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Abstract 

Bonstrom, Holly (Ph.D., Department of Civil, Environmental and Architectural Engineering) 

A First-Order Reliability Approach to Building Portfolio Loss Estimation and Mitigation Prioritization 

Thesis directed by Professor Ross. B. Corotis 

 

The prediction of future losses from earthquake events and other natural hazards is of 

importance to community developers, insurance entities, political organizations and many others 

in hazard-prone regions. Often, this risk assessment is preferred at a regional level as many 

private and public entities are concerned with the impact of an earthquake on a suite of buildings, 

as opposed to that for a single site. Assessing risk at a regional level is more complicated than 

doing so for individual sites due to the correlation that exists between the performances of 

spatially distributed buildings within a single hazard. This spatial correlation has been shown to 

be vital for characterizing potential loss at a regional level; however, it is often neglected in 

existing loss estimation methodologies. 

This dissertation proposes the use of the First-Order Reliability Method (FORM) to 

quantify probabilistic losses to a portfolio while incorporating the spatial correlation that exists 

between building performances. FORM is an approximate, analytical structural reliability 
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technique that computes failure probability based on a linearization of a performance limit state. 

Unlike existing loss estimation tools that evaluate loss based on expected values or with the use 

of simulation, the proposed method evaluates the distribution of potential losses analytically and 

is also computationally efficient. In addition, sensitivity measures are computed using FORM to 

prioritize cost-effective retrofit strategies within a building portfolio.  

This proposed method is applied to a selected San Francisco building inventory to 

estimate total structural and nonstructural repair cost in the form of loss exceedance curves. 

Sensitivity measures are used to prioritize building types that yield the most reduction in regional 

risk per dollar of retrofit.  

In additional to quantifying losses, the proposed framework is extended to assess the 

seismic resilience for the San Francisco building portfolio. Sensitivity measures are computed 

relative to changes in system resilience for each dollar allocated to pre-disaster retrofit and to 

increasing post-disaster restoration efficiency.  

Finally, the study also investigates the extension of the proposed FORM-based approach 

to assess the cumulative hazard-induced risk for regions subjected to multiple hazards. In this 

extended study, FORM is used to compute the distribution of loss for Charleston County, South 

Carolina, specific to potential earthquake and hurricane wind hazards.  

The proposed approach provides an analytical and efficient tool for quantifying hazard 

risk at a regional level. By more effectively quantifying hazard-induced loss, resilience and 

sensitivities within a portfolio system, information is provided to improve hazard risk 

assessments and support more efficient risk management decision making.  
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 Introduction Chapter 1.

1.1 Problem Definition  

The devastating effects of earthquakes over the past few decades, including those that 

took place in Loma Prieta, Northridge, New Zealand, Chili and Japan, demonstrated that risk 

management is a paramount issue for seismically active areas. Not only did these events prompt 

the awareness of seismic risk, but they also exposed difficulties in mitigating this risk.  

An informed decision-making process with optimal resource allocation is needed to 

reduce seismic risk efficiently, and this requires the aid of reliable and quantitative risk 

assessment tools. These tools are often desired at a regional level as many private and public 

entities are concerned with the impact of an earthquake to a portfolio of buildings as opposed to 

that for a single site. For example, a regional assessment may be of interest to political or 

community organizations deciding how to mitigate the collective risk to their infrastructure. 

Insurance or other private firms may also be interested in the collective risk present among a 

suite of buildings within a specified region and time period of interest. Given the large 

uncertainties involved in assessing the demands and capacities of a portfolio, probabilistic 

estimates are often desired to adequately capture the predicted seismic risk.  
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Assessing potential losses for a portfolio of buildings is more complex than for a single 

site because of the correlations that exist between building performances (i.e., characterized by 

building damage or loss) in a seismic event. A building portfolio can be thought of as a system of 

interconnected, as opposed to individual, building components. The influence of correlation 

between building parameters is apparent when estimating large infrequent losses for a portfolio. 

Such losses are of particular interest since they tend to dominate earthquake repair costs over 

time. These large consequences occur when many of the buildings within a region perform 

poorly in the same earthquake. The probability of such a phenomenon can only be estimated 

accurately if the correlations between the building performances are included in the loss 

assessment process. 

This correlation between the performances of spatially distributed buildings is a function 

of shared effects from the seismic source, and similarities in site effects, structural components 

and analytical models used to assess loss (Schubert and Faber 2012). For example, sites in close 

proximity to each other will experience similar ground motion time histories due to shared 

seismic source conditions, commonality of wave paths, site conditions and distance between sites 

(Baker and Cornell 2006; Thompson et al. 2010). Disregarding this correlation in ground motion 

intensity (referred to as spatial correlation) has been shown to underestimate large rare losses for 

a building portfolio and overestimate small frequent losses (Jayaram and Baker 2010a; Park et al. 

2007). Neglecting such correlation also influences the prioritization of cost-effective retrofit 

schemes, leading to the selection of less than optimum risk-mitigation spending for a region (Lee 

and Kiremidjian 2007). 

The primary focus of this dissertation is to develop a method for assessing seismic risk 

and cost-effective retrofit schemes for a suite of buildings, while incorporating this spatial 
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correlation. Significant efforts have been made previously to predict the seismic risk to 

infrastructure portfolios subject to seismic hazards. The HAZUS-MH software developed for the 

Federal Emergency Management Agency (FEMA) offers one of the most widely used 

contributions to this field, given its general capabilities and available inventory data (NIBS 

2012). Using seismic hazard curves paired with building fragility information, HAZUS-MH 

computes monetary losses and fatalities given a hazard. Regional loss is computed, however, as 

the summation of the expected costs for each building type, rather than the distribution of 

potential losses. By not including the variance in loss, the correlations that exist between 

building performances are also not included, therefore omitting valuable information that may 

assist in risk management decision making (Schubert and Faber 2012). 

Many recent research studies use Monte Carlo Simulation (MCS) to quantify the 

distribution of system loss and do include spatial correlation in the assessment (Crowley and 

Bommer 2006; Goda and Hong 2008; Jayaram and Baker 2010a). In such studies, a multivariate 

probabilistic distribution for the seismic demand is paired with fragility information to simulate 

predicted losses for a region. However, MCS is often criticized as being computationally 

expensive, particularly when computing large, rare losses. MCS is also not a convenient tool for 

computing the sensitivities of each component relative to the reliability of the system (Melchers 

1999). 

As a result of these drawbacks, this research proposes the use of the First-Order 

Reliability Method (FORM) to quantify the potential loss to a portfolio of buildings given either 

a known or probabilistic earthquake scenario. The basic theory behind FORM is to approximate 

the limit state failure surface by a linearized surface to compute the failure probability. The 

approximate failure surface is fit to the original limit state at a “design point,” which is 
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characterized by the most likely combination of variables that cause failure. FORM provides 

accurate results for limit state surfaces without significant nonlinearities, and unlike traditional 

MCS, is very computationally efficient (Karamchandani and Cornell 1992; Melchers 1999). 

Sensitivity measures, which provide the relative importance of each variable to the overall loss, 

are computed directly in the FORM evaluation. These measures are paired with retrofit costs, 

and used to prioritize the most cost-effective retrofit scheme with respect to reducing portfolio 

loss. 

By evaluating a building portfolio as a system of spatially correlated building 

components, and using FORM as the basis for evaluating risk to such a system, the distribution 

of potential losses and system sensitivities can be evaluated. This additional information may be 

used to further support hazard management and risk-mitigation efforts. 

1.2 Objectives 

This research aims to develop a consistent, quantitative and realistic earthquake risk 

assessment framework for building portfolios. The proposed FORM method is intended for 

public and private entities interested in risk management and mitigation, whether through 

retrofitting, new construction practices, emergency response planning or public policy initiatives. 

The framework is intended to be generic, such that it can be adapted to the characteristics of any 

building portfolio of a selected neighborhood, city or county size.  

This new approach offers a probabilistic method for quantifying seismic risk efficiently 

and analytically. Its development followed from a review of existing earthquake loss estimation 

methodologies. The use of FORM in the proposed framework offers several advantages when 

compared to traditional schemes for regional seismic risk assessment. Probabilistically 
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evaluating loss as a distribution preserves influential system effects (e.g., correlations and scale 

effects) that influence the variance and confidence thresholds associated with loss to a portfolio. 

In contrast to existing methods, sensitivities are also easily computed using FORM relative to the 

change in regional seismic risk for each dollar of retrofit. These sensitivity measures can provide 

efficient retrofit prioritization methods and therefore decision support on how to optimize 

investments into risk reducing measures.  

The application of the proposed framework is illustrated by assessing the seismic risk of a 

selected San Francisco building portfolio. FORM is used to evaluate the seismic loss due to 

structural and nonstructural damage, and resilience faced by the portfolio given a scenario 

earthquake. It is shown that the inclusion of spatial correlation in seismic intensity has a 

significant impact on the predicted loss and resilience distribution for the portfolio. The results 

are compared to the distributions computed using MCS to validate the accuracy and efficiency of 

the proposed method. Sensitivity measures directly computed in the FORM analysis are used to 

prioritize mitigation options based on building types within the case study portfolio. In doing so, 

this dissertation attempts to establish a framework that assists in effective risk-mitigation 

decision making given regional budgetary constraints.  

Throughout this dissertation, it should be noted that the terms “loss” and “risk” may be 

used interchangeably. For this research, “risk” is defined mathematically as the probability of an 

event occurring multiplied by the consequence (loss) of that event. While loss does not imply 

probability, the proposed assessment in this dissertation quantifies loss probabilistically. ` 
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1.3 Outline 

The premise of the proposed framework is based on the characterization of a building 

portfolio as a system of correlated building components. Chapter 2 discusses the parameters 

involved in characterizing a region as such a complex system. This chapter presents the 

influences site-to-site correlation of seismic intensities as well as correlation between building 

properties have on the predicted seismic loss. The influence of critical facilities with respect to 

their role in the community is also discussed. The chapter closes with the importance and 

characteristics involved in prioritizing retrofit at the regional level. 

Existing methodologies used to predict regional seismic risk and prioritize regional 

retrofit schemes are presented in Chapter 3. A brief overview of FORM and how it is utilized in 

the proposed framework is then given, addressing limitations in existing methodologies.  

Chapter 4 discusses the identification and development of the variables considered in the 

proposed reliability framework, along with the formulation and evaluation of portfolio limit state 

thresholds used to evaluate system loss. The computations required to perform a sensitivity 

analysis, which is used to prioritize risk-mitigation schemes, are also presented.  

The application of the proposed framework to a San Francisco building portfolio is 

provided in Chapter 5, highlighting the advantages and disadvantages of using the FORM 

approach. In addition, the influence spatial correlation between building sites has on the 

estimated regional loss and retrofit prioritization is investigated further.  

Finally, Chapter 6 and Chapter 7 include additional applications of the proposed FORM-

based framework. The FORM method is extended for quantitatively assessing and enhancing the 

seismic resilience of a building portfolio. A review of community resilience quantification 

methods is presented, as well as a proposed extension of the FORM-based method to evaluate 
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portfolio seismic resilience. The extended method is used to predict the resilience for the San 

Francisco case study region and prioritize measures to increase seismic resilience through retrofit 

and decreased restoration time. In Chapter 7, the proposed FORM-based loss estimation tool is 

extended to assess multi-hazard regional risk due to earthquake and hurricane winds. This 

chapter includes an overview of multi-hazard risk assessments and presents an introductory 

example application used to predict multi-hazard risk for Charleston County, South Carolina.  
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 Characterizing a Portfolio as a Chapter 2.

System 

Given the critical role risk management and mitigation decisions play in the economic 

and social prosperity of seismically-active regions, it is important that the estimates of potential 

loss on which these decisions are based are as accurate and comprehensive as possible. Loss 

estimates are often characterized by two quantities: the expected value and the variance of losses. 

Many commercial loss assessment tools, such as HAZUS-MH, use the expected value of 

economic losses, casualties, etc. as the measure of risk. Although in a risk neutral context, 

minimizing expected losses is consistent with maximizing utility for a region (von Nuemann and 

Morgenstern 1944), the uncertainty around this loss is not quantified. According to Schubert and 

Faber (2012), decision makers often prefer decisions that yield a low probability of experiencing 

large losses. This is captured only by including the uncertainty in loss, and can be represented by 

a probabilistic distribution. This distribution, which is typically presented in the form of a loss 

exceedance curve, includes the effects of uncertainties as well as the correlations that exist 

between the components of a system. 

Similarly, the performance of a building portfolio is determined by the performance of 

the individual buildings and the spatial correlations that exist between the building performances. 
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These correlations, paired with uncertainties in the loss assessment process, characterize the 

variance in the collective loss probability distribution for a suite of buildings. Such correlations 

may be a result of effects from an earthquake affecting more than one building in a portfolio 

simultaneously. This is a function of the spatial distribution of the group of buildings, where 

each building site may share common hazard source or site effects.  

To understand the influence these spatial correlations have on a loss distribution, consider 

a large group of buildings with uncorrelated distributions of loss (e.g., repair costs) for any future 

earthquake event. The distribution of potential portfolio loss is based on the summation of losses 

for each building. In this case, the expected total loss       is equal to the summation of 

expected losses at each building site, i. When the building losses at each site are independent, it 

is expected that some buildings within the portfolio will experience higher than average losses in 

a given event, while others will experience lower than average losses. Therefore, when there is a 

large number of buildings, the expected total loss is approximately equal to the summation of 

losses at each site (   ) for a given event. This is written as:  

 

      ∑        
 

∑    
 

 (2.1) 

On the other hand, if the performances of individual buildings are strongly positively 

correlated, the portfolio may experience losses that are skewed primarily either higher or lower 

than average for a given event. Therefore, the variance of the predicted losses is much greater 

than if there was no correlation considered between buildings. The variance of the total loss can 

be expressed as:  

 

      ∑         ∑∑           
 

   
 

 
(2.2) 
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where            is the covariance matrix, and is a function of the correlation between at sites i 

and j. Figure 2.1 provides an illustration of a representative loss distribution and loss exceedance 

curve for a portfolio with and without spatial correlation considered.  

 

Figure 2.1: Representative loss distribution and loss exceedance curves for a portfolio with 

and without spatial correlation considered. 

Equation (2.2) and Figure 2.1 demonstrate the importance of considering correlations 

between building performances for understanding the real performance of a portfolio and 

determining accurate probabilistic loss results. The following sections provide a detailed review 

of the sources of correlations that exist within a building portfolio, as well as their effects on the 

portfolio loss assessment. 

2.1 Correlation in Ground Motion Intensities 

Recent studies have demonstrated that consideration of spatial correlation in seismic 

intensities across a region is essential for the estimation of seismic loss for a portfolio given a 

scenario or probabilistic earthquake event (Baker and Cornell 2006; Bazzurro and Luco 2005; 

Goda and Hong 2008; Park et al. 2007; Schubert and Faber 2012; Sokolov and Wenzel 2011). 



  

11 

 

Three main sources contribute to the correlation between seismic demand at two sites: 1) ground 

shaking generated by the same earthquake; 2) commonality in the seismic wave paths from 

source to site (attributed to similar site locations and fundamental building periods); and 3) 

similarities in site soil properties.  

Ground motion models used to predict the joint occurrence of ground motion intensities 

at several sites take the following form (Jayaram and Baker 2008):  

 

  (    )    (  ̅  )              (2.3) 

where     denotes the spectral acceleration at the period of interest at site i during earthquake j, 

  ̅   is the predicted median spectral acceleration determined by ground motion prediction 

equations (GMPEs; e.g., Abrahamson and Silva 2008; Boore and Atkinson 2008; Campbell and 

Bozorgnia 2008; Chiou and Youngs 2008; Idriss 2008),     and   are the normalized intra- and 

inter-event residuals (also referred to as “error” terms), and     and    are the corresponding 

standard deviations of the residual terms, also determined by GMPEs. Inter-event residual terms 

measure the variability in seismic intensity values specific to each earthquake event and building 

period, whereas intra-event residual terms measure the variability in seismic intensity at each 

building site.  

Modern GMPEs implicitly recognize the first source of ground motion correlation by 

assuming that the inter-event residual term (  ) computed at any particular period is constant 

across all sites for each earthquake event. The shared characteristics from a common earthquake 

event are likely, however, to have similar effects on resulting seismic intensities at sites with 

different building periods (Baker and Cornell 2006; Jayaram and Baker 2008; Park et al. 2007). 

To predict this correlation in seismic intensity within an earthquake event, Baker and Cornell 
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(2006) developed an empirical model to estimate inter-event correlation as a function of the 

similarity in two building periods. 

Intra-event variability, represented by the normalized residual term   and standard 

deviation σ, is attributed to a commonality in seismic wave paths and similarities in distance 

from fault asperities. In the past decade, many studies have proposed mathematical models to 

compute correlation between intra-event residual terms as a function of inter-site distance (Goda 

and Hong 2008; Jayaram and Baker 2009; Wang and Takada 2005) and dissimilarities in 

building period (Baker and Cornell 2006; Loth and Baker 2012). The many past studies have 

shown that two closely spaced sites often have highly correlated intensities, tending to be higher 

or lower than the expected intensity for a given event. Correlation decreases with increasing 

distances, but may still be present in distances up to 100km (Park et al. 2007). Inter- and intra- 

event correlation also generally decrease with an increasing dissimilarity in site period, although 

Baker and Cornell (2006) have demonstrated a few instances when this is not the case.  

Many researchers have examined the influence of spatial correlation between seismic 

intensity residual terms on regional loss estimation studies (Jayaram and Baker 2010a; Miller et 

al. 2011; Park et al. 2007; Schubert and Faber 2012). Park et al. (2007) predicted seismic-

induced losses for a suite of buildings and showed that neglecting spatial correlations in ground 

motion intensity leads to underestimation of rare, large losses and overestimation of frequent, 

small losses. As such, the total potential loss for a building stock given an earthquake has a 

larger variance than the total loss predicted when spatial correlations are ignored. Other loss 

estimation studies listed above came to a similar conclusion, which is consistent with the 

mathematical relationship provided in Equation (2.2).  
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Soil properties also tend to exhibit a strong spatial correlation structure, which may 

influence the spatial correlation between building performances in an earthquake event (Baise et 

al. 2006; DeGroot and Baecher 1993; Thompson et al. 2006, 2010). Studies suggest that, similar 

to correlation in seismic intensity, the spatial correlation between soil properties is high at small 

separation distances and decreases with increasing distance between sites. Specifically, time-

averaged shear-wave velocity averaged over a depth of 30m (    ), used for site amplification in 

computing expected seismic intensities in GMPEs, is shown to be spatially correlated for inter-

site distances exceeding 4km (Thompson et al. 2006). This correlation is due to similar soil 

properties in a given location as well as shared uncertainties in      predictions as a result of the 

inherent variability in soil deposits, and in sampling and testing errors.  

To compute this spatial correlation, Thompson et al. (2006) fit a semivariogram model 

(used to measure dissimilarities between values) to      values (averaged shear-wave velocity to 

10m), but their study lacked sufficient data to conclusively model spatial correlation in      

values. Testing results in the San Francisco Bay area show, however, that the spatial correlation 

in      measurements is greater than that of      at all inter-site separation distances (Thompson 

et al. 2006). In a later study by Thompson et al. (2010), spatial correlation in      is extrapolated 

from a semivariogram model for      spatially distributed values, which measure the average S-

wave slowness (i.e., inverse of velocity for transverse or shear waves) to 30m depth. The 

influence that      spatial correlation has on portfolio loss assessments is examined in Chapter 5. 

2.2 Correlation between Building Types 

In addition to correlations in hazard intensity between sites, correlations between building 

performances also arise from similarities in building properties. These may be properties of 



  

14 

 

shared basic characteristics of two structures, such as similarities in the lateral force resisting 

system, building material, number of stories or construction period. Estimated building 

performance in seismic design codes is based on the observation that different types of buildings 

categorized into a particular building class have experienced similar performance in earthquakes. 

This leads to the assumption that similar structures built within the same time frame will share 

comparable performance behaviors (Bazzurro and Luco 2005). 

This type of building-to-building correlation and its influence on regional loss 

assessments was further investigated by Debock et al. (2013). In this study, the authors 

quantified the spatial correlations between building responses in historical and simulated 

earthquake scenarios and related the nature of these correlations to similarities in seismic 

intensity and building response characteristics. Their analysis demonstrated that correlations 

between the natural logarithm of the spectral acceleration at the first-mode period (lnSa), and the 

natural logarithm of a variety of engineering demand parameters used to capture the building 

response (lnEDP), are very similar. This suggests that the observed or predicted ground motion 

intensity paired with a single building property, e.g., the fundamental building period, provide 

critical insight into the spatial correlation in structural response for a suite of structures. These 

results also show that the nonlinearities present in the relationship between spectral ordinates and 

structural response parameters do not significantly affect the spatial correlation in building 

response behavior. Therefore, the spatial correlation between seismic intensity variables used in 

this study is considered sufficient to capture the spatial variation in building response.  

Other characteristics that may influence the building-to-building correlation include 

whether structures are built by the same construction or design firm, which may assume a similar 

application of design or construction techniques. This is often the case in bridge networks as 
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similar contractors are often used in each state and/or federal transportation departments. As a 

result, different types of structures may all perform weaker or stronger than predicted for 

structures of that class. This was the case in the 1988 Spitak earthquake where at least 25,000 

people were killed, 19,000 injured and 500,000 left homeless, primarily as a result of poor 

construction practices (Brand 1988). It is assumed that this type of duplicate construction or 

prevalence of poor construction does not exist in most community centers, cities or counties. 

This type of correlation is therefore not considered in the proposed loss estimation framework; 

however, it could be added to the assessment if such information is available.  

Other building-to-building correlations may exist as a result of physical interaction 

between building performances. In particular, structure-soil-structure behavior may provide a 

significant source of dependency between building performance, and warrants future 

investigation to quantitatively model this phenomenon in the proposed approach (Lou et al. 

2011).  

An additional level of correlation, or better referred to as a ‘bias’ in the loss estimation 

process, results from systematic differences or classifications in models used to assess loss. For 

example, this may be a function of consistent differences between the hazard model used in the 

loss assessment and the actual state of nature. In addition, this bias may be introduced by 

classifying different buildings into representative building categories. For example, the proposed 

method adapts a similar classification scheme that is used in HAZUS-MH, such that buildings 

are classified by building type (i.e. structural framing type), occupancy category, number of 

stories and construction period. Therefore, the same epistemic uncertainties involved in 

modeling the performance of a specific structure type may simultaneously influence the loss 

prediction of a large number of different buildings in that class. This bias may introduce an 
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additional correlation between building performances that consequently increases the variance in 

total portfolio loss. The modeling and classification assumptions that address this bias are 

discussed in Chapter 5. 

