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The United States Army Corps of Engineers (USACE) currently operates many large concrete

gravity dams that outright fail or narrowly meet design criteria. This is particularly true when

elevated reservoir levels cause tensile stresses along a dam’s upstream face resulting in cracks along

the dam-foundation contact, within the dam or within the dam’s foundation. Water pressures are

then able to develop within these cracks increasing the uplift pressure on the dam potentially further

destabilizing the system. Certain crack locations and orientations can also render drainage systems

within the dam ineffective further increasing water pressures. To study the effects of fractures

and uplift pressures on concrete gravity dams, a series of finite element models were developed

to couple dam and foundation deformations to water flow through a dam, its foundation, or any

fractures within the system. The finite element models were verified by providing similar factors

of safety to the classical gravity dam design methods. Also, a blueprint for implementing the finite

element models inside a probabilistic framework in order to determine a dam’s failure probability

was outlined. Ultimately, the goal of this research was to provide the USACE an arsenal of tools

and analyses to study the stability of their existing concrete gravity dams, while accounting for

flow through fractures or jointed rock foundations. These analyses offer engineers methods to study

numerous different fracture geometries, material properties, or drain locations while accounting for

water flow through the entire dam system.
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Chapter 1

Introduction

1.1 Problem Description

In the United States, concrete gravity dams are currently designed using guidelines and

methodologies most notably outlined in two documents, Design of Small Dams and Gravity Dam

Design, published by the Bureau of Reclamation (1987) and U.S. Army Corps of Engineers (1995)

respectively. These documents outline a design method based on rigid body statics and mechan-

ics of materials referred to as the gravity or classical design method. Major assumptions of the

methodology include all plane sections remain plane and any concrete is impermeable. If flow is

allowed through a dam’s foundation, pore water causes uplift pressures, which are assumed to be

linearly distributed along the base of the dam with the full upstream reservoir head acting at the

heel and the downstream reservoir head acting at the toe. For dams that include drainage systems,

the head acting at the drain is assumed to be equal to the downstream head plus one-third of the

upstream reservoir head minus the downstream head, as specified in Design of Small Dams, or some

variant of this equation causing the uplift pressure profile to be a bilinear distribution.

hdrain = hdownstream +
1

3
(hupstream − hdownstream) (1.1)

Under certain loading conditions, a designer might calculate a small section of tensile stresses along

the dam-foundation contact near the dam’s heel caused by large hydrostatic pressures against the

upstream face. The concrete in such locations is often assumed to be cracked allowing for water

pressures to develop in the fracture. The uplift pressure distribution is considered to be the full
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upstream reservoir head, or some large fraction of the full reservoir head depending on the design

manual, acting over the entire length of the section.

Although the classical design method is old and relies on a number of simplifying assumptions,

the relative infrequency of concrete gravity dam failures and its straightforward implementation

makes it an economically attractive option drawing recent arguments for its continued acceptance,

such as Watermeyer (2006). However, dam systems with complicated geometries, rock foundations

with prominent jointing, fractures that compromise drainage systems, upstream reservoir flood

conditions, or other circumstances that violate assumptions made under the classical design method,

can force engineers to overdesign dams to account for the uncertainties. The primary goal of this

research was to assess the feasibility of using the finite element method and modern computational

mechanics software to account for uplift pressures and fluid flow through cracks along the upstream

face of a dam, along the dam-foundation contact, or within the dam’s foundation with fully coupled

solid skeleton deformations and porous media flow through the dam and its foundation. To further

account for uncertainties, some of the developed finite element models were implemented inside

a Monte Carlo iteration allowing certain parameters, such as the system’s permeability or the

aperture of a crack, to be varied. By aggregating the results of each iteration, the dam system’s

failure probability was determined instead of its deterministic factor of safety. Using the methods

developed by this project, dam engineers will be able to determine a dam’s failure probability while

accounting for uplift pressures in fractures and porous media flow in order to more economically

design, maintain, and rebuild concrete gravity dams.

The finite element software suite ABAQUS, developed by the Dassault Systèmes Simulia

Corporation, was used to develop a series of concrete gravity dam models to verify the feasibility

of using the method to account for uplift pressures in fractures and porous media flow in concrete

gravity dams. This report describes the development and implementation of the sequence of models.

With each successive model, a new, more complicated aspect of a gravity dam system was analyzed.

A list of the finite element models analyzed follows.
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(1) A two-dimensional concrete gravity dam was set on a rigid foundation with the upstream

reservoir pressure and any uplift pressure along the dam-foundation contact applied to the

dam as boundary conditions.

(2) The rigid foundation from the first model was replaced with a deformable foundation.

Water pressures were applied to the dam and foundation as boundary conditions.

(3) Porous media flow was then allowed through the concrete dam and deformable foundation.

Uplift pressures along the dam-foundation contact were allowed to develop from the porous

flow and not from an applied traction like in (1) and (2), but the upstream and downstream

reservoir pressures were still applied to the dam and foundation as traction boundary

conditions.

(4) The dam-foundation contact was replaced with a poromechanical cohesive surface element

to model nucleation and propagation of a fracture as well as the development of water

pressures in the crack, while allowing for solid skeletal deformations and porous media flow

in the dam and foundation.

Results from the finite element modeling were then directly compared to factor of safety calcula-

tions using the classical design method in order to verify the numerical models. Also included in

this report are the beginnings of a fluid-structure interaction model developed using ABAQUS, cou-

pling the software’s computational fluid dynamics capabilities to the aforementioned finite element

models, and a discussion on the implementation of a Monte Carlo probabilistic methodology to

calculate a gravity dam’s failure probability using the discussed models. This research was funded

by the United States Army Corps of Engineers and was intended to build on work completed at the

University of Colorado Boulder during the late 1980s and early 1990s on the behalf of the Electric

Power Research Institute (EPRI).
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1.2 Statement of Work

The following section contains the contract’s statement of work as well as a brief discussion

of the completed tasks and work left to be accomplished.

1.2.1 Original Document

Analysis of Drain Effectiveness and Implications for Failure Probability for Concrete Gravity

Dams

Statement of Work

Richard Regueiro (PI), Bernard Amadei (Co-PI), Ronald Pak (Co-PI)

Department of Civil, Environmental, and Architectural Engineering

University of Colorado at Boulder

22 April 2011

Introduction

The U.S. Army Corps of Engineers (USACE) has many large concrete gravity structures

associated with dams and related works. Some fail to meet or marginally meet design guidelines.

This is particularly true when tensile stress is calculated on the upstream face for elevated reservoir

levels and the “cracked base” analysis is invoked where the drains are assumed to be ineffective.

While appropriate for new structures, design criteria may not be appropriate for evaluating existing

structures. It is important to evaluate actual failure probabilities in a reasonable fashion so that

limited resources can be targeted to the structures that pose the largest risk. Therefore, the

realistic probability of cracking, the effectiveness of a drainage curtain following cracking, and the

limit state after cracking propagates must all be taken into account. The specific goal of this

research is to evaluate the probability of failure for concrete gravity dam structures including the

effects of potential cracking and drainage.

The main questions we will attempt to answer in this project are:

• What is the most appropriate method to estimate the probability of cracking on the up-
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stream face of a concrete gravity dam?

• What are the differences in crack propagation below the dam-foundation contact, at the

dam-foundation contact, and above the dam-foundation contact (considering relative per-

meability between the dam and foundation)?

• What is the best way to include the crack and pore pressures in the calculations?

• What happens if a crack propagates all the way through the section?

• How can the problem be approached in a probabilistic manner?

Professor Bernard Amadei at the University of Colorado, Boulder directed and performed re-

search in the early 1990’s evaluating the effects of cracking on the effectiveness of drains in concrete

gravity dams. This will be an effort to further develop and implement that research to address more

realistically the mechanics and overall probability of instability of concrete gravity dam structures

in the presence of drains and cracks under hydraulic conditions. We will incorporate the previous

research by Professor Amadei as a starting point to this research project. Professor Amadei will

serve primarily an advisory and review role, and Professors Pak and Regueiro will be primarily

responsible for achieving the research tasks listed below, in conjunction with one graduate student.

Scope of Work

The work effort will be comprised of the following tasks:

• The first task will be to incorporate previous research results of uplift in cracked, drained

concrete dams into a stability analysis, and clarify the role of water pressure in cracks or

rock joints at critical locations in the foundation.

• The second task will be to extend the analysis to examine the propagation of cracking and

global stability, using classical limit equilibrium approaches and modern nonlinear finite

element analysis that accounts for the coupling of pore fluid flow and solid skeleton defor-

mation in the jointed/cracked rock foundation and cracked concrete dam itself. Preferential
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flow in cracks with certain aperture within the concrete and rock foundation will be ac-

counted for. The crack apertures can be made a function of the deformation of the solid

skeleton of the concrete and foundation rock. Coupled pore fluid flow and solid skeleton

deformation of foundation soil will likely be account for in the analysis.

• The third task will be to extend the analysis into a probabilistic framework.

• The final task will be to submit a final report that will document all the results from the

tasks above.

Schedule

The tasks noted above will be carried out within a period of twelve (12) months, following

receipt of a Notice to Proceed (NTP).

Budget

The funding required to complete the work described here is estimated at $88,405.

1.2.2 Discussion

The following list describes the work completed on each of the four tasks outlined in the

scope of work.

(1) Using the reports written for EPRI as a guide, an extensive literature review was developed

focusing on the history of uplift pressure models, fracture mechanics as related to seepage

in gravity dam systems, and recent developments in modeling cracks and uplift pressures

in concrete dams. A full review of the EPRI reports was also completed highlighting the

important experimental work, case studies and bevy of programs developed to analyze

uplift pressures in gravity dams. The full literature review can be found in Chapter 2.

(2) As discussed in 1.1, a series of incrementally more complex finite element models was

developed, and the results of those analyses can be found in Chapters 3 to Chapter 8.
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For consistency and simplicity when verifying the results, the models primarily focused

on the effects of a crack along the dam-foundation contact, although the analyses could

be extended to fractures in jointed rock or the concrete dam. The overall stability of the

systems were then assessed by calculating factors of safety using the classical gravity dam

design method (Watermeyer, 2006) and resultant forces from the finite element analyses

to compare the methodologies. Throughout the series, flow through porous media and

preferential flow through cracks were also addressed. Then, analyzing the effects of crack

aperture and fracture propagation was begun. More work needs to be completed on the

subjects, but thoughts and information on the likely directions of the research can be found

in Chapter 8.

(3) Similar to the discussion of crack propagation and aperture dependence, work was started

but not completed on implementing the finite element models into a probabilistic frame-

work. An example from EPRI Report 2 (Amadei and Illangasekare, 1990b) was repro-

grammed into MatLab to understand the general methodology required for a Monte Carlo

iteration, but an iteration around the finite element models was not developed. Further

thoughts and discussion on how such a framework would be implemented can be found in

Chapter 8.

(4) In addition to this report, a DVD containing all ABAQUS .cae and .inp files, MatLab code,

and Microsoft Excel files used during the analysis as well as a document briefly documenting

and describing the files and PDF versions of the EPRI reports is attached.



Chapter 2

Literature Review

2.1 Pre-EPRI

2.1.1 History of Uplift Pressure Models and Seepage through Dam Foundations

It was common practice through the early 1900s to not include uplift in the design of gravity

dams. Rock was considered impervious preventing seepage under the structure, and it wasn’t until

some failures were specifically attributed to uplift that engineers began to look at seepage through

dam foundations (Riegel et al., 1952). Early work on seepage through foundations composed of soil,

gravel or boulders was conducted by Bligh (1910). He believed that the seepage was contained to

the dam-foundation contact and could be modeled like flow through a pipe. Through his work, he

developed an empirical relationship relating the head difference from the dam heel to toe and a soil

fineness or coarseness factor to a percolation distance, the dam width required for overall stability.

One major outcome of his work was the assumption that uplift along the dam-foundation contact

varies linearly from the full dam head on the upstream face to the head along the downstream face.

This assumption has been regularly used in dam design ever since (Bureau of Reclamation, 1987),

although Bligh’s empirical relationship for flow through a porous dam foundation was replaced by

flow nets by the 1940s, most notably through the work of Terzaghi (1929), and more recently by

modern finite element methods.

More formal study on uplift under dams founded on rock began in the late 1940s when the

American Society of Civil Engineers (ASCE) formed a subcommittee focusing on the problem.
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Riegel et al. (1952) analyzed the available literature and came to a series of conclusions. For

one, they concluded that unless the dam was floating, uplift pressures would only act along a

percentage of the dam foundation varying from 85-100 % of the dam-foundation contact (it should

be noted that this recommendation was not unanimous). Also, they were unwilling to make a

formal recommendation regarding whether or not the full head at the upstream of the dam should

be assumed in the start of the crack at the heel of a dam. Experimental results showed the

uplift varied significantly with the geology of the foundation. Lastly, they favored grout curtains

as a better method to control uplift over drainage, because drains required regular inspection to

insure their optimal operation. This assertion was later challenged by Casagrande (1961), where

he determined drains were more effective than grout curtains so long as the drains were installed

deep enough to fully penetrate the pervious zone of the foundation. Casagrande’s recommendation

was later confirmed by Cedergren (1977) and case studies were analyzed by Strassburger (1988) for

EPRI.

An analytical solution used to describe uplift pressure in a finite crack along a dam-foundation

contact that includes drainage was established by Goodman et al. (1983). The solution assumes

laminar and steady flow, constant crack permeability and aperture, and that the crack does not

intersect any rock joints or other areas of high permeability (other than drains). They concluded

that drains were effective at reducing uplift pressures on the base of the dam, and that it is incorrect

to assume that the full reservoir head acts over the entirety of the crack. Their solution found that

the head dropped in an approximately linear fashion from the heel of the dam to the line of drains

with a slight head increase after to the tip of the crack, which were similar to the results achieved

by Casagrande (1961).

As pointed out by the aforementioned ASCE committee (Riegel et al., 1952), one major

consideration when modeling seepage through a dam founded on rock is the geology of the area.

The topic was first formally discussed by Terzaghi (1929). In his paper, Terzaghi showed a simple

theoretical example of how the location of a major joint in a rock mass could significantly change

the uplift pressure profile under a gravity dam. Casagrande (1961) conducted a similar thought
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experiment concluding that even with the inclusion of drains, the location of major rock joints can

significantly change the uplift pressure distribution. Stuart (1963) conducted case studies of gravity

dams founded on different types of rock (i.e. fractured sandstone, massive granite, fractured and

jointed limestone, etc.) and found that generally uplift pressures were below design levels. However,

he also found that where high pressures did exist, the rock was always massive, meaning poorly

connected joints preventing drainage of pore pressures. Lastly, Serafim and del Campo (1965)

analytically showed that in a crack with an aperture decreasing in the same direction as flow, the

head at any point along the crack is greater than a similar crack with constant aperture. These

results were experimentally verified by Strassburger (1988).

Research on developing seepage models through jointed rock foundations was first conducted

by Casagrande (1961). He initially modeled his work after Brahtz (1936) whose work attempted to

model drains in rock foundations. Brahtz assumed that the rock was a semi-infinite porous medium,

and Casagrande determined that results from his model did not correlate well with experimental

results. Casagrande decided to instead model the foundation as a thin layer of permeable rock at the

dam-foundation contact surface underlaid by impermeable rock, and he justified this assumption

by arguing that deeper joints would be under higher compressive stresses restricting the flow of

water. He also assumed that due to the tensile stresses on the upstream edge of the dam-foundation

contact that help open the crack at the heel of the dam, the full reservoir head could be applied at

this location in the crack. Using a solution formulated by Muskat (1937), Casagrande developed

an analytical solution for the head at any point in the dam-foundation system (including drainage)

given the above described assumptions.

Since the work completed by Casagrande, two general classes of seepage through jointed

rock models have been developed: (1) network or discrete joint models, and (2) equivalent porous

medium models. Essentially, network models assume that flow only occurs through the series of

joints in a given rock formation, because the permeability of joints are orders of magnitude greater

than the permeability of intact rock. For equivalent porous medium models, jointed rocks are

replaced by a medium with a volume averaged permeability.
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The majority of network models are based on the assumption that flow through joints can

be idealized as flow between two parallel plates (Louis, 1969). Known as the cubic flow law, the

relationship states that the volumetric flow rate (q) is related to the hydraulic gradient (i) by the

following equation:

q =
gb3

12ν
i (2.1)

where g is the acceleration due to gravity, b is the constant aperture between the two plates, and ν

is the kinematic viscosity of water. This relationship was verified through laboratory experiments

with fractures of different apertures and varying wall roughnesses by Louis (1969). Louis also

developed two-dimensional graphical and analytical solutions for the uplift pressure distribution

on a gravity dam. Discrete joint models were then built into finite element programs in order to

analyze more complicated joint networks. Initial work on implementing these models into the finite

element method was conducted by Long (1983), Samaniego (1985), Robinson (1984) and Cundall

(1983). Notably, Cundall’s universal distinct element code (UDEC) is still in use today and is

capable of coupling stress and flow through fractured foundations, as shown in Utili et al. (2008).

As previously stated, equivalent porous medium models idealize a jointed rock mass as a

medium with an equivalent permeability. Serafim and del Campo (1965), assuming the joints in

a rock mass were mutually orthogonal, spaced at regular intervals, and the flow through them

was defined by the cubic flow law, derived the principal permeabilities for an equivalent porous

medium. This theory was put more generally a few years later by Snow (1969). He derived the

two-dimensional equivalent permeability tensor (kij) for a joint set to be described by the following

equation:

kij =
g

12ν

∑
α

b3

|nαkDα
k |

(δij − ninj) (2.2)

where b is the average constant aperture of the joints, δij is the kroneker delta and ni is the unit

normal vector to the joint plane. The equation is summed over multiple sampling lines (α) that
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represent boreholes drilled into a rock mass. The more sampling lines considered, the more accurate

the equivalent permeability tensor. Dα
k is a vector representing the direction and average spacing

of joints along a given sampling line. The absolute value of the inner product between Dα
k and nαk is

essentially a weighting factor. The smaller the average spacing of joints, the higher the equivalent

permeability of the joint set. One major disadvantage to these models was that the joints were

assumed to be infinite in length; therefore, the calculated permeability tensors were constant over

the medium.

