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Caldwell, Raymond Jason (Ph.D., Civil, Environmental, and Architectural Engineering) 

An Integrated Framework for Modeling and Mitigating Water Temperature Impacts in the 

Sacramento River 

Thesis directed by Professor Balaji Rajagopalan 

Increasing demands on the limited and variable water supply across the West can result in 

insufficient streamflow to sustain healthy fish habitat. In addition, construction of dams and 

diversions along rivers for the purpose of storing and distributing the limited supply of water can 

further deteriorate natural flow regimes and, often, obstruct important migratory pathways for 

cold water fish reproduction and development. The thermal impacts on the ecology of river 

ecosystems have been well documented, yet there is no comprehensive modeling framework in 

place for skillfully modeling climate-related impacts. In regulated systems, such as the 

Sacramento River system, these impacts are an interaction of volume and temperature of water 

release from the reservoir and the subsequent exchange with the environment downstream.  

 We develop an integrated framework for modeling and mitigating water temperature 

impacts and demonstrate it on the Sacramento River system. The approach has four broad 

components that can be coupled to produce decision tools towards efficient management of 

water resources for stream temperature mitigation: (i) a suite of statistical models for modeling 

stream temperature attributes using hydrology and climate variables of critical importance to fish 

habitat; (ii) a reservoir thermal model for modeling the thermal structure and, consequently, the 

water release temperature, (iii) a stochastic weather generator to simulate weather sequences 

consistent with long-range (e.g., seasonal) outlooks; and, (iv) a set of decision rules (i.e., rubric) 

for reservoir water releases in response to outputs from the above components.   

The statistical stream temperature models and stochastic weather generators are coupled 

to the reservoir thermal model and validated for their ability to reproduce observed stream 
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temperature variability along with characterizing the uncertainty at a compliance point 

downstream. We develop and validate a Decision Support Tool (DST) developed by coupling the 

stream temperature forecast model with the stochastic weather generator to the decision rubric. 

The DST incorporates forecast uncertainties and reservoir operating options to help mitigate 

stream temperature impacts for fish habitat, while efficiently using the reservoir water supply 

and cold pool storage. The use of these coupled tools in simulating impacts of future climate on 

stream temperature variability is also demonstrated. 

 

Keywords: Water temperature; generalized linear model; stochastic weather generation; water 

management; seasonal forecasting; climate impacts
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1 INTRODUCTION 

Water allocations in the western United States require consideration of the competing 

short- and long-term needs of many socioeconomic factors, including, but not limited to: 

agriculture, urban use (municipal and industrial), flood mitigation, hydropower generation, and 

environmental regulation. Increasing demands on the limited and variable water supply across 

the West can result in insufficient streamflow to sustain healthy fish habitat and populations. In 

the late summer and early fall, high air temperature and low flow conditions can cause rapid 

increases in water temperature, creating critical conditions, particularly for cold water fish such 

as salmon. In addition, construction of dams and diversions along rivers for the purpose of 

storing and distributing the limited supply of water can further deteriorate natural flow regimes 

and, often, obstruct important migratory pathways for fish reproduction and development. 

In the Sacramento River Basin (SRB) of California, the long-term decline in salmon 

populations has made management of the remaining freshwater habitat critical. This is magnified 

by the increasing demands on water resources and an extended drought that has enveloped the 

western United States in recent years. The construction of Shasta (SHD) and Keswick Dams 

(KWD) in the SRB headwaters during the mid-20
th

 century provided additional storage facilities 

to meet regional water needs; however, hundreds of kilometers of spawning habitat above the 

dams were lost. The declines of the winter run and the late fall runs of Chinook salmon in the 

SRB have been listed on the endangered and threatened species lists, respectively, by the 

Environmental Protection Agency (EPA). In 2008 and 2009, the Pacific Fishery Management 

Council (PFMC) closed the river to commercial and recreational fishing, resulting in economic 

losses in excess of $500M and over 2000 jobs.  
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The management of freshwater resources is one of the greatest challenges currently 

facing society. With increasing demand, alteration of water systems, and a changing climate, the 

thermal regimes of freshwater habitats are being substantially impacted. The thermal impacts on 

the ecology of river ecosystems have been well documented Poole and Berman, 2001; Caissie, 

2006; McCullough et al., 2009], yet there is no comprehensive modeling framework in place for 

accurately modeling climate-related impacts. In regulated systems, these impacts are a complex 

function of the interaction of release volume and temperature and the subsequent exchange with 

the environment downstream. Danner et al. [2012] proposed a coupled modeling framework that 

links mesoscale weather and ecological models to generate inputs for a physically-based water 

temperature model for monitoring and forecasting water temperature at fine spatiotemporal 

scales. The integrated framework also provides the capability to develop long-range (e.g., 

seasonal) outlooks of risk through coupling with statistical methods. These long-range 

projections are an important and complementary decision support tool (DST) for reservoir 

managers interested in meeting the multiple criteria of many competing demands for water 

supply. By integrating state-of-the-art modeling systems with statistical analysis and prediction 

methods, a comprehensive set of DSTs can be developed that will best guide water resource 

management decisions in the SRB.  

In this research, we develop an integrated framework for modeling and mitigating water 

temperature impacts and demonstrate it on the Sacramento River system. The approach has four 

broad components that can be coupled to produce decision tools towards efficient management 

of water resources for stream temperature mitigation. These are: (i) a suite of statistical models 

for modeling stream temperature attributes using hydrology and climate variables that are of 

critical importance for fish habitat – such as, average daily stream temperature, number of hours 



3 

 

of temperature threshold exceedance, etc.; (ii) a reservoir thermal model for modeling the 

thermal structure and consequently, the water release temperature, (iii) a stochastic weather 

generator to simulate weather sequences that are consistent with long-range (e.g., seasonal) 

outlooks and, (iv) a set of decision rules (i.e., rubric) for water releases from the reservoir in 

response to weather sequences and the reservoir thermal structure obtained from the above 

components.  These components are coupled to develop tools that will help water managers plan 

for efficient mitigation of stream temperature impacts on fish habitat.  

The statistical stream temperature models and stochastic weather generators are coupled 

to the reservoir thermal model and validated for their ability to reproduce observed stream 

temperature variability along with characterizing the uncertainty at a compliance point 

downstream from the reservoir. We develop and validate a Decision Support Tool (DST) 

developed by coupling the stream temperature forecast model along with the stochastic weather 

generator to the decision rubric. The DST incorporates forecast uncertainties and reservoir 

operating options to help mitigate stream temperature impacts for fish habitat, while efficiently 

using the water and cold pool storage in the reservoir. The use of these coupled tools in 

simulating impacts of future climate on stream temperature variability is also demonstrated.  The 

integrated framework and remainder of the dissertation organization is detailed in the following 

sections, along with a description of the study region and datasets applied. 

1.1 Study Region and Data 

As discussed, the current research focuses in the upper SRB (Figure 1.1). Shasta 

Reservoir was retrofitted with temperature control devices in the mid-1990s, which allows 

selective withdrawals from different depths (and, therefore, different temperatures) in the 

reservoir based on water temperature requirements downstream. Keswick Reservoir serves as a 
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“pass-through” structure with minimal attenuation in temperature and flow released from Shasta. 

Downstream are three important temperature compliance points at Balls Ferry (BSF), Jellys 

Ferry, and Bend Bridge. As BSF is the most influenced by any mitigation efforts from the dams, 

this point is selected as the focus of the current research. It is highly likely that if temperature 

objectives are not met at this location that the points downstream will have even poorer 

compliance statistics. We will use the flow and water temperature data available at several key 

sites along the river, including: SHD and BSF. The flow at BSF is not included as the releases 

upstream drive this variable.  
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Figure 1.1: Map of the study area on the Sacramento River for the application of the modeling framework 

with compliance points, meteorological site, and primary infrastructure (adapted from Danner et al., 2012). 
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The upper SRB generally lies in a wide, flat valley with a gentle slope below Keswick 

Dam with the headwaters in steep terrain above Shasta Reservoir. Since we focus in the stretch 

of river below Shasta, the climate is generally cool and wet during the winter and hot and dry 

during the summer months (Figure 1.2). A single meteorological site with hourly observations is 

available in the valley at Redding, CA, which is approximately half-way between Keswick Dam 

and Balls Ferry. The site provides a variety of meteorological variables (except solar radiation); 

and, we use both daily (e.g., maximum and minimum air temperature and precipitation) and 

hourly (e.g., air temperature, dew point temperature, cloud cover, wind direction/speed, among 

others) data from the site. 

 

Figure 1.2: Monthly box plots of the observed daily (a) precipitation, (b) maximum air temperature, (c) 

minimum air temperature, and (d) mean air temperature at Redding, California, for the period 1994-2007. 

The height of the box plot represents the interquartile range, the horizontal line inside the box is the median, 

whiskers extend to the 5
th

 and 95
th

 percentiles, and the solid black line across boxes indicates the mean. 
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The flow, water temperature, and meteorological variables serve as input to the various 

components of the decision support tool. The historical hydrologic information is primarily 

available for the period 1994 to present, but was limited to the period through 2007 to use more 

recent years as verification of the various tools. 

1.2 Integrated Framework 

The remainder of the dissertation presents a description of dynamic and statistical water 

temperature models in Chapter 2 and five articles (submitted or soon-to-be-submitted) in 

Chapters 3 through 7 that rely on an over-arching framework leading to the development of a 

decision support tool for water managers in the Sacramento River Basin. Figure 1.3 shows a flow 

chart of the integrated framework. 

 

Figure 1.3: Flow chart of the integrated framework. 
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Here, a basic description of each subsequent chapter presents the integration of the 

multiple modeling systems: 

Chapter 3 – Statistical Model: Seasonal Application  

[submitted to Journal of Hydrologic Engineering] 

A semi-parametric weather generator is developed using both unconditional (historical) 

and conditional (biased to future climate conditions) resampling. The weather generator 

simulations are then coupled with the generalized linear models for stream temperature 

attributes to develop future scenarios of water temperature at a downstream compliance 

point. Median daily flow and temperature releases are used in the statistical model. 

 

Chapter 4 – Statistical Model: Multi-Decadal Application 

[accepted in Water Resources Research] 

Additional generalized linear models are developed for an unregulated basin in 

Washington State to indicate the applicability to other locations. In this case, the future 

climate conditions are derived from an application of the Variable Infiltration Capacity 

model using downscaled global climate model simulations.  

 

Chapter 5 – Coupling of GLM and CE-QUAL-W2: Validation 

[submitted to Environmental Modeling and Software] 

The stochastic weather generator scenarios are coupled with the CE-QUAL-W2 model to 

generate flow and temperature releases from Shasta Dam. Single year simulations are 

performed for years exhibiting particular climate conditions (i.e., hot, dry, wet, cool) and 

use observed tributary inputs and Shasta Dam releases to generate simulated 

temperature releases at Shasta Dam for input to the generalized linear models. 

Comparison with the observations in the selected years is used to validate the model.  

 

Chapter 6 – Coupling of CE-QUAL-W2 and RAFT 

[in process] 

The RAFT model is forced using the upstream boundary conditions from Chapter 5 for a 

particular year, the hot year of 2003. The model performance is validated against 

observations from that year and then compared to the performance of the generalized 

linear models.  

 

Chapter 7 – Coupling of GLM and CE-QUAL-W2 (Operations Rubric) 

[submitted to Journal of American Water Resources Association process] 

Similar to Chapter 5, the weather generator scenarios are used to force the CE-QUAL-

W2 model; however, the median flow releases at Shasta Dam are used as input to the 

generalized linear models instead of observed flow releases to mimic standard operations 

under the given unconditional or conditional climate scenario. This allows investigation 

of alternative operations through the application of a rubric for decision-making based 

on stream temperature forecasts from the coupled system.  Both the individual years from 

Chapter 5 and the fully stochastic approach are evaluated to validate the approach. 

Evaluation of the alternate operations is performed using various metrics, including cold 

water storage, additional water usage, and number of violations. 
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The final chapter in the document contains a summary of the results and future directions 

for research, including a synopsis of an ongoing project as part of the National Oceanic and 

Atmospheric Administration’s Sectoral Applications Research Program (NOAA SARP) to 

improve streamflow estimation for CE-QUAL-W2. 
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2 WATER TEMPERATURE MODELING 

The health and productivity of aquatic ecosystems are highly sensitive to stream 

temperature [Caissie, 2006; Webb et al., 2008]. Temperature fluctuations induce changes in 

metabolic rates, concentrations of key water quality parameters (e.g., dissolved oxygen), biotic 

assemblages, and life cycle processes (e.g., spawning, migration, mortality) [Brown and Greene, 

1992].  Since changes in stream temperature are closely tied to meteorological and hydrological 

conditions, any modification in the variability and mean state of the existing hydroclimate should 

have a corresponding effect on aquatic ecosystems [Smith and Lavis, 1975]. In response, 

multiple research efforts have been focused on the prediction of stream temperature [e.g., 

Bartholow, 2003]. This chapter provides a background on stream temperature modeling, a 

review of prior modeling efforts in the Central Valley region of California in the Sacramento 

River, and details on the models specific to the work of the dissertation. 

2.1 Study Area 

The Central Valley region of California is composed of the San Joaquin and Sacramento 

River watersheds and their many tributaries. The watersheds provide important environmental, 

economic, and social resources, including: recreation, habitat for fish and wildlife, water supply, 

hydropower, flood control, and navigation, among other significant economic drivers to 

California’s economy. Since the mid-20
th

 century, construction of dams have blocked historical 

spawning grounds for anadromous fishes and altered the flow and water quality regimes in 

downstream river reaches. The impact on water temperatures and its related influence on the 

Chinook salmon and steelhead populations are of particular concern. In response to declining 

populations of anadromous fishes in the Sacramento River, both the winter- and fall-run of 

Chinook salmon are listed on the endangered and threatened species lists, respectively. In fact, in 
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2008-2009, the California Department of Fish and Game halted commercial and recreational 

fishing on the river, resulting in multi-million dollar economic losses and thousands of 

unemployed personnel. In response, regulators have imposed water temperature requirements or 

objectives that restrict the operation of upstream reservoirs (e.g., Keswick and Shasta Dams on 

the Sacramento River). Mathematical modeling of water temperature, therefore, has become an 

important tool for operation of system reservoirs. As such, the Bay Delta Modeling Forum [Deas 

and Lowney, 2000] developed a document with the objective to “provide an overview of stream 

and reservoir modeling, review historical and current temperature modeling work in the Central 

Valley, identify basic temperature prediction concepts, present the required field and other 

physical data, and define the role of temperature modeling in addressing current biological 

problems.” This document underlines the need and interest in mathematical modeling tools 

within the Sacramento River watershed and provides a concise reference for specific models 

within the basin. 

2.2 Mathematical Modeling 

There are generally two types of stream temperature models applied: (1) physically-based 

models (rooted in the solution of fluid flow and heat transport equations) and, (2) empirical 

models (relying on the correlation strength between meteorology and stream temperature). 

Deterministic models have been applied extensively to address a variety of problems and issues 

[Carron and Rajaram, 2001; Jobson and Keefer, 1979; Jobson, 1980; Sinokrot and Stefan, 1993]. 

Highlighting the advantage of physically-based models in the ability to estimate the spatial and 

temporal distribution of water temperature at fine scales over small domains, Jobson and Keefer 

[1979] evaluated a highly transient flow regime in the Chattahoochee River near Atlanta, 

Georgia, finding that the impact of timing of releases had a significant effect on the downstream 
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response in water temperatures. More recently, Carron and Rajaram [2001] built on the work of 

Jobson and Keefer [1979] to evaluate the impacts of variable releases on downstream 

temperature in the Green River. Jobson [1980] introduced a coupled Eulerian and Langrangian 

(i.e., semi-Langrangian) framework in a hydrodynamic model to assess the impact of 

evaporation on water temperature within a concrete canal in California. Similarly, Sinokrot and 

Stefan [1993] evaluated the effects of solar radiation/shading and wind sheltering on water 

temperature fluctuation. While physical models are excellent for evaluating the energy budget 

and for better understanding the dynamical properties of water under specific regimes, they are 

typically restrictive for performing regional simulations or for predicting changes at longer time 

scales (e.g., years to decades) due to extensive requirements of data and computing power 

[Brock and Caupp, 1996; Carron and Rajaram, 2001; Taylor, 1998]. Physical models can be 

adapted for larger domains [e.g., Null et al., 2012]; but, usually results in a reduction in temporal 

resolution. Detailed, high resolution, continuous model input is required including inputs of 

system geometry, meteorological forcing, and hydrological forcing; these data are often 

unavailable, inconsistent, or of poor quality.  

Often, the availability of high-resolution geographic data for a watershed is unavailable 

or limited, relegating the modeler to a statistical regression methodology [e.g., Mohseni et al., 

1998; Webb et al., 2003, 2008]. Statistical methods are appropriate at larger spatial and temporal 

scales, as they offer the benefit of computational efficiency [Benyahya et al., 2007]. Empirical 

models typically consist of regressions between stream temperature and environmental 

conditions, such as air temperature which is driven by the joint dependence of each on solar 

radiation [Benyahya et al., 2007]. Thus, these models are easily integrated with output from other 

modeling systems (e.g., hydrologic models forced with input from global climate models 
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(GCMs)), which provides an opportunity to apply projected changes in hydroclimate directly, 

rather than making discrete adjustments (say, increasing air temperatures by 2°C) to understand 

model sensitivity to input changes. Statistical models are limited regarding temporal resolution, 

in that they are appropriate for application at daily or weekly time steps [Mohseni et al., 1998]. 

At shorter time steps, Mohseni et al. [1998] found that autocorrelation within the stream 

temperature time series makes regression increasingly difficult. However, more recent methods 

[Caldwell et al., 2013a], apply spatiotemporal disaggregation techniques with reasonable results 

for generating hourly estimates of stream temperature.  

Both deterministic and empirical methods have advantages and limitations in predicting 

stream temperature. The following sections describe the physical (i.e., dynamic) properties of 

stream temperatures and factors which affect the fluctuations of water temperature. In addition, 

brief descriptions of the modeling systems employed in the Sacramento River as part of the 

current project are described. The chapter concludes with the over-arching framework which 

integrates both deterministic and empirical models to develop a decision support system for 

managing water temperatures in the Sacramento River Basin. 

2.3 Factors Affecting Water Temperature 

Water temperatures in rivers are generally affected by four factors: (i) atmospheric 

conditions; (ii) topography; (iii) stream discharge; and, (iv) streambed [Caissie, 2006]. The 

atmospheric conditions are primarily responsible for the heat exchange processes that take place 

at the water surface, while the topography can influence the local atmospheric conditions and 

provide shading effects. The stream discharge is dependent on river hydraulics and impacts 

stream temperature through heating capacity (volume of water) and mixing, including tributary 

and other inflows and streambed heat exchange. These factors act in a bulk on thermal conditions 
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of rivers such that high air temperature, lack of shading and low discharge should result in higher 

water temperature values and vice versa; however, there are also smaller scale influences on the 

spatial and temporal variability of water temperatures.  

In general, the mean daily water temperature increases in a downstream direction (Figure 

2.1), with groundwater fed headwaters cooler than water downstream which has been influenced 

by several diel cycles of warming/cooling [Benson, 1953]. These large-scale variations are non-

linear and rates can differ by orders of magnitude between small, shallow and large, deep rivers 

[e.g., Torgersen et al., 2001; Zwieniecki and Newton, 1999]. Smaller spatial scale variability can 

be observed at the confluence of rivers, in deep bedrock pools, or at localized groundwater 

seepages. As mentioned, cyclical meteorological patterns can affect the temporal variability of 

water temperature through solar exposure and related air temperature effects. The magnitude of 

variation is directly proportional to the heating capacity (i.e., volume) of water. In addition, a 

seasonal pattern exists which follows a general sinusoidal function [Ward, 1963; Webb et al., 

2003]. 



15 

 

 

Figure 2.1: Mean daily and diel variability of water temperature as a function of stream order/downstream 

direction (extracted from Caissie [2006]). 

2.4 Theory 

In order to capture the complex interactions of meteorology, geography, discharge, and 

the streambed, mathematical models must consider the theoretical (i.e., physical and dynamical) 

properties of water temperature, most importantly heat transfer and transport. Most water 

temperature models focus on the laws of conservation of energy. The first law of 

thermodynamics (conservation of energy) states that energy can neither be created nor destroyed, 

but rather converted from one type to another. For lakes and rivers, this is typically expressed as 

Equation 2.1:  
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 ,  (2.1) 

where Qsw is short-wave (i.e., solar) radiation, Qatm is downwelling long-wave (i.e., atmospheric) 

radiation, Qb is upwelling long-wave (i.e., backscatter from water surface), Ql  is latent heat flux, 

Qh is sensible heat flux, and Qg is conduction between the water and the bed. The sign 

convention is positive for heat entering the water and negative for heat leaving. A complete 
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description of the individual parameters and related equations is provided in Deas and Lowney 

[2000]; and, a schematic of the heat balance equation is reproduced here as Figure 2.2. 

 

Figure 2.2: Source and sinks of heat energy (extracted from Deas and Lowney [2000]). 

While this simplistic representation of stream temperature is valid for an infinitesimally 

small parcel (i.e., point source) of water, it neglects the effects of mixing and other source inputs 

of thermal energy to the system (e.g., tributaries, effluent, canals, etc.). For that reason, one must 

consider the heat transport mechanisms of advection and diffusion/dispersion. Advection is the 

bulk movement of a tracer (here, heat) with the main flow. As the tracer moves downstream, it 

spreads simultaneously in all directions through diffusion and dispersion. The longitudinal 

transport is typically defined as the x-direction, with lateral transport in the y-direction, and 

vertical transport in the z-direction. Molecular diffusion, or the random motion of tracer in a 

solution, is described by Fick’s Law as proportional to the heat gradient, which is typically not 

included in water temperature modeling of rivers through elimination in scale analysis.  

Turbulent diffusion is similar in that the solute (i.e., heat) moves relative to fluctuations in 

velocity, which can be approximated by a statistical relationship to Fick’s Law. Finally, 

dispersion occurs due to changes in velocity, for example across the channel, which leads to 
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mixing. The fate and transport of heat in a river can be described by the three-dimensional 

advection-diffusion equation, as in Equation 2.2: 
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where t is time, x is longitudinal (streamwise) distance, y is lateral distance, z is vertical distance, 

T is water temperature, Di is the coefficient of diffusion in each direction, A is the surface area, V 

is the volume, Qnet is the net energy from Equation 2.1 above,  w is the density of water, and Cs is 

the specific heat of water. Equation 2.2 describes the local change in temperature at time t (term 

A) as a function of: (term B) heat transported in the bulk flow, (term C) mixing processes, and 

(term D) the net heat flux at the air- and bed-water interfaces. Since most streams mix vertically 

before laterally, the vertical terms are often eliminated in Equation 2.2 to simplify the equation, 

giving a two-dimensional heat balance as Equation 2.3: 
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where T is now the depth-averaged temperature. Additional simplification is possible to a one-

dimensional form of Equation 2.3, given that careful consideration is given to the application at 

hand. Fick’s Law in term b indicates that the turbulent diffusion is proportional to the gradient in 

temperature across a particular axis. In point source locations, at confluences of tributaries or 

where effluent may be entering the river, this gradient may be quite large; however, in general, 

the atmospheric forcing acts in a distributed manner along the downstream axis which results in 

fairly small lateral differences, allowing the removal of the y-direction terms yielding the one-

dimensional form as Equation 2.4: 
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Finally, dispersion often plays a small role in one-dimensional water temperature models 

(except in cases such as pollutant discharges) and the distributed nature of the atmospheric 

forcing dampens this effect. The “bulk flow” version of the equation then becomes Equation 2.5: 
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The system of partial differential equations (PDEs) in these equations can be solved 

analytically if Qnet is described by an equation that is easily integrated in time and space. 

Expressions for these energy budget equations are complex PDEs themselves and, therefore, 

require simplification. For example, Edinger et al. [1974] and others have expressed the net heat 

input as a function of an overall heat exchange coefficient and the equilibrium temperature (i.e., 

the temperature at which Qnet equals zero in Equation 2.1). One example of the formulation is  

 
net
 K( e- ) , (2.6) 

where K is the heat exchange coefficient and Te is the equilibrium temperature. Values for K and 

Te may be formulated using a variety of methods. 

The heat exchange budget equations can then be solved analytically through reduction to 

ordinary differential equations using an assumption of complete vertical and transverse mixing or 

by applying finite differencing schemes (e.g., Taylor series expansion) to simplify the PDEs to 

equations with analytical solutions. The specifics of the river temperature models used in the 

dissertation are described more fully in Section 2.5.1 (i.e., the deterministic RAFT model) and 

Section 2.5.3 (i.e., the statistic-based, generalized linear model). 
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Unlike rivers and streams, the heat budget equation for lakes/reservoirs more often 

includes consideration of the vertical distribution of heat. The rate of change of heat content is 

determined by fluxes at the air- and bed-water interfaces, but also from heat transfer from 

inflows and outflows (i.e., tributaries and releases, respectively). Heat exchange is dominated by 

processes occurring at the surface, with the exception of solar radiation, which passes through 

the entire water column, attenuating with increasing depth and turbidity. While the heat load is 

determined by solar radiation, longwave radiation, and sensible and latent heat flux in a 

reservoir, the distribution of heat is driven by fluid motion within the reservoir. Wind is the 

primary driver here, especially in the upper section of the lake where solar radiation has the 

maximum impact in water temperatures. This results in increasing water temperatures in this 

surface layer through the summer with colder, denser water with increasing depth. Stratification 

occurs with thermocline development and most mixing occurs in the upper layer with minimal 

fluid motion within the cold pool, except near tributary or other inflows where depth dependent 

mixing occurs relative to the thermal stratification (i.e., thermal stability) of the reservoir. The 

effects of these inflows and outflows are typically defined through a relationship with volume, 

bulk flow, and residence time. Additional specifics are provided in Section 2.5.2, where the two-

dimensional reservoir model for Shasta Lake (i.e., CEQUAL-W2) used in the dissertation is 

described. 

2.5 Integration of Deterministic and Statistical Models 

Three water temperature models are applied in the current study. The first three 

subsections describe the set-up for each of these models. Chapter 7 will lay out the over-arching 

framework which integrates these models in the development of a decision support tool for 

mitigating high stream temperatures on the Sacramento River. 
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2.5.1 RAFT Model 

The River Algorithm for Forecasting Temperatures (RAFT) model was developed by 

Pike et al. [2013] and a full description of the model can be found in their publication. For 

completeness, a brief description of the model is provided here.  

The RAFT model merges the desirable features of previous models into a robust 

framework. RAFT utilizes the details of the state-space frameworks of Bravo et al. [1993], 

Yearsley [2009], and Boyd and Kasper [2003]. Each of these models has limitations pertaining 

to: the neglect of flow coupling, tributary inputs, bed processes, and spatially variable 

meteorology [Bravo et al., 1993]; consideration of only advection and environmental heat 

exchange [Yearsley, 2009]; and, lack of data assimilation capability [Boyd and Kasper, 2003]. 

The RAFT model expands on these works and Georgakakos et al. [1990] by linking flow, water 

temperature, and bed temperature dynamics in a state-space framework with three modules. The 

three modules include water temperature, streambed temperature, and flow dynamics.  

The hydrodynamic model consists of an advection-dispersion equation describing the 

downstream movement of heat, coupled to a one-dimensional hydrologic routing model to 

describe the movement of water downstream.  Pike et al. [2013] assume the lateral and vertical 

temperature gradients in the channel are negligible and apply a one-dimensional equation with 

unsteady, non-uniform dynamics (Equation 2.7): 
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where the parameters are water velocity (V), channel cross-sectional area A, and a thermal 

diffusion coefficient Dx. The term S represents the sum of heat sources and sinks that affect the 

channel water temperature and is defined as Equation 2.8: 



21 

 

  
 

cw w
 air  

 

cw w
 bed 

qin

  
 ( in- )-

qout

  
( out- ) , (2.8) 

where W is channel width, P is the wetted perimeter, qin and Tin are incoming flow and 

temperature, qout and Tout are outgoing flow and temperature, and cw and  w are the heat capacity 

and density of water, respectively. The heat movement across the water-air (Φair) and water-

streambed (Φbed) interfaces are represented in the first two terms on the right hand side of 

Equation 2.8. The air and bed influences are kept separate here to account for the forcing 

variables being one-way and two-way causality, respectively, for these fluxes. The hydrologic 

routing is accomplished through a one-dimensional Muskingum-Cunge formulation due to its 

prior application in unsteady, non-uniform flow by Boyd and Kasper [2003] and in state-space 

applications [e.g., Georgakakos et al, 1990]. The RAFT model involves converting these 

governing equations into linearized state-space form and assimilating observations via use of a 

Kalman filter and closes the energy budget equation through time and space using a robust semi-

Langrangian numerical scheme. The details of these procedures can be found in Pike et al. 

