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 The events of September 11, 2001 have increased the focus on protecting utilities and 

infrastructure from acts of terrorism.  For water utilities, this increased focus has led to researching 

more efficient and effective methods for finding the source of contamination in the event of 

contaminant intrusion.  Better source identification can significantly reduce both the population 

affected by water contamination (with subsequent loss of service) and the resources required to 

mitigate the spread of contamination.  Water contamination and/or loss of service have a clear 

impact on public welfare (both physical and psychological), whether it is due to terrorist activity or 

accidental contamination. 

 Source identification can be accomplished using system observations (i.e. the location, time, 

and magnitude of contamination in the system) and modeling software, such as EPANET.  We 

develop an adjoint-based probabilistic method which uses the system observations as the input 

information and propagates the information in a backward simulation to determine all potential 

contamination node and release time scenarios for a system observation.  By using multiple system 

observations and conditioning the results using the system uncertainty and the potential range of 

source masses, we probabilistically determine the true source node and contamination time. 

 We develop and test the adjoint-based probabilistic method for source identification in water 

distribution systems with pipes, nodes, tanks, and pumps; steady and transient flows; perfect and 

imperfect sensors; and complete and incomplete mixing at the nodes.  
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CHAPTER 1 

INTRODUCTION 

1.1.  Problem Statement 

 Water utilities are tasked with providing an uninterrupted supply of potable drinking water 

to their service populations.  The events of September 11, 2001 have increased the focus on 

protecting utilities and infrastructure from acts of terrorism (DHS 2003).  A malicious attack on 

water utilities could lead to severe health and environmental impacts, as well as loss of public 

confidence in the security of public water supplies (NRC 2007).  Government agencies such as the 

EPA and water utilities are searching for better methods for preventing, detecting, and remediating 

contamination in drinking water distribution systems.  While prevention is clearly the most effective 

measure against contamination, human ingenuity seems to know no bounds and impregnable water 

distribution systems do not exist.  Given the possibility of contamination exists, it is important to 

develop methods to determine the source of contamination.  An efficient and effective method can 

significantly reduce both the population affected by water contamination (with subsequent loss of 

service) and the resources required to truncate the spread of contamination.   

 

1.2.  Background 

1.2.1.  Inverse Methods for Source Identification 

 In the past, inverse methods have been used in conjunction with software, such as 

EPANET, to identify sources of contamination (e.g., Islam et al. 1997; Laird et al. 2005, 2006; Guan 

et al. 2006; Preis and Ostfeld 2006, 2007).  Inverse methods employ advanced algorithms to 

determine the source of contamination.  Using system observations (e.g., contaminant concentration 

arriving at a sensor) as simulation goals, the algorithms in conjunction with modeling software test 

multiple contamination scenarios (e.g., source node, release time, and source concentration) and run 
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multiple forward simulations in the water distribution system to determine what contamination 

scenario leads to the observed outcomes. 

 Islam et al. (1997) did not use EPANET, but they developed an inverse method to calculate 

the chlorine concentration needed at a source node to maintain appropriate chlorine residual 

concentrations throughout a water distribution system.  Their method used the advection-dominated 

transport equation in one dimension with first-order decay.   They discretized the transport 

equations using the four-point implicit finite-difference scheme solved simultaneously together with 

the complete mixing equation at the nodes.  They tested their method in a system similar to 

EPANET Example 1 (Rossman 2000) and found that they were able to successfully replicate the 

results from a forward simulation. 

 Laird et al. (2005) developed a method for determining the source node and release time 

based on the location, concentration, and time contaminant was observed in the system.  Their 

approach used non-linear programming and an origin tracking algorithm; their method did not need 

to discretize along the length of the pipe.  They demonstrated how their method could characterize 

the source and time of contamination in a more complex network containing 469 nodes and 4 

storage tanks.   

 Laird et al. (2006) developed a two-step approach to source identification.  First they 

identified the potentials source nodes and then they used these nodes to test the potential 

contaminant injection scenarios using a mixed-integer quadratic program.  They demonstrated how 

their approach was able to successfully determine the source of contamination in a water 

distribution system with approximately 400 nodes. 

 Guan et al. (2006) refined the source characterization process by using an optimization 

algorithm.  Given contaminant observations in a water distribution system, Guan et al. (2006) used 

EPANET to simulate a potential contamination event at a potential source node.  Based on this 
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simulated event, they used an algorithm and the simulated observations to determine how the 

contaminant mass moves throughout the system.  They compared the resulting observations against 

the observations from the true contamination event.  The optimization algorithm selected a new 

contamination scenario based on the results and continued the process until the difference between 

the simulated event and the true contamination event converged.  They were able to correctly 

identify the source and time of contamination in the Dover Township model which has nearly 

15,000 nodes and 9 storage tanks. 

 Preis and Ostfeld (2007) coupled a genetic algorithm with EPANET simulations to 

determine the source of contamination.  The genetic algorithm was used to diminish the difference 

between the simulated results and the observed results.  Using this method, they were able to 

determine the source characteristics in three different water distribution systems: Anytown USA (17 

nodes/2 storage tanks), EPANET Example 3 (94 nodes/3 tanks), and the Richmond Water 

Distribution System, Yorkshire, UK (865 nodes/6 tanks).  While they were able to replicate the 

observed results, they concluded that the genetic algorithm makes the method computationally 

intensive.  

 Research regarding inverse methods primarily focuses on developing a more efficient and 

accurate method for determining the potential source nodes (e.g., Laird et al. 2005; Propato et al. 

2010) and the contamination scenario (i.e., the source node, release time, and source concentration; 

e.g., Laird et al. 2005; Guan et al. 2006; Preis and Ostfeld 2007; Vankayala et al. 2009; Zechman and 

Ranjithan 2009; Propato et al. 2010; Liu et al. 2011).  While some inverse methods consider the 

entire population of nodes as potential source nodes (e.g., Preis and Ostfeld 2007), some researchers 

have developed methods for narrowing down the potential source nodes to a subset of the entire 

population.  Laird et al. (2005) using an origin tracking algorithm to find hydraulically connected 

upstream nodes, while Propato et al. (2010) used observations of no contamination to rule out 



4 
 

potential source nodes using linear algebra.  Once the set of potential source nodes is determined, 

the inverse methods depend on various methods for calculating the source characteristics.  Laird et 

al. (2005) used non-linear programming to calculate the contamination scenario.  Guan et al. (2006) 

used an optimization algorithm which was able to iteratively decrease the difference between the 

observed and simulated results, while Preis and Ostfeld (2007), Vankayala et al. (2009), and 

Zechman and Ranjithan (2009) used genetic algorithms for the same purpose.  Propato et al. (2010) 

used the minimum relative entropy method to determine the source characteristics.  Liu et al. (2011) 

developed a method that is able to provide real-time response using an evolutionary algorithm for 

source characterization. 

 Some researchers have also explored creating a model tree with pre-developed scenarios 

which are referenced if a contamination event occurs; the system observations are compared to the 

simulation results to determine which scenario is most likely (e.g., Preis and Ostfeld 2006; Shen et al. 

2009).  Preis and Ostfeld (2006) and Shen et al. (2009) constructed a model trees by simulating 

potential contamination scenarios and then storing the results.  Once a sufficient number of 

scenarios are run, the model tree can be used in place of EPANET to predict what contamination 

scenario could have led to the contaminant observations.  Preis and Ostfeld (2006) had 10,000 

results in their model tree, thus the procedures for finding the most similar scenario are important.  

Preis and Ostfeld (2006) used linear programming, while Shen et al. (2009) used a data mining 

technique.   

 Research in inverse methods has also explored using observations from non-ideal sensors.  

Researchers have used data from fuzzy sensors (Preis and Ostfeld 2008) and binary sensors (e.g., 

Preis and Ostfeld 2008; Kumar et al. 2012) to determine the source of contamination using an 

inverse method.  Preis and Ostfeld (2008) were able to determine the true contamination scenario, 

but found that using binary sensor data led to a much higher number of possible contamination 



5 
 

nodes than fuzzy sensors or perfect sensors; in one case, the number of possible source nodes using 

binary sensors is nearly four times as many as determined using fuzzy sensor (124 for binary; 32 for 

fuzzy; 19 for perfect; 10 actual source nodes).  Kumar et al. (2012) found similar results; an inverse 

correlation exists between the information provided by the sensors and the number of possible 

solutions calculated by the method. 

 Overall, while inverse methods are becoming increasingly more efficient, these methods 

have an inherent inefficiency requiring that multiple forward simulations need to be run in order to 

determine the true contaminant source characteristics (Liu et al. 2012).  

 

1.2.2.  Adjoint Methods for Source Identification 

 A second class of source identification methods is the adjoint method (e.g., Neupauer et al. 

2010).  The adjoint method is a tool for directly calculating the sensitivity of a system state at a 

particular location and time to a system parameter; this sensitivity is called the adjoint state and is the 

state variable of the adjoint of the forward contaminant transport equations.  For source 

identification, the system state is the concentration observed at a sensor and the system parameter is 

the mass released at the source.  As discussed previously, inverse methods complete multiple 

forward simulations attempting to replicate the conditions which produced the sensor observations.  

However, in the source identification problem, the concentration is known and the source 

characteristics are not.  The adjoint approach is particularly suited to solve this type of problem 

(Sun, 1994).  The adjoint method uses the sensor observations as sources of the adjoint state, which 

is propagated upgradient through a water distribution system to all possible source nodes.  The 

adjoint state is used to quantify the probability that the observed contamination could have been 

released from a particular potential source node.  Using this adjoint state, one simulation is run for 

each sensor observation and provides information about all possible source scenarios; while the 
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standard inverse methods require one simulation for each possible source scenario and provides 

concentrations for all nodes in the system. 

 Adjoint methods have been successfully used for source identification in groundwater 

(Neupauer and Wilson 1999), but source identification in water distribution systems is more 

complicated as a result of multiple flowpaths through the system, transient flows that can lead to 

flow reversals in individual pipes, and the presence of storage tanks that can hold some water and 

contaminant while the remainder of the water and contaminant flows through the system.   Prior to 

this work,  the application of adjoint methods in water distribution systems has been limited to 

relatively simple systems consisting entirely of pipes and nodes (i.e., no tanks or pumps) under 

steady-state flow conditions (Neupauer et al. 2010).  Further research is necessary to determine how 

the method can be modified for use in more realistic water distribution systems. 

 Neupauer et al. (2010) developed the adjoint method to probabilistically determine the 

source of contamination in simple water distribution systems.  Their method uses travel time 

probability density functions (PDFs) to identify the most likely source of contamination in a water 

distribution system.  These PDFs are related to adjoint states of concentration.  The adjoint states 

are obtained by solving adjoints of forward equations. 

 

1.2.3.  Water Distribution System Modeling Software 

 The ability for water utilities to secure, monitor, and model water distribution systems is 

constantly evolving.  Supervisory control and data acquisition (SCADA) systems allow utilities to 

monitor the system remotely and adjust parameters as needed, while modeling software allows the 

water system managers to explore the potential effects of system changes.  The usefulness of these 

software packages is highly dependent upon accurate measurement and input of system parameters 

(e.g., flow rates, pipe characteristics, and reaction kinetics) and dynamics.  While the software cannot 
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precisely depict how an actual system reacts, it can be used to approximate the probable outcomes 

of system changes. 

 EPANET (Rossman, 2000) is often used to simulate the movement of contaminant mass for 

source identification methods.  This software uses forward transport equations to model hydraulic 

and water quality behavior in systems containing pipes, junctions, storage tanks, and pumps. By 

adjusting demands and supplies at the nodes, steady-state or transient flow fields, the tank mixing 

model, the valve type, and pump curves, EPANET can be used to reproduce the true system as 

closely as possible, however it cannot simulate all potential scenarios.  EPANET 2.0 uses the 

complete mixing model at pipe junctions: the water from the input pipes intersect, mix completely, 

and form a homogeneous solution that flows downstream through each of the output pipes.  Many 

researchers have demonstrated that this is an inadequate representation of the true mixing at pipe 

junctions leading to inaccuracies in the simulations (e.g. Romero-Gomez and Choi, 2008).   

 EPANET-BAM (Sandia National Lab 2008) is an extension for EPANET which can be 

used to simulate the movement of contaminant mass through junctions with incomplete mixing.  In 

EPANET-BAM, the user is able to specify the mixing at any node meeting the following 

requirements:  (1) equal-sized pipes and (2) two adjacent inflows, and (3) two adjacent outflows (Ho 

and Khalsa 2007).  EPANET-BAM uses the bulk advective mixing model where the concentration 

exiting the junction depends on the flowrates in the pipes and the concentrations in the two pipes 

exiting the junction are not the same.  EPANET-BAM allows the user to specify the mixing at the 

junctions by specifying the proportion of the mixing which is bulk-advective mixing versus complete 

mixing; however it is limited to the junctions that meet the specified criteria. 

 In practice, the degree of mixing depends on the Reynolds numbers for flow in the inlet 

pipes and on the geometry of the junction (Austin et al. 2008).  Choi et al. (2008) developed 

AZRED, a computer program that simulates incomplete mixing at (1) cross-junctions with adjacent 
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inflows and outflows or opposing flows; (2) double tee junctions with various inflow/outflow 

configurations, and (3) one tee and one wye junction.  In each of these types of junctions, the mixing 

is simulated using experimental results based on the Reynolds numbers for the inflow and outflow 

pipes.  These options increase the ability to simulate the true water distribution system behaviors. 

 

1.3.  Hypotheses  

 Adjoint methods have already been successfully employed in groundwater systems (e.g., 

Neupauer and Wilson 1999) and in simple water distribution systems (e.g., Neupauer et al. 2010).  

The goal of this research is to develop an adjoint method for source identification in more realistic 

water distribution systems (i.e., including tanks, pumps, and transient flow fields) under more 

realistic conditions (i.e., non-ideal sensors and realistic transport).  This goal leads to the following 

three hypotheses: 

 H1. The adjoint method can be used to determine the source of contamination in water 

distribution systems containing pumps, storage tanks, and transient flow conditions.  Neupauer et al. 

(2010) demonstrated that the adjoint method can identify sources of contamination in simple water 

distribution systems (i.e., systems containing only source, pipes, and nodes) under steady-state flow 

conditions.  This research develops an adjoint method that can be used to identify sources of 

contamination in more complex water distribution systems (i.e., systems containing pumps and 

storage tanks) under transient flow conditions. 

 H2. The adjoint method can be used to determine the source of contamination in water 

distribution systems when using realistic system sensors.  All previous work on the adjoint method 

for source identification (both in groundwater and water distribution systems) assumed that the 

contaminant concentrations come from perfect sensors that provide exact concentration readings.  

Perfect sensors do not exist (Preis and Ostfeld 2008), so we develop a method for using data from 
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fuzzy sensors which only identify the approximate range of contamination (e.g., high, medium, low) 

and binary sensors which only identify whether contamination is present or absent (or whether it is 

above or below a designated threshold value).  We also develop a method to use non-detect 

measurements, i.e., sensor measurements for which the level of contamination is below the limit of 

detection. 

 H3. The adjoint method can be used to determine the source of contamination in water 

distribution systems with non-ideal mixing at pipe junctions.  Previous work has assumed complete 

mixing at pipe junctions.  This is not the case in an actual distribution system leading to 

discrepancies between the modeled system and the true system (Austin et al. 2008).  A bulk 

advective mixing algorithm (EPANET-BAM) has been developed to introduce more realistic mixing 

at pipe junctions (Ho and O’Rear 2009).  We develop adjoint theory incorporating incomplete 

mixing at the pipe junctions. 

 

1.3.1.  Pumps, Storage Tanks, and Transient Flow Conditions 

Many studies have been conducted using inverse methods to identify the source of contamination in 

water distribution systems with pumps, storage tanks, and transient flow conditions; one of the most 

widely used example networks for testing source identification methods is Example 3 in EPANET 

(Rossman 2000) which has a transient flow field, 3 tanks, and 2 pumps (e.g., Preis and Ostfeld 2007; 

Vankayala 2009; Zechman and Ranjithan 2009; Liu et al. 2012).  Since inverse methods attempt to 

replicate system observations by running forward simulations of possible contamination events, any 

event that can be simulated in EPANET or other modeling software can theoretically be identified 

by inverse methods.  Previous adjoint methods were developed for systems containing only pipes 

and pipe junctions under steady-state flow conditions. 
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 In the adjoint method the adjoint state is propagated backward relative to the flow field.  In 

a steady flow system, the flow rates do not depend on the system state (i.e., pressure), so the flow 

reversal can be accomplished manually by changing the positive demands to negative.  This 

approach was used by Neupauer et al. (2010).  In systems with storage tanks, the flow rate into or 

out of the tank depends not only on the system demands, but also on the water level in the tank and 

the pressure in adjacent nodes.  Therefore, the flow rates in the system are dependent on the system 

state, and changing the signs on the demands is not equivalent to reversing the flow.  We develop an 

approach to reverse flows and we use this approach in Chapter 2 to develop and test the adjoint 

method for complex water distribution systems containing pumps, storage tanks, and transient flow 

conditions.   

 

1.3.2.  Realistic System Sensors 

The current adjoint method assumes the observed contaminant concentrations come from perfect 

sensors that provide exact concentration readings.  Perfect sensors do not exist (Preis and Ostfeld 

2008), so we develop a method for using more realistic sensors and data.  We develop a method for 

using data from fuzzy sensors that measure concentration ranges of high, medium, and low; binary 

sensors which only provide presence/absence data (or above/below a threshold value); and non-

detect measurements which can be used to determine nodes/times where contaminant could not 

have entered the system. 

 Since fuzzy sensors use a measurement range (e.g., 5-10 mg/L for a “medium” reading) 

instead of a measured concentration, we modify the probability conditioning step in the adjoint 

method to use a range, rather than a single measurement.  We assume that the true concentration is 

equally likely to fall anywhere within the measured concentration range and we integrate over the 

entire measurement range. 
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 Binary, or Boolean, sensors are only able to provide information regarding whether 

contamination is present or not (Preis and Ostfeld 2008).   As with the fuzzy sensors, the binary 

sensor data will impact the calculation of the PDF of obtaining the measured concentration.  In the 

case of binary sensors, we do not have a measured concentration; we only know that the 

concentration is above or below a threshold value.  In our method, we focus on the observations 

indicating that contamination is present.   

 Non-detects are sensor measurements at contamination levels below the limits of detection. 

They can be used in the adjoint method to eliminate some nodes as potential sources.  For instance, 

if contaminant observations at a sensor node lead to identifying that node X is a potential source 

node, a non-detect measurement could be backtracked through the system to show that 

contamination could not have been at node X (i.e., contaminant could not have been at a node that 

is hydraulically connected to a sensor node that did not see any contamination).  The adjoint method 

uses the concentration observed at a node and propagates that information backward through the 

system.  Previously, the method has been developed for positive concentration measurement; we 

develop a method for using non-detect measurements.   

