40.5 -107.3 64 

99 053951 HERMIT 7 ESE CO US 2758 37.8 -107.1 64 

100 053982 HIGBEE 2 SW CO US 1296 37.8 -103.5 32 

101 054054 HOHNHOLZ RANCH CO US 2365 41.0 -106.0 26 
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102 054078 HOLLY 1 NW CO US 1039 38.1 -102.1 64 

103 054129 HOT SULPHUR SPRINGS 2 SW  2318 40.1 -106.2 28 

104 054135 HOURGLASS RESERVOIR CO  2902 40.6 -105.6 23 

105 054172 HUGO 1 NW CO US 1532 39.1 -103.5 22 

106 054234 IDAHO SPRINGS CO US 2303 39.8 -105.5 26 

107 054242 IDALIA CO US 1209 39.7 -102.3 64 

108 054250 IGNACIO 1 N CO US 1969 37.1 -107.6 44 

109 054270 INDEPENDENCE PASS 5 SW  3200 39.1 -106.6 32 

110 054293 INTER CANYON CO US 2146 39.6 -105.2 34 

111 054380 JOES CO US 2309 37.0 -105.6 32 

112 054380 JOES CO US 1296 39.7 -102.7 32 

113 054388 JOHN MARTIN DAM CO US 1163 38.1 -102.9 64 

114 054413 JULESBURG CO US 1057 41.0 -102.3 64 

115 054444 KARVAL CO US 1547 38.7 -103.5 64 

116 054452 KASSLER CO US 1703 39.5 -105.1 64 

117 054460 KAUFFMAN 4 SSE CO US 1600 40.9 -103.9 37 

118 054538 KIM 15 NNE CO US 1582 37.5 -103.3 32 

119 054546 KIM 10 SSE CO US 1615 37.1 -103.3 23 

120 054584 KIOWA 5 SE CO US 1937 39.3 -104.4 46 

121 054603 KIT CARSON CO US 1306 38.8 -102.8 29 

122 054664 KREMMLING CO US 2274 40.1 -106.4 64 

123 054720 LA JUNTA MUNICIPAL  1278 38.0 -103.5 64 

124 054726 LA JUNTA 20 S CO US 1283 37.8 -103.5 30 

125 054735 LAKE CITY NUMBER 2 CO US 2644 38.0 -107.3 64 

126 054742 LAKE GEORGE 8 SW CO US 2606 38.9 -105.5 52 

127 054762 LAKEWOOD CO US 1719 39.7 -105.1 50 

128 054770 LAMAR CO US 1106 38.1 -102.6 64 

129 054834 LAS ANIMAS CO US 1186 38.1 -103.2 64 

130 054885 LEADVILLE LAKE CO  3029 39.2 -106.3 60 

131 054934 LEMON DAM CO US 2550 37.4 -107.7 30 

132 054945 LEROY 9 WSW CO US 1363 40.5 -103.0 58 

133 055001 LIME 3 SE CO US 1387 40.5 -103.1 58 

134 055017 LIMON CO US 1637 39.3 -103.7 23 

135 055018 LIMON WSMO CO US 1695 39.2 -103.7 24 

136 055020 LIMON HASS RANCH CO US 1678 39.0 -103.7 56 

137 055040 LITTLE DOLORES CO US 1479 39.8 -103.5 54 

138 055048 LITTLE HILLS CO US 1872 40.0 -108.2 43 

139 055116 LONGMONT 2 ESE CO US 1509 40.3 -105.2 48 

140 055236 LOVELAND 2 N CO US 1548 40.4 -105.1 22 

141 055327 MANCOS CO US 2105 37.4 -108.4 47 

142 055408 MARVINE CO US 2195 40.0 -107.6 53 

143 055414 MARVINE RANCH CO US 2377 40.0 -107.4 26 

144 055446 MAYBELL CO US 1812 40.5 -108.1 54 

145 055484 MEEKER CO US 1884 40.0 -108.0 59 

146 055489 MEEKER 10 NW CO US 1935 40.0 -107.9 59 

147 055507 MEREDITH CO US 2385 39.4 -106.7 44 

148 055520 MESA LAKES RESORT CO US 2989 39.1 -108.1 26 

149 055531 MESA VERDE NATIONAL  2160 37.2 -108.5 64 

150 055706 MONTE VISTA 2 W CO US 2336 37.6 -106.2 33 

151 055722 MONTROSE NUMBER 2 CO US 1765 38.5 -107.9 64 

152 055922 NEW RAYMER CO US 1458 40.6 -103.8 38 

153 055970 NORTHDALE CO US 2036 37.8 -109.0 54 

154 055984 NORTHGLENN CO US 1648 39.9 -105.0 27 

155 055990 NORTH LAKE CO US 2684 37.2 -105.1 32 
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156 056013 NORWOOD NUMBER 2 CO US 2137 38.1 -108.3 64 

