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ABSTRACT 

The essence of performance-based earthquake engineering (PBEE) is to design and assess 

structures to meet specific performance goals, rather than prescriptive requirements. This thesis 

applies PBEE methods to three problems: (1) evaluating the effectiveness of accidental torsion 

requirements for seismic design; (2) quantifying spatial correlations of building responses for 

regional seismic loss assessments; (3) developing and evaluating regional seismic loss 

assessment methodologies. 

(1) Seismic ground motions induce torsional responses in buildings that are difficult to 

predict. To compensate for this, most modern building codes require the consideration of 

accidental torsion when computing design earthquake forces. This study evaluates the influence 

of accidental torsion seismic design requirements on the performance of 230 archetypical 

buildings, taking collapse capacity as the performance metric. The study concludes that 

accidental torsion provisions may not be necessary for seismic design of buildings without 

excessive torsional flexibility or asymmetry. 

(2) The possible seismic losses to a portfolio of buildings are of interest for insurance and 

reinsurance companies, developers, and policy makers. Probabilistic estimates of earthquake-

induced losses to portfolios of buildings require quantifying correlations between losses of the 

different buildings comprising the building stock. This study examines spatial correlations in 
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building seismic responses. The results demonstrate that correlation patterns in building response 

parameters are closely linked to correlations in spectral acceleration measured at buildings’ first-

mode periods. Based on this finding, enhancements are proposed to state-of-the-art methods for 

regional loss assessment to account for correlations in building response. These building 

responses provide the basis for computation of earthquake-induced losses in the regional 

building stock. 

(3) This study compares current and developing probabilistic regional (portfolio) loss 

assessment methods, including those proposed in (2). Of particular interest are: the impact of 

directly computing losses from building response measures rather than ground motion intensity 

measures; identifying best practices for predicting collapsed buildings; and examining the 

sensitivity of loss assessments to other methodological decisions related to building stock 

classification, exposure, and key sources of uncertainty. On the basis of the identified strengths 

and weaknesses of the different regional loss assessment techniques, “high-end” and “simplified” 

methods are recommended for computing probabilistic regional seismic losses.  
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1 INTRODUCTION 

This thesis aims to use performance-based earthquake engineering (PBEE) methods to 

improve the practice and art of earthquake engineering of building structures. The essence of 

PBEE is to design and build structures that meet the needs and desires of building owners, users, 

and society. PBEE requires the analyst to quantify seismic demands and building capacities 

probabilistically, in order to make risk-informed decisions. This thesis applies PBEE to two main 

areas: (1) making recommendations for building code improvements, in particular focusing on 

accidental torsion design provisions for buildings, and (2) enhancing tools for probabilistic 

regional seismic loss assessment. The overall approach to each of these problems is similar.  The 

problem at hand is analyzed with advanced modeling and simulation techniques. Based on the 

results of robust analyses, simplified methods by which these same problems can be addressed 

are proposed. The goal of the proposed simplified methods is to require less effort on the part of 

the analyst, while, at the same time, ensuring a high level of confidence in the end result. 

This thesis represents a compilation of articles, each of which relies on PBEE methods to 

improve building code provisions or methods of seismic loss assessment for communities of 

buildings. Each of these chapters is a self-contained work, having its own abstract, terminology, 

methodology, and conclusions. Conclusions and limitations from all of the chapters are recapped 

in the Summary and Conclusions chapter at the end of this thesis. 

Chapter 2, which is based on DeBock et al. (2013), evaluates the importance of seismic 

accidental torsion design provisions in modern building codes, focusing specifically on 

ASCE/SEI 7, using collapse capacity as the metric of building performance. In this study, a 

methodology that was originally developed by the FEMA P-695 project to evaluate the 
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performance of a class of buildings all having the same seismic lateral force resisting system is 

adapted to evaluate the collapse performance of buildings designed with and without accidental 

torsion design requirements for seismic-lateral-force-resisting systems with varying ductility. 

Results show that the designs that account for ASCE/SEI 7 accidental torsion provisions lead to 

significant improvements in collapse capacity for buildings that are highly torsionally flexible or 

asymmetric. However, only inconsequential changes in collapse capacity are observed in the 

buildings that are both torsionally stiff and regular in plan. Therefore, the study concludes that 

accidental torsion provisions can be safely omitted from seismic design provisions for buildings 

without torsional irregularities, which can stem from torsional flexibility or asymmetry. This 

simplification can reduce designers’ effort for buildings in which accidental torsion will not be 

important.  

The rest of the thesis investigates and develops improvements to performance-based 

earthquake engineering methods for regional seismic loss assessment. The article that makes up 

Chapter 3, DeBock et al. (2014a), focuses on quantifying spatial correlations in building 

response and implementing a method by which these correlations can be incorporated in a 

regional loss estimation methodology. Previous research has shown that spatial correlations in 

ground shaking intensity are important for predicting the distribution of future losses for a 

geographically distributed stock of buildings. The study shows that buildings located close to 

each other have highly correlated responses to earthquake shaking; the level of correlation 

decreases as the building’s separation distance increases, mostly because the correlation in 

ground motion intensity also decreases with distance. Seismic responses of similar buildings 

(with similar periods and/or ductility capacities) are more correlated than for dissimilar 
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buildings, and large magnitude earthquakes result in positively correlated building responses at 

greater distances than smaller earthquakes.  

A critical observation is that spatial correlations between engineering demand parameters 

(i.e. EDPs, particularly interstory drift) and spectral accelerations at a building’s fundamental 

period (Sa(T1)) exhibit very similar patterns. Building on these findings, a method is proposed 

for incorporating correlations in building response in state-of-the-art methods for regional 

seismic loss assessment. In the proposed method, spatially distributed ground motion intensities 

(i.e. Sa(T1)) are generated with existing models. These “intensity maps” are converted to spatial 

distributions of “EDP maps” through transformations that linearly relate ground motion intensity 

and building response in log space, so-called “IM-EDP transformations”. The transformations 

produce unbiased predictions of building responses that capture the expected spatial correlation 

structure of EDPs. The coefficients needed to define such linear transformations are obtained by 

a priori performing incremental dynamic analysis (IDA) on nonlinear models representing each 

building type of interest. The range of IM-EDP relationships obtained by performing IDA 

analysis with a suite of earthquake ground motion records is strongly tied to the variability of the 

ground motion records’ spectral shapes. A related observation is that the range of potential IM-

EDP relationships that we would expect to occur on average throughout a region from the same 

event is less variable than the IM-EDP relationships observed from record to record in different 

events. Therefore, the distribution of probable IM-EDP relationships that is obtained from IDA is 

modified to estimate the distribution of probable IM-EDP transformations for a region by 

shifting its mean and reducing its variance to account for the spectral shape of the ground motion 

records that are used for IDA analysis. The EDP maps then provide the basis for loss prediction 

in each building in the portfolio/region. 
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The proposed enhancement to regional loss assessment methods represents the first time 

correlations in building responses, in addition to ground motion intensities, are explicitly 

considered. Since EDPs are better predictors of damage/loss than Sa(T1), such a process is 

expected to improve methods for estimating total losses for building stocks that are distributed 

throughout a region.  

Chapter 4, which is based on DeBock et al. (2014b), describes several case-study 

analyses that are performed in order to compare various regional seismic loss assessment 

methods on the basis of how well they estimate the median and range of regional seismic losses, 

given an event, and how difficult they are to execute. The study is performed on multiple stocks 

of ductile and nonductile RC moment frame buildings. A “high-end” method is identified, which 

is considered the most robust regional loss assessment method. Furthermore, the article identifies 

simplified methods that produce distributions of regional losses that are similar to the high-end 

method. Additional factors affecting regional losses are also explored. The study concludes that 

the most important factors to consider in probabilistic regional seismic loss assessments are: (1) 

spatial correlations of ground motion intensity; (2) regional versus site-to-site methods for 

collapse classification; (3) accurate characterization of building capacity, especially strength and 

ductility; and (4) spatial clustering of buildings if such clusters exist in the inventory.  

Documentation of a Matlab tool for regional seismic loss assessment, accompanied by an 

example application, is provided as an appendix to this thesis. The purpose of the appendix is 

two-fold: (1) To provide detailed enough documentation of the regional loss assessment tool to 

enable analysts to use it with a sufficient level of understanding, expand its applicability to other 

regions or buildings, or even to recreate their own version of the regional loss assessment tool; 

(2) To show an example of how the regional loss assessment tool may be used to analyze seismic 
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risks to communities of buildings in a way that informs decision makers about where to focus 

their efforts for improving community (or portfolio) resilience to earthquakes.  
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 2 IMPORTANCE OF SEISMIC DESIGN ACCIDENTAL TORSION 

REQUIREMENTS FOR BUILDING COLLAPSE CAPACITY 

 

ABSTRACT: Seismic ground motions induce torsional responses in buildings 

that can be difficult to predict. To compensate for this, most modern building 

codes require the consideration of accidental torsion when computing design 

earthquake forces. This study evaluates the influence of ASCE/SEI 7 accidental 

torsion seismic design requirements on the performance of 230 archetypical 

buildings that are designed with and without accidental torsion design provisions, 

taking building collapse capacity as the performance metric. The test-case 

archetypes include a broad range of heights, gravity load levels, and plan 

configurations. Results show that the ASCE/SEI 7 accidental torsion provisions 

lead to significant changes in collapse capacity for buildings that are very 

torsionally flexible or asymmetric. However, only inconsequential changes in 

collapse capacity are observed in the buildings that are both torsionally stiff and 

regular in plan. Therefore, the study concludes that accidental torsion provisions 

are not necessary for seismic design of buildings without excessive torsional 

flexibility or asymmetry.  

2.1 Reference Article 

DeBock, D.J., A.B. Liel, C.B. Haselton, J.D. Hooper, and R.A Henige Jr. (2013), “Importance of seismic design 

accidental torsion requirements for building collapse capacity.” Earthquake Engineering and Structural 

Dynamics. In Press. 
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2.2 Introduction 

During an earthquake, torsional deformations in buildings can result from a variety of 

sources. Here, sources of torsional behavior are separated into two categories: ‘inherent torsion’ 

and ‘accidental torsion’. Predictable sources, such as asymmetric building geometry, are 

classified as ‘inherent torsion’. Other sources, such as unaccounted for stiffness contributions 

from the gravity system or nonstructural components, uneven live load distribution, stiffness 

degradation of parts of the lateral system, and varying ground motion intensity across the plan of 

a building, are classified as ‘accidental torsion’ (De la Llera and Chopra 1995). Many building 

codes, such as ASCE/SEI 7, the Eurocode, the National Building Code of Canada, the New 

Zealand Standard, and the Model Building Code of Mexico, impose accidental torsion design 

requirements for buildings with rigid diaphragms (ASCE 2010, Eurocode 8 2004, NRCC 2010, 

NZS 2004, MOC 2008). These provisions require the designer to introduce an accidental 

eccentricity (ea) that offsets the line of action for design lateral shear forces, V, from the center of 

mass by a fraction () of the building’s plan dimension (L) in the direction that is most critical 

for the design of a seismic force resisting element, i.e. ea = ± L (ASCE 2010, Eurocode 8 2004, 

NRCC 2010, NZS 2004, MOC 2008). Typical values of  are on the order of 0.05 or 0.1; in 

ASCE/SEI 7, = 0.05 (ASCE 2010). Accidental torsion moments (Mta) are computed as Mta = 

Vea. These moments are resisted by increasing the design lateral shear forces in the lateral 

resisting system.  

This study quantifies the effect of these building code accidental torsion design requirements 

on building collapse capacity. To this end, approximately 460 three-dimensional (3D) building 

models are analyzed, representing 230 archetype buildings, each designed with and without 

accidental torsion requirements, according to the ASCE/SEI 7-10 design provisions. These 
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analyses are used to evaluate the effectiveness of accidental torsion provisions, as currently 

implemented in modern codes like in ASCE/SEI 7, in preventing earthquake-induced collapse.   

2.3 Background 

Past research on accidental and inherent torsion in buildings has reached varying conclusions 

(Anagnostopoulos et al. 2010, De Stefano and Pintucchi 2008). Key findings from previous 

studies are outlined in this section and are organized by the type of simulation model used, as the 

modeling approach has a bearing on the findings. Three main categories of simulation models 

have been used to study earthquake-induced torsional response in buildings: (1) linear models, 

(2) simplified single-story shear-spring models and (3) lumped plasticity nonlinear frame 

models. For a more detailed literature review, see (De Stefano and Pintucchi 2008). 

Early studies of accidental torsion utilized linear models that were capable of representing 

realistic complex building geometries, but not post-yielding behavior and collapse. Results from 

linear models have shown that design accidental torsion provisions do not significantly impact 

building performance under earthquake excitation for many nominally symmetric buildings. 

However, such provisions may be important for buildings whose torsional periods are either very 

close to or much larger than their lateral periods (De la Llera and Chopra 1992).  Linear models 

have also been used to develop improved design procedures for dealing with accidental torsion. 

For example, De la Llera and Chopra (1992) proposed that accidental torsion be dealt with by 

increasing design forces with amplification factors that are related to the ratio of a building’s 

fundamental torsional and lateral periods of vibration. Such recommendations are outside the 

scope of our study, as we are concerned with the importance of existing accidental torsion design 

requirements. 
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Some of the first nonlinear models used for studying torsion in buildings aggregated the 

behavior of lateral force resisting systems in single-story bilinear shear-spring models. Both Tso 

and Smith (1999) and Anagnostopolulos et al. (2010) showed that the effects of torsion predicted 

by such models vary substantially depending on the procedure used to calibrate them. 

Particularly important is the treatment of the relationship between strength and stiffness when the 

modeled strength of the simplified model is increased to account for design accidental torsion. 

Anagnostopolulos et al. (2010) found that while shear-spring models calibrated to pushover 

analysis provided reasonable results (in comparison to multi-degree-of-freedom nonlinear 

models), those that increase strength independently of stiffness provided inaccurate results that 

showed qualitatively opposite trends compared to the more complicated models, which were 

physically unrealistic.  

Recent research employed nonlinear frame models to investigate accidental torsion 

provisions. Stathopoulos and Anagnostopoulos (2010) used one, three and five-story reinforced 

concrete (RC) space frames with lumped plasticity models of beam and column elements to 

assess the importance of design accidental torsion, showing that the inclusion of accidental 

torsion in design does not significantly improve the seismic performance of these buildings. 

Chang et al. (2009) examined six and twenty-story steel space frames and reached the same 

conclusion. Both of these studies used ductility demand of the beam-column plastic hinges as the 

primary measure of building performance. 

2.4 Methodology 

The primary goals of seismic provisions in modern building codes are to prevent building 

collapse and to preserve life safety (BSSC 2009). Therefore, this study evaluates the importance 

of the ASCE/SEI 7 accidental torsion design requirements by quantifying how these 
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requirements influence building collapse capacity or collapse risk. To evaluate building collapse 

capacity, the study employs an adaptation of the FEMA P-695 methodology (FEMA 2009). 

FEMA P-695 was developed to evaluate seismic design provisions through nonlinear dynamic 

analysis. FEMA P-695’s original intent was for use in determining appropriate building response 

coefficients (such as the R-factor in ASCE/SEI 7) for newly proposed lateral systems, in order to 

ensure that code-permitted seismic-lateral-force-resisting systems have an acceptably low 

probability of collapse (FEMA 2009). The method requires that a user evaluate a proposed 

seismic-lateral-force-resisting system by: (1) designing a set of archetype buildings that represent 

the range of possible features that are expected in the building set of interest (e.g. height, gravity 

load, etc.); (2) creating simulation models of the archetype buildings; (3) evaluating the collapse 

capacities of the building simulation models through nonlinear dynamic analysis; and (4) 

showing that collapse capacities exceed acceptable levels. In this study, FEMA P-695 methods 

are adapted to evaluate the collapse performance of buildings designed with and without 

accidental torsion design requirements for all types of seismic-lateral-force-resisting systems, as 

shown in Figure 2.1. Differences in collapse capacity of archetype buildings designed with and 

without accidental torsion serve to quantify the importance of including accidental torsion 

requirements in code seismic provisions. Although we use FEMA P-695 procedures here, in 

concept, any systematic method for evaluating collapse capacity could be employed to quantify 

differences in buildings designed with and without accidental torsion provisions based on a 

design accidental eccentricity.  
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Figure 2.1     Flow chart of the FEMA P-695 methodology for assessing collapse risk, as adapted for this 

study.  

 

2.4.1 Archetype Buildings 

ASCE/SEI 7 accidental torsion provisions apply to all types of buildings with rigid floor and 

roof diaphragms. To systematically evaluate these provisions, a suite of building archetypes is 

developed to represent a wide variety of structural properties and reflect variation in design 

characteristics that might affect torsional behavior. The archetype buildings vary in terms of: (1) 

seismic-lateral-force-resisting system, (2) number of stories, (3) weight/gravity load level, and 

(4) plan layout. Two versions of each building are designed: one with and one without design 

accidental torsion force demands.  

2.4.1.1 Seismic-Lateral-Force-Resisting System 

The study is performed in two phases. Phase 1 focuses on buildings in low-seismic regions 

and analyzes RC Ordinary Moment Frame (OMF) building designs and models. The RC OMFs 

are designed according to ACI 318-05 (ACI 2005) and ASCE/SEI 7-10 (ASCE 2010) for 

Seismic Design Category (SDC) B. SDC B encompasses moderate seismic regions in the U.S. 

By definition, SDC B buildings are those that have design spectral acceleration values of 0.167 ≤ 

SDS < 0.33 g and 0.067 ≤ SD1 < 0.133 g; here, SDS and SD1 are the code-defined design spectral 

acceleration values at 0.2 second and 1.0 second periods, respectively. Phase 2 focuses on 

buildings in high-seismic regions, employing RC Special Moment Frame (SMF) designs and 

models. The RC SMFs are also designed according to ACI 318-05 (ACI 2005) and ASCE/SEI 7-
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10 (ASCE 2010), but for Seismic Design Category D. SDC D includes high seismic areas and is 

defined by design spectral acceleration values SDS ≥ 0.5 g and SD1 ≥ 0.2 g. SMFs must satisfy a 

large number of additional capacity design and detailing requirements.  

To make the analysis tractable, these two sets of RC frames are used to represent the building 

stock more generally. The analysis uses RC frames because their nonlinear behavior is fairly 

well documented for modeling collapse (Haselton et al. 2008, Haselton et al. 2011, Liel et al. 

2011), and they are a common form of building construction. In addition, the most important 

properties pertaining to collapse capacity, i.e. overstrength and deformation capacity, are similar 

to those of other lateral systems commonly used in areas with similar levels of seismicity. Since 

the study emphasizes relative comparisons of collapse capacity associated with accidental 

torsion, the focus solely on RC frames is not expected to bias results.  

2.4.1.2 Building Height 

The archetype buildings have one, four, or ten stories. Past studies have suggested that 

accidental torsion requirements are less beneficial for taller buildings (five to twenty stories) than 

single-story buildings (Chang et al 2009, Stathopoulos and Anagnostopoulos 2010). The tallest 

(10-story) archetype structures are flexible enough to observe higher mode effects. 

2.4.1.3 Gravity Load 

Past research has shown that gravity load levels can significantly affect structural ductility, 

overstrength, and collapse performance (FEMA 2009, Haselton et al. 2011, Liel et al. 2011). 

Therefore, ‘low’ (100 psf) and ‘high’ (200 psf) dead loads
1
 are used to design and model the 

archetype buildings to interrogate the relationship between gravity loading and the importance of 

                                                 

1
 Roof diaphragms are often more slender than floor diaphragms, so lower dead loads are used at the roof: 80 

psf for ‘low’ gravity designs and 160 psf for ‘high’ gravity designs.  
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design accidental torsion. Live loads in all cases are assumed to be 20 psf at the roof level and 50 

psf at all other floor levels. An additional 15 psf is taken for partition loading. 

2.4.1.4 Building Plan and Frame Layout 

The archetype buildings have rectangular plan dimensions of 100 ft. by 200 ft., with one or 

two frame lines resisting lateral loads in each orthogonal direction. In design, the center of mass 

is taken at the center of the plan. The archetype buildings have three different plan layouts of 

lateral force resisting frames, as shown in Figure 2.2: (1) a symmetric rectangular layout 

(hereafter called the “rectangular” layout), (2) an I-shape layout, and (3) an offset rectangular 

layout (referred to hereafter as the “inherent torsion” layout). Only the archetype buildings with 

the offset rectangular layout have inherent torsion. For each of these groups, the torsional 

stiffness of the archetype buildings is varied by adjusting the spacing of the lateral force resisting 

frames (S) relative to the building plan dimensions (L).  

The majority of the archetypes (comprising approximately 80% of the total number of 

buildings analyzed) use the rectangular layout pictured in Figure 2.2(a). By varying the torsional 

stiffness of these archetype buildings through adjustment of their frame spacing, they can be 

used to represent a wide range of symmetric buildings, including both perimeter and space frame 

systems. Many other buildings, such as parking garage structures, have an I-shape layout like 

that shown in Figure 2.2(b). In these buildings, torsional motion is resisted primarily by the 

frames in one orthogonal direction (those oriented along the y-axis). The impact of the I-shape 

frame layout on the importance of accidental torsion is investigated through a subset (8%) of the 

archetype design space. Another subset (12%) of asymmetric one-story archetypes is also 
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investigated, using the inherent torsion frame layout.
2
 Past research showed that accidental 

torsion requirements are more critical for symmetric buildings, because the requirements lead to 

larger relative increases in design lateral forces in these structures (De la Llera and Chopra 1995, 

Stathopoulos and Anagnostopoulos 2010). These findings can be examined through comparison 

of the asymmetric (inherent torsion layout) and symmetric (rectangular and I-shape layout) 

archetype buildings. 

The FEMA P-695 methodology requires that an archetype design space be comprehensive 

enough to include a full range of possible building configurations. However, designs whose 

collapse trends do not control the seismic performance assessment, in our case corresponding to 

those that do not impact the analysis of the importance of ASCE/SEI design accidental torsion 

requirements, are excluded from the archetype design space. Consequently, the overall size of 

the archetype design space is reduced significantly, based on a set of preliminary analyses, 

resulting in the majority of the archetype buildings having the  rectangular frame layout and 

many having one-story, without compromising the generalizability of our findings. 

Torsional stiffness and asymmetry are important building characteristics from the perspective 

of accidental torsion. Torsionally-flexible archetypes have closely spaced frame lines (small 

S/L), whereas torsionally-stiff models have widely spaced frame lines (large S/L).
3
 In this study, 

the torsional characteristics of the archetype buildings are quantified by the torsional irregularity 

ratio (TIR), which is defined in Table 12.3-1 of ASCE/SEI 7 as the ratio of “maximum story 

                                                 

2
 Inherent torsion could also be represented by shifting the design center of mass, rather than the location of the 

frames (i.e., center of stiffness), but it is expected that this approach would result in similar changes in both building 

design and seismic performance. 
3
 For clarity, we note that our concept of torsional stiffness is based on a relative comparison between torsional 

and lateral periods. A torsionally-stiff building with large S/L has a fundamental torsional period that is significantly 

shorter than its fundamental lateral period, whereas a torsionally flexible building with small S/L has a longer 

torsional than lateral period. 
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drift, computed including accidental torsion … at one end of the structure” to “the average of the 

story drifts at the two ends of the structure”, where both drifts are computed in the same direction 

of interest (ASCE 2010). According to this definition, a building with inherent torsion has a 

larger TIR, because the building will rotate under the applied lateral loads at the center of mass. 

In addition, the moment due to accidental torsion affects the computed drifts, such that even 

symmetric buildings will have TIR>1. The TIR essentially combines torsional flexibility and 

plan asymmetry into a single measure of a building’s torsional characteristics. Since U.S. 

designers are already required to compute the TIR to determine whether a horizontal irregularity 

exists, it provides a convenient measure of a building’s torsional properties. Measuring torsional 

flexibility based on frame spacing (e.g. S/L) becomes impractical for buildings with more than 

two frame lines in each direction.  

 

Figure 2.2  Plan view of archetype buildings with (a) rectangular frame layouts, (b) I-shape frame layouts, 

and (c) inherent torsion (offset rectangular) frame layouts. 

 

2.4.2 Design and Modeling of Archetype Buildings 

The archetype design space consists of 460 buildings with varying lateral force-resisting 

systems, height, gravity loading, and frame layouts. Fully designing 460 buildings (composed of 

approximately 500 unique frame lines designed for different levels of lateral load) for this 

assessment is practically infeasible. Instead, only a carefully selected subset of 2D RC frames is 

fully designed. This subset of frame designs is used to develop 2D RC frame models (referred to 

as ‘high-end’ models), which provide the basis for calibrating a large number of simplified 
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nonlinear models. 3D models are created by combining the simplified 2D frame models to 

represent each of the 460 buildings of interest. This process is described in detail below.  

2.4.2.1 Design of the RC Frames 

Thirty-two 2D RC frames are designed according to the ACI 318-05 (ACI 2005) and 

ASCE/SEI 7 (ASCE 2010) design standards, representing each combination of gravity load, 

building height, and seismic-lateral-force-resisting system: 12 OMFs and 20 SMFs, as listed in 

Table 2.1. Since different 3D plan layouts result in different design loads, the frame designs span 

the range of design loads in the archetype design space. For example, the first two rows in Table 

2.1 describe the frames that are fully designed for the one-story, low gravity OMF archetypes: 

frame O1 is designed for the lowest design base shear of any frame in the 3D OMF buildings 

with low gravity load and rectangular frame layout (corresponding to a frame in a symmetric 

building designed without accidental torsion), and frame O2 is designed for the largest design 

base shear for any frame of the 3D OMF buildings with low gravity load and rectangular frame 

layout. 

The design base shear for the 2D frames is based on the required seismic loads and the 3D 

configuration for which it is associated. Seismic design according to Chapter 11 of ASCE/SEI 7 

depends on site-specific values of earthquake spectral acceleration. The design short period and 

one-second spectral accelerations used are the maximum allowable values for SDC B buildings 

(SDS =0.33 g and SD1 =0.13 g) and in the upper range of SDC D buildings (SDS =1.0 g and SD1 

=0.6 g). For SDC D buildings (i.e. the SMF archetypes), ASCE/SEI 7 also imposes an 

amplification factor (Ax) by which design accidental torsion forces must be multiplied. Ax varies 

from 1.0 to 3.0, depending on the frame layout. For this reason, the SMF frames in Table 2.1 

have a larger range of design base-shear values.  
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Table 2.1  Matrix of 2D Frame Designs for RC OMFs and RC SMFs 

 

 

Each 2D frame is designed for dead, live, and seismic loads using applicable load 

combinations from ASCE/SEI 7 (ASCE 2010). Snow and wind loads are not considered, but live 

load reduction factors are applied. Dead loads are based on a two-way flat slab floor system and 

spans of 30 ft. Story heights are taken as 15 ft. for the first story and 13 ft. for all other stories. 

For design purposes, frames are modeled in SAP2000 (CSI 2009), and the Equivalent Lateral 

Force Procedure is used to determine element design loads, story forces, and drifts. Member 

sizes and reinforcement in the OMFs are force controlled, with the exception of the ten-story 

frames whose lowest six stories are governed by the stability (P-) requirements. The low base-

shear SMF designs are generally controlled by force and joint size requirements. The high base-

shear SMFs, which are associated with designs that have amplified accidental torsion, are 
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typically controlled by drift limits. ASCE/SEI 7 imposes stricter drift requirements on buildings 

with high TIR in SDC D. 

2.4.2.2 High-End Models of RC Frames 

Each of the RC frames listed in Table 2.1 are modeled as 2D moment frames in OpenSees 

(PEER 2009) in what we refer to as ‘high-end’ models. As illustrated in Figure 2.3(1), columns 

and beams are modeled using calibrated lumped plasticity elements. Plastic hinges are assigned 

the hysteretic material developed by Ibarra et al. (2005), which is defined by a tri-linear 

monotonic backbone and incorporates both cyclic and in-cycle deterioration. The negative post-

capping slope and deterioration capabilities are particularly important parameters for modeling 

collapse (Haselton et al. 2007). The hysteretic properties of the nonlinear beam-column hinges 

are computed from empirical relationships developed by Haselton et al. (2008) based on the 

design properties of the beams and columns (i.e. concrete strength, element dimensions, axial 

load ratio, and reinforcement detailing). As a result, element modeling reflects design and 

detailing differences between frames. Distributed gravity loads are applied to the beams. Gravity 

loads contributing to seismic mass, but not tributary to the frame, are applied to leaning (P-Δ) 

columns connected to the frame by rigid truss elements. In the design and in the OpenSees 

models, the fixities at the base of the first-story columns are modeled as pinned in the one-story 

models and fixed for the others. The different fixity assumption with changes in building height 

is consistent with common design practice.
4
  

                                                 

4
 In reality, different foundation conditions may provide different levels of restraint to columns. However, a side 

study showed that foundation stiffness has only a minor effect on collapse capacity (<5% difference) and a 

negligible effect on relative changes in collapse performance, the primary interest of this study. 
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Figure 2.3  Procedure for calibrating a simplified model to a high-end model of a 2D RC frame. 

 

2.4.2.3 Simplified Model Calibration  

A simplified 2D single bay frame model with nonlinear X bracing, as shown in Figure 2.3(3) 

and Figure 2.4, is calibrated to each of the high-end 2D frame models. The monotonic backbone 

properties defining the nonlinear brace (truss) elements are calibrated such that the static 

pushover behavior of the simplified frame matches the pushover results from the corresponding 

high-end model, as shown in Figure 2.3(4). The cyclic deterioration properties of the simplified  

models are calibrated such that the median collapse capacities obtained from the high-end 

models (Figure 2.3(2)) and the simplified models (Figure 2.3(5)) match within 2%. The process 

for assessing collapse capacity is described in more detail below.  
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In the simplified models of the multi-story frames, elasto-plastic plastic hinges are added at 

the joints between stories to transfer moments between adjacent stories. The properties of these 

hinges are calibrated as well as the properties of the nonlinear truss elements. In doing so, the 

distribution of damage over the height of the building of the high-end models, as well as the 

higher mode periods, is matched by the simplified models. As a consequence, the calibration 

process is able to closely match the deformed shape from pushover. A schematic drawing of the 

multi-story simplified frame models is depicted in Figure 2.4. 

 

Figure 2.4 Illustration of a simplified model of a 2D RC frame. 

 

2.4.2.4 3D Models 

The 3D archetype models are constructed from the simplified 2D models based on the plan 

dimensions and frame layouts shown in Figure 2.2. The plan view of a typical 3D model is 

presented in Figure 2.5.  
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Figure 2.5  Typical 3D model plan view. 

