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ABSTRACT 

 

Recent advances in predictive dynamics allow the user to not only predict 

physics based human motion simulations but also determine the actuation torques 

required to achieve those motions.  The predictive dynamics approach uses 

optimization to predict motion while using many task based, physics based, and 

environment based constraints including the equations of motion.  Many tasks have been 

simulated using this new method of predicting and simulating digital human motion, e.g. 

walking, running, stair climbing, and box lifting.  In this research, we develop a 

method to predict the motion as well as effect of external equipment hanging on the 

digital human.  The proposed method is tested on a simple case of a two degree of 

freedom serial chain mechanism with a simple passive system to behave as external 

equipment.  In particular, the passive mass is assumed to be attached to the two links 

system with a spring and damper.  Three different initial position cases are developed 

and tested to calculate motion and reaction force of spring and damper system.  The 

results of the proposed method are compared with the results obtained by integrating the 

equations of motion of the full three degree of freedom system. 
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CHAPTER 1 

INTRODUCTION 

Digital human modeling and simulation has been an active research topic for the 

past two decades and has impacted the development and testing of new designs of 

products in many different fields.  Being able to perform efficient static and dynamic 

analysis of human motion is a key element in developing a high-fidelity human model.  

Considering the increased momentum of technological enhancements in modeling and 

simulation, soon the digital human models will be able to interact with the material 

world, extending the horizons of virtual modeling and testing. 

1.1 Problem definition and motivation 

One of the major challenges facing current digital human modeling is ability to 

model and analyze equipment attached to the body.  This challenge can be addressed by 

leveraging advances in the field of multibody system dynamics.  Multibody system 

dynamics is based on classical and analytical mechanics, and the theories developed are 

applied to a wide variety of engineering systems such as interconnected mechanical 

systems, robotics and walking mechanisms. 

The main purpose of this research is to develop a method to simulate the motion 

of attached equipment on the human body and its effect on the motion of the human body.  

To explain the problem further, consider the models shown in Figure 1-1(a), it shows the 

human body that is modeled as a linked mechanism.  Figure 1-1 (b) shows the equipment 

that may be modeled as a spring-mass-damper system.  Figure 1-1 (c) shows the human 

body with the attached equipment and its mechanical model.  Thus the problem is to 

simulate motion of the combined system as the human performs various tasks. 



2 
 

 
 

  

Real model Mechanical model 

(a) Real and simplified mechanical model for the primary system 

  

Real model Mechanical model 

(b) Real and simplified mechanical model for the secondary system 

  

Real model Mechanical model 

(c) Real and simplified model for the combined system 

Figure 1-1 Equipment simulation – problem definition 

or 
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1.2 Predictive dynamics approach for simulation of human 

motion 

In general, forward dynamics and inverse dynamics are used to solve common 

mechanical problems.  Forward dynamics solves for unknown response such as 

displacement, velocity and acceleration with known applied force.  On the other hand, 

inverse dynamics solve for the unknown force by using equations of motion including 

known kinematic information.  However, only limited information is available about 

kinematics and kinetics to solve a bio-system such as human motion. In this case, 

optimization-based predictive dynamics method is used to solve the problem.  Figure 1-2 

shows predictive dynamics flow chart. 

 

Figure 1-2 Predictive dynamics flow chart 

1.3 Proposed approach 

Figure 1-3 shows two basic approaches to solve the problem defined in Section 

1.1.  The first approach, shown in Figure 1-3 (a) is to re-derive the equations of motion 

for the combined skeletal and the equipment models and solve the resulting equations.  

The approach appears to be simple and straightforward.  Existing multibody dynamics 

software can be used to solve the problem.  The difficulty with this approach is that when 

a new equipment is attached to the body, the model needs to be updated and re-solved.  In 

addition, the difficulty of integrating equations of motion with inequality constraints is 
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encountered.  This difficulty was overcome with the predictive dynamics approach as 

explained earlier in Section 1.2. 

 

 

(a) Simulating the primary and secondary 
system as a single system 

(b) Simulating the primary and secondary 
systems at two independent systems 
while accounting for the coupling 
motion, forces and moment 

Figure 1-3 Two approaches to simulating the equipment interaction with the human body  

In the proposed approach, shown in Figure 1-3(b), we divide the complete model 

into two subsystems, the primary system and the secondary system.  The primary system 

consists of the skeletal model of the human body and the secondary system consists of 

the model for the equipment. 

In the predictive dynamics approach, kinematic information of the attachment 

point on the primary system is available at each time.  Based on the kinematic 

information and by solving equations of motion of the secondary system, reaction force 

and moment from secondary system are calculated.  The calculated reaction force and 

moment affect motion of the primary system.  Eventually, kinematic information of the 

attachment point of the primary system is updated due to the reaction force and moment.  

And then, the updated reaction force and moment are calculated from the secondary 

Single system Primary system Secondary system 
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system again.  Therefore, at each time step, the updated kinematic information, reaction 

force and moment are calculated in the predictive dynamics optimization loop. 

According to the introduced relationship between primary system and secondary 

system, this method is more modular and scalable to observe secondary system motion.   

As a result, the motion of the secondary system is easily observed no matter how many 

links the primary system has. 

In this study, we develop methods that model the force interaction of the 

equipment and the human body using a simplified model of upper and lower arm with 

external equipment.  First of all, one-link pendulum and the equipment which is modeled 

as a spring-mass-damper system attached to the primary system is analyzed and tested.  

The displacement, acceleration and reaction force are calculated and compared with the 

SimMechanics benchmarking solution.  Moreover, the upper and lower arm is modeled 

as a two-link manipulator and the secondary system which is spring-mass-damper system 

attached to the two-links primary system.  A spring-damper force perpendicular to the 

plane of collision is applied at all times whose direction depends on the motion of the 

equipment.  The impact forces are collinear with the normal direction.  By principle of 

interaction, these forces are of the same size but applied in opposite direction of the 

spring and damper forces.  Such implementation avoids the need for modifying the 

existing validated kinematic and dynamic model of the primary system, either the two-

link pendulum or the digital human model.  The modularity also allows addition and 

removal of different equipment as needed without the need to re-derive the kinematic and 

dynamic equations. 

The proposed method is tested on a simple case of a two degree of freedom serial 

chain mechanism with a simple passive system to behave as external equipment.  In 

particular, the passive mass is assumed to be connected to the primary system by a spring 

and damper.  The motion of the two-link manipulator was simulated using predictive 

dynamics module.  This approach can be extended to a full-body 3D digital human model 
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and interaction of various equipment like helmet and backpack can be simulated as the 

digital human performs various tasks. 

The proposed method is tested on a simple case of a two degree of freedom serial 

chain mechanism which is the called primary system with a simple passive system which 

is the secondary system to model the external equipment (Figure 1-4).  In particular, the 

secondary system is assumed as the spring, damper and mass system which is attached to 

the primary system.  The two-link pendulum problem is considered as human’s lower and 

upper arm.  To allow for simulation of digital human motion with multiple external 

equipment, the secondary system is modeled separately.  This way a new secondary 

system can be treated easily. 

