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Meningococcal meningitis (meningitis) is endemic to West Africa, with the 

disease being fatal in 50% of the cases if left untreated. This region relies upon the 

international community for assistance in prevention and treatment. The International 

Coordinating Group for Vaccine Provision (ICG) oversees the monitoring of meningitis 

cases and the allocation of vaccine to limit case spread. Given the limited supply of 

vaccine, determining its deployment is contingent upon a number of factors including 

predictions of future cases. An inverse relationship exists between relative humidity and 

the incidence of meningitis cases providing a method of prediction based on 

understanding of climate variability. This research focused on first examining the 

interseasonal variability of relative humidity to develop predictive models based on 

climate features and then extend those models to forecast meningitis case counts.   

The annual latitudinal migration of the Intertropical Convergence Zone (ITCZ) 

drives the monsoon onset and retreat, however ancillary factors such as sea-surface 

temperatures can have a large influence on monsoon timing and strength. This onset and 

retreat of the monsoon plays an important role in the occurrence of meningococcal 

meningitis in the region. The first part of the thesis involves a systematic analysis of 

relative humidity during the onset, peak and retreat periods of the monsoon over Western 

Africa. A K-means cluster analysis was performed to identify spatially coherent regions 

of relative humidity variability during the three periods. The cluster average of the 

relative humidity provides a robust representative index of the strength and timing of the 

WAM. Correlating the cluster anomalies with large-scale dynamical and 

thermodynamical features indicate that the anomalies are most strongly connected to the 

land-ocean temperature gradient and the corresponding circulation, tropical Atlantic sea 

surface temperatures (SSTs), and to a somewhat lesser extent SSTs over the tropical 
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Pacific. These connections to large-scale climate features were also found to be persistent 

over intraseasonal time scales, and thus best linear predictive models were developed to 

enable skillful forecasts of relative humidity during the two periods at 15-75 day lead 

times.  

The second part of the research involved analyzing the meningitis incidence 

within four countries of West Africa (Benin, Chad, Nigeria, and Togo) and their links to 

meteorological variables. The predictive models of relative humidity during the onset and 

withdrawal season of the monsoon, which also coincides with the withdrawal and onset 

of meningitis season, respectively, were used to model the occurrences of meningitis 

cases. Skill scores were found to determine the effectiveness of these models in 

forecasting meningitis case counts. These two components of the research make 

important contributions towards understanding the processes that govern meningitis 

occurrences and provide the tools for improving the efficiency of mitigation strategies.    
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1 INTRODUCTION AND BACKGROUND 
	  
	  

1.1 INTRODUCTION 
	  

“Whoever wishes to investigate medicine properly, should proceed thus: in the 
first place to consider the seasons of the year, and what effects each of them 
produces for they are not at all alike, but differ much from themselves in regard to 
their changes. Then the winds, the hot and the cold, especially such as are 
common to all countries, and then such as are peculiar to each locality. We must 
also consider the qualities of the waters, for as they differ from one another in 
taste and weight, so also do they differ much in their qualities.” 
-Hippocrates, On Airs, Waters, and Places (trans. by Francis Adams) 

Environmental conditions, have, since the emergence of western medicine, been 

linked to human health. Infectious disease can be directly or indirectly linked to these 

conditions through physiological effects, societal changes, and vector influences, i.e. 

breeding of mosquitoes. This paper explores the connection between meningococcal 

meningitis and relative humidity in West Africa. The first section below gives an 

overview of meningococcal meningitis in the region, describing its history, current 

management methods, and links to environmental conditions. The second section 

describes large-scale climate features, and their influence on relative humidity. 

 

1.2 MENINGITIS IN AFRICA 
 

Meningococcal meningitis (hereafter referred to as meningitis) is endemic to Africa 

to an extent Lapeyssonnie and others have identified a ‘meningitis belt’ stretching across 

sub-Saharan Africa (Lapeyssonnie, 1963; Molesworth, 2002). Greenwood (1998) posits 

that the disease first reached this region in the late 19th or early 20th century brought by 



	  	  	  	   2	  

Muslim pilgrims returning from the Hajj, given evidence that this period saw the first 

large epidemics. These epidemics are now commonplace, occurring every 7 – 14 years 

(WHO Fact Sheet Nº141). Meningitis is a bacterial disease caused by Neisseria 

meningitides (Nm). The disease affects the protective membrane surrounding the brain 

and spinal column, resulting in a stiff neck, nausea, and high fever. The World Health 

Organization estimates that 50% of untreated cases lead to death. Even in cases treated, 

10 – 20% develop neurological sequelae, which can have long-term implications 

including additional medical expenses and loss of productivity (WHO 2005). The total 

direct cost to treat a case of meningitis is estimated to be approximately US $90 in 

Burkina Faso, 34% of GDP per capita. Indirect costs are estimated to be much higher. 

Meningitis is spread person-to-person through the exchange of respiratory droplets, 

though there are varying local beliefs in the cause of the disease, from the wind and sun 

to supernatural causes (Colombini et. al. 2009). Regardless of local belief, modern 

prevention methods, vaccination, and treatment methods are effective in managing 

meningitis. The most prevalent serogroup, A (Nm A), is responsible for 80 - 85% of the 

historical cases of meningitis in the meningitis belt (WHO Fact Sheet Nº141).  

1.3 MENINGITIS MANAGEMENT 
 

The International Coordinating Group for Vaccine Provision  (ICG) was created in 

1997 to manage responses to meningitis outbreaks. The WHO, Medicines Sans Frontiers 

(MSF), the International Federation of the Red Cross and Red Crescent (IFRC), and 

UNICEF are founding partners; the ICG also collaborates with technical partners 

including the U.S. Centers for Disease Control and Prevention. The ICG coordinates 

targeted reactive vaccination campaigns using either a bivalent Nm A/C polysaccharide 
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vaccine or a trivalent Nm A/C/W135 polysaccharide vaccine. These vaccine provide 

immunity in individuals against meningitis for roughly three years, but do not confer herd 

immunity, meaning disease transmission is still possible. Vaccination is conducted at the 

sub-national district level and is based on a districts incidence rate, cases per 100,000. 

This rate is calculated from the weekly reporting of district case counts. Threshold levels 

for vaccination, based on work by Varaine et. al. (1997); Lewis et. al. (2001) were 

established to ensure good sensitivity and specificity in detecting epidemics and allow for 

timely response. Table 1.1 lists these threshold levels.  

 

Table 1.1: ICG meningitis monitoring and treatment strategy (from Weekly 
epidemiological record, 22 September, 2000, WHO) 
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In districts with populations greater than 30,000, instances of 5 cases per 100,000, the 

alert level, trigger increased surveillance and a determination of the meningitis strain 

responsible. 10 cases per 100,000, the epidemic level, trigger vaccination within the 

district. Alert level districts adjacent to epidemic level districts are also vaccinated.  

MenAfriVac, a new conjugate vaccine designed to provide long-term immunity against 

Nm A has greatly reduced the number of Nm A cases, and is hoped will severely limit or 

eliminate Nm A when the inoculation campaign is complete. As of 2013, this project has 

successfully inoculated the under-30 population in six countries: Burkina Faso, Mali, 

Niger, Chad, and Cameroon. This inoculation campaign is ongoing in five countries 

including three in West Africa: Ghana, Benin, and Nigeria. MenAfriVac has produced 

the desired response, conferring herd immunity against Nm A. Kristiansen et. al. (2013) 

sampled persons in Burkina Faso pre and post vaccination. Pre-vaccination, 0.39% of the 

sampled persons carried Nm A. Post-vaccination, none of the sampled persons carried 

Nm A in any of the five sampling campaigns. The reactive vaccination strategy managed 

by the ICG is still useful in regions that have not received MenAfriVac, and remains the 

primary response to outbreaks of Nm W135 or other serotypes. Forecasts of meningitis 

incidence using connections to environmental factors could provide greater response time 

to contain epidemics and reduce overall incidence.  

 

1.4 LINKS TO ENVIRONMENTAL FACTORS 
 

Local knowledge of the disease suggests an awareness of its link to environmental 

factors; both the Bambara word for meningitis, finyabana, and the Mossi word, segba 

banga mean wind disease (Besancenot et. al. 1997; Colombini et. al. 2009). Meningitis 
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incidence exhibits a strong seasonal cycle, with almost all cases occurring during the dry 

season, November through May. During the dry season, the Harmattan winds transport 

hot, dry, dusty air southwest from the Sahara Desert. Temperature, humidity, and dust 

have all been suggested as being linked to meningitis incidence. Sultan et. al. (2005) 

compared the start week of the meningitis season, found by examining the weekly 

anomaly case anomaly as compared to the weekly mean cases, with an index of the 

strength of the Harmattan winds. Their analysis was performed using nine years of case 

data from Mali, and found a strong linear relationship between the case anomalies and the 

Harmattan winds (R2 = 0.8498). Molesworth et. al. (2003) aggregated historical cases of 

meningitis and compared case counts at the district level to environmental factors. The 

two strongest predictors were a classification based on the seasonal specific humidity 

profile and land cover. Thomson et. al. (2006) used rainfall and aerosol anomalies 

spatially classified by land cover types as predictors of meningitis incidence. The R2 for 

all land cover types was 0.38 using a linear regression with the above environmental 

factors and monthly meningitis incidence anomaly.  

A conceptual model of meningitis incidence was put forth by Mueller et. al. (2010) 

and is shown in Figure 1.1.  
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Figure 1.1: Conceptual meningitis model from Mueller et. al. (2010) 

 

Environmental factors are responsible for the increase in incidence from the rainy to dry 

season; dry, dusty conditions lead to a transition from endemic to hyperenedmic 

incidence. Viral respiratory infections provide for weakened mucosal defenses leading to 

epidemics. Expansion to a regional-level epidemic is contingent on a new strain of 

meningitis or a high prevalence of epidemic cofactors. In Figure 1.2, I have expanded on 

this conceptual model in an attempt to identify causes of increased meningitis incidence. 

Three categories of causes have been identified: social, biologic, and physiological. 
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Figure 1.2: New conceptual model of meningitis incidence 

 

Dry season conditions encourage individuals to spend more time indoors, which increases 

interpersonal contact. This increased contact offers greater opportunity for disease 

transmission as meningitis is spread person to person. Carriage rates of the same 

serogroup between individuals living together were higher than between contacts outside 

the home suggesting that this greater opportunity does result in higher transmission 

(Greenwood et. al. 1978; Hassan-King et. al. 1988; Gugnani et. al. 1989; Cheesbrough et. 

al. 1995; Boisier and Djibo 2006; Trotter and Greenwood 2007).  

Local populations have little defense against new emergent strains of meningitis. 

Two methods of introduction are suggested here: in situ mutation, and migration. In situ 

mutation of Nm to produce a new strain of the disease would directly introduce it into the 

local population. Seasonal migration, which is prevalent in the region, could also 

transport new strains of Nm from other locations. The United Nations Environment 
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Programme (UNEP) investigated seasonal migration and identified two primary 

motivations: farmers seeking work in the city during the dry season, and seasonal 

migration of livestock herdsmen, both potential vectors new meningitis strains. Long-

distance human transport of meningitis is thought to be responsible for its introduction 

into the region at the turn of the 20th century, and for the introduction of a new serotype, 

Nm W135 within the past 15 years (Greenwood, 1998). The meningitis modeling study 

presented in Chapter 3 does not attempt to account for all causes shown in Figure 1.2, 

rather, it focuses on the demonstrated link between meningitis incidence and relative 

humidity and uses prior meningitis incidence as a surrogate for the other causes. Two 

predominant seasons exist in West Africa: a winter dry season, and a summer wet season. 

An understanding of the connections between relative humidity and large-scale climate is 

needed to make use of the link between meningitis incidence and relative humidity. The 

section below presents an overview of climate in West Africa with a focus on moisture 

transport. 

1.5 CLIMATE SEASONAL VARIABILITY 
 

Seasonal weather patterns in our region of interest, including the countries Ghana, 

Togo, Benin, Nigeria, Chad, Niger, Mali, and Burkina Faso, are dominated by the West 

African Monsoon (WAM). The WAM is a low-level southwesterly flow existing during 

the boreal summer, advecting moisture inland from the Gulf of Guinea. Meningitis 

incidence almost exclusively occurs during the winter dry season, making an 

understanding of the transition periods key to understanding the seasonal cycle of 

meningitis. These transition periods are termed monsoon onset, and monsoon retreat. 