 

Archetype buildings that are designed for accidental torsion, and those with inherent torsion, 

may contain frames whose design base shear does not correspond exactly to any of the 32 high-

end frames. The modeling properties needed for these frames are obtained by linear interpolation 

of model properties for frames of the same height, gravity load, and type (OMF or SMF). This 

interpolation is based on design base shear and applied to determine both cyclic and monotonic 

properties. For example, Figure 2.6 shows the nonlinear brace properties for three simplified 

frame models; the top and bottom curves are for simplified models calibrated to match high-end 

models of 2D frames, as illustrated in Figure 2.3. Consider a third RC frame whose design base 

shear is between that of the frames corresponding to the two high-end models, but for which a 

high-end model is not developed. The model properties for this intermediate frame are 

interpolated from the nonlinear model properties for the other simplified frame models. The 

consequence of the interpolation process is that changes in design base shear of the 2D frames 

lead to changes in building model properties (e.g. strength, stiffness, etc.) that are consistent with 

those observed in the high-end frame models.  These simplified frame models are then combined 

to create a 3D model. 
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Figure 2.6  Sample interpolation of nonlinear brace properties for a simplified 2D model. 

 

The mass of each story in the 3D building models is based on the gravity load level and plan 

area. The rotational moment of inertia is computed assuming that the mass is evenly distributed 

across the building floor plan. As a result, the 3D models have inertial and torsional properties 

that are representative of realistically sized buildings and consistent with the constituent 2D 

frames. The gravity framing system is not modeled, and, therefore, does not contribute to the 

strength and stiffness. However, P- loads are applied on four leaning columns that are placed at 

the center of each quadrant of the building footprint, as shown in Figure 2.5. 

Since the purpose of this study is to evaluate accidental torsion design requirements, varying 

levels of accidental torsion are simulated in the 3D archetype models (hereafter referred to as 

‘model accidental torsion’) by offsetting the model center of mass from the design center of mass 

by 0%, 5%, and 10% along the diagonal dimension of the plan of the building, as shown in 

Figure 2.5. Model accidental torsion is imposed independently of design accidental torsion such 

that all three levels of model accidental torsion are imposed for all archetypes, whether or not 

accidental torsion is considered in design. For clarity, we point out that model accidental torsion 

refers to mass offsets introduced into the 3D models in order to simulate unexpected (i.e. 

accidental) sources of torsion (e.g. uneven live-load distribution, etc.). Models of buildings with 
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inherent torsion have different centers of rigidity associated with the frame distributions, which 

are directly accounted for in the design process.  

2.4.2.5 Non-Simulated Collapse Modes 

RC SMFs are subject to a large number of capacity design and reinforcement detailing 

requirements, such that shear failure of joints and columns is prevented, and beams are expected 

to yield before columns. The modeling approach described above is capable of simulating the 

sidesway collapse of these frames. Since there are more limited requirements for seismic 

detailing of reinforcement for OMFs, other failure modes are also possible. To capture joint 

shear failure, the OMFs are modeled with nonlinear beam-column joints whose properties are 

computed based on Altoontash (2004) and Lowes et al. (2004). Due to deficiencies in detailing, 

two additional failure modes are possible for the OMFs: (1) loss of vertical carrying capacity of 

the gravity system and (2) loss of vertical carrying capacity of the OMF’s columns due to shear 

failure. These failures are not simulated by the models. Gravity system failure is not simulated 

directly, because columns and beams designed only to carry gravity loads are not included in the 

models. Real buildings may have no independent gravity system (e.g. the lateral system also 

serves as the gravity system) or a robust separate gravity system (e.g. interior gravity-only 

columns). Since our analyses are intended to broadly represent all of these buildings, no gravity 

system is modeled. Instead, non-simulated failure modes account for the possibility that the 

gravity elements may fail before the seismic-lateral-force-resisting-system. Non-simulated 

gravity system failure is based on interstory drift ratio (IDR) limits that represent the drift 

capacity at which non-ductile gravity systems (like those found with RC OMFs) are likely to fail. 

Since the drift capacity of these gravity systems is unknown, two drift thresholds (IDR = 3% and 

IDR = 6%) are considered, based on a range of potential values identified in ASCE/SEI 41-06 
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(ASCE 2007). Considering the second possible non-simulated failure mode for OMFs, research 

is ongoing to directly simulate shear failure of concrete columns (Elwood 2004, Ghannoum and 

Moehle 2008), but brittle shear failure is not captured by the column hinges used in the high end 

models. Instead, column shear failure is accounted for through post-processing of dynamic 

analysis results, comparing the drifts experienced by the structure to the drifts at which columns 

lose their ability to carry gravity loads due to shear failure. Prediction of the drift capacity of 

columns associated with this failure mode is based on Aslani (2005). Since we aim to consider as 

wide a range of buildings as possible, each of these collapse criteria is employed separately in 

our analyses of OMF buildings to obtain collapse capacities associated with each possible 

collapse mode. 

2.4.3 Dynamic Analysis of Archetype Building Models 

The archetype building models are analyzed using incremental dynamic analysis (IDA). In 

IDA, a building model is subjected to a recorded ground motion in incrementally increasing 

intensities until collapse occurs, as indicated by interstory drifts increasing without bounds 

(sidesway collapse). In some cases, non-simulated collapse mechanisms are found to have 

preceded sidesway collapse through post processing of dynamic analysis results.  

Each of the archetype building models is subjected to 22 pairs (44 horizontal components) of 

far-field strong ground motions from FEMA P-695 (FEMA 2009). These ground motions are 

recorded from large magnitude events at moderate rupture distances. The same set of ground 

motions is used to analyze archetypes designed for all seismic design categories, since it 

provides a consistent ground motion record set or loading protocol to examine relative changes 

in collapse capacity due to changes in design. This set of ground motions also contains 

broadband frequency content, which is important for analyzing buildings with varying lateral and 
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torsional periods.
5
 Per FEMA P-695, each ground motion record is normalized by its peak 

ground velocity and the ‘cloud’ of normalized records scaled together. Ground motion intensity 

is quantified by the median spectral acceleration of the cloud at the code-specified fundamental 

period of the building. Since the normalization process preserves variability in spectra, even at 

the first mode period T1, the spectral acceleration of a particular record may be higher or lower 

than the median spectral acceleration of the cloud.  

IDA results characterize the ground motion intensity at which each record causes collapse, 

serving to quantify the median and variability in the ground motion intensity necessary to cause 

collapse. In FEMA P-695, the primary statistical measure of collapse performance is the 

Collapse Margin Ratio (CMR) (FEMA 2009). The CMR is a sort of capacity to demand ratio 

computed from the ratio of the median ground motion intensity at which collapse occurs, to the 

maximum considered earthquake (MCE) ground motion intensity. Mathematically, 

CMR= ̂CT/SMT, where  ̂CT is the median value of spectral acceleration at the building’s 

fundamental period of vibration (T1) for which collapse occurs and SMT is the code-defined MCE 

spectral ordinate. SMT is 1.5 times greater than the design spectral acceleration value at the 

building’s fundamental period, according to ASCE/SEI 7.  

A complication arising from use of this general ground motion set (as opposed to ground 

motions specifically selected for each building and site) is that computed CMRs are inherently 

conservative. This conservatism stems from the ground motion set’s broad range of frequency 

content, which does not represent rare large ground motions that tend to have spectral peaks, 

particularly in California (Baker and Cornell 2006, Haselton and Baker 2006). To account for 

                                                 

5
 Since the archetype models are 3D, IDA is performed twice for each of the 22 pairs of ground motion 

components. First, horizontal component 1 is applied along the y-axis of the building and, simultaneously, 

component 2 applied along the x-axis. In the second analysis, the orientation of the two components is switched. 
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this effect, FEMA P-695 defines a spectral shape factor (SSF), which is multiplied by the CMR 

to obtain an Adjusted Collapse Margin Ratio (ACMR). SSFs are on the order of 1.5 for SDC D 

and 1.3 for SDC B and depend on building period and ductility. In addition, the CMRs of 3D 

buildings are also multiplied by a factor of 1.2, per FEMA P-695, making their collapse 

capacities consistent with their 2D counterparts, which only consider collapse in one direction, 

rather than both directions simultaneously. The final ACMR of 3D building models is computed 

as                     . 

2.5 Findings 

2.5.1 Definition of Terms 

This study uses two metrics to evaluate ASCE/SEI 7 accidental torsion provisions and to 

identify those buildings and sites for which accidental torsion design requirements are important. 

The primary metric, termed significance, is a measure of the decrease in collapse resistance that 

results if accidental torsion provisions are omitted from the design process:  

 
               (

                                                  

                                               
) 2.1 

Large values indicate that design accidental torsion contributes significantly to the collapse 

resistance of the building. Significance is illustrated in Figure 2.7(a).  

A secondary parameter represents the need for design accidental torsion requirements. The 

premise for this definition is that the most torsionally stiff buildings are not substantially affected 

by design requirements for accidental torsion, nor are they substantially affected by the impacts 

of accidental torsion on building dynamic response. To evaluate the need for accidental torsion 

provisions in design of other buildings, collapse capacities of buildings with various levels of 

TIR, all of which are designed without considering accidental torsion, are compared to 
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‘benchmark’ building counterparts. The ‘benchmark’ building corresponds to a perimeter frame 

building not designed for accidental torsion and having the same height and gravity load as the 

building of interest. As a consequence of the perimeter frame layout (i.e., lateral resisting frames 

on the perimeter of the building), the benchmark structures are torsionally stiff. The need is the 

deviation of their collapse capacity (ACMR) from the collapse capacity of the benchmark 

building, as shown in Figure 2.7(b). Larger need indicates bigger differences between collapse 

capacities among buildings with different torsional properties, but all else equal, providing 

motivation for accidental torsion provisions to preserve more consistent collapse capacities 

across buildings with different torsional behaviors. Since need is computed from analyses of 

buildings designed without accidental torsion, it does not depend on how accidental torsion 

design requirements are implemented in codes. Rather, need indicates the degree to which 

accidental torsion design requirements, of any kind, are necessary for torsionally sensitive 

buildings. 

 

Figure 2.7 Illustration of calculation of (a) significance of design accidental torsion requirements and (b) need 

for design accidental torsion requirements for the four-story low gravity SMF archetype, having a 

rectangular frame layout and TIR = 1.5  

 

In the sections that follow, significance of accidental torsion provisions is reported for all of 

the buildings, providing the primary basis for the evaluation of design accidental torsion design 
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provisions. The computation of need for accidental torsion provisions supplements these 

observations. 

2.5.2 Trends with the Torsional Irregularity Ratio 

The archetype buildings vary in terms of height, gravity loading, seismic-lateral-force-

resisting-system, frame layout (i.e. rectangular, I-shape, or inherent torsion), model accidental 

torsion, and TIR. The results show that significance of the ASCE/SEI 7 accidental torsion 

provisions is strongly influenced by the building’s torsional irregularity and flexibility, 

quantified by the TIR. Figure 2.8 plots the significance of accidental torsion requirements for 

different groups of buildings with varying TIR, showing that the significance of design accidental 

torsion increases as the TIR increases. This result shows that as a building becomes more 

torsionally flexible or irregular, accidental torsion provisions become increasingly important in 

design. This finding is confirmed by Figure 2.9, which reports collapse capacities (ACMRs) for 

the archetype buildings that are not designed for accidental torsion. The observed collapse 

capacities decrease as the TIR increases, indicating increasing need for accidental torsion in 

design for all of the archetype buildings considered.  

 

Figure 2.8  Significance of accidental torsion design requirements for (a) OMF archetypes (SDC B) and 

(b) SMF archetypes (SDC D). The dashed vertical lines represent ASCE/SEI 7-defined thresholds 

classifying a building as having horizontal irregularity Type 1a (TIR = 1.2) and Type 1b (TIR = 1.4).  
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Figure 2.9  Collapse capacities for (a) OMF archetypes (SDC B) and (b) SMF archetypes (SDC D). Results 

are for simulated collapse modes only and analyses with model accidental torsion corresponding to a 5% 

offset of the center of mass.  

 

Although this study evaluates accidental torsion provisions through relative comparisons of 

collapse risk, we note that the absolute collapse capacities computed here are consistent with 

those reported in the OMF and SMF example studies in FEMA P-695. The ACMR values that 

exceed 2.3 for the OMFs or 2.0 for the SMFs (shown by the horizontal dashed lines in Figure 

2.9) satisfy acceptable capacity thresholds that are defined by the FEMA P-695 methodology. 

These thresholds correspond to less than 10% probability of collapse under the MCE level 

ground shaking (FEMA 2009). 

2.5.3 Comparison of Significance of Accidental Torsion Requirements for Ordinary and 

Special Moment Frames 

Comparison of Figure 2.8(a) and (b) shows that the significance of ASCE/SEI 7 accidental 

torsion provisions increases faster with TIR for the SMF archetype buildings than for the OMFs. 

The greater significance of accidental torsion provisions in SMFs is due to two related design 

requirements imposed in SDC D by ASCE/SEI 7: (1) the torsion amplification factor (Ax), which 

amplifies design accidental torsion moments by a factor between one and three, depending on a 

building’s TIR, and (2) the requirement that drift limits under design seismic load be satisfied at 
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the building’s edges, rather than at the center of mass, for buildings with large TIR. Since 

building design is controlled by force demands or drift limits, more stringent requirements for 

both guarantees that design accidental torsion will play a more significant role for SDC D 

buildings like the RC SMF archetypes.  

To explore the importance of these additional SDC D requirements, Figure 2.10(a) reports 

the collapse capacities of the four-story SMF archetypes for three sets of design provisions: (1) 

no design accidental torsion, (2) all current SDC D accidental torsion-related code requirements, 

including the design accidental torsional moment, Ax, and drift limits enforced at the building 

edges, and (3) including the same design accidental torsional moment, but excluding 

requirements related to Ax and the additional drift limits. Accidental torsion requirements 

considered in Set 3 are identical to those applicable in SDC B, i.e. for buildings like the RC 

OMFs. When TIR < 1.2, Ax and the extra drift limits do not apply, and Sets 2 and 3 are the same. 

The designs for many of the SMF buildings with high TIRs in Set 2 are controlled by the more 

stringent drift requirements. 

Unsurprisingly, the buildings designed for accidental torsion with the amplification factor 

and additional drift requirements (Set 2) have higher collapse capacities than those designed only 

for the unfactored accidental torsion moment (Set 3) for all cases where TIR > 1.2. Figure 2.10(a) 

makes it clear that the combined effect of amplifying design accidental torsion moments and 

satisfying drift limits at building edges is important for preserving collapse capacity as TIR 

increases. In fact, Set 3 buildings still have a substantial need for accidental torsion provisions, 

illustrated by the decreasing collapse capacities as TIR increases, even though the accidental 

torsional moment is included in the design calculations.  



 31 

 

 

To investigate the relationship between accidental torsion design requirements and lateral 

strength, Figure 2.10(b) plots the peak (lateral) pushover strength for the four-story low gravity 

SMF archetypes for buildings in Sets 1, 2 and 3. The pushover was conducted separately in the x 

and y directions using an inverted triangular loading, and results were normalized by the peak 

pushover strength of the benchmark building. When accidental torsion provisions are not 

considered (Set 1), the frame designs are all the same, regardless of S/L and TIR, since all of the 

buildings considered in this discussion are symmetric. When design considers accidental torsion, 

but without amplification or additional drift requirements (Set 3), the ultimate capacity of the 

frames in the short direction of the buildings (oriented along the y-axis in Figure 2.2) increases 

steadily as frame spacing (S/L) decreases and TIR increases, due to the larger design loads 

associated with the accidental torsion moment. Since the frames oriented along the longer 

building dimension (x-direction) are more closely spaced than those along the short direction (i.e. 

S2 < S1), they are designed to resist a small fraction of the accidental torsion moment and the 

increases in design loads with TIR are small. Hence, accidental torsion provisions lead to little 

change in the ultimate pushover capacity of the frames in the x-direction. The ultimate pushover 

strength of the frames in the y-direction designed with the full SDC D requirements (Set 2) grow 

substantially larger than the other cases when TIR is large. The lateral strength apparent in 

pushover stems from the amplification of the torsional moment and the additional drift limits that 

apply when TIR > 1.2. However, even for Set 2, the orthogonal (x-axis oriented) frames 

contribute little to the overall torsional resistance, so their pushover strength is not significantly 

affected. The additional strength that comes with the accidental torsion requirements related to 

the amplification factor and drift limits contributes to the preservation of collapse capacity with 

increasing TIR observed for Set 2 in Figure 2.10(a).  
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Figure 2.10  (a) Comparison of ACMR for the four-story SMF archetype buildings. Results from low 

gravity archetypes are plotted with blue lines and triangular markers; results from high gravity 

archetypes are plotted with red lines and square markers. (b) Ultimate pushover capacities (normalized) 

of four-story low gravity SMF archetypes. 

 

The stringent drift limitations have a particularly large influence on the tallest and most 

flexible SMFs, accounting for the large significance of accidental torsion provisions observed for 

these buildings in Figure 2.8(b). For the tallest (ten-story) buildings, the large member sizes 

needed to satisfy drift limits when accidental torsion is included in the design lead to substantial 

increases in strength, particularly for buildings with large TIR. It is well known that stronger 

columns significantly improve collapse performance (Haselton et al. 2011). On the other hand, 

the ten-story OMF archetypes, which are not required to satisfy the additional drift limits, benefit 

less from accidental torsion requirements. 

2.5.4 Effect of Inherent Torsion 

Past research has shown that design accidental torsion is less important for the design of 

irregular buildings, i.e. those with inherent torsion, because torsion is already considered in the 

design, regardless of whether accidental torsion is also considered. This study considers both 

symmetric archetypes and asymmetric archetype buildings. The asymmetric buildings are 

designed with inherent torsion and labeled as such on Figure 2.8 and Figure 2.9.  
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To examine the effect of inherent torsion in this study, consider first the 1-story high gravity 

archetype buildings in Figure 2.9(a). Those with inherent torsion tend to have larger TIRs and 

lower collapse capacities than buildings without inherent torsion. However, examining two 

buildings with the same TIR (e.g. TIR = 2.2), we note that the collapse capacities are very close 

to the same for the torsionally flexible, but symmetric buildings (e.g. 1-story high gravity with 

rectangular frame layout), and the torsionally stiff, but asymmetric buildings (e.g. the 1-story 

high gravity archetypes with inherent torsion). Examining directly the significance of design 

accidental torsion provisions as a function of TIR, Figure 2.8(a) shows the accidental torsion 

provisions are less significant for the one-story buildings with inherent torsion, compared to the 

other one-story high gravity OMF archetypes, which do not have inherent torsion. Consider, 

however, if the relative frame spacing (S/L) is taken as the independent variable rather than TIR 

on the x-axis. Although not shown, in this case, the curves representing significance are very 

similar for OMF archetypes with and without inherent torsion. Frame spacing is directly related 

to significance of design accidental torsion provisions, because the increases in design base shear 

due to design accidental torsion are a function of the frame spacing. This result suggests that 

torsional flexibility (i.e. frame spacing), not inherent torsion, is the primary variable of 

importance in predicting the significance of accidental torsion provisions for the OMF archetype 

buildings.  

The story is a little different for the SMF archetypes; the archetype buildings with inherent 

torsion follow the same general trend for significance of design accidental torsion as their 

corresponding symmetric SMF archetypes in Figure 2.8(b). Both of the additional design 

requirements for accidental torsion in SMFs are strongly tied to TIR: Ax is proportional to TIR
2
 

(within the bounds of 1.0 ≤ Ax ≤ 3.0) and the TIR is a function of the drifts at the building edges. 
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As a result, for the SMFs, the increases in design forces due to accidental torsion are more 

strongly related to TIR rather than frame spacing, and buildings with the same TIR have 

approximately the same computed significance, regardless of whether it stems from irregularity 

(i.e. inherent torsion) or torsional flexibility. As with the OMFs, Figure 2.9(b) shows that the 

collapse capacities of the SMFs with inherent torsion are on par with those that do not have 

inherent torsion, given that they have the same TIR.  

2.5.5 Trends with Other Building Characteristics  

 Gravity load, frame layout, and building height (or number of stories) are not important 

predictors of the significance of ASCE/SEI 7 accidental torsion provisions. The significance of 

design accidental torsion is insensitive to the level of gravity load, because the relative changes 

in lateral design forces associated with accidental torsion requirements depend on plan 

configuration, not gravity load level. Neither is building height identified as a major factor 

affecting the significance of design accidental torsion, primarily because the height of a frame 

also does not affect the relative changes of design forces due to accidental torsion. Nevertheless, 

it is worth noting that the absolute collapse capacities of the archetypes do vary notably with 

building height. In particular, the four-story buildings typically have higher collapse capacities, 

because they tend to experience the most even distribution of damage over building height (i.e. 

more multi-story mechanisms). 

 The results also show that, for buildings without torsional irregularities (i.e. low TIR), the 

significance of design accidental torsion is insensitive to model accidental torsion, which is 

introduced through center of mass offsets modeled in dynamic analyses. Increasing model 

accidental torsion does lower the absolute collapse capacity of the buildings. However, for 

buildings with TIR < 1.6, this difference is relatively consistent across all of the archetype 
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buildings, in that 10% center of mass offsets result in a 3% to 10% reduction in collapse 

capacity. As a result, offsetting the center of mass reduces the collapse capacities of buildings 

designed with and without accidental torsion by the same amount, so the computed significance 

is unaffected. The significance of design accidental torsion is insensitive to model accidental 

torsion for buildings with TIR < 1.6, because the responses of such buildings are dominated by 

lateral motion. Therefore, amplifying the torsional response by adding model accidental torsion 

has little impact on building performance, because the torsional response is still small compared 

to the lateral motion. In contrast, buildings with TIR > 1.6 tend to have much larger torsional 

responses to earthquake ground motions, because they are more torsionally sensitive (i.e. 

torsionally flexible and/or asymmetric). As a result, the increases in torsional responses of 

torsionally sensitive models that result from model accidental torsion have a much greater impact 

on the total response, so the accidental torsion provisions intended to resist them become more 

significant. For simplicity, the significance values that are presented in Figure 2.8 are averages 

over the three levels of model accidental torsion (i.e. 0%, 5%, and 10% mass offsets), even 

though this does not tell the entire story for buildings with TIR>1.6. 

One other characteristic of the building models that deserves consideration is the criteria for 

evaluating non-simulated collapse modes of the OMF buildings. Recall that, in addition to 

sidesway collapse, which is simulated directly by the nonlinear models, two non-simulated 

collapse modes representing possible failures of the gravity system are considered, and one non-

simulated collapse mode considers shear failure of columns, for a total of four different collapse 

modes. Which, if any, of the collapse modes should be considered depends on characteristics of 

the building that are not represented in the nonlinear simulation models, such as the detailing of 

the gravity system or shear reinforcement in columns. Accordingly, all collapse modes are 
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treated as equally likely representations of behavior of the real building stock. Therefore, the 

significance of accidental torsion design requirements for the OMF buildings is computed 

considering each collapse mode individually, for a total of four computations of significance for 

each archetype building. The values of the significance of design accidental torsion are similar, 

regardless of the collapse mode considered, so the final significance results presented in Figure 

2.8(a) are an equally weighted average of all four. 

2.5.6 Verification of Observations by Statistical Analysis 

To support the observations above, the influence of each of the different building 

characteristics on the significance of ASCE/SEI 7 design provisions for accidental torsion is 

evaluated using the statistical computing program R (Therneau and Atkinson 2010). The analysis 

employs a binary regression tree (Hastie et al. 2008). The regression tree is constructed by 

computing the mean and variance in the dependent variable (i.e. the significance of design 

accidental torsion) for all buildings. Then, the analysis examines all possible criteria for splitting 

the data into two subgroups based on the identified predictors (i.e., building characteristics), 

selecting the split that results in the lowest complexity of the two groups. The complexity is 

related to variance of the dependent variable in the resulting groups. At each level, the split 

indicates which building characteristic has the greatest influence on the significance of design 

accidental torsion.  

As shown in Figure 2.11, the regression tree identifies TIR as the most significant predictor, 

because it accounts for the largest portion of the complexity in the significance among the entire 

group of archetype buildings. Therefore, it separates the data into two subgroups based on the 

value of the building’s TIR. The threshold value of TIR = 1.50 is selected because that split 

minimizes the computed complexity of the data. This process is repeated for the resulting 
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subgroups until the binary regression tree grows to what is shown in Figure 2.11; normalized 

values representing the variance of each group or “leaf” show the reduction in variance achieved 

by each branching of the tree.  

 

Figure 2.11  Binary regression tree for predicting the significance (denoted “Sig”) of design accidental torsion 

requirements from building characteristics. 

 

Theoretically, the binary regression tree could be grown until each leaf contains only one 

data point and, hence, the variance of each group is zero. However, to avoid overfitting the 

regression, only those leaves that meaningfully improve the model’s ability to predict the 

significance of design accidental torsion are retained, and the other branches are “pruned”. To 

prune the tree, a randomly selected 10% of the data points are dropped and the regression tree is 

refitted to the remaining data. Then, in a process known as cross-validation, the refitted model is 

used to predict the significance of design accidental torsion for the buildings in the dropped data 

set. When a binary regression model is used as a predictive tool, the prediction is taken as the 

mean significance for the leaf with the same properties as the building of interest. The difference 

in predicted significance for the dropped data and the actual observed significance from dynamic 

analysis provides a measure of the predictive ability of the regression tree. Only splits that 
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improve the prediction quality (i.e. reduce the cross-validation error) are retained, as shown by 

the solid lined portions of Figure 2.11. The R
2
 value of the pruned regression tree is 0.61.  

The branches remaining in the pruned tree are all based on TIR, indicating that it is the 

building characteristic that most strongly predicts the significance of design accidental torsion. 

Although not shown here, a similar tree confirms that TIR is also the best predictor of the need 

for accidental torsion design requirements.  

2.5.7 Additional Parametric Studies  

2.5.7.1 Effect of Torsional Period 

A peculiarity observed in Figure 2.9 is that the collapse capacities of the archetypes designed 

without accidental torsion provisions tend to increase slightly from the benchmark for small TIR 

before showing a decrease in collapse capacity with increasing torsional irregularity and 

flexibility. The largest collapse capacities are typically observed for 1.2 < TIR < 1.4. As TIR 

increases, the torsional period increases. When TIR is small, this increase in torsional period 

moves torsional response out of the period range for which the ground motion set has strongest 

spectral content and into a range for which the ground motions have weaker spectral content. 

Taking the four-story low gravity SMF archetypes as an example, when the TIR increases from 

1.1 to 1.3, the period of the first torsional mode increases from 0.80 sec to 1.6 sec., and the 

median spectral acceleration of the normalized ground motion set at the torsional period 

decreases from 0.46g to 0.21g, a reduction of more than 50%. As a result, the buildings with a 

little more torsional flexibility often outperform the more torsionally rigid structures (resulting in 

negative need). This occurs because the torsional modes are more excited in the torsionally stiff 

(short-torsional-period) archetypes.  
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To examine whether there may be buildings designed according to ASCE/SEI 7 requirements 

for which this benefit from an increase in torsional period is not present, additional permutations 

of the four-story low gravity SMF archetypes designed without accidental torsion requirements 

are analyzed with artificially altered torsional periods. Shortening (or elongation) of the torsional 

periods in real buildings could result from changes in the size of a buildings’ plan dimensions, 

because changes in plan dimensions do not affect torsional stiffness and torsional mass equally. 

In the first group, the modeled rotational inertia of the floor slabs in each of the four-story low 

gravity SMF archetypes is reduced such that their resulting fundamental torsional periods range 

from 0.25 to 0.80 sec. In the second group, the rotational inertia of the same archetypes is 

increased such that their fundamental torsional periods range 1.6 to 4.3 sec. No changes are made 

to the frames themselves, so the period of the first lateral mode is the same for all cases (1.4 sec). 

Figure 2.12(a) shows that the need for accidental torsion design provisions in archetypes whose 

torsional periods are altered to be very short increases more rapidly with TIR than those with 

realistic or artificially lengthened torsional periods. Need arises at smaller TIR results because the 

ground motion spectra have a lot of energy in the range of the shorter torsional periods and the 

increase in period with increasing TIR is not enough to move the buildings out of this range. 

Nonetheless, when the TIR is less than 1.2, there is low need for accidental torsion design 

requirements (less than 0.10), regardless of the torsional period. The torsional periods induced in 

the short-torsional-period models are an extreme case and not necessarily realistic. 

2.5.7.2 Effect of Plan Configuration 

A second parametric study investigates a four-story low gravity SMF archetype that is square 

in plan and frame layout, rather than rectangular or I-shape. The results in Figure 2.12(a) show 

that the archetypes that are square in plan develop need for accidental torsion requirements at 
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lower TIRs than rectangular archetypes. Figure 2.12(b) shows that the collapse capacities of 

versions with square and rectangular frame layouts begin to deviate from the benchmark 

building’s collapse capacity, developing need, at the same relative frame spacing (S/L). 

 

Figure 2.12  (a) Trends in Need with respect to TIR for variations of the four-story low gravity SMF 

archetype with different torsional periods and frame layouts; (b) Trends in Need with respect to relative 

frame spacing (S/L) for the same four-story archetype, with rectangular and square frame layouts; (c) 

Comparison of TIR vs. relative frame spacing (S/L) for three different frame layouts. 

  

Square layouts have the smallest TIRs for the same relative frame spacing (S/L), as shown in 

Figure 2.12(c). Consequently, buildings with square layouts develop need for accidental torsion 

design requirements at lower TIRs than those with rectangular frame layouts. 

2.5.8 Limitations 

This study attempts a comprehensive assessment of accidental torsion provisions in design, 

involving 460 3D models, composed of over 500 unique 2D frame models, and requiring over 

500,000 nonlinear dynamic time-history analyses. Nevertheless, the analysis results are 

contingent on limitations in the modeling and assessment procedure.  

The 460 archetype buildings are intended to represent the range of buildings that are affected 

by accidental torsion provisions and their influence on design and seismic response.  However, 

the archetype design space cannot possibly contain every potential building. The archetype 

design space has been carefully selected to include the most important building characteristics 
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from the perspective of understanding accidental torsion, but it is by no means exhaustive. In 

particular, the buildings represented here have less redundancy than some common systems (e.g. 

space frames), because they have only two frame lines in each orthogonal horizontal direction. 

Therefore, the collapse capacities of the buildings computed here may be more sensitive to 

changes in TIR than some buildings, such that our observations may be conservative for more 

redundant buildings. However, since the simplified models of the 2D frames are calibrated to 

match the aggregate behavior of high-end models of RC frames, they do deteriorate in a manner 

consistent with a moment frame system that has the redundancy of three bays in series.  

