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There is widespread evidence for a rise in the Equilibrium Line Altitude (ELA) in many areas

of the Greenland Ice Sheet. In a recent study (Ettema et al., 2009) West Greenland was found to

have experienced a 3.9% increase in area experiencing melt annually. In the wet snow and ablation

zones, much of the melt water will enter the englacial hydrologic system via moulins, crevasses

and surface fractures (Harper et al., 2012). Of this englacial water, a fraction may persist in the

Cryo-Hydrologic System (CHS) (Rennermalm et al., 2012) long enough to refreeze, releasing latent

heat and warming the background ice. Because the geometry of the CHS is difficult to constrain, we

modeled the small-scale thermodynamics for several end-member scenarios that capture a range of

plausible CHS geometries. In particular, we considered crevasses and deeper water bodies subject to

one-time water filling, and crevasses that are filled annually and drain via a diffuse drainage system

into a fracture network. We found that warming from shallow crevasses is largely driven by 1D

horizontal conduction and that the warming is limited by the depth of crevasse penetration. Deep

but not fully penetrating englacial water bodies can warm the lower layer of the ice sheet where

the increase in the Flow Law Parameter has the greatest impact on ice velocity. The horizontal

velocity gradient also caused stretching of deep englacial water bodies, which decreases refreezing

time of liquid water at depth. Finally, drainage of crevasses through fracture networks was found to

be an efficient mechanism to transport liquid water to depth. The small cross-sectional area, large

surface area, and heterogeneity of the fractures provided the fastest and most efficient release of

latent heat into the background ice. Based on the modeling results, we propose simple mathematical

parameterizations that may be used to represent CHW in large-scale ice sheet models. We also

share a new module written for the Community Ice Sheet Model (CISM) that solves the ice sheet

thermodynamics using an enthalpy method and replaces a cold ice method module.
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Chapter 1

Background

Large-scale glacier and ice sheet models have made significant improvements over recent years

in capturing more and more precise details of ice mechanics and thermodynamics. One significant

weakness of these models, however, is the interaction between liquid water and ice both within and

underneath ice sheet flows. This lack of detail is largely driven by insufficient field and laboratory

data that are necessary for a full understanding of the physics behind englacial water creation,

movement, and fate. This is starting to be addressed as better non-invasive tools (ice-penetrating

RADAR, LIDAR, etc.) are being implemented in the field and englacial water features are being

better understood. Even with better observational techniques, the complexity and range of scale of

ice and liquid water interaction make it a difficult problem to capture numerically in a large-scale

model, and certainly will require simplified parameterizations.

Broadly speaking, there are two kinds of ice-liquid water interactions we are interested in

modeling and discuss in this thesis. The first is the interaction between a supraglacial, englacial,

or subglacial water-filled body and cold or temperate background ice. These water bodies appear

at the surface as the result of meltwater pooling and appear as ponds, streams, crevasses, moulins,

fractures, or any combination of these features. These features can drain into englacial water bodies

or to the bed of the ice sheet. Also, they can remain stagnant or flow out of the ice sheet into

the outlet hydrolgic system. The second ice-liquid water interaction results from the liquid water

content of temperate ice. Generally in the range of 0-3% by volume, this liquid water resides in

the pore space and at crystal lattices within ice that is at the pressure melting point temperature
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(temperate ice).

The numerical treatment of the phase change problem (often called a variation of the Stefan

Problem in the literature) is known to be difficult to formulate and solve efficiently due to the large

nonlinearity in the specific heat at the phase-change boundary between solid and liquid. Historically,

this nonlinearity was dealt with through spatial tracking of the cold-temperate surface (CTS) or

simplifying/smoothing techniques at the interface. Recently, however, enthalpy formulations have

been presented that recast the advection-conduction equation with enthalpy as the state variable.

By doing this, the nonlinearity is moved from the storage term (where the specific heat encapsulates

the nonlinearity) to the conduction term [2]. Using enthalpy as a state variable is also convenient in

that it captures the energy of both ice and liquid water without losing the ability to diagnostically

solve for temperature and liquid water content. While originally developed only to deal with liquid

water within temperate ice, we have adapted the formulation to also model water-filled bodies

within ice sheets.

Glaciologists and ice sheet modelers have also struggled to establish theoretical predictions

of crevasse, moulin, and fracture propagation with and without being water-filled. The complex

stress field within an ice sheet is even more difficult to constrain when liquid water is present. If

water is able to remain entrapped in these englacial water bodies, refreezing and a transfer of latent

heat to the background ice is accomplished. If propagation transfers this liquid water all the way

to the bed, the water will be drained subglacially.

In this thesis, I hope to build upon previous work to develop a framework for carefully predict-

ing the thermodynamic and thermomechanical consequences of introducing meltwater into various

types of englacial water bodies (crevasses, moulins, and fractures). The geometry and propagation

of these englacial water bodies is largely ad-hoc but inspired by field observation and theoret-

ical examinations of supraglacial melt runoff fate. Many end-member scenarios are considered

which should provide insight into the range of warming to be expected and its thermomechani-

cal influence. I also examine a Cryo-hydrologic warming (CHW) parameterization incorporated

by Thomas Phillips et al. in a Sermeq Avvanarleq flowline model [34] and use the results from
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our high-resolution 2D modeling to investigate other potential parameterizations that incorporate

CHW as a source term in the advection-conduction equation. It is hoped that a parameterization

for CHW will be incorporated in the Community Ice Sheet Model (CISM). CISM is primarily un-

der the administration of the National Center for Atmospheric Research (NCAR) and Los Alamos

National Laboratory (LANL),

Finally, I will discuss the development of a new Energy Equation solver for CISM that utilizes

the Enthalpy Gradient method described by Aschwanden et al. [2]. I will cover the implementation,

validation, and comparison between the Enthalpy Gradient method and the existing Cold Ice

method.

1.1 What is Cryo-Hydrologic Warming (CHW)?

CHW is the warming of background ice in a cold ice sheet or glacier due to refreezing of

melt water. This melt water can be propagated from the surface into the interior of the ice sheet

through englacial conduits such as crevasses, moulins, and fractures. If this liquid water gets halted

on its journey downward through a cold ice sheet, it will be given a chance to refreeze, releasing

its latent heat into the background ice through conduction and causing a temperature increase.

See Figure 1.1 for a schematic of commonly found englacial water bodies. As an example of the

potential warming caused by CHW: If 1% of an ice sheet by volume melts and the melt water is

uniformly distributed in the ice sheet and allowed to refreeze, a warming of approximately 1.74oC

will result.

1.2 Rising Equilibrium Line Altitude

The presence of englacial water has added significance today as parts of the worlds large ice

sheets (Western Greenland in particular) move away from pseudo-steady-state conditions toward

a state reflecting warming surface conditions [20]. Surface mass balance models and observations

both suggest significant increases in the area of Greenland experiencing melt over the last 20 years

[31, 19]. The warmer surface results in the rise of the Equilibrium Line Altitude (ELA), or the
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Figure 1.1: Schematic of typical englacial water bodies that can harbor persistent liquid water and
cause CHW

altitude at which the ice sheet transitions from an overall ablation zone to overall accumulation

zone. Since the ablation zone of an ice sheet has an overall negative mass balance at the surface,

this zone of newly-created ablation zone will experience meltwater inputs in the forms of crevasses

and moulins not previously seen in the accumulation zone.

As an example, the area of West Greenland experiencing surface melt is increasing at a rate

of approximately 3.9 % per year, in response to an estimated > 200 m increase in the equilibrium

line altitude between 1990 and 2010 [14]. A more recent assessment [29] suggests a > 500m increase

in elevation of the equilibrium line (corresponding to > 40 km inland propagation) and ≈ 500m

increase in elevation of the maximum inland location of the 0 degree isotherm, a proxy for the dry

snow line (corresponding to > 100 km inland propagation). There are several consequences of the

upward expansion of the area receiving melt, including a positive albedo feedback [17, 5], which

will further increase melt. In the percolation zone, retention of meltwater in the firn serves as a

source of near-surface warming reflected in shallow temperature profiles [6, 13]. Recent assessments

[21] suggest a large water storage capacity within the firn. At lower elevations in the wet snow

and ablation zones, a progressively smaller amount of water storage is available in the firn [24].

However, a significant (but poorly constrained) fraction of meltwater generated on the surface can

enter the englacial hydrologic system via moulins, crevasses and surface fractures. The widespread
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observations of basal sliding [27] in West Greenland offers indirect evidence that a large amount

of meltwater can propagate down to the bed, even in a cold ice sheet. The processes facilitating

meltwater penetration to the bed include fracturing, enlargement of moulins, and diffuse drainage

through crevasses [9, 30].

1.3 Observed and Theoretical Underpinnings of Persistent Englacial Water

While direct evience of persisent englacial water is elusive, there are numerous theoretical and

observational studies that predict its existence or find secondary evidence of its thermal influence.

Weertman et al. [41] predicted that given sufficient meltwater input, an isolated crevasse will have

a tensile stress below its tip and can extend to the bottom of a glacier. If this meltwater input

were to be cut off, a crevasse could presumably extend quite deep without reaching the bed. Van

der Veen et al. [40] used a Linear Elastic Fracture Mechanics (LEFM) approach to predict that

given sufficient flowrate, crevasses can reach the base of a glacier at a faster rate than refreezing

can occur. They found that crevasse propagation downward matched the filling rate in almost all

cases. Boon et al. [4] observed a melt and drain event on John Evans Glacier in Arctic Canada

where hydrofracturing was hypothesized to drain a supraglacial meltwater network. They observed

8 fracturing and partial draining events that likely refroze before reaching the bed. During the

9th draining event, the supraglacial network completely drained within one hour. The authors

hypothesized that this was due to a hydrostatic pressure buildup (as the surface meltwater was at

its highest level) and a warming of the cold ice from refreezing of the first 8 fracture events (Cryo-

hydrologic warming). Fountain et al. [15] drilled 48 holes into Storglaciären, Sweden, which is a

largely temperate alpine glacier of 250m maximum depth. They used a video camera to investigate

the englacial water passages they drilled through. They intercepted mostly fractures in the vicinity

of refrozen (clear ice) crevasses. Because the glacier was temperate, liquid water persisted in these

fractures. Fractures were found to penetrate up to 96% of the ice depth. Catania et al. [8] examined

moulins and ice layer stratigraphy near the ELA of Western Greenland using ice penetrating radar.

By examing the dip in stratigraphy surrounding a moulin and assuming it was caused by basal
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melt from meltwater drainage through the moulin, they estimate the meltwater input required.

They found that several supraglacial lakes’ worth of water is required to cause the observed melt,

indicating that key moulins stay active for several seasons with filling and draining events. Clason

et al. [11] modeled supraglacial melt routing to the bed in the Southwest Devon Ice Cap, Nunavut,

Canada. Using Van der Veen et al.’s [40] LEFM method, they found that given a meltwater volume,

a crevasse is more likely to reach the bed and drain with a 0.5m crevasse width than with a larger

width (up to 5m). With a larger width, crevasses are more likely to partially penetrate and remain

as stagnant water, allowing refreezing.

It has been shown in several studies that anomalously warm ice profiles can be predicted by

accounting for latent heat generated through the refreezing of englacial water bodies [26, 34, 3].

This thermal interaction between englacial water bodies and surrounding cold ice has been called

Cryo-Hydrologic Warming (CHW). Ice-penetrating radar was used by Catania et al. [8] to examine

ice stratigraphy in the vicinity of moulins in Western Greenland at the Equilibrium Line Altitude.

They found that basal melt from supraglacial lake drainage exceeded one draining event, so some

moulins must persist for several years. A classic study by Weertman et al. [41] found that isolated

water-filled crevasses can extend to the bottom of a glacier given sufficient melt water input. As

its depth increased, it would experience refreezing and release latent heat.

Additionally, there are regions of West Greenland that are experiencing increased surface

velocities from 10-20 years ago [33]. Without temperature measurements of the ice profile, mod-

eling must be used to test hypotheses regarding the source of increased velocity. The two major

hypotheses of the source of velocity increase are increased temperature, which decreases viscosity

non-linearly according to Glen’s Flow Law, or basal sliding due to increased liquid water at the bed.

In this research and the work that precedes it, CHW has been presented as a possible explanation

for a rapidly increasing ice temperature, and subsequently higher surface velocity.
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1.4 Effect of CHW on Flow Law Parameter and Strain Heat

We are mostly interested in examining the thermomechanical influence of CHW as warming

causes an acceleration and increase in strain heat in the ice sheet. According to Glen’s Flow Law:

ε̇ = Aτn (1.1)

where ε̇ is the shear strain rate, τ is shear stress, A is the flow parameter, and n is the creep

exponent, usually taken to be 3. The flow parameter, A, follows an Arrhenius relationship for cold

ice[13].

Ac = A0exp

(
−Q

−

Rθ

)
(1.2)

where A0 is a reference value of A, Qc is the creep activation energy for ice, R is the Universal

−20 −15 −10 −5 0
0
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)

0 0.01
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Figure 1.2: Left: Flow Law Parameter A as a function of Temperature in the range experienced in
ice sheets. Right: Flow Law Parameter A as a function of Liquid Water Fraction between 0 and
1%, the range typically supported by temperate ice.

Gas Constant, and θ is temperature. For temperate ice [18]:

At = Ac (θPMP ) (1 + 181.25φw) (1.3)
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where φw is the liquid water fraction, θPMP is the pressure melting point temperature andAc (θPMP )

is Equation 1.2 at θ = θPMP . See Figure 1.2.