157 056116 OLATHE 4 SSW CO US 1706 38.6 -108.0 28 

158 056131 ORDWAY 2 ENE CO US 1315 38.2 -103.7 64 

159 056136 ORDWAY 21 N CO US 1453 38.5 -103.7 32 

160 056192 OTIS 11 NE CO US 1274 40.3 -102.8 36 

161 056205 OURAY NUMBER 2 CO US 2352 38.0 -107.7 23 

162 056259 PAGOSA SPRINGS 2 W CO US 2320 37.3 -107.1 62 

163 056266 PALISADE CO US 1448 39.1 -108.4 64 

164 056271 PALISADE LAKES 6 SSE CO US 2467 37.4 -107.2 23 

165 056280 PALMER LAKE CO US 2213 39.1 -104.9 47 

166 056306 PAONIA 1 SW CO US 1700 38.9 -107.6 55 

167 056320 PARADOX 2 N CO US 1660 38.4 -108.9 64 

168 056326 PARKER 6 E CO US 1923 39.5 -104.7 49 

169 056342 PARSHALL 10 SSE CO US 2522 39.9 -106.1 21 

170 056410 PENROSE CO US 1650 38.5 -105.1 24 

171 056513 PITKIN CO US 2804 38.6 -106.5 35 

172 056559 PLATORO CO US 2997 37.4 -106.5 40 

173 056740 PUEBLO MEMORIAL AIRPORT  1439 38.3 -104.5 58 

174 056743 PUEBLO CITY RESERVOIR CO  1430 38.3 -104.7 22 

175 056765 PUEBLO RESERVOIR CO US 1480 38.3 -104.7 37 

176 056797 PYRAMID CO US 2441 40.2 -107.1 57 

177 056816 RALSTON RESERVOIR CO US 1798 39.8 -105.2 34 

178 056832 RANGELY 1 E CO US 1611 40.1 -108.8 62 

179 056930 RED FEATHER LAKES 6 CO US 2318 40.7 -105.5 30 

180 057017 RICO CO US 2682 37.7 -108.0 53 

181 057020 RIDGWAY CO US 2144 38.2 -107.8 30 

182 057031 RIFLE CO US 1657 39.5 -107.8 43 

183 057050 RIO GRANDE RESERVOIR CO  2953 37.7 -107.3 35 

184 057167 ROCKY FORD 2 SE CO US 1271 38.0 -103.7 64 

185 057287 RUSH 1 N CO US 1862 38.9 -104.1 39 

186 057287 RUSH 1 N CO US 1845 38.9 -104.1 23 

187 057309 RUXTON PARK CO US 2758 38.8 -105.0 51 

188 057430 SAN LUIS 1 S CO US 2421 37.2 -105.4 26 

189 057455 SAPINERO 8 E CO US 2953 37.8 -107.1 59 

190 057460 SARGENTS CO US 2579 38.4 -106.4 52 

191 057510 SEDALIA 4 SSE CO US 1821 39.4 -105.0 56 

192 057513 SEDGWICK CO US 1092 40.9 -102.5 58 

193 057515 SEDGWICK 5 S CO US 1216 40.9 -102.5 54 

194 057572 SHEEP MOUNTAIN CO US 2363 37.7 -105.2 24 

195 057618 SHOSHONE CO US 1826 39.6 -107.2 64 

196 057656 SILVERTON CO US 2830 37.8 -107.7 62 

197 057862 SPRINGFIELD CO US 1345 37.4 -102.6 37 

198 057866 SPRINGFIELD 7 WSW CO US 1409 37.4 -102.7 46 

199 057936 STEAMBOAT SPRINGS CO US 2093 40.5 -106.8 64 

200 057950 STERLING CO US 1211 40.6 -103.2 62 

201 057992 STONINGTON CO US 1165 37.3 -102.2 29 

202 058008 STRATTON CO US 1341 39.3 -102.6 64 

203 058022 STRONTIA SPRINGS DAM CO  1780 39.4 -105.1 27 

204 058064 SUGARLOAF RESERVOIR CO  2968 39.2 -106.4 64 

205 058154 TACOMA CO US 2225 37.5 -107.8 38 

206 058157 TACONY 13 SE CO US 1512 38.4 -104.1 48 

207 058184 TAYLOR PARK CO US 2798 38.8 -106.6 64 

208 058204 TELLURIDE 4 WNW CO US 2643 37.9 -107.9 60 

209 058431 TRINIDAD RIVER CO US 1844 37.2 -104.5 44 



228 

 

210 058434 TRINIDAD PERRY STOKES  1751 37.3 -104.3 53 

211 058436 TRINIDAD LAKE CO US 1923 37.2 -104.6 21 

212 058454 TROUT LAKE CO US 2956 37.8 -107.9 38 

213 058468 TROY 1 SE CO US 1710 37.1 -103.3 39 

214 058510 TWO BUTTES CO US 1260 37.6 -102.4 24 

215 058560 URAVAN CO US 1530 38.4 -108.7 51 

216 058582 VALLECITO DAM CO US 2531 39.6 -106.4 38 

217 058582 VALLECITO DAM CO US 2365 37.4 -107.6 64 

218 058722 VONA CO US 1373 39.3 -102.7 34 

219 058742 WAGON WHEEL GAP 3 N CO  2593 37.8 -106.8 23 

220 058756 WALDEN CO US 2456 40.7 -106.3 40 

221 058781 WALSENBURG 1 NW CO US 1920 37.6 -104.8 64 

222 058793 WALSH 1 W CO US 1213 37.4 -102.3 61 

223 058839 WATERDALE CO US 1594 40.4 -105.2 64 

224 058931 WESTCLIFFE CO US 2396 38.1 -105.5 64 

225 059058 WILD HORSE 6 N CO US 1437 40.2 -104.2 43 

226 059096 WILLIAMS FORK DAM CO US 1337 38.7 -103.0 22 

227 059147 WINDSOR CO US 2322 40.0 -106.2 34 

228 059213 WOODROW 6 NNE CO US 2876 37.5 -106.9 45 

229 059243 WRAY CO US 2310 37.0 -104.5 31 

230 059246 WRAY 19 N CO US 1122 40.1 -102.2 43 

231 059265 YAMPA CO US 1151 40.3 -102.3 56 

232 059278 YELLOW JACKET 4 NE CO US 2091 37.5 -108.8 43 

233 059297 YUMA 10 NW CO US 1262 40.1 -102.7 42 
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