Seasonal migration of the Intertropical Convergence Zone (ITCZ) and the Intertropical 
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Front (ITF), the later the interface between monsoon and Harmattan winds, control 

monsoon onset and retreat. The WAM is largely driven by a pressure gradient existing 

between two centers of action, the South Atlantic High, and the West African Heat Low 

(WAHL). The relative strength of these centers determines the strength of monsoon 

winds, and indirectly controls moisture advection onshore. Preferential heating controlled 

by surface albedo and solar insolation determine the strength and location of the WAHL 

(Ramel et al. 2006). Drobinski et. al. (2005) points to the orography of North Africa, the 

Hoggar Massive and Atlas Mountains in particular, as influencers in the deepening of the 

WAHL in late spring and determining its location centered over the Sahara Desert. North 

of the mountains, subsidence from the descending branches of the Hadley cell and the 

WAHL increase the pressure gradient rotating wind direction from the southeast to the 

northeast. This strengthens WAHL circulation, deepening the low-pressure region. 

Monsoon “preonset” identifies the data the ITF reaches 15ºN (with the ITF defined as the 

zero mean zonal wind component at 925mb). This marks the start of the rain season, and 

the mean date of occurrence is 14 May with a 9.8 day standard deviation. An abrupt 

transition or “jump” of the ITCZ from 5º to 10ºN indicates monsoon onset, whose mean 

occurrence is 25 June with a 9 day standard deviation. This corresponds to increasing 

rainfall and a deepening of the WAHL (Sultan and Janicot, 2003). The mean date of 

occurrence for WAHL deepening is 20 June, 5 days before the mean date of monsoon 

jump (Lavaysse et. al. 2009). Sea-surface temperature (SSTs) in the Gulf of Guinea also 

influence the strength of the cross-equator pressure gradient driving monsoon flow. A 

precipitation dipole identified by Lough (1986) between the Guinea Coast and the Sahel 

has been linked to these SSTs by Vizy and Cook (2002), Fontaine and Louvet (2006), 
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and Caniaux et al. (2011). Northward movement of the ITCZ strengthens the cross-

equator southeast trade winds in April, producing Ekman pumping north of the equator 

lowering SSTs. The region of lower SSTs has been termed the “Atlantic cold tongue” and 

is well developed during the monsoon season. SST anomalies in the Gulf of Guinea, 

weaken the cold tongue, increase evaporation, and thus enhance precipitation over the 

Guinea Coast. Concomitant low-level winds from the Sahara extend further south 

producing subsidence and suppressed precipitation in the Sahel. Sources of precipitation 

in West Africa include the tropical Atlantic, 23%, Central Africa, 17%, and precipitation 

recycling within West Africa 27% (Eltahir and Gong, 1996). Nieto et. al. employed a 

Lagrangian approach to track sources of moisture in the Sahel and found that during the 

monsoon, precipitation recycling was the most important. The tropical Atlantic, Central 

Africa, and the Eastern Mediterranean were the other identified sources. This tropical 

Atlantic source is controlled by monsoon winds. Lavaysse et. al. (2009) identified several 

dynamical elements of the WAM that influence regional moisture transport including the 

African Easterly Jet (AEJ), the Tropical Easterly Jet (TEJ), and African Easterly Waves 

(AEW). Nicholson (2009) suggests the AEJ and TEJ have a large influence on regional 

rainfall moisture advection. She termed the region between the jets the “tropical rainbelt”. 

Instability in the region produced by conservation of vorticity promotes convection. 

Mesoscale convective systems (MCS) responsible for large-scale regional precipitation 

are transported westward by the AEJ (Mohr and Thorncroft 2006). The location and 

propagation of AEWs, which help organize MCS are controlled by the strengths of the 

AEJ and TEJ. The timing and number of AEWs produce the interseasonal variability seen 

in WAM rainfall (Jackson et al. 2009). The strength of the AEJ centered at 650mb is 
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controlled by WAHL meridional circulation (Thorncroft and Blackburn 1999). Uplift in 

the WAHL generates an anticyclone aloft whose easterly circulation strengthens the AEJ. 

A low-level westerly jet produced by the cross-equator pressure gradient driving 

monsoon flow is seen in years with high rainfall. This westerly jet is weak or nonexistent 

in dry years (Nicholson, 2009). Long-term trends in precipitation saw a decrease from 

1970 through 1985, and a slow increase from 1985 though the present. Hagos and Cook 

(2008) have linked this precipitation decrease to increased SSTs in the Indian Ocean. 

These higher SSTs produced subsidence over the Sahel blocking monsoon-advected 

moisture from the Atlantic. Further increase in Indian Ocean SSTs have shifted this 

subsidence westward to the Atlantic, producing the increases in rainfall seen over the past 

25 years. Forecasts for future behavior are largely uncertain, with low GCM model 

agreement. The IPCC AR4 assessment suggests that the precipitation dipole between the 

Guinea Coast and Sahel will strengthen as SSTs increase in the Gulf of Guinea. This 

would increase rainfall over the Guinea Coast and decrease rainfall over the Sahel. 

Findings by Haarsma (2005) who investigated rainfall variability over the Sahel suggest 

increases in Sahel precipitation. He found a strong link between rainfall and mean sea 

level pressure (MSLP) over the Sahara. Increasing surface air temperatures suggest that 

MSLP over the Sahara would strengthen, increasing Sahelian rainfall. Cook and Vizy 

(2006) looked at CGCMs used by the IPCC and found they did not capture well the 

precipitation distribution or monsoon dynamics.  

 

1.6 THESIS ORGANIZATION 
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This understanding of West African climate was used as a basis for modeling the 

seasonal relative humidity. Additional understanding of the interseasonal variability of 

relative humidity could provide more informed forecasting of meningitis incidence and 

improve health resource allocation. Chapter 2 describes the interseasonal variability of 

relative humidity during the transition periods and the large-scale dynamics driving the 

transitions. Climate predictors are identified from these large-scale dynamics and used to 

forecast the relative humidity at several lead-times. Chapter 3 extends these forecasts to 

meningitis, using direct relative humidity and the identified climate predictors to forecast 

cases in two periods: the peak and shoulder meningitis seasons. Chapter 4 discusses the 

results of these forecasts and suggests their application in improving health resource 

allocation in West Africa.  
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2 RELATIVE HUMIDITY SEASONAL FORECASTING 
	  
	  
The results presented in this chapter will be published in modified form as Broman et. al. 

2013: Spatio-Temporal Variability and Predictability of Relative Humidity Over West 

African Monsoon Region. J. Clim. 

 

2.1 ABSTRACT 
	  
	  

Spatial and temporal variability of relative humidity over the Western African 

Monsoon (WAM) region is investigated. In particular, the variability during the onset and 

retreat periods of the monsoon is considered. A K-means cluster analysis was performed 

to identify spatially coherent regions of relative humidity variability during the two 

periods. The cluster average of the relative humidity provides a robust representative 

index of the strength and timing of the transition periods between the dry and wet 

periods. Correlating the cluster indices with large-scale circulation and sea surface 

temperatures indicate that the land-ocean temperature gradient and the corresponding 

circulation, tropical Atlantic sea surface temperatures (SSTs), and to a somewhat lesser 

extent SSTs over the tropical Pacific, all play a role in modulating the timing of the 

monsoon season relative humidity onset and retreat. These connections to large-scale 

climate features were also found to be persistent over interseasonal time scales and thus 

best linear predictive models were developed to enable skillful forecasts of relative 

humidity during the two periods at 15-75 day lead times. The public health risk due to 

meningitis epidemics are of grave concern to the population in this region, and these risks 

are strongly tied to regional humidity levels. Because of this linkage, the understanding 
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and predictability of relative humidity variability is of use in meningitis epidemic risk 

mitigation, which motivated this research. 

 

2.2 BACKGROUND AND MOTIVATION 
	  
	  

This project focuses on the interaction between climate and disease incidence in 

eight countries in West Africa: Ghana, Togo, Benin, Nigeria, Chad, Niger, Mali, and 

Burkina Faso. All or parts of these countries lie within the African ‘Meningitis Belt’, and 

whose seasonal weather patterns are controlled by the West African Monsoon (WAM).  

Limited healthcare networks exist in this region, with international organizations 

providing logistic and material support for the prevention and treatment of 

meningococcal meningitis (hereafter referred to as meningitis). This includes the 

allocation of vaccines to sub-national districts given the incidence of meningitis1. 

Understanding of the interseasonal variability of the WAM system could provide more 

informed decision-support in allocating healthcare supplies given identified links 

between meningococcal meningitis epidemics and climate. One of the strongest links 

identified is with relative humidity, motiving this study. We have investigated the relative 

humidity during the transitions between the dry and monsoon seasons. The spring 

transition from dry to monsoon season marks the end of the meningitis season, and the 

fall transition from monsoon to dry season can influence the start of the proceeding 

meningitis season.  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1 International Coordinating Group on Vaccine Provision. 
http://www.who.int/csr/disease/meningococcal/icg/en/ 
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The traditional measure of monsoon variability has been seasonal rainfall. The 

region experiences periods of low and high rainfall, including the Sahelian drought of the 

1970s and 80s. Past investigation has looked at identifying causes of both the annual 

rainfall cycle and the larger decadal scale patterns. Connections have been made with 

global sea-surface temperatures, circulation patterns, along with other ocean and land-

surface processes including soil moisture.   

The WAM is a dominant low-level southwesterly flow affecting sub-Saharan 

Africa temperature and precipitation patterns. This seasonal flow advects moisture from 

the Gulf of Guinea and equatorial Atlantic onshore during the boreal summer in sharp 

contrast to the dry northeasterly Harmattan winds that exist throughout the rest of the 

year. Monsoon behavior is linked to the seasonal latitudinal migration of the intertropical 

convergence zone (ITCZ) and the intertropical front (ITF) the latter representing the 

interface between monsoon winds and Harmatton winds. Eltahir and Gong 1996 

investigated the sources of precipitation in West Africa and found the Tropical Atlantic 

contributes 23%, Central Africa 17%, and precipitation recycling within West African 

contributes 27%. The Gulf of Guinea source is controlled by the southwest monsoon 

flow, the Central African source by westerly flows generated by monsoon circulation, 

and the precipitation recycling by land surface properties. Using a Lagrangian approach, 

Nieto et al. (2006) tracked the sources of moisture for the Sahel and found that in 

summer, precipitation recycling over the Sahel was the most important. Other identified 

sources included the Tropical Atlantic, Central Africa, and the Eastern Mediterranean. 

For this last source, increased SSTs increased local evaporation and the moisture was 

advected to the Sahel through low-level transport.  Lavaysse et al. (2009) identify several 
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dynamical elements of the West African Monsoon that represent and influence its 

behavior including the West African Heat Low (WAHL), the African Easterly Jet (AEJ), 

the Tropical Easterly Jet (TEJ), and African Easterly Waves (AEW). The pressure 

gradient between the WAHL and the South Atlantic anticyclone drives the southwesterly 

monsoon winds. The strength and position of the West African Heat Low (WAHL) is 

dependent on preferential heating controlled by surface albedo and solar heating 

conditions (Ramel et al. 2006). These controls also influence the shape of the WAHL that 

can be more zonally elongated than round in some years (Lavaysse et al. 2009). Work by 

Drobinski et al. (2005) suggest that the orography of North Africa, the Hoggar Massive 

and Atlas Mountains in particular, aid in the deepening of the WAHL in late spring and 

describe its location centered over the Sahara Desert. Subsidence to the north of the 

mountains from the northern branches of the Hadley cell and the WAHL increase the 

pressure gradient rotating southeasterly winds to northeasterly winds. This behavior 

strengthens WAHL circulation, deepening the low pressure region. Monsoon onset as 

defined by Sultan and Janicot (2003) is split into two phases a “preonset” identified as the 

date the ITF reaches 15ºN (with the ITF being the zero mean zonal wind component at 

925mb). This phase represents the start of the rainy season in the region and the mean 

date of occurrence is the 14 May with 9.8 day standard deviation. Monsoon onset is 

defined by an abrupt transition or “jump” of the ITCZ from 5º to 10ºN corresponding 

with increases in rainfall and a deepening of the heat low. The mean date of occurrence is 