One issue with equivalent porous medium models is whether or not a rock foundation is

representative of the larger rock mass. Long (1983) defined the representative elementary volume

(REV) as the smallest unit of rock for which the permeability does not vary with the size of the

sample tested. He said that an REV must be:

• large enough to be representative of the rock as a whole.

• small enough to be subjected to a uniform hydraulic gradient in the field, because perme-

ability is measured by subjecting a specimen to a uniform hydraulic gradient in a laboratory

setting.

In addition to the two types of seepage models previously described, a number of hybrid

models have also been developed, many of which have focused on coupling stress and flow. For

example, Oda (1986) created a coupled stress/flow model by idealizing a jointed rock foundation

as an anisotropic elastic porous medium. Asgian (1988) similarly developed a coupled stress/flow

model, but instead of assigning an equivalent porous medium, he allowed individual joints to slip

and expand with changes in stress. Shapiro and Andersson (1983) developed a model to couple

flow through joints as well as a surrounding porous rock.
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2.1.2 Fracture Mechanics as Related to Seepage through a Gravity Dam or Its

Foundation

Fracture mechanics is essentially the study of the nucleation and propagation of cracks under

different loading and displacement conditions in materials. In regards to assessing the stability of

concrete gravity dams, understanding how cracks nucleate and propagate through concrete is an

important issue. A number of mathematical models have been proposed to study fractures in var-

ious materials, and they fall into two general categories: linear elastic fracture mechanics (LEFM)

and non-linear fracture mechanics (NLFM). Both have applications to fractures in concrete struc-

tures and will be briefly summarized below.

Kaplan (1961) was the first to apply LEFM principles to describe the behavior of concrete. In

his work, he performed 3 and 4 point bending tests on concrete specimens with varying dimensions

and crack lengths in an effort to determine the values of concrete’s material properties related to

LEFM. In LEFM, materials are assumed to be linear, isotropic elastic with no yield stress, resulting

in infinite stress at the crack tip. Because this is an unreasonable assumption that results in overly

conservative stress estimates, many LEFM models use stress intensity factors to limit the stress

concentration at the crack tip. Stress intensity factors can be determined from the linear elastic

material properties of a given medium, as described by Irwin (1957). Kaplan’s data set was too

small to definitively conclude that such materials properties exist, although his work sparked other

research in the field. Carpinteri (1982a) found large differences between results even on experiments

with concrete specimens of the same geometry and make-up. These discrepancies were attributed

to a number of possible explanations including slow crack growth, notch sensitivity, and size effects.

Other researchers decided that these discrepancies showed that LEFM was not applicable to

laboratory sized concrete structural components and that NLFM might be more applicable. These

researchers defined parameters called characteristic lengths or brittleness numbers as a measure

of the effects the size of the specimen, and used these parameters to determine whether LEFM

or NLFM could be used to model cracks in the concrete (Carpinteri, 1982b) (Hillerborg, 1983)
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(Bazant, 1984). At the tip of a crack, materials exhibit a zone of nonlinearity, and for concrete,

this zone can be large when compared to the size of the specimen. When the zone of nonlinearity,

also known as the fracture process zone (FPZ), is large, LEFM will overestimate the stresses at the

crack tip suggesting that NLFM models should be implemented instead (Bazant, 1984).

One of the first NLFM models developed was called the fictitious crack model (FCM) (Hiller-

borg et al., 1976), which described mode I fractures (fractures caused by stresses normal to the

propagation direction) in the FPZ. In the FCM, the strength of the concrete is modeled by a

softening constitutive relationship, where the initial strength of the concrete is the uniaxial tensile

strength and the final strength is zero at what is known as a critical crack width. In between no

crack and the critical crack width is the FPZ, where the strength of concrete degrades from the

initial strength to zero. The shape of the softening relationship theoretically depends on the post

peak response of a uniaxial tension test (Hillerborg, 1983), but due to the difficulty in obtaining

such information, has been modeled using a variety of different functions (although these functions

are usually assumed linear or bilinear).

Both LEFM and NLFM have been applied to concrete dam applications, although LEFM

has been more widely used. Cracks are generally assumed to occur and propagate along the dam-

foundation contact, because the strength of the concrete and rock connection is likely weaker than

the tensile strength of rock or concrete. Along with cracks, joints in the rock foundation could also

be modeled, especially if a joint might cause a deviation of the crack from the dam-foundation con-

tact. With regards to non-linear fracture mechanics in concrete, smeared crack and discrete crack

models, two finite element implementations of the fictitious crack model, are widely used (Saouma

et al., 1989). As mentioned in the previous section, special care must be taken when dealing with

concrete dams, because of the uplift pressure exerted on these potential cracks.

2.2 EPRI Reports

The following subsections summarize the work performed at the University of Colorado Boul-

der for the Electric Power Research Institute (EPRI) during the late 1980s and early 1990s. The
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final submittal for the project contained an eight volume report (Amadei and Illangasekare (1990a),

Amadei and Illangasekare (1990b), Illangasekare et al. (1990), Chinnaswamy et al. (1990), Amadei

et al. (1990), Grenoble et al. (1990), Amadei (1990), and Amadei and Illangasekare (1990c)) and

users manuals documenting two finite element programs that were developed (Grenoble et al. (1988)

and Reich (1993)).

2.2.1 Volume 1: An Analytical Solution for Uplift in Cracks in Concrete Dams:

Programs WELL, UPLIFT & WELLD

Volume 1 of the EPRI reports continues on work conducted by Goodman et al. (1983) in

which the authors presented an analytical solution for the uplift in a crack along a dam-foundation

contact. This report generalizes the solution to include cracks within the dam itself, while keeping

the other original assumptions intact (i.e. steady, laminar flow, and constant crack permeability

and aperture). Also, the report provides information regarding to three computer programs that

implement the analytical solution: WELL, UPLIFT, and WELLD. WELL and WELLD similarly

calculate head, velocity, and Reynold’s number distributions within the crack as well as calculate

uplift force, overturning moments, drain effectiveness and the location of the center of pressure.

WELLD, however, takes into account head losses in the drain pipes. The program UPLIFT cal-

culates uplift force and moments for varying drain locations and can be used to optimize drainage

given the dimensions of a crack. The report provides users manuals for all three programs that

were developed.

2.2.2 Volume 2: Uplift Pressures in Cracks in Dams; A Probabilistic Approach

Using Monte Carlo Simulation Program MCWELL

This report outlines the implementation of the Monte Carlo simulation method on an ana-

lytical solution for uplift pressure in a crack with drains prepared by Amadei et al. (1989). The

program MCWELL allows users to input probability density functions (PDF) for otherwise deter-

ministic variables (crack aperture, roughness, length, etc.) and then outputs PDFs and cumulative
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density functions (CDF) for the uplift force and overturning moments. This allows engineers to

develop a safety margin (a comparison of the total resisting force to the uplift PDF) as opposed to a

traditional deterministic factor of safety, providing more information from which to base decisions.

2.2.3 Volume 3: A Model to Estimate Uplift in a Crack with a Box Drain: Users

Manual for Program INTRA1

INTRA1 is a program similar to WELL, UPLIFT, and WELLD in that it calculates the

uplift pressure distribution along a crack in a dam. However, the program implements an inte-

gral transform technique to solve the flow equation for a crack intersected by a box drain. This

formulation is the basis for the more general finite element model CRFLOOD.

2.2.4 CRFLOW: Finite Element Seepage Analysis for flow Through a Crack in a

Concrete Dam

Version 1.0 of CRFLOW is a finite element program designed to model flow of water through

a crack in a concrete dam. It was developed because of the limitations of the analytical solutions

proposed by Goodman et al. (1983). It models seepage through an arbitrary crack, provided its

plane is horizontal, accounting for prescribed head and flow boundary conditions. It assumes that

flow through the crack is steady and laminar, Darcy’s law is valid, and the hydraulic conductivity

within each crack element is isotropic and constant (i.e. doesn’t vary with pressure and the crack

does not deform). Flow through the crack is assumed to be governed by a variant of the cubic

flow law (2.1) where the aperture term is replaced by a smaller effective aperture to account for

the deviations within the crack from the two parallel plates assumption used to derive the law.

This modified flow law was proposed by Long (1983). Also, the program allows for the inclusion of

drainage by fixing either the head or flow rate at nodes containing drain pipes. Once provided with

the input parameters, CRFLOW calculates the total head and water pressure at each node; the

Reynold’s number, water velocity, uplift force, and overturning moment at each element’s centroid;

and the total uplift force and overturning moment of the structure. The program was found to be
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in agreement with the aforementioned analytical solutions providing it verification.

2.2.5 Volume 4: CRFLOOD: A Numerical Model to Estimate Uplift in Cracks in

Gravity Dams

CRFLOOD is a descendant of CRFLOW designed to handle laminar and turbulent as well

as steady-state and transient flow conditions; CRFLOW could only handle laminar and steady-

state flow. Also, CRFLOOD has the capability to accurately model the geometry of a drain-crack

connection, whereas CRFLOW idealized this geometry as only a prescribed nodal head or flow

rate value. The program was validated by a series of laboratory experiments that showed good

agreement between actual and numerical uplift results. The report then describes a parametric

study conducted with CRFLOOD to determine significant parameters affecting uplift pressure

distributions within a given crack and the effectiveness of drainage within a dam. It was found that

drain effectiveness increases with drain diameter (to a certain limit), the optimal drain location is

a balance between high head gradients (causing turbulent flow that lowers the transmissivity of

the crack) when the drain is placed near the upstream edge and higher total uplift force when the

drain is placed near the downstream edge, closer drain spacing results in higher drain effectiveness,

and increasing the upstream reservoir head to model a flood event could result in a transition from

laminar to turbulent flow reducing drain effectiveness.

2.2.6 Volume 5: Uplift in Cracks in Concrete Dams: Field Study

The primary goal of this study was to develop a methodology for calibrating the finite element

program CRFLOW by measuring or estimating input parameter values from dam case studies. It

is difficult to determine these parameters, because access to a crack for measurement is nearly

impossible and often limited to a single borehole. Assumptions must be made regarding the crack

geometry, boundary conditions, and how to model the flow (i.e. the revised cubic flow law). The

report outlines equipment, test procedure, and calibration technique used to create an accurate

model of a crack in a specific dam. It was found that CRFLOW could accurately replicate the
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experimental findings, although due to the difficulties in determining the input parameters, much

intuition was required to generate such a model.

2.2.7 Volume 6: Influence of Rock Discontinuities on Seepage and Uplift in Con-

crete Gravity Dam Foundations: A Numerical Approach

This report summarizes the development of a finite element program used to model uplift

on gravity dams founded on jointed rock. The program generates a joint network based on joint

set characteristics gathered for a given foundation rock. This network is then input into the two-

dimensional finite element program JOINTFLO, developed by Grenoble (1989), that models seepage

through the joints and calculates water pressure at each intersection as well as the velocity of the

water in the network. The program was validated through a series of comparisons to analytical

solutions and a laboratory experiment and then used to complete a sensitivity study to determine

the effect of various parameters on the uplift distribution. It should be noted that no attempt was

made to couple stress and flow. Major findings of the study include: the assumptions generally

made regarding uplift pressure distributions (Bureau of Reclamation, 1987) are generally good, some

rock joint locations do produce much larger and much smaller uplift pressure distributions, large

faults near the base of the dam (not necessarily in contact with the base, however) can significantly

increase the uplift force, the uplift force increases as a drain is moved further downstream (in

general), and deeper drains are more effective at reducing uplift pressures.

2.2.8 Volume 7: Three Dimensional Modeling of Dams with Cracks Using the

Boundary Element Method: Programs BEDAM & BEDAMC

This report provides information on two three-dimensional boundary element programs, BE-

DAM and BEDAMC, used to predict the deformations of cracked concrete dams. These boundary

element programs were used to model monolithic concrete gravity dams and cracks in the system

were modeled using CRFLOOD. Using uplift pressure information obtained from CRFLOOD, up-

lift tractions were applied to the three-dimensional concrete dam models and used to determine
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their deformations, effectively creating one coupled hydromechanical model. The boundary ele-

ment method was used for computational efficiency, although has the disadvantage that it required

the concrete to be modeled as a linear elastic, isotropic, and homogeneous material. BEDAM

analyzes the stability of a dam on a rigid foundation with a simple quadrilateral crack along the

dam-foundation contact. BEDAMC analyzes the stability of a dam containing two different media

with different elastic properties split by a crack (i.e., a crack within a dam or at a concrete-rock

interface along the dam-foundation contact). A number of examples were provided within the re-

port describing the usefulness of conducting a three-dimensional, boundary element method dam

stability analysis.

2.2.9 Volume 8: Uplift Pressures in Cracks in Concrete Gravity Dams: Experi-

mental Study

Flow through cracks is often idealized to follow the cubic flow law for flow between two

smooth, parallel plates. Obviously, actual cracks in concrete or along joints in rock do not necessary

fit the required assumptions. As a result, numerous empirical corrections have been applied to the

cubic flow law to more accurately model flow through cracks and joints. This report presents the

results of experiments designed to characterize and test the applicability of the existing empirical

corrections to flow through concrete cracks.

2.2.10 On the Marriage of Fracture Mechanics and Mixed Finite Element Methods:

An Application to Concrete Dams

This thesis documents the creation of the finite element program MERLIN, developed by

Reich (1993), that models the propagation of cracks using linear and nonlinear fracture mechanics

including the addition of simple uplift models, steady-state and transient heat transfer, and steady-

state and transient seepage. It focuses heavily on the mathematical formulation and finite element

implementation of these models.
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2.3 Post-EPRI

2.3.1 Current Gravity Dam Design and Stability Analysis Methods

Modern concrete gravity dam designs and stability analyses are generally conducted using

traditional methods derived from rigid body statics called classical or gravity methods depending on

the source. These methods are outlined in full detail in a number of documents, but most notably

Design of Small Dams by the Bureau of Reclamation (1987), Gravity Dam Design by the U.S. Army

Corps of Engineers (1994), and a design manual written by Federal Energy Regulatory Commission

(2002). In these documents, plane sections are assumed to remain plane and concrete is assumed to

be impermeable. Gravity dams work by using their self-weight to resist the other forces attempting

to cause sliding or over-turning, such as the normal force of the foundation pushing upwards and

the pressure from the upstream reservoir acting horizontally on the dam face. As for specifications

relating to the force due to uplift pressure acting on the dam-foundation contact, all offer a variation

on the assumption that uplift is a linear pressure distribution and acts as an external stress. In

Design of Small Dams, the uplift is assumed to be equal to the full upstream reservoir head at the

heel of the dam and the full tailwater head at the toe of the dam, varying linearly between these

two values and acting on the full area of the dam-foundation contact. If the dam includes drains,

the pressure acting at the line of drains is assumed to be the tailwater pressure plus one-third the

differential between tailwater and headwater pressures creating a bi-linear pressure distribution.

Also, if the dam has or is assumed to have a crack (which is often assumed in the tension region

along the dam-foundation contact), the full upstream reservoir head is assumed to act along the

entire length of the crack. The classical method continues to be the simplest and most widely used

gravity dam design and stability analysis tool and continues to draw arguments for its acceptance,

such as Watermeyer (2006).

Gravity design methods typically employ factor of safety driven stability analyses. A factor

of safety is defined as the ratio of the forces or moments resisting failure to the forces or moments

causing failure. Factors of safety greater than 1.0 signify a stable system where the resisting forces
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are greater than the forces causing failure, while factors of safety less than or equal to 1.0 describe

an unstable system. The primary modes of failure for gravity dams are overturning and sliding.

2.3.1.1 Factor of Safety Against Sliding

In the classical gravity dam design method, factors of safety against sliding are defined by

(2.3), or some variant of (2.3) accounting for unusual loading conditions, other sliding reinforcement,

or other easily accountable situations.

FSsliding =
CAb +W tan(φ)

P
(2.3)

Equation (2.3) is a variant of a Mohr-Coulomb failure envelope where FSsliding is the factor of

safety against sliding, C is any cohesion between the dam and foundation (kPa), Ab is the area of

the dam base in contact with the foundation (m2), W is the downward vertical force acting on the

foundation primarily caused by the self weight of dam (kN), φ is the internal angle of friction at the

interface of the foundation material, and P is the total horizontal (shear) force pushing the dam

downstream (kN). The downward forces and cohesion both work to prevent the dam from sliding

acting against the horizontal forces primarily caused by hydrostatic upstream reservoir pressures.

With the addition of uplift pressures acting along the base of a dam, the total vertical force (W )

is reduced by the total uplift force (U) resulting in an effective vertical force (T ) (Equation (2.4))

decreasing the overall factor of safety against sliding (Equation (2.5)).

T = W − U (2.4)

FS′sliding =
C ′Ab + T tan(φ′)

P
(2.5)

C ′ and φ′ are the effective cohesion and friction angle, respectively (Watermeyer, 2006).
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2.3.1.2 Factor of Safety Against Overturning

The factor of safety against overturning is calculated as the ratio of the moments about the

dam toe acting to overturn a dam to the moments resisting overturning. Overturning moments are

caused by, but not limited to, the force of the reservoir acting on the upstream face of a dam (P )

and the total uplift force acting on the base of a dam (U). As is implied by the name, overturning in

concrete gravity dams is primarily resisted by the self weight of the concrete (W ). All three forces

are then multiplied by their respective moment arms about the toe of the dam (Ep, Eu, and Ew),

and input into Equation (2.6) to calculated the factor of safety against overturning (Watermeyer,

2006).

FSoverturning =
WEw

UEu + PEp
(2.6)

2.3.2 Developments in Modeling Cracks and Uplift Pressures in Concrete Gravity

Dams

Since the early 1990s, work related to modeling cracks and uplift pressures in concrete gravity

dams has focused on three main topics: researching the effect of uplift pressures on cracks including

how to represent uplift in finite element models, describing the origin of cracks in concrete, and

creating newer and more elaborate numerical models of gravity dams. The following section will

outline the work done in each of these three sections.