The flow law parameter A can be understood to be the inverse of viscosity, so warmer and

wetter ice result in a higher flow law parameter A and less viscous ice. From Glen’s Flow Law,

the horizontal velocity gradient of an ice sheet can be derived assuming simple shear [23]. This

is referred to as the Shallow Ice Approximation. We can define strain rate in terms of velocity

gradient:

ε̇ =
1

2

(
∂u

∂z
+
∂w

∂x

)
(1.4)

where u and w are the horizontal and vertical velocity, respectively. In simple shear, ∂w
∂x = 0, so

∂u

∂z
= 2Aτnzx (1.5)

Assuming that the surface of the ice sheet has a small slope, we can balance the weight of the ice

with a shear stress to derive:

τzx = ρgh sinαslope ≈ ρghαslope (1.6)

where ρ is the ice density, g is gravitational acceleration, h is the height of the ice sheet, and αslope

is the surface slope.

∂u

∂z
= 2A (θ) (ρgαslope)

n (zs − z)n (1.7)

where zs − z is the depth from the surface. See Figure 1.3 for a typical velocity profile resulting

from the integration of Equation 1.7 with a no-slip basal boundary condition. This shows that

the horizontal velocity gradient is proportional to the Flow Law Parameter A. We also note from

Figure 1.3 that velocity gradient is hightest toward the bottom of the ice sheet due to the (zs − z)n

term. This means that for warming to have the largest influence on the velocity of an ice sheet, it

must occur toward the bottom of the ice sheet.

Additionally, the shear strain rate in the ice sheet is controlled by the flow law parameter A.

We can find the strain heat dissipation, Q, from Glen’s Flow Law:

Q = ε̇τ = Aτn+1 (1.8)
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u 

Figure 1.3: A typical ice sheet velocity profile assuming no basal sliding

Q = A (θ) (ρgαslope)
n+1 (zs − z)n+1 (1.9)

Again, we see that strain heat dissipation is proportional to the flow law parameter A.

1.5 Incorporation of Liquid Water in Continental Scale Ice Sheet Models

and the Thermomechanical Influence of Warming

Traditional ice sheet modeling would reflect a warming of the surface boundary condition

through an increased Type-1 temperature boundary and decreased surface mass balance, which

would affect the velocity field of the ice sheet. The time-scale of conduction through a change in

the surface boundary temperature is a function of the thermal conductivity of ice. For an ice sheet

that is 500 to 1000 m thick, it would take hundreds to thousands of years for this surface warming

to be felt throughout the ice sheet. A decrease in the surface mass balance would cause the vertical

velocity under the warmed area to change from downward to an upward velocity, further inhibiting

a thermal response at depth within the ice sheet. It has been observed in Phillips et al. [34, 33] that

there are other feedback mechanisms other than the upper surface boundary that can contribute

to the rapid change in ice sheet dynamics and thermodynamics. Developments in the field of ice -

liquid water interactions will shed light on this and the inclusion of these interactions in large-scale

models will result in more accurate and robust forecasting in Global Climate Models as warming

is expected to increase in the 21st century.
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1.6 Previous CHW Parameterization

Previous work done by Phillips et al. [34, 33] incorporated the warming effect of cryo-

hydrologic warming into an ice-sheet model through a dual-column model of background ice and the

cryo-hydrologic system (CHS). A linear exchange term appeared in both the advection-conduction

equation modeling the thermodynamics of the background ice and a conduction equation modeling

the cryo-hydrologic system. A factor of 1
R2 appeared in front of the linear exchange term, with R =

half-spacing of cryo-hydrologic systems, to signify a representative spacing between cryo-hydrologic

systems. The two equations are solved either iteratively or in sequence to evolve the ice sheet in

time. The advection-conduction equation for the background ice is described by equation 1.10.

ρiCi
∂θi
∂t

+ ρiCiu
∂θi
∂x

+ ρiCiw
∂θi
∂z
− κi

∂2θi
∂z2

= Q+
κi
R2

(θCHS − θi) (1.10)

where ρi is the ice density, Ci is the ice specific heat, t is time, κi is the ice conductivity, Q

is strain heat, θi is ice temperature, and θCHS is the cryo-hydrologic system temperature. The

cryo-hydrologic system thermodynamics in the winter are described by equation 1.11

∂ρHCHS

∂t
− ∂

∂z

(
κCHS

∂θCHS
∂z

)
= − ki

R2
(θCHS − θice) (1.11)

where ρH is specific enthalpy and κCHS is the CHS conductivity. The cryo-hydrologic system

thermodynamics in the melt season are described by equation 1.12:

θCHS = θPMP (1.12)

1.7 Goals of High-Resolution CHS Modeling

The goal of high-resolution modeling of CHW is to better understand the fundamental physics

of the process and to determine what patterns and parameters become important in a large-scale

sense. We hope to do this by first developing a modeling framework that tracks specific enthalpy

of the cryo-hydrologic system as advection and conduction evolve the system. With a suite of end-

member modeling scenarios, we also hope to put bounds on the potential thermodynamic and ther-

momechanical influence of CHW. While strictly realistic initial introductions of persistent englacial
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water, dynamic processes of draining and refilling, and fracture propagation will remain simplified,

we expect the results to still glean valuable insight into the fundamental processes. Finally, we

hope apply the knowledge gained from this modeling to create alternative parameterizations for

large-scale ice sheet models that capture the influence of CHW in a simple, yet physically-justified

manner.



Chapter 2

Vertical Column Models

Enthalpy methods are becoming a more widely-adopted way of solving the advection-conduction

equation in modeling situations where polythermal ice is encountered. There is a distinct advantage

to modeling ice thermomechanics with enthalpy as a state variable instead of temperature for the

reason that both temperature and liquid water fraction of ice are functions of enthalpy. In other

words, if the enthalpy of the system is known, so are the temperature and liquid water fraction.

More details of enthalpy methods will be presented later.

In this section, we consider thermal modeling of vertical columns. In continental-scale ice

sheet models or flowline models, thermo-mechanical coupling is typically done with an operator-

splitting technique where vertical and horizontal energy transport are considered separately. By

creating a transient modeling scenario where initially there is a cold ice profile, then polyther-

mal ice conditions are encountered (temperate ice at the bed and cold ice above) we can compare

three different methods for solving the advection-conduction equation in a 1D vertical column

(Temperature-Based CTS Tracking, Apparent Heat Capacity Approach, and the Enthalpy Gradi-

ent Method). Only the thermodynamics of the system are considered here - there is no thermome-

chanical coupling in this section.

The same transient test case was run for each modeling approach. The column had a height

of 800m and had an initial temperature of -5oC. There were two source terms of heat in the test

case - frictional strain heat and a horizontal advection parameterization. The strain heat term

produces warmth primarily at the bed of the column and is responsible for warming the bed to
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temperate conditions over time. Strain heat can be derived from Glen’s Flow Law which relates

stress and strain in glacier flow. See Equations 1.8 and 1.9. This value of Q was multiplied by 100

so that a temperate basal layer was encountered.

2.1 CTS Tracking

The tradational way of modeling ice thermodynamics is with the temperature-based advection-

conduction equation:

∂θ

∂t
+ u

∂θ

∂x
+ w

∂θ

∂z
− ∂

∂z

(
α
∂θ

∂z

)
=

Q

ρ C
(2.1)

where α = κ
ρC is the diffusivity of ice, κ is the conductivity of ice, and C is the specific heat. u∂θ∂t

can be approximated by u(z)αslopeλ where αslope is the surface slope and λ is the lapse rate. At

the cold-temperate surface interface, there is a flux balance of heat:

−κ ∂θ
∂z

∣∣∣∣
+

= −κ ∂θ
∂z

∣∣∣∣
−

+ ρwφwL (2.2)

where φw is the liquid water fraction and L is the latent heat of fusion. In order to calculate

this flux balance, an assumed liquid water fraction of the temperate ice must be assumed. It has

been observed that 1% liquid water fraction is reasonable in temperate ice before draining starts

to occur. We can balance the heat fluxes above and below the CTS:

∂θ

∂z

∣∣∣∣
+

=
∂θ

∂z

∣∣∣∣
−

+
ρwφwL

κ
(2.3)

and since (-), or the ice below the CTS, is temperate ice,

∂θ

∂z

∣∣∣∣
−

=
∂θPMP

∂z
(2.4)

∂θ

∂z

∣∣∣∣
+

= 6.7x10−4
oC

m
− ρwφwL

κw
(2.5)

We also know that θ|+ = θPMP , so both basal boundary conditions for the cold, upper layer

of ice must simultaneously be satisfied. The temperate ice below the CTS is at PMP. In an iterative

process, the CTS is moved and a temperature profile is solved for the cold, upper layer of ice using

the Type-2 boundary condition at the CTS. The iteration is completed until the Type-1 boundary

layer is also satisfied within some tolerance.
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2.2 Enthalpy Gradient Method

We can transform the advection-conduction equation from a temperature-based equation into

an enthalpy-based equation by:

ρH = (1− φw) ρiCi (θ − θ0) + φwρw [Ci (θPMP − θ0) + Cw (θ − θPMP ) + L] (2.6)

where ρH is specific enthalpy and θ0 is an arbitrary reference temperature, which is simply ρH =

ρiCiθ for cold ice and θ0 = 0oC. So now the advection-conduction equation (for cold ice) is:

∂ρH

∂t
+ u

∂ρH

∂x
+ w

∂ρH

∂z
− ∂

∂z

(
α
∂ρH

∂z

)
= Q (2.7)

where α = κ
ρ C is the diffusivity of ice, u and w are horizontal and vertical velocity, respectively,

and Q is frictional strain heat.

When dealing with temperate or polythermal conditions, a different formulation is needed

for the conductive energy flux term. In the cold case, conductive flux is governed by Fouriers Law

of Heat Transfer and is simply a sensible heat flux. In the temperate ice case, the conductive

heat flux is the sum of a sensible and latent heat flux, which can both be expressed as diffusive

processes. The sensible heat flux, κi
∂θPMP
∂z arises from a temperature gradient due to pressure-

induced changes in θPMP with depth. Assuming hydrostatic conditions and the Clausius-Clapyron

relation, however, means that θPMP varies linearly with depth, so ∂θPMP
∂z = −β, a constant. In

a 1D column model, this results in ∂
∂z (−β) = 0, so the term can be neglected. In a 2D model,

non-linear spatial variations in θPMP can exist in horizontally neighboring nodes with different ice

depths, resulting in non-zero sensible heat exchange. Aschwanden et al. [2] showed that even with

relatively steep surface slope, this term can reasonably be neglected. The latent heat flux results

from diffusion of liquid water within temperate ice. The latent heat flux is proportional to the

liquid water content, so is κ0
∂φw
∂z , where κ0 is a small unknown diffusion-like parameter. We can

say that liquid water fraction is linearly related to enthalpy by:

φw = HL−1 (2.8)
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where H is enthalpy when θ = θPMP as we will see later. This allows us to define α0 = κ0L
−1

which is a small diffusivity and keep ρH as our state variable. This diffusion of liquid water within

ice is poorly understood, but has been observed to resemble a Fick-type diffusion. The conductive

heat flux is shown in Equation 2.9 and the new Advection-Conduction equation is written out in

Equation 2.10.

Jconduction =

 αi
∂ρH
∂z ρH < ρHPMP

κi
∂θPMP
∂z + α0

∂ρH
∂z ρH ≥ ρHPMP

(2.9)

∂ρH

∂t
+ u

∂ρH

∂x
+ w

∂ρH

∂z
− ∂

∂z
(Jconduction) = Q (2.10)

Once ρH is calculated in each time-step, temperature and liquid water fraction can both be calcu-

lated as they are both functions only of enthalpy.

θ =


ρH
ρiCi

ρH < ρHPMP

θPMP ρH ≥ ρHPMP

(2.11)

φw =

 0 ρH < ρHPMP

(ρH−ρHPMP )
(ρw−ρi)CiθPMP ρwL

ρH ≥ ρHPMP

(2.12)

where ρHPMP is the specific enthalpy of ice at θ = θPMP and no liquid water fraction.

2.3 Apparent Heat Capacity Approach

The standard advection-conduction equation (with horizontal advection parameterization):

∂ρH

∂t
+ w

∂ρH

∂z
− ∂

∂z

(
κi
∂θ

∂z

)
= Q− u (z) ρCαλ (2.13)

can be transformed with the chain rule:

∂ρH

∂θ

∂θ

∂t
+ w

∂ρH

∂θ

∂θ

∂z
− ∂

∂z

(
κi
∂θ

∂z

)
= Q− u (z) ρCαλ (2.14)

∂ρH
∂θ = ρC where C is the heat capacity. When dealing with temperate and polythermal ice, we

can define Ca and κa as apparent heat capacity and apparent conductivity in order to deal with
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Figure 2.1: Specific Enthalpy as a function of temperature

the Stefan Problem at the cold-temperate interface [28]. When we look at a plot of enthalpy vs.

temperature, we see that there is a jump in enthalpy at the pressure-melting point (Figure 2.1).

Since ∂H
∂θ = C, there is an infinite heat capacity at θPMP . Instead of causing a rise in

temperature, heat flux causes a phase change (melt). Since an infinite heat capacity would imply

that no heat is transferred between cold and temperate ice, we can say that instead of phase change

happening at exactly θPMP , it happens over a small ∆θ such that

∆θ
2∫

−∆θ
2

Ca (θ) dθ = L (2.15)

This allows enthalpy to increase by L over the range −∆θ
2 to ∆θ

2 , but prevents the heat capacity

from becoming infinite. Instead, ρCa = ρL
∆θ in the range −∆θ

2 to ∆θ
2 . This is shown in Figure 2.2.