 Using non-detect measurements presents two challenges:  (1) Using the non-detect 

measurements in conjunction with the positive results and (2) The large number of non-detects.  We 

answer the first challenge by using the non-detects to determine times when the contaminant could 

not have been at a potential source node.  We then assume that the probability is 0 that the 

contaminant could have come from any node/time combinations that we calculated as connected to 

a non-detect measurement.  The results can then be used directly with the positive results.  The 

second challenge is important because the quantity of non-detects is so high.  For example, if a 

sensor takes readings every 15 minutes for a span of 24 hours and never sees any contaminant 

concentration (i.e., all non-detects), 97 readings of non-detect would need to be evaluated.  The 
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adjoint method requires one simulation for each observation, so using 97 observations would 

require 97 simulations, which is computationally intensive given the current method.  To overcome 

this limitation, we treat consecutive non-detect measurements as a continuous source of the adjoint 

state (i.e., occurring over multiple timesteps) rather than multiple instantaneous sources.  This allows 

the computation of all the individual PDFs in one backward simulation rather than multiple 

simulations; thus only one additional simulation is needed for each sensor node at which non-detects 

are observed. 

 

1.3.3. Incomplete Mixing 

 We use EPANET-BAM to simulate the movement of contaminant mass in a system with 

incomplete mixing.  We determine the adjoint equations for this type of mixing and develop an 

adjoint method which can be used in systems with incomplete mixing at the junctions.  

 

1.4. Organization 

 This dissertation is organized into six chapters.  Chapter 2 addresses hypothesis 1 and 

describes the adjoint method we developed for water distribution systems with transient flow fields 

and storage tanks.  The results are presented for multiple scenarios including using 2, 3, or 4 

observations, and using observations that do or do not contain information from contaminant mass 

that passed through a storage tank.  Chapter 3 addresses hypothesis 2 and describes how the 

information from imperfect sensors (fuzzy or binary) is used in the adjoint method, and how non-

detect measurements are used.  The adjoint method is demonstrated using fuzzy sensor data with 

and without non-detect measurements and binary sensor data.  Chapter 4 addresses hypothesis 3 

and uses an incomplete mixing model at junctions to simulate the spread of contamination.  We 

develop the adjoint model for incomplete mixing and develop a method for adjoint-based source 
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identification in water distribution systems with incomplete mixing at the junctions.  We present 

scenarios with various degrees of incomplete mixing and demonstrate how the adjoint method is 

able to determine the source of contamination.  Chapter 5 presents a larger water distribution system 

with transient flow fields, two water sources, and three storage tanks.  We use this system to test the 

robustness of the adjoint methods developed in response to hypotheses 1 and 3. Chapters 2-4 are 

written as stand-alone papers which will be published in the Journal of Water Resources Planning and 

Management (Chapters 2 and 3) and the Journal of Hydraulic Engineering (Chapter 4).   
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CHAPTER 2 

PROBABILISTIC SOURCE CHARACTERIZATION IN WATER DISTRIBUTION 
SYSTEMS WITH TRANSIENT FLOWS. 

 

Abstract 

 Water system sensors are becoming increasingly more efficient and effective at discovering 

water quality changes in distribution systems.  This paper describes a method for determining the 

source of the water quality change.  We use publicly available software (EPANET) and a 

conditioning method to probabilistically locate the contamination source.  Prior work has shown 

that a similar method is effective for a distribution system with pipes, nodes, and a steady-state flow 

field.  In this work, we demonstrate the effectiveness of this approach in a more complex 

distribution system with a pump, a tank, and transient flow conditions. 

 

2.1.  Introduction 

 Water utilities are tasked with providing an uninterrupted supply of potable drinking water 

to their service populations.  While this typically relates to accidental contamination, the events of 

September 11, 2001 shifted the focus on protecting water distribution systems from acts of 

terrorism (DHS 2003).  Utilities are searching for better methods for preventing, detecting, and 

remediating contamination in drinking water distribution systems.  While prevention is clearly the 

most effective measure against contamination, human ingenuity seems to know no bounds and the 

impregnable water distribution system does not exist.  Given the possibility of contamination always 

exists, it is important to develop methods to determine the source of contamination.  An efficient 

and effective method can significantly reduce both the population affected by water contamination 

(with subsequent loss of service) and the resources required to mitigate the spread of contamination.  
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Water contamination and/or loss of service have a clear impact on public welfare (both physical and 

psychological), whether it is due to terrorist activity or accidental contamination. 

 Contaminant detection is the initial step in contaminant source identification.  The ability for 

water utilities to detect contamination in water distribution systems is constantly evolving.  

Supervisory control and data acquisition (SCADA) systems allow utilities to remotely monitor the 

system, while sensor technology is becoming increasingly more effective at detecting contamination.  

When contamination is found, modeling software packages, such as EPANET (Rossman 2000), can 

be used to simulate how the contaminant might move through the system and help the water utility 

personnel determine what portions of the system might be affected.  The correlation between the 

simulations results and how the true system reacts is highly dependent upon accurate measurement 

and input of system parameters (e.g., flow rates, pipe characteristics, and reaction kinetics) and 

dynamics.  While the software cannot precisely depict how an actual system reacts, it can be used to 

approximate the probable outcomes of a contaminant released in the system. 

 In the past, inverse methods have been used in conjunction with software, such as 

EPANET, to identify sources of contamination (e.g., Islam et al. 1997; Laird et al. 2005, 2006; Guan 

et al. 2006; Preis and Ostfeld 2006, 2007).  The solution to a contaminant source identification 

problem is non-unique (e.g., De Sanctis, et al. 2010), so the goal of these methods is typically to 

select the true source node and contaminant time as a possible solution. Inverse methods employ 

advanced algorithms to achieve this goal.  Using observations of contaminant concentration arriving 

at a sensor as simulation goals, the algorithms in conjunction with modeling software test multiple 

contamination scenarios (e.g., source node, release time, and source concentration) and run multiple 

forward simulations in the water distribution system to determine what contamination scenario leads 

to the observed outcomes.  Research regarding inverse methods primarily focuses on developing a 

more efficient method for determining the potential source nodes (e.g., Laird et al. 2005; Propato et 
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al. 2010) and the contamination scenario (i.e., the source node, release time, and source 

concentration; e.g., Laird et al. 2005; Guan et al. 2006; Preis and Ostfeld 2007; Vankayala et al. 2009; 

Zechman and Ranjithan 2009; Propato et al. 2010; Liu et al. 2011).  Some researchers have also 

explored creating a model tree with pre-developed scenarios which are referenced in the event of 

contamination; the system observations are compared to the simulation results to determine which 

scenario is most likely (e.g., Preis and Ostfeld 2006; Shen et al. 2009).  Overall, while inverse 

methods are becoming increasingly more efficient, these methods have an inherent inefficiency 

requiring multiple forward simulations to determine the true contaminant source characteristics. 

 An alternative method for source identification is the adjoint method that has been 

developed by Neupauer et al. (2010) and Neupauer (2011) for water distribution systems.  The 

adjoint method is based on the calculation of the adjoint state, which in this context is the sensitivity 

of the concentration at the observation node to a contaminant mass released at an upstream node.  

The adjoint state is backtracked through the system from locations where contamination was 

observed (e.g., sensors) to all possible source locations.  The resulting distributions of adjoint states 

can be related to probabilities representing the random source node and the random release time of 

contamination from that source node. This probabilistic representation of the possible source 

characteristics is an additional benefit of the adjoint method that is not provided with all inverse 

methods.  The adjoint method has been used for source identification in groundwater (e.g., 

Neupauer and Wilson 1999) and water distribution systems with simple hydraulics (Neupauer et al. 

2010). 

 The goal of this paper is to develop an adjoint-based probabilistic method for source 

identification in water distribution systems containing storage tanks and transient flow conditions.  

The implementation of the adjoint method presented by Neupauer et al. (2010) cannot handle 

transient changes in storage, so we present a more robust implementation here.  Specifically, the 
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adjoint method requires the direction of the pipe flows to be reversed relative to their actual flow 

direction to enable the model to backtrack the adjoint state from the observation nodes to the 

possible source nodes.  Neupauer et al. (2010) reversed the flow directions in a simple, steady-state 

water distribution system manually by changing positive demands to negative demands; however this 

manual reversal of flows is not feasible for water distributions systems that contain tanks.   

 We used the EPANET Programmer’s Toolkit to create a program to backtrack the adjoint 

state in a more complex, transient water distribution system with storage tanks.  We also 

demonstrate how flowpaths through the storage tank dilute the information content of the sensor 

observations in identifying the source characteristics. 

 The approach that we developed to meet these goals and objectives includes the calculation 

of probability density functions (PDFs) of the possible contamination times for potential source 

nodes.  These PDFs use observation data from one or multiple sensor nodes and allow us to identify 

the most likely source node and release time of contamination.  Unlike inverse methods, however, 

we do not determine the release concentration of the contaminant. 

 In the next section, we present the theory of the adjoint method and probabilistic approach 

for source identification.  Then, we provide examples using the adjoint method for source 

identification in a system similar to Example 1 from EPANET (Rossman, 2000).  Finally, we offer 

some conclusions based on our results. 

 

2.2.  Theory 

 Forward transport of a conservative chemical in pipes can be modeled using  
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where Ci, Qi, Ai, and xi are the concentration, flow rate, cross-sectional area, and distance along the 

pipe i respectively, while t is time.  Assuming complete mixing at the junctions, the concentration at 

any node is equal to the mass flow rate into the node (either from the upstream pipes or direct 

input) divided by the total flow rate out of the node, given by 
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where *

jC

 

is the concentration of water leaving node j, di is the downstream node of pipe i, Li is the 

length of pipe i, Uj is the mass loading rate at node j, Dj is the water demand at node j, and ui is the 

upstream node of pipe i.  This expression defines the boundary condition for (1). 

 If the source characteristics (i.e., source node, release time, and source concentration) are 

known, (2.1) and (2.2) can be solved to obtain concentrations as a function of time at one or more 

nodes of interest, such as sensor nodes.  In other words, for a source at a single node l, the forward 

equations can be solved for concentration, *

jC  at all nodes j = 1, 2, … Nn, where Nn is the number of 

nodes.  In this way, information (e.g., contaminant concentration) is propagated downstream from 

the source to all possible downstream nodes.  If concentrations are measured at one or multiple 

sensors (nodes), the information from these sensors can be propagated upstream from the sensors 

to all possible source nodes.   This upgradient propagation of information is carried out by solving 

the adjoints of the forward equations.   Neupauer (2011) showed that the adjoint of (2.1) is 
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where iψ  is the adjoint state of the concentration in pipe i, defined as the marginal sensitivity of the 

concentration in pipe i (Ci) to a source mass released at node l (Ml) given by iψ =∂Ci/∂Ml, and τ is 

backward time, defined as the time prior to a reference time (e.g. if the time of contaminant 
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detection is selected as τ = 0 hr, then τ = 1.5 hr would refer to 1.5 hour before the contamination 

was discovered).  The advection term in the adjoint equation (
i

i

i

i

xA

Q

∂

ψ∂
) is negative instead of 

positive showing that the adjoint state is propagated against the flow of water. 

 The adjoint state of the concentration at a node is obtained by solving the adjoint of (2.2), 

which is given by (Neupauer 2011) 
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where 
*ψ is the adjoint state of concentration at Node l, which physically represents the marginal 

sensitivity of nodal concentration *

jC  at a single sensor node j at backward time τ to a source 

release of mass Ml at any potential source node (l = 1, 2, … Nn). 
*

U  is the adjoint state load term 

and is given by (Neupauer 2011) 
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where δ(·) is a Dirac delta function and τs is the backward time at which contamination is observed 

at the sensor node (j). The load term is non-zero only at the sensor node j where contamination is 

observed.  In this way, information enters the adjoint equation only at the sensor node and is 

propagated upgradient to all possible source nodes. 

 The system of equations in (2.3) and (2.4) is solved once for each sensor observation to 

obtain the temporal distribution of the adjoint state
*ψ  at all nodes l = 1, 2, … Nn.  In this work, we 

use EPANET to determine the adjoint state,
*ψ .  The magnitude of the adjoint load, 

*

U , is 

approximated by 
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where Δt is the length of the timestep used in the simulation. This adjoint load is inserted into the 

water system as a mass booster for a single timestep and propagated backward through the water 

distribution system (i.e. against the flow of water) to potential source nodes.  In this way, the adjoint 

state, the sensitivity of the concentration at the observation node to a mass input at the source node, 

is calculated for all hydraulically connected upstream nodes. 

 The adjoint state can be used to obtain the backward travel time probability density function 

(BTTPDF), fT(τ;l,j,τS), that defines the random backward time τ that a contaminant particle observed 

at node j at backward time τs could have been released at node l, which is a potential source node in 

the water distribution system.  This BTTPDF is related to the adjoint state through (Neupauer et al. 

2010) 
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Since a different adjoint state is obtained for each sensor observation, (2.7) is solved once for each 

sensor observation.  The BTTPDF is non-zero for all nodes that are upstream of and hydraulically 

connected to the sensor node.  The BTTPDF for any node which is not hydraulically connected to 

the sensor node is zero at all times. 

 We assume the contaminant entered the system at only one source node and release time, so 

all sensor observations are traceable back to an instantaneous release at a single source node (which 

has not yet been determined). Let J = {j1, j2, …jNs} be a set of Ns sensor nodes at which 

contamination is observed, and let Ts = {s1, s2, … sNs} be the set of observation times at each 

sensor.   We use Bayes’ theorem and determine a joint BTTPDF,  sTf TJ,,; , which defines the 
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random time  that contamination that was observed at sensor nodes J at times Tx could have been 

released at node l.  This joint BTTPDF is given by (Neupauer and Records 2009)  
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where  snnT jf  ,,;
 

is the backward travel time probability density function from (2.7) for the nth 

sensor observation, and αT is used to ensure that the total probability is unity. 

 The measured concentrations at the sensors provide additional information that can be used 

to determine the potential source nodes.  Let }ˆ,ˆ,ˆ{ˆ **
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released at node l, which is given by (Neupauer et al. 2010)  
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where  snnT jf  ,,;

 

is the backward travel time probability density function for the nth sensor 

observation,  ;,|ˆ*

,|ˆ* mcf jnTMC jn

 is the PDF of obtaining the measured concentration  snjnc *ˆ for a 

given source node l, release time τ, and source mass m, defined as a normal distribution with a mean 
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of  snjnm  ,;ψ*  , and a standard deviation σ representing model and measurement uncertainty 

(Neupauer et al. 2010).  In (2.10) and (2.11), integration is carried out over a likely range of source 

masses, and βT is used to ensure that the total probability is unity.  

 

2.3.  Examples 

 We tested the adjoint-based probabilistic method for source identification using the network 

shown in Figure 2.1, which has the same layout as EPANET Example 1 (Rossman 2000).  The 

water distribution system contains 12 pipes, 9 nodes, a reservoir, a variable speed pump, and a fully-

mixed tank which is initially 80%.  With the exception of node 10, all nodes have demands which 

vary over time.  The demands at the nodes are indicated in Figure 2.1 and the demand pattern is 

shown in Table 2.1. 

 The tank is filling from the start of the simulation, t = 0:00 (hh:mm), to 12:36 and from 

23:40 until the end of the simulation (t = 24:00) and draining at all other times.  The draining and 

filling of the tank affects the direction of flow in pipes 11, 21, and 110 (connected to the tank) and 

contributes to the overall transient state in the flow field for the system. 
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Figure 2.1.  EPANET Example 1 water distribution system.  Lines represent pipes.  Circles 

represent nodes.  The base nodal demands in gallons per minute are indicated at the nodes (e.g., 150 
gpm).  The number above the node is the node identifier.  The number above the pipe is the pipe 

identifier. 

 

Table 2.1.  Demand Pattern. 

Start 
Time 

(hh:mm) 

End 
Time 

(hh:mm) 
Multiplier 

0:00 2:00 1.0 

2:00 4:00 1.2 

4:00 6:00 1.4 

6:00 8:00 1.6 

8:00 10:00 1.4 

10:00 12:00 1.2 

12:00 14:00 1.0 

14:00 15:00 0.8 

15:00 16:00 0.1 

16:00 18:00 0.6 

18:00 20:00 0.4 

20:00 22:00 0.6 

22:00 24:00 0.8 
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 We use EPANET to simulate the movement of a generic non-reactive contaminant in this 

network to generate the sensor measurements used to test the source identification method. We use 

a time step of Δt = 2 minutes and we assume a contaminant source at node 11, modeled as a flow-

paced booster with an input concentration of 5,000 mg/L from t = 3:58 to 4:00, with a total mass of 

approximately 69 kg.  Nodes 23 and 32 were used as observation nodes at which sensors measured 

the contaminant concentration over time.  Figure 2.2 shows the contaminant concentration as a 

function of time for observation nodes 23 and 32.  Each of the observation nodes shows four 

distinct arrivals of the contaminant, labeled A though D in Figure 2.2, due to multiple flowpaths 

from the source node to the observation node and transient flow in the system.  We define each of 

these distinct arrivals as an “observation set”. Table 2.2 shows the start and end time of each 

observation set, and the peak concentration and the forward time at which the peak concentration 

occurs. The start and end times are shown in both forward and backward time, with backward time 

 defined as = 24:00-t. The latest arrival (labeled as D in Figure 2.2) has a significantly lower 

concentration than the earlier arrivals because this water was previously in the tank.  The 

contaminant enters the tank at t = 4:46 and begins exiting the tank at 12:38.  Since the tank is fully-

mixed, any contaminant that enters the tank is instantaneously mixed with the entire contents of the 

tank effectively diluting the contaminant. 
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Figure 2.2.  Observed concentrations at sensors at (A) node 23 and (B) node 32. The square 
markers in the figures indicate the observations used.  The secondary axes on the right side of the 
each figure are for observations 23D and 32D.   

Table 2.2.  Data for Observations in Figure 2.2.  Reference Time for the Backward Time is t = 
24:00. 

Observation 
Set 

Forward Time, t 
(hh:mm) 

Backward Time, 
(hh:mm) 

Observation Peak Values 

Start 
Time 

End 
Time 

Start 
Time 

End 
Time 

Concentration 
(mg/L) 

Time 
(hh:mm) 

23A 8:44 8:50 15:10 15:16 790 8:46 

23B 9:40 9:46 14:14 14:20 1070 9:42 

23C 12:30 12:36 11:24 11:30 380 12:32 

23D 20:24 24:00 0:00 3:36 0.81 20:32 

32A 7:06 7:12 16:48 16:54 1360 7:08 

32B 8:34 8:40 15:20 15:26 710 8:34 

32C 9:46 9:52 14:08 14:14 340 9:48 

32D 17:22 24:00 0:00 6:38 0.98 17:30 

 
 

 Ideally all of the available information should be used for source identification; however, the 

adjoint-based approach requires one simulation for each observation; thus for a large system with 

many sensors and observations, running one adjoint simulation for each observation could be 

computationally prohibitive. Instead the user can select a small number of observations to be used. 

Similarly, instead of using each observation in each observation set, we use the peak concentration 

and time at which the peak concentration occurred (shown as squares in Figure 2.2).  For instance, 

the peak concentration for the first observation for node 23 is 790 mg/L and the time is 8:46; this is 

referred to as observation 23A.  We demonstrate the method using three example sets of data:  (1) 



26 
 

two observations, neither of which passed through the tank, (2) two observations, one of which 

passed through the tank, and (3) three observations, one of which passed through the tank and two 

which did not.  As we demonstrate here, reasonably accurate source identification can be achieved 

with a small subset of the available information. 

