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CHAPTER I: INTRODUCTION 

Rivers and flood plains are of great interest to human societies. A significant 

majority of humans live near rivers or in floodplains and rely on them for water supply, 

food, power, transport, recreation, waste disposal, and other essential aspects of daily life 

(Bridge 2003; Chang 2002). Because so many human operations depend on the dynamics 

of streams and rivers, and because of the potential risk of damage due to flooding, there 

has long been a need to model and predict how water moves through a river channel over 

time (Choudhury et al. 2002; Di Baldassarre and Uhlenbrook 2012; Jin and Fread 1997). 

In particular the process of calculating the evolution of a flood hydrograph is known as 

flood routing (Henderson 1966). There are two classical methods within the engineering 

community for addressing the problem of flood routing, namely hydraulic flood routing 

and hydrologic flood routing of a hydrograph (Todini 1988; Hsu et al. 2003). 

Hydraulic flood routing methods describe changes in the water surface elevation 

along the channel, and the evolution of the hydrograph in space and time by numerically 

solving the 1D Saint Venant equations. The Saint Venant equations are considered to be 

the most complete theoretical approach available to describing unsteady open channel 

flow (Keskin and Agiralioglu 1997; Sivapalan et al. 1997; Yen and Tsai 2001). The 

difficulty with applying this methodology is the need for extensive a priori data about the 

channel geometry and hydraulic characteristics of the stream reach of interest (Di 

Baldassarre and Uhlenbrook 2012; Dooge et al. 1982; Karmegam et al. 1991; Shrestha et 

al. 2005; Wormleaton and Karmegam 1984). The required data for hydraulic flood 

routing makes the method cost prohibitive in many circumstances and is the primary 

reason for its limited use in general practice (Aldama 1990; Dooge et al. 1982; Hicks 

1996). 

The alternative to hydraulic flood routing is hydrologic flood routing. Hydrologic 

flood routing is a simplified approach based only on the mass continuity equation and an 
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assumed storage-discharge relationship (Aldama 1990; Kim et al. 2001; Todini 1988). 

These simple models generally give satisfactory results, but the parameters of these 

relationships are not physically based or measurable, hence they require a series of flood 

hydrographs at the upstream and downstream boundaries of the stream channel for 

parameter calibration (Chang et al. 1983; France 1985). A problem arises with hydrologic 

flood routing because the events of interest are often of low probability of occurrence, 

which makes it rare for extreme events to be contained within the calibration data set. 

Furthermore it is often the case that calibration data is not available for the region of 

interest because drainage basins in many parts of the world are ungauged (Sivapalan et al. 

2003). There have been efforts to estimate model parameters for ungauged basins based 

upon other basins with similar characteristics, but these results are uncertain at best 

(McCuen 1998). Despite the shortcomings of hydrologic flood routing, it still remains 

one of the most popular methods in engineering analysis (Blackburn and Hicks 2002; 

Chang et al. 1983; Hicks 1996, Sivapragasam et al. 2008). 

Given the limitations of hydrologic flood routing models in terms of available 

calibration data sets, and the restriction of hydrologic flood routing models to only 

provide hydrograph outputs at gauge locations (Hicks 1996), a deterministic model is 

desirable. Hydraulic flood routing provides a suitable option to overcome the difficulties 

associated with hydrologic flood routing; however the channel cross-sectional geometry 

and hydraulic characteristics must be prescribed as well as the hydrography of the basin. 

The present study is an investigation of the required level of detail in channel properties 

needed to route a flood hydrograph through a river reach with satisfactory results. This 

study consists of four components: analysis of the effect of simplified cross-sectional 

geometry and hydraulic characteristics on hydraulic flood routing, the effect of a 

simplified channel network topology on hydraulic flood routing, an evaluation of a 

simple, physically based hydrologic flood routing model, and a case study of flood 

routing on the Iowa River with simplified channel geometry and topology. 
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CHAPTER II: LITERATURE REVIEW 

Flood routing is an aspect of a much larger field, river engineering. Current and 

past research has demonstrated that river engineering is not based solely on a simple 

understanding of the hydrodynamic forces in the channel, but also on the interactions 

with the watershed that supplies water and sediment to the dynamic river system (Chang 

2002; Julien 2002). Understanding of river systems must include an understanding of 

geomorphology and hydrology in addition to the hydrodynamic forces governing the 

motion of water and sediment (Chang 2002, Julien 2002). There has been significant 

research devoted to an understanding of the interaction of these watershed processes and 

how the processes are affected by watershed scale. 