Ca =


Ci θ < θPMP − ∆θ

2

L
∆θ θPMP − ∆θ

2 ≤ θ ≤ θPMP + ∆θ
2

Cw θ > θPMP + ∆θ
2

(2.16)
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Figure 2.2: Apparent Heat Capacity as a function of temperature for ∆θ = 0.1oC

We also define κa to vary linearly between κi and κw in the region −∆θ
2 to ∆θ

2 in order to

reflect that water content of the ice increases linearly from 0 to 1 from −∆θ
2 to ∆θ

2 . This is shown

in Figure 2.3.

κa =


κi θ < θPMP − ∆θ

2

κi + κi−κw
∆θ

[
θ −

(
θPMP − ∆θ

2

)]
θPMP − ∆θ

2 ≤ θ ≤ θPMP + ∆θ
2

κw θ > θPMP + ∆θ
2

(2.17)

2.4 Comparison of Column Models

A comparison of the three methods for dealing with temperate ice was conducted in order

to find pros and cons to each method and to see differences in the temperature profiles obtained.

Once vetted, any of these three methods can be adapted to a flowline model. Only the enthalpy

method and apparent heat capacity method are easily adaptable to the 2D crevasse model where

the advection-conduction equation is applied to an enthalpy field consisting of pure liquid water

and ice with a moving boundary (Stefan Problem).
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Figure 2.3: Apparent Conductivity as a function of temperature for ∆θ = 0.1oC

In order to encounter temperate conditions, a test-case was used that included artificially high

strain heating as a source term (100 times greater than would normally be derived from a Glens

Flow Law velocity profile). This allowed us to examine how each model handled the transition

from cold to temperate conditions. The test case involved a Type-1 boundary condition at the

surface and a changing boundary condition at the base depending on whether the ice is cold or

temperate and the method used. The column had a depth of 800m with ∆z = 1m. A lapse rate

of λ = 0.0055K/m and surface slope of αslope = 0.0075 were used for the horizontal advection

term. u ∂θ∂x can be approximated by u (z)αslopeλ. To derive the velocity profiles, the Shallow Ice

Approximation was used for the horizontal velocity and an ablation rate was used to create a linear

vertical velocity profile in Equation 2.18.

u(z) = ub + 2A (ρgαslope)
3
4

(
H4 (H − z)4

)
(2.18)

where ub is the basal horizontal velocity. We used values of ub = 0 and A = 3x10−24 [13]. The
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vertical velocity profile is expressed in Equation 2.19

w(z) = b
( z
H

)
+ bm

(
1− z

H

)
(2.19)

where b = 0.25m/a is the ablation rate and bm = 0 is the basal melt rate. The strain rate was also

developed from the Shallow Ice Approximation velocity profile:

Q = 2A
(
ρgαslope (H − z)4

)
(2.20)

As mentioned, a strain rate of 100*Q was used to create temperate conditions at the bottom of each

column profile. The transient model was run at a 30 day time-step for 1000 years to reach a quasi-

steady state. The surface boundary condition was θsurface = −5oC and the initial temperature at

all depths was θ0 = −5oC.

We see in Figure 2.4 that the three methods all produce temperate bed conditions for roughly

the bottom 70m of the column profile. The apparent heat capacity method produced water content

in the ice that varied almost linearly from 0 at the cold-temperate interface to about 2% at the

bed. The enthalpy method also produced a linear profile of water content that varied from 0 at the

cold-temperate interface to 1.4% at the bed. Finally, the CTS tracking method produced a similar

temperature profile as the preceding two methods with a temperate base of 78m. Since the CTS

heat-flux is a function of water content, assumed water content must be used, meaning that the

temperate ice is uniformly assumed to be 1% liquid water fraction.
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Figure 2.4: Column Model Comparison



Chapter 3

Crevasse Refreezing Rate

One of the major uncertainties with the enthalpy gradient method is the value to assign

to the temperate diffusivity, α0 (see Section 2.2). For small values of liquid water fraction, the

gradient between the enthalpy of cold and temperate ice is small, and the rate of heat transfer

from temperate ice to cold ice is insensitive to the value of α0 [2]. In a cryo-hydrologic system,

however, there is initially liquid water (treated as temperate ice with 100% liquid water fraction)

in direct contact with cold ice. In these neighboring nodes, there is a large jump in enthalpy (by

at least the latent heat of fusion). The rate that heat is transferred from the liquid water to the

surrounding cold ice (and hence refreezing of the liquid water) is heavily dependent on α0. As

the value of α0 is not well constrained in the literature, tests were performed to match crevasse

refreezing rates generated numerically with the Enthalpy Gradient Method using different values

of α0 to an approximate analytical solution of the Stefan problem, the Apparent Heat Capacity

Method, and an Ice-Water Interface solution of the enthalpy formulation. There are also uncertain

parameters that affect refreezing rate in the Apparent Heat Capacity solution, so sensitivities to

those parameters will also be examined in this section.

The same 1D numerical test case was examined using the Enthalpy Gradient Method, Ap-

parent Heat Capacity Method, and Ice-Water Interface solution. This 1D test case was chosen

to match the assumptions of the analytical Stefan solution, including the initial conditions and

boundary conditions. The Type-1 boundary far from the CTS is θ = θ0, where θ0 is some cold ice

temperature. Since the Stefan solution transitions from θPMP to θ0 with an error function, it is
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Figure 3.1: Initial Temperature profile for refreezing problem. The ice domain extends to x=60m.

important that the numerical solutions have a large enough domain such that the warming from

the liquid water never ”feels” the cold boundary at θ0 as the solution would then deviate from

an error function. The test case initially had 1m of liquid water on the left of the domain and

59m of cold ice at θ0 = −10oC on the right of the domain. 59m is a large enough domain to be

approximated as semi-infinite. See Figure 3.1 for the initial conditions of the problem. The left

boundary condition was a no-flux boundary such that

∂θ

∂x
= 0 at x=0m (3.1)

The right boundary condition is a Type-1 held at:

θ0 = −10oC at x=L=60m (3.2)

3.1 Apparent Heat Capacity Approach

The Apparent Heat Capacity Approach used here is similar to the approach outlined in

Section 2.3, but varies in the way an initial condition is applied. Whereas a temperate bed was
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built up from cold initial conditions in the Column Model section, here we are starting with 1m of

pure liquid water and 59m of cold ice at θ = −10oC. This means that the liquid water must start

at temperature θPMP + ∆θ so that Ca = Cw and κa = κw as defined in the Column Model section.

As refreezing occurs, the temperature of the liquid water drops from θPMP + ∆θ to θPMP . Once

θ < θPMP , the water is considered to be refrozen. The time required to refreeze the water may

dependend on ∆θ, though it is not intuitively clear if there will be any direct relationship. While

a larger ∆θ means liquid water will have to undergo a larger decrease in temperature in order to

refreeze, a larger ∆θ also means there will be a smaller Apparent Heat Capacity as Ca = L
∆θ in the

region θPMP < θ < θPMP + ∆θ.

3.2 Water-Ice Interface Method

With this method, the initial conditions are applied and an exact numerical treatment of the

ice-water interface is examined to calculate a refreezing time. The ice-water interface condition is:

−κw
∂θw
∂x

+ κi
∂θi
∂x

= ±ρwL
∂X

∂t
(3.3)

where X is the water-ice interface location. To address the issue of a partial node freezing in

a timestep, a variable timestep is used that allows one full node to refreeze per timestep. To

accomplish this, the interface condition is rewritten as

∂X

∂t
=

κi
ρwL

∂θi
∂x

(3.4)

since ∂θw
∂x = 0. Then, to determine the time ∆t it takes to refreeze a full node:

∆t =
∆x
∂X
∂t

(3.5)

where ∆x is the node spacing. With this variable ∆t, each timestep consists of moving the interface

to the left one full node and solving the cold conduction equation to the right of the interface.

Since the initial condition on the ice side is θi = −10oC, there is initially no temperature

gradient to drive the interface freezing condition. Therefore, one small fixed timestep is done where
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the ice temperature to the right of the interface is brought to θ = 0oC and the cold conduction

equation is solved. A small timestep (1 day) is used so that the assumption that no refreezing

occurs is valid. After this small timestep, there is a temperature gradient ∂θi
∂x so that the interface

condition can be satisfied.

3.3 Analytical Solution

An approximate analytical solution exists for the refreezing problem as laid out by Lunardini

et al. [28]. The original class of problem was first proposed and solved by Stefan in 1891 as it

pertained to the freezing of sea ice. It has since been applied to a wide range of heat transfer

problems involving a moving phase change boundary. The same method (with different initial

conditions) is laid out here.

Initially to the left we have θw = θPMP from x = −1m to x = 0m. To the right, we have a

semi-infinite domain of ice at θi = θ0. X(t) is the interface location and initially is at X(0) = 0m.

At t = 0, the ice temperature at the interface boundary is brought to θi = θPMP .

There are two phase change interface conditions that must be satisfied at all times:

θi = θPMP at x = X(t) (3.6)

−κi
∂θi
∂x

= −ρwL
∂X(t)

∂t
at x = X(t) (3.7)

Once conduction starts, a heat-transfer similarity solution is applied to the ice temperature:

θi = θ0 +A erfc

(
x

2
√
αit

)
(3.8)

Applying the first phase change interface condition:

θPMP = θ0 +A erfc

(
X(t)

2
√
αit

)
(3.9)

Using a Fourier Series solution we can say:

X(t) = −2γ
√
αit (3.10)

θPMP = θ0 +A erfc (−γ) (3.11)
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A =
θPMP − θ0

erfc (−γ)
(3.12)

Now going back to our second phase change boundary condition:

∂θi
∂x

=
−A exp

(
−x2

4αit

)
√
παit

(3.13)

∂X(t)

∂t
=
−γ√αi√

t
(3.14)

so at x = X(t)

κiA√
παit

exp

(
−X(t)2

4αit

)
= −ρwL

−γ√αi√
t

(3.15)

κi (θPMP − θ0)
√
παi erfc (−γ)

exp
(
−γ2

)
= ρwLγ

√
αi (3.16)

Moving all the γ terms to the left side, we have:

exp
(
−γ2

)
γ erfc (−γ)

=
ρwL
√
παi

κi (θPMP − θ0)
(3.17)

Assuming that γ is small, we can make two simplifying assumptions. First, erfc (−γ) = 1 for small

γ and exp
(
−γ2

)
= 1 for small γ. This results in:

γ =
κi (θPMP − θ0)

ρwL
√
παi

(3.18)

It is important to check that this results in a small γ so that the previous two assumptions hold.

In the case where θPMP − θ0 = 10oC, γ = .033 using Equation 3.18. Plugging this value back into

Equation 3.17 results in 3.6% error, an acceptable value. If θPMP −θ0 = 20oC is used, a 7.8% error

occurs, so an iterative approach to solving Equation 3.17 is desirable. This value of γ can then be

used to solve the location of the phase change boundary as a function of time:

X (t) = −2γ
√
αit (3.19)

3.4 Enthalpy Gradient Method

The approach used in this section is similar to the column model formulation found in Sec-

tion 2.2, but with polythermal initial conditions, no strain heat, and no advection. The governing
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equation can be found in Equation 3.20 and 3.21

∂ρH

∂t
− ∂

∂x
(Jconduction) = 0 (3.20)

Jconduction =

 αi
∂ρH
∂x ρH < ρHPMP

κi
∂θPMP
∂x + α0

∂ρH
∂x ρH ≥ ρHPMP

(3.21)

Since we are considering a 1D horizontal scenario with θPMP = 0oC, ∂θPMP
∂x = 0. With Specific

Enthalpy as the state variable, our initial conditions can be viewed on the left as temperate ice

with 100% liquid water fraction and cold ice at −10oC on the right. Specific Enthlapy is specified

with the equation:

ρH = (1− φw) ρiCiθ + φwρw (Ci + L) (3.22)

where we assume liquid water is at 0oC. The large jump in Jconduction causes the equation to

be nonlinear, but it can be solved fully implicitly with a tridiagonal solve of ρH and update

of Jconduction inside a Picard iteration loop. It is also of note that the finite difference form of

∂
∂x (Jconduction) is:

∂

∂x
(Jconduction) = αi+1/2

(
ρH i+1 − ρH i

)
∆x2

− αi−1/2

(
ρH i − ρH i−1

)
∆x2

(3.23)

For the half-node diffusivity, a harmonic average is used between two nodes:

αi+1/2 =
2

1
αi

+ 1
αi+1

(3.24)

At the ice-water interface, this results in the value of α being skewed toward α0, the smaller of the

two diffusivities. This value of α0 controls the rate at which refreezing occurs, so can be varied

until it matches the rate found with other methods described in this section.

3.5 Comparison of Refreezing Rates

The test case was run with all of the refreezing methods. For the numerical methods, the

key parameter in each was varied over a range of values. See Table 3.1.
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Method Key Variable Value Refreezing Time (years)

Analytical 6.822

CTS Tracking dt1 = 1 day 5.145
dt1 = 10 days 6.245
dt1 = 50 days 7.777

Apparent Heat Capacity ∆θ = 0.5oC 5.863
∆θ = 0.1oC 6.192
∆θ = 0.05oC 6.356
∆θ = 0.01oC 6.493

Enthalpy Gradient K0 = Ki
25 5.233

K0 = Ki
50 5.918

K0 = Ki
100 6.712

K0 = Ki
500 11.506

Table 3.1: Comparison of refreezing times using four methods. For the numerical simulations, one
parameter controls the refreezing rate and is varied.