[2013].  

The model utilizes gridded input data including: (a) meteorological time series of solar 

radiation, long-wave radiation, air temperature, dew point temperature, and wind speed with 

optional entries for cloud cover and atmospheric pressure; (b) channel geometry; and, (c) flow 

and tributary time-series at the upstream boundary and along tributaries.  The meteorological 

data is derived from the combined Weather Research and Forecasting (WRF) and Terrestrial 

Observation and Prediction System (TOPS) model. The WRF-TOPS framework integrates 

operational satellite data, ground-based monitoring data, microclimate mapping, and physical 

and ecosystem models, with an industry-standard numerical weather prediction model to 
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generate estimates of each atmospheric variable and can be run in hindcast or predictive mode. 

The bathymetric data were developed using HEC-RAS model calibration procedures. The flow 

and water temperature requirements were derived from point observations from at sites along the 

river at reservoir release sites. Additional details on model validation and performance can be 

found in Pike et al. [2013]. 

For the application in the dissertation, the RAFT model incorporates point data uniformly 

across the gridded domain for meteorology, which is based on the hourly observation site at 

Redding, California, with adjustment to a location representative of Shasta Dam. The boundary 

condition inputs include the simulated flow and water temperature releases using the CE-QUAL-

W2 model. 

2.5.2 CE-QUAL-W2 

Hanna et al. [1999] utilized the CE-QUAL-W2 model (W2) to simulate the effects of 

temperature control device operations on in-reservoir vertical temperature profiles and, hence, 

biotic assemblages. While the reference from Hanna et al. [1999] provides specifics on the 

calibration, verification, and application of W2 in Shasta Lake, the details of the model set-up are 

limited. Here, a summary from Wells and Cole [2000] is provided.  

The W2 model is a two-dimensional, hydrodynamic and water quality model developed 

by the U.S. Army Corps of Engineers and maintained/distributed through Portland State 

University [Cole and Buchak, 2005; Cole and Wells, 2011]. Because the model assumes lateral 

homogeneity, it is best suited for relatively long and narrow water bodies exhibiting primarily 

longitudinal and vertical water quality gradients. The W2 model is capable of predicting water 

surface elevations, velocities, temperatures, and a number of water quality constituents. Water is 
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routed through a computational grid, where each cell is a completely mixed reactor at each time 

step. Geometrically complex water bodies can be represented through multiple branches and 

cells. Hydraulic structures can also be modeled as spillways and pipes.  

The model uses several assumptions and approximations to simulate hydrodynamics, 

transport, and water quality processes. The model solves for gradients in the longitudinal and 

vertical directions and assumes lateral gradients are negligible. This assumption may be 

inappropriate for water bodies with significant lateral variations. Turbulence is modeled through 

eddy coefficients of which the user must decide which scheme is most appropriate for an 

application. An algorithm for vertical momentum is not included and results may be inaccurate 

in water bodies with significant vertical acceleration. Water quality processes are extremely 

complex and the model uses simplified approaches to reach solutions. The model is limited by 

the quality and availability of input data which includes meteorological data, inflow and outflow 

discharge, water temperature and/or other quality variables, and calibration data. Bathymetry is a 

two-dimensional numeric representation of a water body which is represented as longitudinal 

bands and vertical slices. The model set-up from Hanna et al. [1999] is applied in the 

dissertation. Specifically, a calibrated version of the W2 model, Version 3.7, which includes 

segmentation for five branches of inflows: the Pit River, Squaw Creek, McCloud River, 

Sacramento River, and Backbone Creek Inlet (Figure 2.3). The W2 model of Shasta Lake uses 

measured bathymetry derived from U.S. Geological Survey, pre-dam elevation contours, 

observed meteorological data at hourly increments from Redding, California adjusted to the 

elevation of Shasta Dam, and inflow/outflow data and temperature data from the U.S. Bureau of 

BOR at Shasta Dam and U.S. Geological Survey. A water balance is applied to maintain mass 

continuity due to differences in computed inflow and tributary inputs. 
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Figure 2.3: Shasta Lake CE-QUAL-W2 model segmentation from Hanna et al. [1999]. 

2.5.3 Generalized Linear Model 

In this dissertation, we offer a generalized linear modeling (GLM) framework with local 

polynomial method for function estimation, to provide predictions of a range of daily water 

temperature attributes. The generalized linear modeling framework is a statistical model, which 

capitalized on the strong correlation of water temperature with hydrometeorological variables, 

specifically air temperature and streamflow, among other variables.  

In a GLM, the response or the dependent variable Y can be assumed to be a realization 

from any distribution in the exponential family with a set of parameters [McCullagh and Nelder, 

1989]. A smooth and invertible link function transforms the conditional expectation of Y to a set 

of predictors (Equation 2.9).  

G(E(Y))   f (X)   ε   Xβ
T
  ε , (2.9) 
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where G(.) is the link function, X is the set of predictors or independent variables, E(Y) is the 

expected value of the response variable, 
T
 is the transpose operator, and ε is the error assumed to 

be normally distributed with variance (σε). In a linear model (the standard linear regression), the 

function G(.) is identity and Y is assumed to be normally distributed. Depending on the assumed 

distribution of Y, there exist appropriate link functions [McCullagh and Nelder, 1989]. The 

model parameters, β, are estimated using an iterative weighted least squares method that 

maximizes the likelihood function as opposed to an ordinary least squares method in linear 

modeling. The GLM can be used to model a variety of response variables – for skewed variables 

with a lower bound of 0 such as daily maximum water temperature or daily water temperature 

range, the Gamma distribution assumption of Y and its associated link function is appropriate; for 

number of hours of temperature exceedance, the Poisson distribution and its associated link 

functions can be used; for probability of exceedance, a binomial distribution and its link function 

(i.e. logistic regression) is the approach. We refer the readers to McCullagh and Nelder [1989] 

for information about a variety of distributions, link functions, and parameter estimation.  

To obtain the best set of predictors for the model there are objective criteria such as the 

Akaike Information Criteria (AIC) or Bayesian Information Criteria (BIC) – both of which 

penalize the likelihood function based on the number of parameters [Venables and Ripley, 2002]. 

Models are fit using all possible subsets of predictors and also link functions; for each, the AIC 

and BIC are computed and the model with lowest AIC or BIC is selected as the ‘best model’. 

Models can also be tested for significance against a null model or an appropriate subset model 

using a chi-squared test. Here, BIC is used as it tends to be slightly more parsimonious compared 

to AIC. 
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The function f in Equation 2.9 is linear and fitted to the entire data and, therefore, can 

miss capturing “local” nonlinearities. To address this, we used a nonparametric approach based 

on local polynomials [Loader, 1999] to fitting f.  In this, the function is estimated ‘locally’ for 

any desired point x. The small set of neighbors (αN; N is the total number of data points and α is 

a value in the range of 0 to 1) to x is identified and to this a polynomial of order p is fitted. Thus, 

we used the fitted polynomial to estimate the response variable Y at the desired point x. This 

process is repeated for any estimation point. Note that if α and p are set to 1 then this collapses to 

the linear functional model in Equation 2.9. In this regard, the local polynomial provides an 

additional degree of flexibility to the GLM framework. The choice of α and p are obtained using 

a Generalized Cross Validation criteria (GCV) that is similar to AIC.  The GCV can be used to 

obtain the local polynomial parameters (α and p) and the best set of predictors [e.g., Regonda et 

al., 2005]; however, we fit the local polynomials to the best predictor set obtained from BIC 

using the global fit. This hybrid approach is preferred for computational efficiency. A large 

number of predictors are considered based on prior research and knowledge of the system – they 

include the water and air temperatures and hydrologic characteristics of the previous and current 

day.   

The independent variables selected for model fitting are chosen to mimic the complex 

dynamics incorporated in the more sophisticated deterministic models. For example, both 

maximum and minimum air temperature are included to capture the influence of diel temperature 

variability and the temperature feedbacks on evapotranspiration processes. Precipitation is 

included as a proxy for cloud cover and its influence on solar radiation impacting the system. 

The upstream discharge and temperature release variables serve as advection and mixing 

parameters in the statistical model. For completeness, the prior day variables are included to 
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account for the pre-existing state of the hydro-thermodynamics on the river and migration time 

of thermal inputs from the upstream boundary condition on temperature at downstream locations. 
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3 STATISTICAL MODEL: SEASONAL APPLICATION 

Water releases from Shasta Dam into the Sacramento River in California are influenced 

by the short- and long-term needs of many socioeconomic factors including, but not limited to, 

agriculture, urban use, flood mitigation/control, and environmental concerns. The Endangered 

Species Act (ESA) requires that sufficient water is released to protect downstream thermal 

habitat for listed species, such as salmon and steelhead. In order to make efficient decisions of 

water release in the face of limited water availability, skillful projections of water temperature 

attributes are crucial. To this end, we offer a generalized linear modeling (GLM) framework with 

local polynomial method for function estimation, to provide predictions of a range of daily water 

temperature attributes - maximum daily water temperature; daily temperature range; number of 

hours of threshold exceedance; probability of threshold exceedance/non-exceedance. These 

attributes are varied in nature (i.e., discrete, continuous, categorical etc.) and GLM provides a 

general framework to modeling all of them. A suite of predictors that impact water temperatures 

are considered, including current and prior day flow, water temperature of upstream releases, air 

temperature, and precipitation. A two-step model selection is proposed – first an objective 

method based on Bayesian Information Criteria (BIC) is used in a global model to select the best 

set of predictors for each attribute; then the parameters of the local polynomial method for the 

selected best set of predictors are obtained using Generalized Cross Validation (GCV).  Daily 

weather ensembles from stochastic weather generators are coupled to the GLM models to 

provide ensembles of water temperature attributes and consequently, the probability distributions 

to obtain risk estimates. We demonstrate the utility of this approach to modeling water 

temperature attributes at a compliance point on the Sacramento River below Shasta Dam. 

Regulations on the dam depress the water temperature forecasting skill – to show this we present 
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skillful results from applying the approach to an unregulated location in the Pacific Northwest. 

The proposed method is general, can be ported across sites and can be used in climate change 

studies. 

3.1 Background 

River water temperatures downstream of reservoirs are influenced by water operations 

(release volumes and temperatures) and downstream atmospheric conditions. In making water 

release decisions, water managers must take into account constraints on available resources, such 

as total reservoir volume and cold water pool storage. In the late summer and fall, water 

temperatures in the Sacramento River in California’s Central Valley can get too warm for native 

salmon, and water resource managers at Shasta Dam adjust the water release volume and 

temperature in attempts to maintain the downstream temperatures below certain compliance 

thresholds. However, they are working within the constraints of the available resources, and the 

primary management issue is the maintenance of the cold water storage in the reservoir and its 

availability throughout multiple seasons. Releasing too much cold water during the early and 

mid-summer can exhaust the cold water pool, resulting in increased thermal stress during late 

summer and early fall when fish are particularly vulnerable. Therefore, to enable the most 

efficient management of the available resources it is essential to have effective modeling and 

forecasting of downstream temperature attributes. Modeling efforts that effectively incorporate 

climate forecast information are needed to provide adequate guidance for making decisions at a 

variety of time scales (i.e., sub-daily to decadal). An integrated modeling framework has been 

developed to address the spatial and temporal limitations of the current decision support system 

on the Sacramento River [Danner et al., 2012; Pike et al., 2013]. The framework includes short-

range forecasting for day-to-day operations, but is currently limited to 72 hour forecasts. In this 
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chapter, we present the development of a seasonal component to the framework that provides 

managers with monthly to seasonal forecasts of key water temperature attributes and 

probabilistic estimates of risk of meeting or exceeding predetermined thresholds of each 

attribute. 

Recent advances in water temperature monitoring and modeling have facilitated the 

collection, analysis, and understanding of the complexity of water temperature behavior 

[Dunham et al., 2005; Isaak, 2011; Webb et al., 2008]. These concepts and theories are essential 

to the development of comprehensive models of water temperature. In general, water 

temperature models fall into two groups: deterministic and empirical. Deterministic models 

employ an energy budget approach by simulating water temperature through fluid flow and heat 

transport equations [e.g., Brock and Caupp, 1996; Carron and Rajaram, 2001; Taylor, 1998]. 

These models capture the physical processes of water temperature dynamics through 

consideration of unsteady flow, advective-dispersive transport of heat, and heat flux across the 

air-water and water-sediment interfaces. These models require input of detailed data on system 

geometry, flow, and climate. In addition, detailed data on physical attributes of the river are 

needed in order to robustly calibrate and validate the models. Furthermore, they are 

computationally intensive which can be a deterrent for operational agencies with limited 

expertise. 

Empirical models, in contrast, generally consist of fitting regression models to daily 

water temperature as a function of air temperatures and streamflow [e.g., Bogan et al., 2006; 

Caissie et al., 2001; Neumann, et al., 2003].  These models rely on the strong correlation between 

air and water temperature which is driven by the joint dependence on solar radiation [Benyahya 

et al., 2007]. Such statistical models typically capture variability over large geographic extents 
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(e.g., long stretches of river) and also offer the benefits of computational efficiency and the 

ability to quantify uncertainty [Benyahya et al., 2007]. At daily or weekly time steps, statistical 

models have the ability to capture water temperature variability; however, at shorter time steps 

(e.g., hourly), the autocorrelation within the water temperature time series makes the regression 

increasingly difficult [Mohseni et al., 1998]. Empirical modeling techniques, therefore, offer a 

distinct advantage at longer time scales (i.e., seasonal), while deterministic models are preferred 

at short (i.e., sub-daily) time scales. 

While regression models (mostly linear) have been the staple of modeling average daily 

water temperatures [e.g., Neumann et al., 2003], they are not suitable for modeling other skewed, 

discrete and binary attributes of daily water temperature such as probability of threshold 

exceedance and number of hours of exceedance. The generalized linear modeling (GLM) 

framework described in Section 2.5.3 provides a flexible alternative to modeling a variety of 

variables. Furthermore, weather and seasonal climate forecasts can be integrated quite easily for 

use in operational planning [e.g., Neumann et al., 2003, 2006; Towler et al., 2010a, 2010b]. 

Recently, GLMs have been used in stochastic weather generation [Furrer and Katz, 2007], waste 

water quality modeling [Weirich, et al., 2011], and in climate applications [Chandler, 2005; 

Chandler and Wheater, 2002].  

3.1.1 Motivation  

Managing river temperatures for the protection of coldwater fishes requires 

understanding and forecasting of a variety of attributes. In addition to the average daily water 

temperature, these fish are sensitive to acute maximum temperatures and prolonged exposure to 

higher temperatures [e.g., Myrick and Cech, 2001; Myrick and Cech, 2004; van Vleck et al., 

1988]. Thus, forecasts of these attributes are needed for water resource managers to efficiently 
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plan the releases from reservoirs so as to optimally manage the cold water supply. However, 

empirical water temperature models focus mainly on average daily water temperature, ignoring 

the key attributes described above. To address this crucial need, we propose a GLM-based 

framework that can incorporate ensemble seasonal climate forecasts and model various water 

temperature attributes. Our motivation for developing this flexible framework comes in large 

part from the application on the Sacramento River, which we describe in detail below. We follow 

this with a description of the methods. We then show results from application to the study region 

– validation of the approach and combining it with seasonal climate forecasts. In the summary 

and discussion we provide thoughts for improvements and other applications of this modeling 

approach. 

3.1.2 Study Site 

The Sacramento River below Shasta Dam is the largest river in California (Figure 1.1). 

Over the past 150 years, water resources modifications, such as agricultural development, 

deforestation, damming, and channeling for flood mitigation, have led to substantial changes in 

temperature and flow in the Sacramento River [Deas et al., 1997; Moyle and Randall, 1998; 

Reisner, 1986]. Historically, the Sacramento River yielded large volumes of cold water during 

the winter/spring and smaller volumes of warmer water during the rest of the year [Myrick and 

Cech, 2000]. The river currently supports four salmon runs and one steelhead run. Shasta Dam 

has cut off access to critical spawning and rearing habitat but allowed cooler water releases 

during the critical late summer season to mitigate low flow and high water temperature [SFEP, 

1992; van Vleck et al., 1988; Yates et al., 2008]. To protect the remaining salmon populations in 

the Sacramento River, a temperature target of 13.3°C was established for habitat between 
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Keswick Dam and Red Bluff Diversion Dam (Figure 1.1) [Bettelheim, 2001; Hallock and Fisher, 

1985]. 

 The installation of a temperature control device (TCD) on Shasta Dam during mid-1990s 

improved the capability of maintaining cool downstream water temperatures by enabling the 

release of water from different levels within the thermally stratified reservoir. With this level of 

control, managers attempt to conserve the cold water supply as late in the season as possible, and 

release it in the late summer/early fall when upper reservoir temperatures are already 

approaching the compliance limit. As a result, downstream water temperatures are now a 

combined function of operations and hydrometeorology. Inclusion of the daily flow and water 

temperature releases in any statistical modeling efforts may partially account for these operations 

as the volume of water released and respective temperature ultimately advect downstream and 

alter the thermal properties of the river. 

 While the resolution of the water management decision support tools for the Sacramento 

River has improved in recent years [Danner et al., 2012], the current forecasts are limited to 72 

hours and are only applicable for day-to-day operations. These methods also fail to provide a 

measure of uncertainty and risk at longer time scales particularly in considering the potential 

impacts of future climate. We have developed a flexible GLM-based method that uses local 

polynomials to model and predict a key set of seasonal water temperature attributes: daily 

temperature maximum (DTX), daily temperature range (DTR), probability of threshold 

exceedance (POE), and number of hours of exceedance (NHE). This method will provide a 

simpler and complementary tool to the short-term water temperature models being developed for 

the Sacramento River [Pike et al., 2013]. We applied the model to the Balls Ferry compliance 
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point on the Sacramento River (Figure 1.1), a key management target for meeting temperature 

objectives on the river [BOR, 2004]. 

3.2 Methods 

3.2.1 Generalized Linear Models 

Local polynomial based GLMs have been used recently for seasonal streamflow 

forecasting [e.g., Bracken et al., 2010; Grantz et al., 2005; Regonda et al., 2006], flood frequency 

estimation [Apipattanavis et al., 2010c], and turbidity threshold exceedance modeling [Towler et 

al., 2010a, 2010b]. Here we build on these by modeling the four daily water temperature 

attributes (DTX, DTR, POE, and NHE) at Balls Ferry. We applied the threshold temperature of 

13.3°C, as this is the current compliance target for protecting ESA-listed salmon on the 

Sacramento River. DTX is a critical indicator for the severity of high water temperatures on any 

given day; however, depending on the magnitude of DTX, there is opportunity for fish to adapt 

provided that there is a large diurnal range (DTR) and/or that the hours above that threshold are 

minimal (NHE). The probability of exceedance (POE) measures whether the mean daily 

temperature exceeds the threshold, and therefore serves as a measure of compliance. Together 

they provide a comprehensive prediction of the water temperature conditions and thus, help in 

better planning of reservoir operations. 

3.2.2 Incorporating Seasonal Climate Information 

When using the GLM models for seasonal water resources planning, daily air 

temperature and precipitation for the season are required. The hydrologic variables such as 

streamflow can be prescribed as a decision variable or optimized such that the optimal solution 

of flow and temperature releases result in the fewest number of exceedances and least volume of 
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cold water usage [Neumann et al., 2006]. Stochastic weather generators can provide ensembles 

of daily weather variables. There is a rich literature on traditional weather generators and 

nonparametric weather generators based on K-nearest neighbor time series bootstrap [see Furrer 

and Katz, 2008; Lall et al., 1996; and, references therein, for a review of traditional weather 

generators and nonparametric methods]. The K-nearest neighbor based stochastic weather 

generators [Rajagopalan and Lall, 1999; Yates et al., 2003] have been enhanced with the addition 

of Markov Chains [Apipattanavis, 2007] and labeled the semi-parametric weather generator 

(SWG). In this, a daily weather for day ‘t’ is based on weather vector on day ‘t-1’ and the 

precipitation states on days ‘t-1’ and ‘t’; K-nearest neighbors of the weather vector on day ‘t’ are 

obtained from historical days within a small window centered on day ‘t’ and one of them is 

resampled using a weight function that gives more weighting to the nearest neighbor and least to 

the farthest [Lall and Sharma, 1996]. This weather generator has also been applied to crop 

modeling and agriculture planning [Apipattanavis et al., 2010a; Podesta et al., 2010], as well as, 

highway construction delays [Apipattanavis et al., 2010b]; we have implemented this for the 

study region. The SWG can be applied to generate a variety of daily weather sequences for a 

desired season of any length based on historical data, ‘unconditional generation’, or based on 

probabilistic seasonal climate forecasts, ‘conditional generation’. These are described in the 

above references. Using the SWG, daily weather sequences are generated which are then 

incorporated in the GLM models to obtain ensembles of various water temperature attributes, 

and ultimately, cumulative distribution functions (CDFs). Using the CDFs, it is possible to 

compute the probability of exceeding threshold values for each water temperature attribute over 

the seasonal planning horizon by calculating the area under each CDF curve relative to any 

appropriate threshold value(s). Water managers will then be informed of the relative change in 
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risk for the upcoming season relative to climatology.  We used the observed mean values from 

the window of July to September for the period 1994-2007 and from the same window in 2008, 

predicted and observed to be both warmer and drier than normal, to indicate the utility of 

seasonal forecasts information in operations as hypothetical planning scenarios. 

3.3 Model Evaluation 

We applied the model framework using the daily water temperature data at Balls Ferry 

and daily weather data from the Redding Airport, Redding, California (Figure 1.1), for the period 

1994-2007. Daily and hourly streamflow data, and release volume and release temperature from 

Shasta Dam are also available for this period [CDEC, 2011]. From the hourly water temperature 

data, we computed DTX, DTR, POE and NHE for each day. Daily meteorological values from 

Redding [NCDC, 2011] and Shasta Dam release temperature and flow served as predictors for 

each variable for each month (Table 3.1). We then evaluated the predictive skill of the fitted 

GLM models using a cross validation model. For this procedure we randomly excluded ten 

percent of the data, fitted the model using the remaining data, and predicted the excluded values. 

We computed root mean square error (RMSE) for this prediction and repeated the process 250 

times.  

 We generated ensembles of daily weather from the SWG; and, with the fitted GLM 

models, we generated ensembles of the water temperature attributes. We used the observed daily 

streamflow and release temperatures on the selected days as surrogates for standard operating 

procedures. Thus, generated attributes are displayed as boxplots along with the corresponding 

mean values from the observations. This exercise is designed to demonstrate the ability of 

capturing the historic variability of water temperature attributes. We generated a total of 100 

simulations of daily weather, each 14 years in length.  
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Table 3.1: Subset of the predictors selected for the four water temperature attributes by month
1,2,3

. 

Month/ 

Season 

NHE POE DTR DTX 

Jan 

Intercept Only Intercept Only pcp,tx,tn,pcp1,tn1,q1 tx,tn,q,tw,tx1,tn1,tw1 

2, 0.50, < 0.01, NA 2, 0.70, < 0.01, NA 2, 0.07, < 0.01, 0.22 2, 0.07, < 0.01, NA 

Feb 

Intercept Only Intercept Only tx,tn,q,tx1 tx,tn,tw,tn1 

1, 0.50, < 0.01, NA 2, 0.55, < 0.01, NA 2, 0.05, 0.12, 0.18 2, 0.05, < 0.01, NA 

Mar 

pcp,tn,tw,pcp1,tx1,tn1,tw1 Intercept Only pcp,tx,tn,q tx,q,tw,pcp1,tx1,tn1,tw1 

2, 0.50, 0.15, 0.14 2, 0.70, < 0.01, NA 1, 0.55, 0.11, 0.66 2, 0.06, < 0.01, < 0.01 

Apr 

pcp,tx,tn,tw,tn1,q1,tw1 tx pcp,tx,tn,q tx,tx1,tn1,q1,tw1 

2, 0.50, 1.73, 0.68 2, 0.55, 0.11, 0.03 1, 0.70, 0.12, 0.58 2, 0.06, < 0.01, < 0.01 

May 

pcp,tx,tn,q,pcp1,tx1 pcp,tx,tn,tw,pcp1,q1,tw1 pcp,tx,tn,q,tx1 tx,q,tx1 

2, 0.50, 2.84, 0.14 2, 0.55, < 0.01, 0.35 2, 0.05, 0.01, 0.17 2, 0.95, < 0.01, 0.02 

Jun 

tx,tn,q,tx1,tn1,tw1 tw pcp,tx,tn,pcp1,tx1,q1 tx,tn,q1,tw1 

1, 0.50, 2.73, 0.53 1, 0.50, 0.05, 0.25 2, 0.31, 0.03, 0.07 2, 0.05, < 0.01, 0.48 

Jul 

tx,q,tw,tn1 Intercept Only pcp,tx,tn,q q,tw 

2, 0.95, 2.58, 0.36 2, 0.65, 0.08, 0.23 2, 0.40, 0.03, 0.48 1, 0.05, < 0.01, 0.53 

Aug 

pcp,tn,q,tw,tw1 Intercept Only pcp,tx,tn,tx1 pcp,tx,q,tw,tw1 

2, 0.90, 1.57, 0.48 2, 0.50, 0.03, 0.05 1, 1.00, 0.08, 0.15 2, 0.05, < 0.01, 0.03 

Sep 

pcp,tx,tn,tw,tx1,q1,tw1 tn,q1,tw1 pcp,tx,q,tx1 tx,tw,tx1,tw1 

2, 0.65, 2.61, 0.55 2, 0.75, 0.45, 0.54 2, 0.55, 0.02, 0.50 2, 0.05, < 0.01, 0.22 

Oct 

pcp,tn,q,tw,tx1,q1,tw1 tn,tw,tx1 pcp,tx,tn,tw tx,tn,tw,tw1 

1, 0.50, 4.75, 0.57 2, 0.50, 0.58, 0.60 2, 0.85, 0.03, 0.72 2, 0.05, < 0.01, 0.21 

Nov 

pcp,tx,tn,tx1,tw1 tx,tn,tw,tx1,tw1 tx,tn tx,tn,tx1,tw1 

2, 0.50, 3.17, 0.66 2, 0.75, 0.32, 0.66 1, 0.25, 0.09, 0.60 2, 0.05, < 0.01, 0.07 

Dec 

pcp,tw,pcp1,tn1 pcp,tn1,tw1 pcp,tx,tn,q,tx1 tx,tn,tw,tx1,q1,tw1 

1, 0.50, 0.02, 0.85 2, 0.85, < 0.01, 1.00 2, 0.06, < 0.01, 0.02 2, 0.07, < 0.01, 0.99 

JAS 

pcp,tx,tn,q,tw,tx1,tw1 tx,q1,tw1 pcp,tx,tn,tx1,tw1 pcp,tx,q,tw,tw1 

2, 0.50, 2.11, 0.61 2, 0.50, 0.24, 0.44 2, 0.97, 0.05, 0.27 2, 0.02, < 0.01, 0.36 

1 Variables listed are daily values of precipitation (pcp), maximum air temperature (tx), and minimum air temperature (tn) at Redding, CA; and, 

water temperature (tw) and flow released (q) from Shasta Dam. Variables appended with a “ ” indicate prior day values.  

2 Water temperature attributes include number hours of exceedance (NHE), probability of exceedance (POE), daily temperature range (DTR), 

and daily maximum temperature (DTR). 

3 Bottom line of values provide the polynomial order, alpha, GCV, and R2 separated by commas. R2 was computed only for values above the 
thresholds provided in Table 2. 
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We examined the effects of climate on water temperature attributes by using the 

conditional SWG simulations as input into the GLM framework. We use the four conditional 

simulations for the period July through September [Caldwell and Rajagopalan, 2011] to generate 

CDFs for each of the four predicted water temperature attributes. We considered dry (D), hot 

(H), very dry (VD), and very hot (VH) conditional scenarios and compare these to the observed 

or climatological (CL) distribution functions to indicate changes relative to climate forecast 

input. In particular, we used the seasonal climate forecast issued by the International Research 

Institute for Climate and Society in June 2008 for the summer of 2008 (July through September) 

for the dry and hot scenarios (Figure 3.1) to conditionally generate daily weather sequences for 

the summer season and, consequently, the distribution functions of water temperature attributes. 

