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[Abstract] 

The purpose of this research was to identify appropriate occupancy and lighting energy models 

for predicting lighting energy use in buildings and use those results to inform data collection 

recommendations.  A first-order inhomogeneous Markov-chain occupancy model was selected to 

simulate occupancy patterns in single-occupancy offices.  A stochastic lighting action model, 

modified to bring it inline with current research, was used to simulate the interaction of those 

occupants with their lighting system assuming certain luminous conditions, including the 

contribution of daylight.  Additionally, the lighting control model was expanded to include a 

range of user types between a true "active" user who acts in a very energy-aggressive manner 

and a true "passive" user who uses their lighting independent of daylight conditions and with less 

regard for wasted energy.  The combination of these two models was assessed in a sensitivity 

analysis using both sensitivity index and total sensitivity for each parameter, which allows their 

contribution to the combined model's variance to be evaluated.  It was found that the mobility 

parameter in the occupancy model contributed most to the model variance, followed closely by 

the probability of a switch-off action at departure.  The switch-on actions, both at arrival and 

during occupancy, contributed the least to the model's variance.  The combination of models was 

also applied to assess their ability to predict lighting energy use through comparison to 

deterministic modeling results and sub-metered lighting energy data from an actual 

building.  Based on the results of that validation assessment, it was found that the limitations in 
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the occupancy model prevented good agreement between measured and predicted 

performance.  Additional model parameters were proposed for integration into the occupancy 

model, and the revised occupancy model was validated against the sub-metered lighting energy 

data.  The modifications to the occupancy model were found to substantially improve the 

accuracy of the predictions compared to the sub-metered data. 
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INTRODUCTION 

According to the results of the 2003 Commercial Buildings Energy Consumption Survey 

(2008), the latest available reliable statistic, lighting was responsible for nearly 38% of the 

national commercial non-mall building electrical consumption.  Lighting, therefore, represents 

the single largest end-use of electricity in the typical commercial building. 

Currently, lighting is regulated through the infrastructure provided in building energy 

codes.  There are multiple energy codes in existence and use in the United States, including the 

American Society of Heating, Refrigeration and Air-Conditioning Engineer’s (ASHRAE) 

Standard 90.1 for commercial buildings and standard 90.2 for residential buildings, California’s 

Title 24 Part 6, and the International Code Council (ICC’s) International Energy Conservation 

Code (IECC) to name a few.  All of these typical building energy codes provide minimum 

efficiency standards through prescriptive or performance-based approaches.  Additionally, all of 

these energy codes address the actual energy systems, such as heating, cooling and lighting, but 

also the architectural components that impact the building energy consumption, such as wall and 

roof insulation, fenestration type and allowable heat loss, and basement configuration.  The 

prescriptive requirements in general provide line-item requirements for each regulated building 

component, and compliance is demonstrated by illustrating that the efficiency of the specified 

equipment, component or system meets or exceeds the minimum requirements.   The 

performance requirements are typically based on more advanced simulation methods, and 

typically provide a maximum allowable annual energy density based on use type that is 

determined through simulation. 

For lighting in particular, systems are generally regulated through a combination of 

methods.  All of the active lighting energy codes reviewed provide mandatory control 
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requirements, such as automatic shut-off during hours of non-use.  Some of the more advanced 

lighting energy codes provide mandatory requirements for more advanced control strategies, 

such as daylight-responsive switching or dimming, or occupancy-based controls.  The second 

part of most current lighting energy codes is the regulation of the allowed lighting power 

installed.  The method for regulating this is typically by providing a maximum allowable lighting 

power density, either applicable to the entire building, or in an application-specific manner.  

These lighting power densities address only the installed wattage within the building, and 

typically do not include portable lighting equipment which contributes to plug loads.  

Additionally, to incentivize more advanced lighting controls, credits are provided in a few codes 

which effectively increase the allowable installed lighting power based on the type of extra 

controls added.   For example, many codes provide an additional lighting power allowance if a 

dimming system with pre-set control scenes has been installed in a particular space type. 

The main shortfall with the existing lighting energy code infrastructure is that the 

regulation is based solely on lighting power density.  The provided control credits are typically 

not equatable to the potential energy savings, but instead are based on conservative estimates of 

aggregate cost-effectiveness made by lighting professionals.  Regulation of the lighting system 

based solely on these installed power densities does nothing for either the end-user or the utility 

providing the electricity to be able to evaluate the actual energy and demand impacts, including 

time-of-day issues and user interaction. 

Purpose 

Given the potential impacts of continually refined lighting energy evaluation tools, it has 

been a desire within the lighting community to transition toward the regulation, analysis and cost 

estimating of lighting energy, instead of lighting power.  To do this will require a realistic 
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consideration of the combined effects of occupancy predictions, the interactions of occupants 

with lighting controls, the effectiveness of automated controls and rates of overriding, and use 

and control of daylight delivery and shading systems. 

This research effort was intended as a step toward identifying the means by which 

lighting energy may become a focus of energy prediction, which explicitly meant finding the 

tools that would be most useful to predict lighting energy use on both space and building scales.  

For this, an occupancy model, which incorporates the range of human behavior, was first 

identified and evaluated.  A separate lighting action model, which takes occupancy patterns and 

integrates a second level of irregularity of human behavior, was then selected and reviewed for 

its potential use and potential modifications.  The combination of these models was then 

explored in terms of understanding the impact of the various free variables from the combined 

model. 

Throughout this process, a desired focus was to understand and quantify the limitations of 

the models, since it was expressly known that the available models would be limited in their 

applicable scope.  Since the purpose of this effort was to support an overall transition to lighting 

energy use rather than power densities across all building types and uses, it is important to 

explicitly identify the shortfalls of each model and to identify ways in which the models can be 

expanded to include additional possible scope.  Therefore, the final purpose of this effort was to 

use the information gathered from reviewing the models to inform data collection 

recommendations, which are intended to be used to inform broad-scale collection efforts which 

will create the knowledgebase necessary to expand and validate the models.  



 

4 

Document Organization 

This document is organized to present the process used.  First, background information is 

presented to provide context for model selection and expansion.  Next, a description of the initial 

modeling effort is presented, including the processes for expanding the model and performing 

the initial comparison, sensitivity analysis and initial validation.  The results of that initial effort 

are then presented and the implications of those results explored.  That is followed by a 

description of the expanded occupancy model and the process used to expand that model, which 

was then used to re-validate the combined models against the presented subject building data, 

and the results of that validation are then presented and discussed.  Additionally, the process for 

evaluating the daylighting algorithm is explored and the results of that effort are presented.  

Finally, the overall results are discussed with respect to their implications on future data 

collection efforts. 
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BACKGROUND RESEARCH 

Understanding the true energy use of lighting in buildings requires an understanding of 

not only what types of lighting systems are used, but how those systems are operated throughout 

the year.  Advancements in lighting control technology and the green building movement have 

combined to create a design atmosphere that relies on lighting controls, both manual and 

automated, to reduce energy costs.  The effectiveness, though, of these controls in saving energy 

must be quantified, both for new construction projects and existing buildings, in order to 

understand the potential cost-effectiveness of such systems.   

Manual Lighting Controls 

Understanding and quantifying the use of manual controls is key to being able to 

understand and quantify the use of lighting energy.  Manual controls have served as the 

fundamental control type since the advent of electric lighting.  Moreover, manual controls can 

serve as the “ideal” control, if the person using the controls behaves “ideally”.  That is, if the 

occupant in the spaces is well attuned to their visual needs and the availability of daylight in their 

space, they can serve as the ideal controller.  Automated controls simply aim to mimic this ideal 

behavior by anticipating the user needs. 

Understanding and providing models of manual control of lighting in buildings first 

became of interest in the 1970s.  Hunt (1979) undertook the first published research that used 

time-lapse photography to gather occupancy and lighting related data for various space types, 

including multi-occupant offices, classrooms, and combined teaching spaces.  Images were 

recorded in 8-minute increments over the course of one half of a solar year, and were used to 

assess the status of the lighting and blinds, accounting for partial-load conditions (e.g. alternate 
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row switching).  Total and diffuse horizontal solar illuminance data were also recorded at a local 

weather station.   

Hunt grouped the various spaces into two general occupancy types, intermittent and 

continuous.  It was found that the intermittently-occupied spaces exhibited switching events 

scattered throughout the day and tied to the times of occupancy.  In general, the peak times for 

‘switch-on’ events were found to be at the beginning of the day, at the beginning of each 

occupied period and at the beginning of cleaning times. Conversely, the peak times for ‘switch-

off’ events were found to be at the end of occupied periods, at the end of the day, and at the end 

of cleaning times.  Lighting energy use was also found to have a significant relationship to the 

availability of daylight, with decreasing lighting energy consumption resulting from increasing 

daylight illuminances.  The time-lapse photography also showed that the lights were left on when 

the room was unoccupied only 3% of the time. 

The continuously-occupied multi-person offices were found to have very different 

switching patterns.  It was found that, because of generally-continuous in and out activity, the 

spaces were rarely completely unoccupied, and thus the lighting was generally switched on at the 

beginning of the workday and switched off at the end.  Mid-day switching events were rare, and 

likely due to reduced daylight illuminance levels. Hunt concluded that, for these types of multi-

occupant spaces, the previous state of the lighting generally had the largest effect on the current 

state; in other words, if the lighting was on, it would be left on, if off, it would be left off.  It was 

concluded that this small probability of intermediate ‘switch-on’ events was likely due to a 

reluctance to change the environment in a shared environment out of concern for other 

occupants, adaptation to reduced illuminance levels, or infrequent occurrences of low daylight 
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illuminance levels.  The small probability of intermediate ‘switch-off’ events was likely due to 

many of the same factors, especially visual adaptation.   

From this data, Hunt was able to develop a single curve relating the workplace 

illuminance to the probability of a ‘switch-on’ event at arrival, as shown in Figure 1.   

 

Figure 1: Switch-on Probability at Arrival, from Hunt 1979 as reproduced in Reinhart 

2003 

In Monitoring manual control of electric lighting and blinds (Reinhart & Voss, 2003), 

results were presented from a data collection effort focused on ten daylighted offices in 

Germany.  As shown in Figure 2, the data showed a very strong correlation with the Hunt 1979 

curve, despite decades and continents of separation.  Additionally, the results of a 12-month data 

collection study based on office spaces in Austria (Mahdavi, Mohammadi, Kabir, & Lambeva, 

2008) found a very similar relationship between ‘switch-on’ probability and workplane 

illuminance as shown in Figure 1 and Figure 2.   
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Figure 2: Switch-on Probability of Arrival, Comparing Hunt’s 1979 curve to the Results in 

(Reinhart & Voss, 2003). 

Reinhart & Voss also presented additional conclusions regarding the probability of an 

intermediate ‘switch-on’ event as a function of minimum workplane illuminance.  As shown in 

Figure 3, the probability of an intermediate ‘switch-on’ event was found to remain essentially 

static below 20 fc, with a probability of 2%.  Similarly, above approximately 30 fc, the 

probability is reduced to less than one half of one percent.   

 

Figure 3: Intermediate switch-on probability as a function of the minimum workplane 

illuminance, from (Reinhart & Voss, 2003) 
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Additionally, Reinhart & Voss investigated the probability of ‘switch-off’ events as a 

function of expected duration of absence, and compared their results qualitatively to that found 

in previous research (Pigg, Eilers, & Reed, 1996), as shown in Figure 4.  As shown, the 

probability of a ‘switch-off’ event at departure increases with the increasing duration of the 

expected absence for all types of control systems.  Most strikingly, the probability of a ‘switch-

off’ event with only manual controls approaches unity when the expected duration reaches four 

hours, where the probability based on the dimmed system never exceeds 75%.  The authors 

concluded that, based on anecdotal evidence, it was likely that the occupants did not notice that 

the dimmed system was on at departure. 

 

Figure 4: Switch-off probabilities as a function of anticipated absence, from (Reinhart & 

Voss, 2003). 

Mahdavi et al. (2008) also investigated the probability of a ‘switch-off’ event as a 

function of anticipated duration for three manually-controlled office lighting systems, and found 

a similar relationship, with the probability of an event increasing with increasing duration of 

anticipated absence. 
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Figure 5: Probability of a ‘switch-off’ event as a function of expected duration of absence, 

from (Mahdavi, Mohammadi, Kabir, & Lambeva, 2008) 

Mahdavi et al. also investigated the occurrence of intermediate ‘switch-off’ events, and 

found that the probability increases with increasing task illuminance in the three buildings 

studied, as shown in Figure 6.  The authors conclude that this indicates a general relationship, 

though no strong correlation was found during this effort. 

 

Figure 6: Relative frequency of an intermediate ‘switch-off’ event as a function of 

workplane illuminance, from (Mahdavi, Mohammadi, Kabir, & Lambeva, 2008) 
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Finally, Lindelof & Nicolas (2006) investigated intermediate switching activities in 

offices in the LESO building in Lausanne, Switzerland.  This building is highly automated and 

has integrated sensors, control systems and data collection systems that allow for extensive 

testing of building control strategies, including passive design and advanced control algorithms.  

The goal of that research effort was to determine if a relationship exists between horizontal 

workplane illuminance and intermediate switching events.  In order to evaluate this particular 

aspect of manual control, the authors gathered time-based switching event data in reference to 

occupant time of arrival, and looked solely at the actions that were taken at least five minutes 

after arrival and at least one minute prior to departure based on a statistical analysis of the 

occurrence of switching events with respect to arrival times.  The concluded general 

relationships between illuminance and intermediate events, as shown in Figure 7 and Figure 8, 

represent the aggregate data for fourteen offices with continuous monitoring for over three years. 

 

Figure 7: Intermediate ‘switch-on’ probabilities from (Lindelof & Nicolas, A field 

investigation of the intermediate light switching by users, 2006) 
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Figure 8: Intermediate ‘switch-off’ probabilities from (Lindelof & Nicolas, A field 

investigation of the intermediate light switching by users, 2006) 

In general, the results of these empirically-based studies have shown significant and 

repeatable relationships, based on large empirical data sets, between interior conditions and 

actions on manual lighting control systems with regard to ‘switch-on’ events and intermediate 

switching events.  Significant relationships have also been found for ‘switch-off’ events, though 

the results have not been replicated.  These relationships have been incorporated in many 

investigations, and the use of these probabilistic functions will be further discussed in their 

incorporation into the Lightswitch-2002 model (Reinhart C. F., 2004). 

Manual Blind Controls 

The operation of manual blinds has also been investigated in previous studies.  Operation 

of shading devices is not only of interest with regards to interior daylighting, but the impacts on 

cooling loads, and to a lesser extent on heating loads, can be significant.   
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As summarized in (Reinhart C. F., 2004), previous research has led to an understanding 

of the criteria for closing blinds, though repeatable conclusions regarding blind opening actions 

have not been found. For example, as shown in Figure 9, the results from two empirically-based 

studies demonstration revealed different relationships between solar penetration depth and shade 

deployment.  Inoue et al. (1988) found a linear relationship, while Reinhart & Voss found a more 

logarithmic relationship for a particular building in Germany (called Lamparter here). 

 

Figure 9: Shade deployment as a function of direct sun penetration depth, as reported in 

(Reinhart & Voss, 2003) 

Figure 10 shows the results presented by Mahdavi et al. (2008) regarding shade 

deployment for three different orientations, where “VN” indicates a north facing window, “VS” 

indicates a south facing window and “FH” indicates an east facing window.  Their results 

indicate that shade deployment was independent of external vertical irradiance, and thus 

illuminance, for north and south facing windows, with the shades on north facing windows being 

rarely used and shades on the south facing windows being commonly used.  For the east facing 

windows, a relationship that approaches linear was found. 
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Figure 10: Shade deployment as a function of vertical irradiance from (Mahdavi, 

Mohammadi, Kabir, & Lambeva, 2008), where the space ‘FH’ faces east, ‘VN’ faces north 

and ‘VS’ faces south 

Most recently, Haldi and Robinson (2010) provided an algorithm for simulating occupant 

interaction with manual blinds that was a result of a 6-year data collection effort at the LESO-EB 

building.  During the data collection period, the authors gathered information regarding the 

position of the lower (view) window shading and the upper (daylighting) window shading in 

terms of an open or closed position.  Simultaneously, they gathered information regarding the 

occupancy state via occupancy sensors, interior workplane illuminance, and exterior daylighting 

data including global horizontal illuminance and direct beam illuminance.  Based on the 

correlations found, the authors developed a procedure for simulating the action of occupants on a 

shading device, as shown in Figure 11.  As shown, the main influencing factor that informs the 

likelihood of a blind adjustment action at all times is the average workplane illuminance.  At 

arrival, the blind status from the previous time was found to influence the likelihood of 

adjustment, noting that the occupant likely found the previous blind state inadequate given the 
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current daylighting conditions.  When examining intermediate actions, the outdoor global 

horizontal illuminance was found to impact the likelihood of adjustment, since the occupant was 

generally found to adjust based on glare conditions.  Based on these interactions, the authors 

presented a series of functions that describe the likelihood of blind action (raising or lowering), 

given the occupancy status (or change), as well as the identified influencing factors.  This blind 

operation model again is based on the private office paradigm.  The authors noted that in 

multiple-occupant offices, the probability of adjustment was dampened. 

In general, it was noted that occupants are more likely to adjust their blinds upon arrival 

than during periods of persistent presence, and confirmed previous assumptions that occupants 

were unlikely to adjust their blinds upon departure.  Additionally, it was noted that intermediate 

actions on the blinds were very rare, similar to the patterns observed regarding intermediate 

actions on the electric lighting systems.  Another interesting note was the observed pattern that 

raising actions are far more likely to occur than lowering actions, due mostly to the fact that the 

majority of the lowering actions resulted in a fully lowered position, thus requiring fewer 

adjustments.  Raising actions were observed to occur in smaller increments, not often resulting in 

a full raising action and thus occurring more often.  Finally, it was generally observed that the 

blinds used to control the upper windows, which serve for daylighting purposes, were more 

likely be changed in response to changing conditions or occupancy status changes, where the 

status of the blinds covering the view windows were less likely to change due mostly to the 

desire to preserve the view.  This phenomenon may also in part be due to the orientation of the 

observed offices as facing due South in the Northern hemisphere, which likely resulted in a 

situation where little direct beam illuminance on the work surfaces was due to beam illuminance 

through the view windows and more likely due to beam illuminance through the upper windows.   
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Figure 11: Manual blind action modeling algorithm. (Haldi & Robinson, Adaptive actions 

on shading devices in response to local visual stimuli, 2010) 

Daylighting 

When quantifying the use of electric lighting, it is imperative to consider the impact of 

daylighting.  This is true both when manual controls exist and when automated controls have 

been installed.  In the case of manual controls, it is important to recognize that the switching 

behavior of occupants may or may not be directly dependent on their available daylight.  This 

includes illuminance on the workplane, which can directly offset the need for supplemental 
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electric lighting, but also the environmental luminance, such as ceiling brightness, overall 

contrast, and the impact of interior finishing.   

When considering automated controls, it is important to understand the integration of 

daylight into dimming and switching schemes designed to maximize energy savings by 

minimizing electric lighting use when sufficient daylight is present.  Automated systems rely on 

either closed-loop photosensors, which typically will measure the resultant interior illuminance 

on the ceiling using a photosensor, or an open-loop system which may rely on the data gathered 

from a pyrometer or photosensor mounted on the exterior of the building.  Closed-loop 

photosensors may be subject to user overrides due to their accessible location; additionally, 

closed-loop photosensors may face issues of changing interior reflectances which increase the 

brightness on the photosensor itself without actually increasing the illuminance on the 

workplane, such as when a large set of white drawings are unfurled on an architect’s dark desk 

directly below the sensor. 

Daylighting Metrics 

Various metrics for quantifying daylighting have been proposed (Refer to Mardaljevic, 

Heschong, & Lee, 2009 for a comprehensive review). 

Daylight Factor is a very common metric, first proposed in the early 1900s, and is used as 

a reference in many green building rating systems (Mardaljevic, Heschong, & Lee, 2009).  

Daylight Factor (DF) is considered a proxy for actual daylight availability, and is defined as the 

ratio of interior illuminance to exterior (unobstructed) horizontal illuminance under a 

rotationnally-symmetric overcast sky typically evaluated on a point-by-point basis and averaged 

for a space.  DF does not consider direct sun light, and is expressed as a percentage of 

availability that does not provide information on absolute interior illuminance levels with regard 



 

18 

to desired task illumiances.  Additionally, DF does not account for seasonal variations, the 

impact of orientation, or differeces due to physical location.  DF has been shown to be a poor 

predictor of actual interior daylight conditions, even under overcast skies (Teregenza, 1980).    

Furthermore, DF has been shown to be a poor predictor of dynamic lighting conditions 

(Littlefair, 1992). 

Daylight Autonomy (DA) is another popular metric, though it is not yet incorporated into 

codes and standards.  The calculation of point-by-point DA values involves determining the 

fraction of the occupied year, expressed as a percentage, where the workplane illuminance due to 

daylight (direct solar and diffuse sky light) meets or exceeds the design illuminance.  Point-by-

point values are then typically averaged for a room to determine a rating.  While DA provides an 

advancement through its direct connection to the design illuminance levels, it likely does not 

accurately account for the impact of exceedingly high interior illuminances. 

Useful Daylight Illuminance (Nabil & Mardaljevic, 2006) provides an additional 

refinement.  The calculation of point-by-point UDI involves evaluating the illuminance from 

direct and diffuse daylight, including interreflections, with respect to the design illuminance but 

also based on empirical data regarding blind-closing actions.  It was found that below 100 lx 

(~10 fc), daylighting was insufficient to be autonomous to the point where occupants activated 

their electric lighting.  Conversely, above 2,000 lx (~200 fc), the daylighting was so high that 

blinds were closed and electric lighting was activated.  The range of UDI, therefore, is 

considered the percentage of the annual occupied year where the interior daylight illuminance 

falls within the range of 100 lx to 2,000 lx.   

When incorporated into electric lighting and energy analysis simulations, the UDI range 

can further be split based on the design interior workplane illuminance.  For example, if the 
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design workplane illuminance for an office was 350 lx, the daylighting would be considered 

‘Supplementary’ from 100 lx to 350 lx and would be considered ‘Autonomous’ from 350 lx to 

2,000 lx.  This allows for an understanding and quantification of essentially the effectiveness of 

the interior daylighting. 

Lighting Calculation Methods 

Two main methods for calculating indoor lighting are generally used throughout the 

lighting industry: radiosity and ray-tracing. 

The radiosity method essentially examines the steady-state energy transfer of lighting in a 

space.  The method involves first determining the initial exitance of interior surfaces, which have 

been descritized into small patches typically limited by the space geometry, based on the 

intensity distribution of luminaires.  Interreflections are then considered based on the relative 

position of each descritized patch and their initial exitance.  The steady-state illuminance on each 

patch is then determined accounting for both the initial illuminance and the illuminance due to 

interreflections.  When considering daylighting, most radiosity-based software create intensity 

distributions which are physically located at the window and account for direct solar and diffuse 

sky luminance, and which are subsequently treated as typical luminaires. 

Ray-tracing solutions are based on the concept of actually tracing the “rays” of light, and 

can be executed in either forward or backward configurations.  In forward ray-tracing, rays are 

cast from luminaires, the sun, or the sky, with the relative quantity based on the intensity 

distribution.  The rays are then followed as the intersect surfaces and are bounced off or 

transmitted through those surfaces.  Typical software allows the user to limit the number of 

bounces considered in the calculation.  Backward raytracing is typically used for the generation 
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of renderings, and involves tracing possible rays back from each surface, through a set number of 

bounces, to the original source. 

In general, radiosity and ray-tracing are both acceptable methods for calculating interior 

lighting condition based on a set configuration.  Radiosity solutions typically require lower 

computing power than ray-tracing solutions, but typically result in much more “patchy” 

appearances in renderings.  Ray-tracing solutions are typically more accurate at capturing the 

shapes and patterns of light and shadow distribution, and are able to incorporate non-Lambertian 

surfaces, but require significantly more computing power.  However, both methods are 

considered valid methods for calculating and rendering lighting. 

Daylighting Calculation Models 

EnergyPlus, an advanced energy modeling simulation tool, currently uses a modified 

Daylight Factor to determine the impact on lighting energy and cooling.  EnergyPlus uses the 

DOE-2 detailed daylighting calculation module, which employs the ‘split-flux’ method of 

calculation.  The ‘split-flux’ method essentially splits the direct solar flux from the diffuse sky 

and ground-reflected flux.  Based on a typical radiosity solution scheme, the illuminance at 

points due to direct solar and electric light is first calculated, and then the diffuse contributions 

due to interior interrefleciton and diffuse sky and ground-reflected light is determined.  The 

Daylight Factor at each point is then calculated typically as the ratio of interior illuminance to 

available exterior illuminance, though the direct solar is considered in both values. 

Work is currently being done by other research teams to integrate the Radiance 

daylighting calculation engine to run as a co-simulation with ESP-r and EnergyPlus to include 

the impact of more detailed lighting calculations on lighting energy through the use of automated 

controls (Janak, 1997).  Radiance is a CIE-validated open-source calculation procedure that 
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provides significantly more detail to the lighting simulation than the split-flux method had has 

been validated per CIE 171:2006 (International Commission on Illumination, 2006) unlike the 

split-flux method.  Validation per CIE 171:2006 ensures sufficient accuracy of the calculation for 

lighting purposes, and is generally undertaken only for software that is intended for detailed 

lighting calculations. 

Daylighting Sky Type Definitions 

The various methods of modeling daylighting typically rely on a combination of direct 

(sun) illuminance and indirect (sky) illuminance to contribute to interior light levels.  While it is 

fairly simple and straightforward to quantify the exact location of the sun and the brightness of it, 

the sky definition is much more variable and therefore much more challenging. 

The CIE has mathematically identified a set of fifteen “standard skies” that are 

recommended for use in daylighting calculations (International Commission on Illumination, 

2003).  Each of these skies is assigned a “Gradation Group,” which is a ranking to indicate the 

luminance gradation between the horizon and zenith.  Each sky is also assigned a “Indicatrix 

Group,” which groups sky models based on the amount of scattering, allowing the position of the 

solar disk to impact sky luminance distributions.   

A clear sky definition is the most standard, and industry-standard software relies on the 

Kittler clear sky model (Lighting Analysts), which is identified by the CIE as Sky Type 12.  This 

sky definition is in Gradation Group V (out of VI), indicating that there is large gradation from 

horizon (highest luminance) to zenith (lowest luminance).   Sky Type 12 is also in Indicatrix 

Group 4 (of 6), indicating that the sky patch luminances are more influenced than others by the 

position of the solar disc, leading to high circumsolar brightness and eliminating rotational 

symmetry.  To note, the CIE recognizes a second clear sky model, Sky Type 13, which is 
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identified as appropriate for a location with a polluted atmosphere.  So, while Sky Type 13 still 

falls into Gradation Group 5, it is raised to Indicatrix Group 5, since the increased pollution 

increases sky turbidity and therefore increases the influence of the position of the solar disc on 

sky patch luminances. 

The CIE recognizes four overcast sky models.  The default sky model for most industry-

standard software is Sky Type 1, which is the CIE default model for overcast skies and is based 

on the Moon and Spencer model (Lighting Analysts).  This model falls into Gradation Group 1, 

indicating minimal gradation difference between the horizon and zenith, and Indicatrix Group 1, 

indicating little variation due to scattering.  This particular sky type also concentrates the 

luminance gradation toward zenith, and is azimuthally uniform.  The three other overcast sky 

models introduce increasing levels of gradation and increasing influence of scattering, and also 

incorporate asymmetrical circumsolar brightening. 

Partly cloudy skies are much more difficult to define, and there are currently five partly 

cloudy sky models recognized by the CIE.  These models vary based on their treatment of 

circumsolar brightness, and the gradation of the sky brightness.  However, the models assume, 

excluding the influence of the Indactrix Group, a rotationally symmetric sky, which assumes 

equal cloud densities and distributions across the sky.  In essence, the partly cloudy sky models 

simulate a uniform partial increase in sky brightness, as if applying the impact of broken clouds 

to the complete sky dome to reduce the overall luminance.  The sky models do not expressly 

include the recommended brightness and position of cloud cover, but instead examine in an 

aggregate sense the impact of partly cloudy skies on the overall sky luminance distribution. 

The IES handbook (DiLaura, Houser, Mistrick, & Steffy, 2011) additionally recognizes 

the challenges associated with modeling the various sky types.  In general, they state that the sky 
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models should not be compared to instantaneous sky conditions.  For example, the mathematical 

model of a partly cloudy sky that has been evaluated over time should not be compared to the 

instantaneous distribution of clouds and the illuminance thus created.  Therefore, it is important 

when considering the daylighting aspect of energy modeling to understand that the instantaneous 

readings will not necessarily align with modeling capabilities.  In the modeling of other building 

energy systems like HVAC, the instantaneous exterior temperature and wind speed, for example, 

can be used directly in predictions of energy use under those conditions.  With daylighting, 

however, the instantaneous sky conditions may or may not match the mathematically-defined 

sky type at any particular point, though in aggregate the experienced illuminance due to sky and 

sun brightness may align with that predicted by the model.  It is therefore very critical to make 

sure that any lighting energy simulation that involves daylighting simulation be examined not on 

an instantaneous basis, but on an aggregate basis. 

Lighting Energy Models 

When modeling lighting energy, there are two general methods.  Deterministic 

scheduling, which is the reliance on static hourly or sub-hourly schedules, is the most common 

type of energy modeling tool, and is currently incorporated into a wide variety of energy analysis 

protocols.  More advanced stochastic models, which include the variation in user behavior, are 

currently emerging, and incorporate an intuitive variation in behavior that is absent in the 

deterministic schedules. 

Deterministic Scheduling 

The most basic method for simulation lighting energy use is through the inclusion of 

deterministic lighting energy use schedules.  Deterministic use schedules typically provide 

hourly relative use intensity as a percentage of the total installed power.  Typically, these 
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schedules do not account for individual deviations.  They are designed, in general, for use in 

estimating hourly energy use and as such do not generally lead to appropriate methods for 

estimating peak demand.   Many such schedules have been published and are used throughout 

various research projects and simulation tools. 

The California Energy Commission (CEC) oversees the creation and execution of the 

California Non-Residential Energy Code, known as Title 24 Part 6.  As a part of this code, the 

CEC allows for two different methods of compliance.  The first, and simplest, is to demonstrate 

compliance through addressing individual components or systems, such as fan efficiency or 

installed lighting power density.  The second method, which allows for the assessment of 

atypical buildings, is known as the Alternative Compliance Method (ACM).  In the manual for 

this method (California Energy Commission, 2005), the CEC provides guidelines for the 

simulation of annual building energy use based on the DOE-2.1e calculation engine created and 

managed by Lawrence Berkeley National Labs (LBNL).  A part of the ACM manual includes a 

deterministic schedule of relative energy use intensity per hour for non-residential non-mall 

buildings for typical weekdays, Saturdays and Sundays.  The ACM does not allow alternative 

methods for simulating energy use intensity, instead relying simply on this deterministic 

schedule applied to the building lighting power.  While this does allow for hour-by-hour demand 

and energy use to be simulated, there is no variation on a day by day basis, which intuitively 

seems like a gross underestimation of the inherent variability of personal lighting energy use. 

The National Renewable Energy Laboratory (NREL) has published a manual 

documenting the energy simulation procedure required to qualify for federal energy efficiency 

tax incentives (Deru, 2007), a national program.  In that document, the authors give guidance and 

requirements for simulation parameters required to demonstrate improved energy efficiency.  
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Within that document, various deterministic load schedules are provided for use as inputs into 

advanced energy modeling programs.  For lighting, the authors refer to and include the same 

lighting intensity use for non-residential non-mall buildings as included in the California ACM 

Approval Manual.  Similarly, no guidance is provided for including any variability in energy use 

intensity beyond this deterministic schedule.   

Figure 12 illustrates the deterministic lighting energy use intensity included in the 

California ACM and referred to in the NREL guidelines.  As shown, the peak maximum use 

never exceeds 85% and the minimum use never falls below 5%.   Saturdays are assumed to have 

larger uses than Sundays, though both are significantly lower than the typical weekday use. 

 

Figure 12: Lighting energy use intensity from the California ACM. 

EnergyPlus is a simulation building energy tool that created and managed by the Building 

Technologies Program of the US Department of Energy Energy Efficiency & Renewable Energy 

office.  EnergyPlus is a tool used to simulate building energy use, including various energy 

expenditures, such as heating, cooling, fans, pumps, lighting, plug loads, and other miscellaneous 
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loads.  EnergyPlus is a tool that takes inputs and creates outputs in the form of text files.  The 

simulation protocol includes default schedules for various components.  For example, a schedule 

of occupancy is used to assess the impact of thermal and latent heat gains from the number of 

occupants.  Similarly, estimates of energy use intensity for lighting and plug loads are provided.   

Figure 13 includes the hourly relative lighting energy use intensity that is provided in the 

EnergyPlus documentation as a sample for office buildings (US Department of Energy, 2011).  

As shown, the peak weekday lighting energy use never exceeds 90%, and the energy use never 

falls below 5%.  Saturdays assume moderate daytime occupancy leading to moderate lighting 

energy use.  Sundays sit entirely at 5% lighting energy use throughout the day, essentially 

illustrating the assumption that the building is unoccupied on Sundays and thus the only 

consumed lighting energy is the standby power seen during other unoccupied times. 

 

Figure 13: Lighting energy use intensity from the EnergyPlus defaults for Office Lighting. 

For simple estimation used to assess cost-effectiveness of controls during the design 

phased, designers and engineers often rely on knowledge of the specific building to create 
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project-specific deterministic schedules.  For example, should the office hours be known, it may 

be assumed by the engineer that the lighting will be fully activated throughout the business 

hours, and completely or nearly-completely extinguished after hours.  While this type of 

schedule assumption is not based on empirical data, the reliance on actual known parameters of 

the building can potentially lead to more accurate predictions of peak demand and overall energy 

use.  However, these assumptions require a priori knowledge of the operation of the building, 

which is oftentimes unknown especially when considering speculative construction projects. 

In general, deterministic lighting schedules provide hourly relative lighting energy use 

intensity and distinguish between weekdays and weekend days for various space types.  In 

general, these schedules are meant to capture only energy use over that specific hour, and do not 

state any clear assumptions about operation within that hour.  For example, if the energy use 

intensity over a single hour is 90%, that could translate to all of the lighting activated for 90% of 

that hour, or 90% of the lighting activated for the full hour.  As such, directly estimating peak 

demand from these types of deterministic schedules requires the understanding that the type of 

data being presented is interpretable in various manners. 

Lightswitch-2002 Model 

The most commonly employed model for the manual operation of blinds and manual 

controls as it relates to lighting energy use was originally developed as the Lightswitch model 

(Newsham, Mahdavi, & Beausoleil-Morrison, 1995).  The Lightswich model provides a 

framework for modeling the impact of occupant actions on building systems in 5-minute 

increments for incorporation into DOE2-based simulations.   

Fundamentally, the Lightswitch model relies on stochastic occupancy modeling based on 

empirical data gathered in a group of private offices.  Arrival times were recorded based on 
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computer log-on information, temporary absences were recorded by walk-throughs, and 

departures were chosen based on the typical times of the end of work.  The data analysis 

involved determining action functions, which describe the probability of various actions, 

including arrival, temporary absence and departure, as a function of the time of day for private 

offices. 

The Lightswitch model was then applied to a lighting energy simulation that incorporated 

true occupancy sensors (Auto-On/Off), as opposed to vacancy sensors (Manual-On/Auto-Off), 

with a 10-minute delay time to evaluate the energy savings from the sensors.  At each 5-minute 

increment, it was determined if an occupancy event (arrival or departure) had occurred, and how 

long the space had been in the current occupancy ‘state.’ This allowed the examination of the 

impact of the dynamic occupancy scheduling on occupancy-based lighting controls to be 

compared to the results using a standard static hourly schedule. 

The Lightswitch-2002 model (Reinhart C. F., 2004) so far has represented the most 

advanced modeling algorithm for lighting energy in private offices.  This evolution of the 

original Lightswitch model continued on the foundation of stochastic occupancy modeling.  

However, instead of being limited to idealistic automated controls, the Lightswitch-2002 model 

expands to include a method for evaluating the impact of manual controls over lighting and 

blinds. 

The Lightswitch-2002 model requires inputs including the workplane daylight 

illuminance in 5-minute increments, and measured or simulated occupancy profiles in 5-minute 

increments.  At each time step, the algorithm processes the occupancy and blind data according 

to deterministic rules for automatic controls and probabilistic functions for manual controls.  

Within the process, the state of the blinds is first set, and then the associated manual or automatic 
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lighting control is set.  This allows for the lighting energy intensity in 5-minute increments to be 

established.   

The process of setting blinds within the Lightswitch-2002 model was established as either 

Automated or Manual.  Both blind conditions assumed venetian blinds that are lowered fully 

when the direct solar irradiance exceeds 50 W/m
2
.  The slat angle, restricted to three different 

angles, is set to avoid any direct solar.  The automated blind control was assumed to dynamically 

adjust throughout the day in response to solar availability.  The manual blind control was 

assumed to be re-opened only once per day, at initial arrival, and left closed once closed. 

For manual lighting control, two scenarios were incorporated to evaluate manual switch-

on behavior upon arrival, a uniform probability of 100% for a user that does not consider 

daylight, and a variable curve based on the work of Hunt (1979) for a user that does consider 

daylight, as shown in Figure 1.  These types of users can be considered Active and Passive.  The 

intermediate switch-on probability function used in the model, for Active users, was drawn from 

the work of Reinhart & Voss (2003), as shown in Figure 3.  Finally, the switch-off probability at 

departure was based on the work of Pigg et al. (1996) and Reinhart & Voss (2003), as shown in 

Figure 5, and was applied to both Active and Passive users. 

While the Lightswitch-2002 model represents a large advancement in the prediction of 

lighting energy usage, there are limitations to the model which make its extension challenging.  

First, the basic model relies on switching probability functions derived for private spaces where 

occupants spend significant time.  This limits the applicability of the model to private spaces, 

such as private offices, where occupants feel ‘ownership’ over the space.  Second, the granularity 

for blind control is low, assuming only fully-open and fully-closed positions and with closing 

decisions based not on interior illuminance or brightness, but on horizontal workplane irradiance.   
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The Lightswitch and subsequent Lightswitch-2002 models have been incorporated into 

other research and modeling efforts.  Bourgeois et al. (2004) incorporated the Lightswitch 

occupancy and control models into their framework for integrating high-resolution occupancy 

simulations into the larger framework of energy modeling.  Bourgeois et al. (2005) also 

incorporated the Lightswitch-2002 model into their study comparing the impact of incorporating 

manual control to reference cases where the occupancy and lighting use is static throughout the 

day. 

Occupancy-Based Controls Model 

Previous work examined the potential energy savings from occupancy-based lighting 

controls (Degelman, 2000) and (Degelman, 1999).  The author collected occupancy data streams 

from various space types in terms of occupancy status (occupied/not occupied) over time.  Those 

data streams were combined to determine the probability at each minute that an occupant would 

arrive, which was then used to drive a Monte-Carlo simulation.  Simple time-based analysis was 

performed based on various time-out periods to find the overall ‘ON’ time for the system.  This 

work is significant in that it provides a framework for the incorporation of time-related binary 

occupancy status data into a lighting energy savings calculation method based on automated 

controls.  The calculations assume a sensor that functions with Auto-On capabilities, so therefore 

the lighting is activated at every arrival independent of pre-arrival luminous conditions. 

Occupancy Models 

The need to understand the movement of building users within a space has become a 

more pressing issue as advanced buildings trend toward providing higher degrees of user control 

and operability.  Historically, building energy simulations have relied on typical occupancy 

profiles that give approximate levels of typical occupancy on an hourly basis.  While data at this 
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resolution level can be very useful in roughly assessing the impacts on building systems that 

function with significant inertia, like heating and cooling systems, addressing concepts such as 

lighting energy use, water demand, and plug loads has lead researchers to attempt to provide 

finer resolution on such data, and then to further explore movement by attempting simulation 

algorithms. 

Markov-Chains 

When considering the movement of people in a space in occupancy models, once the 

models have been expanded beyond deterministic schedules, the way in which the occupants 

move must be considered.  A common way of handling this type of modeling is to use a Markov-

chain analysis.  A Markov-chain is a mathematical analysis tool that mimics a discrete-time 

random process, such as the movement of occupants in a building.  At each time step, a space 

can be in various states of occupancy, and the state of occupancy during the next discrete time 

step is dependent only on the current state of occupancy, known as a first-order process.  When 

considering a single-occupant office, for example, there exist only two occupancy states: 

occupied and unoccupied.  During the next time step, the space may transition to occupied or 

unoccupied, and the likelihood of that transition is based only on the current occupancy state.  

An occupied office can either stay occupied or become unoccupied; conversely, an unoccupied 

office can either stay unoccupied or become occupied.  The likelihood of an occupied space 

remaining occupied, for example, is a state change probability.   

Stochastic Models 

A recent simulation method by Page et al. (2008) provides the framework and validation 

for an occupancy model.  The model was developed and validated for an office building, using 

data from the LESO-EB building in Switzerland.  The model employs a Markov chain-based 
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analysis method and relies on stochastic decision making, as opposed to the traditional 

deterministic decision making models used in previous works (refer to Page et al. 2008 for a 

summary of previous occupancy simulation methods and their shortcomings).   

To develop the model, Page et al. created a framework for analyzing the probability of an 

occupant arriving, leaving or exhibiting short periods of absence from actual occupancy data, 

which was collected using binary occupancy sensors and therefore provides no information 

regarding the absolute level of occupancy.  These probabilities were then incorporated into a 

Markov-chain model, which also included information regarding the probability of long term 

absences, such as vacations, thereby providing another distinguishing feature beyond other 

occupancy models. 

The model is executed in the Matlab technical computing environment.  To establish the 

model’s parameters, the authors gathered occupied/not-occupied status information for various 

spaces throughout the building.  These data sets were then combined to create presence 

probability profiles, which state the probability that an individual space is occupied in 15-minute 

increments.  For actual execution of the model, the authors created twenty distinct weekly 

presence probability profiles, each in 15-minute increments.  At the execution of each week of 

the annual simulation, one of the twenty presence probability profiles is randomly selected.  The 

model assumes a first-order Markov process, where the current state of occupancy is dependant 

only on the immediately-previous state of occupancy, as shown in Equation 1:  

 (                            )   (           )      ( ) Eq. 1 

where Xt is the state of presence (occupied or unoccupied) at time step t, and i, j, and k are state 

indicators where 0 represents unoccupied and 1 represents occupied.  Tij is the state transition 

probability, which in this case of binary states, includes four options: T00 which is the probability 
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of an occupied space remaining unoccupied, T01, which is the probability of an unoccupied space 

becoming occupied, T10 is the probability of an occupied space becoming unoccupied and T11 is 

the probability of an occupied space remaining occupied.  It is also convenient to note that with 

this simple first-order inhomogeneous Markov-chain process, the only two possibilities for an 

unoccupied space is to either remain unoccupied (T00) or become occupied (T01).  Likewise, the 

only two possibilities for an occupied space is to remain occupied (T11) or become unoccupied 

(T10).  Mathematically, then, this can be represented in Equations 2 and 3: 

                 Eq. 2 

                 Eq. 3 

This is considered a first-order inhomogeneous Markov process since the current 

occupancy state is based only on the previous occupancy state, hence “first-order”, and where the 

state transition probabilities vary at each time step, hence “inhomogeneous.”  While the use of 

this first-order inhomogeneous Markov process is based solely on the transition probabilities, the 

authors included what is referred to as mobility parameter, , to account for the inherent 

variations in human behavior.  This mobility parameter is, at each time step, defined as the ratio 

of a change of state presence to that of no change. Mathematically, the mobility parameter used 

in this model is described by Equation 4: 

  
   ( )    ( )

   ( )    ( )
     Eq. 4 

When used in the model, the mobility parameter is selected as a static value which was 

determined from the actual data, but selected randomly to apply to the full data set.  A series of 

twenty mobility parameters were calculated by the algorithm’s authors based on the actual 

observed state transition probabilities and are presented on a full-week basis in 15-minute 

increments as well.  However, when actually employed in the algorithm, the average value of 
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one of the twenty profiles is selected and used, instead of varying the mobility parameter in 15-

minute increments throughout the year.   

Incorporating the mobility parameter, the two main state transition probabilities are 

determined as shown in Equations 5 and 6: 

   ( )  
   

   
 ( )   (   )    Eq. 5 

    ( )  
 ( )  

 ( )
[
   

   
 ( )   (   )]  

 (   )

 ( )
   Eq. 6 

where P(t) is the probability of presence at the current time step and P(t+1) is the probability of 

presence at the next time step.  The remaining two state transition probabilities are determined 

using the reciprocity illustrated previously. 

To execute the model, the state transition probabilities are determined at each unique time 

step.  A process known as Inverse Function Modeling (IFM) is used to evaluate the actual action.  

The IFM process essentially relies on the selection of a uniform random number between 0 and 

1, and evaluates that variable against the cumulative distribution function (CDF) of the desired 

variable to determine whether or not an action has taken place.  For example, if the state 

transition probability was determined to be 47%, and the uniform random number generator 

resulted in any number of 0.47 or lower, than the state transition is determined to occur.  If the 

uniform random number generator resulted in any number above 0.47, the state transition is 

determined to have not occurred.  Note, though, that the state transitions can refer to no change 

in occupancy or a change in occupancy, depending on the variable. 

At the beginning of each simulated day, the probably of the occupant exhibiting a period 

of long-term absence is first assessed.  This is done using a probability distribution function that 

remains static throughout the year and is assessed using the same IFM process described above.  

If the occupant is found to be on a long-term absence, they are assumed absent for the full day.  
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Otherwise, if they are found not to be in a period of long-term absence, the daily profile is 

determined. 

Execution of the model requires the input of the number of individual zones, which are 

assumed to be single-occupancy, thus modeling the rates of occupancy for individuals.  

Additionally, the model requires the input of the simulation year.  The simulation output 

provides a text file which gives occupancy status, 0 for unoccupied or 1 for occupied, in 15-

minute intervals for an entire year.  The model code provided also has built-in functions to 

provide information histograms reporting occupancy rates, and can additionally simulate 

multiple buildings, though none of those features were used for this work. 

An example of a single occupant pattern is shown below in Figure 14.  As shown in this 

single week, the occupant took a consistent lunch break on three of the five weekdays.  On 

Monday, the occupant was only in during the morning hours, and on Tuesday the occupant spent 

much more time in their space.  There was no occupancy on Saturday or Sunday. 

 

Figure 14: Single week occupancy pattern of a single occupant resulting from the Page et 

al. model, where 1 indicates that the office is occupied, and 0 unoccupied. 
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Combined Occupancy and Lighting Models 

Previous research in the European community (Richardson, Thomson, & Infield, 2008) 

has integrated this type of stochastic occupant-based simulation into energy predictions for the 

residential sector.  This modeling effort was based on simulated occupancy using a first order 

inhomogeneous Markov-chain simulation which accounted for variations between weekdays and 

weekends, and which was derived from self-reported data from the test subjects.  This research 

provided the most robust capability for modeling time-based occupancy in a residential setting to 

date due to its inclusion of non-deterministic occupancy patterns.  Another European research 

effort (Widen, Nilsson, & Wackelgard, 2009) combined Markov-chain simulations of occupancy 

patterns with stochastic predictions of lighting controls usage, incorporating the impact of 

daylighting, for residential environments.  The goal of that effort was to understand the potential 

for the integration of photovoltaic (PV) systems into the residential power grid, since the 

availability of electricity from PV is typically not concurrent with the demand for lighting 

energy. 

On the commercial building side, it has been shown that including the impact of occupant 

controls actually serves to reduce the potential savings for daylight-responsive electric lighting 

controls (Parys, Saelens, & Hens, 2009).  Without the inclusion of occupant interaction, 

daylighting controls are often assumed to operate ideally, resulting in the maximum lighting 

energy savings.  However, introducing the stochastic, or more precisely, imperfect, behavior of 

humans results in a reduction of expected savings.  This finding is key when considering a priori 

cost-benefit analysis for lighting controls projects and for utility-level analysis of the 

appropriateness of incentives and system rebates. 
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More recent work (Mahdavi & Proglhof, 2009) focused on occupant interactions with 

controls in office settings, and found that, in general, it is very difficult to predict occupant 

interaction on a person-by-person level, but that on a building-wide or system-wide level, 

correlation could be found between energy use and environmental factors.  Collected over 

multiple buildings with various daylight availability (including orientations), interior 

configurations and uses, the authors examined occupancy and lighting energy use profiles, and 

determined switching potentials for lighting controls, documenting the stochastic nature of the 

user/control relationship.   

Another recent research effort in Europe (Saelens, Parys, & Baetens, 2011) introduced 

occupant modeling into commercial building energy simulations.  This effort employed a 

Markov-chain lighting controls algorithm that was derived for private office spaces in the 

Lightswitch-2002 model (Reinhart C. , 2004).  Additionally, the authors expanded the 

capabilities of blind control modeling from the Lightswitch-2002 model to include additional 

definitions of user types as they relate to blind controls.  This model was then used to compare 

the energy performance of a thermally-activated building system (TABS) to a conventional 

cooling system, accounting for user interaction.  For this situation with high system inertia, it 

was found that the overall occupancy rate had the largest influence on energy performance and 

that the intermediate arrivals and departures were less impactful.  However, for systems like 

lighting that have the potential for large instantaneous changes, intermediate occupancy changes 

were more impactful.    

Finally, Haldi & Robinson (2010) investigated the use of stochastic simulations to 

evaluate building energy use accounting for user interactions with shading devices and indoor 

temperature controls.  They concluded that the recommendations that result from simulations 
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that include occupant behavior predicted in a stochastic manner are much more robust than 

recommendations that result from deterministic scheduling, which were “wholly 

unrepresentative of reality.”   
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METHODOLOGY 

The goal of this research effort was threefold.  First, the use of the Page occupancy model 

as an input to a modified version of the Lightswitch-2002 model was studied to determine the 

impact of the various parameters on the resultant energy use and to explore the ability of the 

model to simulate data found from an actual sub-metered building.  Second, limitations of the 

models were explored and additional model parameters were evaluated.  Finally, 

recommendations for large-scale occupancy-related data collection efforts were provided to 

assist with ongoing research goals to transition to a true energy baseline in various lighting 

energy codes.  This overall process was designed to answer the question: How do we begin to 

include a performance-based lighting energy analysis approach that incorporates natural human 

variation to support a transition to lighting energy as the basis for regulation? 

In support of the first goal, the Lightswitch-2002 model was examined with regards to its 

limitations.  Currently, the model is limited to private offices, as the probabilistic switching 

functions are derived, in general, from studies of private offices.  This behavior is not likely to be 

directly extendable to spaces that function differently, where occupants do not necessarily feel 

‘ownership’ over their lighting controls or blinds.  Therefore, it was a necessity for this effort to 

group various spaces by the likely level of ‘ownership’ and occupancy duration, and decision-

making algorithms were adjusted to analyze this impact. 

Though further developments with regard to manual blind operation have been published, 

the simple deterministic model used in the original Lightswtich-2002 model was used for this 

research effort.  The development of that model (Haldi & Robinson, Adaptive actions on shading 

devices in response to local visual stimuli, 2010) was based on the private office paradigm as 

well, but was also tied directly to the type of shading devices (button-controlled shades) and 
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window configuration (upper/lower windows).  The method in which the action probabilities are 

determined using their algorithm is through the use of empirically-based coefficients that 

incorporate the previous blind status, interior illuminance, and exterior illuminance.  Performing 

a sensitivity analysis on those coefficients is not logical since modification of the simple 

coefficients is not justified without availability of additional data sets.  Unlike the Page model, 

the Haldi & Robinson blind model does not have a free variable to assess as a part of the 

sensitivity analysis.  Instead, recommendations for future data collection efforts in this area 

needed to focus on a complete secondary project, similar to the data collection effort required to 

gather empirical occupancy data to extend the Page model, to evaluate the response of occupants 

to the same parameters in different space types, in different locations, and with different types of 

shading and window configuration, though that added effort level may be beyond any currently 

budgeted project. 

The way in which the dampening coefficients were mathematically applied to the action 

probability varied based on the exact parameter being modified. For ‘switch-on’ actions, the 

identified “Active” user action curve was assumed to represent the highest degree of control.  

The dampening coefficient, therefore, increased the likelihood of a ‘switch-on’ event at each 

illuminance level until the distribution reaches that of the “Passive” user which does not consider 

daylight.  For both of the intermediate action curves, the dampening coefficient served to reduce 

the probability of an intermediate action to zero at all conditions at its highest value.  For the 

‘switch-off’ actions, the dampening coefficient will also be used to reduce the probability of 

action to zero for all time durations.   

The input parameters of the combined Lightswitch/Page model were then analyzed based 

on a sensitivity analysis assessing the Sensitivity Index, Si, and Total Index, ST, of each variable 
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to determine their contributions to the overall variance of the model (Saltelli, Tarantola, 

Campolongo, & Ratto, 2004).  This included examining the input parameters with regard to 

action probabilities, including the dampening coefficients used to assess the impact of various 

levels of “ownership,” as well as the mobility parameter from the Page occupancy model.  This 

method of sensitivity analysis allowed for two important pieces of information to be determined.  

The Si determined for each free variable describes the sensitivity of the model to only that 

variable, ignoring the effect of variable interactions.  The Sensitivity Index is useful to assess 

whether or not the model is additive, where the total variance of the model can be directly 

accounted for by individual variables without subsequent interaction.  The Total Sensitivity 

Index determined for each free variable describes the sensitivity of the model to that variable and 

its interaction with the other free variables.  The Total Sensitivity Index allows for a percentage 

of the total variance of the model to be assigned to each individual variable.  

The two combined models, Page and Lightswitch, were then used to evaluate their ability 

to predict lighting energy use by comparing the results of the simulation to a set of sub-metered 

lighting energy data from an office building in Minnesota.  Based on this analysis, the 

appropriateness of the models and their ability to accurately capture the lighting energy use in 

the building was evaluated.  This included the ability of the model to match the annual energy 

use, hourly energy use and hourly peak demand. 

The results of these first efforts allowed the model to be evaluated against empirical data.  

During this evaluation, the shortcomings of the overall model were identified and additional 

model variations to overcome those shortcomings were proposed and evaluated. 

This overall analysis process provided results which can be used to inform future efforts 

of data collection in an effort to provide a more complete modeling capability that includes all 
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interior space types that are regulated under building energy codes.  The final phase of this work 

involved constructing a series of recommendations for future data collection that will allow those 

efforts to be concisely focused on providing useful data.  Since the data collection efforts will be 

cost constrained, it is important to maximize their effectiveness, so guidelines are presented for 

maximizing the efficiency of those future efforts based on the identification of the important and 

unimportant input parameters.    

 



 

43 

INITIAL MODELING 

The initial modeling phase included the alteration of the two models, Page et al. (2008) 

and Lightswitch-2002 (Reinhart C. F., 2004), and three methods of analyzing their performance, 

a comparison to deterministic schedule-based modeling, the sensitivity analysis and the 

validation effort. 

Manual Control Algorithm 

The base manual control algorithm used for this effort was the Lightswitch-2002 mode 

(Reinhart C. F., 2004)l.  This model is well established in the simulation industry, as 

demonstrated through its continued incorporation into multiple simulation programs, such as 

ESP-r  (Bourgeois, Hand, Macdonald, & Reinhart, 2004), and other research efforts such as 

those by Bourgeois, Reinhart & Macdonald (2005).  This algorithm provided that necessary 

individual variation which was a goal of this research effort, but did so in an established method.  

However, due to the shortcomings identified, a few modifications were made to that base 

algorithm, which are discussed below.  

Base Assumptions 

In general, the base assumptions included in the Lightswitch-2002 model applied to this 

modified version.  It was assumed that offices were single occupancy.  It was also assumed that 

the “Active” and “Passive” user types existing, however additional users were included as 

described below.  

Additionally, the simple blind control model from the Lightswitch-2002 model was used 

with minor modifications.  This model assumes a binary blind condition: either fully open or 

fully closed.  At the beginning of each day, the blinds are reset to the open position regardless of 
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their position at the end of the previous day.  Additionally, the blind-closing threshold was 

updated to align with the Useful Daylight Illuminance (UDI) metric, and thus the blinds were 

closed when the workplane illuminance exceeded 2,000 fc. 

Addition of Intermediate Switch-Off Actions 

The base Lightswitch-2002 model included intermediate switch-on actions, where the 

lighting was activated while the space was already occupied, typically due to a change in 

daylight availability.  However, the base model neglected to include intermediate switch-off 

actions because of the observed variability of these actions.  However, it is intuitive that typical 

occupant behavior would likely include intermediate switch-off actions, though at a rather low 

occurrence.  Fortunately, additional data sets examining exactly this type of action are available 

from other studies (Lindelof & Nicolas, 2006) and were incorporated into this effort. 