We see that with the various methods of calculating refreezing time, the value spans from

5.145 years to 11.506 years. The analytical solution, which we will consider as the most accurate

solution, falls in the middle at 6.822 years. Since the Enthalpy Gradient Method is being adopted

in the 2D high resolution crevasse model, we are most interested in matching the value of α0 that

results in a refreezing rate close to the analytical solution. α0 = αi
100 results in a refreezing rate

of 6.712 years, a 1.6% difference from the analytical solution. Since the analytical solutions is

approximate and our value of γ resulted in a 3.6% error in Equation 3.17, this value of α0 seems

reasonable and will be adopted for the following sections.



Chapter 4

2D High Resolution Modeling Framework

4.1 Model Framework

As stated in Section 1.7, the goals of high-resolution modeling of the Cryo-Hydrologic System

(CHS) include understanding the patterns and dominant processes associated with the advection

and conduction of persistent englacial water. In this section, we describe our conceptual framework

for modeling energy transfer from the CHS to the cold background ice. We conceptualize the CHS

as composed of discrete elements such as crevasses, conduits, fractures and voids, embedded within

the background ice. We consider typical horizontal extents over which meltwater generation rates

are homogeneous, to be on the order of a few kilometers, and the spacing between meltwater entry

points into the CHS (e.g. crevasse spacing) to be at least an order of magnitude smaller. Crevasses

typically occur at fixed locations determined by the stress field within an ice sheet. Moulin and

conduit-dominated CHS develop from crevasses that are advected out of crevasse fields [22, 37].

Thus, it is reasonable to view any fixed region within the wet snow zone or ablation zone, whose

areal extent is of the order of a square kilometer, as an Eulerian ”control volume” that contains

a more or less temporally invariant array of CHS elements (as the most downstream element in

the array is advected out of the control volume, another appears upstream). See Figure 4.1 for

a schematic of the modeling framework. For simplicity, we assume an array of regularly spaced

identical CHS elements. Of course, the nature of the array will vary from location to location,

with crevasse fields in some locations, moulin-conduit complexes at other locations, or mixtures of

both types, or even no CHS in some locations. Our objective is to quantify the warming influence
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(i.e. CHW) of the CHS array on the ”background” cold ice within the control volume. While

CHW, increased ice velocities, and the increased meltwater generation at the surface may induce

transformations in the CHS structure [12], we will not consider these feedback mechanisms. We

also do not take into account the thermomechanical changes that take place in the background ice

as a result of CHW. Phillips et al. [33] performs a thorough investigation of this.

u 

2W 

2R 

2R 

unit cell 

control volume 

Figure 4.1: Schematic of modeling framework showing Eulerian unit cell, assigned velocity profile,
and crevasse geometry. The domain is a 2D cross-section with the crevasse going into and out of
the page.

The warming influence of englacial water is no doubt dependent on the physical and geomet-

ric properties of the CHS array, and establishing their inter-relationship is an important step in

parameterizing CHW for use in large-scale ice sheet models. It is tempting to suggest that once

their inter-relationship is established, CHW parameterizations can be developed by using high-

resolution surface imagery to characterize the physical and geometric properties of the CHS array.

However, some caution is warranted - while the internal geometry of the CHS at depth is related

to its surface expression, it could be much more complex topologically, plausibly even exhibiting
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multidimensional connectivity between CHS elements. In principle, our modeling approach can be

extended to incorporate probabilistic variations in the structure of individual CHS elements and

spacing between them. However, we believe that useful first-order insights are obtained even with

our simplified representation. Furthermore, few if any detailed observations of the internal geome-

try of the CHS at depth are available to guide more sophisticated representations. Our approach to

quantifying CHW is based on the following thought experiment: As an initial condition, consider

that the Eulerian control volume in question was not experiencing any meltwater inputs. Assume

that the onset of meltwater generation on the ice surface in the control volume rapidly leads to

the development of a CHS array. We are now interested in heat transfer from the CHS to the

background ice. For a regular array of CHS elements subject to synchronous meltwater inputs,

we expect periodic temperature/enthalpy variations within the background ice. Thus it suffices to

consider thermodynamic interactions between the CHS and background ice within one ”unit cell”

within the regular array of CHS elements [42]. During the active melt season, the thermodynamics

of the CHW may be described by multi-dimensional generalizations of the Spring-Hutter equations

[36] coupled with fracture propagation equations [40, 1]. However, the active melt season is typi-

cally short in duration [38], and for this reason we focus on energy transfer from retained meltwater

in the CHS, which is the prevalent mechanism for most of the time since initiation of meltwater

inputs. The retained meltwater is assumed to be stagnant, and our modeling approach focuses on

computing the transfer of energy from liquid water retained in the CHS to the background ice as

it freezes. The duration over which the liquid water in the CHS refreezes is determined by the di-

mensions of and spacing between the CHS elements, and the initial temperature of the background

ice. As noted by Jarvis et al. [26], liquid water can persist for 20-30 years in large crevasses.

4.2 Choice of Modeling State Variable

We were presented with several choices of ways to model the advection-conduction equation

for the 2D Crevasse system defined above. Namely, we explored the Enthalpy Gradient Method, the

Apparent Heat Capacity Method, and a temperature-based Interface-Tracking Method. The use of
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a unit cell of an Eulerian control volume as our modeling domain and a non-uniform velocity field

quickly ruled out the Interface-Tracking Method because of the geometric complexity of tracking

the interface in that system. Jarvis et al. [26] were able to use this approach because of their choice

to use a Lagrangian control volume around the crevasse and a conduction-only refreezing scenario.

The Apparent Heat Capacity Method is a feasible apporach to handle the advection-conduction

equation described here because it requires no tracking of an ice-water interface, it can be done

semi-implcitly, has a tractable way of defining ice, water, and their thermal interaction, and has

been shown to capture refreezing rates of liquid water in cold ice. The main drawbacks of this

method, however, are that it has no physical basis for its linearization of conductivity and has no

rigid way of conserving energy. Whereas the Enthalpy Gradient Method uses specific enthalpy as

the state variable and accounts for all enthalpy in the system as refreezing occurs, the Apparent

Heat Capacity Method uses temperature as the state variable and uses a false ∆θ to account for

liquid water and the conductivity. Whereas the Enthalpy Gradient method accounts for a Darcy-

like movement of liquid water through ice, the Apparent Heat Capacity method treats diffusion

of liquid water and ice as a mixture problem, using a linear interpolation of their diffusivities. In

reality, a node may have both liquid water and ice, and the enthalpy of the node can be represented

as an average of their enthalpies, but there is no homogeneous mixture of liquid water and ice that

warrants the averaging of their conductivities. In terms of energy conservation, the false ∆θ is

problematic in that temperate ice and liquid water at the pressure melting point should have the

same temperatue and experience no conduction, but the Apparent Heat Capacity approach defines

temperate ice and liquid water at the pressure melting point to be separated by a temperature ∆θ.

The Enthalpy Gradient Method is also a feasible approach for many of the same reasons. It

requires no tracking of an interface, it can be done semi-implicitly, and it has been shown to capture

the refreezing rate of liquid water in cold ice reasonably. Its main advantage over the Apparent

Heat Capacity Method is that it is an energy conserving method and has a physical justification

(however poorly constrained) for diffusion of liquid water through ice. This is very important

due to our modeling goals for this problem. Namely, we are interested in starting with an initial
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distribution of liquid water in a cold ice sheet and determining the long-term spatial distribution of

heat resulting from the melt-water input. As we are using an Eulerian control volume approach, it

is very important to track any inputs and outputs to the system so that energy is not erroneously

lost or gained over the course of the simulation.

The main drawback of using the Enthalpy Gradient Method is that in using Specific Enthalpy

as the state variable, there is initially a very large jump in the initial conditions between the Specific

Enthalpy of liquid water and the cold ice background. For background ice at −10oC, the initial

jump in Specific Enthalpy is ρH liquid water−ρHcold ice = ρw (CiθPMP + L)−ρiCi (−10oC). This is

important becuase at early times, conduction across this large gradient, while controlled by α0, the

temperate diffusivity, causes outward growth of the temperate ice around the crevasse. While not

nonphysical, we tend to see a greater outward growth of temperate ice using the Enthalpy Gradient

Method than other methods (as seen in the Refreezing Rate section) before refreezing occurs. We

can choose α0 that matches other methods’ total refreezing times, however, as this is what we are

most concerned with. In the 1D Refreezing Rate section (section 3.5), we found that the timescale

of temperate ice outward growth is on the order of months while the timescale of crevasse refreezing

is on the order of years or decades.

4.3 Computational Approach

Energy transport is modeled using the Advection-Conduction equation appropriately lin-

earized using an enthalpy, or polythermal, method [2]. While conduction in cold ice simply follows

Fourier’s Law, the residual heat flux in temperate ice is the sum of a conductive and latent heat

flux. The conductive heat flux arises from differences in the surface elevation of adjacent ice nodes,

and hence the pressure melting point temperature, which we will neglect in our modeling frame-

work. The latent heat flux arises from non-advective liquid water diffusion. Aschwanden et al. [2]

reasoned that a Fick-type diffusion of liquid water made sense for a small liquid water content,

but our model will encounter liquid water fractions as large as 1 during the melt season, and large

liquid water contents even during the winter. While other parameterizations for liquid water flux
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have been suggested [25, 16], no good laboratory or field data exists to corroborate any particular

choice. We therefore choose to adopt:

ql = −α0∇ρH (4.1)

where ql is the latent heat flux and α0 is a constant small diffusivity. With large liquid water

fractions, and hence large gradients in specific enthalpy, ql is sensitive to the choice of α0. We

therefore performed a sensitivity analysis on the value of α0 in the enthalpy method in order to

find a value that results in the same refreezing rate of a liquid water body in cold ice obtained

from an analytical solution and CTS-tracking numerical solution (see section 3.5). We found that

the refreezing rate using the enthalpy method with α0 = αi
100 where αi is the diffusivity of cold ice

matches the analytical and CTS-tracking numerical solutions well. This results in the following

expression of the Advection-Conduction Equation:

∂ρH

∂t
+ ~u · ∇ρH −∇ · (Jconduction) = Q (4.2)

Jconduction =

 αi∇ρH ρH < ρHPMP

α0∇ρH ρH ≥ ρHPMP

(4.3)

where ~u is the velocity vector and J is the conductive heat flux.

To solve the Advection-Conduction equation with the Enthalpy Gradient Method, the domain

is discretized using the finite volume method in 2D. See Figure 4.2 for a schematic of the positive

flux directions in a node. The state variable, Specific Enthalpy, is solved at the center of each node.

Conduction and advection are accounted for by tracking fluxes across node boundaries, as shown

with arrows in Figure 4.2. As such, diffusivity is calculated at the node boundaries as the harmonic

average of the diffusivities of the adjacent nodes. For cold ice, α = αi and for temperate ice, α = α0.

The harmonic average is used because at a cold-temperate interface, the averaged boundary value

of diffusivity will be skewed toward the smaller diffusivity, α0. As for velocity values at the node

boundaries, the mean of the two adjacent nodes is used.

To solve the Advection-Conduction Equation using the Enthalpy Gradient Method in 2D,

operator splitting was used to solve for the horizontal conduction, vertical conduction, and vertical
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Figure 4.2: Finite volume cell at location (i,j). The cell is width ∆x and height ∆ζ. The arrows
show the direction of positive flux across cell boundaries. Velocity and diffusivity are calculated at
the half-node spacing with a harmonic averaging.

advection in one half-timestep and the horizontal advection in the next half-timestep. In the

conduction and vertical advection half-timestep, the solution for a node was dependent on the four

adjecent nodes and itself. As shown in Equation 4.4, the conduction is solved semi-implicitly by

keeping the diffusivity lagged 1 timestep (explicit) while solving for Specific Enthalpy implicitly.

The vertical advection is solved with an explicit upwinding scheme. This results in the first half-

timestep having a 5-node implicit dependency, which can be solved using a sparse 5-banded matrix
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solver. Matlab’s sparse backslash was used to solve this.ρHn+ 1
2

i,j − ρHn
i,j

∆t

∆xi∆yj − αni− 1
2
,j

ρHn+ 1
2

i−1,j − ρH
n+ 1

2
i,j

∆xi+∆xi−1

2

∆yj − αni+ 1
2
,j

ρHn+ 1
2

i+1,j − ρH
n+ 1

2
i,j

∆xi+∆xi+1

2

∆yj

−αn
i,j− 1

2

ρHn+ 1
2

i,j−1 − ρH
n+ 1

2
i,j

∆yj+∆yj−1

2

∆xi − αni,j+ 1
2

ρHn+ 1
2

i,j+1 − ρH
n+ 1

2
i,j

∆yj+∆yj+1

2

∆xi

+ρH
n
i,jui+ 1

2
,j∆yj − ρH

n
i−1,jui− 1

2
,j∆yj = Qi,j

(4.4)

Horizontal advection was solved using a Method of Characteristics scheme modified for front

tracking. This is done because when modeling the CHS, there is a large jump (≈ 2 orders of

magnitude) in enthalpy from a crevasse to the background cold ice. Most advection schemes

struggle to maintain a sharp front and suffer from numerical dispersion, so a scheme was chosen

that would maintin the sharp front. This is done by using the Method of Characteristics with a

nearest-neighbor interpolation and a front-tracking algorithm that takes advantage of the fact that

horizontal velocity remains spatially and temporally constant within a model row. In other words,

the Specific Enthalpy of a node is advanced forward a full node only when sufficient time-steps it

have elapsed such that u it ∆t
∆x = 1 where u is the horizontal velocity and ∆t is the timestep.

Finally, a non-dimensional vertical ζ is used:

ζ =
z − zb (x)

zs (x, t)− zb (x)
(4.5)

where zb is the bedrock elevation and zs is the surface elevation. This ensures that each model

column has the same number of nodes and that a constant vertical spacing ∆ζ can be used.