2.3 Community-Related Dependencies 

In addition to immediate portfolio losses, there are secondary impacts that greatly 

influence the total loss and seismic resilience of a portfolio. These may be quantified as 

economic or social losses accrued over time based on the time period of building downtime and 

recovery. Such losses are influenced significantly by the interdependence between the physical, 

economic and social infrastructure units within a system. In this study, infrastructure units refer 

to the physical, social and economic assets of each building, though, they can also be 

representative of any type of infrastructure system. The concept of seismic resilience and how it 

is quantified using the proposed framework will be further discussed in Chapter 6. This section 

focuses instead on the sources of these community-related dependencies and their influence on 

portfolio loss and resilience. 

The interdependence between infrastructure components is related to the reliance one 

infrastructure unit has on a service provided by another. Failure in a system can significantly 

affect the function of many other dependent systems. This produces the risk of cascade failure, 

which may have serious consequences for a region. According to Robert et al. (2013), in order to 

anticipate and limit the consequences of this ‘domino effect’ phenomenon, it is necessary to 

understand fully how infrastructure systems are related and dependent on one another.  

One of the most notable infrastructure interdependencies is prevalent in utility and 

transportation lifelines. In post-disaster situations, relief operations require well-functioning 
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systems for transport, electricity, water supply, communications, etc. If any of these systems 

fails, the performance of other systems, as well as regional response and recovery actions, may 

be affected greatly.  

Infrastructure interdependence plays a large role in the assessment of time dependent 

losses and resilience specific to a suite of buildings. Residents of a community depend on 

regional businesses based on employee pay, and the supply of goods and services. By 

comparison, businesses depend on residents based on their employment and demand for goods 

and services (Lindell and Prater 2003). If there is an excessive amount of loss to residential, 

commercial or industrial buildings within a portfolio, those dependent on the functioning of these 

buildings will also be affected. In addition to business-related losses, the loss of certain building 

types may also jeopardize dependent industries such as tourism, healthcare, education and 

recreation.   

The level of interdependence between building assets is specific to the spatial, economic 

and social configurations of a region (Cimellaro et al. 2010; Rinaldi et al. 2001). For example, 

critical facilities (e.g., hospitals) located in different communities may have different 

interdependence relations, which influence the magnitude of post-disaster losses and recovery 

periods. For example, large interdependence may exist between hospitals in a region with only 

two medical facilities, because the failure of one unit may significantly impact the operation of 

the other. In contrast, in a region with many hospitals, the interdependence between units may 

not be as significant.  

A review of studies that examine these community-related dependencies and their 

influence on regional loss and resilience is provided in Oh et al. (2010). Since the primary focus 

of the proposed framework is estimating repair costs due to structural and nonstructural damage 
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following a hazard, the predicted losses are not influenced by these community-related 

interdependencies. Future research on the resilience assessment presented in Chapter 6, however, 

will require further investigation into incorporating this type of dependency.  

2.4 Prioritization of Retrofit 

In a building-by-building analysis, structural and cost-benefit analyses can be performed 

to gauge the effectiveness of retrofit for each individual structure. Community and public policy 

decision makers are often interested, however, in managing and mitigating these vulnerabilities 

at a regional level (Porter 2013). While retrofitting every vulnerable building would reduce 

regional seismic risk, it is likely prohibitive based on available resources, constituency budget 

constraints and general community opposition (as a result of mandates on owners, ripple effects 

on tenants, etc.). Therefore, when budgetary constraints restrict the number of buildings that can 

be retrofitted, the existing resources must be allocated to the most effective retrofit schemes in 

terms of reducing regional risk.  

Prioritizing the effectiveness of retrofit strategies at a regional level often involves a cost-

benefit analysis to gauge the reduction in seismic risk (benefit) for each dollar spent on retrofit 

(cost). A sensitivity analysis can be performed to capture changes in regional loss with respect to 

specific retrofit regimes for an individual building or class of buildings, and then further utilized 

to rank cost-benefit ratios of each retrofit task (see Section 4.4). In a probabilistic context, such 

sensitivity measures capture the change in the probability of exceeding a regional loss threshold 

per dollar of retrofit. Since correlations are shown to influence the distribution of loss, this would 

also affect the magnitude and ordering of sensitivities computed relative to exceeding loss 

thresholds not equal to the expected loss. Consequently, this may skew retrofit prioritization for 
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regions interested in reducing the probability of exceeding higher or lower than expected loss 

levels. The influence this correlation has on the ranking retrofit schemes is further explored in 

the case study presented in Chapter 5. 
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 Methodologies Chapter 3.

3.1 Existing Earthquake Loss Estimation Methods 

The prediction of seismic risk for a building portfolio is vital for effective risk mitigation, 

emergency response, public policy and insurance management. Loss estimation tools used to 

predict such risk can be either based on regional or site-specific loss assessments. Site-specific 

studies evaluate hazard-induced losses for a single site, while regional loss evaluation tools 

estimate losses for a particular quantity of components. These components may include a 

building portfolio, transportation network or utility system located within a specific region, such 

as a city, county or state.  

As discussed in the previous chapter, estimating regional loss as a probability distribution 

is not only a function of individual component losses, but also of the additional uncertainties and 

correlations that exist between components. In earthquake loss estimation, these uncertainties 

exist in the seismic hazard, structural behavior, damage and loss functions, and must therefore be 

included for accurate modeling of the potential regional loss induced by a hazard. 

This section offers a review of existing earthquake loss estimation methodologies, along 

with a discussion of their respective advantages and disadvantages. While this overview is by no 

means exhaustive, it is intended to highlight areas in existing methodologies that may benefit 
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from additional work. These are then investigated further in the development of the FORM-

based approach proposed in this dissertation. It is recognized that there are existing propriety loss 

estimation models developed by consulting and reinsurance firms such as EQECAT, Risk 

Management Solutions (RMS) and AIR Worldwide. Since limited information is available on 

these methods, this section will focus on publicly available commercial models and academic 

studies.  

The earliest hazard loss estimation tools based empirical modeling of future damage and 

loss on information garnered from past hazard events. One of the first empirical methods was 

developed by Freeman (1932), who used previous recorded earthquake damage to develop rough 

estimates of future earthquake loss for insurance planning. Most regional hazard loss 

assessments were performed within the insurance industry until the early 1970’s, when a series 

of regional loss studies were conducted for the United States federal government to study the 

hazard impact on essential facilities. Using an interdisciplinary group of experts in seismology, 

geology and structural engineering, Algermissen et al. (1972) estimated the damage and losses 

given a major earthquake occurring in the San Francisco Bay Area, Los Angeles, Salt Lake City 

and Puget Sound. The estimated losses, although deterministic, were based on several empirical 

relations between collected loss data and casualties.  

 The first probabilistic earthquake loss assessment was performed by Steinbrugge et al. 

(1969), who developed percentage losses using fuzzy-based matrices to relate construction 

classes and seismic intensities with damage ratios. Whitman et al. (1973) introduced the concept 

of damage probability matrices, where damage was quantified as a damage ratio and the intensity 

of ground motion was in terms of the Modified Mercalli Intensity (MMI). Similarly, the Applied 

Technology Council published the study ATC-13 (ATC 1985), which characterized ground 
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motions based on MMI, and used probabilistic damage matrices to estimate future losses. ATC-

13 was also one of the first systematic tools to incorporate expert opinion in the earthquake loss 

estimation process.  

By the mid 1980’s, numerous other loss estimation tools were developed, primarily for 

disaster preparedness. Reitherman (1985) provided a summary of over 30 existing earthquake 

loss estimation tools, which included a description of the input data, analysis type and output of 

each method. Most methods require the ground motion intensity input in terms of MMI. 

Employing either probabilistic or empirical relations, the output of such methods is expressed as 

regional dollar loss estimates, casualty estimates or qualitative vulnerability ratings. 

 With the advancement of methods used to predict hazard losses and the expanding user 

base, there was increasing need for consistency between each method. As a result, FEMA-177 

(1989) and FEMA-249 (1994a) were developed to provide guidelines for a consistent and 

standardized loss estimation framework based on an extensive review of existing methodologies. 

Both reports brought attention to the fact that previously available loss estimation studies did not 

properly incorporate uncertainty associated with the seismic hazard. From these findings, a 

standardized regional loss estimation methodology was developed that measured ground motion 

shaking quantitatively though elastic spectral intensities, as opposed to qualitative ground motion 

measures such as the MMI (NIBS 1997). This tool, introduced under the name HAZUS-MH, is 

one of the most widely used public regional loss assessment methodologies today.  

HAZUS-MH is a GIS-based software tool developed for the U.S. Federal Emergency 

Management Agency (FEMA) to assess the consequences due to earthquake, hurricane, or 

flooding scenarios (NIBS 2012). The software is divided into several interdependent modules for 

assessing the physical, direct and indirect economic, and social consequences given a hazard 
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occurrence at a specified region of interest. Pre-established capacity and fragility functions are 

provided for 36 building types based on lateral force resisting system and building material (e.g., 

concrete moment frame) and 33 occupancy categories (e.g., multi-family dwelling). These are 

further subdivided by number of stories and construction period.  

In the HAZUS-MH framework, the economic losses associated with structural and 

nonstructural consequences are computed as the summation of expected repair costs for each 

building type and occupancy category combination. This output represents the mean loss that is 

expected to occur given an earthquake event. While the expected consequence for regional 

building and infrastructure systems is often used in loss estimation methodologies, it does not 

include information about the distribution of loss. By only considering the expected loss, the 

assessment also excludes the correlations that exist between building performances. As discussed 

in the previous chapter, this can lead to suppressing important system effects when estimating 

loss distributions and prioritizing retrofit for infrastructure and building systems. 

INLET (Internet-based Loss Estimation Tool) is the first online real-time loss estimation 

system developed by ImageCat as a part of the NSF-sponsored RESCUE project (Huyck et al. 

2006). Using simplified HAZUS-MH damage functions and building inventory information, 

INLET can be used to estimate regional building damage, transportation impacts and causalities 

in the Southern California region minutes after an earthquake event. The primary advantage is 

that it is geared to be a more simplistic and flexible tool than HAZUS-MH, and can be constantly 

updated for “real-time” loss assessments. Similar to HAZUS-MH, INLET estimates loss based 

on its expected value.  

The assessment of seismic risk is also a subject well-covered in many academic studies 

that utilize probability- and reliability-based methods to estimate regional loss. Bayraktarli and 
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Faber (2007) developed a risk assessment framework using Bayesian Probabilistic Networks 

(BPNs) categorized by modules for the seismic hazard, soil failure, damage and consequences 

given an earthquake. Use of BPNs enables explicit modeling of dependencies between variables, 

and in this study, the authors include correlation between peak ground acceleration values (used 

in liquefaction analysis) and spectral displacement intensities (used in structural damage 

analysis). Site-to-site correlation in ground motion intensity parameters, however, is not 

included. Similarly, Bensi et al. (2009) employ BPNs to quantify seismic loss for a 

transportation. In this study, the spatial correlation between seismic intensities at each network 

component is included.  

Mahsuli and Haukaas (2011) developed a loss assessment software tool that utilizes first- 

and second-order reliability transformation methods to compute loss distributions for large 

portfolios of buildings given a probabilistic earthquake or multi-hazard scenario. This study 

computes loss based on regional and building-specific models. The regional model uses an 

empirical relation to compute the total regional repair cost as a function of seismic demand and 

other regional model parameters. The building-specific models estimate loss by evaluating 

building response, damage, and finally repair cost based on finite element analyses and damage 

estimates. Some correlation between the seismic intensity among sites is included inherently in 

modeling the magnitude and location of the hazard relative to the sites. There is no further 

inclusion, however, of site-to-site correlation in residual terms based on site separation distance 

or commonality in seismic wave paths to spatially distributed building sites within a region. 

Another widely used method for estimating regional loss is through Monte Carlo 

Simulation (MCS). Jayaram and Baker (2010a) developed a simulation-based framework to 

evaluate the seismic risk posed to a lifeline network. A catalog of spatially correlated seismic 
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intensity maps are generated using importance sampling, and paired with fragility functions to 

assess the total disruption in lifelines given a seismic event. The simulation-based ground motion 

generation developed by Jayaram and Baker (2010a) was also used in a lifeline risk assessment 

study that utilized first-order reliability techniques as a means of overcoming the drawbacks of 

simulation (Miller et al. 2011). In this method, two random variables are assigned to each 

component of the lifeline network to model the corresponding seismic demand and structural 

capacity. The limit state for the network is defined as the total reduction in function flow for the 

network. The theory behind such seismic demand and capacity random variable assignments for 

each site is a key attribute of the method used in this dissertation.  

In each of the existing loss estimation methods listed, it is noted that expanding loss 

computations from the expected value to a probability distribution of loss is a noteworthy 

advancement for recent and future studies. In addition, an analysis providing sensitivities in 

system loss relative to each input component is another valuable attribute to add to most 

assessment methods. It is recognized that ease of use and availability of building input data are 

also desirable characteristics. In the coming discussion, each of these characteristics will be 

addressed relative to the capabilities of the proposed FORM-based loss estimation method 

presented in Section 3.3.2. 

3.2 Existing Mitigation Prioritization Methods 

The loss estimation methodologies presented in the previous section demonstrate how the 

ability to forecast the potential hazard-induced loss to a region is improving continuously. This 

provides an opportunity for policy initiatives to focus on pre-disaster risk mitigation, particularly 

through structural retrofit. Budget and other resource constraints, however, limit which 
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vulnerable buildings within a region are to be retrofitted to desirable levels of seismic resistance. 

For optimal regional risk mitigation given limited resources, it is essential to prioritize vulnerable 

buildings that will yield the most effective, risk-reducing retrofit strategy. In fact, regional 

jurisdictions are now requiring retrofit prioritization to receive mitigation funding. For example, 

the Federal Emergency Management Agency (FEMA) Disaster Mitigation Act of 2000 now 

mandates state and local governments to prioritize cost-effective mitigation actions in order to 

receive Hazard Mitigation Grant Program funds (FEMA 2002).  

Prioritization of risk-mitigation measures must evaluate the benefits of mitigation, such 

as reduced damage costs, limited housing displacement, or fewer deaths and injuries, against the 

costs. In many cases, this is simply a comparison of dollars to dollars. Benefit-cost analysis 

(BCA) methodologies have been performed to assess the future savings resulting from FEMA 

mitigation grants from 1993 to 2003 (Rose et al. 2007). In addition, several past studies have 

employed BCA assessments to identify and rank potential retrofit schemes for reducing the 

seismic vulnerability to individual structures (e.g., FEMA 2009a; Liel and Deierlein 2013; 

Padgett et al. 2010; Porter et al. 2006; Smyth et al. 2004; Takahashi et al. 2004).  

A number of studies have also focused on mitigation prioritization at the regional level 

for building and other infrastructure components. Visual screening methodologies such as 

FEMA-154 (1988) have been used to identify, inventory and rank buildings vulnerable to 

seismic hazards. Grant et al. (2007) integrated an analytical structural vulnerability assessment 

with visual inspection to prioritize seismic retrofit for school buildings in Italy. Tesfamariam and 

Saatcioglu (2008) developed a ranking scheme for older reinforced concrete buildings using a 

fuzzy-based modeling assessment for building vulnerability. In a series of papers by Dodo et al. 
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(2005, 2007) building retrofit schemes are evaluated for optimal retrofit spending using linear 

programming techniques. 

Most of the studies used to prioritize retrofit and reduce uncertainty use a “one-factor-at-

a-time” (OAT) method (Saltelli et al. 2006). In such an approach, a variable (representing a 

mitigation alternative) is modified as desired while others are fixed to assess its relative 

sensitivity with respect to the overall loss of the system. While this approach is straightforward, 

drawbacks that may result from using this approach include: 1) most simulation models used to 

run this type of analyses for a large set of mitigation alternatives are complex, computationally 

expensive and often unmanageable; 2) there may be a large uncertainty associated with 

performing a such an analysis with and without a variable change in a probabilistic assessment; 

and 3) these approaches may not account for simultaneous variations in inputs that may result 

from correlations between variables. In addition, many retrofit prioritization methods only focus 

on the expected value of losses and benefits, without consideration of the variance or spatial 

correlation of losses and benefits within a region. This may influence the prioritization of retrofit 

when it is desired to minimize loss other than the expected value.  

Many of these limitations can be addressed using a local sensitivity analysis to identify 

and rank effective retrofit schemes (Morio 2011). These involve taking the partial derivative of 

the output, Y, with respect to each input variable distribution, X, in each dimension. This is 

written mathematically as: 

 

   
  

   
 (3.1) 

where   is the sensitivity measure with respect to variable   at a single point. As will be 

discussed in Section 3.3.1, these partial derivatives can be computed simultaneously for each 
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input variable within reliability evaluation techniques such as FORM.  

Many studies focused on the retrofit prioritization of bridge and lifeline networks have 

employed such a sensitivity analysis based on seismic vulnerability and strategic importance of 

each network component, but often without consideration of retrofit cost (Lee et al. 2009; Lee 

and Kiremidjian 2006; Miller et al. 2011). In addition, Riederer and Haukaas (2007) utilize this 

type of analysis to identify the most cost efficient improvements to structural parameters within a 

building system to reduce roof drift.  

To the author’s knowledge, Mahsuli and Haukaas (2013) are the first to employ a local 

sensitivity analysis to prioritize buildings for retrofit within a portfolio. While the analysis used 

in Mahsuli and Haukaas (2013) is similar in its general definition to the one proposed in this 

paper, the random variables used to define the reliability problem for a building portfolio are 

modeled differently. In addition, the method presented in this study makes two important 

extensions: 1) it accounts for spatial correlation in building performances across a region and 

investigates the influence this has on retrofit prioritization; and 2) it examines the implications a 

chosen level of loss to be mitigated has on optimal mitigation prioritization for other loss 

thresholds. An overview of the sensitivity analysis method proposed in this dissertation to 

prioritize mitigation is presented in Chapter 4.  

3.3 Proposed Framework 

To add to the state-of-the-art in loss estimation and retrofit prioritization methods, this 

dissertation proposes a new FORM-based framework to probabilistically estimate the total 

seismic-induced loss to a building portfolio. This section first reviews the applications and theory 
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behind FORM, then discusses the advantages and disadvantages of using this type of reliability 

evaluation method for estimating regional loss.  

3.3.1 First-Order Reliability Method (FORM) 

FORM is one of many structural reliability methods used to probabilistically evaluate the 

performance of structures. Performance expectations, typically in the form of limit states, must 

be specified in order to gauge how a structure will perform. In basic structural design, 

performance criteria include structural safety and serviceability limit state requirements. These 

limit states are formulated as a function of the loading and structural properties that define the 

reliability problem.  

In structural reliability, the parameters that represent the magnitude and uncertainty in 

demand and capacity of a problem are modeled with probability density functions. These 

components are referred to as random variables, as opposed to deterministic values. Each is 

modeled by the probability distribution that best fits the respective uncertainty in each 

component. The parameters that define the distribution, such as a mean and standard deviation, 

are included in the reliability assessment.  

Figure 3.1 demonstrates this concept by illustrating a basic structural engineering 

problem comprised of two variables: 1) the load effect, S, used to model the effect an imposed 

load has on a structure; and 2) the resistance variable, R. Each variable is represented by a 

probability density function,       and      , and the combination of both variables characterize 

the joint bivariate distribution,         . 

As with most safety performance checks in structural engineering, failure of the structure 

results when the load effect is greater than the structural resistance. Therefore, the limit state 

associated with failure,       , can be written as:  
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             (3.2) 

The probability of failure,     , associated with this limit state can be written as:  

 
                           (3.3) 

The probability of failure is represented by the volume under the joint density function on 

the failure side of the limit state, indicated by the red region in Figure 3.1. This probability can 

be calculated using a variety of methods, including direct integration, numerical approximate 

methods, simulation and approximate transformation methods. Using direct integration, the 

failure space (i.e., failure probability) shown in Figure 3.1 can be evaluated as: 

 

     ∫ ∫              

 

 (3.4) 

where D represents the failure domain. When R and S are independent, Equation (3.4) can be 

written as:  

 

     ∫ ∫                  

 

    

   

    

 (3.5) 

and expressed by the single convolution integral: 

 

     ∫               

 

  

 (3.6) 

where    is the cumulative distribution function for R.  
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Figure 3.1: Bivariate density function characterized by a load effect random variable, S, and 

resistance variable, R. 

When R and S are not independent, or when there are more than two random variables, it 

is rare that the failure probability can be integrated analytically in closed form. In such cases, 

approximate numerical methods can be used in place of direct integration, but these methods are 

only feasible for reliability evaluations with a small number of random variables (n ≤ 5) 

(Melchers 1999). Simulation techniques such as Monte Carlo Simulation, in contrast, can 

provide accurate reliability evaluations, and are often used in loss estimation studies for high-

dimension problems. As mentioned previously, however, simulation is often criticized for being 

computationally expensive, although adaptive simulation methods can improve this efficiency 

significantly. Moreover, simulation does not capture component sensitivities easily in a 

reliability assessment (e.g., Melchers 1999).  

As a result of these draw-backs, reliability transformation methods, stimulated by the 

work of Cornell (1969), gained popularity. These methods provide an approximate, yet analytical 
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and efficient technique to evaluate the reliability of a structure. They have been refined and 

extended in their applications, and have become among the most widely used reliability 

evaluations in practical engineering design (Karamchandani and Cornell 1992; Zhang and Du 

2010). Reliability transformation methods provide the foundation for the probability-based 

partial safety factor design codes in use today, building from one of the first risk-based 

publications by Ellingwood et al. (1980).  

An advantageous first step for using transformation methods is converting each random 

variable to its standardized, normal form, with zero mean and unit standard deviation. In 

addition, if any correlations exist between random variables, an additional transformation is used 

to decouple the random variables (e.g., Rosenblatt 1952). The result of this transformation is 

illustrated by a basic reliability problem characterized by random variables    and   , shown in 

standardized, normal, uncorrelated space in Figure 3.2.  

 

Figure 3.2: Probability density function contours for bivariate distribution        in 

standardized space. The design point y*, β vector, and original nonlinear and linearized limit 

states are shown relative to an arbitrary limit state threshold. 
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The reliability index, β, represents the shortest distance from the origin to the original 

limit state surface,       . This index can be computed by minimizing the following equation: 

 

     √∑  
 

 

   

  
(3.7) 

where    represents the coordinates of any point on the limit state surface in n-dimensional 

reliability space and n refers to the number of random variables in the reliability problem.  