Alteration of Intermediate Switch-On Action Basis 

The base Lightswitch-2002 model relied on the intermediate switch-on action probability 

as determined in the work of Reinhart & Voss (2003).  However, the step-function applied to 

these results provides a poor curve-fit, and appears to have been forced based on the author’s 

assumption of the general characteristic of this type of behavior.  Discussion with one of the 

authors confirmed the suspicion that the curve fit for this action was very poor.  Based on that 

author’s recommendations, the intermediate switch-on action curve was changed to the results 

from the Lindelof & Nicolas (2006) work. 

Time-Series Adjustment for Probabilistic Actions 

It is important to note that the reported action probabilities for the various lighting 

actions, such as switch-on at arrival or intermediate switch-on, are derived from time-series data.  

However, for the most part, the time step used to determine the action probabilities was not the 
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15-minute time interval that was the basis for the occupancy algorithm and thus the desired basis 

for the lighting action algorithm. 

To correct this, the reported action probabilities were adjusted to account for the 

difference in time intervals.  This was accomplished by assuming a continuous time-to-event 

problem assuming a survival function.  In this case, the hazard function was assumed to be 

constant, and thus the survival function was a decaying exponential.  The transformation was 

accomplished using Equation 7: 

       (
  

 
   (    ))     Eq. 7 

where p is the event probability after the time step transformation, T1 is the original time step, T 

is the desired time step, and p1 is the original probability.  Using this method, the individual 

action probabilities were adjusted to align with 15-minute time increments.

Addition of Dampening Coefficients 

The base Lightswitch-2002 model included two user types as defined previously: an 

“Active” user who takes daylighting into account and may be more aware of their lighting 

energy use leading to variations in the switching action probabilities; and a “Passive” user who 

essentially does not take any ambient lighting conditions into account and whose switching 

actions are based solely on arrival and departure events.  In general, these were assumed to be 

the extremes of behavior.  

For this effort, it was desirable to include a gradation of user types to explore whether 

modeling with only two distinct populations is sufficient to account for various user types.  This 

was achieved through the use of dampening coefficients.  Based on the known switching action 

probabilities, the “Active” user was assumed to have a dampening coefficient of 0; essentially, 

their behavior is assumed to be as energy-aggressive as possible.  The “Passive” user was 
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assumed to have a dampening coefficient of 1; essentially their interaction with the daylighting 

was dampened until it became nonexistent.   

Dampening coefficients were then applied linearly at each triggering value, illuminance 

or time, to provide a gradation of user behavior.  This gradation can be interpreted as an attempt 

to model users of varying degrees of daylight sensitivity.  They may, for example, account for 

users with visual disabilities or of older populations, who are energy aggressive but require 

higher general light levels than the assumed “Active” user.   

The dampening coefficients were then applied to each of the four action curves to create 

a spectrum of users.  When actually employed in the model, the dampening coefficients were 

structured to be infinitely variable between 0 and 1, allowing for fine tuning of user types.  

Figure 15 through Figure 18 illustrate the incorporated adjusted action probability curves along 

with the dampening coefficients. 

 

Figure 15: Probability distribution function for switch-on at arrival as a function of 

average workplane illuminance including dampening coefficients. 
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As shown in Figure 15, for the probability of switch-on at arrival, a dampening 

coefficient of 1 results in the “Passive” user definition, which is interpreted as a user who 

activates their lighting upon arrival independent of the workplane illuminance, thus the constant 

p = 1.  The dampening coefficient of 0 follows the transformed function of an “Active” user.  

The dampening coefficients were created using linear interpolation at each illuminance level 

between dampening coefficients, though when actually employed, the dampening coefficients 

are infinitely variable. 

 

Figure 16: Probability distribution function for intermediate switch-on as a function of 

workplane illuminance including dampening coefficients. 
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respect to increasing workplane illuminance.  In this case, the dampening coefficient of 0 

represents the “Active” user who is most responsive to ambient daylight conditions.  Likewise, a 

dampening coefficient of 1 represents a “Passive” user who does not engage in any intermediate 

switch-on actions.  As shown though, even at the lowest illuminance level, the probability of an 

intermediate switch-on action was only around 12%.  Above approximately 50 fc, which would 

be considered the high-end of interior office lighting recommendations, the probability of an 

intermediate switch-on action drops below 5%. 

 

Figure 17: Probability distribution function for intermediate switch-off action as a function 

of workplane illuminance including dampening coefficients. 
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switch-off action is reduced to zero as the average horizontal workplane illuminance is also 

decreased.  Once the workplane illuminance reaches an excess of 1,250 fc, the probability of a 

switch-off action equals unity.   

It should be noted that the illuminance scale for intermediate switch-off actions is shifted 

significantly higher than for intermediate switch-on actions.  Essentially, at typical interior light 

levels of 250 fc and below, the probability of an intermediate switch-off action is less than 30% 

even for the most active user.  These curves were only extended to 2,000 fc assuming that the 

model was adjusted to include blind controls based on the UDI range, which would set a 

maximum cap here of 2,000 fc before the blinds are drawn and the sole source is the electric 

lighting. 

 

Figure 18: Probability distribution function for switch-off at departure as a function of 

expected duration of absence including dampening coefficients. 

Figure 18 illustrates the adjusted probability of switch-off at departure as a function of 

the duration of the expected absence.  As shown, as the expected absence approaches a full day 
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(24 hours), the probability of a switch-off at departure by an active user approaches unity.  The 

impacts of the dampening coefficients are shown, but it is important to understand their 

applicability and limitations. For the sensitivity analysis, it was important to evaluate the 

sensitivity of the overall model combination to the probability of a switch-off at departure, so the 

ability to control dampening coefficients was included.  However, when tuning the model during 

the validation efforts, the dampening coefficients for this action probability curve were typically 

left equal to zero.  Essentially, the dampening coefficients were meant to capture the variability 

of behavior with respect to daylight availability.  Since the independent variable here is duration 

of expected absence, the inclusion of the dampening coefficients did not work toward exploring 

the impact of daylight-responsive behavior.  Therefore, the dampening coefficients were not 

strongly employed during the validation efforts. 

Automated Control Algorithm 

To construct as feature-rich a model as possible, it was important that the model include the 

integration of automated controls behavior.  The ability to simulate both automated occupancy-

based and automated time-based controls were included. 

Time-based Controls 

The most simple of the automated controls are time-based.  For this modeling effort, time 

was counted in 15-minute increments, so it was assumed the same granularity applied to the 

controls operation.  Therefore, simulations involving time steps other than 15 minutes for 

lighting controls were not possible. 

The ability to integrate time-based automated controls along with manual controls was 

also extremely important.  Many automated lighting system controls rely on what are known as 

“vacancy sensors,” or manual-on occupancy sensors.  Vacancy sensors require the user to 
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activate the lighting, but then extinguish the lighting after a certain pre-set time period of 

inactivity is detected.  Therefore, the simultaneous integration of manual and automated controls 

was very important. 

Occupancy-based Controls 

Occupancy-based controls tie directly into occupancy patterns.  Typical occupancy 

sensors will activate the lighting when an occupant is sensed, and extinguish the lighting after a 

certain pre-set time period of inactivity is detected.  To make the modeling capability as feature-

rich as possible, the models were constructed to have the ability to model these types of 

automated controls, though they are less typical in the market than vacancy sensors. 

Daylighting Controls 

It was a desire to integrate automated daylight-responsive switching and dimming into 

this effort.  However, after further exploration, providing that capability was beyond the scope of 

this project but should be considered highly important in future advancements.  As noted in the 

actual simulation code provided, the inputs were structured to include the possibility for 

automated daylight dimming and switching, though no actual functionality was included. 

Occupancy Algorithm 

The occupancy algorithm used for this process was the base Page algorithm described in 

detail above.  This algorithm was adjusted to simply feed annual binary occupancy pattern data 

streams into the modified Lightswitch-2002 model for analysis.  The occupancy model was 

executed in one of two ways depending on the goal of the analysis. 

First, the occupancy algorithm was structured to allow it to rely on the built-in 

randomized selection of one of twenty mobility parameters.  Second, the model was modified to 

allow the mobility parameter to be controlled as a “free variable.”  This allowed the impact of the 
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mobility parameter to be explored during the sensitivity analysis to quantify the contribution of 

the mobility parameter to the variance of the overall model contribution.  However, the authors 

of the occupancy model indicate that the mobility parameter should be set values, so exploring 

what those values were and how they influence the model results was also of interest. 

Model Flow and Environment 

The overall model combination was designed and executed in the Matlab technical 

computing language.  The Page occupancy model was received in this format by one of the 

authors.  The modified Lightswitch model was also created in Matlab.  Full code is included in 

Appendix A. 

Speaking generally, the model input values include: 

 Year (e.g. 2011); 

 Number of zones (or people); 

 Target illuminance in lux; 

 Installed lighting power density in W/sf; 

 Control system type: 

o 1 = Manual On/Manual Off, No Daylighting 

o  2 = Manual On/Auto Off, No Daylighting 

o 3 = Auto On/Auto Off, No Daylighting 

o 4 = Manual On/Manual Off, With Daylight Dimming 

o 5 = Manual On/Auto Off, With Daylight Dimming 

o 6 = Auto On/Auto Off, With Daylight Dimming 

o 7 = Manual On/Manual Off, With Daylight Bi-Level Switching 
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o 8 = Manual On/Auto Off, with Daylight Bi-Level Switching 

o 9 = Auto On/Auto Off, with Daylight Bi-Level Switching 

o 10 = Bi-level (50% Auto On, 50% Manual On/All Auto Off, No Daylight 

 Delay time for occupancy or vacancy sensor in 15-minute increments; and 

 Blind control type where: 

o 1 = fully manual open/closed 

o 2 = fully automated ideal control. 

The execution begins with the occupancy model for all occupants, so for example if 20 

offices were simulated than those 20 occupancy profiles were generated first.  The modified 

Lightswitch model was then called and each individual occupancy time series fed through that 

second model to calculate annual lighting energy use.   
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Figure 19: Flowchart illustrating combined occupancy and lighting controls model. 

Dampening coefficients for each user were loaded as text files, allowing each occupant to 

be assigned their own set of dampening coefficients to model the possible array of users across 

offices.  Additionally, horizontal workplane illuminance values from the daylighting simulation 

were loaded as a text file, with the ability to provide different patterns for each room to allow the 

simulation of building diversity. 

Subject Building Information 

To conduct this analysis, an actual office building was selected in near Minneapolis/St. 

Paul, Minnesota.  This building was designed with advanced green building strategies, including 
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indoor air quality (IAQ) monitoring, geothermal heat exchange, and thermal energy storage.  The 

lighting design consisted of high-efficiency luminaires, coupled with advanced controls, and 

designed with a lighting power density lower than that required by the applicable energy code 

(ANSI/ASHRAE/IESNA, Standard 90.1-2004).  Table 1 includes a breakdown of the various 

space types within the building. 

Table 1: Breakdown of various space types within the subject building. 

Space Type Area, [sf] 

Private office 14,800 

Open office 12,000 

Conference 5,100 

Corridor 9,100 

Lobby 800 

Storage 3,000 

Mech/Elec 1,000 

Restroom 1,300 

Data center 600 

Dining 2,800 

Locker Room/Shower 700 

Fitness Room 1,100 

TOTAL 52,300 

 

This building was designed to comply with ANSI/ASHRAE/IESNA Standard 90.1-2004.  

Under that code, the allowable lighting power densities using the space-by-space method is 1.1 

W/sf for the private, or enclosed, offices.  Using the space-by-space method, the overall building 

allowable lighting power is 52,950 W, or 1.012 W/sf.  The minimum control requirements for 

the private office spaces include the provision for at least one automatic control device that 

extinguishes the lighting within 30 minutes of the space becoming unoccupied, where that 

control device can be activated either manually or automatically based on presence.  No 

daylight-responsive controls were required. 
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In this sample building, the actual installed lighting power density in the private offices 

was only 0.87 W/sf, a 21% reduction over the code-maximum allowed.  The installed lighting 

power in the whole buiding is approximately 52.3 kW, or 1.0 W/sf, which is high due to high 

energy use in non-office spaces.  Additionally, the actual installed lighting control system in the 

private offices is slightly more advanced.  In each space, the lighting is controlled via 

occupancy-based bi-level lighting controls.  Essentially, 50% of the installed wattage is 

controlled using an occupancy sensor that automatically activates the lighting when the space 

becomes occupied.  The remaining 50% is controlled using a vacancy sensor that requires 

manual activation.  All of the installed wattage is extinguished after the space becomes 

unoccupied for 15 minutes.  No daylight-responsive controls were installed, and manual blinds 

were used to allow occupant control over the daylighting. 

In total, there were 74 private offices in this building and all have access to daylight and 

are approximately the same shape and size.  Half of the offices were assumed to be North-facing 

and half South-facing.   
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Figure 20: Floor plan and elevation of window wall of typical private office. 

Data Filtering 

Lighting energy within this building is sub-metered with ongoing power consumption 

reported on a website dashboard that allows users to view the effectiveness of any energy saving 

measure.  For this analysis, the lighting energy data in one-hour increments was downloaded 

from the website, and spans a date range of 11/30/2008 to 6/21/2011. 

The data available is for the full-building lighting, excluding the exterior lighting system, 

and only includes hard-wired lighting loads.  There was no quality control of the measured data.  

This information was used directly for comparison to the results of the deterministic schedule 
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analysis for the whole-building.  To use the data for evaluation of private office lighting energy 

use, as was performed with both the deterministic and stochastic models, the data was filtered 

down to approximate the lighting energy use in only the offices.  To perform this filtering, it was 

assumed that the portion of the lighting energy consumed at each time that was attributable to the 

private offices was of the same proportion as the installed lighting power in those offices to that 

of the entire building.  Therefore, the hourly data was filtered down at each time step using this 

approximation. 

While the actual lighting data is only directly comparable to the deterministic whole-

building simulations, it also provides interesting insight into the operational profile.  Therefore, 

the strongest comparison with this data is made to the whole building simulations.  While this 

distillation process assumes that all spaces within the building are functioning essentially on the 

same type of occupancy profile, which is not likely to be exact, the overall pattern of occupancy, 

and thus energy use, is interesting to compare to the assumed patterns of the advanced 

simulations and deterministic schedules.  However, there is a precedent for this type of 

reductionary estimation in energy modeling where known aggregates of building occupancy data 

are applied in simulation to specific space types; for example, a known office building 

occupancy pattern based on aggregated data is applied to individual heating and cooling zones, 

assuming that their occupancy patterns directly mimic that of the overall building.  While this 

does not necessarily justify the inaccuracy, it stands to reason that the same logic can be applied 

to this effort with the same caveats. 

Daylighting Model 

A daylighting model was constructed using AGI32 software, a CIE-validated industry 

standard lighting calculation software.  AGI32 employs the radiosity method of interior 
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illuminance calculation, and includes the option for adaptive subdivision as a standard for 

daylighting calculations.  Two rooms were constructed, one with its window facing North and 

one facing South.  Both rooms were built assuming standard floor and ceiling reflectances (30%, 

80%).  The walls were assumed to have a reflectance slightingly higher than standard (70%) 

based on known information about the building.  Horizontal illuminance points were located at 

the general desk area, were 2.5’ above finished floor (AFF), and spaced 2’ in both directions.  

The model coordinates were set for Avon, Minnesota (45.5°N, 94.5°W).  It was assumed that 

there were no external shading devices.  Windows were modeled to be transparent daylight 

transmission glass with a 50% visible light transmittance (VLT). 

Refer to “Daylighting Calculation Assumption Exploration” below for more detailed 

information on the process for determining the available daylighting.  For the convergence 

testing and sensitivity analysis, both where only a single user/room is simulated, it was assumed 

the space was South-facing.  The Southern exposure results in the highest range of illuminances 

on the workplane, thus testing the more extreme use of the model. 

Model Convergence 

The first test performed on the entire model system was to test for model convergence on 

total annual energy use.  The stochastic nature of both the occupancy and lighting controls 

models creates inherent, and desirable, variability in the model output.  However, if the model 

values are to be useful, it is critical that the number of simulations necessary to reach a 

meaningful value be determined.  This was executed first for only the occupancy model, 

assessing the mean annual predicted occupied hours.  This process was then executed for the 

combined occupancy and lighting controls model to determine the number of simulations 

necessary to reach convergence on a total annual energy use. 
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Sensitivity Analysis 

In order to begin to understand the sensitivity of the overall model combination to the 

various free parameters, a series of simulations were performed to the found convergence limit N 

where each of the five free variables was randomly varied.  Scatterplots were created to review if 

any general trends were observable.  To generate the scatterplot data, the simulation was 

executed assuming the full five possible free parameters, the four lighting action dampening 

coefficients and the mobility parameter.  This analysis was performed using both the Reinhart 

and Lindelof intermediate switch-on action curves. 

The Sensitivity Index of each parameter was first determined.  The Sensitivity Index 

determines the fraction of the total variance of the model that is directly attributable to first-order 

effects of each variable, as shown in Equation 8: 

   
    ( )

   ( )
      Eq. 8 

where Si is the sensitivity index of parameter i, VARi(Y) is the variance of the model Y due to 

variations in parameter i, and VAR(Y) is the total variance of the model output Y. 

To determine the Total Sensitivity Index of each free variable, the variance-based method 

published by Saltelli et al. (2010) was used.  This method employs a Sobol’ quasi-random 

sequence to vary the input parameters in the range [0,1], which uses a winding design to 

maximize computational economy.  The Sobol’s sequence is useful in that, unlike truly random 

number generators, the Sobol sequence uniformly covers the available number space for each 

input parameter in the range [0,1].  The analysis requires N*(k+1) simulations, where N is the 

number of simulations needed to reach convergence and k is the number of free parameters.  For 

each iteration, k+2 individual simulations are performed, with the input values of the free 

variables based on the Sobol’ sequence.  The first value is labeled as vector yA and the second 
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value is labeled as vector yb.  The last k values are used to construct vector yAb.  y4var is then 

created as a vector containing yA and yb.  Individual first-order variances Vi and higher-order 

variances VT are then determined using Equations 9 and 10 respectively: 

     (   ( )    )               Eq. 9      

   (      ( ))
                              Eq. 10 

Next, the total model variance Vtot was determined as the variance of the vector y4var.  Finally, 

the Sensitivity Index and Total Effect Index are calculated using Equations 11 and 12: 

       (  )           Eq. 11 

       (  ) (     )     Eq. 12 

The combined occupancy/lighting actions model was then evaluated using this detailed 

sensitivity analysis.  This analysis involved determining the sensitivity index, Si, and total effect 

index, ST, for each “free” variable.  In the first case, all five possible free variables were the four 

dampening coefficients assigned to the lighting action probability curves and the occupancy 

mobility parameter.  Again, this was also performed separately for the models incorporating the 

Reinhart and Lindelof intermediate switch-on action curves.  Assessing the sensitivity of the 

overall model results to these dampening coefficients in effect estimates the impact of the type of 

user and their unique behavior on the overall model results.   

For the second case, the mobility parameter values were fixed at pre-determined and 

important values to allow the sensitivity of the overall model to the action probabilities to be 

determined without including the influence of randomly-selected mobility parameters.  In effect, 

this second case provided more detailed analysis of only the lighting action curves and allows 

comparison between the results of the impact of known pre-set mobility parameter values. 
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Comparison to Deterministic Scheduling 

To evaluate the stochastic advanced models against the more standard, common and 

simple deterministic models, a simple comparison was performed, and was focused in two parts. 

Whole-Building Evaluation 

The first step was comparing the estimated lighting energy use, peak demand, and 

consumption profiles predicted through the use of deterministic scheduling to the whole-building 

unfiltered sub-metered lighting energy data.  This analysis was performed both with a known 

energy-saving lighting power density, and with the default value allowed under the applicable 

energy code, ASHRAE/IESNA Standard 90.1-2004 (2004).  Table 2 provides the full description 

of these seven simulation sets, illustrating the pairing of the lighting power densities with the 

schedule source.     

Table 2: Description of simulation parameters for deterministic whole-building models. 

Schedule 

Source 
ACM DOE-2 

Business 

Hours 

LPD Source Actual 90.1 Actual 90.1 Actual 90.1 

Total LPD, 

[W/sf] 
1.00 1.01 1.00 1.01 1.00 1.01 

 

For this analysis, total annual energy consumption and peak demand were estimated 

using the applicable schedules for the subject building and compared to the results of the sub-

metered data from that building. 

Private Office Only Evaluation 

Considering only the private offices, an analysis was then performed to assess the 

predicted annual energy use and peak demand through using both the deterministic schedules 

and the stochastic occupancy/lighting controls model, which applies only to private offices.  
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These results were compared to the sub-metered lighting energy data, which was filtered as 

described above to estimate the annual energy use and peak demand from only the 74 private 

offices.  This again was performed using both the known installed lighting power density in the 

space and the maximum allowable under the applicable energy code.  Table 3 illustrates these 

pairings, where the “AS” indicates the advanced stochastic simulations. 

Table 3: Description of simulation parameters for deterministic and stochastic office-only 

modeling. 

Schedule 

Source 
AS1 AS2 AS3 AS4 AS5 AS6 ACM DOE-2 

Business 

Hours 

LPD 

Source 
Actual Actual 90.1 Actual 90.1 Actual 90.1 

LPD, 

[W/sf] 
0.87 0.87 1.1 0.87 1.1 0.87 1.1 

 

For the six stochastic simulations, the dampening coefficients for the private offices were 

carefully selected to explore the direct impact of them individually and to understand potential 

equalities of settings.  Table 4 shows those various settings.  As noted previously, an “Active” 

user is assumed to have a dampening coefficient (DC) equal to zero for all action curves.  A 

“Passive” user is assumed to have a DC equal to one for all action curves.  Additionally, for this 

analysis, the standard “Active” action probability curve for switch-off at departure was used for 

all scenarios, including the “Passive” user definition.  The main reason for limiting the use of the 

dampening coefficients to apply only to the other three action curves, switch-on at arrival and the 

two intermediate action curves, is that those three action probabilities are illuminance-based, 

whereas the switch-off at departure is time-based.  The dampening coefficients are truly intended 

to explore a range of user types as they apply to awareness and interest in actively responding to 

their lighting needs with respect to daylighting conditions.  The dampening coefficient applied to 
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the action probability curve for switch-off at departure was meant to be explored though other 

avenues, such as the sensitivity analysis.   

Table 4: Description of six stochastic user type distributions used to compare to the results 

of predictions based on deterministic scheduling. 

Simulation Description 

AS1 All Passive Users 

AS2 All Active Users 

AS3 All DC = 0.5 

AS4 50% Active / 50% Passive 

AS5 All DC = 0.25 

AS 6 All DC = 0.75 

Initial Validation 

The final step of this first phase of the analysis was to use the combined occupancy and 

modified lighting action model to attempt a validation against the filtered sub-metered lighting 

energy data as described above.  To perform this analysis, first the annual daylighting profile for 

each of the offices was determined as described later.  Annual simulations were then performed 

which included all of the 74 private office spaces, referencing text files that included arrays of 

dampening coefficients.  A single mobility parameter was included and applied to all 74 offices.  

The results of the simulation were then compared to the filtered sub-metered data, both in terms 

of annual energy predictions, and in terms of attempting to match daily profiles, including peaks.  

The dampening coefficients and mobility parameter were then manually adjusted to attempt to 

match the desired values, and the simulation then executed again.  No optimization protocol was 

used since the number of free variables within the model environment would require a 

computationally-inefficient process.  Instead, the individual parameters were adjusted by trial 
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and error, first adjusting the mobility parameter to scale the general use up or down, then 

adjusting each dampening coefficient to impact the rate of energy use increase in the morning 

(switch-on parameter), rate of energy use decrease at the end of the day (switch-off parameter), 

and during the intermediate occupancy periods (intermediate actions). Because of the interaction 

of the various parameters, no unique solution exists. 
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INITIAL RESULTS 

Model Convergence 

The purpose of the first set of tests performed was to assess the number of simulations 

required to find convergence on the mean value. 

Occupancy Model 

First, model convergence was tested for the occupancy model alone.  This test was based 

on the base model where the mobility parameter is selected within the algorithm using the built-

in values and relying on the built-in randomizing function.  Figure 21 illustrates the average 

annual occupied hours as a function of the number of simulations.   

 

Figure 21: Model convergence for occupancy algorithm. 

As shown, the initial results vary significantly due to the inherent variability of the 

stochastic model.  It is not desirable to dampen this impact since the inherent variability is what 

makes this model valuable, but in this case it is important to understand how many simulations 

are necessary to reach a meaningful mean value.  After the initial variability, the mean shows an 
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upward drift before settling to a regular value of approximately 1,184 hours per year.  Assuming 

a 40 hour per week work week and 50 days per year, this result shows an annual occupancy rate 

of only 59.2%.   

Figure 22 presents a histogram of the simulated annual occupied hours used to determine 

the mean value as shown in Figure 21.  While the model shows a clear central tendency near the 

determined absolute mean value, there is also an evident trimodal distribution. 

 

Figure 22: Relative frequency of simulated annual occupied hours for occupancy 

algorithm. 

Combined Occupancy and Lighting Model 

The same process was executed for the combined model which included the unmodified 

occupancy algorithm and the modified Lightswitch-2002 algorithm.  For this analysis, it was 

assumed that the dampening coefficient for all action probabilities was zero, which is the 

definition of an “active” user who is most likely to engage in switching actions, and the default 

mobility parameter method in the base occupancy algorithm was used.  Figure 23 illustrates the 

average annual energy use as a function of the number of simulations.  For this analysis, the 
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simulation assumed a 200 sf private office with an installed lighting power density of 0.87 W/sf.  

The daylight conditions were assumed to be consistent with the South-facing office of the subject 

building.   As shown, due to the stochastic nature of each of the combined models, there is 

initially large variation in the determined mean at a low number of simulations.  As the number 

of simulations increases beyond 1,000, the variation in the mean became dampened.  Based on 

the results of the occupancy analysis, it was determined that using 2,000 simulations would result 

in sufficient convergence. 

 

Figure 23: Model convergence for combined occupancy and lighting control algorithm. 

Likewise, Figure 24 illustrates the relative frequency of the simulated annual energy use 

for the combined occupancy and lighting controls model.  As shown, the trimodal distribution of 

the occupancy simulation is dampened by the inclusion of the lighting controls model, and 

therefore the combined model does not exhibit that same type of trimodal distribution.  The 

highest concentration of simulation results occurred in the 8 kWh ≤ Y < 9 kWh band, which 

correlates with the determined mean.   
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The distribution of the data is skewed with a long right-hand tail.  This skew is due to the 

low-end limitation at zero that can physically be interpreted as no annual lighting energy use; a 

negative number is not feasible, nor realistic.  High annual energy use, reaching upwards of 20 

kWh/year, skew the distribution to the right and are due to the stochastic nature of the switching 

actions which can result in lighting being left “on” over nights and over weekends or longer 

holidays. 

 

Figure 24: Relative frequency of simulated annual energy use for combined occupancy and 

lighting controls model. 

 Sensitivity Analysis 

The actual sensitivity analysis was performed in the Matlab simulation environment.  

Code used to determine the sensitivity analysis was downloaded directly from the European 

Commission Joint Research Center (2011).  The code was first tested against a mathematical 

model (Burhenne, Jacob, & Henze, 2011), which allowed detailed understanding of the structure 

of the code to verify the location of appropriate connections to the models being studied. 
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Scatterplot Analysis with All Free Parameters 

The first step of the sensitivity analysis involved examining the scatterplots of the annual 

energy data with respect to the various free parameters using both the Reinhart and Lindelof 

intermediate switch-on curves.  Figures Figure 25 through Figure 34 present these associated 

scatterplots.  Where heteroscedasticity was observed, a linear curve fit was applied, and the 

resultant equation and coefficient-of-determination R
2
 value are reported.  Figure 35 illustrates 

the relative frequency of annual energy density, one for each data set using the Reinhart and 

Lindelof curves. 

 

 

Figure 25: Scatterplot of annual energy density as a function of the dampening coefficient 

for switch-on at arrival assuming the Reinhart intermediate switch-on function. 
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Figure 26: Scatterplot of annual energy density as a function of the dampening coefficient 

for switch-on at arrival assuming the Lindelof intermediate switch-on function. 

 

Figure 27: Scatterplot of annual energy density as a function of the dampening coefficient 

for switch-off at departure assuming the Reinhart intermediate switch-on function. 
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Figure 28: Scatterplot of annual energy density as a function of the dampening coefficient 

for switch-off at departure assuming the Lindelof intermediate switch-on function. 

 

Figure 29: Scatterplot of annual energy density as a function of the dampening coefficient 

for intermediate switch-on assuming the Reinhart intermediate switch-on function. 
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Figure 30: Scatterplot of annual energy density as a function of the dampening coefficient 

for intermediate switch-on assuming the Lindelof intermediate switch-on function. 

 

Figure 31: Scatterplot of annual energy density as a function of the dampening coefficient 

for intermediate switch-off assuming the Reinhart intermediate switch-on function. 
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Figure 32: Scatterplot of annual energy density as a function of the dampening coefficient 

for intermediate switch-off assuming the Lindelof intermediate switch-on function. 

 

Figure 33: Scatterplot of annual energy density as a function of the mobility parameter 

assuming the Reinhart intermediate switch-on function. 
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Figure 34: Scatterplot of annual energy density as a function of the mobility parameter 

assuming the Reinhart intermediate switch-on function. 

 

Figure 35: Relative frequency of annual energy density results comparing Reinhart and 

Lindelof intermediate switch-on action curves. 
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In general, it was found that little difference was exhibited in the scatterplots for each 

variable when considering the Reinhart vs. the Lindelof intermediate action curves.    This is 

likely due to the overall low action probabilities across the intermediate switch-on curves, and 

thus low impact of the intermediate switch-on action on the overall energy results. 

Additionally, no general trend was observed for any of the examined variables.  The 

scatterplots all show a tendency toward low energy density, and this is due to the skew 

observable in the relative frequency plot. 

Sensitivity Analysis with All Free Parameters 

This first analysis included five free parameters: the mobility parameter, and the 

dampening coefficients applied to all four lighting action probabilities (switch-on at arrival, 

intermediate switch-on, intermediate switch-off and switch-off at departure).  Additionally, the 

analysis was performed using both the original intermediate switch-on probability curve defined 

by Reinhart & Voss (2003) and included in the original Lightswitch-2002 algorithm, and the 

recommended intermediate switch-on probability data defined by Lindelof & Nicolas (2006). 

Table 5 provides the results of this analysis, showing the sensitivity index and total effect 

index for each free variable using both of the intermediate switch-on action curves, and based on 

N=2,000 simulations.   As shown, the sensitivity indices, using either of the intermediate switch-

on action curves, do not sum to 1, indicating that the effect of these free variables on the variance 

of the overall model is not simply additive, but that the variables interact to contribute to overall 

model variance.  Using the Reinhart curve, the sensitivity indices sum to 0.570, and using the 

Lindelof curve, sum to 0.600, indicating that the selection of the intermediate switch-on action 

curve has little influence on the additivity of the model variance. 
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Table 5: Results of sensitivity analysis with all free parameters. 

    Dampening Coefficients 

Mobility 

Parameter 
    On Off 

Intermediate 

On 
Intermediate 

Off 

Reinhart 
Si 0.006 0.185 0.014 0.104 0.261 

St 0.417 1.079 0.424 0.790 1.211 

Lindelof 
Si 0.006 0.199 0.013 0.110 0.272 

St 0.461 1.057 0.503 0.802 1.134 

 

Figure 36 illustrates normalized total effects when using the Reinhart intermediate 

switch-on action curve and Figure 37 illustrates the same assuming the Lindelof curve.  These 

values were determined by evaluating the contribution of the total effect index of each free 

variable to the sum of the five total effect indices.  As shown, the mobility parameter is the 

largest contributor to the overall model variance when considering both intermediate switch-on 

action curves.  Intuitively this aligns with the idea that the largest variance in energy 

consumption will be due to variations in occupancy patterns, and not necessarily to lighting 

actions.   
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Figure 36: Variance of total model combination due to each dampening coefficient 

assuming the Rienhart intermediate switch-on action probability. 

 

 

Figure 37: Variance of total model combination due to each dampening coefficient 

assuming the Lindelof intermediate switch-on action probability. 

In both cases, the impact of the switch-off at departure action accounts for the next 
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result in widely varying lighting energy use predictions, so this particular action curve should be 

of specific interest in future data collection efforts. 

Again in both cases, the intermediate switch-off action represents the third highest 

contributor to the overall model variance. 

The intermediate switch-on action represents the fourth highest contributor to overall 

model variance in both cases.  Essentially, the exact shape of the intermediate switch-on action 

curve, whether by Reinhart or Lindelof, has little influence on the overall model variance.  This 

is surprising considering the vastly different shapes of those two action curves, though both 

represent very low action probabilities even at their highest. 

The smallest contribution in both cases is the impact of switch-on at arrival.  This is fairly 

surprising considering that the impact of intermediate switching actions is directly impacted by 

the initial switch-on action.  However, with the particular occupancy pattern generated by the 

occupancy model paired with the particular daylight availability simulated, arrivals typically 

happen early in the day, before the available daylight has reached a level sufficient to 

significantly diminish the likelihood of a switch-on action. 

The pattern that emerges here is that the impact of the probability of any switch-off 

action, be that at departure or during occupied periods, contributes most significantly to the 

overall model variance.  The impact of the switch-on actions combine to 21.4% of the model 

variance assuming Reinhart and 24.3% of the model variance assuming Lindelof.  In either case, 

that combination is less than the impact of the switch-off at departure alone.  

Sensitivity Analysis with Limited Free Parameters 

The next phase of the sensitivity analysis involved controlling the mobility parameter  

to assess only the impact of the various switching actions.  The Lindelof intermediate switch-on 
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action was used for all six data sets.  For this analysis, the mobility parameter was fixed at six 

possible values.  The six values chosen were as follows: 

 0: This is the minimum singular value included in the algorithm author’s data set. 

 0.028: This is the minimum average weekly value included in the algorithm author’s 

data. 

 0.040: This is the average mobility parameter when considering the value at each time 

step over all twenty weeks of data included in the algorithm author’s data. 

 0.065: This is the maximum average weekly value included in the algorithm author’s data 

set. 

 0.667: This is the maximum singular value included in the algorithm author’s data set. 

 1: This is the maximum theoretical value. 

Figures Figure 38 through Figure 43 illustrate the determined relative total effect indices for 

these six settings.  Figure 44 compares the results of all six simulations. 

Table 6: Results of first-order sensitivity analysis with mobility parameter fixed. 

 
Si 

Mu 
On at 

Arrival 

Intermediate 

Off 

Intermediate 

On 

Off at 

Departure 

0 0.0307 0.4294 0.0967 0.1026 

0.028 0.0124 0.3585 0.1014 0.1263 

0.040 0.0072 0.3411 0.1076 0.1558 

0.065 0.0145 0.3752 0.1019 0.1732 

0.667 0.0378 0.2087 0.0559 0.4757 

1 0.0024 0.1285 0.0351 0.5003 
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Table 7: Results of total sensitivity analysis with mobility parameter fixed. 

 St 

Mu 
On at 

Arrival 

Intermediate 

Off 

Intermediate 

On 

Off at 

Departure 

0 0.5310 1.8087 1.0459 0.9331 

0.028 0.4954 1.4545 0.8166 0.9882 

0.040 0.4325 1.3789 0.7520 1.0459 

0.065 0.4709 1.5724 0.7428 1.1434 

0.667 0.5748 1.0905 0.5924 1.5900 

1 0.5618 1.0928 0.5487 1.7935 

 

 

 

Figure 38: Variance of total model combination due to each lighting action dampening 

coefficient assuming mu = 0. 
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Figure 39: Variance of total model combination due to each lighting action dampening 

coefficient assuming mu = 0.028. 

 

Figure 40: Variance of total model combination due to each lighting action dampening 

coefficient assuming mu = 0.040. 
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Figure 41: Variance of total model combination due to each lighting action dampening 

coefficient assuming mu = 0.065. 

 

Figure 42: Variance of total model combination due to each lighting action dampening 

coefficient assuming mu = 0.667. 

12.0%

40.0%

18.9%

29.1%

On at Arrival

Intermediate Off

Intermediate On

Off at Departure

14.9%

28.3%

15.4%

41.3%
On at Arrival

Intermediate Off

Intermediate On

Off at Departure



 

84 

 

Figure 43: Variance of total model combination due to each lighting action dampening 

coefficient assuming mu = 1. 

 

Figure 44: Comparing the impact of the fixed mobility parameter on the relative 

contribution to the total model variance. 
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The intermediate switch-on action generally is the next lowest contributor to model 

variance.  The pattern noted in Figure 44 for this parameter is also very interesting, illustrating a 

decreasing contribution with increasing mobility parameter.  This can be interpreted as increased 

mobility reduces the amount of extended periods of occupancy, thus reducing the amount of time 

when an intermediate action can actually occur. 

The off switching actions, both intermediate and at departure, are generally the highest 

contributors to the overall model variance.  It is interesting to note an inverse relationship 

between these two parameters: in general, as the mobility of the occupant increases, the impact 

of the intermediate switch-off action is reduced and the impact of the switch-off at departure 

action is increased.  Again, this can be interpreted as increased mobility reduces the amount of 

extended periods of occupancy, causing more frequent departures.  The combination of these two 

allows the dominant contributor to shift from intermediate actions when mobility is low to 

departure actions when mobility is high.  Additionally, the first four settings of mobility are 

rather tightly grouped at 0.065 and below, and there is then a large increase to the next sets at 

0.667 and 1.  This large change in mobility accounts for the large decrease in impact by the 

intermediate action and large increase in impact by the departure action illustrated in Figure 44. 

Comparison to Deterministic Scheduling 

Whole-Building Evaluation 

Figure 45 illustrates the results of the whole-building simulations.  For each category, the 

first descriptor indicates the scheduled used (Alternative Compliance Manual (ACM), DOE-2, 

and Business Hours) and the second descriptor indicates the basis for the lighting power density 

(actual installed or allowed under Standard 90.1).  As shown, the deterministic full-building 

analysis was first performed using the actual installed lighting power density.  The analysis was 
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also performed using the allowable lighting power density under ASHRAE/IESNA Standard 

90.1, which is slightly higher than actually installed. 

 

Figure 45: Comparing results of deterministic predictions of annual whole-building 

lighting energy use and annual peak demand to sub-metered lighting energy data. 

As shown, all of the deterministic schedules overestimated the annual energy use.  The 

Business Hours schedule, when using the actual installed lighting power density, resulted in the 
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building, was more likely to match the building performance more closely.  Additionally, the 

ACM profile used is simply for commercial non-mall buildings, not specific to the office 

building profile.  However, those two profiles stand as the best available sources for estimating 

performance before the building profile is known.   

 

Figure 46: Comparing results of deterministic predictions of whole-building lighting energy 

use to sub-metered lighting energy data for a typical weekday. 
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The two remaining profiles, ACM and DOE-2, both result in an overestimation of the 

annual energy use and an underestimation of the peak demand.  Neither of those profiles reaches 

full use during the day, so an “ALL ON” demand scenario would not be modeled.  In aggregate, 

their energy predictions overestimate daytime use and slightly underestimate nighttime use when 

compared to this facility, leading to an overall overestimation of annual energy use. 

Figure 47 illustrates the average Saturday daily profile for each simulation method and 

the sub-metered data, and Figure 48 shows the same for the average Sunday profile.  As shown, 

there is a significant mismatch of profile types on these weekend days.  The submetered data 

shows typically higher overnight consumption than peak daytime consumption, which is the 

opposite of the general pattern observed from the ACM and DOE-2 schedules.  The reason for 

this is likely tied to the building hours, use types, and daylight availability, with high overnight 

occupancy rates on the weekends, and maximized use of daylighting during the weekend days. 

 

Figure 47: Comparing results of deterministic predictions of whole-building lighting energy 

use to sub-metered lighting energy data for a typical Saturday. 
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Figure 48: Comparing results of deterministic predictions of whole-building lighting energy 

use to sub-metered lighting energy data for a typical Sunday. 
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energy density.  The results of the advanced simulations still showed large variations amongst 

themselves due to the various distributions of user types and their subsequent interaction with the 

lighting controls in response to daylight conditions. 

 

Figure 49: Comparing results of stochastic and deterministic predictions of annual private 

office lighting energy use and annual peak demand to sub-metered lighting energy data. 
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within the private offices can directly mimic the use profile of the entire building.  That being 

said, the deterministic models, specifically the DOE-2 model using the actual LPD, came close 

to matching the filtered sub-metered data, but the deterministic models consistently overshot the 

estimated peak demand.  Meanwhile, the peak demand density found using the settings of AS6, 

where all users were assumed to behave with a 75% dampening coefficient, nearly exactly 

matched the filtered sub-metered data. 

In the private office simulations, it was shown that the use of the stochastic modeling, 

which includes predictions of the interaction of the occupants with the lighting control system, 

resulted in a much lower annual energy prediction than all of the deterministic models, which do 

not account for daylight-responsive occupant action, and the estimated actual use for the 

investigated building.  Likewise, the peak annual demand was also estimated to be much lower 

when using the stochastic models compared to the deterministic schedules. 

Specifically, of the deterministic schedules, the ACM profile resulted in the highest 

energy use and the Business Hours profile in the lowest.  Conversely, the ACM profile resulted 

in the lowest predicted peak demand of the deterministic schedules, and the Business Hours in 

the highest.  Ultimately, of the deterministic models, the lower estimated peak demand of the 

ACM schedule best matched the filtered sub-metered data and the Business Hours schedule 

resulted in the closest match of the annual energy use. 

When examining the advanced simulations, it was interesting to note the variation of the 

six different scenarios in terms of peak demand and energy use, and their correlations to the 

types of users.  Figure 50 illustrates the relative lighting energy use intensity for a typical 

weekday for each of the six advanced simulations.  Intuitively, the less the users consider their 

daylight availability, the higher the energy use should be.  This was confirmed with the model, 
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where AS1 assumed all ‘Passive’ users, who will always switch-on lighting at arrival, will not 

engage in intermediate switching actions, and who are equally likely to switch-off the lighting at 

departure.  Conversely, intuition leads one to believe that the more ‘Active’ the users are, the 

more they consider their daylight and make adjustments to their lighting throughout the day to 

respond to daylight, then the lower their lighting energy use will be.  This was also confirmed 

with the model, where AS2 assumed all ‘Active’ users. 

 

Figure 50: Comparing results of six different settings for stochastic predictions of private 

office lighting energy use. 
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coefficient of 0.75, and AS4, which assumed a 50/50 split of ‘Active’ and ‘Passive’ users.  AS6 

which can be interpreted as a group of users that were less aware of or responsive to their 

daylighting, but more likely to respond than a true ‘Passive’ user, all essentially equally 
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contributed to the high energy use.  AS4, which can be interpreted as two distinct populations of 

‘Active’ and ‘Passive’ users, showed savings over AS1 from the inclusion of ‘Active’ users, but 

the significantly higher energy consumption of the ‘Passive’ users served to essentially negate 

much of the savings achieved by the ‘Active’ users.  AS3 then followed, which assumed all users 

behaved midway between an ‘Active’ and a ‘Passive’ user.  AS5, which assumed all users 

behaved with a dampening coefficient of 0.25, provided the next lowest annual energy use, 

which is due to the near-‘Active’ behavior of those occupants. 

It is interesting to note that assuming all users behaved midway between ‘Active’ and 

‘Passive’ (AS3) and assuming an equal split of ‘Active’ and ‘Passive’ users (AS4) did not result 

in the same energy prediction.  A user midway between those two archetypes, essentially, does 

not result in the same energy use prediction as the mean of an ‘Active’ and ‘Passive’ user. 

 It is also interesting to note that the two simulations that resulted in nearly identical 

aggregate predictions, AS4 and AS6, show an interesting time-dependent behavior.  AS6 

predicts higher energy use in the morning, while AS4 predicts higher energy use in the 

afternoon.  The high use in the afternoon of the AS4 simulation is likely due to the inclusion of 

pure ‘Passive’ users, who will activate their lighting after lunch regardless of the daylighting 

condition.  The users in AS6, which operated with 75% dampening coefficients, were less likely 

to activate their lighting when returning from lunch due to the high mid-day illuminance levels.  

Even at the significantly reduced switching potential caused by the 75% dampening coefficient, 

the impact of the daylight levels led to reduced daytime energy use. 

Additionally, the predicted annual energy density using this stochastic simulation method 

consistently resulted in energy density predictions much lower than the deterministic scheduling 

method, even when considering all ‘Passive’ users who effectively did not react to the available 
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daylight.  This is due to the stochastic occupancy prediction that accounts for variation of user 

behavior instead of assuming full-day occupancy as the deterministic schedules do.  Even though 

the ‘Passive’ user will employ the lighting whenever the space is occupied, the stochastic 

occupancy simulation reduces the total occupied hours, which effectively reduces the maximum 

lighting energy density. 

Initial Validation 

An initial validation effort was performed using the combined occupancy and modified 

lighting controls models as described previously.  The daylighting model used for the initial 

validation effort is also the two-sky model, as described in the section titled “Daylighting 

Calculation Assumption Exploration” below. 

Total Annual Lighting Energy Use 

The first goal of the initial validation was to attempt to match the annual energy use as 

determined from the filtered sub-metered lighting energy data.  This validation was achieved by 

manually tuning the five free parameters, the four dampening coefficients and the mobility 

parameter, where a single mobility parameter was applied to all offices together but each office 

had the ability to have unique dampening coefficients.  Thirty-three setting combinations were 

examined and evaluated to determine which combination resulted in the closest energy 

prediction. 

Figure 51 illustrates the total annual lighting energy consumed per day, comparing the 

results of the sub-metered data to the results of the advanced stochastic simulation.  This 

information is also presented in Table 8. 
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Figure 51: Annual lighting energy prediction compared to sub-metered lighting energy 

data for each day type. 

Table 8: Results of validation analysis when attempting to match total annual lighting 

energy use. 

 
Total Annual Energy Use per Day Type Total Annual 

Energy Use 
 

Sun Mon Tue Wed Thu Fri Sat 

Data 537 1,965 1,998 1,998 1,993 1,859 702 11,052 

Simulated 255 2,184 2,159 2,060 2,123 1,967 276 11,024 

Difference 52.5% 11.1% 8.0% 3.1% 6.5% 5.8% 60.7% 0.3% 

 

As shown, tuning the various free parameters allowed the model to be adjusted to fairly 

well match the total annual energy use prediction, with a difference of only 0.3%, or 28 kWh.  

When examining the day types, the weekdays typically resulted in a closer match between the 

sub-metered and simulated annual energy use than the weekends.  The percentage difference is 

significant for both weekend days, but exacerbated due to the generally low energy use.  One 

interesting anecdotal observation is that both the simulated energy use, which is based on actual 

metered occupancy data, and the sub-metered lighting energy data use have lower energy 
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consumption on Fridays than on the other four days of the typical work week.  Table 9 describes 

the input parameters that were used to find this approximate match. 

Table 9: Parameters for validation analysis when matching annual energy use (Set 13). 

Input Variable Values and Notes 

Number of Private Offices 74  

Orientation  50% South-Facing, 50% North-Facing 

Lighting Control System 
Bilevel: 50% Auto-On/Auto-Off, 50% 

Manual-On/Auto Off, 15-minute time delay 

Lighting Power Density 0.87 W/sf  

Blinds Fully manual black-out 

Intermediate Switch-On Curve Lindelof  

Dampening Coefficient: Switch-On at 

Arrival 

43 offices @ 0.98, 31 @ 0, split evenly 

between North and South facing 

Dampening Coefficient: Switch-Off at 

Departure 
All offices @ 0 

Dampening Coefficient: Intermediate 

Switch-On 

43 offices @ 0.99, 31 @ 0, split evenly 

between North and South facing 

Dampening Coefficient: Intermediate 

Switch-Off 

43 offices @ 0.92, 31 @ 0, split evenly 

between North and South facing 

Mobility Parameter All offices @ 0.9 

 

However, despite the close match to the annual energy use, the typical daily profiles that 

resulted this annual energy use do not follow the same pattern as the sub-metered, as shown in 

Figures Figure 52 through Figure 54, which present the typical lighting energy use intensity 

profiles as a percentage of the installed lighting power “on” per hour for the typical weekday, 

Saturday and Sunday.   The values shown on the figures indicate the peak daytime power. 
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Figure 52: Results of initial validation for weekdays when matching annual energy use. 

 

Figure 53: Results of initial validation for Saturdays when matching annual energy use. 

 

0.1653

0.2224

0%

5%

10%

15%

20%

25%

30%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

R
e
la

ti
v

e
 E

n
e
r
g

y
 U

se
 I

n
te

n
si

ty

Hour of Day

Metered Set 13

0.0278

0.0403

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%

4.0%

4.5%

5.0%

5.5%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

R
e

la
ti

ve
 E

n
e

rg
y 

U
se

 I
n

te
n

si
ty

Hour of Day

Metered Set 13



 

98 

 

Figure 54: Results of initial validation for Sundays when matching annual energy use. 

As shown, the daily profiles do not align well with that of the sub-metered lighting 

energy data.  For the typical weekday, while the integrated energy use in similar, the shape of the 

simulated curve is such that peak daytime demand is significantly higher, nearly doubled, that 

found in the lighting energy data based on the described filtering process.  The nighttime use 

according to the sub-metered lighting energy data is significantly higher than predicted from the 

modeled prediction.   

For Saturdays, the overnight use as found in the data is more than eight times that 

predicted using the models.  The predicted use drops during the daytime, as was shown during 

the comparison to the deterministic modeling results.  For Sundays, the observed pattern is very 

similar to that seen on Saturdays, indicating continued occupancy during these times.   
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Matching Daily Profiles 

Since a major goal of this effort was to explore tools to predict lighting energy use and 

peak demand, and the first attempt at validation illustrated a large mismatch when predicting 

peak demand, a second set of initial models were created to assess the parameters necessary to 

approximate the peak daily demand.  Three different parameter sets were necessary to model 

each day type, one each to model Weekdays, Saturdays and Sundays, since the original error was 

very different on those days.   

 

Figure 55: Results of initial validation for weekday when matching peak demand. 

Figure 55 illustrates the results of the model set that allowed the closest match of the 

typical day peak demand.  Table 10 shows the parameter settings used to achieve this near 

match.  As shown, to reduce the daily energy consumption to allow the predicted typical daily 

peak energy use to match that of the sub-metered data, first the mobility parameter was 

decreased to reduce the number of entering events and thus the opportunities for a switch-on, 
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since the intermediate action probabilities are much lower than the probability of switch-on at 

arrival across illuminance levels.  Next, the dampening coefficients for both switch-on actions, at 

arrival and intermediate, were adjusted downward to reduce the amount of lighting being 

activated at any tie.  Finally, the intermediate switch-off dampening coefficient was adjusted 

downward to attempt to smooth out the morning/afternoon energy difference.  However, because 

the base occupancy model exhibited such a large dip at lunchtime, even with the dampening 

coefficient applied to the probability of switch-on at arrival, much less lighting is activated after 

lunch time.  However, the predicted lighting energy use continued to follow an undesirable 

pattern that is inextricably linked to the occupancy model itself. 

Table 10: Parameters for validation analysis when matching peak daily demand (Set 27).  

Input Variable Values and Notes 

Number of Private Offices 74  

Orientation  50% South-Facing, 50% North-Facing 

Lighting Control System 
Bilevel: 50% Auto-On/Auto-Off, 50% Manual-

On/Auto Off, 15-minute time delay 

Lighting Power Density 0.87 W/sf  

Blinds Fully manual black-out 

Intermediate Switch-On Curve Lindelof  

Dampening Coefficient: Switch-On at Arrival 
37 offices @ 0.64, 37 @ 0, split evenly between 

North and South facing 

Dampening Coefficient: Switch-Off at 

Departure 
All offices @ 0 

Dampening Coefficient: Intermediate Switch-

On 

37 offices @ 0.68, 37 @ 0, split evenly between 

North and South facing 

Dampening Coefficient: Intermediate Switch-

Off 

37 offices @ 0.76, 37 @ 0, split evenly between 

North and South facing 

Mobility Parameter All offices @ 0.04 
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The same process was executed for the typical Saturday lighting energy profile.  Figure 

56 illustrates the attempt at matching the typical Saturday peak demand, and Table 11 give the 

simulation parameters necessary to achieve this result. 

 

Figure 56: Results of initial validation for Saturdays when matching peak demand. 

As shown, the model was adjusted to match the typical daytime peak demand.  However, 

for the sub-metered data, the typical daily peak demand occurs overnight.  Again, the shape of 

the predicted lighting energy curve is inextricably linked to the Page et al. (2008) occupancy 

model and there exist no parameters in the original algorithm to allow modifications of the 

occupancy pattern that would allow a prediction of lighting energy that follows even the general 

shape of the sub-metered data.  
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 Table 11: Parameters for validation analysis when matching peak Saturday demand (Set 

25).  

Input Variable Values and Notes 

Number of Private Offices 74  

Orientation  50% South-Facing, 50% North-Facing 

Lighting Control System 
Bilevel: 50% Auto-On/Auto-Off, 50% 

Manual-On/Auto Off, 15-minute time delay 

Lighting Power Density 0.87 W/sf  

Blinds Fully manual black-out 

Intermediate Switch-On Curve Lindelof  

Dampening Coefficient: Switch-On at 

Arrival 

37 offices @ 0.77, 37 @ 0, split evenly 

between North and South facing 

Dampening Coefficient: Switch-Off at 

Departure 
All offices @ 0 

Dampening Coefficient: Intermediate 

Switch-On 

37 offices @ 0.81, 37 @ 0, split evenly 

between North and South facing 

Dampening Coefficient: Intermediate 

Switch-Off 

37 offices @ 0.72, 37 @ 0, split evenly 

between North and South facing 

Mobility Parameter All offices @ 0.04 

 

Finally, this same process was followed for the typical Sunday lighting energy profile.  

Figure 57 illustrates the attempt at matching the typical Sunday peak demand, and Table 12 gives 

the simulation parameters necessary to achieve this result. 

As shown, the peak daytime demand was very closely matched.  However, similar to the 

Saturday analysis above, the actual peak Sunday demand occurred during the overnight hours.  

Using the selected occupancy and modified lighting action model, it is not feasible to achieve 

this nearly inverted relationship. 



 

103 

 

Figure 57: Results of initial validation for Sundays when matching peak demand. 

Table 12: Parameters for validation analysis when matching peak Sunday demand (Set 32).  

Input Variable Values and Notes 

Number of Private Offices 74  

Orientation  50% South-Facing, 50% North-Facing 

Lighting Control System 
Bilevel: 50% Auto-On/Auto-Off, 50% 

Manual-On/Auto Off, 15-minute time delay 

Lighting Power Density 0.87 W/sf  

Blinds Fully manual black-out 

Intermediate Switch-On Curve Lindelof  

Dampening Coefficient: Switch-On at 

Arrival 

37 offices @ 0.98, 37 @ 0, split evenly 

between North and South facing 

Dampening Coefficient: Switch-Off at 

Departure 
All offices @ 0 

Dampening Coefficient: Intermediate 

Switch-On 

37 offices @ 0.99, 37 @ 0, split evenly 

between North and South facing 

Dampening Coefficient: Intermediate 

Switch-Off 

37 offices @ 0.92, 37 @ 0, split evenly 

between North and South facing 

Mobility Parameter All offices @ 0.9 
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Conclusions from Initial Results 

This overall process was intended to be used to evaluate the use of the particular 

occupancy and modified lighting controls model to predict lighting energy use and peak demand, 

and to understand the contribution of the various free parameters to control the simulation 

results. 

Conclusions from Sensitivity Analysis 

As shown from the initial sensitivity analysis, the use of the Reinhart intermediate 

switch-on curve or the Lindelof curve had little impact when assessing the relative contribution 

of each free variable to the overall variance of the model.  In both cases, the mobility parameter 

was responsible for the largest portion of the total variance of the model output, when including 

both first order effects and interactions.  In general, this follows logic since the higher mobility 

parameters cause more in-and-out actions, reducing the total amount of time the space is actually 

occupied.  Since the overall probabilities of actions at departure and arrival are much larger than 

during intermediate occupancy, increasing mobility which leads to more in-and-out events will 

overall increase the exposure to switching opportunities.   

When the mobility parameter was fixed at the six predefined levels based on the author’s 

original data, it was shown that the dampening coefficient assigned to the probability of a switch-

on event at arrival was fairly uniform independent of the exact value of the mobility parameter.  

The impact of both of the intermediate switching actions was reduced as the mobility of the 

occupants increased, which again follows logically from the physical interpretation of the 

mobility parameter.  And finally, the impact of the dampening coefficient applied to the 

probability of a switch-off action at departure was found to increase with increasing occupant 
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mobility.  Essentially, this is tied to the increasing number of exiting events and the strong 

influence of the actual dampening coefficient on the probability distribution function.   

Most obvious from the sensitivity analysis was the general conclusion that the occupant 

pattern and their likelihood to engage in switch-off actions at departure have the highest 

influence on the variability of the overall model results. 