Other limitations stem from the nonlinear simulation models that are used to predict building 

collapse. The rigorous calibration procedure that is used for creating the simplified models of the 

2D frames is robust enough to capture the most important properties of the high-end frame 

models, i.e. strength, stiffness, damage concentration, deformation capacity, deterioration 

properties, P-, and higher mode effects. However, the macro-nature of the simplified models 

prohibits them from predicting behavior on a micro level (beam plastic hinge rotations, for 

example, are not simulated by the simplified models). In addition, the high-end models have 

their own set of limitations, specifically: (1) the high end models aggregate nonlinear behavior 

into plastic hinges; (2) they are unable to simulate column shear failure directly; (3) they neglect 

the strength and stiffness contributions from the gravity system; (4) they do not capture over-

turning effects; (5) they do not capture soil-structure interaction effects such as foundation 

translation and rotation, which essentially elongate the period of the building. Each of these 

limitations affects the accuracy of our collapse capacity predictions, however they are not 

expected to significantly impact the relative comparisons in which we are interested (i.e. 

significance and need of accidental torsion design requirements). 
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2.6 Summary and Recommendations 

The primary goal of this study is to quantify when accidental torsion requirements are 

necessary in the seismic design of building structures in order to ensure adequate safety against 

building collapse and, conversely, to determine when such requirements may be safely omitted 

in the seismic design process. Like most other modern codes, ASCE/SEI 7 deals with accidental 

torsion by requiring the designer to consider an eccentricity in the applied lateral force, even for 

nominally symmetric buildings. The importance of design provisions for accidental torsion 

design is evaluated from two viewpoints: the significance of the requirements (comparing the 

collapse capacities of buildings that are designed with and without ASCE/SEI 7 accidental 

torsion provisions, as in Figure 2.8) and the need for the requirements (comparing collapse 

capacities of buildings designed without accidental torsion to those of torsionally-stiff buildings, 

i.e. perimeter frame buildings, as in Figure 2.9). The Torsional Irregularity Ratio (TIR) is 

employed to quantify the level of torsional sensitivity in the building, accounting for both 

asymmetry and torsional flexibility. The TIR is defined in ASCE/SEI 7 as the ratio of the 

maximum story drift at one end of the structure to the average of the story drifts at the two ends 

of the structure, where both drifts are computed in the same direction of interest. The drifts for 

computing the TIR include a 5% offset of the line of action for seismic forces (relative to a 

building’s dimensions) in the most critical direction to account for accidental torsion.  

This study finds that the ASCE/SEI 7 accidental torsion design requirements are only 

significant (i.e. affecting collapse capacity by 5% or more) for Seismic Design Category (SDC) 

B buildings with TIR > 1.4 and for SDC D buildings with TIR > 1.2, as shown in Figure 2.8. 

When viewed in terms of need, this study found that accidental torsion design requirements are 

typically not needed (i.e. need < 5%) for any SDC until TIR > 1.4 (see Figure 2.9), although 
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some buildings with shorter fundamental torsional periods or square plan layouts may develop 

need when at smaller TIR, i.e. 1.2 < TIR < 1.4.  

Comparing the impacts of the accidental torsion design requirements for two Seismic Design 

Categories, this study finds that the additional requirements in SDC D, namely the torsional 

amplification factor, Ax, and drift limits enforced at the building edges, successfully prevent the 

collapse capacity from degrading as torsional irregularity and flexibility increase (Figure 2.10). 

The absence of such requirements in SDC B is the primary reason that accidental torsion design 

requirements are less significant for SDC B as compared to SDC D buildings with large TIR.  

 The expressed goal of the ASCE/SEI 7 Standard is to provide adequate safety against 

structural collapse. If the ASCE/SEI 7 code provisions as a whole are assumed satisfactory for 

meeting this goal, then the findings of this study demonstrate that this collapse safety goal can be 

achieved without requiring consideration of accidental torsion in design, for SDC B buildings 

with a TIR ≤ 1.4 and for SDC D buildings with a TIR ≤ 1.2. In ASCE/SEI 7, these limits 

correspond to the definitions of horizontal irregularity Type 1a (TIR > 1.2) and Type 1b (TIR > 

1.4). Therefore, the findings support a proposed modification to the ASCE/SEI 7 Standard 

whereby the accidental torsion design provisions are only required in SDC B if the building has a 

Type 1b horizontal irregularity, and are only required in other Seismic Design Categories (SDC 

C and above) if the building has a Type 1a (or worse) horizontal irregularity. We reiterate here 

that even a nominally symmetric building may have a Type 1 horizontal irregularity if it is 

torsionally flexible. This change would eliminate the need for accidental torsion design 

requirements for many buildings, saving engineers the associated time needed to implement 

them in design, since they are not necessary for ensuring adequate building collapse safety. It 

could be argued that other types of accidental torsion requirements beyond the computation of an 
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accidental eccentricity could be employed in building design and may better predict actual 

seismic demands in structures due to accidental torsion. Such a change in approach to designing 

for accidental torsion could increase the significance of accidental torsion in design. Even so, the 

values of need obtained in this study still stand, providing little justification that such an 

approach is warranted for buildings with low TIR.  
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 3 INCORPORATION OF SPATIAL CORRELATIONS BETWEEN 

BUILDING RESPONSE PARAMETERS IN REGIONAL SEISMIC 

LOSS ASSESSMENT 

 

ABSTRACT: There have been a number of recent advances in probabilistic 

assessment of seismic-induced losses for individual buildings. However, the 

possible losses for a portfolio of buildings are of interest for insurance and 

reinsurance companies, developers, and policy makers. Probabilistic estimates of 

earthquake-induced losses to portfolios of buildings require quantifying 

correlations between losses of the different buildings comprising the building 

stock. This article examines spatial correlations in building seismic responses, 

showing that correlations are significant for closely spaced buildings (i.e. with site 

separation distances of up to 25-65 km, depending on the earthquake) and for 

buildings with similar first-mode periods. The results demonstrate that correlation 

patterns in building response parameters are closely linked to a linear ground 

motion intensity measure, spectral acceleration measured at buildings’ first-mode 

periods. Based on this finding, enhancements are proposed to state-of-the-art 

methods for regional loss assessment to account for correlations in building 

response. These enhancements define a transformation between ground motion 

intensity and building response that preserves the expected correlation for 

building responses. These building responses then provide the basis for 

computation of earthquake-induced losses in the regional building stock. 
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3.1 Reference Article 

DeBock, D.J., J.W. Garrison, K.Y. Kim, and A.B. Liel (2014a), “Incorporation of spatial correlations between 

building response parameters in regional seismic loss analysis.” Bulletin of the Seismological Society of 

America. In Press. 

3.2 Introduction 

During an earthquake, sites in close proximity to each other will experience ground 

motion time histories with similar shaking intensities, as well as similar frequency content. These 

similarities are due to ground motions originating from the same source, and seismic waves 

traveling over paths with shared geologic features. Researchers have quantified the similarities in 

ground shaking intensity at nearby sites by computing the correlation of ground motion intensity 

as a function of inter-site distance (Wesson and Perkins 2001, Wang and Takada 2005, Goda and 

Hong 2008b, Goda and Atkinson 2009, Jayaram and Baker 2009, Sokolov et al. 2010, Esposito 

and Iervolino 2011, Loth and Baker 2013, Du and Wang 2013), showing that closely spaced sites 

have correlated intensities. Precisely speaking, these correlations are computed in terms of the 

residual intensity, i.e. the difference between the ground motion intensity at a site and the mean 

(expected) intensity from a ground motion prediction equation or GMPE for that site (e.g. Boore 

and Atkinson 2008), such that shaking at nearby sites tends to be both higher or lower than 

expected for a given earthquake.   

These spatial correlations in shaking intensity are important for quantifying earthquake-

induced damage and losses experienced by a group of spatially-distributed buildings. This group 

of buildings may represent a community’s building stock, or a portfolio of privately-owned 

structures, and the group’s combined earthquake-related losses are referred to here as “regional 

losses”.  Mathematically, the regional loss (RL) experienced by a spatially-distributed portfolio 

of buildings in an earthquake event is a random variable that is the sum of random variables, 

each representing the earthquake-induced loss for the i
th

 building (li): 
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 3.1 

Accordingly, the expected regional loss, E(RL), is a the sum of the expected losses for each 

building, E(li). However, the variance of the sum depends not only on the mean of the underlying 

random variables, but also the variance of the underlying random variables, V(li), and the 

correlation between these variables, (li,lj). Correlation represents the degree to which the value 

of random variable li is (linearly) related to the value of random variable lj. As shown in 

Equation 3.2 (Montgomery and Runger 2007), the variance of the regional loss, V(RL), increases 

when the underlying random variables have greater positive correlation (or covariance):  

 
 (  )  ∑  (  )    ∑∑  (     )  √ (  )   (  )

 
   

 
 3.2 

As may be expected from Equations 3.1 and 3.2, past research has shown that neglecting 

spatial correlations in ground motion intensity and, by extension, building damage, leads to 

underestimation of the value of rare (large) regional losses and overestimation of the value of 

frequent (small) regional losses (e.g. Bazzurro and Luco 2005, Lee and Kiremidjian 2007, Park 

et al. 2007, Goda and Hong 2008a, Jayaram and Baker 2010). In other words, regional losses 

have greater variance in reality than that predicted when spatial correlations are neglected. 

Spatial correlations in ground motion intensity measures (IMs) have been studied by a 

number of researchers, and different models have been developed to represent regional 

correlations in ground motion shaking intensities (e.g. Wesson and Perkins 2001, Wang and 

Takada 2005, Goda and Hong 2008b, Goda and Atkinson 2009, Jayaram and Baker 2009, 

Sokolov et al. 2010, Esposito and Iervolino 2011, Loth and Baker 2013, Du and Wang 2013). 

These mathematical models predict spatial correlations between ground motion intensity 

residuals as a function of inter-site distance. These correlation models can then be used to 
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generate maps of ground motion intensities in a scenario event that have realistic spatial 

correlations.  

This study begins by quantifying spatial correlations between building responses and 

describing the nature of these correlations as they relate to properties of the buildings, the 

building response parameter of interest, and previously observed correlations of IM. In this 

article, IM is quantified by spectral acceleration at a building’s first-mode period, Sa(T1). 

Building response is quantified by engineering demand parameters (EDPs), such as story drifts 

and floor accelerations, which are strongly related to individual building losses. Two types of 

spatial correlations in building response are computed. The correlations between responses of the 

same building, but at different sites, are referred to as “self-correlations”. These are 

autocorrelations (Bennett 1979). The second type, cross-correlations, represents correlation 

between responses of different (non-identical) buildings at different sites. Cross-correlations are 

important, because building stocks are typically composed of buildings with widely varying 

characteristics. Second, the study proposes a method to account for these correlations in building 

response in the context of regional seismic loss assessment. The proposed approach employs 

existing GMPEs and models for spatial correlations in IM to predict spatial distributions of 

building responses that have realistic correlation patterns.  

3.3 Spatial Correlations in Building Responses 

This study quantifies building response correlations by simulating nonlinear structural 

response when building models are subjected to ground motion time histories from both 

historical and hypothetical (simulated) earthquakes. The approach is pursued because it is 

infeasible to compute correlations for real buildings in earthquake events due to the scarcity of 

response measurements from instrumented buildings.  
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3.3.1 Earthquake Scenarios and Building Simulations 

Spatial correlations in building responses are investigated in four seismic events listed in 

Table 3.1, consisting of two historical and two hypothetical earthquake scenarios. The historical 

events are the 1994 Northridge (California) and 1999 Chi Chi (Taiwan) earthquakes. For each, a 

relatively large number of ground motion recordings are available, which were downloaded from 

the NGA strong motion database (Chiou et al. 2008). The simulated events represent two 

plausible Southern California earthquake scenarios: a Puente Hills fault rupture, and the 

“ShakeOut” rupture of the San Andreas fault. For these scenarios, Graves et al. (2005; 2008) 

modeled ground motion time histories at a large number of sites through broadband physics-

based simulations of fault rupture and seismic wave propagation. The physics-based simulations 

produce computed ground motion time histories at a large number of closely spaced sites, 

making them ideal for computing spatial correlations.  

Table 3.1 reports key characteristics of the earthquakes, site and ground motion time 

histories. In particular, note that the ground motion time histories obtained for both the recorded 

and simulated earthquake events depend on the site soil conditions. The range of site soil 

conditions for each event, quantified by the average shear-wave velocity in the top 30 meters of 

the soil (Vs
30

), is included in Table 3.1.  

Table 3.1. Earthquake events used in nonlinear time-history analyses. 
 

Earthquake 
Magnitude 

(Mw) 

No. sites 
for which 

time 
histories 
are  used 

Min. 
Vs

30
 

(m/s) 

Max. 
Vs

30
 

(m/s) 

Min. 
PGA 
(g) 

Max. 
PGA 
(g) 

Site 
spacing 

(km) 

Max. 
inter-
site 

distance 
(km) 

Historical 
(Recorded) 

Northridge 6.7 157 161 2016 0.028 1.78 Irregular 275 

Chi Chi 7.6 420 124 1526 0.005 1.16 Irregular 378 

Hypothetical 
(Simulated) 

Puente Hills 7.2 875 165 1000 0.097 1.45 3 124 

ShakeOut 7.8 734 165 1000 0.009 1.31 10 460 
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To capture behavior indicative of a range of building types, building response is predicted 

from dynamic analysis of six building models, described in Table 3.2. The building models range 

in height from two to eight stories. Models represent both modern ductile and older nonductile 

reinforced concrete (RC) moment frame buildings and have varying strength, ductility capacity 

and other characteristics. A two-dimensional model of each building has been generated in 

OpenSees by Haselton et al. (2011) and Liel et al. (2011), incorporating material and geometric 

nonlinearities. Table 3.2 also reports first-mode periods of the buildings, which are estimated 

from eigenvalue analysis of the model assuming cracked concrete sections (corresponding to 

approximately 35-80% of the gross section, depending on axial load). In the regional seismic loss 

assessment that follows, each of these buildings is taken to represent a subclass of RC frames. As 

will be described later, variability in the structural characteristics could be considered, but is 

neglected in this illustration.  

Table 3.2. Building models used in nonlinear time-history analyses. 

  

Building ID 
No. of 
Stories 

First-Mode Period 
(s)* 

Ductility 
Capacity

†
 

Modern 
(ductile) 

1 2 0.60 15.0 

2 4 0.91 10.7 

3 8 1.81 6.0 

Older 
(nonductile) 

4 2 1.03 3.3 

5 4 1.92 2.3 

6 8 2.23 2.3 

*Due to the use of cracked concrete sections in the calculations, these periods are longer than those that have 
been measured under minor to moderate shaking (Goel and Chopra 1997). However, neither the building responses 
nor the correlations are highly sensitive to the estimated first-mode period of the buildings, given that the period is not 
grossly misestimated 

† 
Determined by nonlinear static pushover analysis as described in FEMA (2009).

 
There are many methods for 

computing ductility, so these values are provided for relative
 
comparisons among the building models used in this 

study. 
 

Each of the aforementioned building models is subjected to the ground motion time 

histories recorded or simulated at each site for each of the earthquake scenarios (Rowe, 2011). 

Nonlinear response history data is used to quantify EDPs including: interstory drift ratio (IDR), 
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peak floor accelerations (PFA), and beam and column plastic hinge rotations (BPHR, CPHR). 

EDPs have been shown to be highly correlated to damage and repair costs for buildings and 

building components (Porter et al. 2007). The EDP for each building at each site is defined as 

the maximum of that EDP from the separate application of the two orthogonal (horizontal) 

ground motion components to the 2D building model. Likewise, Sa(T1) is computed as the 

geometric mean of the intensities from the two ground motion components at each site. EDPs are 

quantified as the maximum value of each parameter for all locations in the building over the 

entire duration of shaking. Collapse occurs when drifts increase without bounds due to lateral 

instability, i.e. sidesway collapse (Haselton et al. 2011). If this happens, EDP data are not 

recorded because the values are not meaningful.  

3.3.2 Computation of Spatial Correlations in Earthquake Scenarios 

Spatial correlations between ground motion intensities (quantified by Ln[Sa(T1)]) and 

between building responses (quantified by Ln[EDP]) in each scenario are analyzed using the 

nonlinear time-history analysis results. Correlation coefficients, ρ, for each parameter of interest 

are computed as a function of inter-site distance (d). The distance between each pair of sites is 

calculated from their latitude and longitude coordinates (Weisstein 2012). Data pairs from 

nonlinear analysis results, representing computed Ln[EDP] (or Ln[Sa(T1)]) values at two 

different sites, are binned by inter-site distance. In each bin, data pairs are separated into two 

vectors, X and Y, such that the vectors represent the same random variable (e.g. Ln[IDR]), but 

computed at sites separated by a distance d. The correlation between X and Y is therefore: 

 
    (  )  

 [(    )(    )]

    
   3.3 

where X and Y have mean values X and Y and standard deviations X and Y  (Montgomery 

and Runger 2007). The computation of correlation coefficients is repeated for different inter-site 



 52 

 

 

distances, as illustrated in Figure 3.1. Each data bin is associated with a range of inter-site 

distances dLB < d  < dUB. To ensure that bins contain a sufficient number of data pairs for 

computing correlation coefficients, typical bin sizes (i.e., dUB – dLB) range from five to ten 

kilometers, depending on the event and number of recordings available. Correlations are 

computed for inter-site distances up to one third of the spatial range of the data for each 

earthquake event, according to standard geostatistical practice (David 1977). Similar trends 

would be observed if semivariograms, rather than correlations were used to analyze the spatial 

variability in the data (Houlding 2000). 

 

Figure 3.1. Building 1 vs. Building 1 responses, quantified by Ln[IDR], for the Chi Chi earthquake at sites 

with inter-site distances of d. 

3.3.2.1 Non-Stationarity of the Spatial Correlation Computations 

The correlations computed in this study illustrate spatial trends in building responses. 

However, the correlations are fundamentally different from those of previous studies, in that they 

are computed for absolute values of Ln[Sa(T1)] and Ln[EDP], rather than for their residuals. 

This difference is illustrated in Figure 3.2, which displays spatial correlations in absolute IM 

computed for the Chi Chi earthquake using four different methods. In the first case, correlations 

are computed from the IMs recorded in the earthquake. In the second case, correlations are 

computed by combining expected IMs from the Boore and Atkinson (2008) GMPE with 
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residuals predicted using the Loth and Baker (2013) spatial correlation model. The third case is 

similar to the second, except the residuals are random and uncorrelated. In the fourth, the GMPE 

is combined with perfectly correlated residuals. Loth and Baker (2013) estimate that spatial 

correlations of residual IM are negligible at a distance of 35 km. However, the situation is clearly 

different for correlations in absolute IM in Figure 3.2, which shows a correlation of 0.4 at 35 km.  

 

 

Figure 3.2. Spatial correlations of IM = Ln[Sa(T1=0.60 s)] computed for the Chi Chi earthquake through 

four different methods, the details of which are described in the text. All of the correlations shown are in 

terms of absolute rather than residual IM quantities.  

Computing the spatial correlations from absolute rather than residual quantities 

introduces important limitations. In particular, Equation 3.3 assumes second-order stationarity, 

that is that correlations are independent of (1) location, i.e. the position of sites i and j relative to 

the fault rupture and (2) direction, i.e. the orientation of the vector describing the distance 

between i and j relative to a reference coordinate system (Goovaerts 1997). However, Garrison 

(2012) showed that correlations computed from absolute quantities of Ln[Sa(T1)] and Ln[EDP] 
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depend on the location and orientation of the two sites relative to the fault and the size of the 

sample region because of their sensitivity to the intensity of shaking and proximity to the fault.  

As a result, the random variables of interest here are non-stationary.  

The quantification of correlation in building response parameters is based on the absolute 

EDPs rather than residual quantities, because computing EDP residuals would require EDP-

equivalents to GMPEs to predict EDPs as a function of location and building characteristics, 

which are not part of current earthquake engineering practice. In addition, the article shows later 

that unbiased predictions of EDPs can be computed from existing models for Sa(T1), based on 

these observations of correlation of absolute quantities, and without the need for EDP prediction 

equations. Although comparisons of correlations computed between one earthquake and another 

should be made with caution due to the non-stationarity, comparisons of spatial correlations 

computed for same event are insensitive to region size and locations. 

3.3.3 Patterns of Spatial Correlations  

Self-correlations and cross-correlations of EDP are computed for each of the buildings 

and earthquake scenarios of interest, generating results like those shown in Figure 3.3. These 

correlations reflect similarities in the intensity of ground shaking, as well as similarities in 

building properties. Due to the strong spatial nature of correlations in the ground motion 

intensity, results consistently show a decrease in correlation as the site separation distance 

increases, but the pattern differs depending on the buildings and earthquake scenario under 

consideration.  
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Figure 3.3. Correlations of Ln[IDR] for Building 1 and Building j (denoted 1, j) for the Chi Chi earthquake. 

3.3.3.1 Effect of Building Characteristics 

Figure 3.3 displays spatial correlation patterns representing both self-correlations and 

cross-correlations. The results show that the same spatial correlation patterns that are present in 

self-correlations (the line labeled 1,1) are also observed among cross-correlations of non-

identical buildings. As may be expected, the results indicate that responses of more similar 

buildings are more highly correlated than those of more dissimilar buildings. Looking at the 

entire range of inter-site distances, cross-correlations between the responses of Building 1 and 

the responses of Buildings 2 and 3 (the other two ductile buildings) are very similar to Building 

1’s self-correlations. Cross-correlations between buildings with very different ductility capacities 

(e.g. Building 1 compared to Buildings 4-6) are lower than cross-correlations between buildings 

with more similar nonlinear deformation characteristics. Moreover, cross-correlations are also 

higher for buildings with more similar first-mode periods (e.g. Buildings 1 and 4) than those with 

very different periods (e.g. Buildings 1 and 5). The trends show that similarities in both period 
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and ductility capacity impact cross-correlations, although period seems to be the more important 

factor. In addition, correlations for longer period buildings are slightly larger than for shorter 

period buildings, because high frequency seismic waves tend to scatter more than low frequency 

waves (Der Kiureghian 1996).  

3.3.3.2 Effect of Earthquake Event Characteristics  

Trends in spatial correlations in building response parameters also depend on a number of 

characteristics of the earthquake scenario, as made apparent in Figure 3.4. In particular, the 

larger magnitude events (ShakeOut and Chi Chi) produce positive correlations in building 

response for larger inter-site distances. Figure 3.5 depicts why this occurs: the larger magnitude 

ShakeOut event produces larger isoseismic zones as compared to the smaller magnitude 

Northridge event, such that greater correlations in responses are observed across longer 

distances. Spatial correlations of absolute measures of response, as in Figure 3.4, are also 

impacted by spatial correlations of site conditions, quantified here by the Vs
30

 parameter.  

Specifically, earthquake scenarios with larger correlation of site Vs
30

 have higher correlations 

among response parameters, as expected. For the regions considered in this study, spatial 

correlations of Vs
30

 become negligible at inter-site distances of 5-25 km. Du and Wang (2013) 

observed that spatial correlations of residuals are also impacted by spatial correlations of Vs
30

. 

Some of the differences in correlation patterns between events can also be attributed to 

the methods used in computing building responses and correlations. It is worth considering, for 

example, that the simulated nature of the ground motion data for the ShakeOut and Puente Hills 

earthquakes may affect the results of a spatial correlation analysis. In fact, the authors found that 

spatial correlations of ground motion intensity residuals for the simulated events are for the most 

part larger than those predicted by correlation models developed from historical events. This 
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observation is consistent with Baker and Jayaram (2007)’s study of the Puente Hills simulation, 

which attributed the correlation bias to excessively correlated ground motion time histories at 

soft-soil sites. Star et al. (2011) showed that the residual terms in ground motion intensity agree 

with historical events, provided that the GMPE predictions attenuate at the same rate as the 

simulated ground motion intensities. 

.  

Figure 3.4. Self-correlations of Ln[IDR] for Building 1 for the four different earthquake scenarios. 

 

Moreover, the variability in spatial correlation patterns for the different earthquake events 

is an indicator of the non-stationarity of the spatial correlations computed based on absolute, 

rather than residual, response quantities. For example, the negative correlations that are observed 

at moderate inter-site distances in the Puente Hills and Northridge earthquakes are due to the size 

of the affected area and the locations of the sites; for these scenarios, many of the site pairs that 

are spaced more than 50 kilometers apart have one site near to and one far from the fault rupture, 

such that the pair will consist of one large and one small response, producing a negative 
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correlation and violating stationarity. The sensitivity of the correlations to the size of the event 

(shown in Figure 3.5) result from using absolute response quantities in correlation computations.  

 

Figure 3.5. Map of ground motion intensities (“Intensity map”), quantified by Sa(T1=0.6 s) and Ln[Sa(T1=0.6 

s)], for the ShakeOut and Northridge earthquakes. Areas with high ground motion intensity are circled. 

 

3.3.4 Sources of Spatial Correlations  

 A central question pertaining to correlations in building response relates to the sources of 

the correlation: are correlations explained by spatial correlations in ground motion intensity, 

other characteristics of the ground motion (e.g. duration, frequency content, etc.), characteristics 

of the building, geology and site conditions, or a combination of these? To examine this 

question, Figure 3.6 compares correlations in building response to correlations of Ln[Sa(T1)], 

where Sa(T1) is computed directly from a ground motion time history. In particular, Figure 3.6, 

shows the striking similarity in correlations of building response parameters, Ln[EDP], to 

correlations of IM, Ln[Sa(T1)]. Spatial correlations and cross-correlations for Ln[Sa(T1)] and for 

Ln[IDR] are similar to one another in every case observed in this study, even for quite dissimilar 
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buildings. For other EDPs, the results also showed that Ln[EDP]s had remarkably similar 

correlation patterns to Ln[Sa(T1)]. Figure 3.6(d) shows an exceptional case, in which cross-

correlations for EDPs other than IDR are quite different from the correlations in Ln[Sa(T1)]. This 

exception was observed only for a few buildings, in the simulated events, as in Figure 3.6(d). 

 

Figure 3.6. Spatial correlations between ground motion intensity measures (Ln[Sa(T1)]) and building response 

parameters (Ln[IDR], Ln[PFA], Ln[BPHR] and Ln[CPHR]) in the Northridge earthquake for: (a) self-

correlations for Building 1 and (b) cross-correlations between Buildings 1 and 6, and in the Shakeout 

earthquake for: (c) self-correlations for Building 1 and (d) cross-correlations between Buildings 1 and 6. 
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The observation that the correlations between Ln[Sa(T1)] and Ln[EDP] are similar is 

important. In particular, it suggests that the ground motion intensity at a site, paired with a single 

building property, the first-mode period, provides critical insight into spatial correlations in 

response. The correlations in Ln[Sa(T1)] at the two different periods are good predictors of the 

correlations in building response even in the case of cross-correlations. Correlation patterns are 

generally similar regardless of which EDP is used to quantify building response.  

The importance of correlations in Ln[Sa(T1)] in explaining correlations in Ln[EDP] provides 

the basis for proposals to improve the regional loss assessment methodology, which is described 

in the second part of the paper.  

3.4 Including Correlations in Building Responses in Regional seismic Loss Assessment 

3.4.1 Regional Seismic Loss Assessment Methods  

The goal of regional loss assessment is to quantify the distribution of seismic-induced 

losses a spatially-distributed portfolio of buildings or infrastructure may experience. State-of-the-

art methods for loss assessment typically proceed by predicting losses for the region in a number 

of possible scenario earthquakes. The losses computed for each scenario are weighted by the 

likelihood of that scenario occurring to compute the likelihood of experiencing a particular level 

of losses over time. These assessments rely heavily on Monte Carlo-based simulation methods, 

which are used to generate a set of realizations of a random variable, or set of random variables, 

that are consistent with predefined probability distributions (Fishmen 2006). Other researchers 

(e.g. Crowley and Bommer 2006) have demonstrated that such methods are superior to those that 

perform probabilistic loss analysis separately for each building in the portfolio and then sum the 

obtained loss distributions. 

This study considers a regional seismic loss assessment method with the following steps:  
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1. Generate a set of possible future earthquake scenarios that are consistent with assumed 

seismic sources and seismological models.  

2. For each scenario, compute the expected value and standard deviation of the ground motion 

intensity (IM) at each building site in the region using one or more GMPEs. 

3. Generate a realization of the residual IMs at each site with Monte Carlo simulation. At this 

stage, spatial correlations of IM residuals can be considered if the residuals are represented as 

jointly distributed. The sum of the residual IM and the expected IM (Step 2) provides a 

predicted IM value for each site (i.e. a map of ground motion intensities for the scenario).  

4. Estimate dollar losses for every building in the region, based on the mapped intensity at each 

building’s location. Losses are typically estimated with what is referred to here as an IM-

based vulnerability function (VF), which defines the relationship between IM and the 

expected damage factor for a particular building type. The damage factor expresses the loss 

as a fraction of the total replacement cost of the building (e.g. ATC 1985). VFs are 

predefined based on gross building characteristics (e.g. height, structural system, occupancy 

etc.).  

5. Sum the losses from each building (Step 4) to compute the losses for the group of buildings. 

6. Repeat Steps 2-5 for additional realizations of the same scenario event, and for other events. 

The losses predicted can then be used to estimate mean annual frequencies of exceeding 

different levels of regional loss.  

Improved representation of building response correlations can be incorporated in the 

regional loss assessment. Specifically, we propose to split Step 4 into two parts: 

4a. Develop spatial distributions of EDPs that are probabilistically consistent with observed 

patterns of correlations in building response. The remainder of this paper is dedicated to 
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developing a methodology for developing these spatial distributions. 

4b. Estimate losses as a function of EDP for each building. These loss predictions employ EDP-

based VFs. The EDP-based VFs are similar to IM-based VFs, but predict loss for a building 

from a maximum building response, i.e. EDP, rather than directly from an IM.  

The revisions to Step 4 improve regional seismic loss assessment for two reasons. First, Step 4a 

ensures that the proposed method directly considers spatial correlations in building response in a 

probabilistically robust manner. Secondly, Step 4b is expected to improve loss predictions, 

because EDPs are better predictors of structural loss and damage than Sa(T1). Methods for 

estimating seismic-induced losses to individual buildings increasingly rely on EDPs to predict 

damage and losses (e.g. Ramirez and Miranda 2009).   

3.4.2 Simulating EDPs as Spatially Correlated Fields 

3.4.2.1 Spatial Correlations based on a Linear Transformation between IM and EDP  

The findings presented previously suggest that spatial correlations of Ln[EDP] and of 

Ln[Sa(T1)] have similar patterns. These similarities may be indicative of an underlying 

mathematical relationship between Ln[Sa(T1)] and Ln[EDP]. To explore this relationship, Figure 

3.7 shows the results of a weighted least-squares linear regression between Ln[Sa(T1)] and 

Ln[IDR], where Ln[Sa(T1)] is the independent variable, for the Northridge ground motions. 