 

Figure 3.1: Probabilistic seasonal climate forecasts of temperature (left) and precipitation (right) for the 

period July through September 2008 (issued in June 2008) as applied in the dry and hot conditional scenarios 

for the weather generator.  
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3.4 Results 

We applied the developed methods for the entire year; however, the primary months of 

concern for cold water pool management stretch from May through October. Here, we focus our 

results on a portion of the summer months (July-September) when the water temperatures on the 

Sacramento River are the highest and have the greatest management implications. We fitted the 

best (based on BIC or AIC) local polynomial GLM for each water temperature attribute by 

month using a suite of ten predictor variables – identifying the best subset of predictors and the 

local polynomial parameters for each (Table 3.1).  For a number of cases the parameters α and p 

deviate from 1, indicating local nonlinear features.  Subset selection for NHE and POE indicate 

the intercept only fits during the months of January and February when no or very few days 

exceed 13.3 °C. In addition, POE has an intercept that only fits during the months of July and 

August, where the complement is true and most days exceed 13.3 °C. In general, the subset 

selections for NHE include more predictors compared to other water temperature attributes, due 

to the fact that this is somewhat of a noisy variable relative to others. We also note that in many 

cases prior day values are often selected as one of the variables to account for the pre-existing 

state of the system.  

 During the period of July-September, scatterplots with a local polynomial smoother 

indicate DTR is linearly proportional to maximum air temperature up to 30 °C, after that reaches 

an asymptote at DTR ~2.5 °C (Figure 3.2a). There is an upper limit to the diurnal range once 

maximum air temperature reaches 30 °C. NHE is poorly correlated to daily mean water 

temperature releases at Shasta for temperatures less than 8 °C (Figure 3.2b), but linearly 

proportional for values above 8 °C. Such linear and non-linear features also exist for other water 
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temperature variables (not shown), which underscores the utility of the application of a local 

polynomial GLM. 

 

Figure 3.2: Scatterplots of (a) DTR and maximum air temperature and (b) NHE and daily mean water 

temperature release at Shasta for the season of July through September. The local estimation curve is plotted 

to indicate local non-linear features in the data. 

 The model is generally able to predict the observations of the four daily temperature 

attributes during the July-September period with R
2
 values ranging from 0.27 (for DTR) to 0.61 

(for NHE) (Figure 3.3). The NHE is well modeled, with the exception of an under estimation for 

higher observed hours of exceedance, especially 15 hours and beyond (Figure 3.3a). The 

probability of exceedance (Figure 3.3b) too is under estimated (i.e., lower probability values 

when there is exceedance). The predictions of DTR values greater than 2.5°C are under 

estimated (Figure 3.3c) and somewhat less so in the case of DTX (Figure 3.3d) for values beyond 

16 °C.  DTR and DTX are influenced by the clustering of values in the observed data between 1-

3 °C and 13-15 °C, respectively.  
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Figure 3.3: Comparison of observed and predicted values from the GLM for (a) NHE in hours; (b) POE in 

probability; (c) DTR (°C); and, (d) DTX (°C) for the season of July through September. 

 To test the predictive skill of the models, we computed the RMSE in a cross validation 

model. We excluded 10% of the observations at random. These values were predicted from the 

remaining values and repeated 250 times. Skill is generally best early in the year (January to 

June) for NHE and POE with higher RMSE values during the summer and fall seasons (Figure 

3.4a and Figure 3.4b). For DTR and DTX, mean RMSE values are highest during the winter and 

spring when flood control and snowmelt runoff are more dominant drivers of water temperatures 
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than meteorology or standard operations (Figure 3.4c and Figure 3.4d). Variability in the RMSE, 

however, is low during the summer months for DTR and DTX, except for August for DTX, 

indicating a greater level of confidence in the predicted values. The mean RMSE values 

consistently range between 0 and 1 °C for DTR and DTX, which may be a tolerable threshold for 

seasonal planning efforts. 

 

Figure 3.4: Cross validation model results for (a) NHE; (b) POE; (c) DTR; and (d) DTX by month. Observed 

climatological means of each variable (black line with overlaid red points) are shown. Boxplots provide the 

median as horizontal black line, box is the interquartile range, whiskers indicate 5
th

 and 95
th

 percentiles, and 

hollow points indicate values outside the whiskers. 
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3.4.1 Water Temperature Attributes: Unconditional Ensembles 

We used the SWG to generate ensembles of daily weather sequences – i.e., 

‘unconditional’ simulations. We used these in the GLM model to generate ensembles of daily 

water temperature attributes and displayed them as boxplots for each month along with the 

observed monthly mean values. The weather generator ensembles provide a rich variety in the 

water temperature attributes that adequately capture the historical mean (Figure 3.5).  

 

Figure 3.5: Comparison of observed and unconditional simulations of (a) NHE; (b) POE; (c) DTR; and, (d) 

DTX using the GLM coupled with the SWG by month. Observed climatological means of each variable 

(black line with overlaid red points) are shown. Boxplots of unconditional simulated values provide median as 

horizontal black line, box is the interquartile range, whiskers indicate 5
th

 and 95
th

 percentiles, and hollow 

points indicate values outside the whiskers. 
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Exceptions include: (i) under-estimation of NHE during the months of April through 

June, and over-estimation in October (Figure 3.5a); and, (ii) under-estimation of POE during the 

months of September and October with over-estimation in November (Figure 3.5b). Any biases 

in the DTR and DTX are not discernible (Figure 3.5c and Figure 3.5d). These scenarios reach 

beyond the observed record and offer an avenue to apply probabilistic approaches in seasonal 

water temperature management. This indicates that the coupling of a SWG to the local 

polynomial GLM approach to predict and simulate water temperature attributes is quite robust. 

3.4.2 Water Temperature Attributes: Conditional Ensembles 

 We generated conditional daily weather sequences for the July-September period for the 

four climate scenarios (D, VD, H and VH) described earlier. For the D and H scenarios, we used 

forecasts for 2008 (seen in Figure 3.1). We combined the generated daily weather ensembles 

with the local polynomial GLM to provide ensembles of water temperature attributes and the 

respective CDFs from the ensembles and climatology (Figure 3.6). The steepness of the slope of 

a CDF curve can be interpreted as a larger contribution to the cumulative probability across a 

given range of values; the probability of falling between the values is determined by the 

difference cumulative probability values on the y-axis. For example, at NHE less than 3 hours 

and greater than 12 hours, all of the CDFs of NHE during warmer and drier conditions (colored) 

indicate enhanced risk compared to climatology (black)  (Figure 3.6a). The largest risk of NHE > 

12 hours occur in the very hot conditional simulations with a probability of ~0.40, compared to 

the other conditional simulations (~0.20) and climatology (<0.10). Similarly, the conditional runs 

indicate an increased risk of POE compared to climatology (Figure 3.6b). The very hot 

simulation estimated the greatest shift in POE with the steepest slope at POE values > 0.60 

compared to other curves. There is an increased probability of decreased diurnal range (DTR) in 
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the conditional simulations, as expected in a hotter regime – this can be seen by the CDFs being 

shifted to lower DTR values relative to climatology (Figure 3.6c). Likewise, there is an increased 

risk of higher DTX (Figure 3.6d) compared to climatology.  

 

Figure 3.6: Cumulative distribution functions for the season of July through September for (a) NHE; (b) 

POE; (c) DTR; and, (d) DTX for the observed climatology (CL), dry (D), very dry (VD), hot (H), and very hot 

(VH) conditional simulations. 

 As described in the comparison to climatology, these exceedance probabilities can 

provide an indication of risk with respect to thresholds relevant for management by computing 

the area under the curve relative to a threshold value, for example the climatological mean for 

the period of interest. Using values from 2008 as a reference (Table 3.2), we examined the 
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relative change in risk compared to climatology. The findings are summarized as a bar plot, 

whereby the probability of exceeding climatological means of each variable are shown relative to 

the probabilities from each conditional simulation (Figure 3.7).  

Table 3.2: Probabilities of threshold criteria computed from the CDFs in Figure 3.6. Threshold values 

correspond to July through September seasonal means in 2008. 

Variable/Threshold CL D VD H VH 

NHE > 13.4 0.04 0.17 0.17 0.17 0.28 

POE > 0.79 0.15 0.12 0.12 0.12 0.17 

DTR > 2.33 C 0.17 0.26 0.25 0.27 0.22 

DTX > 14.78 C 0.17 0.23 0.23 0.24 0.24 

 

 

Figure 3.7: Probabilities of threshold criteria (from Table 3.2) for the observed (2008), dry (D), very dry 

(VD), hot (H), and very hot (VH) conditional scenarios. 
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 All of the conditional scenarios provide increased risk of NHE greater than 13.35 hours, 

indicating a tendency for more days with mean water temperature above 13.3 °C (Table 3.2). In 

addition, there is a decreased risk of POE above 0.79, except for the very hot scenario (Table 3.2 

and Figure 3.7).  Increased risk is noted for DTR < 2.33 °C, which would suggest that recovery 

time for fish will be diminished during hotter or drier than normal conditions if mean water 

temperatures are high, regardless of the magnitude of the climate shift. Despite the fact that the 

GLM model generally under-estimates higher values of DTX (Figure 3.3), increases in risk of 

DTX > 14.78 °C are evident for all conditional scenarios (Table 3.2 and Figure 3.7).  

3.5 Summary and Discussion 

We have developed a complementary statistical modeling tool using local polynomial 

based GLMs that provides monthly to seasonal forecasts of key water temperature attributes and 

probabilistic estimates of risk of meeting or exceeding predetermined thresholds of each 

attribute. The GLM framework can model a variety of variables such as discrete, binary, and 

continuous, among others. For example, we fitted models to predict a variety of water 

temperature attributes such as number of hours of exceedance (discrete), probability of 

temperature exceeding a threshold (binary), and daily maximum water temperature and daily 

water temperature range (both continuous). We fitted models for each month and for each 

variable separately using a large pool of predictor variables based on atmospheric variables (e.g., 

temperature, precipitation from current and previous day) and water variables (e.g., flow, 

temperature from previous day). Based on cross validated skill scores, the models performed 

well, especially during the summer months of interest. We applied the stochastic weather 

generator (SWG) to generate ensembles of daily weather sequences in an unconditional manner 

(i.e., assuming all of the historical years are equally likely) and conditional manner (based on 
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probabilistic seasonal climate forecast). We also generated local polynomial GLM ensembles of 

water temperature attributes. We found that these ensembles were consistent with the seasonal 

forecast, demonstrating the ability of the proposed methodology to provide projections of water 

temperature attributes before the start of the season. The ensembles of water temperatures 

provide the estimates of risk of exceeding various compliance thresholds. These risk estimates 

can be of immense help to water managers in making plans for additional water or changes in 

operations before the start of the season to help mitigate water temperature risk in a sustainable 

manner. 

 Our integration of the GLM and SWG allows investigation of the relative change in risk 

of meeting temperature criteria at Balls Ferry by performing both unconditional and conditional 

simulations. As a proof of concept, the threshold values from 2008 were used to indicate relative 

changes of risk captured by the conditional scenarios (Figure 3.7). For NHE, DTR, and DTX, the 

forecasts issued in June 2008 would have been sufficient to convey an increased risk of meeting 

or exceeding the thresholds from Table 3.2; however, a highly skewed forecast – like that offered 

in the very hot scenario – would have been required to suggest a POE value of 0.79 for the three-

month period. Though not applied in the current study, the flows and water temperature releases 

associated with each conditional scenario could be adjusted from the observed values used in the 

GLM to modify the predicted values of each water temperature attribute. For example, operators 

could apply a designated 90-day flow and temperature regime derived from historical data (i.e., a 

prior extremely hot or dry years) to adjust the predicted values from the GLM until the relative 

risk is reduced to a climatological value or other acceptable level. In essence, multiple flow and 

temperature regimes could be applied through the GLM to determine an optimal solution for 

reducing cold water usage and maintaining temperatures downstream.  
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 Atmospheric variables are typically well-correlated with water temperatures, particularly 

during the summer months when solar radiation is at a maximum. In addition, water temperature 

is generally inversely proportional to flow as larger volumes of water take longer to warm and 

cool. The skill of the GLM is directly proportional to the strength of these correlations between 

the hydrometeorological predictors and the water temperature at Balls Ferry. During the summer 

months, the water temperatures on the Sacramento River are also strongly influenced by the 

temperature and volume of water released from Shasta Dam. The interactions between the 

environment and operations are highly non-linear and, therefore, the local polynomial based 

GLM is capable of predicting the response in temperature attributes. Predictor variables from the 

prior day state of the hydrologic system improve the model fits by including residence time of 

water release impacts and persistence into the model (i.e., if the prior day water temperatures are 

cool, there is a natural tendency for today to also be cool. 

Since water management (e.g., power generation) may involve sub-daily management of 

releases [Carron and Rajaram, 2001], the GLM might be even more effective during the summer 

months if sub-daily dam operations were included in the model fitting process, along with 

specific information on releases from the temperature control devices on Shasta Dam. 

Unfortunately, these data are either unavailable, discontinuous, or require reconstruction using 

detailed hydraulic modeling efforts. To some degree, this relationship was included in the GLM 

through the mean daily flow and water temperature released at Shasta. We applied this 

framework to modeling stream temperatures in the Methow River basin, an unregulated system 

in the State of Washington [Caldwell et al., 2013a], to assess the impact of climate change on 

fish habitat. Results from an unregulated system (Chapter 4) indicate that model predictions are 

very good in comparison to the current application (Figure 3.3). This indicates that the 
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methodology is portable to other watersheds and can provide improved skill when water 

management impacts are minimal.  

 Water projects in the western United States have fundamentally altered temperature 

regimes in major rivers, particularly downstream of large dams. While dams such as Shasta can 

selectively release colder water to meet downstream temperature criteria, the current operations 

approach does not have sufficient forecasting capabilities. High resolution water temperature 

models have been developed to improve forecasting; but, these models are limited to forecasts of 

hours to several days, and cannot provide seasonal-scale planning guidance in a timely manner, 

unless coupled with input from statistical models.  

Protection of the native cold water fish in the Sacramento River is a challenge in this 

highly altered river system. Careful and innovative management strategies are needed, as any 

additional changes in water temperature in response to climate could result in conditions that 

favor non-native species [May and Brown, 2002]. Yates et al. [2008] suggest that future 

warming in air temperatures of 2 – 4 °C could lead to additional threshold temperature 

exceedances, particularly in August and September of drought years. In addition, maintaining the 

cold pool in Shasta Lake would be difficult through the summer and fall [Yates et al., 2008].  As 

such, additional research is needed to improve seasonal forecasts of water temperatures during 

the critical summer and late fall period. Future modeling efforts, therefore, should concentrate on 

additional predictors such as observed dam operations. Integration of the GLM with hydraulic 

models of Shasta Lake would also be beneficial by ensuring upstream criteria within the 

reservoir are met and by providing an input for flow and temperature release information to the 

GLM, as opposed to the use of a surrogate such as the simulated flow and temperature values 
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from the SWG.  Optimization techniques could then be applied directly to monitor cold water 

storage and both in-lake and downstream habitat. 

This chapter of the dissertation was submitted in June 2013 to the American Society of 

Civil Engineers’ Journal of Hydrologic Engineering as an article entitled ‘Statistical Modeling of 

Daily Water Temperature Attributed on the Sacramento River’. The article is under review at the 

time of publication of the dissertation and is listed as Caldwell et al. [2013b] in the Bibliography.  
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4 STATISTICAL MODEL: DECADAL APPLICATION 

4.1 Abstract 

Management of water temperatures in the Columbia River Basin (Washington) is critical 

because water projects have substantially altered the habitat of Endangered Species Act (ESA) 

listed species, such as salmon, throughout the basin. This is most important in tributaries to the 

Columbia, such as the Methow River, where the spawning and rearing life stages of these cold 

water fishes occurs. Climate change projections generally predict increasing air temperatures 

across the western United States, with less confidence regarding shifts in precipitation. As air 

temperatures rise, we anticipate a corresponding increase in water temperatures, which may alter 

the timing and availability of habitat for fish reproduction and growth. To assess the impact of 

future climate change in the Methow River, we couple historical climate and future climate 

projections with a statistical modeling framework to predict daily mean stream temperatures. A 

K-nearest neighbor algorithm is also employed to: (i) adjust the climate projections for biases 

compared to the observed record and (ii) provide a reference for performing spatiotemporal 

disaggregation in future hydraulic modeling of stream habitat. The statistical models indicate the 

primary drivers of stream temperature are maximum and minimum air temperature and 

streamflow and show reasonable skill in predictability. When compared to the historical 

reference time period of 1916-2006, we conclude that increases in stream temperature are 

expected to occur at each subsequent time horizon representative of the year 2020, 2040, and 

2080, with an increase of 0.8 ± 1.9 °C by the year 2080.   
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4.2 Background 

The health and productivity of aquatic ecosystems are highly sensitive to stream 

temperature [Caissie, 2006; Webb et al., 2008]. Temperature fluctuations induce changes in 

metabolic rates, concentrations of key water quality parameters (e.g., dissolved oxygen), biotic 

assemblages, and life cycle processes (e.g., spawning, migration, mortality).  Since changes in 

stream temperature are closely tied to meteorological and hydrological conditions [Smith and 

Lavis, 1975], modification of the variability and mean state of the existing hydroclimate should 

have a corresponding effect on aquatic ecosystems.  

In response, multiple research efforts have been focused on the prediction of stream 

temperature under multiple future climate conditions [e.g., Mantua et al., 2010; Null et al., 2012; 

Webb et al., 2008]. Often, these models focus on geographical regions (e.g., Pacific Northwest) 

which require a hydrologic system with large spatial (sub-basin to watershed scale) and temporal 

(daily to weekly) resolutions [Ficklin et al., 2012; Mantua et al., 2010; Null et al., 2012]. These 

models typically couple hydrologic models with stream temperature models to inform broad 

decisions on the magnitude and general spatial extent of climate-related impacts on thermal 

properties of rivers and streams. Null et al. [2012] coupled the Water Evaluation and Planning 

System (WEAP21) hydrologic model with the Regional Equilibrium Temperature Model 

(RTEMP) physical temperature model, while Ficklin et al. [2012] modified the temperature 

model in the Soil and Water Assessment Tool.  Mantua et al. [2010] coupled output from the 

Variable Infiltration Capacity (VIC) model with the statistical stream temperature model of 

Mohseni et al. [1998] to simulate weekly stream temperature.  

The incorporation of the hydrologic forcings into stream temperature models has been 

shown to improve the predictability of models [Lowney, 2000; van Vliet et al., 2011; Webb et 
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al., 2003]. For example, Ficklin et al. [2012] improved on an existing stream temperature model 

by including the contributions of multiple source water constituents (e.g., groundwater, 

snowmelt, surface runoff, in-stream flow) to the thermal dynamics for seven watersheds across 

the western United States. In addition, they adjusted the input air temperatures, precipitation, 

snowmelt, and groundwater to evaluate the sensitivity of stream temperature to hydroclimate 

changes.  

The complexity of any modeling system, however, is usually directly related to the 

required level of quality and continuity of input data sets. There are generally two types of 

stream temperature models applied in assessing future climate impacts: (1) physically-based 

models (rooted in the solution of fluid flow and heat transport equations) and, (2) empirical 

models (relying on the correlation strength between meteorology and stream temperature). The 

advantage of physically-based models is the ability to estimate the spatial and temporal 

distribution of stream temperature at fine scales over small domains; therefore, they are typically 

restrictive for performing regional simulations or for predicting changes at longer time scales 

(e.g., years to decades) due to extensive requirements of data and computing power [Taylor, 

1998]. Physical models can be adapted for larger domains as described previously [e.g., Null et 

al., 2012]; but, usually results in a reduction in temporal resolution. Detailed, high resolution, 

continuous model input is required including inputs of system geometry, meteorological forcing, 

and hydrological forcing. In unregulated systems, these data are often unavailable, inconsistent, 

or of poor quality.  

For these data sparse situations, stream temperatures are often modeled using statistical 

regression [e.g., Mohseni et al., 1998; Webb et al., 2003; Webb et al., 2008]. Statistical methods 

are appropriate at larger spatial and temporal scales, as they offer the benefit of computational 
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efficiency [Benyahya et al., 2007]. Empirical models typically consist of regressions between 

stream temperature and environmental conditions, such as air temperature which is driven by the 

joint dependence of each on solar radiation [Benyahya et al., 2007]. Thus, these models are 

easily integrated with output from other modeling systems (e.g., hydrologic models forced with 

input from global climate models (GCMs)), which provides an opportunity to apply projected 

changes in hydroclimate directly, rather than making discrete adjustments (say, increasing air 

temperatures by 2°C) to understand model sensitivity to input changes. Statistical models are 

limited regarding temporal resolution, in that they are appropriate for application at daily or 

weekly time steps [Mohseni et al., 1998]. At shorter time steps, Mohseni et al. [1998] found that 

autocorrelation within the stream temperature time series makes regression increasingly difficult. 

In this chapter, we present the first statistical modeling effort to apply future 

hydroclimatological changes at sub-daily time scales (i.e., hourly) with spatial resolutions at the 

sub-reach scale (i.e., meters). The proposed approach seeks to bridge the gap between daily 

values and the hourly requirements of high-resolution hydraulic modeling efforts. For example, 

this type of high-resolution data is essential for assessing the influence of mitigation efforts (e.g., 

channel dredging, riparian zone refurbishment) that seek to alleviate future climate impacts on 

stream temperature. As such, we develop a flexible statistical modeling framework that is 

capable of providing input at high spatial and temporal resolution to these models. We couple a 

generalized linear model (GLM) [McCullagh and Nelder, 1989] at the daily time scale with a K-

nearest neighbor (K-nn) resampling algorithm, which provides a bias-correction function and 

allows disaggregation of daily values to hourly estimates of stream temperature.  While we focus 

on the generation of a daily mean state variable (i.e., mean daily stream temperature), the 

modeling framework provides the opportunity to predict daily variables with a variety of 
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distributions (i.e., continuous, logistic, discrete), such as daily maximum stream temperature, 

exceedance/non-exceedance of a particular thermal threshold, and number of hours exceeding 

that threshold, respectively. The computational efficiency of the statistical models allows the 

future projections of stream temperature to extend to decades, where physically-based models 

are currently restrictive at the prescribed spatial and temporal resolution.   

We test the methodology in the Methow River basin in the State of Washington in a 

roughly 1 kilometer reach near the confluence of the Methow and Chewuch Rivers (Figure 4.1). 

The area of interest is described in the subsequent section (Section 4.3) along with the datasets 

available.  The coupled GLM-VIC statistical modeling framework, K-nn methodology, and 

disaggregation technique are presented in Section 4.4.  Application and results from the proposed 

framework including stream temperature projections for three future time periods (2020s, 2040s 

and 2080s) are described in Section 4.5.  Chapter conclusions along with a discussion of model 

uncertainty under the proposed framework are summarized in Section 4.6. 
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Figure 4.1: Map of the confluence of the Methow and Chewuch Rivers. Observation sites near Winthrop, 

Washington, are indicated. Inset shows the location of the study area (black box) relative to the State of 

Washington. 

4.3 Study Area 

The Methow River in Washington (see Figure 4.1) offers prime spawning habitat for 

salmon and other cold-water fish. It is a tributary to the Columbia River system and offers a 

natural setting with generally unregulated flow. During the summer months, streamflow in the 

Methow River is typically low (less than approximately 25 cubic meters per second (cms)), 

resulting in both higher thermal vulnerability and cutoff side channels that limit the habitat 

available to these fish. Being unregulated, there is an inability to mitigate these high 

temperatures through upstream water releases. Under these circumstances, mitigation efforts rely 

heavily on stream restoration projects and riparian zone refurbishment.  
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Future climate projections which indicate increasing air temperature in the western 

United States suggest the potential for increasing stream temperatures in response to changes in 

hydrology (i.e., snowmelt, streamflow) and additional heating [e.g., Ficklin et al., 2012; Mantua 

et al., 2010].  To assess the impacts of climate change in the Methow River, a statistical 

modeling framework is developed for generation of daily projections of stream temperature. The 

framework is unique in that it must provide the ability to generate sub-daily meteorological 

forcings and hydrologic boundary conditions to be integrated with an hourly time-step, two-

dimensional hydraulic model for predicting spatial variations of stream conditions and the 

impacts of various mitigation efforts.  

In this chapter, observations of stream temperature and environmental conditions (i.e., air 

temperature, precipitation, and streamflow) are used to develop statistical models of daily mean 

stream temperature for the Methow River near Winthrop, WA. The location is situated at the 

confluence of the Methow and Chewuch Rivers, which corresponds to the site of an ongoing 

hydraulic modeling project. Therefore, there is a need for hourly boundary condition inputs at 

locations upstream of the confluence, including temperature and flow projections. 

4.3.1 Data 

Statistical models of stream temperature require hydrometeorological data as input. 

Typical hydrometeorological variables include maximum/minimum air temperature (Tax and Tan, 

respectively), precipitation (Pp), and streamflow (Q). The quality and quantity of the data are two 

primary indicators of the level of skill that can be expected from the models. For the current 

study, there is a limited set of water temperature data which requires a subset of data from the 

period 2005 to 2011.  
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This research uses two types of data: observed and simulated. The observed data includes 

stream temperature, Ts (the independent variable for the model), and, Tax, Tan, Pp, and Q (the 

dependent variables). Once the models are developed using observed time series, the simulated 

model outputs (see Section 4.3.1.5) from the VIC model can be integrated to produce future 

scenarios of Ts. This section describes the individual datasets by providing the metadata 

associated with each and quality control employed prior to use. The locations of the observed 

data are shown in Figure 4.1. 

4.3.1.1 Stream Temperatures 

Near the confluence of the Methow and Chewuch Rivers, a total of seven Ts time series 

are available (Table 4.1). The sources of these data include the United States Forestry Service 

(USFS), US Bureau of Reclamation (BOR), Wild Fish Conservancy (WFC), and Washington 

State Department of Ecology (DOE). It should be noted that while the period of records and 

frequencies in Table 4.1 would indicate a wealth of data at these sites, none of the gauges 

provide continuous observations throughout the period of record, with most measurements 

occurring during the warm season. Quality control of the Ts data was performed by the respective 

operating agencies and, therefore, additional quality control was not performed prior to use. 

Table 4.1: Metadata for Ts observation sites. 

Site Stream ID Entity Period of Record Frequency 

Above Chewuch Methow MAC USFS 06/30/2005 - 10/21/2010 sub-daily to 30 minute 

Spring Creek Spring SC USFS/BOR/WFC 07/02/2009 - 10/25/2010 hourly to 30 minute 

Above Barkley Silo Methow ABS USFS/BOR/WFC 11/26/2009 - 10/04/2010 sub-daily to hourly 

Chewuch Mouth Chewuch CM USFS/BOR/WFC 06/01/2005 - 04/05/2011 sub-daily to 30 minute 

Below Chewuch Methow MBC USFS 06/07/2005 - 10/13/2009 hourly 

Hwy 20 Bridge at Winthrop Methow 48A150 DOE 10/08/2007 - 09/08/2008 monthly 

Hwy 20 Bridge at Winthrop Chewuch 48B070 DOE 10/08/2007 - 09/08/2008 monthly 
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The period of 16 July 2010 to 04 October 2010 was the only time frame which had 

overlapping, primarily continuous, sub-daily data for more than two sites. Only four of the seven 

sites (i.e., Methow Above Chewuch (MAC), Spring Creek (SC), Above Barkley Silo (ABS), and 

Methow Below Chewuch (MBC)) are available during that time, reiterating the data availability 

in that portion of the Methow is highly limited and restricts the use of physically-based models. 

Since the primary focus is on the prediction of water temperature below the confluence of the 

Methow and Chewuch, the sub-daily values of Ts at the MBC and ABS sites in Table 4.1 were 

averaged to create a single, daily mean time series. The daily values at the downstream site were 

compared to the Q at the Methow above Winthrop (MAW) site (see Section 4.3.1.2) and 

meteorological data at Winthrop 1WSW (WIN; see Section 4.3.1.3). This composite of daily 

mean Ts serves as the dependent variable in the statistical model.  

The adjusted R
2
 values are computed and shown in Figure 4.2 to indicate the strength of 

correlations between the independent variables and Ts. In general, the air temperature and flow 

variables show strong correlations with stream temperatures. The correlation with precipitation is 

near zero during the summer season Figure 4.2d); however, precipitation may serve as a 

surrogate for cloud cover and its related impacts on stream temperatures. Therefore, we include 

precipitation in the set of potential predictors, allowing a subset selection criterion (e.g., 

Bayesian Information Criteria (BIC)) to determine if the variable is applied in the final statistical 

models. 
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Figure 4.2: Scatterplots of hydrometeorological variables and mean Ts for the period 7/16/2010 to 10/04/2010 

with adjusted R
2
 given of linear fits for (a) streamflow above 15 cms, (b) maximum air temperature, (c) 

minimum air temperature, and (d) precipitation above 0.254 mm. 