 

2.3.1.  Scenario 1: Observations at 23B and 32A. 

 In this example we use two observations, the peak concentration for observations 23B (j1 = 

23) and 32A (j2 = 32). Both of these observations contain contaminant which never entered the 

storage tank.  The first step in the source identification method is to calculate the adjoint states by 

solving (2.3) and (2.4) once for each sensor observation.  As stated above, we solve these equations 

using EPANET. We use the EPANET Programmer’s Toolkit to create a hydraulics file that 

contains pressure and demands for all nodes and flow rates, status, and settings for all pipes for all 

time steps.  We then create a new hydraulics file with the information reversed in time and with the 

signs reversed on the flows and demands.  This new hydraulics file is used to propagate the adjoint 

state backward through the water distribution system.  The adjoint load is determined for each 

observation using (2.6) and is equal to 0.5 min-1, producing adjoint state values of 0.009 gal-1 and 

0.012 gal-1 for observation nodes 23 and 32, respectively, at the times of release.  As the adjoint state 

is propagated through the water distribution system model, it is diluted, thus the simulated values 

will all be substantially less than unity, and some accuracy may be lost due to rounding the output to 

a fixed number of decimal places.  To avoid this, we multiply the adjoint load by 106 and then divide 

the output by 106.  Since the adjoint load is an instantaneous load (2.5), the adjoint load is inserted at 

a single timestep corresponding to the time at which the peak concentration was observed (e.g., 9:42 

for observation 23B).   
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 Using observations 23B and 32A in separate simulations, we obtain adjoint states for 

upstream nodes l = 10, 11, 12, 13, 21, 22, and 31 and use these in (2.7) to calculate the 

unconditioned BTTPDFs. Figure 2.3 shows the resulting adjoint states and unconditioned 

BTTPDFs for upstream node l = 11 (the true source node) for observations 23B and 32A (similar 

plots can be made for the other upstream nodes, but are not shown here).  The unconditioned 

BTTPDF represents the possible times at which the observed contamination could have been at 

node 11.  For both observations, the observed contaminant could have been at node 11 at multiple 

times as a result of the multiple flowpaths between the observation nodes and node 11.  Table 2.3 

shows the time range for which the adjoint states and unconditioned BTTPDFs are non-zero for 

any upstream nodes l = 10, 11, 12, 13, 21, 22, and 31. These are the candidate source release times 

for each of the nodes.  

 The results in Table 2.3 demonstrate that the contamination from observation 23B could 

have originated at any node except node 31, while the contamination from observation 32A could 

have come from any node except node 13.  In the forward simulation, water flows from the 

reservoir through nodes 10, 11, 12, 13, 21, and 22 prior to arriving at node 23; node 31 is not 

hydraulically connected to node 23, so it cannot be a source node.  Similarly, water flows from the 

reservoir through nodes 10, 11, 12, 21, 22, and 31 prior to arriving at node 32, so all of these nodes 

are hydraulically connected to node 32 and capable of producing the contaminant observation 32B.  

We assume that the contamination occurred at a single node and time, thus the contamination 

observed at both 23B and 32A could only have originated at nodes for which the candidate times 

(Table 2.3) overlap.  These results show us that the true source node and time, node 11 at t = 4:00, is 

a candidate source scenario for this combination of observations.  These results also show that 

nodes 10, 12, 21, and 22 are candidate source nodes, while 13 and 31 are not. 
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Figure 2.3.  Adjoint state and unconditioned BTTPDF for potential source node 11 using (A) 
observation 23B, (B) observation 32A, and (C)-(D) observation 23D.  The dashed line indicates the 
time at which the contaminant source actually entered the system (4:00). 
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Table 2.3.  Potential Contaminant Release Times Based on Observation 23B and 32A. 

 
 
 

 The unconditioned BTTPDFs are obtained by scaling the adjoint states by the flow rates, as 

in (2.7), and are shown for observations 23B and 32A in Figures 2.3A and 3B respectively.  The 

temporal changes in the flow rate across node 11 are small at times when the adjoint state is non-

zero, so the differences between the adjoint state and unconditioned BTTPDF in Figure 2.3 are 

imperceptible.  The unconditioned BTTPDF is non-zero at release times that could produce the 

observations.  For both observations, the unconditioned BTTPDF has non-zero values for node 11 

(the true source node) at time 4:00, thus the true release time is identified as a candidate release time. 

 We used these unconditioned BTTPDFs in (10) to calculate the conditioned BTTPDF that 

describes the random release time of contamination from node l that could produce the measured 

concentrations in the two observations.  In (10), we used a source mass range of 65-75 kg (the actual 

source mass was about 69 kg) and a standard deviation of model uncertainty equal to 10% of the 

measured concentration (e.g., if the measurement is 15 mg/L, then standard deviation is ±1.5 

mg/L).   
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 Figure 2.4A shows the resulting conditioned BTTPDFs for nodes 10, 11, 12, 21, and 22.  

Only these nodes have non-zero conditioned BTTPDFs because these are the only source nodes for 

which the adjoint states for the two observations have non-zero values at the same range of times 

(see Table 2.3).  The results show various possible contamination scenarios for nodes 10, 11, 12, 21, 

and 22.  Note that the true source node (node 11) and release time (t = 4:00) is identified as a likely 

source scenario.   

 We can estimate the likelihood of each candidate source node being the true source node. In 

(2.10), βT is used to normalize the conditioned BTTPDF to ensure that the total probability is unity; 

thus, by Bayes’ theorem, βT is proportional to the joint probability density function of the source 

node and release time (Neupauer et al., 2010).  A larger value of βT indicates a greater probability 

that the node is the true source node.  The βT values for nodes 10, 11, 12, 21, and 22 are shown in 

Table 2.4.  Node 11 has the largest value, thus it is the most likely source node. 

 Although the maximum value of βT (Table 2.4) occurs at node 11, βT for node 10 is only 

slightly lower; indicating that node 10 is nearly as likely as node 11 to be the source node.  If a 

contaminant entered the system at node 10, the source concentration at node 10 and the 

concentration observed at node 11 would be very similar; the only dilution between node 10 and 11 

is the demand at node 11, which is about 20% of the average flow of water from node 10 to node 

11.  Similarly, when the adjoint state at node 11 is backtracked to node 10, the adjoint state at node 

10 will have a similar value as it did at node 11.  The result is adjoint state values which are similar in 

magnitude for node 10 and 11.  The βT values are also similar because the PDF of obtaining the 

measured concentration for nodes 10 and 11 are also similar. 
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Figure 2.4.  Conditioned BTTPDF for potential source nodes using (A) observations 23B and 32A 
(Scenario 1), (B) observations 23D and 32A (Scenario 2), and (C) observations 23A, 23D, and 32A 
(Scenario 3).  The dashed line indicates the true contaminant release time (t = 4:00). The number 
above the curve identifies node number of the potential source node. 

 

   Table 2.4.  βT Values for Complex Water Distribution System in Units of L3/mg2/hr2 (Maximum 
Value is Bolded).  

 

 

 In summary, based on the βT values, the adjoint method correctly identified the true source 

node (node 11) as the most likely source node; and based on the conditioned BTTPDF for node 11, 

the adjoint method correctly identified the true release time (t = 4:00) as the most likely release time.  
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However, node 10 is also a likely source node.  If it were the source node, the most likely release 

time would be t = 2:44. 

 

2.3.2. Scenario 2: Observations at 23D and 32A. 

 In this example we use two observations, the peak concentration from observation 23D (j1 = 

23) which contains information from contaminant that passed through the storage tank, and the 

peak concentration from observation 32A (j2 = 32) which contains information from contaminant 

which did not enter the storage tank.  Following the same method as the first example, we use (2.3) 

and (2.4) to calculate adjoint states, and use the results in (2.7), (2.10), and (2.11) to calculate the 

conditioned BTTPDFs (Figure 2.4B) and T (Table 2.4).  Based on the βT values, the true source 

node (node 11) is successfully identified as the most likely source node, and from Figure 2.4, the true 

release time (t = 4:00) is successfully identified as the most likely release time.  

 The T values for this scenario indicate that either node 10 or 11 is the probable source 

node.  The T values for nodes 10 and 11 in this scenario are lower than in Scenario 1 because the 

adjoint state for observation 23D is diluted as it passes through the tank, similar to how the 

concentration is diluted in the forward simulation (Figure 2.2).  Figure 2.3C,D shows the adjoint 

state and unconditioned BTTPDF for 23D.  The range of possible release times is much broader for 

23D than for 23B (Figure 2.3A) or 32A (Figure 2.3B), with non-zero values of the adjoint state from 

t = 0:00 to 12:32 (partially shown in Figure 2.3D) due to the effect of the completely mixed tank.  

Whenever the tank is emptying in the adjoint simulation (filling in the forward simulation), the water 

leaving the tank contains low values of the adjoint state.  Since the adjoint state exits the tank over a 

wide range of times and at a low magnitude, as it is propagated through the system, it arrives at each 

upstream node, specifically nodes 10 and 11, over a wide range of times and at a low magnitude. 
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 In a forward simulation, contaminant may enter a storage tank at one instant in time while 

the tank is filling. If the fully-mixed tank model is assumed, the contaminant is instantaneously 

diluted throughout the water in the tank.  As the tank drains, all of the water draining from the tank 

contains low concentrations of the contaminant, and any information about the precise timing of 

the arrival of contamination at the tank is lost.  All that can be determined is that contamination 

arrived at the tank prior to the time it started draining.  Thus, many different source release times 

could lead to the same observed concentrations at sensors downstream of the tank.  This loss of 

information also occurs in the adjoint simulation as the adjoint state is diluted upon entering the 

tank.  When the water drains out of the tank in the adjoint simulation, it contains low levels of the 

adjoint state that is propagated upgradient to all possible source nodes.  Thus, many different source 

release times are identified.  This loss of information results in lower magnitude βT values as 

compared to the βT values obtained for the same number of observation with none having passed 

through the tank.   

 

2.3.3.  Scenario 3: Observations at 23B, 23D, and 32A. 

 In this example we use three observations, the peak concentrations at 23B (j1 = 23) and 32A 

(j3 = 32) which contain information from contaminant that did not pass through the storage tank, 

and the peak concentration at 23D (j2 = 23) which contains information from contaminant which 

passed through the storage tank.  Following the same method as the first example, we use (2.3) and 

(2.4) to calculate adjoint states, and use the results in (2.7), (2.10), and (2.11) to calculate the 

conditioned BTTPDFs (Figure 2.4C) and βT (Table 2.4).  Based on the βT values, the true source 

node (node 11) is successfully identified as the most likely source node, and from Figure 2.4C, the 

true release time (t = 4:00) is successfully identified as the most likely release time.  
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 Once again, the βT values (Table 2.4) indicate that nodes 10 and 11 are nearly equally likely to 

be the true source node.  This is an expected result for the same reasons elucidated in Scenario 2.  

The most likely release time for node 10, t = 2:44, is also the same time that was found in Scenario 

2.  

 Note that the βT values for this scenario, with three observations, are lower than the βT 

values for the previous two scenarios, which each used only two observations.  The calculation for 

βT uses the product of the unconditioned BTTPDFs for all observations; since the unconditioned 

BTTPDFs are less than unity, the product of three unconditioned BTTPDFs will have a lower value 

than the product of two.  Thus, the value of βT depends on the number of observations, so it cannot 

be compared across different scenarios that use different observations. βT is useful for determining 

which source node is the most likely within each scenario 

 

2.3.4.  Analysis 

 In the previous examples, we used sets of two or three observations to identify the source 

node and release time.  Each observation contains different information content, so different results 

are produced with different combinations of observations.  In this section, we investigate the 

robustness of the source identification method using different combinations of two, three, and four 

observations. 

 We tested our adjoint-based probabilistic method for all combinations of two observations 

from the observations denoted in Figure 2.2, for a total of 28 combinations of two observations.  

For all 28 observation pairs, the true source node (node 11) and release time (t = 4:00) was always 

identified as a possible source node and release time, indicating that the method is sufficiently robust 

to identify the true source node and release time for any set of two observations.  Node 11 was 

selected as the most likely source node in 25 of the 28 cases (89%), based on βT; node 10 was 
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selected as the most likely source node in the other three cases.  Each of the three cases that did not 

produce node 11 as the true source node had at least one observation that passed through the tank 

and one case had two observations that passed through the tank.  These results demonstrate how 

the loss of information when the adjoint state passes through the tank in conjunction with the 

similar adjoint states for nodes 10 and 11 can lead to the incorrect node being chosen as the source 

node; however, in another ten cases where an observation that had traveled through the tank was 

used node 11 was still chosen as the true source node. 

 We also tested our adjoint-based probabilistic method for combinations of three 

observations.  We only consider combinations of three observations that include at least one 

observation from each observation node, resulting in 48 different combinations of three 

observations.  In each case, the true source node and release time were identified as a possible 

source node and release time.  In 46 of the 48 cases (96%), node 11 was identified as the most likely 

source location; node 10 was identified for the other two cases.  Again, the two cases that calculated 

node 10 as the true source node used information from an observation that passed through the tank 

and one of the cases contained information from two observations that passed through the tank.  As 

discussed previously, information is lost when that adjoint states passes through the tank which 

increases the likelihood of calculating node 10 as the true source node over node 11; however, in 

another 30 instances where an observation that had traveled through the tank was used, node 11 was 

still chosen as the true source node. 

 Finally, we tested our adjoint-based probabilistic method for the 34 combinations of four 

observations.  In each case, the true source node and release time were identified as a possible 

source node and release time.  Node 11 was selected as the true source node, based on the value of 

βT, in 33 of the 34 cases (97%).  The case that did not select node 11 as the true source node used 

information from two observations of contaminant that had passed through the tank and node 10 
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was selected as the true source node.  Six scenarios using two observations of contaminant that 

passed through the tank still selected node 11 as the true source node, however. 

 In general, the true source node and release time were identified as a possible source 

node/release time regardless of the number of observations used.  We also demonstrated that the 

method is more accurate when more observations are used; we correctly identified node 11 as the 

true source node in 89% of the scenarios using two observations, 96% with three observations, and 

97% with four observations. In the cases where node 11 was not selected as the true source node, 

node 10, which is similar to node 11 due to the flowpaths in the system, was selected as the true 

source node.  In all of the cases where node 10 was selected over node 11, at least one of the 

observations used had contamination that had passed through the tank; the dilution of the adjoint 

state in the tank led to the loss of information and increased the likelihood that the incorrect source 

node could be selected. 

 

2.4.  Conclusions 

 We used an adjoint-based probabilistic modeling approach to identify the source node and 

release time of a contaminant that is observed at one or more sensors in a water distribution system.  

We considered a pipe network that has transient hydraulics and a fully-mixed tank. We assumed 

perfect knowledge of the hydraulics, and we assumed that sensors measure concentration to within 

10% of the true value.  Our method successfully identified the source node and release time as a 

potential contamination scenario in all scenarios evaluated using two, three, or four observations.  In 

the majority of cases, our method was able to probabilistically determine the true source node as the 

most likely source node.  The cases that did not select the true source node as the most likely source 

node all had the following characteristics: (1) a node which is hydraulically similar to the true source 
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node was chosen as the most likely source node, and (2) at least one observation from contaminant 

that passed through the water storage tank was used in the calculations.   

 As stated previously, the solution to a source identification problem such as the one 

presented here is non-unique; we expect to have multiple potential source nodes and release times.  

Part of our method uses the following criteria to help identify the true source node: (1) Is the node 

hydraulically connected to the observation node(s)?, and (2) Does the contaminant mass needed to 

be released from the potential source node to reproduce the contaminant observations fall within 

the likely range of source masses?  Our water distribution system model contains a node directly 

upstream of the true source node which meets both of these criteria and is nearly indistinguishable 

from the true source node. Not only is this node hydraulically connected to the observation nodes, 

all of the water from the node passes through the true source node, and most of the water at the 

true source node comes from the node; if not for the external demands at the true source node, the 

two nodes could almost be considered the same node.  The similarities between the two nodes result 

in similar adjoint states between the source nodes.  In addition, the source mass needed at the 

upstream node to replicate the concentration observations at the observation nodes is close to the 

true source mass released at the true source node and within the range of the potential source 

masses we tested, thus the two nodes also have similar probabilities of being the true source node. 

 It is also important to note that observations from contamination that passed through the 

water storage tank were used in the calculations leading to selecting the incorrect node as the true 

source node.  The water storage tank is fully mixed, so, in the forward model, concentration of the 

contaminant in water is diluted when the contaminant passes through the tank.  Similarly, the adjoint 

state is diluted as it is propagated backward through the tank resulting in a loss of information at 

upstream nodes.  The consequence of passing through the storage tank is a wide span of potential 

release time that, when used in conjunction with adjoint states calculated using observations that did 



38 
 

not pass through the tank, does little to narrow down the number of potential release times, but 

does decrease the probability that any one source node is the most likely source node. 
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CHAPTER 3 

PROBABILISTIC SOURCE CHARACTERIZATION IN WATER DISTRIBUTION 
SYSTEMS USING IMPERFECT SENSOR DATA 

 
Abstract 

 Source characterization is important in drinking water distribution systems to find the source 

of contamination, discontinue the event, and prevent future contamination events.  Previous work 

has demonstrated the effectiveness of an adjoint-based probabilistic method using contaminant 

concentration measurements from system sensors to probabilistically determine the source of 

contamination in a drinking water system.  The method can be applied in systems with steady-state 

or transient hydraulics.  The method uses publicly available software (EPANET) coupled with a 

conditioning method to probabilistically identify the contamination source and release time.  Prior 

work depended on sensors capable of measuring distinct contaminant concentrations (e.g., 12.5 

mg/L).   In this work a method is developed to use measurements from more realistic, non-ideal 

sensors that identify the range of contamination at the sensor (e.g., high, medium, low) or, simply, 

the presence or absence of contamination, rather than the precise concentration.  In addition, a 

method is developed to use non-detect measurements, i.e., sensor measurements for which the 

measured contamination is below the limit of detection.   

 

3.1.  Introduction 

 The events of September 11, 2001 brought to life the potential for large-scale terrorist 

activities on civilian infrastructure.  With this has come an increased attention to enhancing the 

security of public utilities; water distribution system operators are seeking better ways to prevent, 

detect, and remediate contamination in drinking water systems (DHS 2003).  The ideal course of 

action is to prevent contamination from entering a water distribution system, but this is not always 

possible.  If contamination is released into the system, remediation techniques are necessary to 
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prevent further contamination, but contamination must be detected before remediation can take 

place.  Contaminant detection in water distribution systems allows the purveyor to prevent the 

spread of contamination and attempt to identify the source of contamination.  The ability to 

respond effectively to contaminant detection depends on the sensors that are available and the 

information that they are able to provide.  Unfortunately, the sensors used to detect contamination 

are often unable to measure the specific concentration of contamination and instead measure the 

general contaminant level (e.g., high, medium, low) or the presence/absence of contamination.  

While this information is not ideal, it can still be used to determine the source of contamination in 

the water distribution system.   

 Many researchers have worked on developing methods for effective source characterization.  

Previous work has focused on inverse methods (e.g., Islam et al. 1997; Laird et al. 2005, 2006; Guan 

et al. 2006; Preis and Ostfeld 2006, 2007).  Inverse methods employ advanced algorithms to 

determine the origin of contamination.  Observations (i.e., observation node, time, and contaminant 

concentration) are collected from sensors in a water distribution system and used as simulation goals 

for the inverse methods.  Algorithms in conjunction with modeling software test multiple 

contamination scenarios (i.e.., source node, release time, and contaminant concentration) and run 

multiple forward simulations in the water distribution system to determine what scenario replicates 

the observations, or are as close as the user dictates.  While many researchers have shown that 

inverse methods are able to correctly determine the contamination scenario, these methods are 

inherently inefficient because a new simulation is required for each potential contamination scenario. 