2.3.2.1 Uplift Pressure on Cracks in Concrete Gravity Dams

Dewey et al. (1994) published a paper reviewing classical and finite element uplift pressure

models on a crack at the dam/foundation contact of a concrete gravity dam. They implemented

a series of finite element models that applied uplift pressure along just the crack, along the entire

base using the pressure distribution assumptions of the classical method described in the previous

section, and along just the crack but including the uplift pressure distribution caused from seepage

under the dam (assuming the foundation was pervious). To compare these different models, they
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used the finite element code MERLIN implementing a LEFM model to calculate the stress intensity

factor at the tip of the crack. It was discovered that the stress intensity factor was sensitive to the

uplift model chosen, and it was the authors’ conclusion that the seepage model provided the most

“satisfactory” results.

Experimental work by Bruhwiler and Saouma (1995) determined that the uplift pressure

distribution should not be assumed to be the full reservoir head over the entire length of a crack.

Instead, they discovered that the distribution is constant at the full reservoir head until the crack

reaches what they called a critical crack opening. At this aperture, the uplift begins to decrease

reaching zero at the crack tip. Plizzari (1998) took this information and developed a methodology

to empirically estimate the shape of the uplift pressure distribution in cracks in concrete dams

(primarily not along the dam-foundation contact). He used these formulae and the finite element

code MERLIN implementing a LEFM model to conduct a parametric study to determine the

influence of uplift pressure profiles on the stress intensity factors, like the work by Dewey et al.

(1994), and the crack propagation angle. He also found that these parameters are highly sensitive

to changes in the uplift pressure profile.

More recent work on modeling uplift pressures has returned to studying uplift on the base

of a gravity dam due to seepage through jointed rock foundations. More specifically, research has

focused on the creation of three-dimensional coupled stress/flow models. Al-Obaydi et al. (2008)

developed such a model by using an equivalent porous media approach where the permeability

matrix is defined by the flow through joints sets assuming the validity of the cubic flow law (2.1).

They used empirical relationships to couple stress to joint aperture deformations causing changes

in the permeability of the foundation, and were able to successfully model the uplift pressure

distributions on a gravity dam.

Other recent work in this field has focused on uplift pressures in cracks under dynamic loading.

An example of such research was conducted by Slowik and Saouma (2000). They conducted a

number of experiments aimed to determine how water flows through cracks under sudden changes

in crack aperture in order to propose a flow model that could be implemented in a finite element
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framework. They found that the faster a crack opens, the lower the water pressure distribution. In

other words, the crack opens faster than the water can flow in not allowing hydrostatic conditions

to be obtained. Using this information, they proposed a flow model that could be coupled with

NLFM crack propagation models under fast loading conditions.

2.3.2.2 Origins of Cracks in Concrete

Widmann (1990) pointed out that “fracture mechanics exclusively deals with problems re-

lating to crack propagation and such safety against cracking, so that the term ‘crack mechanics’

would be more appropriate. Neither crack origin nor complete failure of the structure, i.e., its

stability, resort to this special field.” In other words, the fracture mechanics models that had been

developed required input parameters describing the initial crack geometry without addressing why

the crack exists. In his paper, he outlines some possible explanations for why concrete gravity

dams (as well as other types dams) might have cracks and offers thoughts on the implications of

these explanations on selecting the required parameters for further analysis. Some of the reasons

included thermally induced deformations either during the initial curing of the concrete or through-

out the dam’s life, deformations caused by swelling or creep, and deformations caused by changes

in abutment geometry. He also stressed the importance of understanding concrete dams as complex

three-dimensional and highly indeterminate systems.

One example of research aimed at solving the problem outlined by Widmann (1990) was

conducted by Li (1995). In his paper, he describes an application of viscoplastic damage theory

to determine the location of cracking sites in a concrete gravity dam. His paper primarily focuses

on discussions of the mathematical formulation and finite element implementation of the model,

although two numerical models are presented. In one of the numerical models, Li shows the progres-

sion of fracture sites with increased load in a theoretical gravity dam that appears reasonable given

the assumptions about the material properties of concrete (homogeneous and isotropic elasticity).
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2.3.2.3 Numerical Models of Fracture Mechanics in Gravity Dams

One notable debate regarding applications of fracture mechanics to concrete gravity dams

has been the applicability of LEFM models to concrete. Studies such as the ones conducted by

Dewey et al. (1994) and Plizzari (1998) have concluded that the relative size of the fracture process

zone compared to the concrete dam allows the use of LEFM. Others, such as Bhattacharjee and

Leger (1994), disagreed with the assertion, especially in the neck of a dam, and concluded that

NLFM methods could provide important softening effects in the fracture process zone without

additional computational expense. As a result, Bhattacharjee and Leger (1994) focused their work

on analyzing the effectiveness of two NLFM models: the coaxial rotating crack model (CRCM)

and the fixed crack model with a variable shear resistance factor (FCM-VSRF). In their paper, the

models were applied to three examples that had been previously investigated both experimentally

and using LEFM models. They were able to verify the above assertion as well as conclude that

CRCM produced more consistent and accurate results than FCM-VSRF, and that NLFM models

had low computational costs and required simple material properties.

Another major development in the study of jointed rock with the finite element method has

been the formulation of cohesive surface elements. As discussed in Section 2.1.1, flow through

jointed rock was traditionally handled with either network flow or equivalent porous media models.

But recently, interface elements, like cohesive surface elements, have been developed to handle

the nucleation and propagation of cracks as well as fluid flow within a crack. Many formulations

have been proposed, but Segura and Carol (2004) developed a poromechanical cohesive surface

element that could conserve both longitudinal and transverse flow and be easily implemented in

pre-existing finite element meshes, by virtue of using only pre-existing nodes. The authors later

extended their work (Segura and Carol (2008a) and Segura and Carol (2008b)) to include the

influence of displacements within the cohesive surface element creating a fully coupled hydro-

mechanical model. Also, work was completed by Yu (2010) extending a cohesive surface element’s

mechanical constitutive model to include pressure sensitive rigid and elasto-plasticity, allowing for
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more complicated hardening or softening behaviors to develop. Concurrent work at the University

of Colorado at Boulder (Sweetser, 2012) further extended Yu’s work to include porous media flow

in the elements.

Shi et al. (2003) developed a methodology for including multiple cracks in a concrete gravity

dam instead of only one like previous models. The major issue behind creating such a methodology

is determining which of the cracks will propagate. Shi et al. (2003) determined that one possible

algorithm to achieve this goal is to assume that all cracks propagate independently by restricting

the growth of all but one crack at a time, determine which crack required the least energy to

propagate, and then update the geometry with only that crack growing. Repeating this process

will allow for multiple cracks to develop if the stress states in the concrete structure dictate this

type of fracture. They validated their findings against a number of experimental results, including

a large scale gravity dam model, with good overall agreement.

Similar to the discussion on uplift pressures in cracks, much of the numerical modeling of

fracture mechanics in gravity dams has been focused on modeling behavior under dynamic loading.

For example, Mirzabozorg and Ghaemian (2005) developed a three-dimensional smeared crack

model (NLFM) assuming a simple strain softening constitutive relationship in tension and linear

elasticity in compression for concrete. The concrete was also assumed to be homogeneous such that

the model required only a few basic material properties. They found good agreement between their

model and experimental data gathered for seismic event case studies of two concrete gravity dams.



Chapter 3

Gravity Dam with a Rigid Foundation Model

3.1 Gravity Dam Model Geometry, Loading and Material Properties

To illustrate a typical classical gravity dam design method factor of safety analysis and to

provide a comparison to the finite element modeling, an example dam from Watermeyer (2006)

was analyzed. The total vertical and horizontal stress distribution along the base of the example

dam and the factors of safety against sliding and overturning were calculated given three different

uplift pressure distributions and for varying internal friction angles. The three uplift pressure

distributions were as follows:

(1) No uplift pressure applied to the base of the dam.

(2) The classically assumed linear distribution from full upstream reservoir head at the heel to

downstream reservoir head at the toe.

(3) The classically assumed linear distribution including a drain located approximately two-

thirds from the heel along the dam-foundation contact. The distribution of uplift pressure

was assumed to vary from the total upstream reservoir head at the heel to the down-

stream reservoir head at the drain and toe, which is a variant on the aforementioned uplift

distribution with drainage (see Section 2.3.1).

Diagrams of the three uplift pressure distributions can also be found on Figure 3.2. An example

from Watermeyer (2006) was selected because vertical stress distributions were included in his

paper providing a direct comparison to verify some of the calculations herein presented.
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Figure 3.1: Geometry of the Example Dam from Watermeyer (2006)

Figure 3.1 contains the geometry of the example dam including the upstream and downstream

water levels and the third described uplift pressure distribution. Also included in this example is

a small layer of silty soil burying the heel of the dam, causing a small lateral geostatic load on the

dam’s upstream face. The unit weight of the concrete dam was assumed to be 23.5 kN/m3. The

silty soil’s buoyant unit weight was assumed to be 10.0 kN/m3, and the cohesion between the dam

and foundation was set to zero.

3.2 Finite Element Model Development in ABAQUS

Using the same geometry and material properties from an example dam in Watermeyer

(2006) described in Section 3.1, a finite element model was created in ABAQUS/Standard using



29

Figure 3.2: Geometry of the Example Dam Including the Three Uplift Pressure Distributions

the ABAQUS/CAE interface. In addition to the aforementioned material properties, it was assumed

that the concrete dam is a linearly elastic and isotropic deformable solid with a Young’s modulus of

elasticity of 20.67 GPa and a Poisson’s ratio of 0.2. The non-deformable foundation was modeled by

implementing a discrete rigid line completely fixed in space. The contact between the dam and rigid

foundation was achieved by using a surface-to-surface contact model built into ABAQUS/Standard

where the tangential behavior was described by a coefficient of static friction and the normal

behavior was considered unbonded – i.e., the zero cohesion condition. The coefficient of static

friction was taken to be the tangent of the friction angle, which is the factor multiplied by the

vertical force T used in the factor of safety analysis. Boundary conditions describing the hydrostatic

upstream and downstream reservoir pressures and the geostatic pressures from the deposited silty

soil layer were applied to the concrete dam, and a gravity load was applied to the entire model.

In ABAQUS/Standard, the acceleration due to gravity is multiplied by the mass density of the

materials in the model to produce unit weights that are then used to determine stresses due to

the self weight of the model. The three different uplift pressure distributions were applied to the

concrete dam as pressure boundary conditions applied directly to the base of the dam. No fixed
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displacement or rotation boundary conditions were applied to the dam; only the frictional contact

between the dam and rigid foundation was able to resist horizontal displacements. The full model

as rendered by ABAQUS/CAE can be seen on Figure 3.3.

Figure 3.3: ABAQUS/CAE Rendering of the Finite Element Model with No Applied Uplift Pressure
Distribution (Uplift Distribution 1)

Because no displacement or rotation boundary conditions were directly applied to the concrete

dam, the model was run as a pseudo-static analysis where the gravity load was linearly increased

from zero to 9.81 m/s2 over the pseudo time period 0-1 and then the other loads were similarly

ramped over a time period of 1-2. By first applying the gravity load, the full frictional resistance

along the dam-foundation contact and the self weight of the dam were allowed to develop before

applying the loads that act to overturn or slide the dam. It was found that if all of the loads

were applied instantaneously at the start of the simulation, the static solution would not converge

suggesting that a rigid body mode had developed and the system was unstable. In order to run

the analysis, the model was meshed using plain strain bilinear quadrilateral elements.
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3.3 Factor of Safety Analysis Using ABAQUS

To directly compare the factor of safety analysis outlined in Section 2.3.1 to results from the

finite element modeling, vertical and shear stress were plotted as a function of distance along the

dam-foundation contact, herein denoted as x, creating two stress distributions. These distributions

were then integrated with respect to x using the trapezoidal rule (Equation (3.1)) to calculate the

total vertical and shear forces. An example integration can be found on Figure 3.4. The forces

were then used to conduct a factor of safety analysis using Equations (2.3) and (2.6). For the

overturning calculations, it was assumed that the deformations of the dam were small enough to

not significantly change the geometry. As a result, the length of the moment arms used to calculate

the factor of safety against overturning by the classical gravity dam design method were also used

in the factor of safety analysis using the finite element modeling results.

ΔX

a b

Figure 3.4: Example Numerical Integration Using the Trapezoidal Rule
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T =

∫ b

a
f(x) dx ≈ (b− a)

f(a) + f(b)

2
(3.1)

During the second loading phase where the reservoir, uplift and soil pressures were being

incrementally applied, there were some cases where the finite element model did not converge

implying the development of a rigid body mode. Either the frictional resistance was overcome

allowing the dam to slide or the dam overturned. Because the loads were linearly ramped up over

the pseudo time period of 1-2, the time of the last converged time step represented the total percent

of the loads applied to the dam before failure. In order to then calculate the factor of safeties, the

total shear force developed at the last converged time step was first divided by the total percent

of the loads applied to acquire the total shear that would have been attained had the system not

failed. Then, this extrapolated value was used in the factor of safety analysis (see Appendix A for

more details).

3.4 Finite Element Model and Classical Gravity Dam Design Method Com-

parisons

3.4.1 Finite Element Model Results

The classical gravity dam design methodology calculates a linear vertical stress distribution

along a dam’s base. As a result of the deformations, which are assumed to be zero in the classical

method, the finite element model does not predict a linear distribution. A comparison of the two

different methods for an example without uplift pressure at a friction angle of 30◦ can be found on

Figure 3.5.

Figure 3.6 displays finite element vertical stress distributions for the no uplift cases and

varying friction angles between the dam and foundation. The percentage assigned to each data

series represents the percent of the total loads applied to the dam – i.e., the time of the last

converged time step. As the friction angle decreased, it required less load to fail the dam. Low

friction angles provide less shear resistance implying the systems failed due to sliding. Also, the
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Figure 3.6: Vertical Compressive Stress for No Uplift with Varying Friction Angles

vertical stress distributions remained positive, or in compression, for all friction angles suggesting

that in cases where the dam failed, it did not fail by overturning. In order to overturn, the dam
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would have needed to lose contact with the rigid foundation sending the vertical stress to zero.

Figure 3.7: Deformed Geometry of Uplift Pressure Distribution 1 Magnified 3000 Times

Also, Figure 3.6 shows vertical stress distributions more concentrated toward the heel of the

dam for lower friction angles. Because the lower friction angle simulations failed prior to the full

reservoir and soil loads being applied, the dam did not deform as much in these scenarios. As

the dam deforms, it primarily bends under the upstream reservoir pressure causing its centroid to

shift slightly downstream, as seen on Figure 3.7. The two cases that did successfully complete, φ

= 30◦ and φ = 25◦, show similar distributions suggesting that the dam deforms the same in each

simulation regardless of friction angle.

A comparison of results from uplift distributions 1 through 3 can be found on Figure 3.8.

As expected, at a constant friction angle of 30◦, uplift distribution 1 (the no uplift pressure case)

showed more frictional resistance to sliding than either uplift pressure distributions 2 or 3, as the

finite element model was able to resist 100% of the pressures applied during the second loading

phase. Also, the uplift case including drainage (distribution 3) resisted sliding better than the full
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linear uplift pressure profile (distribution 2) allowing the 95% of the tractions to be applied before

failing versus 84%.

3.4.2 Factor of Safety Comparisons

Results from the classical gravity dam design factor of safety analysis can be found in Table

3.1. As expected, the factor of safety against overturning does not change with respect to the

friction angle between the dam and foundation, as the moments about the toe of the dam are

not affected by the friction along the dam-foundation contact. It is significantly decreased by

the inclusion of uplift pressure, which creates a higher overturning moment about the toe of the

dam. Also, because drainage is designed to decrease the total uplift force acting on the dam’s base

decreasing the total uplift moment, the factor of safety against overturning is higher with a drain

included than without one.

The factor of safety against sliding decreases by decreasing the friction angle, because less of

the vertical force T is utilized to resist a sliding failure, as described by equation (2.3). Also, similar
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to the overturning calculations, the factor of safety against sliding decreases with the addition of

uplift pressure and is higher for the uplift model including a drain than the model without one;

the vertical force T , essentially the effective vertical force, is lower with the inclusion of an uplift

pressure distribution.

Table 3.1: Classical Dam Design and Finite Element Method Factor of Safety Analysis Comparisons

Uplift Model Drain Location Friction Angle
FSsliding FSoverturning

Classical ABAQUS Classical ABAQUS

1 - 30◦ 1.33 1.34 3.89 3.78
1 - 25◦ 1.07 1.08 3.89 3.78
1 - 20◦ 0.84 0.84 3.89 3.78
1 - 15◦ 0.62 0.61 3.89 3.77
1 - 10◦ 0.40 0.39 3.89 3.77
2 - 30◦ 0.82 0.80 1.22 1.19
2 - 35◦ 0.99 0.97 1.22 1.19
2 - 40◦ 1.19 1.17 1.22 1.19
3 17.5 m 30◦ 0.93 0.92 1.71 1.67
3 17.5 m 35◦ 1.13 1.11 1.71 1.66

Despite the differences in vertical stress distributions along the dam’s base between the

classical dam design method and the finite element models, the factor of safety against overturning

and sliding calculated using data from the finite element models and the methodology described in

Section 3.3 yield nearly identical results to the classical design method results. The results were

comparable even in cases where the finite element model did not fully converge due to reduced

frictional resistance or the inclusion of uplift pressure, as seen in Table 3.1 where the calculated

factor of safety against sliding was <1. The similarity between the two sets of data suggests that

the finite element method can yield reasonable results for basic geometry and material conditions

as far as the factor of safety is concerned. With the finite element framework, however, many

more complicated mechanics aspects can be incorporated into the system and used by engineers to

assess the safety of a dam in cases where the fundamental assumptions of the classical methodology

are violated, such as more complicated concrete dam constitutive relationships, atypical reservoir

conditions, or time-dependent loading situtations.