4.4 Velocity Profiles

In our 2D model, we elected not to have a thermomechanical coupling between temperature

and velocity. Instead, we derive a horizontal velocity profile using the non-linear constituative

relation given by Glen’s flow law combined with the Shallow Ice Approximation which reduces the

stress tensor to only leading order terms resulting from assuming simple shear. See Section 1.4 for
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a derivation of these values. An initial value for A was calculated based on Equation 1.2. This

equation for horizontal velocity can be transformed to the ζ coordinate system:

u (x, ζ) = Hn+1 2A

n+ 1

(
ρgsinαslope −

∂zs
∂x

)n (
1− (1− ζ)n+1

)
(4.6)

where H is the ice height. A simple linear approximation for vertical velocity is used where the

surface velocity is assumed to be equal to the ablation rate at the surface and 0 at the bed.

Equation 4.7 shows this velocity scaled for the non-dimensional ζ coordinate system.

w′ (x, ζ) = − 1

H

b

ζ
(4.7)

where b = ablation rate.

4.5 Strain Heating

An equation for strain heating was derived in Section 1.4 using the Shallow Ice Approximation

and Glen’s Flow Law. Like velocity, strain heat can be transformed to the ζ coordinate system:

Q (ζ) = 2A (ρgHαslope)
n+1 (1− ζ)n+1 (4.8)

4.6 Initial Temperature Distribution

A steady-state column model was used to develop an initial background ice temperature

profile. The steady-state Advection-Conduction equation was written out for each column in the

domain and employed a horizontal advection parameterization to account for advective cooling

coming from upstream of the domain:

w′ (ζ)
∂ρH

∂ζ
− 1

H2

∂

∂ζ

( αi
∂ρH
∂ζ

κi
∂θPMP
∂ζ + α0

∂ρH
∂ζ

)
= Q (ζ)− u (ζ) ρCαslopeλ (4.9)

A Picard iteration was performed until convergence was met. We adjusted the values of Q and u

until the profile matched 1990 temperatures for Sermeq Avannarleq near the ELA [39]. Since our

modeling framework assumes that the unit cell of our domain is horizontally homogeneous, we can

assume that each column in our domain initially has the same temperature profile. Columns that
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initially are crevassed have the specific enthalpy in those crevassed nodes replaced with the crevasse

specific enthalpy.

4.7 Boundary and Initial Conditions

An Eulerian framework was used to model a Cryo-Hydrologic System with crevasse spacing

R and periodic boundary conditions at the upstream and downstream columns. Initially, the

background ice has temperature of the steady-state column model and the crevasse is filled with

liquid water at θ = θPMP . This one-time filling of liquid water is then allowed to refreeze. In terms

of the state variable, specific enthalpy, the background ice initial condition is:

(
ρH ice

)
0

= ρiCiθss (4.10)

where θss is the steady-state temperature and comes from Equation 4.9 where specific enthalpy

is converted back to temperature with Equation 2.11. See Figure 4.3 for a plot of the initial

temperatures.
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Figure 4.3: Initial Steady-State Column Model Temperatures for the TD5 pre-CHW scenario

The initial specific enthalpy of the crevasse nodes is:

(
ρHcrevasse

)
0

= ρHPMP + (ρw − ρi)Ci (θPMP ) + ρwL (4.11)
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where ρHPMP is the specific enthalpy of ice at θ = θPMP with no liquid water fraction, ρw is the

density of water, ρi is the density of ice, and L is the latent heat of fusion. The boundary condition

for the top row of the domain is:

ρHtop = ρiCiθair (4.12)

where θair is a sinusoidal function that oscillates between the average maximum summer tempera-

ture and average winter minimum temperature at the TD5 weather station on Sermeq Avannarleq.

Summer temperatures above 0oC were set to 0oC as it was assumed that all generated surface melt

runs into a crevasse. The bottom boundary condition is:

∂ρH

∂ζ bottom

=


−1
H2

G
αi

cold basal layer

0 positive-thickness temperate basal layer

(4.13a)

ρHbottom = ρHPMP zero-thickness temperate basal layer (4.13b)

where G = 0.0502 J
s m2 = 1.2 HFU is the average geothermal heat flux found in Western Greenland.

In the cold basal temperate layer case, the geothermal heat flux causes a rise in temperature at

the bed. In the zero-thickness temperate basal layer case, a Type-1 boundary condition must be

used to hold ρHbottom = ρHPMP while a basal temperate layer is established. Failure to use this

boundary condition results in an oscillation of the bottom node between a temperate and cold

condition. Finally, the positive-thickness temperate basal layer case arises from the assumption

that in temperate conditions, the geothermal heat flux is entirely consumed by basal melt. While

our model does not track mass loss, this boundary condition is still appropriate for solving the

energy equation.

The periodic boundary conditions are applied to the left and right columns of the unit cell

and can be expressed with Equation 4.14.

ρH left = ρHright (4.14)
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4.8 Fracturing and Draining

Hydrofracturing of ice that drives water through cracks and fractues involves a complex

interaction of the ice sheet stress field, hydrostatic pressure, melt water generation, and ice sheet

thermodynamics. To evaluate the thermal influence of a fracturing event similar to Boon et al.

[4], i.e. stagnant water trapped in stress-induced fractures, four different methods that employed

the random-walk method were used to distribute a filled crevasse’s worth of liquid water into

a fracture network annually and allowing it to refreeze. The thermal influence of each type of

fracturing includes the magnitude of warming and characteristic areal scale of influence under a

creasse following a draining event.

To implement the four different methods, a fracture width is assigned and a random walk

method is used to route the fracutre network until all of the water that is retained has been routed.

In subsequent melt seasons, the shallow creavsse is allowed to fill and drain its liquid water again

into the existing or newly created network. See Figure 4.6 for a general schematic of the filling and

draining scenario. See Section 4.9 for a description of the four different methods for creating the

fracture network.

4.9 Modeling Scenarios

There are three main modeling scenarios we consider as end-members for CHW. The first

scenario is that of a shallow water-filled crevasse field with crevasses of width 2W separated by

width 2R. A unit cell in the field captures a crevasse surrounded by background ice of width

2R. The crevasse penetrates 1/3 the thickness of the ice and the ice thickness is chosen to be

H = 500m. See Figure 4.4 for a schematic of the shallow crevasse scenario. In order to explore

different initial conditions and the effect on CHW, we vary crevasse width, crevasse spacing, and

the initial background ice temperature and allow the model to run until the crevasse refreezes and

steady-state temperature is reached.

The next scenario considered is a field of deep, but not fully penetrating water bodies. The



40

u 

Figure 4.4: Shallow crevasse modeling scenario with a one-time filling of an upstream crevasse that
is part of a series of crevasses. The crevasse width is 2W and the spacing between crevasses is 2R.

same geometric parameters are varied as the shallow crevasse case. Whereas a constant background

ice temperature is used in the shallow crevasse field case, a more realistic steady-state temperature

profile that does not include the effects of CHW is assigned for the initial background ice temper-

ature field. This temperature field is modeled to match pre-CHW conditions at the TD5 borehole

site on the Sermeq Avannarleq glacier in Western Greenland [39]. The ice sheet thickness is also

increased to H = 950m. While shallow crevasses experience a nearly constant horizontal velocity

from top to bottom, deep water bodies penetrate to the depth of the ice sheet where a significant

horizontal velocity gradient exists. We therefore compare warming from a case with no horizontal

velocity to a full conduction-advection case to isolate the effects of the horizontal velocity gradient

at depth. These effects include stretching of the initially rectangular water body and the added

effects of strain heat and advective cooling from upstream ice. See Figure 4.5 for a schematic of

the deep water-filled water body case.

The final scenario involves the most complex and dynamic geometry. A shallow water-filled
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Figure 4.5: Deep water body modeling scenario with a one-time filling of an upstream crevasse that
is part of a series of crevasses. The crevasse width is 2W and the spacing between crevasses is 2R.

crevasse fills during the melt season and is then allowed to drain into a fracture network over the

winter. This crevasse filling and fracturing occurs annually. Since mechanical fracture formation

and subsequent hydrofracturing in cold ice are poorly understood phenomena, we choose to con-

strain the fracture network in five different ways that highlight and contrast different mechanisms

for crevasse fracturing.

In the first three of the filling and fracturing scenarios, a random walk method is used to

route 25% of the crevasse’s liquid water into the CHS. A characteristic fracture length and width

are assigned, and fractures branch from the crevasse or existing fractures laterally or downward

until 25% of the creavsses’s water is routed. Realistically, only a portion of the liquid water that

fills a crevasse will be retained in the CHS long enough to refreeze and release latent heat. The

three scenarios differ in the depth to which the random walk algorithm allows the CHS to extend.

In the first scenario, the CHS depth is unbounded and water-filled fractures are allowed to form at

any depth. In the second scenario, fractures are permitted to route water only in the top half of
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the ice sheet. The third scenario limits fracture creation the greatest to only the top third of the

ice sheet. It should be noted that the same enthalpy is routed annually in these three scenarios, so

limiting the fracture extent will cause greater warming in a more concentrated area.

In the fourth and fifth scenarios, the heterogeneity of a randomly generated fracture network

is eliminated and instead a characteristic rectangular area under the crevasse is uniformly warmed.

In the results shown here, the rectangular area is positioned under the crevasse and extends to 5
6

of the ice sheet depth. These two scenarios differ in the width of characteristic rectangular area:

in the fourth scenario, the width is 20m and in the fifth scenario, the width is 50m. These two

scenarios also differ from the first three in the amount of enthalpy routed to the CHS annually.

Instead of using the crevasse area to determine the volume of liquid water routed to the CHS, an

ablation rate is used. We assume an ablation rate of 2ma , 75% of which runs off the surface or

drains to the bed. The remaining liquid water is routed to the CHS and is equivalent to adding

the enthalpy of roughly 0.05% of the ice sheet’s volume as liquid water annually.

In all of the fracturing scenarios, a crevasse width of 2W = 2m, crevasse spacing of 2R =

100m, and ice sheet depth of H = 950m are used. The crevasses penetrate 1/3 the thickness of the

ice sheet. See Figure 4.6 for a general schematic of the filling and draining scenarios 1-3, Figure 4.7

for a general schematic of the filling and draining scenarios 4-5, and Table 4.1 for a description of

all 5 fracturing scenarios.
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Figure 4.6: Fracturing modeling scenarios 1-3 with an annual filling and draining of a crevasse that
is part of a series of crevasses. The crevasse width is 2W and the spacing between crevasses is 2R.

Filling and Draining Scenario Description

1 random walk method to evolve fracture network annually
unbounded depth of fracture network
25% of crevasse volume routed annually

2 random walk method to evolve fracture network annually
fracture network limited to top 1

2 of ice sheet
25% of crevasse volume routed annually

3 random walk method to evolve fracture network annually
fracture network limited to top 1

3 of ice sheet
25% of crevasse volume routed annually

4 homogeneous rectangular fracture zone
fracture zone 20m wide
25% of 2ma ablation rate routed annually

5 homogeneous rectangular fracture zone
fracture zone 20m wide
25% of 2ma ablation rate routed annually

Table 4.1: Descriptions of the 5 filling and draining scenarios used in our modeling framework
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Figure 4.7: Fracturing modeling scenarios 4-5 with an annual filling and draining of a crevasse that
is part of a series of crevasses. The crevasse width is 2W and the spacing between crevasses is 2R.



Chapter 5

2D CHW Modeling Results

There are three modeling scenarios investigated with the 2D CHS model framework: a shallow

crevasse field, a deep penetrating crevasse, and dynamic draining and refilling of a crevasse into a

fracture network. See Section 4.9 for details of each.

5.1 Potential Warming from conduction only

Average enthalpy in a 1D system can be found to determine ultimate potential warming from

a crevasse. This assumes that heat transfer is only accomplished through horizontal conduction

and advection and that the crevasse has frozen and a steady-state has been reached.

θfinal =
W
(
ρH
)
crevasse

+ (R−W )
(
ρH
)
ice

ρiCiR
(5.1)

where W is the crevasse half-width and R is the crevasse half-spacing. This final temperature is

only valid at the depths to which the crevasse penetrates.

5.2 Shallow Crevasse Modeling Results

As an example of CHW resulting from a shallow crevasse, we can use our modeling framework

to examine a 1m wide crevasse that penetrates 1
3 the depth of an ice sheet that is 500m deep and

initially −10oC. The crevasse is initially filled with water and is then allowed to refreeze. Figure 5.1

shows a progression of temperature as the crevasse refreezes and releases its latent heat. We also

notice that because of the scaling, horizontal conduction is the dominant process that controls
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Figure 5.1: 2D plots of Shallow Crevasse refreezing. The top figure is the initial condition of a 1m
wide crevasse and background ice at −10oC. The middle figure is at t=2 years and shows warming
of the background ice. The bottom figure is at t=4 years and shows that the crevasse has refrozen.
The color bar is in oC.

the refreezing rate and dictates where heat moves in the system. The surface area of the side

of the crevasse is much greater than the tip of the crevasse, and the spacing between crevasses

is generally smaller than the length from the tip of the crevasse to the bed. To a shallow depth,

Glen’s Flow Law dictates that the horizontal velocity gradient is small and the crevasse maintains its

original orientation. This results in most of the heat conducting in a 1D manner in the horizontal

direction. As seen in Figure 5.2, the refreezing behavior of a shallow crevasse is controlled by
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the crevasse width, crevasse spacing, and background ice temperature. Colder background ice

and smaller crevasse width result in a faster refreezing time, while reducing the crevasse spacing

results in longer persistence of liquid water in the crevasse. By nondimensionalizing the problem
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Figure 5.2: Refreezing time for a shallow crevasse compared to a base case of −10oC background
ice, 1m wide crevasse width, and 50m crevasse spacing.

using the crevasse width, crevasse spacing, and background ice temperature, we can derive 1D

analytical solutions that approximate the horizontal conductive heating in front of the crevasse.