Large IDR values, indicative of highly nonlinear response, occurred less frequently than smaller 

IDRs, and are therefore assigned higher weights in the regression to compensate for having fewer 

data points in that range. Collapse cases are excluded from the regression. 

Figure 3.7 reveals that the relationships between Ln[Sa(T1)] and Ln[IDR] are highly 

linear. Goodness-of-fit is quantified by the coefficient of determination (R
2
), which represents 

the fraction of the total variance that is captured by the linear regression model. R
2
 values close 



 63 

 

 

to 1 indicate that most of the variance of Ln[IDR] is explained by the linear relationship with 

Ln[Sa(T1)]. Although not presented here, relationships between Ln[Sa(T1)] and Ln[EDP] for the 

other buildings, earthquakes, and EDP measures, such as PFA, are found to be highly linear as 

well, but typically have lower R
2
 values for EDPs other than IDR. These linear relationships 

(hereafter “IM-EDP transformations”) are of the form  

 
  [   ]        [  (  )] 3.4 

which leads to a nonlinear functional form in non-log space of         (  )
 . Cornell 

(2002) and others have previously fit the same functional form to IM and EDP data.  

 

Figure 3.7. Weighted least-squares linear regression of Ln[IDR] with Ln[Sa(T1)], based on nonlinear 

analysis results from building models subjected to the Northridge ground motions for: (a) Building 1 and  

(b) Building 6 (non-collapse cases only). The standard error interval defines the range in which 68% of the 

EDP values are expected to fall (i.e. ± 1 standard deviation). 

 

It is easily shown that two variables that are linearly related, as in Equation 3.4, have 

identical autocorrelation patterns. Therefore, EDPs estimated based on a linear IM-EDP 

transformation will have identical correlations to those of Ln[Sa(T1)]. The similarity in the 

spatial correlations of Ln[Sa(T1)] and of Ln[EDP] thus obtained is appropriate given the strong 

resemblance between the two, as observed in Figure 6. 
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3.4.2.2 EDP Estimation Using the Linear IM-EDP Transformation 

This article proposes to predict EDPs from linear IM-EDP transformations (Equation 3.4) 

for the purpose of regional loss assessment (i.e. Step 4a). This approach requires the analyst to 

first generate region-wide values of Sa(T1) (intensity maps) using GMPE(s) and already 

developed spatial correlation models for IM (e.g. Loth and Baker 2013); these maps represent the 

completion of Steps 1-4 described above. Then, EDPs are predicted at each site, based on an 

established linear relationship between Ln[Sa(T1)] and Ln[EDP] for a given building type, 

generating a map of predicted EDP values (i.e. “EDP map”) that represents the EDPs in each 

building in the portfolio. The predicted building responses are denoted Ln[   ̂]. This linear 

transformation accomplishes two goals. First, it preserves the similarities in spatial correlation 

structures of Ln[Sa(T1)] and Ln[EDP] by implying that the correlation structures of Ln[EDP] 

and Ln[Sa(T1)] are, in fact, identical. Second, it can be shown to lead to predictions of Ln[   ̂] 

that are unbiased with regard to Ln[Sa(T1)], as discussed below. 

In order to examine the implications of the linear transformation (Equation 3.4) for 

regional loss assessment, we focus on the results of nonlinear simulation for Building 6 (similar 

findings are also observed for the other buildings). Consider the distribution of ground motion 

intensities recorded in the Northridge earthquake shown in Figure 3.8(a), quantified by Sa(T1) 

where T1 is the first-mode period of Building 6. If Building 6 responses are predicted from a 

linear IM-EDP transformation, provided in Figure 3.7(b), an EDP map is computed, as shown in 

Figure 3.8(b) (assuming Building 6 is located at every site in the region). The spatial distribution 

of Ln[Sa(T1)] shown in Figure 3.8(a), and the corresponding predicted spatial distribution of 

Ln[   ̂] shown in Figure 3.8(b), which is a linear transformation of Ln[Sa(T1)] at each site, 

would not actually occur simultaneously, due to uncertainties in the IM-EDP prediction. 
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However, because of their identical spatial correlation structures, the likelihood of the spatial 

distribution of Ln[   ̂] occurring for a given earthquake scenario is equal to the likelihood of 

the spatial distribution of Ln[Sa(T1)] occurring if the IM-EDP transformation is unbiased.  

 

Figure 3.8. Intensity and EDP maps for the Northridge earthquake showing (a) Ln[Sa(T1)] (units Ln[g]), (b) 

Ln[   ̂] for Building 6 as predicted from the fitted linear IM-EDP transformation, (c) Ln[IDR] as observed 

in nonlinear time-history analysis of Building 6, and (d) the residual differences between the predicted and 

observed Ln[IDR] values, i.e. Ln[IDR]- Ln[   ̂]. 

 

An unbiased IM-EDP transformation requires that the differences between the predicted 

EDPs, i.e. Ln[   ̂], and the observed EDPs, i.e. Ln[EDP], are non-systematic. The observed 

EDPs, obtained through nonlinear dynamic analysis of the model of Building 6 on being 

subjected to the Northridge ground motions, are shown in Figure 3.8(c). The differences between 

the observed Ln[EDP] and predicted Ln[   ̂] are mapped in Figure 3.8(d). The spatial 

distribution of the residuals appears to be non-systematic. This visual observation is supported by 

examining the results of regression analysis (Figure 3.7) to show that the residual differences 

between the observed and predicted IDRs are homoscedastic and normally distributed. Figure 3.9 

further supports the observation that the distribution of the residuals is non-systematic by 
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showing that spatial autocorrelations of the residuals are less than 0.2 for all non-zero inter-site 

distances.  

Since the residual differences between Ln[   ̂] and Ln[EDP] are non-systematic, the 

proposed method proceeds by converting a spatial distribution of Ln[Sa(T1)] to Ln[   ̂] 

through a linear IM-EDP transformation that preserves spatial correlations. This approach 

circumvents the need to develop EDP prediction equations and a correlation model for their 

residuals, because the Ln[   ̂]s so obtained are unbiased, and robust models have already been 

developed for generating intensity maps that consider spatial correlations of residuals. 

 

Figure 3.9. Spatial autocorrelations of the standardized residual differences between the predicted and 

observed Ln[EDP] values (Ln[EDP]- Ln[   ̂]) using the Northridge results for (a) Building 1 and (b) 

Building 6. 

3.4.3 Importance of the IM-EDP Transformations 

Given the similarity in spatial correlation patterns observed between Ln[Sa(T1)] and 

Ln[EDP], it is tempting to conclude that loss assessment methods that appropriately consider 

spatial correlations solely in ground motion intensity would provide good estimations of building 

response. However, the linear IM-EDP transformation is needed to preserve spatial correlations 

in building response, even in this case.   
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 Consider, for example, a method that considers spatial correlations in ground motion 

intensity, but not in building response. Equation 3.5 computes the losses at each site, employing 

an IM-based VF.  

 
     (   ) 3.5 

Equation 3.5 essentially has a built-in relationship between IM and EDP. If the built-in 

relationship between IM and EDP happens to be linear, then the correlation of EDPs is 

preserved, if the equation is applied deterministically at every site. However, no variation in the 

IM-EDP relationship is considered, leading to underestimation in the variance of the losses. On 

the other hand, if the application of Equation 3.5 considers uncertainty in the VF, and uncertainty 

of the IM-EDP relationship by extension, randomness is introduced and the spatial correlations 

of EDPs are artificially reduced.  

To preserve the correlation and the variance in EDPs and losses, this article proposes a 

method to generate IM-EDP transformations such that losses are computed as: 

 
     (   ̂ ) 3.6 

   ̂ is obtained from a linear IM-EDP transformation, preserving correlation.  At the same 

time, the coefficients defining the IM-EDP transformation are randomized (from one event to the 

next) such that variability in IM-EDP transformations (and, by extension, regional loss) is 

reasonable.  

3.4.4 Variability in Transformation Between IMs and EDPs   

3.4.4.1 Sensitivity of IM-EDP Transformation to Ground Motion Characteristics 

For a given building, the intercept and slope coefficients defining the linear IM-EDP 

transformation depend on the characteristics of the ground motions used to develop the 

relationship. To quantify the variability in these coefficients for a selected building model, 
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incremental dynamic analysis (IDA) is carried out with a set of ground motion time histories that 

differ significantly in terms of frequency content and other characteristics. IDA is conducted by 

analyzing the response of the structure under a ground motion of interest. Then, the ground 

motion is scaled to larger intensities, each time analyzing the structure and simulating EDPs and 

recording its response, and repeating this process for higher ground motion intensities until 

collapse occurs (Vamvatsikos and Cornell, 2002).  

Example IDA results for Building 6, and the implications in terms of variability of the 

IM-EDP transformation for a single building, are shown in Figure 3.10. For purposes of 

illustration, the ground motions used in this example are the FEMA (2009) far-field ground 

motion set, which is comprised of 22 pairs of ground motions. Each curve in Figure 3.10(a) is the 

result of IDA for a single record, which has unique frequency content, duration, and other 

characteristics, scaled to different levels. As a result, each of the records leads to a distinct IM-

EDP transformation, as shown by the IM-EDP transformations fitted separately to individual 

IDA analyses in Figure 3.10(b). Results from the Northridge earthquake (from Figure 3.7) have 

been overlaid on Figure 3.10(b), showing that the observed linear relationship between Ln[IDR] 

and Ln[Sa(T1)] for the Northridge scenario lies within the range of transformations obtained with 

the general ground motion set. Recall that the Northridge scenario includes results from ground 

shaking at 245 sites, each with unique ground motion time histories, but from the same 

earthquake.  
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The IM-EDP relationships can be defined by the intercept and slope coefficients defining the 

fitted line (denoted A and B, as in Equation 3.4). The values of the intercept and slope 

coefficients extracted from results in Figure 3.10(b) are plotted in Figure 3.11. By observation, A 

and B are clearly related. In fact, the Henze-Zirkler (1990) and Royston (1983) multivariate 

normality tests show that A and B follow a multivariate normal distribution. Since the true IM-

EDP transformation for a future earthquake is uncertain, Monte Carlo simulation can be used to 

sample intercept and slope coefficients, based on the multivariate normal distribution. The 

parameters defining the multivariate normal distribution, including the means of the coefficients, 

μA and μB, and their covariance matrix, COV(A,B), are computed from IDA results. This process 

is illustrated for Building 6 in Figure 3.11, for which A and B are sampled randomly 100 times to 

define coefficients for possible IM-EDP transformations.  

 

 

Figure 3.10. (a) IDA results in terms of IDR vs. Sa(T1) for Building 6, and (b) the same results recast as 

Ln[IDR] vs. Ln[Sa(T1)], showing the fitted IM-EDP transformations for each record as compared to the 

Northridge IM-EDP transformation. 
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Figure 3.11. Observed and sampled intercept and slope coefficients of IM-EDP relationships for Building 6. 

The strong correlation between intercept and slope coefficients for IM-EDP transformations 

is due to the intercept (A) being extrapolated using the slope (B), as can be seen in Figure 

3.10(b). Since the y-axis of the coordinate system does not pass through the data, the intercept 

coefficient is highly sensitive to the value of the slope coefficient. By introducing a third term, C, 

Equation 3.4 can be re-written: 

 
  [   ]      (  [  (  )]   ) 3.7 

In Equation 3.7, the addition of the variable C is analogous to translating the coordinate 

system so that the y-axis passes through a location x=-C. Therefore, there is no longer a need to 

extrapolate the intercept coefficient from data that lie far away from the y-axis. Optimizing the 

variable C such that the intercept and slope coefficients have zero correlation results in values of 

C ranging from -3.5<C<-1.0 for the different buildings in this study. IM-EDP transformations of 

the form shown in Equation 3.7 would be advantageous for cases in which the analyst desires to 

generate slope and intercept coefficients independently, however, it requires that the variable C 

be determined through optimization.  
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3.4.4.2 Effect of  on Structural Response EDPs  

The method described in the previous section for randomly generating coefficients to 

define IM-EDP transformations neglects the impacts of spectral shape on IM-EDP 

transformations. It is well established that, among ground motion records with the same Sa(T1), 

variation in spectral shape may lead to significant differences in structural response. We now 

examine the effects of spectral shape on EDPs, with the goal of modifying the procedure for 

sampling coefficients to define the IM-EDP transformations.  

The residual IM can be quantified by the number of standard deviations between the 

expected IM from a GMPE and the observed site IM, producing a parameter referred to as 

epsilon.  is a proxy for spectral shape and depends on the period of interest, T. Large positive  

indicate that the spectral acceleration at period T is significantly larger than the expected value. 

These positive  generally correspond to peaks in the acceleration spectrum, because it is 

unlikely that spectral accelerations at all other periods are also significantly larger than their 

expected values (Baker and Cornell 2005). The relationship between  and spectral shape is 

illustrated in Figure 3.12, in which the record with positive (T1=1s) has relatively lower spectral 

accelerations for T ≠ T1 than a record with negative (T1=1s), but the same Sa(T1=1s) = 1.0g. 

Nonlinear multi-degree-of-freedom buildings are sensitive to ground motion intensity at a range 

of periods, so the record with the greater positive  tends to induce smaller EDPs, because it has 

smaller spectral accelerations at periods other than T1 (Baker and Cornell 2005; Haselton et al. 

2011). 
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Figure 3.12. Acceleration spectra for two records, both with Sa(T1=1.0 s)=1.0g. 

Figure 3.13 depicts the relationship between the  of each of the ground motions in the 

FEMA record set (evaluated for illustration at the first-mode period of Building 6) and the 

intercept and slope coefficients for the IM-EDP transformations associated with each record. 

Both coefficients are negatively correlated with  having correlation coefficients (ρ) ranging 

from -0.20 to -0.65 for the building models under consideration. This correlation is a direct 

consequence of the records with larger  inducing smaller EDPs. 

 
Figure 3.13. Scatterplots of slope and intercept coefficients (defining IM-EDP transformations) vs.  for 

Building 6 with correlation coefficients and best-fit lines displayed on the plots. The slopes of the best-fit 

lines (m) are discussed in a later section. 
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3.4.4.3 Method for Incorporating  in Computing Regional IM-EDP Transformations 

It is clear from the previous discussion that deviations of the observed ground shaking 

from the expected ground shaking at a particular site, quantified by , affect the development of 

an appropriate IM-EDP transformation. However, to preserve the spatial correlation structure in 

the conversion from an IM map to an EDP map for a given building type, the same linear IM-

EDP relationship must be used at all of the sites. In this study, we propose to resolve these 

somewhat competing objectives by developing an approach that uses the average  of ground 

motions over the region to develop an IM-EDP transformation that is applicable for a particular 

building type at all sites in the region. The additional information obtained from the average 

regional  is used to shift the mean and reduce the variance of the multivariate distribution 

defining the distribution of IM-EDP coefficients. In the regional loss assessment methodology, 

the  values are already known, having been generated to make the intensity map in Step 3.  

Before describing the details of this approach, it is necessary to characterize the parameter  

more fully. In particular,  at any period can be decomposed into an inter-event term and an 

intra-event term (e.g. Campbell and Bozorgnia 2007), as shown here: 

 
  (  )   [  (  )]                                  3.8 

In Equation 3.8, intra-event terms (       and       ) quantify variability among different 

sites in a given event and the inter-event terms (       and       ) quantify variability between 

different events. In a given earthquake event, all sites have the same        (at a given period), 

but different       . Therefore, the average  in an event (    ) is computed by Equation 3.9: 

 
     ̃

             

 
 3.9 
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Equation 3.9 is exact if the GMPE used has constant  and inter at all sites for a given period 

(as in Boore and Atkinson 2008). It can also be shown that the distribution of  values occurring 

across a region in a given scenario has smaller variance than the distribution of  values 

occurring across multiple events (e.g. Campbell and Bozorgnia 2007).  

The known value of      in the region for a given scenario and period of interest can be used 

to modify the multivariate distribution that defines the coefficients for the IM-EDP 

transformation. First, the mean coefficients (μA and μB) of the IM-EDP relationship are adjusted 

for each building based on the difference between the average  of the intensity map realization 

of a given scenario and period of interest (        ) and the average  of the ground motion set 

used to develop the original distribution of coefficients through IDA, evaluated at the same 

period) (        ). This adjustment follows the best-fit regression line developed between  and 

the intercept and slope coefficients, A and B:  

                         (                 )       3.10 

In this equation      is the slope of the best-fit line between  and the  coefficient A, as 

shown in Figure 3.13. A similar equation can be developed for the slope coefficient, B. 

 explains a significant portion of the variance in the coefficients defining the IM-EDP 

transformations, as indicated by the large correlation coefficients found in Figure 3.13.  In order 

to sample coefficients for IM-EDP relationships for the case in which the average  is known, 

only the portion of the variance that is not accounted for by  is retained in the multivariate 

distribution. Since the slope and intercept coefficients are jointly distributed, the portion of their 

covariance that is not explained by  can be represented by Equations 3.11 and 3.12 

(Montgomery and Runger 2007).  The diagonal terms of the covariance matrix can be written as:  
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   (   )            
    (   )    (    

 ) 3.11 

Similarly, the off-diagonal terms can be taken as: 

 
   (   )            

    (   )    √(    
 )  (    

 ) 3.12 

where i and j are the correlations of coefficient i and coefficient j with , respectively. 

The modified multivariate distribution, described by corrected mean values of the 

coefficients, μA and μB, and reduced variance [COV(A,B)]remaining, can be used to sample the 

coefficients A and B for defining IM-EDP relationships to account for the shared  characteristics 

of a given scenario event. The obvious advantage of the proposed modification is that it accounts 

for the spectral shape of the records in the prediction of building responses. This modification is 

important, because  influences the IM-EDP relationship, and its inclusion will reduce potential 

bias in the loss assessment procedure. Additionally, because the same IM-EDP transformation 

for a particular building is used at every site, correlations of EDP are still guaranteed to be 

identical to those of IM. 

3.4.5 Adaptation of the Methodology to Include Collapsed Buildings, Multiple EDPs and 

Multiple Building Types 

The methodology developed thus far can predict EDP maps through IM-EDP 

transformations for a given building type. For cases where the building does not collapse, losses 

can be predicted from the EDP maps utilizing EDP-based VFs. Losses for collapsed buildings 

are based on their estimated replacement costs. This study proposes to identify collapsed 

buildings if the Sa(T1) at the site exceeds the collapse capacity, also quantified in terms of Sa(T1), 

and denoted Sa(T1)Collapse. Results for the six building models in this study revealed that 

Ln[Sa(T1)Collapse] is negatively correlated (on the order of -0.7 to -0.9) with the slope and 
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intercept coefficients of IM-EDP transformations, indicating that larger A and B coefficients are 

related to lower Sa(T1)Collapse, as expected. Furthermore, it is found that the all three variables, A, 

B, and Ln[Sa(T1)Collapse], follow a multivariate normal distribution. Therefore, Sa(T1)Collapse 

should be sampled at the same time as the IM-EDP transformation from a common multivariate 

distribution  

The methodology can also be easily extended to several EDPs and building types. The 

steps are the same, except that they are performed for multiple building types and EDPs. First, 

the analyst needs to perform IDA for models representing each building type that is contained 

within the portfolio. As described previously, IDA is carried out using a suite of ground motions. 

Ground motions should be carefully selected for use in determining a range of probable IM-EDP 

transformations by IDA analysis, in particular ensuring: (1) that the ground motion set contains a 

wide variety of spectral shapes, and (2) that the ground motions represent the tectonic 

environment of the region of interest. Linear IM-EDP transformations for each building type and 

EDP of interest, as well as Sa(T1)Collapse, are fitted to the IDA results for each ground motion 

record and building type. The parameters of a multivariate normal distribution are then computed 

from the coefficients defining the IM-EDP transformations and the Ln[Sa(T1)Collapse] values. It is 

important to develop a joint distribution representing the coefficients associated with all of the 

buildings and EDPs, because cross-correlations are not preserved if their distributions are 

assumed to be independent.   

For the purposes of illustration, imagine a building portfolio wherein each building is 

represented by one of the six building types in this study. Imagine also that losses in each 

building are predicted from two structural response parameters: IDR and PFA.  In this case, one 

would perform IDA for all six model buildings. IM-EDP transformations for each IDA curve and 
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each building are obtained by fitting linear regressions between Ln[IDR] and Ln[Sa(T1)], and 

Ln[PFA] and Ln[Sa(T1)], results. Based on the suite of IM-EDP relationships and 

Ln[Sa(T1)Collapse] values obtained from the IDA results, a joint distribution of intercept and slope 

coefficients and collapse capacities is constructed. For this example, the joint distribution defines 

five random variables (i.e. two linear regression coefficients per EDP x two EDPs + 

Ln[Sa(T1)Collapse]) for each of the six building types, resulting in 30 random variables. Slope and 

intercept coefficients of IM-EDP relationships and Ln[Sa(T1)Collapse] for all of the building types 

are sampled from the 30 variable multivariate distribution. A new set of relationships would be 

sampled from the same multivariate distribution before creating each new EDP map.  

One remaining complication related to the prediction of EDPs in the proposed regional 

loss assessment method is the representation of a class of buildings by a single model. This 

representation of a class of buildings with a single model or capacity curve is a limitation to 

virtually all regional loss assessment methods, due to the infeasibility of individually 

characterizing each building in a region. The variability in structural characteristics and response 

among archetype buildings of the same type could be estimated and incorporated in the 

methodology, but it is not the focus of this article. It is expected that including this source of 

variability in the loss estimation method would result in a small and likely realistic reduction of 

the correlation, because it introduces more randomness into the loss assessment. 

3.4.6 Relation to Steps in Regional Loss Assessment Method 

The proposed methodology prescribes a set of steps for simulating EDPs (i.e.    ̂s) for 

spatially-distributed building stocks, based on spatial distributions of Sa(T1) (intensity maps). 

Previous studies have recommended simulating n combinations of earthquake magnitudes and 

locations on each known fault in a region and generating at least p = 50 intensity maps per 
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earthquake simulation to develop probabilistic predictions of losses (Jayaram and Baker 2010). 

In addition, q realizations of spatially-distributed    ̂s (EDP maps) are required for each 

intensity map, for a total of n scenarios x p intensity maps/scenario x q EDP maps/intensity map. 

Further studies are needed to recommend an appropriate value of q. For each realization, the 

expected loss of individual buildings is computed from EDP-based VFs and the regional loss is 

obtained by summing the individual losses. Importance sampling techniques (e.g. Jayaram and 

Baker 2010) are likely critical to make this procedure more computationally tractable. 

3.5 Conclusions 

Considering spatial correlations in ground motion intensity improves regional seismic 

loss assessments, particularly for rare, high consequence events. This study examines spatial 

correlations between building response parameters. Results show that correlations in building 

response are more significant for more similar buildings and closely spaced sites. A critical 

observation is that spatial correlation patterns between engineering demand parameters (i.e. 

EDPs, particularly interstory drift) and spectral accelerations at a building’s first-mode period 

(Sa(T1)) are similar, when evaluated in natural log space.  

Building on these observed patterns of spatial correlations, the authors propose a method 

for incorporating correlations in building response in regional seismic loss assessment 

procedures. In the proposed approach, maps of correlated ground motion intensities are 

generated with existing models. These “intensity maps” are used to predict spatial distributions 

of EDPs through linear IM-EDP transformations. The transformations produce building 

responses that capture the expected spatial correlation structure of EDPs. The distribution of 

coefficients for defining such transformations is obtained by performing incremental dynamic 

analysis (IDA) on nonlinear models representing each building type of interest. The distribution 
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of probable IM-EDP relationships that is obtained from IDA is modified to estimate the 

distribution of probable IM-EDP transformations for a region based on regional seismicity. This 

addition to regional loss assessment methods represents the first time correlations in building 

responses, in addition to ground motion intensities, are explicitly considered.  

Since EDPs are better predictors of damage and loss than Sa(T1), such a process is 

expected to improve methods for estimating losses for a region. Future studies will evaluate the 

proposed regional loss assessment method to investigate the significance of including building 

response correlations in the regional loss assessment, providing the basis for development of 

simplified methods to account for these correlations.  

3.6 Data and Resources 

Ground motion time histories for the Northridge, Chi Chi, and Loma Prieta earthquakes 

came from the PEER ground motions database, available at http://peer.berkeley.edu/peer_ 

ground_motion_database (last accessed February 2012). Ground motion time histories for the 

simulated earthquakes, ShakeOut and Puente Hills, were provided by Robert Graves. 

Building models are analyzed with OpenSees (Open System for Earthquake Eng. 

Simulation), available at OpenSees.berkeley.edu (last accessed January 2011). 
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 4 A COMPARATIVE EVALUATION OF PROBABILISTIC REGIONAL 

SEISMIC LOSS ASSESSMENT METHODS, USING SCENARIO CASE 

STUDIES  

 

ABSTRACT: This study compares current and developing probabilistic regional 

(portfolio) loss assessment methods.  These comparisons are carried out for two 

scenario earthquake events. Of particular interest are: the impact of directly 

considering building responses versus basing losses on ground motion intensity; 

identifying best practices for predicting collapsed buildings; and examining the 

sensitivity of loss assessments to other methodological decisions related to 

building stock classification and exposure and key sources of uncertainty. On the 

basis of the identified strengths and weaknesses of the different regional loss 

assessment techniques, high-end and simplified methods are recommended for 

computing probabilistic regional seismic losses.  

4.1 Reference Article 

DeBock, D.J. and A.B. Liel (2014b), “A comparative evaluation of probabilistic seismic loss assessment methods, 

using scenario case studies.” Journal of Earthquake Engineering. Under Review. 

4.2 Introduction 

Performance-based earthquake engineering (PBEE) is intended to enable risk-informed 

decision-making. To date, much of the research related to PBEE has focused on quantifying the 

possible risks to individual buildings. However, parties interested in a group of geographically-

distributed buildings, such as policy makers, insurers, and real-estate developers, need to make 

risk-informed decisions on a regional or portfolio, rather than an individual building, basis (Liel 
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and Deierlein 2012). For this reason, over the past decade, researchers have developed methods 

to extend PBEE to assess the risk of earthquake-induced losses for groups of buildings (hereafter 

referred to as “regional losses”). These methods predict the expected loss, as well as the variation 

therein, recognizing that risk-informed decision-making depends upon quantifying the likelihood 

of experiencing rare, but catastrophic levels of loss (Haimes 1998).  

There are many sources of uncertainty affecting the prediction of earthquake-induced 

regional losses, including those associated with the characteristics of future earthquakes, the 

properties of ground shaking at different sites, building response and capacity, the fragility of 

building components, and the costs of repairing damage, to name a few. Due to these 

uncertainties and the lack of closed-form solutions available to propagate these uncertainties 

through the loss assessment, state-of-the-art methods for probabilistic regional seismic loss 

assessment (Bazzurro and Luco 2005, Crowley and Bommer 2006, Lee and Kiremidjian 2007, 

Park et al. 2007, Goda and Hong 2008a, Jayaram and Baker 2010, Vaziri et al. 2012, DeBock et 

al. 2013) rely heavily on Monte Carlo-based simulation methods (Fishman 2006). This amounts 

to repeating the loss assessment for different sets of probabilistically characterized input random 

variables to develop a suite of “regional loss realizations” from which statistics for the mean and 

variance in regional loss can be obtained. Figure 4.1 describes the major steps comprising these 

Monte Carlo-based regional loss assessment methods.  
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Figure 4.1. Illustration of probabilistic methods for regional loss assessment. Aspects examined in this study 

are outlined by the gray dashed box.  

 

This article investigates alternative regional seismic loss assessment methods. The evaluation 

is conducted by assessing regional losses by different methods for multiple building stocks for 

two earthquake scenarios (corresponding to the Steps 3-7 in Figure 4.1, outlined in gray). The 

predictions for the median and distribution of the regional loss obtained from the different 

methods are compared with the aim of satisfying four primary objectives. The first objective is to 

evaluate the effectiveness of IM-based loss assessment methods (Step 4a) as compared to EDP-
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based loss assessment methods (Step 4b) for non-collapsed buildings. In this study, IM is the 

spectral acceleration at a building’s first-mode period (Sa(T1) or Sa) and the EDP considered is 

interstory drift ratio (IDR), so IM-based and EDP-based methods are hereafter referred to as Sa-

based and IDR-based for clarity. The second objective is to explore alternative methods for 

dealing with collapsed buildings in the loss assessment. The third objective is to identify those 

sources of variability and uncertainty in Steps 3-7 of the loss assessment that have the largest 

influence on the regional loss results.
6
 These findings are then used to propose methods for 

completing Steps 3-7 of the loss assessment procedure that are simple, yet provide robust 

predictions of the median and distribution of possible earthquake-induced losses in a region.  

4.3 Overview of Regional Seismic Loss Assessments 

4.3.1 Earthquake Scenarios 

Regional losses are quantified for two earthquake scenarios, representing two realizations of 

Steps 1 & 2 in Figure 4.1. The first scenario considered is the “ShakeOut” Mw 7.8 south-to-north 

rupture on the southern San Andreas fault. The ShakeOut is a hypothetical earthquake, for which 

Graves et al. (2008) modeled ground motion time histories throughout the southern California 

region with physics-based simulations of the fault rupture and seismic wave propagation. The 

ground motions and data quantifying site conditions are available for a large number of 

uniformly spaced sites (at 1.2 mile intervals) over the southern California region. The ShakeOut 

scenario is analyzed here because of the high spatial resolution of the time-history data available.  

                                                 

6
 Due to our focus on Steps 3 -7, a significant source of uncertainty that is excluded from discussion in this article is 

variability in fault seismicity properties (e.g. magnitude, locations of fault ruptures, and seismic rates). Aslani et al. 

(2012) develops a method for incorporating uncertainty in seismic rates into regional seismic loss assessments, 

showing they may have a significant influence on the variability of the losses. 
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The second scenario is the historical 1999 Mw 7.6 Chi Chi, Taiwan earthquake. Chi Chi 

ground motion recordings for more than 400 sites, together with site soil properties, are available 

from the PEER NGA strong motion database (Chiou et al. 2008). The high density of sites with 

recordings along the west coast provides good spatial resolution of ground motion characteristics 

in that region. Since the time histories from Chi Chi are recorded from a historical event, it 

provides a check against the simulated ShakeOut results.  