Chapter 4

Gravity Dam with a Deformable Foundation Model

4.1 Finite Element Model Development in ABAQUS

Using the same example dam from Watermeyer (2006), uplift pressure distributions described

in Section 3.1, and the same material properties for the concrete gravity dam described in Section

3.2, the rigid foundation from the models in Chapter 3 was replaced with a deformable rock foun-

dation. Due to the expected small strains, the rock masses were idealized as homogeneous, linear

isotropic elastic materials. A table with the different rock types and their respective material

properties follows.

Table 4.1: Deformable Foundation Material Properties

Material
Poisson’s Ratio Young’s Modulus Stiffness Ratio Density

ν Ematerial (GPa) Ematerial/Econcrete ρ (kg/m3)

Granite 0.2 40 1.94 2700
Sandstone 0.33 10.5 0.51 2000
Concrete 0.2 20.67 1 2396

Hard Granite 0.2 70 3.39 2700
Steel 0.3 200 9.68 8000

These materials were chosen to provide a wide range of stiffnesses relative to the stiffness of the

concrete gravity dam in order to study the behavior of different types of rock foundations. The

ratio of the Young’s modulus of concrete to the moduli of the other foundation materials can be

found in Table 4.1 in the Stiffness Ratio column. Steel was included as a foundation material to be

an upper limit on the stiffness of geologic materials and to bridge the gap between the hard granite
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and rigid cases.

A rendering of the deformable rock foundation finite element model as implemented in

ABAQUS/CAE can be found on Figure 4.1. The foundation rock was made to extend 50 me-

ters upstream, downstream, and under the dam, and then was fixed in both the x (horizontal)

and y (vertical) directions along the outside boundaries. This was done to simulate an expansive,

monolithic rock mass supporting the dam. Contact between the dam and foundation was modeled

using the same contact model that was described in Section 3.2. As a result, the same psuedo-time

scheme, also outlined in Section 3.2, was implemented to allow the frictional resistance to sliding

to develop prior to applying the loading from the upstream reservoir. In addition to the loading on

the gravity dam, tractions were applied to the foundation accounting for the upstream and down-

stream hydrostatic water pressure as well as the downward pressure of the three uplift pressure

distributions. As water pressure acts equally in all directions, any uplift pushing the gravity dam

upwards must also push the foundation downwards.

Figure 4.1: ABAQUS/CAE Rendering of the Finite Element Model with Uplift Distribution 3
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4.2 Finite Element Model and Classical Gravity Dam Design Method Com-

parisons

4.2.1 Finite Element Model Results

Figures 4.2 and 4.3 show the finite element modeling results of a deformable granite and sand-

stone foundation without any applied uplift pressure. Plots of the vertical compressive stress along

the dam-foundation contact for both foundations without uplift pressure and for varying contact

friction angles can be found on Figures 4.4 and 4.5 respectively. These plots display similar trends

to the rigid foundation case from Chapter 3. For the analyses that ran to completion (100%), the

vertical stress distributions are roughly identical regardless of the friction angle. However, the lower

the friction angle, the lower the sliding resistance along the dam-foundation contact. Consequently,

a smaller fraction of the upstream reservoir pressure was applied to the system prior to the finite

element model failing to converge. Lower lateral pressure resulted in less lateral deformation of

the dam causing the centroid of the dam to shift upstream and the stress distributions to change

accordingly. Also, all of the vertical stress results remained in compression meaning none of the

gravity dam models failed by overturning; the finite element models that didn’t fully converge likely

failed through sliding instead.

Also similar to the trends discussed in Chapter 3, Figures 4.6 and 4.7 are plots for both a

granite and sandstone deformable foundation with uplift pressure distributions 1 through 3. For

both foundation materials, the no uplift pressure case (distribution 1) produced higher frictional

resistance to sliding than the uplift pressure with drainage case (distribution 3) than the full linear

pressure profile case (distribution 2) given a constant friction angle of 30◦.

Lastly, with the addition of a deformable foundation, it is important to determine if the

generated stresses were large enough to induce crushing in either the rock or concrete dam. The

unconfined compressive strengths of concrete, granite and sandstone are approximately 28, 150, and

95 MPa, respectively. The maximum vertical compressive stress generated during either simulation

(see Figures 4.2 and 4.3) was directly under the dam along the bottom edge of the foundation at
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Figure 4.2: Deformed Geometry with Vertical Stress Contours Magnified 3000 Times for a De-
formable Granite Foundation with Uplift Pressure Distribution 1

Figure 4.3: Deformed Geometry with Vertical Stress Contours Magnified 3000 Times for a De-
formable Sandstone Foundation with Uplift Pressure Distribution 1
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Figure 4.4: Vertical Compressive Stress for a Deformable Granite Foundation with Varying Friction
Angles without Uplift Pressure
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Figure 4.5: Vertical Compressive Stress for a Deformable Sandstone Foundation with Varying
Friction Angles without Uplift Pressure
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Figure 4.6: Vertical Compressive Stress for a Deformable Granite Foundation with a Friction Angle
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Figure 4.7: Vertical Compressive Stress for a Deformable Sandstone Foundation with a Friction
Angle of φ=30◦



43

a value of just over 1 MPa. Along the dam-foundation contact, the highest compressive stress was

just under 1 MPa during the sandstone foundation with contact friction angle at 10◦ case found on

Figure 4.5. Neither of these stresses were large enough to eclipse the compressive strengths of any

of the materials, and as a result, it is reasonable to assume no crushing was induced.

4.2.2 Comparisons of Different Foundation Materials

A plot comparing the five different foundation materials modeled given a friction angle of

30◦ and uplift pressure distribution 1 can be found on Figure 4.10. As the foundation materials

stiffen relative to the concrete dam, the vertical compressive stress distributions gradually change

from concave up to concave down, ultimately resembling the the rigid foundation case from Figure

3.6. Under identical loading conditions, the stiffer the foundation the less it will deform, as shown

by Figures 4.8 and 4.9 that compare the horizontal deformation of the granite and sandstone

foundations respectively. As a result, the orientation of the concrete dam doesn’t change as much

with respect to the foundation. The softer foundations, like the sandstone model, deform more

under the dead weight of the dam causing the stress distributions to change. The heaviest section

of the dam (the upstream section) causes the upstream side of the less-stiff foundation to deflect

farther tilting the dam slightly upstream. As a result, the highest vertical compressive stress is in

the upstream section as more of the dam’s self-weight is over this section of the foundation.
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Figure 4.8: Deformed Geometry with Horizontal Displacement Contours Magnified 3000 Times for
a Deformable Granite Foundation with Uplift Pressure Distribution 1

Figure 4.9: Deformed Geometry with Horizontal Displacement Contours Magnified 3000 Times for
a Deformable Sandstone Foundation with Uplift Pressure Distribution 1
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4.2.3 Factor of Safety Comparisons

Using the same methodologies outlined in Section 2.3.1 and Section 3.3, an analysis was

completed comparing factors of safety calculated using the classical gravity dam design method

and the deformable rock foundation finite element results. Table 4.2 contains comparisons between

the classical method and ABAQUS finite element results given a deformable granite foundation,

and Table 4.3 contains similar results, but given a deformable sandstone foundation. Despite

the additional complexity of a deformable foundation in the finite element models, the factors

of safety calculated from the finite element results are highly comparable to the classical design

method results. As expected due to the similarity between stiffer foundation materials and the

rigid foundation results, the factors of safety for the granite foundation more closely resemble the

classical results. However, the factors of safety from the less stiff sandstone foundation do begin to

slightly deviate from the classical method. Particularly, the factor of safety against overturning for

the uplift pressure distribution 1 are higher for the finite element results than the classical results,

likely due to the slight rotating of the concrete dam discussed in Section 4.2.2 creating higher

resisting moments. However, the maximum deviation between the two sets of results is 5.2% (the

cases with friction angles of 15◦ and 10◦), so the difference between the two is small.

Table 4.2: Factor of Safety Analysis for a Deformable Granite Foundation versus the Classical
Design Method

Uplift Model Drain Location Friction Angle
FSSliding FSOverturning

Classical ABAQUS Classical ABAQUS

1 - 30◦ 1.33 1.33 3.89 3.87
1 - 25◦ 1.07 1.08 3.89 3.87
1 - 20◦ 0.84 0.84 3.89 3.87
1 - 15◦ 0.62 0.60 3.89 3.87
1 - 10◦ 0.40 0.38 3.89 3.87
2 - 30◦ 0.82 0.81 1.22 1.20
2 - 35◦ 0.99 0.98 1.22 1.20
2 - 40◦ 1.19 1.16 1.22 1.19
3 17.5 m 30◦ 0.93 0.96 1.71 1.68
3 17.5 m 35◦ 1.13 1.19 1.71 1.67
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Table 4.3: Factor of Safety Analysis for a Deformable Sandstone Foundation versus the Classical
Design Method

Uplift Model Drain Location Friction Angle
FSSliding FSOverturning

Classical ABAQUS Classical ABAQUS

1 - 30◦ 1.33 1.36 3.89 4.02
1 - 25◦ 1.07 1.09 3.89 4.06
1 - 20◦ 0.84 0.84 3.89 4.09
1 - 15◦ 0.62 0.59 3.89 4.10
1 - 10◦ 0.40 0.35 3.89 4.10
2 - 30◦ 0.82 0.83 1.22 1.24
2 - 35◦ 0.99 1.00 1.22 1.22
2 - 40◦ 1.19 1.17 1.22 1.21
3 17.5 m 30◦ 0.93 0.94 1.71 1.72
3 17.5 m 35◦ 1.13 1.14 1.71 1.70

Also, it should be stressed that even in cases where the classical gravity dam design method

predicited an unstable system (factors of safety <1), the finite element data produced similar

results. By using the methodology described in Section 3.3, the total forces calculated from the

stress distributions at the last convereged psuedo-timestep produced comparable factors of safety

when plugged into the classical gravity dam equations. Although the finite element model did not

fully converge, important infomation about the stability of the system was still possible to obtain,

analyze and even be used as a predictive tool like the classical design method.

Because the inclusion of homogeneous and isotropic linear elastic deformable rock foundations

in the finite element models yield similar results to the classical gravity dam design method, one

can infer that the finite element models predict reasonable factors of safety. The relatively small

strains predicted by the models do not violate the major assumptions of the classical method. When

the stress distributions, which do vary considerably from the classical method, are integrated into

forces, the calculated factors of safety are nearly identical. Though with these finite element models,

additional layers of complexity can be added to more accurately replicate the conditions in the field,

such as anisotropic material stiffnesses, which are particularly important for jointed rocks and rocks

with highly defined bedding planes, more complicated consitutive relationships for the dam and

foundation, and the nucleation and propagation of cracks in both materials.



Chapter 5

Gravity Dam with Coupled Solid Skeleton Deformations and Porous Media

Fluid Flow

5.1 Finite Element Model Development in ABAQUS

The previous two concrete gravity dam finite element models (described in Chapters 3 and

4) included uplift pressures by applying tractions to the model as boundary conditions. Although

the factor of safety results were comparable to the classical gravity dam design method, a more

physically accurate method to include uplift is by allowing for porous media flow through the dam

system. Water pressures are then developed through the coupling of the solid skeletal deformations

and seepage equations, and not through artifically applying a boundary condition.

Table 5.1: Poromechanical Material Properties

Material
Permeability Initial Void Ratio
k (m/sec) eo

Sandstone 1x10−10 0.2
Concrete 1x10−12 0.05

Figure 5.1 shows an ABAQUS/CAE rendering of the finite element model with poromechan-

ics. The model is similar to the deformable rock foundation model from Chapter 4, but without

any applied uplift distributions along the dam-foundation contact. The other traction boundary

conditions representing water pressures from the upstream and downstream reservoir were kept,

and additional pore water pressure boundary conditions were added to inform the flow equations.

ABAQUS automatically generates no flux boundary conditions where pore pressure boundaries
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Figure 5.1: FEM Model Geometry and Boundary Conditions

aren’t specified; therefore, no flow was permitted along the sides and bottom of the foundation or

out of the downstream face of the dam, except into the downstream reservoir. Also, an isotropic

permeability tensor and initial void ratio were set for both the concrete dam and a deformable

sandstone foundation. The material properties used can be found in Table 5.1.

Poromechanical analyses in ABAQUS are run using the “soils” step, which allows for either

transient or steady-state analyses. It was chosen to use the steady-state feature in order to more

closely match the analyses in previous chapters. Transient analyses would be useful to see the build

up of pore pressures over time, but due to the relatively low permeability of rock and concrete,

they would need to run for a long time in order to reach steady-state. Like the pseudo-time scheme

outlined in Section 3.2, the gravity load was applied over 0-1 pseudo-seconds, allowing the frictional

resistance to build up prior to applying the traction and pore pressure boundary conditions over

the final 1-2 pseudo-seconds.
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5.2 Finite Element Model and Classical Gravity Dam Design Method Com-

parisons

5.2.1 Finite Element Model Results

Typical vertical effective stress, pore water pressure and horizontal displacement contours for

the poromechanical analyses can be found on Figures 5.2, 5.3 and 5.4. Unlike the previous finite

element model results, the addition of pore fluid flow predicts much greater horizontal displacement

of the gravity dam relative to the foundation rock. Figure 5.4 shows noticeable lateral displacement

at only 1500 times magnification, as can be seen by the overlap of the dam and foundation in the

magnified deformed rendering; Figure 4.9 shows hardly any lateral displacement at 3000 times

magnification. This is because the poromechanical model is directly using the effective stress along

the dam-foundation contact to determine the frictional resistance to sliding. The deformable rock

foundation models of Chapter 4 do not directly account for the effective stress, but instead attempt

to mimic those conditions by the application of the uplift pressure tractions. In other words, the

value of S22, vertical stress in the deformable foundation models and vertical effective stress in the

poromechanical models, which is directly related to the developed frictional resistance, is greater

in the models without the addition of poromechanics than with pore fluid flow.

The effective vertical stress and pore water pressure along the dam-foundation contact given

a friction angle of 30◦ can be found on Figure 5.5. The total stress was calculated by adding the

effective vertical stress (S22) and pore water pressure (POR) at each point along the contact (x).

The pore water pressure is nearly linear decreasing from the full upstream reservoir pressure head

to the downstream reservoir pressure head, as is the assumption in the classical gravity dam design

method. The deviations from linearity are caused by the pore fluid flow through the dam heel and

toe.

Figure 5.6 shows the total stress along the dam-foundation contact for varying friction angles,

and also includes the percent of the total loads applied to the dam model. The finite element model

did not fully converge for the case with a friction angle of 30◦ only allowing 90% of the boundary
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Figure 5.2: Deformed Geometry with Vertical Effective Stress Contours Magnified x1500

Figure 5.3: Deformed Geometry with Pore Water Pressure Contours Magnified x1500
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Figure 5.4: Deformed Geometry with Horizontal Displacement Contours Magnified x1500
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conditions to be applied before failure, but the models did converge for the two higher friction

angles. When fully converged, the total stress solutions do not depend on the friction angle of the

contact.
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Figure 5.6: Total Compressive Stress Along the Dam Path for Various Friction Angles

Also, the total stress distributions were slightly dependent on where the effective stress was

calculated. Figure 5.7 displays the total stress distributions for the base of the dam (Poromechanics

– Dam Path) and the top of the foundation (Poromechanics – Foundation Path). Although similar,

the solutions are different, because the stress is calculated at the Gauss points and then extrapolated

to the sides of the element. The stress solution does not need to be continuous (although the pore

pressure solution does), and the averaging techniques ABAQUS employed for the results displayed

in Chapters 3 and 4 that make the stress solutions continuous are not as effective for poromechanical

analyses. However, the differences between the two solutions are small, and both solutions agree

closely with the results from the deformable sandstone foundation with uplift pressure distribution

2 (the linear uplift pressure profile) for a friction angle of 30◦, also displayed on Figure 5.7.
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Figure 5.7: Comparisons between Dam and Foundation Paths in the Poromechanics and a De-
formable Sandstone Foundation

5.2.2 Isotropic versus Anisotropic Permeability in the Sandstone Foundation

Previous results describe cases where the permeability of the sandstone foundation was con-

sidered isotropic; yet the permeability of rock, especially sedimentary rocks with defined bedding

planes as sandstones often are, is better described with an anisotropic permeability tensor. Flow

is generally preferred in the direction of the bedding planes. The following section contains the re-

sults of two simple simulations replacing the isotropic permeability of the foundation with one case

where the permeability in the x-direction is much lower than the y-direction (denoted “Low x”)

and one where the y-direction permeability is lower than the x-direction (denoted “Low y”). Table

5.2 contains the two sets of material properties used for the sandstone foundation. The purpose of

these simulations was to demonstrate the effect of anisotropy in that more focus was placed on the

relative difference between kx and ky and not necessarily how accurate their values were. Recall

that the isotropic permeability of the sandstone foundation was taken to equal 1x10−10 (m/sec)

(see Table 5.1). As a result, the permeability of the “low” direction was assumed to be that same
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value, and the “high” direction was taken to be a factor of 105 as permeable.

Table 5.2: Material Properties for Isotropic versus Anisotropic Permeability in the Sandstone Foun-
dation

Description
x-Permeability y-Permeability
kx (m/sec) ky (m/sec)

“Low x” 1x10−10 1x10−5

“Low y” 1x10−5 1x10−10

In order to implement these two simulations into ABAQUS, the basic poromechanical model

outlined in Section 5.1 was taken and then slightly altered. In the material property definition

of sandstone, the isotropic permeability was replaced with the orthotropic permeability option in

order to define the permeability in two orthogonal directions (k11 and k22). ABAQUS allows for

the definition of fully anisotropic permeability tensors, but for the purposes of this study, the

orthotropic option sufficed. After the permeability tensor definition, ABAQUS also requires the

user to create a material orientation in order to define the 11 and 22 directions, which were taken

to be x and y in these examples.