 

Figure 1-4 Modeling upper arm, lower arm and external equipment 

1.4 Review of literature 

Due to the complex mechanical behavior of the human body, the problem of 

inverse dynamics is not solvable in a trivial manner for impacts (Gruber et al, 1998).  

Also, parallel and vector computation are introduced in order to compute multibody 
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equations of motion in an adequate computer environment (Fisette et al, 1998).  In other 

words, there is still interest on multibody systems in analytical and numerical 

mathematics resulting in reduction methods for rigorous treatment of simple models and 

special integration code for ODE (Ordinary Differential Equation) and DAE (Differential 

Algebraic Equations) representations supporting the numerical efficiency in 

biomechanics, robotics and vehicle dynamics (Schiehlen, 1997).  Predictive dynamics is 

one such DAE solving algorithm applied to digital human modeling and simulation.  It is 

an optimization-based methodology to predict physically-realistic human motions while 

avoiding integrating the typical differential algebraic equations.  Instead, the 

methodology imposes the equations of motions as constraints in the optimization problem, 

thus allowing use of highly redundant and anatomically correct joint-based full-body 

human models with relatively less computational expense.  The equations of motion for a 

class of dynamical systems, two-degree-of-freedom oscillators with cubic non-linearity in 

the restoring forces, were examined and showed coupling effect (Verros et al, 1999).  

Each task is characterized by an objective function and a unique set of constraints that 

define the task.  The equations of motion are assembled in a canonical form rather than 

derived in terms of the total momentum of the system to gain numerical efficiency and 

stability (Lankarani et al, 2001).  Various task motions have been predicted and validated 

using predictive dynamics approach with physics-based digital human model (Abdel-

Malek et al, 2008).  To ensure the realism and to get useful feedback from such digital 

human models, the interaction of the humans with the objects must respect the 

fundamental principles of mechanics.  Researchers have tried to simulate 3D human 

motions using theories from mechanics and multibody dynamics.  However, the work of 

the computational mechanics community focuses on an accurate description of 

interaction through a theoretical, experimental and numerical frame work.  Such a focus 

on detail increases the complexity of models which leads to heavy computations (Renouf 

et al, 2005). 
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1.5 Overview of thesis 

The rest of thesis is organized as follows.  The dynamic models for the primary 

one-link system, the secondary mass-spring-damper system, and the combined system are 

developed in Chapter 2.  These models are then analyzed to understand the reaction 

forces and moments applied on the primary system due to the presence of the secondary 

system.  The dynamic models for the primary two-link system combined with the 

secondary mass-spring-damper system are developed in Chapter 3.  In addition, the 

calculation of reaction force and moment are described and the validation of developed 

approach is shown.  In Chapter 4, predictive dynamics algorithm is introduced.  The 

algorithm is then modified to suit the new approach to simulating the equipment.  The 

changes allow application of interaction forces on the primary two-link system due to the 

presence of the secondary spring-mass-damper system.  This approach is implemented 

and the numerical results are presented in Chapter 5.  The results are compared with a 

benchmark solution obtained by solving the full system using SimMechanics toolbox.  

Finally, the conclusions, discussion, and avenues for future work are presented in Chapter 

6. 

  



9 
 

 
 

CHAPTER 2 

ONE-LINK PRIMARY SYSTEM WITH SECONDARY SYSTEM 

In this chapter, the idea of simulating a complex multi-body dynamics system as a 

combination of two independent systems, a primary and a secondary system, as 

introduced in Chapter 1 is implemented.  A planar two degree-of-freedom (dof) system is 

chosen as a simple test case.  In particular, a one-link simple pendulum is modeled as a 

primary system while a mass with spring-damper system is modeled as secondary system.  

The two systems would interact with each other by sharing the reaction forces and motion 

at the point of connection.  We also develop a mathematical model for the full (two dof) 

system.  The solution of this full system model would serve as the benchmark solution 

and the results from our approach will be compared against the results of full system 

model. 

First of all, equations of motion of three different systems, a one dof one link 

system, one dof spring-mass-damper system with kinematic motion as input and a two 

dof system composed of one dof one link system with spring-mass-damper system, are 

derived by using Lagrange’s Equation.  The reaction forces and moments on the 

secondary system due to the motion of the primary system are then calculated.  The 

components of the equations of motion of the two independent systems and the full two 

dof system are then compared.  By comparing equations of motion of two approaches, 

force terms on the secondary system can be verified. In addition, free body diagrams on 

the secondary system mass and entire systems shows that reaction force and moment at 

the attachment point of secondary system. 

2.1 One-link equation of motion 

Consider a planar one dof simple pendulum with mass   and link length   as 

shown in Figure 2-1.  The center of mass of the link is assumed to be located at half the 

link length.  The Table 2-1 shows given data for the parameters. 
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Figure 2-1 Model of planar one-link simple pendulum 

Table 2-1 Data of planar one-link simple pendulum 

                         ⁄   

1.0 1.0 0.0 9.81 

 

The equation of motion for one-link pendulum can be derived by using 

Lagrange’s Equation.  Assuming   to be generalized coordinate, the position of the 

center of the simple pendulum           and their derivative forms with respect to 

(w.r.t) time are 

     
  

 
          

  

 
      (2.1) 

  ̇    
  

 
  ̇         ̇   

  

 
  ̇       (2.2) 

The potential energy (V) is thus calculated as: 

 

X, Y= Inertial reference frame 

        ith local coordinate 

    Length of 1
st
 link 

    Mass of 1
st
 link 

          Distance from inertial reference frame 

to center of mass of 1
st
 link 

    Angle that the 1
st
 link makes with inertial 

frame 

   Acceleration of gravity (    ⁄ ) 
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      (2.3) 

and the kinetic energy (T) is obtained as: 

   
 

 
     ̇   

    ̇   
   

  
   

 
  ̇

 
 (2.4) 

The equation of motion can now be calculated using the Lagrange’s Equation given as:  

 

  
(
  

  ̇
)  

  

  
 

  

  
 

  

  ̇
   

Where q is the generalized coordinate,  ̇  is the time derivative of the generalized 

coordinate, and R is Rayleigh dissipation function. 

Substituting values from equations from the equation of motion w.r.t.    is obtained as: 

   ̈  
     

 
          where   

  
   

 
 (2.5) 

2.2 Spring-mass-damper with kinematic motion as input  

Consider only one dof spring-mass-damper system with kinematic motion as 

input as shown in Figure 2-2.  The kinematic information at each given time is obtained 

from primary system by using predictive dynamics module. 