See Chapter 6 for the derivation of these 1D analytical solutions and for the nondimensionalization.

We can compare the warming in front of the crevasse at shallow depth to the warming predicted by

the Fourier Series analytical solution by assuming that the moving phase change interface at the

crevasse wall, which the numerical solution captures, can be approximated by a stationary phase

change interface. Also, the Fourier Series solution is only valid at times less than the refreezing

time of the crevasse. As we see in Figure 5.3, there is good agreement between the numerical

and Fourier Series solutions in front of the crevasse. The agreement between the numerical results

and analytical solutions confirm that the warming resulting from a shallow crevasse can be well
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Figure 5.3: Non-dimensional warming profiles in front of a crevasse at nondimensional times τ =
0.0005, τ = 0.001, and τ = 0.005. All times are before τf , the crevasse refreezing time, and show
good agreement between the Enthalpy Method numerical solution and 1D Fourier Series Solution.

approximated by the assumption that heat is only conducted horizontally. This information will

be used in Chapter 6 for construction of alternative CHW parameterizations. This further suggests

that any significant thermomechanical influence from CHW at depth in the ice sheet can only be

accomplished by a delivery of liquid water at depth - not through vertical advection or vertical

conduction.

5.3 Deep Water Body Modeling Results

Many of the same insights from the shallow crevasse case can also be applied in the case of

a deep-penetrating water body. Where the two differ is that a deep water body penetrates to the

region of the ice sheet where significant horizontal velocity gradient exists in the vertical. This

high strain rate at depth had several consequences on heat transfer in the lower ice sheet near the

CHS. First, strain heat was generated from the velocity gradient and is a source of heat primarily at

depth in the ice sheet. This strain heat was counteracted by the advective cooling parameterization,
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Figure 5.4: 2D plots of Deep Water Body refreezing. The top figure is the initial condition of a
1m wide crevasse. The middle figure is at t=3 years and shows warming of the background ice and
stretching of the water body. The bottom figure is at t=5 years and shows that the upper portion
of the water body has refrozen while the bottom persists as liquid water. The color bar is in oC.

however, and should not affect overall warming or time to refreezing for the CHS.

Stretching of the lower ice sheet also brought upstream and downstream water bodies closer

together. In a conduction-only case (with no horizontal advection), a large water body spacing

caused water bodies in a field to act thermodynamically independent. With stretching, however,

initially thermodynamically disconnected elements were brought to a close distance where warming

of the background ice caused conduction to slow for all the elements. See Figure 5.4 at t = 3 years
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for an illustration of stretching. This phenomenon alone should cause increased persistence of liquid

water as refreezing is slowed by upstream and downstream CHW.

While stretching of the deep water element brought upstream and downstream elements

closer, it also increased the surface area of liquid water exposed to the surrounding cold ice. This

phenomenon alone should cause refreezing to occur faster as there is greater contact area with cold

ice and decreased cross-sectional area of the liquid water body.

As seen in Figure 5.5 the combined effects from stretching of the deep liquid water body

caused it to refreeze faster than a case with horizontal velocity turned off. In our model setup with

advection turned on, liquid water near the bed refroze almost 3 years faster than the case with

horizontal velocity, strain heat, and advective cooling turned off. This means that the increase

in liquid water surface area had a more important role in refreezing time than the liquid water

elements being brought closer together and providing warming to upstream and downstream liquid

water elements.

The water body stretching and reduced persistence of liquid water at depth may have several

consequences on the ice sheet thermodynamics. Stretching increases the spatial extent of where a

deep liquid water body can cause warming. The extended areal influence may be thermomechani-

cally important as isolated pockets of warm ice won’t cause as much ice acceleration as an extended

area of warm ice. Conversely, stretching decreases the cross-sectional area of the liquid water body

and decreases the amount of enthalpy available to refreeze and provide latent heat. This will cause

the magnitude of warming to be lower than a case without stretching. A decrease in the refreezing

time also decreases the likelihood of the liquid water draining to the bed. While we have not done

a careful coupling of stress fields around liquid water bodies, other sources such as Van der Veen et

al. and Clason et al. [40, 11] suggest that given sufficient time, liquid water will fully penetrate to

the bed and drain. A faster refreezing rate will reduce the likelihood of this happening and provide

a higher probability of CHW.
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Figure 5.5: Difference in refreezing time of a deep 1m wide water body between a model run with
horizontal advection and strain heat and a conduction-only scenario. Vertical advection and strain
heat cause almost a 3 year decrease in refreezing time near the bed of the ice sheet.

5.4 Draining and Filling Modeling Results

Figure 5.6 shows a 2D plot of warming as a result of 40 annual filling and draining events of

the crevasse in the unit cell using the 1st filling and draining scenario (see Section 4.9 and Table 4.1

for a description of the scenarios). While there was evidence of fractures from the most recent

melt season providing up to 16oC warming locally around the fractures, most of the background

ice saw warming as the cumulative result of refreezing of water-filled fractures and conduction over

40 years. From roughly ζ = 0.5 to ζ = 0.9 there was warming of 7oC to 10oC far from the crevasse

and warming of 12oC to 16oC in the 30m surrounding the crevasse. Even though scenario 1 had

no bound on the depth of fractures, the bottom of the ice sheet from ζ = 0 to ζ = 0.5 experienced

very little cumulative warming over 40 years - from 0oC to 5oC. While this scenario was the only

one that allowed for fractures to penetrate all the way to the bottom of the ice sheet, we still saw

that fracturing near the bed was a rare event and produced little thermomechanically significant
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warming. The routing algorithm was certainly not rigorous, however, and could be tweaked to

produce more warming at depth. Results shown here should not be regarded as predictive, but

more as a bound on possibilities.
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Figure 5.6: Final warming after 40 years of draining and fracturing of crevasse using scenario 1.
25% of crevasse water is retained. The contours are oC warming.

Figure 5.8 shows vertical temperature profiles 20m in front of the crevasse for the 5 filling

and draining scenarios. Scenario 1 showed progressive warming of the top 1
3 of the ice sheet at

each timestep plotted. After 30 years, the top 2
3 of the ice sheet experienced significant warming

as more fractures were routed to ζ = 0.3 to ζ = 0.6 between years 10 and 30. This was a result

of the fracture routing algorithm: as nodes in the vicinity of the crevasse became temperate, those

nodes would no longer be available for fracturing in the future.

Scenarios 2 and 3, shown in figures 5.8b and 5.8c respectively showed similar patterns of

warming, but showed little to no warming below the threshold depth where fractures could be

routed. In scenario 3, we see that there is only warming above ζ = 0.6, but that the warming was

greater than scenarios 1 and 2. Even 20m in front of the crevasse, there were temperate nodes after
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Figure 5.7: Final warming after 40 years of draining and fracturing of crevasse using scenario 4.
25% of 2ma ablation rate is retained. The contours are oC warming.

30 years of filling and draining in scenario 3. Scenarios 2 and 3 also show that vertical conduction

is a poor mechanism for transporting heat to depth. Even with a sharp temperature gradient at

the drainage threshold depth, there was little warming below ζ = 0.5 and ζ = 0.66 for scenarios 2

and 3 respectively.

Scenarios 4 and 5, shown in figures 5.8d and 5.8e respectively showed more uniform warming

from ζ = 0.1 to ζ = 0.8 than scenarios 1-3 because of the mechanism used to route enthalpy

annually. Scenario 4 used a 20m wide fracture zone below the crevasse, so the vertical profiles

shown 20m in front of the crevasse corresponded to a vertical profile 10m outside of the fracture

zone. This meant that all warming shown was a result of conduction across 10m of background

ice. As such, there was very little warming after 5 years from ζ = 0.2 to ζ = 0.8, the depth of the

fracture zone. There was, however, 2oC warming after 5 years from ζ = 0.8 to ζ = 1 as a result

of conduction outward from the water-filled shallow crevasse. After 30 years, scenario 4 produced

temperate ice 10m in front of the fracture zone from ζ = 0.2 to ζ = 0.5. See Figure 5.7 for a 2D
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Figure 5.8: Vertical profiles 20m in front of crevasse. The black line is the initial temperature
profile, blue is after 5 years of annual filling and draining, yellow is after 10 years, green is after 20
years, and red is after 30 years.
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plot of warming after 40 years using filling and draining scenario 4.

Conversely, scenario 5 used a 50m wide fracture zone, so the vertical profiles shown fell within

the fracture zone. While the same amount of enthalpy was distributed annually in scenarios 4 and

5, scenario 5 distributed it to a larger area, meaning the magnitude of warming was smaller, but

more widespread. The vertical profiles shown fell within the fracture zone, however, so warming

started immediately and temperature increased proportionally with time in the depths within the

fracture zone. After 20 years, there was temperate ice from ζ = 0.2 to ζ = 0.4, and after 30 years

the entire fracture zone was temperate or within 1oC of θPMP .

Figure 5.9 shows depth-averaged temperatures at various distances in front of the crevasse

over time using the five different fracturing models. Figure 5.9a shows the temperature over time

resulting from fracturing scenario 1. We see the depth-averaged temperature of the entire ice sheet

was initially −13oC and the column 5m ahead of the crevasse experienced the greatest warming

initially. There was roughly a 5 year delay before any warming was felt 40m ahead of the crevasse.

At the columns closest to the crevasse, a distinct sinusoidal pattern is observed that results from

the assumption that fracturing occurs in a single timestep. This caused a spike in the column

temperature, which was followed by a decline. This decline occurred because liquid water was

moved ahead of the crevasse during the fracturing event, but the horizontal velocity was slower

at depth than at the depth of the crevasse. As a result, latent heat from the fractures at depth

lagged behind the movement of the crevasse and cold ice from ahead of the crevasse moved into

the columns shown in the figure. By 40 years, the depth-averaged temperature 5m ahead of the

crevasse was warmed by 8oC while the column 40m ahead of the crevasse was warmed by 6oC. 8%

of the nodes in the domain were temperate after 40 years, primarily in the immediate vicinity of

the crevasse. While it may be surprising to see such great warming 40m ahead of the crevasse,

it can be explained by the horizontal velocity gradient in the ice sheet. When a crevasse drained

liquid water to depth in the ice sheet, its velocity was slower than the velocity of the crevasse. Over

time, ice that was at one time under a crevasse ended up behind the crevasse. While a fracture

rarely extended 40m in front of a crevasse, drained liquid water from the downstream crevasse in
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a field would cause warming in a column 40m in front of the upstream crevasse.

Figures 5.9b and 5.9c show the depth-limited filling and draining cases. While scenario 2

shows a very similar depth-averaged warming pattern as scenario 1, scenario 3 shows that warming

tapers in the columns closest to the crevasse at late time. After 20 years, the column 5m in front

of the crevasse peaks at a temperature of roughly 8oC. This is because the nodes in that column

in the top 1
3 of the ice sheet have become temperate, and the fracturing algorithm routes enthalpy

to columns further ahead of the crevasse. The depth-averaged temperature stays cold, however,

because only the top 1
3 of the ice sheet experiences CHW and conduction downward provides little

warming to the lower ice sheet in 40 years.

Figures 5.9d and 5.9e show depth-averaged warming for the cases with drainage into the

characteristic rectangular area. In scenario 4 we see the distinct annual sinusoidal pattern at the

column 5m ahead of the crevasse and in scenario 5 we see this pattern clearly in the columns 5m

and 10m in front of the crevasse. These columns fell in their respective characteristic CHS, thus

experiencing seasonal warming and cooling due to crevasse drainage. While in 5.9e we may expect

the columns 5m and 10m to have the same temperature since the CHS extended 25m in front of the

crevasse, the 5m column was slighly warmer because of conduction from the refreezing crevasse in

the top of the ice sheet. By year 25, scenario 4 experienced a tapering of temperature in the column

5m in front of the crevasse and scenario 5 experienced this tapering both 5m and 10m in front of

the crevasse. This was because the CHS in these scenarios became temperate and temperature

below the CHS increased only slightly due to conduction after this time.

Figure 5.10 shows the increase in Glen’s Flow Law Paramater A 20m in front of the crevasse

after 40 years of filling and draining in the 5 scenarios. As expected, scenario 1 showed some

increase in the Flow Law Paramter A at all depths while scenarios 2 and 3 only showed an increase

above their depth thresholds. Scenario 3 showed a much greater increase than scenarios 1 and 2

above ζ = 0.66 because all of the crevasse enthalpy was restricted to a smaller area. At its highest,

scenario 3 experienced a 25 times increase in A at ζ = 0.8. This depth of the ice sheet was coldest

initially (see Figure 4.3), so had the greatest warming potential due to CHW. While scenario 5
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Figure 5.9: Depth-averaged temperatures over time at varying locations in front of crevasse.
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experienced the greatest increase of A (more than a 30 times increase), it experienced the same

increase as scenario 4 below ζ = 0.6. This was because below that depth, the higher horizontal

velocity essentially ”mixed” the annually added enthalpy so that the width of the rectangular CHS

had no influence on the temperature after 40 years. In all 5 scenarios, only a small increase of

A was observed at the bed 20m in front of the crevasse. At ζ = 0.1, scenario 5 had the largest

increase of 24% due to downward conduction from the overlying CHS. Scenario 1 experienced a

14% increase in A at ζ = 0.1 due to the rare event of a water-filled fracture reaching that depth.
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Figure 5.10: Increase in Glen’s Flow Law Paramter A 20m in front of the crevasse. The black line
is scenario 1, blue is scenario 2, yellow is scenario 3, green is scenario 4, and red is scenario 5.