4.3.1.2 Streamflow 

Streamflow data were gathered from the United States Geological Survey (USGS) for the 

overlapping period with the Ts data (i.e., 01 January 2001 to 19 May 2011). A total of three sites 

are available near the confluence of the Methow and Chewuch Rivers; however, only the site at 

Methow at Winthrop (USGS 12448500; MAW) was used. Unlike the Ts data, the measurements 
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are predominantly continuous, except during transmission and equipment failures. Times with 

missing values and equipment issues were removed from the observational time series. As can be 

seen in Figure 4.2a, Q above 15 cms at MAW is inversely proportional and correlated (adjusted 

R
2
 = 0.48) with the Ts. The excellent continuity and quality of the MAW data can be also be seen 

in Figure 4.3a. The Q at MAW will serve as one of the independent variables in the model fitting 

described in Section 4.4. 

 

Figure 4.3: Quality controlled time series of daily hydrometeorological variables for the period 01 January 

2005 to 19 May 2011. Time series of (a) streamflow, (b) mean air temperature, (c) precipitation, and (d) daily 

mean stream temperature are shown. 
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4.3.1.3 Meteorology 

Daily meteorological data were collected from the National Climatic Data Center for the 

period 01 March 1906 to 19 May 2011 for the site at Winthrop 1WSW (NCDC 459376; WIN). 

The daily data included multiple meteorological variables; however, only the Pp, Tax, and Tan 

values were considered. The daily meteorological data are fairly continuous, but did show some 

quality issues. For quality control, values that were unrealistic (e.g., Tan below -30 °C), missing, 

or entered as text (e.g., “T” for trace amounts of Pp) were removed from the record. As with the 

streamflow at the MAW gauge, only data for the period 01 January 2005 to 19 May 2011 were 

used. The quality-controlled daily meteorological time series for mean daily air temperature and 

Pp are shown in Figure 4.3b and Figure 4.3c. The time series for Tax and Tan (not shown) showed 

similar continuity and quality. 

As seen in Figure 4.2b and Figure 4.2c, air temperatures are well-correlated (adjusted R
2
 

≥ 0.43) with Ts in the Methow Basin; therefore, the values of Tax and Tan will serve as potential 

predictors in the statistical model development. Precipitation shows less correlation (adjusted R
2
 

= 0.06); but again, due to its relationship with cloud cover and the associated feedbacks on solar 

insolation on the stream, this variable is also included in the potential predictors (Figure 4.2d). 

4.3.1.4 Snow Water Equivalent 

In the Methow Basin, the Natural Resources Conservation Service operates a single 

snowpack telemetry (SNOTEL) station at Harts Pass. The daily snow water equivalent (SWE) for 

the period 01 January 2005 to 19 May 2011 were downloaded and will be used as a predictor 

variable in the statistical model.   
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4.3.1.5 VIC Model Output 

The Climate Impacts Group at the University of Washington generated regional scale, 

future climate projections for the Pacific Northwest using ten GCMs under different emissions 

scenarios [Hamlet et al., 2010]. For our application, we focused on the use of the ten climate 

projections based on the A1B emissions scenario (Table 4.2). While B1 emissions scenarios 

were available, the A1B scenarios serve as a proof of concept application, which the authors 

consider a plausible future with little greenhouse gas mitigation until the mid-21
st
 century. The 

output from the downscaled GCMs was used to develop inputs to the Variable Infiltration 

Capacity (VIC) [Liang et al., 1994; Liang et al., 1996; Nijssen et al., 1997] model to assess the 

impacts of climate change on ecological and hydrological systems in the region.  

Table 4.2: List of the ten global climate models used in the A1B scenarios. 

GCM 

hadcm 

cnrm_cm 

ccsm2 

echam5 

echo_g 

cgcm3.1_t47 

pcm1 

miroc_3.2 

ipsl_cm4 

hadgem1 

 

The VIC model is a spatially-distributed hydrologic model that solves the water and 

energy balance at each model grid cell. The model initially was designed as a land-surface model 

to be incorporated in a GCM so that land-surface processes can be more accurately simulated; 

however, it is often run in standalone mode. For climate change impact studies, VIC is run in 

what is termed the water balance mode that is less computationally demanding than an 
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alternative energy balance mode, in which a surface temperature that closes both the water and 

energy balances is solved for iteratively. Using the University of Washington VIC applications, 

the water balance mode is driven by daily weather forcings of precipitation, maximum and 

minimum air temperature, and wind speed. Additional model forcings that drive the water 

balance, such as solar (short-wave) and long-wave radiation, relative humidity, vapor pressure, 

and vapor pressure deficit, are calculated within the model. The VIC outputs are configurable but 

typically include grid cell moisture and energy states through time (i.e., soil moisture, snow 

water content, snowpack cold content) and water leaving the basin either as evapotranspiration, 

base flow, sublimation, or runoff, where the latter represents the combination of faster-response 

surface runoff and slower-response base flow. Additional details on the VIC setup and 

development are well-documented in Maurer et al. [2002], Wood and Lettenmaier [2006], and 

Wood et al. [2004]. An overview of the Columbia Basin Climate Change Scenarios Project is 

currently in press, which provides additional details on the integration of the GCM output and 

VIC model, including implementation and calibration [Hamlet et al., 2013]. The reader is, 

therefore, referred to these references for further details. 

For the current study, meteorological variables (e.g., Tax, Tan, and Pp) and bias-adjusted 

flow (Q) were extracted from ten different VIC simulations for three future climate horizons: 

2010-2039 (representative of year 2020); 2030-2059 (representative of year 2040); and 2070-

2099 (representative of year 2080). Two 1/16
th

 degree latitude-longitude grid cells were used for 

the extraction of data from VIC. The first location was centered at 48.46875 N, 120.15625 W, 

which is in close proximity to the MAW gauge. This site serves as the source for the predictor 

variables of meteorology and flow, with the assumption that the weather is consistent over the 

grid box and that the flow is accumulative over the entire watershed. The second grid location 
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was centered at 48.71875N, 120.65625W and contains the SNOTEL site at Harts Pass. This site 

serves as the source the SWE predictor variable; however, comparison with the observed gauge 

data requires an adjustment factor of 0.65 be applied to the Harts Pass gauge for direct 

comparison (not shown). These differences arise from point to area reduction and universal 

assignment of vegetative class at the grid scale in the VIC model which fails to allow for point-

specific estimates of SWE. In addition, the same data were available from a single historical VIC 

model simulation. The VIC output provides historical projections at daily time steps for the 

period 1916 to 2006 for a total of 91 years of daily data, which serves as a reference period. The 

VIC output is also provided as a time series of 91 years of data representative of the three future 

climate horizons of 2020, 2040, and 2080. 

4.4 Methods 

In this study, mean daily Ts is modeled as a function of Tax, Tan, and Pp at the WIN 

meteorological site; daily mean Q at the MAW gauge, and daily SWE at the Harts Pass gauge. 

This section will describe the methodology for developing the GLM and the K-nn technique used 

to perform bias-adjustment of the VIC scenarios prior to application in the statistical modeling 

framework, including disaggregation (Figure 4.4). 
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Figure 4.4: Flow chart of the statistical framework. 

4.4.1 Generalized Linear Models 

A flexible statistical framework has often been applied in the assessment and prediction 

of many water quality variables [Neumann et al., 2003; Neumann et al., 2006; Towler et al., 

2010a, 2010b].  Neumann et al. [2003, 2006] used regression to model the daily maximum Ts, 

while Towler et al. [2010a, 2010b] incorporated the generalized linear model (GLM) into a 

seasonal risk analysis of meeting turbidity requirements for a water supplier in the Pacific 

Northwest. Section 2.5.3 [also in Caldwell et al., 2013a, 2013b] advanced the work of Neumann 

et al. [2003, 2006] by predicting multiple Ts characteristics (e.g., daily Ts range and probability 

of exceedance) using a GLM coupled with a stochastic weather generator to assess the seasonal 

risk to salmon fisheries. The current application builds on the work of the previous chapter by 

integrating the output from the VIC hydrologic model to generate future Ts scenarios to assess 
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the impact of climate change on fisheries in the Methow River. T reader is referred to Chapter 3 

and Section 2.5.3 for further details on the methodology of the generalized linear model.  

To obtain the best set of predictors for the model there are objective criteria such as the 

Akaike Information Criteria (AIC) or Bayesian Information Criteria (BIC) – both of which 

penalize the likelihood function based on the number of parameters [Venables and Ripley, 2002]. 

Models are fit using all possible subsets of predictors and also link functions; for each, the AIC 

and BIC are computed and the model with lowest AIC or BIC is selected as the ‘best model’. We 

used BIC in this study as it tends to be slightly more parsimonious compared to AIC. This subset 

selection procedure accounts for correlation between independent variables. Models can also be 

tested for significance against a NULL model or an appropriate subset model. For our case, we 

compare the GLM model to a simple linear regression model, typical in statistical models of 

stream temperature [Benyahya et al., 2007], where the daily mean stream temperature is function 

only of daily mean air temperature. 

4.4.2 K-Nearest Neighbor Resampling 

Since the output from the VIC model spans a much longer period of record than observed, a K-

nearest neighbor (K-nn) resampling algorithm [Rajagopalan and Lall, 1999; Buishand and 

Brandsma, 2001] is employed to select days from the historical record that are representative of 

the hydrometeorological conditions in the model output. The K-nn algorithm is a method for 

classifying objects based on closest training examples in a feature space. To account for the 

shifting hydrology and meteorology throughout the year, the training examples (or observed 

weather and flow vectors) are selected from a 30-day window on either side of the current Julian 

date. In our case, there are typically 6 years of data (2005-2011) with a total of 61 potential 

neighbors from each year. The length of this window of time can be adjusted by the user, but 
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should maintain the general statistics of the hydroclimate for that time of year. Here, we selected 

30 days to account for potential shifts in the seasonality of snow accumulation and melt. For 

example, if the current Julian day is 31 (i.e., 31 January), first the weather-flow vector is 

extracted from the current VIC run. The potential neighbors are then 01 January to 01 or 02 

March (depending on leap year) from each year 2005 through 2011. The Mahalanobis distances 

between the daily VIC and the potential neighbors’ weather-flow vectors from the observed 

record (i.e., 01 January 2005 to 19 May 2011) are computed [e.g., Yates et al., 2003]. After 

ordering the distances from closest to farthest, each neighbor is prescribed a weight based on the 

cumulative sum of 1/K with the closest neighbor receiving the highest weight. A neighbor is then 

selected at random based on weight; the index of that neighbor is used to extract the associated 

weather-flow vector from the observational record. The selected weather-flow vector (i.e., 

neighbor) from the historical record is then used to replace the VIC model output prior to use as 

predictors in the statistical modeling framework. An additional benefit of the K-nn algorithm is 

selection of particular dates, which can be used to disaggregate the daily simulations to hourly. 

4.4.3 Spatio-temporal Disaggregation 

Hourly hydrometeorological inputs are required for the two-dimensional hydraulic model 

being developed at the BOR. Since the GLM models predict daily Ts at the MAW site, spatial 

disaggregation is required to distribute the daily hydrometeorological variables to two synthetic 

upstream boundary condition locations: upstream Methow (MUS) and upstream Chewuch 

(CUS). CUS is assumed to represent a location near the site of the CM Ts measurements; MUS is 

assumed to represent a location near the site of MAC Ts measurements. In addition, the 

downstream location (MDS) is assumed to represent the location of the MBC and ABS Ts 

observations. Henceforth, we will use the CUS, MUS, and MDS abbreviations for clarity. The 
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daily values then must be disaggregated temporally to generate inputs for the hydraulic modeling 

system. Since the quality and availability of continuous, daily and sub-daily measurements in the 

Methow River Basin were severely limited, we perform the spatial and temporal disaggregation 

by developing proportion vectors at the daily and hourly time scale, using the methods employed 

in Nowak et al. [2010]. Nowak et al. [2010] applied a non-parametric stochastic approach to 

disaggregation of annual flow values via K-nearest neighbor resampling of daily proportion 

vectors which captured the observed statistics quite well. We further this approach by using both 

hourly and daily proportion vectors for both streamflow and stream temperature.  

 Daily mean Ts values are computed for three locations (MUS, MDS, and CUS using the 

sub-daily and daily measurements at four sites (i.e., ABS and MBC for MDS; MAC for MUS; 

and, CM for CUS) from the period 01 January 2005 to 31 December 2011. If all three sites do 

not have a daily mean, then the period mean is used at each of the sites. The proportion of each 

upstream, gauge relative to the downstream gauge is calculated to yield the daily temperature 

proportion vectors (DTPV). Only 329, of a possible 2555, DTPVs are unique (Figure 4.5).  The 

mean values for CUS (1.05) and MUS (0.93) approach one but signify that the Chewuch is 

generally warmer than the Methow inflows due to differences in riparian cover and flow. 
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Figure 4.5: Histograms of the daily temperature proportion vectors for the (a) Chewuch Upstream and (b) 

Methow Upstream sites, shown as a fraction of the daily mean stream temperature downstream. 

 The hourly Ts proportion vectors (HTPVs) use the available hourly Ts measurements at 

the same sites. For each day of the calendar year (1 – 365), the hourly mean Ts is calculated. At 

least one of the sites must be reporting for a given hour; otherwise, the monthly mean for that 

hour is imposed. Separate HTPVs are calculated as the fractional contribution of each hour to the 

daily sum for days 1 to 365 at the two upstream and one downstream site to account for the 

impact of flow differences between the tributaries and the cumulative flow downstream. The 
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variety of diurnal fluctuations inherent in the HTPVs at each site can be seen in Figure 6. Using 

the corresponding date (or its Julian day of the year) picked during the K-nn resampling, the 

appropriate proportion vectors for both spatial and temporal disaggregation can be selected for 

distributing the predicted value from the GLM to both upstream points at hourly time steps. 

Validation statistics for the spatiotemporal disaggregation technique are presented in Section 4.5. 

 

Figure 4.6: Hourly stream temperature proportion vectors for the Methow Upstream (MUS), Chewuch 

Upstream (CUS), and Methow Downstream (MDS) sites, shows as fractional values of the daily accumulative 

stream temperature. 
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4.5 Results 

4.5.1 Statistical Model Development 

Since the statistical model is predicting the mean daily Ts at the downstream location, 

only the sites at MBC and ABS were used to create a composite daily Ts time series for the 

period 01 January 2005 to 19 May 2011. A total of 738 days were available during the period 

with observed temperatures above 0 °C; and, the highest number of days was available by month 

during the warm season (Figure 4.7). For the days with available Ts data, the GLM was fit by 

month using the hydrometeorological predictors from WIN (e.g., Tax, Tan, and Pp), the MAW 

(e.g., Q) site, and the Harts Pass location (e.g., SWE).  Therefore, there are a total of twelve 

statistical models, one for each month to forecast mean daily stream temperature. Using the BIC 

for subset selection, the preferred predictors for Ts include Tax, Tan, and Q. Only two months 

(February and March) include Pp in the best subset from BIC, primarily during the rainy, cool 

season. The SWE variable is also selected during the cool season during the months of January, 

March, November, and December. The results of BIC subset selection can be found in Table 4.3. 

 

Figure 4.7: Counts of the number of days with mean daily Ts available by month during the period 01 

January 2005 to 19 May 2011. 
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Table 4.3: Subset of predictors selected by the GLM using BIC. 

Month Predictors 

Jan Tax, Tan, Pp, Q, SWE 

Feb Tax, Tan, Pp, Q 

Mar Tax, Tan, Pp, SWE 

Apr Tax, Tan, Q 

May Tax, Tan, Q 

Jun Tax, Tan, Q 

Jul Tax, Tan, Q 

Aug Tax, Tan, Q 

Sep Tax, Tan, Q 

Oct Tax, Tan 

Nov Tax, Tan, Q, SWE 

Dec Tax, Tan, P, Q, SWE 

4.5.2 GLM Verification 

To test the skill of the GLM, cross-validation is performed by randomly dropping ten 

percent of the points over 100 iterations and computing the root mean square error (RMSE). 

Scatterplots of the observed vs. predicted values (Figure 4.8) and RMSE boxplots (Figure 4.9) 

indicate excellent skill throughout the year. To highlight the seasonal performance of the models, 

only relationships for January, April, July, and October are shown, though the relationships are 

similar in other months. Correlations are high in all months (with adjusted R
2
 ≥ 0.60); and, all are 

statistically significant based on a t-test for the significance of the correlation coefficient at 

significance level, α = 0.05, such that t is defined in Equation 4.1 as:  

t 
r√n- 

√ -r 
  , (4.1) 

where t is the test statistic, r is the coefficient of correlation, and n is the sample size. The warm 

season months generally exhibit highest RMSE values, with mean RMSE approaching 0.8 °C. 

The largest variability in RMSE is during the months of April and July large variability in Ts 



75 

 

occurs due to snowmelt and high air temperatures, respectively. Lowest RMSE values in the 

winter are related to daily Ts that remain near 0 °C as the Methow River freezes. 

 

Figure 4.8: Scatterplots of observed vs. predicted values for January, April, July, and October from the GLM 

model fitting. The one-to-one line is overlaid for reference. 
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Figure 4.9: Boxplots of RMSE for January, April, July, and October from the cross-validation. Errors 

generally average less than 1 °C, except during the summer when mean errors approach 1.2 °C. 

4.5.3 Integration of GLM and Climate Change Scenarios 

Outputs from the historical climate model simulations are combined to generate a large 

predictor matrix of daily Tax, Tan, and Pp (January 1915 – December 2006); Q (October 1915 to 

December 2006); and SWE (January 1915 – December 2006) for use in the GLM framework. 

The historical predictor matrix is the overlapping subset that covers 91 complete calendar years 

for the period from January 1916 to December 2006.  Using the twelve monthly GLM models, 
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the historical predictor matrix is used to predict daily mean Ts at the MAW site. Boxplots and 

probability distribution functions (PDFs) of daily mean Ts for the four months representing each 

season (i.e., January, April, July, and October) indicate that the variability is increased in the 

historical simulations compared to observations (PrV in Figure 4.10 and Figure 4.11) when using 

the GLM-VIC model output without adjustment. Similar results are observed for other months 

(not shown). To address the issue, we implemented a K-nn resampling technique as described in 

Section 4.4.2 to perform bias-adjustment on the VIC model output. Difference in variance and 

means between the observations and historical runs, both with VIC and adjusted using K-nn, 

were tested using an F-test and the appropriate t-test, respectively. Results indicate that while the 

variance is similar at the 95% confidence level for the VIC runs, there is a significant deviation 

in the mean. On the other hand, the variance is reduced in the K-nn simulations (a known 

limitation to K-nn); however, the simulated mean daily stream temperatures are approximately 

50 percent closer to the observed values than in the VIC alternative. Both the K-nn and the VIC 

simulations of daily mean stream temperature under-estimate the mean. The center location and 

shape of the resulting boxplots and PDFs related to the K-nn simulations match much more 

closely with the observed distributions (see PrK in Figure 4.10 and Figure 4.11). As a result, the 

bias-adjusted VIC output then serves as input to the monthly GLM models. 

The future climate projection scenarios are processed in the same manner. First, climate 

change predictor matrices are developed for each of the 30 coupled VIC scenarios. Then, the K-

nn resampling is applied to each predictor matrix to generate new bias-adjusted matrices, which 

are used to predict daily mean Ts through the GLM (not shown).   
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Figure 4.10: Boxplots of observed (Obs) vs. predicted values of mean stream temperature for January, April, 

July, and October when using the historical simulation as input to the GLM, using the historical VIC (PrV) 

simulations compared to the bias-adjusted, K-nn simulations (PrK). 
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Figure 4.11: Probability density functions (PDFs) of daily mean stream temperature for observed (Obs; 

black) vs. predicted with historical VIC (PrV; red) and predicted with bias-adjusted K-nn VIC output (PrK; 

green). 

4.5.4 Validation of the Integrated VIC-GLM Model 

To assess the performance of the coupled VIC GLM, the mean daily stream temperature 

from the historical climate simulations were compared to daily values at each site using the 

following statistics: Nash-Sutcliffe coefficient [NS; Nash and Sutcliffe, 1970]; ratio of the root 

mean square error to the standard deviation of the observed data (RSR); percent bias (PBIAS), 
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the ratio of the sum of residual errors between the simulated and observed data and the sum of 

the observed data; the mean error (ME); the root mean square error (RMSE); and, the adjusted 

R
2
 or the squared correlation between the observed and predicted values adjusted for sample size 

and degrees of freedom.   Guidelines established by Moriasi et al. [2007] and applied in Ficklin 

et al. [2012] where NS > 0.50, RSR < 0.70, and PBIAS between +/- 25 percent are used to 

qualify the validation results as satisfactory. Comparison to the NULL model described in 

Section 4.4.1, indicates the GLM model exhibits increased values of NS, decreased values of 

RSR, equivalent absolute PBIAS and ME, and lower RMSE (Table 4.4), indicating enhanced 

skill over simple linear regression. In addition, the adjusted R
2
 values using the GLM for the 

months shown in Figure 4.8 were equal to or higher than those from the NULL model, 

particularly in April and July when correlation was more than double (Table 4.5).  

Table 4.4: Comparison of daily validation statistics between the NULL and GLM models. 

Statistic NS RSR PBIAS 
ME 

(°C) 

RMSE 

(°C) 

NULL 0.96 0.19 0.1 -0.01 0.9 

GLM 0.98 0.14 -0.1 -0.01 0.7 

 

Table 4.5: Comparison of adjusted R
2
 values between the NULL and GLM models. 

Adjusted  R
2
 Jan Apr Jul Oct 

NULL 0.76 0.27 0.33 0.88 

GLM 0.88 0.60 0.85 0.88 

 

The robustness of a model to small changes in input parameters provides an estimate of 

the sensitivity of the model to individual parameters. For example, in Ficklin et al. [2012], model 

sensitivity was analyzed using a normalized, dimensionless sensitivity index (I) shown in 

Equation 4.2, where  
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I = 
(y -y ) y 

      
 ,  (4.2) 

where y2 is the perturbed predicted values at x2=x0+Δ  and y1 is the perturbed predicted values at 

x1=x0-Δ , y0 is the original predicted values, and Δ   2-x1. 

As in Ficklin et al. [2012], we apply Δ  variations of +/- 10 percent to each of the 

predictor variables (i.e., Tax, Tan, Pp, Q, and SWE). The index I then represents the change in 

output variable (mean and variance) resulting from a change in the inputs to the model. The 

absolute value of I can be ranked into four classes based on level of sensitivity as given in 

Ficklin et al. [2012] from Lenhart et al. [2002], such that higher values indicate increasing 

sensitivity. We calculate the sensitivity index I for both the mean and variance of the predicted 

variable Ts (Table 4.6).  For the prediction of the mean, Tax was the most sensitive parameter 

with Tan being of medium sensitivity, and the other variables found to be insensitive. Using the 

variance as an indicator, the variable Tax was of medium sensitivity with all other variables 

insensitive, suggesting that the primary drivers for the mean state of Ts and its variance are air 

temperature related, with lesser influence from precipitation, flow, or snow water equivalent. 

Table 4.6: Sensitivity indices for each of the predictor variables. High (H) and medium (M) sensitivity 

denoted. 

Indicator Tax Tan Pp Q SWE 

Mean 0.21
H
 0.11

M
 -0.01 -0.03 -0.02 

Variance 0.10
M

 0.02 0.00 0.01 0.00 

 

4.5.5 Validation of Spatiotemporal Disaggregation 

Simulations of daily mean stream temperature using the historical VIC inputs were 

spatially disaggregated to both upstream points and temporal disaggregation applied at all three 
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locations. To test the validity of the results, the same statistics were computed using the hourly 

data as for the daily values, including: NS, RSR, PBIAS, ME, and RMSE (Table 4.7). While 

marginal results were evident for the MUS location (NS=0.50, RSR=0.70, PBIAS=-5.6), both 

the CUS and MDS locations were considered acceptable with NS>0.50, RSR<0.70, and PBIAS 

between +/- 25 percent. Scatterplots of the observed vs. predicted hourly values at each site show 

modest correlation with adjusted R
2
 values exceeding 0.73 at CUS and MDS and 0.57 at MUS 

(Figure 4.12). 

Table 4.7: Comparison of hourly validation statistics at the three disaggregated sites. 

Site NS RSR PBIAS 
ME 

(°C) 

RMSE 

(°C) 

Adjusted 

R
2
 

CUS 0.67 0.58 -4.1 -0.60 1.8 0.73 

MUS 0.50 0.70 -5.6 -0.75 2.0 0.57 

MDS 0.71 0.54 -6.1 -0.90 1.5 0.81 
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Figure 4.12: Scatterplots of observed vs. predicted values of hourly stream temperature for (a) Chewuch 

Upstream, (b) Methow Upstream, and (c) Methow Downstream. The one-to-one-line is overlaid in red. 

4.5.6 Implications of Climate Change on Stream Temperatures 

Mean daily values of Ts from each of the VIC simulations were concatenated by month 

and assembled to identify the mean and standard deviations (hence, confidence intervals) (  
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Table 4.8), as well as to show the variability in predictions. Figure 4.13 shows the boxplots for 

the months of June through September, the primary season of evident shifts. The ensemble 

means were computed for each of the future time horizons of 2020, 2040, and 2080, by 

averaging the results by day of each of the ten climate modeling scenarios. PDFs of each time 

horizon were plotted relative to the historical simulation. Mean daily Ts increases by ~2 °C 

during the warm season by the year 2080, with lesser magnitude positive shifts in the distribution 

at the 2020 and 2040 time horizons (Figure 4.14). Shifts during the cool season (see   
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Table 4.8) were less pronounced. These results suggest that a warming climate will likely be 

associated with warming Ts in the Methow River Basin. Figure 4.15 indicates that the greatest 

increase in mean daily Ts will occur during the summer months. Given the anticipated shift to 

warmer conditions in future climate, a one-tailed, unpaired t-test indicates the simulated daily 

mean stream temperature time series from the historical run is significantly different from the 

simulated values at each future period at the α   0.05 level. Maximum differences between the 

historical run and the 2080 time horizon are 2.8 ± 4.7°C (in July) and 0.8 ± 1.9 °C (annual 

average), respectively. The values of maximum differences between the historical run and the 

2020 and 2040 time horizons range from 1.4 ± 3.5 °C (2020) to 2.4 ± 4.4°C (2040). Mean 

differences are 0.4 ± 1.6 °C and 0.7 ± 1.8 °C, respectively, for the 2020 and 2040 time horizons.  
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Table 4.8: Mean monthly daily mean stream temperature (°C) with 90% confidence interval for differences 

between historical and each future period in parentheses. 

Month Historical 2020 2040 2080 

Jan 2.2 2.2 (±1.3) 2.3 (±1.3) 2.3 (±1.4) 

Feb 3.0 3.1 (±1.3) 3.2 (±1.3) 3.2 (±1.4) 

Mar 5.5 5.8 (±1.8) 6.0 (±1.8) 6.1 (±1.9) 

Apr 6.9 6.9 (±0.9) 7.0 (±1.0) 7.0 (±1.1) 

May 7.4 7.5 (±0.9) 7.5 (±1.0) 7.5 (±1.0) 

Jun 8.8 9.4 (±2.1) 10.0 (±2.8) 10.4 (±3.3) 

Jul 12.2 13.6 (±3.5) 14.6 (±4.4) 15.0 (±4.7) 

Aug 14.1 14.9 (±1.5) 15.4 (±1.7) 15.5 (±1.7) 

Sep 11.7 12.1 (±1.4) 12.5 (±1.5) 12.6 (±1.5) 

Oct 8.0 8.1 (±1.2) 8.3 (±1.3) 8.4 (±1.2) 

Nov 4.6 4.8 (±2.1) 5.0 (±2.1) 5.1 (±2.1) 

Dec 3.2  3.5 (±1.6) 3.8 (±1.8) 3.8 (±1.9) 
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Figure 4.13: Boxplots of daily mean stream temperature for the months of June through September for the 

historical and each future climate horizon of 2020, 2040, and 2080, indicating the range of values predicted 

and uncertainty associated with each month. 
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Figure 4.14: Probability density functions (PDFs) of ensemble mean values from the GLM when coupled with 

the VIC output using K-nn for the historical (black) and each future period of 2020 (orange), 2040 (red) and 

2080 (dark red). Abscissa line at daily mean stream temperature of 13.9 °C indicates upper threshold used to 

designate properly functioning fish habitat.  
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Figure 4.15: Monthly ensemble means of Ts from the GLM when coupled with the VIC output using K-nn for 

each future period of 2020 (orange), 2040 (red), and 2080 (dark red). Historical from K-nn shown in black. 