The secondary system is described in Figure 2-2 with kinematic information from 

primary system.  The equations of motion of secondary system can be derived by using 

Lagrange’s equation.  The positions of the center of mass of secondary system         

can be expressed as: 

                         (2.6) 

and their derivative forms w.r.t time are 

  ̇   ̇   ̇          ̇      (2.7) 

  ̇   ̇   ̇          ̇        

The potential energy (V) of the system is calculated as: 

                  
 

 
       

  (2.8) 
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X, Y= Inertial reference frame 

        ith local coordinate 

    Angle measured from i-1th frame 

   Acceleration of gravity 

    Initial length of spring 

    Change of spring length 

        

   Damping coefficient  

   Spring constant 

                            

        Distance from inertial reference 

frame to center of mass of secondary 

system     

Kinematic information of primary system 

    = Distance from inertial reference 

frame to secondary system 

 ̇  ̇ = Velocity to x,y direction 

 ̈  ̈ = Acceleration to x,y direction 

Figure 2-2 Spring-mass-damper system with kinematic motion as input 

The kinetic energy (T) is obtained as: 

   
 

 
    ̇      ̇     (2.9) 

  
 

 
 (( ̇   ̇           ̇      )

 
 ( ̇   ̇           ̇       )

 
) (2.10) 

  
  ̇ 

 
 

  ̇ 

 
   ̇ ̇           ̇  ̇       (2.11) 

  
  ̇ 

 
 

     ̇
 

 
   ̇ ̇           ̇  ̇        

Therefore, equation of motion w.r.t.   is calculated: 

The equations of motion w.r.t the generalized coordinate   are given as 
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   ̈     ̇  (     ̇
 
)         ̈             ̈       (2.12) 

2.3 Equation of motion of planar one-link simple pendulum 

with attached spring-mass-damper 

Consider a one-link system with spring-mass-damper attached at the end of the 

link as shown in Figure 2-3. 

 

                                                                                                              

X, Y= Inertial reference frame 

        ith local coordinate 

    Length of 1 link 

    Mass of 1 link 

          Distance from inertial reference 

frame to center of mass of 1 link (    

    Angle that the simple pendulum makes 

with inertial frame 

   Acceleration of gravity (    ⁄ ) 

    Initial length of spring 

    Change of spring length 

        

   Damping coefficient 

   Spring constant 

               

        Distance from inertial reference 

frame to center of mass of ball      
 

Figure 2-3 Model of one-link simple pendulum with attached spring-mass-damper system 
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Table 2-2 Data of one-link simple pendulum with attached spring-mass-damper system 

                         ⁄               ⁄       ⁄          

1.0 1.0 0.0 9.81 0.0 30 1000 0.2 

 

Similarly, the equations of motion for one-link pendulum with spring-mass-

damper system can be derived by using Lagrange’s Equation.  For the system described 

in Figure 2-3, the generalized coordinates are         .  The position of the center of the 

simple pendulum           and the center of mass of the ball         can be 

expressed as: 

     
 

 
          

 

 
      (2.13) 

                             (2.14) 

and their derivative forms w.r.t time are 

  ̇    
 

 
  ̇         ̇   

 

 
  ̇        (2.15) 

  ̇   ̇              ̇         ̇   ̇              ̇       (2.16) 

Similarly, potential energy (V) of the system is calculated as: 

      (
 

 
     )    (          )   

 

 
       

  (2.17) 

and the kinetic energy (T) is shown as: 

   
 

 
     ̇   

    ̇   
   

 

 
    ̇      ̇     (2.18) 

  
 

 
(      ̇

 
   ( ̇          ̇

 
) )  

Therefore, the Lagrange’s Equation is:  

 

  
(
  

  ̇
)  

  

  
 

  

  
 

  

  ̇
   

Where q is the generalized coordinate,  ̇  is the time derivative of the generalized 

coordinate, and R is Rayleigh dissipation function. 
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The equation of motion w.r.t.    is obtained as: 

 
 

 
(  

                   )  ̈            ̇  ̇ (2.19) 

   
 

 
                       

Finally, equation of motion w.r.t.   is obtained with similar way. 

   ̈    ̇  (     ̇
 
)        ̇

 
              (2.20) 

2.4 Analysis of two different systems with new approach 

It is assumed that             in Eq. (2.19) which is equation of motion for 

one-link pendulum with spring-mass-damper system w.r.t.  .  Then the equation of 

motion is simplified and exactly matches with Eq. (2.5) which is equation of motion for 

one-link pendulum. 

If Eq. (2.19) is expanded and observed 

 
    

 
  ̈  

    

 
               ̈          ̇  ̇                (2.21) 

The first two terms are the same with equation of motion of the simple pendulum so that 

the rest of terms are from secondary system.  Based on these terms and Eq. (2.5), 

additional forces on the ball can be calculated.  

    
        ̈    ̇  ̇ (2.22) 

    
 [       ̈    ̇  ̇]  (2.23) 

   [       ̈    ̇  ̇]                    (2.24) 

Eq. (2.23) shows force in    direction based on Eq. (2.22) and Eq. (2.24) is moment 

equation of only secondary system mass    .  Actually, the third, fourth and fifth terms 

of Eq. (2.21) are the same with moment form of secondary system mass which is Eq. 

(2.24). 

Similarly, Eq. (2.25) provides acceleration equation in r direction so that force    

is calculated by Eq. (2.26). 
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     ̈         ̇
 
 (2.25) 

      ̈          ̇
 
 (2.26) 

 

Figure 2-4 Forces on the secondary system mass 

The equations of motion for one-link pendulum with spring-mass-damper system can be 

verified by establishing equations of equilibrium at each system with calculated forces 

and moment.  First, free body diagram and equation of equilibrium for mass of the 

secondary system are checked. 

Figure 2-5 Free body diagram at secondary system mass 



17 
 

 
 

   ∑     (2.27) 

                     (2.28) 

where    is spring force. 

   is damper force. 

   is substituted from Eq. (2.26) and the rearranged Eq. (2.28) becomes 

   ̈    ̇  (     ̇
 
)       ̇

 
             (2.29) 

   ̈    ̇        ̇
 
                  (2.30) 

Equation. (2.29) is well matched with equation of motion for one-link pendulum with 

spring-mass-damper w.r.t   which is already derived in Eq. (2.20).  Also, Eq. (2.28) can 

expressed as 

                   (2.31) 

where      ̈     ̇
 
      

      ̇ 

            

Similarly, free body diagram and equation of equilibrium for primary and secondary 

system are checked. 

 

Figure 2-6 Free body diagram of one-link pendulum with spring-mass-damper system 
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   ∑     (2.32) 

  
    

 
  ̈     

                               
 

 
   (2.33) 

   is substituted from Eq. (2.23) and the rearranged Eq. (2.33) becomes 

 
    

 
  ̈           ̈          ̇  ̇                       

 

 
  (2.34) 

It is also easily checked that Eq. (2.34) is the same as Eq. (2.19) which is equation of 

motion for simple pendulum with spring-mass-damper w.r.t    
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CHAPTER 3 

TWO-LINK PRIMARY SYSTEM WITH SECONDARY SYSTEM 

In this chapter, primary system is extended to two-link simple pendulum instead 

of one-link simple pendulum.  Basically, the equations of motion of two-link simple 

pendulum with secondary system are derived by Lagrange’s equation.  They are 

compared with equations of motion of two-link simple pendulum so that forces on the 

secondary system are analyzed.  