Chapter 6

CHW Parameterizations

By nondimensionalizing the shallow crevasse refreezing problem using the crevasse width,

crevasse spacing, and background ice temperature, we can derive 1D analytical solutions that

approximate the horizontal conductive heating in front of and behind the crevasse. See Sections 6.1

and 6.2 for the derivation of these 1D analytical solutions. We can compare the warming in front of

and behind the crevasse at shallow depth from our numerical model (Section 5.2) to the warming

predicted by the Fourier Series analytical solution by assuming that the moving phase change

interface at the crevasse wall, which the numerical solution captures, can be approximated by a

stationary phase change interface. Also, the Fourier Series solution is only valid at times less than

the refreezing time of the crevasse.

It is also possible to use a Laplace transformation method to find an approximate analytical

solution of a refreezing moulin problem. See Section 6.3 for the solution and a comparison of

refreezing time and warming from a crevasse and moulin.

As we see in Figure 5.3, there is good agreement between the numerical and Fourier Series

solutions in front of the crevasse. The agreement between the numerical results and analytical

solutions confirm that the warming resulting from a shallow crevasse can be well approximated by

the assumption that heat is only conducted horizontally. This further suggests that any significant

thermomechanical influence from CHW at depth in the ice sheet can only be accomplished by a

delivery of liquid water at depth - not through vertical advection or vertical conduction.

After deriving these analytical solutions of warming for crevasses and moulins, we will discuss
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their possible utility in CHW parameterizations for large-scale ice sheet models in section 6.4. We

will also discuss the connection between these solutions and the existing CHW parameterization

used in two Phillips et al. papers [34, 33]. Finally, we will discuss ideas for parameterizations that

include the effect of diffuse fracture-based CHW (as discussed in section 5.4) in section 6.5.

6.1 Non-dimensional Fourier Series Crevasse Solution

One boundary condition at the crevasse half-width (x = −W ) is held at θ = θPMP while the

other boundary condition is located at the crevasse half-spacing, x = R, and is a no-flux boundary

condition. To obtain the 1D analytical solutions we can non-dimensionalize the thermal system by:

ξ =
x

R
(6.1)

τ =
tαi
R2

(6.2)

Θ =
θ − θ0

θPMP − θ0
(6.3)

and make the simplifying assumption that the crevasse / background ice interface remains fixed in

space. With this assumption we can derive a Fourier Series solution:

Θ (ξ, τ) = 1− 4
∞∑
n=0

sin
(

(2n+1)
2 πξ

)
(2n+ 1)π

exp

(
−(2n+ 1)2 π2

4
τ

)
(6.4)

By applying a flux balance condition at the crevasse / background ice interface, we can derive the

location of the crevase / background ice interface:

ξi (τ) = −2ε
∞∑
n=0

4

(2n+ 1)2 π2

(
1− exp

(
− (2n+ 1)2 π2

4
τ

))
(6.5)

where

ε =
ρiCi
ρwL

(θPMP − θ0) (6.6)

It is worth noting that at τ = τf , the refreezing time, the interface location is at ξi = −W
R . As

τ →∞:

ξi (τ →∞)→ −2ε
∞∑
n=0

4

(2n+ 1)2 π2
= −ε (6.7)
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which means that the crevasse / background ice interface can only move a distance −ε before the

background ice becomes temperate. As seen in Figure 6.1, the Fourier Series Solution for
√
τf

increases exponentially when W
R & 0.8ε and asymptotes to τf → ∞ at W

R = ε. This is because

when W
R ≥ ε, there is sufficient enthalpy in the meltwater-filled crevasses that the background ice

everywhere becomes temperate before all of the meltwater refreezes. Once this is the case, the ice

and water are at the same temperature and no more refreezing takes place.

We can also see in Figure 6.1 that with the Fourier Series solution for large crevasse spacing

(or W
R . 0.8ε), the relationship between non-dimensional refreezing time, crevasse width, and

creavsse spacing can be well approximated by:

τf =
π

4ε2

(
W

R

)2

(6.8)

When re-dimensionalized, the relationship becomes:

tf =
π (ρwL)2

4 (ρiCi (Tm − T0))2

W 2

κi
(6.9)

This is a key result indicating that with large crevasse spacing, warming and time to refreezing are

a function of W
2

κi
, not R2

κi
as has been used in the parameterization scheme found in the two Phillips

et al. papers [34, 33].

6.2 Non-dimensional Error Function Crevasse Solution

If we further assume that crevasse spacing is wide enough that the background ice can be

treated as a semi-infinite domain, we can derive a simple Error Function solution for temperature:

Θ (ξ, τ) = erfc

(
ξ√
4τ

)
(6.10)

With the same assumptions, we can derive a solution for the refreezing time of a crevasse:

τf =
π

4ε2

(
W

R

)2

(6.11)

As seen in Figure 6.1, the Error Function Solution for refreezing time agrees well with the Fourier

Series Solution for small W
R as refreezing takes place before the latent heat of refreezing reaches
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the half-spacing boundary. When W
R & 0.8ε, the semi-infinite domain assumption no longer is valid

and the Error Function solution underestimates the time for the crevasse to refreeze.
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τ f

Fourier Series Solution
Error Function Solution

Figure 6.1: A comparison of the nondimensioanl solution of crevasse refreezing time resulting from
two approximate analytical solutions. We see that the Error Function solution deviates from the
Fourier Series solution for W

R & 0.8ε. In this regime, the Fourier Series solution is more accurate
at capturing the thermodynamics of the system.

6.3 Radial Moulin Solution

Next, we examine the radial problem of a refreezing moulin of infinite length surrounded by

an infinite domain of cold ice [7]. Conduction of heat in ice can be expressed radially as:

∂θ

∂t
− 1

r

∂

∂r

(
rαi

∂θ

∂r

)
= 0 (6.12)
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for r > a where r is the radius from the moulin center, a is the initial moulin radius, and αi is the

ice diffusivity. Using a Laplace transformation, temperature in the cold ice can be described by:

θ (r, t) = θPMP +
2 (θPMP − θ0)

π

∫ ∞
0

e−αiu
2tJ0 (ur)Y0 (ua)− Y0 (ur) J0 (ua)

J2
0 (au) + Y 2

0 (au)

du

u
(6.13)

where θ0 is the initial ice temperature, u is a dummy variable, J0 is a Bessel function of the first

type, and Y0 is a Bessel function of the second type. Similarly, the flux at the moulin boundary is:

−κi
∂θ

∂r

∣∣∣∣
r=a

=
4κi (θPMP − θ0)

π2a

∫ ∞
0

e−Kiu
2t du

u
(
J2

0 (au) + Y 2
0 (au)

) (6.14)

where κi is ice conductivity. At the moulin boundary, we use the flux condition:

−2πr
dr

dt
ρwL = −2πrκi

∂θ

∂r

∣∣∣∣
r=a

(6.15)

where dr
dt is the rate of moulin closure rate to derive:

d
(
r
a

)
dτ∞

=
−4 (θPMP − θ0) ρiCi

π2ρwL

∫ ∞
0

e−τ∞v
2 dv

v
(
J2

0 (v) + Y 2
0 (v)

) (6.16)

where τ∞ = αit
a2 and v is a dummy variable.

Figure 6.2 shows that given the same width of a crevasse and diameter of a moulin, a moulin

refreezes much faster. For the case of background ice at −10oC, non-dimensional refreezing time

can be found to be τ∞f = 31.5 for a moulin and τ∞f = 197 for a crevasse. Refreezing time can be

found by re-dimensionalizing as tf =
τ∞fW

2

αi
for a crevasse and tf =

τ∞fa
2

αi
for a moulin. Figure 6.3

shows warming of background ice from the refreezing of a crevasse or moulin. Although a moulin

refreezes faster, a crevasse of the same width warms the background ice to a greater extent because

of its horizontal extent that is much larger than its width.

6.4 Parameterization for Shallow Crevasses

Figure 5.3 shows good agreement between our 2-dimensional numerical results (shown in non-

dimensional form) and the analytical solution for warming derived in section 6.1. This confirms

that the assumption that heat is only conducted horizontally from a crevasse is reasonable and can

be used in a parameterization.
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Figure 6.2: Refreezing time of a crevasse and moulin in background ice at −10oC as a function of
creavsse half-width or moulin radius.
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Figure 6.3: Warming of background ice initially at −10oC produced by a crevasse with 1m half-
width or a moulin with a 1m radius.

The ratio of crevasse width and crevasse spacing can be generalized as falling into three

regimes. When W
R . 0.8ε, the crevasse spacing is large enough that the crevasses are thermody-

namically isolated and do not feel eachother’s heat in the time it takes to refreeze. If 0.8ε . W
R < ε,

the crevasses are spaced close enough that refreezing is slowed as compared to an isolated crevasse

case, but full refreezing does occur. When W
R ≥ ε, crevasses are spaced close enough that full

refreezing never occurs and the background ice becomes temperate. These factors affect what
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parameterization should be used.

For the large crevasse spacing case, we found in Section 6.1 that warming and time to re-

freezing are a function of W 2

κi
, not R2

κi
as has been used in the parameterization scheme found in

Phillips et al. [34, 33]. The CHW linear exchange term parameterization found in equation 1.10

should perhaps be rewritten as:

ρiCi
∂θi
∂t

+ ρiCiu
∂θi
∂x

+ ρiCiw
∂θi
∂z
− κi

∂2θi
∂z2

= Q+
κi
W 2

(θCHS − θi) (6.17)

and the winter CHW linear exchange term parameterization found in equation 1.11 would be

rewritten as:

∂ρHCHS

∂t
− ∂

∂z

(
κCHS

∂θCHS
∂z

)
= − ki

W 2
(θCHS − θice) (6.18)

For the close crevasse case with full refreezing, the crevasse spacing, or R, is still the domi-

nant parameter affecting the linear exchange term between the CHS and average background ice

temperature. Equations 1.10 and 1.11 seem to capture the correct physics of this situation, though

the fact that the CHS equation (Equation 1.11) doesn’t contain an advection term requires some

thought. This is a problem for both the large crevasse spacing and small crevasse spacing param-

eterization. If we are allowing for the possibility of crevasses experiencing a one-time filling and

then refreezing, it seems the CHS should advect with the background ice. If, however, we follow

the scenario presented in Phillips et al. [34, 33], the CHS refills annually in the melt season and

is allowed to partially or fully refreeze over the winter. If an alternative parameterization is used

that includes advection of the CHS, Equation 1.11 would be written as:

∂ρHCHS

∂t
+ ρiCiu

∂θCHS
∂x

− ∂

∂z

(
κCHS

∂θCHS
∂z

)
= − ki

R2
(θCHS − θice) (6.19)

Finally, for the very close crevasse spacing case, the background ice will become temperate

even from a one-time filling. The amount of meltwater required to fill these crevasses would be

immense, and although cases existed where the background ice was brought to θi = θPMP in

Phillips et al. [34, 33], this was only with a steady-state model that included annual fillings of the

CHS with liquid water, not from a one-time filling. A parameterization when W
R ≥ ε could be as



66

simple as bringing the ice to θi = θPMP , but would likely need to consider other more important

factors involving the supraglacial hydrology.

6.5 Parameterization for Diffuse Fracture Networks

In the case that supraglacial meltwater is distributed into a diffuse fracture network, a differ-

ent parameterization will be used than the shallow crevasse parameterization. As seen in Figure 5.6,

fractures are narrow, refreeze quickly, and can cause uniform warming deep in the ice sheet as a

result of high strain rates. Even with 100m spacing, warming is uniform horizontally below ζ = 0.4.

The amount of warming is a function of the volume of meltwater, the amount retained englacially

(not run off or drained to the bed), the background ice temperature, and the spatial distribution

vertically. We will assume that once liquid water is routed in fracutres and becomes stagnant,

refreezing occurs quickly and can be approximated as instantaneous. Under these assumptions, a

parameterization can simply employ an enthalpy balance that transfers the latent heat of fusion to

a temperature increase. Equations 6.20 and 6.21 show such a parameterization.

∆θ =
φwρw (CiθPMP + L)

ρiCi
(6.20)

φw =
Vw fracretained

Vi
(6.21)

where Vw is the volume of liquid water in the unit cell initially (perhaps in a water filled crevasse or

moulin), fracretained is the fraction of liquid water that remains stagnant in the diffuse CHS and is

allowed to refreeze, and Vi is the volume of ice in the unit cell over which the parameterization is

being applied. See Figures 4.1 and 4.6 for a schematic of a diffuse fracture network CHS in a unit

cell. This parameterization would be applied under the entire horizontal extent of the CHS but

only at the depths where high shear causes the fracture network to be stretched homogeneously.

See Figure 6.4 for a schematic of where this high shear zone occurs.
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Figure 6.4: Schematic of a unit cell in the CHS domain parameterization that combines the discrete
crevasse parameterization at shallow depths and the diffuse fracture network parameterization at
depths with high shear in the ice sheet.



Chapter 7

GLIMMER-CISM Work

Another objective of my thesis was to develop a new Energy Equation solver for the Com-

munity Ice Sheet Model (CISM), the land ice component of the Community Earth System Model

(CESM)1 . CESM was created by the National Center for Atmospheric Research (NCAR) in 1983

and has grown over the past three decades to include users and developers from many Universities

and National Laboratories. CESM is a fully-coupled, community, global climate model that pro-

vides state-of-the-art computer simulations of the Earth’s past, present, and future climate states.