The National Marine Fisheries Service and U.S. Fish and Wildlife Service prescribe 

general guidelines for Ts to assess properly functioning habitat for salmonids [Bjorn and Reiser, 

1991; FWS, 1999; BOR, 2008b, Appendix I, Table I-4]. The upper limit of 13.9 °C is used to 

discriminate Ts that are beyond an acceptable limit, that thermal threshold at which initial effects 

begin to occur on salmonids, according to these two studies. Several other studies use a slightly 

higher value around 15 °C. The flexibility of the modeling system allows this to be a user 
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defined parameter as the value may differ based on species, life cycle stage of the fish, and river 

system. We highlight the probabilities of exceeding these values in Figure 4.14. The potential to 

exceed the threshold value in future climates is evident as the area under the curves is larger than 

historical, particularly in months June to September (Figure 4.15), with increasing impacts at 

each successive 2020, 2040, and 2080 time horizon, respectively. Table 4.9 shows the 

corresponding increases in the probability of mean daily Ts above 13.9 °C during the summer 

season at each time horizon. These threshold exceedances are more than 40 percent more likely 

during the months of July and August by the year 2080. 

Table 4.9: Probability of Ts > 13.9 °C for the ensembles at each time horizon for the months of June through 

September. 

Period Jun Jul Aug Sep 

Historical 0.02 0.39 0.55 0.07 

2020 0.03 0.54 0.74 0.09 

2040 0.05 0.67 0.84 0.17 

2080 0.11 0.85 0.95 0.27 

 

4.6 Conclusions 

The current study develops a methodology for using available daily Ts data and 

hydrometeorological inputs for generating statistical models of daily Ts for each month. In 

addition, the GLM provides a mechanism for ingesting the output from climate change scenarios 

to evaluate future impacts on Ts in the Methow River Basin. Despite the sparse data in the region, 

the statistical model fits were excellent with small values of RMSE across all months. Predicted 

values from the historical climate scenarios indicated that there was some limitation to skill 

during the winter months when data was most scarce; however, the use of a K-nn resampling 

approach improved the skill relative to using the raw output from the coupled VIC modeling 
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framework. As such, the K-nn resampling technique was applied, as well, to perform bias-

adjustment on the future climate projections at each time horizon of 2020, 2040, and 2080.  

The ensemble mean plots of future Ts indicated a mean annual warming of  0.8 ± 1.9°C 

by the year 2080 with increases relative to historical at each of the future climate horizons, all 

significant at the α=0.05 level. Despite the large range in the 90 percent confidence intervals, the 

projections remain skewed toward positive changes in stream temperature under future climate 

scenarios, with the primary focus during the summer months. Using a threshold Ts as a metric of 

viable habitat for fish, we note the increased probability of days with temperatures exceeding the 

threshold. The threshold of 13.9 °C is conservative due to the use of daily mean instead of 

instantaneous values, which suggests that the impact to viable habitat may be more profound.  

Though the proposed framework provides a flexible approach to incorporate projected 

climate change into stream temperature modeling, there are several key uncertainties that will 

need to be kept in perspective while applying the methodology.  There are three primary sources 

of uncertainty in the current study: (i) the K-nn resampling algorithm; (ii) the coupled VIC 

modeling system; and, (iii) the statistical regression.  The K-nn resampling approach restricts 

sampling only from observed data, thereby possibly providing a low estimate of future climate-

driven stream temperature given the assumption of warming; however, testing of the range of 

future values compared to historical values showed less than two percent of the daily values 

exceeded those from the observed record. The small fraction of projected future days that fall 

outside the bounds of historic observations is recognized as a potential suppression of extreme 

events for use in impacts analysis. In addition, future days that fall close to the bounds of the 

historical observations may be resampled disproportionately, resulting in reduced variability. 

Changes in the hydrologic character of the system (e.g., riparian vegetation) may also be 
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partially neglected through the limitations of the resampling approach. Since extreme events are 

of primary interest to impact modelers, this limitation should be considered before direct 

application of the approach outlined in the current study.  The coupled VIC modeling system 

itself has several uncertainties including the process of statistical downscaling from large-scale 

GCM grids to finer-scale grids needed for hydrologic modeling.  Also, the quality of the 

calibrated VIC model will govern the quality of the flow outputs.  Thirdly, developing the 

regression models from limited data, and not being able to include variables such as the 

groundwater components of runoff could impact projected stream temperature results. 

Subsequent modeling efforts will investigate the impact of these future scenarios on the 

spatial and temporal distribution of stream temperature within the confluence region of the 

Methow and Chewuch Rivers by using a two-dimensional hydraulic model. Therefore, we also 

present an efficient method for disaggregating the daily mean projections to hourly increments. 

While skill scores indicated satisfactory results at the CUS and MDS sites, additional calibration 

is required for the MUS site. This is potentially due to the limited data at that location. In an 

unregulated system like the Methow River, the mitigation efforts to reduce the impacts of 

climate change will focus on restoration projects that provide additional habitat, where suitable 

water temperatures can be maintained over the longest duration. Restoration efforts will focus on 

identifying these areas by analyzing outputs from the two-dimensional hydraulic model. We 

expect that these efforts will be essential in supporting healthy habitat in the Methow River 

Basin under climate change, particularly for cold-water fishes, such as salmon. 

This chapter of the dissertation was accepted in June 2013 to Water Resources Research 

as an article entitled ‘Statistical Modeling of Daily and Sub-daily Stream Temperatures: 

Application to the Methow River Basin, Washington’; see the Caldwell et al. [2013a] reference. 
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5 COUPLING OF WEATHER GENERATOR AND CE-QUAL-W2 

5.1 Abstract 

Water temperatures have a major impact on aquatic health. This is underscored in the 

semi-arid regions of Western US where several factors such as increased water demand due to 

population growth, reduced streamflow due to extended drought in recent years, and the semi-

arid climate and managed systems converge to produce acute conditions for habitat. Managed 

systems such as reservoirs with their cold water pool provide an opportunity to mitigate water 

temperature impacts.   In order to mitigate water temperature effects from climate conditions 

with efficient water resources management, an integrated modeling approach which combines 

modules for water temperature, weather and reservoir release temperatures is needed.  In this 

research, we develop such a coupled tool. The coupling consists of a stochastic weather 

generator to provide ensembles of weather scenarios; a hydrodynamic model to provide reservoir 

thermal structure and water release temperature; and a statistical water temperature model. The 

coupled system is demonstrated on Shasta Lake and downstream of Shasta Dam on the 

Sacramento River and validated by simulations for three years that are representative of cool, 

hot, wet, and dry conditions within the watershed. Model results are used to assess the effects of 

TCD operations on river thermal conditions at a downstream compliance point under variable 

hydroclimatological conditions. We find that the integrated modeling approach is necessary to 

adequately estimate the impacts to fisheries downstream; default operations yield release 

temperatures that predict a large number of violations downstream during the various 

hydroclimate conditions. Uncertainty information from this approach provides future opportunity 

to apply risk-based decisions to fisheries management. 
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5.2 Background 

Water resources modifications (e.g., agricultural development, deforestation, damming, 

and channeling for flood mitigation) have led to changes in temperature and flow in the 

Sacramento River Basin (SRB) [Deas et al., 1997; Moyle and Randall, 1998; Reisner, 1986]. 

Historically, the SRB yields large volumes of cold water during the winter/spring and smaller 

volumes of warm water during the rest of the year [Myrick and Cech, 2000]. Prior to the 

completion of Shasta Dam in 1945 near the headwaters of the Sacramento River about 16 km 

north of Redding (Figure 1.1), downstream reaches in the SRB were unsuitable for salmon due to 

the low flow and high water temperature. The dam decreased the availability of habitat, but dam 

operations allowed cooler water releases during the critical late summer season to mitigate low 

flow and high water temperature [SFEP, 1992; van Vleck et al., 1988; Yates et al., 2008]. With a 

surface area of 11,940 ha, maximum depth of 157.6 m, and length of 56 km, Shasta Lake is the 

largest storage reservoir in California. Shasta Lake and Dam provide water for hydroelectric 

power generation, irrigation, municipal, and industrial uses, and recreation. 

High demands from a growing population for water supply and irrigation, limited 

summer precipitation, and high summer air temperature and solar radiation have altered the 

water quality and flow patterns of the Sacramento River substantially, leading to increased risk 

of low flow and high water temperature, particularly in the late summer and early fall seasons 

[Myrick and Cech, 2002, 2004]. Population declines and extinction of native fish in the SRB 

have occurred concurrently with these changes [Brown, 2000; Brown and Moyle, 1993; Moyle, 

1976]. For example, salmon populations have steadily declined since the late 1960s when 

approximately 80,000 salmon passed per year at Red Bluff [Hallock and Fisher, 1985] to the late 

1990s when less than 1,500/year were observed [CDFG, 2005]. Since the late 1990s, a slight 
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recovery in returning salmon has been observed, though in 2008 and 2009, the SRB was closed 

to fishing due to the low numbers of salmon in those years.  Because salmon are sensitive to 

water temperatures, a maximum temperature threshold of 13.3 °C (56 °F) was established [BOR, 

1991a, 1991b, 2004] in a key habitat regime along a stretch of the Sacramento River from 

Keswick Dam to the City of Red Bluff to address sustainability of salmon populations 

[Bettelheim, 2001; Deas et al., 1997; Hallock and Fisher, 1985]. 

Protection of the native fish in the SRB continues to be a conflict between human needs 

for water resources and requirements of ecosystems. Careful and innovative operations strategies 

will be needed to address this conflict as any changes in water management in response to 

climate change and agricultural/urban needs could result in conditions that favor non-native 

species [May and Brown, 2002]. Yates et al. [2008] conclude that future warming could lead to 

additional threshold temperature exceedances, particularly in August and September drought 

years. The period of potential exceedance would increase from an average of three months 

during the period 1971-1998 to five months given warming scenarios of +2 and +4 °C by the 

mid-21
st
 century [Yates et al., 2008].   In addition, Yates et al. [2008] found that the cold pool in 

Shasta Lake available for mitigating downstream water temperature would be difficult to 

maintain through the summer given the two warming scenarios. 

In the mid-1990s, the U.S. Bureau of Reclamation (Reclamation) installed a temperature 

control device (TCD) at Shasta Dam to improve the capability of reservoir operators to maintain 

suitable water temperatures downstream of the dam for the winter-run Chinook salmon 

populations protected by the Endangered Species Act. Until the TCD installation in 1997, 

Reclamation addressed thermal criteria by releasing water through bypass outlets, instead of 

routing through penstocks to power generating facilities before discharge to the river. Bypassing 
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of the penstocks during the period of 1987 to 1996 resulted in approximately $63 million in lost 

power generation revenue [Saito, 1999]. In February 1997, the TCD was installed upstream of 

Shasta Dam (Figure 5.1), providing the opportunity to selectively withdraw from different 

reservoir elevations (i.e., different water temperatures within the reservoir water column) to meet 

thermal objectives downstream. The TCD allows ample discharge for hydropower generation 

cost $80 million to install. The TCD consists of a shutter structure for each of the five penstocks 

to the power plant. Shallow, deep, and/or intermediate withdrawals can be made using the 

adjustable shutters. In addition, a new low-level outlet was installed that allowed withdrawal 

from depths deeper than possible before TCD installation [Hanna et al., 1999].  

 

Figure 5.1: Temperature control device schematic as seen through a cross-section of Shasta Dam. Penstocks 

are all at elevation 249 m (adapted from Hanna et al. [1999]). 
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Operation of the TCD altered both the in-reservoir and downstream thermal, chemical, 

and, hence, biological dynamics of the system. Using coupled hydrodynamic and ecological 

models, the in-reservoir effects of TCD operations on water quality and biota, including fish and 

phytoplankton within Shasta Lake, were examined [Bartholow et al., 2001; Saito et al., 2001], 

and as well as the ability of the TCD to meet downstream temperature objectives [Bartholow et 

al, 2001; Hanna et al., 1999]. Hanna et al. [1999] found that the new TCD operations would 

improve the ability to meet downstream temperature targets, but the operations would have little 

effect on in-reservoir conditions for fish [Bartholow et al., 2001; Hanna et al., 1999; Saito et al., 

1999]. Lieberman et al. [2001] also used monitoring data to evaluate the effects of the TCD on 

nutrients, particulate organic matter, and plankton in the Shasta Dam tailwaters and found that 

water quality pre- and post-installation of the TCD may potentially influence the food base, and 

therefore, fish production in the Upper Sacramento River. In addition, Deas et al. [1997] 

developed models of river temperature for the Sacramento River downstream of Shasta Dam and 

investigated the sensitivity of water temperature predictions to upstream boundary conditions 

and meteorology. These studies evaluated the effects of TCD operations on in-reservoir and 

downstream temperatures and fish impacts; however, they did not address the assessment of 

thermal conditions under variable climatological conditions.  

  Biological criteria for salmonid health on the Sacramento River below Shasta Dam have 

been set through collaboration between Reclamation and the National Marine Fisheries Service 

(NMFS). While a threshold temperature of 13.3 °C (56 °F) has been determined critical for 

meeting thermal objectives on the river [Deas et al., 1997], Reclamation and NMFS meet 

regularly to decide on the location of the compliance requirement [BOR, 2004]. The most 

upstream compliance point within the modeling domain is the Balls Ferry gauge with the most 
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downstream point at Red Bluff Diversion Dam. Balls Ferry is selected as the compliance point of 

interest since it is closest to Shasta Dam and has the highest probability of experiencing the 

mitigation effects of the TCD. In other words, if the temperature objectives are not met at Balls 

Ferry, it is highly likely that due to interaction with the atmosphere, downstream water 

temperatures will be warmer. The most critical period is in the late summer and fall, when cold 

water storage in Shasta Lake is typically low and meteorological conditions are hot and dry. 

During this period, there is a restriction on the river that no more than three consecutive days can 

exceed the mean daily water temperature threshold by 0.9 °C (0.5 °F) [BOR 1991a, 1991b]. 

Thus, the intent of the TCD is to reduce the magnitude and the duration of high temperature 

water downstream of Shasta Dam during that time. 

In order to enable efficient management of the water resources system to mitigate water 

temperature effects from climate conditions, an integrated modeling approach which combines 

modules for water temperature, weather and reservoir (lake) release temperatures is needed.  In 

this research we develop such a coupled tool. The coupling consists of a stochastic weather 

generator to provide ensembles of weather scenarios [Apipattanavis et al., 2007]; a 

hydrodynamic lake model [Hanna et al., 1999; Saito et al., 2001] to provide the lake thermal 

structure and water release temperature and, a statistical water temperature model [Caldwell et 

al., 2013b]. The coupled system is demonstrated and validated by simulations for several years 

since operation of the TCD began in 1997 that are representative of cool, hot, wet, and dry 

conditions within the watershed. Model results are used to assess the effects of TCD operations 

on river thermal conditions at a compliance point downstream under variable 

hydroclimatological conditions.   
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5.3 Methods 

5.3.1 Proposed Coupled System and the Components 

The proposed coupled system is shown in the schematic of Figure 5.2. In this, a reservoir 

hydrodynamic and water quality model, CE-QUAL-W2 (W2; Cole and Wells [2011]], is linked 

with a stochastic weather generator [Apipattanavis et al., 2007] and a statistical model of water 

temperature attributes using a generalized linear modeling (GLM) approach for the downstream 

compliance point at Balls Ferry [Caldwell et al., 2013b]. The stochastic weather generator 

provides multiple scenarios of daily weather that feed into both the W2 and GLM models; the 

W2 model provides the reservoir thermal structure and the water release temperatures that are 

additional inputs to the GLM model which results in forecasting of water temperature attributes 

at Balls Ferry. Details on the individual components of the flow chart in Figure 5.2 are provided 

in subsequent sections. 

 

Figure 5.2: Flow chart of the modeling approach. 
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 This modeling approach was selected for several reasons. First, meeting release 

temperature objectives at the reservoir potentially neglects the impact of environmental 

conditions and lag time between the dam and the downstream compliance point. The statistical 

model provides the opportunity to include atmospheric forcing and lagged predictor variables to 

incorporate these processes. Second, the application of stochastically-generated weather 

scenarios provides an opportunity to evaluate uncertainty and multiple hydroclimate regimes 

through conditional resampling rather than using a single input time series to the hydrodynamic 

model. The stochastic approach, however, fails to capture the effects of the simulated weather on 

reservoir conditions (i.e., in-reservoir vertical thermal structure, volume of cool hypolimnetic 

water, etc.) throughout the year. Without the coupling with a hydrodynamic reservoir model, the 

hydrologic forcing in the statistical model (i.e., release temperature and flow from Shasta Dam) 

assumes median values for a given Julian day. Integration with CE-QUAL-W2 allows adjusted 

hydrology to be generated using the stochastically-generated weather ensembles to serve as input 

to the reservoir model, ensuring consistency between simulated weather and water release 

temperature from the dam. Therefore, the third advantage of the linked modeling approach is the 

ability to include the reservoir thermodynamics appropriately in the statistical model input. 

5.3.2 Hydrodynamic Model of Shasta Lake 

Shasta Lake is a large, deep, and dendritic system with water quality characteristics that 

vary spatially and temporally. As such, Hanna et al. [1999] developed and calibrated a W2 model 

for Shasta Lake to simulate TCD operations and predict in-reservoir water temperatures.  W2 is a 

two-dimensional hydrodynamic and water quality model that can simulate reservoir operations 

[Cole and Buchak, 1995].  This current study uses the model of Hanna et al. [1999] that was 

upgraded to version 3.7 of W2 from Cole and Wells [2011]. 
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Reservoir geometry in the W2 model is two-dimensional and varies with depth and 

longitudinal distance, with lateral averaging in the third dimension (Figure 5.3). The Shasta Lake 

W2 model is partitioned into 63 model segments along the length of the reservoir. Model output 

for Shasta Lake consists of simulated vertical profiles of water quality parameters, including 

water temperature for each of those segments at a maximum of 51 vertical layers, ranging from 

1.5m thick at the surface to 6m thick at the bottom. As seen in Figure 5.3, Shasta Lake is fed by 

multiple rivers and creeks. The W2 model includes five branches: Pit River, Squaw Creek, 

McCloud River, Sacramento River, and Backbone Creek Inlet, although flows are assumed to be 

zero for Backbone Creek [Saito et al., 2001].  

 

Figure 5.3: Shasta Lake segmentation map for CE-QUAL-W2 model (adapted from Saito [1999].  Model 

segment numbers, boundaries, and sampling stations are also indicated. 
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The W2 model of Shasta Lake requires the following inputs: measured bathymetry from 

topographic maps, initial storage and initial in-reservoir temperature, daily inflow volumes, daily 

inflow temperatures, daily outflow volumes, and sub-daily meteorological data. Outflow 

volumes and computed total inflows to Shasta Lake were provided by Reclamation for the period 

1994 to present. Daily inflow volumes and temperatures were gathered from the U.S. Geological 

Survey (USGS) for three tributaries: Pit River (#11365000), McCloud River (#11368000), and 

Sacramento River (#11365000). Squaw Creek, the fourth tributary was estimated using methods 

in Saito [1999). Sub-daily meteorological data were not available near Shasta Dam for the period 

of interest; therefore, the meteorological data from the Redding Airport site were adjusted to 

account for elevation based on regression equations from Saito [1999]. TCD operations for the 

model were established using a set of decision points throughout the year based upon the release 

temperature target, where release temperatures are as warm as possible from November through 

April and cooler than temperature thresholds during May through August as applied in Hanna et 

al. [1999] (Figure 5.4). 

The model was re-calibrated for the present study using Version 3.7 of W2 by comparing 

in-reservoir water temperature output with water temperature profile data collected by the USGS 

in 1995; the locations of those sites are also shown in Figure 5.3. Model coefficients were 

adjusted and investigated through sensitivity analyses to determine the effects of and appropriate 

values for the model’s coefficients for wind sheltering (WSC), bottom heat exchange (EXH20), 

and light extinction (BETA). The final calibrated values for WSC (1.0), EXH20 (0.40), and 

BETA (0.45) were the same as in Hanna et al. [1999]. Calibration results indicate that 

simulations of reservoir water surface elevation at the dam in the year 1995 had a root mean 

squared error (RMSE) of 0.17m, percent bias of 0.02%, and adjusted R
2
 of 0.999. Monthly 
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temperature statistics for the calibration run included RMSE in °C ranging from 0.59 (May) to 

1.23 (Oct), with a mean error of +0.95 °C. The mean percent bias was -2.33%, and the mean 

adjusted R
2
 was 0.966. 

 

Figure 5.4: TCD gate operations and release temperature targets used in the Hanna et al. [1999] study. 

5.3.3 Stochastic Weather Generator 

Weather generator algorithms are typically used to produce multiple, synthetic time series 

of weather from finite station records of hydrometeorological variables. These time series are 

expected to capture the statistical properties of the historical record, such as mean, variance, 

skew and probability density function. Parametric and non-parametric methods have been 

employed to the task of stochastic weather generation [Wilks, 1999; Wilks and Wilby, 1999, 
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Rajagopalan and Lall, 1999]. Parametric weather generators entail modeling precipitation 

occurrence as a Markov Chain and conditionally modeling precipitation amounts and other 

weather variables such as maximum and minimum temperatures, solar radiation etc., via 

parametric probability distribution functions fitted to the historical data. Capturing seasonality 

and lagged dependence requires fitting the distributions and Markov chains separately for each 

month and multivariate regression model. As can be seen the computational expense is quite 

high by way of fitting several model parameters, furthermore, it can get unwieldy if this is to be 

extended for multi-site weather generation. Also, any distributional features, such as bimodality, 

and nonlinearity in relationships are not captured using parametric methods due to the unimodal 

nature of the candidate distributions and underlying assumption of linearity for the regression 

models (see Rajagopalan and Lall, 1999; Rajagopalan et al., 2010 for an overview of these 

methods).  

Non-parametric methods, on the other hand, are data driven, and hence make no a priori 

assumptions based on distribution of the historical data or linearity. See Rajagopalan [1995] and 

Rajagopalan et al. [2010] for an overview of these methods for hydrologic modeling.  There are 

several nonparametric methods of which k-Nearest Neighbor (K-nn) time series resampling, first 

introduced by Lall and Sharma [1996], is simpler and robust.  The method has been expanded to 

multivariate weather generation [Rajagopalan and Lall, 1999], and more recently, to multiple 

sites [Buishand and Brandsma, 2001; Mehrotra and Sharma, 2006; Yates et al., 2003] and also to 

downscaling climate information [Bannayan and Hoogenboom, 2008].   

 The K-nn based stochastic weather generators [Rajagopalan and Lall, 1999; Yates et al., 

2003] have been enhanced with addition of Markov Chains [Apipattanavis, 2007] and labeled the 

semi-parametric weather generator (SWG), which is used in this research. In SWG, daily 
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weather for day ‘t’ is based on the weather vector on day ‘t- ’ and the precipitation states (wet or 

dry) on days ‘t- ’ and ‘t’; K nearest neighbors of the weather vector on day ‘t’ are obtained from 

historical days within a small window centered on day ‘t’ and one of them is resampled using a 

weight function that gives more weighting to the nearest neighbor and least to the farthest [Lall 

and Sharma, 1996]. The SWG can be applied to generate a variety of daily weather sequences for 

a desired season of any length based on historical data (unconditional generation), or based on 

probabilistic seasonal climate forecasts (conditional generation). For example, if there is a 

forecast of 40 percent above normal temperature, 35 percent near-normal, and 25 percent below 

normal temperatures, the neighbor selection can pick from the respective hot, normal, and cool 

years at the given percentages, respectively, thus generating daily weather sequences that are 

consistent with the probabilistic seasonal climate forecast. The use of seasonal climate forecasts 

in weather generators are described in the above references. The integration of weather 

generators with crop models, hydrologic models and also in construction management has been 

well-documented [Apipattanavis, 2010a, 2010b; Hobson, 2005; Podesta et al. 2010].  

In this chapter, conditional weather ensembles were generated using the SWG with both 

analog years and a seasonal climate forecast. For the analog years of 2000, 2003, and 2005, the 

SWG software of Appipatanavis et al. [2007] was adapted such that the observed meteorology, 

precipitation state, and precipitation transition type for the analog year were applied in the K-nn 

resampling. The neighbors selected for a given day were required to be representative of the 

current and prior day’s weather. For example, on January  , 2003, a set of neighbors are selected 

from the historical record that are similar to the meteorological conditions on that day. Using this 

method, the antecedent atmospheric conditions may be coupled with the observed flow and water 

temperature conditions in that year to create an ensemble of hydroclimatologically-consistent 
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time series of atmospheric and hydrologic forcings. In addition, unconditional (33.3 percent 

probability in each tercile) and conditional weather ensembles (using a seasonal climate forecast 

of 40 percent above normal, 35 percent near normal, and 25 percent below normal air 

temperatures) were generated to indicate the potential application to seasonal planning during the 

hot year of 2003.   

5.3.4 Statistical Models of Water Temperature Attributes 

The availability of the W2 model provides upstream boundary conditions (i.e., Shasta 

Dam release temperature and volume) that serve as input to a statistical model for water 

temperature attributes at the downstream compliance point at Balls Ferry. The statistical model 

essentially predicts the change in water temperature from Shasta outfall to the compliance point 

as a result of the atmospheric forcing (i.e., translates reservoir operations downstream to the river 

portion of the Sacramento River system).  

For completeness, a brief description of the GLM approach developed in Caldwell et al. 

[2013b] is provided. In a GLM, the response or the dependent variable Y can be assumed to be a 

realization from any distribution in the exponential family with a set of parameters [McCullagh 

and Nelder, 1989]. A smooth and invertible link function transforms the conditional expectation 

of Y to a set of predictors (Equation 5.1).  

G(E(Y)) = f (X) + ε = Xβ
T
+ ε  (5.1) 

G(.) is the link function, X is the set of predictors or independent variables, E(Y) is the expected 

value of the response variable, 
T
 is the transpose operator, and ε is the error assumed to be 

normally distributed with variance (σε). In a linear model (the standard linear regression), the 

function G(.) is identity and Y is assumed to be normally distributed. Depending on the assumed 
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distribution of Y, there exists an appropriate link function [McCullagh and Nelder, 1989]. The 

model parameters, β, are estimated using an iterative weighted least squares method that 

maximizes the likelihood function as opposed to an ordinary least squares method in linear 

modeling. The GLM can be used to model a variety of response variables. For skewed variables 

with a lower bound of 0 such as daily maximum water temperature (DTX) or daily water 

temperature range (DTR), the Gamma distribution assumption of Y and its associated link 

function is appropriate. The Gamma distribution is also valid for the daily minimum and daily 

mean water temperature (DTN and DTM, respectively). For number of hours of temperature 

exceedance (NHE), the Poisson distribution and its associated link functions can be used; for 

probability of exceedance (POE), a binomial distribution and its link function (i.e., logistic 

regression) is the approach. We refer the readers to McCullagh and Nelder [1989] for 

information about a variety of distributions, link functions, and parameter estimation.  

 To obtain the best set of predictors for the model, there are objective criteria such as the 

Akaike Information Criteria (AIC) or Bayesian Information Criteria (BIC), both of which 

penalize the likelihood function based on the number of parameters [Venables and Ripley, 2002]. 

Models are fit using all possible subsets of predictors and also link functions; for each, the AIC 

and BIC are computed and the model with lowest AIC or BIC is selected as the ‘best model.’ 

Models can also be tested for significance against a null model or an appropriate subset model 

using a chi-squared test. We used BIC in this study as it tends to be slightly more parsimonious 

compared to AIC. 