Figures 5.8 and 5.9 display ABAQUS/CAE renderings of vertical effective stress and pore

water pressure contours given a sandstone foundation with the “low x” anisotropic permeability

tensor. Similar renderings for the “low y” case can be found on Figures 5.10 and 5.11. The

most obvious differences between the two sets of results were the pore pressure distributions in

the system’s foundation. With flow preferred in the y-direction, as in the “Low x” case, one can

imagine a flow net under the dam where only as the water nears the bottom no flux boundary is

it forced to flow under the dam. In the opposite case, flow was preferred in the x-direction. An

accompanying flow net would have the flow quickly turning under the dam after entering from the

upstream reservoir. The result is a distribution that appears nearly hydrostatic just away from the

dam-foundation contact.

A comparison of the vertical effective stress and pore water pressure solutions along the

dam-foundation contact for both anisotropic cases as well as the isotropic permeability case of
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Figure 5.8: Dam Geometry with Low x Permeability in the Foundation and Vertical Effective Stress
Contours

the previous section can be found on Figure 5.12. As is apparent, the anisotropic distributions

do not change significantly from the isotropic case. According to the simulations, the “Low x”

case was slightly less stable than the “Low y” case, which in turn was slightly less stable than

the isotropic case. The “Low x” percent completion was 87.7%, which was the lowest of the

three, but the three values are too similar to draw any significant conclusions. In other words,

the inclusion of anisotropic permeability in a dam’s foundation does significantly change the pore

pressure distribution in the foundation, but doesn’t seem to effect the uplift pressure acting on the

dam itself.
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Figure 5.9: Dam Geometry with Low x Permeability in the Foundation and Pore Water Pressure
Contours

Figure 5.10: Dam Geometry with Low y Permeability in the Foundation and Vertical Effective
Stress Contours



58

Figure 5.11: Dam Geometry with Low y Permeability in the Foundation and Pore Water Pressure
Contours
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5.2.3 Factor of Safety Comparisons

In order to compare the results from the poromechanical anlayses to the classical gravity dam

design method, some slight alterations were needed on the methodology described in Section 3.3.

For the poromechanical analyses, the effective stress and pore water pressure were integrated with

respect to x to get an effective downward and uplift force instead of working only with the total

stress. These values were then used in the formulas outlined by Watermeyer (2006) to calculate

the factor of safety against sliding and overturning (see Appendix A for more detail).

The factors of safety for the classical gravity dam design method, the finite element model

with a deformable sandstone foundation, and the finite element model with enabled poromechanics

can be found in Table 5.3 for three different contact friction angles. The poromechanical results

can only be compared to the cases where uplift pressure distribution 2 was previously used, because

there is no case without pore pressure and drainage systems are not considered. As is seen on the

aforementioned table, all three values for each scenario are nearly identical. Including coupled solid

skeletal deformations and porous media flow does not appreciably effect the factor of safety results

calculated using only the classical method, verifying the ability to include such complexities in

finite element modeling of gravity dams. Unlike the classical gravity dam design method, the finite

element method has the advantage of being able to add other features. For example, anisotropic

permeability models, like those discussed in Section 2.1.1, can be included in ABAQUS to account

for a preferential flow direction. Using finite element methods, engineers are also able to increase the

traction and pore pressure boundary conditions as functions of time to simulate flood conditions.

Table 5.3: Factor of Safety Analysis Results for Classical Design Method, Deformable Sandstone
Foundation and Poromechanics

Friction Angle FSSliding FSOverturning
Classical Deformable Poromech Classical Deformable Poromech

30◦ 0.82 0.83 0.92 1.22 1.24 1.30
35◦ 0.99 1.00 1.03 1.22 1.22 1.25
40◦ 1.19 1.17 1.24 1.22 1.21 1.24



Chapter 6

Gravity Dam with High Permeability Sections Representing Cracks and Drains

6.1 Finite Element Development in ABAQUS

As an additional layer of complexity added to the poromechanical model described in Section

5, high permeability zones were directly modeled in ABAQUS to study the behavior of flow through

cracks and drains in concrete gravity dam systems. Two sets of models were developed.

(1) A model of a crack along the dam-foundation contact with high permeability and directly

meshed aperture.

(2) The same crack modeled with the inclusion of a high permeability drainage system near

the heel of the gravity dam.

The crack and drain were both modeled as highly permeable porous media with linear elastic

material properties. Material properties were chosen to loosely represent highly fractured concrete

for the dam-foundation contact crack and a gravely soil for the drainage system. A list of material

properties can be found in Table 6.1.

Figures 6.1 and 6.2 both show example ABAQUS/CAE renderings of the two different models,

one with only a crack along the dam-foundation contact and one with a crack and vertical drainage

system. The drainage system in Figure 6.2 was placed at 17.5 meters from the heel of the dam,

which is approximately 75% of the total length of the gravity dam example from Watermeyer

(2006). For both cases, with and without a vertical drainage system, four different crack lengths

were investigated: a crack extending from the heel of the dam to the drainage system (denoted as
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Table 6.1: Porous Media Material Properties

Material
Poisson’s Ratio Young’s Modulus Density Permeability Initial Void Ratio

ν Ematerial (GPa) ρ (kg/m3) k (m/sec) e0

Concrete 0.2 20.67 2396 1x10−12 0.05
Sandstone 0.33 10.5 2000 1x10−10 0.2

Crack 0.2 2.0 2000 1x10−2 0.4
Drain 0.4 3.0 1400 1x10−2 0.6

100L), a crack from the heel to three quarters of the distance to the drainage system (75L), and

similar cracks to 50% and 25% the length to the drainage system (50L and 25L respectively). The

same frictional contact model was used to describe the dam-foundation interface, but due to the

addition of a base crack and drainage system, the interface was instead located along the bottom

of the crack, which was meshed into the concrete dam and not the foundation, and through the

vertical drainage system, which was created as two separate parts in ABAQUS/CAE. By breaking

the drain into two pieces, the model assumes that the drainage system does not contribute to the

resisting forces preventing sliding, other than the small area that develops frictional resistance, like

a set of steel anchor bars would.

Applied tractions and boundary conditions were similar to those applied to the porome-

chanical gravity dam model described in Chapter 5, except an additional pore pressure boundary

condition was applied to the top of the drainage system. This additional boundary condition was

set to 0 Pa to simulate a drainage system open to the atmosphere, but can be easily adjusted

to another value given appropriate information. Also similar to the model from Chapter 5, the

ABAQUS analyses were run using the soils step under steady-state conditions with the gravity

load applied first (over 0-1 pseudo-seconds) to insure a build-up of frictional resistance prior to

applying to the pore pressure boundary conditions and tractions (over 1-2 pseudo-seconds).
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Figure 6.1: Zoomed in ABAQUS/CAE Rendering of the Geometry and Boundary Conditions for
a Base Crack to 100L

Figure 6.2: Zoomed in ABAQUS/CAE Rendering of the Geometry and Boundary Conditions for
a Base Crack to 50L with a Vertical Drainage System
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6.2 Finite Element Model Results

6.2.1 Crack Only

Figures 6.3 and 6.4 show ABAQUS finite element modeling results zoomed in around a high

permeability crack extending 17.5 m along the dam-foundation contact. The scale of the coutour

lines were altered to more clearly see the changes in the effective stress and pore water pressure

solutions around the the base crack. Plots of the effective vertical stress, pore water pressure,

and total stress distributions for the four considered crack lengths can be found on figures 6.5,

6.6, and 6.7. After comparing these Figures with results from the poromechanical analysis in the

previous chapter (found on Figure 5.5), one can see that as the crack along the dam-foundation

contact is shortened, the effective stress, total stress and pore water pressure results begin to

approach the aforementioned poromechanical data. One can also see that at the end of each

base crack, the effective stress solutions increase. The surrounding concrete and rock materials

are approximately one order of magnitude stiffer than the crack material meaning at the same

strain, they will experience higher stress, given the linear and isotropic elastic constitutive model

used. However, despite the changes in the effective stress and pore water pressure distributions with

changing length of a base crack, the total stress distributions remain relatively constant and similar

to the poromechanical results in Chapter 5 and the deformable foundation results in Chapter 4, as

seen compared on Figure 5.7. The applied loads and, especially, the self weight of the system have

not changed from analysis to analysis; therefore, the total stress experienced by the dam-foundation

contact has not changed either.

As expected, the higher permeability of the meshed crack relative to the concrete dam and

sandstone foundation created a preferential flow path through the system altering the nearly linear

pore pressure distribution found on Figure 5.5. As can be seen on Figure 6.6, for each given

crack length, the pore pressure distribution was found to be constant over the length of the crack

and linearly varying thereafter. As mentioned in Section 2.3.1, the classical dam design method

generally assumes that some fraction of the full upstream reservoir head is applied over a crack in
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Figure 6.3: Deformed Geometry with Effective Stress Contours for a Crack to 100L

Figure 6.4: Deformed Geometry with Pore Water Pressure Contours for a Crack to 100L
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the upstream face or along the dam-foundation contact. The finite element modeling results seem

to further validate that claim. It should be noted that the reason shorter base cracks produced

higher constant pore pressure distributions within the crack was a byproduct of how the boundary

conditions were applied and not necessarily the physics behind the simulations. Because the pore

water pressure boundary conditions and applied tractions were increased linearly over the final

1-2 pseudo-seconds, the percent complete values, found in the legends of Figures 6.5, 6.6, and 6.7

represent the faction of the tractions and pore pressure boundary conditions applied to the model

prior to it failing to converge. As expected, the longer the base crack, the more unstable the system

requiring less of the prescribed boundary conditions and pressures to cause failure.
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Figure 6.6: Pore Water Pressure for Varying Crack Lengths Along the Dam-Foundation Contact
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6.2.2 Crack with Drain

In contrast to the previous section, the addition of a vertical drainage system significantly

changed the effective stress and pore water pressure solutions, as can be seen on Figures 6.8 and 6.9.

Figures 6.10, 6.11, and 6.12 show the effective stress, pore water pressure, and total stress solutions

for different length base cracks with a drainage system. Like in the previous section, the total stress

distributions remained relatively constant and similar to the results in previous chapters, but both

the effective stress and pore water pressure solutions were different. The effective stress solutions,

although altered by the different pore pressure solutions, display a similar trend to the results on

Figure 6.5 in that the solutions increase after the end of the crack and, similarly, are lower within

the drainage system. Like the crack, the drain’s stiffness is an order of magnitude lower than the

surrounding concrete and rock.

Figure 6.8: Deformed Geometry with Effective Stress Contours for a Crack to 50L Including a
Drainage System

Like the models without drainage, the pore water distributions were still constant and rela-

tively high within the crack, but with an added drainage system, they quickly dropped linearly to
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Figure 6.9: Deformed Geometry with Pore Water Pressure Contours for a Crack to 50L Including
a Drainage System

near zero around the drain. Design of Small Dams suggests that the drain head be found by adding

the downstream reservoir head to one third of the upstream reservoir head minus the downstream

(Equation 1.1). For this dam geometry, the dam head calculated by Equation 1.1 is 94 kPa. The

finite element modeling results show a drain head of approximately 10 kPa implying that in this

circumstance the classical method is more conservative.

One notable exception to the constant pore water pressure distibution within the base crack

was the 100L case. In this case, the base crack intersected the vertical drainage system creating

a preferential flow path through the crack and into the drainage system. As a result, the pore

pressure solution varied linearly from roughly the full upstream reservoir head at the face of the

dam to approximately zero at the drain. Although this is an example of a fracture lowering the

uplift pressure along the base of a gravity dam helping to stabilize the system, it is similar to

the theoretical situation proposed by Terzaghi (1929) (see Section 2.1.1) where a fracture greatly

increased the uplift pressure under a dam potentially causing failure. One advantage of the finite
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element method over the classical design method is that these types of cracks and rock joints can

be modeled directly providing information about the effective stress, pore water pressure, and fluid

flow in the system.
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Figure 6.12: Total Stress for Varying Crack Lengths with Drainage Along the Dam-Foundation
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Just as the classical gravity dam design method assumes, and the finite element modeling

results of previous chapters have shown, it is clear that by including a drainage system, the overall

stablity of concrete gravity dams is increased. Figure 6.13 clearly shows a decrease in the pore

water pressure solution from the models without drainage (solid lines) to the models with drainage

(dashed lines). These results are clear even considering that in both of the cases with drainage a

greater fraction of the pore pressure boundary conditions and tractions were applied to the models

prior to failing to converge, which resulted in, on average, higher pore pressure distributions. Also,

each percentage complete for the modeling results including drainage were nearly 10% greater

than their corresponding percent complete without drainage further showing that drainage systems

increased the system’s stability. The notable exception is for the 100L case. In this scenario, the

inclusion of a vertical drainage system increased the stability of the system by 37% for reasons



71

previously discussed.
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Figure 6.13: Comparison of the Pore Water Pressure with and without a Drainage System

6.2.3 Comparisons Between a Gravity Dam with Drainage System Near the Heel

Versus Near the Toe of the Dam

In addition to simulating different length base cracks with and without drainage systems, a

few finite element models were also developed to briefly assess the effect of drainage system location.

Using the same material properties from previous models (see Table 6.1), two models each with

a 2 meter long base crack were developed. The first model included a drainage system at 17.5

meters (the same location as in Section 6.2.2), and the second a drainage system at 4 meters. This

provided two cases with different drainage system locations, one far downstream and the other near

the dam heel, without the crack and drain intersecting creating a preferential flow path.

Contour plots of vertical effective stress and pore water pressure for downstream drainage

case can be found on Figures 6.14 and 6.15. Similar plots for the upstream drainage case can be

found on Figure 6.16 and 6.17. While the results for the downstream drainage case fit directly
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Figure 6.14: Dam with a Crack to 2 m and Drainage System Near the Toe of the Dam with Vertical
Effective Stress Contours

Figure 6.15: Dam with a Crack to 2 m and Drainage System Near the Toe of the Dam with Pore
Water Pressure Contours

in with results presented in Section 6.2.2 (i.e. they are essentially a 12.5L case), results from the

upstream drainage case depart from this mold significantly. In particular, Figure 6.17 shows a

significant spike in pore pressure between the end of the base crack and drain and negative pore
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Figure 6.16: Dam with a Crack to 2 m and Drainage System Near the Heel of the Dam with Vertical
Effective Stress Contours

Figure 6.17: Dam with a Crack to 2 m and Drainage System Near the Heel of the Dam with Pore
Water Pressure Contours

pressures immediately downstream of the drain.

Figure 6.18 is a plot comparing the vertical effective stress and pore water pressure distri-

butions along the dam-foundation contact as well as the percent completion of the upstream and
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Figure 6.18: Comparison of the gravity Dam with a Crack to 2 m with an Upstream and Down-
stream Drainage System

downstream drainage cases. After inspection of the downstream case (dashed lines) and a compar-

ison to the distributions on Figures 6.10 and 6.11, the results were essentially that of a 12.5L case.

The percent completion value of 97.4% falls within the 0L and 25L cases, with completion values of

98.8% and 90.3%, respectively, and the overall shape of the distributions followed the same patterns

as previous results. By moving the drain upstream, the overall pore water pressure distribution

decreased resulting in negative pore water pressures over the majority of the dam-foundation con-

tact. Without the water pressure to carry some of the self-weight of the dam, the overall vertical

effective stress distribution increased to account for the increased load on the soil skeleton.

Finally, the upstream case also fully ran to completion meaning that moving the drainage

system upstream increased the overall stability of the system. This is in agreement with results

from the Volume 4 of the EPRI Reports (Chinnaswamy et al., 1990) where researchers found that

drainage systems near the heel of a dam were more effective at reducing uplift pressures. However,

because the finite element code CRFLOW is capable of including turbulence, it was also found that

drains located too far upstream become less effective once the hydraulic gradient is high enough
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to induce turbulence. Although ABAQUS has the capability to include turbulent flow, it was not

implemented in this study. Figure 6.18 does seem to show a high hydraulic gradient induced in the

upstream drain case, but is unclear whether turbulent flow would be induced in this circumstance.

6.2.4 Factor of Safety Comparisons

Following the same procedures outlined in Watermeyer (2006) and Section 3.3, a factor of

safety analysis was performed using the classical gravity dam design method and the results of

the finite element modeling. Just as in previous chapters, the stress distributions along the dam-

foundation contact were integrated with respect to x to create vertical effective, shear, and uplift

forces, and then input into the classical design method’s formulas to calculated the “ABAQUS”

factor of safeties. A full list of the factor of safeties against sliding including drainage and varying

length base cracks as well as percent completion values from the finite element modeling can be

found in Table 6.2.

Table 6.2: Factor of Safety Analysis for Classical Design Method and Finite Element Analysis for
Models Including Base Cracks and Drainage Systems

Drain Location Crack Length
FSsliding Percent Completion

Classical ABAQUS

- 100L 0.46 0.48 0.47%
- 75L 0.55 0.56 0.65%
- 50L 0.64 0.66 0.73%
- 25L 0.73 0.74 0.79%

17.35m 100L 0.46 0.48 0.91%
17.35m 75L 0.66 0.69 0.75%
17.35m 50L 0.75 0.78 0.85%
17.35m 25L 0.83 0.85 0.90%
17.35m 0L 0.93 0.95 0.99%

Although all of the classical design method and finite element modeling yielded identical

FSsliding values and these results were nearly identical to the percent completion before failure of

the finite element analysis, there was a significant difference between the factor of safety results

and percent completion for the 100L crack with a drain at 17.35m. The percent completion value
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of 0.91% was almost twice the calculated factor of safeties (roughly 0.47). This was the same case

described in detail earlier where the crack intersected the drainage system creating a preferential

flow through the fracture and into the drain. It appeared that the geometry of the system was

complicated enough to violate the assumptions of the classical design method rendering the factor

of safety calculations, in the author’s opinion, obsolete for this circumstance. As a result, effort was

put into developing a different method of quantifying ultimate failure, as described in the following

section.

6.3 User Material (UMAT) Failure Prediction

6.3.1 UMAT Ultimate Failure Calculation Development

The primary concern for developing an ultimate failure surface for a concrete gravity dam

with flow through meshed fractures was the possibility of tension cracking causing the fractures

to propagate. It was assumed that tensile failure was more likely to occur than crushing under

heavy compression. It was also important, especially due to the relative importance of capturing

the tensile behavior of concrete, to be able to directly account for cohesion and tensile strength. As

a result, a standard Drucker-Prager yield surface was modified to include tension and compression

caps and then implemented in an ABAQUS user material subroutine (UMAT) to calculate ultimate

failure.