2.1 Hydraulic Flood Routing 

Hydraulic flood routing includes the full 1D unsteady continuity equation, and all 

or part of the momentum equation (Sturm 2010). While there has been much 

development and research of simplified forms of the momentum equation that arise from 

neglecting inertial and pressure terms (e.g., Cappelaere 1997; Dooge and NapiKrkowski 

1987; Moussa and Bocquillon 1996; Hager et al. 1986; Sabur and Steffler 1996; 

Sivapalan et al. 1997; Tsai 2005; Venutelli 2011; Yen and Tsai 2001), here the term 

hydraulic flood routing will refer only to models which employ all terms of the 

momentum equation, namely those which are formed by the full 1D Saint Venant 

equations (Brunner 2010) as follows: 

The 1D unsteady continuity equation which is a statement of the conservation of 

mass 

  ���� � ���� � 	
 � � (2.1) 
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The 1D unsteady momentum equation, which states that the time rate of change in 

momentum is equal to the external forces applied to the system 

  ���� � ��
�� � �� ����� � ��� � � (2.2) 

 

Equations 2.1 and 2.2 form the 1D Saint Venant equations similar to those 

derived in many classical and modern works on open channel hydraulics (e.g., Brunner 

2010a, p. 28-34; Chang 2002, p. 59-63; Henderson 1966, p. 3-4, 285-287; Julien 2002, p. 

122-129; Sturm 2010, p. 301-306). In equations 2.1 and 2.2, t is the time ordinate, x is the 

space ordinate in the stream wise direction, A is the cross-sectional area of flow, Q is the 

volumetric flow rate, ql is the lateral inflow per unit length along the floodplain, V is the 

cross-sectional average flow velocity, z is the elevation of the water surface from a fixed 

datum, and Sf is the friction slope, defined for U.S. Customary units as: 

  �� � ���� !"#"$%&' () �! (2.3) 

 

where R is the hydraulic radius and n is the Manning friction coefficient. 

It is well recognized that flow in a natural river system has some dominant two-

dimensional characteristics, especially when the flow enters the floodplain (Brunner 

2010a; Tayefi et al. 2007). Several attempts have been made to address the problem of 

channel and floodplain flow, one of which is to separate the flow in the channel and 

floodplain and neglect momentum exchange between them (Brunner 2010a). This is the 

method chosen in the development of the modeling software developed by the U. S. 

Army Corps of Engineers, HEC-RAS (Brunner 2010a, 2010b). From this approximation, 

the 1D Saint Venant equations become: 
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The unsteady continuity equation for the channel and floodplain flow with an 

added storage term, S, for non-conveying portions of the cross-section respectively 

  ��,�� � �-.�/��, � 	� � � (2.4) 

  ��0�� � �1-23./�4��0 � �5�� � 	6 � 	
 (2.5) 
 

The unsteady momentum equation for the channel and floodplain flow 

respectively 

  �.��� � �-.!�! �,) /��, � ��6 ���6 � �7��,� � � (2.6) 
  �-23./��� � �8-23./!�! �09 :��0 � ��� ;��� � �7��0< � � (2.7) 

 

where the subscripts c and f refer to the channel and floodplain respectively, and φ is a ratio of the flow conveyance in the channel to the total conveyance in the cross-

section. The terms qc and qf are the lateral flow exchanges between the channel and 

floodplain per unit length. 

Equations 2.4, 2.5, 2.6, and 2.7 form a hyperbolic system of partial differential 

equations (PDEs) which must be solved numerically in all but the most simple of cases 

(Aral et al. 1998; Garcia and Kahawita 1986; Hicks and Steffler 1994). There have been 

numerous numerical solution techniques proposed in the literature for solving the 1D 

Saint Venant equations. While they will not be extensively reviewed here, an extensive 

review of common methods can be found in Sturm (2010). 
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2.1.1 Numerical Hydraulic Flood Routing 

There are many available computer models available for solving the Saint Venant 

equations in a river channel or network (Stelling and Verwey 2006); however in this 

study the model used, HEC-RAS, uses an implicit finite difference method, the 

Preissmann scheme, to numerically integrate the Saint Venant equations (Brunner 2010a; 

Castellarin et al. 2009). 