Conclusions from Comparison to Deterministic Predictions 

The results of the deterministic model analysis also provided some interesting insight into 

the relationship between deterministic predictions and sub-metered data.  As shown, the existing 

deterministic schedules in use tend to underestimate peak demand and overestimate annual 

lighting energy use when considering the whole building.  This is likely due to the peak daytime 

estimates which, for the schedules presented, never reach full use.  Additionally, the metered 

overnight use is higher than predicted through the deterministic schedules and the use patterns on 

the weekdays is significantly different than that presented through the deterministic schedules. 

Comparing the deterministic and stochastic predictions for just the private office spaces, 

it was found that the predicted annual energy use and peak demand found using the stochastic 

methods are consistently lower than found using the deterministic schedules.  However, it is 

interesting to note that the settings of AS6 where all users were assumed to have a 75% 

dampening coefficient, resulted in a peak demand estimate that most closely matched the filtered 

sub-metered data.  The total annual energy use was much more closely predicted by the DOE-2 

and Business Hours schedules. 

The general conclusion, though, is that the deterministic modeling can be very useful for 

predicting annual energy use, where the interaction of the occupants with the lighting system is 

considered in aggregate.  After all, these deterministic schedules were determined based on 
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examining the aggregated data from multiple years and buildings.  Similar to the issue of 

matching real-time daylight conditions with CIE standard skies, the usefulness of the 

deterministic simulations is restricted to long-term time horizons and should not be used to 

evaluate actual time-dependent valuations. 

Conclusions from Validation Analysis 

First, it should be noted that the validation analysis is based completely on the filtered 

sub-metered lighting energy data, which was filtered as described above from full-building 

lighting energy to an approximation of the energy use profile for the private offices only.  As 

such, the validation effort should be understood to have been based on a best effort estimation of 

the actual energy use attributable to the private offices.  To emphasize, no private office energy 

use data was available. However, as stated before, this type of reductionary assumption is not 

new in the energy modeling field, as building-specific occupancy patterns are often applied 

directly to specific spaces without regard to actual interior diversity. 

Given the known limitations of the analysis, though, this initial validation effort provided 

valuable insight that enabled the shortcomings of the existing model infrastructure to be 

revealed.  Namely, the rather restrictive profile of the occupancy model limited the general 

applicability of the combination of models.  The occupancy model was built directly from the 

empirical data gathered from a single building (the LESO-EB in Lausanne, Switzerland), and as 

such the model’s behavior is inextricably linked to that particular building.   

As can be seen from the observed occupancy pattern, there are strong pattern behaviors 

that cannot be modified by simply adjusting the mobility parameter.  For example, the drop in 

occupancy rate during lunchtime is a strong feature of this base occupancy model.  However, the 

sub-metered data does not show that same extent of lunch period reduction, which could be due 
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to offset lunches which eliminate the compounding absences, lack of lunch breaks, or on-site 

lunch breaks which result in diversion of energy consumption to other spaces.  However, though 

the sample building was known to have a cafeteria, it is unlikely that load was actually being 

diverted since the lighting in the cafeteria is likely on during non-lunch hours. 

Additionally, the overnight occupancy rates in the sub-metered building must also be 

significantly higher than that seen in the building used to construct the occupancy model.  

Adjusting the mobility parameter mostly impacts the daytime occupancy pattern, shifting peak 

occupancy up or down with little influence on an already low-occupancy night pattern.  Finally, 

the energy user patterns for the weekend days were in strong disagreement with the occupancy 

model, illustrating nearly opposite occupancy pattern predictions. 

Overall, the results of the validation effort illustrate that the occupancy algorithm limited 

the applicability of the overall two-model combination due to the lack of available parameters to 

modify the occupancy profile.  As such, an additional effort was undertaken to expand the 

existing occupancy model to allow additional free parameters to control this profile. 
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EXPANDED OCCUPANCY MODEL 

As determined during the initial validation effort, the underlying occupancy model 

severely limited the range of possible combined model results.  The only free parameter, the 

mobility parameter, simply adjusted the variability of the occupancy patterns, leading to more in-

and-out events and reducing the total amount of time the space is actually occupied.  Therefore, 

it was deemed desirable to adjust the occupancy algorithm to allow the use of additional 

parameters that would allow for flexible occupancy pattern shaping.  This effort was focused 

solely on weekdays. 

Base Occupancy Structure 

The original occupancy model by Page et al. (2008)is herein referred to as the base 

occupancy model, or base algorithm. 

The base algorithm is structured as described above.  The general flow of the actual 

model execution begins with a randomized selection of one of twenty empirically-based 

probability of presence (POP) profiles.  These weekly profiles are structured in 15-minute 

increments and provide the probability that the space is occupied at each specific time step.  To 

execute the first order Markov-chain analysis, a set of state transition probabilities are generated 

at each time step based on the POPs and the mobility parameter.  The current occupancy status is 

then determined based only on the previous occupancy status and the state transition 

probabilities.   
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Development of Additional Parameters 

The goal of these proposed additional parameters was to facilitate additional flexibility 

that allowed the final occupancy profile to be adjusted to accommodate schedules and patterns 

that did not exist in the original test building.  It was decided that the adjustments should be 

made to the POP arrays instead of during the calculation of the state transition probabilities, 

where the mobility parameter is applied. These additional parameters were intended to actually 

modify the base on which the state transition probabilities are determined, thus leaving the 

influence of the mobility parameter unmodified. 

Four additional parameters were defined to assist with expanding the occupancy model to 

incorporate variations in the daily occupancy patterns.  These four parameters, in order of 

execution, are the alpha, lambda, delta and nu parameters.  

Alpha Parameter 

The alpha parameter was the first parameter created.  The alpha parameter simply aims to 

shift the beginning of the occupied day earlier or later.  The base start time from the occupancy 

model was found to be approximately 6 am.  At this time, the occupancy rate begins its steep 

climb toward midday.  The alpha parameter shifts this occupancy start earlier or later in the day, 

and is structured to be input as the number of hours the start of the day should be delayed.  For 

example, a shift of +2 would shift the start time to 8 am, and a shift of -1.75 would shift the start 

time to 4:15 am.  Figure 58 illustrates the desired way in which the alpha parameter shifts the 

entire day pattern simple forward or backward without modifying the values. 

When the alpha parameter is positive and the start of the day is shifted later, the POP is 

modified by carrying the same probability from the base start time (6 am) to the revised start 

time.  The remainder of the day simply experiences a uniform time shift.  Likewise, a negative 
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alpha parameter shifts the day earlier.  In this case, the morning POP is truncated at the adjusted 

start to the day, and then the remainder of the known day simply shifts forward.  The last few 

hours of the day are extended by simply repeating the probability from the final time step of the 

unmodified algorithm until the day is complete. 

 

Figure 58: Desired shift by alpha parameter to occupancy model results. 

Lambda Parameter 

The lambda parameter was the second parameter created.  The lambda parameter allows 

the overall length of the day to be modified.  The day length found in the base algorithm was 15 

hours.  The lambda parameters increases or decreases this day length, and is structured to be 

input as the number of days by which the day length is lengthened.  For example, a lambda of 2 

indicates that the day should be lengthened by 2 hours to 17 hours total, and a lambda of -4 

indicates that the day should be shortened by 4 hours to 11 hours total.  Figure 59 illustrates this 

desired shift. 
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Figure 59: Desired shift of lambda parameter to occupancy model results. 

The actual execution of the lambda shift began by establishing the actual times for the 

start and end of the day after the alpha shift, and the adjusted day length based on the lambda 

shift.  The POP data is then either compressed or expanded to accommodate the change in day 

length.  To execute this, linear interpolation is used to find data points at the specific time steps 

need at the conclusion of this modification.  The shortfall of this method is that the extreme 

peaks and valleys of the unmodified POP data may get lost in the interpolation if the time step 

adjustment does not use the peak or valley values, and thus the extremes of occupancy may not 

be as prevalent, though the shift is fairly minor. 

Delta Parameter 

The delta parameter was then created to allow the adjustment of the daytime occupancy 

upward or downward.  This parameter simply increases or decreases the probability of presence 

at each time step.  The delta parameter is entered as a ratio of the current probability.  For 

example, a delta of 1.2 increases the daytime POP values by 20%, and a delta of 0.8 decreases 

the daytime POP to 80% of their original value.  The delta parameter again impacts only the 
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daytime hours, which is assumed to be 6 am to 9 pm, but those time constraints are first adjusted 

according to the alpha and lambda parameters. 

This is different from the mobility (mu) parameter in two ways.  First, the delta parameter 

is applied only to the daytime occupied hours, where the mu parameter is applied to all hours of 

the day.  Second, the mobility parameter impacts how the state transition probabilities are 

occurring, where the delta parameter simple scales the POPs that serve as the basis for the state 

transition probability calculations.  The mu parameter captures the individual variation of 

occupancy patterns by allowing occupants to be more or less mobile, decreasing or increasing 

their sedentary occupation time.  Figure 60 illustrates the desired impact of the delta parameter 

on the occupancy profile. 

 

Figure 60: Desired shift of delta parameter to occupancy model results. 

Nu parameter 

Finally, the nu parameter was created to allow the adjustment of the occupancy rate 

outside of the normal daytime hours.  This parameter is similar to the delta parameter in that it 
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parameter is again input as the ratio of the current probability during nighttime hours, the same 

process that was demonstrated for the delta parameter.  Figure 61 illustrates the desired shift 

from the nu parameter. 

 

Figure 61: Desired shift of nu parameter to occupancy model results. 

Programming and Sequencing 

These additional model parameters were designed to be used to modify the POPs before 

the mu parameter is applied and the state transition probabilities determined.  Therefore, a 

separate function was created in the Matlab simulation environment execute this modification to 

the selected POP, which represents a full week of data.  As stated above, the alpha parameter was 

applied first, to shift the start of the day earlier or later.  The lambda parameter was applied 

second to increase or decrease the length of the day, with the start time based on the adjusted 

start time dictated by the alpha parameter.  The delta and nu parameters were then applied to the 

daytime and nighttime hours, respectively, based on the workday start and end times after the 

alpha and lambda shifts have occurred.  The adjusted POP is then fed directly back into the 

original algorithm. 
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This method of incorporating these four new parameters was sequenced intentionally.  

The changes to the POPs do not influence the way in which the long-term absences are 

determined or the way in which the mobility parameter is applied.  Those two important steps 

introduce the variability that was the most attractive feature of this particular algorithm, and 

introduction of these additional four parameters in another sequence would have modified how 

those particular adjustments were made. 

Validation against Occupancy Profiles 

The next step was to validate that the modifications introduced via the additional four 

parameters do not preclude the ability of the modified algorithm to model the same original 

occupancy profile.  To demonstrate this, the modified algorithm was tested to convergence and 

compared against the results of the unmodified (or base) algorithm.  Figure 62 illustrates this 

convergence test, showing results for both the modified algorithm and the base algorithm.  As 

shown, at approximately 1,600 simulations, the models reach a similar result.  There is however 

a drift after that period, leading to a small deviation between the results from the two algorithms 

in terms of annual occupied hours.  Figure 63 presents a histogram comparing the results of the 

simulations using the base algorithm to that of the modified algorithm.  As shown, even after the 

transformations have been included, the general distribution of the results is consistent with that 

of the base algorithm. 



 

115 

 

Figure 62: Determining model convergence for modified occupancy algorithm and 

comparing to model convergence for unmodified occupancy algorithm. 

 

Figure 63: Plot illustrating relative frequency of simulation results for both the base 

(unmodified) occupancy algorithm and the modified occupancy algorithm. 
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Expanded Model Capabilities 

The modified algorithm was then tested to evaluate the effectiveness of the four 

additional parameters in achieving the desired increased flexibility.  Figures Figure 64 

throughFigure 67 illustrate the actual impact of the four additional parameters on the POPs. 

 

Figure 64: Impact of alpha parameter on probability of presence profile for a single day. 

 

Figure 65: Impact of lambda parameter on probability of presence profile for a single day. 
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Figure 66: Impact of delta parameter on probability of presence profile for a single day. 

 

Figure 67: Impact of nu parameter on probability of presence profile for a single day 

(showing only below 10% due to scale of changes). 
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Figure 68: Impact of all four new occupancy model parameters on a weekly POP,  

with  = -3,  = 2,  = 0.5 and  = 2, beginning on Monday. 

Figure 68 illustrates the impact of using all four new parameters on a weekly POP.  As 

described, the alpha parameter was set to start the daytime occupancy pattern three hours earlier.  

The lambda parameter was set to extend the length of the daytime occupancy hours by two 

hours.  The probability of presence during the peak daytime occupancy hours was reduced by 

half, and the overnight occupancy rate doubled.  As shown, the parameters were successfully 

employed together to modify a weekly profile. 
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REVISED SENSITIVITY ANALYSIS 

Using the revised and expanded occupancy model as described above, the sensitivity 

analysis was repeated to determine the relative importance of the various new and old parameters 

in contributing to the variance of annual energy use predictions.  Again, the first-order 

Sensitivity Index and higher-order Total Index was determined for each parameter.  Table 13 

provides the results of this analysis.  When examining the first-order effects (Si), the mobility 

parameter was again shown to most significantly contribute to the model variance.  The sum of 

these first-order sensitivity indices is 0.771, illustrating that there are measurable interactions 

between these various parameters, making the Total Effect Index (St) a better measure. 

Table 13: Results of revised sensitivity analysis. 

 

Figure 69 illustrates the relative Total Effect Indices as determined using the same 

method outlined previously.  As shown, the mobility parameter continues to most significantly 

contribute to the model variance, indicating again that the daily in-and-out, which directly 

impacts the ability to have switching actions, is of the largest importance. 

It is interesting to note that the occupancy parameters, including the previously-

established Mobility parameter and the four newly-proposed parameter, together account for 

62.7% of the overall variance.  This continues to reinforce the conclusion that a thorough method 

for assessing occupancy is pivotal in this analysis.  Of those parameters, the mobility parameter 

proves to be the most significant, and that is followed by the daytime occupancy rate parameter 
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St 0.320 0.645 0.356 0.681 1.214 0.544 0.452 0.822 0.319
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(delta) and the arrival time parameter (alpha).  The nighttime occupancy rate parameter (nu) 

proves to be the least impactful, but that can be expected due to the overall low assumed 

nighttime occupancy rates. 

 

Figure 69: Relative total effect indicies using the expanded occupancy model. 
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REVISED VALIDATION ANALYSIS 

Based on the adjusted occupancy algorithm, the validation was attempted again to see if 

the typical weekday, Saturday and Sunday daily profiles could be better matched given the added 

degrees of freedom in the occupancy model.   

 

Figure 70: Results of revised validation for weekday. 

Table 14: Additional model parameter settings for revised validation. 

Parameter Value 

 0 

 6 

 1 

 20 

 

0.1653

0.170

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

R
e
la

ti
v

e
 E

n
e
r
g

y
 U

se
 I

n
te

n
si

ty

Hour of Day

Metered M5



 

122 

Figure 70 illustrate the results of using the revised occupancy algorithm in the overall 

model flow.  Table 14 includes the additional model parameters beyond Set 27 from the initial 

validation effort shown above, which served as the basis for this set (M5).  As shown, the 

modifications to the occupancy profile allowed the overall energy use profile to be adjusted to 

provide more consistent agreement with the profile of the sub-metered lighting energy data.  No 

adjustment was applied to the start time, though with further refinement, the start time could be 

pushed slightly later.  The overall workday length was extended by six hours, allowing the peak 

daily occupied period to drift further toward the later hours.  No adjustment was required for the 

peak-day occupancy, which follows since the peak-day lighting energy prediction from the base 

Set 27 was well able to predict though that time period.  The overnight occupancy potential was 

increased by twenty times to significantly increase the overnight lighting energy use.   

Figure 71 illustrates the results from this same revised validation set (M5) for Saturdays, 

and Figure 72 for Sundays, though the focus of these additional parameters was on the typical 

weekdays.  As shown, the increase in occupancy potential during off-peak hours, which 

uniformly applies as currently written to weekdays as well as weekend days, paired with no 

change to the daytime occupancy potential served to invert the lighting energy profile, allowing 

it to more closely follow the shape of the sub-metered energy data.  On both days, though, the 

prediction generally fell short of the sub-metered data results.  Further refinements to this revised 

occupancy model could include overall scaling factors, one applied each to Saturday and one to 

Sunday, that are layered after the other four transformations. As stated at the beginning of this 

section, this validation effort and the tuning of the four new parameters focused solely on 

weekdays. 
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Figure 71: Results of revised validation for Saturday. 

 

Figure 72: Results of revised validation for Sunday. 
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DAYLIGHTING CALCULATION ASSUMPTION EXPLORATION 

As presented earlier, the method of calculating the annual daylight availability for use in 

these lighting energy calculations are of interest, both because it directly influences the energy 

savings calculations for automated systems, but also because daylighting availability is the 

independent variable when considering the likelihood of manual control switching actions.  As 

such, the method for creating an annual workplane illuminance profile was of particular interest. 

Two-Sky Model 

In previous work (Sanders & Chinnis, 2011), this particular issue had been a discussion 

topic.  In that work, a method for eliminating the occurrence of partly cloudy sky conditions was 

used in the modeling effort, as illustrated in Figure 73.   

 

Figure 73: Two-sky model flow chart. 

As shown, the first step of this modeling algorithm was to use the room geometry and 

location to perform an annual daylighting simulation by simulating the horizontal workplane 

illuminance under each clear and overcast standard skies, in 15-minute increments, on five days 
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per year (both Solstices and the 21
st
 of each month between).  Linear interpolation was then used 

to extract the data from once per month to daily, accounting for daylight savings shifts.  The 

symmetry of the solar year was then exploited, while accounting for the asymmetry of daylight 

savings time.  Overall, this resulted in two annual daylighting profiles, one under clear skies and 

one under overcast skies, that provided horizontal workplane illuminance in 15-minute 

increments. 

Simultaneously, weather data for the specific location was gathered in terms of sky type 

for the specific location (NOAA Satellite and Information Service).  The form of the data from 

that source presents the typical monthly occurrence of each sky type (clear, overcast and partly 

cloudy) based on historical data.  In the two-sky model, the partly cloudy day type was 

eliminated, assigning half of those days to be cloudy and half to be clear.  Where an odd number 

of partly cloudy days occurred, the sky type receiving the higher number was chosen randomly.   

An annual daylight illuminance profile was then generated by using the weather data to 

combine the annual overcast and clear sky illuminance profiles.  For each day, the sky condition 

was stochastically assigned to be clear or overcast.  However, this stochastic assignment was 

limited to verify that the number of occurrences per month of each sky type aligned with the 

weather data.  Then, using the two annual profiles created, the workplane illuminance if 15-

minute increments was determined for a full year. 

Elimination of Partly Cloudy Conditions 

In this method, the partly cloudy sky condition was eliminated.  The purpose for this 

elimination was to remove the very large variability of potential partly cloudy skies.  In general, 

the CIE recognizes a few partly cloudy sky models as described previously.   Those sky models 

typically provide a uniform reduction in sky brightness over the overcast sky model and typically 
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simply reduce the direct-beam illumination.  Other sky models include dense opaque cloud cover 

in certain locations, which may or may not occlude the direct sun.  In general terms, when a 

partly cloudy sky is described as 60% cloud cover, that can be interpreted either as 60% of the 

sky covered in virtually opaque clouds or the full sky covered by a cloud that has the same effect 

as 60% of the overcast change.  This overall confusion led to the elimination of the partly cloudy 

sky type from the previous work. 

Three-Sky Model 

To test the validity of the two-sky assumption, a three-sky model was also created an 

executed, and the difference in annual daylight availability and energy use predictions was 

evaluated.  Figure 74 illustrates the flow of the three-sky model, except for the inclusion of the 

partly cloudy sky type in both the daylighting calculations and the weather assignment. 

 

Figure 74: Three-sky model flow chart. 
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One north-facing room and one south-facing room were modeled based on the subject 

building used for the validation effort above.  The annual daylight availability, in fc-hours, was 

determined for each room under each sky model.  Additionally, assuming the information from 

the validation study, the total annual energy density was also determined.  Table 15 presents 

these results and Figure 75 illustrates the mean annual energy density calculation. 

Table 15: Impact of daylighting model type on annual daylight availability and annual 

energy density 

 
Total Annual fc-Hours 

Total Annual Energy 

Density 

 

North South North South 

2-Step 129,100 311,017 0.080 0.112 

3-Step 150,119 343,219 0.077 0.112 

Difference 14.0% 9.4% -3.2% 0.2% 

 

 

Figure 75: Impact of daylighting model type on annual energy density as a function of the 

number of simulations for each orientation. 
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As shown, the difference in the annual energy density using the two methods of 

daylighting simulation was found to be statistically significant (p <0.05) for the North-facing 

room.  The larger difference on the North-facing prediction is due to the reliance of the north-

facing rooms on the luminance of the sky dome.  Under a partly cloudy sky condition as modeled 

using a uniform brightness increase, the inclusion of that sky type increased the annual daylight 

availability.  This in turn decreased the annual energy consumption since that daylight level was 

generally maintained below the blind-closing threshold of 2,000 lux (200 fc).   

The difference in energy consumption for the South-facing room was not found to be 

statistically significant (p = 0.435).  While the annual daylight availability did change, the 

resultant energy use was not significantly impacted since the illuminance levels were already 

exceeding the blind-closing thresholds for much of the year, thus the higher energy consumption 

than in the North-facing rooms. 

Therefore, when considering the impact of this assumption on South-facing rooms, it was 

shown to be less imperative to include the partly cloudy sky condition in the modeling effort.  

Therefore, the revised validation analysis and deterministic modeling efforts were both 

performed using the three-sky model.  However, despite the significant difference found between 

the two, it is not apparent which method provides results that are more accurate. 
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SUPPORT OF FUTURE WORK 

This overall effort was intended to support future research into lighting energy 

predictions.  The identification of an occupancy model and a lighting controls model to serve as 

the basis for dynamic lighting energy predictions can serve to focus future data collection efforts. 

Capabilities of Extended Occupancy Model 

The additional parameters added to the occupancy model constitute a significant 

contribution in the sense that the revised model provides the ability to generate occupancy 

profiles that are not directly tied to the subject building used to create the original algorithm.  

The extended occupancy model allows the occupancy pattern to be influenced by knowledge of 

the building operations, and allows the better tuning in general. 

Additionally, supporting the modeling efforts in other fields, the addition of these four 

new degrees of freedom in the model may make manual tuning of energy modeling for auditing 

purposes more robust.  If an energy modeler is participating in an inverse modeling effort, where 

known building parameters are matched against historical utility data and unknown factors such 

as scheduling are adjusted, the inclusion of additional degrees of freedom when incorporating 

stochastic occupancy patterns may allow nuanced adjustment of the modeling parameters.  The 

results of this type of effort can be used to encourage occupant participation in energy use 

reduction should it be concluded that occupants were not maximizing the potential of their 

daylighting. 

Data Collection for Simplified Modeling 

The additional four parameters proposed for the occupancy model will also allow the 

base occupancy model to more simply be extended to space types that do not follow the same 
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schedule as the building used to derive the model.  Employing the revised model with the four 

additional parameters would essentially be a simple data collection effort.  The start time and 

typical day length can be simple adjustments based on the use patterns of the building, though 

the model is constructed to assume a standard pattern of occupied during the day and unoccupied 

nights and weekends.  The daytime and nighttime occupancy rates can be surveyed through 

simple employee questionnaires or through the use of self-reported billing hours, for example.  In 

this way, the four newly established parameters can be adjusted based on known occupancy 

patterns of the building, which will likely prove to be very useful in a reverse-modeling scenario.  

The mobility parameter is still a general unknown, though the original algorithm’s authors 

suggest a standard set of high, medium and low values could be determined and published as a 

guide to users of their modeling infrastructure. 

Data Collection Recommendations 

The current occupancy and lighting controls algorithms, both modified in this effort, are 

still based on, and only truly applicable to, private office spaces.  It is necessary to expand on 

these modeling capabilities to provide a more robust model structure. 

Space Type Paradigms 

A simple method to expand this model set to additional spaces is to group spaces into a 

few sets that operate with distinct behavior patterns. 

Long-Term Private Spaces 

The action probabilities incorporated into the Lightswitch-2002 model were based on 

data collected for private office spaces.  While this data can prove very useful for modeling of 

space types where the users interact in a similar manner with the building system controls, it is 

effectively limited in its applicability because of that reliance.  Additionally, the empirical basis 
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for the blind control model proposed by Haldi & Robinson (Adaptive actions on shading devices 

in response to local visual stimuli, 2010) is based on private offices. 

Moving forward, the basic probabilistic action curves used in the lighting controls model 

can be applied to spaces grouped as Long-term Private spaces.  This broad group of spaces 

includes those that are occupied by one or perhaps two “controlling” individuals and that are not 

considered transient spaces.  In these types of spaces, the impact of changing daylighting 

conditions is likely to have more of an impact compared to the same changing conditions in a 

space that is occupied only for short durations.  

Long-term private spaces may also include such space types as residential living quarters 

and private offices, where only a single or a few occupants will be expected to use the controls 

and operate blinds.  This control paradigm will also likely apply to space types including 

classrooms, where the teacher generally assumes ownership over the space controls, and 

conference rooms, where a single user, typically the presenter, does feel a strong level of 

“ownership” over the lighting. 

Long-Term Public Spaces 

In contrast to long-term private spaces, long-term public spaces are grouped based on the 

long personal occupancy periods but a general lack of ownership over the lighting controls.  This 

is based on the concept of open office spaces, where the switching actions likely take place at 

first arrival and final departure, without adjustments being made throughout the day in response 

to short-term absences or changing daylight conditions as found in the work of Hunt (1979).  In a 

long-term public space, it is assumed that the deterministic action on shading devices does not 

happen at each intermediate arrival or departure, but instead is likely triggered only by a closing 

of the shading device in the presence of average illuminance in excess of the UDI range. 
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While this paradigm is based on the open-office model, there are other space types that 

will likely behave this way, including libraries, retail and cafeterias.  In general, these space 

types are assumed to follow this paradigm of multiple long-term occupants without a single 

occupant feeling “ownership” over the lighting system.  Instead, the democracy of these types of 

spaces is assumed to lead to a general latency in control. 

Expanding on the combined occupancy and lighting model for long-term private spaces 

and based on the results of Hunt (1979), it is assumed that in this space type will essentially 

ignore intermediate event probabilities.  This results in a scenario where the lighting switch-on 

actions are likely only at first arrival and switch-off actions likely only at final departure.   

Short-Term Spaces 

Finally, the remaining spaces in building are assumed to be applicable to a typical group 

based on short-term occupancy.  This includes such space types as restrooms, corridors, storage 

areas, and stairwells, where lighting needs are transitory.  For many of the spaces, the lighting 

system status will likely exhibit inertial tendencies, trending to remain in their previous status for 

long periods of time independent of occupancy level.  This is assumed to be most likely in spaces 

such as corridors and stairwells, where there is little personal “ownership” over the control 

system.  For spaces such as restrooms and storage areas, there is assumed to be a higher level of 

personal “ownership” and therefore the lighting system status is likely to be more directly linked 

to the actual occupancy levels and patterns.    

Similar to long-term public spaces, it is assumed that intermediate actions are likely 

irrelevant, since the occupancy state persists for such little time.  Additionally, the dampening 

coefficients, specifically for the switch-off probability, will be important to consider, lending 

further inertial behavior to the space types with lower levels of ownership. 
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Additionally, the thresholds for blind control and will need to be adjusted for short-term 

spaces.  The range of tolerated daylight levels in these types of spaces is generally larger than for 

other space types, so therefore the thresholds should be adjusted to follow suit. This does not 

impact the deterministic yes/no shade action model, but simply modifies the levels at which 

those actions take place. 

Occupancy-Focused Efforts 

The extension presented herein for the occupancy model that allows the typical daily 

occupancy profile to be adjusted by controlling the background probability of presence data 

represents a convenient method for inverse modeling to compare energy user predictions to 

actual data sets.  However, moving forward, the actual empirical data set should be expanded to 

allow various occupancy model parameters to be informed by these spaces. 

The data collection efforts involved to support the empirically-based expansion of the 

occupancy model may be straightforward considering specific lighting controls, environmental 

conditions and overall patterns.  In general, it would be most beneficial to sample occupancy 

patterns in many different actual spaces that fall within a particular space type paradigm.  For 

example, the data set for the Long-Term Private Spaces set should not be based only on private 

offices, but should include diversity of application type.   

The pure occupancy data collected is fairly simple, collecting simple “occupied/not 

occupied” time-stamped data streams in multiple spaces.  This is most straightforward in spaces 

with only one entrance or exit.  However, based on the work of others (Dodier, Henze, Tiller, & 

Guo, 2006), the data series from multiple sensor locations in a single space can be combined to 

create one binary occupancy series. 
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The data would be filtered to a time-series appropriate for model extension, for example 

identifying in 15-minute increments the status (occupied/not occupied) of the space.  The 

analysis required to incorporate this data into the occupancy algorithm would involve assessing 

the patterns for probability of extended absence and probability of presence, which serve as the 

underlying empirical basis for the algorithm. 

Post-hoc analysis of the probability of presence profiles determined in each space may 

support or refute the space type paradigms, further guiding the refinement of the models created.  

Additionally, further possible degrees of freedom, such as adjustment of day/night occupancy 

levels for Saturdays and Sundays separately from each other and weekdays, should be considered 

to allow extensive refinement of the occupancy model.  Finally, a control parameter should be 

included to structure break times, such as lunch breaks, controlling their time, duration and 

depth.  

Blind Control Actions 

The work of Haldi & Robinson (Adaptive actions on shading devices in response to local 

visual stimuli, 2010) presented an advancement in manual blind control modeling beyond the 

basic control model used in this effort.  Their method, though, tied the applicability of the model 

to daylighting conditions very specific to that particular building, including the dual-blind 

configuration, the electronic controls, and the fact that the building occupants are likely more 

aware of their controls due to extensive controls testing.   

However, to further adapt modeling efforts to other space types, the empirical basis for 

this specific model structure of blind control should be expanded to additional space types 

paradigms through expanded data collection efforts.  Additional window configurations, such as 

single windows facing in various directions, should be considered.  Various curtain and blind 
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types and controls should also be considered.  The data set required for this analysis would 

include the paired interior and exterior illuminances, and the status of the blinds.  For 

electronically-controlled blinds, the status can be taken from the control signal, as was done in 

the original work.  For manual blinds, where both total deployment and angle of deployment can 

be varied, the status would need to be taken either through a sensor detection network or through 

the use of photographic equipment, which would likely be more cost-effective.      

Lighting Controls Actions 

Based on the results of the sensitivity analysis, some guidance can be provided to control 

the effectiveness of the data collection effort.  The data collection effort should focus on three 

specific items: occupancy status, workplane illuminance and lighting power. 

The results of the three focused efforts would need to be used in conjunction to evaluate 

the use of lighting action curves and dampening coefficients.  Occupancy status should be 

tracked for all switching events, along with the daylighting conditions, to extract whether 

significant relationships exist between occupancy status, daylighting level and switching 

probability across space types.  Again, this will allow the assumptions of the space type 

paradigms to be assessed. 

Distribution of Data Collection Efforts 

To maximize the cost-effectiveness of data collection efforts, the choice of sensor 

locations and types should specifically support further model developments.  Between the 

occupancy, blind control and lighting control models, the following data is required: 

 Occupancy data: binary occupancy data streams, time-stamped.  For large multi-occupant 

spaces, disparate data streams would need to be merged to a single occupancy stream. 

 Exterior horizontal illuminance. 
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 Workplane illuminance.  In multi-occupant spaces, workplane illuminance should be 

measured in locations representative of each lighting control zone. 

 Blind status. 

 Lighting energy status, per zone.  If the luminaires dimmed per circuit, the lighting 

energy status should be based on actual metered power and not approximated by 

measuring lamp brightness due to ballast inefficiencies. 

In general, all three major models rely on this same set of data.  The occupancy data is the most 

critical data set, since it serves as the empirical basis directly for the occupancy models and 

indirectly for the lighting controls actions and blind models.  Secondary to the occupancy status 

is the workplane illuminance and lighting energy status, which both serve as the empirical basis 

for the lighting controls action probabilities.  The workplane illuminance is also a critical 

component of the blind control models.  The blind status and the exterior illuminance, finally, are 

used directly in the blind model alone. 
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CONCLUSION 

Overall, this research effort illustrated that the available simulation tools for estimating 

annual lighting energy use and peak demand result in widely-varied predictions.  Additionally, 

the more informed the model is by the actual building, such as its actual LPD or hours of 

operation, the more accurate the prediction can be.  In order for design-phase cost-benefit 

analysis to be performed, it is desirable to provide more robust modeling methods that better 

account for time-dependent variations, such as the advanced simulation methods.  However, its 

current limitation to private offices reduces its applicability to the entire building due to 

variations in operational characteristics.   

Additionally, this effort presented an adjusted method of predicting time-dependent 

lighting energy use at the occupant level, which would be desirable to integrate into whole-

building energy simulations to coordinate window, blind, and switching actions, and their impact 

on HVAC systems and renewable energy resources.  However, these models are very limited, 

having been based each on only a limited data set, and are not robust enough to model spaces 

with different occupancy patterns than the one used to form the model basis. 

Recommendations 

Going forward, this type of stochastic occupant-based modeling represents an 

opportunity to significantly expand the ability to characterize building energy use with high 

fidelity.  From a utility perspective, the opportunity to understand the reasonable range of 

expected lighting energy use could create the opportunity to shift billing focus away from energy 

and demand charges alone and toward real-time energy performance.  Figure 76 illustrates the 

range of intensity values found through the revised validation effort for a typical weekday.  This 
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figure depicts the absolute maximum and minimum energy use intensity predicted for each time 

step, as well as curves illustrating the location of one and two standard deviations above and 

below the mean.   

 

Figure 76: Range of simulated energy use intensity from revised validation for weekday. 

Figure 77 illustrates the range of individual hourly values used to derive the distribution 

curves shown in Figure 76, but includes both weekdays and weekend days.  As shown, the 

hourly use values do tend to distribute fairly uniformly above and below the mean  hourly value, 

shown in red.  It is also interesting to note that the hours at the beginning of the occupied day 

tend to experience larger variations in energy use intensity compared to the afternoon hours.  

Additionally, it is interesting to note that the lunch break seems to occur very typically, including 

at the highest and lowest energy consumption rates. 
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Figure 77: Individual values of simulated energy use intensity from revised validation for 

weekday for a single occupant over a single year (includes weekdays and weekend days). 

This type of known hourly energy prediction for particular building type would be very 

useful when considering dynamic real-time pricing.  Essentially, the utility could structure rates 

or tariffs to be based on where a building’s energy consumption pattern lies on this type of 

predicted curve.  If it consistently performs below the mean, incentives could be applied.  If they 

consistently perform above the mean but within reasonable limits, minor incentives could be 

introduced to reduce energy or retro-commissioning could be offered.  If operation regularly 

exceeds the maximum expected value, rates could be increased.   

Additionally, the use of this type of hourly energy prediction tool can change the way in 

which energy efficiency measures are evaluated.  For example, the California Energy 

Commission requires that cost-effectiveness of an energy efficiency measure be validated 

through the use of Time-Dependent Valuation (TDV) (California Energy Commission, 2004).  
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To support those calculations, hourly energy costs are determined that essentially capture 15 

years worth of energy costs, including inflation and escalation, on an hourly basis.  The TDV 

values capture both the energy costs and demand charges associated with time-of-use pricing.  

The TDV method, therefore, illustrates that peak-summer daytime electricity use is more 

expensive than winter nighttime use.  To illustrate the potential impact of a stochastic simulation 

as the source for schedules, an analysis was performed to determine the 15-uear cost as a 

function of each of the three deterministic schedules reviewed, the results of the revised 

validation effort using the modified occupancy algorithm, and the filtered sub-metered lighting 

energy data.  This analysis was performed using the TDV data for each of the 15 climate zones 

in California, and then averaged to arrived at the costs shown in Figure 78.  As shown, the three 

deterministic schedules (Business Hours, ACM and DOE2) result in a 15-year energy cost that is 

significantly below the cost found using the filtered sub-metered data.  The energy use predicted 

using the advanced simulation methods herein proposed result in an estimation that is much 

closer. 
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Figure 78: 15-year lighting energy costs as a function of various schedule sources using the 

TDV method. 

As shown, the modeling methods proposed herein represent a marked improvement over 

existing deterministic scheduling options as a method to predict time-dependent lighting energy 

use.  The ability to better predict lighting energy use will increase the accuracy of lighting energy 

predictions, leading to more accurate assessment of energy efficiency measures and cost 

effectiveness.  Overall, this type of modeling capability could lead to an expanded way in which 

our lighting energy is viewed by the consumer and utility. 

Overall, this effort marked a step in the effort to improve the accuracy of lighting energy 

modeling for both pre-design and post-occupancy assessments.  An existing lighting energy 

model, the Lightswitch-2002 (Reinhart C. , 2004) model, was reviewed and updated given the 

most recent lighting controls and blind actions.  Additionally, occupancy models were reviewed 

and it was determined that the Page et al. (2008) occupancy algorithm provided the most robust 

occupancy predictions for single-occupant offices.  The combination of these two models was 

used to assess their potential for simulating lighting energy use, including a validation analysis 
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comparing the results to sub-metered lighting energy data for an office building, and a sensitivity 

analysis was performed using these two models to assess the relative impact of the individual 

parameters on the lighting energy prediction.  It was found that the limitations of the occupancy 

profile restricted the range of applicability of the combined model set, so additional parameters 

to modify the occupancy model were proposed and assessed through validation and sensitivity 

analyses.  The results of these analyses were used to construct data collection recommendations 

to allow the empirical data set on which the models are built to be expanded to allow the model 

combination to evolve to apply to more space types and incorporate a broader data set.  The main 

contribution of this work was the identification and evaluation of various modeling options that 

present a potential for improving lighting energy prediction accuracy, and the distillation of the 

results of that analysis to a data collection recommendation that will be essential for expanding 

the model applicability. 
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APPENDIX A: MAIN MATLAB SIMULATION CODE 

%************************************************************************** 
% 
%   FUNCTION  
%   LtgNrg 
% 
%   DESCRIPTION 
%   Generates a new occupancy profile via Page and executes manual portions 

of Lightswitch 2.0 model 
%  
%   ARGUMENTS 
%   year: the year that we are using; this program does not account for 
%         leap-years 
% 
%   nZones: the number of single-occupancy zones 
% 
%   OnDC: Dampening coefficient for switch-on at arrival conditions (0 to 
%   1 in increments of 0.01) 
% 
%   OffDC: Dampening coefficient for switch-on at departure conditions (0 
%   to 1 in increments of 0.01) 
% 
%   IntOnDC: Dampening coefficient for intermediate switch-on conditions (0 
%   to 1 in increments of 0.1) 
% 
%   IntOffDC: Dampening coefficient for intermediate switch-on conditions 
%   (0 to 1 in increments of 0.1) 
% 
%   IntOnType: 0 for Reinhart & Voss curve, 1 for Lindelof curve 
% 
%   WPE: Average workplane illuminance in 15-minute intervals 
% 
%   TargetE: Target illuminance 
% 
%   LPD: Lighting power density 
% 
%   ControlSys:    Lighting Control System where: 
%       1 = Manual On/Manual Off, No Daylighting 
%       2 = Manual On/Auto Off, No Daylighting 
%       3 = Auto On/Auto Off, No Daylighting 
%       4 = Manul On/Manual Off, With Daylight Dimming 
%       5 = Manual On/Auto Off, With Daylight Dimming 
%       6 = Auto On/Auto Off, With Daylight Dimming 
%       7 = Manual On/Manual Off, With Daylight Bi-Level Switching 
%       8 = Manual On/Auto Off, with Daylight Bi-Level Switching 
%       9 = Auto On/Auto Off, with Daylight Bi-Level Switching 
%       10 = Bi-level (50% Auto On, 50% Manual On/All Auto Off, No Daylight 
% 
%   DelayTime: Occ Sensor Delay Time in minutes 
% 
%   BlindControl:   Type of blind controls where: 
%       1 = Fully manual 
%       2 = Fully automated (ideal) 
% 
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%   OUTPUT 
%   LtgNrgOut: Effective 15-minute LPD 
%    
%    
% 
%   ORIGINAL AUTHOR 
%   Darcie Chinnis 
%   University of Colorado 
%   darcie.oconnor@colorado.edu 
% 
%   NOTES 
%    
%  
%************************************************************************** 
function NrgOut = 

LtgNrg(year,nZones,TargetE,LPD,ControlSys,DelayTime,BlindControl,mu) 

  
%Call Page algorithm to create occupancy profiles 
OccProfile = generateOccupancyMinIntervalsVariableMu(year,nZones,mu); 

  
%Dim main variables 
BlindStatus(1:nZones,1:35040)=0; 
LtgStatus(1:nZones,1:35040)=0; 
BlindStatus(1:nZones,1)=0; 
AnnualIntensity(1:nZones)=0; 
NrgProfile(1:nZones,2:35041)=0; 
AnnualProfile(2:35041,1:nZones)=0; 
TotalProfile(2:35041,1)=0; 

  
%for each zone, loop through manual control algorithm 
for n = 1:nZones; 

  
    %Call lightswitch 2.0 model 
    NrgProfile= 

LightSwitch(OccProfile,TargetE,n,ControlSys,DelayTime,BlindControl,BlindStatu

s); 

     
    %Calculate effective Use 
    for j = 2:35041 

         
        AnnualIntensity(n)=AnnualIntensity(n)+NrgProfile(j,n); 

                 
    end 

  
    AnnualEnergy(n)=LPD*AnnualIntensity(n) 

     
    AnnualProfile(2:35041,n)=NrgProfile(2:35041,n); 

  
end 

  
for j=2:35041 
    for n = 1:nZones 
        TotalProfile(j,1)=TotalProfile(j,1)+AnnualProfile(j,n); 
    end 
end 
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save('TotalProfile.mat');  
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%************************************************************************** 
% 
%   FUNCTION  
%   LtgNrgConv 
% 
%   DESCRIPTION 
%   Generates a new occupancy profile via Page and executes manual portions 

of Lightswitch 2.0 model 
%   with fixed inputs, used to evaluate model convergence 
%  
%   ARGUMENTS 
%   year: the year that we are using; this program does not account for 
%         leap-years 
% 
%   nZones: the number of single-occupancy zones 
% 
%   OnDC: Dampening coefficient for switch-on at arrival conditions (0 to 
%   1 in increments of 0.01) 
% 
%   OffDC: Dampening coefficient for switch-on at departure conditions (0 
%   to 1 in increments of 0.01) 
% 
%   IntOnDC: Dampening coefficient for intermediate switch-on conditions (0 
%   to 1 in increments of 0.1) 
% 
%   IntOffDC: Dampening coefficient for intermediate switch-on conditions 
%   (0 to 1 in increments of 0.1) 
% 
%   IntOnType: 0 for Reinhart & Voss curve, 1 for Lindelof curve 
% 
%   WPE: Average workplane illuminance in 15-minute intervals 
% 
%   TargetE: Target illuminance 
% 
%   LPD: Lighting power density 
% 
%   ControlSys:    Lighting Control System where: 
%       1 = Manual On/Manual Off, No Daylighting 
%       2 = Manual On/Auto Off, No Daylighting 
%       3 = Auto On/Auto Off, No Daylighting 
%       4 = Manul On/Manual Off, With Daylight Dimming 
%       5 = Manual On/Auto Off, With Daylight Dimming 
%       6 = Auto On/Auto Off, With Daylight Dimming 
%       7 = Manual On/Manual Off, With Daylight Bi-Level Switching 
%       8 = Manual On/Auto Off, with Daylight Bi-Level Switching 
%       9 = Auto On/Auto Off, with Daylight Bi-Level Switching 
%       10 = Bi-level (50% Auto On, 50% Manual On/All Auto Off, No Daylight 
% 
%   DelayTime: Occ Sensor Delay Time in minutes 
% 
%   BlindControl:   Type of blind controls where: 
%       1 = Fully manual 
%       2 = Fully automated (ideal) 
% 
%   OUTPUT 
%   LtgNrgOut: Effective 15-minute LPD 
%    
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%    
% 
%   ORIGINAL AUTHOR 
%   Darcie Chinnis 
%   University of Colorado 
%   darcie.oconnor@colorado.edu 
% 
%   NOTES 
%    
%  
%************************************************************************** 
function NrgOutConv = LtgNrgConv() 

  
year = 2011; 
nZones = 1; 
TargetE = 300; 
LPD = 1; 
ControlSys = 1; 
DelayTime = 15; 
BlindControl = 1; 
mu = 0.040; 

  
%Call Page algorithm to create occupancy profiles 
OccProfile = generateOccupancyMinIntervalsVariableMu(year,nZones,mu); 

  
%Dim main variables 
BlindStatus(1:nZones,1:35040)=0; 
LtgStatus(1:nZones,1:35040)=0; 
BlindStatus(1:nZones,1)=0; 
AnnualIntensity(1:nZones)=0; 
NrgProfile(1:nZones,2:35041)=0; 
AnnualProfile(2:35041,1:nZones)=0; 
TotalProfile(2:35041,1)=0; 

  

  

  
%for each zone, loop through manual control algorithm 
for n = 1:nZones; 

  
    %Call lightswitch 2.0 model 
    NrgProfile= 

LightSwitchConv(OccProfile,TargetE,n,ControlSys,DelayTime,BlindControl,BlindS

tatus); 

     
    %Calculate effective Use 
    for j = 2:35041 

         
        AnnualIntensity(n)=AnnualIntensity(n)+NrgProfile(j,n); 

                 
    end 

  
    AnnualEnergy(n)=LPD*AnnualIntensity(n) 

     
    AnnualProfile(2:35041,n)=NrgProfile(2:35041,n); 
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end 

  
for j=2:35041 
    for n = 1:nZones 
        TotalProfile(j,1)=TotalProfile(j,1)+AnnualProfile(j,n); 
    end 
end 

  
save('TotalProfile.mat'); 

  
NrgOutConv = AnnualEnergy; 
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%************************************************************************** 
% 
%   FUNCTION  
%   LtgNrgSA 
% 
%   DESCRIPTION 
%   Generates a new occupancy profile via Page and executes manual portions 

of Lightswitch 2.0 model 
%   For use with Sensitivity Analysis (SA) Code 
%  
%   ARGUMENTS 
%   year: the year that we are using; this program does not account for 
%         leap-years 
% 
%   nZones: the number of single-occupancy zones 
% 
%   OnDC: Dampening coefficient for switch-on at arrival conditions (0 to 
%   1 in increments of 0.01) 
% 
%   OffDC: Dampening coefficient for switch-on at departure conditions (0 
%   to 1 in increments of 0.01) 
% 
%   IntOnDC: Dampening coefficient for intermediate switch-on conditions (0 
%   to 1 in increments of 0.1) 
% 
%   IntOffDC: Dampening coefficient for intermediate switch-on conditions 
%   (0 to 1 in increments of 0.1) 
% 
%   IntOnType: 0 for Reinhart & Voss curve, 1 for Lindelof curve 
% 
%   WPE: Average workplane illuminance in 15-minute intervals 
% 
%   TargetE: Target illuminance 
% 
%   LPD: Lighting power density 
% 
%   ControlSys:    Lighting Control System where: 
%       1 = Manual On/Manual Off, No Daylighting 
%       2 = Manual On/Auto Off, No Daylighting 
%       3 = Auto On/Auto Off, No Daylighting 
%       4 = Manul On/Manual Off, With Daylight Dimming 
%       5 = Manual On/Auto Off, With Daylight Dimming 
%       6 = Auto On/Auto Off, With Daylight Dimming 
%       7 = Manual On/Manual Off, With Daylight Bi-Level Switching 
%       8 = Manual On/Auto Off, with Daylight Bi-Level Switching 
%       9 = Auto On/Auto Off, with Daylight Bi-Level Switching 
%       10 = Bi-level (50% Auto On, 50% Manual On/All Auto Off, No Daylight 
% 
%   DelayTime: Occ Sensor Delay Time in minutes 
% 
%   BlindControl:   Type of blind controls where: 
%       1 = Fully manual 
%       2 = Fully automated (ideal) 
% 
%   OUTPUT 
%   LtgNrgOut: Effective 15-minute LPD 
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%    
%    
% 
%   ORIGINAL AUTHOR 
%   Darcie Chinnis 
%   University of Colorado 
%   darcie.oconnor@colorado.edu 
% 
%   NOTES 
%    
%  
%************************************************************************** 
function NrgOutSA = LtgNrgSA(x) 

  
OnDC=x(1); 
IntOffDCP=x(2); 
IntOnDC=x(3); 
mu=1; 
OffDC=x(4); 

  
year = 2011; 
nZones = 1; 
TargetE = 300; 
LPD = 1; 
ControlSys=1; 
DelayTime=15; 
BlindControl=1; 

  
%Call Page algorithm to create occupancy profiles 
OccProfile = generateOccupancyMinIntervalsVariableMu(year,nZones,mu); 

  
%Dim main variables 
BlindStatus(1:nZones,1:35040)=0; 
LtgStatus(1:nZones,1:35040)=0; 
BlindStatus(1:nZones,1)=0; 
AnnualIntensity(1:nZones)=0; 
NrgProfile(1:nZones,2:35041)=0; 
AnnualProfile(2:35041,1:nZones)=0; 
TotalProfile(2:35041,1)=0; 

  
%for each zone, loop through manual control algorithm 
for n = 1:nZones; 

  
    %Call lightswitch 2.0 model 
    NrgProfile= 

LightSwitchSA(OccProfile,TargetE,n,ControlSys,DelayTime,BlindControl,BlindSta

tus,OnDC,OffDC,IntOffDCP,IntOnDC); 

     
    %Calculate effective Use 
    for j = 2:35041 

         
        AnnualIntensity(n)=AnnualIntensity(n)+NrgProfile(j,n); 

                 
    end 
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    NrgOutSA(n)=LPD*AnnualIntensity(n); 

  
end 
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%************************************************************************** 
% 
%   FUNCTION  
%   LtgNrgVA 
% 
%   DESCRIPTION 
%   Generates a new occupancy profile via Page and executes manual portions 

of Lightswitch 2.0 model 
%   For use for creation of scatter plots 
%  
%   ARGUMENTS 
%   year: the year that we are using; this program does not account for 
%         leap-years 
% 
%   nZones: the number of single-occupancy zones 
% 
%   OnDC: Dampening coefficient for switch-on at arrival conditions (0 to 
%   1 in increments of 0.01) 
% 
%   OffDC: Dampening coefficient for switch-on at departure conditions (0 
%   to 1 in increments of 0.01) 
% 
%   IntOnDC: Dampening coefficient for intermediate switch-on conditions (0 
%   to 1 in increments of 0.1) 
% 
%   IntOffDC: Dampening coefficient for intermediate switch-on conditions 
%   (0 to 1 in increments of 0.1) 
% 
%   IntOnType: 0 for Reinhart & Voss curve, 1 for Lindelof curve 
% 
%   WPE: Average workplane illuminance in 15-minute intervals 
% 
%   TargetE: Target illuminance 
% 
%   LPD: Lighting power density 
% 
%   ControlSys:    Lighting Control System where: 
%       1 = Manual On/Manual Off, No Daylighting 
%       2 = Manual On/Auto Off, No Daylighting 
%       3 = Auto On/Auto Off, No Daylighting 
%       4 = Manul On/Manual Off, With Daylight Dimming 
%       5 = Manual On/Auto Off, With Daylight Dimming 
%       6 = Auto On/Auto Off, With Daylight Dimming 
%       7 = Manual On/Manual Off, With Daylight Bi-Level Switching 
%       8 = Manual On/Auto Off, with Daylight Bi-Level Switching 
%       9 = Auto On/Auto Off, with Daylight Bi-Level Switching 
%       10 = Bi-level (50% Auto On, 50% Manual On/All Auto Off, No Daylight 
% 
%   DelayTime: Occ Sensor Delay Time in minutes 
% 
%   BlindControl:   Type of blind controls where: 
%       1 = Fully manual 
%       2 = Fully automated (ideal) 
% 
%   OUTPUT 
%   LtgNrgOut: Effective 15-minute LPD 
%    
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%    
% 
%   ORIGINAL AUTHOR 
%   Darcie Chinnis 
%   University of Colorado 
%   darcie.oconnor@colorado.edu 
% 
%   NOTES 
%    
%  
%************************************************************************** 
function Analysis = LtgNrgVA(p) 

  
%Dim main variables 
BlindStatus(1,1:35040)=0; 
LtgStatus(1,1:35040)=0; 
BlindStatus(1,1)=0; 
AnnualIntensity(1)=0; 
NrgProfile(1,2:35041)=0; 
AnnualProfile(2:35041,1)=0; 
TotalProfile(2:35041,1)=0; 

  
for a = 1:p; 

  
    OnDC=rand; 
    IntOffDCP=rand; 
    IntOnDC=rand; 
    mu=rand; 
    OffDC=rand; 

  
    year = 2011; 
    nZones = 1; 
    TargetE = 300; 
    LPD = 1; 
    ControlSys=1; 
    DelayTime=15; 
    BlindControl=1; 

  
    %Call Page algorithm to create occupancy profiles 
    OccProfile = generateOccupancyMinIntervalsVariableMu(year,nZones,mu); 

  
    %Call lightswitch 2.0 model 
    NrgProfile= 

LightSwitchSA(OccProfile,TargetE,1,ControlSys,DelayTime,BlindControl,BlindSta

tus,OnDC,OffDC,IntOffDCP,IntOnDC); 

     
    AnnualIntensity = 0; 

  
    %Calculate effective Use 
    for j = 2:35041 

  
        AnnualIntensity=AnnualIntensity+NrgProfile(j,1); 

  
    end 
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    NrgOut=LPD*AnnualIntensity; 

  

  
    Analysis(a,1:6)=[OnDC,OffDC,IntOnDC,IntOffDCP,mu,NrgOut]; 

     
end 
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%************************************************************************** 
% 
%   FUNCTION  
%   generateOccupancyMinInterval 
% 
%   DESCRIPTION 
%   Generates a new occupancy profile for the year specified. replaces 
%   occupancy information in the input structure with new occupancy. 
%  
%   ARGUMENTS 
%   year: the year that we are using; this program does not account for 
%         leap-years yet. [and energyplus would barf if it got anything  
%         with more or less than 8760 values anyway...] 
% 
%   OUTPUT 
%   occout: a structure containing the following: 
%     .year 
%     .month 
%     .day 
%     .hour 
%     .minute 
%     .val  = this is a fractional value of the total number of people 

present; 
% 
%   ORIGINAL AUTHOR 
%   Ryan Tanner 
%   University of Colorado at Boulder 
%   ryan.tanner@colorado.edu 
% 
%   ORIGINAL DATE 
%   27.Mar.2011 
%    
%   MODIFICATION AUTHOR 
%   Darcie Chinnis 
%   University of Colorado 
%   darcie.chinnis@colorado.edu 
% 
%   NOTES 
%   May.2011 Currently the occupancy algorithm generates data at 15-min  
%   intervals and generates enough for exactly one year plus one increment  
%   (34041 fifteen-minute intervals) 
% 
%   14.Sep.2011 Added some commenting.  
%  
%************************************************************************** 

  
function occout = generateOccupancy(year,nzones) 

  
load('SampleInputs.mat') 
NumberOfBuildings=1; 
NumberOfPeople=1; 
% j=ceil(rand*20); % there are 20 options in the LongAbsences, MuProfiles, 

and ProbabilityProfiles structures; j refers to the first element 
time=(1:(8760*4))*15*60; % generate 15-minute intervals for a year [in 

SECONDS] 
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time=[time,8760*4*15*60+15*60]; % add one more interval to match occupancy 

output from the Page programs 
    occout.year(35041)  = 0; 
    occout.month(35041) = 0; 
    occout.day(35041)   = 0; 
    occout.hour(35041)  = 0; 
    occout.minute(35041)= 0; 
    occout.val(nzones,35041)   = 0; 

  
for zone = 1:nzones 
    j=ceil(rand*20); % there are 20 options in the LongAbsences, MuProfiles, 

and ProbabilityProfiles structures; j refers to the first element 
    %generate 15-minute occupancy data using the Page Algorithm 
    Occupancy=occtest(NumberOfBuildings,NumberOfPeople,... 
    LongAbsences{j}.averagenumberperyear,... 
    LongAbsences{j}.probability,... 
    MuProfiles{j}.mean,... 
    ProbabilityProfiles{j}.probability); 
    month=1; 
    day=1; 
    hour=0; 
    % mins=0; 
    % sec=0; 
    count=1; 
    for ii=2:length(Occupancy) 

  
        % create output values for year, month, day, hour and minute if at 
        % exact hourly value 
        if mod(time(ii),3600)==0; % if we're at an hourly value[1:00, 4:00, 

15:00, etc...], this is true!,  
            hour=hour+1; 
            minute = 0; 

  
            if hour > 24 % if we're at hour 25, we move to the next day, 

first hour 
                hour=1; 
                day=day+1; 

  
                if day > eomday(year, month) %eomday is the ending day of the 

month: 31 for jan, mar, 28/29 for feb, 30 for april, etc. 
                                             %if we're at day 32 for january, 

move to february 
                    day=1; 
                    month=month+1; 

  
                end 

  
            end 

         
        %create output values for year, month, day, hour and minute if NOT 
        %at exact hourly value 
        else 
            %calculate minutes 
            if ii == hour*4 + 1; 
                minute = 15; 
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            elseif ii == hour*4 + 2; 
                minute = 30; 
            else ii == hour*4 + 3; 
                minute = 45; 
            end 

                 
        end %ends 15-minute loop 

             
        % at this point we've established what year, month, day, and 
        % hour and minute we are at. 