The modified Drucker-Prager ulitmate failure surface can be found in Equation 6.1.

f(σ) =‖ s ‖ −
√
F φcap

√
(Aφ −Bφp)2 − (Aφ −Bφχ)2 ≤ 0 (6.1)

In this equation, the failure surface f is a function of stress σ on the material. The stress is split

into its mean and norm of the deviatoric componenet, p and ‖ s ‖, and then inserted into the

following set of equations that define the cap function (F φcap), Heaviside function (H(κ− I1)), and

other functions that define the shape of the surface (Aφ and Bφ).
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s = σ − p1, I1 = tr(σ) = σii = 3p

Aφ =
2
√

6c cosφ

3 + β sinφ
, Bφ =

2
√

6 sinφ

3 + β sinφ

F φcap = 1−H(κ− I1)
(

I1 − κ
Xφ(κ)− κ

)2

, 0 ≤ F φcap ≤ 1

H(κ− I1) = (sign(κ− I1) + 1)/2 =

 0 I1 > κ

1 I1 ≤ κ

Xφ(κ) = κ−R(Aφ −Bφκ)

In these equations, χ defines the tensile cap and is analogous to tensile strength, c is the cohesion,

φ is the friction angle, κ helps define the compression cap’s location (through Xφ(κ)), and R is a

parameter defining the ellipticity the compression cap.

In order to determine appropriate values for various parameters and material properties,

results from unconfined compression (UC) and unconfined tensile (UT) tests performed on concrete

cylinders were taken and overlaid on a plot of the ultimate failure surface. Results of UC and UT

tests from Wang et al. (2007), pg. 11-13, were used. For this application, the compressive strength

of concrete (f ′c) was chosen to be 3000 psi (20.7 MPa), which is the lowest commercially used

concrete strength. The rupture (tensile) strength (f ′r) was calculated using the formula in Wang

et al. (2007), pg. 13, which is f ′r = 0.62
√
f ′c (MPa) as recommended by the American Concrete

Institute (ACI). UC and UT stress paths were then overlaid on a plot of the failure surface, and

through iteration, material properties (primarily c, χ, and κ) were adjusted until the failure stresses

(denoted by “X”) lined up with the failure surface (see Figure 6.19). As previously mentioned, the

primary goal was to characterize the tensile behavior of concrete to analyze potential fracture

propagation, so only UC and UT stress paths were matched. The material parameters governing

the compression cap were assumed large enough such that the concrete wouldn’t likely fail due to

large compressive stresses. As for the other material properties, the friction angle of concrete was

assumed to be 20◦, and R and β were assumed to be -1 and 10, respectively, to push the compression
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cap sufficiently high. A full list of material properties can be found in Table 6.3. Also, it should

be noted that plasticity was not evolved in this implementation; all of the material properties were

kept constant.

Figure 6.19: Modified Drucker-Prager Yield Surface with Concrete Unconfined Compression and
Tension Stress Paths

An ABAQUS UMAT was then implemented such that at every time-step the stress solution

generated by the analysis was taken and used to calculate the value of f , ‖ s ‖, and p at every

integration point within the domain. Using these data, contour plots of f were rendered in the

visualization module of ABAQUS. The concrete was considered to have reached failure if the value

of f exceeded 0. Also, plots of the ultimate failure surface with stress paths at various integration

points were generated in p-q space using MatLab. For reference, q is equal to
√

3
2 ‖ s ‖, and a copy

of the UMAT code can be found in Appendix B.
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Table 6.3: Concrete Ultimate Failure Material Properties for ABAQUS UMAT

Parameter Value

c 1.5x107 Pa
φ 20◦

β -1
κ -2x106 Pa
R 10
χ 1.5x106 Pa

6.3.2 Results from UMAT Failure Prediction Analyses

To illustrate the use of the ultimate failure surface calculation, two previous examples were

redone implementing the UMAT. The two examples that were re-purposed were the crack to 100L

and the crack to 50L with a drainage system. Contour plot of f can be found on Figure 6.20 for the

crack to 100L case and Figure 6.21 for the crack to 50L case. In both cases, the highest values of

f (i.e. the values closest to the ulitmate failure surface) were generated in the concrete dam along

the upstream side of the crack. Because the crack was less stiff than intact concrete (see Table

6.1), the dam carried more of the bending and self-weight stresses than the nearby crack causing

the higher f values.

However, the f values calculated for both examples were significantly less than 0 implying

that neither of the two circumstances were close to failure. Plots of the stress paths for the

integration points with the highest values of f can be found on Figure 6.22 for the crack to 100L

case and Figure 6.24 for the crack to 50L with drain case. In both of these figures, the stress path

is small enough to be difficult to see; therefore, zoomed plots of the stress paths can be found on

Figures 6.23 and 6.25, respectively. Both stress paths contain two components corresponding to the

application of gravity over the 0-1 pseudo-seconds followed by the rest of the boundary conditions

over 1-2 pseudo-seconds, which are represented by the abrupt change of direction. At first, the two

integration points compress under the gravity load; the mean stress (p) goes slightly negative while

the deviatoric stress (q) increases. With the application of the other boundary conditions, which

were primarily horizontal forces due to the upstream reservoir, p and q decrease, and in the case of
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Figure 6.20: Deformed Geometry with Yield Function Contours for a Crack to 100L

Figure 6.21: Deformed Geometry with Yield Function Contours for a Crack to 50L Including a
Drainage System
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the crack to 100L case, the mean stress even experiences some tension.

Figure 6.22: Concrete Yield Surface with Stress Path Closest to Yielding for a Crack to 100L

Yet overall, the generated stresses were not large enough to reach the ultimate failure surface

in either case. This isn’t necessarily surprising as concrete gravity dams are designed specifically

to avoid crushing or fracturing. Although, the nearness of the stress paths to the tension cap do

illustrate the need to protect against tension failures by using some reinforcement, such as steel

rebar. In cases where a flood condition dramatically increases the stresses due to the upstream

reservoir, it seems possible for sections of a gravity dam to reach the failure surface highlighting

the potential usefulness of this analysis as a predictive tool. Also, it should be noted that there

are many other consitutitive models other than a modified Drucker-Prager yield surface that can

capture the behavoir of concrete, and that many more concrete tests would need to be considered,

other than only unconfined compression and tension tests, in order to more fully characterize the

ulitmate failure surface. This UMAT implementation should be considered then as a blueprint for

the general methodology required to look at the characterizing the failure of a material, not as the

best method for doing so.
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Figure 6.23: Concrete Yield Surface with Stress Path Closest to Yielding for a Crack to 100L
(Rescaled)

Figure 6.24: Concrete Yield Surface with Stress Path Closest to Yielding for a Crack to 50L
Including a Drainage System
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Figure 6.25: Concrete Yield Surface with Stress Path Closest to Yielding for a Crack to 50L
Including a Drainage System (Rescaled)



Chapter 7

Simplified Gravity Dam with a Fracture Modeled using Poromechanical

Cohesive Surface Elements in MatLab

7.1 Finite Element Model Development in MatLab

A simplified version of the concrete gravity dam system from Watermeyer (2006) was modeled

using a finite element code, developed at the University of Colorado at Boulder by John Sweetser and

Richard Regueiro (Sweetser, 2012), with fully pressure-sensitive, elasto-plastic, and poromechanical

cohesive surface elements (CSEs) implemented. Figure 7.1 contains a diagram of the developed

cohesive surface elements including information regarding the location of the nodes, degrees of

freedom, and their general geometry. Other important featurues include the ability to include

different tangential and normal permeabilities in the CSEs, and also the ability to set the initial

aperture of the CSEs, which is in addition a function of the elastoplasticity. The code considers

only small deformations and two-dimensional plane strain conditions at the present.

Figure 7.1: Diagram of a Pressure-sensitive, Poromechanical Cohesive Surface Element
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Because the code is still in the development phase, the more complicated geometry of the

previously used gravity dam system was simplified to ease the data analysis used to verify the

code is working properly. In the model, a concrete gravity dam was founded on a deformable

sandstone foundation with two CSEs as the dam-foundation contact. The full 14 element mesh

and dam system geometry with labeled nodes and degrees of freedom can be found on Figure

7.2. For simplicity, the concrete dam was considered impermeable, although pore fluid flow was

allowed through the foundation. Both the concrete dam and sandstone foundation were modeled

as deformable solids using the same linear elastic material properties as previous chapters. Linear

elastic and poromechanical material properties can be found in Table 6.1.

Aperture

Average Upstream 
Reservoir Pressure

Sandstone Foundation

Concrete Dam

1 2 3 4

6 7 85

9

11 12

10

13 14

Figure 7.2: Finite Element Mesh for Poromechanical Cohesive Surface Elements in MatLab
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In addition to simplifying the model’s geometry and mesh, the applied tractions and boundary

conditions were also streamlined. Instead of applying a hydrostatic traction along the upstream

face of the dam, the traction was simplified to a uniform pressure distribution equal to the average

upstream reservoir pressure. No other loads were applied to the system other than gravity. Like in

previous models, pore water pressure boundary conditions were applied to the top of the foundation

representing the full upstream and downstream reservoir pressures, but because the concrete gravity

dam was considered impermeable, the only pore pressure boundary conditions prescribed on the

gravity dam were at the heel and toe to inform the cohesive surface elements. Also similar to

previous models, displacements were fixed in both x and y and no fluid flux boundary conditions

were assumed along the bottom and both sides of the foundation.

As stated above, the constitutive model for the poromechanical cohesive surface elements

has the capability to be fully elasto-plastic with a yield surface (7.1) and plastic potential function

(7.2) defined by the following equations.

F =
√
T 2
t + (c− χ tanφ)2 − (c− Tn tanφ) ≤ 0 (7.1)

G =
√
T 2
t + (c− χ tanψ)2 − (c− Tn tanψ) (7.2)

The yield surface and plastic potential function are evolved using the following traction-displacement

relationship, described more fully by Yu (2010).
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χ = χr + (χp − χr) exp[−αχ(εpn + εps)]

c = cr + (cp − cr) exp[−αc(εpn + εps)]

tanφ = tanφr + (tanφp − tanφr) exp[−αφεps]

tanψ = (tanψp) exp[−αψεps]

εps =

∫ t

0
ε̇psdt, εpn =

∫ t

0
ε̇pndt

ε̇ps =
sign(Tn)

GIIf
〈|Tt| − |T ∗n tanφ|〉u̇pt , ε̇pn =

1

GIf
〈Tn〉u̇pn

[[u̇p]] = [u̇pt , u̇
p
n]T , T = [Tn, Tt]

T

〈Tn〉 =
(Tn + |Tn|)

2
, T ∗n =

(Tn − |Tn|)
2

Essentially, the yield surface has a tension cap defined by cohesion (c) and tensile strength (χ). The

compression side is defined by the frictional angle (φ) and dilation angle (ψ) for the yield surface

and plastic potential function respectively. The four internal state variables are evolved using four

rate softening material properties defined by αc, αχ, αφ, and αψ. Tn and Tt are local traction

vectors normal and tangential to the midline of a cohesive surface element. εps and εpn are shear and

normal plastic strains, and GIf and GIIf are the mode I (tensile) and II (shear) fracture energies.

Finally, [[u̇p]] is the rate of plastic jump displacement vector.

Table 7.1 contains a list of all the material properties used for the concrete dam, sandstone

foundation and cohesive surface elements. As previously mentioned, the primary goal of the initial

model was to assess the capabilities of new finite element code within the context of fractures in

gravity dams and overall dam stability. Therefore, material property values were selected with

enabling some of the novel features of the code, such as allowing plastic yielding within the CSEs,

and not necessarily with absolute applicability to concrete fracture in mind. Similar to the user

material implemented in Chapter 6, this implementation of the concrete gravity dam model was

intentioned to be a blueprint for future work.

Finally, the finite element code was designed to run transiently requiring the loads to be
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Table 7.1: Cohesive Surface Element and Bulk Element Material Properties

Material Parameter Value

Concrete
Young’s Modulus (E) 20.67 GPa
Poisson’s Ratio (ν) 0.2

Sandstone

Young’s Modulus (E) 10.5 GPa
Poisson’s Ratio (ν) 0.33
Solid Real Mass Density (ρsR) 2000 kg/m3

Fluid Real Mass Density (ρfR) 1000 kg/m3

Solid Volume Fraction (ns0) 0.80
Fluid Volume Fraction (nf0) 0.20
Permeability (k) 1x10−7 m2/(Pa·s)

CSE

Normal Stiffness (kn) 10 GPa/m
Tangential Stiffness (kt) 10 GPa/m
Permeability (kcrack) 1x10−8 m2/(Pa·s)
Initial Friction Angle (φ◦) 30◦

Initial Dilation Angle (ψ◦) 0◦

Initial Tensile Strength (χ◦) 156 kPa
Initial Cohesion (c◦) 90.5 kPa
Mode I Fracture Energy (GIf ) 10 kN/m

Mode II Fracture Energy (GIIf ) 10 kN/m

Friction Angle Rate Softening Parameter (αφ) 200
Dilation Angle Rate Softening Parameter (αψ) 200
Tensile Strength Rate Softening Parameter (αχ) 900
Cohesion Rate Softening Parameter (αc) 900
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incrementally ramped in order for the solution to converge. Just as with previous models, gravity

was applied to the model first, but due to the transience, was held over a period of time after

being fully ramped to allow the solutions to reach steady-state. After steady-state was reached,

the horizontal traction was then ramped up over a long period of time and then held for longer

until a second steady-state solution was reached. Over many iterations, it was determined that

the following loading profile allowed for both steady-state conditions, the first under only gravity

loading and the second including the upstream reservoir pressure, to fully develop.

(1) 0-10 seconds: linearly ramped gravity

(2) 11-310 seconds: held gravity and allowed solution to reach steady-state

(3) 311-410 seconds: continued holding gravity and linearly ramped horizontal traction

(4) 411-910 seconds: continued holding both gravity and the horizontal traction until solution

reached steady-state

7.2 Finite Element Model Results

7.2.1 Simple Concrete Gravity Dam Model

Using the simplified geometry and loading conditions found on Figure 7.2 and the material

properties listed in Table 7.1, the behavior of the cohesive surface elements were analyzed by plotting

stress paths generated at integration points within the CSEs and by creating time histories of the

CSE’s aperture and pore water pressure. Figures 7.3, 7.4, and 7.5 are plots of the stress paths

in Tn-Tt space including the plastic yield surface (see Equation 7.1) at three different integration

points within the two cohesive surface elements. The location of the integration points can be found

in Table 7.2, where the location is relative to the upstream corner of the dam-foundation contact

and global element 13 is CSE 1 and global element 14 is CSE 2.

In all three stress paths, Tn was generally found to be negative indicating, as expected,

compression under the self weight of the entire system. Also as expected, in both the element 1
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Table 7.2: Location of the Integration Points within the Cohesive Surface Elements

CSE Integration Point Location

1 1 1.3 m
1 3 12.8 m
2 3 21.7 m

integration point 1 (EL1IP1) and element 1 integration point 3 (EL1IP3) cases, the application of

the upstream reservoir traction caused a decrease in the compressive stress as the dam started to

rotate; though, the decrease was sizably smaller in the EL1IP3 case. Due to its far downstream

location, element 2 integration point 3 (EL2IP3) resisted the dam’s rotation and the compressive

stress increased with the application of the horizontal traction.

Figure 7.3: Yield Surface and Stress Path for CSE Element 1 Integration Point 1

The tangential traction (Tt) at an integration point is positive when the point is being forced

downstream and negative when forced upstream. In the case of EL1IP1, the deformation of the

foundation under gravity initially caused the integration point to be pulled upstream. Similarly,

the deformation of the foundation forced EL2IP3 further downstream resulting in a positive Tt.
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Figure 7.4: Yield Surface and Stress Path for CSE Element 1 Integration Point 3

Figure 7.5: Yield Surface and Stress Path for CSE Element 2 Integration Point 3
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With the application of the reservoir pressure, the additional stress pushed EL1IP1 downstream

lowering the value of Tt. As for EL2IP3, the application of the horizontal traction similarly caused

the integration point to be pushed further downstream.

Figure 7.6: Time History of the CSEs Aperture Along the Dam-Foundation Contact

Figures 7.6 and 7.6 display the aperture of the CSEs and pore water pressure with time. The

affect of the loading profile can be clearly seen on Figure 7.6 where the apertures change abruptly

with each new loading stage. In this case, the initial aperture was set to 1 mm along the entirety of

both CSEs, and under gravity, all of the apertures decreased. Also as expected, with the application

of the horizontal loads, the upstream side of crack slightly reopened and the downstream side closed

further with the rotation of the dam. As for the pore water pressure generation, both of the CSE

nodes (the red and dotted green lines at a depth of 0 m) recorded the same pore pressures. They

also did not consolidate like the pore water pressures at 25 m and 50 m into the foundation.
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Figure 7.7: Time History of the Pore Water Pressure with Depth Through the Midpoint of the
CSEs and Foundation

7.2.2 Gravity Dam Model with Higher Upstream Pressure to Induce Yielding

One important feature of the cohesive surface element formulation is that the constitutive

relationship is allowed to evolve plastically. In order to demonstrate this feature, ten times the

original horizontal traction was applied to the gravity dam such that the CSEs would yield. Figures

7.8, 7.9, and 7.10 are plots of the stress paths for EL1IP1, EL1IP3, and EL2IP3 in Tn-Tt space

similar to the three plots in the previous section. Each of the stress paths follow the same general

shape as those on Figures 7.3, 7.4, and 7.5, but in these cases, the CSEs yielded. For example,

EL1IP3 experienced a softening of the friction angle, as can be seen by the relative location of the

initial yield surface (F◦) and the final yield surface (F ).

However, the yielding of the CSEs caused the finite element model to not run to completion.