The Preissmann scheme has been widely used in hydraulic flood routing and is 

extensively reviewed in literature (e.g., Liu et al. 1992; Lyn and Goodwin 1987; 

Venutelli 2002). The method is known to be very stable and to perform well under most 

conditions (Lyn and Goodwin 1987; Singh et al. 2010; Szymkiewicz 2010). A further 

discussion of the stability criteria for the method will be included after presentation of the 

method. 

There are many ways to discretize the Saint Venant equations using the 

Preissmann scheme (e.g., Chang 2002; Julien 2002; Sturm 2010), but the discretization 

presented here is that used in the HEC-RAS model as shown in Brunner (2010a). 

The Preissmann scheme is a four-point implicit scheme developed on a 

rectangular solution grid in the space-time domain as shown in Figure 1 (Brunner 2010a; 

Sturm 2010; Szymkiewicz 2010). The space derivatives and the function values are 

defined to implicitly include the future time step, resulting in a system of equations that 

must be solved simultaneously for the entire river reach (Brunner 2010a; Sturm 2010; 

Szymkiewicz 2010). 
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Figure 1 Graphical description of the Preissmann scheme 

For ease in developing the method, the following notation is defined: 

  ?@ � ?@  (2.8) 

  A?@ � ?@ B2 � ?@  (2.9) 

 

Using the notation of equations 2.8 and 2.9, the general finite difference forms 

used in the Preissmann scheme are defined as: 

1. Time derivative 

  ���� C A�A� � $#D8A�EFGBA�E:A�  (2.10) 
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2. Space derivative 

  H�H� C A�A� � 8�EFG3�E:BI8A�EFG3A�E:A�  (2.11) 

3. Function value 

  ? C ? � �#J8?@B2 � ?@: � �#JK8A?@B2 � A?@: (2.12) 

 

Using the definitions in equations 2.10, 2.11, and 2.12, equations 2.4, 2.5, 2.6, and 

2.7 can be approximated as finite difference equations. 

Beginning by writing the continuity equations, 2.4 and 2.5, as differences, and 

adding them together 

  AL � A�0A� AM� � A�,A� AM6 � A5A� AM� � L
 � � (2.13) 

 

where L
 is the average lateral inflow. 

Writing the momentum equations 2.6 and 2.7 as finite difference equations and 

adding them together yields 

  A8.�A�,B-23./�A�0:A� � A-NOL/ � ��8AP � ��AMQ: � � (2.14) 

 

where Δxe is defined as an equivalent flow path, V is the cross-sectional average 

flow velocity, and β is a velocity distribution factor  

  AMQ � 8�,EB�,EFG:A�,EB8�0EB�0EFG:A�0E�EB�EFG  (2.15) 
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 O � ��,B�0 (2.16) 

  N � 8
,.�B
0-23./�:�
  (2.17) 

 

Equations 2.13 and 2.14 yield a non-linear system of algebraic equations. While 

there are many robust computational techniques to solve such a system of equations 

(Bradie 2006; Brunner 2010a; Chang 2002; Sturm 2010), Preissmann proposed a more 

efficient method of computation by linearizing the equations as outlined in detail by 

Brunner (2010a) and presented here. 

  TU@AL@ � TV@AP@ � TW@AL@B2 � TX@AP@B2 � TY@ (2.18) 

  ZU@AL@ � ZV@AP@ � ZW@AL@B2 � ZX@AP@B2 � ZY@ (2.19) 

 

where the coefficients are calculated as: 

  TU@ � 3IA�[E (2.20) 

  TV@ � $#DA�A�[E \�H�,H� �@ AM6@ � �H�0H� � H5H��@ AM�@] (2.21) 

  TW@ � IA�[E (2.22) 

  TX@ � $#DA�A�[E \�H�,H� �@B2 AM6@ � �H�0H� � H5H��@B2 AM�@] (2.23)   TY@ � � �EFG3�EA�[E � �^A�[E (2.24) 
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 ZU@ � A�,E.EBA�0E-23.E/"A�A�[E � _E
EIA�[E � K�� 50E�E  (2.25) 