4.3.2 Building Stocks and Test Regions 

4.3.2.1 Downtown Los Angeles RC Moment Frame Building Stock  

The building stocks constituting the regional exposure to seismic losses in this study are 

based on the reinforced concrete (RC) building stock in and around southern downtown Los 

Angeles. The study focuses on RC moment frames, because these buildings are expected to 

represent a significant part of the regional loss exposure in Los Angeles (Lynch et al. 2010, 

Comerio and Anagnos 2012), and because we have access to robust nonlinear simulation models 

for nonductile and ductile RC frame buildings. The Los Angeles RC moment frame building 

stock is inventoried for an area encompassing five downtown zip codes (90071, 90013, 90014, 

90015, and 90021), which is labeled in Figure 4.2 as “small region”. The gross building square 

footage and year of construction is estimated from HAZUS (FEMA 2003) and height distribution 

is estimated by visual review of the inventory with Google (2013) Streetview. On the basis of 

these observations, the area is estimated to have about 175 RC moment frame buildings, totaling 

approximately 7 million gross square feet. These buildings are further categorized by occupancy, 

height, and year of construction. Three different types of occupancies are considered: (1) 

residential (apartments/condos), (2) commercial (office/retail), and (3) hospitality (hotels). 

Buildings heights are classified as: (1) low-rise (1-2 stories), (2) mid-rise (3-6 stories), and (3) 
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high-rise (>6 stories). In addition, buildings are divided by year of construction to distinguish 

between nonductile (pre-1980) and ductile (post-1980) structures. The distribution of buildings 

by gross square-footage, height and occupancy are summarized in Figure 4.3. The building stock 

is intended to be realistic, but a precise representation of Los Angeles’s building inventory is not 

possible and the exact location of each building is unknown. Accordingly, buildings are 

randomly assigned locations within their respective zip codes, the outcome of which is shown in 

Figure 4.4. For the purpose of the loss assessment, each building is mapped to the closest point 

on a grid with 0.3 mile spacing. The estimated building stock shows good agreement with 

findings of Comerio and Anagnos (2012) in terms of height and occupancy distribution of the 

older concrete buildings.   

 

Figure 4.2. Small and large regions considered in and around Los Angeles. (Background map from 

www.findlatitudeandlongitude.com).  

 

 

http://www.findlatitudeandlongitude.com/
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4.3.2.2 Additional Building Stocks 

Additional hypothetical building stocks occupying different regions and/or having different 

building densities are considered. A “large” region in the Los Angeles metro area is shown in 

Figure 4.2, encompassing roughly thirty times the area of the small region. For each region, two 

versions of the building stock are considered: (1) a “dense” building stock that has the same 

number of RC frame buildings per square mile as estimated based on the downtown Los Angeles 

RC building stock, and (2) a “sparse” building stock that has one-tenth the building density. Only 

the small region with dense building stock is a realistic representation of Los Angeles RC frame 

buildings; the others are considered to examine how region size and building stock variability 

affect regional loss assessments. The Los Angeles regions are analyzed for the ShakeOut 

earthquake scenario. 

 

Figure 4.3. Distribution of RC frame building stock for downtown Los Angeles (small region) by height, 

occupancy and year of construction. 

 

Two large regions are also analyzed for the Chi Chi, Taiwan earthquake scenario, as 

shown in Figure 4.5. No attempt is made to inventory the actual Taiwanese building stock and 
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the dense and sparse Los Angeles building stocks are artificially transported to Taiwan for 

comparison purposes and assigned random locations within the regions. A sensitivity study 

presented later in the article also concentrates buildings into different sub regions (shown in 

Figure 4.5) within one of the large regions. 

 

 

 

Figure 4.4. Map of building locations generated for the downtown Los Angeles building stock (small region). 

Building sizes are shown for illustration, but exaggerated. 

 

4.3.3 Building Representations, Structural Analyses and Loss Assessments    

4.3.3.1 Classification of Building Inventory through Model Buildings 

For the purpose of regional loss assessment, it is computationally prohibitive to individually 

model and assess the losses for each building.  Instead, each RC frame building in the building 

stock is represented by one of a group of six robust multiple-degree-of-freedom nonlinear 

simulation models that is most similar to the structure of interest on the basis of height and year 
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built. The model buildings are ductile and nonductile moment resisting frames, and range in 

height from two to eight stories. Each model building is simulated in 2D (Haselton et al. 2011a, 

Liel et al. 2011) with OpenSees (PEER 2013). Material nonlinearities are represented by lumped 

plasticity beam and column elements and inelastic joint shear springs. Geometric (P-∆) effects 

are also considered. Table 4.3 summarizes the model buildings’ characteristics. 

Losses for non-collapsed buildings are predicted with vulnerability functions. The 

vulnerability functions are either Sa-based, taking Sa as input, or IDR-based, taking IDR as an 

input, and output the predicted building loss (in dollars). Vulnerability functions are developed 

by fitting regression models to suites of loss data that are obtained for each combination of 

model building and occupancy category. The loss data are obtained with the Performance 

Assessment Calculation Tool, PACT (FEMA 2012).  

 

Figure 4.5. Regions considered in Taiwan, together with the approximate fault rupture location (red line) 

for the Chi Chi earthquake in Taiwan from (Rubin et al. 2001). (Background map from 

www.findlatitudeandlongitude.com). 
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Table 4.3.  Model buildings representing the class of RC moment frames. 

Model 

Bldg. No. 
Model Bldg. Description 

No. of 

Stories 

First-Mode Period  

(T1) (s)* 

Ductility 

Capacity† 

1 Low-rise, new (Ductile) 2 0.60 15.0 

2 Mid-rise, new (Ductile) 4 0.91 10.7 

3 High-rise, new (Ductile) 8 1.81 6.0 

4 Low-rise, old (Nonductile) 2 1.03 3.3 

5 Mid-rise, old (Nonductile) 4 1.92 2.3 

6 High-rise, old (Nonductile) 8 2.23 2.3 

*
 
Determined from eigenvalue analysis assuming cracked concrete sections of about 35% of the 

gross properties, depending on axial load. As a result, these periods are longer than those that have 

been measured in moderate shaking events (Goel and Chopra 1997). 
† 
Determined by nonlinear static pushover analysis as described in FEMA (2009).

 
There are many 

methods for computing ductility, so these values are provided for the purpose of comparing 

deformation capacity of the model buildings. 

 

To predict building losses in PACT, the user inputs structural analysis data quantifying 

EDPs. For the purpose of this study, the model buildings are subjected to the ground motions of 

the FEMA (2009) far-field set and scaled to several different intensity levels through incremental 

dynamic analysis (IDA), as illustrated in Figure 4.6. The predicted nonlinear dynamic response 

serves as the EDP input to PACT. The far-field set
7
 contains ground motions with a broad range 

of spectral content, recorded at moderate distances for shallow crustal events of the type that may 

occur in Southern California. For each intensity level of interest, PACT then generates random 

realizations of building response based on the inputted structural response data. For each 

realization, the predicted damage and loss for each component in the building (e.g. partitions, 

plumbing, etc.) is generated with a fragility function which takes an EDP at the location of the 

component as its input, and returns a random realization of component damage and losses, i.e. 

repair or replacement cost. The damage states in different components are assumed to be 

                                                 

7
 This set consists of 22 ground motion pairs. For each pair, the ground motion intensity is taken as the geometric 

mean of Sa of the two horizontal components. IDR is the maximum IDR occurring from separate application of the 

two components, in order to quantify the maximum response of a 3-D building. 
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uncorrelated. The inventory of components in a building depends on the size and occupancy type 

of the building and assumed architectural and content characteristics associated with that 

occupancy. PACT provides estimates of the quantities of different components typically found in 

buildings of different types. The total building loss is the sum of the losses for all of a building’s 

components. PACT is able to account for those components that past research (e.g. Beck et al. 

2002) has shown to be responsible for the majority of earthquake losses, such as dry-wall 

partitions and columns. For a given intensity input, PACT is used to generate multiple 

realizations of building loss, considering uncertainties in structural response, component 

fragilities, and quantities of building components.  

 

Figure 4.6. IDA for model building no. 4 computed with the FEMA (2009) far-field ground motions, 

showing non-collapse structural analysis results, which are inputted into PACT, and the collapse capacity 

distribution. 

 

Vulnerability functions are created here using PACT to generate a suite of 4000 realizations 

of losses for each model building and occupancy category (18 total combinations). The losses 

cover the range of ground shaking intensity considered in the structural analysis. Vulnerability 

functions are fitted to the building loss data through local polynomial regression analysis (Fan 
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and Gijbels 1996). Local polynomials are a moving weighted regression in which the regression 

at each point weights the remaining data points according to their relative distance to the point of 

reference. The use of local polynomials is appealing because it captures the expected value and 

variance in the data, even for data sets that do not satisfy homoscedasticity. The vulnerability 

functions can be fitted with respect to Sa or IDR, as illustrated in Figure 4.7(a)-(b).
8
  Although 

other approaches for developing vulnerability functions exist (e.g. Porter et al. 2001, FEMA 

2003, Mitrani-Reiser 2007, Ramirez and Miranda 2009), we develop ours “in house” to ensure 

that the different versions of the vulnerability functions (e.g. Sa-based vs. IDR-based) are 

computed consistently from the same data and by the same methods.  

 

Figure 4.7. Vulnerability functions (VF) for non-collapsed buildings, for structures represented by model 

building no. 3, with commercial occupancy showing: (a) IDR-based vulnerability function; (b) Sa-based 

vulnerability function; and (c) Sa--based vulnerability function. For reference, the median replacement cost 

of this building is estimated at $162/ft
2
.  

 

                                                 

8
 We also developed a second set of EDP-based vulnerability functions, which take a vector of IDR and PFA as 

input, but these proved to be no better, in terms of their predictive ability, than those based simply on IDR. 
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Losses to collapsed buildings are based on the building replacement cost. Expected 

replacement costs are estimated from RSMeans (2009) and range from $160 to $200 per gross 

square foot in 2009 dollars, depending on building height and occupancy type. Replacement cost 

is assumed to be lognormally distributed with a logarithmic standard deviation of 0.3. This value 

is based on construction cost data analyzed by Ramirez and Miranda (2009), assuming a low 

level of correlation in subcontractor costs.  

The principal challenge associated with predicting losses in the collapsed buildings is 

determining whether or not a building collapsed. The collapse capacity of each model building 

can be determined from IDA, as illustrated in Figure 4.6.  The collapse capacity may be 

quantified in terms of Sa or IDR and is the intensity (i.e. Sa) or response (i.e. IDR) after which 

the building becomes unstable. Following Vamvatsikos and Cornell (2002), collapse is 

approximated as the point at which the slope of curve relating Sa to maximum IDR reduces to 

less than 20% of its initial slope, indicating a small increase in Sa produces a large increase in 

response. For each model building, distributions of Sacollapse and IDRcollapse are computed from 

IDA using the FEMA (2009) ground motions, and summarized in Table 4.4.  

Table 4.4.  Collapse capacities of model buildings. 

Model 

Bldg. 

No. 

 Sacollapse   IDRcollapse 

Median  * Median  * 

1 2.42 0.50 0.068 0.20 

2 1.52 0.43 0.071 0.17 

3 0.57 0.41 0.050 0.20 

4 0.37 0.35 0.033 0.11 

5 0.25 0.32 0.059 0.26 

6 0.22 0.42 0.042 0.23 

 

In addition to the Sa-based and IDR-based vulnerability functions and collapse capacities, 

vulnerability functions and collapse capacities that consider Sa and an additional ground motion 
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parameter, epsilon (), are developed for so-called Sa--based assessments.  is a property of the 

ground motion that is computed as the difference between the ground motion intensity observed 

at a site and the expected intensity from a ground motion prediction equation, quantified by the 

number of standard deviations the observation lies away from the expected intensity.  is a proxy 

for spectral shape and is a significant predictor of building EDP responses, given Sa (Baker and 

Cornell 2005). The Sa--based vulnerability functions are computed from the same data and by 

the same approach as the other vulnerability functions. However, the local polynomial regression 

is carried out with respect to both the Sa and the  of the ground shaking causing each PACT 

loss realization, such that a vulnerability function surface taking Sa and  as input is produced. 

Collapse capacity distributions that are a function of are computed by regressing the natural 

logarithm of Sacollapse for each record with . Figure 4.7(c) illustrates the effect of on the 

vulnerability function for one of the model buildings. Vulnerability functions conditioned on 

higher tend to have lower losses because of the peaked, less damaging spectral shape that is 

associated with high ground motions. The collapse capacity distribution also is increased for 

higher  ground motions (Haselton et al. 2011b).     

4.4 Candidate Regional Loss Assessment Methods  

This section describes the different methods by which the various steps in the loss assessment 

are performed. These methods are summarized in Table 4.5.  

4.4.1 Developing Regional Ground Motion Intensity Maps  

We first consider alternative methods for producing intensity maps for the scenario of 

interest, completing Steps 3 & 4a (Figure 4.1) in the loss assessment. Most of these methods 

employ a GMPE. GMPEs predict the median ground motion intensity at site i for intensity map 
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realization j,   ̂  , and quantify the uncertainty in that prediction. The spectral acceleration is 

then represented by Equation 4.1,  

 
  (    )    (  ̂  )                 (  ̂  )  √   

    
       4.1 

where     and    are standard deviations representing intra-event and inter-event variability, and 

    and    are the intra-event and inter-event residuals of Saij. ij is  for site i and intensity map 

realization j and represents the total (intra plus inter-event) Sa residual. All of the parameters in 

Equation 4.1 are defined at the period of interest, which is first-mode period of the model 

building h located at that site (T1,h). The intra-event Sa residual varies between sites, representing 

uncertainties in site response and source-to-site path affects. The inter-event Sa residual is 

constant at all sites for a given intensity map and period, representing uncertainty due to fault 

rupture characteristics and regional effects. Both residual terms (      ) are normally distributed 

with mean of 0 and standard deviation of 1. In the methods that follow, it is sometimes 

convenient to refer also to the total Sa residual for an earthquake, averaged over all sites, avg,j. 

Since the     residual has a mean of zero for intensity map j, avg,j is given by Equation 4.2: 

 

       
     

√   
    

 

 
4.2 

Equation 4.2 is exact if the GMPE used has constant    and     at all sites for a given period, as 

in Boore and Atkinson (2008).  

Two sources of correlation affect the spatial distribution of     . First, intra-event Sa 

residuals at nearby sites i and k (i.e.,     and    ) are known to be correlated, due to their 

geographic proximity, such that      and      will tend both to be either higher or lower than the 

average GMPE prediction. The degree of correlation in intra-event Sa residuals depends strongly 
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on site separation distance, but also on period and soil conditions (Wesson and Perkins 2001, 

Wang and Takada 2005, Goda and Hong 2008b, Goda and Atkinson 2009, Jayaram and Baker 

2009, Sokolov et al. 2010, Esposito and Iervolino 2011, Loth and Baker 2013, Du and Wang 

2013). Second, inter-event Sa residuals for two periods T1 and T2 (i.e.,   (  ) and   (  )) will be 

correlated. In this case, the degree of correlation depends on the relative values of T1 and T2, 

since if ground motion intensity is higher than average at T1, it is also likely to be higher than 

average at other periods close to T1 (Baker and Cornell 2006).  

In this study, an intensity map j, which represents      for all sites in the earthquake of 

interest j, is computed by several different approaches, which are summarized in Table 4.5(a). 

All approaches use the Boore and Atkinson (2008) GMPE to compute   ̂       and   . Methods 

G1-G3 compute   ̂   from the GMPE and obtain      through Equation 4.1. However, the 

method of randomly generating the Sa residuals differs between the methods. G1 assumes both 

Sa residuals are zero at each site, taking      =  ̂  . G2 generates random realizations of inter-

event and intra-event Sa residuals, considering period-to-period correlations of inter-event Sa 

residuals using the model proposed Baker and Cornell (2006), but not site-to-site (spatial) 

correlations of intra event Sa residuals. G3 generates random realizations of the Sa residuals, 

using models that consider both period-to-period correlations and spatial correlations. Spatially 

correlated intra-event Sa residuals are generated with the Loth and Baker (2013) model.   

The final method, G4, computes      from the simulated or recorded ground motion time 

histories at each site for the earthquake scenario of interest. For buildings located at a site where 

ground motion time-history data are not available,      is linearly interpolated (in natural log 

space) based on proximity to neighboring sites.  

  



 97 

 

 

Table 4.5.  Summary of methods compared for different steps in the loss assessment. 

(a) Methods for developing intensity maps (Steps 3 & 4a in Figure 1) 

ID Description 

G1      =  ̂  .      taken as the median predicted value from the GMPE.  

G2 
  (    )    (  ̂  )              .      is computed from the GMPE and randomly generated Sa 

residual values. Considers period-to-period correlation among   , but not spatial correlation among    . 

G3 
  (    )    (  ̂  )              .      is computed from a GMPE and randomly generated Sa 

residual values. Considers period-to-period correlation among   , and spatial correlations among    . 

G4      is computed from ground motion time histories produced by the scenario earthquake. 

(b) Methods for predicting building response (Step 4b in Figure 1) 

ID Description 

E0 Sa-based methods. These methods do not explicitly consider IDR in the regional loss assessment. 

E1 

  [    ]          [   ]  Coefficients (Ah and Bh) defining Sa-IDR transformations for each 

building h are randomly generated from a multivariate normal distribution that relates Ah, Bh, and 

Sah,collapse. The parameters defining the multivariate distribution are obtained from nonlinear analysis of 

simulation models for model buildings.   

E2 

  [    ]          [   ]  Coefficients (Ah and Bh) defining Sa-IDR transformations for each 

building h are back-calculated from the ground motion time histories and nonlinear response history 

results for the scenario of interest.  

E3 Compute IDR directly from nonlinear response-history analyses at each site for each model building. 

(c) Input variables for vulnerability functions (Part of Step 5 in Figure 1)  

ID Description 

V1,V4 Sa. At each site, Sa corresponds to Saij at period T1,h, where model building h is located at site i. 

V2 
Sa and  Sa is defined as above. is ij, obtained by rearranging Equation 4.2:     

  (  ̂  )   (    )

√   
    

 
.  

ij  is also computed at the first-mode period of model building h (T1,h) located at site i. 

V3 IDR. IDR corresponds to IDRh at site i for model building h, determined from methods E1, E2 or E3.  

(d) Methods for determining if a building is collapsed (Part of Step 5 in Figure 1) 

ID Description 

C1 

Collapse capacity for each model building h (i.e. Sah,collapse or IDRh,collapse ) is taken as the median collapse 

capacity from IDA for model building h. These collapse capacities are reported in Table 2. Input 

variable(s) is the same as the V method used.  

C2 
Sah,collapse or IDRh,collapse is randomly generated at each site from a distribution of collapse capacities 

obtained from IDA (Table 2) for model building h. Input variable(s) is the same as for the V method used. 

C3 

Sah,collapse is randomly generated from the distribution of collapse capacities obtained from IDA for model 

building h, once for each regional loss realization. New “region-wide” values of Sah,collapse are generated at 

the onset of each subsequent regional loss realization. There are a number of variants to C3: If combined 

with V1, Sah,collapse is randomly sampled from the Sa-based collapse capacity distribution. If combined with 

V2 or V4, Sah,collapse is randomly sampled from the Sa--based collapse capacity distribution, taking avg,j as 

the input  value. If combined with V3, Sah,collapse is sampled from the multivariate normal distribution 

defining the coefficients of the  Sa-IDR transformations and collapse capacities.  

C4 

Sah,collapse is taken as the median collapse capacity obtained from nonlinear analysis results from the 

simulated or recorded time histories. The median collapse capacity is computed using logistic regression.  

Sah,collapse is “region-wide” and the same at all sites with the same building type.  

C5 Collapse is simulated directly at each site with nonlinear dynamic analysis. 

C6 Assume no buildings collapse. 
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4.4.2 Predicting Building Responses (IDRs) at Each Site  

We next consider alternative methods for relating ground motion intensity to the building 

response, specifically IDRs, of each building in the portfolio (Step 4b in Figure 4.1). Although 

most regional loss assessment methods do not directly compute or consider EDPs such as IDR, 

we hypothesize that it may improve regional loss assessment for two reasons. First, EDPs are 

better predictors of losses to individual buildings than IMs, because the explicit computation of 

EDPs reduces that error in the loss estimation that stems from uncertainty in the distribution of 

EDP given IM (EDP|IM). Second, EDPs could be determined in such a way that spatial 

correlations in building responses are considered. Accounting for spatial correlations of EDPs 

allows for the possibility that buildings perform better or worse than what is expected (given IM) 

throughout the entire region due to region-wide construction or ground motion frequency content 

characteristics. We classify this here as inter-event variability of EDP|IM.  

A number of possible approaches could account for these spatial correlations in building 

response. Here, we follow the proposed approach of DeBock et al. (2013). The method is based 

on the observation that EDPs and Sa have similar spatial correlation patterns. This observation 

implies that IDRs can be predicted from Sa through a linear transformation, which preserves 

spatial correlation patterns and provides unbiased predictions of IDRs (DeBock et al. 2013). 

These so-called Sa-IDR transformations have the form:  

 
  [    ]          [   ] 4.3 

DeBock et al. (2013) propose a two-step approach for determining the coefficients    and    

for each model building h. First, each model building h is subjected to IDA with a large suite of 

ground motion records and Sa-IDR transformations are fitted to results from each record, as in 

Figure 4.8. The distribution of Ah and Bh coefficients describing these transformations can be 
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shown to follow a multivariate normal distribution, shown in Figure 4.8(b), where the 

uncertainty in Ah and Bh reflects variability in ground motion characteristics and structural 

response. The second step of the approach uses this multivariate normal distribution to randomly 

generate coefficients defining Sa-IDR transformations for each model building. This method 

accounts for avg,j of the intensity map j when sampling Ah and Bh, as described by DeBock et al. 

(2013). A single realization of an Sa-IDR transformation for model building h is used at every 

site where that model building is located for a given intensity map. We note here that Sah,collapse is 

also jointly distributed with Ah and Bh. Therefore, an expected value of Sah,collapse for a region can 

be sampled at the same time as Ah and Bh, which is essential for one of the collapse 

classifications methods presented later. 

Table 4.5(b) summarizes the methods considered here for predicting IDRs. Method E1 

generates random Sa-IDR transformations by the method proposed by DeBock et al. (2013). E2 

employs Sa-IDR transformations for each model building that are back-calculated from nonlinear 

dynamic time-history analysis results for the earthquake scenario. The back-calculated Sa-IDR 

transformations, examples of which are shown for Chi Chi and Shakeout in Figure 4.8(a), are 

achieved by linearly regressing simulated Ln[IDR] results for the model building of interest with 

Ln[Sa] for all the sites in the region for which recorded or simulated time histories are available. 

In essence, the E2 method determines the coefficients of the Sa-IDR transformation that best fit 

the model building simulation results for that specific scenario. The most robust approach, 

identified as E3, simulates IDRs directly from the recorded or simulated ground motion time 

histories and building simulation models for the model buildings. For buildings located between 

sites where ground motion time histories are not available, IDR is linearly interpolated (in natural 

log space) from data recorded at neighboring sites.  
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For completeness, we note that methods that use Sa-based or Sa--based vulnerability 

functions do not explicitly compute IDR as part of the assessment, instead predicting individual 

building losses directly from Sa. Such methods are denoted by E0. 

 

Figure 4.8. Illustration of Sa-IDR transformations showing (a) Sa-IDR transformations for model building 

no. 4 obtained from IDA for a general set of ground motions (FEMA 2009) and from the ShakeOut and Chi 

Chi earthquakes and (b) distribution of Ah and Bh coefficients describing the Sa-IDR transformations that 

are depicted in (a), with contours representing probability densities of the multivariate normal distribution. 

 

4.4.3 Computing Losses in Individual Buildings  

Several methods are explored for computing individual building losses (corresponding to 

Step 5 in Figure 4.1). As outlined in Table 4.5(c), methods V1-V4 differ in terms of the input to 

the vulnerability function for determining losses to non-collapsed buildings: Sa, Sa-, or IDR. In 

each case, a random loss realization is generated based on the distribution of losses defined by 

the vulnerability function for the given input (illustrated in Figure 4.7(a)-(b)).   

Losses to collapsed buildings are computed probabilistically from the distribution of building 

replacement costs. The study explores different methods for determining if a building has 

collapsed, as described in Table 4.5(d). In all cases, a building is collapsed if the demand 
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(measured by Sa or IDR) exceeds the collapse capacity. Methods differ in how the collapse 

capacity is obtained and metrics used to define the demand and capacity.  

C1 takes the model building collapse capacity as the median collapse capacity that is 

determined from IDA. In contrast, C2 and C3 randomly generate collapse capacities for each 

model building, based on the collapse capacity distributions that are determined from IDA. C2 

generates the collapse capacity randomly for each model building at each site, whereas C3 

generates a single region-wide collapse capacity. In C3, the collapse capacity varies from one 

regional loss realization to the next, but not from site to site for a given model building h and 

intensity map j. The C4 region-wide collapse capacity for each model building is more precise 

and computed from the nonlinear structural analysis data for the ShakeOut and Chi Chi time 

histories. Note that C4 uses only the median Sah,collapse from the logistic regression at all sites, 

rather than sampling from the distribution of collapse capacities for a given model building. 

Accordingly, C4 can be thought of as the best possible case of C3’s region-wide collapse 

capacity, which, in the case of C4, is informed by time-history analysis for that specific 

earthquake.  Method C5 simulates collapse directly at each site using the time-history analysis 

results for that specific site. For buildings located between sites with ground motion time-

histories, C5 determines collapse based on interpolation of responses from neighboring sites. 

Finally, C6 assumes none of the buildings collapse. C6 is included to isolate the impacts of 

different types of vulnerability functions for non-collapsed buildings.  

Collapse capacity may be determined from an IDR–based, Sa-based, or Sa--based collapse 

capacity distribution. The Sa- metric for determining Sah,collapse deserves the most explanation. 

In the site-by-site method (C2), Sah,collapse is randomly generated from a distribution considering 

ijat each site. In the region-wide method (C3), collapse capacities for each model building h are 
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based on avg,j (Equation 4.2). The choice of avg,j is based on DeBock et al. (2013), which 

showed that unbiased region-wide Sa-IDR transformations (i.e. E3) can be sampled from a 

multivariate distribution that accounts for avg,j, and that the Sa-IDR transformation coefficients 

(Ah and Bh) are jointly distributed with Sah,collapse. These findings imply that region-wide 

realizations of Sah,collapse are also unbiased if they take advantage of additional information 

provided by avg,j.  

4.5 Comparison of Regional Loss Assessment Methods 

4.5.1 Overview 

Loss assessments for the two earthquake scenarios are performed by combining methods, one 

selected from each group in Table 4.5(a)-(d), and conducting 1000 Monte Carlo regional loss 

realizations. The evaluation of the methods relies on two categories of comparisons. The first 

category of comparisons considers only those methods that utilize the ShakeOut and Chi Chi 

ground motion time histories (i.e. methods that involve G4). The metric of interest is the regional 

loss given these observed time histories, denoted [RL|TH]. Although none of these methods are 

feasible for prospective prediction of losses, their evaluation permits direct comparisons of Sa, 

Sa-, and IDR-based approaches in regional loss assessment. Values of [RL|TH] obtained 

through the different methods are compared to the results from the G4-E3-V3-C5 method. G4-

E3-V3-C5 computes losses from nonlinear time-history structural response analyses performed 

for each building site, providing the most robust estimate of the ShakeOut and ChiChi losses and 

a “benchmark” for the evaluation of the other methods. Comparisons of [RL|TH] are made 

primarily on the basis of median values. Variation in the prediction of [RL|TH] is due to 

uncertainty in the vulnerability functions, and, in some cases, collapse capacities. Note that these 

comparisons are made with respect to the benchmark result, which does not represent the true 
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loss due to uncertainties and/or biases in modeling, vulnerability functions and other 

assumptions. Indeed, historical data to which the benchmark may be compared are lacking. 

However, since the same building simulation models and time-history response data are used to 

develop all of the regional loss methods, sources of bias affecting the benchmark result are 

equally present in the other methods, so relative comparisons to the benchmark are still valuable. 

The second class of comparisons quantifies the regional losses predicted by the various 

methods for the ShakeOut and Chi Chi earthquake magnitude (M) and rupture (R) location, 

[RL|M,R]. As such, comparisons of [RL|M,R] are not intended to determine how well different 

methods predict the benchmark losses for ShakeOut and Chi Chi, but, rather, how well they 

predict the distribution of possible losses that could occur. The distributions of [RL|M,R] 

obtained by the different methods are evaluated in relation to the distribution obtained from the 

best, so-called “High-end”, method. The characteristics of the High-end method are identified 

from the first class of comparisons. Comparisons of the distributions of [RL|M,R] are made with 

respect to the median, interquartile range (25
th

 to 75
th

 quantile), and 5-95 quantile range (5
th

 to 

95
th

 quantile). Variation in the prediction of [RL|M,R] stems from uncertainty in intensity maps, 

vulnerability functions, and replacement costs and, in some cases, Sa-IDR transformations and 

collapse capacities.   

Due to the large number of building stocks and regions on which regional loss methods are 

tested, the results presented below typically provide one representative example. Unless 

otherwise stated, similar results are observed for all of the building stocks and regions. We 

emphasize that numerical values of the loss estimates are used for comparison purposes only, 

and not for judgment about the risk in a particular region. Only those combinations of methods 

that are pertinent to the conclusions of this study are presented. 
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4.5.2 Comparisons of IM-based and EDP-based Methods for Non-Collapsed Buildings 

We begin by comparing four loss assessment methods that rely on either Sa or IDR for 

computing losses. This comparison focuses on the first metric, [RL |TH], so all of the methods 

use the ground motion time-history data; i.e. in all cases, the intensity map is computed directly 

from the ground motion accelerograms produced by the historical events. The first two methods, 

the benchmark (G4-E3-V3-C5) and G4-E2-V3-C5, are IDR-based. Both use the IDR-based 

vulnerability functions, taking IDRmax for all stories of the building as input; the only difference 

between these two methods is that, in the second, IDRs are computed from event-specific Sa-IDR 

transformations, as compared to nonlinear time-history analysis at each site for the benchmark. 

The two Sa-based methods rely on Sa only (G4-EO-V2-C5) and Sa and  (G4-EO-V1-C5) is thin 

inputs for vulnerability functions. These comparisons examine the ductile model buildings nos. 

1-3 and all use collapse identification technique C5, so that the different results are due only to 

differences in the information that is used for non-collapsed buildings. The nonductile model 

buildings (nos. 4-6) are excluded because their contribution to regional losses is dominated by 

collapse. 

Figure 4.9 presents boxplots of the distributions of [RL |TH] predicted. Method G4-E2-V3-

C5, an IDR-based method, produces median regional loss estimates that are closest to the 

benchmark (within 5%). In contrast, the two Sa-based methods vary substantially from the 

benchmark, producing median values of [RL|TH] as much as 25% different. This result implies 

that Sa-IDR transformations used in G4-E2-V3-C5 provide additional useful information for 

computing regional losses that is not accounted for in either of the Sa-based methods.  