This can be seen on Figures 7.11 and 7.12 in that the aperture and pore water pressure solutions

stop at around 360 seconds. Prior to failure, the results seemed to be tracing similar paths to

the results of the previous section, but the inability to converge cut the solutions short. The code
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Figure 7.8: Yield Surface and Stress Path for CSE Element 1 Integration Point 1 Under a Higher
Upstream Pressure

Figure 7.9: Yield Surface and Stress Path for CSE Element 1 Integration Point 3 Under a Higher
Upstream Pressure
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Figure 7.10: Yield Surface and Stress Path for CSE Element 2 Integration Point 3 Under a Higher
Upstream Pressure

Figure 7.11: Time History of the CSEs Aperture Along the Dam-Foundation Contact for the Higher
Upstream Pressure
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is unable to track the stress-displacement curve during plastic softening, because the analysis is

currently stress controlled. The result is convergence issues. To ameliorate the problem, an arc

length procedure would track the stress-displacement curve helping the code run to completion.

Figure 7.12: Time History of the Pore Water Pressure with Depth Through the Midpoint of the
CSEs and Foundation for the Higher Upstream Pressure

7.2.3 Effect of Initial Crack Aperture on Gravity Dam Stability

To begin studying the effect of aperture on the response of the CSEs, three different initial

apertures were set (0 m, 1 cm and 1 m) and the finite element code was run using the same larger

applied horizontal traction as the previous section. The aperture and pore water pressure time

histories for each simulation were then plotted. Figures 7.13 and 7.14 show the results given an

initial aperture of 0 mm, Figures 7.15 and 7.16 an aperture of 1 cm, and Figures 7.17 and 7.18 an

aperture of 1 m.

Comparisons of all three aperture plots show that despite the difference in initial aperture,

the time histories were all the same. The solution failed to converge at the same point and the
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Figure 7.13: Time History of the CSEs Aperture Along the Dam-Foundation Contact for the Higher
Upstream Pressure and the Initial Aperture = 0m

Figure 7.14: Time History of the Pore Water Pressure with Depth Through the Midpoint of the
CSEs and Foundation for the Higher Upstream Pressure and the Initial Aperture = 0m
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Figure 7.15: Time History of the CSEs Aperture Along the Dam-Foundation Contact for the Higher
Upstream Pressure and the Initial Aperture = 1cm

Figure 7.16: Time History of the Pore Water Pressure with Depth Through the Midpoint of the
CSEs and Foundation for the Higher Upstream Pressure and the Initial Aperture = 1cm
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Figure 7.17: Time History of the CSEs Aperture Along the Dam-Foundation Contact for the Higher
Upstream Pressure and the Initial Aperture = 1m

Figure 7.18: Time History of the Pore Water Pressure with Depth Through the Midpoint of the
CSEs and Foundation for the Higher Upstream Pressure and the Initial Aperture = 1m
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relative displacements of the CSE’s nodes were equal. There were some variations in the pore water

pressure time histories. The pore pressures in the CSE for the 0 m case showed some consolidation

after the initial gravity load application; whereas, the other cases did not. However, it is difficult

to draw concrete conclusions from these results. For one, the finite element code failed to converge

and produce a full solution, but also, the finite element mesh is currently coarse. Further refinement

of the mesh could lead to more influence of initial aperture on the response of the system.



Chapter 8

Future Work

8.1 Further Development of Cohesive Surface Elements in MatLab and

ABAQUS

Cohesive surface elements offer the ability to directly model nucleation and propagation of

fracture while accounting for fluid flow and pore pressure generation. These characteristics make

them especially promising for the continued study of fractures in concrete gravity dams and their

effect on overall dam stability. To that end, the CSE finite element code discussed in Chapter 7

would require further development to fully capture the necessary physics to address the problems.

First, an arc length procedure needs to be implemented in order to fix convergence issues the code

currently experiences during plastic yielding of the cohesive surface elements. Because the analysis

is stress controlled, it is currently impossible to track the stress-displacement curve during plastic

softening. An arc length procedure would follow the curve and help allow for the code to run to

completion, unlike the results presented in Sections 7.2.2 and 7.2.3.

Another major code addition required to more fully understand the gravity dam problem is

the ability to find a phreatic surface. Currently, porous media flow is unable to be implemented

in the concrete dam, because the pore pressure solution will be inaccurate without the ability to

locate the phreatic surface (it will be approximated based on the coarseness of the finite element

mesh). Flow and pore pressures within the dam will directly influence the flow and pore pressure

solutions within the CSEs making it an important component of the solution.

The other important changes to the current CSE finite element analysis involve expanding
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the simplified gravity dam system already implemented. For one, the generation of a finer mesh,

especially one with more than two cohesive surface elements, will greatly refine the solutions pro-

viding further insight into the behavior of the system. Also, the simplified implementation involves

only one applied traction and an unrealistic geometry. Reapplication of the other boundary condi-

tions and a more complicated geometry, including any drainage systems, will add accuracy to the

results by more closely replicating field conditions. Finally, as discussed further in Section 7.1, the

material properties used for the previous analyses did not accurately characterize either fractures

in concrete or a sandstone foundation. A full characterization of both materials through careful

review of existing literature or experimental testing will need to be completed to be able to gather

any information other than general trends from the finite element modeling results.

As a potential alternative or addition to the necessary updates to the cohesive surface element

finite element code, the same elastoplastic and poromechanical CSE formulation could be imple-

mented into an ABAQUS user material subroutine or user element. The subroutine would be only

tasked with performing the yield calculations and updating the internal state variables. ABAQUS

would store the solutions, and more importantly, ABAQUS would generate the finite element mesh.

ABAQUS is capable of automatically generating complicated meshes, whereas the MatLab code

currently requires manual mesh creation that functionally limits the overall number of elements.

Also, it is generally much simpler to develop models with complicated geometries, boundary condi-

tions, and loading conditions using ABAQUS/CAE. Lastly, one other advantage to developing an

ABAQUS UMAT is the ability to then use the other built in constitutive models, especially other

complicated elastoplastic ones, for the other materials without needing to significantly update the

CSE finite element code.

8.2 Co-Simulation Between ABAQUS/Standard and ABAQUS/CFD

The ABAQUS software suite is also capable of directly modeling bodies of water through

ABAQUS/CFD, which is its computational fluid dynamics package. Furthermore, through co-

simulations, ABAQUS/CFD can be coupled with ABAQUS/Standard, its traditional implicit solid
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mechanics code in which all previous finite element models were implemented, to directly simulate

the effects of fluid pressures on various structures. A co-simulation effectively passes the fluid pres-

sure solution from ABAQUS/CFD to ABAQUS/Standard as a boundary condition, and then the

stress and deformations from ABAQUS/Standard inform the flow and pressure solutions. Within

the context of gravity dam modeling, this feature could be used to create realistic reservoir models

that also connect to various fractures directly modeling the build-up of water pressure within these

cracks. Also, ABAQUS/CFD is capable of accounting for turbulent flow, which according to EPRI

Report: Volume 4 (Chinnaswamy et al., 1990), can be important when considering the effectiveness

of drainage systems.

The software is not without limitations, however. Currently, ABAQUS/CFD can only model

incompressible fluids. For problems involving only water, as is the case in the majority of grav-

ity dam systems, this isn’t as much an issue, but the other major limitation is the inability to

couple with poromechanical analyses. As of now, ABAQUS/CFD is unable to pass fluid pres-

sures to ABAQUS/Standard as both the necessary pore pressure boundary and traction boundary

conditions (see Section 5.1).

In order to demonstrate the capabilities of ABAQUS’ computational fluid dynamics software

package, an example was taken from EPRI Report 1 (Amadei and Illangasekare, 1990a) from the

section of the report outlining the program WELL (see Section 2.2) and implemented in ABAQUS.

The program WELL uses an analytical solution developed by Goodman et al. (1983) to find the

uplift pressure in a rectangular crack in dam with a constant aperture and a drain pipe. Figure

8.1 is a diagram from Goodman et al. (1983) that provides an overview of the analytical solution’s

geometry. WELL was reprogrammed in MatLab and example 1 from EPRI Report 1 was redone

using the new code. A plot of water pressure head over the crack domain generated by the MatLab

version of WELL can be found on Figure 8.2. The dip near the center of the domain is around the

drain pipe, where the pressure head is kept constant.

The same geometry and boundary conditions were then implemented in ABAQUS/CFD.

Figure 8.4 contains the problem geometry and mesh with overlaid water pressure contours. It
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Figure 8.1: Diagram of the Analytical Solution to Water Pressure in a Rectangular Finite Crack
Including Drainage from Goodman et al. (1983)

should be noted that the ABAQUS rendering contains a scale model of the problem domain; the

scales for the x and y dimensions on the MatLab plot are not equal. Results from both analyses

for EPRI Report 1: WELL example 1 were then compared, as seen on Figure 8.4. The curve titled

“Goodman’s Solution” is the result from the MatLab reprogramming of WELL and the other three

curves were generated from the ABAQUS solution. All of the curves are the pressure head versus

length into the crack (x) while also passing through the drain. ABAQUS/CFD requires an analysis
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Figure 8.2: Water Pressure Result from MatLab Implementation of EPRI Report: WELL Example
1 (Amadei and Illangasekare, 1990a)

to be run transiently, so each of the three curves represents a different time step. Clearly, as the

ABAQUS solution is allowed to reach steady-state, both the analytical solution and finite element

analysis for this simple fracture geometry and loading conditions yield nearly identical results. The

advantage of the finite element analysis is that more complicated situations that would violate the

assumptions required to generate an analytical solution can be analyzed.

An example of a more complicated geometry that can be modeled using ABAQUS/CFD is

a combination upstream reservoir, crack and drain, as can be seen rendered on Figure 8.5. When

looking at the rendering, one needs to imagine the heel of a gravity dam fitting snuggly into the

nook cut out at the base of the reservoir. In this example, water is allowed to flow from the

reservoir, into the crack and then out the drain represented by an area of constant pressure head

on the underside of the crack. Careful inspection of Figure 8.5 will show an area of lower pressure

in the middle of the crack that is influenced by the drain.

Figures 8.6 and 8.7 display results from the realistic reservoir, crack and drain ABAQUS/CFD
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Figure 8.3: Water Pressure Result from ABAQUS Implementation of EPRI Report: WELL Ex-
ample 1 (Amadei and Illangasekare, 1990a)
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Figure 8.5: Water Pressure in a Realistic Upstream Reservoir and Crack with a Drain Geometry

model. Figure 8.6 is a plot of water pressure versus length along the underside of the reservoir and

crack through the drain. In this case, x=0m is at the far side of the reservoir away from the crack

entrance, the crack begins at x=10m, and the drain is positioned at x=20m. As expected, the

water pressure was hydrostatic under the reservoir and decreased as it entered the crack domain.

There were, however, questions as to if the solution had reached steady-state by 1000 seconds. As

a result, the water pressure time histories for five points were plotted (Figure 8.7). Directly under

the reservoir (x=-4.75m), the water pressure remains constant and hydrostatic. However, within
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the crack (x>0), the pressure solutions fluctuated with time almost sinusoidally. It is possible

that the rapid accumulation of water pressure (the analysis begins with the entire domain at 0

kPa) caused waves that hadn’t fully dissipated by the end of the simulation. Regardless, by either

including the effects of turbulent flow allowing for faster dissipation of energy or by letting the

finite element analysis run for longer (although, a finer mesh would need to be generated in the

reservoir domain where less accuracy is required to significantly decrease the analysis’ run time),

this realistic reservoir, crack and drain geometry could provide a valuable tool for analyzing the

stability of gravity dams.
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Figure 8.6: Water Pressure Along the Underside of the Reservoir and Crack (y=0m) at Various
Times During the Transient ABAQUS/CFD Simulation

8.3 Implementation of a Probabilistic Framework

One primary goal of this research was to take the developed finite element models and im-

plement them within a probabilistic framework to begin to quantify the variability associated with

gravity dam stability. Determining reasonable values for the aperture and length of an in situ crack

is often impossible, yet crucial to fully understanding the potential stability issues. As discussed
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Figure 8.7: Water Pressure at Various Positions (x) Along the Underside of the Reservoir and
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throughout this report, there are a number of circumstances where even a small change could cause

dramatic changes in a solution, such as a slightly longer crack finally intersecting a drainage system

significantly altering the uplift pressure distribution. Probabilistic methods attempt to account

for some uncertainty by allowing users to input probability distributions for important parameters,

such as crack aperture, crack length, or foundation permeability, sample from them, and then input

the sampled values into multiple runs of the finite element analysis. The many analyses are then

aggregated and probability density functions of important results, such as the total uplift force or

overturning moment, are generated. Based on a failure criteria defined for the particular problem,

the ratio of failed analyses is compared to the total number ran to define a safety margin, replacing

traditional deterministic factor of safety analyses. An example of a failure criteria could be an

upper threshold on the total uplift force; all analyses that produced a high enough uplift force

would be considered to have failed.

As a way to more fully understand one of the many probabilistic frameworks, an example

from ERPI Report 2 (Amadei and Illangasekare, 1990b) was redone in MatLab and compared to
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the results presented in said document. The EPRI report was focused on the development of the

program MCWELL, which implemented the program WELL (Amadei and Illangasekare, 1990a)

into a Monte Carlo iteration (see Section 2.2 for more details). Specifically, MCWELL example 1

used triangular distributions to represent the probability density functions of both crack length and

width. Also, the example introduced a new parameter called “reinforcement” that was used in the

failure criteria definition. When the calculated uplift force was greater than the total reinforcement

resisting the uplift, the dam was considered to have failed. The amount of reinforcement was also

considered to be subject to some uncertainty, so was therefore represented by a beta distribution.
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Figure 8.8: MCWELL Example 1: EPRI Results for Uplift Force Probability Density Function

Reproductions of the output probability and cumulative density functions of the total uplift

force from the EPRI report are presented on Figures 8.8 and 8.10 and compared to the similar

results from the example redone in MatLab on Figures 8.9 and 8.11. Table 8.1 shows a more

expanded set of results comparing the mean (µ) and standard deviation (σ) of the uplift force and

the x and y direction component of the overturning moment from the EPRI results to two different
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Figure 8.9: MCWELL Example 1: MatLab Results for Uplift Force Probability Density Function
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Figure 8.10: MCWELL Example 1: EPRI Results for Uplift Force Cumulative Density Function



112

Figure 8.11: MCWELL Example 1: EPRI versus MatLab Comparisons

MatLab simulations. The first MatLab simulation was run 32,000 times, and the second 16,000

times. Also included in the table are the safety margins calculated from the three sets of results.

By inspection of the four figures, results from the version of MCWELL reprogrammed in

MatLab appear to match the results from EPRI Report 2. Also, every calculated mean and safety

margin were the same across all three sets of results. The only difference between the data sets

was each of the standard deviations of the MatLab results were roughly twice as large as the values

reported in the EPRI report. One major difference between the original MCWELL and redone

MatLab version is the random number generator used to sample values from the input probability

distributions. Random number generators have improved significantly since the late 1980s, such

that MatLab has its own built in functions. MCWELL was originally programmed in FORTRAN,

which did not have a standard generator but many user created ones, and the difference between

the two could have caused the discrepancies in the standard deviations. Without knowing exactly

which random number generator was originally used, this hypothesis is impossible to test. However,
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Table 8.1: MCWELL Example 1 EPRI versus MatLab Comparisons

Variable Statistic EPRI MatLab 32000 MatLab 16000

Uplift Force
µ 3353 kips 3360 kips 3368 kips
σ 314 kips 785 kips 788 kips

X-Moment
µ -53 kips·ft -51 kips·ft -52 kips·ft
σ 12 kips·ft 29 kips·ft 29 kips·ft

Y-Moment
µ 70930 kips·ft 71037 kips·ft 71244 kips·ft
σ 8125 kips·ft 20421 kips·ft 20495 kips·ft

Safety Margin 41.57% 41.89% 42.09%

the primary goal of implementing a probabilistic framework is the generation of safety margins,

and the three sets of results produced nearly identical failure assessments.

Despite the importance of implementing probabilistic methods, the finite element models

developed for this research have not yet been adapted to achieve this goal due to time restrictions.

However, when they are implemented, one should consider the following thoughts on the subject.

ABAQUS currently has the ability to perform relatively “simple” parametric studies. If the param-

eters of interest are easy to manually manipulate within an ABAQUS input file, such as material

properties, which are only defined in one location, writing a python script to execute a series of

analyses sampling from a probability density function of that parameter is relatively straightfor-

ward. What is significantly more difficult is varying any parameter that requires knowledge of

ABAQUS’ mesh generation commands, which would be required to script python code capable of

changing the problem’s geometry. In other words, varying some of the important parameters, like

crack aperture and length, is possible, but not necessarily easy to implement.

On the other hand, the MatLab cohesive element code described in Chapter 7 could be also

altered to include some probabilistic framework. One advantage of the MatLab code is that pa-

rameterizing the initial aperture or length of a fracture would be relatively simple as compared to

ABAQUS. The code would require some structural changes, namely the location where the initial

aperture is defined and the creation of function that runs the entire analysis, but once completed, it

could become a powerful tool for analyzing fractures in gravity dams within a probabilistic frame-
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work. Similarly, if an ABAQUS user subroutine implementing the same CSE formulation as the

MatLab code was developed, the initial aperture of the fracture could then potentially be considered

a “simple” parameter allowing for the use of ABAQUS’ parametric study features. Regardless, more

work needs to be done to fully delve into these possibilities for developing a probabilistic framework

to accompany the many finite element models.



Chapter 9

Conclusions

The purpose of this research was to use modern finite element methods to analyze the effects

of uplift pressures and fluid flow in fractures on the stability of concrete gravity dam systems. Mod-

els ranged in complexity from simple dams on rigid foundations to allowing fully coupled porous

media flow through dams and their deformable foundations. Cracks and drainage systems were

modeled using relatively high permeability zones, and the framework for aperture dependent, fully

elastoplastic, and poromechanical cohesive surface elements and quantifying uncertainty within

gravity dam systems through a probabilistic framework were laid out. Ultimately though, all of

the finite element models were compared with the classical gravity dam design method. The goal

was to use the comparisons to verify results gathered from the finite element analyses, but also to

discover some of the advantages and limitations of both methods.