  
        %within the hourly loop, set values for the occupancy output 
        %structure 
        occout.year(count)      = year; 
        occout.month(count)     = month; 
        occout.day(count)       = day; 
        occout.hour(count)      = hour; 
        occout.minute(count)    = minute; 
        occout.val(zone,count)  = Occupancy(ii); 

         
        % [ARTIFACT OF RYAN's MODEL] 
        % Now comes the tricky part; how to turn 15-minute data into 
        % hourly data? As of this revision, we take the average of 
        % occupancy over the last four 15-minute intervals, and round 
        % that number up with the 'ceil' command. Then we divide by the 
        % total number of people to get a fractional value of total 
        % occupancy, (between zero and 1, naturally) which Energyplus  
        % can interpret and multiply by an occupant density to get the  
        % right number of people. 
        % occout.val(zone,count)  = ceil(mean(Occupancy(ii-

3:ii)))/NumberOfPeople;  

     
        if count==35041; %stop when we get to the end of the year 
            break 
        end   

  
        count=count+1; 

  
    end % of looping through 34041 occupancy entries  

     
end % of zonal loop 

  
OccProfile=occout.val; 

  
end % of function 
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%************************************************************************** 
% 
%   FUNCTION  
%   generateOccupancyMinIntervalsVariableMu 
% 
%   DESCRIPTION 
%   Generates a new occupancy profile for the year specified. replaces 
%   occupancy information in the input structure with new occupancy.  Allows 

mu parameter to be input value (overrides built-in selection methodology). 
%  
%   ARGUMENTS 
%   year: the year that we are using; this program does not account for 
%         leap-years yet. [and energyplus would barf if it got anything  
%         with more or less than 8760 values anyway...] 
% 
%   OUTPUT 
%   occout: a structure containing the following: 
%     .year 
%     .month 
%     .day 
%     .hour 
%     .minute 
%     .val  = this is a fractional value of the total number of people 

present; 
% 
%   ORIGINAL AUTHOR 
%   Ryan Tanner 
%   University of Colorado at Boulder 
%   ryan.tanner@colorado.edu 
% 
%   ORIGINAL DATE 
%   27.Mar.2011 
%    
%   MODIFICATION AUTHOR 
%   Darcie Chinnis 
%   University of Colorado 
%   darcie.oconnor@colorado.edu 
% 
%   NOTES 
%   May.2011 Currently the occupancy algorithm generates data at 15-min  
%   intervals and generates enough for exactly one year plus one increment  
%   (34041 fifteen-minute intervals) 
% 
%   14.Sep.2011 Added some commenting.  
% 
%   2.14.2012   Fixed mu parameter as input 
%  
%************************************************************************** 

  
function occout = generateOccupancy(year,nzones,mu) 

  
load('SampleInputs.mat') 
NumberOfBuildings=1; 
NumberOfPeople=1; 
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% j=ceil(rand*20); % there are 20 options in the LongAbsences, MuProfiles, 

and ProbabilityProfiles structures; j refers to the first element 
time=(1:(8760*4))*15*60; % generate 15-minute intervals for a year [in 

SECONDS] 
time=[time,8760*4*15*60+15*60]; % add one more interval to match occupancy 

output from the Page programs 
    occout.year(35041)  = 0; 
    occout.month(35041) = 0; 
    occout.day(35041)   = 0; 
    occout.hour(35041)  = 0; 
    occout.minute(35041)= 0; 
    occout.val(nzones,35041)   = 0; 

  
for zone = 1:nzones 
    j=ceil(rand*20); % there are 20 options in the LongAbsences, MuProfiles, 

and ProbabilityProfiles structures; j refers to the first element 
    %generate 15-minute occupancy data using the Page Algorithm 
    Occupancy=occtest(NumberOfBuildings,NumberOfPeople,... 
    LongAbsences{j}.averagenumberperyear,... 
    LongAbsences{j}.probability,... 
    mu,... 
    ProbabilityProfiles{j}.probability); 
    month=1; 
    day=1; 
    hour=0; 
    % mins=0; 
    % sec=0; 
    count=1; 
    for ii=2:length(Occupancy) 

  
        % create output values for year, month, day, hour and minute if at 
        % exact hourly value 
        if mod(time(ii),3600)==0; % if we're at an hourly value[1:00, 4:00, 

15:00, etc...], this is true!,  
            hour=hour+1; 
            minute = 0; 

  
            if hour > 24 % if we're at hour 25, we move to the next day, 

first hour 
                hour=1; 
                day=day+1; 

  
                if day > eomday(year, month) %eomday is the ending day of the 

month: 31 for jan, mar, 28/29 for feb, 30 for april, etc. 
                                             %if we're at day 32 for january, 

move to february 
                    day=1; 
                    month=month+1; 

  
                end 

  
            end 

         
        %create output values for year, month, day, hour and minute if NOT 
        %at exact hourly value 
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        else 
            %calculate minutes 
            if ii == hour*4 + 1; 
                minute = 15; 
            elseif ii == hour*4 + 2; 
                minute = 30; 
            else ii == hour*4 + 3; 
                minute = 45; 
            end 

                 
        end %ends 15-minute loop 

             
        % at this point we've established what year, month, day, and 
        % hour and minute we are at. 

  
        %within the hourly loop, set values for the occupancy output 
        %structure 
        occout.year(count)      = year; 
        occout.month(count)     = month; 
        occout.day(count)       = day; 
        occout.hour(count)      = hour; 
        occout.minute(count)    = minute; 
        occout.val(zone,count)  = Occupancy(ii); 

         
        % [ARTIFACT OF RYAN's MODEL] 
        % Now comes the tricky part; how to turn 15-minute data into 
        % hourly data? As of this revision, we take the average of 
        % occupancy over the last four 15-minute intervals, and round 
        % that number up with the 'ceil' command. Then we divide by the 
        % total number of people to get a fractional value of total 
        % occupancy, (between zero and 1, naturally) which Energyplus  
        % can interpret and multiply by an occupant density to get the  
        % right number of people. 
        % occout.val(zone,count)  = ceil(mean(Occupancy(ii-

3:ii)))/NumberOfPeople;  

     
        if count==35041; %stop when we get to the end of the year 
            break 
        end   

  
        count=count+1; 

  
    end % of looping through 34041 occupancy entries  

     
end % of zonal loop 

  
OccProfile=occout.val; 

  
end % of function 
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%************************************************************************** 
% 
%   FUNCTION  
%   LightSwitch 
% 
%   DESCRIPTION 
%   Executes manual and automatic portions of Lightswitch 2.0 model 
%  
%   ARGUMENTS 
% 
%   OccProfile: Occupancy profile generated by Page code 
% 
%   OnDC: Dampening coefficient for switch-on at arrival conditions (0 to 
%   1 in increments of 0.01) 
% 
%   OffDC: Dampening coefficient for switch-on at departure conditions (0 
%   to 1 in increments of 0.01) 
% 
%   IntOnDC: Dampening coefficient for intermediate switch-on conditions (0 
%   to 1 in increments of 0.1) 
% 
%   IntOffDCP: Dampening coefficient for intermediate switch-on conditions 
%   (0 to 1 in increments of 0.1) 
% 
%   RorL: 0 for Reinhart & Voss curve, 1 for Lindelof curve 
% 
%   WPE: Average workplane illuminance in 15-minute intervals with blinds 
%   retracted 
% 
%   TargetE: Target illuminance 
% 
%   LPD: Lighting power density 
% 
%   ControlSys: Control system type 
% 
%   DelayTime: Sensor delay time 
% 
%   BlindControl: Auto or manual control 
% 
%   OUTPUT 
%   Status: On (1) or Off(0) for each 15-minute interval over one year 
%    
%    
% 
%   ORIGINAL AUTHOR 
%   Darcie Chinnis 
%   University of Colorado 
%   darcie.chinnis@colorado.edu 
% 
%   NOTES 
%    
%  
%************************************************************************** 
function LtgStatus = 

LightSwitch(OccProfile,TargetE,n,ControlSys,DelayTime,BlindControl,hourcount,

daycount,BlindStatus) 
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%Load overall information 
load('ArrOnDC.mat') 
load('ArrOnE.mat') 
load('ArrOnProb.mat') 
load('DepOffDC.mat') 
load('DepOffProb.mat') 
load('DepOffTime.mat') 
load('IntOffDC.mat') 
load('IntOffE.mat') 
load('IntOffProb.mat') 
load('IntOnLDC.mat') 
load('IntOnLE.mat') 
load('IntOnLProb.mat') 
load('IntOnRDC.mat') 
load('IntOnRE.mat') 
load('IntOnRProb.mat') 

  
%Load run-specific data 
load WPE.mat 
load RorL.mat 
load IntOnDC.mat 
load IntOffDCP.mat 
load OffDC.mat 
load OnDC.mat 

  
hourcount=0; 
daycount=0; 

  
%Loop through occupancy data 
for k = 2:35041; 
%for k = 2:96; 

     
    %identify if occupancy state change happens or doesn't happen 
    if OccProfile.val(n,k-1) ~= OccProfile.val(n,k); 
        StateChange=1;  %Yes, state change occurs 
    else 
        StateChange=0;  %No, state change does not occur 
    end 

     
    %Figure out if we're at beginning of day 
    hourcount=hourcount+.25; 
    if hourcount > 24; 
        hourcount = 0.25; 
        daycount=daycount+1; 
    end 

     
    %For each time step, if there is a departure, figure out how 
    %long expected absence is 
    if OccProfile.val(n,k)==0 && OccProfile.val(n,k-1)==1; 
        AbsenceCheck=0; 
        for m=k:min((daycount+3)*96,35041); 
            if OccProfile.val(n,m)==0; 
                AbsenceCheck=AbsenceCheck+1; 
            elseif OccProfile.val(n,m) ==1; 
                break 
            end 
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        end 
        ExpectedTime=AbsenceCheck*15; 
    end 

     
    %Set initial blind status, OPEN (0) or CLOSED (1) 
    if hourcount == 0.25; 
        BlindStatus(n,k)=0; 
    %Does space become occupied? 
    elseif StateChange==1 && OccProfile.val(n,k)==1; 
        FirstArrivalTest=0; 
        for j = daycount*96+1:k; 
            FirstArrivalTest=FirstArrivalTest+OccProfile.val(n,j); 
        end 
        %If space does become occupied, is it first arrival of the day? 
        if FirstArrivalTest==1; 
            %If yes, Blinds open blinds 
            BlindStatus(n,k)=0; 
            %Test is WPE > 2000 LUX? 
            if WPE(k,n)>2000; 
                %if yes, close blinds 
                BlindStatus(n,k)=1; 
            else 
                %if no, blinds stay open 
                BlindStatus(n,k)=0; 
            end 
        else 
            if WPE(k,n)>2000; 
                BlindStatus(n,k)=1; 
            else 
                BlindStatus(n,k)=BlindStatus(n,k-1); 
            end 
        end 
    elseif OccProfile.val(n,k)==1; 
        %If no, is WPE > 2000 LUX? 
        if WPE(k,n)>2000; 
            %If yes, close blinds 
            BlindStatus(n,k)=1; 
        else 
            %If no, blinds status stays the same as previous 
            BlindStatus(n,k)=BlindStatus(n,k-1); 
        end 
    %If space does not become occupied, then: 
    else 
        %Blind status stays the same as previous 

  

         
        BlindStatus(n,k)=BlindStatus(n,k-1); 
    %End blinds routine 
    end 

     
    %Give marker for changing blind status 
    if BlindStatus(n,k)~= BlindStatus(n,k-1); 
        BlindStateChange(n,k)=1; 
    else 
        BlindStateChange(n,k)=0; 
    end 
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    AutoCounter=0; 
    %Starting electric lighting status = OFF 
    if k == 2; 
        LtgStatus(k,n)=0; 

     
    %Was space occupied during last time step? 
    elseif OccProfile.val(n,k-1)== 1; 
        %If yes, were lights already on? 
        if LtgStatus(k-1,n)~= 0; 
            %If yes, does occupant leave? 
            if StateChange == 1; 
                %If Yes and fully manual, stochastic switchoff probability 
                if ControlSys == 1 || ControlSys == 4 || ControlSys == 7; 
                    %Determine switch-off probability as function of 
                    %expected duration of absence 
                    DC=OffDC(n); 
                    if ExpectedTime > 1440 
                        OffProb = 1; 
                    else 
                        

OffProb=interp2(DepOffDC,DepOffTime,DepOffProb,DC,ExpectedTime); 
                    end 
                    %Caculate random index 
                    OffIndex=rand; 
                    %Compare to determined switch-off probability 
                    if OffIndex <= OffProb; 
                        %Lights switched Off 
                        LtgStatus(k,n)=0; 
                        %OR, Lights stay On 
                    else 
                        LtgStatus(k,n)=LtgStatus(k-1,n); 
                    end 
                %If Yes and fully automatic, check time out and start counter 
                else 
                    %Lights switched Off 
                    if DelayTime <= 15; 
                        LtgStatus(k,n)=0; 
                    %OR, Lights stay on 
                    else 
                        LtgStatus(k,n)=LtgStatus(k-1,n); 
                        AutoCounter=AutoCounter+1; 
                    end 
                end 
            %If No, stochastic intermediate switch-off 
            elseif StateChange == 0; 
                %Find intermediate switch-off prob 
                if BlindStatus(n,k)==0; 
                    Ill=WPE(k,n)+LtgStatus(k-1,n)*TargetE; 
                else 
                    Ill=LtgStatus(k-1,n)*TargetE; 
                end 
                DC=IntOffDCP(n); 
                OffProb=interp2(IntOffDC,IntOffE,IntOffProb,DC,Ill); 
                %Pull random number 
                IntOffIndex=rand; 
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                %Compare to determined intermediate switch-off probability 
                if IntOffIndex <= OffProb; 
                    %Lights switched off 
                    LtgStatus(k,n)=0; 
                else 
                    %Lights stay at previous state 
                    LtgStatus(k,n)=LtgStatus(k-1,n); 
                end 
            end 
        %If spaces was occupied during last time step, but occupant doesn't 
        %leave 
        elseif LtgStatus(k-1,n)== 0; 
            %If lights were not already on, does occupant leave? 
            if StateChange == 1; 
                %If Yes, lights remain off 
                LtgStatus(k,n)=0; 
            %If No, were blinds just adjusted? 
            else 
                if BlindStateChange(n,k) == 1 && BlindStatus(n,k)==0; 
                    %If Yes, stochastic switch-on 
                    %Determine switch-on probability at arrival 
                    Ill=WPE(k,n)+LtgStatus(k-1,n)*TargetE; 
                    DC=OnDC(n); 
                    OnProb=interp2(ArrOnDC,ArrOnE,ArrOnProb,DC,Ill); 
                    %Pull random number 
                    OnIndex=rand; 
                    %Compare to determined switch-on probability 
                    if OnIndex <= OnProb; 
                        %Lights switched On 
                        LtgStatus(k,n)=1; 
                    else 
                        %Lights stay off 
                        LtgStatus(k,n)=LtgStatus(k-1,n); 
                    end 
                else 
                    %If No, stochastic intermediate switch-on 
                    if BlindStatus(n,k)==0; 
                        Ill=WPE(k,n)+LtgStatus(k-1,n)*TargetE; 
                    else 
                        Ill=LtgStatus(k-1,n)*TargetE; 
                    end 
                    DC=IntOnDC(n); 
                    if RorL == 0; 
                       %Determine switch-on probability (Reinhart & Voss) 
                       IntOnProb=interp2(IntOnRDC,IntOnRE,IntOnRProb,DC,Ill);      
                    else 
                       IntOnProb=interp2(IntOnLDC,IntOnLE,IntOnLProb,DC,Ill); 
                    end 
                    %Pull random number 
                    IntOnIndex=rand; 
                    %Compare to determine intermediate switch-on probability 
                    if IntOnIndex <= IntOnProb; 
                        %Switch On 
                        LtgStatus(k,n)=1; 
                    else 
                        %Stay at previous state 
                        LtgStatus(k,n)=LtgStatus(k-1,n); 
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                    end 
                end 
            end 
        end 
    %If space was not already occupied 
    elseif OccProfile.val(n,k-1) == 0; 
        %If yes, were lights already On? 
        if LtgStatus(k-1,n) ~= 0; 
            %If Yes, does occupant arrive? 
            if OccProfile.val(n,k) == 1; 
                if ControlSys == 10 && LtgStatus(k-1,n)==1; 
                    LtgStatus(k,n)=LtgStatus(k-1,n); 
                elseif ControlSys == 10 && LtgStatus(k-1,n)==0.5; 
                    %Stochastic switch-on at arrival for remaining 50% 
                    %Determine switch-on probability at arrival 
                    Ill=WPE(k,n)+0.5*TargetE; 
                    DC=OnDC(n); 
                    OnProb=interp2(ArrOnDC,ArrOnE,ArrOnProb,DC,Ill); 
                    %Pull random number 
                    OnIndex=rand; 
                    %Compare to determined switch-on probability 
                    if OnIndex <= OnProb; 
                        %Lights switched On 
                        LtgStatus(k,n)=1; 
                    else 
                        %Lights stay off 
                        LtgStatus(k,n)=0.5; 
                    end 
                else 
                    LtgStatus(k,n)=LtgStatus(k-1,n); 
                end 
            else 
            %If No, is there an auto-off occ sensor? 
                if ControlSys == 2 || ControlSys == 3 || ControlSys == 5 || 

ControlSys == 6 || ControlSys == 8 || ControlSys == 9 || ControlSys == 10; 
                    %If yes, has room been unoccupied longer than DT? 
                    if AutoCounter*15 >= DelayTime; 
                        LtgStatus(k,n)=0; 
                    else 
                        LtgStatus(k,n)=LtgStatus(k-1,n); 
                        AutoCounter=AutoCounter+1; 
                    end 
                else 
                    %If No, lights stay on 
                    LtgStatus(k,n)=LtgStatus(k-1,n); 
                end 
            end 
        %If lights were not already On? 
        else 
            %Does occupant arrive? 
            if OccProfile.val(n,k) == 1; 
                %If Yes, is there an auto-on occ sensor (all on)? 
                if ControlSys == 3 || ControlSys == 6 || ControlSys == 9; 
                    %If Yes, lights switched on 
                    LtgStatus(k,n)=1; 
                elseif ControlSys == 10; 
                    %If Yes, 50% switched on automatically, 50% manual 
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                    %Determine switch-on probability at arrival 
                    if BlindStatus(n,k)==0; 
                        Ill=WPE(k,n)+LtgStatus(k-1,n)*TargetE; 
                    else 
                        Ill=LtgStatus(k-1,n)*TargetE; 
                    end 
                    Ill=OnDC(n); 
                    OnProb=interp2(ArrOnDC,ArrOnE,ArrOnProb,DC,Ill); 
                    %Pull random number 
                    OnIndex=rand; 
                    %Compare to determined switch-on probability 
                    if OnIndex <= OnProb; 
                        %Lights switched On 
                        LtgStatus(k,n)=1; 
                    else 
                        %Only 50% switched On (automatically) 
                        LtgStatus(k,n)=0.5; 
                    end 
                else 
                    %Stochastic switch-on 
                    %Determine switch-on probability at arrival 
                    if BlindStatus(n,k)==0; 
                        Ill=WPE(k,n)+0.5*TargetE; 
                    else 
                        Ill=0.5*TargetE; 
                    end 
                    DC=OnDC(n); 
                    OnProb=interp2(ArrOnDC,ArrOnE,ArrOnProb,DC,Ill); 
                    %Pull random number 
                    OnIndex=rand; 
                    %Compare to determined switch-on probability 
                    if OnIndex <= OnProb; 
                        %Lights switched On 
                        LtgStatus(k,n)=1; 
                    else 
                        %Lights not switched on 
                        LtgStatus(k,n)=0; 
                    end 
                end 
            elseif OccProfile.val(n,k) == 0; 
                LtgStatus(k,n)=0; 
            end 
        end 
    %End lightswitch 
    end 

         
    %Final status = On (1) or Off (0) for each 15 minute interval over one 
    %year 

     
end 

  
end 
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%************************************************************************** 
% 
%   FUNCTION  
%   LightSwitchSA 
% 
%   DESCRIPTION 
%   Executes manual and automatic portions of Lightswitch 2.0 model 
%   For use with Sensitivity Analysis software (LtgNrgSA and SA) 
%  
%   ARGUMENTS 
% 
%   OccProfile: Occupancy profile generated by Page code 
% 
%   OnDC: Dampening coefficient for switch-on at arrival conditions (0 to 
%   1 in increments of 0.01) 
% 
%   OffDC: Dampening coefficient for switch-on at departure conditions (0 
%   to 1 in increments of 0.01) 
% 
%   IntOnDC: Dampening coefficient for intermediate switch-on conditions (0 
%   to 1 in increments of 0.1) 
% 
%   IntOffDCP: Dampening coefficient for intermediate switch-on conditions 
%   (0 to 1 in increments of 0.1) 
% 
%   RorL: 0 for Reinhart & Voss curve, 1 for Lindelof curve 
% 
%   WPE: Average workplane illuminance in 15-minute intervals with blinds 
%   retracted 
% 
%   TargetE: Target illuminance 
% 
%   LPD: Lighting power density 
% 
%   ControlSys: Control system type 
% 
%   DelayTime: Sensor delay time 
% 
%   BlindControl: Auto or manual control 
% 
%   OUTPUT 
%   Status: On (1) or Off(0) for each 15-minute interval over one year 
%    
%    
% 
%   ORIGINAL AUTHOR 
%   Darcie Chinnis 
%   University of Colorado 
%   darcie.oconnor@colorado.edu 
% 
%   NOTES 
%    
%  
%************************************************************************** 
function LtgStatus = 

LightSwitchSA(OccProfile,TargetE,n,ControlSys,DelayTime,BlindControl,BlindSta

tus,OnDC,OffDC,IntOffDCP,IntOnDC) 
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%Load overall information 
load('ArrOnDC.mat') 
load('ArrOnE.mat') 
load('ArrOnProb.mat') 
load('DepOffDC.mat') 
load('DepOffProb.mat') 
load('DepOffTime.mat') 
load('IntOffDC.mat') 
load('IntOffE.mat') 
load('IntOffProb.mat') 
load('IntOnLDC.mat') 
load('IntOnLE.mat') 
load('IntOnLProb.mat') 
load('IntOnRDC.mat') 
load('IntOnRE.mat') 
load('IntOnRProb.mat') 

  
%Load run-specific data 
load WPE.mat 
RorL=1; 

  
hourcount=0; 
daycount=0; 

  
%Loop through occupancy data 
for k = 2:35041; 
%for k = 2:96; 

     
    %identify if occupancy state change happens or doesn't happen 
    if OccProfile.val(n,k-1) ~= OccProfile.val(n,k); 
        StateChange=1;  %Yes, state change occurs 
    else 
        StateChange=0;  %No, state change does not occur 
    end 

     
    %Figure out if we're at beginning of day 
    hourcount=hourcount+.25; 
    if hourcount > 24; 
        hourcount = 0.25; 
        daycount=daycount+1; 
    end 

     
    %For each time step, if there is a departure, figure out how 
    %long expected absence is 
    if OccProfile.val(n,k)==0 && OccProfile.val(n,k-1)==1; 
        AbsenceCheck=0; 
        for m=k:min((daycount+3)*96,35041); 
            if OccProfile.val(n,m)==0; 
                AbsenceCheck=AbsenceCheck+1; 
            elseif OccProfile.val(n,m) ==1; 
                break 
            end 
        end 
        ExpectedTime=AbsenceCheck*15; 
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    end 

     
    %Set initial blind status, OPEN (0) or CLOSED (1) 
    if hourcount == 0.25; 
        BlindStatus(n,k)=0; 
    %Does space become occupied? 
    elseif StateChange==1 && OccProfile.val(n,k)==1; 
        FirstArrivalTest=0; 
        for j = daycount*96+1:k; 
            FirstArrivalTest=FirstArrivalTest+OccProfile.val(n,j); 
        end 
        %If space does become occupied, is it first arrival of the day? 
        if FirstArrivalTest==1; 
            %If yes, Blinds open blinds 
            BlindStatus(n,k)=0; 
            %Test is WPE > 2000 LUX? 
            if WPE(k,n)>2000; 
                %if yes, close blinds 
                BlindStatus(n,k)=1; 
            else 
                %if no, blinds stay open 
                BlindStatus(n,k)=0; 
            end 
        else 
            if WPE(k,n)>2000; 
                BlindStatus(n,k)=1; 
            else 
                BlindStatus(n,k)=BlindStatus(n,k-1); 
            end 
        end 
    elseif OccProfile.val(n,k)==1; 
        %If no, is WPE > 2000 LUX? 
        if WPE(k,n)>2000; 
            %If yes, close blinds 
            BlindStatus(n,k)=1; 
        else 
            %If no, blinds status stays the same as previous 
            BlindStatus(n,k)=BlindStatus(n,k-1); 
        end 
    %If space does not become occupied, then: 
    else 
        %Blind status stays the same as previous 

  

         
        BlindStatus(n,k)=BlindStatus(n,k-1); 
    %End blinds routine 
    end 

     
    %Give marker for changing blind status 
    if BlindStatus(n,k)~= BlindStatus(n,k-1); 
        BlindStateChange(n,k)=1; 
    else 
        BlindStateChange(n,k)=0; 
    end 

     
    AutoCounter=0; 
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    %Starting electric lighting status = OFF 
    if k == 2; 
        LtgStatus(k,n)=0; 

     
    %Was space occupied during last time step? 
    elseif OccProfile.val(n,k-1)== 1; 
        %If yes, were lights already on? 
        if LtgStatus(k-1,n)~= 0; 
            %If yes, does occupant leave? 
            if StateChange == 1; 
                %If Yes and fully manual, stochastic switchoff probability 
                if ControlSys == 1 || ControlSys == 4 || ControlSys == 7; 
                    %Determine switch-off probability as function of 
                    %expected duration of absence 
                    DC=OffDC; 
                    if ExpectedTime > 1440 
                        OffProb = 1; 
                    else 
                        

OffProb=interp2(DepOffDC,DepOffTime,DepOffProb,DC,ExpectedTime); 
                    end 
                    %Caculate random index 
                    OffIndex=rand; 
                    %Compare to determined switch-off probability 
                    if OffIndex <= OffProb; 
                        %Lights switched Off 
                        LtgStatus(k,n)=0; 
                        %OR, Lights stay On 
                    else 
                        LtgStatus(k,n)=LtgStatus(k-1,n); 
                    end 
                %If Yes and fully automatic, check time out and start counter 
                else 
                    %Lights switched Off 
                    if DelayTime <= 15; 
                        LtgStatus(k,n)=0; 
                    %OR, Lights stay on 
                    else 
                        LtgStatus(k,n)=LtgStatus(k-1,n); 
                        AutoCounter=AutoCounter+1; 
                    end 
                end 
            %If No, stochastic intermediate switch-off 
            elseif StateChange == 0; 
                %Find intermediate switch-off prob 
                if BlindStatus(n,k)==0; 
                    Ill=WPE(k,n)+LtgStatus(k-1,n)*TargetE; 
                else 
                    Ill=LtgStatus(k-1,n)*TargetE; 
                end 
                DC=IntOffDCP; 
                OffProb=interp2(IntOffDC,IntOffE,IntOffProb,DC,Ill); 
                %Pull random number 
                IntOffIndex=rand; 
                %Compare to determined intermediate switch-off probability 
                if IntOffIndex <= OffProb; 
                    %Lights switched off 
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                    LtgStatus(k,n)=0; 
                else 
                    %Lights stay at previous state 
                    LtgStatus(k,n)=LtgStatus(k-1,n); 
                end 
            end 
        %If spaces was occupied during last time step, but occupant doesn't 
        %leave 
        elseif LtgStatus(k-1,n)== 0; 
            %If lights were not already on, does occupant leave? 
            if StateChange == 1; 
                %If Yes, lights remain off 
                LtgStatus(k,n)=0; 
            %If No, were blinds just adjusted? 
            else 
                if BlindStateChange(n,k) == 1 && BlindStatus(n,k)==0; 
                    %If Yes, stochastic switch-on 
                    %Determine switch-on probability at arrival 
                    Ill=WPE(k,n)+LtgStatus(k-1,n)*TargetE; 
                    DC=OnDC; 
                    OnProb=interp2(ArrOnDC,ArrOnE,ArrOnProb,DC,Ill); 
                    %Pull random number 
                    OnIndex=rand; 
                    %Compare to determined switch-on probability 
                    if OnIndex <= OnProb; 
                        %Lights switched On 
                        LtgStatus(k,n)=1; 
                    else 
                        %Lights stay off 
                        LtgStatus(k,n)=LtgStatus(k-1,n); 
                    end 
                else 
                    %If No, stochastic intermediate switch-on 
                    if BlindStatus(n,k)==0; 
                        Ill=WPE(k,n)+LtgStatus(k-1,n)*TargetE; 
                    else 
                        Ill=LtgStatus(k-1,n)*TargetE; 
                    end 
                    DC=IntOnDC; 
                    if RorL == 0; 
                       %Determine switch-on probability (Reinhart & Voss) 
                       IntOnProb=interp2(IntOnRDC,IntOnRE,IntOnRProb,DC,Ill);      
                    else 
                       IntOnProb=interp2(IntOnLDC,IntOnLE,IntOnLProb,DC,Ill); 
                    end 
                    %Pull random number 
                    IntOnIndex=rand; 
                    %Compare to determine intermediate switch-on probability 
                    if IntOnIndex <= IntOnProb; 
                        %Switch On 
                        LtgStatus(k,n)=1; 
                    else 
                        %Stay at previous state 
                        LtgStatus(k,n)=LtgStatus(k-1,n); 
                    end 
                end 
            end 
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        end 
    %If space was not already occupied 
    elseif OccProfile.val(n,k-1) == 0; 
        %If yes, were lights already On? 
        if LtgStatus(k-1,n) ~= 0; 
            %If Yes, does occupant arrive? 
            if OccProfile.val(n,k) == 1; 
                if ControlSys == 10 && LtgStatus(k-1,n)==1; 
                    LtgStatus(k,n)=LtgStatus(k-1,n); 
                elseif ControlSys == 10 && LtgStatus(k-1,n)==0.5; 
                    %Stochastic switch-on at arrival for remaining 50% 
                    %Determine switch-on probability at arrival 
                    Ill=WPE(k,n)+0.5*TargetE; 
                    DC=OnDC; 
                    OnProb=interp2(ArrOnDC,ArrOnE,ArrOnProb,DC,Ill); 
                    %Pull random number 
                    OnIndex=rand; 
                    %Compare to determined switch-on probability 
                    if OnIndex <= OnProb; 
                        %Lights switched On 
                        LtgStatus(k,n)=1; 
                    else 
                        %Lights stay off 
                        LtgStatus(k,n)=0.5; 
                    end 
                else 
                    LtgStatus(k,n)=LtgStatus(k-1,n); 
                end 
            else 
            %If No, is there an auto-off occ sensor? 
                if ControlSys == 2 || ControlSys == 3 || ControlSys == 5 || 

ControlSys == 6 || ControlSys == 8 || ControlSys == 9 || ControlSys == 10; 
                    %If yes, has room been unoccupied longer than DT? 
                    if AutoCounter*15 >= DelayTime; 
                        LtgStatus(k,n)=0; 
                    else 
                        LtgStatus(k,n)=LtgStatus(k-1,n); 
                        AutoCounter=AutoCounter+1; 
                    end 
                else 
                    %If No, lights stay on 
                    LtgStatus(k,n)=LtgStatus(k-1,n); 
                end 
            end 
        %If lights were not already On? 
        else 
            %Does occupant arrive? 
            if OccProfile.val(n,k) == 1; 
                %If Yes, is there an auto-on occ sensor (all on)? 
                if ControlSys == 3 || ControlSys == 6 || ControlSys == 9; 
                    %If Yes, lights switched on 
                    LtgStatus(k,n)=1; 
                elseif ControlSys == 10; 
                    %If Yes, 50% switched on automatically, 50% manual 
                    %Determine switch-on probability at arrival 
                    if BlindStatus(n,k)==0; 
                        Ill=WPE(k,n)+LtgStatus(k-1,n)*TargetE; 
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                    else 
                        Ill=LtgStatus(k-1,n)*TargetE; 
                    end 
                    Ill=OnDC; 
                    OnProb=interp2(ArrOnDC,ArrOnE,ArrOnProb,DC,Ill); 
                    %Pull random number 
                    OnIndex=rand; 
                    %Compare to determined switch-on probability 
                    if OnIndex <= OnProb; 
                        %Lights switched On 
                        LtgStatus(k,n)=1; 
                    else 
                        %Only 50% switched On (automatically) 
                        LtgStatus(k,n)=0.5; 
                    end 
                else 
                    %Stochastic switch-on 
                    %Determine switch-on probability at arrival 
                    if BlindStatus(n,k)==0; 
                        Ill=WPE(k,n)+0.5*TargetE; 
                    else 
                        Ill=0.5*TargetE; 
                    end 
                    DC=OnDC; 
                    OnProb=interp2(ArrOnDC,ArrOnE,ArrOnProb,DC,Ill); 
                    %Pull random number 
                    OnIndex=rand; 
                    %Compare to determined switch-on probability 
                    if OnIndex <= OnProb; 
                        %Lights switched On 
                        LtgStatus(k,n)=1; 
                    else 
                        %Lights not switched on 
                        LtgStatus(k,n)=0; 
                    end 
                end 
            elseif OccProfile.val(n,k) == 0; 
                LtgStatus(k,n)=0; 
            end 
        end 
    %End lightswitch 
    end 

         
    %Final status = On (1) or Off (0) for each 15 minute interval over one 
    %year 

     
end 

  
end 
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%************************************************************************** 
% 
%   FUNCTION  
%   LightSwitchVAL 
% 
%   DESCRIPTION 
%   Executes manual and automatic portions of Lightswitch 2.0 model 
%   For use with Validation software (LtgNrgVAL) 
%  
%   ARGUMENTS 
% 
%   OccProfile: Occupancy profile generated by Page code 
% 
%   OnDC: Dampening coefficient for switch-on at arrival conditions (0 to 
%   1 in increments of 0.01) 
% 
%   OffDC: Dampening coefficient for switch-on at departure conditions (0 
%   to 1 in increments of 0.01) 
% 
%   IntOnDC: Dampening coefficient for intermediate switch-on conditions (0 
%   to 1 in increments of 0.1) 
% 
%   IntOffDCP: Dampening coefficient for intermediate switch-on conditions 
%   (0 to 1 in increments of 0.1) 
% 
%   RorL: 0 for Reinhart & Voss curve, 1 for Lindelof curve 
% 
%   WPE: Average workplane illuminance in 15-minute intervals with blinds 
%   retracted 
% 
%   TargetE: Target illuminance 
% 
%   LPD: Lighting power density 
% 
%   ControlSys: Control system type 
% 
%   DelayTime: Sensor delay time 
% 
%   BlindControl: Auto or manual control 
% 
%   OUTPUT 
%   Status: On (1) or Off(0) for each 15-minute interval over one year 
%    
%    
% 
%   ORIGINAL AUTHOR 
%   Darcie Chinnis 
%   University of Colorado 
%   darcie.oconnor@colorado.edu 
% 
%   NOTES 
%    
%  
%************************************************************************** 
function LtgStatus = 

LightSwitch(OccProfile,TargetE,n,ControlSys,DelayTime,BlindControl,hourcount,

daycount,BlindStatus,OnDC,OffDC,IntOnDC,IntOffDCP,RorL) 
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%Load overall information 
load('ArrOnDC.mat') 
load('ArrOnE.mat') 
load('ArrOnProb.mat') 
load('DepOffDC.mat') 
load('DepOffProb.mat') 
load('DepOffTime.mat') 
load('IntOffDC.mat') 
load('IntOffE.mat') 
load('IntOffProb.mat') 
load('IntOnLDC.mat') 
load('IntOnLE.mat') 
load('IntOnLProb.mat') 
load('IntOnRDC.mat') 
load('IntOnRE.mat') 
load('IntOnRProb.mat') 

  
%Load run-specific data 
load WPE_DLTest.mat 
%load RorL.mat 
%load IntOnDC.mat 
%load IntOffDCP.mat 
%load OffDC.mat 
%load OnDC.mat 

  
hourcount=0; 
daycount=0; 

  
%Loop through occupancy data 
for k = 2:35041; 
%for k = 2:96; 

     
    %identify if occupancy state change happens or doesn't happen 
    if OccProfile.val(n,k-1) ~= OccProfile.val(n,k); 
        StateChange=1;  %Yes, state change occurs 
    else 
        StateChange=0;  %No, state change does not occur 
    end 

     
    %Figure out if we're at beginning of day 
    hourcount=hourcount+.25; 
    if hourcount > 24; 
        hourcount = 0.25; 
        daycount=daycount+1; 
    end 

     
    %For each time step, if there is a departure, figure out how 
    %long expected absence is 
    if OccProfile.val(n,k)==0 && OccProfile.val(n,k-1)==1; 
        AbsenceCheck=0; 
        for m=k:min((daycount+3)*96,35041); 
            if OccProfile.val(n,m)==0; 
                AbsenceCheck=AbsenceCheck+1; 
            elseif OccProfile.val(n,m) ==1; 
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                break 
            end 
        end 
        ExpectedTime=AbsenceCheck*15; 
    end 

     
    %Set initial blind status, OPEN (0) or CLOSED (1) 
    if hourcount == 0.25; 
        BlindStatus(n,k)=0; 
    %Does space become occupied? 
    elseif StateChange==1 && OccProfile.val(n,k)==1; 
        FirstArrivalTest=0; 
        for j = daycount*96+1:k; 
            FirstArrivalTest=FirstArrivalTest+OccProfile.val(n,j); 
        end 
        %If space does become occupied, is it first arrival of the day? 
        if FirstArrivalTest==1; 
            %If yes, Blinds open blinds 
            BlindStatus(n,k)=0; 
            %Test is WPE > 2000 LUX? 
            if WPE(k,n)>2000; 
                %if yes, close blinds 
                BlindStatus(n,k)=1; 
            else 
                %if no, blinds stay open 
                BlindStatus(n,k)=0; 
            end 
        else 
            if WPE(k,n)>2000; 
                BlindStatus(n,k)=1; 
            else 
                BlindStatus(n,k)=BlindStatus(n,k-1); 
            end 
        end 
    elseif OccProfile.val(n,k)==1; 
        %If no, is WPE > 2000 LUX? 
        if WPE(k,n)>2000; 
            %If yes, close blinds 
            BlindStatus(n,k)=1; 
        else 
            %If no, blinds status stays the same as previous 
            BlindStatus(n,k)=BlindStatus(n,k-1); 
        end 
    %If space does not become occupied, then: 
    else 
        %Blind status stays the same as previous 

  

         
        BlindStatus(n,k)=BlindStatus(n,k-1); 
    %End blinds routine 
    end 

     
    %Give marker for changing blind status 
    if BlindStatus(n,k)~= BlindStatus(n,k-1); 
        BlindStateChange(n,k)=1; 
    else 
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        BlindStateChange(n,k)=0; 
    end 

     
    AutoCounter=0; 
    %Starting electric lighting status = OFF 
    if k == 2; 
        LtgStatus(k,n)=0; 

     
    %Was space occupied during last time step? 
    elseif OccProfile.val(n,k-1)== 1; 
        %If yes, were lights already on? 
        if LtgStatus(k-1,n)~= 0; 
            %If yes, does occupant leave? 
            if StateChange == 1; 
                %If Yes and fully manual, stochastic switchoff probability 
                if ControlSys == 1 || ControlSys == 4 || ControlSys == 7; 
                    %Determine switch-off probability as function of 
                    %expected duration of absence 
                    DC=OffDC(n); 
                    if ExpectedTime > 1440 
                        OffProb = 1; 
                    else 
                        

OffProb=interp2(DepOffDC,DepOffTime,DepOffProb,DC,ExpectedTime); 
                    end 
                    %Caculate random index 
                    OffIndex=rand; 
                    %Compare to determined switch-off probability 
                    if OffIndex <= OffProb; 
                        %Lights switched Off 
                        LtgStatus(k,n)=0; 
                        %OR, Lights stay On 
                    else 
                        LtgStatus(k,n)=LtgStatus(k-1,n); 
                    end 
                %If Yes and fully automatic, check time out and start counter 
                else 
                    %Lights switched Off 
                    if DelayTime <= 15; 
                        LtgStatus(k,n)=0; 
                    %OR, Lights stay on 
                    else 
                        LtgStatus(k,n)=LtgStatus(k-1,n); 
                        AutoCounter=AutoCounter+1; 
                    end 
                end 
            %If No, stochastic intermediate switch-off 
            elseif StateChange == 0; 
                %Find intermediate switch-off prob 
                if BlindStatus(n,k)==0; 
                    Ill=WPE(k,n)+LtgStatus(k-1,n)*TargetE; 
                else 
                    Ill=LtgStatus(k-1,n)*TargetE; 
                end 
                DC=IntOffDCP(n); 
                OffProb=interp2(IntOffDC,IntOffE,IntOffProb,DC,Ill); 
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                %Pull random number 
                IntOffIndex=rand; 
                %Compare to determined intermediate switch-off probability 
                if IntOffIndex <= OffProb; 
                    %Lights switched off 
                    LtgStatus(k,n)=0; 
                else 
                    %Lights stay at previous state 
                    LtgStatus(k,n)=LtgStatus(k-1,n); 
                end 
            end 
        %If spaces was occupied during last time step, but occupant doesn't 
        %leave 
        elseif LtgStatus(k-1,n)== 0; 
            %If lights were not already on, does occupant leave? 
            if StateChange == 1; 
                %If Yes, lights remain off 
                LtgStatus(k,n)=0; 
            %If No, were blinds just adjusted? 
            else 
                if BlindStateChange(n,k) == 1 && BlindStatus(n,k)==0; 
                    %If Yes, stochastic switch-on 
                    %Determine switch-on probability at arrival 
                    Ill=WPE(k,n)+LtgStatus(k-1,n)*TargetE; 
                    DC=OnDC(n); 
                    OnProb=interp2(ArrOnDC,ArrOnE,ArrOnProb,DC,Ill); 
                    %Pull random number 
                    OnIndex=rand; 
                    %Compare to determined switch-on probability 
                    if OnIndex <= OnProb; 
                        %Lights switched On 
                        LtgStatus(k,n)=1; 
                    else 
                        %Lights stay off 
                        LtgStatus(k,n)=LtgStatus(k-1,n); 
                    end 
                else 
                    %If No, stochastic intermediate switch-on 
                    if BlindStatus(n,k)==0; 
                        Ill=WPE(k,n)+LtgStatus(k-1,n)*TargetE; 
                    else 
                        Ill=LtgStatus(k-1,n)*TargetE; 
                    end 
                    DC=IntOnDC(n); 
                    if RorL == 0; 
                       %Determine switch-on probability (Reinhart & Voss) 
                       IntOnProb=interp2(IntOnRDC,IntOnRE,IntOnRProb,DC,Ill);      
                    else 
                       IntOnProb=interp2(IntOnLDC,IntOnLE,IntOnLProb,DC,Ill); 
                    end 
                    %Pull random number 
                    IntOnIndex=rand; 
                    %Compare to determine intermediate switch-on probability 
                    if IntOnIndex <= IntOnProb; 
                        %Switch On 
                        LtgStatus(k,n)=1; 
                    else 
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                        %Stay at previous state 
                        LtgStatus(k,n)=LtgStatus(k-1,n); 
                    end 
                end 
            end 
        end 
    %If space was not already occupied 
    elseif OccProfile.val(n,k-1) == 0; 
        %If yes, were lights already On? 
        if LtgStatus(k-1,n) ~= 0; 
            %If Yes, does occupant arrive? 
            if OccProfile.val(n,k) == 1; 
                if ControlSys == 10 && LtgStatus(k-1,n)==1; 
                    LtgStatus(k,n)=LtgStatus(k-1,n); 
                elseif ControlSys == 10 && LtgStatus(k-1,n)==0.5; 
                    %Stochastic switch-on at arrival for remaining 50% 
                    %Determine switch-on probability at arrival 
                    Ill=WPE(k,n)+0.5*TargetE; 
                    DC=OnDC(n); 
                    OnProb=interp2(ArrOnDC,ArrOnE,ArrOnProb,DC,Ill); 
                    %Pull random number 
                    OnIndex=rand; 
                    %Compare to determined switch-on probability 
                    if OnIndex <= OnProb; 
                        %Lights switched On 
                        LtgStatus(k,n)=1; 
                    else 
                        %Lights stay off 
                        LtgStatus(k,n)=0.5; 
                    end 
                else 
                    LtgStatus(k,n)=LtgStatus(k-1,n); 
                end 
            else 
            %If No, is there an auto-off occ sensor? 
                if ControlSys == 2 || ControlSys == 3 || ControlSys == 5 || 

ControlSys == 6 || ControlSys == 8 || ControlSys == 9 || ControlSys == 10; 
                    %If yes, has room been unoccupied longer than DT? 
                    if AutoCounter*15 >= DelayTime; 
                        LtgStatus(k,n)=0; 
                    else 
                        LtgStatus(k,n)=LtgStatus(k-1,n); 
                        AutoCounter=AutoCounter+1; 
                    end 
                else 
                    %If No, lights stay on 
                    LtgStatus(k,n)=LtgStatus(k-1,n); 
                end 
            end 
        %If lights were not already On? 
        else 
            %Does occupant arrive? 
            if OccProfile.val(n,k) == 1; 
                %If Yes, is there an auto-on occ sensor (all on)? 
                if ControlSys == 3 || ControlSys == 6 || ControlSys == 9; 
                    %If Yes, lights switched on 
                    LtgStatus(k,n)=1; 
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                elseif ControlSys == 10; 
                    %If Yes, 50% switched on automatically, 50% manual 
                    %Determine switch-on probability at arrival 
                    if BlindStatus(n,k)==0; 
                        Ill=WPE(k,n)+LtgStatus(k-1,n)*TargetE; 
                    else 
                        Ill=LtgStatus(k-1,n)*TargetE; 
                    end 
                    Ill=OnDC(n); 
                    OnProb=interp2(ArrOnDC,ArrOnE,ArrOnProb,DC,Ill); 
                    %Pull random number 
                    OnIndex=rand; 
                    %Compare to determined switch-on probability 
                    if OnIndex <= OnProb; 
                        %Lights switched On 
                        LtgStatus(k,n)=1; 
                    else 
                        %Only 50% switched On (automatically) 
                        LtgStatus(k,n)=0.5; 
                    end 
                else 
                    %Stochastic switch-on 
                    %Determine switch-on probability at arrival 
                    if BlindStatus(n,k)==0; 
                        Ill=WPE(k,n)+0.5*TargetE; 
                    else 
                        Ill=0.5*TargetE; 
                    end 
                    DC=OnDC(n); 
                    OnProb=interp2(ArrOnDC,ArrOnE,ArrOnProb,DC,Ill); 
                    %Pull random number 
                    OnIndex=rand; 
                    %Compare to determined switch-on probability 
                    if OnIndex <= OnProb; 
                        %Lights switched On 
                        LtgStatus(k,n)=1; 
                    else 
                        %Lights not switched on 
                        LtgStatus(k,n)=0; 
                    end 
                end 
            elseif OccProfile.val(n,k) == 0; 
                LtgStatus(k,n)=0; 
            end 
        end 
    %End lightswitch 
    end 

         
    %Final status = On (1) or Off (0) for each 15 minute interval over one 
    %year 

     
end 

  
end 
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%************************************************************************** 
% 
%   FUNCTION  
%   ConvTest 
% 
%   DESCRIPTION 
%   Executes combined LightSwitchConv 2000 times to gather energy data for 
%   convergence tewsting 
%  
%   ARGUMENTS 
%   none 
% 
%   OUTPUT 
%   Annual energy density for 2000 simulations 
%    
%   ORIGINAL AUTHOR 
%   Darcie Chinnis 
%   University of Colorado 
%   darcie.oconnor@colorado.edu 
% 
%   NOTES 
%    
%  
%************************************************************************** 

  
function values=ConvTest() 

  
values(1:2000,1)=0; 

  
for a = 1:2000; 

  
    values(a,1)=LtgNrgConv(); 

     
end 
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function [occCumul,histoAbsTimes,histoAbsFreq,histoAbsAver,... 
    histoOccTimes,histoOccFreq,histoOccAver]=... 
    occmodel(t,occInit,occMax,shuff,probHour,... 
    nAbsAver,absDurationProb,absDurationBin,absDurationMin,... 
    firstDay,histoFlag,histoAbsBin,histoAbsNBin,histoOccBin,histoOccNBin) 
% calculation of cumulated effective occupancy 
% for occMax persons, for the times given in the nt array 
% version 1.4: add absence blocks 

  
% Parameters: 
% - t               = array of times for which occupancy will be calculated 

[s] 
% - occInit         = initial value of occupancy (0 or 1) 
% - occMax          = number of persons 
% - shuff           = shuffling parameter 
% - probHour        = array of hourly occupancy probability profiles 
% - nAbsAver        = average number of absences during one year 
% - absDurationProb = array of absence duration probability 
% - absDurationBin  = absence duration probability bin [hours] 
% - absDurationMin  = absence duration minimum [hours] 
% - firstDay        = first day of the year (1=Monday, 2=Tuesday, ... 