Comparing now only the two Sa-based methods in Figure 4.9, the results show that the Sa--

based method (G4-EO-V2-C5) typically outperforms the Sa-based method (G4-EO-V1-C5) in 
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matching the median benchmark results, but the difference is neither consistent nor 

overwhelming. When the spectral shapes of the recorded ground motion time histories are 

consistent with the values of ij that are computed for the ground motion time histories at the 

building’s first-mode period (i.e. when Sa values computed for the time history at other periods 

are similar to what is expected based on ij), Sa--based vulnerability functions provide better 

estimations of building losses, as in Figure 4.9(a). However, for cases where the spectral shapes 

of the recorded ground motions differ from the average shape predicted by , conditioning losses 

on  can worsen the loss estimation, as shown in Figure 4.9(b).  

 

Figure 4.9. Distributions predicted for [RL|TH] for the ShakeOut large region and sparse building stock, 

comparing IDR-based and Sa-based methods for loss for all buildings represented by (a) model building no. 1 

(28 buildings) and (b) model building no. 2 (16 buildings).  

 

These first comparisons show that the accuracy of regional loss assessment is increased by 

accounting for IDR, indicating that the Sa-IDR transformations are a critical component of a 

High-end method. We now examine distributions of [RL|M,R] that are computed by methods 

that do not rely on the recorded or simulated time histories. Specifically, an Sa-IDR 
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transformation method, G3-E1-V3-C6, which is considered the most robust based on the 

evidence described above, is compared to four methods that do not directly consider IDR in the 

assessment. These four methods fall into two categories. The first category is composed of 

methods that are Sa-based and consider spatial correlations in the development of intensity maps. 

Of these, G3-EO-V2-C6 is Sa--based, while G3-EO-V1-C6 is solely Sa-based. The second 

group does not consider spatial correlations (G2-EO-V2-C6; G2-EO-V1-C6) and differs only by 

whether  is considered. We assume in all cases that none of the buildings are collapsed (C6), so 

that differences due to collapse classification do not affect the comparison.  

Figure 4.10 shows that each method produces similar median [RL|M,R] losses (within 10% 

of each other and the IDR-based method). However, methods that consider spatial correlations of 

ground motion intensity (G3) exhibit much larger variability compared to the G2 methods, as 

demonstrated by G3’s interquartile and 5-95 quantile ranges in Figure 4.10 that are more 

consistent with that of the IDR-based method. Since the G2 methods consistently predict 

excessively narrow distributions of regional loss, they are not considered beyond this point.  

The IDR-based method (G3-E1-V3-C6) produces the largest interquartile and 5-95 quantile 

ranges of [RL |M,R], because it accounts for spatial correlations in ground motion intensity and 

building responses. By including IDR correlations, it accounts for inter-event variability in 

IDR|Sa, which results in a larger range of potential regional loss. Among the Sa-based methods 

that account for spatial correlations of ground motions, the method that conditions losses on  

(G3-E0-V2-C6) leads to predictions with less variance than the method that does not (G3-E0-

V1-C6). The solely Sa-based method introduces an additional source of variability by not 

accounting for the spectral shape of ground motions through the parameter ij in the prediction of 

losses. Neglecting to account for ij widens the inter-quartile and 5-95 quantile ranges, due to 
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over-predicting large losses and under-predicting small losses. Large losses (like those 

represented by the 75
th

 and 95
th

 quantiles) occur when Sa values are large. When Sa values are 

large,  tends to be positive, which reduces the predicted loss for a given Sa. If  is not 

considered, the loss given Sa is over-predicted for large Sa values. The reverse is true when  is 

negative. Observe, however, that the magnitude of the additional variance from not considering  

is similar to the magnitude of the additional variance that results from considering spatial 

correlations among IDRs, as evidenced by the agreement between the interquartile and 5-95 

quantile ranges of methods G3-E1-V3-C6 and G3-E0-V1-C6 in Figure 4.10. As a result, the 

solely Sa-based method produces the most similar distribution of [RL|M,R] to the IDR-based 

method, but is “right, for the wrong reason.”
9
  

 

Figure 4.10. Distributions predicted for [RL|M,R] for the Chi Chi large region 2 and sparse building stock, 

comparing four Sa-based methods to an IDR-based method.  

                                                 

9
 Explicitly considering spatial correlations of IDRs increases the interquartile and 5-95 quantile ranges of [RL|M,R] 

by 5-15%. Accounting for the average spectral shape of ground motions in the event by conditioning losses and 

collapse capacities on avg,j decreases the range of [RL|M,R] by 5-15%. These effects are both always of moderate 

significance, and always have opposing effects on variance. We find no systematic reason why either of these two 

observations would differ for other regions and building stocks. 
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4.5.3 Comparisons of Methods to Identify Collapsed Buildings 

Methods for identifying collapsed buildings are organized to answer the following questions. 

First, how important is the collapse method to the overall accuracy of the regional loss 

assessment? Second, what are the differences between methods that randomly generate the 

collapse capacity of a model building a single time for each regional loss realization (i.e. region-

wide collapse capacity, C3) and those that randomly generate collapse capacities at each site 

(C2)? Finally, how does quantifying model building collapse capacity by Sah,collapse with and 

without considering  impact the results?   

   Figure 4.11 examines these questions by comparing predictions of [RL|TH] when different 

collapse identification methods are employed. These results show that methods that predict 

fractions of collapsed buildings similar to the benchmark also predict losses that are similar to 

the benchmark. In addition, the impacts of utilizing different vulnerability functions (indicated 

by the notation of V1 vs. V2 vs. V3 in Figure 4.11) are negligible when compared to the impacts 

of the collapse classification method. The sensitivity of the regional loss assessment to collapse 

comes from the large part of the regional loss that is associated with the cost of replacing 

collapsed buildings.
 
Any region in which a subset of buildings poses a significant collapse risk, 

like the nonductile concrete buildings in this study, is likely to show a similar sensitivity.  

  Second, we consider the comparison of site-by-site and a region-wide collapse capacities. 

Figure 4.11 shows that the region-wide median value of collapse capacity computed from 

logistic regression of time history results (C4), is the best predictor of the benchmark collapses 

and losses
10

. Indeed, in Figure 4.11(b), C4 classifies approximately twice as many buildings as 

                                                 

10
 It is difficult to verify whether the benchmark prediction for the fraction of collapsed mid-rise nonductile RC 

moment frame buildings for the large region 2 is consistent with the performance of those buildings in the historical 



 109 

 

 

collapsed as the C2 methods. This discrepancy demonstrates that inter-event variability of 

collapse capacity strongly impacts the number of collapsed buildings in a region. C2 methods 

fail to account for inter-event variability of collapse capacity because they generate collapse 

capacity on a site-by-site basis, assuming that typical collapse capacities throughout the region 

are distributed about their expected value. On the other hand, C3, of which C4 is the benchmark 

example because it uses the event time histories, can capture inter-event variability of collapse 

capacity, because it samples region-wide collapse capacities at the onset of each realization. Note 

in Figure 4.11 that the median fraction of collapsed buildings predicted by C3 is similar to the C2 

methods, but that the fraction of buildings that collapsed in the benchmark analysis (0.77) lies 

within the range of the C3 predictions. Therefore, we conclude that C3 methods are superior to 

C2 methods for classifying collapsed buildings.  

We now address the question, “how should region-wide collapse capacities be computed?” in 

Figure 4.12, focusing on comparing C2 and different versions of the C3 method for predicting 

[RL|M,R]. The C3 variants differ in terms of the parameters used to define the collapse capacity 

distribution, specifically whether the collapse distribution is Sa-based or Sa--based (see Table 

3(d)). The C2 site-to-site methods are included in Figure 4.12, even though Figure 4.11 showed 

they are less accurate for [RL|TH], because the possibility that they produce a reasonable 

distribution of collapses for [RL|M,R] is not ruled out.  For the purpose of this evaluation, recall 

that the most robust method for computing losses to non-collapsed buildings explicitly predicts 

IDR through region-wide Sa-IDR transformations (E1) and computes building losses with IDR-

based vulnerability functions. On the basis of these observations, G3-E1-V3-C3 is identified as 

                                                                                                                                                             

Chi Chi earthquake. However, the large region 2 did experience particularly intense ground shaking and Tsai et al. 

2000 found that nonductile RC frames performed poorly in the Chi Chi earthquake; therefore the large fraction 

(~0.77) of the mid-rise nonductile RC frame buildings that collapse in the benchmark analysis seems reasonable.  
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the most robust regional loss assessment method and is hereafter referred to as the High-end 

method. Since the High-end method generates Sa-IDR transformations and collapse capacities 

for all the model buildings from a joint multivariate distribution, it accounts for cross-

correlations between the different model buildings, in terms of Sah,collapse and inter-event 

variability of IDR|Sa. Spatial correlations of collapse cases are also realistic, as a result of the 

spatially correlated fields of Saij that are used to represent ground motion intensity, which is the 

input variable for determining collapse. The other variants of C3, as well as the C2 methods, do 

not require the user to construct a covariance matrix from IDA data. 

 

Figure 4.11. (a) Distributions predicted for [RL|TH] for the Chi Chi large region 2 and buildings represented 

by model building no. 5 in the sparse building stock, comparing methods for identifying which buildings have 

collapsed, and showing (b) fraction of collapsed buildings computed by the different methods. The annotation 

of Sa,  and IDR describes the input for determining collapse.  

 

Figure 4.12 shows that the site-to-site and region-wide Sa-based only methods (G3-E0-V1-

C2 and G3-E0-V1-C3) predict collapse classifications that are similar to the High-end method. 

However, the Sa-based methods overestimate the median and upper quantiles of the distribution 

of collapsed buildings by 5%-25%. This overestimation stems from realizations that produce 
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large Sa values at a number of sites. In reality, sites with large Sa tend to also have positive . 

Neglecting to account for this positive  erroneously increases the fraction of buildings that are 

classified as collapsed. Figure 4.12 also shows that method G3-E0-V2-C3, which computes 

region-wide Sah,collapse at the onset of each regional loss realization that are conditioned on avg,j, 

produces similar probabilistic collapse classifications to the High-end method. There is only one 

difference between G3-E0-V2-C3 and the High-end method in terms of collapse classification; 

the High-end method considers collapse capacity as part of a joint distribution along with Sa-IDR 

transformation coefficients, whereas method G3-E0-V2-C3 does not utilize Sa-IDR 

transformations. As a result, method G3-E0-V2-C3 does not explicitly consider cross-

correlations in Sah,collapse between different buildings h. However, most of the cross-correlations 

in Sah,collapse are accounted for by cross-correlations of avg,j at different first-mode periods for the 

same intensity map j. Since both approaches employ avg,j, G3-E0-V2-C3 produces collapse 

classification realizations that are similar to the High-end. 

 

Figure 4.12. Fractions of buildings collapsed for the ShakeOut large region and dense building stock, 

comparing collapse classification methods that consider Sa vs. Sa- and those that generate region-wide vs. 

site-by-site collapse capacities. 
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4.5.4 Sensitivity of Predicted Regional Loss Distributions to Other Methodological 

Choices 

The objective of this section is to determine how sensitive the probabilistic regional loss 

distributions [RL|M,R] are to uncertainty of vulnerability functions, replacement costs and 

certain building stock characteristics. For these studies, losses are computed by method G3-E0-

V4-C3. This method computes losses from spatially correlated intensity maps, Sa-based 

vulnerability functions, and region-wide collapse capacity realizations generated from a Sa--

based distribution. G3-E0-V4-C3 is relatively simple, but, when compared to the High-end 

method in Section 4.5.5, is found to produce very similar loss assessments (<5% difference in 

the median and interquartile/5-95 quantile ranges). 

4.5.4.1 Sensitivity to Variability of the Vulnerability Functions and Replacement Costs 

Each loss assessment up to this point has accounted for the variability of vulnerability 

functions and replacement costs for computing regional losses by treating these quantities 

probabilistically. The natural question is, “how influential is vulnerability function and 

replacement cost variability to the total variability of [RL|M,R]?” The deterministic loss 

computation uses the expected value of the vulnerability function or the expected value of the 

replacement cost as the building loss.  

Figure 4.13 shows that treating vulnerability functions and replacement costs 

probabilistically or deterministically has negligible impact on the median, interquartile range, or 

5-95 quantile range of [RL|M,R], with less than 3% difference for any quantity. These results 

imply that regional loss variability is dominated by event-to-event variability of the ground 

shaking intensity, not by uncertainty of vulnerability functions and replacement costs. Similar 
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results are expected for any portfolio with more than a couple of buildings if deviations from the 

expected values of repair and replacement costs are non-systematic (i.e. each building’s 

deviation from the expected repair or replacement cost is independent of the others). This 

expectation follows directly from the observation that the coefficient of variation of a sum of 

random variables (e.g. regional loss) decreases as the number of random variables (e.g. 

individual building losses) increases (Montgomery and Runger 2007). In a sensitivity study, the 

authors find that the distribution of regional losses is relatively insensitive to the variability of 

the vulnerability functions and replacement costs for building stocks with as few as five 

buildings. 

Systematic deviations of repair and replacement costs from the expected value are still 

expected to impact the variance of regional loss, because costs for each building will tend to all 

be higher or all be lower than the expected values throughout a region, thereby expanding the 

range of possible regional loss outcomes. Correlations in contractor costs and demand surge are 

factors that may cause systematic deviations of repair and replacement costs.  For example, 

demand surge is expected to increase costs by 20% or more for large-scale disasters (Olsen and 

Porter 2011), but is much less significant for small-scale disasters. Therefore, accounting for 

demand surge would increase of the 75
th

 and 95
th

 regional loss quantiles (and possibly the 

median) by 20% or more, but would have little effect on the 5
th

 and 25
th

 quantiles. As a result, 

demand surge is expected to significantly increase the variance in regional loss.    

4.5.4.2 Sensitivity of Regional Losses to Building Locations 

The precise distribution of buildings within a region may be difficult to determine 

(Vasudevan et al. 1992, Bal et al. 2010). For example, the resolution of the building stock data 

gathered in this study locates buildings by zip code, but contains no information regarding the 



 114 

 

 

building locations within each zip code. This begs the question about the locational precision 

required in estimating building locations for the purpose of regional loss assessment. Bal et al. 

(2010) demonstrate that the spatial resolution of building stock data impacts the variance of 

regional loss, but not the expected value, and that increasing the geographical resolution of 

building locations reduces the regional loss variance, but with diminishing effects when site 

resolution is less than approximately a mile.  

In this study we hold spatial resolution constant, but vary the locations of buildings within 

the region. The influence of these uncertainties associated with lack of knowledge about actual 

building locations on [RL|M,R] is explored by examining ten different realizations of the Chi Chi 

large region 1 and sparse building stock. Each stock has the same total square footage of each 

building type. Five of these building stocks distribute the buildings randomly throughout the 

region and are referred to as R1-R5. Five additional stocks (S0-S4) cluster the entire building 

inventory into a sub-region approximately 2 mi. x 3 mi. in one corner or near the center of the 

region, as shown in Figure 4.5. 

 

Figure 4.13. Distributions predicted for [RL|M,R] for the ShakeOut small region and sparse building stock 

(18 buildings), comparing methods that incorporate probabilistic and deterministic techniques for computing 

individual building losses. Losses are computed by G3-E0-V4-C3. 
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The similarities between the medians and ranges of the loss assessments for the randomized 

building stocks in Figure 4.14 indicates that the precise location of each building is not necessary 

for computing the distribution regional losses. Clustering of buildings, as illustrated by sub-

regions S0-S4, impacts the median and ranges of the regional loss substantially, by more than 

100% in some cases. The median is affected, because clusters located closer to the fault rupture 

tend to experience greater losses than more distant clusters. Clustering also impacts the ranges of 

the losses, because locating buildings closer to one another increases correlations of their losses, 

which increases the variance of the regional loss predictions.
11

 These observations suggest that it 

is important to account for clustering of buildings into sub-regions when such a phenomenon is 

likely to occur, such as in dense downtown areas, but that a single realization of the building 

stock is sufficient for computing regional losses.  

 

Figure 4.14. Distributions predicted for [RL|M,R]  for the Chi Chi large region 1 for sparse building stocks 

with the same buildings, but different spatial distributions. Losses are computed by G3-E0-V4-C3. 

 

                                                 

11
 Although S3 and S4 have smaller ranges of loss, the coefficients of variation of the losses are still larger than for 

the regions where buildings are randomly distributed throughout the entire large region (R1-R5). 
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For a full analysis that considers multiple faults and probable rupture locations, we 

hypothesize that the importance of building cluster locations in the exposed inventory may be 

reduced in some cases. This hypothesis is based on the assumption that the location of the cluster 

matters less if multiple faults contribute to the regional hazard. However, when soil conditions 

vary significantly throughout a region, it will still be important to know where a cluster of 

buildings is located in order to represent soil conditions correctly for predicting Saij. In our test 

regions, the variability of soil conditions is not large enough for locations of building clusters to 

have a significant impact for analyses in which multiple fault rupture locations are considered. 

However, for regions in which there is large variability in soil conditions, such as some regions 

near the San Francisco Bay in California (USGS 2010), the impact could be significant. 

4.5.4.3 Sensitivity of Regional Losses to Building Classification 

Next, we examine the effects of building height and capacity misclassifications of the 

building stock on [RL|M,R]. Nine additional versions of the ShakeOut small region and dense 

building stock are created, each of which has the same gross building square footage as the 

original building stock, but with different attributes.  

Five of the new building stocks contain height misclassifications, but maintain the same 

capacity (i.e. strength and ductility) classifications as the original building stock, which are 

representing by either modern or older RC frame buildings. Height misclassifications are 

introduced in the first case by reclassifying half of the mid-rise building square footage as low-

rise and the other half as high-rise. The results in Figure 4.15 demonstrate that considering only 

two height classes (low and high), rather than three, yields an almost identical regional loss 

distribution to that of the original building stock. The next three building stocks assume that all 

of the buildings are classified as low-rise, mid-rise, or high-rise. Condensing the entire building 
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stock to a single height category increases the 5-95 quantile range of regional losses by as much 

as 20%, due to building losses being excessively correlated as a result of all of buildings 

belonging to the same height category. Aslani et al. (2012) also observed that less diverse 

building stocks have greater regional loss variation than diverse building stocks. A final building 

stock divides the gross square footage equally between the three height classes. This division 

overestimates the low-rise and mid-rise square footage, while under-estimating the high-rise 

square footage (refer to Figure 4.3). However, all quantiles of the resulting regional loss 

distribution closely resembles that of the original building stock (less than 5% different).  

The four building stocks with capacity misclassifications have the same height distribution as 

the original stock, but misclassify 25%, 50%, 75%, or 100% of the older (lower ductility and 

strength capacity) buildings as modern (higher ductility and strength capacity). 

Misclassifications of capacity have a strong impact on regional losses, as demonstrated by Figure 

4.15. Older nonductile buildings account for a significant portion of the regional loss. Therefore, 

the entire regional loss distribution reduces (i.e. each quantile is lower) when older buildings are 

misclassified as newer. In fact, median losses are predicted to reduce by roughly 50% for the 

ShakeOut earthquake small region and dense building stock if all of the buildings are assumed to 

be modern. Capacity misclassifications other than those having to do with year of construction, 

such as assuming the wrong structural system (e.g. RC shear walls versus RC moment frames), 

are expected have similar impacts on the regional loss distribution. 
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Figure 4.15. Distributions predicted for [RL|M,R] for the ShakeOut small region and dense building stock, 

examining building height and capacity misclassifications. Losses are computed by G3-E0-V4-C3. 

 

Based on these observations, we conclude that accurate classification of building capacity is 

crucial for obtaining accurate regional loss predictions. In most building inventory data, building 

capacity is represented by classifications defined by building year and structural system (Bal et 

al. 2008). However, height misclassifications are not expected to significantly impact the results 

of probabilistic regional seismic loss assessments, and a couple of gross height categories can 

likely be used to represent the regional exposure of buildings of different types
12

.  

                                                 

12
 Building classes for which height and capacity are strongly correlated would be an exception to this 

observation. 
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4.5.5 Recommended Methods for Computing Regional Building Loss 

A primary objective of this study is to recommend methods for regional seismic loss 

assessment. The High-end method (G3-E1-V3-C3) is developed based on observations from 

previous sections. This method begins each regional loss realization by developing a map of 

spatially correlated ground motion intensities, since accounting for spatial correlations is 

essential for predicting the distribution of [RL|M,R]. For non-collapsed buildings, IDRs are 

computed from a Sa-IDR transformation for each model building h, the coefficients of which are 

randomly generated for each regional loss realization. Losses are computed with IDR-based 

vulnerability functions. Collapsed buildings are identified by a region-wide collapse capacity. 

The random variables representing the coefficients of the Sa-IDR transformations and the 

collapse capacities for different buildings are sampled from a multivariate normal distribution 

that depends on avg,j. 

Since the High-end method is time-consuming, two alternative methods are also proposed. 

These methods are described as “simplified,” because they compute losses without considering 

EDPs explicitly. Simplified1 corresponds to G3-E0-V4-C3. Like the High-end method, it begins 

by generating a suite of intensity maps that consider spatial correlations of Sa. However, losses 

for non-collapsed buildings are computed from Sa-based vulnerability functions. To identify 

collapsed buildings, region-wide realizations of collapse capacity are sampled from each model 

building’s Sa--based collapse capacity distribution at the onset of each regional loss realization, 

considering avg,j for intensity map j. The features of Simplified1 are motivated by previous 

observations, first, that loss distributions require spatially correlated intensity maps. Second,  

distributions of [RL|M,R] for non-collapsed buildings in a region are estimated well by Sa-based 

vulnerability functions. However, implementing Sa-based vulnerability functions does not 
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account for the small increase in variance that is due to inter-event variability of IDR|Sa, nor 

does it account for the small decrease in variance that results from considering avg,j. The 

misestimations that result from ignoring both of these sources systematically cancel each other 

out, making the distribution of [RL|M,R] obtained by Sa-based only methods “right for the 

wrong reason.” Third, the best method for identifying collapsed buildings utilizes region-wide 

realizations sampled from Sa--based collapse capacity distributions.  

The Simplified2 method is G3-E0-V1-C2. It is identical to Simplified1, except in terms of the 

collapse identification method.  In Simplified2, collapse capacities for each model building h are 

based on a Sa-only distribution and are randomly generated on a site-by-site basis.  Although less 

robust than the Simplified1 and High-end methods, Simplified2 is appealing because losses due to 

building damage and collapse are computed from a single intensity measure, Sa. In doing so, 

Simplified2 is consistent with Sa-based vulnerability functions that do not explicitly distinguish 

between collapsed and non-collapsed cases.  

Figure 4.16 compares the distributions of [RL|M,R] predicted by the Simplified and High-

end methods. Looking first at the results for Simplified1, the median and lower quantiles are very 

similar to the High-end method (errors range from 0-5% for most of the building stocks and 

regions), and the values of the 75
th

 and 95
th

 quantiles are on the order of 0-10% different than the 

High-end method. Simplified2 computes 5
th

 and 25
th

 quantiles of [RL|M,R] that are typically 

within 10% of the High-end method, but the losses at the median and upper quantiles are 

generally 5-25% higher than the High-end. The errors in Simplified2 are predominantly due to 

under-predicting building collapse capacities when Sa is large and  is positive. 
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Figure 4.16. Distributions predicted for [RL|M,R], comparing Simplified and High-end methods for the 

ShakeOut small region and dense building stock. 

 

We also acknowledge a plausible Simplified3 method, which does not align precisely with 

any of the methods described in Table 3. Simplified3 classifies collapsed buildings in the same 

manner as Simplified1. For non-collapsed buildings, Simplified3 computes losses with Sa--based 

vulnerability functions that take Sa and avg,j as input. These vulnerability functions are then 

shifted to account for inter-event variability of IDR|Sa. Mechanically, this shift in the 

vulnerability function is accomplished by generating a realization of a standard normal random 

variable at the onset of each regional loss realization j. This realization is then multiplied by the 

standard deviation of the vulnerability function that is due to uncertainty in IDR|Sa 

( (  )      ), essentially modifying the distribution to be consistent with the computed inter-

event variability.  

Figure 4.17 shows that Simplified3 is indeed promising and produces results that are similar 

to the High-end and Simplified1 methods when used for a single model building. In this example, 

the loss associated with every quantile of the regional loss distribution obtained by the 

Simplified3 method is within 5% of that obtained by the High-end method. However, 
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implementation of Simplified3 for a regional loss assessment with many model building types is 

difficult. First, it requires vulnerability functions that account for . Second, the analyst must 

compute the portion of the standard deviation of the vulnerability function that is due to 

variability of [IDR|Sa,]. Third, the shifted vulnerability functions should be correlated between 

the different model buildings. To determine these correlated shifts of the vulnerability functions 

for different model buildings, suites of Sa-IDR relationships are required. Thus, there is no 

reduction in computational effort compared to the High-end method. 

If a simpler approach to probabilistic regional loss assessment than the High-end method is 

desired, the comparison here recommends Simplified1. Simplified1 produces distributions of 

[RL|M,R] that are similar to the High-end method, but is “right for the wrong reason” (see 

Section 4.5.2). The advantage of Simplified1 is that it does not require considering EDPs directly 

in the assessment, which can be difficult. Simplified2 is conducive to use with vulnerability 

functions that are based on Sa and do not distinguish between collapsed and non-collapsed 

buildings, making it an attractive method for analysts who already have such vulnerability 

functions available. However, Simplified2 over-predicts the occurrence of building collapse for 

strong shaking events (e.g. large magnitude events with high Sa and positive  at many sites), so 

it is conservative. The Simplified3 method is robust, but too complex for current implementation. 

Nevertheless, a new library of vulnerability functions may make Simplified3 an optimum choice 

in the future. 
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Figure 4.17. Distributions predicted for [RL|M,R], comparing Simplified3 to the High-end and Simplified1 

methods for buildings for loss from all buildings represented by model building no. 2 in the Chi Chi large 

area 2 and sparse building stock. 

 

4.6 Conclusions 

Several different methods for Monte Carlo-based probabilistic regional (portfolio) loss 

assessment are implemented for case-study building stocks and earthquake scenarios. Findings 

are based on a stock of ductile and nonductile reinforced concrete moment frame buildings 

ranging in height from two to eight stories. On the basis of these investigations, the study 

concludes that the most important factors to consider in probabilistic regional seismic loss 

assessments are: (1) spatial correlations of ground motion intensity; (2) regional versus site-to-

site methods for collapse classification; (3) accurate characterization of building capacity, 

especially strength and ductility; (4) spatial clustering of buildings if such clusters exist in the 

inventory. Each of these factors significantly impacts the variance of regional loss predictions. 

Based on comparisons to a Benchmark method, which estimates building responses via 

nonlinear dynamic time-history analysis, a High-end method is recommended. The High-end 

method follows a procedure developed by DeBock et al. (2013). It begins by generating random 
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realizations of ground motion intensity maps from a ground motion prediction equation (GMPE), 

considering spatial correlations of ground motion intensity, which is achievable with existing 

spatial correlation models. This and past studies have demonstrated the importance of 

considering spatial correlations among ground motion intensities for assessing regional losses 

probabilistically. Next, the High-end method uses spectral acceleration at the first-mode period 

of each model building h (Sah) to predict interstory drift ratio (IDRh) at each site through region-

wide “Sa-IDR transformations”. This step explicitly accounts for spatial correlations among IDR, 

as well as inter-event variation of IDR|Sa, and is found to broaden the distribution of the regional 

loss that is estimated for a given fault rupture. Losses for non-collapsed buildings are computed 

with IDR-based vulnerability functions. Collapsed buildings are identified by a region-wide 

collapse capacity for each model building h (Sah,collapse), which is generated at the onset of each 

new intensity map realization. The High-end method samples the region-wide Sah,collapse for all 

model buildings at the same time that it generates transformation equations for converting Sa to 

IDR, because Sah,collapse and the coefficients for the  Sa-IDR transformations for all the model 

buildings are correlated. Losses for collapsed buildings are taken as the replacement cost for the 

building. The total loss in each regional loss realization is the sum of the losses for all of the 

individual buildings. 

Simplified methods for modeling probabilistic regional losses, which do not account for 

IDRs explicitly, are recommended. Like the High-end method, the proposed simplified methods 

generate random intensity maps, considering spatial correlations. The first simplified method 

takes advantage of the observation that losses for non-collapsed buildings estimated with 

vulnerability functions that take only Sa as their input variable artificially broadens the regional 

loss distribution by not conditioning individual building losses on epsilon () to account for 
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spectral shape effects. This artificial broadening of the distribution is approximately equal to the 

broadening in the distribution that is observed when IDRs are explicitly considered. The 

preferred simplified procedure generates random region-wide Sah,collapse for each model building 

h from collapse capacity distributions that are conditioned on the average  (avg,j) for the 

earthquake. Another simplified method classifies collapse by generating random realizations of 

Sah,collapse that are independent from site to site and do not take  as an input variable. This 

second method is less conservative and overestimates large rare losses. However, it lends itself to 

circumstances in which the analyst desires to implement vulnerability functions that do not 

depend on  and do not distinguish between collapsed and non-collapsed states explicitly.  

We conclude also that only coarse height classifications (i.e. each height class represents a 

range of possible heights) are necessary for modeling a building stock, for the purpose of 

estimating probabilistic regional loss distributions. It is observed, however, that building capacity 

(e.g. strength and ductility) misclassifications introduce significant errors into the regional loss 

assessment. Therefore, correctly classifying buildings according to their capacity is a crucial 

aspect for modeling a regional building stock. Capacity is most often related to the type of 

structural system and year a building was built. We also show that the details of precise building 

locations are unimportant for probabilistic regional loss assessment. However, it is important to 

identify clusters of building concentrations, as in a downtown area, when modeling the regional 

building stock. Additional findings show that implementing vulnerability functions and 

replacement costs deterministically rather than probabilistically has negligible impact on the 

distribution of probabilistic regional losses, if deviations of repair and replacement costs are 

assumed to be non-systematic. This results because variability of the regional loss is dominated 
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by sources other than non-systematic variability of repair and replacement costs, e.g. variation in 

ground shaking intensity from each realization to the next.  
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 5 SUMMARY AND CONCLUSIONS 

The essence of performance-based earthquake engineering (PBEE) is to design and analyze 

structures for specific performance levels rather than prescriptive design requirements. The 

central goal of such efforts is to enable decision-makers to make risk-informed decisions 

concerning structures. This thesis applies PBEE methods to problems that can be divided into 

two categories: (1) seismic design criteria for buildings and (2) regional (portfolio) seismic loss 

assessment. In the first category, PBEE methods are employed to evaluate a potential change in 

building seismic standards (i.e. altering seismic design requirements for accidental torsion) by 

assessing the performances of several archetype buildings designed with and without the 

potential changes. In the second category, regional seismic loss methodologies are developed and 

evaluated with a special focus on factors that affect the variance of regional seismic loss 

predictions, because the variance of potential regional losses is key to quantifying risks 

associated with rare, potentially catastrophic events. 