The point on the limit state surface with the shortest distance to the origin is called the 

‘design’ or ‘checking’ point. This point, labeled y* in Figure 3.2, is associated with the largest 

probability content under the bivariate density function,       , on the failure side of the limit 

state. The failure probability assumed by first-order transformation methods is represented by the 

probability content on the failure side of a linearized limit state fit tangent to the actual limit state 

at the design point. This is shown by the red line labeled           in Figure 3.2. The failure 

probability can then be evaluated as:  

 
           (3.8) 

where      is the standard normal cumulative distribution function. Since failure is evaluated 

based on linearization, first-order methods provide an exact measure of failure probability for 

problems with linear limit states in standardized space (shown in Figure 3.2), and an approximate 

method for those with nonlinear limit states. Assuming R and S in the reliability problem shown 

in Figure 3.1 are normal, failure probability can be related directly to   with the following 

equation: 
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                       (
    
  

)        (3.9) 

where       and        . In this case, “normal” implies preservation of a linear limit 

state when transformed to standardized space 

The simplest reliability transformation method is called the First-Order Second Moment 

(FOSM) method. FOSM considers only the first two moments of each random variable, the mean 

and standard deviation. This is the equivalent of representing each random variable by a normal 

distribution. By comparison, the First-Order Reliability Method (FORM) is capable of 

incorporating non-normal variables into the reliability analysis with one additional 

transformation. This involves transforming the random variables to normal reliability space, thus 

inherently distorting the shape of the limit state surface. The Second-Order Reliability Method 

(SORM) follows a similar approach, but estimates failure probability based on a fitted second-

order approximate limit state surface (Melchers 1999). The increase in accuracy with each of 

these methods is specific to the reliability problem of interest.  

Each transformation method is applicable to higher dimensions. When using FORM in 

higher dimensions, a hyper-plane limit state, as opposed to the 2-D limit state threshold shown in 

the figures above, is evaluated at a design point. It is possible, however, that the approximations 

inherent in linearizing or fitting a second-order surface to a limit state in high-dimension space 

may induce significant error. This approximation is explored further in Section 4.5. 

 Since FORM computations often employ a gradient-based algorithm to minimize β in 

Equation (3.7), additional information is also provided as to the sensitivity of the system with 

respect to each random variable. A set of simultaneously derived sensitivity measures provide 
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the order and magnitude of sensitivities of the computed reliability with respect to the random 

variables that compose the reliability problem. Similar to Equation (3.1), these are computed as:  

 

  
  

  
 (3.10) 

where   is the sensitivity measure with respect to random variable parameter   and β is the 

output of the reliability assessment. 

3.3.2 Proposed Framework Objectives 

Using FORM, as described in the previous section, this dissertation establishes a new, 

robust framework for the comprehensive and efficient assessment of building portfolio 

earthquake risks. With the characteristic advantages of using FORM for the proposed approach, 

this research builds on the capabilities of current methodologies presented in Section 3.1 by 

accomplishing the following: 

1. Analytical computation of failure probability  

2. Probabilistic evaluation of risk 

3. Explicit modeling of spatial correlations between variables 

4. Computational efficiency 

5. Easy computation of sensitivity measures 

These advantages are further discussed below with respect to the added capabilities in using 

FORM. 

Analytical computation of failure probability 

FORM provides an approximate, yet analytical means of quantifying the distribution of 

regional loss. Section 4.1 presents how each random variable used to characterize the hazard 
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demand and structural response is expressed as a closed-form distribution. The ability to 

analytically characterize and quantify portfolio loss is considered advantageous to simulation 

since it provides a mathematical relationship between random variable inputs and the evaluated 

reliability.  

Probabilistic evaluation of risk 

Demand and capacity variables are included in the reliability analysis as probability 

distributions to model the uncertainty among these variables. Using these random variables, 

FORM computes the probability of loss exceeding a predefined arbitrary threshold. The 

probability distribution of loss is then computed by evaluating the reliability associated with 

varying severities of loss thresholds. Unlike many existing loss estimation tools that compute 

loss based on the expected value, evaluating the distribution provides additional information 

about the uncertainty in potential loss, which can assist in risk management decision making.  

Explicit modeling of spatial correlations between variables 

FORM is capable of including the spatial correlations that exist between building 

performances, which are shown to significantly influence the variability in regional loss 

estimates. In this study, this spatial correlation is modeled based on the correlation in seismic 

intensity, as detailed in Section 2.1. This is computed and tabulated in the form of a correlation 

matrix relative to the seismic intensity random variables for each site of interest. FORM employs 

one additional transformation to decouple the correlated variables to an uncorrelated space to 

facilitate the reliability evaluation.  

Computational efficiency 

This is one of the most notable advantages to using FORM (Karamchandani and Cornell 



  

37 

 

1992; Zhang and Du 2010). FORM analyses often employ a gradient-based algorithm for 

computing the design point based on Equation (3.7). Unlike MCS, the required computation time 

is often independent of the likelihood of failure. It is a function, however, of the number of 

random variables that make up the reliability problem. Since this reliability approach is proposed 

for regional portfolios comprised by a large number of buildings, each characterized by a set of 

random variables, the FORM computation in this study employs a robust tool for large-scale 

optimization computation (TOMLAB 2012).  

SORM is more time intensive than FORM because it requires the computation of second-

order derivatives of the limit state with respect to each random variable. While SORM often 

provides an increase in accuracy relative to FORM, Section 4.5 suggests that this is not 

necessarily the case for the proposed framework.  

Easy computation of sensitivity measures 

As discussed in the previous section, another useful by-product of FORM is the resulting 

set of sensitivity measures. These are computed from the gradient-based algorithm used to 

minimize β in Equation (3.7) and provide information as to the order of sensitivity each variable 

parameter has on the overall reliability. Section 4.4 discusses how these sensitivity measures are 

used to prioritize the most effective retrofit schemes based on the reduction in seismic risk for 

each dollar of retrofit.  

  

While it is expected that FORM will attain the objectives outlined above, the 

disadvantages to using FORM must also be addressed. As mentioned in the previous section, 

FORM is only able to provide approximate reliability estimates for problems with nonlinear limit 

states. This is often the case for most structural problems. Since most of the failure probability 
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contribution is located within close proximity to the design point (i.e., in the domain just beyond 

where the original limit state surface matches the linearized limit state assumed by FORM), 

FORM usually provides accurate results. However, substantial nonlinearities in the limit state, 

particularly around the design point, can provide a significant source of error in the FORM 

assessment. The level of resulting inaccuracy in building portfolio loss assessment due to this 

approximation is examined in Section 4.5 and in the case studies presented in Chapter 5-7.  

Another limitation to using FORM is that the demand, capacity and performance 

objectives must all be expressed analytically by probability density functions. This requires 

careful characterization of the uncertainties in each variable, as well as addressing the 

uncertainties involved in modeling each variable by a specific distribution. Section 4.1 presents 

some discussion on defining the variables analytically within this proposed framework.  
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 Proposed FORM Method Chapter 4.

4.1 Random Variables 

Since FORM requires β to be minimized relative to all random variables of interest, an 

increase in random variables results in an increase in required computation time as well as 

difficulty in characterizing limit state nonlinearities. Therefore, it is useful to minimize the 

number of random variables used in reliability assessments. In this study, only two random 

variables are used to evaluate loss at each site, specific to each combination of building type and 

occupancy category. Building combination assignments are discussed further in Section 4.1.2 

and Chapter 5. The two variables, lnSa and     , are used to model the seismic intensity and 

variability in building structural response. The variables for each site and building combination 

are combined to compute loss for a suite of buildings, given the modeling assumptions discussed 

in the following sections. 

4.1.1 Seismic Intensity 

The uncertainties and correlation between seismic intensities at each site must be 

accounted for in order to capture the spatially distributed seismic demand for a portfolio. These 

parameters relate to uncertain characteristics in the seismic source, site-to-source distance and 
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orientation, and site effects. To assess loss for a probabilistic earthquake scenario, a simulation 

procedure motivated by Jayaram and Baker (2010) is used to compute simultaneous ground 

motion intensities at each site, based on the seismic intensity model presented in Equation (2.3). 

These simulated ground motions are used to model a distribution of seismic intensity for each 

site and correlation between sites. This resulting multivariate distribution is then used in the 

FORM analysis to compute the distribution of portfolio loss. This simulation reduces the 

computational efficiency in the overall assessment, but FORM still provides a major 

computational advantage over a full simulation approach (see Section 3.3.2 and 5.3).  

In the simulation method, the first step is to simulate earthquakes of varying magnitudes 

on all faults of interest. Potential magnitudes are simulated using appropriate magnitude-

recurrence relationships, such as those provided within USGS (2012). Fault locations are 

sampled using fault rupture occurrence rates for a region. Site-specific shear-wave velocity to 

30m (    ), can also be simulated based on the availability of information on the spatial 

distribution and variance in      for all sites of interest (e.g., Allen and Wald 2009). The 

following equation, based on Degroot and Baecher (1993) and Thompson et al. (2010), is used to 

capture the variation in     : 

 
                   ̅̅ ̅̅ ̅

 
       (4.1) 

where     ̅̅ ̅̅ ̅
 
 is the expected shear wave velocity to 30m at site i, determined from sampling or 

empirical models,    is the standard deviation in       and    is the normalized residual term 

associated with variability in      . The normalized residual terms are sampled from a 

standardized multivariate normal distribution characterized by a spatial correlation model 

developed in existing literature (Boore et al. 2011; Thompson et al. 2006, 2010). The case study 
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presented in Chapter 5 provides insight on the influence that spatial correlation in soil properties 

may have on regional portfolio loss estimations and accuracy in the proposed FORM method.  

 For each magnitude, fault location and      realization, the median ground motion 

intensity and standard deviations (  ̅,   and   in Equation (2.3)) are computed at each site of 

interest using one or more GMPEs (e.g., Abrahamson and Silva 2008; Boore and Atkinson 2008; 

Campbell and Bozorgnia 2008; Chiou and Youngs 2008; Idriss 2008). In most GMPEs, the 

standard deviation of ground motion intensity, which is a function of building period, can be 

disaggregated to an inter-event term ( ) and an intra-event term ( ) as follows: 

 

   √      (4.2) 

where    is the total standard deviation for the predicted ground motion intensity at a site. Note 

that in most GMPEs, near-fault effects such as rupture directivity and directionality are not 

explicitly accounted for. This is the case for the models used here, but in the future, this effect 

could be incorporated by taking advantage of GMPE-adjustment models (e.g., Baker et al. 2012). 

The inter- and intra- event normalized residual terms, represented as   and   in Equation 

(2.3), are simulated from multivariate distributions. The multivariate distributions have a mean 

of zero and standard deviation of one, and are assumed to be best represented by a normal 

distribution based on Jayaram and Baker (2008). These distributions are characterized by spatial 

correlations between site-specific residual terms, modeling similarities in seismic intensity 

between sites and earthquake events. In this study, the spatial correlation among intra-event 

residual terms is computed using the mathematical model proposed in Loth and Baker (2012), 

and inter-event residual correlations are computed based on Baker and Cornell (2006).  
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 Finally, seismic intensity samples are obtained by combining simulated median ground 

motions with simulated values of normalized inter- and intra- event residual terms per Equation 

(2.3). This produces a map of ground motion intensities for a given earthquake scenario. Each 

simulated scenario is intended to capture the uncertainty in earthquake occurrence, magnitude, 

and resulting ground motion intensity across a region. These simulated spectral intensities are 

each related to a single event, and as such, cannot be used directly in a FORM analysis. They 

can, however, be used to model a multivariate distribution representing the joint seismic intensity 

at all sites of interest.  

 The lnSa variable computed in Equation (2.3) is a function of many variables, including 

magnitude and site-to-source distance that may be modeled by non-normal distributions. It is 

therefore not clear whether the computed seismic intensity samples follow a particular 

distribution. Results in Miller et al. (2011), however, show that the normal distribution fits the 

simulated lnSa values well, specific to a single site. From these results it is assumed that the 

combination of site-specific normal distributions can be modeled by a multivariate normal 

distribution. Using a linear regression analysis, the correlation between lnSa at each site can be 

calculated based on the simulated seismic intensity values. Following this approach, the spatial 

correlation between lnSa variables is a function of shared seismic source effects and 

commonality in seismic wave paths. As discussed in Section 2.1, these are based on similarities 

in building location, fundamental period and soil conditions.  

Figure 4.1 shows fitted distribution contours, representing 1, 2 and 3 standard deviations 

from the mean. The computed correlation between simulated seismic intensities at two 

representative building sites is also shown. The buildings have identical building periods and are 
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located approximately 1km from each other. Therefore, in this scenario, it is expected that the 

seismic intensities will exhibit a strong correlation.  

  It is noted that the simulation procedure outlined above decreases the computational 

efficiency in using the proposed FORM method to compute portfolio loss. This is due to the 

extensive number of simulations required to accurately model the multivariate distribution of 

potential seismic intensities for a region. This does not detract from the other primary advantages 

of FORM, including its capability to perform an efficient sensitivity analysis. It also does not 

reduce the contribution of providing an analytical tool to compute regional loss.  

 

Figure 4.1: Grey dots represent the simulated lnSa data for Site 1 and Site 2 with the 

estimated bivariate normal distribution contours and correlation between sites shown. 

 
There are two primary cases where it is possible to circumvent the simulation procedure 

outlined above, and therefore take full advantage of the computational efficiency in using the 

FORM approach. First, if the distributions and correlation between seismic intensities for a 

region are known for a specified event (e.g., taken from historical events), these can be used to 
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formulate the multivariate distribution for seismic intensity at each site. Second, if the 

magnitude, fault location and soil properties at each site are considered deterministic, but the 

uncertainty in residual terms remains random, a simple mathematical computation can be used to 

compute this distribution. This is the case when it is desired to estimate regional loss given a 

specific earthquake scenario and deterministic soil properties for a region.  

In either case, the multivariate distribution of site-specific seismic intensities can be 

characterized by expected median spectral accelerations determined by GMPEs and the 

following covariance matrix: 

 
               ̃       ̃   (4.3) 

where  ̃ is the multivariate distribution of intra-event residuals (  ̃       for site i) and  ̃ is the 

multivariate distribution of inter-event residuals ( ̃       specific to each unique building 

period at site i). Since each residual distribution is assumed to be modeled by a multivariate 

normal distribution, lnSa is also multivariate normal. Using this method, the analytical 

computation of the spatially correlated seismic intensity random variable properties preserves the 

inherent efficiency in using FORM. 

4.1.2 Building Structural Response: Seismic 

The performance of a building depends jointly on the ground motion demand and 

structural capacity. Structural capacity has been represented by many engineering demand 

parameters, which are structural response characteristics used to predict damage to structural and 

nonstructural components. With the exception of some brittle structural systems and 

acceleration-sensitive building components, building damage is primarily related to building 

displacement, rather than force (NIBS 2012). Building displacement is often characterized by the 
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maximum inter-story drift ratio (IDR), defined as the maximum difference in lateral 

displacements in between two consecutive floors normalized by the story height.  

Maximum IDR is often used in the formulation of fragility curves used in loss estimation 

studies (FEMA 2000, 2009; NIBS 2012). These curves help to predict the probability of 

exceeding various damage levels, given a seismic demand. It was initially thought in the 

preliminary work of this study that the random variable used to model structural response could 

be the distribution of seismic intensity associated with the building-specific fragility for each 

damage state. Given the multiple damage states to be considered for each type of building 

damage, this formulation would dramatically increase the number of random variables in the 

reliability assessment. This in turn may significantly reduce the efficiency of using FORM. 

Moreover, if the limit state is formulated as a function of discrete damage states, it may lose the 

continuity necessary for convergence of the gradient-based algorithm that FORM employs to 

find the design point. 

To overcome these limitations, this study proposes modeling building-specific structural 

response by one random variable characterized by the distribution of the maximum IDR given a 

seismic intensity value. To predict building displacement response in the elastic and inelastic 

range, the HAZUS-MH methodology provides capacity curves, which describe the nonlinear 

pushover displacement of a building (expressed as spectral displacement) as a function of a 

laterally-applied earthquake load. As is further discussed below, the information provided by 

these curves is used to formulate the distribution for the structural response random variables 

used in this study. This is combined with information from acceleration-sensitive component 

fragility curves and loss functions, also provided in HAZUS-MH and further discussed below, to 

compute building repair costs. The functions provided by the HAZUS-MH methodology are 
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used because of their availability and general application to a wide range to buildings provided in 

the HAZUS-MH building inventory data set, which is also used in this study. There is no claim 

being made as to the accuracy or validity of such data. As such, it is noted that there are other 

damage and loss functions, such as those provided in FEMA P-58 (2012), that could be used 

within the FORM-based approach proposed in this dissertation. As other fragility curves and data 

sets become widely available and verified, their use is encouraged.  

The capacity curves provided with the HAZUS-MH methodology are formulated for 36 

representative building types (e.g., high-rise steel braced frame) and high-, moderate-, low- and 

pre-code seismic design levels. Approximate height-dependent modal factors listed in NIBS 

(2012) are used to express the curves in terms of maximum IDR. The HAZUS-MH methodology 

also provides the approximated variability in structural capacity. This is shown in Figure 4.2 as 

the median, 84
th

 percentile (+1βc) and 16
th

 percentile (-1βc) capacity curve relating spectral 

acceleration to IDR for a representative building type. 

 

Figure 4.2: Representative median, 84
th

 percentile (+1βc) and 16
th

 percentile (-1βc) capacity 

curves relating Sa to IDR. 
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 Using the variability in the capacity curves, the distribution of IDR|Sa can be determined 

as shown in Figure 4.2 for Sa = 0.5g. The Kolmogorov-Smirnov test (KS-test) suggests that the 

lognormal distribution provides a reasonable model for the IDR|Sa values obtained from the 

HAZUS-MH capacity curves (i.e., failed to reject the null hypothesis at a 5% significance level).  

 As discussed in Section 3.3.1, a useful first step in a FORM analysis is to transform all 

variables to uncorrelated, standardized, normal space. If the original variables do not follow a 

normal distribution and are correlated, this transformation is a two-step process (see Rosenblatt 

1952). While IDR|Sa can be used as the random variable to model the structural response for 

each building type, the distribution type and dependency of IDR on Sa would increase the 

complexity and required transformations in the reliability problem. A first step to reduce this 

complexity prior to the reliability analysis is to use the natural logarithm of IDR|Sa in the 

analysis. Since building-specific IDR|Sa values are well modeled by a lognormal distribution, 

this means lnIDR|Sa can be modeled by a normal distribution, written as the following: 

                                  (4.4)  

where           and           are the mean and standard deviation of lnIDR|Sa. 

This assumption of normality also enables the use of a mathematical relationship to 

address the dependency between structural response and seismic intensity variables. Since the 

lnIDR|Sa variable is conditioned on the seismic intensity at a specific building site, it also 

correlates with the lnSa variables at all other sites within a relatively close proximity. In a loss 

study of lifeline networks, Miller et al. (2011) addresses this complexity with a functional 

relationship, introducing a new random variable independent of the seismic intensity. Adapting 

this additional step to building losses, Equation (4.4) can be rewritten as:  
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                    (

         

    
)      (4.5)  

where      is the maximum           for all Sa values, and      is the new random variable 

characterized by a normal distribution with zero mean and the lognormal standard deviation 

    . In this equation,      is used to model the variability of lnIDR|Sa. By assigning      as the 

random variable in this manner, the dependency between seismic demand and structural response 

is included deterministically rather than between the random variables that model the reliability 

problem. Note that this functional relationship in Equation (4.5) is only valid if lnIDR|Sa follows 

a normal distribution. 

 In this study, each building-specific     variable is assumed independent of those for 

other buildings. A potential source of correlation between buildings would be similarities in 

design or construction techniques, or physical interactions between building performances, as 

outlined in Section 2.2. While there are not sufficient inventory data to make this inference for 

this study, this correlation could be added to the reliability model at a later time.  

4.2 Limit State Formulation 

In a reliability analysis, limit states define the requirements that must be satisfied to 

ensure performance of a particular level. The goal of this study is to quantify the distribution of 

total repair cost to a building portfolio, represented as a percentage of the total building 

replacement cost. This means that the performance limit state must be formulated as a function 

of the cost incurred to each building site. In this study, building repair costs are a function of:  

 Structural repair and replacement costs (  ) 
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 Nonstructural drift-sensitive repair and replacement costs (    ) 

 Nonstructural acceleration-sensitive repair and replacement costs (    )  

Structural repair and replacement costs are specific to any building components used to 

resist load. Nonstructural damage is divided into two categories: components that are sensitive to 

building drifts and those that are sensitive to floor accelerations. Nonstructural drift-sensitive 

damage includes damage to partitions, exterior walls facades and glass. Nonstructural 

acceleration-sensitive damage includes damage to ceilings, mechanical and electrical equipment, 

piping and elevators. Total loss can be written as: 

 
                (4.6)  

This definition is extended in Chapter 6 to include post-disaster time-dependent losses related to 

community resilience.  

The total repair cost for each representative building type and occupancy category is 

computed using loss calculations proposed in the HAZUS-MH methodology (NIBS 2012), 

written as the following: 

 

    ∑       ∑ ∑                

 

    

  

    

  

    

 (4.7)  

 

      ∑       ∑ ∑                    

 

    

  

    

  

    

 (4.8)  
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 (4.9)  
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where     is the building replacement cost for occupancy category   , and        ,           

and           are the probabilities building type    is in damage state    specific to structural, 

nonstructural drift-sensitive and nonstructural acceleration-sensitive damage, respectively. 

       ,           and           are the structural, nonstructural drift-sensitive and 

nonstructural acceleration-sensitive damage ratios for occupancy category    in damage state   . 

Building replacement costs and damage repair ratios are provided in NIBS (2012) specific to 

each of 36 representative building types and 33 occupancy categories.  

To calculate        ,           and           used in Equation (4.7) - (4.9), an 

additional calculation is required the compute the probability of exceeding different levels of 

structural and nonstructural damage. For structural and nonstructural drift-sensitive damage, 

        and           are computed by evaluating the resulting lnIDR|Sa computed in Equation 

(4.5) relative to the distributions of IDR associated with each damage state threshold. This 

distribution is extrapolated from HAZUS-MH fragility curve information for each categorized 

building type. For acceleration-sensitive nonstructural damage, the fragility curves are used 

directly to compute           for each building type and damage state, given seismic intensity 

values computed based on the random variable lnSa for each building site. 