 Neupauer et al. (2010) developed an adjoint-based probabilistic method for source 

identification that uses adjoints of the forward transport equations to probabilistically determine the 

node at which the contaminant entered the system and the time at which the contaminant was 

released from the node. Information from sensor nodes in the system is used to calculate the adjoint 
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state which is the sensitivity of the concentration at the sensor node to mass entering the system at 

another node.  Running a single adjoint simulation, using a single observation location, time, and 

concentration, provides information about possible contamination times and locations for multiple 

potential source nodes. Adjoint-based probabilistic methods that have been successfully used for 

water distribution systems have been limited to water distribution systems with perfect sensors (e.g., 

Neupauer et al. 2010; Wagner et al. 2013). 

 Both inverse and adjoint-based probabilistic methods are highly dependent on the 

availability of data within the system (e.g., contaminant concentration, contaminant arrival time, 

etc.).  Although the sensors which are currently being used by water utilities are unable to accurately 

determine the levels of contaminant concentrations consistently (ASCE, 2004), many researchers 

assume that precise contaminant concentration data are available (e.g., Laird et al. 2005; Neupauer et 

al. 2010; Preis and Ostfeld 2006; Wagner et al. 2013).  A more likely scenario is using “fuzzy 

sensors” which are only able to determine the relative ranges of water quality parameters (e.g., low, 

medium, or high level).  Preis and Ostfeld (2008) developed an inverse method which was able to 

find the true source node and release time using data from fuzzy sensors, which only transmitted 

readings as high, medium, or low. Their research showed that the fuzzy sensor data led to an 

increased number of potential contamination scenarios. Another type of sensor is a binary, or 

Boolean, sensor which only provides information regarding whether contamination is present or not 

(Preis and Ostfeld 2008).  Researchers have used data from binary sensors to determine the source 

of contamination using an inverse method (e.g., Preis and Ostfeld 2008; Kumar et al. 2012).  Preis 

and Ostfeld (2008) found that using binary sensor data led to a much higher number of possible 

contamination nodes than fuzzy sensors or perfect sensors; in one case, the number of source nodes 

determined using binary sensor data was nearly four times as many as were determined using fuzzy 
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sensor data.  Kumar et al. (2012) also found that the quantity and quality of sensor data directly 

influences the ability to determine the source of contamination. 

 The goal of this paper is to develop an adjoint-based probabilistic method which uses 

imperfect sensor data to determine the contaminant release node and release time in a water 

distribution system.  The adjoint-based probabilistic method developed by Neupauer et al. (2010) 

and Wagner et al. (2013) uses contaminant concentration data from ideal sensors to determine the 

source of contamination.  They used the distinct concentration value to calculate the probability 

density function (PDF) of obtaining the measured concentration.  We develop methods for using a 

concentration range observed by a fuzzy sensor and presence/absence measurements from binary 

sensors.   

 We also develop a method to use non-detect measurements (i.e. concentrations below the 

limit of detection for the sensors) to determine the source of contamination.  These non-detects 

often comprise a large percentage of the observed data and were previously unused by adjoint-based 

probabilistic methods.  All prior work on adjoint-based source identification only used non-zero 

contaminant concentrations for source characterization (e.g., Neupauer et al., 2010; Wagner et al. 

2013).   

 

3.2.  Probabilistic Approach for Source Identification Using Perfect Sensor Data 

3.2.1.  Theory for Using Perfect Sensor Data in an Adjoint-Based Probabilistic Approach  

 Forward transport of a conservative chemical in pipes can be modeled using  
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where Ci, Qi, Ai, and xi are the concentration, flow rate, cross-sectional area, and distance along the 

pipe i respectively, while t is time.  Assuming complete mixing at the junctions, the concentration at 
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any node is equal to the mass flow rate into the node (either from the upstream pipes or direct 

input) divided by the total flow rate out of the node, given by 
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where *

jC

 

is the concentration of water leaving node j, di is the downstream node of pipe i, Li is the 

length of pipe i, Uj is the mass loading rate at node j, Dj is the water demand at node j, and ui is the 

upstream node of pipe i.  This expression defines the boundary condition for (3.1). 

 If the contamination scenario is known, (3.1) and (3.2) can be solved to obtain 

concentrations as a function of time at one or more nodes of interest, such as sensor nodes.  In 

other words, for a source at a single node l, the forward equations can be solved for concentration,

*

jC , at all nodes j = 1, 2, … Nn, where Nn is the number of nodes.  In this way, information (e.g., 

contaminant concentration) is propagated downstream from the source to all possible downstream 

nodes. 

 In the source identification problem, we have information about the occurrence of 

contamination at the sensors, and we are seeking information about the contamination sources; thus, 

we want to propagate information from the sensor node to all possible source nodes.  The 

upgradient propagation of information is carried out by solving the adjoints of the forward 

equations.   Neupauer (2011) showed that the adjoint of (3.1) is 
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where iψ  is the adjoint state of the concentration in pipe i, defined as the marginal sensitivity of the 

concentration in pipe i (Ci) to a source mass released at node l (Ml) given by iψ =∂Ci/∂Ml , and τ is 

backward time, defined as the time prior to a reference time (e.g. if the time of contaminant 
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detection is selected as τ = 0 hr, then τ = 1.5 hr would refer to 1.5 hour before the contamination 

was discovered).  The advection term in the adjoint equation (
i

i
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Q

∂

ψ∂
) is negative instead of 

positive showing that the adjoint state is propagated against the flow of water. 

 The adjoint state of the concentration at a node is obtained by solving the adjoint of (3.2), 

which is given by (Neupauer 2011) 
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where 
*ψ is the adjoint state of concentration at node l, which physically represents the marginal 

sensitivity of nodal concentration *

jC  at a single sensor node j at backward time τ to a source release 

of mass Ml at any potential source node (l = 1, 2, … Nn). 
*

U  is the adjoint state load term given by 

(Neupauer 2011) 
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where δ(·) is a Dirac delta function and τs is the backward time at which contamination is observed 

at the sensor node j. The load term is non-zero only at the sensor node j where contamination is 

observed.  In this way, information enters the adjoint equation only at the sensor node and is 

propagated upgradient to all possible source nodes. 

 The system of equations in (3.3) and (3.4) is solved once for each sensor observation to 

obtain the temporal distribution of the adjoint state
*ψ  at all nodes l = 1, 2, … Nn.  The adjoint 

state can be used to obtain the backward travel time probability density function (BTTPDF) through 

(Neupauer et al. 2010) 
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where fT(τ;l,j,τS) is the backward travel time probability density function representing the backward 

time τ that a contaminant particle observed at node j at backward time τs could have been released at 

node l, which is a potential source node in the water distribution system.  Since a different adjoint 

state is obtained for each sensor observation, (3.6) is solved once for each sensor observation.  We 

assume that only one true source node and release time exists for the contamination, so all sensor 

observations are traceable back to an instantaneous release at a single source node (which has not 

yet been determined). 

 The measured concentrations at the sensors provide additional information that can be used 

to determine the potential source nodes.  Let }ˆ,ˆ,ˆ{ˆ **

2

*

1

*

jNsjj ccc C be a vector of Ns sensor 

observations, where )(ˆ*

snjnc   is the measured concentration of the nth
 sensor observation which 

occurs at node jn at time sn.  The BTTPDF in (3.6) can be conditioned on these measured 

concentrations to obtain a conditioned BTTPDF,  ;ˆ| *

ˆ| * Cf
T


C

, which defines the random 

backward time  that contamination observed in the Ns sensor observations in 
*

Ĉ  could have been 

released at node l, which is given by (Neupauer et al. 2010)  
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where  snnT jf  ,,;

 

is the backward travel time probability density function for the nth sensor 

observation,  ;,|ˆ*

,|ˆ* mcf jnTMC jn

 is the PDF of obtaining the measured concentration  snjnc *ˆ for a 

given source node l, release time , and source mass m, defined as a normal distribution with a mean 
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of  snjnm  ,;ψ*  , and a measurement uncertainty σ representing the overall uncertainty of the 

model, expressed as (Neupauer et al. 2010) 
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where C=  snjnm  ,;ψ*   is the true concentration that would be expected for a release of mass m at 

node l at release time . In (3.7) and (3.8), integration is carried out over a likely range of source 

masses, and βT is used to ensure that the total probability is unity.  

 

3.2.2.  Example Using Perfect Sensors  

 Neupauer et al. (2010) demonstrated how the adjoint-based probabilistic method works in 

the water distribution system shown in Figure 3.1.  We reproduce their simulation and results here 

for comparison with the fuzzy sensor results. The water distribution system contains a reservoir at 

node 52 which supplies water to the system and constant demands of 100 gallons per minute (gpm) 

at nodes 7, 45, and 51 which cause the water (and contaminant) to flow through the system.   

 Neupauer et al. (2010) used 5-minute time steps and no reactions in the water distribution 

system.  The contaminant was inserted at node 11 as a flow-paced booster with an input 

concentration of 100 mg/L from t = 0:00 (hh:mm) to 0:05.  The total contaminant mass is 

approximately 116 g.  Nodes 21 and 47 are observation nodes which measure the concentration of 

contaminant.  They simulated this contamination scenario using EPANET (Rossman, 2000).  Figure 

3.2 shows the contaminant concentration as a function of time for observation nodes 21 and 47.  

Using ideal sensors, Neupauer et al. (2010) found that node 21 has non-zero contaminant 

concentrations from 3:50 to 4:15 with the peak concentration of 12.5 mg/L occurring at 4:05.  Node 

47 has non-zero contaminant concentrations from 7:30 to 8:05 with two peaks (6.0 and 5.4 mg/L) 
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occurring at 7:50 and 8:20.  The two peaks for node 47 indicate two flowpaths from the source node 

(node 11) to the observation node (node 47). 

 
Figure 3.1.  Example network [used by Neupauer et al. (2010)]:  Lines represent pipes.  Circles 
represent nodes.  The arrows on the pipes indicate the direction of flow; the arrows on the nodes 
indicate demands at the nodes with the magnitude indicated at the end of the arrow.  The number 
above the node is the node identifier. 

 

 
Figure 3.2.  Concentration versus time plots for observation nodes 21 (solid black line) and 47 
(dashed black line).  The gray dashed lines represent the boundaries of the fuzzy sensor ranges for 
Cases 1-3. 
 



48 
 

 Using the peak concentration observations (node, time, and concentration) for nodes 21 and 

47, Neupauer et al. (2010) calculated the adjoint states using EPANET and (4).  The adjoint states 

were used in (6) to calculate the BTTPDF for each observation and each potential source node, and 

the conditioned BTTPDFs were calculated using (7).  Figure 3.3 shows the unconditioned 

BTTPDFs for source node 11 using each of the three observations, while Figure 3.4 shows the 

conditioned BTTPDFs for all of the potential source nodes evaluated using all three observations 

together. Note that we converted their backward time, τ, to forward time, t, to maintain consistency 

with how we will present results in this paper. 

 

 
Figure 3.3.  Unconditioned BTTPDF for source node 11 using (A) observation 21 at t =4:05, (B) 
observation 47A at 7:50, and (C) observation 47B at 8:20.  The dashed line indicates the true release 
time (t = 0:00). 
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Figure 3.4.  Conditioned BTTPDFs using ideal sensor data (from Neupauer et al. 2010). The 
number above each curve denotes the node number of the potential source node. 

 

 The non-zero unconditioned BTTPDFs in Figure 3.3 indicate the times when the 

contaminant that was observed at one of the sensors may have entered the system.  For all three 

observations, the true source release time is chosen as a potential release time.  Figure 3.3 also 

demonstrates how the adjoint state relates to the concentration observations.  In the forward 

simulation, node 21 has one concentration peak and node 47 has two peaks; the same results are 

found for the adjoint states demonstrating how the flowpaths of the contaminant and the adjoint 

load are the same.  The conditioning step combines the unconditioned BTTPDFs from all three 

observations into a joint BTTPDF where only the common release times are carried through; in 

Figure 3.3, only the adjoint states near t = 0:00 are common to all three observations.  

 The non-zero conditioned BTTPDFs in Figure 3.4 indicate the node/time combinations 

where the contaminant in the three observations may have entered the system.  The true source 

node and release time (node 11 at t = 0:00) is selected as a potential source node, however, multiple 

other potential contamination scenarios (e.g., source node 16 at release time 0:05) are also identified.  

Using Bayes’ theorem, Neupauer et al. (2010) demonstrated that βT, which is used to normalize the 
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conditioned BTTPDF and ensure that the total probability is unity in (8), can be used to determine 

the most probable source node.  The most probable source node has the largest value of βT.  Based 

on the βT values in Table 3.1, node 11 is the most likely source node.  Note that our method for 

calculating the adjoint states is different than the method used by Neupauer et al. (2010), so the βT 

values are slightly different; Neupauer et al. (2010) calculated the adjoint states by simulating the 

adjoint load as a flow-paced booster with magnitude   1


iui iQt while we simulated the adjoint 

load a mass booster with magnitude (Δt)-1.   

 

Table 3.1:  βT Values Using Observations from Perfect Sensors (Units are L3/mg2/hr2). 
Node 1 2 3 10 11 15 16 

βT 2.5E-118 1.7E-156 1.1E-206 1.1E-108 1.9E+4 8.3E-157 7.2E-304 

 

3.3.  Probabilistic Approach for Source Identification Using Fuzzy Sensor Data 

3.3.1. Theory for Using Fuzzy Sensor Data in an Adjoint-Based Probabilistic Approach 

 The equations for the conditioned BTTPDF in (3.7) and (3.8) are based on the assumption 

that the measured concentration is known exactly.  With fuzzy sensors, the concentration at the 

sensor is only known as a specific range of concentrations, so (3.7) and (3.8) do not hold.  Here we 

derive the equivalent expression for the conditioned BTTPDF for fuzzy sensor measurements. The 

approach is based on the derivation of conditioned BTTPDFs in Neupauer and Lin (2006) and 

Neupauer and Records (2009). 

 The conditioned BTTPDF can be expressed as a marginal probability density function, given 

by 

dmmff
m

TMT   )ˆ|,()ˆ|( *

|,

*

| bcabca CC
   (3.10) 
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where )ˆ|,( *

|, bcaC mf TM is the joint PDF of source mass and release time, given the vector of 

measured concentrations being bound by a lower bound vector a and an upper bound vector b.  

Using Bayes’ theorem, this joint PDF of source mass and release time can be expressed as  
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where   ,|ˆ mP bca
*  represents the probability that the vector of measured concentrations is 

bound by a and b, given the source mass m and the release time , and fM,T (m, ) is the joint PDF of 

the source mass and release time.  Assuming the source mass and release time are independent, this 

joint PDF can be expressed as 

      TMTM fmfmf ,,      (3.12) 

where fM (m) is the PDF of the source mass, which can be assumed to be a uniform distribution in 

the absence of any other information, and fT( is the PDF of the source release time in the absence 

of any other information, which can be taken as (Neupauer and Lin, 2006) 
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where  snnT jf  ,,;  is the unconditioned BTTPDF for observation n.  Assuming that each 

observation is independent, the probability   ,|ˆ mP bca
*  can be written as 
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where   ,|ˆ mbcaP njnn

*
 is the probability that the concentration of sample n is between an and 

bn, where an and bn are the boundaries of the fuzzy sensor range for sample n.  Using (3.9) as the PDF 

of the measured concentration, the probability   ,|ˆ mbcaP njnn

*
 is given by 
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where  ;,|
,|ˆ* mbF nTMC jn

 is the cumulative distribution function (CDF) of the upper bound of the 

concentration range. 

 Substituting (3.11) – (3.15) into (3.10), we obtain the final expression for the conditioned 

BTTPDF for fuzzy sensor measurements, given by  
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is defined to ensure that the total probability is unity. 

 

3.3.2.  Example Using Fuzzy Sensors 

 We tested our adjoint-based probabilistic method for fuzzy sensors using the same system 

used in Section 3.2.2.  The contaminant concentration observations in Figure 3.2 assume that ideal 

sensors are available.  We convert these observations to fuzzy sensor readings by specifying the 

concentration ranges that the fuzzy sensors measure.  For this example, we specify the low range as 

0 < c ≤ 5 mg/L, the medium range as 5 mg/L < c ≤ 10 mg/L, and the high range as 10 mg/L < c 

≤ 15 mg/L, as shown in Figure 3.2.  We use the three peak concentrations to test our adjoint-based 

probabilistic method to obtain a reading of High at t = 4:05 for node 21 (Observation 1), a reading 

of Medium at t = 7:50 for node 47 (Observation 2), and a reading of Medium at t = 8:20 for node 
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47(Observation 3).  We use the unconditioned BTTPDFs from the previous example (Figure 3.3) in 

(3.16) and (3.17) along with the CDF of measured concentration with a model uncertainty σ of 0.04 

mg/L and lower and upper bound vectors of a=[10 mg/L, 5 mg/L, 0 mg/L] and b=[15 mg/L, 10 

mg/L, 5mg/L] to obtain the conditioned BTTPDFs shown in Figure 3.5 and the βTF shown in Table 

3.2 as Case 1. 

 

 
Figure 3.5.  Conditioned BTTPDF for all potential source nodes (number above curve denotes the 
node number) using fuzzy sensor observations from observation nodes 21 and 47. 

 

 In Figure 3.5 the non-zero values of the conditioned BTTPDF shows the potential release 

times of contamination from the source.  For the true source node (node 11), the true release time is 

identified as the most likely release time, but the range of possible release times is from t = -0:04 to 

0:02.  When perfect sensors were used, the only calculated non-zero conditioned BTTPDF value 

occurred at t = 0:00.  In general, the range of potential release times identified using observations 

from fuzzy sensors is broader for each source node as compared to the potential release times 

obtained using perfect sensors.  
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Table 3.2.  βTF  Values Using Observations from Fuzzy Sensors (Units are L3/mg2/hr2). 

Case 1 2 3 4 5 

R
a
n
g
e 

Low 0 - 5 mg/L 0-5 mg/L 0-10 mg/L 

Medium 5 - 10 mg/L 5-10 mg/L 10-20 mg/L 

High 10 – 15 mg/L 10-100 mg/L 20-30 mg/L 

σ (mg/L) 0.04 0.40 4.0 0.04 0.04 

N
o
d
e 

1 6.0E+2 6.9E0 1.3E0 3.7E-83 4.1E+2 

2 1.0E+2 1.0E0 1.5E-1 0 4.4E+1 

3 1.1E+2 1.1E0 1.6E-1 0 5.0E+1 

4 0 0 1.1E-9 0 0 

10 5.0E+2 8.1E0 3.5E-1 3.5E+2 1.2E+3 

11 3.2E+2 5.7E0 2.0E-1 2.6E+2 3.2E+2 

15 5.0E+2 8.3E0 3.8E-1 3.6E+2 5.0E+2 

16 4.1E+2 6.8E0 2.7E-1 3.4E+2 4.1E+2 

17 3.1E+3 5.5E+1 2.0E0 2.5E+3 3.1E+3 

 

 While Figure 3.5 shows that the true contamination scenario (node 11 at t = 0:00) is selected 

as a potential contamination scenario, various other combinations of potential source nodes and 

release times are also identified. Based on the βTF values in Table 3.2, node 17 is the most likely 

source node.  While this is not the true source node, a direct flowpath exists between node 17 and 

node 11, the true source node (see Figure 3.1).  Note also that all values of TF are within about an 

order of magnitude of each other, indicating that no single node stands out as the obvious source 

node.  With the loss of information in the fuzzy sensor measurements, the method cannot 

distinguish between the potential source nodes.   