While making recommendations for building design codes and quantifying future regional 

losses probabilistically are two distinctly different problems, the PBEE methods employed to 

address them are fundamentally similar. In both cases, building performance is estimated with 

nonlinear models that are intended to capture important building response properties (e.g. 

ultimate load capacity and post capping negative stiffness). These models are subjected to 

nonlinear time history analyses.  Moreover, uncertainties in ground motion characteristics, 

building response, and other key parameters, are propagated through the assessment.  

As with any study, the mathematical, statistical and physics-based models used in this study 

(e.g. ground motion prediction equations, vulnerability functions, building inventories, building 

simulation models, etc.) are subject to limitations, which should not be ignored when analyzing 
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the results and making conclusions. One strategy that is taken in these studies for dealing with 

model limitations is to rely on relative comparisons, rather than absolute performance measures, 

to reach conclusions. For example, the importance of accidental torsion seismic design 

requirements is evaluated by comparing the performances of archetype buildings that are 

designed with and without accidental torsion, rather than on the absolute collapse capacity of the 

archetype buildings. For evaluating regional seismic loss assessment methods, each candidate 

method is executed using the same regions, building inventories, ground motion prediction 

equations (GMPE), building simulation models, etc. These relative comparisons are not error-

proof, but the impacts of systematic biases in the analyses that are due to model 

errors/inaccuracies are reduced, because comparisons are made between analyses that are subject 

to similar sets of limitations.  Limitations specific to the models used in each case are discussed 

in more detail below.  

5.1 Building Code Development: Accidental Torsion Seismic Design Requirements 

5.1.1 Summary and Implications 

The primary goal of examining accidental torsion requirements is to quantify when they are 

necessary in the seismic design of building structures in order to ensure adequate safety against 

collapse and, conversely, to determine when such requirements may be safely omitted in the 

seismic design process. The importance of design provisions for accidental torsion design is 

evaluated from two viewpoints: the significance of the requirements (comparing the collapse 

capacities of buildings that are designed with and without ASCE/SEI 7 accidental torsion 

provisions) and the need for the requirements (comparing collapse capacities of buildings 

designed without accidental torsion to those of torsionally-stiff buildings, i.e. perimeter frame 

buildings). The Torsional Irregularity Ratio (TIR) is employed to quantify the level of torsional 
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sensitivity in the building, accounting for both asymmetry and torsional flexibility. The TIR is 

defined in ASCE/SEI 7 as the ratio of the maximum story drift at one end of the structure to the 

average of the story drifts at the two ends of the structure, where both drifts are computed in the 

same direction of interest. The drifts for computing the TIR include a 5% offset of the line of 

action for seismic forces (relative to a building’s dimensions) in the most critical direction to 

account for torsional flexibility.  

This study finds that the ASCE/SEI 7 accidental torsion design requirements are only 

significant (i.e. affecting collapse capacity by 5% or more) for Seismic Design Category (SDC) 

B buildings with TIR > 1.4 and for SDC D buildings with TIR > 1.2. These limits correspond to 

the definitions of horizontal irregularity Type 1a (TIR > 1.2) and Type 1b (TIR > 1.4). Therefore, 

the findings support a proposed modification to the ASCE/SEI 7 Standard whereby the 

accidental torsion design provisions are only required in SDC B if the building has a Type 1b 

horizontal irregularity, and are only required in other Seismic Design Categories (SDC C and 

above) if the building has a Type 1a (or worse) horizontal irregularity. Even a nominally 

symmetric building may have a Type 1 horizontal irregularity if it is torsionally flexible.  

Modern building codes rely on a 5% offset of the center of mass to compute an accidental 

torsional moment that is used in design.  It can be argued that there other methods for handling 

accidental torsion requirements in building design, and these approaches may better predict 

actual seismic demands in structures due to accidental torsion. Such a change in approach to 

designing for accidental torsion could increase the significance of accidental torsion in design. 

Even so, the values of need for accidental torsion provisions obtained in this study provide little 

justification that such an approach is warranted for buildings with low TIR. 
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Comparing the impacts of the accidental torsion design requirements for two Seismic Design 

Categories, this study finds that the additional requirements in SDC D, namely the torsional 

amplification factor, Ax, and drift limits enforced at the building edges, successfully prevent the 

collapse capacity from degrading as torsional irregularity and flexibility increase. The absence of 

such requirements in SDC B is the primary reason that accidental torsion design requirements are 

less significant for SDC B as compared to SDC D buildings with large TIR.   

Perhaps most importantly, the study of accidental torsion seismic design requirements in this 

thesis provides an example of how a building code requirement can be examined analytically. In 

the past, expert judgment has been the primary (or even sole) factor for proposing and evaluating 

many seismic design requirements. Expert judgment should never be abandoned in the building 

code development process. However, given the sophistication of modeling tools that are 

currently available and their continual improvement, future studies of building code requirements 

may see expert judgment accompanied by analytical studies. The analytical studies are useful for 

validating, refining, or even modifying building code recommendations that stem from expert 

judgment. For example, it is easy to expect, based on engineering judgment, that accidental 

torsion design requirements are relatively insignificant for torsionally stiff buildings, but 

quantifying the characteristics of buildings for which they become significant is difficult to 

predict without an analytical study.  

5.1.2 Limitations 

The study of accidental torsion seismic design requirements was carefully executed so that 

the limitations influenced the conclusions as little as possible. The processes of designing the 

archetype buildings, modeling their behavior, and constructing simplified building simulation 

models were performed systematically. Nonetheless, uncertainties and limitations still remain. 
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 One limitation is that the 3D analytical models used in predicting significance and need for 

accidental torsion can only approximate building behavior from a global perspective (i.e. 

nonlinearities and deterioration properties are lumped into braces that are calibrated to global 

behaviors of high-end models). Furthermore, the high-end models to which they are calibrated 

have several limitations, including nonlinear features that are calibrated from test data for slow 

(rather than fast, as in an earthquake) cyclic tests and that are lumped into zero-length elements.  

The collapse capacities of the archetype building models show that their probabilities of 

collapsing when the ground motion intensity is equal to the maximum considered earthquake 

(MCER) intensity defined by ASCE/SEI 7 is 5% to 20%. These collapse probabilities are 

consistent with the expected collapse safety based on FEMA P-695. Even so, the absolute 

collapse capacities of the archetype models are not used for making conclusions in this study. 

Rather, conclusions are based on relative comparisons of performances between similar models 

so that systematic biases in the models will not adversely affect the conclusions. Additionally, 

the 3D analytical models have only two frame lines in each orthogonal direction, unlike many 

real buildings that have several. Having fewer frame lines makes them less redundant and likely 

more sensitive to torsional effects than buildings with several frame lines. It is expected that this 

limitation makes the study’s conclusions conservative, because accidental torsion design 

requirements are shown to be more important to torsionally sensitive buildings and the limited 

number of frame lines makes the archetypes more torsionally sensitive. 

Another limitation is that not all possible building types are explicitly represented by the 

archetype buildings. For example, wood, steel, masonry, and RC shear-wall buildings are not 

analyzed, and only a finite number of plan aspect ratios, frame layouts, and building heights are 

considered. However, important properties for building responses to earthquakes, such as 
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strength, stiffness, ductility, plan configuration, and height are varied systematically in the 

archetype design space; the variation of these properties spans a relatively broad range so that 

properties of many real buildings are expected to fall within the range of properties represented 

by the archetype design space. Therefore, factors that affect buildings’ structural properties (e.g. 

structural system type and plan configuration) are represented implicitly, based on the 

assumption that the important structural properties of such buildings still fall within the range of 

structural properties represented by the archetype design space. Conclusions are drawn from 

observations that are consistent across all of the variations of the archetype design space, so it is 

reasonable to extend these conclusions to many additional structural systems and building types, 

even if they are not represented explicitly. Exceptions, however, are buildings whose structural 

properties are not bounded by structural properties represented in the archetype design space. For 

example, masonry buildings are expected to be less ductile than any of the archetype buildings 

that are used for this study, so the applicability of the findings in this study to masonry buildings 

is uncertain. The author hypothesizes that the conclusions of this study can be extended to 

buildings whose structural properties are not within the bounds of the archetype design space, 

but further studies are needed to confirm this hypothesis.  

5.1.3 Future Work 

There is a large potential list of building code seismic provisions, both in new and exiting 

building standards, that may benefit from future analytical examination. The author is currently 

examining the implications of rigid versus flexible diaphragm assumptions for distributing lateral 

design loads in buildings that are permitted for the “Simplified Procedure” of the ASCE/SEI 7-

10 standard (i.e. Section 12.14 of ASCE/SEI 7-10). In the near future, the author would also like 

to conduct (or see conducted) analytical studies to evaluate seismic design provisions in 
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ASCE/SEI 7 that pertain to the horizontal and vertical irregularities that are summarized in Table 

12.3 of ASCE/SEI 7-10. Analytical studies could help answer the questions: which additional 

design requirements are truly necessary for buildings with irregularities?  At what points do the 

additional requirements for irregular buildings become necessary? Are the additional 

requirements for irregular buildings too conservative or not conservative enough?  These 

analyses can help support expert judgment in the building code development process.  

5.2 Regional (Portfolio) Seismic Loss Assessment 

Probabilistic estimates for regional seismic losses require an analysis framework that 

considers the variability of the predicted regional losses. This variability stems from both 

aleatory and epistemic sources, such that it represents both the inherent randomness in future 

seismic losses as well as our uncertainty in our ability to predict these losses. Past research has 

demonstrated that spatial correlations of ground motion intensity are important for quantifying 

regional loss variance. In this thesis, the concept of spatial correlation for regional seismic loss 

assessments is extended to incorporate spatial correlations of building responses. Based on these 

findings, advancements to regional seismic loss assessment methods are proposed and tested. 

5.2.1 Incorporation of Spatial Correlations Between Building Response Parameters in 

Regional Seismic Loss Assessment: Summary and Implications 

This thesis’ examination of spatial correlations between building response parameters shows 

that correlations in building response are more significant for more similar buildings and closely 

spaced sites. A critical observation is that spatial correlation patterns between engineering 

demand parameters (i.e. EDPs, particularly interstory drift) and spectral accelerations at a 

building’s first-mode period (Sa) are similar, when evaluated in natural log space. These findings 

are based on models of ductile and nonductile reinforced concrete (RC) moment frame buildings 
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ranging in height from two to eight stories that are evaluated for five different earthquake 

scenarios for which large numbers of recordings are available. 

Building on these observed patterns of spatial correlations, a method for incorporating 

correlations in building response in regional seismic loss assessment procedures is proposed. In 

the proposed approach, maps of correlated ground motion intensity measures (IM) are generated 

with preexisting models. These “intensity maps” are used to predict spatial distributions of 

engineering demand parameters (EDP) through linear “IM-EDP transformations.” The 

transformations produce building responses that capture the expected spatial correlation structure 

of EDPs. The distribution of coefficients for defining such transformations is obtained by 

performing incremental dynamic analysis (IDA) on nonlinear models representing each building 

type of interest. This addition to regional loss assessment methods represents the first time 

correlations in building responses, as well as ground motion intensities, are explicitly considered.  

5.2.2 A Comparative Evaluation Probabilistic Regional Seismic Loss Assessment 

Methods, Using Scenario Case Studies: Summary and Implications  

Several different methods for Monte Carlo-based probabilistic regional (portfolio) loss 

assessment are implemented for case-study building stocks and earthquake scenarios. Findings 

are based on a stock of ductile and nonductile RC moment frame buildings ranging in height 

from two to eight stories and two different earthquake scenarios. On the basis of these 

investigations, it is concluded that important factors to consider in probabilistic regional seismic 

loss assessments are: (1) spatial correlations of ground motion intensity; (2) regional versus site-

to-site methods for collapse classification; (3) accurate characterization of building capacity, 

especially strength and ductility; and (4) spatial clustering of buildings if such clusters exist in 

the inventory. Each of these factors significantly impacts the variance of regional loss 
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predictions. It is also known that demand surge significantly affects the variability of regional 

seismic losses, although this phenomenon is not examined in the present study. 

Based on comparisons to a Benchmark, which estimates building responses via nonlinear 

dynamic time-history analysis, the regional loss assessment method that converts Sa intensity 

maps to maps of EDPs is found to be more robust than methods that do not consider EDPs 

explicitly and is referred to the “High-end” method. Simplified methods for modeling 

probabilistic regional losses, which do not account for EDPs explicitly, are also recommended. 

5.2.3 Sample Regional Seismic Risk Assessment: Summary and Implications  

A regional seismic risk assessment is documented in the appendix to this thesis. For an 

example geographically-distributed building stock, Monte Carlo simulation (MCS) procedures 

are employed to: (1) generate fault ruptures; (2) produce suites of ground motion intensity maps 

(intensity is quantified by Sa); (3) reduce the number of intensity maps with k-means clustering; 

and (4) compute regional losses. Large magnitude events and high strength intensity maps are 

preferentially sampled with importance sampling techniques recommended by Jayaram and 

Baker (2010).  

For each intensity map, a regional loss realization is generated by the “Simplified1” method 

that is developed in Chapter 4. Regional seismic loss results for the suite of realizations for an 

example building stock are presented to illustrate how they can inform decisions at a community 

(or portfolio) level. The regional losses for the sample building stock are deaggregated multiple 

ways to show how different portions of the building stock contribute to regional seismic risks. 

Evaluating seismic risks from a regional perspective, particularly when the risks are 

deaggregated by structural class, can provide policy makers and risk holders with information 

that they need to make risk-informed decisions concerning groups of buildings. 
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5.2.4 Limitations 

The key contribution of Chapter 3 is the development of a new method for dealing with 

correlations in building responses in the context of regional seismic loss analysis.  There are 

several limitations to this study that are worth discussing. First, the author cannot rule out the 

possibility that the correlation patterns of EDPs that are observed in this study are, at least in 

part, a byproduct of the modeling techniques used to simulate building responses. However, a 

side-study produced similar results for simulation models for wood frame buildings, exhibiting 

similar patterns of spatial correlations and cross-correlations of Sa and EDP. Since these models 

are fundamentally different than the RC moment frame building simulation models, the similar 

results provide some confidence that the observed correlation patterns are not just a result of a 

specific modeling technique or specific to a particular class of buildings. Nonetheless, 

representing an entire structural class of buildings (e.g. modern mid-rise RC moment frames) 

with a single structural model (e.g. the 4-story modern RC frame model used in this study) likely 

causes a biased over-estimation of correlation, because variability of building structural 

characteristics (e.g. first-mode period, ultimate strength, etc.) within the structural class is 

ignored. The impacts of this potential bias are evaluated and discussed in Section 4.5.4.3, where 

it is shown that representing all buildings within a structural class with a single model has a 

negligible impact on the regional seismic loss assessment results, as long as a building inventory 

is divided into a sufficient number of structural system types and height classifications. The most 

robust approach to measure correlations of building responses would be to record and analyze 

the actual seismic responses of several real buildings that are geographically distributed. There 

are currently not enough data for this approach to be feasible, but this may become possible in 

the future with more instrumented buildings. 
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In addition, the method for generating EDP maps with IM-EDP transformations is based 

almost exclusively on analyses with ductile and non-ductile RC moment frame models. The 

aforementioned side-study of wood shear wall buildings showed that the IM-EDP transformation 

approach could also work for these buildings, although other common lateral systems, such as 

steel moment frames, braced frames, RC shear walls, and masonry, are not examined. Since the 

method for generating EDP maps with IM-EDP transformations works for two distinctly 

different building types, the author expects that it will work for the additional building types as 

well, although this hypothesis is not explicitly tested.  

In the evaluation of regional seismic loss assessment methods in Chapter 4, the regional loss 

methodologies do not directly account for soil liquefaction and soil-structure interaction effects, 

which may significantly impact regional losses. For regions with liquefiable soils, a robust 

analysis should consider the possibility of liquefaction – a method for doing so is beyond the 

scope of this study, but is likely to improve regional seismic loss assessments by accounting for 

collapse cases and large repair costs that can result from soil liquefaction. Liquefaction can cause 

foundation failures and ground settlements, as well as tilting (Ambraseys and Sarma 1969). Soil-

structure interaction has important impacts on the response of stiff structures that are located on 

relatively soft soils (ATC 2012). The degree to which soil-structure interaction impacts regional 

losses is unknown, but it could be tested a number of ways. One possibility is to develop 

distributions of IM-EDP transformations that depend on soil conditions. These IM-EDP 

transformations could be developed by analyzing the same models, but with varying foundation 

fixities to represent different soil conditions. Since the IM-EDP transformations are also specific 

to a class of buildings, such a method would account for the differences in soil-structure 

interaction on buildings with different periods.  
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Furthermore, a number of ground motion intensity measures other than Sa could have been 

considered, such as peak ground acceleration (PGA) or arias intensity. However, Sa at a 

building’s first-mode period is significant, because spatial correlations are shown to be sensitive 

to building period. Inelastic spectral displacement (Sdi), which also accounts for building period, 

may be a good IM for producing EDP maps through IM-EDP transformations as well. Since Sdi 

is based on building capacity and represents a nonlinear response, an Sdi map may be a suitable 

substitute for an EDP map and, indeed, eliminate the need for an IM-EDP transformation.  Sdi is 

not used in this study, because current GMPEs for producing Sdi intensity maps are limited in 

comparison to those for Sa. Since unbiased EDP maps can be predicted from Sa maps, the 

prospect of an IM that is more difficult to compute than Sa is not investigated. However, Sdi still 

may provide more precise results than Sa and could be the topic of future studies. On the other 

end of the spectrum, if an IM-EDP transformation is required, it may be possible in some cases 

to use a simpler IM, like PGA, for this purpose.  This change would produce somewhat larger 

uncertainty in the IM-EDP transformation.  

The sensitivity of regional seismic loss assessments to limitations in building stock 

classifications and vulnerability functions is also assessed. One limitation in regional loss 

assessments is that not every building can be represented by a model building that characterizes 

it specifically – nor is it often feasible to confidently describe a building stock in such great 

detail in the first place. Instead, buildings are categorized and the represented by model buildings 

to which they are most similar (i.e. a 5-story building falls into the “mid-rise” category and is 

represented by a 4-story model). The study finds that only coarse height classifications (i.e. each 

height class represents a range of possible heights) are necessary for modeling a building stock, 

for the purpose of estimating probabilistic regional loss distributions. Discretization of building 
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heights into several small categories is not expected to significantly impact the probabilistic 

regional loss distribution. Furthermore, height misclassifications do not significantly impact 

regional loss distribution predictions because, for the RC frames examined, capacity is not 

strongly correlated with height; however, height misclassifications are expected to affect regional 

loss distributions if building height and building capacity are closely related.  

It is observed, however, that building capacity misclassifications introduce significant errors 

into the regional loss assessment. Therefore, correctly classifying buildings according to their 

capacity is a crucial aspect for modeling a regional building stock. Capacity is often related to 

the type of structural system and the building code era in which a building was built. Several 

other factors, such as quality of design, materials, and craftsmanship influence capacity as well. 

Many of these factors are difficult to quantify.  

Another limitation of regional seismic loss assessments is that determining building locations 

is often difficult. However, the details of precise building locations are found to be relatively 

unimportant for probabilistic regional loss assessments. Nevertheless, it is important to identify 

clusters of building concentrations, as in a downtown area, when modeling the regional building 

stock. Clustering of buildings is expected to be particularly important for regions that have high 

spatial variability of soil properties.  

Some vulnerability functions output only expected loss values, but not their standard 

deviations (HAZUS vulnerability functions, for example). An additional study tests the impact of 

using deterministic vulnerability functions rather than probabilistic vulnerability functions. 

Implementing vulnerability functions (and replacement costs) deterministically rather than 

probabilistically has negligible impact on the distribution of probabilistic regional losses, if 

deviations of repair and replacement costs are assumed to be non-systematic. In essence, this 
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finding shows that regional loss is dominated by sources other than non-systematic variability of 

repair and replacement costs, e.g. variation in ground shaking intensity from each realization to 

the next. However, systematic variations of repair and replacement costs, such as demand surge, 

are still expected to significantly impact regional loss variability.  

The conclusions that are made about regional loss assessment methods are all based on 

relative comparisons – not absolute loss predictions, because the regional losses that are 

computed in this study, even for the benchmark, may be affected by systematic biases. Potential 

sources of bias include systematic errors in soil classification, GMPE predictions, building 

simulation models, vulnerability functions, and building inventory data. For example, the 

vulnerability functions are created by analyzing building simulation models that may not 

accurately represent the buildings that are actually present in the real building stock, and are 

based on assumed quantities and types of building components that may not reflect the true 

components of the buildings. Therefore, the actual dollar values of regional losses reported in 

this study should not be interpreted as the real values that would occur in the scenario events. 

However, the relative comparisons of assessments of identical building inventories, using the 

same soil classifications and GMPEs, and employing vulnerability functions that are created 

from the same models and data sets, are considered to be reliable. These comparisons are reliable 

because the main sources of error (for example, misestimating the quantities and costs of 

building components when creating vulnerability functions) are equally present in all of the 

analysis methods, so comparisons between methods are relatively insensitive to those errors.  

Nevertheless, there are still limitations concerning relative comparisons between regional 

loss estimations that deserve mentioning. For one, the simplified regional loss assessment 

procedures that are recommended by these studies are shown to be “right for the wrong reason,” 
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because the additional variance of regional loss due to using a simple intensity measure, Sa, is 

approximately equal to the additional variance of regional loss that is observed when spatial 

correlations of IDR are explicitly considered. While the author finds no reason to expect a 

different result for other building types that are not considered in this study, it is uncertain 

whether this same observation would be made for other structural types (ordinary braced frames, 

for example) and/or with different modeling techniques. Additional analytical studies with 

different building simulation models or, better yet, recorded data from building instruments in 

several real and spatially-distributed buildings subjected to earthquakes could confirm (or refute) 

the validity of the proposed regional loss assessment methods.  

In addition, the finding that collapse capacity is defined better on a region-wide basis for 

each structural class of buildings than on a site-to-site basis may not hold true for all building 

types. The reason that region-wide collapse capacities work better than site-to-site collapse 

capacities in these studies is because collapse capacity is sensitive to ground motion spectral 

shape. Since there exists inter-event variability of ground motion spectral shape, there is also 

inter-event variation of collapse capacity, which is not captured when collapse capacity is 

determined independently from each site to the next. If a building’s collapse capacity is 

insensitive to spectral shape, then it is unlikely that region-wide collapse capacity determinations 

will have any advantage over site-to-site collapse capacity determinations. Region-wide collapse 

capacity determinations could also account for additional factors that are not reflected by Sa 

(such as arias intensity and duration), but cause inter-event variation in collapse performance; 

these are not explored in this study, but could be topics of future work.   
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5.2.5 Future Work 

The regional seismic loss assessment procedures that are recommended in this thesis and 

demonstrated in the appendix have several useful applications. However, it is unlikely that many 

of the parties interested in applying them will have the tools, resources, and skills to execute 

them. Packaging the regional loss assessment tools into user-friendly software may be an 

effective way to make them available to more people. A probabilistic regional seismic loss 

software application could be added as an additional layer to existing software such as PACT 

(FEMA 2012) or HAZUS (FEMA 2003), or possibly as its own stand-alone application.  

In the future, it may also be possible to adapt a regional seismic loss assessment procedure to 

create community fragility or vulnerability functions. Such a function could be convolved with 

regional magnitude-recurrence information or with the hazard for a representative site to obtain 

seismic risks for communities of buildings. 
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 6 Appendix: Documentation of Regional (Portfolio) Seismic Risk Analysis  

6.1 Overview 

This chapter documents the implementation and use of a regional seismic risk assessment 

software application, using an example region and building inventory. The tool uses Monte Carlo 

Simulation (MCS) techniques. The output is a suite of regional loss realizations, each of which 

having an expected frequency of occurrence, that describe the regional seismic risks. The 

methodology for computing regional seismic losses that is implemented in this section is referred 

to as “Simplified1” in Chapter 4 of this thesis.  

6.2 Application Software and Organization 

The regional seismic risk assessment tool is a MATLAB application, consisting of two 

scripts and a couple dozen functions. It requires the user to define a region and building stock 

beforehand. For the user-defined region, it generates a suite of fault rupture scenarios (i.e. 

magnitudes and rupture locations), based on a database of active faults and their properties and 

the expected regional seismicity. Following this, random fields of ground motion intensities are 

sampled for every fault rupture scenario. The random fields of ground motion intensity 

(“intensity maps”) are sampled from probability distributions of ground motion intensity that are 

obtained with a ground motion prediction equation (GMPE). Spatial correlations of ground 

motion intensity are considered in the generation of intensity maps. The total number of intensity 

maps for representing the regional hazard is reduced with importance sampling techniques and 

by k-means cluster analysis, following recommendations from Jayaram and Baker (2010). For 

each intensity map, a regional loss realization is generated. Regional loss results from all of the 

MCS realizations are compiled to quantify the regional seismic risks. These steps are executed 
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with two scripts: the first script completes the steps required to obtain the suite of intensity maps; 

the second script computes the regional losses for each intensity map and compiles the results.   

6.3 Define a Region and Building Stock 

The regional seismic loss assessment procedure that this chapter documents assumes that a 

building stock has been defined. For example purposes, a 36 square mile test region in the Los 

Angeles and South Los Angeles area (Figure 6.1) of southern California is considered throughout 

this chapter. A portfolio of reinforced concrete (RC) moment frames is considered, which has the 

same building classifications and number of buildings per area as the ‘low density’ building 

stocks developed by DeBock et al. 2013 (Chapter 4).  

 

Figure 6.1     Test region location for the building stock (inventory) example that is considered 

throughout this chapter. 

 

The test region has 145 buildings, shown graphically in Figure 6.2. Each building’s 

occupancy is classified as either commercial, residential, or hospitality, and its structural 

characteristics (i.e. fundamental period, capacity, etc.) are represented by one of six nonlinear 

multi-degree-of-freedom model buildings that is most similar to the building of interest. The 

model buildings, each representing a structural class, are summarized in Table 2.1. The structural 

classes include ductile and non-ductile buildings and range in height from 2 to 8 stories. Ductile 
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model buildings are taken from Haselton et al. (2011) and nonductile model buildings are taken 

from Liel et al. (2011).  

 

 

Figure 6.2     Map of building locations for the building stock that is analyzed in this example. 

Building sizes are represented graphically, but differences in size are exaggerated. 

 

Table 6.1  Summary of Model Buildings Representing Each Structural Class. 

Structural 

Class 
Model Bldg. Description No. of Stories 

First-Mode Period  

(T1) (s)* 

Ductility 

Capacity
†
 

1 Low-rise, new (Ductile) 2 0.60 15.0 

2 Mid-rise, new (Ductile) 4 0.91 10.7 

3 High-rise, new (Ductile) 8 1.81 6.0 

4 Low-rise, old (Nonductile) 2 1.03 3.3 

5 Mid-rise, old (Nonductile) 4 1.92 2.3 

6 High-rise, old (Nonductile) 8 2.23 2.3 

*
 
Determined from eigenvalue analysis assuming cracked concrete sections of about 35% of the gross 

properties, depending on axial load. As a result, these periods are longer than those that have been 

measured in moderate shaking events (Goel and Chopra 1997). 
† 

Determined by nonlinear static pushover analysis as described in FEMA (2009).
 
There are many 

methods for computing ductility, so these values are provided for the purpose of comparing deformation 

capacity of the model buildings. 
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6.4 Generating Fault Rupture Scenarios 

The first step in the MCS process for regional seismic loss assessment is to generate a suite 

of fault rupture scenarios. This process requires the identification and characterization of faults in 

and near the region of interest. This section describes the method by which faults are identified 

and characterized. The fault characterization is used to generate random fault rupture scenarios 

that are probabilistically consistent with regional seismicity. 

6.4.1 Fault Properties 

For the Southern California example region, active faults and their properties are obtained 

from a database of California faults that is publically available from the California Geological 

Survey (CGS 2013). The database provides information such as start and end coordinates, slip 

rate, maximum magnitude, and fault type for the documented faults in California. Potential faults 

are considered within a 200 km radius of the region of interest. Figure 6.3 shows all of the active 

faults that are located within 200 km of the test region. 

6.4.2 Sampling Earthquakes for Each Fault 

After identifying faults in the region, suites of earthquakes are sampled from each fault by 

generating random magnitudes and rupture locations. The frequency density of earthquake 

magnitudes is defined for each active fault using the characteristic magnitude-recurrence 

relationship of Youngs and Coppersmith (1985). The characteristic magnitude-recurrence model 

assumes a uniform recurrence rate for the characteristic magnitude range and an exponential 

recurrence relationship for all other magnitudes. The fault input data for the Youngs and 

Coppersmith magnitude-recurrence model is obtained from the California Geological Survey 

(CGS 2013). Figure 6.4 shows the earthquake frequency density as a function of magnitude for 

an example fault; frequency is measured in events per year. Note that the area under the 
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frequency density function in Figure 6.4 is not one, but rather is equal to the annual frequency of 

any earthquake of magnitude m≥5.0 occurring on that fault. Following Jayaram and Baker 

(2010), only magnitude 5.0 earthquakes and greater are considered, since smaller earthquakes are 

not expected to result in significant damage or loss to buildings. For each sampled earthquake, 

the length of the fault rupture is estimated with empirical relationships developed by Wells and 

Coppersmith (1994), and its location is designated to a randomly selected portion of the fault. 

 

Figure 6.3     Map showing region of interest (red rectangle) and all documented faults within a 200 

km (124 mile) radius in Southern California. 

 

It is desirable to sample earthquakes covering the full range of possible magnitudes. 

However, since small earthquakes occur with greater frequency than large earthquakes, a 

traditional MCS approach would sample several small earthquakes and few large earthquakes. 
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Jayaram and Baker (2010) recommend sampling earthquake magnitudes from a partitioned 

distribution, as in Figure 6.4, in order to ensure that sampled earthquakes span the full range of 

possible magnitudes without generating an excessive number of small magnitude events. The 

same number of earthquakes is sampled from each partition of the magnitude frequency 

distribution for each fault. In this scheme, large magnitude events are preferentially sampled by 

creating more partitions at larger magnitudes (i.e. narrower partition widths).  

 

Figure 6.4     Frequency density function for earthquake magnitudes on a selected fault. Partitions 

are constructed to preferentially sample large magnitudes. 