To evaluate the probability that the total loss exceeds a specified threshold, the following 

limit state equation is specified: 

 
                  (4.10)  

where     is the threshold of total repair cost associated with a specified failure level.  
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4.3 Limit State Evaluation 

 A FORM-based analysis is used to evaluate the failure probability in Equation (4.10) for 

varying portfolio limit state thresholds. The probability distribution of loss is then computed 

based on these threshold-specific failure probabilities. As mentioned earlier, when evaluating 

limit state exceedance using FORM, it is useful to transform the random variables (and therefore, 

limit states) to standardized, normal, uncorrelated space. For illustrative purposes, a transformed 

bivariate probability distribution for building-specific random variables lnSa and      is shown 

in Figure 4.3. lnSa and      variables transformed to standardized, normal space are labeled as 

[lnSa] and [    ]. The limit state surfaces associated with different thresholds of building repair 

costs, which are a function of the individual building replacement cost (BRC), are also shown.  

  

Figure 4.3: Bivariate density function for standardized, normal variables [lnSa] and [    ] for 

one representative building. Performance limit states are associated with varying levels of 

building repair cost.  

 In Figure 4.4, the blue shaded region represents the failure domain for the limit state 

characterized by a repair cost equal to 75% BRC in Figure 4.3. The safety index, β, is computed 
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using Equation (3.7), and shown below with the design point y* (i.e., the closest point on the 

limit state to the origin in standardized space). A linearized limit state fit tangent to the design 

point is also shown with the corresponding approximate failure space assumed by FORM.  

   

Figure 4.4: Original nonlinear limit state surface and corresponding failure space as a function 

of standardized, normal variables [lnSa] and [    ] for one representative building. The 

linearized limit state and corresponding failure space assumed by FORM is shown for a repair 

cost threshold of 75% BRC. 

For this single building case, computing β using Equation (3.7) involves only two 

variables. As a result, minimizing β is achieved easily through basic iteration. The reliability 

evaluation becomes more complex, however, for a portfolio of buildings where the optimization 

problem may consist of thousands of variables. To increase computational efficiency for such 

large reliability problems, β is computed using the TOMLAB large-scale optimization platform 

(TOMLAB 2012). The probability of failure is then computed as a function of β using Equation 

(3.8). 
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As seen in Figure 4.4, the original limit state is slightly convex relative to the origin. This 

indicates that the failure probability estimated using FORM will likely be larger than the actual 

failure probability, because the linearized limit state assumed by FORM encapsulates more 

failure space. FORM is expected to give reasonably accurate results, however, because there is 

little nonlinearity in the original limit state surface, specifically around the design point. This 

may not be the case in the loss evaluation of multiple buildings, when the limit state surface must 

be evaluated in a high dimension reliability space. It is impossible to visualize the behavior of 

such a limit state surface, which makes it important to further assess the accuracy in using 

FORM for large reliability problems of this nature. The following section will examine the 

accuracy in using FORM to evaluate loss for multiple buildings, as well as identify sources of 

nonlinearity leading to inaccuracies in in FORM results.  

4.4 Sensitivity Analysis Using FORM 

The ability to perform a sensitivity analysis efficiently is one of the primary advantages 

to using FORM for regional loss evaluation. By computing sensitivity measures, information is 

provided that relates the change in system reliability relative to an incremental change in each 

random variable parameter. Sensitivity measures computed relative to the      variable for each 

building site can be used to provide insight into the reduction in portfolio reliability per dollar 

spent on retrofit for each vulnerable building type. By using the      variable in such an 

analysis, this study prioritizes retrofit relative to a maximized reduction in drift-sensitive 

damage. This can be expanded, however, to include sensitivity measures for upgrading 

acceleration-sensitive building components in a similar fashion with the addition of a third 

random variable at each site. 
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The proposed sensitivity measure, labeled       , provides the change in the reliability 

index ( ) for the portfolio loss evaluation, per dollar of retrofit cost (  ). This measure can be 

mathematically written as: 

 
  

   
 

  

     
 
     
   

 (4.11) 

where          is the sensitivity measure directly computed to find the design point in a FORM 

assessment by differentiating the reliability index relative to the structural response random 

variable     . This involves taking the derivative of the limit state in Equation (4.10) for a 

specified loss threshold.  

The term on the right side of Equation (4.11) represents the marginal change in      for 

each dollar spent on retrofit. This also corresponds to a change in estimated IDR given a 

specified seismic intensity level as is shown in Equation (4.5). This study uses typical seismic 

retrofit cost estimates provided in FEMA-156 (1994b) for groups of buildings, which are 

assumed to provide retrofit measures, that in general, upgrade the seismic design code level for 

each building type. While common retrofit measures can be specific to upgrading resistance to 

only drift-sensitive or acceleration-sensitive components, or may not influence either, upgrading 

structures to a new seismic design code level have been shown to upgrade both (NIBS 2012).  

Retrofit alternatives considered in the proposed sensitivity analysis are specific to 

structural upgrading policies for groups of buildings within a region. Using disaggregated 

HAZUS-MH building inventory data provided by Porter (2013), buildings are grouped by census 

tract locations, structural building types, occupancy types and seismic design code level.  The set 

of retrofit alternatives is created by all possible combinations of each category. Consistent with 

the assumptions made in previous studies, typical retrofit costs listed in FEMA 156 are 
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considered most representative for pre-code buildings retrofitted to a moderate-code design level 

(Kircher et al. 2006; NIBS 2002). In addition, retrofit for low-code buildings is considered to 

cost 25% less than for pre-code structures (Mahsuli and Haukaas 2013). Only low- and pre-code 

building types are considered for retrofit in this study, because it is assumed that retrofitted 

structures will generally not satisfy high-code seismic design requirements (Kircher 2013). 

Given these assumptions,           is computed based on typical retrofit costs and 

change in      associated with each retrofit alternative. Assuming normality in ln       in 

Equation (4.5), an incremental change in      per dollar of retrofit can be related to a change in 

          for each retrofitted building type as follows: 

 
      

    

 
          

   

 
                        

   

 (4.12) 

where            is the mean natural logarithm of IDR given Sa for an original building i, and 

            is for the retrofitted building modeled by building type i*. Estimated            values 

are computed from the capacity curves provided in the HAZUS-MH methodology for the 

original and retrofitted building.  

Since          in Equation (4.11) is computed relative to exceeding a specified level of 

loss, the magnitude and order of sensitivity measures depends on the loss threshold of interest. 

Therefore, when prioritizing retrofit to reduce regional loss, sensitivity measures should be 

computed relative to the desired level of loss to be minimized. For a region interested primarily 

in minimizing small, frequent losses, sensitivities should be computed relative to a lower loss 

threshold for optimal retrofit prioritization. Similarly, a high loss threshold can be used to 

compute          when it is of interest to reduce less frequent, high consequence portfolio 
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losses. The implication a chosen loss threshold has on optimal retrofit prioritization for varying 

loss levels is explored further in the case study assessment. 

Depending on the vulnerable building types in question, the ordering of sensitivity 

measures computed in Equation (4.11) can be used to provide insight into the most cost-effective 

retrofit schemes for reducing seismic-induced loss for a building portfolio. It is emphasized that 

by computing sensitivity measures relative to     , the marginal change in reliability as shown in 

Equation (4.11) is only a function of an increase in resistance to drift-sensitive damage. In this 

study, this includes changes to direct structural damage and drift-sensitive nonstructural damage 

(e.g., damage to partitions, exterior walls facades and windows). Therefore, the sensitivity 

measures can be used to suggest retrofit prioritization to reduce the collective drift-sensitive 

losses for a building portfolio, but additional information is needed provide more complete 

information for prioritizing cost-effective retrofit schemes to reduce all repair costs.  If a random 

variable is added to the analysis to model structural response to floor accelerations resulting from 

a given seismic intensity, the same principles can be applied to compute sensitivity measures 

relative to this type of damage.  

 While it is useful to prioritize buildings based on the cost-effectiveness of retrofit, 

developing regional retrofit schemes solely based on budgetary constraints is often unrealistic. 

This is because most buildings are privately owned, and there is no universal source of funding 

to mitigate risk present at a regional level. Instead, the financing of retrofit is often the 

responsibility of the owners of vulnerable buildings, and either voluntary or mandatory 

depending on regional ordinances and building type.  

To incentivize retrofit, both state and local governments have employed a variety of 

funding mechanisms including interest-free loans, fee waivers and design rebates. In addition, 
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many local jurisdictions have exercised other requirements to promote retrofit including 

requiring engineering reports to be made public for vulnerable buildings, zoning requirement 

exemptions, and in some cases, making retrofit mandatory. When trying to develop efficient 

ordinances, whether with respect to mandating retrofit or in determining the extent of retrofit 

incentives, many jurisdictions are interested in prioritizing the retrofit of vulnerable buildings 

within their region. For example, the City of Sonoma, California requires mandatory retrofit of 

seismically vulnerable structures within a predefined time period based on a building’s retrofit 

priority (FEMA 1994c). Building prioritization is based on the building type and hours of use, 

number of stories, proximity to public sidewalks and adjacent buildings, and structural 

adjustments. Vulnerable buildings with the highest priority must be retrofitted in a shorter time 

frame than those considered less risky.  

The sensitivity analysis proposed in this section provides additional useful information 

for building prioritization, not only based on building vulnerability, but also on the cost-

effectiveness of retrofit. It is assumed that building owners are more incentivized to take retrofit 

action if they know that the future benefit largely outweighs the initial cost. Therefore, 

comparing sensitivity measures computed in Equation (4.11) for different building types can 

offer reasoning to mandate or emphasize mitigating risk activities for buildings with the most 

cost-effective retrofit schemes. Other factors such as prioritizing based on life safety, building 

importance to the community, number of vulnerable buildings within a specified class, potential 

fatalities and injuries, and other social consequences should also be addressed in order to 

produce a more comprehensive retrofit prioritization based on reducing regional vulnerability.  
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4.5 FORM Accuracy 

 Since it is impossible to visualize the extent of nonlinearity in high dimension limit state 

surfaces, other methods must be used to assess the accuracy in using FORM. In this study, 

results computed using the proposed FORM method are compared to Monte-Carlo Simulation 

(MCS) results to test the accuracy in using FORM for the reliability assessment of multiple, non-

identical buildings. This assessment is based on the condition that the number of simulation runs 

produces at least 100 expected failure events. For example,           is computed with 

respect to at least 1,000 simulation runs (Mann et al. 1974; Melchers 1999). The resulting 

accuracy is considered sufficient for comparison purposes. In this section, conclusions drawn 

from such a comparative assessment are used to identify sources of limit state nonlinearity and 

FORM-based errors. The identification of these factors may assist in future studies focused on 

developing a technique to refine FORM-based loss estimation results. 

The reliability results for a system of two buildings are examined prior to analyzing the 

distribution of losses for a large portfolio. These results, shown in Figure 4.5(a), are illustrated 

using loss exceedance curves. The two structures used in this study are both wood, multi-family 

residential buildings, with identical, yet independent, seismic intensity distributions. The 

assumption of zero correlation in seismic intensity may be representative of two sites located a 

considerable distance from each other. The x-axis in Figure 4.5(a) is representative of the repair 

cost expressed as a percentage of the total building replacement cost for both buildings (ΣBRC), 

and the y-axis is the probability of exceeding each threshold of loss, plotted in log space. The 

vertical purple lines, representing varying thresholds of loss, will be discussed below. 
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(a) 

 

 

 

(b) L1 (c) L2 (d) L3 

 

Figure 4.5: (a) Loss exceedance curves for a two building system computed with FORM and 

MCS. Random variables and corresponding limit state surfaces are shown in standardized, 

normal space for a repair cost equal to (b) 25% ΣBRC, (c) 45% ΣBRC and (d) 65% ΣBRC.  

It can be seen in Figure 4.5(a) that while the FORM results follow a similar trend to those 

obtained with MCS, there is a deviation between results from the two methods. This is likely due 

to nonlinearity in the limit state surface, which is not captured by the limit state linearization 

assumed in FORM calculations. Since it is not easy to visualize the limit state surface in four 

dimension space required to model the two building case (i.e., two random variables per site), 

some simplifying approximations can be used to reduce the reliability problem to three 
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dimensions. In this case, it is assumed that each structural response random variable is fully 

correlated and can be modeled by a shared      variable. This means that the structures at each 

site have identical building characteristics; however, their behavior and corresponding loss is 

based on the seismic intensity specific to each site (see Section 4.1.2 and 4.2). With this 

assumption, the reliability space consists of only three dimensions: [lnSa1] (site 1), [lnSa2] (site 2) 

and [    ] (sites 1 and 2); all transformed to standardized, normal and uncorrelated space. Figure 

4.5(b-d) show the limit state surfaces for the 25%, 45% and 65% ΣBRC loss thresholds labeled 

by the purple vertical lines in Figure 4.5(a). To provide a better visualization of the limit state 

surface curvature, a green contour line is added and each figure is rotated accordingly.  

It can be seen that the limit state surface shown in Figure 4.5(b) for a loss threshold of 

25% ΣBRC appears to be concave relative to the origin. As a result of this nonlinearity, there is 

less failure space associated with a linearized limit state surface assumed by FORM than with the 

actual failure surface, which is why FORM underestimates the failure probability for this loss 

threshold. The limit state surface in Figure 4.5(c), representing a loss threshold of 45% ΣBRC, 

looks to include concave and convex sections relative to the origin. It can be seen that the limit 

state at the design point, which behaves similarly to an inflection point, is relatively linear. At 

this threshold, the nonlinearities in the limit state have a tendency to balance out, which explains 

why FORM provides very similar results to simulation (i.e., more accurate). Finally, the limit 

state surface appears convex relative to the origin in Figure 4.5(d) for the higher loss threshold of 

65% ΣBRC, indicative of overestimating the failure space using FORM. The loss thresholds 

specific to 25%, 45% and 65% ΣBRC were chosen for this two-building system as representative 

in identifying nonlinearities present in each limit state surface.  
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 It was hypothesized initially that the Second-Order Reliability Method (SORM) could 

account for these noted nonlinearities, and therefore provide more accurate results for this type 

of problem. SORM is a reliability transformation method that involves a second-order, as 

opposed to linear, approximation of the limit state surface at the design point. Figure 4.6 shows 

the results using FORM, SORM and MCS for the same two building problem discussed above. It 

can be seen that the SORM results provide a slight improvement for larger repair cost thresholds, 

but do not improve accuracy significantly. Moreover, the deviations in results are the opposite as 

those seen using FORM.  

 

Figure 4.6: Loss exceedance curves for a two building system computed with FORM, SORM 

and MCS. 

This inconsistency in SORM results is because the second-order surface fit to the design 

point does not adequately capture the limit state nonlinearity. For example, while the limit state 

surface may have one type of curvature at the design point, the limit state curvatures may change 

shape in regions that still contain considerable probability density. Therefore, SORM may 

overestimate the actual failure space when FORM assumes less, and vice versa. Similar 
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deviations in SORM results were noted for reliability evaluations of more than two buildings. In 

addition to a lack of improved accuracy, it is also noted that computationally, SORM is much 

more expensive than FORM. This is because it requires the computation of second-order 

derivatives of the limit state with respect to each random variable.  

The limit state nonlinearities that lead to inaccuracies in FORM and SORM results 

appear to be a function of the range of random variable values that satisfy a limit state constraint. 

For example, in Figure 4.6, it can be seen that for very low and high loss thresholds, FORM, 

SORM and MCS all yield similar results. This is because all or most random variables must be 

close to an extreme of their distribution in order to achieve such low or high loss levels. For loss 

thresholds in between these extremes, however, there are many different values random variables 

can assume to satisfy the limit state constraints. The extent of these possible combinations 

becomes even greater when the reliability space increases in size, resulting in a possible increase 

in limit state nonlinearity. In many cases, this nonlinearity may create a limit state surface with 

local minima, each representative of high probability density. In this scenario, there may be 

considerable error in using FORM and SORM, since these approximation methods are unable to 

capture these nonlinearities with a linear or second order approximated surface.  

The extent of random variable combinations that satisfy a limit state constraint is 

dependent on the similarity among variables and their correlation structure. If variable 

distributions are independent or largely dissimilar, it is assumed that there will be a greater range 

of random variable values that satisfy a limit state equation. For example, if the two building 

sites discussed above have fully correlated seismic intensity and structural response variables, 

there is only one value of each that can satisfy the limit state threshold. On the other hand, when 

these variables have zero correlation, as is the case for seismic intensities in Figure 4.5(a), they 
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can assume a larger range of values. This leads to more limit state nonlinearity, and less accuracy 

in using FORM.  

To further investigate this concept, Figure 4.7(a) shows loss exceedance curves for a 

small sample portfolio of ten buildings using FORM and MCS. Similar to the two building case 

above, all are wood, multi-family residential buildings, with identical seismic intensity 

distributions. In this case, however, the spatial correlation (ρ) between seismic intensities at each 

building site varies from 0 to 1. Figure 4.7(b) shows the ratio of exceedance probability (Pe) 

assumed by FORM with that computed using simulation.  

 

Figure 4.7: (a) Loss exceedance curves using FORM and MCS and (b) ratio of exceedance 

probabilities using FORM and MCS for a 10 building sample portfolio with varying spatial 

correlation between seismic intensities (ρ). 

Both figures show that the error associated with using FORM increases when the spatial 

correlation decreases. As the seismic intensities become more correlated, there is less variability 

in the values each random variable can assume to satisfy a limit constraint. As such, there is less 

nonlinearity in the limit state surface for each loss threshold, and thus more accuracy in using 
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FORM. Figure 4.7(a) and Figure 4.7(b) also show that FORM yields comparable results to those 

computed using MCS at a similar building repair cost threshold for each spatial correlation 

assignment. For this sample portfolio, this occurs at a loss threshold around 45% ΣBRC.  

It is further investigated whether this deviation in FORM results is consistent for different 

size building portfolios. In Figure 4.8(a), probability exceedance curves are shown using FORM 

and MCS for portfolios comprised of different numbers of buildings, given the portfolio 

characteristics assumed in the study above. Similar to Figure 4.7(b), Figure 4.8(b) shows the 

ratio of exceedance probability (Pe) assumed by FORM with that computed using simulation. In 

this sample study, the spatial correlation between all building sites is considered to be 0.5. 

 

Figure 4.8: (a) Loss exceedance curves using FORM and MCS and (b) ratio of exceedance 

probabilities using FORM and MCS for portfolios consisting of different numbers of buildings 

with a fixed spatial correlation of 0.5 between all seismic intensities. 

Figure 4.8 shows that the deviation in FORM results is consistent for portfolios of 

different sizes for this sample study. In Figure 4.8(b), the portfolio with 100 buildings exhibits a 

very similar ratio of FORM to MCS results as the portfolio with 200 buildings. Therefore, it 
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appears that the deviation in FORM results will generally stay consistent for larger portfolios of 

different sizes, assuming the distribution of buildings and seismic intensities do not vary.  

FORM accuracy may also be influenced by additional limit state nonlinearity resulting 

from dissimilarities in building types within a portfolio. For example, urban building portfolios 

may consist of many different building types characterized by a wide array of building heights, 

materials, etc. The structural response variable (    ) associated with each of these building 

types will also vary, potentially leading to more limit state nonlinearity. Building portfolios in 

residential settings, however, may have many of the same building types and more similar      

variables.  

It can also be seen that, independent of the dissimilarity in variables, FORM accuracy 

may be a function of the probability of system failure. For example, consider a building portfolio 

consisting primarily of buildings lacking any seismic design. This portfolio is likely to 

experience failure given most loss thresholds. Even if the sites are completely uncorrelated, all or 

most random variables may assume a value on the low end of the distribution in order to achieve 

a high probability of exceeding a loss threshold.  

The discussion in this section is intended to identify potential sources of limit state 

nonlinearity to further understand the deviation in FORM results. Furthermore, the identification 

of these factors can assist in developing a refinement technique to increase accuracy in using 

FORM to estimate portfolio loss. The error in using FORM shown in the above studies is 

hypothesized to be a direct function of the dissimilarity in variables and level of failure 

probability. With further investigation, an empirical refinement algorithm may be developed and 

used to limit this error, while preserving the many benefits of using the FORM technique.  
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 Case Study Chapter 5.

This chapter presents a loss assessment evaluation for a selected building inventory in 

San Francisco, California using the proposed FORM method and MCS. In Section 4.3 and 4.5, 

the accuracy in FORM results was assessed for basic sample portfolios consisting of identical 

buildings and seismic intensities. A realistic building portfolio is instead comprised of many 

building types and a spatially distributed, non-uniform seismic intensity. A much larger 

reliability space is required to model each variable, and there exists the potential for significant 

nonlinearity in the resulting limit state for certain loss thresholds. Therefore, comparing FORM 

results to those computed using MCS is essential to assess the accuracy in using FORM to 

evaluate the distribution of loss for an actual building portfolio. It is also desired to verify the 

optimization of reliability results using the TOMLAB optimization solver for such a large 

reliability space. If there are local minima or discontinuities in the portfolio limit state, it is 

possible that the optimization function may not converge at the global design point.  

This case study also presents a sensitivity analysis, which is used to evaluate the 

influence retrofit strategies have on loss reduction for the San Francisco portfolio. Vulnerable 

building types with the highest sensitivity measures are prioritized for retrofit. The resulting 
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post-retrofit loss exceedance curves are computed with respect to varying retrofit budget 

constraints.  

Finally, pre- and post-retrofit loss exceedance curves are assessed with and without 

spatial correlation considered. This assessment is intended to provide insight into the importance 

of considering the spatial correlation in seismic intensity for estimating regional loss and 

prioritizing retrofit schemes.  

5.1 Building Inventory 

This study evaluates seismic risk to a portfolio of buildings located in the central business 

district and surrounding districts of San Francisco. This region, shown in Figure 5.1, has been 

selected based on available building inventory and scenario earthquake data. The building data 

are extracted from a database provided by Porter (2013), which disaggregated inventory data 

provided in NIBS (2012). The buildings are categorized by 36 building types and 33 occupancy 

categories used in the HAZUS-MH loss estimation methodology. The buildings types are 

additionally sub-divided by high-, moderate-, and low-seismic design code levels (SDC), and 

pre-code buildings, which are not seismically designed.  

The inventory database lists the total floor area and total building replacement cost for 

each building combination, characterized by building type, occupancy category and code 

standard combination by census tract. Default HAZUS-MH building inventory data assumes all 

model building types are low-rise, meaning one to three stories. This assumption can create 

numerous errors when estimating loss for a suite of buildings of various height classes. This is 

particularly the case for urban building portfolios characterized by tall buildings, such as the 

Financial District of downtown San Francisco.  
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This study modifies the default HAZUS-MH inventory based on three generic height 

distributions provided in Kircher et al. (2006) for the San Francisco region. Building height 

distributions, labeled HG1, HG2 and HG3 in Figure 5.1, are outlined in Table 5.1. The building 

density for each census tract (i.e., building area per unit area of census tract) is used to assign a 

height distribution that best characterizes the typical building height classification at each 

location.  