 We further tested this method using different values for the model uncertainty (σ = 0.4 

mg/L and 4.0 mg/L, Cases 2 and 3 respectively).  Table 3.2 presents the βTF values for the potential 

source nodes using different values of model uncertainty. The βTF values for nodes 1-3, 10, 11, and 

15-17 remain within about one order of magnitude, even when the model uncertainly changes by 

two orders of magnitude.  Neupauer et al. (2010) used perfect sensors and found that βT values 

varied by over 200 orders of magnitude when the model uncertainty was 0.04 mg/L and by about 
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three orders of magnitude when the model uncertainty was 0.4 mg/L. This shows that with perfect 

sensor data, a low model uncertainty allows the method to identify a single potential source node as 

the most likely, but as the model uncertainty increases, the method cannot differentiate as well 

between several likely source nodes due to the loss of information with increasing model 

uncertainty.  We show here, however, that model uncertainty is less important when fuzzy sensors 

are used; with fuzzy sensors, the more significant loss of information comes from observing the 

contamination only as precisely as the fuzzy sensor ranges.   

 We illustrate how the loss of information from the fuzzy sensor ranges affects the identified 

source nodes by using two different sets of fuzzy sensor ranges.  In Case 4, we increase the width of 

the high range from 10-15 mg/L to 10-100 mg/L while keeping the low and medium ranges 

unchanged.  In Case 5, we increase the width of all of the ranges from 5 mg/L to 10 mg/L.  Table 

3.2 shows that the magnitude and range of the βTF values are affected by the choice concentration 

ranges.  For three equal concentration ranges that are 5 mg/L wide (i.e., Case 1), all of the βTF values 

are within about one order of magnitude and eight potential source nodes are identified.  When we 

change the upper limit of the concentration range from 15 mg/L to 100 mg/L, we calculate non-

zero βTF values at six nodes, two fewer nodes than we found in Case 1; this demonstrates how 

increasing the width of a measurement range can leads to a loss of information.  In Case 5, when we 

change the width of all of the concentration ranges to 10 mg/L, the number of potential source 

nodes is eight, the same number of potential source nodes as in Case 1 and the βTF values calculated 

in Case 5 are very similar to the values in Case 1 these results demonstrate how the increasing the 

width of all concentration ranges does not have as great of an effect on the results as expanding just 

the high range did in Case 4.   
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3.4.  Probabilistic Approach for Source Identification Using Non-Detect Measurements 

3.4.1.  Theory for Using Non-Detect Measurements in an Adjoint-Based Probabilistic 

Approach 

 While fuzzy sensors decrease the amount of information available for source identification, 

non-detect measurements, which have not been used in previous adjoint methods, provide 

information to help fill in the data gaps.  In this section, we describe the theory behind using non-

detect measurements in an adjoint-based method.  Let g(τ; l,j,τZ) be the random time τ that a water 

particle that was at observation node j at time τZ could have been at source node l.  If this water 

particle is contaminated, then this PDF also represents the random time that a contaminant could 

have been released at node l.  If this water particle is not contaminated, then this PDF represents 

random times when a contaminant could not have been released at node l.  This PDF is related to 

the adjoint state of concentration, as in (3.6), and is given by 
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where ),;(ψ*

Zj   is the adjoint state obtained by solving (3.4) with the load term given by (3.5).   

 If a range of sampling times exists, τZmin < τZ < τZmax, for which the water passing through 

node j was not contaminated, then the probability that one of the water particles was at node l at a 

time t is given by 
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 Since none of these water particles is contaminated, this probability also represents the 

probability that the contaminant was not at node l at a random time τ.  Therefore, the complement 

of this probability, Gc(τ;l,j,τZmin, τZmax) represents the probability that the contaminant could have been 

at node l at random time τ.  This complement is given by 
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We can obtain G(τ;l,j,τZmin, τZmax) directly by using an equivalent of (3.18), given by 
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where ),;(*

Zj   is the adjoint state obtained by solving an equivalent form of (3.4) with the load 

term 
*

U  obtained by integrating the load term in (3.5) over the range of sampling times, to obtain a 

new load term defined as 
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where H(τ) is the Heaviside function. 

 The conditioned backward travel time PDF, );|( *

| * 


 CTf
CT

, represents the random time at 

which contamination observed at nodes J at times Ts could have been at the node l.  Since Gc(τ;l,j, 

τZmin, τZmax) represents the probability that the contaminant could have been at node l at random time 

τ, the final conditioned BTTPDF that accounts for both the measured concentration and the non-

detects is given by 
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 In theory, the probability Gc(τ;l,j, τZmin, τZmax) varies between 0 and 1, where a value of 1 

indicates a probability of unity that contaminant could not have been released from node l at time τ. 

This probability is related to the adjoint state through (3.21).  In the pipe network, this adjoint state 

is propagated upstream from the observation node j through the pipe network to node l.  As it 

travels through the network, it passes through junctions where it can be diluted by water entering 

the junction from other pipes.  Thus, the maximum value of the probability will often be less than 

unity.  If the simulation accounted for all of the non-detects at all of the nodes, then the water 
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entering the junction from other pipes would also contain non-zero values of the adjoint state, and 

dilution would not occur, resulting in a probability with a maximum value of unity.  However, it is 

not practical to run a simulation that accounts for all non-detects at all nodes because the network 

typically contains only a few sensors, so the nodal concentrations at most nodes are not known.  

Even if they were known, using all non-detects would be cumbersome, and false negatives could 

eliminate the true source node.  

 If we implement the theory as described above, using only non-detects from one node, the 

maximum value of the probability will be less than unity, indicating that the probability of 

contamination not being at node l at time τ is less than unity, and therefore from (3.20) the 

probability that contamination could have come from node l at time τ is greater than zero.  

Practically, this means that even though no contamination was observed at node j at a time for 

which contamination that was released from node l at time τ would have arrived at node j, the 

model results would still indicate that contamination could have been released at node l at time τ.  

To avoid this consequence, we adjust the probability, G(τ; l,j, τZmin, τZmax), to have a value of unity 

wherever the value obtained from (3.21) is non-zero.  Thus, this probability and its complement, 

Gc(τ; l ,j, τZmin, τZmax), have values of only zero or unity. 

 

3.4.2.  Example Using Fuzzy Sensors and Non-Detect Measurements 

 As an example, we use the system shown in Figure 3.1 with the contaminant concentration 

observations and fuzzy sensor ranges shown in Figure 3.2.  We defined “non-detects” as any times 

at which the observed contaminant concentration is zero.  Figure 3.2 shows that node 21 has non-

detects from 0:00 to 3:45 and 4:20 to the end of the 24-hour simulation.  Similarly, node 47 has non-

detects from 0:00 to 7:25 and 8:40 to the end of the simulation.  While non-detects are available at 

observation nodes 21 and 47, we only use the non-detect measurements for node 21. 
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 We use (3.4) to calculate the adjoint states, with the adjoint load defined by (3.5), and we use 

this adjoint state in (3.21) and (3.20) to calculate Gc(τ;l,j,τZmin, τZmax) which represents the probability 

that the contaminant could have been at node l at backward time  .  We rescale this probability to 

have values of 0 and 1 (as described in 3.5.1) to obtain the probability shown in Figure 3.6 for l = 

11.  This probability is non-zero only at t = 0:00, indicating that a release from node 11 could have 

only occurred at t = 0:00. For all other release times from node 11, a non-zero concentration would 

have been observed at node 21 at some time at which a non-detect was observed.  We used the 

probability in (3.22) with the conditioned BTTPDFs from Figure 3.5 to calculate the conditioned 

BTTPDFs in Figure 3.7. 

 Figure 3.7 shows the conditioned BTTPDF with the non-zero values indicating the potential 

release times for each source node.  We are able to use the non-detect information to narrow down 

the number of potential source nodes from eight to three potential source nodes, and also decrease 

the range of potential release times.  It is important to note that we accomplished this reduction by 

using non-detect measurements which were already available from the sensor measurements at the 

observation nodes. 

 In Figure 3.7, three nodes have non-zero BTTPDF values:  node 11 at t = 0:00 (the true 

scenario), node 16 at 0:05, and node 17 between 0:45 and 0:50.  The βTF values in Table 3.3 indicate 

node 17 is the most probable source node, but the values for nodes 11 and 16 are within an order of 

magnitude indicating that any of these nodes might be the true source node.  So, while this method 

is able to determine that the true contamination scenario (node 11 at t = 0:00) is a potential scenario, 

it is unable to determine that node 11 is the most probable source node.  The benefit of using the 

non-detects, however, is demonstrated in the reduction of the number of potential source nodes and 

range of potential release times. 
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Figure 3.6.  Quantities used to calculate the conditioned BTTPDF for node 11 using both fuzzy 
sensor data and non-detects.  The black line represents the conditioned BTTPDF for the fuzzy 
sensor data in Figure 3.2. The gray line represents Gc(τ, l, j, τzmin, τzmax) for the non-detects at 
observation node 21.   

 
Figure 3.7.  Conditioned BTTPDF for all potential source nodes (number above the curve is the 
node number) using fuzzy sensor observations at nodes 21 and 47, and non-detect measurements at 
node 21. 

 

Table 3.3.  βTF Values Using Fuzzy Sensors and Non-Detects (Units are L3/mg2/hr2). 

Node 11 16 17 

βT 1.6E+2 2.0E+2 3.0E+3 
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3.5.  Probabilistic Approach for Source Identification Using Binary Sensor Data 

3.5.1.  Theory for Using Binary Sensor Data in an Adjoint-Based Probabilistic Approach 

 For binary sensors, the theory is similar to the theory for using perfect sensors, but, we do 

not have a measured concentration, so we do not calculate the PDF of obtaining the observed 

concentration (3.9) or the conditioned BTTPDF (3.7).  Let f(τ; l,j,τS) be the random time τ that a 

water particle that was at observation node j at time τS could have been at source node l, which is 

calculated using (3.6).  If this water particle is contaminated, then this BTTPDF also represents the 

random time that a contaminant could have been released at node l. 

 Similar to the adjoint method that uses perfect sensor or fuzzy sensor data, the observations 

are assumed to be taken at individual times and the adjoint load in (3.4) and (3.5) is an instantaneous 

release of the adjoint load at the observation node and sampling time.  All non-zero observations for 

binary sensors are the same; each non-zero observation only indicates that contaminant is present or 

outside a desired range of values; thus, instead of using the peak observations, we use a non-zero 

observation at the beginning, middle, and end of the range of non-zero observations for an 

observation node. 

 If multiple observations are used, the BTTPDF, f(τ; l,j, τS), can be calculated for each one.  

We assume the contaminant entered the system at only one source node and release time, so all 

sensor observations are traceable back to an instantaneous release at a single source node (which has 

not yet been determined). Let J = {j1, j2, …jNs} be a set of Ns sensor nodes at which contamination is 

observed, and let Ts = {s1, s2, … sNs} be the set of observation times at each sensor.   We define 

the joint BTTPDF,  sf TJ,,; , as the random time  that contamination that was observed at 
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sensor nodes J at times Ts could have been released at node l.  This joint BTTPDF is given by 

(Neupauer and Records 2009)  

   



SN

n

snnTs jff
1

,,;,,;  TJ     (3.24) 

 
 
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n

snnT

1

1 ,,;     (3.25) 

where  snnjf  ,,;
 

is the BTTPDF from (3.7) for the nth sensor observation, and αT is used to 

ensure that the total probability is unity. 

 

3.5.2.  Example Using Binary Sensors 

 We used the system shown in Figure 3.1 for the binary sensor method example as well.  The 

contaminant concentration observations shown in Figure 3.2 also hold true, but all non-zero values 

are converted to “1,” which indicates that contamination is present, or above a threshold value. 

In the form of binary sensor data, non-zero contaminant observations exist from 3:55 to 4:15 at 

node 21 (observation set 1) and from 7:35 to 8:35 at node 47 (observation set 2).  We use three non-

zero observation times for each node: (1)t = 3:55, 4:05, and 415 for node 21, and, (2) t = 7:35, 8:05, 

and 8:35 for node 47.   

 We use (3.4) to determine the adjoint state, with the adjoint load defined in (3.5).  Figure 3.9 

shows the joint BTTPDF for source nodes 1-5, 10-12, and 15-19, using observation nodes 21 and 

47 is shown in Figure 3.9.  Node 1, 2, 3, 10, 11, 15, 16, and 17 all have non-zero joint probabilities 

indicating that they are potential source nodes; the non-zero values in Figure 3.9 indicate potential 

release times for each node with the most likely release time occurring at the maximum value of the 

joint BTTPDF.  The true contamination scenario, node 11 at t = 0:00 is one of the potential 

scenarios.  Unlike perfect sensors and fuzzy sensors, we do not have a concentration measurement 
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(perfect sensors) or concentration range (fuzzy sensor), so we cannot condition these values to 

determine the most probable source node.  We can, however, use the non-detect measurements to 

narrow down the potential scenarios. 

 

 
Figure 3.8.  Joint BTTPDF for all source nodes using binary sensors. 

 

 We use the non-detect binary file as described in Section 3.4.2 in conjunction with joint 

BTTPDF in Figure 3.9.  The result are shown in Figure 3.10 which has non-zero joint BTTPDF 

values for the all of the potential source nodes, but with potential release time ranges that are 

narrower than when non-detect measurements are not used.  For instance, for node 2, the range of 

release times when non-detect measurements are used is t = -0:55 to -0:50, but the range was t = 

1:30 to -0:50 when the non-detects were not used.  Again, we were able to significantly reduce the 

number of potential source node/release time scenarios without requiring any additional 

information; we used non-detect information that was already available. 
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Figure 3.9.  Joint BTTPDF for all source nodes using binary sensors and non-detect measurements. 
 

3.6.  Conclusions  

 We developed adjoint-based probabilistic methods that can be used with fuzzy sensors, 

binary sensors, and non-detect measurements.  As expected, when the amount of information 

available is reduced, the number of potential source node/release time scenarios increases.  The 

number of source nodes and the ranges of the potential release times identified using fuzzy sensors, 

which measure the contamination level only to within a range of concentrations, was more than 

what Neupauer et al. (2010) identified using perfect sensors. Similarly, the number of source nodes 

and the ranges of the potential release times identified using binary sensors, which provide 

information only about the presence or absence of contamination, was much more than the number 

identified using fuzzy sensors. We were, however, able to decrease the number of potential source 

node/release time scenarios by using the non-detect measurements. 

  



65 
 

CHAPTER 4 

PROBABILISTIC SOURCE CHARACTERIZATION IN WATER DISTRIBUTION 
SYSTEMS WITH INCOMPLETE MIXING 

 
Abstract 

 As the events of September 11, 2001 made real the threat of terrorism on public 

infrastructure, the priority for safer and more secure infrastructure has increased.  For water 

distribution systems, this includes development of faster and more effective responses to drinking 

water distribution system contamination events.  Previous work has demonstrated that adjoint 

methods can be used to identify the contaminant source node and release time.  Adjoint methods 

use system sensor data (i.e., the location and concentration of contamination in the system) to 

backtrack information through a water distribution system and probabilistically determine the source 

of contamination.  Previous work has assumed complete mixing at pipe junctions, but this is not the 

case in water distribution systems, leading to discrepancies between the modeled system and the true 

system.  A bulk advective mixing algorithm (EPANET-BAM) has been developed that uses 

incomplete mixing at pipe junctions.  We develop an adjoint method which incorporates incomplete 

mixing at the pipe junctions and test it using EPANET-BAM. 

 

4.1.  Introduction 

 Water utilities are tasked with providing an uninterrupted supply of potable drinking water 

to their service populations.  The events of September 11, 2001 illuminated the potential for terrorist 

activities on U.S. soil and increased the focus on protecting utilities and infrastructure from such 

attacks (DHS 2003).  Specifically, efforts have been made to harden the water infrastructure against 

contamination.  Since the system cannot be secured well enough to remove the threat of 

contamination, it is important to develop ways to moderate the effects of contamination.  Expedient 

source identification helps the water distribution system operators to respond quickly and take 
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countermeasures to stop the spread of the contamination and lessen the number of consumers 

affected. 

 Adjoint methods have been developed to characterize the source of contamination in water 

distribution systems under steady state (e.g., Neupauer et al. 2010) and transient (Wagner et al. 2013) 

flow conditions.  Adjoint methods are able to identify multiple potential source node and release 

time scenarios with each observation (contaminant location, concentration, and arrival time) 

(Neupauer et al. 2010).  Neupauer et al. (2010) demonstrated that simulations from multiple 

observations can be used in conjunction with the probability density function (PDF) of obtaining 

the observed measurement to probabilistically determine the source node.  Previous adjoint methods 

have used EPANET (Rossman 2000) which assumes complete mixing at the nodes, but research 

(e.g., van Bloemen Waanders et al. 2005; Romero-Gomez et al. 2008) has shown that true water 

distribution systems have incomplete mixing at nodes. 

 van Bloemen Waanders et al. (2005) demonstrated the inaccuracy of the complete mixing 

model for a cross junction with two adjacent inflows and two adjacent outflows all with the same 

Reynolds number.  A sodium chloride (NaCl) tracer was introduced into one of the inflows, while 

the other inflow had no tracer.  If the complete mixing model is accurate, the tracer concentration in 

each of the outflows should be the same; however, van Bloemen Waanders et al. (2005) found that 

85% of the tracer was discharged to the adjacent outflow and 15% to the opposite outflow.  

Romero-Gomez et al. (2008) looked at how the Reynolds number in the inflows and outflows 

influenced the true solute mixing at cross junctions of four pipes.  They used computational fluid 

dynamics (CFD) simulations to evaluate at scenarios where (1) the Reynolds number is the same in 

all pipes, (2) the outflows are the same, but the inflows have two different Reynolds numbers, (3) the 

inflows are the same, but the outflows are different, and (4) all pipes have different Reynolds 
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numbers.  In all cases, their results demonstrated that the mixing at junctions is incomplete due to 

limited interaction between the two inflows.   

 For the same scenarios simulated by Romero-Gomez et al. (2008), Austin et al. (2008) 

experimentally determined how mass of NaCl tracer is split between the two outflows.  They found 

that neither the complete mixing model used in EPANET nor the CFD simulations used by 

Romero-Gomez et al. (2008) accurately predicted the experimental results, although the CFD 

simulations were closer.   

 EPANET assumes complete mixing at pipe junctions, so other software packages have been 

developed to simulate incomplete mixing. Ho (2008) developed EPANET-BAM (Sandia National 

Lab 2008), which uses a bulk advective model to simulate incomplete mixing at nodes that (1) are 

the intersection of four equal-sized pipes (i.e. cross-junctions), (2) have two adjacent inflows, and (3) 

have two adjacent outflows.  With EPANET-BAM, incomplete mixing is simulated as a user-

selected weighting between complete mixing and bulk advective mixing.  Choi et al. (2008) 

developed AZRED, a computer program that simulates incomplete mixing at (1) cross-junctions 

with adjacent inflows and outflows or opposing flows; (2) double tee junctions with various 

inflow/outflow configurations, and (3) one tee and one wye junction.  These options increase the 

ability to simulate the true water distribution system behaviors.  