Section 3.1 derives equation of motion of two-link simple pendulum with spring-

mass-damper system.  In Section 3.2, reaction forces and moment are calculated and 

changed to global force form.  Section 3.3 is about validation of the proposed approach.  

Since it is assumed that the primary system and secondary system are solved separately, 

there are two approaches to solve the systems before the two systems are solved with 

interacting forces and moment.  First, solution of the secondary system with known 

primary system motion is shown in Section 3.4.  The solution of the primary system with 

known secondary system motion is explained in Section 3.5 

 

Figure 3-1 Planar two dof pirmary system and one dof secondary system 
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3.1 Equation of motion of two-link simple pendulum with 

spring mass damper 

In this section, the governing equations for a two-link primary system with one 

dof spring-mass-damper secondary system are developed to verify motions of the system 

and to understand the interaction forces and moment between the two systems.  Consider 

the system described in Figure 3-2 with two links of length    and    and mass    and 

  , such that the center of mass is located at the center of each link.  The corresponding 

data for simulation is provided in Table 3-1. 

 

 

X, Y= Inertial reference frame 

        ith local coordinate 

    Length of ith link 

    Mass of ith link 

          Distance from inertial reference frame to center 

of mass of ith link   

    Angle measured from i-1th frame 

   Acceleration of gravity 

    Initial length of spring 

    Change of spring length 

        

   Damping coefficient 

   Spring constant 

                            

        Distance from inertial reference frame to center of 

mass of secondary system     

Figure 3-2 Two-link simple pendulum with spring-mass-damper system 
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Table 3-1 Data of two-link simple pendulum with spring-mass-damper system 

                                        

1.2 1.2 0.9 0.8 0.2  
 

 
 

             ⁄               ⁄       ⁄   

0.0 9.81 0.0 30 1000 

 

The equations of motion for two-link pendulum with spring-mass-damper system 

can be derived by using Lagrange’s equation.  For the system described in Figure 3-2, the 

generalized coordinates are            .  The positions of the center of mass of the two-

link pendulum           and           and the center of mass of secondary system 

        can be expressed as: 

     
  

 
          

  

 
       

             
  

 
              

             
  

 
                 

                              

                              

and their derivative forms w.r.t time are 

  ̇    
  

 
 ̇        

  ̇   
  

 
 ̇         

  ̇       ̇       
  

 
          ( ̇   ̇ )       

  ̇       ̇       
  

 
          ( ̇   ̇ )  

  ̇      ̇        ̇                            ( ̇   ̇ )  
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  ̇     ̇        ̇                            ( ̇   ̇ )    

The potential energy (V) of the system is calculated as: 

                       
 

 
       

   

     (
  

 
     )     (        

  

 
          )       

                                
 

 
       

   

And the kinetic energy (T) is obtained as: 

   
 

 
     ̇   

    ̇   
   

 

 
    ̇ 

 
  

  
 

 
     ̇   

    ̇   
   

 

 
   ( ̇   ̇ )

 
       

  
 

 
    ̇      ̇      

 where     
    

 

  
  and     

    
 

  
  

The equation of motion can be now obtained using the Lagrange’s equation, given as:  

 

  
(
  

  ̇
)  

  

  
 

  

  
 

  

  ̇
   

where q is the generalized coordinate,  ̇  is the time derivative of the generalized 

coordinate, and R is Rayleigh dissipation function. 

The three equations of motion w.r.t.   ,    and   are shown below: 

 [
  
   

  
   

 
   

 (  
  

 
   )           

   {             }      

]  ̈   

  [  
 (  

  

 
)            

  

 
{             }      ]  ̈   

  [        ] ̈  
 

 
[

                

     {               ̇ (  ̇   ̇ )      }
]       

   [

    ̇ ̇      ̇ ̇               ̇ ̇           ̇ ̇      

                     ̇  ̇            ̇ 
      

  {  ̇ ̇    ̇ ̇                  ̇  ̇          ̇ 
      }

]     
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 [  
 (  

  

 
)            

  

 
{             }      ]  ̈   

  [  
   

  
   

 
          ]  ̈  

 

 
                 

  
 

 
       ̇ 

             

  [
    ̇ ̇      ̇ ̇               

      ̇ 
        {  ̇ ̇    ̇ ̇                 ̇ 

      }
]     

   ̈    ̇               ̈        

   {      ( ̇   ̇ )
 
    ̇ 

           ( ̇   ̇ )}     

If it is assumed that             in the equation of motion (Eq. (3.5)), it 

reduces to the governing equation of the two link system.  Thus, the terms with         

are the terms due to the presence of the secondary system.  Some of these terms come 

from the motion of the secondary system, while others come due to the coupling effect.  

3.2 Calculation of reaction forces and moment 

The coupling terms added to the governing equations are derived in this section 

using an analytical approach.  Based on free body diagram shown in Figure 3-3, three 

different forces exist on the secondary mass. By calculating accelerations of the attached 

mass in normal (                           directions, the forces    and    can be 

calculated as: 

 [
  

  
]  [

           

          
] [

  

 
]  [

                     

                    
] [

    
 

]       

 [
 ̇ 

 ̇ 

]  [
           ̇          ̇                  ( ̇   ̇ )

           ̇          ̇                  ( ̇   ̇ )
]       

 [
 ̈ 

 ̈ 
]  [

  

  
]  [

                    

                     
] [

 ̈ 

 ̈ 

]        
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Figure 3-3 Two-link pendulum with spring-mass-damper system 

  

[
 
 
 
 
 

    ̇ 
          ̇ 

    ̇ 
      ̇  ̇ 

    ̇  ̇     ̇ 
    ̇ 

   ̈          ̈ 

                        
  ̇ ̇          ̇ 

    ̇ ̇     ̈ 

         ̈    ̈     ̈    ̈ ]
 
 
 
 
 

  

Therefore, 

                

                

It is assumed that primary system and the secondary system are independent and reaction 

forces and moment are applied form the secondary system to primary system. The Point 

B in Figure 3-4 is the attachment point between two systems.  These forces on the mass 

of secondary system are transmitted to the primary system at each instant.  In order to 

observe interaction forces and moment between the two systems, the free body diagrams 

are drawn for secondary system and primary system. 
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Figure 3-4 Free body diagram of secondary system 

 

Figure 3-5 Free body diagram of primary system 

Reaction forces              and moment    can be calculated such as: 

 ∑   
          

               (
  

 
  )     

 where          
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               (
  

 
  )          

 ∑   
          

                
  

 
       

              (
  

 
  )        

 ∑             

                    

                       

When solving the equations of motion for the primary system, these interaction forces 

should be applied to account for the reaction forces acting due to the presence of the 

secondary system.  Therefore, equations of motion of two-link pendulum with reaction 

forces and moment can be expressed like 

 
 

  
(

  

  ̇ 
)  

  

   
 

  

   
               

 
 

  
(

  

  ̇ 
)  

  

   
 

  

   
               

 where       
   

   
 ,       

   

   
  

           are generalized forces  

 

Figure 3-6 Free body diagram of primary system with forces and moment 



27 
 

 
 

We can derive F which is sum of decomposed reaction forces shown in Figure 3-6. 