7=Sunday) 
% - histoFlag       = occupancy histogram (0=no histogram, 1=per day, 2=per 

week) 
% - histoAbsBin     = absence duration histogram bin [hours] 
% - histoAbsNBin    = absence duration histogram number of bins 
% - histoOccBin     = occupancy histogram bin [hours] 
% - histoOccNBin    = occupancy histogram number of bins 
% Outputs: 
% - occCumul        = cumulated occupancy corresponding to the t array 
% - histoAbsTimes   = times for the block absence histogram [hours] 
% - histoAbsFreq    = values (frequencies) for the block absence histogram 
% - histoAbsAver    = average block absence time [hours] 
% - histoOccTimes   = times for the daily occupancy histogram [hours] 
% - histoOccFreq    = values (frequencies) for the daily/weekly occupancy 

histogram 
% - histoOccAver    = average of daily/weekly occupancy time 
% 
% The first output argument is mandatory; all the others are optional, 
% but they should be either all present or all absent; they should 
% be present if histoFlag>0 
% 
% For each person, an independent occupancy 
% profile is drawn at random, using the 
% transition probability time arrays T01 and T11 

  
% indexes: 
% index1(k=1 to nprobHour)=pointer to plist element corresponding to 
% the hourly profile element k (value: 1 to nplist) 
% index2(i=1 to nt)=pointer to plist element corresponding to the 
% time step i (value: 1 to nplist) 

  
% check number of input and output arguments 
if (nargin~=10 & nargin~=15) 
    error('*** occrandom1 error: nargin = %i, should be 10 or 15',nargin) 
end 
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if (nargout~=1 & nargout~=7) 
    error('*** occrandom1 error: nargin = %i, should be 1 or 7',nargout) 
end 
if (histoFlag>0 & nargout~=7) 
    error('*** occrandom1 error: nargin = %i, should be 7 because 

histoFlag>0',nargout) 
end 
%% RT1 
% calculate the possible occupancy probabilities 
% it is supposed that the maximum number of different 
% occupancy probability values is PMAX = 10 
% (if larger, the function stops with an error message) 
% % % % % nprobHour=length(probHour); 
% % % % % index1=zeros(1,nprobHour); 
% % % % % NPMAX=4*24*7; 
% % % % % plist=zeros(1,NPMAX); 
% % % % % nplist=1; plist(1)=0; index1(1)=1; % first element = zero occupancy 

probability 
% % % % % for k=1:nprobHour, 
% % % % %     pfound=find(probHour(k)==plist(1:nplist)); 
% % % % %     if (length(pfound)==0), 
% % % % %         % found new probability value 
% % % % %         if (nplist<NPMAX), 
% % % % %             nplist=nplist+1; plist(nplist)=probHour(k); 

index1(k)=nplist; 
% % % % %         else 
% % % % %             error('*** occrandom1 error: more than %i probability 

values',NPMAX) 
% % % % %         end 
% % % % %     else 
% % % % %         % already existing probability value 
% % % % %         index1(k)=pfound(1); 
% % % % %     end 
% % % % % end 
% % % % % 
% % % % % % calculate transition probability matrices T01 and T11 
% % % % % T01list=zeros(NPMAX,NPMAX); 
% % % % % T11list=zeros(NPMAX,NPMAX); 
% % % % % for j1=1:NPMAX, 
% % % % %     for j2=1:NPMAX, 
% % % % % 

[T01list(j1,j2),T11list(j1,j2)]=occtrans1(plist(j1),plist(j2),shuff); 
% % % % %     end 
% % % % % end 
%% RT2 =============================BEGIN MAIN CODE======================== 
T01List=zeros(1,length(probHour)); 
T11List=zeros(1,length(probHour)); 
for j=1:length(probHour)-1 
    [T01List(j),T11List(j)]=occtrans1(probHour(j),probHour(j+1),shuff); 
end 

  
% calculate occupancy probability time arrays 
nt=length(t); 
dt=t(2)-t(1); 
daynb=zeros(1,nt); 
weeknb=zeros(1,nt); 
index2=zeros(1,nt); % for each timestep, index in the plist array 
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pBlockAbs=nAbsAver/nt; % probability of starting a block absence at each 

timestep 

  
for i=1:nt, 
    tday=mod(t(i),86400); % time in the day 
    daynb(i)=fix(t(i)/86400); % day number in the year 
    weeknb(i)=fix((daynb(i)+firstDay+5)/7); % week number in the year (1 to 

53) 
    h=fix(tday/3600); % full hour in the day 
    m=month1(daynb(i)); % month number (1 to 12) 
    weekday=mod(daynb(i)+firstDay-2,7)+1; % day of the week (1 to 7) 
    if (weekday==6) w=2; % Saturday 
    elseif (weekday==7) w=3; % Sunday 
    else w=1; end % weekday 
    k=h+1+24*(w-1)+3*24*(m-1); % index in the probHour array 
%    index2(i)=index1(k); % index in the plist array 
end 

  
% time distribution of block absence: calculate cumulative distribution 
% function and prepare histogram 
nabs=length(absDurationProb); 
absDurationProbCumul=cumsum(absDurationProb); % cumulative probability 
if (abs(absDurationProbCumul(nabs)-1)>nabs*eps) 
    error('*** occrandom1 error: absDurationProbCumul(%i) = %f, should be 

1',nabs,absDurationProbCumul(nabs)) 
end 
% preparing bins for the distribution of periods of long absence 
if (histoFlag>0) 
    hmax=histoAbsBin*(histoAbsNBin-1); % value for the beginning of last bin 
    histoAbsTimes=[0:histoAbsBin:hmax]; 
    histoAbsFreq=zeros(1,histoAbsNBin); 
    histoAbsAver=0; 
    histoAbsTot=0; 
end 

  
% time distribution of daily/weekly occupancy: prepare histogram 
if (histoFlag>0) 
    hmax=histoOccBin*(histoOccNBin-1); % value for the beginning of last bin 
    histoOccTimes=[0:histoOccBin:hmax]; 
    histoOccFreq=zeros(1,histoOccNBin); 
    histoOccAver=0; 
    histoOccTot=0; 
end 

  
% calculate occupancy simulated by the stochastic model 
occCumul=zeros(1,nt); 
for k=1:occMax 
    occ0=occInit; % initial value of occupancy 
    blockAbs0=0; % initial value of block absence: 0 (normal occupancy) 
    occCumul(1)=occCumul(1)+occ0; 
    occtime=0; % initial value of daily/weekly occupation time [hours] 
    if (histoFlag==1) daynb0=daynb(1); end 
    if (histoFlag==2) weeknb0=weeknb(1); end 
    for i=1:nt-1 
        % if nargout>1 and day/week has changed, increment the daily/weekly 

occupation histogram 
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        if (histoFlag==1 & daynb(i)>daynb0) 
            j=fix(occtime/histoOccBin)+1;  
            if (j>=1 & j<=histoOccNBin) 
                histoOccFreq(j)=histoOccFreq(j)+1; 
            end 
            histoOccAver=histoOccAver+occtime; histoOccTot=histoOccTot+1; 
            daynb0=daynb(i); 
            occtime=0; 
        elseif (histoFlag==2 & weeknb(i)>weeknb0) 
            j=fix(occtime/histoOccBin)+1;  
            if (j>=1 & j<=histoOccNBin) 
                histoOccFreq(j)=histoOccFreq(j)+1;  
            end 
            histoOccAver=histoOccAver+occtime; histoOccTot=histoOccTot+1; 
            weeknb0=weeknb(i); 
            occtime=0; 
        end 
        % determine whether a block absence should start 
        if (blockAbs0==0) % currently not in a block absence 
            x=rand(1); 
            if (x<pBlockAbs) 
                blockAbs=1; % start a block absence 
                % determine the duration of block absence 
                x=rand(1); 
                g=find(absDurationProbCumul<x); 
                x=rand(1); 
                dBlockAbs=(length(g)+x)*absDurationBin+absDurationMin; 

%hours, minimum absDurationMin 
                tEndBlockAbs=t(i)+dBlockAbs*3600; 
                if (histoFlag>0) 
                    j=fix(dBlockAbs/absDurationBin)+1; 
                    if (j>=1 & j<=histoAbsNBin)  
                        histoAbsFreq(j)=histoAbsFreq(j)+1;  
                    end 
                    histoAbsAver=histoAbsAver+dBlockAbs; 
                end 
            else 
                blockAbs=0;  
            end 
        else % currently in a block absence, check possible end 
            if (t(i)>tEndBlockAbs)  
                blockAbs=0; 
            else 
                blockAbs=1; 
            end 
        end 
% % % % %         if (blockAbs0==0), j1=index2(i); 
% % % % %         else j1=1; end 
% % % % %         if (blockAbs==0), j2=index2(i+1); 
% % % % %         else j2=1; end 
% % % % %         T01=T01list(j1,j2); 
% % % % %         T11=T11list(j1,j2); 
        if (blockAbs==1) % occupant just left on long absence 
            occ=0; 
        elseif (blockAbs0==1)&&(blockAbs==0) % occupant just came back from 

long absence 
            occ=1; 
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        else 
            T01=T01List(mod(i-1,672)+1); 
            T11=T11List(mod(i-1,672)+1); 
            x=rand(1); 
            if (occ0==0) % room currently not occupied 
                if (T01>x)  
                    occ=1;  
                else 
                    occ=0;  
                end 
            elseif (occ0==1) % room currently occupied 
                T10=1-T11; 
                if (T10>x)  
                    occ=0;  
                else 
                    occ=1;  
                end 
            end 
        end 
        occ0=occ; 
        blockAbs0=blockAbs; 
        occCumul(i+1)=occCumul(i+1)+occ; 
        if (histoFlag>0)  
            occtime=occtime+dt*occ/3600; 
        end 
    end % loop through time period  *RT 
end % loop for each occupant  *RT 

  
% average values 
if (histoFlag>0), 
    if (histoAbsTot>0),  
        histoAbsAver=histoAbsAver/histoAbsTot;  
    end 
    if (histoOccTot>0),  
        histoOccAver=histoOccAver/histoOccTot;  
    end 
end 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%% 

  
function m=month1(daynb) 
% calculate month number (1 to 12) corresponding to daynb 
% (number of day in the year, from 1 to 365) 
% current version: no leap year ! 

  
firstday=[1,32,60,91,121,152,182,213,244,274,305,335,9999]; 
m1=find(daynb<firstday); 
m=m1(1)-1; 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%% 
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function [T01,T11]=occtrans1(pcurr,pnext,shuff) 
% calculation of transition probability, model 1 
% T01=probability of transition 0 -> 1 
% T11=probability of transition 1 -> 1 
% (note: T00=1-T01, T10=1-T11) 
% pcurr=current step occupancy probability 
% pnext=next step occupancy probability 
% shuff = shuffling parameter 
% beta = adjusted value of shuff 

  
beta=shuff; % default: no adjustment needed 

  
if(pnext==0) 
    T01=0; 
    T11=0; 
elseif(pnext==1) 
    T01=1; 
    T11=1; 
else 
    if (pcurr==1) 
        T11=pnext; 
        T01=0; 
    elseif (pcurr==0) 
        T01=pnext; 
        T11=0; 
    elseif (pcurr==pnext) 
        if (pcurr+pnext>1) 
            if (shuff>1/(2*pcurr-1)) 
                beta=1/(2*pcurr-1); 
            else 
                beta=shuff; 
            end 
        elseif (pcurr+pnext<1) 
            if (shuff>1/(1-2*pcurr)) 
                beta=1/(1-2*pcurr); 
            else 
                beta=shuff; 
            end 
        else 
            beta=shuff; 
        end 
        T01=2*beta*pcurr/(beta+1); 
        T11=1-(1-pcurr)*T01/pcurr; 
    elseif (pcurr<pnext) 
        if (shuff<(pnext-pcurr)/(2-(pnext+pcurr))) 
            beta=(pnext-pcurr)/(2-(pnext+pcurr)); 
        else 
            if ((pcurr+pnext>1) & (shuff>(pcurr-pnext+1)/(pnext+pcurr-1))) 
                beta=(pcurr-pnext+1)/(pnext+pcurr-1); 
            elseif ((pcurr+pnext<1) & (shuff>(1-pcurr+pnext)/(1-pcurr-

pnext))) 
                beta=(1-pcurr+pnext)/(1-pcurr-pnext); 
            else 
                beta=shuff; 
            end 



 

197 

        end 
        T01=pnext+pcurr*(beta-1)/(beta+1); 
        T11=1/pcurr*(pnext-(1-pcurr)*T01); 
    else % (pcurr>pnext) 
        if (shuff<(pcurr-pnext)/(pnext+pcurr)) 
            beta=(pcurr-pnext)/(pnext+pcurr); 
        else 
            if ((pcurr+pnext>1) & (shuff>(pcurr-pnext+1)/(pnext+pcurr-1))) 
                beta=(pcurr-pnext+1)/(pnext+pcurr-1); 
            elseif ((pcurr+pnext<1) & (shuff>(1-pcurr+pnext)/(1-pcurr-

pnext))) 
                beta=(1-pcurr+pnext)/(1-pcurr-pnext); 
            else 
                beta=shuff; 
            end 
        end 
        T01=pnext+pcurr*(beta-1)/(beta+1); 
        T11=1/pcurr*(pnext-(1-pcurr)*T01); 
    end 
end 

  
% print a message if shuff and beta are not equal 
% if (beta~=shuff) 
%     fprintf('***Warning: the shuffling parameters had to be adjusted\n'); 
%     fprintf('            pcurr=%6.2f, pnext=%6.2f, shuff=%6.2f adjusted to 
%6.2f\n',... 
%         pcurr,pnext,shuff,beta) 
% end 
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function[occCumul,histoOccTimes,histoOccFreq,histoOccAver,histoAbsTimes,... 
    histoAbsFreq,histoAbsAver]= occtest(NumberOfBuildings,NumberOfPeople,... 
                              AverageNumberofLongAbsences,... 
                              LongAbsenceProbabilityDistribution,... 
                              MuParameter,... 
                              ProbabilityProfile) 
% histoAbsAver, 
% histoOccAver, 
% histoAbsTimes/24,histoAbsFreq, 
% histoOccTimes,histoOccFreq, 

  
% script occupancy model 1.4 (now it's a function so I can enter my 

parameters easily) 
% generation of an occupancy profile 
% occMax=maximum number of persons in the zone 
% tmin=minimum generation time [s] 
% tmax=maximum generation time [s] 
% dt=calculation timestep [s] 
% [t1,t2]=morning occupancy interval [s] 
% [t3,t4]=afternoon occupancy interval [s] 
% p1=occupancy probability for t<t1 or t>t4, or week-end 
% p2=occupancy probability for [t1,t2] 
% p3=occupancy probability for [t2,t3] 
% p4=occupancy probability for [t3,t4] 
% shuff=shuffling parameter 

  
nb=NumberOfBuildings; % number of buildings 
occMaxBuilding=NumberOfPeople; % max occupancy for each building 
occMaxTot=occMaxBuilding*nb; 
tmin=1*86400; 
tmax=(1*365+1)*86400; 
dt=900; 
shuff=MuParameter; 
nAbsAver=AverageNumberofLongAbsences; % average number of block absences 

during the considered period 
absDurationProb=LongAbsenceProbabilityDistribution; % block absence 

probabilities 
absDurationBin=12; % bin for the block absence probability [hours] 
absDurationMin=12; % minimum block absence duration [hours] 
histoAbsBin=6; % absence histogram bin [hours] 
histoAbsNBin=100; % absence histogram number of bins 
histoOccBin= 1/4; % daily/weekly occupancy histogram bin [quarters of an 

hour] 
histoOccNBin=100*4; % daily/weekly occupancy histogram number of bins 

  
% generation of time array and initialization 
t=[tmin:dt:tmax]; nt=length(t); % nt = number of time steps 
occ0=0; % initial value: room supposed to be unoccupied 
occCumul=zeros(size(t)); 
firstDay=1; % arbitrary value (Monday) 

  
% options 
optionBuilding=1; % 1=all buildings together, 2=each building separately 
optionHisto=2; % 0=no histogram, 1=daily occupancy histogram, 2=weekly 

occupancy histogram 
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% calculate occupancy probability array, hour by hour: 
% for each month, 3 daily profiles (24 values) for 
% Mondays to Fridays, Saturdays, Sundays 
% --> altogether 12 * 3 * 24 = 864 values 
tic; 
%probhour=probhour_Office003(WeekdayHourlyProbProfile,SaturdayHourlyProbProfi

le,SundayHourlyProbProfile); 
probhour=ProbabilityProfile; 
cpu1=toc; 
if (optionBuilding==1), 
    % calculate occupancy simulated by stochastic model 
    % optionBuilding==1: all buildings calculated at once, only one function 

call 
    tic; 
    if (optionHisto==0), 
        occCumul=... 
            occmodel(t,occ0,occMaxTot,shuff,probhour,nAbsAver,... 
            

absDurationProb,absDurationBin,absDurationMin,firstDay,optionHisto); 
    elseif (optionHisto>0), 
        [occCumul,histoAbsTimes,histoAbsFreq,histoAbsAver,... 
            histoOccTimes,histoOccFreq,histoOccAver]=... 
            occmodel(t,occ0,occMaxTot,shuff,probhour,nAbsAver,... 
            

absDurationProb,absDurationBin,absDurationMin,firstDay,optionHisto,... 
            histoAbsBin,histoAbsNBin,histoOccBin,histoOccNBin); 
    end 
    cpu2=toc; 
elseif (optionBuilding==2), 
    % calculated occupancy simulated by stochastic model 
    % optionBuilding==2: every building calculated with a different profile, 

nb function calls 
    tic; 
    for i=1:nb % loop on buildings 
        if (optionHisto==0), 
            occBuilding=... 
                occmodel(t,occ0,occMaxBuilding,shuff,probhour,nAbsAver,... 
                

absDurationProb,absDurationBin,absDurationMin,firstDay,optionHisto); 
        elseif (optionHisto>0), 
            

[occBuilding,histoAbsTimes,histoAbsFreqBuilding,histoAbsAverBuilding,.... 
                histoOccTimes,histoOccFreqBuilding,histoOccAverBuilding]=... 
                occmodel(t,occ0,occMaxBuilding,shuff,probhour,... 
                

nAbsAver,absDurationProb,absDurationBin,absDurationMin,firstDay,optionHisto,.

.. 
                histoAbsBin,histoAbsNBin,histoOccBin,histoOccNBin); 
        end 
        if (i==1) 
            occCumul=zeros(size(t)); 
            if (optionHisto>0), 
                histoAbsFreq=zeros(size(histoAbsTimes)); 
                histoAbsAver=0; 
                histoOccFreq=zeros(size(histoOccTimes)); 
                histoOccAver=0; 
            end 
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        end 
        occCumul=occCumul+occBuilding; 
        if (optionHisto>0), 
            histoAbsFreq=histoAbsFreq+histoAbsFreqBuilding; 
            histoAbsAver=histoAbsAver+histoAbsAverBuilding/nb; 
            histoOccFreq=histoOccFreq+histoOccFreqBuilding; 
            histoOccAver=histoOccAver+histoOccAverBuilding/nb; 
        end 
    end % end of loop on buildings 
    cpu2=toc; 
end % of of option selection 

  
% fprintf('CPU calculation of hourly occupancy probability profile: %6.2f 

seconds\n',cpu1); 
% fprintf('CPU drawing a random probability profile (altogether %i 

persons):6.2f seconds\n',occMaxTot,cpu2); 
% if (optionHisto>0), 
%     fprintf('average block absence time: %6.2f hours\n',histoAbsAver); 
%     if (optionHisto==1) fprintf('average daily occupancy time: %6.2f 

hours\n',histoOccAver); end 
%     if (optionHisto==2) fprintf('average weekly occupancy time: %6.2f 

hours\n',histoOccAver); end 
% end 
%  
% % display block absence time distribution 
% if (optionHisto>0), 
%     figure(1); 
%     plot(histoAbsTimes/24,histoAbsFreq,'-rx'); 
%     grid on 
%     title('Block absence time distribution (days)'); 
% end 
%  
% % display daily/weekly presence time distribution 
% if (optionHisto>0) 
%     figure(2); 
%     plot(histoOccTimes,histoOccFreq,'-rx'); 
%     grid on 
%     if (optionHisto==1) title('Daily presence time distribution (hours)'); 

end 
%     if (optionHisto==2) title('Weekly presence time distribution (hours)'); 

end 
% end 
%  
% % display time plot 
% figure(3); 
% td=t/86400; 
% tdmin=td(1); tdmax=td(end); 
% while (1), 
%     tdlimit=input('Enter tdmin and tdmax [days] (return to stop): ','s'); 
%     if (strcmp(tdlimit,'')~=0), break; end 
%     [tdmin,tdmax]=strread(tdlimit,'%f %f'); 
%     if (tdmin<td(1)), tdmin=td(1); end 
%     if (tdmax>td(end)), tdmax=td(end); end 
%     index=(td>=tdmin & td<=tdmax); 
%     title1=input('Enter title: ','s'); 
%     plot(td(index),occCumul(index)); 
%     ylim([-0.2*occMaxTot,1.2*occMaxTot]); 
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%     grid on 
%     if (strcmp(title1,'')==0), title(title1); end 
% end 
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function SA = first_total_seq(k, Nrepl, N) 

  
%Replicated estimations of first order, total order effects and total effects 

by pairs of inputs 
%using A, B and Ab. 
%First order and total order indices are estimated according to the rule 

proposed in  
%Saltelli, A., P. Annoni, I. Azzini, F. Campolongo, M. Ratto, S. Tarantola, 

(2010) Variance based sensitivity analysis of model output. Design and 

estimator for the total sensitivity index, Computer Physics Communications, 

181, 259–270 
%Total cost = N(k+2) 

  
% k = n of inputs 
% Nrepl = n. of replicates  
% N = number of base samples 
% S = matrix (repl,k) of first order indices 
% ST = matrix (repl,k) of total indices 
% STij = matrix (repl,i,j) of pairs of total indices 
% rmse = root mean square absolute error of total effects for ST 

  
%Author: Stefano Tarantola 
%Joint Research Centre of the European Commission 
%Last release 27 September, 2010 

  
for r = 1:Nrepl 
   %vector of model output used to calculate output variance 
     y4var=[]; 

  
     %generation of uniform samples in (0;1) 
   for i=1:N 
       X=[]; 
       T = LPTAU51(i+(r-1)*N,2*k); 

               
       %PREPARATION OF THE RADIAL SAMPLE MATRIX X(k+2,k)  
       A=T(1:k); 
       B=T(k+1:2*k); 
       X=[A;B]; 
       for j=1:k; 
        Ab=A; 
        Ab(j)=B(j); 
        X=[X;Ab]; 
       end 
        % model evaluation Y(k+2,1) 

         
        %here write the function that calls your model 
        %Example: y=rosenbrock(X); 
        y=[]; 
        for j=1:k+2; 
            y(j)=LtgNrgSA(X(j,1:k)); 
        end 

         
        yA=y(1); 
        yB=y(2); 
        yAb=y(3:k+2); 
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        %vector for calculation of total variance 
        y4var=[y4var;yA;yB]; 
        %compute nominators for first and totals 
        for j=1:k 
            Vi(i,j)=yB*(yAb(j)-yA); 
            VT(i,j)=(yA-yAb(j))^2; 
        end 
        %calculation of total variance 
        Vtot=var(y4var); 
        %calculation of sensitivity indices 
        %sequentially. Index i represents the sequentiality       
        for j=1:k 
          S(i,j)=mean(Vi(:,j))/Vtot; 
          ST(i,j)=mean(VT(:,j))/2/Vtot; 
        end  
   end %N 

         
      %compute nominators for totals of pairs of factors (they come at no 
      %extra cost) 
      %VTij(k+2,k,k) is a set of triangular matrices  
   for i=1:N; 
        for j=1:k 
            yAbi=yAb(j); 
            for j2=j+1:k 
              yAbj=yAb(j2); 
              VTij(i,j,j2)=(yAbi-yAbj)'*(yAbi-yAbj); 
            end 
        end 
   end %N 
   %calculation of total indices for pairs of factors (they come at no extra 

cost) 
   for j=1:k 
       for j2=j+1:k 
             STij(r,j2,j)=mean(VTij(:,j,j2))/2/Vtot; 
       end 
   end 

       
end %r 

  
save('y4var.mat'); 
save('Vi.mat'); 
save('VT.mat'); 
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function VECTOR = LPTAU(I, N) 
% 
%     I.M. SOBOL', V.I. TURCHANINOV, Yu.L. LEVITAN, B.V. SHUKHMAN 
%     KELDYSH INSTITUTE OF APPLIED MATHEMATICS 
%     RUSSIAN ACADEMY OF SCIENCES 
% 
%     QUASIRANDOM SEQUENCE GENERATORS 
%     ------------------------------- 
% 
%     28.11.1991 
% 
%     NOTE TO THE USER BY the NEA Data Bank: 
%          This quasi random number generator has been made available to 
%          you on condition that its identity is preserved when used 
%          in computer programs. If its use leads to scientific publication 
%          of results you should cite it in the references, in addition 
%          no commercial use should be made unless agreed upon with the 
%          main author (Prof. I.M. Sobol') 
% 
%                         ABSTRACT 
%                         ........ 
% 
%     POINTS BELONGING TO LP-TAU SEQUENCES UNIFORMLY DISTRIBUTED IN THE 
%     N-DIMENSIONAL UNIT CUBE ARE OFTEN USED IN NUMERICAL MATHEMATICS: 
% 
%     - AS NODES FOR MULTIDIMENSIONAL INTEGRATION; 
%     - AS SEARCHING POINTS IN GLOBAL OPTIMIZATION; 
%     - AS TRIAL POINTS IN MULTI-CRITERIA DECISION MAKING; 
%     - AS QUASIRANDOM POINTS FOR QUASI-MONTECARLO ALGORITHMS; 
%     - ETC. 
% 
%     THIS SUBROUTINE CONTAINS THE ALGORITHM FOR FAST GENERATION OF 
%     LP-TAU SEQUENCES THAT ARE SUITABLE FOR MULTI-PROCESSOR COMPUTATIONS. 
%     THE DIMENSIONS N.LE.51, THE NUMBER OF POINTS N.LT.2**30. 
%     THE PROGRAMMING LANGUAGE IS FORTRAN-77. THIS SUBROUTINE IS AVAILABLE 
%     ALSO IN %-LANGUAGE. 
%     THE REPORT DESCRIBING THE ALGORITHM CONTAINS THE DESCRIPTION OF THE 
%     ALGORITHM AND CERTAIN IMPORTANT PROPERTIES OF LP-TAU SEQUENCES AND 
%     THEIR GENERALIZATIONS ARE DISCUSSED. 
% 
%     REFERENCE: 
%     I.M. SOBOL', V.I. TURCHANINOV, Yu.L. LEVITAN, B.V. SHUKHMAN 
%     KELDYSH INSTITUTE OF APPLIED MATHEMATICS 
%     RUSSIAN ACADEMY OF SCIENCES 
% 
%     QUASIRANDOM SEQUENCE GENERATORS 
%     MOSCOW 1992, IPM ZAK. NO.30 (100 COPIES) 
% 
%     -----------------------------------------------------------------------

- 
% 
%     INPUT PARAMETERS: 
% 
%     I   -   NUMBER OF THE POINT (I=(0,2**30-1)), 
%     N   -   DIMENSION OF THE POINT (0<N<52); 
% 
%     OUTPUT PARAMETER: 
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% 
%     VECTOR(N) - N-VECTOR CONTAINING THE CARTESIAN CO-ORDINATES OF 
%                 THE I-TH POINT. 
% 
% 
%     TO CALL THE SUBROUTINE WRITE: 
% 
%     CALL LPTAU(I,N,VECTOR) 
%     WHERE I, N: INTEGER CAPABLE OF STORING 2**30 (INTEGER*4 ON IBM 
%                 OR OTHER 32 BIT/WORD MACHINES) 
%         VECTOR: DOUBLE PRECISION ARRAY WHOSE LENGTH < 52. 
% 
%      INTEGER QP 
%     QP = QUANTITY POWER 
% 
%      PARAMETER (MAXDIM=51, QP=30, MAXNUM=2**30-1) 
MAXDIM=51; QP=30; MAXNUM=2^30-1; 
% 
%     THE DIMENSION OF THE POINT CANNOT EXCEED MAXDIM 
%     THE TOTAL NUMBER OF GENERATED POINTS CANNOT EXCEED 2**QP 
%     MAXNUM=2**30-1 // 1073741823 
% 
%      DOUBLE PRECISION VECTOR(N) 
%      INTEGER          I,N 
% 
%      INTEGER PRVNUM,PRVDIM 
%      INTEGER DIRECT(MAXDIM,QP), MASKV(MAXDIM) 
%      DOUBLE PRECISION SCALE 
VECTOR=zeros(1,N); 
SCALE =9.31322574615478516E-10;     

  
persistent PRVNUM PRVDIM MASKV DIRECT 
if isempty(PRVNUM), PRVNUM=-2; end, 
if isempty(PRVDIM), PRVDIM=0; end, 

  
if isempty(DIRECT), ... 
        DIRECT(1:MAXDIM,1)=[ 
        536870912,  536870912,  536870912,  536870912,  536870912, ... 
            536870912,  536870912,  536870912,  536870912,  536870912, ... 
            536870912,  536870912,  536870912,  536870912,  536870912, ... 
            536870912,  536870912,  536870912,  536870912,  536870912, ... 
            536870912,  536870912,  536870912,  536870912,  536870912, ... 
            536870912,  536870912,  536870912,  536870912,  536870912, ... 
            536870912,  536870912,  536870912,  536870912,  536870912, ... 
            536870912,  536870912,  536870912,  536870912,  536870912, ... 
            536870912,  536870912,  536870912,  536870912,  536870912, ... 
            536870912,  536870912,  536870912,  536870912,  536870912, ... 
            536870912]'; 
    DIRECT(1:MAXDIM,2)=[ 
        805306368,  268435456,  805306368,  268435456,  805306368, ... 
            268435456,  805306368,  268435456,  268435456,  805306368, ... 
            268435456,  805306368,  268435456,  805306368,  268435456, ... 
            805306368,  805306368,  268435456,  805306368,  268435456, ... 
            805306368,  268435456,  805306368,  268435456,  268435456, ... 
            805306368,  268435456,  805306368,  268435456,  805306368, ... 
            268435456,  805306368,  805306368,  268435456,  805306368, ... 
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            268435456,  805306368,  268435456,  805306368,  268435456, ... 
            268435456,  805306368,  268435456,  805306368,  268435456, ... 
            805306368,  268435456,  805306368,  805306368,  268435456, ... 
            805306368]'; 
    DIRECT(1:MAXDIM,3)=[ 
        939524096,  939524096,  134217728,  671088640,  402653184, ... 
            402653184,  671088640,  134217728,  671088640,  402653184, ... 
            939524096,  134217728,  671088640,  939524096,  134217728, ... 
            671088640,  134217728,  939524096,  939524096,  402653184, ... 
            402653184,  134217728,  671088640,  402653184,  671088640, ... 
            402653184,  402653184,  671088640,  134217728,  134217728, ... 
            939524096,  939524096,  939524096,  939524096,  134217728, ... 
            671088640,  402653184,  402653184,  671088640,  134217728, ... 
            671088640,  402653184,  939524096,  134217728,  671088640, ... 
            939524096,  134217728,  671088640,  134217728,  939524096, ... 
            939524096]'; 
    DIRECT(1:MAXDIM,4)=[ 
        1006632960,   67108864,  603979776, 1006632960,  335544320, ... 
            469762048,  872415232,  738197504,  469762048,  872415232, ... 
            1006632960,   67108864,  872415232,  469762048,  469762048, ... 
            469762048, 1006632960,  335544320,  872415232,  603979776, ... 
            201326592,   67108864,  335544320,   67108864,  201326592, ... 
            738197504, 1006632960,  738197504,  603979776,  335544320, ... 
            738197504,   67108864, 1006632960,   67108864,  603979776, ... 
            1006632960,  335544320,  469762048,  872415232,  738197504, ... 
            469762048,  872415232, 1006632960,   67108864,  872415232, ... 
            469762048,  469762048,  469762048, 1006632960,  335544320, ... 
            872415232]'; 
    DIRECT(1:MAXDIM,5)=[ 
        1040187392,  637534208, 1040187392,  838860800,  167772160, ... 
            234881024,  167772160, 1040187392,  436207616,   33554432, ... 
            570425344, 1040187392,  503316480,  838860800,  973078528, ... 
            167772160,  234881024,  436207616,  771751936,  100663296, ... 
            234881024,  905969664,  771751936,   33554432,  838860800, ... 
            973078528,  905969664,   33554432,  301989888,  838860800, ... 
            100663296,  234881024, 1040187392,  637534208, 1040187392, ... 
            838860800,  167772160,  234881024,  167772160, 1040187392, ... 
            436207616,   33554432,  570425344, 1040187392,  503316480, ... 
            838860800,  973078528,  167772160,  234881024,  436207616, ... 
            771751936]'; 
    DIRECT(1:MAXDIM,6)=[ 
        1056964608,  352321536,   50331648,  419430400,  956301312, ... 
            889192448,  620756992,  117440512,  956301312,  922746880, ... 
            822083584,  218103808,  587202560,  385875968,  452984832, ... 
            218103808,  184549376,  285212672,  150994944,  956301312, ... 
            352321536,  654311424,  553648128,  352321536,  788529152, ... 
            956301312,  587202560,  251658240,  218103808,  721420288, ... 
            251658240, 1056964608,  520093696,  889192448,  587202560, ... 
            956301312,  419430400,  352321536,   83886080,  654311424, ... 
            419430400,  385875968,  285212672,  754974720,   50331648, ... 
            922746880,  989855744,  754974720,  721420288,  822083584, ... 
            687865856]'; 
    DIRECT(1:MAXDIM,7)=[ 
        1065353216, 1065353216,  578813952,   25165824,  125829120, ... 
            964689920,  327155712,  310378496,  360710144,  360710144, ... 
            159383552,  444596224,  947912704,  662700032,  444596224, ... 
            528482304,  578813952,  578813952,   75497472, 1065353216, ... 
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            92274688,  511705088,  897581056,  847249408,  662700032, ... 
            931135488,  411041792,  713031680,  696254464,  528482304, ... 
            209715200,  578813952, 1065353216, 1065353216,  578813952, ... 
            25165824,  125829120,  964689920,  327155712,  310378496, ... 
            360710144,  360710144,  159383552,  444596224,  947912704, ... 
            662700032,  444596224,  528482304,  578813952,  578813952, ... 
            75497472]'; 
    DIRECT(1:MAXDIM,8)=[ 
        1069547520,    4194304,  826277888,  624951296,  616562688, ... 
            801112064,  952107008,  406847488,  398458880,  331350016, ... 
            356515840,   46137344, 1010827264, 1069547520,  734003200, ... 
            113246208,  490733568,  633339904,  910163968,  801112064, ... 
            893386752,  851443712,  801112064,  918552576,  742391808, ... 
            499122176,   62914560,  264241152,  708837376,  717225984, ... 
            759169024,  499122176,  272629760,  423624704,  155189248, ... 
            239075328,  205520896,  943718400,  373293056,  457179136, ... 
            406847488,   71303168,  473956352,   54525952,  624951296, ... 
            104857600, 1019215872,  901775360,  213909504,  281018368, ... 
            851443712]'; 
    DIRECT(1:MAXDIM,9)=[ 
        1071644672,  543162368,  190840832,  329252864,  853540864, ... 
            132120576,  778043392,   73400320,  178257920,  522190848, ... 
            639631360,  534773760,  991952896,  333447168,   48234496, ... 
            1059061760,  761266176,  673185792,  220200960,  396361728, ... 
            362807296,  815792128,  819986432,  346030080,   39845888, ... 
            752877568,  387973120,  643825664,  291504128,  274726912, ... 
            568328192,  526385152,  673185792,   98566144,  396361728, ... 
            727711744, 1042284544,  106954752,  299892736,  912261120, ... 
            44040192,  895483904,  333447168,  551550976,  467664896, ... 
            618659840,  606076928,  274726912,  245366784,  446693376, ... 
            421527552]'; 
    DIRECT(1:MAXDIM,10)=[ 
        1072693248,  273678336,  644874240,  753926144,  495976448, ... 
            869269504,  355467264,   57671680,  816840704,  961544192, ... 
            804257792,  495976448,  347078656,  426770432, 1066401792, ... 
            372244480,   84934656,  208666624,  313524224,  598736896, ... 
            487587840,  965738496, 1011875840,  296747008,  393216000, ... 
            523239424,  720371712,  823132160,  128974848,  407896064, ... 
            747634688,  850395136,  873463808,  504365056,  481296384, ... 
            686817280,  592445440,  995098624,  498073600,  969932800, ... 
            586153984, 1039138816,  814743552,  523239424,  294649856, ... 
            305135616,  506462208,   11534336,  449839104,  619708416, ... 
            479199232]'; 
    DIRECT(1:MAXDIM,11)=[ 
        1073217536,  947388416, 1070071808,  977797120,  365428736, ... 
            702021632,  461897728,  829947904,  425197568,  634912768, ... 
            437780480,  582483968,  792199168,  315097088,  611844096, ... 
            667418624,  166199296,  513277952,  187170816, 1036517376, ... 
            25690112,  201850880,  443023360,  990380032,   63438848, ... 
            211288064,  983040000, 1069023232,  421003264,  742916096, ... 
            487063552,  363331584,  973602816,  286785536,  171442176, ... 
            669515776,  110624768,  383254528,  289931264,  352845824, ... 
            878182400,  655884288,  836239360,  765984768,  549978112, ... 
            655884288,   85458944,  591921152,  563609600,  277348352, ... 
            919076864]'; 
    DIRECT(1:MAXDIM,12)=[ 
        1073479680,   71565312,    2359296,  891551744,  158597120, ... 
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            383516672, 1019478016,  947126272,  621019136,  714866688, ... 
            738459648,  265027584,  468975616,  131858432,  504627200, ... 
            581173248,  266600448,  865861632,  658243584,  546045952, ... 
            521404416,  304873472, 1060896768,  163840000,  305922048, ... 
            257163264,   50069504,  773062656,   59506688,  779354112, ... 
            165937152,  587988992,  486801408,  160694272,   90439680, ... 
            423362560,  536608768,  614203392,   56885248,  999030784, ... 
            10747904,  764674048,   25952256,  989069312,  352583680, ... 
            799801344,  261357568,  873201664,   40108032,  769392640, ... 
            254541824]'; 
    DIRECT(1:MAXDIM,13)=[ 
        1073610752,  644218880,  538836992,  455475200, 1062600704, ... 
            139329536,  205651968,  905052160,  797048832,  452329472, ... 
            973471744,  627703808,  614072320,  803078144,  637403136, ... 
            835059712,  949878784,  662044672,  767950848,  426901504, ... 
            448659456,   23986176, 1016201216,  524943360,  525991936, ... 
            618790912,  781058048,  761659392,  458096640,  226361344, ... 
            950665216,  952500224,  516030464,  337510400,  496107520, ... 
            830865408,  944111616,  636354560,  978452480,  921567232, ... 
            533594112,    7471104,  678035456,  471203840, 1065746432, ... 
            575275008,  996540416,  909246464,  879362048,  637927424, ... 
            25821184]'; 
    DIRECT(1:MAXDIM,14)=[ 
        1073676288,  357892096,  808648704,    2424832,    2555904, ... 
            624230400,   69271552,  456851456, 1052966912,  600637440, ... 
            487260160,  794624000,  386727936,  467599360,  798031872, ... 
            630652928,  340983808,  493944832,   37945344,  264175616, ... 
            263520256,  833421312,  235077632,  464846848,  534839296, ... 
            992411648,   10813440,  367067136,  116457472,  115015680, ... 
            928710656,  619773952,  813760512, 1043398656,  967770112, ... 
            912850944,   72155136, 1009057792,  668532736,  462356480, ... 
            267321344,  795803648,  635764736,  574160896, 1003421696, ... 
            181075968,   56688640,  388562944,  190906368,  657915904, ... 
            474939392]'; 
    DIRECT(1:MAXDIM,15)=[ 
        1073709056, 1073709056,  137003008,  547782656,  545095680, ... 
            26836992,   34701312,  354385920,  925663232,  656965632, ... 
            327581696,  894795776,  110067712, 1038057472,  209354752, ... 
            596541440,   42631168,  471433216,   52527104,  666861568, ... 
            706707456,  674070528,  824410112,  305496064,  136282112, ... 
            847740928,  531464192,  222920704,  379289600,  507740160, ... 
            11894784, 1053392896,  129990656,  557547520,  666468352, ... 
            1061912576,  576684032, 1041334272,  380469248,  114196480, ... 
            133070848,  517046272,  129990656,  790396928,  563773440, ... 
            388333568,  661749760,  446791680,  737378304,  229998592, ... 
            348225536]'; 
    DIRECT(1:MAXDIM,16)=[ 
        1073725440,      16384,  605372416,  275234816,  817971200, ... 
            603963392,  555335680,  721534976,  997801984, 1028767744, ... 
            407060480,  375275520,  256688128, 1021165568,  303349760, ... 
            1022476288,  234143744,  106708992,  732971008,  733954048, ... 
            789889024,  879575040,  764657664,  762658816, 1010843648, ... 
            941080576,  827932672,   98942976, 1051738112,  624934912, ... 
            993280000,  134070272,  201375744,  567558144,  882163712, ... 
            649084928,  356564992,  489439232,  637091840,   60637184, ... 
            199278592,  815677440,  927678464,   94519296,  419184640, ... 
            933838848,  426655744,  911130624,  171393024,  561332224, ... 
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            471613440]'; 
    DIRECT(1:MAXDIM,17)=[ 
        1073733632,  536895488, 1043685376,  679944192,  417505280, ... 
            301981696,  832561152,  210542592,  167501824, 1071341568, ... 
            229302272,  970661888,  732176384,  576659456,  402464768, ... 
            451584000,  368467968,  928260096,  933847040,   29319168, ... 
            582934528,  772612096,  330014720,  647323648,  174071808, ... 
            1008689152,  295919616,  353869824,  177774592,  580198400, ... 
            381837312,  638574592,  637558784,  679370752,  504012800, ... 
            747118592,  429973504, 1032609792,  932667392,  583360512, ... 
            969498624, 1056333824,  660955136,  247488512,  153509888, ... 
            242180096,  205840384,  797499392,  824565760,  234348544, ... 
            842326016]'; 
    DIRECT(1:MAXDIM,18)=[ 
        1073737728,  268455936,   52785152, 1020628992,  345018368, ... 
            452972544,  704442368,  255987712,  750759936,  697692160, ... 
            196677632,  764604416,  485625856,  522022912,  680620032, ... 
            362270720,  838103040,   83972096,  629133312,   46108672, ... 
            867561472,  725422080,  184504320,  751112192,  191918080, ... 
            306425856,  507310080,   30453760,  281858048,  604000256, ... 
            208662528,  319557632,  318779392,  476139520,  863719424, ... 
            567062528,  521179136,  712790016,  610299904,  293687296, ... 
            1023086592,  549089280, 1065242624,  707751936,  363024384, ... 
            16674816,  197136384, 1037561856,  195112960,  372707328, ... 
            992751616]'; 
    DIRECT(1:MAXDIM,19)=[ 
        1073739776,  939554816,  580732928,  854333440,  172619776, ... 
            511694848,  936142848,  518199296,  593348608,  225527808, ... 
            900982784,  180279296,  168904704,   62814208,  754485248, ... 
            730691584, 1005996032,  411174912,  249866240,  641669120, ... 
            1008719872,  749066240,  860993536,   94177280,  432564224, ... 
            226355200,  925784064,  995657728,  967731200,  436226048, ... 
            913799168,  549894144,  964696064,  843315200,  445863936, ... 
            1047422976,  548947968,  492066816,  953870336, 1002653696, ... 
            861440000,  385636352,  325253120,  187353088,  653584384, ... 
            1008269312,  748693504, 1013016576,   55814144,  255170560, ... 
            260708352]'; 
    DIRECT(1:MAXDIM,20)=[ 
        1073740800,   67126272,  829514752,  423777280,  968297472, ... 
            205511680,  147076096,  926669824,  202300416,  118395904, ... 
            381332480, 1002738688,  743042048,  292551680,  584567808, ... 
            284339200,  183936000,  616762368,  435221504,  159376384, ... 
            907322368,  595696640,  247497728,  553735168,  826051584, ... 
            564454400,  446024704,  214236160,   33661952,  251685888, ... 
            660327424,  284244992,  859868160,  722502656,  622844928, ... 
            324342784,  682374144,  400579584,  405353472,  605187072, ... 
            840682496,  212956160,  157891584,  193201152,  437990400, ... 
            573578240,  368053248,  580197376,  937905152,  565527552, ... 
            89064448]'; 
    DIRECT(1:MAXDIM,21)=[ 
        1073741312,  637560320,  189496832,   27474432,  129338880, ... 
            908054016,  641870336,  186375680,  302677504,  763663872, ... 
            103878144,  325187072,  858254848,  922041856,  261924352, ... 
            954978816,  292822528,  849512960,  210311680,  933232128, ... 
            691981824,  155417088,  627070464,  416795136,  182081024, ... 
            513433088,  848658944,  515770880,  627273216,  629169664, ... 
            414566912,  147450368,  698353152,  244844032,  226578944, ... 
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            1020087808,  886978048,  389697024, 1007004160,  839646720, ... 
            621924864,  549962240,  609583616,  735976960,   87342592, ... 
            1058542080,  163066368,  307997184,  876471808,  794280448, ... 
            675386880]'; 
    DIRECT(1:MAXDIM,22)=[ 
        1073741568,  352343296,  644236032,  636735232,  615860480, ... 
            959444224,  287380736, 1007410432,  890187008,  399480576, ... 
            520092928,  643311360,  816901376,  695310080, 1019229440, ... 
            77034240,  733295872, 1035127552,  986582784,  332381952, ... 
            334852352,  364956416,  596672256,  800381696,  480316672, ... 
            574863104,  647347968,  702910208,  499965184,  364968704, ... 
            120862976, 1023256320,  995114240,   13951232,   32520448, ... 
            702127360,   45176064,  444945664,  237860096,  152839936, ... 
            530633984,  429135616,  267272448,  884808960,  933712640, ... 
            61605632,  174335744,  564911360,  302327552,  650589440, ... 
            450649344]'; 
    DIRECT(1:MAXDIM,23)=[ 
        1073741696, 1065385856, 1073734272,  331949184,  842310784, ... 
            799537536,  965852032,  369351808,  662886016,   86119808, ... 
            865109888,  299633792,  422735488,  181087360,  174252416, ... 
            1041212544,  840196224,  750314368,  391053440,  903306880, ... 
            742365312,  236995200,   42492800,  946000512,  771692416, ... 
            897405824,  613803136,  924258688,  808338304, 1038125440, ... 
            683814272,  177186176,  766008960,  704549248,  194555008, ... 
            306383744,  496592512,  416020864,  655186816, 1032204928, ... 
            694773632,  577910144,   45797760,  910332544,  536014976, ... 
            675946368,  987635840,  788223872,  353993856,   96313472, ... 
            85248640]'; 
    DIRECT(1:MAXDIM,24)=[ 
        1073741760,    4210752,      12608,  744788544,  494377792, ... 
            115601344,  769248448,  990895808,  851706304,  979326784, ... 
            692061120,  429015104,  217132864,  736067008,   55694400, ... 
            456152640,  631601984,  787264192,  898599104,  478383808, ... 
            507774272,  458270272,  392995136,  872482496,  124824768, ... 
            1034161344,  362141632, 1053833280,  943810496,  428920128, ... 
            795835200,  835462848,  961843520,  606198080,  785652672, ... 
            154954432,  491617344,  297351232,  580735552,  634587968, ... 
            185277760,  141505600,  417673280,  106907456,  395575616, ... 
            566958656,  352651200,  415242688,   26635200, 1030317504, ... 
            247212992]'; 
    DIRECT(1:MAXDIM,25)=[ 
        1073741792,  543187040,  536882016,  981766752,  357858144, ... 
            810665952,  369083488,  613015520,   86115232,  845149216, ... 
            606076960, 1018241504,   35245536,  635403744,  236633696, ... 
            407451232,  427671904,  460141792,  116344544,  990246688, ... 
            1024892576,  883429408,  150655392,  173476896,  197666464, ... 
            1016740448,  605376608,  970487008, 1006881248,  598265632, ... 
            1022861728,  489055392,  216680608,  371439072,   53140576, ... 
            965114400,   98534112,  209692256,  264598496,  321437280, ... 
            545303840,  324119904,  876587488,  778239712,  802033120, ... 
            44406496,  665829024,  803213920,  309742112,  735181344, ... 
            1036125600]'; 
    DIRECT(1:MAXDIM,26)=[ 
        1073741808,  273698896,  805312112,  903123536,  153504624, ... 
            689632208,  432848944,  859888752,  510853776,  240805744, ... 
            250610192,  852489168,  139460144,  283082224,  222702928, ... 
            342181488,  922872432,  187528656,  360637424,  814514736, ... 
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            301037840,  800872624,  272595184,  158627600,  238839088, ... 
            927181136,  710248688,  788854608, 1048376560,  484709072, ... 
            85709008, 1065469744,  429237328,  490778384,  848024144, ... 
            443114288,  687907504,  474573648,   45706416,  681465296, ... 
            805303216,   14567920,  369839504,  440402480,  797652624, ... 
            115959088,  929784560,   91226544,  205943056,  288358704, ... 
            950217296]'; 
    DIRECT(1:MAXDIM,27)=[ 
        1073741816,  947419256,  134232008,  460100200, 1073685336, ... 
            398354904, 1069834248,  686054696,  108299224,  273898840, ... 
            731382552,  938170664,   86812552,  677346808,  602208712, ... 
            652635752,  209797064,  323968376,  384078968,  561178056, ... 
            923399256,  996597176,  942777416,  885167400,   89791048, ... 
            956122504,   87393464,  987661336,  993412952,  827749496, ... 
            903211272,   33649816,  594875176,   65052056,  822835240, ... 
            625704888, 1065374584,  612232920,  536299720, 1046858504, ... 
            939518840,  160843032,  654656088,  744496936,  872197704, ... 
            219111576,  829112632,  455614152, 1064192952,  313010856, ... 
            820754920]'; 
    DIRECT(1:MAXDIM,28)=[ 
        1073741820,   71582788,  603989028,      37500,     120660, ... 
            182195932,  213921796,  473570692,   41763004,  156352828, ... 
            88343188,  698012780,  666108868,  337608156, 1054329884, ... 
            799472220,  641885244,  392104980,  502284340, 1002405628, ... 
            249907140,   75586228,  206587660,  565275348, 1021426548, ... 
            425987996,  598058580,  401940420,  919427316,  822049324, ... 
            115655868,  759299588,  562394644,  990942164, 1003212268, ... 
            598750292,  675334852,  675293340,  445665316,  903023756, ... 
            872412692,  172640916, 1051615436,   91229620,   94586692, ... 
            344873452,    7029156,  683421900,  434258804,  955002092, ... 
            436424380]'; 
    DIRECT(1:MAXDIM,29)=[ 
        1073741822,  644245094, 1040195102,  537039474,  537089354, ... 
            642656334,   73402402,  664239174, 1014620426,  500917234, ... 
            1042677826,  347788318, 1069154738,  373259762,  362587674, ... 
            239395914,  132283950,  903121466,  445210638,  968851198, ... 
            230153254,  935549622,  308815630,  861891286,  496995094, ... 
            670740382,  657311830,  573565382,  248331478, 1064650798, ... 
            338312798,  669059078, 1065190902,  379125622,  111897166, ... 
            520650422,  740300390, 1046483950,   66254898,  992513134, ... 
            234871606,  610553330,  450553866,  566758134,  787800806, ... 
            1071709866,  971732606,  528102354,  790919122,  917384366, ... 
            656244162]'; 
    DIRECT(1:MAXDIM,30)=[ 
        1073741823,  357913941,   50344755,  268538457,  805540473, ... 
            3487029,    3146769,  592038967,  729591963,  781578389, ... 
            66781679,  113956361,  331153483,  967802327,  935343371, ... 
            324351309,  609305915,  818137857,  131059769,  918519549, ... 
            827341719,  922770101,  456972047,  363883221, 1057014661, ... 
            900956063,  580478293,  520383687,  315470533,  227601711, ... 
            169598765,  909227271,  796983815,  349496709,  393974911, ... 
            378320037,  777004343,  927999269,  616377385,  345930959, ... 
            989849787,  627400495,  892675125,  260314121, 1041964063, ... 
            531367163,  195776757,  237309785,  949187605,  719002587, ... 
            495745187]'; 
end 
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% 
%     TRAP FOR A WRONG SUBROUTINE CALL 
% 
if ((I<0) | (N<1) | (I>MAXNUM) | (N>MAXDIM)), 
    disp('LP-TAU CALL FAILED') 
    disp(' PRESS <ENTER> TO EXIT LPTAU') 
    pause 
    return 
end 
if ((PRVNUM+1==I) & (N<=PRVDIM)),  
    % 
    %     RECURRENT GENERATION OF THE POINT 
    % 
    % 
    %     SEARCH POSITION OF THE RIGHTMOST  "1" 
    %     IN THE BINARY REPRESENTATION OF I 
    % 
    L=0;     
    POS=0; 
    while L<QP & POS==0, 
        L=L+1; 
        POS=bitand(bitshift(I,-(L-1)),1); 
    end 
    % 
    %     RIGHTMOST POSITION IS L 
    % 
    for J=1:N 
        MASKV(J)=bitxor(MASKV(J),DIRECT(J,L)); 
        VECTOR(J)=MASKV(J)*SCALE; 
    end 
else 
    % 
    %     GENERATION OF THE POINT FROM "I" AND "N" 
    % 
    MASKV=zeros(1,N); 
    IM=bitxor(I,bitshift(I,-1)); 
    M=0; 
    while IM~=0 & M<QP, 
        M=M+1; 
        if (bitand(IM,1)==1),  
            for J=1:N 
                MASKV(J)=bitxor(MASKV(J),DIRECT(J,M)); 
            end 
        end 
        IM=bitshift(IM,-1); 
    end 
    for J=1:N 
        VECTOR(J)=MASKV(J)*SCALE; 
    end 
end 
% 
PRVNUM=I; 
PRVDIM=N; 
return 
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APPENDIX B: MATLAB CODE FOR OCCUPANCY MODEL ADJUSTMENT AND 

VALIDATION 

function [occCumul,histoAbsTimes,histoAbsFreq,histoAbsAver,... 
    histoOccTimes,histoOccFreq,histoOccAver]=... 
    occmodelmod(t,occInit,occMax,shuff,probHour,... 
    nAbsAver,absDurationProb,absDurationBin,absDurationMin,... 
    

firstDay,histoFlag,histoAbsBin,histoAbsNBin,histoOccBin,histoOccNBin,alpha,la

mbda,delta,nu) 
% calculation of cumulated effective occupancy 
% for occMax persons, for the times given in the nt array 
% version 1.4: add absence blocks 

  
% Parameters: 
% - t               = array of times for which occupancy will be calculated 

[s] 
% - occInit         = initial value of occupancy (0 or 1) 
% - occMax          = number of persons 
% - shuff           = shuffling parameter 
% - probHour        = array of hourly occupancy probability profiles 
% - nAbsAver        = average number of absences during one year 
% - absDurationProb = array of absence duration probability 
% - absDurationBin  = absence duration probability bin [hours] 
% - absDurationMin  = absence duration minimum [hours] 
% - firstDay        = first day of the year (1=Monday, 2=Tuesday, ... 

7=Sunday) 
% - histoFlag       = occupancy histogram (0=no histogram, 1=per day, 2=per 

week) 
% - histoAbsBin     = absence duration histogram bin [hours] 
% - histoAbsNBin    = absence duration histogram number of bins 
% - histoOccBin     = occupancy histogram bin [hours] 
% - histoOccNBin    = occupancy histogram number of bins 
% Outputs: 
% - occCumul        = cumulated occupancy corresponding to the t array 
% - histoAbsTimes   = times for the block absence histogram [hours] 
% - histoAbsFreq    = values (frequencies) for the block absence histogram 
% - histoAbsAver    = average block absence time [hours] 
% - histoOccTimes   = times for the daily occupancy histogram [hours] 
% - histoOccFreq    = values (frequencies) for the daily/weekly occupancy 

histogram 
% - histoOccAver    = average of daily/weekly occupancy time 
% 
% The first output argument is mandatory; all the others are optional, 
% but they should be either all present or all absent; they should 
% be present if histoFlag>0 
% 
% For each person, an independent occupancy 
% profile is drawn at random, using the 
% transition probability time arrays T01 and T11 

  
% indexes: 
% index1(k=1 to nprobHour)=pointer to plist element corresponding to 
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% the hourly profile element k (value: 1 to nplist) 
% index2(i=1 to nt)=pointer to plist element corresponding to the 
% time step i (value: 1 to nplist) 

  
% check number of input and output arguments 
% if (nargin~=10 & nargin~=15) 
%     error('*** occrandom1 error: nargin = %i, should be 10 or 15',nargin) 
% end 
% if (nargout~=1 & nargout~=7) 
%     error('*** occrandom1 error: nargin = %i, should be 1 or 7',nargout) 
% end 
% if (histoFlag>0 & nargout~=7) 
%     error('*** occrandom1 error: nargin = %i, should be 7 because 

histoFlag>0',nargout) 
% end 
%% RT1 
% calculate the possible occupancy probabilities 
% it is supposed that the maximum number of different 
% occupancy probability values is PMAX = 10 
% (if larger, the function stops with an error message) 
% % % % % nprobHour=length(probHour); 
% % % % % index1=zeros(1,nprobHour); 
% % % % % NPMAX=4*24*7; 
% % % % % plist=zeros(1,NPMAX); 
% % % % % nplist=1; plist(1)=0; index1(1)=1; % first element = zero occupancy 

probability 
% % % % % for k=1:nprobHour, 
% % % % %     pfound=find(probHour(k)==plist(1:nplist)); 
% % % % %     if (length(pfound)==0), 
% % % % %         % found new probability value 
% % % % %         if (nplist<NPMAX), 
% % % % %             nplist=nplist+1; plist(nplist)=probHour(k); 

index1(k)=nplist; 
% % % % %         else 
% % % % %             error('*** occrandom1 error: more than %i probability 

values',NPMAX) 
% % % % %         end 
% % % % %     else 
% % % % %         % already existing probability value 
% % % % %         index1(k)=pfound(1); 
% % % % %     end 
% % % % % end 
% % % % % 
% % % % % % calculate transition probability matrices T01 and T11 
% % % % % T01list=zeros(NPMAX,NPMAX); 
% % % % % T11list=zeros(NPMAX,NPMAX); 
% % % % % for j1=1:NPMAX, 
% % % % %     for j2=1:NPMAX, 
% % % % % 

[T01list(j1,j2),T11list(j1,j2)]=occtrans1(plist(j1),plist(j2),shuff); 
% % % % %     end 
% % % % % end 
%% RT2 =============================BEGIN MAIN CODE======================== 
%ADD FOUR PARAMETER MODIFICATION TO probHour 
probHour1=weektrans(probHour,alpha,lambda,delta,nu);  %Function to employ 

alpha, lambda, delta and nu 
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T01List=zeros(1,length(probHour1)); 
T11List=zeros(1,length(probHour1)); 
for j=1:length(probHour)-1 
    [T01List(j),T11List(j)]=occtrans1(probHour1(j),probHour1(j+1),shuff); 
end 

  
% calculate occupancy probability time arrays 
nt=length(t); 
dt=t(2)-t(1); 
daynb=zeros(1,nt); 
weeknb=zeros(1,nt); 
index2=zeros(1,nt); % for each timestep, index in the plist array 
pBlockAbs=nAbsAver/nt; % probability of starting a block absence at each 

timestep 

  
for i=1:nt, 
    tday=mod(t(i),86400); % time in the day 
    daynb(i)=fix(t(i)/86400); % day number in the year 
    weeknb(i)=fix((daynb(i)+firstDay+5)/7); % week number in the year (1 to 

53) 
    h=fix(tday/3600); % full hour in the day 
    m=month1(daynb(i)); % month number (1 to 12) 
    weekday=mod(daynb(i)+firstDay-2,7)+1; % day of the week (1 to 7) 
    if (weekday==6) w=2; % Saturday 
    elseif (weekday==7) w=3; % Sunday 
    else w=1; end % weekday 
    k=h+1+24*(w-1)+3*24*(m-1); % index in the probHour array 
%    index2(i)=index1(k); % index in the plist array 
end 

  
% time distribution of block absence: calculate cumulative distribution 
% function and prepare histogram 
nabs=length(absDurationProb); 
absDurationProbCumul=cumsum(absDurationProb); % cumulative probability 
if (abs(absDurationProbCumul(nabs)-1)>nabs*eps) 
    error('*** occrandom1 error: absDurationProbCumul(%i) = %f, should be 

1',nabs,absDurationProbCumul(nabs)) 
end 
% preparing bins for the distribution of periods of long absence 
if (histoFlag>0) 
    hmax=histoAbsBin*(histoAbsNBin-1); % value for the beginning of last bin 
    histoAbsTimes=[0:histoAbsBin:hmax]; 
    histoAbsFreq=zeros(1,histoAbsNBin); 
    histoAbsAver=0; 
    histoAbsTot=0; 
end 

  
% time distribution of daily/weekly occupancy: prepare histogram 
if (histoFlag>0) 
    hmax=histoOccBin*(histoOccNBin-1); % value for the beginning of last bin 
    histoOccTimes=[0:histoOccBin:hmax]; 
    histoOccFreq=zeros(1,histoOccNBin); 
    histoOccAver=0; 
    histoOccTot=0; 
end 
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% calculate occupancy simulated by the stochastic model 
occCumul=zeros(1,nt); 
for k=1:occMax 
    occ0=occInit; % initial value of occupancy 
    blockAbs0=0; % initial value of block absence: 0 (normal occupancy) 
    occCumul(1)=occCumul(1)+occ0; 
    occtime=0; % initial value of daily/weekly occupation time [hours] 
    if (histoFlag==1) daynb0=daynb(1); end 
    if (histoFlag==2) weeknb0=weeknb(1); end 
    for i=1:nt-1 
        % if nargout>1 and day/week has changed, increment the daily/weekly 

occupation histogram 
        if (histoFlag==1 & daynb(i)>daynb0) 
            j=fix(occtime/histoOccBin)+1;  
            if (j>=1 & j<=histoOccNBin) 
                histoOccFreq(j)=histoOccFreq(j)+1; 
            end 
            histoOccAver=histoOccAver+occtime; histoOccTot=histoOccTot+1; 
            daynb0=daynb(i); 
            occtime=0; 
        elseif (histoFlag==2 & weeknb(i)>weeknb0) 
            j=fix(occtime/histoOccBin)+1;  
            if (j>=1 & j<=histoOccNBin) 
                histoOccFreq(j)=histoOccFreq(j)+1;  
            end 
            histoOccAver=histoOccAver+occtime; histoOccTot=histoOccTot+1; 
            weeknb0=weeknb(i); 
            occtime=0; 
        end 
        % determine whether a block absence should start 
        if (blockAbs0==0) % currently not in a block absence 
            x=rand(1); 
            if (x<pBlockAbs) 
                blockAbs=1; % start a block absence 
                % determine the duration of block absence 
                x=rand(1); 
                g=find(absDurationProbCumul<x); 
                x=rand(1); 
                dBlockAbs=(length(g)+x)*absDurationBin+absDurationMin; 

%hours, minimum absDurationMin 
                tEndBlockAbs=t(i)+dBlockAbs*3600; 
                if (histoFlag>0) 
                    j=fix(dBlockAbs/absDurationBin)+1; 
                    if (j>=1 & j<=histoAbsNBin)  
                        histoAbsFreq(j)=histoAbsFreq(j)+1;  
                    end 
                    histoAbsAver=histoAbsAver+dBlockAbs; 
                end 
            else 
                blockAbs=0;  
            end 
        else % currently in a block absence, check possible end 
            if (t(i)>tEndBlockAbs)  
                blockAbs=0; 
            else 
                blockAbs=1; 
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            end 
        end 
% % % % %         if (blockAbs0==0), j1=index2(i); 
% % % % %         else j1=1; end 
% % % % %         if (blockAbs==0), j2=index2(i+1); 
% % % % %         else j2=1; end 
% % % % %         T01=T01list(j1,j2); 
% % % % %         T11=T11list(j1,j2); 
        if (blockAbs==1) % occupant just left on long absence 
            occ=0; 
        elseif (blockAbs0==1)&&(blockAbs==0) % occupant just came back from 

long absence 
            occ=1; 
        else 
            T01=T01List(mod(i-1,672)+1); 
            T11=T11List(mod(i-1,672)+1); 
            x=rand(1); 
            if (occ0==0) % room currently not occupied 
                if (T01>x)  
                    occ=1;  
                else 
                    occ=0;  
                end 
            elseif (occ0==1) % room currently occupied 
                T10=1-T11; 
                if (T10>x)  
                    occ=0;  
                else 
                    occ=1;  
                end 
            end 
        end 
        occ0=occ; 
        blockAbs0=blockAbs; 
        occCumul(i+1)=occCumul(i+1)+occ; 
        if (histoFlag>0)  
            occtime=occtime+dt*occ/3600; 
        end 
    end % loop through time period  *RT 
end % loop for each occupant  *RT 