 The function f in Equation 5.1 is linear and fitted to the entire data, and therefore can 

miss capturing “local” nonlinearities. To address this, we used a nonparametric approach based 

on local polynomials [Loader, 1999] to fit f.  In this, the function is estimated ‘locally’ for any 
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desired point x. The small set of neighbors (αN; N is the total number of data points and α is a 

value in the range of 0 to 1) to x is identified and to this a polynomial of order p is fitted. Thus, 

we used the fitted polynomial to estimate the response variable Y at the desired point x. This 

process is repeated for any estimation point. Note that if α and p are set to 1 then this collapses to 

the linear functional model in Equation 5.1. In this regard, the local polynomial provides an 

additional degree of flexibility to the GLM framework. The choice of α and p are obtained using 

a Generalized Cross Validation criteria (GCV) that is similar to AIC.  The GCV can also be used 

to obtain the best set of predictors [e.g., Regonda et al., 2005]. However, the local polynomials 

are fit to the best predictor set obtained from BIC above using the global fit. This hybrid 

approach was applied in Caldwell et al. [2013b] and is preferred for computational efficiency. A 

large number of predictors are considered based on prior research and knowledge of the system, 

including the water and air temperatures and hydrologic characteristics of the previous and 

current day (see Table 3.1). In addition, a seasonal model fit for the period July through 

September is also provided to encompass the primary season of violations. The GLM is used to 

translate the release temperature and flow from Shasta Dam to the downstream compliance point 

at Balls Ferry, allowing the W2 model forced with the variety of future hydroclimates to 

determine the thermal structure in the reservoir driven by atmospheric conditions and TCD 

operations. 

5.3.5 Multi-model Integration and Application 

The data from the study region and the selected years for application is first described, 

followed by the steps involved in the multi-model integration. High quality measurements of 

hourly water temperature at the Balls Ferry gauge are available for the period 1994 to present 

from the California Data Exchange Center (CDEC) of the California Department of Water 
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Resources. Overlapping hourly discharge and water temperature release data at Shasta Dam are 

also available from CDEC with hourly meteorological data from the National Weather Service 

automated site at Redding Airport. Since the primary season of interest for fish mortality 

includes the summer months when water supply is low and atmospheric heating is at a 

maximum, the selection of years for simulation focus on the seasonal values of mean air 

temperature and total precipitation. During the period 1994 to present, an evaluation of 

meteorological data identified three years that represent dry (2005), hot (2003), and cool, wet 

(2000) conditions (Figure 5.5).  The data from each of these years were used to generate multiple 

scenarios within the weather generator software while constraining the weather scenarios to best 

match flow conditions in the river system during the observed year. 

 

Figure 5.5: Seasonal a) total precipitation and b) mean air temperature for the period July through 

September at Redding, California, used for selecting different hydroclimatological regimes. 
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For the analog years of 2000, 2003, and 2005, the SWG weather generator was applied to 

generate daily for each day in these years using the observed data from the previous day. For 

example, an ensemble of daily weather is generated for January 2, 2000 using the observed daily 

weather of January 1, 2000 and the precipitation transition type between these days and so on. 

Thus, the produced weather ensembles, along with the daily observed flow and water 

temperature conditions, create an ensemble of hydroclimatologically-consistent time series of 

atmospheric and hydrologic forcings.  For ‘conditional’ weather ensembles, a seasonal 

temperature forecast of 40 percent above normal, 35 percent near normal, and 25 percent below 

normal air temperatures for the year 2003 was used. 

As shown in Figure 5.2, integration of the individual dynamic and statistical tools provide 

a coupled system that uses TCD operations and an ensemble of weather and hydrologic 

conditions to modify in-reservoir thermal structure. The level of release from the default TCD 

operations is used to extract the release temperature from the modified in-reservoir thermal 

profile prior to application in the GLM for prediction of the water temperature attributes at the 

Balls Ferry compliance point. The individual steps required include: 

a) The weather generator is conditioned on one of the analog years or on a future 

climate forecast to provide a set of dates from the historical record 

b) For each simulated date, the hourly observed meteorology at Redding Airport is 

adjusted to Shasta Dam for the W2 model and daily observed meteorology at 

Redding Airport is retained for application in the statistical model to produce the 

weather scenarios 
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c) For each simulated date, the observed daily inflows, outflow, and water 

temperature data are applied in the W2 model and may also be applied directly in 

the statistical model (i.e., generate hydrologic scenarios) 

d) Instead of using the observed temperature release data on individual days, we use 

the W2 model to predict the in-reservoir thermal conditions based on the weather 

scenarios and hydrologic scenarios and replace the original release temperature 

variable in the statistical model 

e) Finally, the adjusted hydrology is input to the statistical model to predict thermal 

conditions downstream at the compliance point at Balls Ferry 

5.4 Results 

5.4.1 Weather Generation Performance 

The primary variables of interest in the statistical models include daily maximum and 

minimum air temperature and release flow and temperature from Shasta Dam. Since the weather 

generator is conditioned on particular years, the expectation is that the observed values from any 

individual year will fall within the bounds of the simulated variables. Indeed, the weather 

generator is capable of reproducing the atmospheric and hydrologic conditions at Shasta Dam 

(e.g., Figure 5.6). Plots for the month of July (Figure 5.6) are representative of those from all 

other months (not shown) and represent the ensemble of inputs available for application in both 

W2 and the water temperature attribute ensembles from the GLM. 
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Figure 5.6: Comparison of observed (red lines and points) and simulated (boxplots) values of maximum air 

temperature (left column), minimum air temperature (center column), and output volume (right column) at 

Shasta Dam for the different hydroclimate years of 2000 (a, b, c), 2003 (d, e, f), and 2005 (g, h, i) for the 

month of July. 

5.4.2 In-Reservoir Water Temperature Performance 

For each of the analog years (i.e., 2000, 2003, and 2005), Reclamation provided in-

reservoir thermal profiles approximately 122m upstream of the dam, which corresponds to 

segment 21 in the W2 model. These data were non-continuous throughout each year and a total 
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of nine days were available during the summer season (July to October) for the year 2003. The 

model generally under-estimates the release temperature at the level of TCD release (shown in 

blue) during the early summer (Julian day ≤ 223) by a mean value of  .9 °C (Figure 5.7); 

however, during the latter half of the summer (223 < Julian day < 282), the estimate of release 

temperature is well-captured by the ensembles with mean error of 0.20 °C. In addition, the W2 

model in simulation mode shows similar skill to the calibration run; the mean error at all levels 

within the thermal profile for all days during the summer season is -0.31 °C with a range of -1.33 

to +1.26 °C, which is approximately the same magnitude of the +0.95 °C mean error during the 

calibration year of 1995. 

 

Figure 5.7: Boxplots of the simulated thermal profiles in segment 21 of the W2 model on the Julian day noted 

during the year 2003 with observed values within that segment from Reclamation (red). 
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5.4.3 Downstream Water Temperature Performance 

After implementing the ensemble of weather and hydrology scenarios within the W2 

model, the TCD shutter elevation schedule for operations and the dam outflow temperature 

prediction from W2 is used to replace the original water temperature release variable from the 

weather generator. The new water temperature release variable is then applied in the GLM to 

generate new predicted values of each water temperature attribute at Balls Ferry.  

While the models of number of hours exceeding the threshold temperature of 13.3 °C 

(NHE) and the probability of exceeding that threshold (POE) for each of the hydroclimate 

conditions (i.e., the years of 2000, 2003, and 2005) generally capture the seasonal variability, 

there is an under-estimation of NHE, and hence POE, particularly during the summer months of 

August and September (Figure 5.8 through Figure 5.10). In July, the predictions of POE are 

highly variable and are roughly normally distributed between the values of 0 and 1. Models of 

DTR, DTX, DTN, and DTM, however, generally capture the observed values well, with 

deviations occurring primarily during the cool season and spring runoff season. Mean errors of 

DTR, DTX, DTN, and DTM are relatively small (Figure 5.11). Largest mean errors exist in 

September and December for DTN and DTM; however, both are still +/- 2 °C. A preference for 

under- or over-estimation by the coupled W2-GLM models for the other variables is not evident 

for other months or hydroclimate type. 
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Figure 5.8: Comparison of observed (red lines and points) and simulated (boxplots) values of each water 

temperature attribute at the Balls Ferry gauge, including number of hours of exceedance (NHE), probability 

of exceedance (POE), daily water temperature range in °C (DTR), daily maximum water temperature in °C 

(DTX), daily minimum water temperature in °C (DTN), and daily mean water temperature in °C (DTM) for 

the cool, wet year of 2000. 
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Figure 5.9: Same as Figure 5.8 for the hot year of 2003. 
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Figure 5.10: Same as Figure 5.8 for the dry year of 2005. 
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Figure 5.11: Mean error between the observed and simulated values of each water temperature attribute for 

the cool, wet scenario (cyan), hot scenario (red), or dry scenario (orange).Units are hours (NHE), probability 

(POE), and °C (DTR, DTX, DTN, and DTM). 

5.4.4 Potential Seasonal Planning Application 

The potential exists to apply seasonal forecast information in the W2 framework to assess 

the risk of depleting the in-reservoir cold pool. To elucidate this, we evaluate the reservoir 
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elevation of the 13.3 °C isotherm at the time when carryover storage and water debt is calculated 

on November 1
st
 [BOR, 2004] to define the upper boundary of the cold pool (i.e., an estimate of 

cold water volume at the end of the summer season). We also investigate the reservoir release 

temperature from Shasta Dam for the hot calendar year 2003. The highest elevation of the 13.3 

°C isotherm is compared to the elevation of the TCD withdrawal outlets. The probability density 

functions of the ensemble from 2003, the unconditional simulations, and the conditional 

simulations are compared in Figure 5.12. The conditional simulations produce a constant result 

of a cold pool water surface elevation of 208.6 m, which is well below the lowest TCD gate 

elevation of 219.5 m. This indicates that the cold pool volume has already been depleted in the 

conditional simulations by November 1
st
. The unconditional simulations have a mean cold pool 

elevation of 233.7 m, and the 2003 ensembles have a mean of 228.43 m. By computing the area 

under the curve to the left of the lowest TCD elevation in Figure 5.12, we can estimate the 

probability of running out of cold water pool during the upcoming season. In our case, the 

seasonal climate forecast was issued on June 1
st
 for the upcoming July to September time frame, 

providing over 90 days of lead time. In this case, the approximate observed risk is defined by the 

2003 ensemble (33 percent). The unconditional run would drastically under-estimate the risk 

(3.7%), while the conditional run over-estimates the risk with a probability of 100%. Although 

the skewed climate forecast is an over-estimate, modifications to the default operational scenario 

to mitigate the anticipated short-fall in cold water pool could provide operators with multiple 

planning scenarios to address the high potential for cold pool exhaustion and the translated 

effects on violations at the downstream compliance point at Balls Ferry. 
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Figure 5.12: Probability density functions for the end of season cold pool elevation defined as the level of the 

13.3 °C isotherm for the 2003 ensembles, unconditional simulations, and conditional simulations. The lowest 

TCD withdrawal elevation of 219.5 meters is shown. 

5.5 Summary and Conclusion 

In this study, we couple a weather generator, hydrodynamic model, and statistical water 

temperature model to generate predictions of water temperature attributes at the downstream 

compliance point at Balls Ferry using a variety of hydroclimate conditions from analog years of 

2000, 2003, and 2005. In addition, unconditional and conditional weather generator scenarios are 
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used as input to the coupled modeling framework to show potential application to seasonal risk 

assessment of in-reservoir thermal objectives, in particular the upper elevation of the cold pool 

and reservoir release temperature criteria. An investigation of the effects of reservoir operations 

on in-reservoir and downstream thermal objectives is currently underway [Caldwell, 2013d]. 

The coupling of a weather generator, hydrodynamic model, and statistical water 

temperature model is successful in reproducing the observed meteorological (maximum and 

minimum air temperatures) and hydrologic (release volume and temperature) predictors included 

in the GLM model for translation of upstream boundary conditions downstream (Figure 5.6 and 

Figure 5.7). In addition, the GLM model is successful at generating daily time series of water 

temperature attributes at the downstream compliance point at Balls Ferry (Figure 5.8 through 

Figure 5.10). While individual water temperature attributes show a lack of skill during the 

summer months (e.g., NHE and POE), other variables are adequate for water management 

applications under the three different hydroclimate regimes with little deviation from 

observations. The improvement in variability of potential future conditions, while providing 

deviation from the observed, offers the opportunity to plan for multiple scenarios for the summer 

season, primarily during the period of July to September. Integration with the GLM statistical 

model allows the translation of reservoir operations effectively to the downstream compliance 

location. While the TCD operations schedule in Figure 5.4 establishes release temperature 

objectives to meet downstream thermal requirements, an important result of the current research 

is that the number of days of exceedance at the reservoir (125 days) is far higher than the 

predicted mean of 2 days at the downstream compliance point (not shown); therefore, the 

coupling of the multiple models is required to estimate the potential impact to fisheries below the 

dam. Future work should focus on the adjustment of the TCD operations at the dam and the 
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sensitivity of the downstream temperatures to these adjustments. It is possible that minor changes 

to the standard operations through manipulation of the rule curves shown in Figure 5.4 could 

yield great benefits to water supply, particularly under different hydroclimate scenarios.  

The methods developed in this study improve on previous work by directly predicting the 

downstream thermal impacts within the river at a compliance point of interest. The ensemble 

(i.e., stochastic approach) provides both risk and uncertainty information that was previously 

unavailable from applications of the W2 model at Shasta Lake.  Limitations of this method 

include the use of a default set of TCD operations and defined daily release volumes from the 

days selected in the weather generator. Improvements in the quality and consistency of 

meteorological and hydrological inputs would likely improve the skill of the coupled models. It 

is anticipated that these improvements, along with continued investigation of climate impacts on 

fisheries in the Sacramento River, will be completed as part of ongoing research. 

This chapter of the dissertation was submitted in July 2013 to Environmental Modeling 

and Software as an article tentatively entitled: ‘Implementation of a Coupled Statistical-

Hydrodynamic Modeling System to Predict Water Temperature Attributes under Variable 

Hydroclimate Conditions’. 
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6 COUPLING OF WEATHER GENERATOR, CE-QUAL-W2, AND RAFT MODEL 

6.1 Background 

Although daily operations of the releases from SHD are designed to mitigate potential 

impacts downstream to protected fishes, seasonal planning requirements for managing the 

reservoir levels for supply to municipal and agricultural users is also an important consideration. 

An improved forecast of above or below normal probabilities of risk to fish in the SRB would 

allow adaptation of current planning methodologies to ensure adequate water for both supply and 

fisheries protection. Danner et al. [2012] proposed a coupled modeling framework (Figure 6.1) 

that links mesoscale weather and ecological models to generate inputs for a physically-based 

water temperature model for monitoring and forecasting water temperature at fine spatiotemporal 

scales.  

The integrated framework also provides the capability to develop long-range (e.g., 

seasonal) outlooks of risk through coupling with statistical methods. These long-range 

projections are an important and complementary decision support tool (DST) for reservoir 

managers interested in meeting the multiple criteria of many competing demands for water 

supply. By integrating state-of-the-art modeling systems with statistical analysis and prediction 

methods, a comprehensive set of DSTs can be developed that will best guide water resource 

management decisions in the SRB. 
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Figure 6.1: The coupled modeling framework of Danner et al. [2012]. A mesoscale weather model, the 

Weather Research and Forecasting (WRF) model, Biome-BGC, an ecological component model of the 

Terrestrial Observation and Prediction System (TOPS) are linked to form TOPS-WRF. This provides 

necessary inputs to the River Assessment for Forecasting Temperatures (RAFT) model. The outputs from 

RAFT are distributed to the end users through web services and an interactive web site. (Extracted from 

Danner et al. [2012]). 

Pike et al. [2013] develop state-space models (SSMs) to generate spatiotemporally 

explicit river temperature estimates. State-space time series methods [Bravo et al., 1993; Harvey, 

1989] are an attractive approach to modeling river temperature over large areas at relatively fine 

scales. The model, designated as the River Assessment and Forecasting Temperatures (RAFT) 
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model, from Pike et al. [2013] closely follows the methodology of Bravo et al. [1993], with the 

state vector consisting of temperatures and temperature gradients at various points along the 

river, and forcing terms, including flow, temperature of water released from reservoirs, and 

climatological variables such as air temperature, insolation, vapor pressure deficit, and wind 

speed, entering through the system matrices of a Kalman filter. The approach represents a 

substantial improvement over the existing DSTs because it provides temperature estimates at the 

appropriate spatiotemporal scales for evaluating the thermal impacts on fish (sub-hourly for 

every kilometer of river reach), allows for hindcasting and forecasting, and provides a 

statistically valid measure of uncertainty. Furthermore, once the model has been fit to 

observational data, it can be used to simulate the system. For example, the performance of 

various water release strategies in meeting river temperature criteria can be evaluated under 

historical or hypothetical climate scenarios. The state-space model can also be driven by the 

output from a weather generator, coupled with corresponding flow information for the selected 

days. The days simulated by the weather generator are used to extract hourly time series from a 

particular reference meteorological gauge. The upstream inflow values at the upstream boundary 

in the RAFT model for the given day are used to force the model at hourly time steps. However, 

the selection of release flow and temperature relative to a particular day simulated by the weather 

generator may not be consistent with the weather. Therefore, coupling with a reservoir model 

would improve the representativeness of the upstream boundary conditions.   

Using a coupled approach, sub-hourly high-resolution temperature projections may be 

generated across an entire season. By doing so, we can estimate the risk of exceeding 

temperature thresholds at various locations along the river. Due to the complexity of the RAFT, 

this method is somewhat restrictive due to the computational resources required to generate 
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multiple scenarios provided by the weather generator. However, the output can be used to 

identify the associated risk of thermal violations at multiple downstream points along the river. 

In addition, the RAFT model has the capability to examine the impact of different operations 

scenarios at the upstream boundary by changing the release temperature and volume at the 

upstream boundary condition through coupling a hydraulic model of Shasta Lake. 

To assess the effects of TCD operations on river thermal conditions at a compliance point 

downstream under variable hydroclimatological conditions, a modeling effort has been 

undertaken (Figure 6.2) that links a reservoir water quality model forced with output from 

stochastic weather generation software to the state-space hydrodynamic model of water 

temperature from Pike et al. [2013]. This chapter presents simulation results for the single year 

of 2003, which is representative of hot conditions within the watershed during the summer 

season.   

 

Figure 6.2: Flow chart of the coupled modeling system, including the weather and hydrologic scenarios from 

the stochastic weather generator, which are used to force either the two dimensional hydraulic model (CE-

QUAL-W2) or the statistical model (GLM). Adjusted time series of hydrology and weather are then used in 

the hydrodynamic model (RAFT) as inputs. Ensembles of hourly and daily water temperatures and attributes 

can be calculated through either the RAFT model or GLM. 
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6.2 Data Sources and Methods 

6.2.1 Study Area 

The current chapter will again focus in the upper Sacramento River Basin (see earlier 

chapters and Figure 1.1). As discussed previously, Shasta Dam was retrofitted with temperature 

control devices, which allow selective withdrawals from different depths (and, therefore, 

different temperatures) in the reservoir based on water temperature requirements downstream. 

One of three important temperature compliance points at Balls Ferry (BSF). We focus only on 

BSF as it is highly likely that if temperature objectives are not met at this location that the other 

compliance points farther downstream will have even poorer compliance statistics. We will use 

the flow and water temperature data available at several key sites along the river, including: SHD 

(flow and water temperature) and BSF (water temperature). The flow at BSF is not included as 

the releases upstream drive this variable. A single meteorological site with hourly observations is 

available in the valley at Redding, CA, which is approximately half-way between KWD and 

BSF. The site provides a variety of meteorological variables (except solar radiation); however, 

we use primarily the maximum and minimum air temperature and precipitation from the site.  

The flow, water temperature, and meteorological variables serve as input to the various 

components of the decision support system. The historical hydrologic information is primarily 

available for the period 1994 to present. The meteorological variables of air temperature and 

precipitation are used as input to the stochastic weather generator software. The flow, water 

temperature, air temperature, and precipitation were used as potential predictors in the statistical 

models, along with prior day values for each. Additional parameters, such as barometric pressure 

and wind, are incorporated into the physical water temperature models. No solar radiation data 
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were available for the physical modeling system and, therefore, were estimated using equations 

which relate latitude, time of year, and cloud cover to solar radiation. 

6.2.2 Year Selection 

Again, high quality and primarily continuous measurements of hourly water temperature 

at the Balls Ferry gauge are available for the period 1994 to present from the California Data 

Exchange Center (CDEC) of the California Department of Water Resources. Overlapping hourly 

discharge and water temperature release data at Shasta Dam are also available from CDEC with 

hourly meteorological data from the National Weather Service automated site at Redding 

Airport. Since the TCD was installed in early 1997, we restrict our selection of years to the 

period since 1997. During that period, an evaluation of meteorological data identified three years 

that represent dry (1995), hot (2003), and cool, wet (2000) conditions (see Chapter 5).  The data 

from a single hot year (2003) will be used to generate multiple scenarios within the weather 

generator software while constraining the weather scenarios to best match flow conditions in the 

river system during the observed year. Here, we use only a single year to demonstrate the 

applicability of the integrated system, though additional years are expected to have similar 

results. 

6.2.3 RAFT Model 

The River Algorithm for Forecasting Temperatures (RAFT) model was developed by 

Pike et al. [2013] and a full description of the model can be found in their publication or a more 

general description in Danner et al. [2012]. Additionally, a brief description of the model is 

included in Section 2.5.1. The hydrodynamic model consists of an advection-dispersion equation 

describing the downstream movement of heat, coupled to a one-dimensional hydrologic routing 
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model to describe the movement of water downstream.  Figure 6.3 provides a schematic of the 

exchange of heat within a single control volume. Pike et al. [2013] assume the lateral and vertical 

temperature gradients in the channel are negligible and apply a one-dimensional equation with 

unsteady, non-uniform dynamics.  

The hydrologic routing is accomplished through a one-dimensional Muskingum-Cunge 

formulation due to its prior application in unsteady, non-uniform flow by Boyd and Kasper 

[2003] and in state-space applications [e.g., Georgakakos et al, 1990]. The RAFT model involves 

converting these governing equations into linearized state-space form and assimilating 

observations via use of a Kalman filter and closes the energy budget equation through time and 

space using a robust semi-Langrangian numerical scheme. Additional details of these procedures 

can be found in Pike et al. [2013].  

 

Figure 6.3: Heat pathways into and out of a control volume. Advection and diffusion are the only processes 

which exchange heat between grid cells. [Extracted from Pike et al. [2013]] 
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The model utilizes gridded and point input data including: (a) meteorological time series 

of solar radiation, long-wave radiation, air temperature, dew point temperature, and wind speed 

with optional entries for cloud cover and atmospheric pressure; (b) channel geometry; and, (c) 

flow and tributary time-series at the upstream boundary and along tributaries (Table 6.1).   

Table 6.1: Input requirements into RAFT (required and supplemental) [Extracted from Pike et al. [2013]] 

 

  The meteorological data is derived from the combined Weather Research and Forecasting 

(WRF) and Terrestrial Observation and Prediction System (TOPS) model (Figure 6.1). The 

WRF-TOPS framework integrates operational satellite data, ground-based monitoring data, 

microclimate mapping, and physical and ecosystem models, with an industry-standard numerical 

weather prediction model to generate estimates of each atmospheric variable and can be run in 

hindcast or predictive mode. The bathymetric data were developed using HEC-RAS model 

calibration procedures. The flow and water temperature requirements were derived from point 

observations from at sites along the river at reservoir release sites. Additional details on model 

validation and performance can be found in Pike et al. [2013]. 
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For the application in the dissertation, the RAFT model incorporates point data uniformly 

across the gridded domain for meteorology, which is based on the hourly observation site at 

Redding, California, with adjustment to a location representative of Shasta Dam. The boundary 

condition inputs include the simulated flow and water temperature releases using the CE-QUAL-

W2 model after forcing by the output from the stochastic weather generator. A description of the 

W2 model and brief introduction to the stochastic weather generator are provided in the 

following sections. 

6.2.4 Hydrologic Model 

Hanna et al. [1999] introduced a two-dimensional hydrodynamic model of the reservoir 

to ascertain the in-reservoir impacts on water temperatures. Shasta Lake is a large, deep, and 

dendritic system with water quality characteristics that vary spatially and temporally. As such, 

Hanna et al. [1999] developed and calibrated a CE-QUAL-W2 (W2) model [USACE 1995] for 

Shasta Lake to simulate TCD operations and predict in-reservoir water temperatures.  Reservoir 

geometry in the W2 model is simplified using lateral averaging and therefore is partitioned into 

model segments along the length (Figure 2.3). Model output consists of simulated vertical 

profiles of water quality parameters, including water temperature for each of those segments. 

TCD operations for the model were established using a set of decision points throughout the year 

based upon the release temperature target, where release temperatures are as warm as possible 

from November through April with coolest releases during the period May through August. This 

requires a step-wise reduction in release elevation throughout the year (see Chapter 5). The 

output from the W2 model will serve as upstream boundary conditions to the RAFT model. 
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6.2.5 Weather Generation 

Weather generators are typically used to produce multiple, synthetic time series of 

weather from finite station records of hydrometeorological variables. These time series are 

expected to reasonably simulate the key climate properties derived from the historical record, 

such as mean, variance, and skew. The output from weather generators can then be integrated 

into response models (e.g., W2 and RAFT) to characterize the impact of weather and climate on 

the system [Wilks 1999; Wilks and Wilby 1999]. Appipatanavis et al. [2007] developed a semi-

parametric weather generator (SWG) that uses the K-nn resampling technique to generate the 

weather time series, but also an initial parametric step which applies a Markov chain to model 

the precipitation occurrence to better capture the wet/dry spell statistics of the historical record. 

The K-nn resampling is then conditioned on the precipitation state, which improves the 

simulation of the distributional and lag-dependence statistics of the meteorological variables. The 

method can be easily integrated with seasonal climate forecasts or utilize an analog year, as is 

done here for 2003, to generate time series of daily weather conditioned on expected future 

conditions. These ensembles can then be implemented in decision tools to quantify risk for 

planning beyond the skillful range (i.e., hours to several days) of deterministic models.  

In this chapter, conditional weather ensembles were generated using the SWG and the 

single analog year of 2003 described in Section 6.2.2. The SWG software of Appipatanavis et al. 

[2007] was adapted such that the observed meteorology, precipitation state, and precipitation 

transition type for the analog year were applied in the K-nn neighbor resampling. Using this 

method, the antecedent atmospheric conditions may be coupled with the observed flow and water 

temperature conditions in that year to create an ensemble of hydroclimatologically-similar time 
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series of atmospheric and hydrologic forcings for both the W2 and RAFT models. Additional, 

more detailed information on the weather generator can be found in prior chapters. 

6.2.6 Statistical Models of Water Temperature 

For comparison with the output from the coupled W2-RAFT modeling system, we 

generate predictions of six water temperature attributes using a generalized linear modeling 

(GLM) approach, as described in Section 2.5.3. The GLM provides a complementary set of 

seasonal predictions for the watershed that may be utilized individually or coupled with the 

physical model output through Bayesian combination methodologies to produce a more skillful 

forecast. A large number of predictors are considered based on prior research and knowledge of 

the system – they include the water and air temperatures, precipitation, and hydrologic 

characteristics of the previous and current day, which are expected to best represent the key 

physical, dynamical processes ongoing in the basin, including: heat exchange with the 

atmosphere, advection, dispersion, and turbulent mixing, while neglecting the heat exchange 

along the bed-water interface.   

A separate model is fitted for each water temperature attribute (i.e., NHE, POE, DTR, 

DTX, DTN, and DTM) for each month to capture the seasonal variability in forcing mechanisms. 

The GLM is used to translate the release temperature and flow from Shasta Dam to the 

downstream compliance point at Balls Ferry, allowing the W2 model forced with the ensemble 

of weather scenarios to determine the vertical temperature profile within the reservoir, and 

hence, the release water temperature from the dam rather than specifying the actual observed 

values which may not be consistent with the weather scenario. 
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6.3 Results 

6.3.1 RAFT Model Performance 

A total of 50 simulations for the year 2003 were used as forcing for the W2 model, which 

provided release flow and release temperature as the upstream boundary condition to the RAFT 

model. The RAFT model provides spatially explicit estimates of water temperature for a total of 

48 grid cells of 2-km resolution for each hour of the year. For example, Figure 6.4 shows the 

statistical properties from the 50 ensembles. Violations are indicated by mean values in the red to 

maroon shading, which begin to occur downstream around early September (hour=6000) and 

migrate upstream between Shasta Dam and the Balls Ferry gauge (at distance=21) by mid-

October (hour=7000). High values of standard deviation in excess of 1 °C near the dam during 

the mid-October time frame indicate large uncertainty in the predictions during the fall. Skewed 

predictions are evident in the summer season and correspond closely with the time just prior to 

the adjustment of the TCD within the W2 model as the release water and downstream river water 

warms in response to increasing air temperatures. There is no clear signal in the kurtosis.  
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Figure 6.4: Statistical values of the model predicted hourly water temperature from the 50 simulations using 

W2 as upstream boundary conditions. Distance is given in grid cell lengths of 2 km. For reference, Balls 

Ferry is approximately 42km downstream of Shasta Dam at Distance =21. 