   [
        (

  

 
      )               

        (
  

 
      )              

]        

In addition,    is expressed such as 

    [
                    

                    
]        

And its derivatives w.r.t    and    are like 

 
   

   
 [

                     

                    
]        

 
   

   
 [

             

            
]        

Therefore, we can calculate generalized forces            such as 

         

   
        

   [         (
  

 
      )                ] [                    ]  

  [                    ] [                       (
  

 
      )]  

         

   
        

         [     (
  

 
      )                         (

  

 
      )]  

Therefore, the full equation of Eq. (3.16) and Eq. (3.17) are expresses like: 
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and 
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]  ̈   
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         [     (
  

 
      )                         (

  

 
      )]  

               

 where                (
  

 
  )  

             (
  

 
  )  

          

          

        

3.3 Validation of current approach 

The derivations and understanding obtained above for the new approach should 

be validated.  To summarize, the approach involves two steps: First, simulating the 

primary system independently while considering the effect of interaction forces as 

external forces applied to the primary system.  Second, these interaction forces are 

obtained by solving the motion of the secondary system, obtaining the state of the system 

at each time, and subsequently, calculating the forces and moments at the point of 

attachment to the primary system.  In the next two sections, these two steps are validated. 

3.4 Solution of secondary system with known primary 

system motion 

In this section, it is assumed that the motion of the primary system is known when 

the secondary system is attached to the primary system.  However, the motion of the 



29 
 

 
 

secondary system is unknown.  The motion of the full system is solved by using 

MATLAB/SimMechanics.  The solution for the primary system,        ̇       ̈   and   

  (    ̇       ̈ ) , is used as known solution.  Then, using the derived governing 

equations, the solution for the secondary system is obtained.  When the governing 

equation is solved and the output is the motion of secondary system       ̇      ̈ .  This 

solution is compared with the solution of the secondary system obtained benchmark 

solution   from MATLAB/SimMechanics.  While there is continuous exchange of forces 

between primary and secondary system, the new approach will have discrete time 

intervals when the interaction would be considered.  This test would allow us to 

understand the effect of time step size on the accuracy of the solution.  The governing 

equation of the secondary system is: 

   ̈    ̇               ̈         

   {      ( ̇   ̇ )
 
    ̇ 

           ( ̇   ̇ )}     

Rearranging the above equation and grouping the terms for different derivatives of the 

spring displacement  , 

   ̈    ̇  [   ( ̇   ̇ )
 
]          

      ̇ 
       ̇  ̇      ̇ 

      ̇ 
        

      ̈             ( ̇   ̇ )       

The Eq. (3.27) is simplified like 

   ̈    ̇   ̅             

 where  ̅     ( ̇    ̇  )
 
  

          ̇  
       ̇   ̇       ̇  

      ̇  
               

     ̈                              

where i is time output. 
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If     and    are known, then the term on the RHS,   , is a constant that can be evaluated 

at each time instant.  Thus a non-zero RHS of Eq. (3.28) makes it a nonhomogeneous 

ODE problem. 

First of all, the homogeneous solution is solved with assumption that the 

secondary system is overdamped and satisfies with the condition       ̅.  This is a 

reasonable assumption since any equipment hanging on the body of a human will never 

be critically damped or underdamped.  All equipment will attain a zero velocity soon 

after the human comes to a static position.  Therefore, the general solution is given as 

           
             

                

 where    and     are constants  

   
 

  
 and    

 

  
√      ̅   

Since RHS of Eq. (3.28) is constant the particular solution is easily obtained. 

     
  

 ̅ 
        

Therefore, according to Eq. (3.30) and Eq. (3.31) solution     and  ̇    are 

           
             

         
  

 ̅ 
        

  ̇                
                  

          

If initial conditions when     are assumed that 

                  

  ̇     ̇     

Constants      and     can be calculated with initial conditions such as: 

     
(       ̇  

     
 ̅ 

)

       
        

     
(       ̇  

     
 ̅ 

)

       
  

where                                   
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and i is time output. 

For initial verification purposes, it is assumed that    and   are input from 

MATLAB/SimMechanics.  Eventually, these parameters will come from a predictive 

dynamics solution. 

In order to validate the equations and understand the effect of time step on the 

accuracy of obtained results, a few numerical tests were performed.  Next, the motion of 

the secondary mass and reaction force between two-link pendulum and spring-mass-

damper systems are plotted and compared for 3 seconds with different time step (   

                     ).  These are shown in Figure 3-7, Figure 3-8 and Figure 3-9.  

Initial conditions are given    ̇         
 

 
   ̇            ̇   .  By 

decreasing time step, it is seen that the approximate solution is getting closer to 

SimMechanics solution.  This test also serves as a guide to understand the maximum time 

step that can be allowed for a desired accuracy in predictive dynamics while solving the 

two systems simultaneously.  While the equations are being integrated using numerical 

solver, the reaction forces on the primary system due to the presence of secondary system 

are assumed to be constant during each time step.  Hence, the error in the two solutions is 

larger as the time step increases. 
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a) Displacement,  , of secondary system 

 

b) Velocity,  ̇, of secondary system 

Figure 3-7 Approximate solution of equations of motion VS SimMechanics solution with 
time step 0.01 sec 
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c) Acceleration,  ̈, of secondary system 

 

d) Reaction force from secondary system to primary system 

Figure 3-7 continued 
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a) Displacement,  , of secondary system 

 

b) Velocity,  ̇, of secondary system 

Figure 3-8 Approximate solution of equations of motion VS SimMechanics solution with 
time step 0.001 sec 
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c) Acceleration,  ̈, of secondary system 

 

d) Reaction force from secondary system to primary system 

Figure 3-8 continued 
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a)                                    

 

b) Velocity,  ̇, of secondary system 

Figure 3-9 Approximate solution of equations of motion VS SimMechanics solution with 
time step 0.0001 sec 
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c) Acceleration,  ̈, of secondary system 

 

d) Reaction force from secondary system to primary system 

Figure 3-9 continued 
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In the foregoing results, the black line corresponds to the profiles obtained using 

SimMechanics solution while the red line corresponds to the profiles obtained by using 

the new approach.  In each case (a), (b) and (c) shows the plots of displacement, velocity, 

and acceleration as a function of time while (d) shows the reaction force at the attachment 

point as a function of time.  As we can see, with larger time step there is more error in the 

solution due to the approximation of constant reaction forces throughout the time. 