  
% average values 
if (histoFlag>0), 
    if (histoAbsTot>0),  
        histoAbsAver=histoAbsAver/histoAbsTot;  
    end 
    if (histoOccTot>0),  
        histoOccAver=histoOccAver/histoOccTot;  
    end 
end 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%% 
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function m=month1(daynb) 
% calculate month number (1 to 12) corresponding to daynb 
% (number of day in the year, from 1 to 365) 
% current version: no leap year ! 

  
firstday=[1,32,60,91,121,152,182,213,244,274,305,335,9999]; 
m1=find(daynb<firstday); 
m=m1(1)-1; 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%% 

  

  
function [T01,T11]=occtrans1(pcurr,pnext,shuff) 
% calculation of transition probability, model 1 
% T01=probability of transition 0 -> 1 
% T11=probability of transition 1 -> 1 
% (note: T00=1-T01, T10=1-T11) 
% pcurr=current step occupancy probability 
% pnext=next step occupancy probability 
% shuff = shuffling parameter 
% beta = adjusted value of shuff 

  
beta=shuff; % default: no adjustment needed 

  
if(pnext==0) 
    T01=0; 
    T11=0; 
elseif(pnext==1) 
    T01=1; 
    T11=1; 
else 
    if (pcurr==1) 
        T11=pnext; 
        T01=0; 
    elseif (pcurr==0) 
        T01=pnext; 
        T11=0; 
    elseif (pcurr==pnext) 
        if (pcurr+pnext>1) 
            if (shuff>1/(2*pcurr-1)) 
                beta=1/(2*pcurr-1); 
            else 
                beta=shuff; 
            end 
        elseif (pcurr+pnext<1) 
            if (shuff>1/(1-2*pcurr)) 
                beta=1/(1-2*pcurr); 
            else 
                beta=shuff; 
            end 
        else 
            beta=shuff; 
        end 
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        T01=2*beta*pcurr/(beta+1); 
        T11=1-(1-pcurr)*T01/pcurr; 
    elseif (pcurr<pnext) 
        if (shuff<(pnext-pcurr)/(2-(pnext+pcurr))) 
            beta=(pnext-pcurr)/(2-(pnext+pcurr)); 
        else 
            if ((pcurr+pnext>1) & (shuff>(pcurr-pnext+1)/(pnext+pcurr-1))) 
                beta=(pcurr-pnext+1)/(pnext+pcurr-1); 
            elseif ((pcurr+pnext<1) & (shuff>(1-pcurr+pnext)/(1-pcurr-

pnext))) 
                beta=(1-pcurr+pnext)/(1-pcurr-pnext); 
            else 
                beta=shuff; 
            end 
        end 
        T01=pnext+pcurr*(beta-1)/(beta+1); 
        T11=1/pcurr*(pnext-(1-pcurr)*T01); 
    else % (pcurr>pnext) 
        if (shuff<(pcurr-pnext)/(pnext+pcurr)) 
            beta=(pcurr-pnext)/(pnext+pcurr); 
        else 
            if ((pcurr+pnext>1) & (shuff>(pcurr-pnext+1)/(pnext+pcurr-1))) 
                beta=(pcurr-pnext+1)/(pnext+pcurr-1); 
            elseif ((pcurr+pnext<1) & (shuff>(1-pcurr+pnext)/(1-pcurr-

pnext))) 
                beta=(1-pcurr+pnext)/(1-pcurr-pnext); 
            else 
                beta=shuff; 
            end 
        end 
        T01=pnext+pcurr*(beta-1)/(beta+1); 
        T11=1/pcurr*(pnext-(1-pcurr)*T01); 
    end 
end 

  
% print a message if shuff and beta are not equal 
% if (beta~=shuff) 
%     fprintf('***Warning: the shuffling parameters had to be adjusted\n'); 
%     fprintf('            pcurr=%6.2f, pnext=%6.2f, shuff=%6.2f adjusted to 
%6.2f\n',... 
%         pcurr,pnext,shuff,beta) 
% end 
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function[occCumul,histoOccTimes,histoOccFreq,histoOccAver,histoAbsTimes,... 
    histoAbsFreq,histoAbsAver]= 

occtestmod(NumberOfBuildings,NumberOfPeople,... 
                              AverageNumberofLongAbsences,... 
                              LongAbsenceProbabilityDistribution,... 
                              MuParameter,... 
                              ProbabilityProfile,alpha,lambda,delta,nu) 
% histoAbsAver, 
% histoOccAver, 
% histoAbsTimes/24,histoAbsFreq, 
% histoOccTimes,histoOccFreq, 

  
% script occupancy model 1.4 (now it's a function so I can enter my 

parameters easily) 
% generation of an occupancy profile 
% occMax=maximum number of persons in the zone 
% tmin=minimum generation time [s] 
% tmax=maximum generation time [s] 
% dt=calculation timestep [s] 
% [t1,t2]=morning occupancy interval [s] 
% [t3,t4]=afternoon occupancy interval [s] 
% p1=occupancy probability for t<t1 or t>t4, or week-end 
% p2=occupancy probability for [t1,t2] 
% p3=occupancy probability for [t2,t3] 
% p4=occupancy probability for [t3,t4] 
% shuff=shuffling parameter 

  
nb=NumberOfBuildings; % number of buildings 
occMaxBuilding=NumberOfPeople; % max occupancy for each building 
occMaxTot=occMaxBuilding*nb; 
tmin=1*86400; 
tmax=(1*365+1)*86400; 
dt=900; 
shuff=MuParameter; 
nAbsAver=AverageNumberofLongAbsences; % average number of block absences 

during the considered period 
absDurationProb=LongAbsenceProbabilityDistribution; % block absence 

probabilities 
absDurationBin=12; % bin for the block absence probability [hours] 
absDurationMin=12; % minimum block absence duration [hours] 
histoAbsBin=6; % absence histogram bin [hours] 
histoAbsNBin=100; % absence histogram number of bins 
histoOccBin= 1/4; % daily/weekly occupancy histogram bin [quarters of an 

hour] 
histoOccNBin=100*4; % daily/weekly occupancy histogram number of bins 

  
% generation of time array and initialization 
t=[tmin:dt:tmax]; nt=length(t); % nt = number of time steps 
occ0=0; % initial value: room supposed to be unoccupied 
occCumul=zeros(size(t)); 
firstDay=1; % arbitrary value (Monday) 

  
% options 
optionBuilding=1; % 1=all buildings together, 2=each building separately 
optionHisto=2; % 0=no histogram, 1=daily occupancy histogram, 2=weekly 

occupancy histogram 
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% calculate occupancy probability array, hour by hour: 
% for each month, 3 daily profiles (24 values) for 
% Mondays to Fridays, Saturdays, Sundays 
% --> altogether 12 * 3 * 24 = 864 values 
tic; 
%probhour=probhour_Office003(WeekdayHourlyProbProfile,SaturdayHourlyProbProfi

le,SundayHourlyProbProfile); 
probhour=ProbabilityProfile; 
cpu1=toc; 
if (optionBuilding==1), 
    % calculate occupancy simulated by stochastic model 
    % optionBuilding==1: all buildings calculated at once, only one function 

call 
    tic; 
    if (optionHisto==0), 
        occCumul=... 
            occmodelmod(t,occ0,occMaxTot,shuff,probhour,nAbsAver,... 
            

absDurationProb,absDurationBin,absDurationMin,firstDay,optionHisto,alpha,lamb

da,delta,nu); 
    elseif (optionHisto>0), 
        [occCumul,histoAbsTimes,histoAbsFreq,histoAbsAver,... 
            histoOccTimes,histoOccFreq,histoOccAver]=... 
            occmodelmod(t,occ0,occMaxTot,shuff,probhour,nAbsAver,... 
            

absDurationProb,absDurationBin,absDurationMin,firstDay,optionHisto,... 
            

histoAbsBin,histoAbsNBin,histoOccBin,histoOccNBin,alpha,lambda,delta,nu); 
    end 
    cpu2=toc; 
elseif (optionBuilding==2), 
    % calculated occupancy simulated by stochastic model 
    % optionBuilding==2: every building calculated with a different profile, 

nb function calls 
    tic; 
    for i=1:nb % loop on buildings 
        if (optionHisto==0), 
            occBuilding=... 
                occmodel(t,occ0,occMaxBuilding,shuff,probhour,nAbsAver,... 
                

absDurationProb,absDurationBin,absDurationMin,firstDay,optionHisto); 
        elseif (optionHisto>0), 
            

[occBuilding,histoAbsTimes,histoAbsFreqBuilding,histoAbsAverBuilding,.... 
                histoOccTimes,histoOccFreqBuilding,histoOccAverBuilding]=... 
                occmodel(t,occ0,occMaxBuilding,shuff,probhour,... 
                

nAbsAver,absDurationProb,absDurationBin,absDurationMin,firstDay,optionHisto,.

.. 
                histoAbsBin,histoAbsNBin,histoOccBin,histoOccNBin); 
        end 
        if (i==1) 
            occCumul=zeros(size(t)); 
            if (optionHisto>0), 
                histoAbsFreq=zeros(size(histoAbsTimes)); 
                histoAbsAver=0; 
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                histoOccFreq=zeros(size(histoOccTimes)); 
                histoOccAver=0; 
            end 
        end 
        occCumul=occCumul+occBuilding; 
        if (optionHisto>0), 
            histoAbsFreq=histoAbsFreq+histoAbsFreqBuilding; 
            histoAbsAver=histoAbsAver+histoAbsAverBuilding/nb; 
            histoOccFreq=histoOccFreq+histoOccFreqBuilding; 
            histoOccAver=histoOccAver+histoOccAverBuilding/nb; 
        end 
    end % end of loop on buildings 
    cpu2=toc; 
end % of of option selection 

  
% fprintf('CPU calculation of hourly occupancy probability profile: %6.2f 

seconds\n',cpu1); 
% fprintf('CPU drawing a random probability profile (altogether %i 

persons):6.2f seconds\n',occMaxTot,cpu2); 
% if (optionHisto>0), 
%     fprintf('average block absence time: %6.2f hours\n',histoAbsAver); 
%     if (optionHisto==1) fprintf('average daily occupancy time: %6.2f 

hours\n',histoOccAver); end 
%     if (optionHisto==2) fprintf('average weekly occupancy time: %6.2f 

hours\n',histoOccAver); end 
% end 
%  
% % display block absence time distribution 
% if (optionHisto>0), 
%     figure(1); 
%     plot(histoAbsTimes/24,histoAbsFreq,'-rx'); 
%     grid on 
%     title('Block absence time distribution (days)'); 
% end 
%  
% % display daily/weekly presence time distribution 
% if (optionHisto>0) 
%     figure(2); 
%     plot(histoOccTimes,histoOccFreq,'-rx'); 
%     grid on 
%     if (optionHisto==1) title('Daily presence time distribution (hours)'); 

end 
%     if (optionHisto==2) title('Weekly presence time distribution (hours)'); 

end 
% end 
%  
% % display time plot 
% figure(3); 
% td=t/86400; 
% tdmin=td(1); tdmax=td(end); 
% while (1), 
%     tdlimit=input('Enter tdmin and tdmax [days] (return to stop): ','s'); 
%     if (strcmp(tdlimit,'')~=0), break; end 
%     [tdmin,tdmax]=strread(tdlimit,'%f %f'); 
%     if (tdmin<td(1)), tdmin=td(1); end 
%     if (tdmax>td(end)), tdmax=td(end); end 
%     index=(td>=tdmin & td<=tdmax); 
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%     title1=input('Enter title: ','s'); 
%     plot(td(index),occCumul(index)); 
%     ylim([-0.2*occMaxTot,1.2*occMaxTot]); 
%     grid on 
%     if (strcmp(title1,'')==0), title(title1); end 
% end 
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function [probHour2]=occtrans0(probHour,alpha,lambda,delta,nu); 
%   adjusts POP data based on four new parameters 
%   alpha makes occupied day start earlier/later 
%   lambda makes occupied day longer/shorter 
%   delta increases/decreases occupancy during occupied hours 
%   nu increases/decreases occupancy during unoccupied hours 

  
%First alpha 
DDL = 60;  %indexed default day length 15 hours 
StartTime = alpha + 6;  %sets start of day time 
StartIndex = StartTime*4;   %indexes start of day 
EndIndex = StartTime*4+DDL;   %indexes end of day   WITHOUT LAMBDA ADJ 
offset = alpha*4;   %Indexed numerical offset for alpha adjustment 
if alpha == 0   %no change to start time 
    for j = 1:length(probHour); %whole day 
        probHour1(j)=probHour(j);   %no change 
    end 
elseif alpha < 0;   %day starts earlier 
    for j = 1:StartIndex;  %before day begins 
        probHour1(j) = probHour(j); %no change 
    end 
    for j = 24:96;   %finish daytime of current POPs shifting forward 
        probHour1(j+offset) = probHour(j);  %shift remainder of day earlier 
    end 
    for j = (96+offset):96;   %finish daytimme hours 
        probHour1(j) = probHour1(j-1);  %repeat last POP for rest of day 
    end 
else     %if alpha > 0, day starts later 
    for j = 1:24;   %first 6 hours 
        probHour1(j) = probHour(j); %no change 
    end 
    for j = 25:StartIndex;  %between 6a and start time 
        probHour1(j) = probHour1(j-1); 
    end 
    for j = StartIndex + 1:96;  %finish day 
        probHour1(j) = probHour(j-offset); 
    end 
end 

  
%Then lambda IN DECIMAL HOURS 
if lambda == 0; %no adjustment 
    EndIndex1 = EndIndex; 
    for j = 1:length(probHour); %full day 
        probHour2(j)=probHour1(j)   %no adjustment 
    end 
else 
    for j =1:StartIndex;    %Fill in beginning of day 
        probHour2(j)=probHour1(j)   %POP unchanged before day starts 
    end 
    EndTime1 = StartTime + 15 + lambda;    %clock time for end of adjusted 

day 
    EndIndex1 = EndTime1 * 4;   %index to use for adjusted end of day 
    ADL = EndIndex1 - StartIndex;   %lambda-adjusted day length index 
    loffset = DDL - ADL;    %index offset for lambda adjustment 
    for j = 1:ADL;   %Start after start of day 
        PopTime=DDL/ADL*j;    %Matching value 
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        IndexMin = floor(PopTime);  %Bracket low index 
        IndexMax = ceil(PopTime);   %Bracket high index 
        if (IndexMax + StartIndex) >= 96; 
            LowPOP = probHour1(96); 
            HighPOP = probHour1(96); 
        else    
            LowPOP = probHour1(IndexMin + StartIndex);  %Lookup POP at low 

index 
            HighPOP = probHour1(IndexMax +  StartIndex);    %Lookup POP at 

high index 
        end 
        if IndexMin == IndexMax; 
            probHour2(j+StartIndex) = LowPOP; 
        else 
            probHour2(j+StartIndex) = (HighPOP - LowPOP)/(IndexMax-

IndexMin)*(PopTime-IndexMin)+LowPOP;    %Linear interp of POP 
        end 
    end 
    if lambda < 0;  %if day gets shorter 
        for j = 1:(96-EndIndex);  %Fill in from remaining POP after day ends 
            probHour2(EndIndex1+j) = probHour1(EndIndex + j);  
        end 
        for j = (96-loffset):96;   %repeat last POP to close-out day 
            probHour2(j) = probHour2(j-1); 
        end 
    elseif lambda > 0;    %if lambda > 0 and day gets longer 
        for j = (EndIndex1 + 1):96; 
            probHour2(j) = probHour1(j+loffset); 
        end 
    end 
end 

  
%Then delta 
if EndIndex1 > 96; 
    for j = StartIndex:96; 
        probHour2(j) = min(probHour2(j)*delta,1); 
    end 
else 
    for j = StartIndex:EndIndex1; 
        probHour2(j) = min(probHour2(j)*delta,1); 
    end 
end 

  
%Then nu 
for j = 1:StartIndex; 
    probHour2(j) = min(probHour2(j)*nu,1); 
end 
if EndIndex1 <= 96; 
    for j = EndIndex1:96; 
        probHour2(j) = min(probHour2(j)*nu,1); 
    end 
end 
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function [adjWeekPOP] = weektrans(probHour, alpha, lambda, delta, nu); 
%takes given weekly POP data and parses to daily data 
%then calls occtrans0, which applies alpha, lambda, delta and nu adj 

  
for j = 1:7;    %each day of the week 
   for k = 1:96;     %each data point for each day 
       TempProbHour(k)=probHour((j-1)*96+k); 
   end 

    
   tempadj = occtrans0(TempProbHour,alpha,lambda,delta,nu); 

    
   for k = 1:96;    %each data point for each day 
       adjWeekPOP((j-1)*96+k)=tempadj(k); 
   end 
end 
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%************************************************************************** 
% 
%   FUNCTION  
%   generateOccupancyWithAdj 
% 
%   DESCRIPTION 
%   Generates a new occupancy profile for the year specified. replaces 
%   occupancy information in the input structure with new occupancy. 
%   Modified to include four additional parameters to adjust time-series. 
%  
%   ARGUMENTS 
%   year: the year that we are using; this program does not account for 
%         leap-years yet. [and energyplus would barf if it got anything  
%         with more or less than 8760 values anyway...] 
%   nZones: the number of individuals or single-occupancy zones 
%   mu: mobility parameter (Page original); may or may not be an input 
%   alpha: arrival parameter, [hours around 6a typical start] 
%   lambda: day  length parameter, [ratio of actual length over 15 hour 
%   std] 
%   delta: daytime occupancy adjustment, 1 for no adjustment 
%   nu: nighttime occupancy adjustment, 1 for no adjustment 
% 
%   OUTPUT 
%   occout: a structure containing the following: 
%     .year 
%     .month 
%     .day 
%     .hour 
%     .minute 
%     .val  = this is a fractional value of the total number of people 

present; 
% 
%   ORIGINAL AUTHOR 
%   Ryan Tanner 
%   University of Colorado at Boulder 
%   ryan.tanner@colorado.edu 
% 
%   ORIGINAL DATE 
%   27.Mar.2011 
%    
%   MODIFICATION AUTHOR 
%   Darcie Chinnis 
%   University of Colorado 
%   darcie.oconnor@colorado.edu 
% 
%   NOTES 
%   May.2011 Currently the occupancy algorithm generates data at 15-min  
%   intervals and generates enough for exactly one year plus one increment  
%   (34041 fifteen-minute intervals) 
% 
%   14.Sep.2011 Added some commenting.  
% 
%   May.2012 Adding four additional parameters for profile modification 
%  
%************************************************************************** 
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function occout = generateOccupancy(year,nzones,mu,alpha,lambda,delta,nu) 

  
load('SampleInputs.mat') 
NumberOfBuildings=1; 
NumberOfPeople=1; 
% j=ceil(rand*20); % there are 20 options in the LongAbsences, MuProfiles, 

and ProbabilityProfiles structures; j refers to the first element 
time=(1:(8760*4))*15*60; % generate 15-minute intervals for a year [in 

SECONDS] 
time=[time,8760*4*15*60+15*60]; % add one more interval to match occupancy 

output from the Page programs 
    occout.year(35041)  = 0; 
    occout.month(35041) = 0; 
    occout.day(35041)   = 0; 
    occout.hour(35041)  = 0; 
    occout.minute(35041)= 0; 
    occout.val(nzones,35041)   = 0; 

  
for zone = 1:nzones 
    j=ceil(rand*20); % there are 20 options in the LongAbsences, MuProfiles, 

and ProbabilityProfiles structures; j refers to the first element 
    %generate 15-minute occupancy data using the Page Algorithm 
    Occupancy=occtestmod(NumberOfBuildings,NumberOfPeople,... 
    LongAbsences{j}.averagenumberperyear,... 
    LongAbsences{j}.probability,... 
    mu,... 
    ProbabilityProfiles{j}.probability,alpha,lambda,delta,nu); 
    month=1; 
    day=1; 
    hour=0; 
    % mins=0; 
    % sec=0; 
    count=1; 
    for ii=2:length(Occupancy) 

  
        % create output values for year, month, day, hour and minute if at 
        % exact hourly value 
        if mod(time(ii),3600)==0; % if we're at an hourly value[1:00, 4:00, 

15:00, etc...], this is true!,  
            hour=hour+1; 
            minute = 0; 

  
            if hour > 24 % if we're at hour 25, we move to the next day, 

first hour 
                hour=1; 
                day=day+1; 

  
                if day > eomday(year, month) %eomday is the ending day of the 

month: 31 for jan, mar, 28/29 for feb, 30 for april, etc. 
                                             %if we're at day 32 for january, 

move to february 
                    day=1; 
                    month=month+1; 
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                end 

  
            end 

         
        %create output values for year, month, day, hour and minute if NOT 
        %at exact hourly value 
        else 
            %calculate minutes 
            if ii == hour*4 + 1; 
                minute = 15; 
            elseif ii == hour*4 + 2; 
                minute = 30; 
            else ii == hour*4 + 3; 
                minute = 45; 
            end 

                 
        end %ends 15-minute loop 

             
        % at this point we've established what year, month, day, and 
        % hour and minute we are at. 

  
        %within the hourly loop, set values for the occupancy output 
        %structure 
        occout.year(count)      = year; 
        occout.month(count)     = month; 
        occout.day(count)       = day; 
        occout.hour(count)      = hour; 
        occout.minute(count)    = minute; 
        occout.val(zone,count)  = Occupancy(ii); 

         
        % [ARTIFACT OF RYAN's MODEL] 
        % Now comes the tricky part; how to turn 15-minute data into 
        % hourly data? As of this revision, we take the average of 
        % occupancy over the last four 15-minute intervals, and round 
        % that number up with the 'ceil' command. Then we divide by the 
        % total number of people to get a fractional value of total 
        % occupancy, (between zero and 1, naturally) which Energyplus  
        % can interpret and multiply by an occupant density to get the  
        % right number of people. 
        % occout.val(zone,count)  = ceil(mean(Occupancy(ii-

3:ii)))/NumberOfPeople;  

     
        if count==35041; %stop when we get to the end of the year 
            break 
        end   

  
        count=count+1; 

  
    end % of looping through 34041 occupancy entries  
end % of zonal loop 
OccProfile=occout.val; 
end % of function 
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%************************************************************************** 
% 
%   FUNCTION  
%   generateOccupancyWithAdj 
% 
%   DESCRIPTION 
%   Generates a new occupancy profile for the year specified. replaces 
%   occupancy information in the input structure with new occupancy. 
%   Modified to include four additional parameters to adjust time-series. 
%  
%   ARGUMENTS 
%   year: the year that we are using; this program does not account for 
%         leap-years yet. [and energyplus would barf if it got anything  
%         with more or less than 8760 values anyway...] 
%   nZones: the number of individuals or single-occupancy zones 
%   mu: mobility parameter (Page original); may or may not be an input 
%   alpha: arrival parameter, [hours around 6a typical start] 
%   lambda: day  length parameter, [ratio of actual length over 15 hour 
%   std] 
%   delta: daytime occupancy adjustment, 1 for no adjustment 
%   nu: nighttime occupancy adjustment, 1 for no adjustment 
% 
%   OUTPUT 
%   occout: a structure containing the following: 
%     .year 
%     .month 
%     .day 
%     .hour 
%     .minute 
%     .val  = this is a fractional value of the total number of people 

present; 
% 
%   ORIGINAL AUTHOR 
%   Ryan Tanner 
%   University of Colorado at Boulder 
%   ryan.tanner@colorado.edu 
% 
%   ORIGINAL DATE 
%   27.Mar.2011 
%    
%   MODIFICATION AUTHOR 
%   Darcie Chinnis 
%   University of Colorado 
%   darcie.oconnor@colorado.edu 
% 
%   NOTES 
%   May.2011 Currently the occupancy algorithm generates data at 15-min  
%   intervals and generates enough for exactly one year plus one increment  
%   (34041 fifteen-minute intervals) 
% 
%   14.Sep.2011 Added some commenting.  
% 
%   May.2012 Adding four additional parameters for profile modification 
%  
%************************************************************************** 
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function occout = generateOccupancy(year,nzones,alpha,lambda,delta,nu) 

  
load('SampleInputs.mat') 
NumberOfBuildings=1; 
NumberOfPeople=1; 
% j=ceil(rand*20); % there are 20 options in the LongAbsences, MuProfiles, 

and ProbabilityProfiles structures; j refers to the first element 
time=(1:(8760*4))*15*60; % generate 15-minute intervals for a year [in 

SECONDS] 
time=[time,8760*4*15*60+15*60]; % add one more interval to match occupancy 

output from the Page programs 
    occout.year(35041)  = 0; 
    occout.month(35041) = 0; 
    occout.day(35041)   = 0; 
    occout.hour(35041)  = 0; 
    occout.minute(35041)= 0; 
    occout.val(nzones,35041)   = 0; 

  
for zone = 1:nzones 
    j=ceil(rand*20); % there are 20 options in the LongAbsences, MuProfiles, 

and ProbabilityProfiles structures; j refers to the first element 
    %generate 15-minute occupancy data using the Page Algorithm 
    Occupancy=occtestmod(NumberOfBuildings,NumberOfPeople,... 
    LongAbsences{j}.averagenumberperyear,... 
    LongAbsences{j}.probability,... 
    MuProfiles{j}.mean,... 
    ProbabilityProfiles{j}.probability,alpha,lambda,delta,nu); 
    month=1; 
    day=1; 
    hour=0; 
    % mins=0; 
    % sec=0; 
    count=1; 
    for ii=2:length(Occupancy) 

  
        % create output values for year, month, day, hour and minute if at 
        % exact hourly value 
        if mod(time(ii),3600)==0; % if we're at an hourly value[1:00, 4:00, 

15:00, etc...], this is true!,  
            hour=hour+1; 
            minute = 0; 

  
            if hour > 24 % if we're at hour 25, we move to the next day, 

first hour 
                hour=1; 
                day=day+1; 

  
                if day > eomday(year, month) %eomday is the ending day of the 

month: 31 for jan, mar, 28/29 for feb, 30 for april, etc. 
                                             %if we're at day 32 for january, 

move to february 
                    day=1; 
                    month=month+1; 
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                end 

  
            end 

         
        %create output values for year, month, day, hour and minute if NOT 
        %at exact hourly value 
        else 
            %calculate minutes 
            if ii == hour*4 + 1; 
                minute = 15; 
            elseif ii == hour*4 + 2; 
                minute = 30; 
            else ii == hour*4 + 3; 
                minute = 45; 
            end 

                 
        end %ends 15-minute loop 

             
        % at this point we've established what year, month, day, and 
        % hour and minute we are at. 

  
        %within the hourly loop, set values for the occupancy output 
        %structure 
        occout.year(count)      = year; 
        occout.month(count)     = month; 
        occout.day(count)       = day; 
        occout.hour(count)      = hour; 
        occout.minute(count)    = minute; 
        occout.val(zone,count)  = Occupancy(ii); 

         
        % [ARTIFACT OF RYAN's MODEL] 
        % Now comes the tricky part; how to turn 15-minute data into 
        % hourly data? As of this revision, we take the average of 
        % occupancy over the last four 15-minute intervals, and round 
        % that number up with the 'ceil' command. Then we divide by the 
        % total number of people to get a fractional value of total 
        % occupancy, (between zero and 1, naturally) which Energyplus  
        % can interpret and multiply by an occupant density to get the  
        % right number of people. 
        % occout.val(zone,count)  = ceil(mean(Occupancy(ii-

3:ii)))/NumberOfPeople;  

     
        if count==35041; %stop when we get to the end of the year 
            break 
        end   

  
        count=count+1; 

  
    end % of looping through 34041 occupancy entries  

     
end % of zonal loop 
OccProfile=occout.val; 

  
end % of function 
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APPENDIX C: 6-DAY DAYLIGHTING STUDY RESULTS 

Calculation of annual footcandle-hours (fc-hrs) using each 2-step and 3-step skies. 

MARCH ANALYSIS 

       South North 
   

3-Step 2-Step 

5,847 2,539 2 Clear, 2 Partly Cloudy, 2 Overcast 
 

21-Mar 1 1 

4,988 2,221 3 Clear, 3 Overcast 
 

22-Mar 3 2 

14.7% 12.5% 
  

23-Mar 2 1 

    
24-Mar 3 1 

    
25-Mar 1 2 

    
26-Mar 2 2 

       DECEMBER ANALYSIS 

       South North 
   

3-Step 2-Step 

11,419 975 2 Clear, 2 Partly Cloudy, 2 Overcast 
 

21-Dec 3 2 

13,803 955 3 Clear, 3 Overcast 
 

22-Dec 1 1 

20.9% 2.0% 
  

23-Dec 1 2 

    
24-Dec 2 2 

    
25-Dec 2 1 

    
26-Dec 3 1 

       JUNE ANALYSIS 

       South North 
   

3-Step 2-Step 

4,006 2,931 2 Clear, 2 Partly Cloudy, 2 Overcast 
 

21-Jun 1 2 

3,063 2,340 3 Clear, 3 Overcast 
 

22-Jun 3 1 

23.5% 20.2% 
  

23-Jun 2 2 

    
24-Jun 2 1 

    
25-Jun 1 2 

    
26-Jun 3 1 

 

3-Step: 1 = Clear SUMMARY 

 
2 = Partly Cloudy 

   

 
3 = Overcast   South North 

   
December 20.9% 2.0% 

2-Step: 
1 = 
Clear 

 
March 14.7% 12.5% 

 
2 = Overcast June 23.5% 20.2% 
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APPENDIX D: FULL-YEAR DAYLIGHTING STUDY RESULTS 

 
Total Annual fc-Hours Total Annual Energy Density 

 
North South North South 

2-Step 129,100 311,017 0.080 0.112 

3-Step 150,119 343,219 0.077 0.112 

Difference 14.0% 9.4% -3.2% 0.2% 
 

 

t-Test: Paired Two Sample for Means SOUTH ENERGY 

 
Variable 1 Variable 2 

Mean 0.079928 0.077413 
Variance 0.000879 0.000773 

Observations 2000 2000 
Pearson Correlation -0.00464 

 Hypothesized Mean Difference 0 
 df 1999 
 t Stat 2.761355 
 P(T<=t) one-tail 0.002904 
 t Critical one-tail 1.645616 
 P(T<=t) two-tail 0.005809 
 t Critical two-tail 1.961151 
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t-Test: Paired Two Sample for Means NORTH ENERGY 

  Variable 1 Variable 2 

Mean 0.111872 0.112069 
Variance 0.001444 0.001432 
Observations 2000 2000 
Pearson Correlation -0.01109 

 Hypothesized Mean Difference 0 
 df 1999 
 t Stat -0.16327 
 P(T<=t) one-tail 0.43516 
 t Critical one-tail 1.645616 
 P(T<=t) two-tail 0.870319 
 t Critical two-tail 1.961151   
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APPENDIX E: INITIAL VALIDATION STUDY RESULTS 

SUBMETERED DATA: Relative Use Intensity 

           
DAY: 1 2 3 4 5 6 7 

 
Average Average 

Hour Sun Mon Tue Wed Thu Fri Sat 
 

Weekday 
Weekend 

Day 

0.00 0.045 0.046 0.085 0.065 0.085 0.061 0.075 
 

0.068 0.060 

1.00 0.045 0.047 0.064 0.057 0.064 0.054 0.060 
 

0.057 0.053 

2.00 0.044 0.046 0.054 0.054 0.059 0.052 0.055 
 

0.053 0.049 

3.00 0.044 0.047 0.053 0.054 0.058 0.051 0.054 
 

0.053 0.049 

4.00 0.042 0.044 0.052 0.053 0.058 0.051 0.055 
 

0.052 0.048 

5.00 0.040 0.049 0.056 0.055 0.065 0.055 0.051 
 

0.056 0.046 

6.00 0.028 0.070 0.075 0.073 0.094 0.072 0.038 
 

0.077 0.033 

7.00 0.018 0.128 0.128 0.127 0.126 0.118 0.029 
 

0.125 0.023 

8.00 0.014 0.163 0.163 0.158 0.156 0.154 0.027 
 

0.159 0.021 

9.00 0.017 0.167 0.172 0.167 0.164 0.157 0.035 
 

0.165 0.026 

10.00 0.023 0.167 0.172 0.165 0.161 0.160 0.040 
 

0.165 0.031 

11.00 0.023 0.166 0.167 0.166 0.162 0.154 0.040 
 

0.163 0.032 

12.00 0.024 0.155 0.158 0.160 0.152 0.149 0.039 
 

0.155 0.032 

13.00 0.028 0.167 0.164 0.162 0.157 0.150 0.037 
 

0.160 0.032 

14.00 0.025 0.167 0.166 0.162 0.162 0.152 0.034 
 

0.162 0.029 

15.00 0.025 0.167 0.170 0.167 0.162 0.151 0.033 
 

0.163 0.029 

16.00 0.026 0.166 0.164 0.163 0.160 0.148 0.035 
 

0.160 0.031 

17.00 0.031 0.161 0.159 0.158 0.152 0.140 0.035 
 

0.154 0.033 

18.00 0.035 0.150 0.152 0.151 0.147 0.132 0.041 
 

0.146 0.038 

19.00 0.038 0.144 0.145 0.148 0.140 0.135 0.044 
 

0.142 0.041 

20.00 0.044 0.148 0.141 0.151 0.135 0.140 0.049 
 

0.143 0.047 

21.00 0.048 0.136 0.132 0.140 0.121 0.128 0.051 
 

0.131 0.050 

22.00 0.049 0.123 0.110 0.118 0.102 0.114 0.047 
 

0.113 0.048 

23.00 0.047 0.111 0.083 0.110 0.078 0.097 0.044 
 

0.096 0.045 

           
Annual 

kWh 
537 1,965 1,998 1,998 1,993 1,859 702 

 
11,052 
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SIMULATION SETTINGS: Parameter Set 1 

On DC 50% = 0, 50% = 1 

Off DC All = 0 

Int On DC 50% = 0, 50% = 1 

Int Off DC 50% = 0, 50% = 1 

R or L All = 0 

mu Built-in (randomized) 

 

SIMULATION RESULTS: Parameter Set 1 

 
1 2 3 4 5 6 7 

   
Hour 

Sun Mon Tue Wed Thu Fri Sat 
 

Weekday 
Weekend 

Day 

0 0.132 0.005 0.006 0.003 0.006 0.004 0.002 
 

0.005 0.067 

1 0.001 0.005 0.006 0.003 0.004 0.004 0.002 
 

0.004 0.001 

2 0.001 0.005 0.005 0.003 0.003 0.004 0.002 
 

0.004 0.002 

3 0.002 0.005 0.005 0.003 0.003 0.004 0.001 
 

0.004 0.002 

4 0.003 0.004 0.004 0.002 0.003 0.004 0.002 
 

0.004 0.002 

5 0.003 0.007 0.008 0.007 0.006 0.008 0.002 
 

0.007 0.002 

6 0.002 0.059 0.056 0.054 0.052 0.052 0.003 
 

0.055 0.002 

7 0.003 0.205 0.191 0.196 0.185 0.185 0.005 
 

0.192 0.004 

8 0.006 0.256 0.248 0.239 0.236 0.227 0.008 
 

0.241 0.007 

9 0.009 0.270 0.254 0.254 0.250 0.241 0.010 
 

0.254 0.010 

10 0.013 0.303 0.282 0.277 0.274 0.254 0.016 
 

0.278 0.015 

11 0.013 0.217 0.213 0.196 0.183 0.178 0.020 
 

0.198 0.017 

12 0.017 0.204 0.194 0.173 0.139 0.153 0.018 
 

0.173 0.017 

13 0.020 0.240 0.235 0.229 0.196 0.220 0.021 
 

0.224 0.020 

14 0.020 0.215 0.222 0.224 0.235 0.232 0.023 
 

0.226 0.021 

15 0.023 0.199 0.219 0.216 0.225 0.214 0.019 
 

0.214 0.021 

16 0.025 0.181 0.189 0.178 0.191 0.187 0.022 
 

0.185 0.024 

17 0.026 0.106 0.097 0.099 0.094 0.103 0.021 
 

0.100 0.024 

18 0.018 0.041 0.048 0.037 0.040 0.046 0.017 
 

0.042 0.018 

19 0.009 0.023 0.031 0.020 0.028 0.023 0.011 
 

0.025 0.010 

20 0.008 0.017 0.024 0.014 0.020 0.012 0.009 
 

0.017 0.009 

21 0.006 0.011 0.017 0.012 0.014 0.008 0.010 
 

0.012 0.008 

22 0.006 0.007 0.010 0.006 0.008 0.004 0.008 
 

0.007 0.007 

23 0.004 0.008 0.005 0.008 0.006 0.001 0.005 
 

0.005 0.005 

Annual kWh 249 1,738 1,720 1,642 1,637 1,587 172 
 

8,743 

 

 
Sun Mon Tue Wed Thu Fri Sat Total Annual 

Data 537 1,965 1,998 1,998 1,993 1,859 702 11,052 

Sim 1 249 1,738 1,720 1,642 1,637 1,587 172 8,743 

Error 53.7% 11.6% 13.9% 17.8% 17.9% 14.6% 75.6% 20.89% 
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SIMULATION SETTINGS: Parameter Set 2 

On DC All = 0 

Off DC All = 0 

Int On DC All = 0 

Int Off DC All = 0 

R or L All = 0 

mu Built-in (randomized) 

 

SIMULATION RESULTS: Parameter Set 2 

 
1 2 3 4 5 6 7 

   

Hour Sun Mon Tue Wed Thu Fri Sat 
 

Weekday 
Weekend 

Day 

0 0.002 0.003 0.002 0.002 0.002 0.001 0.002 
 

0.002 0.002 

1 0.003 0.002 0.002 0.003 0.002 0.001 0.002 
 

0.002 0.003 

2 0.002 0.002 0.002 0.002 0.002 0.001 0.001 
 

0.002 0.002 

3 0.002 0.002 0.002 0.002 0.002 0.001 0.001 
 

0.002 0.002 

4 0.003 0.005 0.004 0.003 0.004 0.003 0.001 
 

0.004 0.002 

5 0.002 0.037 0.032 0.027 0.031 0.035 0.002 
 

0.032 0.002 

6 0.002 0.084 0.074 0.081 0.080 0.083 0.003 
 

0.080 0.003 

7 0.005 0.082 0.072 0.076 0.081 0.071 0.006 
 

0.076 0.005 

8 0.007 0.077 0.066 0.072 0.078 0.074 0.006 
 

0.073 0.007 

9 0.006 0.069 0.057 0.063 0.060 0.061 0.008 
 

0.062 0.007 

10 0.005 0.036 0.028 0.038 0.032 0.036 0.010 
 

0.034 0.008 

11 0.010 0.045 0.038 0.040 0.037 0.038 0.007 
 

0.040 0.008 

12 0.010 0.051 0.052 0.052 0.054 0.054 0.008 
 

0.053 0.009 

13 0.010 0.038 0.041 0.044 0.044 0.047 0.010 
 

0.043 0.010 

14 0.008 0.039 0.043 0.047 0.042 0.037 0.011 
 

0.042 0.010 

15 0.008 0.041 0.039 0.040 0.041 0.042 0.011 
 

0.041 0.010 

16 0.009 0.026 0.022 0.023 0.022 0.027 0.009 
 

0.024 0.009 

17 0.007 0.010 0.016 0.012 0.010 0.016 0.008 
 

0.013 0.007 

18 0.005 0.006 0.011 0.009 0.009 0.008 0.005 
 

0.009 0.005 

19 0.005 0.006 0.007 0.008 0.008 0.006 0.007 
 

0.007 0.006 

20 0.004 0.005 0.006 0.005 0.008 0.006 0.008 
 

0.006 0.006 

21 0.004 0.004 0.006 0.004 0.007 0.003 0.003 
 

0.005 0.004 

22 0.003 0.004 0.003 0.005 0.004 0.001 0.003 
 

0.004 0.003 

23 0.002 0.003 0.002 0.002 0.002 0.001 0.002 
 

0.002 0.002 

Annual kWh 183 452 421 442 453 440 91 
 

2,482 

  

 
Sun Mon Tue Wed Thu Fri Sat Total Annual 

Data 537 1,965 1,998 1,998 1,993 1,859 702 11,052 

Sim 2 183 452 421 442 453 440 91 2,482 

Error 65.9% 77.0% 78.9% 77.9% 77.3% 76.4% 87.1% 77.55% 
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SIMULATION SETTINGS: Parameter Set 3 

On DC 50% = 0.5, 50% = 0 

Off DC All = 0 

Int On DC 50% = 0.5, 50% = 0 

Int Off DC 50% = 0.5, 50% = 0 

R or L All = 0 

mu Built-in (randomized) 

 

SIMULATION RESULTS: Parameter Set 3 

 
1 2 3 4 5 6 7 

   
Hour Sun Mon Tue Wed Thu Fri Sat 

 
Weekday 

Weekend 
Day 

0 0.001 0.001 0.002 0.002 0.003 0.002 0.002 
 

0.002 0.002 

1 0.001 0.002 0.001 0.002 0.003 0.001 0.001 
 

0.002 0.001 

2 0.002 0.002 0.002 0.003 0.003 0.001 0.001 
 

0.002 0.002 

3 0.002 0.002 0.002 0.002 0.002 0.001 0.001 
 

0.002 0.001 

4 0.001 0.002 0.001 0.002 0.002 0.001 0.001 
 

0.002 0.001 

5 0.002 0.005 0.003 0.004 0.006 0.005 0.002 
 

0.005 0.002 

6 0.002 0.040 0.040 0.039 0.037 0.039 0.003 
 

0.039 0.002 

7 0.003 0.101 0.094 0.096 0.096 0.100 0.002 
 

0.097 0.003 

8 0.004 0.109 0.094 0.096 0.103 0.096 0.005 
 

0.099 0.005 

9 0.006 0.103 0.087 0.090 0.093 0.095 0.008 
 

0.094 0.007 

10 0.007 0.093 0.077 0.083 0.082 0.085 0.007 
 

0.084 0.007 

11 0.006 0.049 0.046 0.048 0.047 0.056 0.008 
 

0.049 0.007 

12 0.007 0.061 0.053 0.051 0.053 0.056 0.008 
 

0.055 0.008 

13 0.010 0.076 0.068 0.073 0.073 0.074 0.009 
 

0.073 0.010 

14 0.011 0.061 0.060 0.060 0.067 0.065 0.010 
 

0.063 0.010 

15 0.011 0.059 0.063 0.068 0.062 0.054 0.009 
 

0.061 0.010 

16 0.010 0.059 0.058 0.059 0.055 0.050 0.012 
 

0.056 0.011 

17 0.011 0.036 0.028 0.033 0.030 0.029 0.010 
 

0.031 0.010 

18 0.007 0.012 0.015 0.012 0.016 0.016 0.007 
 

0.014 0.007 

19 0.005 0.007 0.013 0.009 0.011 0.009 0.005 
 

0.010 0.005 

20 0.004 0.006 0.011 0.007 0.010 0.006 0.005 
 

0.008 0.005 

21 0.003 0.005 0.009 0.006 0.008 0.005 0.006 
 

0.007 0.005 

22 0.003 0.004 0.006 0.003 0.006 0.003 0.005 
 

0.005 0.004 

23 0.002 0.003 0.003 0.003 0.003 0.002 0.002 
 

0.003 0.002 

Annual kWh 81 600 560 570 593 571 88 
 

3,064 

  

 
Sun Mon Tue Wed Thu Fri Sat Total Annual 

Data 537 1,965 1,998 1,998 1,993 1,859 702 11,052 

Sim 3 81 600 560 570 593 571 88 3,064 

Error 84.9% 69.5% 72.0% 71.5% 70.2% 69.3% 87.5% 72.28% 
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SIMULATION SETTINGS: Parameter Set 4 

On DC 50% = 0.75, 50% = 0 

Off DC All = 0 

Int On DC 50% = 0.75, 50% = 0 

Int Off DC 50% = 0.75, 50% = 0 

R or L All = 0 

mu Built-in (randomized) 

 

SIMULATION RESULTS: Parameter Set 4 

 
1 2 3 4 5 6 7 

   
Hour Sun Mon Tue Wed Thu Fri Sat 

 
Weekday Weekend Day 

0 0.003 0.003 0.003 0.003 0.004 0.003 0.002 
 

0.003 0.002 

1 0.003 0.005 0.003 0.003 0.004 0.003 0.002 
 

0.003 0.002 

2 0.002 0.005 0.002 0.003 0.004 0.003 0.002 
 

0.003 0.002 

3 0.002 0.004 0.003 0.004 0.003 0.003 0.002 
 

0.003 0.002 

4 0.003 0.005 0.003 0.004 0.004 0.004 0.002 
 

0.004 0.002 

5 0.003 0.008 0.007 0.008 0.008 0.007 0.002 
 

0.008 0.002 

6 0.003 0.061 0.059 0.059 0.057 0.057 0.003 
 

0.059 0.003 

7 0.004 0.165 0.154 0.156 0.157 0.156 0.003 
 

0.157 0.004 

8 0.006 0.183 0.170 0.166 0.178 0.162 0.007 
 

0.172 0.007 

9 0.009 0.180 0.165 0.165 0.172 0.161 0.009 
 

0.169 0.009 

10 0.014 0.177 0.154 0.157 0.161 0.156 0.013 
 

0.161 0.014 

11 0.010 0.101 0.090 0.089 0.095 0.096 0.015 
 

0.094 0.012 

12 0.017 0.115 0.096 0.095 0.095 0.100 0.015 
 

0.100 0.016 

13 0.019 0.141 0.123 0.135 0.134 0.140 0.014 
 

0.134 0.017 

14 0.019 0.114 0.109 0.119 0.123 0.125 0.016 
 

0.118 0.018 

15 0.018 0.114 0.111 0.119 0.115 0.104 0.018 
 

0.113 0.018 

16 0.018 0.110 0.101 0.101 0.100 0.091 0.019 
 

0.101 0.018 

17 0.016 0.062 0.054 0.055 0.054 0.050 0.016 
 

0.055 0.016 

18 0.012 0.023 0.025 0.023 0.025 0.026 0.012 
 

0.024 0.012 

19 0.008 0.012 0.017 0.014 0.018 0.013 0.010 
 

0.015 0.009 

20 0.006 0.009 0.014 0.011 0.017 0.008 0.010 
 

0.012 0.008 

21 0.005 0.007 0.010 0.009 0.013 0.006 0.008 
 

0.009 0.007 

22 0.005 0.006 0.009 0.007 0.010 0.003 0.006 
 

0.007 0.006 

23 0.004 0.005 0.006 0.006 0.004 0.002 0.004 
 

0.005 0.004 

Annual kWh 143 1,080 996 1,011 1,062 992 140 
 

5,423 

 

 
Sun Mon Tue Wed Thu Fri Sat Total Annual 

Data 537 1,965 1,998 1,998 1,993 1,859 702 11,052 

Sim 4 143 1,080 996 1,011 1,062 992 140 5,423 

Error 73.4% 45.1% 50.2% 49.4% 46.7% 46.6% 80.1% 50.93% 
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SIMULATION SETTINGS: Parameter Set 5 

On DC 50% = 0.75, 50% = 0 

Off DC All = 0 

Int On DC 50% = 0.75, 50% = 0 

Int Off DC 50% = 0.75, 50% = 0 

R or L All = 0 

mu 0.028 

 

SIMULATION RESULTS: Parameter Set 5 

 
1 2 3 4 5 6 7 

   

Hour Sun Mon Tue Wed Thu Fri Sat 
 

Weekday 
Weekend 

Day 

0 0.002 0.001 0.004 0.003 0.006 0.004 0.001 
 

0.003 0.002 

1 0.002 0.002 0.002 0.003 0.005 0.003 0.001 
 

0.003 0.002 

2 0.002 0.002 0.003 0.002 0.005 0.004 0.001 
 

0.003 0.001 

3 0.002 0.003 0.003 0.002 0.004 0.004 0.001 
 

0.003 0.002 

4 0.002 0.003 0.003 0.002 0.004 0.003 0.001 
 

0.003 0.002 

5 0.003 0.009 0.008 0.008 0.008 0.007 0.002 
 

0.008 0.002 

6 0.002 0.076 0.073 0.070 0.072 0.069 0.002 
 

0.072 0.002 

7 0.004 0.185 0.175 0.167 0.174 0.168 0.003 
 

0.174 0.004 

8 0.004 0.192 0.157 0.165 0.175 0.162 0.008 
 

0.170 0.006 

9 0.005 0.179 0.156 0.159 0.163 0.157 0.009 
 

0.163 0.007 

10 0.009 0.170 0.139 0.140 0.145 0.136 0.009 
 

0.146 0.009 

11 0.008 0.077 0.068 0.070 0.064 0.065 0.013 
 

0.069 0.011 

12 0.012 0.080 0.065 0.066 0.055 0.066 0.011 
 

0.066 0.011 

13 0.013 0.105 0.087 0.098 0.093 0.102 0.011 
 

0.097 0.012 

14 0.013 0.077 0.076 0.076 0.089 0.086 0.013 
 

0.081 0.013 

15 0.012 0.082 0.087 0.083 0.084 0.070 0.011 
 

0.081 0.012 

16 0.013 0.069 0.070 0.065 0.060 0.057 0.014 
 

0.064 0.014 

17 0.012 0.034 0.030 0.030 0.028 0.024 0.011 
 

0.029 0.012 

18 0.009 0.009 0.011 0.014 0.014 0.010 0.010 
 

0.012 0.009 

19 0.008 0.006 0.007 0.009 0.015 0.006 0.008 
 

0.009 0.008 

20 0.008 0.007 0.007 0.009 0.020 0.006 0.006 
 

0.010 0.007 

21 0.006 0.007 0.006 0.010 0.016 0.006 0.005 
 

0.009 0.006 

22 0.006 0.004 0.005 0.008 0.010 0.004 0.004 
 

0.006 0.005 

23 0.004 0.004 0.003 0.007 0.005 0.001 0.002 
 

0.004 0.003 

Annual kWh 107 927 833 847 896 817 108 
 

4,534 

  

 
Sun Mon Tue Wed Thu Fri Sat Total Annual 

Data 537 1,965 1,998 1,998 1,993 1,859 702 11,052 

Sim 5 107 927 833 847 896 817 108 4,534 

Error 80.0% 52.9% 58.3% 57.6% 55.0% 56.1% 84.6% 58.97% 
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SIMULATION SETTINGS: Parameter Set 6 

On DC 50% = 0.75, 50% = 0 

Off DC All = 0 

Int On DC 50% = 0.75, 50% = 0 

Int Off DC 50% = 0.75, 50% = 0 

R or L All = 0 

mu 0.065 

 

SIMULATION RESULTS: Parameter Set 6 

 
1 2 3 4 5 6 7 

   Hour Sun Mon Tue Wed Thu Fri Sat 
 

Weekday Weekend Day 

0 0.003 0.003 0.003 0.003 0.005 0.004 0.005 
 

0.004 0.004 

1 0.003 0.004 0.003 0.002 0.005 0.002 0.003 
 

0.003 0.003 

2 0.003 0.004 0.003 0.003 0.005 0.002 0.003 
 

0.003 0.003 

3 0.003 0.004 0.002 0.004 0.005 0.003 0.002 
 

0.004 0.003 

4 0.003 0.003 0.003 0.003 0.004 0.003 0.003 
 

0.003 0.003 

5 0.004 0.008 0.008 0.006 0.007 0.006 0.004 
 

0.007 0.004 

6 0.004 0.055 0.055 0.050 0.052 0.050 0.005 
 

0.052 0.004 

7 0.005 0.148 0.136 0.151 0.146 0.135 0.005 
 

0.143 0.005 

8 0.008 0.168 0.158 0.159 0.163 0.152 0.008 
 

0.160 0.008 

9 0.012 0.180 0.162 0.163 0.155 0.154 0.010 
 

0.163 0.011 

10 0.016 0.168 0.139 0.148 0.142 0.137 0.012 
 

0.147 0.014 

11 0.012 0.099 0.084 0.083 0.078 0.081 0.016 
 

0.085 0.014 

12 0.023 0.102 0.087 0.083 0.074 0.087 0.014 
 

0.086 0.018 

13 0.022 0.110 0.106 0.110 0.114 0.118 0.015 
 

0.112 0.018 

14 0.021 0.087 0.096 0.097 0.104 0.103 0.020 
 

0.097 0.020 

15 0.017 0.086 0.098 0.101 0.088 0.087 0.023 
 

0.092 0.020 

16 0.012 0.080 0.083 0.075 0.072 0.073 0.026 
 

0.077 0.019 

17 0.012 0.044 0.040 0.039 0.032 0.038 0.019 
 

0.039 0.015 

18 0.011 0.015 0.020 0.015 0.017 0.019 0.011 
 

0.017 0.011 

19 0.009 0.009 0.013 0.009 0.017 0.008 0.011 
 

0.011 0.010 

20 0.007 0.008 0.010 0.011 0.019 0.007 0.009 
 

0.011 0.008 

21 0.005 0.008 0.012 0.010 0.019 0.007 0.010 
 

0.011 0.008 

22 0.006 0.005 0.013 0.006 0.011 0.005 0.008 
 

0.008 0.007 

23 0.004 0.005 0.007 0.006 0.006 0.005 0.005 
 

0.006 0.005 

Annual kWh 151 940 898 894 914 860 165 
 

4,822 

  

 
Sun Mon Tue Wed Thu Fri Sat Total Annual 

Data 537 1,965 1,998 1,998 1,993 1,859 702 11,052 

Sim 6 151 940 898 894 914 860 165 4,822 

Error 71.8% 52.2% 55.1% 55.2% 54.2% 53.7% 76.6% 56.37% 
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SIMULATION SETTINGS: Parameter Set 7 

On DC 50% = 0.75, 50% = 0 

Off DC All = 0 

Int On DC 50% = 1, 50% = 0 

Int Off DC 50% = 0.5, 50% = 0 

R or L All = 0 

mu 0.065 

 

SIMULATION RESULTS: Parameter Set 7 

 
1 2 3 4 5 6 7 

   
Hour Sun Mon Tue Wed Thu Fri Sat 

 
Weekday Weekend Day 

0 0.001 0.002 0.005 0.004 0.003 0.003 0.001 
 

0.004 0.001 

1 0.002 0.004 0.003 0.004 0.003 0.003 0.002 
 

0.003 0.002 

2 0.001 0.004 0.003 0.005 0.004 0.003 0.002 
 

0.004 0.002 

3 0.002 0.004 0.004 0.004 0.003 0.003 0.001 
 

0.004 0.001 

4 0.001 0.004 0.004 0.004 0.003 0.003 0.002 
 

0.004 0.002 

5 0.002 0.005 0.006 0.006 0.005 0.006 0.001 
 

0.006 0.001 

6 0.002 0.043 0.043 0.042 0.040 0.043 0.003 
 

0.042 0.002 

7 0.004 0.131 0.133 0.136 0.132 0.133 0.003 
 

0.133 0.003 

8 0.005 0.167 0.160 0.148 0.165 0.149 0.008 
 

0.158 0.007 

9 0.010 0.175 0.158 0.153 0.167 0.157 0.009 
 

0.162 0.010 

10 0.011 0.164 0.137 0.130 0.144 0.146 0.014 
 

0.144 0.012 

11 0.011 0.087 0.069 0.067 0.080 0.084 0.016 
 

0.077 0.013 

12 0.012 0.090 0.079 0.076 0.076 0.081 0.015 
 

0.080 0.014 

13 0.016 0.117 0.105 0.115 0.113 0.108 0.014 
 

0.112 0.015 

14 0.016 0.099 0.097 0.104 0.109 0.096 0.016 
 

0.101 0.016 

15 0.017 0.090 0.093 0.093 0.102 0.078 0.021 
 

0.091 0.019 

16 0.017 0.085 0.084 0.076 0.082 0.066 0.018 
 

0.079 0.018 

17 0.017 0.047 0.048 0.038 0.038 0.033 0.018 
 

0.041 0.017 

18 0.013 0.020 0.021 0.017 0.018 0.017 0.012 
 

0.019 0.013 

19 0.007 0.013 0.015 0.014 0.014 0.011 0.010 
 

0.013 0.009 

20 0.008 0.009 0.014 0.009 0.012 0.010 0.008 
 

0.011 0.008 

21 0.008 0.008 0.011 0.007 0.010 0.008 0.006 
 

0.009 0.007 

22 0.007 0.006 0.009 0.005 0.007 0.005 0.004 
 

0.006 0.005 

23 0.004 0.006 0.006 0.004 0.004 0.002 0.002 
 

0.004 0.003 

Annual kWh 131 924 874 844 909 836 137 
 

4,655 

  