  ZV@ � �K `;87EFG37E:"A�[E � 50" < �H�H��@ � �50EaE �HaH7�@ � �A�[Eb (2.26) 

  ZW@ � A�,E.EFGBA�0E-23.EFG/"A�A�[E � _EFG
EFGIA�[E � Ic�50EFG�EFG  (2.27) 

  ZX@ � �K `;87EFG37E:"A�[E � 50" < �H�H��@B2 � �50EFGaEFG �HaH7�@B2 � �A�[Eb (2.28) 

  ZY@ � _EFG
EFG�EFG3_E
E�EBc�87EFG37E:A�[E � ��8��: (2.29) 

 

In addition to equations 2.18 and 2.19, the system requires two boundary 

conditions to close the system. The required boundary conditions are a flow hydrograph 

at the upstream of the river reach and a stage hydrograph, or stage discharge relationship 

at the downstream cross-section of the river reach. 

As mentioned, the implicitly defined Preissmann scheme is known to be stable 

under most conditions. There have been many studies, both analytical and numerical, 

demonstrating the stability of the method (e.g. Lyn and Goodwin 1987; Samuels and 

Skeels 1990; Szymkiewicz 1996; Venutelli 2002), and the conditions under which 

stability is unconditional. Most of the studies use the von Neumann stability analysis 

method which expresses the finite difference equations in terms of the Fourier 

components (Bradie 2006). By this method stability has been shown unconditionally for θ ≥ 0.5 (Brunner 2010a; Lyn and Goodwin 1987; Samuels and Skeels 1990; Sturm 2010). 
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2.2 Hydrologic Flood Routing 

Hydrologic flood routing is based upon the unsteady 1D continuity equation, 

which is a statement of mass conservation, and a simplified storage-discharge 

relationship (Aldama 1990; Kim et al. 2001; Todini 1988). There have been many such 

flood routing models proposed with varying levels of complexity e.g. the Muskingum 

method, the Muskingum-Cunge method, the modified Att-Kin method, and the kinematic 

wave approximation (Chang et al. 1983; Dooge and NapiKrkowski 1987; McCuen 1998; 

Moussa and Bocquillon 1996; Sivapalan et al. 1997; Todini 1988; Yen and Tsai 2001). 

Of these, one promising method is a link based model developed from the mass 

continuity equation (Gupta and Waymire 1998; Jothityangkoon and Sivapalan 2003; 

Mantilla and Gupta 2005; Mantilla et al. 2006; Menabde and Sivapalan 2001; Reggiani et 

al. 2001). 

The link based model separates a river reach into finite segments and constructs 

for each link the continuity equation with the upstream boundary condition equal to the 

discharge from the upstream links of the stream network. The method results in a system 

of coupled ordinary differential equations (ODEs) which in general are nonlinear, but can 

be made linear under certain simplifying velocity discharge relationships. The governing 

equations of this model are derived from the mass continuity equation as: 

Beginning with the unsteady 1D continuity equation 2.1, and integrating over the 

length of the link 

  e ����� � ���� � 	
� fMg$ � e ���� fM � hL�$g � h	
�$gg$  (2.30) 

 

Recognizing that the length of the link, L, is not dependent on time and that the 

lateral inflow is 0 at the beginning of the link, equation 2.30 becomes 
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 �g��� � H5H� � i � L � j (2.31) 

 

where � is the average cross-sectional area over the length of the link as defined 

by the Mean Value theorem for integration, S is the storage within the link, I is the total 

inflow from the upper links, Q is the total outflow from the link, and R is the total runoff 

entering into the link. 

From the continuity equation, a relationship between flow and velocity can be 

derived as follows (Henderson 1966): 

 
 	 � O� (2.32) 

 

Where q is the flow passing through a cross-section, V is the cross-sectional 

average velocity normal to the cross-section area, and A is the area of the cross-section. 

Because the average cross-sectional area over the link is always greater than or 

equal to zero, and the outflow, Q, is always greater than or equal to zero, the Intermediate 

Value theorem for calculus guarantees the existence of a velocity, Vc, such that: 

  � � �
, (2.33) 

 

where in general, all the parameters are functions of time. 