3.5 Solution of primary system with known secondary 

system motion 

In this section, it is assumed that the displacement of the secondary system,  , is 

known and the motion of primary system,          , is determined.  In this case, the two 

equations of motion of the two link primary system with external forces, Eq. (3.24) and 

Eq. (3.25) can be solved simultaneously by using ODE45 (RK4 method) with the same 

initial condition in Section 3.4.  First of all, Eq. (3.24) and Eq. (3.25) can be rewritten as 

full equation matrix form as: 

  [
 ̈ 

 ̈ 

]           

 where   [
      

      
]and   [

  

  
]  

This second order equation can be expressed in the first order form as: 

   ̇           

 where   [

    
        

    
        

]  
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]  
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Therefore, the first order form of the system of equations is obtained by multiplying     

to each side such as: 

  ̇        

This first order form can now be solved using ODE45 solver in MATLAB.  Since 

input   is obtained from the MATLAB/SimMechanics benchmark solution, the converted 

first order form of equations of motions are solved by MATLAB ODE45 with known  .  

The calculated          are also compared with MATLAB solution with different time 

step.  Similarly, the result are plotted and compared for 3 seconds with different time step 

(                        ).  These are shown in Figure 3-10, Figure 3-11 and Figure 

3-12.  
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a) Joint angle profile of Link 1,   , plotted against time 

 

b) Joint velocity profile of Link 1,  ̇ , plotted against time 

Figure 3-10 ODE solution of equation of motion VS SimMechanics solution with time 
Step 0.01 sec 
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c) Joint acceleration profile of Link 1,  ̈  , plotted against time 

 

d) Joint angle profile of Link 1,   , plotted against time 

Figure 3-10 continued 
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e) Joint velocity profile of Link 1,  ̇ , plotted against time 

 

f) Joint acceleration profile of Link 1,  ̈  , plotted against time 

Figure 3-10 continued 
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a) Joint angle profile of Link 1,   , plotted against time 

 

b) Joint velocity profile of Link 1,  ̇ , plotted against time 

Figure 3-11 ODE solution of equation of motion VS SimMechanics solution with time 
step 0.001 sec 
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c) Joint acceleration profile of Link 1,  ̈  , plotted against time 

 

d) Joint angle profile of Link 1,   , plotted against time 

Figure 3-11 continued 
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e) Joint velocity profile of Link 1,  ̇ , plotted against time 

 

f) Joint acceleration profile of Link 1,  ̈  , plotted against time 

Figure 3-11 continued 
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a) Joint angle profile of Link 1,   , plotted against time 

 

b) Joint velocity profile of Link 1,  ̇ , plotted against time 

Figure 3-12 ODE solution of equation of motion VS SimMechanics solution with time 
step 0.0001 sec 
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c) Joint acceleration profile of Link 1,  ̈  , plotted against time 

 

d) Joint angle profile of Link 1,   , plotted against time 

Figure 3-12 continued 
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e) Joint velocity profile of Link 1,  ̇ , plotted against time 

 

f) Joint acceleration profile of Link 1,  ̈ , plotted against time 

Figure 3-12 continued 
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Each figure above corresponds to solution for a different time step.  As we can see 

from the results that the different time steps do not affect the motion of the primary 

system much.  These results show that for a rough estimate, the primary system can be 

considered as driving and the secondary system can be considered as driven system.  In 

this case, the error in the two solutions is decreased by reducing time step of integration. 
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CHAPTER 4 

PREDICTIVE DYNAMICS APPLICATION OF REACTION FORCE 

AND MOMENT 

In this chapter, the predictive dynamics approach of solving the equations of 

motion of large systems such as human models is introduced.  This algorithm must be 

adapted so that the backpack modeled as the spring-mass-damper (SMD) system obtains 

the motion from human model and the reaction forces and moments from the SMD 

system can be applied to the human.  Predictive dynamics is a DAE solving algorithm 

applied to digital human modeling and simulation.  It is an optimization-based 

methodology to predict physically-realistic human motions while avoiding integrating the 

typical differential algebraic equations.  Instead, the methodology imposes the equations 

of motions as constraints in the optimization problem, thus allowing use of highly 

redundant and anatomically correct joint-based full-body human models with relatively 

less computational expense.  In addition, inequality constraints on the generalized 

coordinates are easily treated in this approach.  Each human motion task is characterized 

by an objective function and a unique set of constraints that define the task.  The 

equations of motion are assembled in a canonical form rather than derived in terms of the 

total momentum of the system to gain numerical efficiency and stability (Lankarani et al, 

2001).  Various task motions have been predicted and validated using the predictive 

dynamics approach with physics-based digital human model (Abdel-Malek et al, 2008) 

4.1 Predictive dynamics 

In predictive dynamics approach, the general equations of motion for the 

representative mathematical model of the primary system are written as: 

      ̇  ̈            
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where    ̇  ̈      are the state variables, and        are the generalized 

forces. This dynamics problem is defined over the time domain         with 

boundary,    {    } ,   , t being the time and the symbol ( )


  indicating derivative 

with respect to t.  The superscript N represents the number of DOF of the skeletal model.  

This primary system could be a 3D human model or a planar two link simple pendulum.   

Forward dynamics calculates the motion (q,   ̇  and  ̈ ) from the force   by 

integrating Eq. (4.1) with the specified initial conditions.  In contrast, inverse dynamics 

computes the associated force   that leads to a prescribed motion for the system.  The 

two procedures are depicted in Figure.1 (a) and (b). For simplicity, we use only q to 

represent kinematics of the system. 

In practice, it is difficult to measure complete displacement q and force   

histories accurately for a biomechanical system with many DOF, especially involving a 

complex motion.  This is because the experimental measurement is either not accurate 

enough or too expensive to achieve the required accuracy.  However, the boundary 

conditions and some state response of the system might be available.  In this case, 

neither forward dynamics nor inverse dynamics can be applied to the bio-system S 

directly.  As a consequence, the predictive dynamics procedure is proposed to solve 

these types of problems.  The basic idea is to formulate a nonlinear optimization 

problem based on the physics of the motion (the dynamics of the motion).  An 

appropriate performance measure (objective function) for the biomechanical system is 

defined and minimized subject to the available information about the system that 

imposes various constraints.  In this case, both displacement and force histories are 

unknown and need to be identified by solving the optimization problem.  This is called 

the predictive dynamics approach and is formulated for the system as follows. 

   
    

          

s.t.:            
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where g are the constraints defined based on the available information   about the 

biomechanical system. q and   are subject to their lower and upper bounds, respectively. 

For the biomechanical system, the objective function is usually called the performance 

measure. 

4.2 Solution algorithm 

The predictive dynamics algorithm used to solve primary system must be 

modified to account for the calculated reaction forces and moments from the secondary 

system as explained through flowchart of Fig 4-1.  The flow chart includes basic 

predictive dynamics steps including optimization process.  The two blocks highlighted in 

yellow must be introduced to the predictive dynamics algorithm so that it can be used to 

simulate the motion of human as well as the equipment. The outputs, reaction forces and 

moment, are dependent upon kinematic information and secondary system properties 

such as spring constant, damping coefficient, secondary system mass and initial length.  