 
Sun Mon Tue Wed Thu Fri Sat Total Annual 

Data 537 1,965 1,998 1,998 1,993 1,859 702 11,052 

Sim 7 131 924 874 844 909 836 137 4,655 

Error 75.6% 53.0% 56.2% 57.8% 54.4% 55.0% 80.5% 57.88% 
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SIMULATION SETTINGS: Parameter Set 8 

On DC 50% = 0.75, 50% = 0 

Off DC All = 0 

Int On DC 50% = 1, 50% = 0 

Int Off DC 50% = 0.25, 50% = 0 

R or L All = 0 

mu 0.065 

 

SIMULATION RESULTS: Parameter Set 8 

 
1 2 3 4 5 6 7 

   
Hour Sun Mon Tue Wed Thu Fri Sat 

 
Weekday Weekend Day 

0 0.002 0.003 0.003 0.003 0.004 0.002 0.002 
 

0.003 0.002 

1 0.001 0.004 0.003 0.002 0.003 0.003 0.002 
 

0.003 0.002 

2 0.002 0.003 0.002 0.002 0.003 0.003 0.001 
 

0.003 0.002 

3 0.002 0.002 0.001 0.003 0.003 0.003 0.001 
 

0.002 0.002 

4 0.002 0.002 0.002 0.003 0.002 0.002 0.002 
 

0.002 0.002 

5 0.001 0.005 0.005 0.005 0.004 0.004 0.003 
 

0.005 0.002 

6 0.003 0.043 0.039 0.040 0.038 0.038 0.003 
 

0.040 0.003 

7 0.004 0.116 0.111 0.112 0.113 0.108 0.004 
 

0.112 0.004 

8 0.006 0.105 0.105 0.101 0.108 0.098 0.007 
 

0.103 0.006 

9 0.008 0.103 0.091 0.092 0.100 0.100 0.010 
 

0.097 0.009 

10 0.012 0.085 0.066 0.071 0.079 0.072 0.012 
 

0.075 0.012 

11 0.007 0.034 0.027 0.031 0.032 0.035 0.010 
 

0.032 0.009 

12 0.012 0.050 0.042 0.045 0.040 0.042 0.010 
 

0.044 0.011 

13 0.013 0.063 0.054 0.062 0.067 0.063 0.009 
 

0.062 0.011 

14 0.012 0.039 0.047 0.043 0.055 0.050 0.013 
 

0.047 0.012 

15 0.011 0.052 0.049 0.055 0.051 0.039 0.012 
 

0.049 0.012 

16 0.010 0.047 0.042 0.044 0.042 0.039 0.016 
 

0.043 0.013 

17 0.011 0.020 0.018 0.019 0.021 0.019 0.011 
 

0.020 0.011 

18 0.007 0.009 0.011 0.009 0.009 0.013 0.008 
 

0.010 0.007 

19 0.005 0.006 0.011 0.008 0.012 0.008 0.009 
 

0.009 0.007 

20 0.004 0.006 0.009 0.007 0.011 0.008 0.008 
 

0.008 0.006 

21 0.003 0.006 0.009 0.008 0.008 0.004 0.008 
 

0.007 0.006 

22 0.005 0.005 0.009 0.004 0.006 0.003 0.006 
 

0.005 0.006 

23 0.002 0.005 0.005 0.005 0.004 0.002 0.004 
 

0.004 0.003 

Annual kWh 98 546 509 518 558 507 116 
 

2,851 

  

 
Sun Mon Tue Wed Thu Fri Sat Total Annual 

Data 537 1,965 1,998 1,998 1,993 1,859 702 11,052 

Sim 8 98 546 509 518 558 507 116 2,851 

Error 81.8% 72.2% 74.5% 74.1% 72.0% 72.7% 83.5% 74.21% 



 

245 

SIMULATION SETTINGS: Parameter Set 9 

On DC 50% = 0.75, 50% = 0 

Off DC All = 0 

Int On DC 50% = 0.75, 50% = 0 

Int Off DC 50% = 0.75, 50% = 0 

R or L All = 0 

mu 0.1 

 

SIMULATION RESULTS: Parameter Set 9 

 
1 2 3 4 5 6 7 

   
Hour Sun Mon Tue Wed Thu Fri Sat 

 
Weekday Weekend Day 

0 0.002 0.004 0.004 0.004 0.005 0.003 0.003 
 

0.004 0.003 

1 0.002 0.005 0.002 0.004 0.005 0.004 0.002 
 

0.004 0.002 

2 0.002 0.005 0.002 0.003 0.004 0.004 0.003 
 

0.004 0.003 

3 0.003 0.004 0.002 0.003 0.003 0.003 0.002 
 

0.003 0.003 

4 0.003 0.005 0.003 0.004 0.004 0.003 0.002 
 

0.004 0.003 

5 0.003 0.008 0.008 0.009 0.008 0.007 0.003 
 

0.008 0.003 

6 0.003 0.064 0.063 0.061 0.056 0.058 0.004 
 

0.060 0.003 

7 0.004 0.149 0.150 0.156 0.143 0.145 0.004 
 

0.149 0.004 

8 0.006 0.161 0.157 0.154 0.153 0.140 0.007 
 

0.153 0.006 

9 0.009 0.162 0.151 0.154 0.155 0.147 0.012 
 

0.154 0.011 

10 0.014 0.169 0.145 0.143 0.149 0.150 0.016 
 

0.151 0.015 

11 0.013 0.102 0.081 0.085 0.088 0.092 0.018 
 

0.090 0.016 

12 0.018 0.108 0.090 0.094 0.089 0.088 0.019 
 

0.094 0.018 

13 0.022 0.129 0.104 0.126 0.118 0.118 0.017 
 

0.119 0.019 

14 0.021 0.102 0.099 0.112 0.113 0.107 0.019 
 

0.107 0.020 

15 0.017 0.104 0.103 0.105 0.099 0.095 0.018 
 

0.101 0.018 

16 0.021 0.101 0.086 0.093 0.092 0.081 0.022 
 

0.091 0.022 

17 0.019 0.060 0.054 0.051 0.046 0.044 0.018 
 

0.051 0.018 

18 0.015 0.024 0.031 0.023 0.027 0.028 0.015 
 

0.027 0.015 

19 0.012 0.017 0.021 0.017 0.021 0.015 0.012 
 

0.018 0.012 

20 0.009 0.013 0.015 0.011 0.019 0.011 0.011 
 

0.014 0.010 

21 0.006 0.009 0.013 0.010 0.013 0.006 0.010 
 

0.010 0.008 

22 0.006 0.008 0.011 0.005 0.008 0.005 0.008 
 

0.007 0.007 

23 0.005 0.006 0.006 0.005 0.005 0.003 0.005 
 

0.005 0.005 

Annual kWh 159 1,016 939 960 970 909 166 
 

5,119 

  

 
Sun Mon Tue Wed Thu Fri Sat Total Annual 

Data 537 1,965 1,998 1,998 1,993 1,859 702 11,052 

Sim 9 159 1,016 939 960 970 909 166 5,119 

Error 70.4% 48.3% 53.0% 52.0% 51.3% 51.1% 76.3% 53.69% 
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SIMULATION SETTINGS: Parameter Set 10 

On DC 50% = 0.75, 50% = 0 

Off DC All = 0 

Int On DC 50% = 0.75, 50% = 0 

Int Off DC 50% = 0.75, 50% = 0 

R or L All = 0 

mu 0.01 

 

SIMULATION RESULTS: Parameter Set 10 

 
1 2 3 4 5 6 7 

   
Hour Sun Mon Tue Wed Thu Fri Sat 

 
Weekday Weekend Day 

0 0.002 0.003 0.004 0.003 0.005 0.004 0.004 
 

0.004 0.003 

1 0.002 0.004 0.004 0.002 0.003 0.003 0.004 
 

0.003 0.003 

2 0.002 0.004 0.004 0.003 0.004 0.003 0.004 
 

0.004 0.003 

3 0.003 0.003 0.003 0.004 0.005 0.004 0.003 
 

0.004 0.003 

4 0.003 0.003 0.003 0.004 0.005 0.003 0.003 
 

0.004 0.003 

5 0.002 0.007 0.006 0.007 0.007 0.005 0.003 
 

0.006 0.002 

6 0.002 0.049 0.046 0.047 0.047 0.044 0.004 
 

0.047 0.003 

7 0.006 0.144 0.142 0.144 0.141 0.141 0.006 
 

0.143 0.006 

8 0.007 0.164 0.165 0.164 0.164 0.151 0.010 
 

0.162 0.008 

9 0.010 0.165 0.154 0.154 0.157 0.156 0.015 
 

0.157 0.012 

10 0.017 0.155 0.129 0.135 0.140 0.137 0.018 
 

0.139 0.017 

11 0.011 0.086 0.067 0.069 0.069 0.074 0.018 
 

0.073 0.015 

12 0.016 0.081 0.065 0.064 0.058 0.065 0.015 
 

0.067 0.015 

13 0.018 0.100 0.081 0.086 0.101 0.092 0.014 
 

0.092 0.016 

14 0.018 0.076 0.072 0.070 0.097 0.081 0.017 
 

0.079 0.018 

15 0.014 0.078 0.072 0.077 0.084 0.063 0.018 
 

0.075 0.016 

16 0.013 0.073 0.065 0.063 0.065 0.058 0.019 
 

0.065 0.016 

17 0.011 0.036 0.029 0.030 0.031 0.033 0.015 
 

0.032 0.013 

18 0.010 0.010 0.016 0.011 0.013 0.015 0.009 
 

0.013 0.010 

19 0.008 0.006 0.012 0.007 0.012 0.007 0.009 
 

0.009 0.009 

20 0.007 0.006 0.008 0.007 0.013 0.008 0.011 
 

0.008 0.009 

21 0.005 0.005 0.009 0.010 0.013 0.007 0.010 
 

0.009 0.007 

22 0.005 0.005 0.009 0.007 0.010 0.005 0.006 
 

0.007 0.006 

23 0.004 0.006 0.005 0.007 0.006 0.004 0.003 
 

0.006 0.004 

Annual kWh 131 848 782 788 853 779 159 
 

4,341 

  

 
Sun Mon Tue Wed Thu Fri Sat Total Annual 

Data 537 1,965 1,998 1,998 1,993 1,859 702 11,052 

Sim 10 131 848 782 788 853 779 159 4,341 

Error 75.6% 56.8% 60.9% 60.6% 57.2% 58.1% 77.3% 60.73% 



 

247 

SIMULATION SETTINGS: Parameter Set 11 

On DC 50% = 0.75, 50% = 0 

Off DC All = 0 

Int On DC 50% = 0.75, 50% = 0 

Int Off DC 50% = 0.75, 50% = 0 

R or L All = 0 

mu 0.06 

 

SIMULATION RESULTS: Parameter Set 11 

 
1 2 3 4 5 6 7 

   
Hour Sun Mon Tue Wed Thu Fri Sat 

 
Weekday Weekend Day 

0 0.001 0.003 0.003 0.002 0.003 0.002 0.001 
 

0.003 0.001 

1 0.001 0.003 0.002 0.002 0.002 0.002 0.001 
 

0.002 0.001 

2 0.001 0.003 0.002 0.002 0.002 0.002 0.001 
 

0.002 0.001 

3 0.001 0.003 0.002 0.002 0.002 0.002 0.001 
 

0.002 0.001 

4 0.001 0.003 0.003 0.001 0.003 0.002 0.001 
 

0.002 0.001 

5 0.002 0.005 0.006 0.007 0.007 0.006 0.002 
 

0.006 0.002 

6 0.002 0.044 0.041 0.044 0.037 0.040 0.002 
 

0.041 0.002 

7 0.003 0.112 0.103 0.113 0.107 0.105 0.003 
 

0.108 0.003 

8 0.003 0.099 0.092 0.088 0.094 0.088 0.006 
 

0.092 0.005 

9 0.006 0.095 0.088 0.089 0.089 0.088 0.007 
 

0.090 0.006 

10 0.009 0.085 0.068 0.070 0.073 0.071 0.010 
 

0.073 0.009 

11 0.008 0.032 0.026 0.026 0.026 0.031 0.009 
 

0.028 0.009 

12 0.009 0.049 0.039 0.042 0.038 0.042 0.010 
 

0.042 0.010 

13 0.010 0.058 0.052 0.062 0.059 0.059 0.009 
 

0.058 0.009 

14 0.010 0.036 0.041 0.041 0.044 0.044 0.009 
 

0.041 0.009 

15 0.009 0.047 0.044 0.049 0.042 0.036 0.011 
 

0.044 0.010 

16 0.011 0.045 0.035 0.037 0.036 0.035 0.010 
 

0.038 0.011 

17 0.012 0.020 0.018 0.017 0.017 0.018 0.011 
 

0.018 0.012 

18 0.009 0.009 0.012 0.008 0.011 0.012 0.008 
 

0.010 0.009 

19 0.007 0.007 0.010 0.008 0.011 0.007 0.007 
 

0.009 0.007 

20 0.006 0.007 0.008 0.006 0.011 0.006 0.005 
 

0.007 0.005 

21 0.004 0.006 0.006 0.006 0.007 0.005 0.005 
 

0.006 0.004 

22 0.004 0.004 0.005 0.003 0.005 0.003 0.004 
 

0.004 0.004 

23 0.003 0.003 0.003 0.003 0.002 0.001 0.003 
 

0.003 0.003 

Annual kWh 89 521 474 486 497 474 90 
 

2,632 

  

 
Sun Mon Tue Wed Thu Fri Sat Total Annual 

Data 537 1,965 1,998 1,998 1,993 1,859 702 11,052 

Sim 11 89 521 474 486 497 474 90 2,632 

Error 83.4% 73.5% 76.3% 75.7% 75.1% 74.5% 87.2% 76.19% 
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SIMULATION SETTINGS: Parameter Set 12 

On DC 50% = 0.75, 50% = 0 

Off DC All = 0 

Int On DC 50% = 0.75, 50% = 0 

Int Off DC 50% = 0.75, 50% = 0 

R or L All = 1 

mu 0.1 

 

SIMULATION RESULTS: Parameter Set 12 

 
1 2 3 4 5 6 7 

   
Hour Sun Mon Tue Wed Thu Fri Sat 

 
Weekday Weekend Day 

0 0.004 0.004 0.004 0.004 0.005 0.004 0.004 
 

0.004 0.004 

1 0.003 0.004 0.003 0.004 0.004 0.003 0.003 
 

0.004 0.003 

2 0.003 0.004 0.003 0.004 0.004 0.005 0.002 
 

0.004 0.002 

3 0.004 0.003 0.002 0.005 0.003 0.004 0.002 
 

0.003 0.003 

4 0.003 0.003 0.003 0.004 0.004 0.004 0.004 
 

0.004 0.003 

5 0.003 0.007 0.006 0.006 0.006 0.005 0.004 
 

0.006 0.004 

6 0.003 0.049 0.047 0.050 0.046 0.043 0.005 
 

0.047 0.004 

7 0.006 0.153 0.150 0.151 0.145 0.146 0.006 
 

0.149 0.006 

8 0.008 0.182 0.173 0.171 0.173 0.166 0.010 
 

0.173 0.009 

9 0.012 0.174 0.163 0.166 0.167 0.169 0.018 
 

0.168 0.015 

10 0.020 0.174 0.146 0.151 0.156 0.152 0.019 
 

0.156 0.020 

11 0.013 0.105 0.095 0.092 0.089 0.098 0.016 
 

0.096 0.015 

12 0.020 0.112 0.105 0.097 0.089 0.095 0.017 
 

0.100 0.019 

13 0.025 0.130 0.121 0.127 0.135 0.129 0.017 
 

0.128 0.021 

14 0.025 0.099 0.110 0.113 0.125 0.119 0.024 
 

0.113 0.024 

15 0.021 0.105 0.107 0.117 0.112 0.103 0.025 
 

0.109 0.023 

16 0.019 0.107 0.106 0.107 0.100 0.096 0.029 
 

0.103 0.024 

17 0.017 0.066 0.057 0.064 0.062 0.062 0.023 
 

0.062 0.020 

18 0.015 0.025 0.034 0.027 0.030 0.037 0.015 
 

0.031 0.015 

19 0.011 0.016 0.022 0.016 0.022 0.016 0.014 
 

0.019 0.013 

20 0.009 0.011 0.016 0.013 0.020 0.010 0.015 
 

0.014 0.012 

21 0.006 0.008 0.015 0.012 0.017 0.007 0.016 
 

0.012 0.011 

22 0.008 0.007 0.012 0.008 0.011 0.006 0.010 
 

0.009 0.009 

23 0.006 0.007 0.008 0.007 0.006 0.004 0.007 
 

0.006 0.007 

Annual kWh 176 1,043 1,011 1,016 1,046 992 205 
 

5,489 

  

 
Sun Mon Tue Wed Thu Fri Sat Total Annual 

Data 537 1,965 1,998 1,998 1,993 1,859 702 11,052 

Sim 12 176 1,043 1,011 1,016 1,046 992 205 5,489 

Error 67.2% 46.9% 49.4% 49.1% 47.5% 46.6% 70.9% 50.34% 



 

249 

SIMULATION SETTINGS: Parameter Set 13 

On DC 58% = 1, 42% = 0 

Off DC All = 0 

Int On DC 58% = 1, 42% = 0 

Int Off DC 58% = 1, 42% = 0 

R or L All = 0 

mu 0.065 

 

SIMULATION RESULTS: Parameter Set 13 

 
1 2 3 4 5 6 7 

   
Hour Sun Mon Tue Wed Thu Fri Sat 

 
Weekday Weekend Day 

0 0.005 0.003 0.006 0.003 0.005 0.003 0.004 
 

0.004 0.004 

1 0.004 0.004 0.004 0.003 0.004 0.003 0.003 
 

0.004 0.003 

2 0.004 0.004 0.004 0.004 0.005 0.003 0.002 
 

0.004 0.003 

3 0.004 0.004 0.004 0.004 0.004 0.004 0.002 
 

0.004 0.003 

4 0.004 0.004 0.004 0.003 0.003 0.003 0.002 
 

0.003 0.003 

5 0.004 0.008 0.010 0.009 0.006 0.005 0.003 
 

0.008 0.004 

6 0.005 0.060 0.056 0.060 0.048 0.051 0.004 
 

0.055 0.004 

7 0.007 0.175 0.169 0.175 0.158 0.171 0.004 
 

0.169 0.006 

8 0.009 0.241 0.228 0.224 0.218 0.200 0.009 
 

0.222 0.009 

9 0.018 0.273 0.248 0.257 0.245 0.234 0.014 
 

0.251 0.016 

10 0.026 0.303 0.271 0.283 0.268 0.265 0.018 
 

0.278 0.022 

11 0.022 0.240 0.214 0.223 0.213 0.216 0.024 
 

0.221 0.023 

12 0.031 0.237 0.222 0.213 0.205 0.216 0.025 
 

0.219 0.028 

13 0.040 0.284 0.265 0.266 0.259 0.260 0.027 
 

0.267 0.034 

14 0.044 0.253 0.265 0.267 0.274 0.252 0.035 
 

0.262 0.039 

15 0.036 0.233 0.256 0.258 0.265 0.239 0.041 
 

0.250 0.038 

16 0.034 0.226 0.241 0.228 0.240 0.206 0.045 
 

0.228 0.040 

17 0.030 0.146 0.150 0.148 0.136 0.129 0.038 
 

0.142 0.034 

18 0.022 0.057 0.069 0.061 0.060 0.066 0.025 
 

0.063 0.024 

19 0.014 0.029 0.035 0.031 0.039 0.027 0.019 
 

0.032 0.017 

20 0.008 0.017 0.023 0.022 0.031 0.016 0.017 
 

0.022 0.012 

21 0.006 0.015 0.018 0.016 0.024 0.009 0.018 
 

0.016 0.012 

22 0.008 0.010 0.013 0.011 0.019 0.008 0.014 
 

0.012 0.011 

23 0.005 0.009 0.008 0.008 0.009 0.006 0.010 
 

0.008 0.008 

Annual kWh 262 1,897 1,863 1,860 1,868 1,735 270 
 

9,754 

  

 
Sun Mon Tue Wed Thu Fri Sat Total Annual 

Data 537 1,965 1,998 1,998 1,993 1,859 702 11,052 

Sim 13 262 1,897 1,863 1,860 1,868 1,735 270 9,754 

Error 51.2% 3.5% 6.8% 6.9% 6.3% 6.7% 61.6% 11.74% 



 

250 

SIMULATION SETTINGS: Parameter Set 14 

On DC 58% = 1, 42% = 0 

Off DC All = 0 

Int On DC 58% = 1, 42% = 0 

Int Off DC 58% = 1, 42% = 0 

R or L All = 0 

mu 0.9 

 

SIMULATION RESULTS: Parameter Set 14 

 
1 2 3 4 5 6 7 

   
Hour Sun Mon Tue Wed Thu Fri Sat 

 
Weekday Weekend Day 

0 0.004 0.006 0.005 0.003 0.006 0.005 0.005 
 

0.005 0.004 

1 0.004 0.006 0.003 0.003 0.005 0.003 0.003 
 

0.004 0.004 

2 0.004 0.004 0.004 0.003 0.004 0.003 0.003 
 

0.004 0.003 

3 0.003 0.004 0.004 0.003 0.003 0.005 0.003 
 

0.004 0.003 

4 0.004 0.004 0.003 0.002 0.003 0.004 0.003 
 

0.003 0.004 

5 0.003 0.008 0.006 0.007 0.008 0.008 0.004 
 

0.008 0.004 

6 0.005 0.060 0.059 0.054 0.055 0.056 0.004 
 

0.057 0.004 

7 0.007 0.195 0.191 0.189 0.176 0.184 0.005 
 

0.187 0.006 

8 0.009 0.265 0.263 0.258 0.251 0.236 0.010 
 

0.255 0.010 

9 0.015 0.311 0.298 0.294 0.290 0.271 0.017 
 

0.293 0.016 

10 0.026 0.351 0.331 0.321 0.313 0.298 0.022 
 

0.323 0.024 

11 0.019 0.265 0.264 0.247 0.239 0.248 0.028 
 

0.253 0.024 

12 0.032 0.265 0.246 0.226 0.216 0.226 0.030 
 

0.236 0.031 

13 0.042 0.316 0.298 0.292 0.294 0.294 0.030 
 

0.299 0.036 

14 0.043 0.301 0.308 0.293 0.314 0.301 0.034 
 

0.303 0.039 

15 0.035 0.296 0.300 0.287 0.303 0.271 0.040 
 

0.292 0.038 

16 0.032 0.273 0.281 0.263 0.274 0.239 0.048 
 

0.266 0.040 

17 0.029 0.179 0.171 0.168 0.168 0.150 0.036 
 

0.167 0.033 

18 0.021 0.069 0.079 0.073 0.072 0.067 0.024 
 

0.072 0.023 

19 0.013 0.034 0.040 0.035 0.039 0.031 0.016 
 

0.036 0.015 

20 0.010 0.020 0.029 0.022 0.030 0.018 0.015 
 

0.024 0.012 

21 0.008 0.013 0.019 0.016 0.023 0.009 0.013 
 

0.016 0.010 

22 0.008 0.010 0.014 0.010 0.017 0.006 0.011 
 

0.011 0.009 

23 0.005 0.008 0.008 0.007 0.009 0.004 0.008 
 

0.007 0.007 

Annual kWh 255 2,184 2,159 2,060 2,123 1,967 276 
 

11,024 

  

 
Sun Mon Tue Wed Thu Fri Sat Total Annual 

Data 537 1,965 1,998 1,998 1,993 1,859 702 11,052 

Sim 14 255 2,184 2,159 2,060 2,123 1,967 276 11,024 

Error 52.5% 11.1% 8.0% 3.1% 6.5% 5.8% 60.7% 0.26% 
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SIMULATION SETTINGS: Parameter Set 15 

On DC 58% = 1, 42% = 0 

Off DC 8% = 0.5, 92% = 0 

Int On DC 58% = 1, 42% = 0 

Int Off DC 58% = 1, 42% = 0 

R or L All = 0 

mu 0.9 

 

SIMULATION RESULTS: Parameter Set 15 

 
1 2 3 4 5 6 7 

   
Hour Sun Mon Tue Wed Thu Fri Sat 

 
Weekday Weekend Day 

0 0.002 0.005 0.004 0.004 0.006 0.004 0.002 
 

0.005 0.002 

1 0.003 0.004 0.003 0.003 0.004 0.004 0.002 
 

0.004 0.002 

2 0.003 0.004 0.003 0.003 0.004 0.005 0.003 
 

0.004 0.003 

3 0.003 0.005 0.003 0.003 0.004 0.004 0.002 
 

0.004 0.003 

4 0.003 0.005 0.004 0.003 0.004 0.005 0.002 
 

0.004 0.002 

5 0.003 0.007 0.007 0.007 0.008 0.008 0.002 
 

0.007 0.003 

6 0.003 0.068 0.068 0.072 0.062 0.065 0.003 
 

0.067 0.003 

7 0.005 0.213 0.212 0.206 0.198 0.200 0.003 
 

0.206 0.004 

8 0.007 0.294 0.285 0.276 0.280 0.261 0.010 
 

0.279 0.008 

9 0.011 0.326 0.321 0.309 0.301 0.289 0.012 
 

0.309 0.012 

10 0.017 0.357 0.345 0.339 0.328 0.310 0.019 
 

0.336 0.018 

11 0.019 0.261 0.258 0.247 0.242 0.242 0.023 
 

0.250 0.021 

12 0.023 0.265 0.241 0.234 0.217 0.218 0.025 
 

0.235 0.024 

13 0.026 0.324 0.293 0.300 0.291 0.296 0.025 
 

0.301 0.026 

14 0.029 0.304 0.305 0.303 0.312 0.299 0.028 
 

0.305 0.029 

15 0.031 0.285 0.291 0.282 0.291 0.271 0.030 
 

0.284 0.030 

16 0.035 0.261 0.260 0.250 0.251 0.239 0.034 
 

0.252 0.034 

17 0.030 0.164 0.158 0.155 0.158 0.148 0.032 
 

0.157 0.031 

18 0.023 0.067 0.080 0.070 0.074 0.068 0.023 
 

0.072 0.023 

19 0.013 0.032 0.043 0.035 0.043 0.031 0.015 
 

0.037 0.014 

20 0.012 0.019 0.032 0.020 0.031 0.016 0.010 
 

0.023 0.011 

21 0.009 0.014 0.019 0.015 0.025 0.009 0.010 
 

0.016 0.010 

22 0.006 0.007 0.012 0.008 0.015 0.005 0.006 
 

0.010 0.006 

23 0.005 0.007 0.007 0.007 0.006 0.003 0.004 
 

0.006 0.004 

Annual kWh 215 2,207 2,179 2,110 2,154 2,008 217 
 

11,090 

  

 
Sun Mon Tue Wed Thu Fri Sat Total Annual 

Data 537 1,965 1,998 1,998 1,993 1,859 702 11,052 

Sim 15 215 2,207 2,179 2,110 2,154 2,008 217 11,090 

Error 60.0% 12.3% 9.1% 5.6% 8.1% 8.0% 69.0% 0.34% 



 

252 

SIMULATION SETTINGS: Parameter Set 16 

On DC 50% = 0.75, 50% = 0 

Off DC All = 0 

Int On DC 50% = 0.75, 50% = 0 

Int Off DC 50% = 0.75, 50% = 0 

R or L All = 1 

mu 0.01 

 

SIMULATION RESULTS: Parameter Set 16 

 
1 2 3 4 5 6 7 

   
Hour Sun Mon Tue Wed Thu Fri Sat 

 
Weekday Weekend Day 

0 0.006 0.003 0.008 0.007 0.009 0.006 0.006  0.007 0.006 

1 0.006 0.005 0.007 0.006 0.008 0.005 0.005  0.006 0.006 

2 0.007 0.005 0.007 0.007 0.009 0.006 0.005  0.007 0.006 

3 0.007 0.005 0.007 0.008 0.010 0.007 0.006  0.007 0.007 

4 0.007 0.005 0.007 0.009 0.010 0.007 0.006  0.007 0.007 

5 0.007 0.009 0.010 0.013 0.012 0.009 0.006  0.011 0.007 

6 0.007 0.061 0.056 0.060 0.062 0.055 0.007  0.059 0.007 

7 0.010 0.191 0.178 0.189 0.185 0.180 0.009  0.184 0.009 

8 0.012 0.253 0.242 0.248 0.249 0.226 0.014  0.244 0.013 

9 0.017 0.278 0.272 0.270 0.269 0.258 0.021  0.270 0.019 

10 0.028 0.305 0.291 0.290 0.284 0.273 0.028  0.289 0.028 

11 0.023 0.235 0.227 0.225 0.207 0.214 0.034  0.222 0.028 

12 0.031 0.235 0.232 0.222 0.195 0.200 0.033  0.217 0.032 

13 0.042 0.281 0.282 0.270 0.267 0.253 0.033  0.270 0.037 

14 0.046 0.253 0.283 0.266 0.287 0.258 0.039  0.269 0.043 

15 0.040 0.240 0.264 0.261 0.269 0.240 0.040  0.255 0.040 

16 0.035 0.234 0.244 0.234 0.240 0.220 0.044  0.234 0.039 

17 0.027 0.152 0.155 0.144 0.142 0.144 0.034  0.147 0.031 

18 0.023 0.057 0.075 0.058 0.061 0.068 0.021  0.064 0.022 

19 0.016 0.029 0.039 0.027 0.037 0.026 0.017  0.032 0.017 

20 0.014 0.020 0.028 0.020 0.030 0.017 0.019  0.023 0.017 

21 0.011 0.014 0.021 0.019 0.026 0.011 0.019  0.018 0.015 

22 0.010 0.012 0.019 0.013 0.019 0.008 0.017  0.014 0.014 

23 0.007 0.011 0.013 0.013 0.010 0.007 0.011  0.011 0.009 

Annual kWh 295 1,937 1,986 1,929 1,975 1,806 319 
 

10,247 

  

 
Sun Mon Tue Wed Thu Fri Sat Total Annual 

Data 537 1,965 1,998 1,998 1,993 1,859 702 11,052 

Sim 16 295 1,937 1,986 1,929 1,975 1,806 319 10,247 

Error 45.1% 1.4% 0.6% 3.5% 0.9% 2.8% 54.6% 7.28% 



 

253 

SIMULATION SETTINGS: Parameter Set 17 

On DC 50% = 0.75, 50% = 0 

Off DC All = 0.1 

Int On DC 50% = 0.75, 50% = 0 

Int Off DC 50% = 0.75, 50% = 0 

R or L All = 1 

mu 0.01 

 

SIMULATION RESULTS: Parameter Set 17 

 
1 2 3 4 5 6 7 

   
Hour Sun Mon Tue Wed Thu Fri Sat 

 
Weekday Weekend Day 

0 0.004 0.001 0.005 0.005 0.010 0.007 0.003 
 

0.006 0.004 

1 0.004 0.003 0.005 0.005 0.011 0.006 0.003 
 

0.006 0.004 

2 0.004 0.005 0.005 0.006 0.012 0.006 0.003 
 

0.007 0.004 

3 0.005 0.005 0.005 0.006 0.011 0.007 0.002 
 

0.007 0.004 

4 0.006 0.006 0.005 0.007 0.013 0.007 0.003 
 

0.008 0.004 

5 0.007 0.008 0.009 0.012 0.016 0.011 0.003 
 

0.011 0.005 

6 0.006 0.058 0.057 0.069 0.065 0.062 0.003 
 

0.062 0.005 

7 0.007 0.206 0.187 0.202 0.194 0.178 0.005 
 

0.193 0.006 

8 0.010 0.264 0.242 0.251 0.240 0.218 0.011 
 

0.243 0.011 

9 0.016 0.292 0.269 0.265 0.260 0.240 0.013 
 

0.265 0.015 

10 0.025 0.314 0.300 0.295 0.290 0.273 0.016 
 

0.295 0.020 

11 0.021 0.226 0.222 0.205 0.211 0.214 0.021 
 

0.216 0.021 

12 0.031 0.239 0.190 0.189 0.180 0.193 0.017 
 

0.198 0.024 

13 0.038 0.292 0.230 0.243 0.231 0.249 0.020 
 

0.249 0.029 

14 0.034 0.267 0.238 0.246 0.244 0.244 0.023 
 

0.248 0.028 

15 0.027 0.255 0.228 0.237 0.237 0.215 0.027 
 

0.234 0.027 

16 0.028 0.227 0.209 0.204 0.214 0.195 0.030 
 

0.210 0.029 

17 0.024 0.127 0.126 0.116 0.121 0.117 0.027 
 

0.121 0.026 

18 0.016 0.050 0.056 0.048 0.052 0.056 0.020 
 

0.052 0.018 

19 0.010 0.028 0.028 0.028 0.028 0.020 0.016 
 

0.026 0.013 

20 0.009 0.017 0.019 0.021 0.020 0.010 0.015 
 

0.017 0.012 

21 0.008 0.012 0.016 0.016 0.018 0.007 0.011 
 

0.014 0.010 

22 0.009 0.009 0.014 0.014 0.014 0.005 0.010 
 

0.011 0.009 

23 0.006 0.009 0.007 0.013 0.009 0.004 0.008 
 

0.009 0.007 

Annual kWh 237 1,956 1,790 1,809 1,844 1,704 207 
 

9,545 

  

 
Sun Mon Tue Wed Thu Fri Sat Total Annual 

Data 537 1,965 1,998 1,998 1,993 1,859 702 11,052 

Sim 17 237 1,956 1,790 1,809 1,844 1,704 207 9,545 

Error 55.9% 0.5% 10.4% 9.5% 7.5% 8.3% 70.5% 13.63% 
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SIMULATION SETTINGS: Parameter Set 18 

On DC 50% = 0.72, 50% = 0 

Off DC All = 0 

Int On DC 50% = 0.74, 50% = 0 

Int Off DC 50% = 0.74, 50% = 0 

R or L All = 1 

mu 0.01 

 

SIMULATION RESULTS: Parameter Set 18 

 
1 2 3 4 5 6 7 

   
Hour Sun Mon Tue Wed Thu Fri Sat 

 
Weekday Weekend Day 

0 0.003 0.003 0.006 0.004 0.005 0.003 0.003 
 

0.004 0.003 

1 0.002 0.004 0.002 0.002 0.004 0.003 0.002 
 

0.003 0.002 

2 0.002 0.004 0.004 0.004 0.003 0.003 0.002 
 

0.004 0.002 

3 0.003 0.004 0.004 0.003 0.003 0.004 0.002 
 

0.004 0.002 

4 0.004 0.004 0.004 0.003 0.003 0.003 0.002 
 

0.003 0.003 

5 0.004 0.008 0.010 0.009 0.008 0.007 0.003 
 

0.009 0.003 

6 0.003 0.071 0.073 0.069 0.063 0.067 0.004 
 

0.069 0.003 

7 0.008 0.179 0.172 0.181 0.171 0.177 0.004 
 

0.176 0.006 

8 0.006 0.182 0.166 0.163 0.178 0.166 0.008 
 

0.171 0.007 

9 0.009 0.182 0.157 0.160 0.167 0.159 0.010 
 

0.165 0.009 

10 0.013 0.172 0.143 0.151 0.152 0.145 0.011 
 

0.153 0.012 

11 0.010 0.090 0.078 0.079 0.075 0.074 0.017 
 

0.079 0.014 

12 0.014 0.078 0.066 0.070 0.068 0.068 0.013 
 

0.070 0.013 

13 0.014 0.094 0.085 0.099 0.106 0.103 0.013 
 

0.098 0.013 

14 0.015 0.071 0.076 0.079 0.099 0.091 0.015 
 

0.083 0.015 

15 0.015 0.074 0.086 0.091 0.088 0.072 0.015 
 

0.082 0.015 

16 0.016 0.071 0.067 0.068 0.070 0.069 0.018 
 

0.069 0.017 

17 0.017 0.042 0.035 0.033 0.035 0.038 0.016 
 

0.037 0.017 

18 0.010 0.016 0.020 0.013 0.019 0.023 0.012 
 

0.018 0.011 

19 0.008 0.013 0.014 0.011 0.015 0.011 0.011 
 

0.013 0.009 

20 0.008 0.014 0.010 0.010 0.008 0.009 0.013 
 

0.010 0.010 

21 0.007 0.010 0.009 0.009 0.007 0.008 0.012 
 

0.009 0.009 

22 0.007 0.006 0.008 0.005 0.009 0.004 0.008 
 

0.006 0.008 

23 0.005 0.007 0.006 0.006 0.006 0.002 0.004 
 

0.005 0.005 

Annual kWh 135 936 872 884 929 877 145 
 

4,779 

  

 
Sun Mon Tue Wed Thu Fri Sat Total Annual 

Data 537 1,965 1,998 1,998 1,993 1,859 702 11,052 

Sim 18 135 936 872 884 929 877 145 4,779 

Error 74.8% 52.4% 56.4% 55.7% 53.4% 52.8% 79.3% 56.76% 
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SIMULATION SETTINGS: Parameter Set 19 

On DC 50% = 0.78, 50% = 0 

Off DC All = 0 

Int On DC 50% = 0.76, 50% = 0 

Int Off DC 50% = 0.72, 50% = 0 

R or L All = 0 

mu 0.01 

 

SIMULATION RESULTS: Parameter Set 19 

 
1 2 3 4 5 6 7 

   
Hour Sun Mon Tue Wed Thu Fri Sat 

 
Weekday Weekend Day 

0 0.002 0.003 0.004 0.003 0.005 0.003 0.004 
 

0.004 0.003 

1 0.002 0.004 0.004 0.002 0.003 0.002 0.004 
 

0.003 0.003 

2 0.002 0.004 0.004 0.003 0.004 0.003 0.003 
 

0.003 0.003 

3 0.003 0.003 0.003 0.004 0.005 0.003 0.002 
 

0.003 0.002 

4 0.002 0.003 0.003 0.004 0.005 0.003 0.002 
 

0.003 0.002 

5 0.001 0.007 0.005 0.007 0.006 0.005 0.003 
 

0.006 0.002 

6 0.002 0.048 0.046 0.046 0.046 0.044 0.003 
 

0.046 0.003 

7 0.006 0.142 0.140 0.142 0.139 0.139 0.005 
 

0.140 0.006 

8 0.006 0.161 0.160 0.159 0.158 0.146 0.010 
 

0.157 0.008 

9 0.010 0.159 0.147 0.149 0.151 0.150 0.014 
 

0.151 0.012 

10 0.017 0.147 0.120 0.129 0.134 0.128 0.017 
 

0.132 0.017 

11 0.011 0.078 0.061 0.063 0.065 0.067 0.018 
 

0.067 0.014 

12 0.015 0.074 0.061 0.058 0.054 0.060 0.014 
 

0.061 0.015 

13 0.017 0.092 0.076 0.080 0.096 0.088 0.013 
 

0.086 0.015 

14 0.017 0.069 0.066 0.065 0.091 0.075 0.016 
 

0.073 0.017 

15 0.014 0.074 0.067 0.073 0.078 0.058 0.017 
 

0.070 0.015 

16 0.012 0.068 0.060 0.060 0.061 0.055 0.019 
 

0.061 0.016 

17 0.011 0.033 0.026 0.029 0.028 0.030 0.014 
 

0.029 0.013 

18 0.010 0.009 0.013 0.010 0.013 0.014 0.009 
 

0.012 0.009 

19 0.007 0.005 0.011 0.007 0.012 0.007 0.009 
 

0.008 0.008 

20 0.007 0.006 0.008 0.007 0.013 0.008 0.011 
 

0.008 0.009 

21 0.005 0.005 0.009 0.010 0.013 0.007 0.009 
 

0.009 0.007 

22 0.005 0.004 0.008 0.006 0.009 0.005 0.006 
 

0.007 0.005 

23 0.004 0.005 0.005 0.007 0.005 0.004 0.003 
 

0.005 0.003 

Annual kWh 125 805 740 751 815 741 151 
 

4,127 

  

 
Sun Mon Tue Wed Thu Fri Sat Total Annual 

Data 537 1,965 1,998 1,998 1,993 1,859 702 11,052 

Sim 19 125 805 740 751 815 741 151 4,127 

Error 76.6% 59.1% 63.0% 62.4% 59.1% 60.2% 78.6% 62.66% 



 

256 

SIMULATION SETTINGS: Parameter Set 20 

On DC 50% = 0, 7% = 1, 7% = 0.8, 36% = 0.77 

Off DC All = 0 

Int On DC 50% = 0, 7% = 1, 7% = 0.8, 36% = 0.72 

Int Off DC 50% = 0, 7% = 1, 7% = 0.8, 36% = 0.79 

R or L All = 1 

mu 0.01 

 

SIMULATION RESULTS: Parameter Set 20 

 
1 2 3 4 5 6 7 

   
Hour Sun Mon Tue Wed Thu Fri Sat 

 
Weekday Weekend Day 

0 0.002 0.003 0.004 0.003 0.006 0.004 0.004 
 

0.004 0.003 

1 0.003 0.003 0.003 0.003 0.006 0.004 0.003 
 

0.004 0.003 

2 0.004 0.003 0.004 0.004 0.005 0.004 0.002 
 

0.004 0.003 

3 0.003 0.002 0.004 0.004 0.006 0.004 0.003 
 

0.004 0.003 

4 0.003 0.003 0.004 0.003 0.006 0.005 0.003 
 

0.004 0.003 

5 0.003 0.008 0.009 0.009 0.008 0.008 0.003 
 

0.008 0.003 

6 0.004 0.057 0.056 0.054 0.048 0.053 0.004 
 

0.054 0.004 

7 0.006 0.145 0.148 0.154 0.139 0.150 0.003 
 

0.147 0.005 

8 0.007 0.174 0.176 0.176 0.169 0.163 0.007 
 

0.172 0.007 

9 0.010 0.184 0.176 0.182 0.173 0.160 0.009 
 

0.175 0.010 

10 0.017 0.192 0.172 0.172 0.158 0.159 0.014 
 

0.170 0.015 

11 0.015 0.107 0.108 0.108 0.091 0.093 0.014 
 

0.101 0.014 

12 0.019 0.105 0.106 0.099 0.082 0.086 0.016 
 

0.096 0.018 

13 0.020 0.126 0.127 0.132 0.127 0.131 0.016 
 

0.129 0.018 

14 0.019 0.098 0.117 0.117 0.128 0.121 0.020 
 

0.116 0.019 

15 0.015 0.091 0.116 0.116 0.114 0.099 0.019 
 

0.107 0.017 

16 0.013 0.085 0.088 0.088 0.089 0.088 0.021 
 

0.088 0.017 

17 0.012 0.047 0.047 0.049 0.051 0.049 0.016 
 

0.049 0.014 

18 0.010 0.023 0.025 0.023 0.025 0.023 0.013 
 

0.024 0.012 

19 0.008 0.016 0.018 0.017 0.018 0.013 0.010 
 

0.016 0.009 

20 0.009 0.011 0.009 0.013 0.016 0.010 0.010 
 

0.012 0.009 

21 0.008 0.009 0.010 0.012 0.015 0.006 0.009 
 

0.010 0.009 

22 0.008 0.007 0.007 0.009 0.013 0.004 0.008 
 

0.008 0.008 

23 0.004 0.006 0.005 0.009 0.007 0.004 0.005 
 

0.006 0.005 

Annual kWh 149 1,007 1,031 1,042 1,023 965 156 
 

5,373 

  

 
Sun Mon Tue Wed Thu Fri Sat Total Annual 

Data 537 1,965 1,998 1,998 1,993 1,859 702 11,052 

Sim 20 149 1,007 1,031 1,042 1,023 965 156 5,373 

Error 72.1% 48.8% 48.4% 47.8% 48.7% 48.1% 77.7% 51.39% 



 

257 

SIMULATION SETTINGS: Parameter Set 21 

On DC 50% = 0.98, 50% = 0 

Off DC All = 0 

Int On DC 50% = 0.99, 50% = 0 

Int Off DC 50% = 0.92, 50% = 0 

R or L All = 1 

mu 0.04 

 

SIMULATION RESULTS: Parameter Set 21 

 
1 2 3 4 5 6 7 

   
Hour Sun Mon Tue Wed Thu Fri Sat 

 
Weekday Weekend Day 

0 0.004 0.004 0.006 0.005 0.005 0.005 0.004 
 

0.005 0.004 

1 0.004 0.005 0.004 0.003 0.004 0.004 0.004 
 

0.004 0.004 

2 0.003 0.005 0.003 0.003 0.005 0.005 0.004 
 

0.004 0.004 

3 0.003 0.003 0.002 0.004 0.005 0.003 0.003 
 

0.004 0.003 

4 0.004 0.004 0.002 0.005 0.005 0.003 0.003 
 

0.004 0.003 

5 0.004 0.007 0.006 0.008 0.008 0.007 0.004 
 

0.007 0.004 

6 0.006 0.050 0.050 0.048 0.049 0.047 0.006 
 

0.049 0.006 

7 0.009 0.157 0.158 0.157 0.151 0.157 0.007 
 

0.156 0.008 

8 0.013 0.200 0.197 0.202 0.193 0.183 0.012 
 

0.195 0.012 

9 0.016 0.209 0.206 0.206 0.205 0.200 0.018 
 

0.205 0.017 

10 0.025 0.221 0.198 0.199 0.205 0.194 0.024 
 

0.203 0.025 

11 0.018 0.153 0.138 0.132 0.125 0.132 0.026 
 

0.136 0.022 

12 0.028 0.149 0.133 0.122 0.114 0.120 0.022 
 

0.128 0.025 

13 0.035 0.174 0.156 0.154 0.165 0.158 0.024 
 

0.161 0.030 

14 0.035 0.143 0.148 0.143 0.165 0.149 0.030 
 

0.150 0.032 

15 0.028 0.139 0.145 0.145 0.150 0.135 0.030 
 

0.143 0.029 

16 0.024 0.130 0.133 0.124 0.129 0.123 0.036 
 

0.128 0.030 

17 0.022 0.080 0.075 0.073 0.068 0.077 0.025 
 

0.075 0.023 

18 0.017 0.027 0.038 0.029 0.029 0.038 0.016 
 

0.032 0.017 

19 0.011 0.014 0.021 0.016 0.025 0.015 0.015 
 

0.018 0.013 

20 0.011 0.011 0.014 0.013 0.021 0.012 0.017 
 

0.014 0.014 

21 0.008 0.010 0.015 0.013 0.019 0.008 0.016 
 

0.013 0.012 

22 0.007 0.009 0.014 0.009 0.015 0.004 0.012 
 

0.010 0.010 

23 0.005 0.008 0.008 0.008 0.009 0.004 0.007 
 

0.007 0.006 

Annual kWh 229 1,280 1,252 1,218 1,273 1,194 243 
 

6,689 

  

 
Sun Mon Tue Wed Thu Fri Sat Total Annual 

Data 537 1,965 1,998 1,998 1,993 1,859 702 11,052 

Sim 21 229 1,280 1,252 1,218 1,273 1,194 243 6,689 

Error 57.3% 34.9% 37.3% 39.0% 36.1% 35.8% 65.4% 39.48% 



 

258 

SIMULATION SETTINGS: Parameter Set 22 

On DC 50% = 0.75, 50% = 0 

Off DC All = 0 

Int On DC 50% = 0.75, 50% = 0 

Int Off DC 50% = 0.75, 50% = 0 

R or L All = 1 

mu 0.04 

 

SIMULATION RESULTS: Parameter Set 22 

 
1 2 3 4 5 6 7 

   
Hour Sun Mon Tue Wed Thu Fri Sat 

 
Weekday Weekend Day 

0 0.003 0.002 0.002 0.003 0.005 0.004 0.002 
 

0.003 0.002 

1 0.003 0.003 0.003 0.002 0.005 0.004 0.003 
 

0.003 0.003 

2 0.002 0.004 0.003 0.003 0.004 0.003 0.003 
 

0.003 0.003 

3 0.002 0.004 0.003 0.003 0.004 0.003 0.002 
 

0.003 0.002 

4 0.003 0.004 0.003 0.003 0.004 0.003 0.002 
 

0.003 0.003 

5 0.003 0.005 0.004 0.006 0.006 0.004 0.002 
 

0.005 0.003 

6 0.003 0.035 0.034 0.033 0.029 0.032 0.003 
 

0.033 0.003 

7 0.004 0.134 0.125 0.127 0.130 0.122 0.003 
 

0.128 0.004 

8 0.005 0.152 0.150 0.150 0.147 0.133 0.007 
 

0.146 0.006 

9 0.008 0.165 0.149 0.153 0.152 0.142 0.009 
 

0.152 0.009 

10 0.013 0.174 0.144 0.145 0.143 0.137 0.011 
 

0.149 0.012 

11 0.011 0.090 0.078 0.078 0.078 0.088 0.014 
 

0.082 0.012 

12 0.017 0.083 0.069 0.071 0.064 0.069 0.014 
 

0.071 0.016 

13 0.021 0.110 0.093 0.098 0.091 0.097 0.017 
 

0.098 0.019 

14 0.019 0.082 0.080 0.082 0.089 0.084 0.016 
 

0.083 0.017 

15 0.018 0.080 0.076 0.082 0.082 0.069 0.018 
 

0.078 0.018 

16 0.016 0.068 0.064 0.067 0.070 0.059 0.020 
 

0.065 0.018 

17 0.014 0.035 0.034 0.036 0.033 0.037 0.016 
 

0.035 0.015 

18 0.013 0.022 0.020 0.018 0.022 0.023 0.012 
 

0.021 0.012 

19 0.010 0.017 0.012 0.013 0.020 0.013 0.010 
 

0.015 0.010 

20 0.009 0.011 0.011 0.010 0.021 0.009 0.010 
 

0.012 0.009 

21 0.008 0.011 0.013 0.010 0.017 0.006 0.010 
 

0.011 0.009 

22 0.007 0.007 0.010 0.007 0.011 0.005 0.009 
 

0.008 0.008 

23 0.005 0.004 0.006 0.007 0.007 0.002 0.006 
 

0.005 0.005 

Annual kWh 147 871 795 808 841 769 145 
 

4,376 

  

 
Sun Mon Tue Wed Thu Fri Sat Total Annual 

Data 537 1,965 1,998 1,998 1,993 1,859 702 11,052 

Sim 22 147 871 795 808 841 769 145 4,376 

Error 72.7% 55.7% 60.2% 59.6% 57.8% 58.6% 79.3% 60.41% 



 

259 

SIMULATION SETTINGS: Parameter Set 23 

On DC 50% = 0.81, 50% = 0 

Off DC All = 0 

Int On DC 50% = 0.76, 50% = 0 

Int Off DC 50% = 0.93, 50% = 0 

R or L All = 1 

mu 0.01 

 

SIMULATION RESULTS: Parameter Set 23 

 
1 2 3 4 5 6 7 

   
Hour Sun Mon Tue Wed Thu Fri Sat 

 
Weekday Weekend Day 

0 0.004 0.001 0.007 0.006 0.011 0.002 0.004 
 

0.005 0.004 

1 0.003 0.003 0.005 0.005 0.009 0.001 0.003 
 

0.005 0.003 

2 0.004 0.004 0.005 0.004 0.007 0.002 0.003 
 

0.004 0.004 

3 0.004 0.003 0.006 0.005 0.008 0.003 0.003 
 

0.005 0.004 

4 0.003 0.003 0.005 0.004 0.007 0.003 0.003 
 

0.004 0.003 

5 0.003 0.008 0.009 0.008 0.011 0.005 0.004 
 

0.008 0.003 

6 0.003 0.050 0.050 0.045 0.046 0.044 0.006 
 

0.047 0.005 

7 0.006 0.157 0.152 0.144 0.150 0.138 0.008 
 

0.148 0.007 

8 0.009 0.210 0.205 0.193 0.202 0.186 0.013 
 

0.199 0.011 

9 0.015 0.222 0.217 0.206 0.212 0.199 0.015 
 

0.211 0.015 

10 0.022 0.228 0.218 0.202 0.211 0.194 0.020 
 

0.211 0.021 

11 0.018 0.142 0.148 0.138 0.129 0.124 0.021 
 

0.136 0.020 

12 0.029 0.137 0.140 0.131 0.120 0.117 0.022 
 

0.129 0.026 

13 0.034 0.178 0.171 0.172 0.168 0.172 0.023 
 

0.172 0.029 

14 0.034 0.161 0.163 0.171 0.177 0.167 0.027 
 

0.168 0.031 

15 0.029 0.152 0.150 0.165 0.158 0.145 0.027 
 

0.154 0.028 

16 0.022 0.144 0.140 0.141 0.134 0.126 0.034 
 

0.137 0.028 

17 0.021 0.093 0.085 0.084 0.076 0.077 0.030 
 

0.083 0.025 

18 0.017 0.032 0.036 0.035 0.036 0.035 0.020 
 

0.035 0.018 

19 0.011 0.014 0.023 0.019 0.027 0.015 0.016 
 

0.020 0.014 

20 0.008 0.013 0.021 0.018 0.023 0.013 0.015 
 

0.017 0.011 

21 0.007 0.013 0.017 0.019 0.016 0.009 0.015 
 

0.015 0.011 

22 0.006 0.012 0.015 0.014 0.013 0.007 0.012 
 

0.012 0.009 

23 0.004 0.012 0.009 0.013 0.007 0.005 0.008 
 

0.009 0.006 

Annual kWh 210 1,332 1,337 1,300 1,336 1,197 236 
 

6,949 

  

 
Sun Mon Tue Wed Thu Fri Sat Total Annual 

Data 537 1,965 1,998 1,998 1,993 1,859 702 11,052 

Sim 23 210 1,332 1,337 1,300 1,336 1,197 236 6,949 

Error 60.8% 32.2% 33.1% 34.9% 33.0% 35.6% 66.4% 37.13% 



 

260 

SIMULATION SETTINGS: Parameter Set 24 

On DC 50% = 0.77, 50% = 0 

Off DC All = 0 

Int On DC 50% = 0.76, 50% = 0 

Int Off DC 50% = 0.81, 50% = 0 

R or L All = 1 

mu 0.04 

 

SIMULATION RESULTS: Parameter Set 24 

 
1 2 3 4 5 6 7 

   
Hour Sun Mon Tue Wed Thu Fri Sat 

 
Weekday Weekend Day 

0 0.002 0.002 0.004 0.004 0.007 0.004 0.002 
 

0.004 0.002 

1 0.002 0.003 0.003 0.005 0.006 0.003 0.002 
 

0.004 0.002 

2 0.002 0.004 0.005 0.005 0.006 0.005 0.002 
 

0.005 0.002 

3 0.002 0.004 0.004 0.004 0.005 0.006 0.001 
 

0.005 0.002 

4 0.002 0.003 0.004 0.003 0.005 0.005 0.001 
 

0.004 0.002 

5 0.002 0.009 0.006 0.008 0.008 0.007 0.002 
 

0.008 0.002 

6 0.002 0.055 0.052 0.050 0.052 0.051 0.002 
 

0.052 0.002 

7 0.003 0.167 0.158 0.163 0.161 0.153 0.003 
 

0.160 0.003 

8 0.003 0.193 0.186 0.181 0.185 0.175 0.005 
 

0.184 0.004 

9 0.005 0.196 0.180 0.183 0.184 0.178 0.007 
 

0.184 0.006 

10 0.010 0.185 0.172 0.171 0.166 0.167 0.010 
 

0.172 0.010 

11 0.008 0.099 0.093 0.092 0.085 0.091 0.015 
 

0.092 0.011 

12 0.012 0.098 0.081 0.079 0.068 0.079 0.013 
 

0.081 0.012 

13 0.017 0.120 0.109 0.121 0.119 0.124 0.010 
 

0.119 0.013 

14 0.017 0.100 0.096 0.112 0.119 0.112 0.013 
 

0.108 0.015 

15 0.015 0.093 0.096 0.109 0.104 0.090 0.017 
 

0.099 0.016 

16 0.014 0.089 0.082 0.080 0.081 0.070 0.017 
 

0.080 0.016 

17 0.014 0.047 0.045 0.044 0.042 0.036 0.016 
 

0.043 0.015 

18 0.009 0.021 0.024 0.023 0.025 0.020 0.014 
 

0.023 0.011 

19 0.008 0.012 0.015 0.016 0.020 0.009 0.008 
 

0.014 0.008 

20 0.008 0.009 0.011 0.013 0.018 0.007 0.006 
 

0.012 0.007 

21 0.007 0.008 0.009 0.012 0.015 0.006 0.006 
 

0.010 0.006 

22 0.007 0.005 0.009 0.011 0.010 0.003 0.005 
 

0.008 0.006 

23 0.005 0.004 0.005 0.010 0.005 0.002 0.003 
 

0.005 0.004 

Annual kWh 116 1,023 971 1,004 1,019 940 119 
 

5,192 

  