Several authors have suggested that Vc is a function of the outflow, Q 

(Jothityangkoon and Sivapalan 2003; Mantilla and Gupta 2005; Mantilla et al. 2006; 

Mantilla 2007; Menabde and Sivapalan 2001; Reggiani et al. 2001) such that: 

  O6 � l$LmG�H m! (2.34) 
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where l$, is a reference velocity, Ad, is the drainage area for the basin at the link 

outlet, and λU, and λV, are parameters derived from a combination of geomorphic and 

hydraulic relationships (Mantilla 2007). 

By combining equations 2.31, 2.33, and 2.34, a nonlinear ODE for Q is derived 

which can be solved by one of many robust computational schemes  H�H� � 
,g-23mG/ -i � L � j/ (2.35) 

 

The model equation of 2.35 is implemented in a powerful geographic information 

system (GIS) platform, CUENCAS (Mantilla and Gupta 2005; Mantilla 2009). 

CUENCAS is capable of complete watershed analysis, and will be used in comparing 

hydrologic flood routing with hydraulic flood routing. 

2.3 Hydraulic Geometry 

There is great interest among geologists, geomorphologists, and hydraulic 

engineers to provide a quantitative description of river channel geometry and hydraulic 

characteristics (Leopold and Maddock 1953; Park 1976; Phillips and Harlin 1984) Since 

the seminal work of Leopold and Maddock (1953), the classical approach to the 

quantitative description of channel geometry has been to use observed power law 

relationships, known as hydraulic geometry relations, that relate cross-sectional hydraulic 

characteristics to discharge (Dingman 2007; Singh 2003; Singh et al. 2003; Stewardson 

2005). The variables expressed through these power laws are most commonly top width, 

hydraulic depth, mean velocity, mean slope, and mean friction (Knighton 1975; Singh et 

al. 2003). 

There are two proposed forms of hydraulic geometry, downstream hydraulic 

geometry, and at-a-station hydraulic geometry (Leopold and Maddock 1953). 

Downstream hydraulic geometry is a method to describe how cross-sectional properties 

and channel form change in the downstream direction for a given frequency in discharge. 



14 
 

 

The alternative, at-a-station hydraulic geometry, is the quantitative description of how 

cross-sectional properties and channel form vary at a given cross-section with different 

frequency discharges. A thorough description of the development of these two concepts 

is provided in Leopold and Maddock (1953). 

While the hydraulic geometry relationships were initially developed from 

observed datasets, many researchers have made attempts to deduce the power law form 

from theoretical arguments (e. g. Dingman 2007; Singh 2003; Singh et al. 2003; Singh 

and Zhang 2008). The most common approach to deriving hydraulic geometry 

relationships is from the continuity equation, a resistance equation, the sediment transport 

equation, and a morphologic relation (Dingman 2007; Eaton and Church 2007; Huang 

and Nanson 2000; Singh 2003; Yang et al. 1981). The morphologic relationship is 

derived from various hypotheses, usually extremal in nature such as minimum or 

maximum entropy. An extensive review of these hypotheses is provided by Singh (2003). 

The relationships for hydraulic geometry are: 

  p � qLrs (2.36) 
 

where W, is the top width, a and b are constants, and Qm is bankfull discharge. 

Bankfull discharge, Qm, has been measured by many researchers, and related to 

flow frequency. Most often the bankfull discharge is reported to occur with a return 

period between 1.0 and 2.0 years (Castro and Jackson 2001; Johnson and Heil 1996; 

Wilkerson 2008; Williams 1978). Due to this result, Qm was estimated using the 2001 

USGS regression equations for Iowa with a return period of 2.0 years (Eash 2001). 
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 x � yLr � (2.37) 

 

where D is the hydraulic depth defined as cross-sectional area divided by the top width 

(Harman et al. 2008; Henderson 1966), and c and f are constants. 

  O � {Lrr (2.38) 

 

where V is the cross-sectional average velocity, and k and m are constants. 

The constants a, c, k, b, f, and m have been measured by numerous researchers in 

various regions of the world (e. g. Dodov and Foufoula-Georgiou 2004; Leopold and 

Maddock 1953; Phillips and Harlin 1984; Stewardson 2005). While there has been some 

variation in observed values reported, the coefficients are bound by the theoretical 

constraints: 

  qy{ � U#�}    ~ � ? � � � U#� (2.39) 

 

There have been a few researchers that have extended the concept of hydraulic 

geometry to use drainage area as the independent variable rather than discharge (Singh 

2003). Mejia and Reed (2011b) suggested a relationship between channel bed slope and 

drainage area as follows 

  �� � ��H� (2.40) 

where So, is the channel bed slope, ε and�, are constants. 