The first block outside the optimization loop reads the information about the secondary 

system.  If there are more than one secondary systems, this block would read information 

about all secondary systems.  The second highlighted yellow block in the optimization 

loop calculates and applies the reaction forces and moment at each iteration for each time 

step.  Hence, the secondary system is solved multiple times iteratively until the solution 

converges.  
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Figure 4-1 Predictive dynamics flow chart with caculation of reaction and moment 

4.3 Interaction beween two systems 

 Figure 4-2 shows an example of how primary and secondary systems interact by 

applying updated reaction forces and moment.  In this case, primary system is expressed 

as two-link pendulum.  Since kinematic information of the primary system is provided at 

each time k in the predictive dynamics algorithm, the reaction forces and moment are 

also updated at time k.  That is, reaction forces and moment at time k are calculated with 

given kinematic information at time k and the calculated reaction forces and moment 

affect the primary system.  The kinematic information is updated at time k+1 and it will 
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generate updated reaction forced and moment at time k+1.  Therefore, this calculation 

loop will keep going until end of time. 

 

Figure 4-2 Application of reaction forces and moment to primary system and update 
kinematic information of primary system 

4.4 Calculation of secondary system motion 

As shown in Figure 4-2, the reaction forces and moment from the secondary 

system to the primary system are calculated at each time.  The horizontal progression in 

the figure Figure 4-3 shows how the values for each iteration are calculated as the time 

progresses.  The equation of motion of secondary system and reaction forces and moment 

calculation are already observed in Section 3.4. 
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Figure 4-3 Application of reaction forces and moment 

 In Section 3.4, the assumptions were already introduced to solve secondary 

system.  The first assumption is secondary system satisfies over-damped condition which 

is       ̅.  In addition, initial conditions for the secondary system are zero.  Finally, 

primary system states are constant.  

 At time output    , equation of motion of primary system is solved with 

assumed initial condition for the secondary system.  Then, the equation of motion for the 

secondary system is solved using the kinematic information from the primary system.  

The reaction forces and moments at time  +1 are then calculated based on the properties 

of the secondary system and the displacement obtained by solving the equations of 
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motion.  Calculated reaction forces and moment are applied to primary system and 

calculated analytical solution is updated to initial conditions for next time output    .  

This procedure keeps doing at the end of time. 
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CHAPTER 5 

NUMERICAL RESULT OF SIMULATING TWO LINK SIMPLE 

PENDULUM WITH SPRING-MASS-DAMPER SYSTEM AS 

EQUIPMENT 

The new approach to simulate the motion of the primary and secondary systems 

while solving the equations of motion independently using predictive dynamics was 

discussed in Chapter 4.  This approach is implemented on the two link simple pendulum 

system with equipment attached using a spring mass damper system.  The results of the 

secondary system displacement and the reaction forces due to this secondary system on 

the primary system are then compared against the benchmark solution. 

During optimization phase of predictive dynamics method, the primary system 

solution is obtained in the first iteration by assuming zero force due to the presence of 

secondary system.  Then, using the kinematic information about the system, the 

secondary system is solved and the reaction forces are updated for each time-step.  Then, 

the primary system is again solved for new motion for current iteration while applying 

the updated reaction forces due to the secondary system.  This iterative process is 

repeated until the system converges. 
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5.1 Vertical initial position 

 

Figure 5-1 Vertical initial position 

The full system was solved for three different initial conditions and for two 

different time steps.  The Figure 5-1 shows vertical initial position of the system.  This 

was a simple test case with a known solution.  Since the primary system is vertical and 

the secondary system is hanging off the primary system, the primary system should 

stabilize and come to rest.  The optimization problem formulated for this case is as 

follows: 

Find joint angle profiles 

min. ∑∫      

s.t          

        
 ⁄            

 ̇      ̇       

          
 ⁄              

 ̇        ̇         

The result of this simulation is shown in Figure 5-2. 
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a) Comparison of displacement of secondary system 

 

b) Comparison of velocity of secondary system 

Figure 5-2 Comparison of calculated solution and benchmark solution (vertical initial 
position) 
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c) Comparison of reaction force on primary system due to the presence of secondary 
system  

Figure 5-2 continued 

5.2 Intermediate initial position 

In this case study, it was assumed that the first link makes a 45 degrees angle, 

     
 ⁄      , with the horizontal at time    .  The configuration of the system 

is shown in Figure 5-3. 

 

Figure 5-3 Random(     
 ⁄      ) initial position 
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Similarly, the optimization problem for this case can be formulated as: 

Find joint angle profiles 

min. ∑∫      

s.t          

               

   ̇      ̇       

                                  

                                  

                                   

  ̇                   ̇                

The simulation results are shown in Figure 5-4.  The primary system has larger 

motion compared to the case 1.  The error in the motion of the secondary system is thus 

larger than the first case.  As can be observed from the graph, the results from new 

approach matches closely the benchmark SimMechanics solution for about 0.5 seconds 

and after that, the error increases.  Since predictive dynamics tasks only solving the 

system for single time step, which is mostly around 0.5 seconds long, the application of 

current approach is promising for such scenarios. 
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a) Comparison of displacement of secondary system 

 

b) Comparison of velocity of secondary system 

Figure 5-4 Comparison of calculated solution and benchmark solution (random position) 
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c) Comparison of reaction force on primary system due to the presence of secondary 
system 

Figure 5-4 continued  

5.3 Horizontal initial position 

The primary system is assumed to be at a horizontal position as shown in Figure 

5-5.  When dropped under the effect of gravity under this position, the primary system 

has even larger motion.  The system runs three different time step: 0.1 sec, 0.01 sec and 

0.0001sec. 

 

Figure 5-5 Horizontal initial position 
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The optimization problem for this case can thus, be formulated as: 

Find joint profiles 

min. ∑∫      

s.t          

               

   ̇      ̇        

                                 

                                 

                                  

  ̇                 ̇                

5.3.1 History of secondary system motion 

The results of this case are shown in Figure 5-6.  Because this case is highly 

nonlinear motion than motion of previous two cases, the error between the solution using 

the new approach and the benchmark solution is even larger than the previous case.  

However, the displacement, velocity as well as reaction force follow the same profile.  

Moreover, the solution matches for the initial 0.5 seconds before it starts diverging. 
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a) Comparison of displacement of secondary system 

 

b) Comparison of velocity of secondary system 

Figure 5-6 Comparison of calculated solution and benchmark solution (horizontal initial 
position) 
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c) Comparison of reaction force on primary system due to the presence of secondary 
system 

Figure 5-6 continued 

 It seems that the error is dependent on the initial position of the full system.  In 

three different cases, the vertical initial position case shows very good result.  Since the 

primary system is in stationary status, the secondary system motion is only affected by 

gravity force.  On the other hands, the horizontal initial position doesn’t show good trend 

because the motion of primary system is affected too much nonlinear.  In case of random 

initial position case, it shows good trend but there is still error between two solutions.  

Especially, the error starts to accumulate from 0.4 sec.  This error may come from the 

solution process of equation of motion of the secondary system. 