25 June with 9 day standard deviation. The deepening of the WAHL occurs on a mean 

date of 20 June, five days before the mean date of monsoon jump (Lavaysse et al. 2009). 
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 Nicholson (2009) presented a “new look” on WAM dynamics and suggested the 

importance of the African Easterly Jet (AEJ) and Tropical Easterly Jet (TEJ) to rainfall 

and moisture advection. She identified the region between the waves as the “tropical 

rainbelt”. Instability resulting from conservation of vorticity promotes convection in this 

region. The cross-equator pressure gradient driving monsoon flows produces in some 

years a low-level westerly jet whose strength is strongly correlated with rainfall. A weak 

pressure gradient and a weak or nonexistent westerly jet occur during dry years and a 

strong pressure gradient and strong well-defined westerly jet occur during wet years. The 

AEJ transports mesoscale convective systems (MCS) westward, which are responsible 

for large-scale precipitation in the region (Mohr and Thorncroft 2006). The speed of the 

AEJ centered at 650mb is controlled by WAHL meridional circulation (Thorncroft and 

Blackburn 1999). Uplift in the WAHL generates an anticyclone aloft whose easterly 

circulation strengthens the AEJ. The strengths of the AEJ and TEJ control the location 

and propagation of African Easterly Waves (AEW) which help organize MSC (Jackson et 

al. 2009). The number and timing of AEWs are responsible for the interseasonal 

variability of WAM rainfall. The strength of the cross-equator pressure gradient has been 

linked to sea-surface temperatures (SST) in the Gulf of Guinea. Lough (1986) identified a 

precipitation dipole between the Guinea Coast and the Sahel. Future work by Vizy and 

Cook (2002), Fontaine and Louvet (2006), and Caniaux et al. (2011) have investigated 

this dipole and linked it to SST anomalies in the Gulf of Guinea. In April, cross-equator 

southeast trade winds strengthen as the ITCZ shifts northward. These trades produce 

Ekman pumping north of the equator lowering SSTs and lead to the formation of the 

“Atlantic cold tongue”. This feature is well developed during the peak of the monsoon. 
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Positive SST anomalies in the Gulf of Guinea increase evaporation enhancing 

precipitation over the Guinea Coast. Concomitant low-level winds from the Sahara 

extends further south leading to subsidence and suppressed precipitation in the Sahel. 

Modeling studies by Koster et al. (2004) suggest a strong land-atmosphere coupling 

between soil moisture and precipitation in boreal summer. This supports the precipitation 

recycling findings mentioned above. Hagos and Cook (2008) explain the decreasing 

Sahelian rainfall in the 1980s through increased sea-surface temperatures in the Indian 

Ocean. Warming produced a region of subsidence over the Sahel blocking monsoon-

advected moisture from the Atlantic. Continued increases in Indian Ocean SSTs have 

shifted this zone westward over the Atlantic leading to an increase, though still depressed 

rainfall over the Sahel. IPCC AR4 Assessment suggests due to the increased SST in the 

tropics an amplification of the precipitation dipole between the Sahel and Guinea Coast 

with decreased rainfall over the Sahel and increased rainfall over the Guinea Coast. 

Haarsma (2005) investigate rainfall variability over the Sahel using climate reanalysis 

data and found a strong link between rainfall and mean sea-level pressure over the 

Sahara, the summer location of the WAHL. Increases in surface air temperatures suggest 

a deepened heat low and increased rainfall over the Sahel. Cook and Vizy (2006) address 

this uncertainty. There is low model agreement for much of West Africa, and the CGCMs 

used in the ensemble did not capture well the precipitation distribution or monsoon 

dynamics.  

Coinciding with the West African Monsoon region is the African meningitis belt 

(Lapeyssonnie 1963) extending through the semi-arid region south of the Sahara. Several 

studies have indicated a strong link between atmospheric moisture, in the form of relative 



	  	  	  	   19	  

humidity or specific humidity, and meningococcal meningitis susceptibility. (Molesworth 

et al. 2003) classified districts by their seasonal specific humidity profiles found that this 

classification along with land cover were the best predictors in a meningitis epidemic risk 

model. This relationship appears robust as studies by Besancenot et al. (1997) in Benin, 

Yaka et al. (2008) in Niger and Burkina Faso reached similar conclusions. This link 

between relative humidity and its predictive capability of meningitis risk is corroborated 

from preliminary analysis shown in Figure 2.1 (Hopson et. al., unpublished). 

	  

Figure 2.1: Empirical relationship between meningitis epidemic risk and relative 
humidity. Dashed red line indicates the inherent background risk of epidemic. 

	  
This figure indicates an inverse relationship between relative humidity and 

meningitis epidemic risk. The probability of exceedance is based on the mean relative 

humidity for the proceeding four weeks at a two-week lag. The red dashed line indicates 

the inherent background risk of a meningitis epidemic independent of relative humidity. 

Humidity in the region and more importantly the timing of humidity increase and 
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decrease are controlled by the WAM system. Thus, understanding monsoon dynamics to 

better predict monsoon onset and retreat in the context of increasing and decreasing 

relative humidity would allow better prediction of meningitis epidemic risk. Prior to the 

development of a conjugate vaccine for NmA meningococcal meningitis the primary 

method of treating all epidemics of meningococcal meningitis relied on the distribution of 

a polysaccharide vaccine to regions at risk for epidemics. The motivation was to contain 

the disease before it spread to surrounding districts. Districts at alert level, 5 cases in 

100,000 received the vaccine if surrounding districts had already reached the epidemic 

level of 10 cases in 100,000. If a district reached the alert level without neighboring a 

district at the epidemic level, the decision to allocate vaccine was based on vaccine 

supply and time to the end of meningitis season. This allocation, managed by the 

International Coordinating Group on Vaccine Provision (ICG), is still used to manage 

epidemics of other meningococcal meningitis serogroups, particularly NmW135. While 

prior research efforts largely focused on monsoon seasonal rainfall and its variability, this 

study is motivated by the need to provide better tools to help mitigate and manage the 

meningitis risk. To this end, here we propose to investigate the interannual variability and 

predictability of relative humidity during the onset and retreat phase of the monsoon 

season, which coincides with the retreat and onset season of meningitis risk. This 

research offers a unique and complementary perspective to the existing body of literature. 

The paper is organized as follows. The study region and data sets used are first described 

followed by the methods. Next, results from climate diagnostics and predictability are 

presented followed by results from predictive models and concluding with summary and 

discussion of the results. An understanding of the interseasonal variability of relative 
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humidity could provide better prediction of the end of the meningitis season allowing for 

more informed decisions while allocating vaccine and healthcare resources. This study 

aims to investigate this interseasonal variability. Weather station data for the time period 

1973 – 2012 were used along with climate reanalysis data to identify potential predictors 

of relative humidity behavior. Identified predictors were used to develop predictive 

models of relative humidity.  

2.3 DATA AND STUDY REGION 
	  

The study region encompasses countries falling within both the meningitis belt 

and WAM region and includes Mali, Burkina Faso, Togo, Benin, Chad, and Cameroon as 

shown in Figure 2.2. 

 

 

Figure 2.2: Study region showing weather station locations. The shading indicates the 
countries lying within the 'Meningitis Belt' as defined by the U.S. CDC2 

	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
2 U.S. Centers for Disease Control and Prevention Meningococcal Disease / 
http://wwwnc.cdc.gov/travel/yellowbook/2012/chapter-3-infectious-diseases-related-to-
travel/meningococcal-disease 
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 Daily calculated relative humidity data from the Global Historical Climatology 

Network (GHCN) were obtained through NOAAs’ Climate Data Online (CDO) portal3. 

The World Meteorological Organization (WMO) maintains the GHCN network, 

constructed from data collected by national meteorological services. These data were 

obtained for 32 stations (Figure 2.2) within the study region with at least 90% coverage 

over 1973 – 2012. Investigations of large-scale climate variability used the gridded 

NCEP/NCAR reanalysis data (Kalnay et al. 1996) and gridded Kaplan sea-surface 

temperature reconstructions (Kaplan et al. 1998). 

 

2.4 METHODS 
	  
	  

Monsoon dynamics were examined through variations in relative humidity in 

three periods defined as: monsoon onset, 15 May – 30 June; monsoon peak, 30 June – 15 

September; and monsoon retreat, 15 September – 15 October. These periods are similar 

to those selected by the African Monsoon Multidisciplinary Analysis for their Special 

Observing Period (Redelsperger et al. 2006). For each period mean relative humidity was 

computed for each station and year providing a forty-year time series. The seasonal 

relative humidity climatologies for three stations within the study area are shown in 

Figure 2.3. 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
3 NOAA CDO: http://www.ncdc.noaa.gov/cdo-web/ 
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Figure 2.3: Mean seasonal relative humidity profiles for three locations. Vertical lines 

show the onset and retreat periods 

	  
A K-means cluster analysis (Scott and Knott 1974) was performed separately for each 

period to identify the spatial variability and coherence of relative humidity. In this, 

locations are grouped in homogeneous clusters such that within cluster variability is 

minimum and between-cluster variability is maximum. A cluster index was then 

computed by averaging the relative humidity across stations in each cluster, to produce 

representative time series for each spatial region (cluster).  

The cluster indices of relative humidity for each period were then correlated with 

a suite of contemporaneous global circulation fields including sea level pressure, zonal 

and meridional winds at 925mb, 600mb and 200mb, sensible and latent heat fluxes using 

the reanalysis data set; and with global Kaplan SST. The resulting spatial correlation 

maps were used to identify the large-scale ocean and atmospheric mechanism that drive 

the variability of relative humidity in the study region. Composite maps of selected fields 
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corresponding to ‘high’ and ‘low’ relative humidity years were also produced to 

understand the physical links to extremes in relative humidity. To explore the 

predictability of relative humidity in the region lagged correlation maps were produced 

with circulation fields and SST – in that the relative humidity in a period is correlated 

with large-scale fields from preceding time periods. For example, the onset period 

relative humidity index is correlated with large-scale fields from preceding April, March, 

February and January. Regions of high correlation values are used to develop potential 

predictors by spatially averaging over this region. The predictors are then used in a 

generalized linear modeling framework to develop predictive models at different lead 

times. This method has been widely used in application to western US streamflow 

forecasting (Grantz et al. 2005; Regonda et al. 2006; Bracken et al. 2010).     

 

2.5 RESULTS AND DISCUSSION 
	  
	  

2.5.1 Spatial Variability 
	  
	  

A K-means cluster analysis was performed on the average relative humidity at all 

the locations for the onset, peak and retreat periods. The data is grouped into several 

clusters and for each the within cluster variance is computed. The number of clusters 

where this variance drops off and stabilizes is the optimal number selected. Figure 2.4 

shows the within cluster variance versus number of clusters for the three periods. 
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                      (a)                                            (b)                                            (c) 

Figure 2.4: K-means cluster diagnostics for (a) Onset, (b) Peak, and (c) Retreat periods 

 

It can be seen that the variance drops off around three clusters in all the periods, 

indicating that higher number of clusters is unlikely to result in distinct homogeneous 

clusters. The spatial locations of the clusters in the three periods are shown in Figure 2.5. 

	  

	   	   	  	  	  	  (a)          (b) 
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(c) 

Figure 2.5: K-means station clusters for onset (a), and retreat (b) periods 

 
	  
 In all the periods the three clusters exhibit a clear north-south spatial pattern with 

stations grouped along east-west. The north-south stratification is consistent with 

movement of the ITCZ through the monsoon season and the background strong 

climatological humidity gradient in the region. The stations in the three clusters for the 

onset and retreat periods are almost identical with slight differences only at the cluster 

boundaries. This similarity can be attributed to the onset northward and retreat southward 

movement of the ITCZ being fairly uniform. Slight differences between the onset ITCZ 

transition, with its ‘jump’ from ~10º to 15º N in June, and the retreat ITCZ transition, 

with its smooth transition explain the slight variations. During the peak season the ITCZ 

is within 10º to 15º N latitudes, hence the diffusion of cluster boundaries. Several of the 

stations found in the northern cluster during onset and retreat are found in the middle 

cluster during peak monsoon period. Only the three most northern stations, Tombouctou, 

Mali, Gao, Mali and Agadez, Niger, all located close or within the Sahara remain in the 

northern cluster in all three periods. The relative humidity is then averaged over the 

stations in each cluster to obtain cluster indices for the three periods and a time series 

their standardized values are shown in Figure 2.6.  
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         (a)              (b)     

 
                (c) 

Figure 2.6: Standardized relative humidity timeseries for onset (a), peak (b), and retreat 
(c) 

 

  
Although the actual relative humidity varies between each cluster, the figure shows that 

they all have similar temporal variability (not shown). All three periods exhibit an 

upward trend from ~1988 through 2012, which corresponds to the upward trend found in 

the Sahel rainfall index (Janowiak 1988). The Sahel drought is also clearly visible in 

Figure 4 during the peak period, with a strong dip in relative humidity in the mid 1980s. 
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2.5.2 Links to Large-Scale Climate 
 

In order to understand the drivers of year-to-year variability of the relative 

humidity, the cluster indices were correlated with large-scale climate fields of the 

concurrent period. In particular, we selected five variables to correlate – surface 

temperature, mean sea level pressure, zonal winds, meridional winds, and global SST. 