Given the wide variation in reported in the literature, it is necessary to define the 

values used in the present study. A summary of the exponents and coefficients used in 

equations 2.36, 2.37, and 2.40, are found in Table 1. 
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Variable coefficient exponent source
W 16 0.11 Stewardson (2005)
D 0.51 0.28 Stewardson (2005)
So 0.015 -0.31 Mejia and Reed (2011b)  

Table 1 Coefficients and exponents used for hydraulic geometry 
relationships 

 

2.4 Horton Order and Stream Scaling Laws 

There is a great deal of empirical evidence suggesting that river networks are 

governed by scaling laws (Dodds and Rothman 1999; Maritan et al. 1996; Reis 2006). 

Theoretical and experimental research has shown scaling laws exist for both topological 

and geometric properties (Abrahams 1984; Dodds and Rothman 1999; Maritan et. al 

1996; Scheidegger 1968a, 1968b; Strahler 1957). These scaling laws are most often 

formulated based upon exponents and ratios of fundamental watershed quantities and 

hold true in a statistical sense for natural river networks (Beer and Borgas 1993; Dodds 

and Rothman 1999; Peckham and Gupta 1999). However, study of these well-known 

empirical observations of scaling laws has not yielded a fundamental understanding of 

their origin in nature (Dodds and Rothman 1999). 

2.4.1 Horton Ordering 

The quantitative study of river networks and the recognition of scaling laws in 

network properties began with the seminal work of Horton in 1945 (Abrahams 1984; 

Horton 1945; Peckham 1995; Scheidegger 1968a; Strahler 1957). Horton first introduced 

the concept of stream ordering to subdivide a river network into major and minor 

tributaries (Abrahams 1984; Peckham 1995). Horton’s method of stream ordering was 

slightly modified by Strahler (1957) to provide an objective, purely topological method to 
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enumerate stream order (Dodds and Rothman 1999; Peckham 1995; Peckham and Gupta 

1999; Scheidegger 1968a; Strahler 1957). This modified Horton (Horton-Strahler) 

ordering is the basic tool used in river network analysis (Dodds and Rothman 1999; 

Peckham and Gupta 1999; Strahler 1957).  

There are two common methods for describing the Horton-Strahler ordering 

scheme, one a natural, intuitive pruning technique, and the other a recursive assignment 

rule (Dodds and Rothman 1999; Peckham 1995; Peckham and Gupta 1999). Both 

approaches are equivalent and view a river network as a topological tree graph, rooted at 

the network outlet and with exterior links given the lowest order, 1.  

The first technique to describe Horton-Strahler ordering is the pruning technique 

first described by Melton (Dodds and Rothman 1999; Melton 1959; Peckham 1995; 

Peckham and Gupta 1999). The technique allows for an insightful and natural definition 

of Horton-Strahler streams. The method begins by considering a river network with 

exterior streams considered as source streams. The idea of Melton was to prune all of 

these exterior links and their downstream nodes and classify them as order 1 streams. 

After the pruning process, a coarser river network remains, again with external links that 

have no incoming tributaries and are comprised of what was a contiguous chain of 

interior links. Again the exterior links and their downstream nodes are pruned and these 

are classified as order 2 streams. The procedure is repeated with the exterior links 

classified order (k-1) after the kth iteration of pruning. After a finite number of pruning 

iterations the tree is reduced to a single stream which is the highest order stream in the 

network and the trunk of the tree rooted at the outlet. As pointed out by Peckham (1995), 

a natural definition for Horton-Strahler streams are channels that remain invariant under 

this process of pruning way exterior links without being severed. 

Horton-Strahler ordering can also be defined using a recursive rule as follows. All 

exterior links are labeled as order 1 streams. For each interior link, the link is assigned the 

highest order of the incoming tributaries at a node, or if two links of equal order, ω, enter 
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at a node, the downstream link is assigned order ω+1. In other words the stream order 

only increases when two streams of equal order come together, otherwise the highest 

order is maintained by the outflowing stream. In mathematical terms, at each node the 

assigned order of the downstream link is given by 

  � � �qM -�U� �V/ � �-�U� �V/ (2.41) 

 

where δ() is the Kronecker delta, ω is the outflowing stream order, and ω1, ω2 are the 

stream orders of inflowing tributaries. 