Table 5.1: Three generic building height groups (Kircher et al. 2006). 

   
 Building Height Distribution  

Height 

Group Low-Rise Mid-Rise High-Rise Description of Buildings 

HG1 0.1 0.1 0.8 City center/tall buildings 

HG2 0.4 0.4 0.2 
Commercial and dense urban residential 

buildings 

HG3 0.95 0.05 0.0 Suburban, primarily residential buildings 

          

Given computing space constraints and availability of data, the lnSa and      variables 

for buildings categorized within the same building combination are considered fully correlated 

within each census tract. It is incorrect, however, to assume these buildings will experience an 

identical level of loss in a given earthquake. Given this assumption, it is expected that the 

variance in loss is superficially increased (see Chapter 2). Future extensions of this work should 

aim to disaggregate the total building area, for each building combination type within each 

census tract, into individual buildings to better model the variance in predicted loss.  

Due to computing space requirements, the loss evaluation only considers building 

combinations with more than 10,000 square feet of floor area within each census tract. Given the 

normalization process of building inventory data in HAZUS-MH, there are many building 
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combinations with much lower floor area (<1,000 square feet). It is assumed that this excluded 

inventory data will have a minor influence on the expected portfolio repair cost, represented as a 

percentage of total building replacement cost for all building combinations included in the 

reliability assessment. Under these constraints, the resultant case study portfolio includes over 

1,500 building combinations distributed over 74 census tracts. The reliability problem is 

therefore modeled by over 3,000 random variables for estimating portfolio loss. 

 

Figure 5.1: Building height distributions defined per census tract in the San Francisco case 

study portfolio region, shown relative to the scenario M7.2 earthquake epicenter (Google 

2012). 

Building combinations with a smaller representative floor area are considered in the 

sensitivity analysis since there may be a large number of different vulnerable building 

combinations with only a few buildings per census tract. Including such building combinations 

may have a significant influence on retrofit prioritization, as it is based on a reduction in loss per 

dollar spent on retrofit, independent of the building combination size.  
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5.2 Seismic Hazard Analysis 

The scenario earthquake used in this study is a magnitude 7.2 earthquake on the 

peninsula portion of the San Andreas Fault. This is the primary scenario earthquake used by the 

Applied Technology Council (ATC) in their work on the San Francisco Community Action Plan 

for Seismic Safety (CAPSS) project (ATC 2010). According to ATC, this type of earthquake 

could be expected in the area, because enough strain has built up on the San Andreas Fault since 

1906 to produce an event of this magnitude.  

For a simplistic evaluation, the epicenter of the earthquake is assumed at the midpoint of 

the peninsula portion of the fault as shown in Figure 5.1. Median      values (time-averaged 

shear-wave velocity averaged over a depth of 30m) are estimated from USGS (2013a) and shown 

in Figure 5.2 for each census tract. When using ground motion prediction equations,      values 

are used to determine the site amplification in seismic intensity. As discussed in Section 4.1.1, 

considering a deterministic earthquake magnitude, epicenter location and      allows this study 

to apply the computational efficiency inherent in using FORM. Each of these parameters, 

however, can be modeled with a distribution rather than a deterministic value. Results are 

tabulated later in this case study assuming probabilistic      values, as well as in the multi-

hazard case study presented in Chapter 7 for a probabilistic epicenter location. 

The distribution of spatially correlated seismic intensity is calculated at the center of each 

census tract specific to each representative building combination. Loss is evaluated with and 

without the consideration of spatial correlation between residual terms, to assess the importance 

of considering this type of spatial correlation for regional loss estimation and retrofit 

prioritization. In addition, the probability distribution of loss is tabulated with respect to both 

deterministic and probabilistic, spatially correlated soil properties. The former utilizes Equation 
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(4.3) to compute the seismic intensity distribution and is used to assess the computational 

efficiency potential in using FORM opposed to simulation. The latter requires the simulation 

procedure outlined in Section 4.1.1 to compute a multivariate distribution for seismic intensity.  

 

Figure 5.2: Median      values per census tract in San Francisco case study portfolio region 

(USGS 2013a). 

The objective of including spatially correlated      values in this study is to illustrate the 

importance of characterizing correlation in soil properties across a building portfolio in regional 

loss assessments. The distribution of      for each census tract reflects median values shown in 

Figure 5.2 and variances estimated from Holzer et al. (2005). The spatial correlation in      is 

modeled from semivariogram results developed in Thompson et al. (2010) for      values 

(inverse of     ). Ground motion prediction equations (GMPEs) are limited in use to      values 

greater than 180 m/s (Boore and Atkinson 2008). Therefore, it is assumed that all sites in this 

study exhibit a shear wave velocity above this threshold. All median values for this case study 

region are significantly above this threshold for the case study region, however, there may be 
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soft-soil regions, specifically along the shoreline, that exhibit lower      values. It is assumed 

that these regions will not significantly influence the effect spatial correlation in soil properties 

has on the distribution of loss. In order to capture more realistic loss estimation, a site-specific 

nonlinear analysis is required for these soft soil sites.  

5.3 Results and Comparison 

Figure 5.3 shows the loss exceedance curves for total structural and nonstructural repair 

costs for the case study portfolio expressed as a percentage of the total building replacement 

costs (independent of content losses). These results are tabulated using FORM and MCS given 

the occurrence of the scenario earthquake discussed in the previous section.  

 

Figure 5.3: Loss exceedance curves using FORM and MCS given a scenario earthquake and 

median     .  

It can be seen that the proposed FORM method yields a similar trend in results to those 

obtained using MCS. There are, however, some deviations between results from the two 

methods. Similar to the sample study results presented in Section 4.5, FORM results 
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underestimate the probability of exceeding small losses and overestimate exceedance 

probabilities for larger, rare losses. As previously noted, this is likely due to the nonlinearities in 

the limit state surface that are not captured when evaluating a linearized surface assumed by 

FORM.  

The time required to compute the exceedance curves in Figure 5.3 using FORM was 

considerably less than for MCS. For example, the MCS results for a repair cost threshold of 70% 

ΣBRC for the case study portfolio took approximately 15 minutes to compute. By comparison, 

optimization required by FORM took approximately 40 seconds on a personal computer with a 

2.4 GHz processor and 2GB RAM. To compute the loss exceedance curve, and therefore, the 

loss distribution, the reliability computations must be ran for multiple loss thresholds. In this 

respect, FORM is significantly more computationally efficient than MCS. This assessment is 

based on the condition that the number of simulation runs produces at least 100 expected failure 

events, and thus considered sufficient for comparison purpose (Mann et al. 1974; Melchers 

1999). Therefore, for large consequence thresholds indicative of more rare events, the required 

computation time using MCS increases, since the sample size must increase.  

It is noted that this study uses a crude MCS approach to compute simulation results. More 

advanced techniques, such as importance sampling, can reduce the simulation computation time. 

The computation times listed also depend on efficiencies in the code calculations developed to 

compute loss. Since the computations involving the variables presented in Section 4.1 are 

consistent between FORM and MCS, a relative comparison of computation time is considered 

adequate.  

Additionally, this study assesses the influence that spatial correlation in seismic intensity 

has on regional loss assessments (see Section 2.1). In Figure 5.4, loss exceedance curves are 
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computed using FORM for the same building portfolio and scenario earthquake, specific to three 

different cases: 1) spatially correlated residual terms and median      values, as also shown in 

Figure 5.3; 2) spatially correlated residual and      terms; and (3) without any spatial correlation 

considered. Note that these results are approximate, as can be seen in the comparison of FORM 

results with MCS in Figure 5.3. Also, results beyond 60% ΣBRC repair costs can be particularly 

sensitive to assumptions in the loss estimation process.   

 

Figure 5.4: Loss exceedance curves using FORM with and without spatial correlation 

considered between residual and      terms. 

Figure 5.4 shows that ignoring the spatial correlation between seismic intensities results 

in an overestimation of the probability of exceeding small losses and a dramatic underestimation 

of the probability of exceeding large losses. This is consistent with a reduced variability in 

regional loss, which relates to the mathematical relationship presented in Equation (2.2).  

When including correlation between spatially distributed     values, it can be seen that 

there is little change in results compared to when these terms are considered deterministic. This 

likely occurs because there is not a large variation in      values across the region. Therefore, the 
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variation in expected seismic intensities across the portfolio is not influenced greatly by the 

dispersion of     values. In addition, ground motion amplification factors specific to each site 

class (based on     ) are more consistent for lower building periods and higher spectral 

accelerations (ASCE 2010). Since there many census tracts characterized by mostly low- and 

mid-rise buildings subjected to high seismic intensities resulting from the scenario earthquake, 

the ground motion amplification is limited. The high consistency in      values and site 

amplification across the case study region provides a low dispersion in the resulting seismic 

intensities. This therefore limits the influence that spatial correlation between      has on 

regional loss variability. In order to conclusively evaluate the influence spatial correlation in soil 

properties has on regional loss assessments, a loss distribution should be evaluated for additional 

building portfolios that exhibit a larger variation in soil properties and building heights.  

5.4 Sensitivity Analysis 

Given the constraints listed in Section 4.4 and 5.1, retrofit alternatives are defined by 

building type, occupancy category, census tract, and either pre- or low-seismic design code 

levels. Disaggregating the information in this manner may guide the design of policies targeting 

certain groups of buildings for mitigation. To keep the reliability space manageable, building 

combinations are limited to those with a total of over 2,000 square feet of floor space per census 

tract. The sensitivity measure        in Equation (4.11) is evaluated to assess the cost-

effectiveness of retrofit for each vulnerable building combination relative to minimizing drift-

related losses, and retrofit schemes are prioritized accordingly.  

As noted in Section 4.4, the order and magnitude of sensitivity measures depends on the 

limit state threshold used to compute them. Therefore, retrofit prioritization varies based on the 
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loss threshold of interest. This threshold is chosen ideally as the desirable level of loss that is to 

be minimized in a portfolio for a future hazard event. It is emphasized that because the 

sensitivity measures used to prioritize retrofit are computed relative to changes in      only, 

retrofit prioritization is skewed relative to those building combinations that are more sensitive to 

drift-related damages. As mentioned in Section 4.4, a more comprehensive sensitivity analysis 

should also include a random variable for modeling resistance to acceleration-sensitive damage. 

In addition, there are other mitigation measures that do not affect structural response such as 

ceiling bracing, anchoring equipment, etc. Future inclusion of these parameters will support 

more effective prioritization of retrofit schemes for all building types.  

Figure 5.5 shows the top ten suggested total retrofit expenditures per building type given 

a budget of $50 million. For illustration purposes, these are arbitrarily based on reducing the 

probability of exceeding a loss threshold (   ) of 50% of the total building replacement cost 

(ΣBRC). In addition, the respective per-square-foot retrofit expenditures are shown, which 

provide the suggested retrofit spending normalized by the total vulnerable building area specific 

to each building type. The figure shows that most of the $50 million retrofit budget should be 

spent on mid-rise reinforced masonry structures designed to a low-seismic design code, RM1M 

LC ($12.2 million), and high-rise concrete shear wall buildings also designed to a low-seismic 

design code, C2H LC ($8.6 million). In addition to the highest total mitigation costs, these 

building types also assume relatively high per-square-foot suggested retrofit spending. This 

implies that RM1M LC and C2H LC not only represent a large percentage of floor area relative 

to the total floor area of vulnerable buildings (9.1 and 6.1%, respectively), but are also 

characterized by high sensitivities, on average, relative to other building types.  
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The per-square-foot retrofit expenditures are highest for high-rise, low-code, reinforced 

masonry buildings with pre-cast concrete diaphragms, RM2H LC ($13.85/sqft), and high-rise, 

low-code, concrete frame with unreinforced masonry wall buildings, C3H LC ($13.97/sqft). This 

occurs because the sensitivity analysis suggests mitigating 100% and 91.1% of the total floor 

area of RM2H LC and C3H LC for the case study portfolio given their high corresponding 

sensitivity measures. Thus, these building types represent the largest change in β relative to each 

dollar of retrofit, on average, relative to the other vulnerable building types. Comparing the high 

per-square-foot retrofit spending to the low suggested total retrofit expenses suggests that RM2H 

LC and C3H LC have a small percentage of floor area to be retrofitted compared to the total 

floor area of vulnerable buildings (0.2% and 1.1%, respectively).  

 

Figure 5.5: Top ten recommended retrofit expenditures by building type given a retrofit budget 

of $50M and retrofit prioritization based on a sensitivity analysis with TLF = 50% ΣBRC. 

Figure 5.6 shows loss exceedance curves relative to the total repair cost of vulnerable 

buildings within the case study region, given the scenario earthquake presented in Section 5.2. 

Given retrofit budgetary constraints of $50 million, $100 million and $150 million, the highest 
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ranked vulnerable building types are considered for retrofit until each budget limit is met. 

Results in Figure 5.6(a) are based on retrofit prioritization relative to a loss threshold of 50% 

ΣBRC while Figure 5.6(b) is based on different retrofit prioritization orders corresponding to a 

    equal to each level of loss listed on the x-axis.  

 

Figure 5.6: Loss exceedance curves for vulnerable buildings with no retrofit and a retrofit 

budget of $50M, $100M and $150M. Retrofit prioritization is based on a sensitivity analysis with 

(a) TLF = 50% ΣBRC and (b) TLF specific to each loss threshold. 

It can be seen in Figure 5.6(b) that the effectiveness of retrofit per dollar spent generally 

decreases as the budget increases for all loss thresholds. This is because a unique retrofit 

prioritization is considered for each loss threshold and the loss exceedance curve is computed 

accordingly. For each budget constraint, the most cost-effective building combinations are 

considered first for retrofit. The cost-effectiveness of retrofit then decreases as the retrofit budget 

increases and as more building combinations are considered. In contrast, Figure 5.6(a) shows that 

the chosen retrofit scheme may not necessarily be most effective in reducing overall loss 

exceedance for all thresholds because it is based only on sensitivity measures computed relative 
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to a loss threshold (   ) of 50% ΣBRC only. Results in Figure 5.6(b) are technically unrealistic 

given that only one retrofit prioritization scheme would be chosen for a region. This figure, 

however, shows the importance of choosing the desirable level of loss to be minimized when 

optimizing retrofit prioritization and portfolio loss reduction.  

  

Figure 5.7: Loss exceedance curves for vulnerable buildings with no retrofit and a retrofit 

budget of $50M, $100M and $150M. Retrofit prioritization is based on a sensitivity analysis 

with TLF specific to each loss threshold, and with and without spatial correlation included 

between seismic intensities. 

The final step in this study is performing a sensitivity analysis without spatial correlation 

included between the seismic intensities across the case study region. This is used to investigate 

the influence that these correlations, detailed in Section 2.1, have on retrofit prioritization. Loss 

exceedance curves are shown in Figure 5.7 for retrofitted building combinations prioritized 

based on sensitivity measures computed with and without correlation. Once building 

combinations are prioritized for retrofit, the FORM assessment includes spatial correlation to 

compute the distribution of loss for both cases. These curves are evaluated for the sample 
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portfolio post-retrofit, assuming a retrofit budget of $50M, $100M and $150M. For illustration 

purposes, sensitivity measures are calculated for each loss threshold.  

When spatial correlation is not included, the reduction in failure probability is generally 

less than when spatial correlation is considered. Correlation has a large influence on the 

computed reliability based on Equation (4.10), and consequently, on the corresponding 

sensitivity measures. This discrepancy in sensitivity calculation thus influences the order of 

building types for retrofit and therefore, the cost-effectiveness of retrofit given budgetary 

constraints. 

This section demonstrates the use of a sensitivity analysis, computed directly within 

FORM, for prioritizing retrofit strategies that may be most cost effective for reducing portfolio 

loss. The results suggest that reinforced masonry buildings and concrete frame with unreinforced 

masonry wall buildings provide the largest reduction in portfolio loss per dollar spent on retrofit. 

In addition, it is suggested that to achieve more optimal retrofit prioritization, it is essential to: 1) 

perform a sensitivity analysis relative to the desirable level of loss to be minimized; and 2) 

include spatial correlation when computing sensitivity measures. Note that this study prioritizes 

retrofit only relative to the cost-effectiveness of each mitigation strategy in reducing drift-related 

losses (see Section 4.4). While post-retrofit portfolio results shown in Figure 5.5 – 5.7 include 

upgrades to acceleration-sensitive building components as well, future work could include a third 

variable to compute sensitivities (for prioritizing retrofit) directly related to minimizing 

acceleration-related damage. In addition, other factors that may influence retrofit decision-

making include willingness to pay for retrofit, incurred losses due to retrofit and social 

importance of vulnerable buildings. It is also noted that the results were computed for a single 
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scenario earthquake, and a more complete picture would be obtained from selecting a suite of 

earthquakes, or even incorporating a probabilistic analysis of seismic hazard. 
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 Community Resilience Chapter 6.

6.1 Resilience Introduction and Background 

Thus far, the proposed framework presented in this dissertation has quantified seismic 

risk by estimating the distribution of seismic-induced structural and nonstructural economic loss 

for a suite of buildings. There are, however additional response and recovery parameters that, 

when paired with losses that occur immediately following a hazard, define the resilience of a 

system. Given the additional information provided on the recovery of a system, resilience 

parameters are considered equally important to loss estimates in hazard management decision 

making (Cimellaro et al. 2010).  

According to the National Academies (2012), resilience is the ability to prepare and plan 

for, absorb, and recover from adverse events. When focusing on resilience in light of natural 

hazards, the United Nations (2005) defines resilience as the “capacity of a system, community or 

society potentially exposed to hazards to adapt, by resisting or changing in order to reach and 

maintain an acceptable level of functioning and structure.” According to Mileti (1999), a disaster 

resilient community must not only be able to withstand losses to a tolerable level, but also 

rebuild and recover within an acceptable time frame. 
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The concept of seismic resilience at a community scale began gaining importance in 

hazard management in the late 1990’s when the Federal Emergency Management Agency 

(FEMA) initiated a series of community-based pre- and post-disaster (i.e., before and after an 

earthquake occurrence) mitigation and recovery programs. These programs illustrate how 

communities can plan for hazard mitigation and disaster recovery through education programs, 

hazard assessments and mitigation projects (FEMA 2000). FEMA also issued the Disaster 

Mitigation Act of 2000 and the Disaster-Resistant Universities Program, with the goal of 

increasing hazard resilience at the state and local level as well as within colleges and universities 

(FEMA 2003).  

Regional hazard resilience also gained international prominence when the United Nations 

adopted the Hyogo Framework in 2005 (United Nations 2005). This platform launched a series 

of government programs to improve hazard resilience at both the national and community level. 

These programs were developed to promote strategic approaches for reducing hazard-induced 

risks and increase resilience through international and regional collaboration, education 

programs, and mitigation and management policies. 

Despite increasing recognition on the importance of seismic resilience in hazard 

management, quantifying resilience has been met with many challenges. This likely arises from 

the complex scope of the definition of resilience. The term “resilience” must account for the 

numerous sources and characteristics of loss as well as the social, economic and organizational 

issues within post-disaster recovery. Given these complexities and differing opinions on 

resilience, a universally agreed-upon method for measuring resilience is still lacking. Many 

studies within the past decade, however, have proposed various methodologies to measure 

seismic resilience using quantitative models, empirical algorithms, and professional opinion.  
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These existing methods, particularly specific to structural system and community 

resilience, are outlined in the following section. Advantages and limitations to the various 

approaches are highlighted. A new method to quantify seismic resilience is then proposed, 

utilizing the FORM-based framework presented earlier. This extended method is applied to 

assess the resilience of the San Francisco portfolio presented in Chapter 5. Finally, a sensitivity 

analysis is performed to evaluate the cost-effectiveness of retrofit and restoration mitigation 

measures in terms of increasing the seismic resilience of a portfolio.  

6.2 Quantifying Seismic Resilience 

The measurement of resilience is important for understanding, assessing and improving 

the seismic resilience of infrastructure systems (Bruneau et al. 2003). By identifying and 

evaluating the inter-related dimensions of resilience, such as the physical, economic and social 

aspects of a region, quantitative measures can help address why some communities may be more 

resilient than others. Quantifying resilience is also necessary to identify needs for improved 

resilience, and how to achieve increased resilience. These applications require quantifying the 

magnitude and importance of the different components of a system that influence resilience 

(National Academies U.S. 2012). A consistent metric is also needed to combine each facet into a 

resilience measurement.  

According to Chang and Shinozuka (2004), earthquake loss estimation tools provide a 

natural starting point for quantifying community resilience. As discussed in Section 3.1, these 

methods capture the regional impacts of earthquake scenarios based on economic losses, and in 

many cases, fatalities and injuries. Loss estimation requires information on the seismic hazard, 
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spatial distribution of an infrastructure system, and the building damage and loss modeling 

assumptions.  

While these parameters relate to community resilience, the notion of resilience suggests a 

much broader framework, based not only on immediate consequences, but also on time-

dependent recovery efforts. The recovery process usually depends on many different criteria, 

including the availability of technical and human resources, societal preparedness, economic 

conditions and public policies (Cimellaro et al. 2010; NIBS 2012) 

Bruneau et al. (2003) developed one of the first conceptual frameworks for measuring 

resilience, based on four inter-related dimensions: technical, organizational, social and economic. 

The technical dimension of resilience describes how well physical systems perform given an 

earthquake. Organizational resilience refers to emergency response and the ability to carry out 

critical functions. The social dimension of resilience represents the social impact of losses to 

critical facilities. Similarly, economic resilience quantifies the direct and indirect economic 

losses given an earthquake.  

In addition, Bruneau et al. (2003) suggested that resilience can be characterized by four 

main properties: robustness, rapidity, redundancy and resourcefulness. These inter-related 

parameters are defined by Bruneau et al. (2003) as follows:  

 Robustness: strength, or the ability of components or systems to withstand a given level 

of stress or demand without suffering damage or loss of function. 

 Rapidity: the capacity to meet priorities and achieve goals in a timely manner in order to 

contain losses and avoid future disruption.  

 Redundancy: the extent to which components or systems are capable of satisfying 

functional requirements in the event of disruption, damage, or loss of functionality. 



  

86 

 

 Resourcefulness: the capacity to mobilize resources when conditions exist that threaten to 

disrupt some component or system of interest. 