The sea level pressure and average winds were selected to capture the links to 

atmospheric circulation such as the African Easterly Jet and Tropical Easterly Jet; while 

the surface temperatures and SSTs are for large-scale oceanic features such as ENSO, 

Atlantic equatorial patterns etc.  Figure 2.7 shows the correlations with each of the 

variables’ fields for the three clusters during the onset period.  

 

 

 (a) 
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(b) 

 

 

(c) 

	  

Figure 2.7: Onset north (a), middle (b), and south (c) cluster correlation maps with 
surface temperature (left), mean sea-level pressure (middle), 600mb zonal winds (right), 

and global sea-surface temperature (bottom). 
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In the onset period, all three clusters have positive correlation with the Sahara desert 

surface temperature, and negative correlation with the Guinea Coast surface temperature. 

This negative correlation extends to Gulf of Guinea and South Atlantic sea-surface 

temperatures. This dipole pattern of positive correlation over land coupled with negative 

correlation to the south and over the ocean is indicative of a strong land-ocean thermal 

gradient, a key component of the monsoon. The correlation pattern with sea level 

pressure is opposite and consistent – over the warmer land of the Sahara, the approximate 

location of West African Heat Low, the pressure is low leading to a negative correlation, 

with the opposite holding true to the south and along the Guinea Coast. With SSTs, a 

diploe pattern is apparent in the tropical Atlantic Ocean, with positive correlation in the 

northern tropical Atlantic and negative to the south. This dipole is well known as 

influencing the rainfall over North Eastern Brazil and Western Africa (Nobre and Srukla, 

1996). In the Pacific there is a weak positive correlation in the central and eastern tropical 

Pacific and a weak negative correlation in the west – reminiscent of ENSO pattern.  The 

correlation patterns are remarkably similar for the middle and southern clusters (Figures 

2.7 b-c). 

Retreat period correlations are shown in Figure 2.8.  
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 (a) 

 

 

(b) 
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(c) 

	  

Figure 2.8: Retreat north (a), middle (b), and south (c) cluster correlation maps with 
surface temperature (left), mean sea-level pressure (middle), 600mb zonal winds (right), 

and global sea-surface temperature (bottom). 

 

For all clusters, the land temperature correlations show positive correlation over 

western Africa similar to that in the onset period (Figure 2.7), but a negative correlation 

to the south that is much weaker. The correlations with SLP also mirror this (Figure 2.8). 

The correlation pattern with 600mb zonal winds shows a stronger negative correlation 

over the region of the African Easterly Jet, also the location of the ITCZ (Figure 2.8). 

This is stronger and coherent than its counterpart in the onset period (Figure 2.7). This is 

due to the fact the most of the activity is on the land as the monsoon period starts to wind 

down. The correlation with SST is much weaker than that observed during onset – this is 

consistent with the fact that during the end of the monsoon season the tropical Atlantic 

SST gradient is much diminished as the ITCZ is in the northern hemisphere and on its 

way south – and the gradient gets established in fall.  

Composite analysis was performed to investigate the large-scale climate features 

responsible for relative humidity extremes. For this, we selected years with ‘high’ and 
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‘low’ relative humidity, outside of one standard deviation away from the mean, for a 

given period and maps of climate variables averaged over these years are produced. We 

show representative composite maps for the south cluster for onset (Figure 2.9) and 

retreat periods (Figure 2.10).  

 

 

	  

Figure 2.9: Onset south cluster composite plots showing surface temperature (top) and 
925mb winds (bottom) for low years (left), high years (middle) and the low – high years 

(right) 
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Figure 2.10: Retreat south cluster composite plots showing surface temperature (top) and 
925mb winds (bottom) for low years (left), high years (middle) and the low – high years 

(right) 

 

Composite maps of surface temperature for low years for onset period (Figure 

2.9) shows a cooler land and warmer ocean, indicative of a weaker land-ocean 

temperature gradient - the winds show an anomalously southerly flow consistent with the 

temperature pattern. During high years the patterns are reversed, although the warming 

over land is a bit stronger than during low years, also the wind pattern is weaker than that 

of the low years. The asymmetry in the relationship during low and high years indicates 

nonlinearity in the relationship and the difference maps in the same figure show this. 

These patterns are similar during retreat (Figure 2.10) and also for other clusters (see 

Appendix A).  

 

2.5.3 Predictability 
 

 

As mentioned in the motivation, relative humidity during onset and withdrawal 

periods are important for the retreat and onset of meningitis season, respectively - thus, 

the ability to predict the relative humidity during these periods is of specific interest. To 
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this end, predictors and forecasting models are developed understand the predictability 

and the potential long-lead skill. To identify predictors, the cluster time indices are 

correlated with large-scale climate variables from preceding periods. We selected three 

lead times to issue forecasts for the onset – i.e., the first of Mar, Apr and May, giving a 

lead time of 75, 45 and 15 day lead times, respectively. Figure 2.11 shows the correlation 

between the onset index of the southern cluster with January climate variables.  

	  

    (a)          (b)               (c)    (d) 

Figure 2.11: Onset South Cluster correlation plots with January (a) Surface Temperature, 
(b) MSLP, (c) 200mb Zonal Winds, (d) 600mb Meridional Winds 

 
 

It can be noticed that the correlation patters with surface temperature, sea level pressure 

and winds are similar to the correlation patterns seen during the concurrent period (Figure 

2.7) – indicating that the large scale patterns are persistent and thus, lending potential 

predictability. The boxes indicate regions of high absolute correlation. Correlations with 

climate variables on May 1 (Figure 2.12) also show similar patterns.  
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      (a)               (b)         (c) 

Figure 2.12: Onset South Cluster correlation plots with April (a) SST, (b) MSLP, (c) 
200mb Zonal Winds 

 

Regions with high absolute correlation, approximately 0.4 or above in these maps are 

identified and the corresponding climate variables averaged over these regions provide 

potential predictors. Figures 2.13 and 2.14 show the correlation plots for June and August 

used to select retreat predictors.  

 

        (a)      (b)            (c) 

Figure 2.13: Retreat South Cluster correlation plots with June (a) SST, (b) 600mb Zonal 
Winds, (c) 200mb Zonal Winds 
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       (a)                                              (b) 

Figure 2.14: Retreat South Cluster correlation plots with August (a) MSLP, (b) 200mb 
Zonal Winds 

	  
The red boxes in Figures 2.11 – 2.14 show the regions used to generate these predictors. 

The list of predictors identified for the different lead times and for onset and withdrawal 

are shown in Tables 2.1 and 2.2.  

Table 2.1: Onset Period model predictors 

Predictor Cluster Parameter Time 
Period 

X1 
(º) 

X2 
(º) 

Y1 
(º) 

Y2 
(º) 

oaj01 South Surf. 
Temp. January -16 4 14 25 

oaj02 South MSLP January -24 17 -40 -26 
oaj03 South 600V January 2 16 8 18 
oaj04 South 200U January 11 40 12 21 
oaf01 South SST February -60 -35 5 17 
oaf02 South SST February -20 8 -20 -8 
oam01 South SST March -24 12 -24 -10 
oam02 South MSLP March -28 -3 -38 -14 
oaa01 South SST April -35 10 -22 -4 
oaa02 South MSLP April -20 5 -23 -2 
oaa03 South 200V April -8 -2 -15 6 

        obj01 Middle Surf. 
Temp. January -16 6 14 25 

obj02 Middle MSLP January -20 20 -40 -26 
obj03 Middle 925V January -11 -1 8 30 
obj04 Middle 600V January 4 16 7 20 
obj05 Middle 600V January -20 -4 18 28 

	  
	  



	  	  	  	   38	  

obj06 Middle 200V January 10 22 20 30 
obj07 Middle 200U January 16 41 11 18 
obf01 Middle SST February -35 10 -20 -10 
obm01 Middle SST March -40 10 -22 -10 
obm02 Middle MSLP March -31 -2 -33 -15 
oba01 Middle MSLP April -22 3 -20 -5 
oba02 Middle MSLP April -12 8 4 10 

        ocj01 North Surf. 
Temp. January -16 10 13 26 

ocj02 North MSLP January -48 -4 16 32 
ocj03 North MSLP January -20 16 -40 -30 
ocj04 North 925V January -11 -1 8 30 
ocj05 North 600V January 6 16 8 18 
ocj06 North 200V January 13 25 20 30 
ocj07 North 925U January -18 -10 10 27 
ocj08 North 600U January -20 -4 22 27 
ocf01 North 600V February -14 -2 1 9 
ocm01 North SST March -40 -10 -25 -10 
oca01 North SST April -30 -10 -18 -7 
oca02 North MSLP April -13 10 4 11 
oca03 North MSLP April -22 8 -23 -13 

 

Table 2.2: Retreat Period model predictors 

Predictor Cluster Parameter Time 
Period 

X1 
(º) 

X2 
(º) 

Y1 
(º) 

Y2 
(º) 

ral01 South Surf. 
Temp. July 16 24 -2 6 

ral02 South SST July -137 -113 -19 -9 
ral03 South SST July -40 -18 -31 -20 
ran01 South SST June -126 -138 -16 -7 
ran02 South 600V June -4 4 7 15 
ran03 South 200V June -9 -2 5 11 
ran04 South 200V June -19 -9 16 28 
ram01 South MSLP May -80 -48 -15 -10 
ram02 South 925V May -9 -1 17 28 
ram03 South 925V May -30 -13 -1 10 
ram04 South 200V May -19 -8 10 30 
ram05 South 925U May -12 0 9 13 
ram06 South 925U May -16 -2 16 20 



	  	  	  	   39	  

raa01 South MSLP August -42 -11 21 35 
raa02 South 200V August 16 24 7 20 

                
rbm01 Middle 925V May -12 0 16 24 
rbm02 Middle 200V May -22 -13 18 28 
rbm03 Middle 925U May -16 -2 16 20 
rbm04 Middle 600U May 2 14 19 24 
rbn01 Middle 200U June -25 -10 -20 -5 
rbl01 South MSLP July -40 -24 -28 -18 
rbl02 Middle 200U July -20 3 13 20 
rba01 Middle 200V August 10 25 19 29 
rba02 Middle 600U August 11 28 15 21 

                
rcm01 North 925V May -12 0 15 24 
rcm02 North 600U May -16 -2 14 19 
rcn01 North 600V June -4 4 6 15 
rcn02 North 200U June -20 10 -17 -3 
rcl01 North MSLP July -45 -15 -30 -13 
rcl02 North 200U July -22 -4 11 21 

rca01 North Surf. 
Temp. August -14 2 12 19 

rca02 North Surf. 
Temp. August 12 23 6 15 

rca03 North Surf. 
Temp. August -39 -20 24 38 

rca04 North 600U August 16 28 16 21 
 

A ‘best’ linear model was fitted for each lead time and for each period of interest. A 

generalized linear modeling (GLM) approach was selected, as it is flexible and general. In 

GLM (McCullagh and Nelder 1989), the response or the dependent variable Y, can be assumed 

to be a realization from any distribution in the exponential family with a set of parameters. A 

smooth and invertible link function transforms the conditional expectation of Y to the set of 

predictors.  

G(E(Y)) =  η = f (X) + ε = XβT+ ε          (1) 
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G(.) is the link function,  X is the set of predictors or independent variables,  E(Y) is the 

expected value of the response variable and ε is the error. In a linear model the function G(.)is 

identity. Depending on the assumed distribution of Y there exist appropriate link functions (see 

McCullagh and Nelder 1989). The model parameters, β, are estimated using an iterated 

weighted least squares method that maximizes the likelihood function as opposed to an 

ordinary least squares method in linear modeling. Here we fit a linear regression model – i.e., 

normality of variable Y and identity link function. 