2.4.2 Horton’s Law of Stream Numbers 

One of the first steps in river network analysis is counting stream segments of 

each order and analyzing how their numbers change with increasing order (Strahler 

1957). Horton first recognized that a ratio of the number of streams of consecutive orders 

is independent of stream order (Dodds and Rothman 1999; Peckham and Gupta 1999; 

Scheidegger 1968a; Strahler 1957). This ratio, defined by equation 2.42, is referred to as 

the bifurcation ratio. The bifurcation ratio has a theoretical lower limit of 2.0, which 

comes from the fact that at least two streams are required a stream order to increase (Beer 

and Borgas 1993). Various researchers have reported the bifurcation ratio to be between 

2.0 - 4.0 (e.g. Scheidegger 1968a; Strahler 1957).  

  j� � ����FG (2.42) 

 

where RB is the bifurcation ratio, Ni is the number of streams with order I, and Ni�U is the 

number of streams with order i+1. 

From the definition of the bifurcation ratio, Horton’s law of stream numbers 

naturally follows as equation 2.43. Horton’s law of stream numbers has given rise to the 
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concept of structurally Hortonian river networks (Scheidegger 1968a). A network is 

structurally Hortonian if all complete basins and subbasins in a network follow the same 

bifurcation ratio as the network itself. There have been several researchers that have 

attempted to rationalize the observed adherence to Horton’s law of stream numbers using 

hypothesis of structurally Hortonian networks. While it is clear that all structurally 

Hortonian networks follow Horton’s law of stream numbers, there are also structurally 

not Hortonian networks that obey this law (Scheidegger 1968a). Scheidegger (1968a) 

arguing that not all river networks in nature are structurally Hortonian, conducted a 

simulation of random topological trees with no assumption of structure. The results of the 

simulation were that in dealing with statistical expectation values, Horton’s law of stream 

numbers holds for structurally Hortonian networks as well as with the random topological 

networks which have an equal probability of structurally Hortonian and non-Hortonian 

constructs. Other researchers have confirmed that observed networks in nature quickly 

converge to a constant bifurcation ratio as the greatest order of the stream increases 

toward infinity (Peckham 1995). 

  �� � j��3� (2.43) 

 

where Ω is the maximum order of the basin, i.e. the order of the link terminating at the 

basin outlet. 

2.4.3 Horton’s Law of Stream Lengths 

Horton’s law of stream numbers is a purely topological result, but a similar result 

can be developed for geometric characteristics of a river network. A ratio, known as 

Horton’s length ratio can be defined as equation 2.44, and from that definition a statistical 

law of stream lengths can be derived (equation 2.45). Observations in natural stream 
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networks have shown that Horton’s length ratio varies between 1.5 and 3.0 (Dodds and 

Rothman 1999; Scheidegger 1968b). 

  jg � g�FG������g��  (2.44) 

  ������ � �2���jg�32 (2.45) 

 

where RL, is the Horton’s length ratio, ��B2����� is the average length of streams of order i+1, ���  is the average length of streams of order i, ������ is the average length of streams of order 

ω, and �2��� is the average length of streams with order 1. 

There have been various researchers that have attempted to develop a rational 

explanation of Horton’s law of stream lengths (e.g. Dodds and Rothman 1999; Peckham 

and Gupta 1999; Scheidegger 1968b). One common hypothesis is that the constancy of 

the Horton length ratio is an outcome of the fact that river networks are self-similar with 

regard to stream order, but this assumption implies that river networks are structurally 

Hortonian (Scheidegger 1968b). This is not the case in natural river networks however 

because, as demonstrated by Scheidegger (1968b), such an assumption leads to the 

relationship that the bifurcation ratio is equivalent to the length ratio, which is not 

observed in nature. Scheidegger (1968a, 1968b) suggested that difficulties between these 

relationships may be rooted in the fact that of the statistical ensemble of possible river 

networks there are certainly networks that are structurally non-Hortonian. While Horton’s 

law of stream lengths does not hold exact for all natural river networks, it has been shown 

to hold in a statistical average (Peckham 1995, Scheidegger 1968b). Furthermore, this 

asymptotic convergence of Horton’s laws has been shown to occur rapidly for networks 

greater in order than 3 (Peckham 1995, Scheidegger 1968b). 
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2.4.4 Horton’s Law of Drainage Areas 