 The goal of this paper is to develop an adjoint-based probabilistic method for source 

identification in water distribution systems that have incomplete mixing at pipe junctions.  The 

implementation of the adjoint method presented by Neupauer et al. (2010) uses EPANET which 

models complete mixing at all pipe junctions.   We use EPANET-BAM which allows the user to 

specify the mixing at some pipe junctions.  While this program does not allow for incomplete mixing 

at all pipe junctions, we use it to show how the adjoint method performs in a water distribution 

system with incomplete mixing. 
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4.2.  Theory 

4.2.1.  Adjoint Method 

Forward transport of a conservative chemical in pipes can be modeled using  
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where Ci, Qi, Ai, and xi are the concentration, flow rate, cross-sectional area, and distance along pipe 

i respectively, t is time, *

jC  is the chemical concentration in the water leaving node j, di is the 

downstream node of pipe i, Li is the length of pipe i, Uj is the mass loading rate at node j, Dj is the 

water demand at node j, and ui is the upstream node of pipe i. 

 The adjoints of (4.1) and (4.2) are (Neupauer, 2011) 
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respectively, where iψ =∂Ci/∂Mℓ is the adjoint state of the concentration in pipe i, which represents 

sensitivity of the concentration in pipe i (Ci) to a source mass released at node ℓ (Mℓ),  τ is backward 

time, defined as τ = tf - t  where tf  is a reference time,    MCj ss j
/)(),;(ψ **

is the adjoint 

state of concentration at node j, which represents the sensitivity of nodal concentration at backward 
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time τ to a source release of mass Mℓ at node ℓ,  τs is the backward time at which the concentration 

is at node j, 
*

U  is the load term given by U*
l =δ(τ- τs) for ℓ =j (at the sensor node), and δ(·) is a 

Dirac delta function. 

 In the adjoint method, (4.3) and (4.4) are solved once for each observation, and the resulting 

adjoint states are related to the conditioned backward travel time probability density function 

(BTTPDF) given by (Neupauer and Records 2009; Neupauer et al. 2010)  
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jNsjj ccc C  is a vector of Ns contaminant concentration observations, 
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   is the conditioned BTTPDF at node ℓ that describes the random backward time τ 

that the contaminant that was observed in the Ns sensor observations in *
Ĉ  could have been 

released at node l, M is a random source mass, m  is a particular value of the random source mass, 

 ;,|ˆ*
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  is the PDF of obtaining the measured concentration  snjnc *ˆ  for a given source 

node ℓ, release time τ, and source mass m, defined as a normal distribution with a mean equal to the 

true concentration at node j for a release of mass m at node l at time sn, and the standard deviation 

σ of the measured concentration.  With complete mixing at all nodes, the true concentration is 

equivalent to  snjnm  ,;ψ*  ; for incomplete mixing, this relationship is not appropriate. At this time, 

we have not determined the appropriate relationship, so we assume that the true concentration is 

equivalent to  snjnm  ,;ψ*  .   In (4.5), βT ensures that the total probability is unity, is determined 

using (Neupauer et al., 2010)   
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The conditioned BTTPDF in (4.5) is calculated for each possible source node and shows the likely 

release time of contamination from that node.  Also, βT is calculated for each source node. It is 

proportional to the joint PDF of the source node and release time; thus, the node with the largest 

value of βT is the most likely source node (Neupauer et al., 2010). 

 

4.2.2.  Incomplete Mixing at Pipe Junctions 

 We use EPANET-BAM to simulate incomplete mixing at some nodes in the water 

distribution system model.  EPANET-BAM uses the bulk advective mixing model (Ho and Khalsa 

2007) which defines the concentration in pipes downstream of a node by 

AD CC        (4.7) 

C

ADABB
C

Q

CQQCQ
C

)( 
                      (4.8) 

where CA and CB are the contaminant concentrations at the downstream ends of pipes A and B, CC 

and CD are the contaminant concentrations at the upstream ends of pipes C and D, and QA, QB, QC, 

and QD are the flowrates in pipes A, B, C, and D respectively..   The pipe configuration is shown in 

Figure 4.1.  The orientation of the figure is determined in EPANET-BAM such that QA + QC > QB 

+ QD; the pipe with the highest inflow rate is always pipe A, the pipe with the highest outflow rate is 

always pipe C. 

 The mixing at the node is specified as a weighted combination of complete mixing and bulk 

advective mixing, controlled by a user-specified mixing parameter, s, where 

 BulkCompleteBulkTotal CCsCC      (4.9) 

where CTotal is concentration, CBulk is concentration using the bulk advective mixing model (4.7) and 

(4.8), and CComplete is the concentration using the complete mixing model (4.2). 
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Figure 4.1.  Pipe configuration for nodes with incomplete mixing.  The thick lines indicate the 
pipes, which are labeled A, B, C, and D.  The arrows indicate the direction of flow.  Qx and Cx are 
the flowrates and contaminant concentrations in the pipes.    

 

 The adjoints of (4.7) – (4.9) are given by (see Appendix) 

CB ψψ         (4.10) 
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 BulkCompleteBulkTotal s ψψψψ      (4.12) 

The adjoint method solves (4.3) using (4.4) at nodes with complete mixing and (4.10)-( 4.12) at 

nodes with incomplete mixing.  The incomplete mixing equations are used to determine the 

concentration, or adjoint state, in the pipes exiting the nodes.  The actual nodal concentration or 

adjoint state at any node is calculated using (4.2) in the forward equation or (4.4) in the backward 

equation  
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4.3.  Examples 

 We tested our adjoint method for water distribution systems with incomplete mixing using 

the grid system network shown in Figure 4.2. This is the same system used by Neupauer et al. 

(2010).  The water distribution system contains a reservoir at node 52 which supplies water to the 

system and demands (100 gpm) at nodes 7, 45, and 51 which cause the water (and contaminant) to 

flow through the system.  The demands remain constant over time; the flow field is at steady-state.  

 

 
Figure 4.2.  Layout of pipe network [used by Neupauer et al. 2010].  Nodes are shown as numbered 
circles.  Pipes are shown as line segments, with pipe numbers above or to the left of the line 
segment.  Water enters from the reservoir (Node 52) and demands of 100 gpm are placed at nodes 
7, 45, and 51.  Arrows denote the flow direction and the flow rates (in gpm, calculated using 
EPANET-BAM) are shown adjacent to the arrow. 
 

 We evaluate six different scenarios using this system, shown in Table 4.1.  For each scenario, 

mass is released at the source node using a flow-paced booster with a concentration of 100 mg/L 
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between t = 0:00 and 0.05.  Flow through the pipe network is simulated using EPANET-BAM. For 

the interior four-way nodes (nodes 17, 19, 31, 33, and 35), the mixing parameter is set as 0, 0.5, or 1, 

as shown in Table 4.1; we call these nodes “incomplete mixing nodes.” Node 21 does not qualify as 

an incomplete mixing node because, while it is a junction of four equal-sized pipes, two of the pipes 

must be adjacent inflows and the other two pipes must be adjacent outflows to use the bulk 

advective mixing model; node 21 has one inflow and three outflows, therefore it does not meet the 

requirements.  For node 21 and all other nodes which do not meet the requirements for the bulk 

advective mixing model, the complete mixing model (s = 1) is used.  

 

     Table 4.1.  Example Scenarios for Incomplete Mixing. 

 

 

4.3.1.  Scenario 1 

 Scenario 1 uses complete mixing (s = 1) at all junctions.  Figure 4.3A shows the contaminant 

concentration as a function of time for observation nodes 21 and 49 for Scenario 1.  The peak 

contaminant concentration and observation time are used as the observations for each observation 

node.  For node 21 the peak concentration of 12.5 mg/L occurs at 4:05.  We used two of the peaks 

for node 49: 3.1 mg/L at 10:45 and 1.5 mg/L at 12:10.  The multiple peaks for node 49 indicate 

multiple flowpaths from the source node (node 11) to the observation node (node 49). 
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Figure 4.3.  Concentration versus time plots for observation nodes 21 (solid line), 47 (gray line), 
and 49 (dashed line) for (A) Scenario 1, (B) Scenario 2A, (C) Scenario 2B, (D) Scenario 3A, and (E) 
Scenario 3B.  

 

 We used the observations at nodes 21 and 49 to calculate the adjoint states using (4.3) and 

(4.4).  The adjoint states were used in (4.5) and (4.6) along with the PDF of measured concentration 

with a model uncertainty, σ, of 0.04 mg/L and a range of source masses of 10 to 500 grams to 
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obtain the conditioned backward travel time PDFs shown in Figure 4.4A and the βT values shown in 

Table 4.2.  Non-zero BTTPDFs in Figure 4.4A indicate potential source nodes and release times, 

with the maximum value indicating the most probable release time.  For example, the maximum 

value of the BTTPDF for node 11 occurs at time t = 0:00 indicating that the most likely release time 

of contamination from node 11 is t = 0:00, the true release time. The non-zero values in Figure 4.4A 

indicate eight nodes are potential source nodes: 1, 2, 3, 10, 11, 15, 16, and 17. Table 4.2 shows the βT 

value for each of the potential source nodes, with node 11 having the largest value and, thus, the 

highest probability of being the true source node.  These results demonstrate that our method finds 

the true source node as the most likely source node and the true release time as the most likely 

release time. 

   Table 4.2.  βT Values for Incomplete Mixing Scenarios (Units are L3/mg2/hr2). 
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Figure 4.4.  Conditioned BTTPDFs using contaminant observations from observation nodes 21 
and 49 for (A) Scenario 1, (B) Scenario 2A, (C) Scenario 2B, (D) Scenario 3A, (E) Scenario 3B, and 
(F) Scenario 3C.  

 

4.3.2.  Scenario 2 

In this scenario, the incomplete mixing nodes are assumed to have bulk advective mixing (s = 0) and 

all other nodes have complete mixing (s = 1).  For example, node 17 in Figure 4.2 has inflows from 
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pipe 20 and pipe 15.  The flow rate in pipe 20 is higher than pipe 15, so, using the bulk advective 

model, any contaminant mass that enters node 17 from pipe 15 will flow directly into pipe 21.  If the 

mixing model was not fully bulk advective mixing, some of the contaminant mass would enter pipe 

28.  Node 33 has a similar scenario: the contaminant mass arrives at node 33 from pipe 34, but the 

flow rate through pipe 40 is great than the flow rate through pipe 34, so the contaminant mass goes 

directly from pipe 34 to pipe 41 and no contaminant enters pipe 47.  These flowpaths are indicated 

in Figure 4.5.  We tested two different variations using s = 0 at the incomplete mixing nodes: 

Scenario 2A with node 11 as the source node, and Scenario 2B with node 16 as the source node. 

 

 

Figure 4.5.  Contaminant flowpaths for Scenario 2A.  The source node is node 11.  The bolded 
arrows indicate the flowpath for the contaminant, while the crosses indicate the paths that receive 
water from the node, but no contaminant.  
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4.3.2.1  Scenario 2A 

 In this scenario, we evaluate the adjoint method using node 11 as the source node and 

observation nodes 21 and 49; the flowpath of the contaminant is indicated in Figure 4.5; some of the 

flowpaths observed in Scenario 1 are not an option in this scenario due to the bulk advective mixing 

model.  These flowpaths are indicated by the “x.”  In addition to decreasing the number of 

contaminated nodes, the number of flowpaths from the source node (node 11) to the observation 

nodes (nodes 21 and 49), and other downstream nodes, is decreased.   

 Figure 4.3B shows the contaminant concentration as a function of time for observation 

nodes 21 and 49.  We used the peak concentration observations for node 21 (25.4 mg/L at 4:00) and 

node 49 (9.4 mg/L at 12:30) as the observations for calculating the contamination scenarios.  We 

can compare Figure 4.3B to Figure 4.3A to demonstrate how changing the mixing parameter at the 

incomplete mixing nodes affects the movement of the contaminant mass.  The peak contaminant 

concentration at node 21 is much higher in this scenario (25.5 mg/L versus 12.5 mg/L).  The 

contaminant concentration profile at node 49 is also much different; Scenario 1 produces four 

distinct peaks, with a maximum value of 3.1 mg/L, while Scenario 2A produces one peak with a 

maximum value of 9.4 mg/L.  Both the decrease in number of peaks and the increase in maximum 

contaminant concentration can be attributed to the diminished number of flowpaths from node 11 

to node 49 as the contaminant mass is concentrated into fewer flowpaths, as shown in Figure 4.5. 

The change to the flowpaths also increases the total mass of contaminant that flows through the 

observation nodes, because the contaminant is no longer removed from the system at node 45 due 

to the external demand. 

 We use the observations at nodes 21 and 49 to calculate the adjoint states using (3) and (4) 

for nodes with complete mixing and (10)-(12) for nodes with bulk advective mixing.  The adjoint 
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states were used in (5) and (6) along with the PDF of measured concentration with a model 

uncertainty, σ, of 0.04 mg/L and a range of source masses of 10 to 500 grams to obtain the 

conditioned backward travel time PDFs shown in Figure 4.4B and the βT values shown in Table 4.2. 

Figure 4.4B shows that the true contamination scenario (node 11 at t = 0:00) is selected as a 

potential contamination scenario, however, additional potential source nodes are also identified.  

Based on the βT values, node 18, which is not the true source, is the most likely source node.  Thus, 

the method incorrectly identifies the source node. 

 

4.3.2.2.  Scenario 2B 

This scenario is similar to Scenario 2A; however, the source node is moved from node 11 to node 

16, changing the contaminant flowpath, as seen in Figure 4.6.   The contaminant 

concentration at the observation nodes for this scenario is shown in Fig 4.3C, which shows a peak 

concentration of 2.2 mg/L occurring at 3:55 for node 21 and two peaks for node 49: 21.5 mg/L at 

10:25 and 3.1  mg/L 11:55.  The two peaks for node 49 indicate two flowpaths from the source 

node (node 16) to the observation node (node 49).  Figure 4.4C shows the BTTPDFs; the true 

contamination scenario (node 16 at t = 0:00) is selected as the only potential contamination scenario.  

This demonstrates how, under these circumstances, our method is able to determine the true source 

node and release time in a system with bulk advective mixing at some nodes. 
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Figure 4.6.  Contaminant flowpaths for Scenario 2B.  The source node is node 16.  The bolded 
arrows indicate the flowpath for the contaminant, while the x’s indicate the paths that receive water 
from the node, but no contaminant. 

 
4.3.2.3. Discussion 

 Our method is able to select the true source node as a possible source node and the true 

release time as a possible release time in both of the scenarios evaluated; however, we are only able 

to probabilistically select the correct source node in Scenario 2B.  One reason why we are not 

consistently calculating the true source node as the most likely source nodes is because we do not 

know the appropriate method for calculating the true concentration for(4.5).  In addition, the 

location of the source node is different in each scenario.  Moving the source node leads to different 

flowpaths between the source node and the observation nodes, due to the bulk advective mixing 

model; this is demonstrated in  Figure 4.3B and 4.3C.  Figure 4.3B shows one concentration peak 

arriving at each observation node, indicating only one flowpath from the source node to the 
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observation node; Figure 4.3C, however, shows three peaks when the source node is node 16, 

indicating three flowpaths.  When we select observations, we use the observation peaks, so only two 

observations were used to for Scenario 2A, while three were used for Scenario 2B.  The additional 

information used in Scenario 2B likely contributed to the more accurate results.  We can also, 

demonstrate the importance of the source node location by looking at how the contaminant flows 

through node 17, which is the first node after node 11 and node 16.  All of the contaminant entering 

node 17 from node 11 will exit through pipe 21 (see Figure 4.2), while contaminant that enters the 

systems at node 16 will flow through node 17 and exit the node through pipes 21 and 28; the 

amount of contaminant flowing into each pipe iscalculated using (4.7) – (4.9).  However, the adjoint 

state relationships show that, any adjoint state that enters node 17 from pipe 21 will exit through 

pipes leading to nodes 11 and 16, but all of the adjoint state entering node 17 through pipe 28 exits 

through the pipe leading to node 16; the amount of adjoint state in each pipe is calculated using 

(4.10) – (4.12).  This behavior explains why the βT values in Scenario 2A indicate that node 17 is a 

more probable node than node 11; the number of flowpaths between node 17 and the observation 

nodes is greater than the number of flowpaths for node 11.  In comparison to Scenario 2B, node 11 

has one flowpath from node 49 for the adjoint state in this scenario versus four flowpaths in the 

Scenario 1; for node 17, Scenario 2B has three flowpaths from node 49 to node 17, while Scenario 1 

has four flowpaths.  Thus, the bulk advective model simulates proportionally more adjoint state 

arriving at node 17 than node 11 and node 17 becomes the more probable source node.  Node 16 is 

selected as the true source node in Scenario 2B because such a large portion of the adjoint mass 

flows to node 16 from node 17. 

 Node 16 is not a potential source node in Scenario 2A for a similar reason.  The transport of 

contaminant when the source node is node 16 (Figure 4.2C) can be compared to the results from 

Figure 4.2B.  When the contaminant enters node 17 from node 16, the resulting contaminant 
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concentration at observation node 21 is lower than if the contaminant enters from node 11, while 

the concentrations measured at node 49 are higher for source node 16 than the for source node 11; 

the result is that the calculations for the PDF of obtaining the measured concentrations (used in (5)) 

require a different source mass to calculate the observations for nodes 21 and 49, and the result is all 

zero values for the PDF of the measure calculations. 

 

4.3.3.  Scenario 3 

 In this scenario, we used a mixing parameter of 0.5 at the incomplete mixing nodes resulting 

in a combination of bulk advective mixing and complete mixing.  The contaminant flowpaths are 

the same as in Scenario 1, but the concentration measurements are different.  We evaluated three 

different variations using this scenario: Scenario 3A where the source node is node 11 and 

observation nodes are at nodes21 and 49, Scenario 3B where the source node is node 11 and 

observation nodes are at nodes 21 and 47, and Scenario 3C where the source node is node 11 and 

observations nodes are at nodes 21 and 47, but we calculate the adjoint states using an incorrect 

mixing parameter value (s = 0.75) at the incomplete mixing nodes. 

 

4.3.3.1.  Scenario 3A 

 In this scenario, we use node 11 as the source node and observation nodes 21 and 49.  

Figure 4.3D shows the concentration versus time profiles for nodes 21 and 49.  Node 21 has a peak 

concentration of 16.7 mg/L at 4:05.  Node 49 has multiple contaminant concentration peaks; we use 

the peaks at 10:40 (2.7 mg/L) and 12:35 (3.6 mg/L) as the observations.  

 We used the observations at nodes 21 and 49 to calculate the adjoint states using (3) and (4) 

for nodes with complete mixing and (10)-(12) for nodes with bulk advective mixing.  The adjoint 

states were used in (5) and (6) along with the PDF of measured concentration with a model 
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uncertainty, σ, of 0.04 mg/L and a range of source masses of 10 to 500 grams to obtain the 

conditioned BTTPDFs shown in Figure 4.4D and the βT values shown in Table 4.2. The true 

contamination scenario (node 11 at t = 0:00) is selected as a potential contamination scenario, 

however, other potential source nodes also have non-zero BTTPDFs.  Table 4.2 shows the βT values 

for all potential source nodes.  Based on the βT values in Table 4.2, node 2, which is not the true 

source, is the most likely source node.  These results demonstrate that under these conditions we are 

able to determine that the true source node is a potential source node and the true release time is a 

potential release time, but we are not able to probabilistically determine that the true source node is 

the most probable node. 