Models were fitted with different combination of predictors and for each the AIC was 

calculated.  The best model was selected as the one that minimizes the Akaike Information 

Criteria (AIC). The AIC is calculated as follows: 

𝐴𝐼𝐶 = 2𝑘 − 2𝐿         (2) 

where L is the logarithm of the likelihood function of the model with the predictor subset under 

consideration and k, is the number of parameters to be estimated in this model and it serves as a 

penalty. The AIC penalizes models with more number of predictors thus favoring parsimony. 

For the selected best model two performance metrics were computed – fitting R2 which 

explains the variance captured by the model and cross validated R2 in this, an observation is 

dropped, the model fitted using the rest of the observations and the dropped pointed is 

predicted. This indicates the variance explained by the model in a ‘predictive’ mode. To further 

assess the predictive capability of the models we performed leave 10% out cross-validation – 

in this 10% of observations are dropped at random and they are predicted using model fitted on 

the rest of the data. A final measure of model fit, root mean squared error (RMSE) is computed 

using the same drop 10% method as above. This is repeated 1,000 times and the median RMSE 

is selected, providing a robust assessment of the predictive skill. 
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The best model (or set of best predictors) based on AIC selects 2-3 predictors for almost 

all the lead times except for a few cases during withdrawal where it selects 4 predictors. 

The predictor sets and model skill scores can be found in Tables 2.3 (onset period) and 

2.4 (retreat period).  

Table 2.3: Onset Period GLM model statistics and predictor sets. Predictors from Table 
2.1 above. 

Onset South Cluster 

Lead 
Time 

Predict 
Date 

Model 
Fit R2 

CV 
Model 
Fit  R2 

Median 
RMSE 

Predictor 
1 

Predictor 
2 

Predictor 
3 

75 Days 1-Mar 0.442 0.352 2.279 oaj01 oaj02 n/a 
45 Days 1-Apr 0.472 0.378 2.07 oaf01 oaf02 oam02 
15 Days 1-May 0.471 0.365 1.987 oaa02 oaa03 oam02 

                
Onset Middle Cluster 

Lead 
Time 

Predict 
Date 

Model 
Fit R2 

CV 
Model 
Fit  R2 

Median 
RMSE 

Predictor 
1 

Predictor 
2 

Predictor 
3 

75 Days 1-Mar 0.523 0.45 2.639 obj01 objo2 n/a 
45 Days 1-Apr 0.32 0.238 2.681 obf01 obm02 n/a 
15 Days 1-May 0.367 0.276 2.601 oba02 obm02 n/a 

                
Onset North Cluster 

Lead 
Time 

Predict 
Date 

Model 
Fit R2 

CV 
Model 
Fit  R2 

Median 
RMSE 

Predictor 
1 

Predictor 
2 

Predictor 
3 

75 Days 1-Mar 0.582 0.491 2.101 ocf01 ocj01 ocj03 
45 Days 1-Apr 0.301 0.186 2.693 ocf01 ocm01 n/a 
15 Days 1-May 0.345 0.229 2.571 oca03 ocm01 n/a 
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Table 2.4: Retreat Period GLM model statistics and predictor sets. Predictors from Table 
2.2 above. 

 

 

Furthermore, predictor sets were remarkably consistent between the south and middle 

clusters, notable exceptions being the 1 April south cluster model containing February 

North Atlantic SST, and the 1 May south cluster model containing April Guinea Coast 

200mb meridional winds. Guinea Coast 600mb meridional winds were found in the north 

cluster replacing South Atlantic MSLP in the 1 March and 1 April models. Plots of 

observed, estimated and cross-validated estimates of south onset cluster relative humidity 

are shown in Figure 2.15.  

Retreat South Cluster 

Lead 
Time 

Predict 
Date 

Model 
Fit R2 

CV 
Model 
Fit  R2 

Median 
RMSE 

Predictor 
1 

Predictor 
2 

Predictor 
3 

Predictor 
4 

75 Days 1-Jul 0.596 0.468 1.729 ram02 ram03 ran02 n/a 
45 Days 1-Aug 0.521 0.36 1.84 ran03 ran04 ral01 ral02 
15 Days 1-Sep 0.488 0.358 1.732 ral03 raa01 raa02 n/a 

         Retreat Middle Cluster 

Lead 
Time 

Predict 
Date 

Model 
Fit R2 

CV 
Model 
Fit  R2 

Median 
RMSE 

Predictor 
1 

Predictor 
2 Predictor 3 Predicto

r 4 

75 Days 1-Jul 0.74 0.631 3.181 rbm01 rbm03 rbm04 rbn01 
45 Days 1-Aug 0.359 0.24 4.881 rbn01 rbl01 n/a n/a 
15 Days 1-Sep 0.534 0.302 4.719 rbl01 rba01 rba02 n/a 

         Retreat North Cluster 

Lead 
Time 

Predict 
Date 

Model 
Fit R2 

CV 
Model 
Fit  R2 

Median 
RMSE 

Predictor 
1 

Predictor 
2 Predictor 3 Predicto

r 4 

75 Days 1-Jul 0.7 0.573 2.709 rcm01 rcm02 rcn01 rcn02 
45 Days 1-Aug 0.534 0.415 3.305 rcn01 rcn02 rcl01 n/a 
15 Days 1-Sep 0.511 0.401 3.392 rcl01 rca03 rca04 n/a 
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   (a)                  (b)                    (c) 

 

   (d)                  (e)                   (f) 

Figure 2.15: Onset South Cluster GLM models showing direct fit values and cross-
validated values. (a), (b), and (c) show the cross-validated model fits for 1 March, 1 

April, and 1 May. (d), (e), and (f) show the predicted vs. observed direct fit values for the 
1 March, 1 April, and 1 May models (solid line indicates 1:1, dashed lines show ±5%) 

 

It can be seen that the model estimates and predicts the values very well at all the lead 

times. The corresponding scatter plots of the observations and estimates (Figure 2.15 d-f) 

shows that almost all of the predictions fall within the 5% of the observed values (dotted 

lines indicate ±5% lines). It is interesting to note that the models exhibit good skill at all 

lead times, especially at 74-day lead time – as can be seen by the R2 cross validated R2 in 

Tables 2.3 and 2.4.   

 



	  	  	  	   44	  

 

            (a)                (b)                (c) 

                    

           (d)              (e)              (f) 

Figure 2.16: Retreat South Cluster GLM models showing direct fit values and cross-
validated values. (a), (b), and (c) show the cross-validated model fits for 1 March, 1 

April, and 1 May. (d), (e), and (f) show the predicted vs. observed  direct fit values for 
the 1 March, 1 April, and 1 May models (solid line indicates 1:1, dashed lines show ±5%) 

 

Forecasts of retreat period relative humidity also show good skill at all lead times 

including long lead. The retreat period model predictor sets are more varied; South 

Atlantic MSLP is a predictor for the middle and north clusters, but is not seen in the south 

cluster (Table 2.4). Both the south and north models contain predictors from the North 

Atlantic, MSLP, and SST respectively. Land surface-atmosphere interactions are 

responsible for the majority of the predictors, with Guinea Coast 925mb meridional 

winds, central Africa 600mb and 200mb winds, and central Africa surface temperature 
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showing up in the predictor sets. There are no other common predictors found between 

the models. Model and cross-validated estimates capture the observed variability very 

well and but one estimate fall within 5% of the observed values (Figure 2.16). 

 

2.6 SUMMARY 
 

The model results indicate skill in predicting relative humidity from climate 

variables. The predictions provide the mean relative humidity for the period of interest, 

which can inform an earlier or later end (or start) to the meningitis season. The best 

parameter sets for the models indicate that the strengths of the WAHL and South Atlantic 

anticyclone are the largest controls on relative humidity during monsoon onset. 

Secondary controls include the Gulf of Guinea SSTs, which influence the local MSLP 

and winds, and modify the cross-equator pressure gradient responsible for monsoon flow. 

Another secondary influence is the strength of the North Atlantic anticyclone, which 

along with the WAHL direct the strength of the hot, dry Harmattan winds from the 

northeast. These secondary influences appear to be responsible for much of the 

intercluster variability. Combined they have a large influence on the location of the 

Intertropical Front (ITF), the boundary between monsoon and Harmattan flows. During 

monsoon retreat, the strength of the South Atlantic anticyclone remains important, but 

surface – atmospheric interactions become the secondary controls. There is a lot of 

variability surrounding the predictors identified for each model; given the complexity of 

these interactions, become more difficult. This knowledge offers the International 

Coordinating Group a better understanding of the start and end of the meningitis season 
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which can provide a more informed decision making process while allocating vaccine in 

the region.  
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3 MENINGOCOCCAL MENINGITIS INCIDENCE FORECASTING 
 

3.1 ABSTRACT 
 

 

Meningococcal meningitis is endemic to Sub-Saharan West Africa and the region 

often sees widespread epidemics during the dry season. Incidence has been linked to 

environmental factors including relative humidity and this study attempts to use these 

links to forecast meningitis incidence in Nigeria, Chad, Benin, and Togo. Here we 

employed Poisson regression within a Generalized Linear Modeling framework to 

forecast incidences in the region using relative humidity and climate variables as 

predictors. We obtained very good skills at forecasting weekly meningitis incidence at 

lead times of 4, 8, and 12 weeks in the above four countries. Skillful forecasting of 

incidence could provide the international community managing meningitis outbreaks 

with additional decision-making tools allowing for better allocation of resources, better 

response times, and ultimately better disease prevention. 

 

3.2 BACKGROUND AND MOTIVATION 
 

Inland West Africa lies within the African ‘meningitis belt’ as defined by 

Lapeyssonnie (1963), a region where meningococcal meningitis (referred to hereafter as 

meningitis) is endemic. The belt experiences frequent epidemics, occurring every 7-14 

years. Neisseria meningitidis, a bacterium, is the primary cause of meningitis, and is 

found in several serogroups. The ‘A’ serogroup (Nm A) is responsible for 80 – 85% of 

the cases in sub-Saharan Africa (WHO Fact Sheet Nº141), with the ‘W135’ serogroup 

(Nm W135) responsible for a majority of the remainder. The International Coordinating 

Group for Vaccine Provision (ICG) manages current disease mitigation efforts. As its 

name suggests, the ICG is primarily responsible for appropriating and distributing 

vaccine to the region. The ICG was established in 1997 following major meningitis 

outbreaks in 1995 and 1996 and is a partnership between the World Health Organization 

(WHO), Médecins Sans Frontières (MSF) and the International Federation of the Red 
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Cross and Red Crescent Societies. The ICG collaborates with technical partners including 

the U.S. Centers for Disease Control and Prevention. The decision-making structure of 

the ICG for mitigation efforts is outlined on the 22 September 2000 issue of Weekly 

epidemiological record, published by WHO (see Table 3.1). 

 

 

Table 3.1: ICG meningitis monitoring and treatment strategy (from Weekly 
epidemiological record, 22 September, 2000, WHO) 

 
 

Incidence rate thresholds trigger reactive vaccination using a bivalent Nm A/C 

polysaccharide vaccine or a trivalent Nm A/C/W135 polysaccharide vaccine. A minimum 

of one week is needed to deploy resources to the district. Full immunological response 

takes roughly a week following the 1-2 weeks required for vaccination itself. For reactive 

campaigns to have an effect, vaccination needs to begin before peak incidence occurs. 

Lewis et. al. (2001) found the sensitivity and specificity of different thresholds using a 
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sub-district case data for Mali. The change in epidemic threshold from 15 to 10 cases per 

100,000 provided roughly an additional week for vaccination. Forecasts of meningitis 

cases at longer lead times could provide the ICG with even greater additional time to 

respond to epidemics. For each week delay in vaccination, there is a 3-8% drop in the 

number of cases prevented (Lewis et. al. 2001).  

Environmental factors have long been thought to influence meningitis incidence. 

Molesworth et al. (2003) compared historical cases of meningitis by district to a 

classification of environmental factors based on their seasonal cycle. Absolute humidity 

along with landcover provided the most robust prediction meningitis cases. Thomas et. al. 

(2006) used environmental factors to predict the annual incidence anomaly of meningitis 

by district in a study region including parts of Burkina Faso, Niger, Mali, and Togo. The 

best predictors of the incidence anomaly, found from annual cases between September 

and August, were August and January rainfall anomalies, and October and April dust 

anomalies. The strongest relationship when classified by landcover existed in savannah 

regions, with a linear R2 value of 0.433. For all landcover types the R2 value was 0.38. 