While the spatial variability is important for noting specific recovery regions for the fish 

during high water temperatures in other sections of the river, the primary objective of water 

managers is to meet compliance temperatures at one of the three sites downstream of Shasta 

Dam. Here, we focus on extracting the hourly time series from the grid cell collocated with the 

gauge at Balls Ferry, again at grid distance=21. For each hour from the 50 simulations, the 

maximum, minimum and mean water temperature value are extracted and plotted for comparison 

with the observed (Figure 6.5). While the range from the model ensemble appears to capture the 

observed data during the cool season (November (hour~7500) through April (hour ~3000)), the 

observed values during 2003 are nearly equal to or exceed the maximum water temperature 

predictions from the RAFT model. Using the mean RAFT predicted water temperatures as a 
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reference, the model generally under-estimates the water temperature at the Balls Ferry gauge, 

particularly during the summer months (e.g., Figure 6.6).  

 

Figure 6.5: Hourly maximum (orange), minimum (blue), and mean (grey) predictions of hourly water 

temperatures at Balls Ferry from RAFT for the year 2003 with observed data in red. 

 

Figure 6.6: Boxplots of hourly water temperature predictions from RAFT during the period July to October 

2003 with observed values in red. 
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To assess the performance of the coupled W2-RAFT model, the hourly water temperature 

from the 50 simulations were compared to observed hourly values at the Balls Ferry site using 

the following statistics: Nash-Sutcliffe coefficient [NS; Nash and Sutcliffe, 1970]; ratio of the 

root mean square error to the standard deviation of the observed data (RSR); percent bias 

(PBIAS), the ratio of the sum of residual errors between the simulated and observed data and the 

sum of the observed data; the mean error (ME); the root mean square error (RMSE); and, the 

adjusted R
2
 or the squared correlation between the observed and predicted values adjusted for 

sample size and degrees of freedom (Figure 6.7).  Guidelines established by Moriasi et al. [2007] 

and applied in Ficklin et al. [2012] where NS > 0.50, RSR < 0.70, and PBIAS between +/- 25 

percent are used to qualify the validation results as satisfactory. 

 

Figure 6.7: RAFT performance skill scores, including the Nash-Sutliffe coefficient (NS),  ratio of the root 

mean square error to the standard deviation of the data (RSR), percent bias (PBIAS), mean error (ME), root 

mean square error (RMSE), and adjusted R
2
 (AdjR2). 
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From Figure 6.7, the NS scores are almost entirely negative for each month of the year, 

indicating poor skill and that the observed mean is a better predictor than the current model, such 

that the residual variance is larger than the data variance. This is not alarming given the purpose 

of the ensemble is to generate a wide array of potential future scenarios that are representative of 

a year like 2003. However, we do expect better performance from the coupled model. The RSR 

values are above 0.7 throughout the year, indicating normalized RMSE values of 1 to 3 C. The 

smallest residual variations are evidenced by smaller values of RSR in the snow runoff season 

(May – June) and December. The PBIAS statistic fall within the satisfactory range from Moriasi 

et al [2007]; however, a general negative (under-estimate) bias is shown through much of the 

year, with the exception of the November to December time frame, which correlates well with 

the positive values for mean errors. Mean errors are generally in the +/- 2 C range, which 

suggests reasonable model performance. In addition, the adjusted R
2
 values are above 0.40 from 

April to December, suggesting that a bias correction alone may improve the model performance. 

6.3.2 Comparison with GLM 

The coupling of the physical models (W2-RAFT) provides enhanced spatial and temporal 

resolution of the stream temperatures downstream of Shasta Dam; however, since the GLM is 

also coupled to the W2 model (W2-GLM), we evaluate the performance of each of the coupled 

systems using daily water temperature attributes at the Balls Ferry gauge. Comparison of the 

GLM to the water temperature attributes for three individual years was presented in Chapter 4. 

For completeness, a different analysis is provided in Figure 6.8, which indicates the observed 

data are encompassed within the bounds of the W2-GLM daily ensemble boxplots and 

approximately follow the daily ensemble mean. 
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Figure 6.8: Boxplots of the daily water temperature attributes of number of hours exceedance (NHE), 

probability of exceedance (POE), daily water temperature range (DTR), maximum daily water temperature 

(DTX), minimum daily water temperature (DTN), and daily mean water temperature (DTM) from the W2-

GLM relative to the observed (red). 

The low bias in the W2-RAFT model output is again evident in the daily water 

temperature attributes lumped by month (Figure 6.9), particularly during the summer months. In 

Figure 6.9, the W2-GLM with Redding meteorology (GLMR) matches the observations much 

more closely for all months and all variables when compared to the W2-RAFT model results. 
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Figure 6.9: Comparison of the RAFT (black boxplots), GLM with Redding meteorology (GLMR, blue line), 

GLM with Shasta meteorology (GLMS, purple line), and observed (red line) water temperature attributes 

(same as in Figure 6.8). 

6.4 Conclusion 

This research investigates the potential for coupling statistical methods in the form of a 

stochastic weather generator with a 2-dimensional hydraulic model of a reservoir (W2) to 

provide upstream boundary conditions to a complex hydrodynamic model of water temperature 

and flow for a section of the Sacramento River (RAFT) (Figure 6.2). The RAFT model has the 

potential to provide skilled hourly estimates at high spatial and temporal resolution on the 

Sacramento River from Shasta Dam downstream for approximately 96 km below the last 

compliance point at Red Bluff Diversion Dam. For example, in Figure 6.4, although there are 
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violations adjacent to the dam near the end of the mitigation season (i.e., October) in the 

approximate first 20 grid cells, there is also cool water availability downstream at that time, 

where the warmer water releases from Shasta Dam are being influenced by the time accumulated 

impacts of atmospheric cooling during the late fall and early winter. This potential refuge for 

salmon would not be evident in a single point regression-based model, such as the GLM.  

Initial model results indicate that the coupled W2-RAFT system generally under-

estimates water temperatures at the Balls Ferry gauge. A potential source of that error is the input 

meteorology into the RAFT model matches that of the W2 model. In other words, air 

temperatures that are on average 1.71 C cooler at Shasta Dam than at the Redding location, half-

way between the dam and Balls Ferry, are applied over the entire stretch of river. We attempt to 

gain insight into whether this is the result of the performance differences between the GLM and 

RAFT by substituting the Shasta Dam meteorology time series into the coupled W2-GLM model 

(see GLMS in Figure 6.9). While some lowering of the daily values is evident, the slight change 

in air temperatures within a fitted model has minimal impact on the W2-GLM model output. It is 

likely that the improvement of the spatial and temporal resolution of meteorology data offered in 

the TOPS-WRF framework is the key to improved modeling results from the RAFT model 

(Figure 6.12) and discussed in Pike et al [2013] and Danner et al. [2012]. Due to the obvious 

limitations of the current W2-RAFT coupling, future efforts should focus on the implementation 

of the TOPS-WRF output and reanalysis data into both the W2 and RAFT as meteorological 

inputs instead of using a single point estimate over the entire gridded RAFT domain. That said, a 

research effort is currently underway to provide the RAFT model with Redding meteorological 

inputs and the respective W2-generated boundary conditions, which we anticipate will somewhat 

correct the under-estimation bias presently in the coupled W2-RAFT modeling system.  
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Figure 6.10: Example of the RAFT output temperature time series with model predictions (red) and 

observations (black) for the month of September 2011. [Extracted from Danner et al. [2012]]. 

 While additional work is necessary to improve upon the W2-RAFT model coupling, this 

is the first attempt to provide upstream boundary conditions to the RAFT model that are not 

prescribed, but rather offer an ensemble approach to seasonal planning exercises. Uncertainty, 

even in a spatial capacity can be gleaned from the coupled models (e.g., Figure 6.4). The current 

effort focused on the application of an ensemble of future weather conditions representative of 

the hydroclimate of the year 2003 and, therefore, any uncertainty is related to the variability of 

the future weather scenario based on a single (i.e., analog-type) year. Additional uncertainty can 

be incorporated through the weather generator by generating unconditional (climatology) and 

conditional (climatology shifted per climate forecast or intuitive information) weather scenarios 

for input to the W2-RAFT model. For example, there may be a management goal to plan for 

multiple outcomes (e.g., conditional simulations of a 50% warmer than normal summer or a 90% 

drier than normal winter) and relate them to a climatological (unconditional) set of years. 

In conclusion, while the initial results indicate a need for improved representation of the 

atmospheric inputs, the coupling of the W2-RAFT model was successful in generating estimates 

of water temperature at 2-km resolution at the hourly time step. The comparison of the GLMR 

versus GLMS should justify that additional efforts in integrating improved atmospheric forcings 
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to the coupled system will substantiate its application for seasonal, ensemble-based predictions 

of water temperature attributes in water management on the Sacramento River.  

This chapter of the dissertation will tentatively be submitted in summer 2013 to a peer-

reviewed journal as an article tentatively entitled: ‘Linking Statistical and Hydrodynamic Models 

for Assessment of Climate Impacts on Fisheries’.  
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7 DECISION SUPPORT SYSTEM 

Increasing demands on the limited and variable water supply across the West can result in 

insufficient streamflow to sustain healthy fish habitat. In addition, construction of dams and 

diversions along rivers for the purpose of storing and distributing the limited supply of water can 

further deteriorate natural flow regimes and, often, obstruct important migratory pathways for 

cold water fish reproduction and development. In regulated systems, such as the Sacramento 

River system, these impacts are an interaction of volume and temperature of water release from 

the reservoir and the subsequent exchange with the environment downstream.  

We develop an integrated decision support system (DSS) for modeling and mitigating 

stream temperature impacts and demonstrate it on the Sacramento River system in California. 

The DSS has four broad components that are coupled to produce the decision tool for stream 

temperature mitigation: (i) a suite of statistical models for modeling stream temperature 

attributes using hydrology and climate variables of critical importance to fish habitat; (ii) a 

reservoir thermal model for modeling the thermal structure and, consequently, the water release 

temperature, (iii) a stochastic weather generator to simulate weather sequences consistent with 

seasonal outlooks; and, (iv) a set of decision rules (i.e., ‘rubric’) for reservoir water releases in 

response to outputs from the above components. The DSS incorporates forecast uncertainties and 

reservoir operating options to help mitigate stream temperature impacts for fish habitat, while 

efficiently using the reservoir water supply and cold pool storage. The use of these coupled tools 

in simulating impacts of future climate on stream temperature variability is also demonstrated. 

The results indicate that the DSS could substantially reduce the number of violations of thermal 

criteria, while ensuring maintenance of the cold pool storage throughout the summer.  
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7.1 Background 

Water allocations in the western United States require consideration of the competing 

short- and long-term needs of many socioeconomic factors, including, but not limited to: 

agriculture, urban use (municipal and industrial), flood mitigation, hydropower generation, and 

environmental regulation. Increasing demands on the limited and variable water supply across 

the West has resulted in insufficient streamflow to sustain healthy fish habitat and populations. 

In the late summer and early fall, high air temperature and low flow conditions can cause rapid 

increases in water temperature, creating critical conditions, particularly for cold water fish such 

as salmon. In addition, construction of dams and diversions along rivers for the purpose of 

storing and distributing the limited supply of water can further deteriorate natural flow regimes 

and, often, obstruct important migratory pathways for fish reproduction and development. 

In the Sacramento River Basin (SRB) of California (Figure 1.1), the long-term decline in 

salmon populations has made management of the remaining freshwater habitat critical. This is 

magnified by the increasing demands on water resources and an extended drought that has 

enveloped the western United States in recent years. The construction of Shasta (SHD) and 

Keswick Dams in the SRB headwaters during the mid-20
th

 century provided additional storage 

facilities to meet regional water needs; however, hundreds of kilometers of spawning habitat 

above the dams were lost. The declines of the winter run and the late fall runs of Chinook salmon 

in the SRB have been listed on the endangered and threatened species lists, respectively, by the 

Environmental Protection Agency. In 2008 and 2009, the Pacific Fishery Management Council 

closed the river to commercial and recreational fishing, resulting in economic losses in excess of 

$500M and over 2000 jobs. 
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The management of freshwater resources is one of the greatest challenges currently 

facing society. With increasing demand, alteration of water systems, and a changing climate, the 

thermal regimes of freshwater habitats are being substantially impacted. The thermal impacts on 

the ecology of river ecosystems have been well documented [Poole and Berman, 2001; Cassie, 

2006; McCullough et al., 2009], yet there is no comprehensive modeling framework in place for 

accurately modeling climate-related impacts. In regulated systems, these impacts are a complex 

function of the interaction of release volume and temperature and the subsequent exchange with 

the environment downstream. 

The effective use of water to protect fish requires water managers to modify operational 

strategies by incorporating water quality objectives into daily operations and long-term (i.e., 

seasonal) planning; this typically involves management of flow releases to control water quality 

parameters, such as temperature. Shasta Dam, however, was retrofitted with a temperature 

control device (TCD) in the mid-1990s, which allows selective withdrawals from different 

depths (and, therefore, different temperatures) in the reservoir based on water temperature 

requirements downstream; therefore, water managers may modify either the release volume 

and/or release temperature to meet objectives downstream. Although Keswick Reservoir lies 

between Shasta Lake and the downstream compliance locations, it serves as a “pass-through” 

structure with minimal attenuation in temperature and flow released from Shasta. The three 

important temperature compliance points exist at Balls Ferry (BSF), Jellys Ferry, and Bend 

Bridge. As BSF is closest to SHD and, hence, the most influenced by any mitigation efforts from 

the dams, this point is selected as the focus of the current study. It is highly likely that if 

temperature objectives are not met at this location that the points downstream will have even 

poorer compliance statistics. The SRB is a complex hydrologic system with multiple reservoirs 
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along tributaries to the main stem Sacramento River, which enables operators to perform water 

exchanges between basins through diversions or collaborated releases at other dams. Therefore, 

the focus of this study considers only the required adaptations at SHD, with the assumption that 

changes in operations there may be accounted for through exchanges with other water reserves in 

the region to meet the multiple demands downstream. 

Water quantity and quality require joint management in multi-purpose basins like the 

SRB. Coupling of multiple modeling techniques have been successfully employed to meet 

planning objectives related to water quality and quantity [de Azevado et al., 2000]. Neumann et 

al. [2006] integrated a statistical model with an operational rubric to meet thermal objectives on 

the Truckee River in Nevada by determining the net flow release required to meet a target 

temperature with a defined level of risk. Since release volume was the single variable used to 

mitigate stream temperature violations, the impact to in-reservoir thermal profiles were 

neglected. The total discharge volume served as a limiting factor [Neumann et al., 2006]. Hanna 

et al. [1999], Saito et al. [2001], and Bartholow et al. [2001] investigated the effects of TCD 

operations at SHD on in-reservoir thermal properties and the feedback on biota through 

application of the two-dimensional, laterally averaged hydrodynamic model, CE-QUAL-W2 

[W2; Cole and Wells, 2011].  Operation of the TCD altered both the in-reservoir [Hanna et al., 

1999; Bartholow et al., 2001; Saito et al., 2001] and downstream thermal, chemical, and, hence, 

biological dynamics of the system [Lieberman et al., 2000]. Lieberman et al. [2001] evaluated 

the effects of the TCD on nutrients, particulate organic matter, and plankton in the SHD 

tailwaters. In addition, Deas et al. [1997] developed models of river temperature for the 

Sacramento River downstream of SHD. Caldwell et al. [2013b] developed a statistical prediction 
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model multiple stream temperature attributes at the compliance point at BSF, using a local 

polynomial-based, generalized linear model (GLM).  

A model-based, DSS that is effective in predicting temperature must also be capable of 

incorporating stream temperature objectives into daily operating procedures. Paraphrased from 

Neumann et al. [2006], a practical DSS for daily application has these basic functional 

requirements: 

(i) A set of typical basin operating procedures 

(ii) A simplistic and spatially and temporally consistent stream temperature prediction 

model 

(iii) A method to quantify confidence/uncertainty with the temperature prediction 

(iv) A set of operating rules that benefit river biota, which incorporate stream 

temperature prediction and the confidence level 

(v) A seasonal strategy to mitigate daily violations, while meeting seasonal demands 

This chapter describes the development of a predictive model-based DSS for stream 

temperature management. The DSS couples a stream temperature forecast model with a 

stochastic weather generator to a decision rubric. The DSS incorporates forecast uncertainties 

and reservoir operating options to help mitigate stream temperature impacts for fish habitat, 

while efficiently using the reservoir water supply and cold pool storage. The use of these coupled 

tools in simulating impacts of future climate on stream temperature variability is also 

demonstrated. The remainder of the chapter includes: a general overview of the components of 

the DSS; the constraints applied in the DSS; the rules developed to manage release volume and 

release temperature to meet downstream temperature targets, including the seasonal criteria; and, 
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comparison of the performance of these rules in the SRB under multiple hydroclimate conditions 

during the period since the TCD installation in 1997.. 

7.2 Decision Support System 

A model-based DSS that meets the functional requirements of a DSS is developed, the 

schematic of which is shown in Figure 7.1. The DSS includes the daily time-step W2 reservoir 

model [Cole and Wells, 2012; Cole and Buchak, 1995], a local polynomial-based GLM model 

[Caldwell et al., 2013b] as the predictive stream temperature model, and the operating 

procedures to determine reservoir releases each day.. The main objective of the DSS is to 

provide the water managers with information on the daily water release temperature and volume 

in response to stream temperature forecast based on weather, while incorporating uncertainty. 

Furthermore, the goal is to preserve the cold pool (i.e. cold water at the bottom of reservoir) 

while reducing violations (i.e. stream temperatures exceeding biological targets described later) 

for fish habitat. 

 

Figure 7.1: Schematic of the DSS with the five functional criteria steps denoted. 

  For each day of the simulation, the normal operating policy sets the reservoir releases and 

operations. The release elevation is defined, while the release temperature is extracted from the 
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prescribed elevation using the thermal profile from the W2 model on that day. Then, the DSS 

predicts the mean daily stream temperature at BSF. A rule checks whether the predicted 

temperature is above the threshold. Then, the DSS calculates a corresponding target temperature 

with the prescribed level of acceptable risk/confidence. A decision is then made on how to 

operate the releases to meet the target temperature. If adjustments are made during a given week, 

the W2 model is updated at the end of that week to account for any adjustments in the in-

reservoir thermal profile due to changes in operations to meet thermal objectives; this provides 

updated estimates of release temperature to the predictive stream temperature model and updated 

end-of-season cold pool elevation for management of the cold water pool. In addition, the DSS 

must include a source for meteorological and hydrological forcing data for both the reservoir 

model and predictive stream temperature model. We use both observed data and simulated data 

from a stochastic weather generator described later in this section. The remainder of Section 7.2 

is arranged according to the functional criteria in Section 7.1 and, describes the individual 

components of the DSS. 

7.2.1 Operational Procedures 

Functional criterion (i) for a DSS requires the determination of a standard operating 

policy for the river system. The existing hydrodynamic reservoir model [Hanna et al., 1999] 

established a set of optimized operating procedures related to TCD operations and reservoir 

release temperature criteria (Figure 5.4). As temperatures within the reservoir are typically 

warmer at the surface with decreasing temperatures with depth, water is released from the 

highest TCD gates during the winter with a drop down schedule throughout the calendar year 

with lowest level water released during the peak season (July through October, i.e., summer) 

when stream temperature violations downstream are of major concern.  In addition, there are 
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restrictions to the daily fluctuation of flows (Table 7.1), as well as, a minimum flow requirement 

of 3250 cfs (~92 cms) and maximum flood control outflow of 75,000 cfs (~2124 cms) [BOR, 

2008a]. 

Table 7.1: Allowed changes in flow releases from Shasta Dam. Nightly values given in BOR [2008a] 

multiplied by two to estimate daily restrictions. 

Flow (cms) 
Allowed Daily 

Variation 

≥  70  +-30% 

≥   3 and < 

170 
+/- 11.3 cms 

< 113 +/- 5.7 cms 

 

Inflows to Shasta Lake come from a combination of rain and snowmelt runoff as large 

precipitation systems impinge on the mountainous terrain, primarily during the winter season. 

Hence, storage in Shasta Lake is essential to providing water releases later in the summer to meet 

the multiple demands in the system, but particularly to provide cold water releases to fish during 

the hot, dry summer [van Vleck et al., 1988; SFEP, 1992; Yates et al., 2008].  

Discharge water from Shasta Lake takes approximately one to two days to reach the 

nearest downstream compliance point at BSF. During low flow conditions in the summer, the 

water rapidly warms due to interaction with the environment, leading to water temperatures of 

detriment to the survivability of cold water fish, such as salmon.  Reclamation established the 

thermal objectives for the river based on multiple studies on anadromous fish and impacts to 

growth, mortality, and disease [BOR, 1991a, 1991b]. The thermal objective allows a maximum 

of two consecutive days with daily mean stream temperature in excess of 0.5 °F (0.3 ºC) above 

the temperature threshold of 56 °F (13.3 ºC). These targets are specific to the compliance points 

below SHD and should be adjusted for a given river.  
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Due to the focus on meeting stream temperature objectives and the ability to modify 

operations at other structures within the SRB, the seasonal criterion (v) is established to both 

save water and to maximize mitigation of violations throughout the year. The level of the cold 

water pool can be defined as the level of the 13.3 °C isotherm at the end of the mitigation season. 

We use Julian day 305 (i.e., November 1
st
 (standard year) or October 31

st
 (leap year)) to extract 

the elevation of the 13.3 ºC at the dam as a proxy for available cold water storage. 

7.2.2 Water Temperature Prediction – Statistical and Hydrodynamical Models 

According to functional criteria (ii) and (iii) of a practical DSS, predictions of stream 

temperatures must include skillful estimates of future stream temperatures, along with the ability 

to quantify uncertainty. The statistical model of Caldwell et al. [2013a, 2013b], along with the 

standard error in predictions, are coupled with the methods for computing target temperature 

from Neumann et al. [2003] to meet these requirements. Caldwell et al. [2013b] developed a 

regression-based model using a local polynomial, GLM approach to predict stream temperature 

attributes. The modeled attributes included variables from multiple distributions, including: 

probability of exceedance (binomial); daily maximum, minimum, and mean stream temperature 

(Gamma); daily number of hours of exceeding a threshold (Poisson), and daily stream 

temperature range (Gaussian). The GLM model predicted the downstream values at BSF as a 

locally fit, linear function of current and prior day values of air temperature, precipitation, and 

release volume and release temperature at SHD to account for lag time in translation of 

operational decisions to the downstream compliance location. The simplicity of the model is 

consistent with the DSS requirements and provides a measurement of standard error with each 

prediction that can be used in the method of Neumann et al. [2003, 2006] to specify a target 

temperature. Assuming normally distributed errors about the predicted stream temperature value, 
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the normal probability distribution function can be shifted such that the area above the thermal 

criteria is equivalent to the acceptable level of risk/confidence. The target temperature is then 

calculated as the difference between the predicted stream temperature and the magnitude of the 

shift. The GLM model can then be used to adjust the input release temperature and release 

volume to meet the thermal objective. Adjustments can be made by utilizing the W2 model of 

Shasta Lake.  

Hanna et al. [1999] and Saito [1999] developed and calibrated a W2 model for Shasta 

Lake to simulate TCD operations and predict in-reservoir water temperatures. W2 is a two-

dimensional hydrodynamic and water quality model that can simulate reservoir operations [Cole 

and Buchak, 1995].  This study uses the most recent version 3.7 of W2 from Cole and Wells 

[2011]. Reservoir water quality is assumed in the model to be well-mixed laterally across the 

reservoir.  Water quality varies with depth and longitudinally in the reservoir; therefore, two-

dimensional representation of the reservoir with lateral averaging is assumed. Model output for 

Shasta Lake consists of simulated vertical profiles of water quality parameters, including water 

temperature, for each of 63 model segments. We focus on the use of the segment nearest the dam 

for extraction of water temperature release data at the appropriate TCD elevation based on the 

operations schedule outlined in Hanna et al. [1999]. Additional details on the updated W2 model 

may be found in Caldwell et al. [2013c].  

Both the statistical model and hydrodynamic models require hydrological and 

meteorological inputs. Historical data may be used to provide a single trace of predicted stream 

temperatures for comparison with observations; however, to provide a measure of uncertainty for 

short-term and seasonal planning, a variety of daily weather input scenarios is required. 

Stochastic Weather generators are typically used to produce multiple, synthetic time series of 
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weather from finite station records of hydrometeorological variables. These time series are 

designed to simulate the statistical properties of the historical data such as probability density 

function, mean, variance, and skew. The output from weather generators can then be integrated 

into process response models (e.g., the GLM, W2 model, crop model, hydrologic models, etc.) to 

characterize the impact of weather and climate on the decision systems [Wilks 1999; Wilks and 

Wilby 1999, Podesta et al., 2010; Apipattanavis, 2010a, 2010b]. Appipatanavis et al. [2007] 

developed a semi-parametric weather generator (SWG) that can be easily integrated with 

seasonal climate forecasts or utilize an analog (i.e., climatologically or hydrologically similar) 

year to generate time series of daily weather conditioned on expected future climate conditions – 

such as seasonal climate forecasts – which will be of immense use in seasonal planning efforts. 

We refer the readers to Apipattanavis et al. [2007] for details on SWG and its application and, to 

references therein for an overview of stochastic weather generators. The SWG software of 

Appipatanavis et al. [2007] was adapted such that the observed meteorology, precipitation state, 

and precipitation transition type for any given analog year could be applied in the resampling. 

Using this method, the antecedent atmospheric conditions may be coupled with the observed 

flow and water temperature conditions in that year to create an ensemble of 

hydroclimatologically-consistent time series of atmospheric and hydrologic forcings. In addition, 

unconditional (33.3 percent probability in each tercile) and conditional weather ensembles (using 

a seasonal climate forecast of 40 percent above normal, 35 percent near normal, and 25 percent 

below normal air temperatures) were generated to indicate the potential application to seasonal 

planning during the year of 2008.   
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7.2.3 Operational Rules - Rubric 

In order to accomplish the fourth and fifth functional criteria a set of operational rules 

also called ‘rubric’ is necessary. The operational rules developed recommend releases that vary 

in magnitude and release level from the TCD at SHD to meet the thermal objectives at the 

compliance point at BSF. Multiple release scenarios to improve the stream temperature through 

operations of the TCD are evaluated. Feedback from water managers provided insightful, yet 

non-specific, guidelines for operations of the TCD structure at SHD. Essentially, there exist three 

independent options for TCD operations:  

Option 1: Release from the current elevation, as in the default configuration above 

Option 2: Release sufficiently cool water from the one of the next two lower elevations  

Option 3: Release a mix of water from the current and one of the next two lower 

elevations 

The final option is that none of the three options are required and, therefore, no change is 

made to operations. 

7.2.3.1 Option 1 – Current Level Release 

The first release rule can be considered the default and may only be active if the current 

elevation temperature is below the target temperature. A check is made to evaluate if the current 

day’s predicted temperature and the prior two days’ temperatures are above the threshold of  3.6 

°C. If this is the third day of violation, the DSS determines the additional flow required to 

alleviate the violation on the current day with the level of acceptable risk/confidence. If this is 

not the third day of violation and the prior day is not a violation, a check is performed to ensure 
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the level of the 13.3 ºC isotherm on Julian day 305 is above the elevation of the lowest TCD gate 

at 219.5 m. If ample cold water pool is anticipated, a violation is allowed to conserve the cold 

water pool. The appropriate release volume to meet the thermal objective is determined by 

iterating through the GLM with the current release temperature and multiple flow releases at 100 

cfs increments between the minimum and maximum values calculated using Table 7.1. If these 

values fall outside the flood control and minimum flow requirements, the respective maximum or 

minimum value would be used, respectively. If allowing a violation, the flow magnitude 

typically corresponds to the minimum flow calculated from Table 7.1. 