 

In this example, one earthquake is sampled from each partition and partition widths are 0.5 

for 5.0≤m<6.0, 0.25 for 6.0≤m<6.5, 0.1 for 6.5≤m<6.8, and 0.05 for m≥6.8, as shown in Figure 

6.4. A total of approximately 800 fault ruptures are sampled for the entire region. Since the 

partitioned sampling technique is biased toward sampling large earthquakes, each sampled 

earthquake is assigned an importance sampling (IS) weight, denoted ISm. ISm is the annual 

frequency of an earthquake from a given partition occurring and is equal to the area beneath the 

magnitude frequency density function for the partition interval. For an explanation of the theory 
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behind importance sampling techniques for MCS from a regional seismic loss analysis 

perspective, the reader is referred to Jayaram and Baker (2010).  

6.4.3 Matching the 2009 USGS Regional Magnitude-Recurrence 

The regional magnitude-recurrence relationship is defined by the Mean Rate of Exceedance 

(MRE) per year, i.e. the frequency at which a given magnitude is expected to be exceeded, and is 

referred to as an MRE curve. The MRE of a given magnitude m for the sampled earthquakes can 

be computed with Equation 6.1 

      ∑            
 
     6.1 

where MREm is the MRE for magnitude m, n is the number of earthquake realizations that are 

generated for the whole region, ISm,l is ISm for earthquake l, and       is a Boolean indicator that 

is one if the magnitude of earthquake l is greater than m and 0 otherwise.  

Generating random fault ruptures on a fault-by-fault basis is not guaranteed to produce an 

unbiased regional magnitude-recurrence relationship due to a number of limitations, including 

not directly accounting for multi-segment fault ruptures or background seismicity. To correct 

these errors, the sampling procedure that is described in the previous section is modified to 

produce a target regional magnitude-recurrence relationship. The target regional magnitude-

recurrence relationship is obtained with the Earthquake Probability Mapping tool, which is 

publically available from the United States Geological Survey (USGS 2009). 

The magnitude sampling procedure is adjusted in two steps. In step 1, the maximum 

magnitude for each fault is increased by 0.2. As a result, the characteristic magnitude is increased 

and the frequency with which small magnitude events occur is decreased. The motivation for this 

step is to indirectly account for multi-segment fault rupture possibilities; the adjustment factor of 

0.2 is based on the author’s judgment. A regional magnitude-recurrence relationship, resulting 
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from the sampled earthquake magnitudes with only the step 1 adjustment, is shown in Figure 6.5 

(see the line labeled, “Sampled Magnitudes”). 

 

Figure 6.5     Magnitude-recurrence relationship for the test region, considering only fault ruptures 

within 200 km (124 miles). Consider adding the other curve for the thesis. 

 

Step 2 omits fault ruptures that are not located within 200 km of the region and adjusts the 

ISm weights for the remaining earthquake events such that they produce a regional magnitude-

recurrence relationship that matches the target. The process for adjusting the ISm weights to 

achieve a target MRE curve is systematic, starting with a large magnitude and working 

downward in increments of magnitude (m). For the first increment, the target MRE is matched 

by uniformly scaling all of the ISm weights for earthquakes with magnitudes greater than the 

starting magnitude m such that their sum is equal to MREm from the target magnitude recurrence 

relationship. For each subsequent increment, the ISm weights for all earthquakes within the 

increment are uniformly scaled so that MREm matches the target. This implies that all ISm 

weights for earthquakes in the magnitude increment range are uniformly increased or decreased 
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so that the magnitude frequency density for that range is consistent with the target.  A constant 

increment of m=0.1 is used for modifying the approximately 800 ISm values in this example,  

but a larger increment size may be desirable for analyses with fewer fault ruptures. The MRE 

curve for earthquake magnitudes that is computed with the adjusted ISm weights is plotted in 

Figure 6.5; by design, it matches the target MRE curve from the 2009 USGS Earthquake 

Probability Mapping tool. 

6.4.4 An Alternative Approach for Generating Random Fault Rupture Scenarios 

Jayaram and Baker (2010) generate fault rupture scenarios by an alternative method that is 

mathematically equivalent to the method described in Sections 6.4.2 and 6.4.3. Rather than 

sample earthquakes from each individual fault, they sample earthquake magnitudes from a 

regional magnitude recurrence relationship (e.g. the target MRE curve obtained from the 2009 

USGS earthquake probability mapping tool) and use a regional magnitude probability 

distribution to compute ISm weights. After sampling an earthquake, magnitude is either: (1) 

randomly assigned to an individual fault, where the probability of assigning it to any fault is 

proportional to the likelihood of a magnitude of its size occurring on that fault; (2) assigned to 

each fault in the region. For case 2, where the sampled magnitude is assigned to every fault in the 

region, the ISm weight for each fault i, ISm,l, is the product of ISm for the region, ISm,region, and the 

probability that a given earthquake of magnitude m occurs on fault l: 

            (           )  6.2 

6.5 Generating Ground Motion Intensity Maps 

Once a suite of fault ruptures is obtained, a group of ground motion intensity maps is 

generated for each fault rupture, again using importance sampling techniques that are based on 

Jayaram and Baker (2010). Following the “Simplified1” method proposed in Chapter 4, this 
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example uses spectral acceleration at a building’s first-mode period, Sa(T1), as the ground 

motion intensity measure, which is hereafter abbreviated as Sa. Generating the ground motion 

intensity maps is completed by: (1) computing the expected values and standard deviations of Sa 

for each site and for each building period with a GMPE; (2) generating random realizations of 

residual terms, which are added to the expected Sa values to compute intensity map realizations. 

6.5.1 Compute Expected Sa at Each Site from a GMPE 

For each fault rupture, expected Sa values corresponding to each of the building periods are 

computed with the 2008 Boore and Atkinson GMPE. This GMPE is selected because it was 

developed with ground motions that are relevant for the Southern California tectonic 

environment and because the input parameters that it requires, i.e. magnitude, distance, period, 

fault type, and average shear wave velocity in the top 30 meters of site soil (Vs30), are readily 

obtainable from the previous steps of the regional loss assessment. The GMPE predicts the 

natural log of Sa and its standard deviation, which can be deaggregated into inter-event and intra-

event components. Accordingly, Sa for a site i and event j (    ) can be represented by Equation 

6.3, where     and    are intra-event and inter-event standard deviations, respectively. The intra-

event and inter-event residual terms,     and   , are both normally distributed with a mean of 

zero and standard deviation of one. Intra-event residuals vary from site to site (i.e. within the 

event), whereas inter-event residuals are constant across all sites (for a given period), and only 

vary from one event to the next (and from period to period). 

   (    )    (  ̂  )               6.3 

The total residual, , is the difference between Sa and the expected value of Sa from the 

GMPE, normalized by the total standard deviation of the GMPE. Referring to Equation 6.3,  for 

site i and ground shaking intensity map j is can be written as: 
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6.4 

6.5.2 Generate Residuals and Build the Intensity Maps 

Intensity maps are created by generating random realizations of inter-event and intra-event 

residuals and adding these residuals to the expected Sa values at each site through Equation 6.3. 

Several researchers have shown that intra-event residuals are spatially correlated (e.g. Wesson 

and Perkins 2001), indicating that sites in close proximity to one another are likely to have 

similar intra-event residuals. Inter-event residuals for different periods are also positively 

correlated, having higher correlations at similar periods and lower correlations at dissimilar 

periods (e.g. Baker and Cornell 2006).  

In order to capture spatial correlations of intra-event residuals in the MCS analysis, random 

fields of intra-event residuals are generated from a multivariate distribution whose covariance 

matrix describes the site-to-site correlations of intra-event residuals. For this example, 

covariance between sites is computed with the Loth and Baker (2013) spatial correlation model. 

This model is developed for computing spatial correlations of intra-event residuals for the same 

period, as well as cross-correlations of intra-event residuals for different periods, which is 

necessary for this example. Figure 6.6 shows the spatial correlation of intra-event residuals as a 

function of distance for a period of 1.0 seconds, computed by the Loth and Baker (2013) model. 

Notice in Figure 6.6 that the inter-event residual term, which is constant at all sites for a given 

period and earthquake, is perfectly correlated, and that the correlation of the total residual is 

between the intra-event correlation and 1.0.  

A traditional MCS approach would generate a large number of random fields of intra-event 

residuals in order to sufficiently capture their range of possibilities. Jayaram and Baker (2010) 
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demonstrate that the number of random fields of intra-event residuals that is sufficient for 

capturing the variance of regional losses can be reduced by preferentially sampling fields with 

large positive residuals. This preferential sampling can be accomplished by shifting the mean of 

the distribution of site intra-event residuals from a joint distribution with a mean of 0.0 to a joint 

distribution with mean of 1.0 
13

. This shift is accounted for by computing importance sampling 

weights for each of the fields of intra-event residuals,    , calculated with Equation 6.5:  

 
        (

 

 
(    )        (    )  

 

 
          ) 6.5 

In Equation 6.5 (from Jayaram and Baker (2010)),   is the vector of the intra-event residuals for 

a given realization, ms, is the mean shift (ms=1.0 in for this example application) and COV is the 

covariance matrix for the multivariate distribution of intra-event residuals. With this importance 

sampling method, recommendations from Jayaram and Baker (2010) indicate that r=50 random 

fields of intra-event residuals for each of the fault rupture scenarios (i.e. 50 intensity maps per 

scenario) is sufficient.  

Inter-event residuals are generated in a manner similar to that by which the intra-event 

residuals are generated. Six inter-event residuals are generated for each intensity map realization, 

corresponding to the periods of the six structural classes that represent the building stock. Inter-

event residuals are sampled from a joint distribution that reflects the separation of building 

periods. The covariance matrix of the joint distribution is calculated from the relationship 

developed by Baker and Cornell (2006) that quantifies period-to-period correlations of residuals. 

As described above, regional loss assessment can be done more efficiently if these residuals are 

preferentially sampled for the larger values.  Therefore, the mean of the distribution of inter-

                                                 

13
 Jayaram and Baker (2010) recommend values by which to shift the mean that depend of the size of a region 

and the number of sites. 
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event residuals is shifted from zero to 0.8
14

, and importance sampling weights for inter-event 

residuals, ISη, are computed by an equation similar Equation 6.5.  For a given intensity map, the 

same inter-event residual values are repeated at all of the sites; a new set of inter-event residuals 

is generated for each intensity map.   

  

Figure 6.6     Correlation of residuals as a function of distance for Sa(T1=1.0 sec), computed with the 

Loth and Baker (2013) spatial correlation model. 

 

6.5.3 Summary and Validation of Resulting Intensity Maps 

For each of the approximately 800 fault rupture realizations, r = 50 realizations of residuals 

are combined with the expected values and standard deviations from the GMPE, using Equation 

6.3, to produce r = 50 intensity maps per fault rupture. Therefore, the total number of maps is 

approximately 800 x 50 = 40,000.  

The procedure for generating the suite of intensity maps is validated through a site hazard 

analysis. To conduct the validation, the hazard at a site within the region is computed from the 

MCS intensity maps and then compared to results of a site hazard analysis that is conducted with 

OpenSHA (2013). To make the comparison, a new suite of intensity maps is generated for 

                                                 

14
 Jayaram and Baker (2010) recommend a mean shift (ms) of the inter-event residual distribution of 

0.5≤ms≤1.0.  
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periods of 0.5, 1.0, and 2.0 seconds, and matching the target 2002 USGS magnitude recurrence 

relationship, such that predictions are directly comparable to OpenSHA. Site hazard MRE values 

can be computed from the suite of intensity maps by applying Equation 6.6 to Sa at the site of 

interest.   

 
        ∑ {      

 

 
 ∑                  

     

       
}

 

   
 6.6 

In Equation 6.6,         is the mean annual rate at which Sa for the site of interest is expected 

to exceed a value h. n is the number of fault ruptures and r is the number of intensity maps that 

are generated for each fault rupture.       is the importance sampling weight for fault rupture l 

with magnitude m.        and       are the importance sampling weights for the intra-event and 

inter-event residuals, corresponding to map j.       is a  Boolean indicator that is one if Sa>h 

and zero otherwise. 

The site hazard comparison is shown in Figure 6.7. The suite of approximately 40,000 maps 

produced by the MCS procedure produces site hazard that is very similar to OpenSHA results. A 

random site was selected for this comparison, so it is reasonable to assume that similar results 

(i.e. the hazard calculated form MCS being similar to the hazard calculated from OpenSHA) 

would also be observed at other sites.  
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Figure 6.7     Comparison of site hazard with OpenSHA (2013) and the MCS analysis. For this 

example, the magnitude recurrence is adjusted to match the 2002 USGS mag recurrence, since the 

2009 USGS model is not available in OpenSHA. 

 

6.6 K-means Clustering of Intensity Maps 

Even with importance sampling, the number of ground motion intensity maps that are 

generated by MCS is excessively large (≈40,000), making it desirable to further reduce the 

number of intensity maps for which regional loss computations are performed. One approach 

could be to increase partition widths for sampling earthquake magnitudes and/or decrease the 

number of intensity maps that are generated for each fault rupture. However, this approach runs 

the risk of underrepresenting large rare events. Jayaram and Baker (2010) propose the use of k-

means clustering techniques (McQueen 1967) to select a subset of intensity maps that are 

representative of the entire suite of maps. This method groups similar maps into clusters, and one 
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map is selected from each cluster to represent all of the maps in its cluster. Their approach can 

significantly reduce the number of intensity maps for which regional losses are calculated, while 

still representing a full range of regional ground shaking intensities. This section describes how 

k-means clustering is performed and how it is applied to select representative maps for regional 

loss assessment. 

6.6.1 General Description of k-means Clustering 

k-means clustering assembles data into k clusters, such that the variance of the clustered data 

is minimized. The variance of a cluster is typically measured by the sum of the squares of the 

Euclidian distances of the data to the cluster’s centroid. The total variance of the clustered data is 

the sum of the variances from each of the clusters. k-means clustering is performed iteratively. 

The first step is to randomly pick k cluster centroids and assign all of the data to the closest 

centroids. Then, the centroids are recomputed for each cluster and the data are reassigned to the 

closest new centroid locations. This process is repeated until no more reassignments occur. 

Figure 6.8a shows an example data set, wherein each datum i is a vector quantity of two 

components, Xi and Yi. In Figure 6.8b, the data is clustered into k=3 clusters with the circle, 

triangle, and square markers indicating which data are assigned to each of the three clusters.  

6.6.2 Clustering Intensity Maps 

k-means clustering is applied to the suite of intensity maps that is generated by MCS. 

Jayaram and Baker (2010) produce a total of 150 clusters to represent the regional seismic 

hazard. This example groups intensity maps into approximately 1,300 clusters. This example 

uses more clusters than Jayaram and Baker (2010) for two reasons. The first reason is that the 

procedure for computing losses in this example depends on the total Sa at each site and also 

accounts for the level of contribution from inter-event residuals, whereas Jayaram and Baker 
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computed losses only from the total Sa at each site. Therefore, if 150 clusters are necessary to 

represent the possible distributions of Sa, then each of those clusters should be further divided 

into sub-clusters of maps whose inter-event residual values are similar, resulting is several more 

clusters. The second reason for using more clusters is that the number of representative intensity 

maps for which regional losses are computed does not significantly affect the computation time 

unless over 1,500 maps are used, although this number will vary from one computer to the next.  

 

Figure 6.8     k-means clustering example. Random data pairs (Xi,Yi) (a) are grouped into three clusters 

(b). 

 

Clustering is performed in stages for computational efficiency. Jayaram and Baker (2010) 

performed clustering in two stages. Stage 1 clustered intensity maps into k1 clusters, based on 

the sum of the intensities of all the sites in the region. For illustration, this is analogous to 

clustering the data in Figure 6.8 based on a data set Z, where Zi = Xi + Yi. Since the data to be 

clustered in stage 1 is scalar rather than vector quantities, the first stage of the cluster analysis 

computes rather quickly. For each of the k1 clusters, stage 2 of their analysis groups the intensity 

maps into k2 clusters, based on data vectors containing Sa values for every site in the region. 

Jayaram and Baker used k1=50 and k2=3 to obtain K = k1 x k2 = 150 clusters. 
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In this example, intensity maps are clustered in 3 stages. Stage 1 is similar to Jayaram and 

Baker (2010); intensity maps are grouped into k1 clusters, based on the sum of intensities for the 

entire region. To deal with a building stock characterized by multiple structural classes, it is 

necessary here to consider Sa at multiple periods. Since Sa at short periods tends to be larger 

than Sa at long periods, a straightforward cluster analysis is dominated by short-period Sa values. 

To make the cluster analysis unbiased with respect to period, a normalized set of intensity maps 

is created for the purpose of clustering. The normalized intensity maps are produced by 

multiplying all Sa values by their associated period; this normalization is based on the 

assumption that Sa values predicted by the GMPE are approximately inversely proportional to 

their period, which is reasonable for the range of building periods considered in this example. 

For other building stocks, different normalization techniques may be more effective. The 

clustering then proceeds using the random variable representing the sum of the normalized Sa 

values for the intensities in the entire region. 

In this study, Stage 2 of the cluster analysis groups the intensity maps from each of the k1 

clusters into k2 sub-clusters, based on each map’s vector of inter-event residuals. Since there are 

six structural classes considered in this example (i.e. six building periods), the inter-event 

residuals for each intensity map form a vector of six quantities. Stage 2 insures that each cluster 

of intensity maps has similar inter-event residuals. After Stage 2, there are a total of k1 x k2 

clusters. In the final clustering stage, the maps in each of the clusters from Stage 2 are grouped 

into k3 sub-clusters, based on their vector quantities of normalized Sa values in the region.  
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To do the clustering for the example region and building stock, k1=10, k2=10, and k3=15
15

. 

However, the total number of clusters is K = 1,301 rather than K = k1 x k2 x k3 = 1,500, because 

some of the clusters that are formed in stage 2 of the cluster analysis have fewer than 15 maps; in 

such cases, the number of k3 sub-clusters is less than 15. Figure 6.9 plots Sa at T=0.91 seconds 

for pairs of intensity maps that are randomly selected from three different clusters, illustrating 

that intensity maps belonging to the same cluster are similar to one another.   

 

Figure 6.9     Sample of intensity maps from three clusters denoted i, j, and k, where maps ‘A’ and 

‘B’ are randomly sampled from the group of maps belonging to a given cluster. For this illustration, 

Sa is Sa(T1=0.91 sec). 

 

                                                 

15
 The values of k1, k2, and k3 are based on judgment. Computational efficiency can be increased by increasing 

k1 and decreasing k3. Based on, Jayaram and Baker (2010) the product of k1 and k3 should be at least 150. 
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Since each cluster is composed of similar intensity maps, one map is selected from each 

cluster to represent all of the maps in the cluster for the subsequent loss analysis. The 

representative intensity map is randomly selected from all of the maps in the cluster, with the 

probability of selecting any particular map being proportional to its importance sampling weight. 

For representing the regional seismic hazard, a new importance sampling weight is assigned to 

the representative map (ISRM), which is equal to the sum of the weights for all of the intensity 

maps within the cluster, according to Equation 6.7. 

 
     ∑     

 

 
            

                       

 6.7 

6.7 Computing Regional Losses 

6.7.1 Overview 

A realization of regional loss experienced by the building stock is generated for each 

intensity map, and the results are compounded to quantify the seismic risk of the region. Losses 

are computed according to a method proposed by DeBock et al. 2013, which is referred to as 

“Simplified1” in Chapter 4. Regional seismic risk is estimated from the set of representative 

intensity maps by the following steps applied to each map: 

1. Compute losses for collapsed buildings 

2. Compute losses for non-collapsed buildings 

3. Determine regional losses for each map and compile the results to develop probabilistic 

assessment of regional loss 

6.7.2 Computing Losses for Collapsed Buildings 

A building is considered collapsed if Sa at its site is greater than the building’s collapse 

capacity that is measured in terms of Sa, i.e. Sacollapse. Sacollapse for each structural class, e.g. mid-
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rise reinforced concrete (RC) special moment frame (SMF) buildings, is generated from a 

collapse capacity distribution that is a function of . 

Adopting the approach recommended in Chapter 4, region-wide collapse capacities for each 

of the structural classes are randomly generated for each intensity map. The input value of  for 

generating collapse capacity is its average value for earthquake realization j, avg,j. Recognizing 

that the average value of intra-event residuals for an earthquake is zero and the Boore and 

Atkinson (2008) GMPE has constant inter-event and total dispersion at all sites, avg,j is 

computed by Equation 6.8: 

 

       
     

√   
    

 

 
6.8 

The loss due to each collapsed building is the replacement cost of the building. Replacement 

costs are estimated the same way as in Chapter 4; they are based on RSMeans (2009) and range 

from $160 to $200 per gross square foot in 2009 dollars, depending on their structural class and 

occupancy type. Replacement costs are assumed to be lognormally distributed with dispersion of 

0.4, based on recommendations from Ramirez and Miranda (2009). 

6.7.3 Computing Losses for Non-Collapsed Buildings 

For each building that is not identified as collapsed, the loss is computed from a vulnerability 

function that takes Sa as its input. The input Sa value is Sa at the site where the building is 

located. This example uses the vulnerability functions that were developed in Chapter 4. The 

vulnerability functions are generated by fitting local polynomial regressions to suites of loss data 

that are obtained with the Performance Assessment Calculation Tool, PACT (ATC 2012). The 

vulnerability function assumes that dispersion of the loss data is logarithmically distributed about 

the median value, as seen in the example vulnerability function that is shown in Figure 6.10.  
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Figure 6.10     Example vulnerability function for structural class 6 (8-story nonductile RC frames), 

with commercial occupancy. 

 

6.7.4 Computing Regional Losses  

The regional loss for each representative intensity map (RLRM) is the sum of the losses to all 

of the buildings for that map: 

 
     ∑                     

          

 6.9 

The regional loss realizations from each map are combined using probabilistic methods, which 

are detailed is Section 6.8. 

6.8 Compiling the Probabilistic Regional Loss Results 

The MCS analysis in this example produces 1,301 representative intensity maps, each having 

an associated importance sampling weight (ISRM) and regional loss (RLRM). The final step is to 

compile the results in ways decision-makers find meaningful and interpretable. The possibilities 

for presenting the regional loss information are infinite; the purpose of this section is not to 

explore every possibility. Rather, this section aims to present regional loss results in ways that 
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aid certain decision-making scenarios/perspectives. Depending on the decision at hand and the 

perspective of the decision-maker(s), different interpretations of the results may provide better 

insight than others; this section provides just a few examples of the many possibilities.  

6.8.1 MRE for Regional Loss 

A common method to present seismic risk and hazard results is via MRE curves. For a 

regional seismic risk analysis, this corresponds to the mean rates at which regional loss exceeds 

various threshold values. The importance sampling weight of each representative map (ISRM) 

corresponds to frequency; therefore, the MRE for a regional loss threshold H (MREH) is 

computed by Equation 6.10: 

 
     ∑           

 

    
 6.10 

where K is the total number of representative maps (1,301 in this example) and       is a 

Boolean indicator function that is one when RL>H and zero otherwise. The MRE curve for the 

example building stock is shown in Figure 6.11. 

 

 

Figure 6.11     MRE for the sample building stock for different levels of regional loss. 
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6.8.2 Dissecting the MRE Results 

While a standard MRE curve is highly informative about the collective risk of a portfolio of 

buildings, it may be useful in some cases to also determine what specific factors are contributing 

to the risk or vulnerability of the region. This section explores some different ways to 

deaggregate the regional seismic loss results. 

6.8.2.1 Collapse Costs vs. Non-collapse Costs 

One way to deaggregate the data is to separate losses into two categories: costs to repair 

damaged buildings and their components (“non-collapse costs”) and costs to replace collapsed 

buildings (“collapse costs”). Figure 6.12 describes the same data as Figure 6.11, but illustrates 

the relative fractions of each loss level that are due to collapse costs versus non-collapsed costs. 

The same deaggregated loss results are plotted in Figure 6.13, but the data are smoothed with a 

local polynomial regression. This same smoothing technique is applied to Figure 6.14 as well. 

It is evident that large rare losses are dominated by collapse costs, but small frequent losses 

are dominated by non-collapse costs. Based on this observation, a risk-holder concerned about 

mitigating large rare losses may decide to focus on improving collapse capacities through 

structural system improvement of buildings throughout the region, since they account for the 

majority of the loss in large catastrophic events. On the other hand, more frequent costs are 

dominated by non-collapse costs; improving building contents and components can reduce these 

losses. 
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Figure 6.12     Deaggregation of costs to show the portions of the loss due to costs for collapsed 

buildings versus non-collapsed buildings. 

 

 

Figure 6.13     “Smooth” Deaggregation of costs to show the portions of the loss that are due to costs 

for collapsed buildings versus non-collapsed buildings. 
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6.8.2.2 Losses by Structural Classification 

Deaggregation of the regional loss by structural classification is presented in Figure 6.14. 

The results show that structural classes represented by nonductile buildings (i.e. structural classes 

4-6) are responsible for the majority of the regional loss at all hazard levels. This representation 

of the regional risks is useful from a policy-making standpoint. Since nonductile buildings 

represent the majority of the regional risk, policies that target nonductile buildings will have the 

greatest impact on reducing the regional seismic risk. 

 

Figure 6.14     Deaggregation of costs to show the portions of the loss that are due to costs for the 

different structural classes. 

 

Nonductile buildings contribute more to regional seismic risks than ductile buildings in this 

example partly because there are more of them. Therefore, the deaggregated loss plot shown in 

Figure 6.14 may be misleading for a risk-holder who is interested in investing limited resources 

as effectively as possible. Another way to view the deaggregated regional risk is to compute the 

MRE for each structural class individually and then normalize it by the cost to replace all of the 
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buildings belonging to that structural class, i.e. to compute the “relative risk” for each class of 

structures and in Figure 6.15. 

 

Figure 6.15     MRE plot for each structural class, normalized by the cost to replace all of the 

buildings in the structural class. 

 

Figure 6.15 shows that the relative risks of nonductile buildings (represented by structural 

classes 4-6) are much higher than for ductile buildings (structural classes 1-3). In addition, the 

relative risks generally decrease as height increases, which is a result of the taller buildings 

collapsing less frequently and having damage concentrated only in a fraction of their stories for 

non-collapsed cases. For example, the relative losses of structural classes 1, 2, and 3 for a 100-

year return period (MRE=10
-2

) are 0.09, 0.05, and 0.07, respectively (e.g. an event causing 

damage to buildings belonging to structural class 1 that is equal to or greater than 9% of the cost 

to replace all of the buildings in structural class 1 is expected to occur once in 100 years). The 

relative 100-year losses for structural classes 4, 5, and 6 are 0.16, 0.15, and 0.11. Therefore, 

height and ductility are both important factors for risks in 100-year events. For 1000-year events 

(MRE=10
-3

), the relative losses for structural classes 1, 2, and 3 are 0.25, 0.15 and 0.15, 
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respectively and 0.62, 0.52, and 0.43 for structural classes 4, 5, and 6, respectively. The relative 

regional loss due to nonductile buildings is nearly three times greater than for ductile buildings 

for a 1000-year loss level and is equal to more than half of the cost to replace all of the 

nonductile buildings; therefore, nonductile buildings pose a serious regional risk in extremely 

rare events. 

6.8.2.3 Annualized Costs 

Another perspective for analyzing the regional loss data is to compute the average expected 

loss for any given year, or “annualized cost.” The annualized costs that are summarized in Table 

6.2 represent the “risk-neutral” cost for insuring a building stock (i.e. over infinite time, a 

premium of this amount, in present value dollars, is equivalent to the cost of repairing earthquake 

damage to the uninsured building stock). This kind of information is useful to risk-holders and 

ensures for establishing a lower limit for insurance premiums. The total annualized cost is 6.4 

million dollars. As expected, the nonductile buildings (structural classes 4-6) represent a majority 

of the annualized costs (Figure 6.16). When normalized by their replacement costs, the most 

expensive buildings are those belonging to structural classes 4 and 5, which are the low-rise and 

mid-rise nonductile buildings. The mid-rise ductile buildings (structural class 2) are the least 

expensive in terms of normalized annual costs. The pie charts in Figure 6.16 compliment Table 

6.2 by showing the percentage of the total annualized costs for which each structural class is 

responsible next to the breakdown of gross building area by structural class. Buildings 

represented by structural classes 4 and 5 (low-rise and mid-rise nonductile buildings) represent 

disproportionately large fractions of the annualized costs compared to their contributions to gross 

building area.  
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Table 6.2. Annualized Costs by Structural Class 

Ductility 

Classification 

Structural 

Class 

Annualized 

Cost  

Percentage of 

Replacement Cost 

Ductile 

1 $193,088 0.71% 

2 $139,024 0.34% 

3 $368,307 0.51% 

Nonductile 

4 $1,565,565 1.06% 

5 $1,974,560 1.03% 

6 $1,844,614 0.72% 

  Entire Stock $6,085,158 0.83% 

 

 

 

Figure 6.16     Visual breakdown of (a) annualized costs and (b) percentage of gross building area by 

structural class ID. 

 

6.9 Summary  

The implementation of a regional seismic loss assessment is documented in this chapter. For 

an example geographically-distributed building stock, Monte Carlo simulation (MCS) 

procedures are employed to: (1) generate fault ruptures; (2) produce suites of ground motion 

intensity maps (intensity is quantified by spectral acceleration at a buildings first-mode period, 
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i.e. Sa(T1) or Sa for short); (3) reduce the number of intensity maps with k-means clustering; (4) 

compute regional losses.  

Large magnitude events and high strength intensity maps are preferentially sampled with 

importance sampling techniques recommended by Jayaram and Baker (2010). Jayaram and 

Baker showed that the variance of the Mean Rates of Exceedence (MRE) curves for regional loss 

can be reduced by preferentially sampling in the upper tails of the magnitude and intensity 

distributions, because that is where MRE is most difficult to estimate.  

For each intensity map, a regional loss realization is generated by the “Simplified1” method 

that is developed in Chapter 4. This method identifies collapsed buildings by comparing ground 

motion intensity at each site to a building’s collapse capacity. Collapse capacities for each 

structural class are generated at the onset of each regional loss computation. Losses for non-

collapsed buildings are computed with vulnerability functions that take Sa as the input variable. 

Regional seismic loss results for an example building stock are presented to illustrate how 

they can inform decisions at a community (or portfolio) level. Regional loss results for the 

sample building stock are deaggregated multiple ways to show how different portions of the 

building stock contribute to regional seismic risks. Evaluating seismic risks from a regional 

perspective, particularly when the risks are deaggregated by structural class, can provide policy 

makers and risk holders with information that they need to make risk-informed decisions 

concerning groups of buildings. 
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