With reference to resilience, there is a strong correlation between redundancy and 

resourcefulness, because additional resources can create new redundancies in a system. In 

addition, changes in redundancy and resourcefulness can greatly influence the robustness and 

rapidity of a system (Cimellaro and Arcidiacono 2013). For example, additional emergency 

response resources may increase the efficiency or rapidity of system recovery. Since 

resourcefulness and redundancies are used to characterize rapidity and robustness, many studies 

measure resilience primarily in terms of the latter two. 

To better understand these inter-related dimensions and properties used to quantify 

resilience, Table 6.1 shows how each can be applied to the seismic resilience assessment for a 

suite of buildings. 

Table 6.1: Four dimensions of resilience and example applications to a building portfolio 

   
Dimension of 

Resilience 

Performance Measure for 

a Building Portfolio Robustness Rapidity 

Technical Physical condition of 

buildings 

Number of buildings 

damaged and 

magnitude of damage  

Time required to repair 

and replace damaged 

structures 

Organizational The ability of damaged 

buildings to perform their 

intended functions  

Extent of downtime 

associated with 

damaged buildings 

Time required to restore 

usability of buildings 

Social People and businesses 

displaced due to building 

damage 

How many people and 

business are displaced 

Time required for people 

and business to return  

Economic Economic losses Magnitude of 

economic losses 

Time required to repair 

building functionality 

and reduce time-

dependent loss 
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While the framework proposed in Bruneau et al. (2003) provided a detailed conceptual 

approach for measuring seismic resilience of infrastructure systems, it did not offer an explicit 

procedure to quantify resilience. It did, however, lead to many other studies for measuring 

resilience, and for extending and modifying the framework that defines it. 

Chang and Shinozuka (2004) developed a quantitative measurement of seismic resilience 

related to the potential losses provided by earthquake loss estimation models. In this framework, 

resilience is quantified based on the four dimensions of resilience proposed by Bruneau et al. 

(2003), and categorized with a robustness and rapidity standard. In contrast to previous resilience 

frameworks, this study reframes the resilience measures in a probabilistic context by measuring 

the reliability with which a system will meet a minimum acceptable threshold of resilience.  

Bruneau and Reinhorn (2007) were the first to quantify resilience based on the 

relationship between seismic performance, fragility curves, and resilience functions. This 

approach is applied to measure the resilience of an acute care facility system with respect to the 

percentage of healthy population and to the treatment capacity of the total hospital infrastructure. 

Cimellaro et al. (2010) added to the resilience measurement of healthcare facilities with a 

quantitative method that evaluates seismic resilience based on dimensionless analytical resilience 

functions. Their model combines loss estimation and recovery models, which are applied to a 

standard California hospital building.  

Renschler et al. (2010) extended resilience quantification to holistically measure the 

hazard resilience of communities. Quantitative and qualitative models were developed based on 

seven identified dimensions of community resilience represented by the acronym ‘PEOPLES’: 

Population and Demographics, Environmental/Ecosystem, Organized Governmental Services, 
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Physical Infrastructure, Lifestyle and Community Competence, Economic Development, and 

Social-Cultural Capital.  

The PEOPLES approach provided the basis for quantitative models developed in 

Cimellaro and Arcidiacono (2013), which are used to continuously measure the functionality and 

resilience of communities against extreme events. In this approach, resilience measures are 

suggested to be used as a performance based-metric for structural design and refer to this new 

design methodology as Resilience-Based Design (RBD). This method is based on optimizing the 

resilience of structures and their surrounding region, as opposed to focusing solely on the 

performance of individual structures.  

 This review of resilience quantification literature, although not exhaustive, brings to light 

distinct characteristics and potential limitations in the presented methodologies. Many existing 

approaches only provide a conceptual framework for identifying key properties of resilience to 

be quantified. While these studies do contribute to the further understanding of quantifying 

resilience, explicit quantification is the next necessary step to utilize resilience measures in 

hazard management. Those methods that do quantify resilience analytically often only consider 

expected value of losses and other resilience metrics, rather than preserving the uncertainties 

surrounding these. As discussed in Chapter 2, regard for only the expected value of losses 

suppresses the system effects that significantly influence the variance of regional loss. This 

includes spatial correlations that may exist between the performances of individual components 

within a system. Furthermore, most resilience approaches are tailored to quantify the resilience 

of infrastructure systems, community social structures or healthcare facilities, as opposed to 

generic building portfolios, which are the focus of this dissertation. 
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In addition to quantifying resilience, improved hazard management also requires an 

investigation of increasing future seismic resilience. To accomplish this, pre-disaster conditions 

and post-disaster recovery must be integrated into a common framework (Chang and Shinozuka 

2004). This aggregated assessment is necessary due to the correlated relationship between loss 

and recovery. As such, a comparative study can be used to evaluate the effectiveness of various 

pre- and post- disaster loss reduction measures, including structural retrofit and increased 

efficiency in post-disaster repair and recovery. Many existing studies capture the change in 

system resilience given structural retrofit. To the author’s knowledge, however, there is yet to be 

a framework that explicitly compares the effectiveness of structural retrofit with changes in post-

disaster restoration efficiency.  

 The method presented in the following section quantifies the resilience of a building 

portfolio based on its performance over time, following a hazard. The framework utilizes the 

FORM-based method presented in this dissertation to probabilistically evaluate varying 

thresholds of seismic resilience. With this approach, an additional random variable is added to 

the reliability problem to model the variability in recovery time. In addition, a sensitivity analysis 

is performed to evaluate and compare the cost-effectiveness of increasing portfolio resilience 

based on pre-disaster retrofit and post-disaster restoration schemes.  

6.3 Extension of the Proposed FORM Method 

The basis for the resilience quantification used in this study is adapted from the 

techniques presented in Bruneau et al. (2003) and Cimellaro et al. (2010). Using the FORM-

based approach presented earlier in this dissertation, a refined method is then presented, which 

addresses many of the existing limitations outlined in Section 6.2. This proposed method offers 
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three important new capabilities over the previous techniques used to quantify resilience: 1) it 

measures resilience in a probabilistic context; 2) it accounts for spatial correlations between 

building performances; and 3) it provides sensitivity measures for prioritizing both retrofit and 

post-disaster restoration measures used to increase the seismic resilience of a building portfolio. 

While mitigation often refers to risk-reducing measures performed prior to an earthquake, it is 

used in this chapter to refer to any measure performed pre- or post-earthquake to increase 

regional resilience. 

In this method, each dimension of resilience is combined and tabulated into a common 

metric for representing the performance of a system (e.g., economic loss given a hazard) over 

time,     . Resilience (R) is defined graphically in Figure 6.1 as the normalized shaded area 

under this dimensionless function. This is mathematically defined by the following equation 

(Bruneau et al. 200    imellaro et al. 2010  Ouyang and  ue as-Osorio 2012): 

 

     ∫
    

   
  

   

  

  
(6.1)  

where    is the time the earthquake occurs and     is the total recovery time to restore system 

performance. Accordingly, the loss of resilience (LoR) is measured as the amount of expected 

degradation in quality over time. This corresponds to the difference between a normalized 

resilience of 100% and the reduced resilience given an earthquake event, and can be written as 

follows:  

 
             

(6.2)  

This framework is based on the notion that the system performance, expressed as a 

percentage, varies in time ranging from 100% (assuming full performance prior to the 
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earthquake) and 0% (zero performance). The scheme, shown in Figure 6.1, assumes an 

earthquake occurs at time   , and that the system performance is reduced immediately to   . This 

initial reduction in performance relates to the robustness of a system     , expressed as a 

percentage of system performance based on the predicted total losses (TL):  

 

          
  

   
  

(6.3)  

where     is considered the potential total loss associated with a 100% reduction in system 

performance given an earthquake event and    corresponds with   .  

 

Figure 6.1: Conceptual framework for resilience measurement. 

 Cimellaro et al. (2010) mathematically define the rapidity of recovery (    as the slope of 

the performance restoration curve during the post-disaster recovery time. This can be written as: 

 

   
     

  
 (6.4)  

Rapidity is shown in Figure 6.1 to vary between    and    , based on the rate of restoring 
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system performance over time.  

The shape of the performance restoration curve is a function of changes in system 

performance due to repair and recovery efforts. The time    represents an intermittent time 

between an earthquake occurrence and full restoration time, such as time associated with loss of 

building function. The estimation of time associated with loss of building function and full 

recovery, and the uncertainty surrounded each, will be discussed in Section 6.3.2. Figure 6.1 

assumes that system performance is restored to the pre-earthquake level of baseline performance 

(curve B). It may be desirable, however, to exceed this level of performance in the repair and 

recovery process, subsequently decreasing the vulnerability of structures to a similar future 

hazard (curve A). Conversely, the system may also suffer permanent losses, preventing it from 

reaching pre-earthquake baseline performance (curve C).  

 The next section provides a brief overview of the sources and estimation of immediate 

and time-dependent losses used to quantify the robustness of a system. Many of these additional 

losses are a function of the total building recovery time and loss of function time. These post-

disaster periods are modeled probabilistically by a random variable, as discussed in Section 

6.3.2. Using this added variable and the random variables presented in Section 4.1, Section 6.3.3 

describes the proposed preliminary evaluation of regional seismic resilience. The sensitivity 

analysis used to prioritize cost-effective mitigation measures to increase portfolio resilience is 

also presented.  

6.3.1 Loss Function 

The total losses computed in this study are divided into two types: Direct losses that 

occur during or immediately after a hazard event and indirect losses that are considered to be 

dependent on the period of recovery following an event. Direct losses include: 
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 Structural repair and replacement costs (  ) 

 Nonstructural acceleration- and drift-sensitive repair and replacement costs (     and 

    , respectively) 

 Building contents losses (  ) 

 Building inventory losses (     ) 

Time-dependent indirect losses include: 

 Relocation expenses (   ) 

 Loss of business income (   ) 

 Loss of rental income (   ) 

 The computation for each type of loss is adapted from the HAZUS-MH methodology 

given its availability and applicability to a disaggregated building data set (NIBS 2012). The use 

of other, more detailed loss functions, however, is encouraged as they become available. Similar 

to the repair costs computed in Section 4.2, each is computed based on four damage states 

(slight, moderate, extensive and complete). The losses are then summed over a set of 36 

representative building types (  ), 33 occupancy categories (  ) and high-, moderate-, low- and 

pre-seismic design code levels. A description and computation of structural and nonstructural 

losses (  ,      and     ) are given in Section 4.2. A brief overview of the additional losses 

considered in this section and how they are computed, is provided below.  

Each additional loss function includes the probability that a specified building type is 

within each structural or acceleration-sensitive nonstructural damage state (        and 

         ). Details on computing these terms using the random variables      and      are 

provided in Section 4.2. In addition, each loss function includes a damage ratio used to scale the 
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value of contents, inventory or potential revenue. These parameters are also taken from the 

HAZUS-MH methodology, based on building occupancy category and inventory data. Damage 

ratios are considered a function of the total replacement cost associated with each type of loss. 

For additional details on the parameters involved in each loss computation, see NIBS (2012).  

Content Losses 

It is assumed that the majority of damage to building contents, such as furniture, 

electronics, etc., takes place because of overturned cabinets or tables. According to the HAZUS-

MH methodology, this is largely a function of seismic-induced accelerations (NIBS 2012). As 

such, damage to nonstructural acceleration-sensitive components is considered a good indicator 

for building content damage. The following equation is used to estimate content losses:  

 

    ∑ ∑ ∑                            

 

    

  

    

  

    

 (6.5)  

where       is the contents replacement value for occupancy    and building type   , 

          is the probability that each building type    is in nonstructural acceleration damage 

state   , and          is the contents damage ratio for each occupancy category    in 

nonstructural acceleration damage state   .  

Business Inventory Losses 

In addition to basic contents, many businesses have additional inventory that may yield 

future revenue. The value of this inventory, corresponding to the potential loss, depends on the 

type of business and size of building. HAZUS-MH estimates this loss from annual sales 

associated with each occupancy category. Similar to content damage, building inventory damage 
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is associated with the likelihood of damage to nonstructural acceleration-sensitive components. 

Therefore, building inventory loss is given by:  

 

       ∑                 ∑ ∑                    

 

    

  

    

  

    

 (6.6)  

where     ,       and      are the floor area, annual gross sales per unit area and business 

inventory as a percentage of annual gross sales, respectively, for occupancy   .           is the 

ratio of inventory damage for each    in nonstructural acceleration damage state   .       and 

     are provided in NIBS (2012) relative to each occupancy category.  

Relocation Expenses 

 After an earthquake, many buildings may be unfit for occupancy or to be used for their 

intended purposes. In this case, there are expenses that relate to disruption costs and additional 

rental costs specific to each occupancy category and building size. For example, a high-tech 

industrial building will likely experience much higher disruption expenses than a multi-family 

residential building. These relocation expenses are computed as:  
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 (6.7) 

where       is the percentage of buildings that are owner occupied,      is the disruption cost and 

       is the additional rental cost for occupancy   , and     is the recovery time for occupancy    in 

damage state   .  
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Loss of Business Income 

The downtime associated with building damage also hinders the generation of potential 

income for businesses. This income includes business-related profits, supplier and royalty 

payments, labor compensation, bank loan and interest payments, etc. HAZUS-MH computes 

income losses as a function of expected business income, the likelihood of structural damage and 

expected downtime. Income loss is calculated as follows:  

 

     ∑                    ∑ ∑                    

 

    

  

    

  

    

 (6.8)  

where      is the recapture factor related to a reduction in business-related losses for working 

overtime,       is the income per day and per square foot, and           is the loss of function 

time for occupancy    in damage state ds.  

Loss of Rental Income 

In addition to business-related income losses, additional post-disaster losses are 

associated with disruptions in rental income for residential, commercial and industrial buildings. 

Loss of rental income is computed as follows: 

 

     ∑ (  
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 (6.9)  

 

 The total loss, used to compute system performance is therefore computed as the 

summation of direct losses and time-dependent indirect losses: 
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          (6.10)  

where: 

 
                         (6.11)  

                
(6.12)  

6.3.2 Repair and Recovery Time 

The loss functions outlined above are based on two types of post-disaster restoration 

times:     for total building recovery time and      for the time that a facility is unable to 

conduct business. Total building recovery times are a function of post-disaster cleanup and 

repair, along with any delays in decision-making, financing, inspection, etc. that may accompany 

the recovery process. These are often accompanied by a large amount of uncertainty as some 

businesses may accelerate repair and reopen quickly after an earthquake. Others, meanwhile, 

may close for an extended period of time due to disruptions in the recovery process.      is 

considered to be shorter than    , because businesses are often able to relocate temporarily to 

alternative locations during cleanup and repair.  

The HAZUS-MH loss estimation methodology provides median times for total building 

recovery specific to each representative occupancy category (NIBS 2012). It also provides 

factors for computing the occupancy-specific      as a function of    . While these data do 

provide a starting point for incorporating the time trajectory of recovery into regional resilience 

models, HAZUS-MH rehabilitation times have been criticized as being too rudimentary in 

modeling building recovery time (Miles and Chang 2006). One reason for this is because 
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provided median times assume that all buildings, on average, are recovered within two years. 

This is not always realistic, however, as in the case of the Loma Prieta Earthquake where 50% of 

the damaged housing units remained unrepaired or un-replaced four years after the earthquake 

(Comerio et al. 1994).  

Inclusion of the uncertainty associated with each post-disaster recovery period helps to 

build a more realistic model of restoration into this study’s proposed resilience assessment. This 

idea has been seen previously in ATC-13 (1985), which adds results from a questionnaire 

eliciting expert evaluations on post-disaster recovery times. These results were used as a starting 

point for the median recovery times used in HAZUS-MH. In the ATC-13 study, experts in 

various earthquake engineering disciplines were asked to provide estimates of the time required 

to restore function for each occupancy category to 30%, 60% and 100% of the normal facility 

function for various levels of damage. Weighted mean and standard deviations were computed 

based on responses and levels of participant expertise.  

The results from ATC-13 are used to model the uncertainty in     for this study. The 

recovery time variable is then used to compute the probability distribution of time-dependent 

losses in Equations (6.7) – (6.9). It is assumed that the uncertainty associated with total recovery 

time is represented best by the standard deviations listed in ATC-13 for restoring building 

function to 100%. While median values and standard deviations associated with     are provided 

for each damage state used in this study, introducing a random variable to model each of these 

would increase the size and complexity of the reliability problem significantly. Therefore, to 

minimize the added complexity, a single random variable is used to model the distribution of 

recovery time associated with the complete damage state for each occupancy category. 

Deterministic factors are introduced to compute the corresponding recovery times for each 
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additional damage level. Post-disaster loss of function time (    ) is also computed directly from 

the     random variable using factors provided in NIBS (2012).  

 Modeling the recovery path assumed by Q(t) in Figure 6.1 is even more complex given 

the uncertainties and interdependencies within a system’s recovery process. Limited literature 

exists on comprehensive and analytical recovery models, likely due to this complexity and 

uncertainty. Three typical recovery functions that are often assumed in resilience studies are 

based on linear (Bruneau and Reinhorn 2007; CRSI 2011; Zobel and Khansa 2011), 

trigonometric (Chang and Shinozuka 2004) and exponential (Cimellaro et al. 2010; Gilbert 2010; 

Kafali and Grigoriu 2004) functions as shown in Figure 6.2. 

 

Figure 6.2: Recovery function curves: (a) linear, (b) trigonometric and (c) exponential. 

Each recovery function relates to a system’s response and recovery over time, and 

therefore relate to pre-disaster parameters such as preparedness and economic activity. For 

example, the exponential recovery function may be used when there is a high initial rate of 

recovery given a large influx of labor, material, and economic resources. In this case, the rapidity 

of recovery then decreases over time as there is a decreased availability in resources. The 

trigonometric function may be used when there is slow recovery following a hazard because 

there is a lack of preparedness or available resources. Rapidity increases, however, as the system 
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becomes organized and resources become available. The linear function typically is applied 

when there is limited information for preparedness, response or available resources following a 

hazard. The resilience assessment proposed in this dissertation will assume the linear recovery 

function for two reasons: 1) due to lack of data on regional preparedness and response; and 2) to 

satisfy the objective of generalizing the proposed method for different portfolios and regions.  

The recovery time variable (   ) and linear recovery function used in this study are 

considered a preliminary model for capturing the time trajectory of recovery. These may, 

however, be associated with significant assumptions and potential error, thus requiring more 

investigation on community-specific recovery processes to provide a more accurate resilience 

assessment. Additional assumptions are also made by considering a deterministic relationship 

between a single random variable used to model recovery time at the complete damage state and 

recovery times for other damage levels. Given that the primary contribution of this study is the 

application of the FORM-based method to predict portfolio resilience, rather than developing a 

comprehensive model for recovery time, the use of a single recovery time variable specific to 

each occupancy category is considered sufficient.  

6.3.3 Resilience Evaluation 

The loss of resilience, computed in Equation (6.2), is used in the following equation to 

evaluate the probability of exceeding a resilience loss threshold (    ): 

 
                    (6.13)  

Similar to Equation (4.10), FORM is used to compute the probability of exceeding varying LOR 

thresholds, and the resulting failure probabilities are used to compute a distribution of resilience 

loss.  
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Figure 6.1 suggests that an increase in seismic resilience can relate directly to an increase 

in the robustness or rapidity of a system. Changes to these parameters and the resulting reduction 

in system resilience loss are depicted in Figure 6.3. For illustrative purposes, an increase in 

system rapidity (∆Ra) is based on a constant drop in system performance (  ) given an 

earthquake event.  

A sensitivity analysis using FORM is performed to evaluate and prioritize the 

effectiveness of changes to the robustness and rapidity of building performance relative to an 

increase in community seismic resilience. As defined previously, a change in robustness relates 

to a change in component or system strength. In this study, structural retrofit is considered to 

provide an increase in robustness for when the structure is subjected to earthquake loading. 

Using the approach presented in Section 4.4, sensitivity measures are used to prioritize the 

retrofit of vulnerable buildings based on the change in seismic resilience per dollar of retrofit. 

The sensitivities are computed using Equation (4.11), but          is computed relative to the 

limit state in Equation (6.13).  

  

Figure 6.3: Conceptual illustration of changes in measured resilience as a function of increased 

robustness (   ), increased rapidity (   ) and increased robustness and rapidity. The model 
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used in this study assumes a linear recovery function. 

As seen in Figure 6.3, increasing seismic resilience is also a function of an increase in 

post-disaster system rapidity. This increase may be associated with changes in the restoration 

period following an earthquake including, but not limited to: 1) increased preparedness in the 

emergency response, cleanup and building repair process; 2) decreased time to obtain financing, 

permits or design; and 3) more efficient decision-making. In this study, a more efficient response 

and recovery following an earthquake is considered represented directly by a decrease in 

recovery time. This decrease is modeled by a change in the random variable     for each 

building combination. Using this additional variable, sensitivity measures are computed based on 

the increase in seismic resilience per marginal change in recovery time.  

 It is often desired to achieve an increase in seismic resilience in the most efficient and 

cost-effective manner. Therefore, a comparative assessment in terms of increasing resilience 

through changes in robustness, rapidity or a combination of the two is required. Using the 

sensitivity measures computed relative to pre-disaster retrofit and changes in post-disaster 

recovery time, a change in the reliability index specific to a resilience threshold may be 

compared directly to the corresponding retrofit cost or change in recovery time. Nevertheless, 

this comparison would be more useful if the loss reduction measures were represented by a 

common unit of cost. Assigning a monetary value to changes in recovery time is a complex task, 

however, because there are many components that influence the recovery process, each 

surrounded by large uncertainties.  

 In order to perform such a comparative assessment, this study assumes that money 

invested in increasing the rapidity of system recovery relates directly to a change in recovery 

time following an earthquake occurrence. For example, more money may incentivize faster 
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procurement of required materials and labor for repair, or in more efficient repair design, 

construction, decision-making, etc. Sensitivity measures associated with a change in reliability 

for a resilience threshold, relative to the cost allocated to decreasing post-disaster recovery time 

(     ) are computed as:  

 
  

       

 
  

     
 

     
       

 (6.14) 

where          is the sensitivity measure computed to find the design point in a FORM 

assessment by differentiating the reliability index relative to     for building i. The term 

            represents the marginal change in     for each dollar spent to decrease the full 

restoration time following an earthquake.  