This model did not account for the effect of vaccination, underreporting of cases, and 

relied on satellite derived climate data, but still provided robust prediction of meningitis 

case anomalies. Perhaps the strongest demonstrated link between meningitis and 

environmental factors has been in identifying the start and end of the meningitis season. 

Sultan et. al (2005) investigated the start of the meningitis season, comparing it to the 

strength of the Harmattan winds. The seasonal start of season was strongly related to the 

week with highest wind speed at 1000mb (R2 = 0.85) based on 9 years of data. Similar 

finding have been demonstrated by researchers focusing in smaller regions, including 

Besancenot et al. (1997) in Benin, Yaka et al. (2008) in Niger and Burkina Faso. 

  A conceptual model of meningitis epidemic occurrence was presented by Muller 

et. al. (2010) and is shown in Figure 3.1.  
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Figure 3.1: Conceptual meningitis model from Mueller et. al. (2010) 

	  
The model attempts to explain the large seasonal variation in meningitis incidence 

at the community and regional levels. In this model, environmental factors are 

responsible for a 10-100-fold increase in incidence, from an endemic to a hyperendemic 

state, brought about by a change to a dry dusty climate. Co-factors like upper respiratory 

infection, which reduces a body’s mucosal defenses in the nose and throat provide 

conditions that encourage epidemics, with incidence increasing again 10-100-fold above 

the hyperendemic level. Large-scale prevalence of these cofactors and / or variation in 

meningitis strains produce regional epidemics: those that have historically occurred every 

7 – 14 years in the ‘Meningitis Belt’.  
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Figure 3.2: New Conceptual model of meningitis incidence 

	  
Figure 3.2 shows our conceptual model of meningitis incidence, identifying three classes 

of impacts: social, biologic, and physiological. We have made no attempt to quantify the 

relative impacts of each of the drivers, only to indicate their existence.  

Environmental factors, wind, dust, humidity, and temperature, influence 

meningitis incidence in a number of ways. Socially, conditions during the dry season 

encourage individuals to spend more time indoors. As meningitis is transmitted person to 

person, this greater interpersonal contact offers more opportunity for disease 

transmission. Carriage rates of the same serogroup were higher for immediate family than 

for contacts outside the home suggesting that this increased opportunity does in fact 

result in higher transmission (Greenwood et. al. 1978; Hassan-King et. al. 1988; Gugnani 

et. al. 1989; Cheesbrough et. al. 1995; Boisier and Djibo 2006; Trotter and Greenwood 

2007).  
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Direct physiological effects of low humidity, high temperature, and dust can 

irritate the mucosal membrane. This irritation, or upper respiratory infection can lead to 

impaired mucosal defenses, providing increased pathways into the body for meningitis. 

Asymptomatic carriage of meningitis is common and this pharyngeal carriage can induce 

natural immunity (Trotter and Greenwood, 2007). Kremastinov et. al. (1999) suggest this 

immunity can be caused by carriage of unencapsulated Nm (non-groupable - NG). 

Mueller et. al. (2008) examined the carriage of Nm NG and found it increases with 

humidity, from a rate of 1.6% in February to a rate of 8.6% in May / June. Carriage of 

virulent  (encapsulated) meningitis remained constant at a rate of ~ 1.5%. The variation 

of Nm NG with humidity and the non-variation of virulent meningitis suggest that the 

ratio of the two could influence meningitis incidence.  

Figure 3.2 above suggests that environmental factors, both direct and indirect, 

have a large influence on meningitis incidence. In Broman et. al. 2013 we investigated 

the interseasonal variability of one of these environmental factors, relative humidity, 

during monsoon onset and monsoon retreat. We showed skill in predicting this variability 

from climate variables and in this paper use both relative humidity and these climate 

variables to predict meningitis incidence.  

Given our success in predicting relative humidity at long lead times, we looked to 

extend this prediction to meningitis incidence. Relative humidity, the identified climate 

predictors of relative humidity from Broman et. al. (2013), and prior meningitis incidence 

are used to predict weekly incidence of meningitis at lead times of 4, 8, and 12 weeks, 

useful for planning mitigation strategies. The data and basic diagnostics are first 

presented followed by the prediction method and validation. Results from application to 

incidence data from the four countries and discussion conclude the paper.   

 

3.3 DATA AND DIAGNOSTICS 
 

Three data sets are used - meningitis incidence; relative humidity from meteorological 

stations and large-scale climate data. The meningitis case data for a 5-7 year period 

spanning 2005 – 2012, were provided by the World Health Organization These data 

contains weekly case counts for four countries, Togo, Benin, Nigeria, and Chad which 
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are collected from sub-national districts and aggregated each week. The data is sparse in 

time as can be seen in Figure 3.3 that shows the percentage of districts reporting 

meningitis cases each week. Only weeks with at least 50% reporting were used in this 

analysis.  

 

	  
Figure 3.3: Meningitis case reports by week showing the percentage of districts within a 
country reporting for Nigeria (a), Chad (b), Benin (c), and Togo (d). The horizontal red 

line indicates 50%. 
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In order to identify the seasonal variability of meningitis incidences and to focus 

our analysis on the periods of importance, weekly average meningitis incidences (i.e., 

weekly climatology) were computed and shown in Figure 3.4 for Nigeria, Chad, and 

Togo + Benin combined. Two periods of interest are apparent: peak meningitis case 

season from weeks 1 to 13, and shoulder meningitis case season from weeks 14 to 20 

(roughly 1 January to 31 March and 1 April to 20 May), indicated by the dashed boxes – 

these periods are defined as P1 and P2, respectively. The peak season follows the 

withdrawal period (Sep 15 – Oct 15) of the West African Monsoon and the shoulder 

season precedes the monsoon onset period (May 15 – Jun 30). Weekly data from these 

two periods were used in forecasting, described later. Nigeria and Chad have higher 

meningitis cases due to their bigger population. Benin and Togo have similar meningitis 

case climatologies and they are small countries that are neighbors. Therefore we decided 

to combine these two together for the forecasting analysis described later.  
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Figure 3.4: Mean weekly meningitis cases for Nigeria (a), Chad (b), Benin (c), and Togo 
(d). Dashed boxes indicate the peak meningitis period (left) and the shoulder meningitis 
period (right). 

 

The World Meteorological Organization’s Global Historical Climatology 

Network (GHCN) provided daily calculated relative humidity data. This network is a 

compilation of data from national meteorological services. In Chapter 2 we identified 

homogeneous clusters of stations from this network by their relative humidity during the 

monsoon onset and retreat periods using K-means clustering technique shown in Figure 
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3.5.  Relative humidity was averaged across the stations in each cluster to develop 

‘cluster index’ representative of each cluster. 

 

 
   (a)              (b) 

Figure 3.5: K-means identified station clusters for 15 May – 30 June relative humidity (a) 
and 15 September – 15 October relative humidity 

The monsoon retreat period relative humidity is an indicator of residual moisture that will 

be present during period P1, while the onset season relative humidity impacts the timing 

and number of meningitis cases. Figure 3.6 shows the weekly time series of the cluster 

relative humidity indices during periods P1 and P2. 

 

	  
Figure 3.6: Cluster Index relative humidity time series showing north (green), middle 
(blue), and red (south) for weeks in peak meningitis (P1) period (a) and shoulder 
meningitis (P2) period (b) 
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The weekly cluster index relative humidity time series were correlated with weekly 

meningitis case counts at several lags for each country and are shown in Figure 3.7. It can 

be seen that there is a strong negative correlation between relative humidity and 

meningitis case counts, as is widely understood. As shown in our conceptual model, 

lower relative humidity leads to increased incidence in a number of ways, and this figure 

illustrates this relationship. Furthermore, the correlation is highest during 0-4 week lags.    

 

	  
Figure	  3.7: Correlation between peak period meningitis case counts and weekly lagged 

relative humidity for Nigeria (a), Chad (b1 – b2), Benin (c), and Togo (d). 

Black is north cluster RH, red is middle cluster RH, and blue is south cluster RH. 

 

3.4 FORECAST METHODOLOGY  
	  
	  
 The Generalized Linear Modeling (GLM) framework (McCullagh and Nelder, 

1989) is applied in this study for modeling and forecasting meningiris cases. The 
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implementation was done within R (2.15.2)4. Below we provide a brief description of the 

model and refer the readers to this and other references. 

 

3.4.1 Model 
	  
	  

GLM provides a statistical framework for modeling variables of different types 

(continuous, discrete, categorical, etc.). The assumption in GLM is that the response 

variable Y is realized from a distribution in the exponential family which is flexible to 

model a range of discrete and continuous distributions. A specified link function relates 

the expected value of Y to a set of predictors (McCullagh and Nelder, 1989).  

 

G(E(ii)) = XiβT+ ei       for i = 1, 2, …, N          (1) 

 

G(.) is the link function,  Xi is the set of predictors or independent variables,  E(Y) is the 

expected value of the response variable, βT  is the transposed vector of fitted model 

parameters, and ei is the error. Depending on data type, the appropriate link function is 

selected. Poisson distribution using the log link function was selected to model 

meningitis incidence as they are discrete data – this is also known as ‘Poisson 

Regression’  

 

                                       Log(λi) = XiβT+ e  for i = 1, 2, …, N                     (2) 

 

where λi is the parameter of the Poisson distribution for observation ‘i’. An iterative least-

squares method provides estimates of the model parameters, β, maximizing the likelihood 

function. Akaike Information Criteria (AIC, Akaike, 1974) is used to identify the best 

model predictor set. AIC is calculating using: 

 

𝐴𝐼𝐶 = 2𝑘 − 2𝐿                                  (3) 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
4 R Core Team (2012). R: A language and environment for statistical computing. R 
  Foundation for Statistical Computing,Vienna, Austria. ISBN 3-900051-07-0, URL 
  http://www.R-project.org/	  
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k indicates the number of predictors and L is the logarithm of the likelihood function of 

the model. Parsimony is encouraged by penalizing for additional predictors. The model is 

applied to meningitis incidences in periods P1 and P2 for each region to obtain the best 

set of predictors. 

 

3.4.2 Validation 
	  
	  

The fitted and estimated values are plotted and their R2 computed to indicate the 

strength of the relationship (0 being no relationship to 1 being a perfect relationship). 

Then we perform a drop-1 cross-validation in which at each observation point is dropped 

and the model is fitted on the remaining observations and, the dropped point is then 

predicted using the fitted model. This provides the model’s ability in estimating in a 

predictive mode. The cross-validated model fits are measured using the adjusted root 

mean squared error (ARMSE), which is the ratio of RMSE and the standard deviation. 

Lower values (values closer to 0) are highly skillful.  

 

𝐴𝑅𝑀𝑆𝐸   =
   !!"#$!!

!

!!!! !            (4)                                                      

 

To stress the models further, drop 10% cross-validation is performed where 10% of the 

points are randomly dropped and the model is fit on the remaining observations. The 

dropped points are then predicted using the fitted model. This cross-validation is repeated 

for 1000 iterations to produce a distribution of RMSE values from which  the median 

value is used to calculate the ARMSE.  

 

3.5 RESULTS  
	  
	  

Poisson regression models were fitted separately for the MM incidences in 

periods P1 and P2 at different lead times – 4, 8 and 12 weeks for P1, and 4 and 8 weeks 
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for P2. Forecasts were made on a weekly basis in the two periods at these lead times and 

skill scores computed for the lead times. The suite of predictors, shown in Table 3.2 

include – lead time weekly relative humidity (4, 8 and 12 weeks) of the cluster index, 

relative humidity retreat period cluster index, two highly correlated climate predictors of 

monsoon onset season relative humidity identified in Broman et al., (2013) for forecasts 

in P2 period and cumulative meningitis case counts at the lead time (4, 8, and 12 weeks).  

 

Table 3.2: Model predictors for P1 and P2 

P1 P2 

Week 1 – Week 13 Week 14 – Week 20 

Retreat Period Relative Humidity Index 
Onset Period Climate Predictors of Relative 

Humidity 

Weekly Lagged Relative Humidity  

(at 4, 8, and 12 weeks) 

Weekly Lagged Relative Humidity  

(at 4 and 8 weeks) 

Weekly Lagged Cumulative Meningitis Incidence 

(at 4, 8, and 12 weeks) 

Weekly Lagged Cumulative Meningitis Incidence 

(at 4 and 8 weeks) 

 

For each region, Nigeria, Chad, or Benin + Togo, correlation between meningitis 

incidence and relative humidity from each of the clusters identified the appropriate 

cluster (not shown). For Nigeria, the middle cluster relative humidity was selected, the 

north cluster for Chad, and the south cluster for Benin + Togo. Retreat period cluster 

indices were included as predictors in P1 models only as a surrogate for soil moisture. 