The classical method will forever be a part of gravity dam design both for its simplicity and

accuracy. Provided that a dam was well constructed and founded on good rock, the classical method

is more than capable of providing engineers with the necessary design parameters. Throughout this

report, it has been shown that despite the added layers of complexity, the finite element analyses

have been able to replicated results from the classical calculations. But where the finite element

method shows its importance to gravity dam design and maintenance, is in capturing the behavior

of situations that violate the assumptions of the classical methods, such as a crack extending far

enough to intersect with a drain pipe or a rock fault system short circuiting a drainage curtain. Fi-

nite element analysis is also able to include more complicated material models that may be relevant
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to a field condition, the ability to assess flood conditions through changing boundary conditions,

and, if fully implemented, the ability to assess the nucleation and propagation of fractures using

newly developed cohesive surface elements. More work needs to be done, but these models and

analyses have helped expand the toolbox available to gravity dam engineers. With the full imple-

mentation of the latest methods and development of a probabilistic framework, the ability of the

finite element method to fully address the problems facing concrete gravity dams seems very likely.
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Appendix A

Overview of the Classical Dam Design Method and Factor of Safety Analysis

(Adapted from Watermeyer (2006))

The classical gravity dam design method is outlined in many documents including Bureau of

Reclamation (1987) and U.S. Army Corps of Engineers (1995), but for the purposes of this research,

Watermeyer (2006) was used as the primary source for information regarding the method. This

appendix is intended to provide a more in depth overview of the factor of safety calculations

performed throughout this report using the classical design method and also the finite element

analysis results.

Based on rigid body statics, the classical dam design method relies on analyzing the forces and

moments due to the self-weight of the dam, the upstream and downstream reservoirs, any backfill

soil, and uplift pressures acting along the dam-foundation contact. By summing all the components

of these forces, the resultant forces are then input into the factor of safety equations (Equations

(A.1) and (A.2)) in order to analyze the stability of the system. This section will summarize the

calculations required to calculate these factors of safety. Also, throughout this report, an example

dam from Watermeyer (2006) was continually used to compare the classical design method and

finite element results. The same geometry was used here simplifying the analysis. Watermeyer

provides a more general set of equations in his paper in order to account for more complicated dam

geometries and the application of other unspecified external loads.

FSsliding =
CAb + T tan(φ)

P
(A.1)
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FSoverturning =
WEw

UEu + PEp
(A.2)

Figure A.1: Classical Dam Design Method Geometry and Variable Definitions (Watermeyer, 2006)

Figure A.1 contains definitions for all required dimensions and forces superimposed on the

dam geometry. Also, a full list of the variables and their descriptions can be found in Table A.1. On

the figure, point A is at the dam heel, point C is at the toe, and B is at the dam’s centerline. Point

D represents the location of a drainage system defined by La. The drain affects the uplift pressure

profile, which is represented by the blue section under the dam. Any uplift pressure applied over

the entire dam-foundation contact (the downstream reservoir pressure that acts between the dam’s

toe and drainage system) is called U1. All “excess” uplift pressures are called U2.

To calculate the total downward force W , the following set of equations are used.
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Table A.1: Classical Dam Design Variables and Descriptions (Watermeyer, 2006)

Category Variable Description

Dam Dimensions

H (m) Dam Height
Ha (m) Upstream water level
Hc (m) Downstream water level
Hs (m) Height of upstream soil
L (m) Dam length
La (m) Distance from dam heel to drainage system
C (m) Dam Crest Length
CY (m) Length of dam crest’s vertical section
Zd (m) Downstream face slope (Zd/1)
Hu (m) Heel notch height
Lu (m) Heel notch length
Hd (m) Toe notch height
Ld (m) Toe notch length

Downward Force (W )

Wc1 (kN) Weight of concrete section 1
Wc2 (kN) Weight of concrete section 2
Wc3 (kN) Weight of concrete section 3
Wc4 (kN) Weight of concrete section 4
Ww (kN) Weight of water
Ws (kN) Weight of soil

Horizontal Force (P )
Pw1 (kN) Upstream reservoir force
Pw2 (kN) Downstream reservoir force
Ps (kN) Downstream soil force

Uplift Force (U)
U1 (kN) Uplift force due to downstream reservoir
U2 (kN) Uplift due to upstream reservoir including drainage

Eccentricities

E◦ (m) Distance from dam centerline to downstream face
Ec1 (m) Wc1 to dam centerline
Ec2 (m) Wc2 to dam centerline
Ec3 (m) Wc3 to dam centerline
Ec4 (m) Wc4 to dam centerline
Ew (m) Ww to dam centerline
Es (m) Ws to dam centerline
Ep1 (m) Dam base to Pw1
Ep2 (m) Dam base to Pw1
Es (m) Dam base to Ps
Eu2 (m) U2 to dam centerline

Other Parameters

γw (kN/m3) Unit weight of water
γc (kN/m3) Unit weight of concrete
γ′s (kN/m3) buoyant unit weight of soil
φ (◦) Friction angle of the soil
C (kPa) Cohesion
Ab (m2) Area of the base (assumes width = 1 m)
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Wc1 = γcHd(H − CY )Zd (A.3)

Wc2 =
γcZd(H − CY −Hd)

2

2
(A.4)

Wc3 = γcHC (A.5)

Wc4 = γcHu

(
L

2
− E◦ − C

)
(A.6)

Ww = γwLu(Ha −Hu) (A.7)

Ws = γ′sLu(Hs −Hu) (A.8)

W = Wc1 +Wc2 +Wc3 +Wc4 +Ww +Ws (A.9)

Similarly, the total horizontal force (P ) is found using the following.

Pw1 =
γwH

2
a

2
(A.10)

Pw2 =
γwH

2
c

2
(A.11)

Ps =
5H2

s

3
(A.12)

P = (Pw1 − Pw2) + Ps (A.13)

Equation (A.12) is derived from the horizontal pressure caused by submerged sediment equation,

which relates the soil’s friction angle (φ), buoyant unit weight (γ′s), and depth to a horizontal

pressure (Sp) (see Equation (A.14)). Given the soil is cohesionless, has a friction angle of 30◦, and

a buoyant unit weight of 10.0 kN/m3, Equation (A.14) reduces to 10h
3 .

Sp =
γ′sh(1− sinφ)

1 + sinφ
=

10h

3
(A.14)

Lastly, the total uplift force (U) is calculated as follows,

U1 = γwLHc (A.15)
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U2 =
γwLa(Ha −Hc)

2
(A.16)

U = U1 + U2 (A.17)

and the effective vertical force is calculated using the effective stress principle (Equation (A.18)).

T = W − U (A.18)

The values of T and P are then input into Equation A.1 to calculate the factor of safety against

sliding.

In order to evaluate the factor of safety against overturning, the eccentricities of each force

are first calculated. To ease the calculations, E◦ is defined to be the distance between the centerline

of the dam to the vertical section of the downstream face.

E◦ =
L

2
− (Lu + C) (A.19)

Ec1 =
L−HZd + CY Zd

2
(A.20)

Ec2 =
(H − CY −Hd)Zd

3
− E◦ (A.21)

Ec3 = E◦ +
C

2
(A.22)

Ec4 =
L− Lu

2
(A.23)

Ew =
L− Lu

2
(A.24)

Es =
L− Lu

2
(A.25)

Ep1 =
Ha

3
(A.26)

Ep2 =
Hc

3
(A.27)

Es =
Hs

3
(A.28)

Eu2 =
L

2
− La

3
(A.29)

With the eccentricities calculated, the righting (McO) and overturning moment (McR) about the

toe of the dam, point C, are calculated. The righting moment is essentially the sum of each
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component of the total downward force (W ), and the overturning moment is the sum of all uplift

(U) and horizontal forces (P ). There is one exception in that the downstream reservoir force, Pw2,

applies a righting moment about point C. Ultimately, the factor of safety against overturing is the

ratio of the righting to overturning moment.

McO can be calculated directly by the following equation. For reference, all moments are

defined to be positive rotating clockwise, except McR which is positive counter-clockwise.

McO = Pw1Ep1 + PsEs +
U1L

2
+ U2

(
Eu2 +

L

2

)
(A.30)

In order to calculate McR, the moment about the midpoint of the dam-foundation contact (Mb) is

first found. All the eccentricities are defined relative to the midpoint (point B).

Mb = (Wc1Ec1 + Pw1Ep1 + PsEs + U2Eu2)

− (Wc2Ec2 +Wc3Ec3 +Wc4Ec4 +WwEw +WsEs + Pw2Ep2) (A.31)

The moment about the toe of the dam (Mc) can then be found by shifting Mb to point C and

accounting for the changing moment arms of all the downward and uplift forces. This can be done

easily by recognizing that the effective downward force (T ) represents the sum of all downward and

uplift forces, resulting in the following equation.

Mc = Mb −
TL

2
(A.32)

The righting moment is then calculated by subtracting the overturning moment from the total

moment about point C, and because McR is defined to be positive counter-clockwise, it is multiplied

by -1.

McR = McO −Mc (A.33)

Finally, the factor of safety against overturning is the ratio between the righting to overturning

moment about the toe of the dam.
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FSoverturning =
McR

McO
(A.34)

In order to compare the finite element modeling results to the classical factor of safety calcu-

lations, stress distributions along the dam-foundation contact were plotted and integrated over the

total length of the dam using the trapezoidal rule, Equation (A.35), (assuming a unit width) to get

forces, as seen on Figure A.2. For analyses without pore fluid flow, the total vertical compressive

stress and shear stress distributions were used to find values of total downward vertical force (W )

and horizontal force (P ). The total uplift force (U) was still calculated using the classical method

in these analyses, because the uplift pressure was applied as a boundary condition to the finite el-

ement models. In analyses including pore fluid flow, the effective vertical compressive stress, shear

stress, and uplift pressure solutions were all solved for directly. When integrated, these stresses

resulted in the effective downward force (T ), horizontal force (P ), and uplift force (U).

ΔX

a b

Figure A.2: Example Numerical Integration Using the Trapezoidal Rule
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T =

∫ b

a
f(x) dx ≈ (b− a)

f(a) + f(b)

2
(A.35)

To calculate the factor of safety against sliding from the finite element modeling results, the

calculated forces were directly input into Equation (A.1). In the cases without pore fluid flow, U

was subtracted from W to calculate T prior to input into the equation. Also, because gravity and

the horizontal loads were ramped up linearly and over two different time-steps, there were cases

where the model failed to converge prior to the application of 100% of the horizontal loads. In

these cases, the full shear stress distribution (i.e. the distribution under the full loads) was not

generated. After integrating the shear stress solution, the calculated value for P was divided by the

percent completion to estimate the total shear that would have been attained had the model ran to

completion. As for the factor of safety against overturning, it was assumed that the deformations of

the dam were small such that the eccentricities of the loads did not significantly change. Therefore,

the value of T calculated using the finite element results was input into Equation (A.32), and the

factor of safety calculation followed the subsequent steps outlined above.
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Ultimate Failure Surface ABAQUS User Material (UMAT) Subroutine Code

The following fortran code (umat DP cap.f) implements a Drucker-Prager yield surface mod-

ified to include tension and compression caps in order to calculate the ultimate failure of concrete

using the ABAQUS finite element software suite.

SUBROUTINE UMAT(STRESS,STATEV,DDSDDE,SSE,SPD,SCD,

1 RPL,DDSDDT,DRPLDE,DRPLDT,STRAN,DSTRAN,

2 TIME,DTIME,TEMP,DTEMP,PREDEF,DPRED,MATERL,NDI,NSHR,NTENS,

3 NSTATV,PROPS,NPROPS,COORDS,DROT,PNEWDT,CELENT,

4 DFGRD0,DFGRD1,NOEL,NPT,KSLAY,KSPT,KSTEP,KINC)

C

INCLUDE ’ABA_PARAM.INC’

C

CHARACTER*80 MATERL

DIMENSION STRESS(NTENS),STATEV(NSTATV),

1 DDSDDE(NTENS,NTENS),DDSDDT(NTENS),DRPLDE(NTENS),

2 STRAN(NTENS),DSTRAN(NTENS),TIME(2),PREDEF(1),DPRED(1),

3 PROPS(NPROPS),COORDS(3),DROT(3,3),

4 DFGRD0(3,3),DFGRD1(3,3)

C

DIMENSION S_DEV(6),FLOW(6),FLOW_PHI(6),FLOW_PSI(6)

PARAMETER (ONE=1.0D0,TWO=2.0D0,THREE=3.0D0,SIX=6.0D0,

1 SMALL=1.D-12,ZERO=0.0D0)

C

C -----------------------------------------------------------

C UMAT FOR ISOTROPIC BILINEAR ELASTO-PLASTICITY

C DRUCKER-PRAGER

C GENERAL 3D FORMULATION

C

C **THIS SUBROUTINE JUST CALCULATES THE YIELD FUNCTION AND DOES

C NOT EVOLVE PLASTICITY

C -----------------------------------------------------------

C PROPS(1) - E
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C PROPS(2) - NU

C PROPS(3) - COHESION

C PROPS(4) - PHI

C PROPS(5) - BETA

C PROPS(6) - KAPPA

C PROPS(7) - RELLIP

C PROPS(8) - CHI

C -----------------------------------------------------------

C

C ELASTIC PARAMETERS

C

EMOD=PROPS(1)

ENU=PROPS(2)

IF(ENU.GT.0.4999.AND.ENU.LT.0.5001) ENU=0.499

EBULK3=EMOD/(ONE-TWO*ENU)

EBULK=EBULK3/THREE

EG2=EMOD/(ONE+ENU)

EG=EG2/TWO

EG3=THREE*EG

ELAM=(EBULK3-EG2)/THREE

C

C CALCULATE A^PHI, B^PHI

C

COHESION=PROPS(3)

PHI=PROPS(4)

BETA=PROPS(5)

CONST1=TWO*SQRT(SIX)/(THREE+BETA*SIN(PHI))

ABARPHI=CONST1*COS(PHI)

APHI=CONST1*COHESION*COS(PHI)

BPHI=CONST1*SIN(PHI)

C

C ELASTIC TANGENT MODULUS (IN MATRIX FORM)

C...INITIALIZE

DO 20 K1=1,NTENS

DO 10 K2=1,NTENS

DDSDDE(K2,K1)=0.0D0

10 CONTINUE

20 CONTINUE

C...ASSIGN PARAMETERS

DO 40 K1=1,NDI

DO 30 K2=1,NDI

DDSDDE(K2,K1)=ELAM

30 CONTINUE

DDSDDE(K1,K1)=EG2+ELAM

40 CONTINUE

DO 50 K1=NDI+1,NTENS

DDSDDE(K1,K1)=EG
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50 CONTINUE

C

C CALCULATE TRIAL STRESS USING INCREMENTAL TOTAL STRAIN

C

DO 70 K1=1,NTENS

DO 60 K2=1,NTENS

STRESS(K2)=STRESS(K2)+DDSDDE(K2,K1)*DSTRAN(K1)

60 CONTINUE

70 CONTINUE

C

C CALCULATE MEAN AND DEVIATORIC TRIAL STRESSES

C

DO 80 K1=1,NTENS

S_DEV(K1)=STRESS(K1)

80 CONTINUE

STRESS_MEAN=(STRESS(1)+STRESS(2)+STRESS(3))/THREE

DO 85 K1=1,NDI

S_DEV(K1)=S_DEV(K1)-STRESS_MEAN

85 CONTINUE

C

C CALCULATE L2 NORM OF DEVIATORIC STRESS

C

D2J2=0.0D0

DO 87 K1=1,NTENS

D2J2=D2J2+S_DEV(K1)*S_DEV(K1)

87 CONTINUE

DO 88 K1=NDI+1,NTENS

D2J2=D2J2+S_DEV(K1)*S_DEV(K1)

88 CONTINUE

C D2J2=S_DEV(1)*S_DEV(1)+S_DEV(2)*S_DEV(2)+

C 1 S_DEV(3)*S_DEV(3)+TWO*(S_DEV(4)*S_DEV(4)+

C 1 S_DEV(5)*S_DEV(5)+S_DEV(6)*S_DEV(6))

SDEVNORM=SQRT(D2J2)

Q=SQRT(3.0d0/2.0d0)*SDEVNORM

C

C ADD TENSION CAP

C

KAPPA=PROPS(6)

RELLIP=PROPS(7)

CHI=PROPS(8)

DI1=THREE*STRESS_MEAN

XPHI=KAPPA-RELLIP*(APHI-BPHI*KAPPA)

IF (DI1.GT.KAPPA) THEN

HEAVI=0.0D0

ELSE

HEAVI=ONE

ENDIF
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FCAPPHI=ONE-HEAVI*((DI1-KAPPA)/(XPHI-KAPPA))**TWO

IF (DABS(XPHI-KAPPA).GT.SMALL) THEN

VAR1=XPHI-KAPPA

ELSE

VAR1=ONE

ENDIF

FCAPPHI=ONE-HEAVI*((DI1-KAPPA)/(XPHI-KAPPA))*

1 ((DI1-KAPPA)/(XPHI-KAPPA))

FCAPPHI=ONE-HEAVI*((DI1-KAPPA)/VAR1)*

1 ((DI1-KAPPA)/VAR1)

FUNCCAPPHI=(DABS(FCAPPHI)+FCAPPHI)/TWO

C

C CALCULATE TRIAL YIELD FUNCTION

C

FPHI=APHI-BPHI*STRESS_MEAN

FCHI=APHI-BPHI*CHI

FPHI2=FPHI*FPHI

FCHI2=FCHI*FCHI

VAR2=(DABS(FPHI2-FCHI2)+FPHI2-FCHI2)/TWO

FTRIAL=SDEVNORM-(SQRT(FUNCCAPPHI)*SQRT(VAR2))

C

C STORE VARIABLE IN STATE VARIABLE ARRAY

C

STATEV(1)=FTRIAL

STATEV(2)=Q

STATEV(3)=STRESS_MEAN

C

WRITE(*,*) ’FTRIAL = ’,FTRIAL

C

RETURN

END

C
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