For a preliminary assessment, it is assumed that doubling the repair cost for a building 

will reduce recovery time by 50%. This relationship is assumed to be linear, and considered 

consistent for each building combination, based on building type, seismic design code era and 

occupancy category. With this assumption, the incremental change in     per dollar spent on 

reducing recovery time can be approximated as: 

 
    
      

 
       

  
 (6.15) 

where    is the total repair cost associated with structural, nonstructural drift-sensitive and 

nonstructural acceleration-sensitive damage. These total repair costs are considered    in 

Equation (4.6) prior to the introduction of additional immediate and time-dependent losses in this 

chapter. It is stressed that this is only a preliminary measurement of the cost associated with a 

change in post-disaster repair time. This cost may vary depending on building material, location, 
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occupancy, etc. and also based on post-disaster recovery factors such as demand surge (Olsen 

and Porter 2011). Further investigation is required to more accurately assign a monetary value to 

this change in recover time. 

Using the proposed sensitivity measures,        computed using Equation (4.11) and 

          computed using Equation (6.14), pre- and post-earthquake loss reduction measures 

can be prioritized based on the increase in portfolio seismic resilience per dollar spent. This can 

provide valuable information for decision makers for finding the optimal balance of allocating 

money to structural retrofit and/or to post-disaster recovery measures.  

 The method presented in this section offers a preliminary tool for quantifying seismic 

resilience for a building portfolio and identifying measures to increase resilience. A more 

comprehensive assessment will need to consider the influence the relationship between building 

assets over time has on time dependent losses. This is outside the scope of this dissertation, 

because it depends on the complex, interdependent system of building resource supply and 

production availability and alternatives within a portfolio. Details on the parameters involved in 

this type of computation are included in NIBS (2012). Such information is not included in the 

building inventory data used in this study.  

A more complete resilience framework should consider fatalities and injuries resulting 

from a hazard. While it is possible to include the estimation of fatalities into this method, the 

scope of this study is restricted to only monetary losses. Future research could focus on including 

hazard-induced fatalities and injuries into the results, however, the controversy surrounding the 

concept of assigning a monetary value to each fatality must be considered.  

 In addition to building-related measures, evaluating the consequences to other 

infrastructure units can provide a more extensive framework to quantify regional resilience. This 
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may include roadway networks, utility systems or emergency response lifelines, as well as the 

correlation between these systems. These can be evaluated in a similar manner to the building 

portfolio resilience assessment, but with different variable inputs specific to the infrastructure 

system, and consideration correlation between system performances. 

6.4 Case Study 

 The resilience quantification procedure described above is now applied to the San 

Francisco building portfolio introduced in Section 5.1. The portfolio is subjected to the scenario 

earthquake presented in Section 5.2, assuming median      values and spatially correlated 

residual terms at each census tract. Given the building inventory constraints listed in Section 5.1 

and the additional     random variable, the resilience evaluation consists of over 4,500 random 

variables. 

 Results in the form of loss exceedance curves are shown in Figure 6.4. These are 

computed using FORM and MCS with respect to a range of loss of resilience (LoR) thresholds 

listed on the x-axis. Results are also shown without spatial correlation in order to evaluate the 

influence that correlation between sites may have on regional seismic resilience studies. 

Although the FORM approach yields a similar trend in results to those obtained using 

MCS, there are notable deviations. When compared to the loss exceedance curves shown in 

Figure 5.3 for structural and nonstructural losses, it is observed that a larger error is associated 

with the FORM computation for the resilience-based results, particularly for the larger LoR 

thresholds. As discussed in Section 4.5, these errors are likely due to nonlinearities in the limit 

state surface not captured using FORM. When there is a large range of values random variables 

can assume to satisfy a given limit state constraint, this will often be associated with considerable 
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limit state nonlinearity. The resilience-based assessment has 50% more random variables 

compared to the loss assessment in Chapter 4 and Chapter 5, which are used to capture the 

variability in recovery time. Since each of these additional variables are considered independent 

from others, more nonlinearity will likely occur in the resulting limit state surface, which leads to 

more error in the FORM results. Figure 6.4 and Figure 5.3 do show, however, that the proposed 

FORM method does provide a reasonable approximation to the much more computationally 

intensive simulation approach. Sources of limit state nonlinearity that can potentially be limited 

for improvement to FORM results are identified in Section 4.5.  

 

Figure 6.4: Loss exceedance curves capturing loss of portfolio resilience using FORM and 

MCS given the scenario earthquake outlined in Section 5.2.  

Additionally, it is observed that neglecting the spatial correlation that exists between 

seismic intensities results in an overestimation of the probability of exceeding small resilience 

losses and a dramatic underestimation of the probability of exceeding large resilience losses. 

This emphasizes the importance of considering spatial correlation when quantifying portfolio 

resilience as a probability distribution.  
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The time required to compute the exceedance curves in Figure 6.4 using FORM took 

considerably less time than with MCS. For example, the MCS results for a LoR threshold of 40% 

took about 20 minutes to compute. By comparison, optimization required by FORM took 

approximately 60 seconds on a personal computer with a 2.4 GHz processor and 2GB RAM. To 

compute the loss exceedance curve, and therefore, the distribution of LoR, the reliability 

computations must be ran for multiple LoR thresholds. The required computation time for MCS 

also increases for larger consequence thresholds indicative of more rare events, because the 

sample size must also increase. In these respects, FORM is significantly more computationally 

efficient than MCS.  

In the second part of this case study, sensitivity measures relative to retrofit and 

restoration are computed in order to prioritize mitigation measures for increasing the seismic 

resilience of the portfolio. These measures are evaluated for all vulnerable building combinations 

designed to a pre- or low-seismic design code level and a total floor area greater than 2,000 

square feet per census tract. As noted in Section 4.4 and 5.4, the order and magnitude of 

sensitivity measures depends on the limit state threshold used to compute them. As such, 

mitigation prioritization and the resulting post-mitigation LoR exceedance probability vary based 

on the resilience threshold of interest. This threshold is ideally chosen as the desirable level of 

LoR to be minimized for a portfolio.  

Figure 6.5 shows the probability (referred to as Pe in the figure) of exceeding various loss 

of resilience thresholds for multiple cases where money is spent on mitigation measures specific 

to    ,     or a combination of both. The highest ranked vulnerable building types are 

considered for retrofit or heightened restoration efficiency up to each specific budget constraint. 

For illustration purposes, mitigation prioritization and the corresponding exceedance probability 
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is computed relative to each LoRF threshold on the x-axis. When applied to an actual building 

portfolio, however, optimal mitigation prioritization should be based on a specified level of LoR 

to be mitigated.  

 

Figure 6.5: (a) Loss exceedance curves for vulnerable buildings within the case study portfolio 

without mitigation, and with mitigation measures specific to ΔRo and ΔRa (all) given budgetary 

constraints of $50M, $100M and $150M. Loss exceedance curves for ΔRo and ΔRa (all), only 

ΔRo and only ΔRa are shown given a mitigation budget of (b) $50M, (c) 100M, and (d) $150M. 

Mitigation prioritization is based on a sensitivity analysis with LoRF specific to each loss of 

resilience threshold. 

Figure 6.5(a) shows loss exceedance curves relative to the total loss of resilience before 

and after mitigation relative to changes in     and     (referred to as “all” in the figure). In 

general, the effectiveness of mitigation per dollar spent decreases as the budget increases for all 

resilience loss thresholds. This is because a unique mitigation prioritization scheme is considered 
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for each threshold, and the loss exceedance curve is computed accordingly. For each budget 

constraint, the most cost-effective building combinations are considered first for mitigation based 

on     and     sensitivity measures. The cost-effectiveness of mitigation then decreases as the 

budget increases and as more building combinations are considered. 

 Figure 6.5(b-d) disaggregate the loss exceedance curves in order to compare changes in 

resilience loss relative to only     or     mitigation, and a combination of the two, for each 

budget constraint. For most resilience thresholds and budget constraints, a change in building 

robustness (through retrofit) is a more cost-effective mitigation measure, compared with money 

allocated for reducing recovery time following an earthquake. For example, given a budgetary 

constraint of $100 million, the probability of exceeding a 30% loss in resilience is reduced from 

0.41 to 0.12 with retrofit. In contrast, the exceedance probability is reduced from 0.41 to 0.35 

with mitigation specific only to post-disaster restoration.  

 At higher resilience loss thresholds associated with lower probability of exceedance, 

restoration mitigation measures become most cost-effective for increasing portfolio resilience. 

For the case study region, this transition occurs at a resilience loss threshold of around 40%, 

depending on the mitigation budget. The disparity in cost-effectiveness between     and     

mitigation measures increases as the budget increases. This phenomenon is consistent with the 

expectation that primarily time-dependent losses are associated with changes in resilience loss at 

high thresholds. Since resilience losses specific to robustness are no longer prevalent at these 

thresholds, retrofit spending has little impact on reducing the corresponding loss of resilience.  

 It is emphasized that the comparison between     or     sensitivities depends 

completely on the cost assignment for recovery time change shown in Equation (6.15). A smaller 

or larger change in     per dollar of retrofit would influence the cost-effectiveness of     
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mitigation relative to that for changes in     significantly. This may influence the prioritization 

shown above greatly. In addition, as discussed in Section 4.4 and 5.4, retrofit prioritization in this 

study may be skewed relative to building combinations more sensitive to drift-related damages.  

 For an additional comparison of retrofit and restoration mitigation measures, Figure 6.6 

presents the top ten total mitigation expenditures per building type given a budget of $50 million. 

In addition, the respective per-square-foot mitigation expenditures are shown, which provide the 

suggested spending normalized by the total vulnerable building area specific to each building 

type. These are shown for mitigation specific to    ,     or for a combination of the two, per 

building type. The suggested mitigation expenditures are based on reducing the probability of 

exceeding a loss of resilience of 40%. At this threshold, both     and     measures contribute 

to optimal mitigation spending, as illustrated in Figure 6.5.  

 

Figure 6.6: Top ten recommended mitigation expenditures by building type for a mitigation 

budget of $50M and mitigation prioritization based on a sensitivity analysis with LoR = 40%. 

This figure shows that, when considering both     and     mitigation measures, a large 

portion of the $50 million mitigation budget is suggested to be spent on high-rise, low-seismic 
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code concrete shear wall structures, C2H LC ($14.9 million), and low-rise, low-code 

unreinforced masonry structures, URML LC ($9.9 million). In addition to acquiring the highest 

total mitigation spending, these building types are also associated with a relatively high 

suggested spending normalized by the vulnerable building area. This implies that C2H LC and 

URML LC represent not only a large percentage of floor area relative to the total floor area of 

vulnerable buildings (5.1 and 8.0%, respectively), but are also characterized on average by high 

sensitivities, relative to other building types.  

The per-square-foot suggested mitigation spending is largest for high-rise, low-code 

concrete shear wall structures, C2H LC ($22.78/sqft) and high-rise, low-code steel moment 

frame buildings, S1H LC ($13.24/sqft). This is because, given their high corresponding 

sensitivity measures, the sensitivity analysis recommends mitigating 32% and 20% of the total 

floor area of C2H LC and S1H LC, respectively, for the case study portfolio, which is higher 

than the other building types listed. This is because these building types represent the largest 

change in β relative to each dollar of mitigation, on average, relative to the other vulnerable 

building types shown in Figure 6.6. In addition, a large percentage of the mitigation for each of 

these building types is specific to     mitigation measures, which cost more per square foot. 

Comparing the high per-square-foot mitigation spending to the low total cost for S1H LC 

suggests that, relative to the total floor area of vulnerable buildings, this building type has a small 

percentage of floor area needing retrofits (0.2%). 

Finally, for the building types listed, the majority of the mitigation expenditures shown 

are assigned to reducing post-earthquake recovery times (   , $33.6 million), as opposed to 

retrofit (   , $12.7 million). This is consistent with the spending that is suggested for the entire 

$50 million budget, and is supported by the fact that there is a larger reduction in exceedance 
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probability for     mitigation versus     measures at this LoR threshold. As noted above, this 

varies depending threshold used to compute the sensitivity measures, and     measure will be 

more cost-effective for lower thresholds. It also depends on the unit mitigation cost assigned to 

   , as shown in Equation (6.15). 

While preliminary, the results in this sensitivity analysis offer valuable information for 

increasing seismic resilience through pre-disaster retrofit and increased efficiency in post-

disaster restoration. By prioritizing these measures based on their cost-effectiveness, limited 

resources can be allocated to the most optimal scheme for the increase of portfolio’s seismic 

resilience.  
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 Multi-hazard Loss Assessment Chapter 7.

Risk-assessment frameworks for structures subjected to different natural hazards share 

many similarities including the quantification of the hazard intensity and the associated probable 

loss and damage. This study desires to extend the proposed FORM-based approach for seismic 

loss assessment to other types of hazards. Specifically, this extension focuses on estimating the 

probability distribution of loss for a portfolio under mutually exclusive multi-hazard conditions. 

Regions subjected to both earthquake and hurricane wind hazards are the primary emphasis in 

this study. Techniques applied in extending the proposed approach to multi-hazard conditions, 

however, are applicable to other types of hazards as well. 

The first section of this chapter introduces the implications and importance of multi-

hazard loss assessments. The hazard and risk-assessment methods presented earlier are extended 

to hurricane wind hazards in Section 7.2, along with a method for probabilistically modeling 

structural response to wind. Finally, the proposed approach is applied to quantify multi-hazard 

risk for a building portfolio in Charleston County, South Carolina. 

7.1 Introduction 

Many areas of the world are subjected to multiple hazards such as earthquakes, tsunamis, 
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hurricanes, snow storms, etc. While a specific hazard may dominate the design of structures for a 

region, there are many regions where more than one hazard may pose a significant threat to 

buildings. In the United States, many coastal areas are exposed to both hurricane and earthquake 

hazards, such as Boston, MA and Charleston, SC. The nature of the hazards varies greatly in 

terms of frequency, return period in design, warning time, and mitigation strategies. The 

physical, economic and social impacts of these hazards may, however, be quite similar 

(Scawthorn et al. 2006).  

For example, Charleston, South Carolina has experienced a large amount of losses from 

both earthquake and hurricane occurrences. The Charleston Earthquake of 1886 is considered the 

most damaging earthquake in the southeastern United States. The M7.3 earthquake damaged 

over 2,000 buildings, resulting in $6 million worth of damage (approximately 25% of the whole 

city worth at the time) and killing at least 60 people (USGS 2013b). This level of devastation 

was reiterated in 1989 when Hurricane Hugo made landfall just north of Charleston resulting in 

over $7 billion in damage, 27 fatalities and leaving 100,000 homeless (National Research 

Council 2003). These statistics demonstrate that despite the unique characteristics of earthquake 

and wind hazards, their impacts on society may be remarkably similar. 

 In such multi-hazard regions, the risk of exceeding a performance-based limit state may 

be larger than for those regions subjected to only one hazard. In fact, the level of risk that a 

structure is exposed to in a multi-hazard situation may be twice as high as anticipated for a single 

hazard (Crosti et al. 2011). In current practice, however, the final design of structures exposed to 

multiple hazards is governed by the more demanding of the existing hazard loading conditions. 

Structures are first analyzed as if they are subjected to one hazard, and then as if they are 

subjected to others. The controlling design corresponds to the highest demand for each member. 
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Such an approach ignores the increased risk of exceeding a performance limit state for the 

additional less demanding hazard(s).  

In order to account for the additional risk of the less dominant hazard(s) and achieve a 

desired building performance over time, design and construction practices should address the 

risk due to multiple hazards in an integrated manner (Crosti et al. 2011; Duthinh and Simiu 2010; 

Li and Ellingwood 2009; Li and van de Lindt 2012). Assuming negligible probability that two 

hazards will occur simultaneously, the probability of exceeding a performance limit state 

criterion for at least one can be expressed as: 

 
                     (7.1)  

where       is the probability of exceeding a performance limit state criterion    associated with 

one hazard event and       is the probability of exceeding a performance limit state criterion    

associated with a different hazard.          is the probability of exceeding either    or   . For 

example,          may represent the probability of exceeding an economic loss threshold 

associated with earthquake and hurricane wind hazards over the lifetime of a structure. Equation 

(7.1) shows that                 and                . Therefore, the risk associated 

with multiple hazards is greater than that associated with one dominant hazard. It is emphasized 

that while there is a small probability of    and    occurring simultaneously, this is considered 

negligible in this study. Each event, however, has a unique probability of occurring over a 

specified period of time.  

 Many researchers have examined the performance of individual structures under such an 

integrated multi-hazard approach. For example, Wen (2001) showed that the optimal design of 

structures subjected to more than one hazard is not governed exclusively by the dominant hazard 
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but is also influenced by a less dominant hazard. Similarly, Li et al. (2012) introduced a 

conceptual performance-based design approach for optimal structural design and risk mitigation 

for buildings subjected to multiple hazards. The level of significance that an integrated multi-

hazard approach holds for potential risk varies for different hazards and regions. The 

contribution of less dominant hazards to hazard-induced risk over time, however, is recognized.  

 A comparative assessment of the impact individual hazards have on a structural system 

also provides valuable information for public policy, insurance underwriting and disaster 

planning purposes (Li and van de Lindt 2012). Performance-based engineering requires 

structural performance objectives for various hazard levels. These are characterized by the return 

periods associated with design-level hurricanes and earthquakes, and on the level of disparity and 

impact resulting from each hazard. For example, lack of advanced warnings for earthquakes 

makes life safety more of a threat in seismic design, compared with advanced warning systems 

associated with hurricanes. While the different nature of hazards lends to a non-uniform assumed 

risk in the design for various hazards, competing hazards must be addressed consistently to 

achieve overall building performance goals (Li and van de Lindt 2012; Wen 2001). 

A comparative assessment of hurricane and earthquake risks may also provide a tool for 

rank-ordering strategies for managing risks due to multiple hazards. Mitigating one risk may 

reduce building vulnerability for another, or in some cases, may increase potential risk. For 

instance, a lighter structure may reduce seismic forces, while simultaneously increasing the 

potential for wind damage. To address this tradeoff, Li and Ellingwood (2009) performed a 

comparative assessment of potential risk for wood-frame residential construction given 

earthquake and hurricane wind hazards. The effectiveness of multi-hazard mitigation strategies is 

evaluated through comparison of the reduction in risk for each competing hazard. 
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In this extended study, the proposed FORM method is used to perform an integrated and 

comparative risk assessment for earthquake and hurricane wind hazards. For each assessment, 

consequences are modeled as the probability of exceeding a specified level of monetary loss as 

discussed in Section 4.2 and computed using FORM. Since the intensity of each is expressed in 

incompatible units (spectral acceleration and wind speed), the return period for each hazard is 

used as a common variable. Examining retrofit options relative to multi-hazard loss is beyond the 

scope of this study. This study does discuss, however, how future application of the sensitivity 

analysis presented in Section 4.4 can be used to prioritize mitigation strategies for competing 

hazards. 

7.2 Extension of Proposed FORM Method: Wind 

 The techniques developed in this dissertation for seismic risk assessments are modified to 

estimate risk due to hurricane wind hazards. A multivariate distribution for modeling spatially 

distributed hurricane winds is characterized similar to that used to model correlated seismic 

intensities in Section 4.1.1. Section 2.1 illustrates the importance of considering spatial 

correlation in seismic intensities for obtaining accurate risk estimates. This study also 

investigates the potential for comparable inaccuracies caused by ignoring the spatial correlation 

in wind fields during hurricane risk assessments. 

 Structural response specific to wind-induced building damage is often modeled quite 

differently from the seismic building response model presented in Section 4.1.2. This is a result 

of the distinct failure mechanisms unique to wind loading, as opposed to a representative 

structural response parameter indicative of most structural damage. The following example uses 
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several component-specific fragility models to assess probabilistic wind-related building damage 

levels. These damage probabilities are then used to compute structural and nonstructural losses.  

7.2.1 Wind Intensity 

In this study, the wind intensity at each site is characterized by the 3-s peak wind gust at 

10m elevation. This intensity measuring is used in wind contour maps of ASCE Standard 7-10 

(2010) for computing design loading conditions. Spatially distributed hurricane wind speeds are 

computed based on the following model proposed by Jayaram and Baker (2010b): 

 
           ̅      (7.2) 

where    is the peak wind speed at site i,  ̅  is the median peak wind speed at site i computed 

using wind field prediction models and    denotes the residual or error term at site i. Significant 

correlation exists between the wind intensity at two closely spaced sites, due to similarities in the 

wind source, site effects and site location (Jayaram and Baker 2010b; Legg et al. 2010; Pang et 

al. 2012). In general, this correlation is partially accounted for in the wind speed models used to 

predict median peak wind speeds. There is additional correlation, however, between residual 

terms used to model the uncertainty in wind speed at each site. 

 Proposed wind speed models such as Batts et al. (1980), Vickery et al. (2000) and 

Vickery et al. (2009) are used to predict wind speeds by propagating key parameters 

characterizing potential hurricane occurrences. These are a function of the expected value and 

uncertainties surrounding the central pressure, translational speed, radius to maximum winds, 

occurrence rates and wind speed decay. Residual terms are modeled by a multivariate 

distribution, characterized by the associated uncertainty at each site and by a correlation matrix 
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computed based on empirical distributed wind field correlation models (Jayaram and Baker 

2010b; Legg et al. 2010; Pang et al. 2012) 

When the predicted wind speed at each site is considered random, median wind speeds as 

well as spatially correlated residuals at each site are sampled randomly following the simulation 

approach proposed in Section 4.1.1. The predicted wind speeds and simulated residuals are then 

combined using Equation (7.2) to obtain realizations of the wind speeds at all sites of interest. A 

multivariate distribution is fit to the simulated wind speeds at each site and linear regression is 

used to compute the total spatial correlation in wind intensity between sites. If median wind 

speeds are considered deterministic (assuming an expected central pressure, translation speed, 

occurrence rate, etc.), the multivariate distribution can then be characterized directly from the 

predicted wind speeds, associated uncertainty, and computed correlation matrix, without using 

simulation (see Section 4.1.1). 

This study assumes deterministic median wind speeds at each site, modified based on 

distance inland, as a representation of wind decay after landfall. Predicted wind speeds are taken 

from Li and Ellingwood (2009). The reduction in wind speed is computed based on wind field 

decay models proposed by Kaplan and DeMaria (1995) with translational hurricane speeds 

predicted based on historical hurricane occurrences (Purvis and McNab 1985).  

For a simplistic evaluation, the wind field distribution used in this example is considered 

to be Gaussian, based on findings in Jayaram and Baker (2010b). Following an empirical study 

of wind fields from Hurricane Jeanne (2004) the residual terms in Equation (7.2) are assumed to 

follow a multivariate normal distribution with a mean of zero and standard deviation of 0.15. The 

residual distribution is characterized by a correlation matrix computed using the empirical model 

fit to Hurricane Jeanne wind field data (Jayaram and Baker 2010b).  
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It is noted that many studies suggest that wind fields are best modeled by a Weibull 

distribution rather than a Gaussian distribution (Batts et al. 1980; Li and Ellingwood 2009). 