7.2.3.2 Option 2 – Lower Level Release 

Like Option 1, the second option uses the same criteria for deciding whether to modify 

releases to meet a target temperature or to allow a violation; however, this rule is active when the 

current elevation water temperature release is above the target temperature. First, the water 

temperatures at the next two lower TCD elevations are extracted from the in-reservoir thermal 

profile at the dam. The uppermost TCD elevation with sufficiently cold water (i.e., less than the 

target temperature), is defined as the new release elevation and temperature. The appropriate 

release volume to meet the thermal objective is determined by iterating through the GLM with 

the new release temperature and multiple flow releases at 100 cfs increments between the 

minimum and maximum values calculated using Table 7.1. As in Option 1, the new flow must 

fall within the flow constraints and, for violations, typically corresponds to the minimum flow 

calculated from Table 7.1. 
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7.2.3.3 Option 3 – Mixed Release 

Like Options 1 and 2, the third option uses the same criteria for deciding whether to 

modify releases to meet a target temperature or to allow a violation; however, this rule attempts 

to conserve cold water through mixing different temperature water from multiple levels within 

the reservoir. This option is active when the current elevation water temperature release is above 

the target temperature. First, the water temperatures at the next two lower TCD elevations are 

extracted from the in-reservoir thermal profile at the dam. A mixed water temperature release 

temperature is calculated using a combination of the current and one of the next two lower 

elevations’ water temperatures with the total release volume equal to the current release volume. 

The total release volume is the cumulative flow from the two selected levels. Multiple potential 

flow releases are generated at 100 cfs increments for the uppermost elevation between 0 cfs and 

the total release volume. The difference between the iterated flow and the total release volume is 

applied at the lower level.  The final mixed temperature (Tf) is then calculated using an 

equilibrium temperature formula in Equation 7.1,  

 f 
         

     
   , (7.1) 

where T and V are the temperature and volume of releases, respectively, at the two selected 

levels (i.e., 1 and 2). The appropriate release volume at each level to meet the thermal objective 

is determined by iterating through the GLM with the mixed release temperature and total flow 

release to determine the mixture with the least release volume at the lower level that also meets 

the target temperature requirement. 
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7.3 Test Scenarios 

The DSS was applied to the Sacramento River to improve stream temperature predictions 

at the BSF gauge. We assess the effects of TCD operations on river thermal conditions under 

variable hydroclimatological conditions and two risk levels (α 0.05 and α 0.50).The release 

volume and temperature from SHD and meteorological variables from Redding Airport (Figure 

1.1) are used to generate inputs to the various components of the DSS. High quality and 

primarily continuous measurements of hourly stream temperature at the BSF gauge are available 

for the period 1994 to present from the California Data Exchange Center (CDEC) of the 

California Department of Water Resources. Overlapping hourly discharge and water temperature 

release data at SHD are also available from CDEC with hourly meteorological data from the 

National Weather Service automated site at Redding Airport. Since the TCD was installed in 

early 1997, we restrict our selection of years to the period after 1997. 

During that period, an evaluation of meteorological data identified three years that 

represent dry (2005), hot (2003), and cool, wet (2000) conditions.  The observed daily weather is 

used in the DSS described earlier, resulting in decisions of water release temperature and 

amount. Stream temperature attributes and violations are compared with baseline or ‘observed’. 

Actual operations are a result of several subjective factors in addition to the rules described in the 

DSS. Hence a fair comparison is to compare each simulation with the DSS (i.e., With DSS) to a 

‘baseline’ run using observed meteorology and flow releases based on the water temperature 

releases from the W2 model (i.e., No DSS). This ‘baseline’ output is mentioned as ‘observed’, 

henceforth.  This is a standard approach in all such DSS evaluations (see e.g., Regonda et al., 

2011; Grantz, 2006). The metrics of concern to water resources include: total annual release 

volume (acre-feet); total annual energy (Joules); and, end-of-season level of 13.3 °C isotherm 
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(meters). For biological impacts, the metrics considered include: annual total daily violations 

(count); total number of hours exceeding 13.3 ºC (count); total days of daily maximum 

temperature above 13.3 ºC (count); mean seasonal (June through October) probability of 

exceedance (percent); and, mean magnitude of stream temperatures above 13.3 °C.  

To demonstrate the utility of the DSS in short term (few days ahead) and long term 

(seasonal) planning with uncertainty - we use the SWG approach to generate daily weather 

ensembles based on just the previous day’s weather (i.e., ‘ unconditional’) and based on seasonal 

climate forecast as well (i.e., ‘ conditional’). For seasonal application, we focus on the year 2008, 

which was a dry and hot year and had a strong forecast climate signal from seasonal climate 

projection of above normal temperatures. The combination of SWG and GLM stream 

temperature model with the W2 model for thermal structure and release temperature from Shasta 

Lake is demonstrated in Caldwell et al. [2013c]. 

7.4 Results 

7.4.1 Short-term Forecast Application 

This capability of the DSS is examined through the use of observed data within the W2 

model for a select set of years: 2000 (cool, wet); 2003 (hot); and, 2005 (dry). While we used 

different levels of risk (α 0.05 and α 0.50) and alternated between Options 2 and 3, the DSS 

failed to offer any difference in the operations of the TCD. For that reason, we apply only Option 

  with a risk level of α 0.05 in the forthcoming comparisons. In general, the W2 model is 

capable of reproducing the observed flows in the individual years (e.g., Figure 7.2); however, 

due to the prescribed release schedule in the model, the release temperatures vary significantly 

(e.g., Figure 7.3).  The examples shown for the year 2003 are representative of the other two 
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years, where the release flow is captured but the release temperature predictions are poor (not 

shown).  

 

Figure 7.2: Comparison of observed (red) and simulated (black) daily flow releases from Shasta Dam in 2003. 
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Figure 7.3: Comparison of observed (red) and simulated (black) daily temperature releases from Shasta Dam 

in 2003. 

Examination of the DSS indicates that net savings in the volume of releases prior to July 

negate the requirement for manipulations of the flow regime during the summer and fall for all 

three years (Figure 7.4). There is also a cumulative reduction in the number of daily violations in 

each of the three hydroclimate conditions by the end of the year (Figure 7.5). In fact, the greatest 

benefit comes during the hot year of 2003 when allowance of violations early in the year result in 

less than 3 non-consecutive violations during the summer season (not shown).  
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Figure 7.4: Comparison of observed (red, dashed) and simulated (black) mean monthly flow (left) and change 

in daily flow release (right) from Shasta Dam in the years 2000, 2003, and 2005. 
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Figure 7.5: Comparison of observed (red, dashed) and simulated (black) cumulative daily violations during 

the years 2000, 2003, and 2005. 

Comparison of each of the years with and without the DSS identifies a general increase in 

the end of year cold pool volume as elevations of the 13.3 °C isotherm increase, except for in the 

dry case, where we expect limited water supply to have an effect (Table 7.2). Table 7.2 also 

shows that the total volume of water released while using the DSS is less in all three cases, as is 

the cumulative energy released throughout the year. A reduction in the number of violations is 

evident in all three cases, although minor because instead of having consecutive days of 
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violations late in the year, we instead see multiple instances of one- or two-day violations in the 

spring, when the violations are less critical to salmon (not shown). Significant reductions in the 

number of hours over the critical threshold are seen in the total number of hours above the 

threshold; so despite the additional daily violations, they are shorter lived. In addition, the 

number of days that the maximum is above the threshold temperature is reduced, suggesting that 

the hottest days are not as hot. The probability of exceedance during the summer is also reduced 

in all three cases, though the cool, wet season shows the greatest dividends. The final comparison 

in Table 7.2 is the mean difference between the daily mean water temperature and the threshold 

value, which indicates that the daily means are as cool or cooler overall with the DSS rather than 

without the DSS in place. 

Table 7.2: Hydrological and biological metrics used to assess the DSS for the years of 2000, 2003, and 2003. 

Metric 

2000 (Cool, Wet) 2005 (Dry) 2003 (Hot) 

No DSS 
With 

DSS 
No DSS 

With 

DSS 
No DSS 

With 

DSS 

End of Year Cold Water Pool Elevation (m) 214.6 232.6 214.6 214.6 255.2 261.1 

Annual Volume Released (af in millions) 71 68 51 50 60 57 

Annual Energy Released (J) 3.8E+18 3.5E+18 2.9E+18 2.8E+18 3.3E+18 3.1E+18 

Annual Total Daily Violations (count) 33 31 41 38 19 16 

Annual Total Number of Hours > 13.3 °C (count) 1081 748 1144 1041 649 491 

Annual Number of Days > 13.3 °C (count) 108 90 112 100 99 83 

Average Seasonal (Jun 1 - Oct 31) POE (percent) 13 7 29 26 19 15 

Mean Magnitude of Difference from 13.3 °C -1.9 -2.4 -1.8 -1.8 -1.6 -1.9 

 

For each of the three years above, we also ran the stochastic weather generator in an 

‘unconditional’ mode to generate ensembles of weather scenarios for each day and consequently 

from a suite of stream temperature predictions at the downstream compliance point at BSF to 

indicate the ability of the weather generator to capture the observed variability. Despite the 

issues at the upstream boundary in the simulated release temperature (Figure 7.3), the translation 

of the releases downstream through the GLM model yield excellent results. For example, in 
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2000, the coupled weather generator, W2, and GLM captures the observed seasonality in each 

variable (Figure 7.6).  Similar results were found for the hot and dry years, as well (not shown). 

 

Figure 7.6: Comparison of observed (red line) and simulated (black boxplots) water temperature attributes 

for the year 2000, including number of hours of exceedance (NHE), probability of exceedance (POE), daily 

water temperature range (DTR), daily maximum water temperature (DTX), daily minimum water 

temperature (DTN), and daily mean water temperature (DTM). 
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7.4.2 Seasonal Forecast Application 

This application is of interest for seasonal water resources management planning. At the 

start of a season (typically July 1
st
 the start of dry season), we need to anticipate stream 

temperature risk throughout the season and how the DSS might assist in mitigating that risk. 

From the prior section, we found that the results were independent of the level of acceptable risk 

and the type of operational change applied (i.e., mixing or not). Therefore, for the seasonal 

application too, the non-mixing Option   with a risk of α 0.05 is used for the analysis. We also 

chose the year 2008, which was a hot and relatively dry year [Caldwell, 2013c]. In addition, a 

seasonal climate forecast for 40% chance of above normal temperatures the International 

Research Institute for Climate and Society at Columbia University 

(http://iri.columbia.edu/climate/forecast/net_asmt/) for the period July through August enabled 

conditional weather generation for comparison. We apply the DSS for the Jul-Oct season of 2008 

using the conditional weather ensembles and we also compare with unconditional weather 

ensembles – this enables to see the effect of using seasonal climate forecasts.  The comparisons 

of the metrics are on the ‘observed’ metrics from 2008 based on the observed hydroclimate 

described earlier. The observed water temperature release from SHD matches more closely with 

that from the conditional scenarios as opposed to the unconditional scenarios (Figure 7.7). The 

improvement is also evident in the translation of that water temperature release downstream to 

the compliance point at BSF. For example, in the month of September, the simulated values of 

each of the six water temperature attributes are more in line with the conditional simulations than 

that of the unconditional (Figure 7.7). The unconditional runs can be viewed as standard 

operations scenarios, which lend credibility to application of seasonal forecast information in 

planning scenarios. 
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Figure 7.7: Comparison of observed (red) and predicted (black) daily water temperature release from Shasta 

Dam (a and b, respectively) and September water temperature attributes for the (c) unconditional and (d) 

conditional simulations in 2008. 

Evaluation of the metrics shows that the conditional runs best capture the mean observed 

statistics in 2008 (Table 7.3). From a hydrological perspective, using the ‘No DSS’ case as the 

baseline, the conditional forecast provides an extra 1.8 m of cold water pool elevation on 

November 1
st
, with over 4 million acre-feet of cumulative volume savings over the year. At the 
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same time, a small reduction in the daily violations is seen, which corresponds to an increase in 

spring season violations and reduction of summer violations, as seen in the single year case. The 

average probability of exceedance is reduced by 10 percent, with nearly 300 fewer hours of 

exceedance, a great benefit to the fisheries. The unconditional simulations show the lack of skill 

that can accompany using climatological averages as a means for prediction (not shown). There 

is a prediction for much more end of year cold water than expected and under-estimation of 

critical thermal criteria. The actual observations again are somewhat different than those from 

the DSS, but indicate that an alternative schedule as prescribed in the W2 model may better serve 

the health of fish populations. 

Table 7.3: Hydrological and biological metrics used to assess the DSS for the seasonal application in 2008. 

Metric No DSS With DSS Observed 

End of Year Cold Water Pool Elevation (m) 210.3 212.1 NA 

Annual Volume Released (af in millions) 59 55 44 

Annual Energy Released (J) 3.3E+18 2.4E+18 2.7E+18 

Annual Total Daily Violations (count) 47 47 82 

Annual Total Number of Hours > 13.3 °C (count) 1564 1292 2592 

Annual Number of Days > 13.3 °C (count) 131 131 176 

Average Seasonal (Jun 1 - Oct 31) POE (percent) 37 27 48 

Mean Magnitude of Difference from 13.3 °C 3.2 2.9 3.2 

 

Finally, the application at the seasonal scale using the weather generator provides an 

opportunity to examine the probability distribution functions of water temperature attributes and 

metrics (Figure 7.8). The same relationships can be seen as described in Table 7.3; however, it is 

possible to compute the reduction in risk relative to using the ‘No DSS’ option as the difference 

between the areas under the curves above some threshold value. We focus here on the DTM 

variable, since it is of greatest interest. While the risk of DTM exceeding 13.6 °C is reduced by 

only 1.8 percent, there is an opportunity to save the cold water pool, while reducing the NHE, 

POE, and DTX during the summer season. 
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Figure 7.8: Probability density functions for the number of hours of exceedance (NHE, in hours), probability 

of exceedance (POE, as probability), daily maximum water temperature (DTX, in °C), daily mean water 

temperature (DTM, in °C), total release volume (in maf), and total energy used (in J) for the ‘No DSS’, 

unconditional ‘With DSS’, and conditional ‘With DSS’ simulations in 2008. 

7.5 Summary 

Water management in the Sacramento River is a complex task with a diverse set of 

demands ranging from municipal supply to mitigation of fisheries impacts due to high water 

temperatures. Current operations utilize the TCD structure at Shasta Dam to mitigate these high 

water temperatures downstream at designated compliance points. The TCD structure at Shasta 

Dam offers a rather unique opportunity to mitigate water temperature violations through 

adjustments to both release volume and temperature. In this study, we develop and evaluate a 
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model-based DSS that links weather generator software, a predictive stream temperature model, 

and a hydrodynamic reservoir model and compared results to standard operating procedures. The 

weather generator enables the application of analog year and ensemble-based approaches that 

provide estimates of variability in predicted conditions at the short-term and seasonal time scales. 

The predictive stream temperature model translates the reservoir operations to the downstream 

compliance point, while providing the ability to include risk estimates using the methods of 

Neumann et al. [2003, 2006]. In addition, the GLM is capable of predicting other important 

water temperature attributes of interest to fisheries management, including the number of hours 

exceeding a threshold temperature and probability of exceedance of that threshold, among others. 

The hydrodynamic model includes the reservoir operations (i.e., volume and temperature of 

releases), enabling modifications based on the operating rules in Section 7.2.3. Following 

modifications via the DSS, regular updating to the in-reservoir thermal profile prior to prediction 

using the GLM is also accomplished via the W2 model.  

Multiple options for modifying releases at Shasta Dam were considered in the DSS, 

including mixing water from multiple elevations through the TCD and using different acceptable 

levels of risk. Despite anticipated water savings from utilization of a multi-elevation release 

schedule, the DSS failed to activate Option 3. In addition, the DSS was insensitive to the risk 

level; therefore, a high level of confidence and Option 2 were applied for all evaluations. During 

the three years tested in the short-term application, activation of the DSS late in the year was 

non-existent with all modifications to reservoir releases occurring before the month of July. This 

suggests that summer season mitigation can be managed with ample lead time if there is some 

knowledge of the upcoming season’s hydroclimate. In fact, if operators allow consecutive 

violations of less than three days in the first half of the year while ensuring adequate end-of-
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season cold water volume, violations after July are non-existent under multiple hydroclimate 

states. An additional benefit is a savings of one to four million acre-feet of water volume over the 

course of the year, which may be applied to other demands. The reduction in total volume 

released also manifests as an additional 1 to 18 meters of cold water pool by November 1
st
, 

providing a buffer in the situation where the seasonal hydroclimate deviates substantially from 

the climate forecast or the analog year selected for planning. 

The DSS developed here utilizes a rubric-based mechanism for adjusting release volume 

and temperatures; however, a full, multi-objective optimization problem could be solved, as in 

the manner of Carron and Rajaram [2001]. We utilized the rubric-based approach due to the 

complex interactions of humans and operations and the respective impact on thermal regime and 

habitat. This approach allows the consideration of other options for mitigation and system-

specific operational rules. For example, we used a simplified operational procedure for the TCD 

as defined in Hanna et al. [1999]; but, the flexibility of the DSS could incorporate any given 

default procedure. The DSS is general in nature in that the user can replace any of the modules 

with their preferred methods and it is easy to transfer to any other site. For example, forecasts 

from short term weather forecasting models (e.g., WRF) [Danner et al., 2012] can be used for 

real-time operations and management; the rubric could be replaced with a multi-objective 

optimization approach [e.g., Carron and Rajaram, 2001]; a dynamical stream temperature model 

can be used instead of the statistical GLM approach [Pike et al., 2013]. This flexibility will be of 

immense help for water managers to adapt the developed DSS to their systems.   

This chapter of the dissertation was submitted in July 2013 to Environmental Modeling and 

Software as an article entitled ‘Managing Water Temperatures in the Sacramento River, 

California’; see the Caldwell et al. [2013d] reference. 
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8 CONCLUSION AND FUTURE WORK 

In 2004, the National Oceanic and Atmospheric Administration’s (NOAA’s) National 

Marine Fisheries Service (NMFS) issued a Biological Opinion (BiOp) to outline the decisions 

support system for water allocations in the Sacramento River Basin (SRB), particularly the 

Central Valley Project, with respect to impacts on threatened and endangered species in the SRB 

[NMFS, 2004]. Peer-review of the BiOp identified fundamental flaws in two critical 

components, the stream temperature and fish mortality models, due to limitations of the proposed 

methods in both temporal and spatial resolution [Lichatowich et al., 2005; Maguire, 2006; 

McMahon, 2006]. According to the peer-review, the BiOp also failed to adequately address 

uncertainty and risk. For example, there was no effort made within the BiOp to include the 

impacts of climate change over the course of the licensing timeframe, which could be up to 50 

years. As a result of the limitations of the existing DSS, fisheries and water managers are in a 

position of making water allocation decisions based on inadequate information about stream 

temperatures and thermal impacts on salmon and steelhead. To address these issues, an 

integrated framework was proposed that would result in the development of a suite of decision 

support tools (DSTs) for resource managers [Danner et al., 2007].  

The framework of Danner et al. [2007] envisioned satellite-derived inputs in ecological 

and numerical weather prediction models to provide environmental inputs to the stream 

temperature models at increased temporal (~15 minutes) and spatial (~3 km) resolutions. The 

higher-resolution stream temperature forecasts can then be implemented in fish mortality models. 

In this research we developed several complementary components culminating in their coupling 

into a Decision Support System (DSS) for managing the water releases from Shasta Dam to 

mitigate stream temperature impacts. The individual components and their integration to a DSS 
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are a novel and original contribution of this research. The contributions of this dissertation are 

summarized followed by potential benefits of this research to SRB water resources system, 

concluding with extensions for future research. 

8.1 Summary 

The individual components of the integrated framework are described in five central 

chapters (Chapters 3, 4, 5, 6 and 7) and are summarized below. Chapter 1 provides an overview 

of the water resources system in SRB, the stream temperature issues and the problem description 

in general. Chapter 2 is a detailed survey of stream temperature modeling approaches – covering 

physically based approaches that model the thermodynamic and hydraulics in great detail to 

statistical models. 

In Chapter 3 we developed a complementary statistical modeling tool using local 

polynomial based Generalized Linear Model (GLMs) that provides monthly to seasonal forecasts 

of key water temperature attributes and probabilistic estimates of risk of meeting or exceeding 

predetermined thresholds of each attribute. The GLM framework can model a variety of 

variables such as discrete, binary, and continuous, among others. For example, we fitted models 

to predict a variety of water temperature attributes such as number of hours of exceedance 

(discrete), probability of temperature exceeding a threshold (binary), and daily maximum water 

temperature and daily water temperature range (both continuous). We fitted models for each 

month and for each variable separately using a large pool of predictor variables based on 

atmospheric variables (e.g., temperature, precipitation from current and previous day) and water 

variables (e.g., flow, temperature from previous day). Based on cross validated skill scores, the 

models performed well, especially during the summer months of interest.  
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We applied the stochastic weather generator (SWG) to generate ensembles of daily 

weather sequences in an unconditional manner (i.e., assuming all of the historical years are 

equally likely) and conditional manner (based on probabilistic seasonal climate forecast). 

Consequently, we also generated ensembles of water temperature attributes using the local 

polynomial GLMs. We found that these ensembles were consistent with the seasonal forecast, 

demonstrating the ability of the proposed methodology to provide projections of water 

temperature attributes before the start of the season. The ensembles of water temperatures 

provide the estimates of risk of exceeding various compliance thresholds. These risk estimates 

can be of immense help to water managers in making plans for additional water or changes in 

operations before the start of the season to help mitigate water temperature risk in a sustainable 

manner.  

Chapter 4 provides an application of the GLM in the Pacific Northwest, which 

incorporates output from a coupled hydrology model (VIC) and global climate models. The 

objective of Chapter 4 is to identify the expected change in water temperatures in the Methow 

River Basin, Washington, under future climates. Compared to the results from Chapter 3, the 

GLM model performs well in the unregulated Methow Basin with excellent skill scores observed 

at the daily time scale. The GLM model developed in the Methow Basin, however, is designed 

for later application in an hourly time-step, two-dimensional hydraulic model. In order to 

downscale the coarse resolution of the data to hourly, the methodology of Nowak et al. [2010] 

was employed for spatial and temporal disaggregation. A variety of metrics indicated excellent 

skill in the hourly water temperature predictions, as well. The results from the climate change 

assessment show a mean increase in water temperatures near the confluence of the Methow and 

Chewuch Rivers by the year 2080; however, care must be taken in that these results do not 
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include potential changes in riparian vegetation and do not fully incorporate changes in 

snowmelt hydrology. 

In Chapter 5, we coupled the SWG, the two dimensional hydrodynamic model, W2, for 

Lake Shasta, and the local polynomial GLM stream temperature model from Chapter 3 to 

generate predictions of water temperature attributes at the downstream compliance point at Balls 

Ferry using a variety of hydroclimate conditions. We demonstrated this for three years of 2000, 

2003, and 2005. In addition, unconditional and conditional weather generator scenarios are used 

as input to the coupled modeling framework to show potential application to seasonal risk 

assessment of in-reservoir thermal objectives, in particular the upper elevation of the cold pool 

and reservoir release temperature criteria. Furthermore, the W2 model in conjunction with the 

stream temperature model provides appropriate amount of water release from the lake (dam), the 

release temperature and the level to release from the temperature control device (TCD) installed 

in the reservoir. This successful coupling of the three models provides an attractive option for 

use in decision support.  

The coupling of the SWG and W2 is a flexible tool and allows integration with other 

types of water temperature models, including physically-based, dynamic models that require 

upstream boundary conditions at Shasta Lake. As an example, preliminary results from 

application in the River Assessment and Forecasting Tool (RAFT) model of Pike et al. [2013] is 

provided in Chapter 6. The advantage of the RAFT model is the ability to produce spatially-

explicit, high temporal resolution (i.e., hourly) estimates of water temperature throughout the 

upper SRB, including Balls Ferry and other compliance points.  The results from this are 

comparable to those from the statistical stream temperature model described in Chapter 

5.Culmination of all the models described earlier into a robust DSS occurs in Chapter 7. In this, 
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we developed an integrated decision support system (DSS) for modeling and mitigating water 

temperature impacts and demonstrate it on the SRB. The DSS has four broad components that 

are coupled to produce the decision tool for stream temperature mitigation: (i) a suite of 

statistical models for modeling stream temperature attributes using hydrology and climate 

variables of critical importance to fish habitat; (ii) a reservoir thermal model for modeling the 

thermal structure and, consequently, the water release temperature, (iii) a stochastic weather 

generator to simulate weather sequences consistent with seasonal outlooks; and, (iv) a set of 

decision rules (i.e., ‘rubric’) for reservoir water releases in response to outputs from the above 

components. The DSS incorporates forecast uncertainties and reservoir operating options to help 

mitigate stream temperature impacts for fish habitat, while efficiently using the reservoir water 

supply and cold pool storage. The use of these coupled tools in simulating impacts of future 

climate on stream temperature variability is also demonstrated.  

The results of the DSS indicate that allowing non-consecutive violations during the first 

half of the calendar year, within the constraints of reservoir operations, enables significant 

savings in volume released throughout the year.  In addition, evaluation of key metrics of both 

hydrologic and biological significance suggests these adjustments to operations yield 

improvements to the overall water quality at the downstream compliance point of Balls Ferry. 

The results indicate that the DSS could substantially reduce the number of violations of thermal 

criteria, while ensuring maintenance of the cold pool storage throughout the summer. 

8.2 Potential Benefits 

The developed DSS represents a substantial improvement over existing decision methods 

which are not well integrated and, thus, will translate into considerable long and short-term direct 

and indirect socio-economic benefits by efficient management of water resources. These benefits 
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would come as a result of the extensive improvements in the DSTs, including: (i) model outputs 

that are at spatiotemporal scales that are orders of magnitude finer than the current outputs (i.e., 

RAFT); (ii) provision of risk and uncertainty estimates through coupling with weather generation 

software; and, (iii) the ability to test alternative operations scenarios while monitoring the 

potential impacts on hydrology and fisheries. The socioeconomic impacts of the DSS will likely 

be wide-ranging. By providing fisheries managers with future projections of water temperature 

and fish-related metrics, agencies will be better equipped to protect California salmon stocks. 

However, the economic impacts of the proposed DSS improvements will likely be substantially 

greater to the hydropower industry and to the electric utility rate payers in California. In order to 

meet temperature compliance regulations, water managers at generating stations direct cold 

water through low- level river outlets instead of passing water through the hydro turbines, which 

results in the loss of potential power generation. The savings of water indicated in Chapter 7 

would allow additional water to be passed through the hydropower generators. The same 

efficiency principles apply to the Environmental Water Account (EWA) which is a system 

jointly administered by fisheries and water management agencies for purchasing water for the 

purpose of protecting endangered species. Between 2001 and 2004 state and federal 

contributions to the EWA exceeded $414 million. Better management of water resources through 

improved modeling could significantly reduce these values, reducing the cost burden on the state 

and federal agencies. 

8.3 Future Work 

There are several extensions to the integrated framework developed in this dissertation 

listed below some of which are already underway.  
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(i) The meteorology over the lake is not simulated well; currently it is simulated 

based on the weather data at lower elevation. A multi-site weather generator that 

can provide consistent and correlated weather ensembles on lake and the river 

reach downstream is important for better modeling of lake thermal structure and 

release temperatures.  

(ii) Inflows to the lake at the upstream are not incorporated. This needs to be modeled 

separately and coupled with the lake model to provide realistic thermal structure. 

(iii) The stream temperature and flow projections from the DSS need to be driven 

through fish mortality model to evaluate the performance of this integrated DSS 

in mitigating fish mortality. We evaluated the performance on temperature 

threshold which are a surrogate for fish mortality but not its direct indicator. 

(iv) The advantage of the RAFT model, however, is its capability to model at high 

spatial and temporal resolution (i.e., hourly and 1 km). The work presented in the 

dissertation does not fully capitalize on this benefit. At the simplest level, 

additional verification of the coupled RAFT model should be performed to 

determine the spatial limit of effectively modeling the water temperature 

downstream. Also, investigation of the spatial distribution of temperatures 

throughout the river relative to the timing of different life stages of particular fish 

species would provide additional insight into the movement of fish throughout the 

season and, therefore, feedback to water managers on when and where to relocate 

the compliance point for meeting thermal objectives. Using the ensemble 

approach, probabilistic estimates of water temperature may be provided at the 1-

km scale.  
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(v) The DSS developed herein excludes the consideration of operations at other 

structures within the SRB (e.g., Whiskeytown and Trinity Dams). A more robust 

water management tool would provide the ability to incorporate the many 

decisions on allocations within the SRB (e.g., RiverWare; 

http://cadswes.colorado.edu/creative-works/riverware). The current DSS offers 

the potential to save a significant amount of water through investigation of other 

operations considerations, including trade-offs with other adjacent and 

contributing basins. A full evaluation of the set of decisions in the entire SRB that 

maximize benefits to the multiple sectors of water use in the region would assist 

in the substantiation of any modification to existing operating rules.  
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