 

4.3.3.2.  Scenario 3B 

 In this scenario, we use node 11 as the source node and observation nodes 21 and 47.  The 

contaminant concentration measurements at the observation nodes are shown in Figure 4.3E.  Node 

21 has a peak concentration of 16.7 mg/L at 4:05.  Node 47 has contaminant concentration peaks at 

t = 7:45 (5.2 mg/L) and 8:15 (4.7 mg/L).  We used these observations at nodes 21 and 49 to 

calculate the adjoint states using (3) and (4) for nodes with complete mixing and (10)-(12) for nodes 

with bulk advective mixing.  The adjoint states were used in (5) and (6) along with the PDF of 

measured concentration with a model uncertainty, σ, of 0.04 mg/L and a range of source masses of 

10 to 500 grams to obtain the conditioned backward travel time PDFs shown in Figure 4.4E and the 

βT values shown in Table 4.2.  

 The true contamination scenario (node 11 at t = 0:00) is selected as a potential 

contamination scenario, however, nodes 2 and 3 also have non-zero BTTPDFs.  Table 4.3 shows 

the βT values for the potential source nodes.  Based on the βT values in Table 4.3, node 11, the true 
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source, is the most likely source node.  These results demonstrate that our method is able to 

probabilistically calculate the true source node as the most likely source node under these conditions. 

 

4.3.3.3.  Scenario 3C 

 In this scenario we use node 11 as the source node and nodes 21 and 47 as the observation 

nodes, but we calculate the adjoint states using mixing parameter of s = 0.75, instead of the true 

mixing parameter, s = 0.5.  The concentration observations are the same as Scenario 3B (Figure 

4.3E).  We used the observations at nodes 21 and 49 to calculate the adjoint states using (3) and (4) 

for nodes with complete mixing and (10)-(12) for nodes with bulk advective mixing.  The adjoint 

states were used in (5) and (6) along with the PDF of measured concentration with a model 

uncertainty, σ, of 0.04 mg/L and a range of source masses of 10 to 500 grams to obtain the 

conditioned backward travel time PDFs shown in Figure 4.4F and the βT values shown in Table 4.2. 

 The non-zero BTTPDF values identify three potential source nodes and release time 

scenarios: node 2 at -1:05, node 3 at -0:45, and node 11 at 0:00, the true source node and release 

time.  These are the same source node and release times that we found in the previous example.  

Table 4.2 shows the βT values for this scenario; the βT values indicate that node 3 is the most likely 

source node.  So, in this scenario we are able to find the true source node and release time as a 

potential scenario, but we are unable to probabilistically determine that it is the most likely source 

node. 

 

4.3.3.4.  Discussion 

 Our method is able to identify the true source node as a possible source node and the true 

release time as a possible release time in all three of the scenarios evaluated; however, we are only 

able to probabilistically select the correct source node in Scenario 3B.  One reason why we are not 
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consistently calculating the true source node as the most likely source nodes is because we do not 

know the appropriate method for calculating the true concentration for (4.5).  In addition, the 

contaminant flowpaths between the source node and observation node may lead to selecting the 

incorrect source node as the most likely source node.  In Scenario 3A, node 2, is determined to be 

the most probable source node instead of node 11.  In this scenario one of the observation nodes is 

node 49.  As the adjoint state is backtracked from node 49 a portion of the adjoint state will arrive at 

node 19.  From node 19, the adjoint state takes two different flowpaths: one that goes to node 18, 

17, and 11, etc., and one that goes to nodes 12, 5, 4, 3, 2, bypassing node 11.  Adjoint mass that 

takes the first flowpath passes through the true source node and arrives at nodes 2 and 3, so all mass 

that passed the true source node also gets to nodes 2 and 3.  Adjoint mass that takes the second 

flowpath arrives at nodes 2 and 3, without passing through node 11, so the unconditioned 

BTTPDFs at nodes 2 and 3 have a larger total probability than the BTTPDF at node 11.  Figure 4.7 

shows the unconditioned BTTPDFs for nodes 2 and 11.  In Figure 4.7B, node 11 has four peaks; 

these same peaks occur in in the unconditioned BTTPDF for node 2 (Figure 4.7A) along with an 

additional two peaks which indicate two additional flowpaths between node 49 and node 2.  The 

additional unconditioned BTTPDF increases the probability that node 2 is the true source node.  

Thus, when βT values are calculated using the unconditioned BTTPDFs in (6), βT is larger for nodes 

2 than it is for node 11. 
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Figure 4.7.  Unconditioned BTTPDF for (A) node 2 in Scenario 3A, (B) node 11 in Scenario 3A, 
(C) node 2 in Scenario 3B, and (D) node 11 in Scenario 3B. 

 

 In Scenario 3B, node 11, the true source node, is determined to be the most probable source 

node.  The flowpaths in this scenario are different from Scenario 3A because the observation node 

has changed from node 49 to node 47.  In this scenario, the adjoint state sill arrives at node 19 from 

node 47, but it enters only through pipe 29.  Following this flowpath, a larger portion of the adjoint 

state will flow from node 19 toward node 18 than from node 19 toward node 12.  The result is only 

one additional peak shown in Figure 4.7C which is not sufficient to make node 2 (or 3) the most 

probable source node.  

 In Scenario 3C, node 3 is determined to be the most probable source node instead of node 

11.  In this scenario, the true system used a mixing parameter of s = 0.5, while we calculated the 
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adjoint states using a mixing parameter of s = 0.75.  Using the incorrect mixing parameter led to 

incorrect mixing at the nodes and, therefore, incorrect adjoint states for the potential source nodes.  

We would expect to get incorrect results in this scenario.  We were able to select the true source 

node as a potential source node and the true release time as a potential release time, however. 

 

4.4.  Conclusions 

 Our goal was to develop a method to probabilistically determine the contaminant release 

node and time in water distribution systems with incomplete mixing at nodes.  We looked at six 

different scenarios: one with complete mixing at all nodes, two with bulk advective mixing at some 

nodes, two with incomplete, but not bulk advective, mixing at some nodes, and one scenario where 

the incorrect mixing parameter was used to determine the source node and release time.  We were 

able to find the true contaminant release node and time in all six scenarios, and probabilistically 

determine the true contaminant release node and time in three of the six scenarios.   

 In the scenarios with bulk advective mixing at some node, s = 0, the results were dependent 

on the placement of the source node.  The orientation of the pipes in the incomplete mixing model 

is determined based on the flow rates in the pipes; the inflow pipe with the larger flow rate is labeled 

A and the outflow pipe with the larger flow rate is labeled C.  When the source node was connected 

to pipe A, we were able to determine that the source node was the most probable source node.  

When the source node was not connected to pipe A, we were unable to determine that the true 

source node was the most probable source node. 

 In the scenarios with incomplete mixing at some nodes, s = 0.5, the results were similarly 

dependent on the observation nodes used.  Just as the location of the source nodes relate to the 

flowpath of the contaminant mass, the location of the observations relate to the flowpath of the 

adjoint mass.  If the adjoint mass flows through pipe B, the majority of the adjoint mass will flow 
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into pipe C; however, if the adjoint mass flows through pipe A, the adjoint mass will be split more 

evenly between the two outflow pipes.  Although the method always found the true source node as a 

potential source node and the true release time as a potential release time, the most probable node 

results are dependent on the flowpath between the observation node and source node. 

 

Appendix.  Derivation of Adjoint Equations for Incomplete Mixing 

 The goal of the adjoint method in our context is to calculate the sensitivity of the 

contaminant concentration at node j ( *

jC ) to a mass of contamination ( M ) that enters the system 

at node ℓ, defined as 
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where δ(t - ts) is a Dirac delta function, ts is the time of the observation, and )()(**

ojj tMtC  is 

the marginal sensitivity of concentration at node j at any time t to a mass released at node ℓ at a 

specific time to.  Our goal is to replace this marginal sensitivity with the sensitivity of concentration 

at the specific time ts to mass released at node ℓ at any backward time τ.  To do this, we follow the 

adjoint derivation approach of Neupauer (2011) and present the steps that are unique to obtaining 

the adjoints of (4.7) – (4.9). First we differentiate (4.1), (4.2), (4.7) and (4.8) with respect to M to 

obtain 

0


















i

ii

i
i

xA

Q

t
    (4.14) 







  


jui i

jdi jLxii

j

i

i ii

Q

UQ *

*
|

                                  (4.15) 

 



89 
 

AAD LxAxD 


0
     (4.16) 

and 

C

LxAALxABLxB

xC
Q

QQQ
AAAABB

C

4

0






     (4.17) 

where i∂Ci/∂Ml and the initial condition is i at t = 0. 
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where Np is the number of pipes, which we add to the sensitivity equation (4.13) to obtain 
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We use the product rule to change derivatives of i in (4.18) to derivatives of i and rearrange to 

obtain 
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Since i is arbitrary, we define it in such a way as to eliminate the first summation from (4.20) to 

obtain (4.3), and (4.20) is simplified to   

 
 

     dtttdtdx
xA

Q

tM

tC
s

t

j

N

i
tx

iii

ii

i

iii

sj
p

i




























*

1
,

*



  (4.21) 

The temporal divergence terms in (4.21) can be rewritten as 
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The terms evaluated at t = 0 vanish because the initial condition on i is defined as i = 0 at t = 0.  

The terms evaluated at t = ts vanish if we define the final condition on i as i = 0 at t = ts.  Using 

this information (4.21) becomes 
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The spatial divergence terms in (4.21) can be written as 
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For the pipes whose downstream ends are connected to nodes with complete mixing, we use the 

boundary conditions on * defined in (4.15) and * defined in (4.4) to eliminate their terms from 

(4.24) (Neupauer 2011).  For the pipes whose downstream nodes are connected to nodes with bulk 

advective mixing, we use the following approach.  

 

Figure 4.8.  Example network for incomplete mixing derivation.  The straight lines represent pipes 
which are labeled by the letters.  The arrows indicate the flow of the contaminant mass. 
 

 Figure 4.8 shows an example network where the letters identify the pipes and the arrows 

indicate the flow of the contaminant mass in accordance with the bulk advective mixing model.  The 

contaminant concentrations are known in pipes A, B, and E.  The following relationships apply to 
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the flowrates in the pipes: (1) QA + QC > QB + QD, and (2) QC + QF > QE + QG.  These flow rate 

relationships result in the following equations for contaminant concentration, based on the bulk 

advective mixing equations in (4.7) and (4.8): 
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CCG LxCxG CC  0      (4.27) 
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Assuming the pipes in Figure 4.8 are the only pipes that are connected to nodes with bulk advection 

mixing, (4.24) can be expanded as 

 

000

0000

1
0






















GFE

DCBA

GGFFEE

DDCCBBAA

p

iii

xGG

G

G

xFF

F

F

xEE

E

E

xDD

D

D

xCC

C

C

xBB

B

B

xAA

A

A

LxGG

G

G

LxFF

F

F

LxEE

E

E

LxDD

D

D

LxCC

C

C

LxBB

B

B

LxAA

A

A

N

i t

xiiLxii

i

i

A

Q

A

Q

A

Q

A

Q

A

Q

A

Q

A

Q

A

Q

A

Q

A

Q

A

Q

A

Q

A

Q

A

Q

dt
A

Q

(4.29) 

The assumptions of EPANET-BAM require that all pipes entering a node must be equally sized, so 

AA = AB = AC = AD = AE = AE = AF =A.  Also, each node must have two inflows in adjacent 

pipes, and two outflows, also in adjacent pipes, so we use the nodes at xA=0, xB=0, xD=LD, xE=0, xF 

= LF, and xG=LG.  The values at xA=LA, xB=LB, xD=0, xE=LE, xF = 0, and xG=0 are at nodes with 
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complete mixing and are defined using (4.3) and (4.4); we eliminate these terms from (4.29) and 

(4.29) becomes: 
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  (4.30) 

Our goals are to show that the following are true: 
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We can focus on the junction of pipes A, B, C, and D and define the boundary conditions such that 

the inflows minus the outflows must equal zero 

0
00


 DCBBAA xDDDxCCCLxBBBLxAAA QQQQ   (4.35) 

Using (4.16), we can substitute in for 
0


CxCCQ  
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 (4.36) 

If we set 
BBC LxBxC 


0

 as a boundary condition, then (4.36) becomes 
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 (4.37) 
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Since QA + QB = QC + QD, this is also true: 
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So, (4.37) becomes 
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We use (4.17) to cancel the 3rd and 5th terms in (4.39) and (4.39) becomes 
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We differentiate (4.25) with respect to M to get  

AAD LxAxD   0      (4.41) 

And use (4.41) in (4.40) to get 

   0
00


 DBBCAAAA xDDLxBBxCCLxAALxA QQQQ   (4.42) 

Thus, from (4.42)  
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We use (4.31) to show that  
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This is the relationship in (4.32) and can be used as a boundary condition along with (4.31). 

(4.33) and (4.34) can be evaluated in a similar manner.  We focus on the junction of pipes C, E, F, 

and G and assert that the inflows minus the outflows must be zero:  
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0
00


 GFEECC xGGGxFFFLxEEELxCCC QQQQ    (4.45) 

From this point on, the derivation is exactly the same, but with the following  subscript changes in 

(4.36)-( 4.43):  A (in the originals) = C (in the new); B=E; C=F; and, D=G.  The result is that (4.33) 

and (4.34) can be used as boundary conditions. 
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CHAPTER 5 

CASE STUDY 

Abstract 

 In Chapters 2 and 3 we developed adjoint-based probabilistic source identification methods 

for water distribution systems with perfect, fuzzy, or binary sensors.  We tested these methods using 

relatively small systems to demonstrate how the methods work.  In this chapter we evaluate how the 

methods work in a more complex system. 

 

5.1. Introduction 

 We evaluate our methods using the EPANET Example 3 (Rossman 2000) water distribution 

system (Figure 5.1).  Many researchers have used this water distribution system to test their own 

methods (e.g., Preis and Ostfeld 2007).  The only change we made to the system is changing all time 

steps in the network to 2 minutes.  The system contains 2 pumps, 2 reservoirs, 3 fully-mixed tanks, 

92 nodes, and 117 pipes.  The system is subject to transient flows due to the filling and draining of 

the tanks and varying demand patterns at nodes throughout the system; the demand patterns and 

tank characteristics are all the same as EPANET Example 3. 

 We use EPANET to simulate the movement of a generic non-reactive contaminant in this 

network to generate the sensor measurements used to test the source identification methods. We use 

a time step of Δt = 2 minutes and we assume a contaminant source at node 119, modeled as a flow-

paced booster with an input concentration of 5,000 mg/L from t = 1:00 to 1:02, with a total mass of 

approximately 339 kg.  Nodes 143, 181, and 213 were used as observation nodes at which sensors 

measured the contaminant concentration over time; these nodes were previously used by Preis and 

Ostfeld (2007) in the same system.  Figure 5.2 shows the contaminant concentration as a function of 

time for observation nodes 143, 181, and 213.  While node 143 only has one clear concentration 
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peak, indicating a single flowpath from the source node, nodes 181 and 213 have multiple flowpaths.  

The peak concentrations and times are defined as observations and listed in Table 5.1.  

 

 
Figure 5.1:  Example 3 network from EPANET;  Lines represent pipes.  Circles represent nodes.  
The number next to some of the nodes is the node identifier. 

 

               Table 5.1.  Concentration Observations for Figure 5.2. 
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Figure 5.2.  Concentration versus time plots for (A) observation node 143, (B) observation node 
181, and (C) observation node 213. 

 

5.2.  Perfect Sensors 

 If perfect sensors are located at the observation nodes in the system, we use the peak 

concentration values in the adjoint method.  Using observations 143A, 181A, and 213A (node, time, 

and concentration) we calculate the BTTPDFs for each observation and each potential source node, 

and the conditioned BTTPDFs using all three observations were calculated using the method 

described in Chapter 2.  We considered all 92 nodes as potential source nodes.  Using a source mass 

range of 300-400 kg and a model uncertainty, σ, equal to 10% of the measured concentration (e.g., if 

the measurement is 15 mg/L, then standard deviation is ±1.5 mg/L), we calculated the conditioned 

BTTPDFs in Figure 5.3 and the βT values in Table 5.2. 
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Figure 5.3.  Conditioned BTTPDF using (A) ideal sensor data, (B) fuzzy sensor data, and (C) fuzzy 
sensor data with non-detects, and the joint BTTPDF using (D) binary sensor data  and (E) binary 
sensor data including non-detects. The number above each curve denotes the node number of the 
potential source node and the dashed line indicates the true release time (1:02). 
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 The conditioned BTTPDFs show five potential source nodes with non-zero values: (1) node 

60, (2) node 61, (3) node 119, the true source node, (4) node 121, and (5) node 123.  The non-zero 

values indicate potential release times for each potential source node.  The true release time (t = 

1:02) is selected as a potential release time for node 119.  As discussed in previous chapters, the 

most probable source node is indicated by the largest value of βT.  The node with the largest βT value 

is node 119, the true source node.  These results demonstrate how our adjoint-based probabilistic 

method can be used to determine the true source node and release time in a water distribution 

system using perfect sensors.   

 

5.3.  Fuzzy Sensors 

 We used the same system to test our adjoint-based probabilistic method for using fuzzy 

sensor data.  The contaminant concentration observations in Figure 5.2 assume that ideal sensors are 

available.  We convert these observations to fuzzy sensor readings by specifying the concentration 

ranges that the fuzzy sensors measure.  For this example, we specify the low range as 0 < c ≤ 500 

mg/L, the medium range as 500 mg/L < c ≤ 1000 mg/L, and the high range as 1000 mg/L < c ≤ 

1500 mg/L.  We use the same three observations as were used in the perfect sensor example to test 

our adjoint-based probabilistic method to obtain a reading of Medium at t = 3:26 for node 143 

(Observation 1), a reading of High at t = 2:02 for node 181 (Observation 2), and a reading of Low at 

t = 3:34 for node 213(Observation 3).  Following the theory elucidated in Chapter 3, we use an 

lower and upper bound vectors of a=[1000 mg/L, 500 mg/L, 0 mg/L] and b=[1500 mg/L, 1000 

mg/L, 500 mg/L] to obtain the conditioned BTTPDFs shown in Figure 5.3B and the βTF value 

shown in Table 5.2. 
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Table 5.2.  βT Values for Case Study using Observations from (A) Perfect Sensors, (B) Fuzzy 
Sensors, and (C) Fuzzy Sensor with Non-Detects (Units are L3/mg2/hr2). 

Node 60 61 119 121 123 

A 3.7E-81 3.9E-81 4.1E-36 1.9E-44 6.7E-45 

B 1.4E-87 1.5E-87 1.1E-65 1.5E-68 9.8E-69 

C 0 0 2.9E-66 0 0 

 

 In Figure 5.3B the non-zero values of the conditioned BTTPDF shows the potential release 

time of contamination from the source.  For the true source node (node 119), the true release time is 

identified as the most likely release time.  The potential source nodes and release times identified 

using observations from fuzzy sensors are nearly the same as compared to the potential release times 

obtained using perfect sensors; while it may not be clear in the Figure 5.3B, the BTTPDF is non-

zero for times from  1:00 to 1:04 for node 119, 0:00 to 0:56 for node 60, 0:00 to 0:58 for node 61, 

0:52 to 0:58 for node 121, and 0:46 to 0:54 for node 123.  The results are similar when perfect 

sensor data is used; the range for nodes 60 and 61 are the same, but the time ranges are smaller for 

the other nodes: node 119 is centered on one 2-minute timestep at t = 1:02, node 121 has non-zero 

BTTPDF values from 0:54 to 0:56, and node 123 from 0:50 to 0:52.   In Table 5.2, the βT values 

indicate that node 119, the true source node, is the most probable source node for this scenario.  