It is one of the Global Climate Models (GCM) used in the Intergovernmental Panel on Climate

Change (IPCC) reports to model past and future climate change scenarios. CISM is based on

GLIMMER, an ice sheet model developed at the University of Bristol. CISM is a Fortran-95 based

code that solves for ice sheet thickness and velocity with a Higher-Order solver. It is thermome-

chanically coupled and allows for a user-defined basal hydrology system. Presently, it only supports

one-way coupling to CESM by using atmospheric data to force the surface boundary conditions of

the ice sheet. The new Energy Equation solver is based on the approach outlined in [2]. The ap-

proach has been slightly modified to be compatible with the existing CISM framework (specifically

boundary conditions and water drainage to the basal hydrologic network).

The main advantages to switching to an enthalpy formulation in CISM are a better ability to

capture the basal temperate layer thickness, a more accurate estimate of drainage of liquid water

to the subglacial hydrologic network, and a more accurate description for how the liquid water

1 http://www2.cesm.ucar.edu/
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fraction of temperate ice affects the ice rheology (through the Flow Law Rate Factor, A). As seen

in Figure 7.1, the Flow Law Rate Factor A is dependent on ice temperature and water content

[18]. Temperate ice that has a water fraction of 1% has a value for A that is 2.8 times higher than

temperate ice with no water content. For a given value of applied stress, this larger rate factor will

result in larger velocity gradients and thus larger velocities within the ice.
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Figure 7.1: Flow Law Parameter A as a function of temperature and water fraction, φw

7.1 Current Temperature Solver

Currently a ”cold ice” (i.e., ice with a temperature below that of the pressure melting point)

solution is employed to solve the Energy Equation in CISM. Conservation of Energy is described

by Equation 7.1:

∂θ

∂t
=

ki
ρiCi
∇2θ − u · ∇θ +

Q

ρiCi
(7.1)

where θ is temperature, t is time, ki is the thermal conductivity of ice, ρi is the density of ice, Ci

is the heat capacity of ice, u is the ice velocity vector, and Q is strain heat. While this solution

is exact for cold ice, polythermal conditions that include temperate ice require a simplification for

the way liquid water is handled. In CISM, this is done by assuming that all liquid water generated

internally immediately drains to the bed. In a timestep, this is done by setting temperatures above
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the pressure-melting point to the pressure melting point and converting the excess sensible heat to

liquid water, described by Equation 7.2:

melt =
CiH (θ − θPMP )

ρiL∆θ
(7.2)

where melt is a length scale, H is the ice sheet thickness, θPMP is the pressure melting point, L is

the latent heat of fusion, and ∆θ = θ− θPMP . In addition to the other shortcomings noted above,

this method fails to accurately capture the location of the Cold-Temperate Surface (CTS) as it

doesn’t perform a flux balance across the CTS. This is especially problematic in the ablation zone

where upward advection can cause an artificially large basal temperate layer to form.

7.2 Enthalpy-based Temperature and Water Fraction Solver

In this section, we will briefly lay out the approach from Aschwanden et al. [2] and describe

how it was adapted for CISM. We can transform the Advection-Conduction Equation from a

temperature-based equation into an Enthalpy-based equation by:

ρH = (1− φw) ρiCi (θ − θ0) + φwρw [Ci (θPMP − θ0) + Cw (θ − θPMP ) + L] (7.3)

where ρH is specific enthalpy, φw is internal liquid water fraction, and θ0 is an arbitrary reference

temperature. For cold ice and θ0 = 0oC, this expression simply gives ρH = ρiCiθ. In this case, the

Advection-Conduction equation (for cold ice and neglecting horizontal conduction, as is common

in ice sheet models) is:

∂ρH

∂t
+ u · ∇ρH − ∂

∂z

(
α
∂ρH

∂z

)
= Q (7.4)

where α = k
ρ C is the diffusivity of ice.

When dealing with temperate or polythermal conditions, a different formulation is needed

for the conductive energy flux term. In cold ice, conductive flux is governed by Fourier’s Law of

Heat Transfer and is simply a sensible heat flux. In temperate ice, the conductive heat flux is

the sum of a sensible and latent heat flux, which can both be expressed as diffusive processes.

The sensible heat flux, −ki∇θPMP arises from a temperature gradient due to spatial variations in
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θPMP . Assuming hydrostatic conditions and the Clausius-Clapyron relation, however, means that

θPMP varies linearly with depth, so ∂θPMP
∂z = −β, a constant. In a 1D column model, this results

in ∂
∂z (−β) = 0, so the sensible heat flux term can be neglected. In a 2D model, non-linear spatial

variations in θPMP can exist in horizontally neighboring nodes with different ice depths, resulting

in non-zero sensible heat exchange. Aschwanden et al.[2] showed that even with relatively steep

surface slope, this term can reasonably be neglected. The latent heat flux results from diffusion of

liquid water within temperate ice. The latent heat flux is proportional to the liquid water fraction,

so can be expressed as −k0
∂φw
∂z , where k0 is a small unknown diffusion-like parameter. Water

fraction is now linearly related to enthalpy by:

φw = ρHL−1 (7.5)

when θ = θPMP . This allows us to define α0 = κ0L
−1 which is a small diffusivity and keep ρH as

our state variable. α0 was chosen to be αi
100 to best match results from a 1D analytical solution of

the Stefan problem for refreezing of liquid water (see Section 3.5). This diffusion of liquid water

within ice is poorly understood, but has been observed to resemble a Fick-type diffusion. The

conductive flux term for both cold and temperate ice is:

Jconduction =

 −αi ∂ρH∂z ρH < ρHPMP

−ki ∂TPMP
∂z − α0

∂ρH
∂z ρH ≥ ρHPMP

(7.6)

where ρHPMP is the specific enthalpy of ice at θ = θPMP with φw = 0. We can now write out the

full Advection-Conduction equation with the new conductive flux term:

∂ρH

∂t
+ u · ∇ρH +

∂

∂z
(Jconduction) = Q (7.7)

Once ρH is calculated in each time-step, temperature and liquid water fraction can both be calcu-

lated as they are both functions only of enthalpy:

θ =


ρH
ρiCi

ρH < ρHPMP

θPMP ρH ≥ ρHPMP

(7.8)
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φw =

 0 ρH < ρHPMP

(ρH−ρHPMP )
(ρw−ρi)CiθPMP ρw+L ρH ≥ ρHPMP

(7.9)

Temperature evolution in CISM is performed by operator splitting, meaning that the calcu-

lation of vertical conduction and strain heating are performed in one half timestep while vertical

and horizontal advection are done in another half timestep. Since horizontal conduction is ne-

glected, the conduction and strain heating solution is performed as a 1D solution for each column

in the system. There are several dynamical cores (dycores) in CISM that perform temperature

evolution and couple the solution thermomechanically in different manners. We concentrated on

the glissade dycore that solves ice thickness and velocity with a higher-order solution and per-

forms advection with an Incremental Remapping scheme. The new Enthalpy Gradient method is

embedded in this existing dycore and can be switched on by changing the variable whichtemp

to TEMP ENTHALPY. Since the temp variable is pervasive in the dycore, we opted not to

replace it with an enthalpy variable, but instead add a variable waterfrac, that along with temp,

exactly describe the enthalpy of the system. Two subroutines, enth2temp and temp2enth are

used to convert temperature and water fraction to specific enthalpy, and vice versa following the

equations 7.3, 7.8, and 7.9. Before the conduction and strain heat half timestep, temp and wa-

terfrac are converted to enthalpy, the solution for the current timestep is obtained, and enthalpy

is converted back to temp and waterfrac. In the next half timestep, advection of temp and

waterfrac is performed using the existing Incremental Remapping scheme, which is equivalent to

advecting enthalpy.

7.3 Enthalpy-based Drainage Model

As temperatures above the pressure-melting point are encountered, liquid water is produced

englacially. With the current temperature solver, any excess energy is converted to liquid water and

immediately drained to the bed. With the Enthalpy Method, the ice matrix can support a liquid

water fraction, φw. In Pettersson et al. [32] it is observed that above some threshold value drainage

of this liquid water fraction occurs. In CISM, a maximum water fraction of φw,max = 0.01 is used.
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Although a basal temperate layer is most common, a surface temperate layer is also possible (see

Figure 7.2). When φw > φw,max, the excess liquid is drained downward. In the basal temperate

layer case, the liquid water enters the subglacial hydrology system as defined by glissade. In the

surface temperate layer case, the liquid water drains to the underlying cold layer and is allowed to

diffuse with diffusivity α0. The refreezing of this liquid water and release of latent heat provides a

source of warming to the cold ice layer.

Temp. Temp. 

Depth Depth 

TPMP TPMP 

Figure 7.2: Left: a basal temperate layer that experiences drainage to the bed when φw > φw,max.
Right: a surface temperate layer that experiences drainage to the cold layer below it. In both
figures, the red arrow represents movement of liquid water downward by a preferential pathway
mechanism that can be treated as a Fick-type diffusion.

7.4 Validation of Enthalpy Formulation

After implementing the Enthalpy-based approach, a validation of the new approach and com-

parison against the temperature-based approach were required. Since much of the model functions

as a black box (as far as we are concerned), and segregating the thermal calculation is intractable,

validation is difficult. Two tests can be performed to validate the new Enthalpy approach easily:

One is to compare the temperature-based model and enthalpy-based model in cold conditions where
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the two formulations should produce identical temperatures. The second is to do an energy balance

on the enthalpy-based model in a single timestep in a node of the domain that is temperate to make

sure the liquid water fraction is valid. There is no equivalent result from the temperature-based

model to compare to since it did not calculate a liquid water fraction.

To validate the model, the Dome test case was used, which models a parabolic dome of ice

with a floating margin. The dynamics of the problem dictate that as the ice flows from the summit

outward, warming is produced from strain heat. It was first run with the old temperature-based

physics, with whichtemp set to PROGNOSTIC. Next, it was run with the new enthalpy-based

formulation, with whichtemp set to TEMP ENTHALPY. In both cases, the test case was

run for 200 years with 1 year timesteps. The domain had 10 thickness layers and had an area

of 31 x 31 nodes on a 2000m x 2000m grid. The glam dycore was used, which is required for

the enthalpy formulation, but is optional for the temperature-based formulation. A no-slip basal

boundary condition was used and the ice was initially −15oC everywhere. The built-in SLAP linear

solver and JFNK non-linear solvers were used.

The first validation involves running the Dome test case at a time when the entire domain

remains cold. Figure 7.3 shows a comparison between the temperature-based model and enthalpy-

based model at time = 50 years and ζ = 0.94. Manual examination of the results show that

the entire domain is cold. From visual examination of the data, we see that the two formulations

produce identical temperatures. Figure 7.4 shows the warming of one particular node from time =

0 years to time = 50 years using both formulations. Again, we see that this particular node

warms at exactly the same rate as it and all of its neighboring nodes remain cold. These results

indicate that, as expected, the new enthalpy formulation is identical to the old temperature-based

formulation when and where the domain is cold.

The next validation problem to consider is when temperate ice is encountered. As the

temperature-based formulation drains all melt water immediatly to the bed, there is no way to

validate our new formulation against the original formulation. Figure 7.5 shows the layer of the

dome at ζ = 0.94 after 200 years with the new enthalpy-based formulation. As we can see from the
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(a) Temperature at ζ = 0.94 with temperature-based
model

(b) Temperature at ζ = 0.94 with enthalpy-
based model

Figure 7.3: Comparison of Temperature and Enthalpy-based dome problem at t = 50 years. The
domain is cold at all nodes.
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Figure 7.4: Temperature increase over 50 years in a cold node of the dome problem. The node is
located at x = 50000m, y = 30000m, ζ = 0.94.

plots of temperature and water fraction, temperate ice is encountered at the margins of the domain.

We can see that strain heat dissipation is highest in these same nodes, explaining why they are

the first to become temperate. The Flow Law Parameter A is a function of water fraction with

the new formulation. It is highest in the temperate nodes, causing a positive feedback mechanism

whereby the velocity becomes higher because of the Flow Law Parameter A, and strain heat from

the higher velocities causes a rise in the liquid water fraction.

We can now perform an energy balance at one particular temperate node during one timestep.

At ζ = 0.888, x = 50000m, y = 32000m and t = 100 years, dissipation dimensionalized as

temperature
(

Q
ρiCi

)
= 0.9925

oC
year . As this node is temperate at t = 100 years if we assume that

the increase in liquid water fraction is due only to strain heat dissipation, we can approximately

validate that our changes to CISM result in the correct increase in liquid water fraction. It should be

noted that strain heat dissipation is calculated independently of our new enthalpy-based formulation

and no changes have been made to this part of the model. This is not a perfect assumption as the
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Figure 7.5: Dome problem with enthalpy-based model at ζ = 0.94 and time = 200 years
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physics of our enthalpy formulation dictates that there will be an advective flux of enthalpy and a

small non-advective diffusion of liquid water. Equations 7.10 and 7.11 show the predicted increase

in liquid water fraction as a result of strain heat during this timestep.

Q = 0.9925
oC

year
∗ ρi ∗ Ci = 1814620

J

m3 year
(7.10)

∆φw =
∆
(
ρH − ρHPMP

)
(ρw − ρi)CiθPMP + ρwL

=
1814620 J

m3year

334957381 J
m3year

= 0.0054 (7.11)

This says that we would expect the liquid water fraction in this node to increase by 0.54% from

time = 100 years to time = 101 years if there were no advection, non-advective flux of liquid water,

or drainage of liquid water. We actually see that (φw (t = 101 years)− φw (t = 100 years)) =

0.0048, which is slightly lower than calculated. The difference is small, however, and can be

explained by advection and diffusion of enthalpy to neighboring nodes, especially since our chosen

node has a locally high liquid water fraction at t = 100 years.
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