Climate predictors were included as predictors for the P2 models only as they coincide 

with the P1 period (Jan – Mar). These climate predictors were restricted to the top two 

best-correlated climate predictors to encourage parsimony. These models were developed 

for Nigeria, Chad, and Benin + Togo lumped.  

In total, fifteen models were produced, nine for the peak meningitis season (3 

meningitis case time series and 3 lead times) and six for the shoulder meningitis season 

(3 meningitis case time series and 2 lead times). As mentioned above forecast were made 

for 4, 8 and 12 week lead times for the three meningitis case time series.  Figures 8 - 10 

show the results of peak meningitis season (P1 period) forecasts for Nigeria, Chad and 

Benin + Togo. Table 3.3 shows the suite of predictors selected in the best model via AIC, 
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which shows that the best model selects 2-4 predictors. Lagged relative humidity and 

lagged cumulative case counts (i.e., values at the lead time) were significant predictors 

for all models. The retreat relative humidity index was not used as a predictor for Nigeria, 

but is selected in all three of the Chad models and two of the Benin + Togo models Drop-

1 cross validated estimates and the observed meningitis cases match very well for Nigeria  

(Figure 3.8 a-c) at 4-week and 8-week lead time and not that good for 12-week. The skills 

at 4 and 8 weeks especially, in cross-validated forecasting the high cases during 2008 is 

remarkable. The fitting skills (Figure 3.8 d-e), R2 and ARMSE are also quite good (Table 

3.3). For Chad the performance is very good at all lead times (Figure 3.9 a-c) and this is 

indicated in the fitting skills (Table 3.3). Benin + Togo exhibit similar performance 

(Figure 3.10). 

 

 

	  
Figure 3.8: Nigeria 2007 – 2011 meningitis cases model results showing the cross-

validated model fit at lead times of 4 weeks (a), 8 weeks (b), and 12 weeks (c), and the 
predicted versus observed at lead times of 4 weeks (d), 8 weeks (e), and 12 weeks (f). 

Dashed lines in (d-f) indicate +/- 1000 cases. 

 

CV Model Fit 
extends to 
95,508 

CV Model Fit 
extends to 
13,867 
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Country

/Region 
Period 

Lead 

Time 
Predictor 1 Predictor 2 Predictor 3 Predictor 4 RMSE 

Model 

Fit R2 

CV 

Model 

Fit  R2 

Nigeria p1 
4 

Weeks 

4wk Lagged 

Mid. Cluster 

RH 

4wk Lagged 

Cumulative 

Case Counts 

n/a n/a 0.3262 0.5041 0.3481 

Nigeria p1 
8 

Weeks 

8wk Lagged 

Mid. Cluster 

RH 

8wk Lagged 

Cumulative 

Case Counts 

12wk Lagged 

Mid. Cluster 

RH 

12wk Lagged 

Cumulative 

Case Counts 

0.3972 0.5329 0.3969 

Nigeria p1 
12 

Weeks 

Mid. Cluster 

Retreat RH 

Index 

12wk 

Lagged 

Cumulative 

Case Counts 

12wk Lagged 

Mid. Cluster 

RH 

n/a 0.411 0.0784 0.0256 

Chad p1 
4 

Weeks 

4wk Lagged 

Cumulative 

Case Counts 

4wk Lagged 

North 

Cluster RH 

North Cluster 

Retreat RH 

Index 

n/a 0.5218 0.7744 0.7225 

Chad p1 
8 

Weeks 

8wk Lagged 

Cumulative 

Case Counts 

8wk Lagged 

North 

Cluster RH 

North Cluster 

Retreat RH 

Index 

n/a 0.6788 0.7569 0.6889 

Chad p1 
12 

Weeks 

12wk 

Lagged 

Cumulative 

Case Counts 

12wk 

Lagged 

North 

Cluster RH 

North Cluster 

Retreat RH 

Index 

n/a 0.6248 0.6241 0.5184 

Benin + 

Togo 
p1 

4 

Weeks 

4wk Lagged 

South 

Cluster RH 

8wk Lagged 

South 

Cluster RH 

8wk Lagged 

Cumulative 

Case Counts 

12wk Lagged 

Cumulative 

Case Counts 

0.6164 0.7569 0.7225 

Benin + 

Togo 
p1 

8 

Weeks 

8wk Lagged 

South 

Cluster RH 

8wk Lagged 

Cumulative 

Case Counts 

12wk Lagged 

Cumulative 

Case Counts 

South Cluster 

Retreat RH 

Index 

0.6184 0.7569 0.7225 

Benin + 

Togo 
p1 

12 

Weeks 

12wk 

Lagged 

South 

Cluster RH 

12wk 

Lagged 

Cumulative 

Case Counts 

South Cluster 

Retreat RH 

Index 
n/a 0.6901 0.6241 0.5625 
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Figure 3.9: Chad 2006 – 2011 meningitis cases model results showing the cross-validated 

model fit at lead times of 4 weeks (a), 8 weeks (b), and 12 weeks (c), and the predicted 
versus observed at lead times of 4 weeks (d), 8 weeks (e), and 12 weeks (f). Dashed lines 

in (d-f) indicate +/- 100 cases. 
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Figure 3.10: Benin and Togo 2005 – 2011 meningitis cases model results showing the 

cross-validated model fit at lead times of 4 weeks (a), 8 weeks (b), and 12 weeks (c), and 
the predicted versus observed at lead times of 4 weeks (d), 8 weeks (e), and 12 weeks (f). 

Dashed lines in (d-f) indicate +/- 20 cases. 

Table 3.3: Peak meningitis period model predictors and RMSE. 

 

Country

/Region 
Period 

Lead 

Time 
Predictor 1 Predictor 2 Predictor 3 Predictor 4 RMSE 

Model 

Fit R2 

CV 

Model 

Fit  R2 

Nigeria p1 4 Weeks 

4wk Lagged 

Mid. Cluster 

RH 

4wk Lagged 

Cumulative 

Case Counts 

n/a n/a 0.3262 0.5041 0.3481 

Nigeria p1 8 Weeks 

8wk Lagged 

Mid. Cluster 

RH 

8wk Lagged 

Cumulative 

Case Counts 

12wk Lagged 

Mid. Cluster 

RH 

12wk Lagged 

Cumulative 

Case Counts 

0.3972 0.5329 0.3969 

Nigeria p1 12 Weeks 

Mid. Cluster 

Retreat RH 

Index 

12wk 

Lagged 

Cumulative 

Case Counts 

12wk Lagged 

Mid. Cluster 

RH 

n/a 0.411 0.0784 0.0256 

Chad p1 4 Weeks 

4wk Lagged 

Cumulative 

Case Counts 

4wk Lagged 

North 

Cluster RH 

North Cluster 

Retreat RH 

Index 

n/a 0.5218 0.7744 0.7225 

Chad p1 8 Weeks 

8wk Lagged 

Cumulative 

Case Counts 

8wk Lagged 

North 

Cluster RH 

North Cluster 

Retreat RH 

Index 

n/a 0.6788 0.7569 0.6889 

Chad p1 12 Weeks 

12wk 

Lagged 

Cumulative 

Case Counts 

12wk 

Lagged 

North 

Cluster RH 

North Cluster 

Retreat RH 

Index 

n/a 0.6248 0.6241 0.5184 

Benin + p1 4 Weeks 4wk Lagged 8wk Lagged 8wk Lagged 12wk Lagged 0.6164 0.7569 0.7225 
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Togo South 

Cluster RH 

South 

Cluster RH 

Cumulative 

Case Counts 

Cumulative 

Case Counts 

Benin + 

Togo 
p1 8 Weeks 

8wk Lagged 

South 

Cluster RH 

8wk Lagged 

Cumulative 

Case Counts 

12wk Lagged 

Cumulative 

Case Counts 

South Cluster 

Retreat RH 

Index 

0.6184 0.7569 0.7225 

Benin + 

Togo 
p1 12 Weeks 

12wk 

Lagged 

South 

Cluster RH 

12wk 

Lagged 

Cumulative 

Case Counts 

South Cluster 

Retreat RH 

Index 
n/a 0.6901 0.6241 0.5625 

 

For the shoulder season (P2 period), we issue forecasts at two lead times 4 and 8 

weeks as no climate variables exist at 12 weeks to use as predictors (Figures 3.11 – 3.13).  

 

 

	  
Figure 3.11: Nigeria 2007 – 2011 meningitis cases model results showing the cross-

validated model fit at lead times of 4 weeks (a), and 8 weeks (b), and the predicted versus 
observed at lead times of 4 weeks (c), and 8 weeks (d). Dashed lines in (c-d) indicate +/- 

500 cases. 
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Figure 3.12: Chad 2006 – 2011 meningitis cases model results showing the cross-

validated model fit at lead times of 4 weeks (a), and 8 weeks (b), and the predicted versus 
observed at lead times of 4 weeks (c), and 8 weeks (d). Dashed lines in (c-d) indicate +/- 

100 cases. 
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Figure 3.13: Benin and Togo 2005 – 2011 meningitis cases model results showing the 

cross-validated model fit at lead times of 4 weeks (a), and 8 weeks (b), and the predicted 
versus observed at lead times of 4 weeks (c), and 8 weeks (d). Dashed lines in (c-d) 

indicate +/- 10 cases. 

 

The predictors used in the best model for each country and lead time are listed in Table 

3.4. Also shown are cross-validated ARMSE and R2 values for each model.  

 

Table 3.4: Shoulder Peak period model predictors and RMSE. * Climate predictors from 
Broman et. al. 2013. 

Country

/Region 
Period 

Lead 

Time 
Predictor 1 Predictor 2 Predictor 3 Predictor 4 RMSE 

Model 

Fit R2 

CV 

Model 

Fit  R2 

Nigeria p2 4 Weeks 

4wk 

Lagged 

Mid. 

Cluster RH 

4wk Lagged 

Cumulative 

Case Counts 

Jan 925mb 

Zonal Winds 

(obj03)* 

Jan 600mb 

Zonal Winds 

(obj05)* 

0.662 0.9801 0.9409 

Nigeria p2 8 Weeks 

12wk 

Lagged 

Mid. 

Cluster RH 

12wk 

Lagged 

Cumulative 

Case Counts 

Jan 925mb 

Zonal Winds 

(obj03)* 

Jan 600mb 

Zonal Winds 

(obj05)* 

0.5959 1 0.9801 

Chad p2 4 Weeks 

4wk 

Lagged 

North 

Cluster RH 

4wk Lagged 

Cumulative 

Case Counts 

Jan 600mb 

Zonal Winds 

(ocj05)* 

Jan 200mb 

Zonal Winds  

(ocj06)* 

0.5967 0.9025 0.8281 

Chad p2 8 Weeks 

8wk 

Lagged 

North 

Cluster RH 

12wk 

Lagged 

North 

Cluster RH 

8wk Lagged 

Cumulative 

Case Counts 

Jan 200mb 

Zonal Winds  

(ocj06)* 

0.6466 0.8836 0.4356 

Benin + p2 4 Weeks 4wk 4wk Lagged Jan 600mb n/a 0.8864 0.0729 0.0009 
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Togo Lagged 

South 

Cluster RH 

Cumulative 

Case Counts 

Zonal Winds 

(oaj03)* 

Benin + 

Togo 
p2 8 Weeks 

12wk 

Lagged 

South 

Cluster RH 

8wk Lagged 

Cumulative 

Case Counts 

12wk 

Lagged 

Cumulative 

Case Counts 

Jan 600mb 

Zonal Winds 

(oaj03)* 
0.7872 0.1444 0.0361 

 

All shoulder season models contain lagged relative humidity as a predictor at least one 

climate variable and lagged cumulative case counts. All the climate variables selected are 

from January, meridional winds at 925, 600, or 200mb. Figure 3.12 a-b shows the cross-

validated estimates of MM cases in P2 period for Chad and Figure 3.12 c-d the scatterplot 

of fitted estimates. The model performs very well at both the lead times and in a cross-

validated and fitting mode – also corroborated by lower ARMSE and higher R2. 