Overall, the secondary system motion is well matched with SimMechanics 

solution in the order of vertical initial position, random initial position and horizontal 

initial position.  In addition, the displacement of secondary system result shows better 

trend than velocity of secondary system result.  It is obvious that the reaction force shows 

also good trend because the reaction force is mainly dominated by the spring force. 
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5.3.2 History of primary system motion 

According to the results, it shows that the solution has not been improved much 

even though time step is decreased from 0.01 sec to 0.0001sec.  In other words, the 

approximation due to the assumption that the states of primary system are constant during 

the time-step is not the only cause for the error.  Hence, the primary system motion 

profiles were compared against the benchmark solution. 

 

a) Comparison of the first joint angular displacement      

Figure 5-7 Comparison of calculated joint angular displacement and benchmark solution 
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b) Comparison of the second joint angular displacement      

Figure 5-7 continued 

 

a) Comparison of the first joint angular velocity ( ̇ ) 

Figure 5-8 Comparison of calculated joint angular velocity and benchmark solution 
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b) Comparison of the second joint angular velocity ( ̇ ) 

Figure 5-8 continued 

 Based on Figure 5-7 and Figure 5-8, the angular displacements show similar trend 

with benchmark solution.  However, the angular velocities have error after 0.4 sec.  

Therefore, the error of secondary system on Figure 5-8 might be explained by error of 

angular velocities on Figure 5-8.  In detail, the introduced equation of motion for 

secondary system in Section 3.4 is function of         , the secondary system motion 

error is affected by the primary system motion error, especially angular velocities, in this 

case.  

5.3.3 Follow mocap cost function 

 Previously, it is proved that the secondary system result is not accurate because 

the primary system has error from certain time.  In other words, the primary system error 
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new cost function is introduced to solve primary system so that the primary system 

motion shows less error than solution with previous cost function. The new cost function 

is called Follow mocap cost function which is shown below: 

min. ∑(   
   )

 
 

where    
 are the desired joint angle from the benchmark SimMechanics solution. 

5.3.4 History of primary system motion with new cost 

function 

The given problem, objective function and constraints are shown as follows. 

Find joint profiles 

min. ∑(   
   )

 
 

where    
 are from SimMechanics 

s.t          

               

   ̇      ̇       

                                 

                                 

                                  

  ̇                 ̇                

The motion of primary system is shown below. 
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a) Comparison of the first joint angular displacement      

 

b) Comparison of the second joint angular displacement      

Figure 5-9 Comparison of calculated joint angular displacement and benchmark solution 
with new cost function 
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a) Comparison of the first joint angular velocity ( ̇ ) 

 

b) Comparison of the second joint angular velocity ( ̇ ) 

Figure 5-10 Comparison of calculated joint angular velocity and benchmark solution with 
new cost function 
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 According to Figure 5-9 and Figure 5-10, it is shown that the primary system 

solution with follow mocap function shows better result that solution with previous cost 

function. 

5.3.5 History of secondary system motion with new 

primary system motion 

 Since primary system solution shows better result with follow mocap cost 

function, it is expected that the secondary system shows better result as well.  The 

secondary system motion is plotted with three different time step: 0.1 sec, 0.01 and 

0.0001sec . 

 

a) Comparison of displacement of secondary system 

Figure 5-11 Comparison of calculated solution and benchmark solution with new primary 
system motion 
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b) Comparison of velocity of secondary system 

 

c) Comparison of reaction force on primary system due to the presence of secondary 
system 

Figure 5-11 continued 
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 When the primary system is solved with 0.1 and 0.01 time step, the plots are not 

smooth as much as the plots with 0.0001 time step.  Again, the solution with new follow 

mocap cost function shows better result than the solution with old cost function.  As a 

result, secondary system motion shows the best result by using new follow mocap 

function and 0.0001 sec for time step. 
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CHAPTER 6 

CONCLUSIONS AND FUTURE WORK 

In this dissertation, a method to simulate the human motion and the motion of 

external equipment while accounting for the cause and effect of the motion of equipment 

on the human was developed and presented.  Since human body is composed of lot of 

links and degree of freedoms, the derivation and subsequent solution of equation of 

motion is a complicated task.  Once the results are validated for simulation of human, 

whenever an equipment gets added, removed or moved, the equations of motion need to 

be re-derived. The re-derivation may also need re-validation once the model is 

implemented.  Consequently, the equation of motion needs to be derived and solved only 

for specific attachment point on the body.  This may not be a feasible option, especially if 

adding or removing or modifying location of the equipment is done frequently and by the 

end user.  Moreover the approach being used for solving the human system is predictive 

dynamics, the procedure has to work with the predictive dynamics approach. 

6.1 Conclusions 

The proposed approach is to solve primary system and secondary system 

separately and observe interaction between two systems.  To test and validate the 

developed approach, the upper and lower arms are simplified as two-link pendulum and 

external equipment is modeled as spring-mass-damper system.  Since the kinematic 

information is obtained based on predictive dynamics module at each time, the equation 

of motion of secondary system is solved for the known input motion of the reference 

point (attachment point).  After solving the secondary system, the reaction forces and 

moment are calculated at the attachment point.  Based on the understanding of interaction 

forces from the equations of motion of coupled and independent systems, the reaction 

force is equivalent to sum of spring force and damper force because the secondary system 
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is one dof system.  A global force corresponding to the reaction force is calculated and 

applied to the primary system as an external load in the predictive dynamics approach. 

As a result, the interaction of the two systems including motion, reaction forces, 

and moment between the human body and the equipment are calculated and the effect of 

external forces on human motion is predicted.  Since we use kinematic information at the 

attachment point of the primary system to analyze the secondary system, there is no need 

to derive equations of motion of primary system again although the attachment point is 

changed.  Moreover, multiple equipment can be attached with relatively less computation 

and at any location on the human body.  

The results of the reaction force and motion of the secondary system are 

compared with the benchmark solution from MATLAB/SimMechanics and the calculated 

results show good trend with proposed modeling approach.  

6.2 Discussion and Future work 

While a novel method of simulating the motion of the human and equipment 

mounted on human forces has been presented in this work, it opens up many interesting 

avenues of research that can be pursued in the future.  For instance, Chapter 5 reports the 

comparison of the reaction force and secondary system motions.  The calculated result 

shows error because it is assumed that     ̇       ̈  are constant for given time instant, 

equation of motion is solved as nonhomogeneous ODE problem.  It depends on time step 

to solve predictive dynamics module.  Therefore, the error could be reduced by using 

other solution technique such as numerical integration. 

Moreover, currently the secondary system has only one translational degree of 

freedom.  To develop more accurate and natural motion, the secondary system should 

have rotational degree of freedom as well.  Furthermore, the developed method is applied 

to only 2D problems in this dissertation; it should be applied and extended to the model 

including 3D motion of external equipment with rotation. 
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In addition, the presented method should be applied to a large dof digital human 

model. With human modeling simulation, the secondary system can be attached to 

different point on the human body with different orientations of multiple secondary 

systems.  Hence the approach should be rigorously tested and then applied to a full digital 

human model with multiple equipment. 
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