Additional information on the uncertainty and spatial correlation of distributed wind fields may 

be used to refine the wind field distribution used in this study for future applications. 

7.2.2 Structural Response: Wind 

Unlike seismic induced damage, which can be largely related to excessive lateral drift for 

most building systems, wind-related damage is characterized by a variety of building parameters. 

The most vulnerable part of a building to hurricane winds is its envelope (i.e., building 

enclosure). This can be breached as a result of roof-to-wall connection failure due to wind uplift, 

roof panel uplift, breakage of windows and doors due to excessive wind-induced pressure or 

projectile impact (Li and Ellingwood 2006). The type of engineering demand parameter used to 

model wind-related structural response is highly dependent on the building type and damage 

mode of interest (Petrini et al. 2009).  

Many quantitative wind damage prediction models rely heavily on expert opinion and 

insurance claims as there is a lack of test data on building behavior in extreme wind loading. 

Extrapolating building wind vulnerability relationships on insurance losses, however, is still 

filled with uncertainty as there lacks an abundance of insurance losses to develop and calibrate 

the damage prediction models (Khanduri and Morrow 2003). When insurance losses are 

available, they are generally amassed over a suite of buildings, making it difficult to disaggregate 

damage data specific to building type classes. 

In this study, wind-related damage is modeled based on damage bound probability 

density functions proposed in Unanwa et al. (2000). These are specific to representative building 

types and are primarily developed and calibrated based on expert opinion. The model considers 
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each building type to consist of the following components: roof covering, roof structure, exterior 

doors and windows, exterior walls, interior (including contents), structural system and 

foundation. Upper and lower bound damage thresholds are determined with respect to each 

building component, and are associated with the highest and lowest probabilities of failure in a 

wind hazard.  

Each building component may experience damage through direct wind impact or due to 

propogational effects resulting in damage to other components. Figure 7.1 shows a schematic of 

the damage process assumed in this model. 

 For each building component i, the probability of full component failure resulting from 

direct wind impacts (   
 ) is computed based on probability density functions provided in 

Unanwa et al. (2000). Conditional probability data due to damage propagation (   
 ) are also 

provided. The final probability of failure for each component (   ) is computed as: 

 
       

     
     

    
  (7.3)  

where    
    

  is the joint probability of damage due to both direct and propogational damage. The 

total degree of damage (  ) for building and occupancy category j at wind hazard level   is then 

computed as: 

 

       ∑            

 

   

 (7.4)  

where       is the component cost factor for component i and building and occupancy category j 

relative to the total building cost, and    is a component location factor.  
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Figure 7.1: Wind direct and propagated damage process (Unanwa et al. 2000). 

 For determining loss to a portfolio of buildings, Unanwa (2000) provides the following 

algorithm for computing total portfolio loss (  ) as a function of upper and lower damage bands: 

 

      ∑    
   (      

        
 )      

 

   

 (7.5)  

where     
   is the average relative resistivity index for building/occupancy category j,       

  

and       
  are the upper and lower bound damage degrees computed in Equation (7.4) given 

hazard level l, and      is the total building replacement cost for building/occupancy category j. 

This method assumes building/occupancy types can be classified into four primary categories: 1-

3 story residential, 1-3 story commercial/industrial, 1-3 story government/institutional and 4-10 
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story buildings and further disaggregated based on occupancy for the component cost factor 

listed in Equation (7.4). 

Using the wind hazard model described in Section 7.2.1, FORM is used to evaluate the 

probability of exceeding various loss thresholds based on Equations (4.10), (4.6) and (7.5). For 

an integrated multi-hazard assessment, earthquake and hurricane wind losses are combined using 

Equation (7.1). These are then used to compute the probability of exceeding a specified level of 

portfolio loss given either earthquake or hurricane wind hazards characterized by a common 

return period. 

7.3 Case Study: Multi-hazard Loss Assessment 

The building portfolio in Charleston County, South Carolina is chosen for this case study 

since the region is at risk to both earthquake and hurricane-wind hazards. For comparison 

purposes, a 500-year return period is used as the control variable to perform an integrated and 

comparative assessment of losses for each hazard.  

 harleston  ounty’s building inventory is disaggregated in a similar manner to the San 

Francisco portfolio presented in Section 5.1. The case study region includes 78 census tracts with 

over 2,000 building combination types, yielding a reliability space of over 4,000 random 

variables.  

Figure 7.2 shows the case study region relative to the Charleston seismic zone consisting 

of three fault segments: North Woodstock Fault, South Woodstock Fault and the Sawmill Branch 

Fault. As a result of its high earthquake occurrence rate density, Charleston is most strongly 

influenced by potential earthquakes within this fault zone (Student 1997). Therefore, it is 

assumed that the seismic activity from these faults best represent the potential earthquake hazard 
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for this study. From paleoseismicity studies, a magnitude 7.0 earthquake is considered the 

characteristic magnitude with a 500-year recurrence interval from this zone (Talwani and 

Schaeffer 2001). According to Student (1997), it is assumed that there is equal probability of 

such a characteristic earthquake occurring at any point along this fault zone. Given these 

assumptions, the simulation procedure outlined in Section 4.1.1 is used to compute realizations 

of seismic intensity at the center of the 78 Charleston County census tracts.  

 

Figure 7.2: Charleston County case study portfolio region and potential earthquake fault zone 

(Google 2012). 

The hurricane intensity distribution characterized by a 500-year return period is 

computed based on a median wind speed taken from Li and Ellingwood (2009), spatially 

correlated residuals computed from the method proposed in Jayaram and Baker (2010b) and 

using the wind decay model by Kaplan and DeMaria (1995). 
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The exceedance probabilities computed for the portfolio using FORM and MCS are 

shown in Figure 7.3 for earthquake and hurricane wind hazards characterized by a 500-year 

return period. The exceedance probabilities obtained by ignoring the spatial correlation between 

the hazard intensity at each site are also shown.  

 

Figure 7.3: Loss exceedance curves using FORM and MCS for (a) earthquake and (b) 

hurricane wind hazards characterized by a 500-year return period. MCS results are shown with 

and without including spatial correlation between hazard intensities.  

Figure 7.3 shows that ignoring the spatial correlation between hazard intensities results in 

an overestimation of the probability of exceeding small losses and an underestimation of the 

probability of exceeding large, rare losses. It is also observed that FORM results follow closely 

with exceedance probabilities computed using MCS for hurricane wind hazards. There are, 

however, notable deviations in results for earthquake loss, which are similar to the deviations 

shown in Figure 5.3 for the San Francisco case study. The extent of the overestimation and the 

underestimation in using FORM is likely to be smaller for hurricane wind hazards because the 

wind intensities are more highly spatially correlated across the region. As discussed in Section 

4.5, the deviations in FORM results are a function of the dissimilarity between variables at each 
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site. Since the seismic intensities at each site are less correlated than hurricane wind speeds, there 

is a larger range of values each variable can assume to satisfy a limit state threshold. This is 

shown to increase the extent of limit state nonlinearities, and therefore decrease the 

corresponding accuracy in using FORM.  

 

Figure 7.4: Loss exceedance curves using MCS for combined earthquake and hurricane wind 

hazards characterized by a 500-year return period.  

The exceedance probabilities for each hazard are combined using Equation (7.1) to 

compute the integrated multi-hazard exceedance curves shown in Figure 7.4 for MCS results. In 

this case study, the majority of regional loss is attributed to hurricane winds as opposed to 

earthquakes for most loss thresholds. For high loss thresholds associated with low probabilities, 

however, exceedance probabilities associated with earthquake losses become more comparable 

to wind loss exceedance. If the trend continues, earthquake loss exceedance probabilities would 

likely exceed those for wind losses. Generally speaking, the influence of each hazard on regional 

risk varies based on the region and hazard return period in question.  
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The results of each assessment, paired with the fundamental characteristics of each 

hazard and its effects on society, can be used for hazard management in regions exposed to 

multiple hazards. This may be particularly useful for decision makers in public policy, 

emergency response planning and insurance underwriting. 

The information can also be used to assess the effectiveness of hazard mitigation options 

in reducing regional risk. A sensitivity analysis following the method proposed in Section 4.4 

can be used to prioritize retrofit options specific to either earthquake or wind hazards, or a 

combination of both, over time. While the less dominant hazard(s) may be less influential in 

terms of regional loss exceedance over time, retrofit options specific to such hazard type(s) may 

be cost-effective in reducing total regional loss. To perform this type of sensitivity analysis, 

future research should assign one or more random variables to model the wind-related structural 

response. In addition, marginal retrofit costs should be assigned to changes in each structural 

response variable for each building retrofit scheme. Sensitivity measures would then be 

computed relative to changes in loss per each dollar of retrofit specific to each hazard of interest.  
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 Summary and Conclusions  Chapter 8.

 In this dissertation, a new reliability-based approach is developed for the comprehensive 

and efficient assessment of earthquake risks to a portfolio of buildings. The framework aims to 

represent the complex problem of quantifying regional earthquake risk by characterizing a 

building portfolio as a system of interconnected components. The proposed method explicitly 

models the uncertainties surrounding the hazard demand, building response and losses, as well as 

additional system effects related to the correlation that exists between building performances in a 

seismic hazard.  

Existing earthquake loss estimation methodologies were reviewed and five main 

characteristics were identified to be addressed in the proposed approach: 1) provide an analytical 

approach; 2) probabilistic evaluation of risk; 3) explicit modeling of spatial correlations between 

building performances; 4) computational efficiency; and 5) easy computation of sensitivity 

measures. To address these desired properties of regional loss estimation, this dissertation 

proposes using the First-Order Reliability Method (FORM) for probabilistic portfolio loss 

evaluation. FORM is an approximate, analytical method used to compute failure probability 

based on linearizing a performance limit state surface in a transformed reliability space.  
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In the proposed FORM-based analysis, two random variables are used to model the 

performance of each building: lnSa and     . The first random variable is modeled by a 

multivariate distribution representing the distribution of potential seismic intensities at each site, 

and by the spatial correlation between sites based on residual terms and soil properties. The 

second random variable models the variability in structural response specific to each building 

type. Regional loss limit state criterion is defined based on the varying levels of total regional 

repair costs. This includes losses due to structural and nonstructural damage and is represented as 

a percentage of the total building replacement cost for the portfolio. FORM is used to compute 

the regional loss exceedance probabilities. This is based on an optimization process for finding 

the most probable set of random variable values that may cause failure.  

A useful by-product of the optimization process is a set of sensitivity measures that 

provide information about the change in system reliability relative to a change in each random 

variable. The sensitivity measures for the structural response random variables are paired with 

retrofit costs to compute the change in portfolio loss per dollar of retrofit. These measures are 

used to prioritize the most cost-effective retrofit schemes for a region, which offers valuable 

information when allocating limited resources to mitigate regional risk. 

The proposed framework is applied to compute the probability distribution of loss for a 

selected San Francisco building portfolio subjected to a scenario earthquake. Results using 

FORM and Monte Carlo Simulation (MCS) are compared to check the accuracy of the proposed 

FORM method. The results suggest that failure probabilities computed using FORM follow a 

similar trend as the MCS results and require much less computing time. There are, however, 

some notable deviations in FORM results for some loss thresholds, due to the approximations in 
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using FORM for a limit state characterized by significant nonlinearity. The sources and extent of 

limit state nonlinearity are identified for future refinement of FORM-based results.  

Unlike simulation, FORM also enables easy computation of sensitivity measures, which 

are used to prioritize the most cost-effective retrofit schemes per building and occupancy type for 

reducing regional risk for the San Francisco portfolio. In this case study, loss is also evaluated 

with and without consideration of spatial correlation, thus showing that neglecting correlation 

can greatly skew computed loss distributions and retrofit prioritization. In addition, results shown 

that it is essential to perform a sensitivity analysis (used to prioritize retrofit) relative to the 

desirable level of loss to be minimized in order to achieve optimal retrofit prioritization. 

 The proposed framework is then extended to evaluate the resilience of a building 

portfolio by introducing a third random variable to model the recovery time following an 

earthquake event. Resilience is quantified based on the robustness and rapidity of a portfolio 

system, which are related to hazard-induced losses and building recovery, respectively. FORM is 

used to compute the probability of exceeding varying thresholds of portfolio resilience. In 

addition, a sensitivity analysis is conducted to prioritize the most cost-effective mitigation 

measures for increasing seismic resilience. Sensitivity measures are computed to capture changes 

in portfolio resilience relative to a mitigation expenditures allocated to pre-disaster retrofit, 

increased efficiency in post-disaster restoration or a combination of the two. For most resilience 

thresholds, retrofit is shown to be most cost-effective in increasing portfolio resilience. 

Mitigation for increased post-disaster restoration efficiency, however, is considered more cost-

effective for reducing the probability of exceeding more severe resilience thresholds.  

 Finally, the proposed approach is used to assess the potential risk for regions subjected to 

multiple, mutually exclusive hazards; specifically earthquake and hurricane wind hazards. A 
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multivariate random variable is used in the study to model the spatially correlated wind intensity 

for a region and a set of probability density functions are used to model wind-related structural 

response. FORM is implemented to compute the distribution of loss specific to each hazard for 

the building portfolio Charleston County, South Carolina. It is also used to perform an integrated 

assessment for potential risk over time due to both hazards. This case study demonstrates that 

FORM provides more accurate results for hurricane wind hazards losses compared with 

computing portfolio risks due to earthquake hazards. It is noted that the significance of 

evaluating multi-hazard risk as opposed to the risk related to a single dominant hazard is specific 

to the region and time period of interest.  

Originality 

This dissertation has two primary objectives: 1) the development of a new approach to 

quantify potential seismic losses for a building portfolio; and 2) the use of the proposed approach 

to evaluate the cost-effectiveness of mitigation schemes at a regional level. 

 The first objective is met by implementing FORM to evaluate loss to the portfolio. The 

new developments in the proposed approach relative to existing methods include: 

 Analytical: FORM provides an approximate, yet analytical means of quantifying the 

distribution of regional loss. This dissertation develops a methodology to express each 

random variable in closed form. The analytical ability to characterize and quantify 

portfolio loss is considered advantageous to the simulation techniques often used in 

existing loss estimation methods. 

 Probabilistic: The output of the proposed FORM approach is a probability distribution 

of seismic losses to a building portfolio for a specified earthquake scenario or time 
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period. This framework addresses the uncertainty surrounding the hazard intensity, 

structural response, losses and correlation between building performances. In contrast, 

many existing loss estimation tools limit loss results to the expected value of regional 

loss. By disregarding the uncertainty surrounding regional losses, influential system 

effects within a portfolio of buildings are neglected. 

 Modeling of spatial correlation: The inclusion of correlations between random 

variables is one of the strengths of FORM. The spatial correlation between hazard 

intensities at each site is modeled explicitly within the proposed framework. These 

correlations are shown to be very influential in computing the variance of total portfolio 

loss, as well as when prioritizing retrofit options. 

 Computationally efficient: A notable advantage to using FORM is its computational 

efficiency. Unlike MCS, the required computation time is independent of the likelihood 

of failure. FORM proffers an efficient tool for evaluating the likelihood of rare events 

often characterized by large consequences. A robust tool for large-scale optimization 

computing is used to perform FORM computations to increase efficiency for problems 

consisting of a large number of random variables, as is the case for many building 

portfolios (TOMLAB 2012).  

 Identification of FORM inaccuracies: Further investigation is provided giving insight 

into approximation and corresponding inaccuracy in using FORM to compute portfolio 

loss. General trends in the deviation in FORM results are identified and related to 

dissimilarities between random variables and the level of failure probability associated 

with each limit state threshold. The identification of these factors can assist in developing 
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a refinement technique to increase accuracy in FORM-based portfolio loss estimates, 

while preserving the inherent benefits in using FORM. 

The second objective of prioritizing retrofit options is also addressed using sensitivity 

measures inherently computed in FORM computations. In this respect, FORM offers the 

following advantages: 

 Easy computation of sensitivity measures: Sensitivity measures are calculated directly 

and simultaneously using the gradient-based optimization required to minimize β and 

compute the failure probability assumed by FORM. These measures provide information 

regarding the order of sensitivity each variable parameter has on the overall system 

reliability.  

 Prioritize retrofit options: Mitigation costs are paired with sensitivity measures to 

compute the marginal change in terms of regional loss per dollar of retrofit. These 

measures are used to prioritize cost-effective retrofit options based on building location, 

building type and occupancy category. In addition, the most cost-effective retrofit scheme 

is identified when allocation it is desired to allocate a limited budget in an optimal 

manner to reduce risk to a suite of buildings.  

Two additional studies were performed that extend the capabilities of the proposed 

FORM method including a resilience and multi-hazard assessment. New developments in the 

proposed portfolio resilience evaluation include: 

 Probabilistic evaluation of resilience: The proposed FORM method is used to compute 

a probabilistic measure of portfolio resilience given an earthquake scenario. In doing so, 
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an additional random variable is added to the reliability problem to model the variability 

in repair and recovery time. Unlike most resilience assessment tools that evaluate 

resilience qualitatively or using expected values, this resilience measure is computed as a 

probability distribution, preserving influential system effects.  

  Prioritize measures to increase regional resilience: A sensitivity analysis is used to 

evaluate the cost-effectiveness of loss reduction measures in relation to an increase in 

regional resilience. Sensitivity measures are computed to capture the change in the 

reliability associated with a specified resilience threshold, relative to a dollar allocated to 

pre-disaster retrofit or post-disaster restoration efficiency. With these measures, a 

comparative analysis is performed to evaluate which mitigation measure provides the 

largest increase in portfolio resilience for each resilience threshold level. 

While preliminary in its development, potential advantages in the proposed multi-hazard 

assessment include: 

 Multi-hazard loss estimation: The techniques developed in this dissertation for seismic 

risk assessment are modified to estimate risk due to hurricane wind hazards. The 

proposed FORM method is used to compute the probability distribution of multi-hazard 

loss for a specified return period. 

 Prioritize retrofit options: Following a similar method to the sensitivity analysis for 

seismic-based losses, sensitivity measures can be computed relative to mitigating risk for 

multiple hazards. These measures can aid in the prioritization of retrofit options specific 

to earthquake or wind-related structural resistance for optimizing regional risk-mitigation 

decision making.  
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Limitations and Future Research 

Four main issues have been identified as potential shortcomings in using the proposed 

framework for earthquake risk assessments. These are outlined below, accompanied by 

suggested future research steps to address these limitations. Some additional extensions of this 

work that can potentially be addressed in future research are also discussed.  

 Accuracy in modeling parameters: The identification and propagation of uncertainty is 

the fundamental pillar for probabilistically quantifying building performance. There are 

many sources of uncertainty involved in modeling the parameters that make up a regional 

risk assessment. These include epistemic uncertainties resulting from lack of historical 

data, aleatory uncertainty related to the inherent randomness in the hazard, structural 

response or recovery, modeling errors, etc. Since FORM requires variables to be modeled 

by closed form distributions, there is a potential for inaccurate modeling of the 

parameters within the reliability problem. Whether attributed to lack of data or 

inaccuracies in modeling the data with the closest matching distribution, inaccurate 

modeling may skew the computed reliability of a system.  

 Future research can aim to limit this epistemic uncertainty by gathering additional 

information to more accurately model the prevailing parameters. For example, the 

recovery time distribution used in the resilience study is primarily based on expert 

opinion. Modeling this variable based on gathered data from historical events or on 

quantitative recovery models may provide a more accurate representation for recovery 

times following an earthquake event. The limited inventory of historical events from 

which to extrapolate risk-assessment models may, however, create challenges for limiting 

epistemic uncertainty.  
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 FORM accuracy: FORM provides approximate reliability results when the limit state 

surface is not linear in standard normal reliability space. The level of accuracy in using 

FORM relates to the extent of nonlinearities in the limit state surface. Potential sources of 

limit state nonlinearity are shown to be a function of the range of values random variables 

can assume to satisfy a limit state constraint. These identified sources likely contribute to 

the inaccuracies in using FORM, and can facilitate in developing a technique to refine the 

FORM-based results for future research. While it is impossible to improve the accuracy 

provided by direct use of FORM, additional research can focus on methods to reduce 

potential errors, while preserving the benefits of using FORM. To develop such a 

technique, it would be advantages to evaluate a larger set of portfolios of different sizes 

and locations, to further identify general or portfolio-specific trends in deviations in 

FORM results.  

 Additional considerations when prioritizing retrofit options: The sensitivity analysis 

used to prioritize retrofit options is a function of resistance to drift-sensitive damage only. 

Many building types are affected greatly, however, by acceleration-sensitive 

nonstructural damage, which is not accounted for in computing sensitivity measures. 

Future research can introduce a new random variable to model this additional structural 

resistance parameter, and then run sensitivity analyses relative to changes in both drift- 

and acceleration-related structural response. In addition, other factors that may influence 

retrofit decision-making may be introduced either quantitatively or qualitatively, such as 

willingness to pay for retrofit, incurred losses due to retrofit and social importance of 

vulnerable buildings.  
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 Modeling a building portfolio: Given computing space constraints and availability of 

data, all buildings categorized within the same building type, occupancy category and 

seismic design level are considered fully correlated within each census tract. It is 

incorrect, however, to assume these buildings will experience an identical level of loss 

given an earthquake. Given this assumption, it is expected that the variance in loss is 

superficially increased. Future extensions of this work should aim to disaggregate the 

total building area for each building combination type within each census tract into 

individual buildings. This would help to more accurately model the predicted variance in 

loss for the portfolio system. Since the number of buildings (i.e., random variables) may 

become unmanageable from a computational standpoint, further investigation would be 

required to develop more realistic modeling assumptions to limit the size of the reliability 

problem and maintain computational efficiency.  

 Additional future extensions: Additional limitations in the proposed method include the 

inability to account for soft soil sites in the existing methodology. In future extensions of 

this approach, soft soil sites can be incorporating by using a site-specific nonlinear 

analysis to assess the seismic intensity and resulting building response and damage at 

such sites. In addition, the fundamental building period can be adjusted to modify the 

seismic intensity experienced by a structure in soft soil conditions. Future research can 

also aim to extend the proposed FORM method from a strictly building portfolio analysis 

to other infrastructure units. For other critical infrastructure, system limit states for 

“failure” can be expressed in terms of similar variables to those proposed in this approach 

(e.g., seismic intensity and a physical performance variable). By considering other types 
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of critical infrastructure systems in a FORM-based approach, correlations between the 

losses experienced by multiple systems could be incorporated.  
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