 

3.6 SUMMARY AND CONCLUSION 
	  
	  
 We developed and validated Poisson regression models to predict weekly MM 

cases for countries in West Africa for the peak and shoulder periods of meningitis 

occurrence. Models were developed for Chad, Nigeria and Benin and Togo combined. 

The meningitis season is out of phase with the monsoon season – in that the start of the 

monsoon season (P2 period) coincides with the ending of the meningitis season and the 

monsoon retreat period marks the start of the meningitis season. The availability or lack 

thereof of moisture is key ingredient in the meningitis occurrence. Forecasts were made 

at 4, 8 and 12 week lead time and the predictors in the regression models involved 

relative humidity and meningitis cases at these lead times and large scale climate 

predictors for the P2 period. The models show very good skills – both fitting and cross 

validation at these lead times – especially for Chad and Nigeria which has the highest 

number of MM cases the models perform particularly well. This suggests that climate and 

meteorological features can help forecast MM cases skillfully, which will be of immense 

use in planning mitigation strategies by local agencies and WMO. 
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 There are attributes that can be incorporated to the modeling approach to further 

improve the skills. Including dust and temperature as potential predictors could provide a 

measure of the influence of different environmental factors. Adjusting case counts to 

account for a potential depression in districts following a reactive vaccination campaign 

could provide a better measure of the true influence of environmental factors as 

compared to transport dynamics or variation in strains in outbreaks of meningitis. This 

modeling approach provided predictions of meningitis cases at weekly intervals, but over 

large geographic regions. Improved monitoring, including geo-locating cases, could 

allow this prediction to be made at the district or finer geographic location, and perhaps 

provide additional insight into the mechanisms that link environmental factors and 

meningitis outbreaks. 
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4 CONCULSION AND FUTURE WORK 
	  

4.1 CONCLUSION 

 

Climate and health are inexorably linked as climate can influence health in 

numerous ways. The overarching goal of this forecasting is to provide additional inputs 

into the decision-making process used by the International Coordinating Group (ICG) for 

Vaccine Provision in managing meningitis outbreaks. It is hoped that these additional 

inputs could provide the ICG a way to more efficiently stage resources and improve 

response times.  

The two linked studies described in Chapters 2 and 3 have shown success in 

modeling and forecasting regional climate (i.e., relative humidity) and meningitis 

incidences in the West African region, at long lead times.  

 The climate diagnostics and modeling studies performed in Chapters 2 provided 

an understanding of the seasonal variation of relative humidity within the West African 

Monsoon region. Prior investigation of climate in this region has focused on 

precipitation, winds, or dust. Large-scale ocean-atmospheric drivers of relative humidity 

were identified and it was shown that these drivers could be used to accurately predict 

relative humidity at long lead times. During the onset period, South Atlantic MSLP, Gulf 

of Guinea SST, and Sahara surface temperature were the three key drivers of variability 

of relative humidity. All influenced the cross-equator pressure gradient responsible for 

the monsoon winds that advect moisture inland. The picture was less clear during 

monsoon retreat except to say that land-atmosphere interactions were more important. 

Drivers included low, mid, and high-level winds, and surface temperature, all over the 

continent. The predictability of relative humidity indicates that these climate drivers have 

persistence, which imparts long lead skill in forecasting relative humidity.  

 In Chapter 3 we developed a Poisson regression model to forecast Meningitis 

incidences in Chad, Nigeria and Benin and Togo combined. The regression used relative 

humidity, climate variables and lagged incidences identified in Chapter 2. Meningitis 

forecasts had skill at all lead times, 4, 8, and 12 weeks. Predictions accurately identified 

the large spikes in incidence found in Nigeria in 2009 and in Chad in 2011. This indicates 
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that the models were able to identify those years where epidemics occurred, as well as 

identify the week of peak incidence. This is useful as it provides the location and timing 

of epidemics, even if total incidence predicted varies from actual incidence. The models 

also had few cases of over-prediction, indicating high incidence when none occurred, the 

exception to this being the 8-week P1 model for Nigeria during 2007. The lack of suitable 

meningitis case data led to forecasts at large spatial regions; it was hoped to be able to 

provide forecasts at the district level. The country-total forecasts presented here are still 

useful in suggesting where resources be staged, but is not able to indicate the center of 

incidence to inform which districts might be at risk for an epidemic. Additionally, fitting 

of the models relied on 5 – 7 years of case data; the demonstrated model skill was very 

good, but additional case data could improve forecasts or provide forecasts at longer lead 

times.  

These studies have shown that investigation into the link between infectious 

disease and climate can provide useful information in disease management and 

mitigation. It is hoped that the results presented will be able to directly influence the 

decision process in managing meningitis outbreaks as well as inform future work into 

meningitis links to climate specifically and health and climate generally.  

 

4.2 FUTURE WORK 

 

 The modeling framework developed for forecasting both relative humidity and 

meningitis incidences can be further extended. With relative humidity, the modeling 

should be extended to the dry season to identify climate links and provide climate 

variables to include in the peak meningitis season models. No climate variables were 

included in the dry season, P1 (Jan – Mar) meningitis models because no climate drivers 

of relative humidity during Oct – Dec were identified. The above extension of analysis of 

dry season climate will improve the meningitis incidence forecasts for the peak season.  

 Meningitis incidence forecasting models were found to be skillful at long lead 

times, and were able to identify spikes in incidence. A threshold exceedance score, 

examining the skill of the model in predicting incidence exceedance over the alert (5 

cases / 100,000) and epidemic (10 cases / 100,000) levels currently used by the ICG 
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would provide an additional metric indicating the usefulness of the models. Furthermore, 

the threshold exceedances could be modeled directly using extreme value theory (e.g., 

Coles, 2001; Katz et al., 2002).  

The inclusion of additional environmental factors such as temperature and dust, 

which are known to influence meningitis occurrence could further improve the 

forecasting skills. Incidence data used in forecasting were not adjusted for vaccination, 

which provides roughly three years of immunity with decreasing efficacy. Adjusting data 

for the depression of cases produced by vaccination would provide a less potentially 

biased dataset from which to model.   

The explicit inclusion of social or physiological factors would require a better 

understanding of meningitis carriage, disease emergence, and social behavior. Given the 

wide variety of locations covered by this study area: rural and urban, plains and forest; 

along with different local cultures, any application of the theoretical model would have to 

be tailored to a local region.  
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A. APPENDIX: ADDITIONAL FIGURES 
	  

	  
Figure A.1: Onset South Cluster correlation plot with February sea-surface temperature. 

Red boxes indicate regions used to produce predictors. 

 

	  
  (a) 

        

(b) 

Figure A.2: Onset South Cluster correlation plots with March (a) sea-surface temperature 
and (b) mean sea-level pressure. Red boxes indicate regions used to produce predictors. 
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       (a)              (b)      (c) 

 
         (d)             (e)      (f) 

Figure A.3: Onset Middle Cluster correlation plots with January (a) surface temperature 
and (b) mean sea-level pressure, (c) 925mb zonal winds, (d) 600mb zonal winds, (e) 

200mb zonal winds, and (f) 200mb meridional winds. Red boxes indicate regions used to 
produce predictors. 

	  
Figure A.4: Onset Middle Cluster correlation plot with February sea-surface temperature. 

Red boxes indicate regions used to produce predictors. 
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    (b) 

Figure A.5: Onset Middle Cluster correlation plots with March (a) sea-surface 
temperature and (b) mean sea-level pressure. Red boxes indicate regions used to produce 

predictors. 

	  
Figure A.6: Onset Middle Cluster correlation plot with April mean sea-level pressure. 

Red boxes indicate regions used to produce predictors 
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                                                                       (g) 

Figure A.7: Onset North Cluster correlation plot with (a) surface temperature, (b) mean 
sea-level pressure, (c) 925mb zonal winds, (d) 600mb zonal winds, (e) 200mb zonal 

winds, (f) 925mb meridional winds, and (g) 600mb meridional winds. Red boxes indicate 
regions used to produce predictors. 

 

	  

Figure A.8: Onset North Cluster correlation plot with February 600mb zonal winds. Red 
boxes indicate regions used to produce predictors. 

	  
Figure A.9: Onset North Cluster correlation plot with March sea-surface temperature. 

Red boxes indicate regions used to produce predictors. 
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(b) 

Figure A.10: Onset North Cluster correlation plots with April (a) sea-surface temperature, 
and (b) mean sea-level pressure. Red boxes indicate regions used to produce predictors. 

	  	  	  	      
         (a)    (b)       (c)	  

	  
     (d) 

Figure A.11: Retreat South Cluster correlation plots with May (a) mean sea-level 
pressure, (b) 925mb zonal winds, (c) 200mb zonal winds, and (d) 200mb meridional 

winds. Red boxes indicate regions used to produce predictors. 
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              (b) 

Figure A.12: Retreat South Cluster correlation plots with July (a) surface temperature, 
and (b) sea-surface temperature. Red boxes indicate regions used to produce predictors. 

	  
         (a)   (b)      (c)	  

	  
    (d) 

Figure A.13: Retreat Middle Cluster correlation plots with May (a) 925mb zonal winds, 
(b) 200mb zonal winds, (c) 925mb meridional winds, and (d) 600mb meridional winds. 

Red boxes indicate regions used to produce predictors. 

	  
Figure A.14: Retreat Middle Cluster correlation plot with June 200mb meridional winds. 

Red boxes indicate regions used to produce predictors. 
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     (a)             (b) 

Figure A.15: Retreat Middle Cluster correlation plot with July (a) mean sea-level 
pressure, and (b) 200mb zonal winds. Red boxes indicate regions used to produce 

predictors. 

  
     (a)           (b) 

Figure A.16: Retreat Middle Cluster correlation plots with August (a) 200mb zonal 
winds, and (b) 600mb meridional winds. Red boxes indicate regions used to produce 

predictors. 

	   	  

     (a)          (b) 
Figure A.17: Retreat North Cluster correlation plots with May (a) 925mb zonal winds, 

and (b) 200mb meridional winds. Red boxes indicate regions used to produce predictors. 
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     (a)          (b) 

Figure A.18: Retreat North Cluster correlation plots with June (a) 600mb zonal winds, 
and (b) 200mb meridional winds. Red boxes indicate regions used to produce predictors. 

 

     (a)            (b) 
Figure A.19: Retreat North Cluster correlation plots with July (a) mean sea-level 

pressure, and (b) 200mb meridional winds. Red boxes indicate regions used to produce 
predictors. 

	  
     (a)          (b) 

Figure A.20: Retreat North Cluster correlation plots with August (a) surface temperature, 
and (b) 600mb meridional winds. Red boxes indicate regions used to produce predictors. 
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   (a)       (b)         (c) 

 

              (d)                  (e)                  (f) 

Figure A.21: Onset Middle Cluster GLM models showing direct fit values and cross-
validated values. (a), (b), and (c) show the cross-validated model fits for 1 March, 1 

April, and 1 May. (d), (e), and (f) show the predicted vs. observed  direct fit values for 
the 1 March, 1 April, and 1 May models (solid line indicates 1:1, dashed lines show ±5%) 

 

(a)          (b)           (c) 
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               (d)                  (e)                  (f) 

Figure A.22: Onset North Cluster GLM models showing direct fit values and cross-
validated values. (a), (b), and (c) show the cross-validated model fits for 1 March, 1 

April, and 1 May. (d), (e), and (f) show the predicted vs. observed  direct fit values for 
the 1 March, 1 April, and 1 May models (solid line indicates 1:1, dashed lines show ±5%) 

	  

 

   (a)          (b)                   (c) 

 

 



	  	  	  	   88	  

 

              (d)                  (e)                  (f) 

Figure A.23: Retreat Middle Cluster GLM models showing direct fit values and cross-
validated values. (a), (b), and (c) show the cross-validated model fits for 1 July, 1 August, 
and 1 September. (d), (e), and (f) show the predicted vs. observed  direct fit values for the 

1 July, 1 August, and 1 September models (solid line indicates 1:1, dashed lines show 
±5%) 

 

(a)                    (b)                    (c) 
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  (d)                  (e)                   (f) 

Figure A.24: Retreat North Cluster GLM models showing direct fit values and cross-
validated values. (a), (b), and (c) show the cross-validated model fits for 1 July, 1 August, 
and 1 September. (d), (e), and (f) show the predicted vs. observed  direct fit values for the 

1 July, 1 August, and 1 September models (solid line indicates 1:1, dashed lines show 
±5%) 
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