The influence of using fuzzy sensors instead of perfect sensors is apparent in the magnitude of the 

βT values.  The maximum βT value for node 119 using perfect sensors is 4.1 x 10-36 L3/mg2/hr2, but 

using fuzzy sensor data the value is 1.1 x 10-65 L3/mg2/hr2.  These βT values illustrate how 

information is lost using fuzzy sensors because the results are spread over a measurement range 

(e.g., 100-500 mg/L) instead of using a single measurement (e.g., 290 mg/L).  However, even with 

the loss of information using fuzzy sensors, we were able demonstrate that our adjoint-based 

probabilistic method can be used to determine the true source node and release time in a water 

distribution system using fuzzy sensors. 
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 We can use non-detect measurements to improve the fuzzy sensor results.  Figure 5.3C 

shows the conditioned BTTPDF results using the same fuzzy sensor data, but adding non-detect 

measurements from node 143.  We used non-detect measurements for t = 0:00 to 3:16 and t = 3:30 

to 24:00, using the theory described in Chapter 3.  Using the non-detect measurements in 

conjunction with observations 143A, 181A, and 213A, we decrease the number of potential source 

nodes using fuzzy sensors from five potential source nodes to only the true source node, and find 

that the most likely release time is 1:02.  These results demonstrate how our adjoint-based 

probabilistic method can be used to determine the true source node and release time in a water 

distribution system using fuzzy sensors and non-detect measurements. 

 

5.4.  Binary Sensors 

 We used the system shown in Figure 5.1 for the binary sensor method example as well.  The 

contaminant concentration observations shown in Figure 5.2 also hold true, but binary sensors are 

only able to measure the presence or absence of contamination, thus all non-zero measurements in 

Figure 5.2 are converted to “1,” which indicates that contamination is present, or above a threshold 

value.  In the form of binary sensor data, we used contaminant observations at node 143 at t = 3:18, 

3:24, and 3:30, at node 181 at t = 1:54, 2:08, and 2:22, and at node 213 at t = 2:42, 9:50, and 16:58.  

We use the method described in Chapter 3 to calculate the joint probabilities for potential source 

nodes 60, 61, 119, 121, and 123.  The joint BTTPDFs are displayed in Figure 5.3D. 

 The joint BTTPDF is non-zero at times when the contamination observed at all three 

observation nodes could have been released from the potential source nodes.  The joint BTTPDF 

for node 119 is non-zero at t = 1:02 (in Figure 5.3D the majority of the non-zero BTTPDF values 

occur at t < 1:00, however, a very small non-zero BTTPDF value of 1.6 x 10-6 min-1 occurs at t = 

1:02) indicating that contaminant mass released at node 119 (the true source node) at 1:02 (the true 
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release time) would have resulted in the contaminant observations at the observation nodes and 

observation times.  Figure 5.3D indicates that contaminant observed at the sensors at times shown 

in Figure 5.2 could have been released at times t = 0:00 to 0:58, or 1:02 for node 119; 0:00 to 0:50 

for node 60; 0:00 to 0:52 for node 61; 0:00 to 0:56 for node 121; and 0:00 to 0:54 for node 123 

(Note that many of these BTTPDF values are very small and do not appear on the figure). These 

ranges are much broader than the ranges calculated using fuzzy or perfect sensors; this increase in 

possible release times occurs because of the loss of information using binary sensors, which only 

indicate the presence or absence of contamination and provide no information about the specific 

contaminant concentrations.  However, even with the loss of information using binary sensors, the 

adjoint-based probabilistic method determines the true source node and release time. 

 We can use non-detect measurements to improve the binary sensor results.  Figure 5.3E 

shows the joint BTTPDFs using binary sensor data with the same non-detect measurements we 

used in the fuzzy sensor example.  We decreased the number of potential source nodes using binary 

sensors from three to just one, node 119, which is the true source node; and the range of possible 

release times is decreased, with the most likely release time at t = 1:02, the true release time.  These 

results demonstrate how our adjoint-based probabilistic method can be used to determine the true 

source node and release time in a water distribution system using binary sensors and non-detect 

measurements. 

 

5.5.  Discussion 

  We used an adjoint-based method with data from perfect, fuzzy, and binary sensors to 

identify the source node and release time and found that the amount of information provided by the 

sensors changed the number of potential source node and range of possible release time scenarios 

calculated.  Perfect sensors provide the most specific information in the form of a specific 
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contaminant concentration observation; the binary sensors provide the least information in the form 

of the presence or absence of contamination; the fuzzy sensors only provide information about the 

range of contaminant concentrations.  This difference in information is reflected in the spread of 

possible release times identified by the method, with the spread of the possible release times 

increasing as the amount of information contained in the data decreases.  The spread of possible 

release times is narrow if perfect sensor data are used, becomes wider if fuzzy sensor data are used, 

and becomes even wider if binary sensor data are used. 

 We found that including the non-detect measurements in the calculations enabled us to 

narrow down the results significantly.  In the case of the fuzzy sensors, using non-detect 

measurements decreased the number of potential source nodes from five to one, the true source 

node, and the range of possible release times was reduced to just the true release time.  In the binary 

sensor example, five potential source nodes with release times spread over broad ranges were 

identified without using the non-detect measurements, while only one potential source node was 

identified when the non-detect measurements were used.  These results indicate the potential power 

of the non-detect measurements; by using non-detect measurements, we determined that only the 

true contaminant source node and release time was a potential contamination scenario, even if fuzzy 

or binary sensors were used. 

 

5.6.  Conclusions 

 The goal was to test our adjoint-based probabilistic methods for using perfect, fuzzy, and 

binary sensors in a complex water distributions system.  We used EPANET Example 3 as the basis 

for the water distribution system and inserted a contaminant at a node in the system to simulate 

contaminant observations using EPANET.  We successfully calculated the true source node and 

release time as a potential scenario while using perfect, fuzzy, and binary sensors.  We also 
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demonstrated how non-detect measurements can be used to decrease the number of potential 

source node and release time scenarios. 

 While we were able to determine the true source node and release time using all types of 

sensors, we found that the sensors which provide less information identify more potential 

contaminant nodes and release times.  We were able to increase the accuracy of the source node and 

release time identification, however, by including additional information in the form of non-detect 

measurements.  Overall, we demonstrated that our method achieves the primary goal of finding the 

true source node and release time as a potential source node and release time in this system using 

perfect, fuzzy, or binary sensors, regardless of whether we used non-detect measurements. 
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CHAPTER 6 

CONCLUSIONS 

6.1. Summary of Research Results 

 Previous research used adjoint methods in simple water distribution systems using ideal 

sensors (e.g., Neupauer et al. 2010).  The goal of this research was to develop adjoint methods for 

source identification in more realistic water distribution system (i.e., including tanks, pumps, and 

transient flow fields) under more realistic conditions (i.e., non-ideal sensors and incomplete mixing 

at junctions).  This goal led to the following three hypotheses: 

 H1.  The adjoint method can be used to determine the source of contamination in water  

  distribution systems containing pumps, storage tanks, and transient flow conditions.   

 H2.  The adjoint method can be used to determine the source of contamination in water  

  distribution systems when using realistic system sensors.   

 H3.  The adjoint method can be used to determine the source of contamination in water  

  distribution systems with incomplete mixing at pipe junctions.   

 

 In Chapter 2, we developed an adjoint method that can be used to identify the source of 

contamination in a water distribution system containing pumps, storage tanks, and transient flow 

conditions.  Neupauer et al. (2010) demonstrated that the adjoint method can identify sources of 

contamination in simple water distribution systems (i.e., systems containing only source, pipes, and 

nodes) under steady-state flow conditions.  We demonstrated a method that can determine the 

source of contamination in a more complex water distribution system. 

 In Chapter 3, we developed a method for using information from two types of realistic 

system sensors: (1) fuzzy sensors, which are only able to identify the approximate range of 

contamination (e.g., high, medium, low), and (2) binary sensors, which only identify whether 
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contamination is present or absent (or whether it is above or below a designated threshold value).  

We also developed a method for incorporating non-detect measurements (i.e., sensor measurements 

indicating that the level of contamination is below the limit of detection) in the calculations to 

determine the true source node and release time.  Previous adjoint methods (e.g. Neupauer et al. 

2010) were developed specifically for use with ideal sensors using only non-zero observations. 

 In Chapter 4, we developed an adjoint method for water distribution systems which have 

incomplete mixing at pipe junctions.  Previous work assumed complete mixing at pipe junctions; 

contaminant mass enters the node through the inflows, mixes completely and all pipe outflows 

contain the same concentration of contamination.  True water distribution systems are unlikely to 

experience such ideal situations; this leads to discrepancies between the modeled system and the true 

system (Austin et al. 2008).  We used a bulk advective mixing algorithm (EPANET-BAM) to 

introduce more realistic mixing at pipe junctions (Ho and O’Rear 2009).  We developed adjoint 

theory incorporating incomplete mixing at the pipe junctions and demonstrated how our new 

method works in an example water distribution system. 

 

6.2.  Conclusions 

6.2.1.   Hypothesis 1 

 The results show that the adjoint method can be used to identify the source node and release 

time of contaminant that is observed at one or more sensors in a complex system with transient flow 

conditions and a water storage tank.  We assumed perfect knowledge of the hydraulics, assumed that 

sensors measure concentration to within 10% of the true value, and considered scenarios with two, 

three, or four observations.  The true source node was identified as the most likely source node for 

89% of the test cases that used two observations, 96% of the test cases that used three observations, 

and 97% of the cases with four observations.  These results show that the method is successful even 
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with limited observation data.  The cases that did not select the true source node as the most likely 

source node all had the following characteristics: (1) a node which is hydraulically similar to the true 

source node was chosen as the most likely source node, and (2) at least one observation from 

contaminant that passed through the water storage tank was used in the calculations.   

 Our method uses the following criteria to help identify the true source node: (1) Is the node 

hydraulically connected to the observation node(s)?, and (2) Does the contaminant mass needed to 

be released from the potential source node to reproduce the contaminant observations fall within 

the likely range of source masses?  The water distribution system model we used contains a node 

directly upstream of the true source node which meets both of these criteria and is nearly 

indistinguishable from the true source node. Not only is this node hydraulically connected to the 

observation nodes, all of the water from the node passes through the true source node, and most of 

the water at the true source node comes from the node; if not for the external demands at the true 

source node, the two nodes could almost be considered the same node.  The similarities between the 

two nodes result in similar adjoint states between the source nodes.  In addition, the source mass 

needed at the upstream node to replicate the concentration observations at the observation nodes is 

close to the true source mass released at the true source node and within the range of the potential 

source masses we tested, thus the two nodes also have similar probabilities of being the true source 

node. 

 It is also important to note that observations from contamination that passed through the 

water storage tank were used in the calculations leading to selecting the incorrect node as the true 

source node.  The water storage tank is fully mixed, so, in the forward model, contaminant 

concentration in water that has passed through the tank is lower than in water that did not enter the 

tank.  Similarly, the adjoint state is diluted as it is propagated backward through the tank resulting in 

a loss of information at upstream nodes.  The consequence of passing through the storage tank is a 
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wide span of potential release time that, when used in conjunction with adjoint states calculated 

using observations that did not pass through the tank, does little to narrow down the number of 

potential release times, but does decrease the probability that any one source node is the most likely 

source node. 

 Overall, we were able to determine that the true source node and release time was a potential 

source node and release time even when we used information that traveled through the tank.  In 

most cases, we were also able to determine that the true source node was the most probable source 

node, and, in the cases where we did not find the true source node, we determined that a very 

similar node was the most probable source node. 

 

6.2.2.  Hypothesis 2  

 We successfully developed and used new adjoint methods for use with fuzzy sensor data, 

binary sensor data, and non-detect measurements.  We were able to determine the true source node 

and contamination time as a possible contamination scenario for various model uncertainties and 

concentration ranges using fuzzy sensor data or binary sensor data. The impact of the fuzzy sensor 

or binary sensor data (versus ideal sensor data) was most clearly demonstrated when attempting to 

determine the most probable source node.  Calculations for determining the most probable source 

node proved to be inconclusive when using fuzzy sensors, as multiple potential source nodes had 

similar likelihoods.  Similar results were found by Preis and Ostfeld (2008) who used an inverse 

method to identify the source of contamination using fuzzy sensor data.  When using the binary 

sensor data, very limited information is available and we were only able to narrow down the 

potential release times for each node based on the adjoint states.  Both fuzzy sensors and binary 

sensors provide less information than perfect sensors which translates to a broader range of possible 

results for the potential source nodes and release times.  We were able to incorporate information 
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from non-detect measurements to overcome the loss of information from not using perfect sensors; 

we accomplished this by using the non-detect measurements to find locations where the 

contaminant could not have entered the system. 

 The results show that the adjoint method can be used to identify the source node and release 

time of contaminant as a potential source node and release time using information from fuzzy 

sensors, binary sensors, and non-detect measurements.  When fuzzy sensor data was used we were 

able to determine that the source node was the most probable source node under some conditions, 

but the success was dependent upon the source node used.  When binary sensor data was used we 

did not have enough information to probabilistically determine the true source node.  For both 

fuzzy sensors and binary sensors, the non-detect measurements allowed us to narrow the number of 

potential source nodes and/or release times. 

 

6.2.3.  Hypothesis 3 

 Our goal was to develop a method to probabilistically determine the contaminant release 

node and time in water distribution systems with incomplete mixing at nodes.  We looked at six 

different scenarios: one with complete mixing at all nodes, two with bulk advective mixing at some 

nodes, two with incomplete, but not bulk advective, mixing at some nodes, and one scenario where 

the incorrect mixing parameter was used to determine the source node and release time.  We were 

able to find the true contaminant release node and time in all six scenarios, and probabilistically 

determine the true contaminant release node and time in three of the six scenarios.   

 In the scenarios with bulk advective mixing at some node, s = 0, the results were dependent 

on the placement of the source node.  The bulk advective mixing scenario has significantly different 

contaminant transport paths due to the bulk advective mixing model.  The result is that the location 

of the source node has a significant impact on where the contaminant is transported in the system.  
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Similarly, the location of the observation node has a significant impact on our ability to 

probabilistically determine the true source node; the impact is based on the flowpath of the 

contaminant mass due to the bulk advective mixing model.  We were able to successfully determine 

that the true source node and release time were potential source nodes and release times in all s = 0 

scenarios, however.  Since the scenarios with incomplete mixing at some nodes, s = 0.5, is part bulk 

advective mixing and part complete mixing, the results were similarly dependent on the source node 

and observation nodes used. 

 We evaluated one scenario where we used an incorrect mixing parameter in the adjoint state 

calculations to determine whether we could calculate the true source node.  We were able to find the 

true source node and release time as a potential source node and release time, however, we were not 

able to determine the true source node as the most probable source node 

 Overall, we were able to find the true source node and release time as a potential source 

node and release time in all incomplete mixing scenarios.  We were only able to determine the true 

source node as the most probable source node in certain scenarios, however.  One reason why we 

could not consistently calculate the true source node as the most likely source nodes is because we 

do not know the appropriate method for calculating the true concentration.  In addition, the success 

was dependent upon the observation nodes used, because the observation nodes used influenced the 

flow of the adjoint mass using the bulk advective mixing model.  

 

6.3.  Limitations 

 This research has some limitations.  These limitations fall into three categories: (1) 

Contaminant Transport, (2) Observations, and (3) Node Mixing. 
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6.3.1. Contaminant Transport: Reactions 

 We did not account for how reactions affect the transport of contaminant mass in the water 

distribution system.  Incorporating reactions into these methods would require calculating the 

degradation of the contaminant in the water distribution system, which can be accomplished in 

EPANET in the forward transport mode.  The adjoint theory would have to be developed for 

incorporating the reactions into the adjoint method. 

 

6.3.2.  Observations: Number of Observations 

 Both inverse and adjoint methods require observations (contaminant concentration, 

location, and arrival time throughout the water distribution system) to identify the source of 

contamination.  Logically, using more observations leads to a better understanding of the movement 

of the contaminant mass and an increased ability to determine the source node and contamination 

time.  The ability for our methods to determine the true source node and contamination time is 

limited by the number of observations; this limitation is common to both adjoint and inverse 

methods. 

 

6.3.3.  Node Mixing: Types of Junctions for Non-Ideal Mixing 

 We used EPANET-BAM to simulate the flow of contaminant mass in a water distribution 

system with non-ideal mixing at pipe junctions.  This software can simulate non-ideal mixing at 

junctions that meet the following criteria: (1) only four pipes entering the junction and they must be 

equally sized, (2) only two inflow pipes and they must be adjacent to each other, and (3) only two 

outflow pipes and they must be adjacent to each other.  Many pipe geometries do not fit these 

criteria and, therefore, cannot be simulated used non-ideal mixing. 
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6.3.4.  Node Mixing: True Concentration 

 We used the same method for calculating the true concentration in systems with incomplete 

mixing as in systems with complete mixing.  This method leads to incorrect calculations for the true 

concentration in systems with incomplete mixing; however, we are currently unable to determine the 

correct method.  We expect that the adjoint method for systems with incomplete mixing would 

calculated the true source node as the most likely source node if the true concentration calculation 

was determined. 

 

6.4.  Recommendations for Future Work 

Here are some recommendations for future work: 

 

6.4.1.  Reactions 

 Water quality reactions occur in true water distribution systems, therefore a model which is 

intended to predict the behaviors of a true water distribution system needs to incorporate reactions.  

The adjoint methods used in this research did not account for reactions.  These reactions will lead to 

contaminant mass changes in the system (e.g., loss of contaminant mass) and, if they are not 

incorporated in the adjoint method, will lead to erroneous results.  EPANET (Rossman 2000), can 

be used to simulate both bulk reactions with nth order kinetics and wall reactions for a single 

chemical, while the EPANET multiple species extension (EPANET-MSX) can be used for tracking 

the interaction of multiple chemicals (EPA 2013).  Further research should be done to develop a 

method for incorporating these processes in the adjoint method. 
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6.4.2.  Mixing Model 

 An adjoint method should be developed and tested using a more robust mixing model.  

Many pipe junction geometries do not meet the conditions for using EPANET-BAM (i.e., a junction 

of four equal-sized pipes with two adjacent inflows and two adjacent outflows) for incomplete 

mixing, thus many nodes are simulated as ideal mixing by default although this might not be the case 

in the true water distribution system.  A more robust mixing model would increase the prediction 

abilities of the model by increasing the similarities between the simulation and the true system.  The 

AZRED solute mixing model (Choi et al. 2008) is an extension for EPANET and uses experimental 

data to simulate incomplete mixing at various types of pipe junction geometries:  cross junctions, 

double-tee junctions, and wye junctions.  Further research would be needed to develop the adjoint 

theory and corresponding adjoint method which can be used in a system with these types of 

junctions and mixing.  

 Also, the appropriate method for calculating the true concentration in systems with 

incomplete mixing needs to be determined. Currently we use the same method as we use with 

complete mixing; this method is not appropriate for systems with incomplete mixing.  Determining 

and using the appropriate method should lead to improved chances for selecting the true source 

node as the most likely source node. 
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