 
Sun Mon Tue Wed Thu Fri Sat Total Annual 

Data 537 1,965 1,998 1,998 1,993 1,859 702 11,052 

Sim 24 116 1,023 971 1,004 1,019 940 119 5,192 

Error 78.4% 48.0% 51.4% 49.8% 48.9% 49.4% 83.0% 53.02% 



 

261 

SIMULATION SETTINGS: Parameter Set 25 

On DC 50% = 0.77, 50% = 0 

Off DC All = 0 

Int On DC 50% = 0.72, 50% = 0 

Int Off DC 50% = 0.81, 50% = 0 

R or L All = 1 

mu 0.04 

 

SIMULATION RESULTS: Parameter Set 25 

 
1 2 3 4 5 6 7 

   
Hour Sun Mon Tue Wed Thu Fri Sat 

 
Weekday Weekend Day 

0 0.002 0.004 0.004 0.005 0.006 0.006 0.002 
 

0.005 0.002 

1 0.002 0.005 0.003 0.003 0.004 0.004 0.002 
 

0.004 0.002 

2 0.002 0.006 0.003 0.003 0.004 0.003 0.002 
 

0.004 0.002 

3 0.004 0.004 0.002 0.004 0.004 0.003 0.002 
 

0.003 0.003 

4 0.004 0.004 0.002 0.003 0.006 0.003 0.002 
 

0.003 0.003 

5 0.004 0.009 0.007 0.007 0.008 0.007 0.002 
 

0.008 0.003 

6 0.004 0.061 0.056 0.057 0.058 0.052 0.004 
 

0.057 0.004 

7 0.005 0.177 0.163 0.170 0.165 0.162 0.005 
 

0.167 0.005 

8 0.007 0.189 0.185 0.176 0.174 0.168 0.008 
 

0.178 0.007 

9 0.012 0.193 0.181 0.180 0.175 0.167 0.011 
 

0.179 0.011 

10 0.018 0.195 0.175 0.173 0.167 0.169 0.014 
 

0.176 0.016 

11 0.013 0.104 0.101 0.089 0.087 0.090 0.015 
 

0.094 0.014 

12 0.022 0.110 0.099 0.091 0.086 0.085 0.015 
 

0.094 0.019 

13 0.026 0.133 0.115 0.123 0.126 0.121 0.016 
 

0.124 0.021 

14 0.026 0.096 0.101 0.114 0.121 0.107 0.016 
 

0.108 0.021 

15 0.020 0.099 0.102 0.118 0.109 0.093 0.019 
 

0.104 0.019 

16 0.021 0.087 0.091 0.093 0.087 0.082 0.023 
 

0.088 0.022 

17 0.020 0.051 0.048 0.050 0.045 0.046 0.019 
 

0.048 0.019 

18 0.014 0.020 0.025 0.023 0.023 0.022 0.014 
 

0.023 0.014 

19 0.008 0.011 0.018 0.015 0.018 0.012 0.010 
 

0.015 0.009 

20 0.007 0.011 0.013 0.011 0.017 0.011 0.008 
 

0.013 0.008 

21 0.006 0.009 0.013 0.010 0.013 0.009 0.009 
 

0.011 0.008 

22 0.008 0.007 0.009 0.008 0.010 0.005 0.008 
 

0.008 0.008 

23 0.006 0.005 0.007 0.007 0.008 0.004 0.005 
 

0.006 0.005 

Annual kWh 174 1,063 1,021 1,026 1,037 958 156 
 

5,434 

  

 
Sun Mon Tue Wed Thu Fri Sat Total Annual 

Data 537 1,965 1,998 1,998 1,993 1,859 702 11,052 

Sim 25 174 1,063 1,021 1,026 1,037 958 156 5,434 

Error 67.6% 45.9% 48.9% 48.6% 48.0% 48.5% 77.8% 50.83% 



 

262 

SIMULATION SETTINGS: Parameter Set 26 

On DC 50% = 0.74, 50% = 0 

Off DC All = 0 

Int On DC 50% = 0.68, 50% = 0 

Int Off DC 50% = 0.81, 50% = 0 

R or L All = 1 

mu 0.04 

 

SIMULATION RESULTS: Parameter Set 26 

 
1 2 3 4 5 6 7 

   
Hour Sun Mon Tue Wed Thu Fri Sat 

 
Weekday Weekend Day 

0 0.004 0.004 0.006 0.003 0.005 0.004 0.004 
 

0.004 0.004 

1 0.003 0.005 0.004 0.003 0.004 0.003 0.004 
 

0.004 0.003 

2 0.002 0.005 0.005 0.004 0.004 0.003 0.003 
 

0.004 0.003 

3 0.003 0.005 0.004 0.004 0.004 0.004 0.003 
 

0.004 0.003 

4 0.003 0.004 0.004 0.004 0.004 0.004 0.003 
 

0.004 0.003 

5 0.003 0.009 0.010 0.012 0.011 0.008 0.002 
 

0.010 0.003 

6 0.004 0.060 0.066 0.065 0.060 0.052 0.004 
 

0.061 0.004 

7 0.007 0.161 0.167 0.156 0.149 0.146 0.004 
 

0.156 0.005 

8 0.010 0.184 0.183 0.182 0.180 0.161 0.008 
 

0.178 0.009 

9 0.013 0.185 0.173 0.175 0.174 0.164 0.009 
 

0.174 0.011 

10 0.016 0.174 0.169 0.161 0.167 0.156 0.014 
 

0.165 0.015 

11 0.013 0.102 0.100 0.088 0.094 0.087 0.018 
 

0.094 0.015 

12 0.018 0.096 0.094 0.080 0.077 0.082 0.015 
 

0.086 0.017 

13 0.023 0.123 0.121 0.113 0.109 0.116 0.015 
 

0.116 0.019 

14 0.021 0.106 0.099 0.102 0.104 0.101 0.017 
 

0.103 0.019 

15 0.016 0.106 0.098 0.110 0.099 0.093 0.018 
 

0.101 0.017 

16 0.018 0.099 0.084 0.088 0.086 0.078 0.025 
 

0.087 0.021 

17 0.016 0.057 0.048 0.044 0.043 0.041 0.019 
 

0.046 0.018 

18 0.012 0.019 0.024 0.019 0.020 0.024 0.015 
 

0.021 0.014 

19 0.008 0.012 0.017 0.011 0.016 0.014 0.013 
 

0.014 0.010 

20 0.007 0.011 0.013 0.009 0.014 0.009 0.012 
 

0.011 0.009 

21 0.007 0.010 0.012 0.011 0.013 0.008 0.011 
 

0.011 0.009 

22 0.006 0.007 0.010 0.009 0.012 0.006 0.009 
 

0.009 0.007 

23 0.004 0.008 0.005 0.009 0.007 0.004 0.006 
 

0.007 0.005 

Annual kWh 159 1,039 1,014 980 994 916 168 
 

5,271 

  

 
Sun Mon Tue Wed Thu Fri Sat Total Annual 

Data 537 1,965 1,998 1,998 1,993 1,859 702 11,052 

Sim 26 159 1,039 1,014 980 994 916 168 5,271 

Error 70.3% 47.2% 49.2% 51.0% 50.1% 50.7% 76.0% 52.31% 



 

263 

SIMULATION SETTINGS: Parameter Set 27 

On DC 50% = 0.64, 50% = 0 

Off DC All = 0 

Int On DC 50% = 0.76, 50% = 0 

Int Off DC 50% = 0.68, 50% = 0 

R or L All = 1 

mu 0.04 

 

SIMULATION RESULTS: Parameter Set 27 

 
1 2 3 4 5 6 7 

   
Hour Sun Mon Tue Wed Thu Fri Sat 

 
Weekday Weekend Day 

0 0.002 0.002 0.004 0.004 0.007 0.003 0.002 
 

0.004 0.002 

1 0.002 0.003 0.004 0.003 0.005 0.004 0.002 
 

0.004 0.002 

2 0.002 0.003 0.005 0.003 0.006 0.005 0.002 
 

0.004 0.002 

3 0.002 0.005 0.004 0.004 0.004 0.006 0.001 
 

0.005 0.002 

4 0.001 0.004 0.003 0.005 0.005 0.006 0.002 
 

0.005 0.002 

5 0.003 0.007 0.006 0.007 0.006 0.006 0.002 
 

0.006 0.002 

6 0.002 0.056 0.058 0.051 0.051 0.051 0.003 
 

0.053 0.002 

7 0.004 0.161 0.149 0.147 0.145 0.154 0.002 
 

0.151 0.003 

8 0.006 0.180 0.161 0.170 0.170 0.158 0.006 
 

0.168 0.006 

9 0.009 0.165 0.159 0.168 0.170 0.155 0.009 
 

0.163 0.009 

10 0.011 0.160 0.140 0.148 0.146 0.137 0.010 
 

0.146 0.010 

11 0.009 0.076 0.073 0.075 0.070 0.075 0.012 
 

0.074 0.011 

12 0.012 0.076 0.076 0.078 0.057 0.070 0.010 
 

0.071 0.011 

13 0.012 0.107 0.097 0.113 0.107 0.102 0.009 
 

0.105 0.011 

14 0.015 0.091 0.084 0.098 0.111 0.097 0.013 
 

0.096 0.014 

15 0.012 0.086 0.090 0.094 0.095 0.075 0.014 
 

0.088 0.013 

16 0.011 0.085 0.074 0.079 0.072 0.059 0.013 
 

0.074 0.012 

17 0.013 0.050 0.037 0.041 0.036 0.032 0.012 
 

0.039 0.012 

18 0.010 0.020 0.023 0.019 0.019 0.015 0.012 
 

0.019 0.011 

19 0.009 0.010 0.020 0.014 0.019 0.011 0.008 
 

0.015 0.009 

20 0.008 0.010 0.018 0.011 0.019 0.010 0.009 
 

0.013 0.008 

21 0.006 0.010 0.016 0.010 0.013 0.005 0.007 
 

0.011 0.006 

22 0.007 0.007 0.009 0.008 0.009 0.004 0.007 
 

0.008 0.007 

23 0.004 0.007 0.006 0.007 0.006 0.003 0.004 
 

0.006 0.004 

Annual kWh 115 923 882 907 919 831 113 
 

4,691 

  

 
Sun Mon Tue Wed Thu Fri Sat Total Annual 

Data 537 1,965 1,998 1,998 1,993 1,859 702 11,052 

Sim 27 115 923 882 907 919 831 113 4,691 

Error 78.5% 53.0% 55.9% 54.6% 53.9% 55.3% 83.9% 57.56% 
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SIMULATION SETTINGS: Parameter Set 28 

On DC 50% = 0.64, 50% = 0 

Off DC All = 0 

Int On DC 50% = 0.68, 50% = 0 

Int Off DC 50% = 0.76, 50% = 0 

R or L All = 1 

mu 0.04 

 

SIMULATION RESULTS: Parameter Set 28 

 
1 2 3 4 5 6 7 

   
Hour Sun Mon Tue Wed Thu Fri Sat 

 
Weekday Weekend Day 

0 0.003 0.002 0.005 0.004 0.004 0.003 0.002 
 

0.003 0.002 

1 0.002 0.003 0.004 0.003 0.004 0.003 0.002 
 

0.003 0.002 

2 0.002 0.003 0.005 0.005 0.003 0.002 0.002 
 

0.004 0.002 

3 0.001 0.003 0.005 0.005 0.004 0.002 0.001 
 

0.004 0.001 

4 0.002 0.003 0.004 0.006 0.003 0.002 0.002 
 

0.004 0.002 

5 0.003 0.005 0.006 0.008 0.007 0.003 0.002 
 

0.006 0.003 

6 0.003 0.052 0.046 0.048 0.046 0.049 0.003 
 

0.048 0.003 

7 0.004 0.142 0.129 0.136 0.133 0.140 0.003 
 

0.136 0.004 

8 0.006 0.157 0.141 0.143 0.146 0.136 0.006 
 

0.145 0.006 

9 0.007 0.153 0.139 0.141 0.144 0.138 0.010 
 

0.143 0.008 

10 0.008 0.147 0.126 0.124 0.125 0.126 0.010 
 

0.130 0.009 

11 0.006 0.084 0.073 0.071 0.065 0.076 0.011 
 

0.074 0.008 

12 0.009 0.080 0.073 0.065 0.065 0.071 0.008 
 

0.071 0.009 

13 0.012 0.102 0.099 0.090 0.096 0.094 0.011 
 

0.096 0.011 

14 0.014 0.079 0.079 0.080 0.085 0.079 0.013 
 

0.080 0.013 

15 0.014 0.077 0.079 0.085 0.082 0.066 0.013 
 

0.078 0.013 

16 0.013 0.081 0.070 0.073 0.072 0.060 0.013 
 

0.071 0.013 

17 0.014 0.048 0.035 0.035 0.035 0.035 0.012 
 

0.038 0.013 

18 0.009 0.017 0.020 0.018 0.018 0.024 0.009 
 

0.019 0.009 

19 0.006 0.011 0.014 0.009 0.013 0.011 0.007 
 

0.011 0.007 

20 0.006 0.007 0.011 0.010 0.011 0.007 0.009 
 

0.009 0.007 

21 0.004 0.006 0.008 0.009 0.011 0.008 0.010 
 

0.008 0.007 

22 0.004 0.006 0.007 0.006 0.008 0.005 0.011 
 

0.007 0.007 

23 0.003 0.006 0.005 0.006 0.004 0.002 0.005 
 

0.005 0.004 

Annual kWh 102 853 792 791 807 765 116 
 

4,227 

  

 
Sun Mon Tue Wed Thu Fri Sat Total Annual 

Data 537 1,965 1,998 1,998 1,993 1,859 702 11,052 

Sim 28 102 853 792 791 807 765 116 4,227 

Error 80.9% 56.6% 60.4% 60.4% 59.5% 58.8% 83.5% 61.76% 
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SIMULATION SETTINGS: Parameter Set 29 

On DC 50% = 0.64, 50% = 0 

Off DC All = 0 

Int On DC 50% = 0.68, 50% = 0 

Int Off DC 50% = 0.76, 50% = 0 

R or L All = 1 

mu 0.04 

 

SIMULATION RESULTS: Parameter Set 29 

 
1 2 3 4 5 6 7 

   
Hour Sun Mon Tue Wed Thu Fri Sat 

 
Weekday Weekend Day 

0 0.003 0.003 0.005 0.004 0.005 0.003 0.003 
 

0.004 0.003 

1 0.003 0.002 0.005 0.004 0.004 0.002 0.003 
 

0.003 0.003 

2 0.004 0.003 0.004 0.006 0.004 0.003 0.003 
 

0.004 0.003 

3 0.004 0.005 0.004 0.004 0.005 0.003 0.003 
 

0.004 0.003 

4 0.003 0.005 0.004 0.004 0.004 0.002 0.002 
 

0.004 0.003 

5 0.003 0.007 0.005 0.008 0.007 0.004 0.002 
 

0.006 0.003 

6 0.003 0.047 0.044 0.047 0.042 0.045 0.003 
 

0.045 0.003 

7 0.004 0.141 0.124 0.141 0.129 0.132 0.004 
 

0.133 0.004 

8 0.006 0.149 0.135 0.150 0.152 0.130 0.007 
 

0.143 0.007 

9 0.008 0.149 0.141 0.145 0.147 0.135 0.008 
 

0.143 0.008 

10 0.011 0.137 0.125 0.134 0.130 0.119 0.010 
 

0.129 0.011 

11 0.009 0.070 0.071 0.068 0.066 0.071 0.013 
 

0.069 0.011 

12 0.011 0.079 0.067 0.074 0.064 0.077 0.013 
 

0.072 0.012 

13 0.015 0.095 0.093 0.095 0.096 0.095 0.013 
 

0.095 0.014 

14 0.016 0.077 0.082 0.084 0.090 0.077 0.015 
 

0.082 0.016 

15 0.013 0.086 0.087 0.090 0.083 0.066 0.016 
 

0.082 0.015 

16 0.013 0.076 0.076 0.069 0.067 0.057 0.018 
 

0.069 0.015 

17 0.013 0.039 0.038 0.041 0.034 0.038 0.016 
 

0.038 0.015 

18 0.008 0.017 0.021 0.022 0.021 0.021 0.014 
 

0.020 0.011 

19 0.004 0.010 0.013 0.014 0.018 0.007 0.011 
 

0.012 0.008 

20 0.006 0.010 0.011 0.011 0.024 0.006 0.008 
 

0.012 0.007 

21 0.005 0.007 0.011 0.012 0.021 0.005 0.008 
 

0.011 0.007 

22 0.006 0.007 0.011 0.008 0.012 0.003 0.007 
 

0.008 0.006 

23 0.004 0.007 0.006 0.007 0.006 0.003 0.004 
 

0.006 0.004 

Annual kWh 118 821 793 832 841 738 135 
 

4,277 

  

 
Sun Mon Tue Wed Thu Fri Sat Total Annual 

Data 537 1,965 1,998 1,998 1,993 1,859 702 11,052 

Sim 29 118 821 793 832 841 738 135 4,277 

Error 78.0% 58.2% 60.3% 58.4% 57.8% 60.3% 80.8% 61.30% 
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SIMULATION SETTINGS: Parameter Set 30 

On DC 50% = 0.77, 50% = 0 

Off DC All = 0 

Int On DC 50% = 0.76, 50% = 0 

Int Off DC 50% = 0.81, 50% = 0 

R or L All = 1 

mu 0.04 

 

SIMULATION RESULTS: Parameter Set 30 

 
1 2 3 4 5 6 7 

   
Hour Sun Mon Tue Wed Thu Fri Sat 

 
Weekday Weekend Day 

0 0.002 0.003 0.005 0.003 0.007 0.005 0.002 
 

0.004 0.002 

1 0.003 0.003 0.002 0.003 0.006 0.004 0.002 
 

0.004 0.003 

2 0.003 0.003 0.003 0.004 0.006 0.005 0.001 
 

0.004 0.002 

3 0.003 0.004 0.003 0.004 0.005 0.007 0.001 
 

0.005 0.002 

4 0.002 0.003 0.004 0.004 0.004 0.006 0.001 
 

0.004 0.001 

5 0.001 0.009 0.008 0.008 0.009 0.010 0.001 
 

0.009 0.001 

6 0.002 0.069 0.069 0.064 0.068 0.059 0.002 
 

0.066 0.002 

7 0.003 0.176 0.174 0.165 0.168 0.163 0.003 
 

0.169 0.003 

8 0.006 0.188 0.175 0.176 0.180 0.166 0.006 
 

0.177 0.006 

9 0.006 0.185 0.170 0.168 0.171 0.167 0.007 
 

0.172 0.007 

10 0.012 0.179 0.159 0.153 0.162 0.164 0.011 
 

0.163 0.012 

11 0.010 0.097 0.092 0.087 0.081 0.091 0.013 
 

0.090 0.012 

12 0.015 0.101 0.089 0.084 0.078 0.092 0.012 
 

0.089 0.013 

13 0.018 0.133 0.111 0.121 0.119 0.130 0.011 
 

0.123 0.015 

14 0.019 0.098 0.104 0.104 0.113 0.110 0.013 
 

0.106 0.016 

15 0.019 0.103 0.104 0.114 0.100 0.085 0.015 
 

0.101 0.017 

16 0.017 0.096 0.084 0.089 0.086 0.071 0.014 
 

0.085 0.016 

17 0.015 0.054 0.042 0.045 0.043 0.040 0.011 
 

0.045 0.013 

18 0.012 0.017 0.021 0.019 0.020 0.021 0.010 
 

0.020 0.011 

19 0.008 0.010 0.015 0.012 0.018 0.011 0.008 
 

0.013 0.008 

20 0.008 0.010 0.011 0.010 0.022 0.007 0.006 
 

0.012 0.007 

21 0.006 0.008 0.010 0.011 0.017 0.006 0.005 
 

0.010 0.006 

22 0.006 0.005 0.007 0.008 0.012 0.004 0.005 
 

0.007 0.005 

23 0.004 0.005 0.004 0.008 0.006 0.003 0.003 
 

0.005 0.004 

Annual kWh 133 1,044 983 981 1,024 953 110 
 

5,230 

  

 
Sun Mon Tue Wed Thu Fri Sat Total Annual 

Data 537 1,965 1,998 1,998 1,993 1,859 702 11,052 

Sim 30 133 1,044 983 981 1,024 953 110 5,230 

Error 75.1% 46.9% 50.8% 50.9% 48.6% 48.7% 84.3% 52.68% 
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SIMULATION SETTINGS: Parameter Set 31 

On DC 50% = 0.98, 8% = 1, 42% = 0 

Off DC 8% = 0.5, 92% = 0 

Int On DC 50% = 0.92, 8% = 1, 42% = 0 

Int Off DC 50% = 0.99, 8% = 1, 42% = 0 

R or L All = 1 

mu 0.9 

 

SIMULATION RESULTS: Parameter Set 31 

 
1 2 3 4 5 6 7 

   
Hour Sun Mon Tue Wed Thu Fri Sat 

 
Weekday Weekend Day 

0 0.005 0.005 0.004 0.005 0.006 0.003 0.004 
 

0.005 0.004 

1 0.005 0.005 0.002 0.003 0.004 0.004 0.003 
 

0.004 0.004 

2 0.005 0.005 0.004 0.004 0.005 0.004 0.003 
 

0.004 0.004 

3 0.004 0.004 0.003 0.003 0.004 0.004 0.004 
 

0.004 0.004 

4 0.004 0.005 0.003 0.004 0.003 0.005 0.003 
 

0.004 0.004 

5 0.005 0.006 0.006 0.007 0.006 0.006 0.003 
 

0.006 0.004 

6 0.005 0.064 0.061 0.060 0.058 0.058 0.004 
 

0.060 0.004 

7 0.006 0.197 0.189 0.190 0.185 0.182 0.004 
 

0.189 0.005 

8 0.009 0.273 0.275 0.270 0.258 0.239 0.010 
 

0.263 0.010 

9 0.014 0.320 0.307 0.303 0.292 0.273 0.013 
 

0.299 0.014 

10 0.024 0.353 0.333 0.336 0.320 0.297 0.025 
 

0.328 0.024 

11 0.020 0.266 0.258 0.259 0.246 0.231 0.027 
 

0.252 0.023 

12 0.033 0.270 0.253 0.248 0.230 0.223 0.027 
 

0.245 0.030 

13 0.038 0.324 0.309 0.310 0.298 0.302 0.030 
 

0.308 0.034 

14 0.040 0.311 0.318 0.321 0.330 0.307 0.035 
 

0.317 0.038 

15 0.034 0.292 0.304 0.299 0.304 0.279 0.040 
 

0.296 0.037 

16 0.034 0.274 0.275 0.267 0.272 0.249 0.045 
 

0.267 0.040 

17 0.029 0.187 0.181 0.177 0.166 0.160 0.034 
 

0.174 0.032 

18 0.021 0.079 0.089 0.080 0.079 0.076 0.024 
 

0.081 0.023 

19 0.011 0.038 0.043 0.037 0.040 0.028 0.018 
 

0.037 0.015 

20 0.009 0.020 0.025 0.024 0.031 0.017 0.016 
 

0.023 0.012 

21 0.008 0.012 0.018 0.017 0.024 0.011 0.014 
 

0.016 0.011 

22 0.008 0.010 0.013 0.011 0.016 0.005 0.010 
 

0.011 0.009 

23 0.005 0.006 0.008 0.008 0.008 0.005 0.007 
 

0.007 0.006 

Annual kWh 252 2,229 2,198 2,172 2,173 1,988 270 
 

11,282 

  

 
Sun Mon Tue Wed Thu Fri Sat Total Annual 

Data 537 1,965 1,998 1,998 1,993 1,859 702 11,052 

Sim 31 252 2,229 2,198 2,172 2,173 1,988 270 11,282 

Error 53.0% 13.4% 10.0% 8.7% 9.0% 7.0% 61.6% 2.08% 
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SIMULATION SETTINGS: Parameter Set 32 

On DC 50% = 0.98, 50% = 0 

Off DC All = 0 

Int On DC 50% = 0.92, 50% = 0 

Int Off DC 50% = 0.99, 50% = 0 

R or L All = 1 

mu 0.9 

 

SIMULATION RESULTS: Parameter Set 32 

 
1 2 3 4 5 6 7 

   
Hour Sun Mon Tue Wed Thu Fri Sat 

 
Weekday Weekend Day 

0 0.005 0.005 0.006 0.005 0.004 0.003 0.004 
 

0.004 0.004 

1 0.004 0.005 0.004 0.004 0.003 0.004 0.003 
 

0.004 0.004 

2 0.005 0.006 0.004 0.004 0.004 0.003 0.003 
 

0.004 0.004 

3 0.005 0.004 0.004 0.004 0.003 0.003 0.003 
 

0.003 0.004 

4 0.005 0.004 0.003 0.004 0.004 0.003 0.004 
 

0.004 0.004 

5 0.004 0.007 0.007 0.008 0.007 0.006 0.004 
 

0.007 0.004 

6 0.005 0.067 0.069 0.066 0.063 0.065 0.005 
 

0.066 0.005 

7 0.008 0.190 0.185 0.193 0.183 0.187 0.005 
 

0.188 0.006 

8 0.012 0.240 0.229 0.235 0.230 0.214 0.011 
 

0.229 0.011 

9 0.016 0.259 0.246 0.257 0.242 0.238 0.016 
 

0.249 0.016 

10 0.028 0.286 0.273 0.267 0.262 0.265 0.021 
 

0.271 0.025 

11 0.022 0.235 0.226 0.220 0.210 0.215 0.025 
 

0.221 0.024 

12 0.036 0.240 0.227 0.226 0.207 0.209 0.026 
 

0.222 0.031 

13 0.042 0.282 0.263 0.263 0.259 0.258 0.028 
 

0.265 0.035 

14 0.042 0.246 0.255 0.252 0.263 0.248 0.031 
 

0.253 0.036 

15 0.035 0.235 0.245 0.250 0.250 0.229 0.034 
 

0.242 0.035 

16 0.031 0.229 0.229 0.220 0.228 0.195 0.041 
 

0.220 0.036 

17 0.027 0.143 0.140 0.130 0.128 0.120 0.032 
 

0.132 0.030 

18 0.019 0.051 0.063 0.048 0.052 0.054 0.022 
 

0.054 0.021 

19 0.014 0.025 0.031 0.025 0.031 0.021 0.018 
 

0.027 0.016 

20 0.009 0.015 0.020 0.019 0.023 0.013 0.015 
 

0.018 0.012 

21 0.007 0.010 0.015 0.014 0.017 0.007 0.017 
 

0.013 0.012 

22 0.006 0.008 0.014 0.009 0.012 0.005 0.013 
 

0.010 0.009 

23 0.005 0.008 0.007 0.008 0.008 0.005 0.010 
 

0.007 0.007 

Annual kWh 263 1,875 1,850 1,827 1,838 1,722 262 
 

9,638 

  

 
Sun Mon Tue Wed Thu Fri Sat Total Annual 

Data 537 1,965 1,998 1,998 1,993 1,859 702 11,052 

Sim 32 263 1,875 1,850 1,827 1,838 1,722 262 9,638 

Error 50.9% 4.6% 7.4% 8.6% 7.8% 7.4% 62.7% 12.79% 
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SIMULATION SETTINGS: Parameter Set 33 

On DC 50% = 0.77, 50% = 0 

Off DC All = 0 

Int On DC 50% = 0.72, 50% = 0 

Int Off DC 50% = 0.79, 50% = 0 

R or L All = 1 

mu 0.04 

 

SIMULATION RESULTS: Parameter Set 33 

 
1 2 3 4 5 6 7 

   

Hour Sun Mon Tue Wed Thu Fri Sat 
 

Weekday 
Weekend 

Day 

0 0.005 0.003 0.004 0.004 0.006 0.005 0.003 
 

0.005 0.004 

1 0.004 0.004 0.003 0.003 0.005 0.004 0.003 
 

0.004 0.004 

2 0.003 0.005 0.004 0.004 0.005 0.005 0.003 
 

0.004 0.003 

3 0.003 0.004 0.003 0.004 0.005 0.005 0.002 
 

0.004 0.003 

4 0.003 0.004 0.003 0.004 0.004 0.004 0.003 
 

0.004 0.003 

5 0.003 0.007 0.006 0.007 0.007 0.005 0.004 
 

0.006 0.003 

6 0.004 0.050 0.048 0.048 0.049 0.045 0.004 
 

0.048 0.004 

7 0.006 0.152 0.149 0.153 0.147 0.146 0.006 
 

0.149 0.006 

8 0.008 0.183 0.175 0.177 0.175 0.160 0.010 
 

0.174 0.009 

9 0.010 0.179 0.174 0.173 0.175 0.166 0.016 
 

0.173 0.013 

10 0.017 0.174 0.152 0.154 0.158 0.148 0.022 
 

0.157 0.019 

11 0.013 0.101 0.088 0.079 0.083 0.088 0.022 
 

0.088 0.018 

12 0.018 0.096 0.090 0.075 0.071 0.080 0.016 
 

0.082 0.017 

13 0.022 0.115 0.105 0.103 0.116 0.111 0.018 
 

0.110 0.020 

14 0.021 0.092 0.094 0.086 0.111 0.102 0.021 
 

0.097 0.021 

15 0.018 0.096 0.095 0.097 0.094 0.087 0.020 
 

0.094 0.019 

16 0.018 0.090 0.085 0.081 0.084 0.079 0.024 
 

0.084 0.021 

17 0.017 0.050 0.047 0.045 0.045 0.047 0.017 
 

0.047 0.017 

18 0.014 0.019 0.027 0.020 0.020 0.025 0.012 
 

0.022 0.013 

19 0.010 0.013 0.021 0.013 0.019 0.011 0.012 
 

0.015 0.011 

20 0.009 0.012 0.014 0.011 0.019 0.010 0.015 
 

0.013 0.012 

21 0.006 0.008 0.013 0.013 0.016 0.007 0.015 
 

0.012 0.010 

22 0.007 0.007 0.013 0.008 0.012 0.004 0.011 
 

0.009 0.009 

23 0.004 0.006 0.008 0.008 0.008 0.004 0.007 
 

0.007 0.006 

Annual kWh 161 985 951 918 979 902 191 
 

5,087 

  

 
Sun Mon Tue Wed Thu Fri Sat Total Annual 

Data 537 1,965 1,998 1,998 1,993 1,859 702 11,052 

Sim 33 161 985 951 918 979 902 191 5,087 

Error 69.9% 49.9% 52.4% 54.0% 50.9% 51.5% 72.8% 53.98% 
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APPENDIX F: REVISED VALIDATION STUDY RESULTS 

SIMULATION SETTINGS: Parameter Set M1 

On DC 50% = 0.64, 50% = 0 

Off DC All = 0 

Int On DC 50% = 0.68, 50% = 0 

Int Off DC 50% = 0.76, 50% = 0 

R or L All = 1 

mu 0.04 

alpha -1 

lambda 4 

delta 0.7 

nu 3 

 

SIMULATION RESULTS: Parameter Set M1 

 
1 2 3 4 5 6 7 

   

Hour Sun Mon Tue Wed Thu Fri Sat 
 

Weekday 
Weekend 

Day 

0 0.004 0.003 0.006 0.004 0.006 0.003 0.004  0.004 0.004 

1 0.004 0.003 0.003 0.003 0.005 0.002 0.003  0.003 0.003 

2 0.004 0.003 0.003 0.004 0.006 0.004 0.002  0.004 0.003 

3 0.005 0.004 0.003 0.004 0.005 0.004 0.002  0.004 0.003 

4 0.004 0.004 0.003 0.004 0.004 0.003 0.002  0.004 0.003 

5 0.005 0.007 0.007 0.008 0.008 0.006 0.002  0.007 0.004 

6 0.004 0.058 0.050 0.053 0.051 0.052 0.003  0.053 0.004 

7 0.005 0.165 0.149 0.158 0.157 0.148 0.004  0.155 0.005 

8 0.007 0.168 0.165 0.155 0.175 0.151 0.008  0.163 0.008 

9 0.011 0.164 0.162 0.155 0.169 0.153 0.010  0.161 0.011 

10 0.016 0.149 0.152 0.145 0.149 0.141 0.011  0.147 0.014 

11 0.012 0.082 0.077 0.073 0.081 0.077 0.014  0.078 0.013 

12 0.024 0.095 0.080 0.077 0.069 0.074 0.011  0.079 0.018 

13 0.020 0.122 0.108 0.104 0.098 0.099 0.014  0.106 0.017 

14 0.022 0.090 0.094 0.084 0.095 0.081 0.017  0.089 0.019 

15 0.018 0.090 0.087 0.086 0.085 0.071 0.016  0.084 0.017 

16 0.016 0.082 0.072 0.074 0.072 0.066 0.020  0.073 0.018 

17 0.016 0.046 0.043 0.047 0.038 0.034 0.017  0.042 0.016 

18 0.010 0.017 0.026 0.022 0.019 0.024 0.014  0.022 0.012 

19 0.008 0.012 0.018 0.012 0.021 0.011 0.015  0.015 0.011 

20 0.008 0.013 0.013 0.011 0.020 0.012 0.013  0.014 0.010 

21 0.006 0.009 0.014 0.012 0.015 0.006 0.013  0.011 0.009 

22 0.006 0.008 0.013 0.009 0.009 0.005 0.009  0.009 0.007 

23 0.005 0.007 0.007 0.007 0.006 0.005 0.006  0.007 0.006 

Annual kWh 162 937 906 878 913 825 153 
 

4,774 
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Sun Mon Tue Wed Thu Fri Sat Total Annual 

Data 537 1,965 1,998 1,998 1,993 1,859 702 11,052 

M1 278 1,715 1,590 1,692 1,745 1,665 249 8,935 

Error 48.3% 12.7% 20.4% 15.3% 12.4% 10.4% 64.5% 19.16% 
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SIMULATION SETTINGS: Parameter Set M2 

On DC 50% = 0.64, 50% = 0 

Off DC All = 0 

Int On DC 50% = 0.68, 50% = 0 

Int Off DC 50% = 0.76, 50% = 0 

R or L All = 1 

mu 0.04 

alpha -1 

lambda 5 

delta 1 

nu 10 

 

SIMULATION RESULTS: Parameter Set M2 

 
1 2 3 4 5 6 7 

   

Hour Sun Mon Tue Wed Thu Fri Sat 
 

Weekday 
Weekend 

Day 

0 0.014 0.009 0.035 0.032 0.031 0.024 0.011  0.026 0.013 

1 0.012 0.013 0.025 0.028 0.025 0.018 0.008  0.022 0.010 

2 0.010 0.021 0.024 0.029 0.022 0.018 0.006  0.023 0.008 

3 0.010 0.018 0.025 0.026 0.019 0.019 0.005  0.022 0.008 

4 0.008 0.024 0.026 0.031 0.026 0.021 0.008  0.026 0.008 

5 0.002 0.038 0.044 0.041 0.036 0.039 0.002  0.039 0.002 

6 0.003 0.118 0.130 0.115 0.109 0.122 0.003  0.119 0.003 

7 0.005 0.191 0.176 0.171 0.178 0.183 0.004  0.180 0.004 

8 0.006 0.170 0.149 0.153 0.165 0.148 0.006  0.157 0.006 

9 0.006 0.163 0.140 0.143 0.153 0.149 0.007  0.150 0.006 

10 0.008 0.142 0.125 0.121 0.124 0.125 0.010  0.127 0.009 

11 0.009 0.114 0.101 0.103 0.101 0.101 0.008  0.104 0.008 

12 0.008 0.068 0.067 0.067 0.065 0.064 0.008  0.066 0.008 

13 0.009 0.073 0.066 0.072 0.053 0.059 0.006  0.064 0.008 

14 0.011 0.087 0.081 0.086 0.086 0.084 0.009  0.085 0.010 

15 0.014 0.093 0.086 0.112 0.112 0.096 0.010  0.100 0.012 

16 0.014 0.079 0.077 0.084 0.099 0.087 0.010  0.085 0.012 

17 0.013 0.097 0.110 0.125 0.114 0.092 0.013  0.108 0.013 

18 0.015 0.104 0.108 0.099 0.107 0.088 0.014  0.101 0.014 

19 0.013 0.093 0.091 0.086 0.082 0.079 0.014  0.086 0.014 

20 0.013 0.062 0.055 0.053 0.049 0.055 0.016  0.055 0.014 

21 0.010 0.031 0.031 0.029 0.026 0.032 0.012  0.030 0.011 

22 0.008 0.019 0.021 0.015 0.019 0.013 0.009  0.017 0.008 

23 0.007 0.025 0.026 0.019 0.021 0.012 0.011  0.021 0.009 

Annual kWh 153 1,239 1,218 1,232 1,220 1,157 141 
 

6,362 
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Sun Mon Tue Wed Thu Fri Sat Total Annual 

Data 537 1,965 1,998 1,998 1,993 1,859 702 11,052 

M2 153 1,239 1,218 1,232 1,220 1,157 141 6,362 

Error 71.5% 37.0% 39.0% 38.3% 38.8% 37.7% 79.9% 42.44% 
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SIMULATION SETTINGS: Parameter Set M3 

On DC 50% = 0.64, 50% = 0 

Off DC All = 0 

Int On DC 50% = 0.68, 50% = 0 

Int Off DC 50% = 0.76, 50% = 0 

R or L All = 1 

mu 0.04 

alpha 0 

lambda 5 

delta 1 

nu 20 

 

SIMULATION RESULTS: Parameter Set M3 

 
1 2 3 4 5 6 7 

   

Hour Sun Mon Tue Wed Thu Fri Sat 
 

Weekday 
Weekend 

Day 

0 0.033 0.038 0.065 0.039 0.067 0.040 0.025  0.050 0.029 

1 0.026 0.040 0.038 0.027 0.048 0.030 0.024  0.037 0.025 

2 0.026 0.043 0.042 0.029 0.045 0.030 0.021  0.038 0.024 

3 0.025 0.051 0.042 0.026 0.041 0.034 0.016  0.039 0.021 

4 0.022 0.048 0.036 0.026 0.042 0.034 0.016  0.037 0.019 

5 0.017 0.063 0.052 0.053 0.057 0.047 0.016  0.054 0.017 

6 0.001 0.040 0.039 0.045 0.043 0.042 0.003  0.042 0.002 

7 0.003 0.120 0.108 0.117 0.115 0.111 0.005  0.114 0.004 

8 0.005 0.173 0.143 0.148 0.161 0.150 0.007  0.155 0.006 

9 0.007 0.144 0.120 0.124 0.129 0.121 0.006  0.128 0.006 

10 0.007 0.155 0.136 0.134 0.135 0.128 0.009  0.137 0.008 

11 0.013 0.130 0.114 0.114 0.108 0.103 0.010  0.114 0.011 

12 0.012 0.107 0.092 0.103 0.089 0.086 0.010  0.095 0.011 

13 0.010 0.068 0.060 0.065 0.055 0.054 0.012  0.060 0.011 

14 0.013 0.073 0.060 0.060 0.051 0.056 0.013  0.060 0.013 

15 0.016 0.091 0.086 0.079 0.082 0.091 0.014  0.086 0.015 

16 0.017 0.101 0.096 0.099 0.111 0.107 0.016  0.103 0.017 

17 0.018 0.090 0.095 0.093 0.107 0.104 0.017  0.098 0.018 

18 0.019 0.113 0.118 0.127 0.119 0.114 0.019  0.118 0.019 

19 0.019 0.116 0.114 0.111 0.114 0.111 0.022  0.113 0.020 

20 0.020 0.114 0.108 0.101 0.098 0.108 0.024  0.106 0.022 

21 0.019 0.076 0.074 0.068 0.064 0.076 0.024  0.072 0.022 

22 0.014 0.034 0.042 0.035 0.032 0.043 0.018  0.037 0.016 

23 0.009 0.038 0.037 0.040 0.035 0.022 0.022  0.034 0.015 

Annual kWh 249 1,384 1,282 1,247 1,303 1,232 247 
 

6,944 

  



 

275 

 

 
Sun Mon Tue Wed Thu Fri Sat Total Annual 

Data 537 1,965 1,998 1,998 1,993 1,859 702 11,052 

M3 249 1,384 1,282 1,247 1,303 1,232 247 6,944 

Error 53.7% 29.6% 35.8% 37.6% 34.6% 33.7% 64.8% 37.17% 

 

 

  



 

276 

SIMULATION SETTINGS: Parameter Set M4 

On DC 50% = 0.64, 50% = 0 

Off DC All = 0 

Int On DC 50% = 0.68, 50% = 0 

Int Off DC 50% = 0.9, 50% = 0 

R or L All = 1 

mu 0.04 

alpha 0 

lambda 5 

delta 1 

nu 20 

 

SIMULATION RESULTS: Parameter Set M4 

 
1 2 3 4 5 6 7 

   

Hour Sun Mon Tue Wed Thu Fri Sat 
 

Weekday 
Weekend 

Day 

0 0.042 0.039 0.080 0.054 0.077 0.061 0.039  0.062 0.041 

1 0.039 0.045 0.050 0.037 0.055 0.045 0.039  0.046 0.039 

2 0.038 0.055 0.052 0.041 0.049 0.046 0.036  0.049 0.037 

3 0.036 0.056 0.051 0.039 0.043 0.050 0.027  0.048 0.032 

4 0.033 0.051 0.047 0.038 0.041 0.047 0.027  0.045 0.030 

5 0.025 0.049 0.048 0.052 0.038 0.048 0.022  0.047 0.024 

6 0.002 0.025 0.023 0.024 0.022 0.024 0.003  0.024 0.003 

7 0.004 0.105 0.103 0.097 0.097 0.101 0.005  0.100 0.004 

8 0.005 0.175 0.170 0.163 0.164 0.158 0.006  0.166 0.005 

9 0.009 0.179 0.176 0.171 0.170 0.151 0.009  0.169 0.009 

10 0.009 0.192 0.185 0.183 0.182 0.168 0.011  0.182 0.010 

11 0.014 0.176 0.167 0.167 0.166 0.155 0.015  0.166 0.015 

12 0.014 0.157 0.152 0.157 0.148 0.144 0.015  0.152 0.014 

13 0.013 0.111 0.110 0.105 0.098 0.098 0.019  0.104 0.016 

14 0.019 0.107 0.100 0.091 0.077 0.088 0.016  0.093 0.018 

15 0.023 0.133 0.125 0.119 0.112 0.123 0.018  0.122 0.020 

16 0.024 0.149 0.140 0.150 0.151 0.141 0.017  0.146 0.021 

17 0.026 0.142 0.134 0.144 0.160 0.139 0.022  0.144 0.024 

18 0.026 0.157 0.156 0.159 0.161 0.142 0.026  0.155 0.026 

19 0.024 0.153 0.155 0.153 0.157 0.140 0.030  0.152 0.027 

20 0.025 0.148 0.151 0.138 0.144 0.128 0.033  0.142 0.029 

21 0.024 0.105 0.108 0.098 0.097 0.092 0.030  0.100 0.027 

22 0.019 0.052 0.065 0.055 0.055 0.055 0.022  0.056 0.021 

23 0.011 0.051 0.053 0.055 0.051 0.032 0.027  0.048 0.019 

Annual kWh 338 1,749 1,742 1,666 1,685 1,591 344 
 

9,116 
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Sun Mon Tue Wed Thu Fri Sat Total Annual 

Data 537 1,965 1,998 1,998 1,993 1,859 702 11,052 

M4 338 1,749 1,742 1,666 1,685 1,591 344 9,116 

Error 36.9% 11.0% 12.8% 16.6% 15.5% 14.4% 51.0% 17.52% 
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SIMULATION SETTINGS: Parameter Set M5 

On DC 50% = 0.64, 50% = 0 

Off DC All = 0 

Int On DC 50% = 0.68, 50% = 0 

Int Off DC 50% = 0.9, 50% = 0 

R or L All = 1 

mu 0.04 

alpha 0 

lambda 6 

delta 1 

nu 20 

 

SIMULATION RESULTS: Parameter Set M5 

 
1 2 3 4 5 6 7 

   

Hour Sun Mon Tue Wed Thu Fri Sat 
 

Weekday 
Weekend 

Day 

0 0.029 0.030 0.046 0.051 0.081 0.049 0.021  0.051 0.025 

1 0.026 0.039 0.028 0.039 0.064 0.041 0.019  0.042 0.022 

2 0.024 0.049 0.029 0.039 0.061 0.041 0.019  0.044 0.022 

3 0.027 0.044 0.029 0.038 0.060 0.044 0.015  0.043 0.021 

4 0.024 0.049 0.023 0.035 0.060 0.042 0.017  0.042 0.021 

5 0.017 0.061 0.036 0.050 0.057 0.046 0.015  0.050 0.016 

6 0.002 0.035 0.033 0.033 0.032 0.036 0.003  0.034 0.003 

7 0.002 0.106 0.101 0.102 0.094 0.102 0.004  0.101 0.003 

8 0.003 0.173 0.157 0.158 0.152 0.161 0.005  0.160 0.004 

9 0.006 0.178 0.164 0.166 0.170 0.174 0.009  0.170 0.008 

10 0.008 0.175 0.150 0.158 0.151 0.158 0.009  0.158 0.008 

11 0.011 0.166 0.151 0.151 0.149 0.141 0.009  0.152 0.010 

12 0.015 0.177 0.149 0.163 0.161 0.154 0.011  0.161 0.013 

13 0.012 0.122 0.111 0.120 0.108 0.111 0.013  0.114 0.012 

14 0.014 0.097 0.089 0.106 0.084 0.086 0.013  0.092 0.013 

15 0.017 0.117 0.106 0.112 0.091 0.105 0.016  0.106 0.016 

16 0.019 0.140 0.122 0.142 0.126 0.146 0.016  0.135 0.017 

17 0.021 0.145 0.141 0.156 0.165 0.159 0.017  0.153 0.019 

18 0.024 0.122 0.138 0.141 0.153 0.152 0.020  0.141 0.022 

19 0.023 0.137 0.151 0.157 0.161 0.150 0.023  0.151 0.023 

20 0.026 0.149 0.152 0.146 0.166 0.149 0.027  0.152 0.026 

21 0.026 0.128 0.128 0.128 0.130 0.123 0.026  0.127 0.026 

22 0.023 0.080 0.085 0.078 0.079 0.077 0.022  0.080 0.022 

23 0.014 0.044 0.056 0.058 0.052 0.042 0.024  0.050 0.019 

Annual kWh 278 1,715 1,590 1,692 1,745 1,665 249 
 

8,935 
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Sun Mon Tue Wed Thu Fri Sat Total Annual 

Data 537 1,965 1,998 1,998 1,993 1,859 702 11,052 

M5 278 1,715 1,590 1,692 1,745 1,665 249 8,935 

Error 48.3% 12.7% 20.4% 15.3% 12.4% 10.4% 64.5% 19.16% 
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APPENDIX G: DETERMINISTIC SCHEDULE ANALYSIS RESULTS 

LPD 0.87                   

                      

  AS1 AS2 AS3 AS4 AS5 AS6 ACM DOE-2 Hours Data 

Annual Energy, [kWh] 15,148 2,492 3,646 8,666 3,372 8,789 40,514 37,965 30,350 33,716 

Peak Demand, [kW] 9.57 3.05 3.31 5.66 3.57 6.79 10.94 11.59 12.92 6.83 

 

LPD 1.1                 

                    

  AS1 AS2 AS3 AS4 AS5 AS6 ACM DOE-2 Hours 

Annual Energy, [kWh] 19,153 3,151 4,611 10,957 4,263 11,112 51,224 48,002 38,242 

Peak Demand, [kW] 12.10 3.85 4.18 7.15 4.51 8.58 13.84 14.65 16.28 

 

WEEKDAY Relative Intensity Profiles 

Hour of Day AS1 AS2 AS3 AS4 AS5 AS6 ACM ACM 
Building 

Hours Submetered 

0 0.6% 0.2% 0.2% 0.4% 0.2% 0.4% 10.0% 5.0% 5.0% 22.8% 

1 0.5% 0.3% 0.2% 0.4% 0.2% 0.4% 5.0% 5.0% 5.0% 17.4% 

2 0.6% 0.2% 0.3% 0.4% 0.2% 0.4% 5.0% 5.0% 5.0% 15.4% 

3 0.5% 0.2% 0.2% 0.4% 0.3% 0.5% 5.0% 5.0% 5.0% 14.7% 

4 0.6% 0.3% 0.2% 0.4% 0.2% 0.5% 5.0% 5.0% 5.0% 14.5% 

5 0.8% 0.5% 0.5% 0.7% 0.5% 1.0% 10.0% 5.0% 5.0% 14.9% 

6 5.4% 3.3% 3.8% 5.9% 3.8% 8.1% 20.0% 10.0% 5.0% 19.2% 

7 22.7% 8.9% 10.0% 17.5% 10.3% 24.2% 40.0% 10.0% 5.0% 34.9% 

8 34.3% 7.9% 11.5% 21.7% 10.9% 28.1% 70.0% 30.0% 5.0% 46.9% 

9 39.7% 7.5% 11.2% 24.0% 10.3% 27.3% 80.0% 90.0% 100.0% 50.6% 

10 45.2% 6.6% 10.3% 26.0% 9.3% 27.4% 85.0% 90.0% 100.0% 50.0% 

11 35.9% 3.5% 6.5% 19.1% 5.0% 17.8% 85.0% 90.0% 100.0% 50.5% 

12 32.3% 4.1% 7.0% 17.9% 5.8% 16.3% 85.0% 90.0% 100.0% 47.8% 

13 41.5% 5.3% 9.0% 22.8% 7.8% 20.9% 85.0% 90.0% 100.0% 48.5% 

14 42.9% 4.1% 7.7% 22.3% 6.5% 19.3% 85.0% 90.0% 100.0% 49.4% 

15 40.7% 4.5% 7.2% 21.5% 6.4% 18.5% 85.0% 90.0% 100.0% 49.7% 

16 36.4% 4.3% 6.9% 19.3% 6.1% 15.7% 85.0% 90.0% 100.0% 50.0% 

17 23.1% 2.7% 4.0% 11.6% 3.9% 8.5% 85.0% 90.0% 100.0% 47.1% 

18 11.1% 1.5% 2.0% 5.3% 2.1% 3.8% 80.0% 50.0% 5.0% 44.0% 

19 5.6% 1.0% 1.2% 2.7% 1.6% 2.4% 35.0% 30.0% 5.0% 41.5% 

20 3.8% 0.9% 1.0% 1.9% 1.3% 1.9% 10.0% 30.0% 5.0% 44.9% 

21 2.6% 0.7% 0.8% 1.4% 0.9% 1.5% 10.0% 20.0% 5.0% 43.0% 

22 1.6% 0.5% 0.6% 1.0% 0.6% 1.1% 10.0% 20.0% 5.0% 37.1% 

23 1.0% 0.4% 0.4% 0.6% 0.4% 0.8% 10.0% 10.0% 5.0% 33.0% 
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Saturday Relative Intensity Use Profiles 

Hour of Day AS1 AS2 AS3 AS4 AS5 AS6 ACM ACM Building Hours Submetered 

0 0.3% 0.1% 0.2% 0.3% 0.2% 0.5% 10.0% 5.0% 0.0% 26.6% 

1 0.3% 0.1% 0.1% 0.2% 0.1% 0.5% 5.0% 5.0% 0.0% 19.7% 

2 0.3% 0.2% 0.2% 0.2% 0.1% 0.4% 5.0% 5.0% 0.0% 16.9% 

3 0.3% 0.2% 0.2% 0.2% 0.1% 0.4% 5.0% 5.0% 0.0% 16.8% 

4 0.3% 0.2% 0.2% 0.2% 0.1% 0.4% 5.0% 5.0% 0.0% 16.5% 

5 0.3% 0.1% 0.3% 0.2% 0.1% 0.4% 5.0% 5.0% 0.0% 15.8% 

6 0.3% 0.2% 0.2% 0.3% 0.3% 0.6% 10.0% 5.0% 0.0% 12.5% 

7 0.6% 0.3% 0.3% 0.3% 0.2% 0.5% 15.0% 10.0% 0.0% 9.7% 

8 1.3% 0.4% 0.5% 0.8% 0.4% 1.6% 25.0% 10.0% 0.0% 7.8% 

9 1.9% 0.5% 0.7% 1.0% 0.6% 1.6% 25.0% 30.0% 0.0% 10.7% 

10 2.5% 0.7% 0.8% 1.5% 0.7% 1.8% 25.0% 30.0% 0.0% 11.4% 

11 3.2% 0.9% 0.8% 2.0% 1.0% 2.3% 25.0% 30.0% 0.0% 11.3% 

12 4.0% 0.6% 0.9% 2.1% 1.0% 2.4% 25.0% 30.0% 0.0% 11.8% 

13 4.0% 0.7% 1.0% 2.2% 0.9% 2.6% 25.0% 15.0% 0.0% 10.8% 

14 4.7% 0.8% 1.1% 2.7% 0.9% 3.3% 25.0% 15.0% 0.0% 10.3% 

15 5.9% 0.8% 1.2% 3.4% 1.3% 3.1% 20.0% 15.0% 0.0% 9.1% 

16 6.5% 1.0% 1.3% 3.6% 1.1% 3.6% 20.0% 15.0% 0.0% 10.0% 

17 5.6% 0.9% 1.0% 3.0% 1.3% 2.8% 20.0% 15.0% 0.0% 10.6% 

18 4.3% 0.8% 0.7% 2.1% 0.9% 2.3% 15.0% 5.0% 0.0% 11.6% 

19 2.8% 0.7% 0.5% 1.6% 0.6% 1.6% 10.0% 5.0% 0.0% 12.2% 

20 2.0% 0.7% 0.7% 1.5% 0.6% 1.7% 10.0% 5.0% 0.0% 14.7% 

21 1.8% 0.5% 0.6% 1.0% 0.7% 1.7% 10.0% 5.0% 0.0% 16.8% 

22 1.4% 0.4% 0.4% 0.7% 0.5% 1.1% 10.0% 5.0% 0.0% 15.3% 

23 0.8% 0.3% 0.3% 0.4% 0.5% 1.0% 10.0% 5.0% 0.0% 14.5% 
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Sunday Relative Intensity Use Profiles 

Hour of Day AS1 AS2 AS3 AS4 AS5 AS6 ACM ACM Building Hours Submetered 

0 0.4% 0.2% 0.2% 0.4% 0.2% 0.6% 5.0% 5.0% 0.0% 14.4% 

1 0.4% 0.2% 0.2% 0.3% 0.2% 0.6% 5.0% 5.0% 0.0% 14.4% 

2 0.4% 0.1% 0.1% 0.3% 0.1% 0.6% 5.0% 5.0% 0.0% 14.2% 

3 0.4% 0.2% 0.2% 0.3% 0.2% 0.4% 5.0% 5.0% 0.0% 13.8% 

4 0.4% 0.1% 0.2% 0.4% 0.2% 0.5% 5.0% 5.0% 0.0% 13.7% 

5 0.5% 0.2% 0.2% 0.5% 0.2% 0.5% 5.0% 5.0% 0.0% 13.1% 

6 0.5% 0.2% 0.2% 0.4% 0.1% 0.5% 10.0% 5.0% 0.0% 10.4% 

7 0.9% 0.3% 0.3% 0.6% 0.2% 0.8% 10.0% 5.0% 0.0% 7.1% 

8 1.2% 0.4% 0.5% 0.7% 0.3% 1.1% 15.0% 5.0% 0.0% 4.8% 

9 1.6% 0.5% 0.6% 1.0% 0.6% 1.7% 15.0% 5.0% 0.0% 5.4% 

10 3.1% 0.7% 0.9% 1.8% 0.7% 2.5% 15.0% 5.0% 0.0% 6.4% 

11 2.9% 0.6% 0.7% 1.7% 0.8% 1.7% 15.0% 5.0% 0.0% 7.4% 

12 3.9% 0.9% 1.1% 2.6% 1.0% 3.1% 15.0% 5.0% 0.0% 8.1% 

13 5.3% 0.9% 1.2% 3.5% 1.1% 3.7% 15.0% 5.0% 0.0% 8.8% 

14 5.7% 0.8% 1.3% 3.6% 1.2% 3.4% 15.0% 5.0% 0.0% 8.2% 

15 5.7% 0.7% 1.2% 3.4% 1.4% 2.9% 15.0% 5.0% 0.0% 7.9% 

16 4.9% 1.1% 0.9% 2.7% 1.4% 2.6% 15.0% 5.0% 0.0% 7.4% 

17 4.0% 1.0% 1.0% 2.0% 1.2% 2.5% 15.0% 5.0% 0.0% 8.7% 

18 2.9% 0.8% 0.7% 1.5% 0.8% 2.0% 10.0% 5.0% 0.0% 10.4% 

19 2.0% 0.7% 0.6% 1.1% 0.6% 1.4% 10.0% 5.0% 0.0% 11.8% 

20 1.5% 0.6% 0.5% 0.9% 0.5% 0.8% 10.0% 5.0% 0.0% 13.7% 

21 1.1% 0.4% 0.4% 1.1% 0.4% 0.8% 5.0% 5.0% 0.0% 16.1% 

22 1.1% 0.4% 0.3% 0.8% 0.4% 0.8% 5.0% 5.0% 0.0% 16.0% 

23 0.8% 0.2% 0.2% 0.6% 0.3% 0.6% 5.0% 5.0% 0.0% 14.5% 
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