One final statistical law that is useful in analysis of natural river networks is 

Horton’s law of drainage areas. Beginning again by defining the Horton’s area ratio, 

equation 2.46, Horton’s drainage area law is derived as equation 2.47. In natural river 

networks Horton’s area ratio has been observed to range between 3.0 and 6.0 (Abrahams 

1984; Dodds and Rothman 1999). 

  j� � ��FG�����������  (2.46) 

  ������ � �2���j��32 (2.47) 

 

where RA is the Horton area ratio, ��B2������ is the average drainage area for streams of order 

i+1, ���  is the average drainage area of Horton streams with order i, ������ is the average 

drainage area of streams with order ω, and �2��� is the average drainage area of Horton 

order 1 streams. 

Similar to the Horton laws for stream numbers and lengths, Horton’s law of 

drainage areas has been shown to hold well for natural river networks (Dodds and 

Rothman 1999; Peckham 1995; Strahler 1957). 

2.4.5 Hack’s Law 

One of the most well-known and widely discussed scaling laws observed in 

natural river networks is Hack’s law (Dodds and Rothman 1999; Maritan et. al. 1996; 

Rigon et. al. 1996). Hack demonstrated the applicability of a power function in relating 

the drainage area of a basin to the length of the principal river of the basin (Maritan et. al. 

1996; Rigon et. al. 1996). The exponent observed in nature varies from region to region, 

but is typically reported to be slightly below 0.6 (Rigon et. al. 1996). As such, Hack’s law 

is typically stated as  
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 � � ��    � � �#J (2.48) 

 

where L is the length of the longest stream in the river network, known as the diameter of 

the tree in graph theory (Peckham 1995), A is the drainage area of the basin, and h is 

referred to as Hack’s exponent. In this study, the Hack’s exponent is equated to 0.53 and 

a coefficient of proportionality is used to produce equivalence of 1355 meters. The 

drainage area is used in square kilometers. 

One of the most intriguing aspects of Hack’s law is that the exponent is not equal 

to 0.5 as would be expected from dimensional analysis (Dodds and Rothman 1999). This 

departure from the Euclidean value of 0.5 led to early speculations on the fractal nature of 

river networks (Maritan et. al 1996). An exponent of 0.5 would be expected also if there 

was geometric similarity preserved as drainage basins increase in area downstream, and 

the fact that h > 0.5 indicates anisotropy in the basin shape (Maritan et. al. 1996; Rigon 

et. al. 1996). The classical explanation is that Hack’s exponent is due to a tendency of 

basins to elongate, or grow faster in length than in width, but this is still a point of much 

debate among researchers (Maritan et. al. 1996; Peckham 1995; Rigon et. al. 1996). 

Using both theoretical arguments and analysis of real river networks from digital 

elevation models (DEMs), Rigon et. al. (1996) showed that Hack’s exponent could be 

related to fractal sinuosity in river channels and to basin elongation, with the major 

contribution being fractal sinuosity. The research of Rigon et. al. (1996) confirmed that 

river networks tend to elongate in nature and that basin shapes are self-affine. It was also 

reported that Hack’s law, like the Horton laws, only hold true in a statistical sense (Dodds 

and Rothman 1999; Peckham 1995; Rigon et. al. 1996).  

Using the arguments that river channels are self-affine curves, river networks are 

topologically self-similar, and that drainage density (stream length per area) is uniform, 

both Peckham (1995), and Dodds and Rothman. (1999), related Hack’s exponent to the 

Horton ratios as 
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  � � 
  -&�/
  -&�/ (2.49) 

2.4.6 Tokunaga Trees 

In the study of river networks there are infinite classes of trees which can be used 

for models. These network models can be either random or deterministic in nature 

(Abrahams 1984; Mantilla 2007; Peckham 1995; Peckham and Gupta 1999; Scheidegger 

1968a, 1968b). Of these various topologic tree models, one useful subset of deterministic 

self-similar trees are known as Tokunaga trees. Various researchers have been able to use 

Tokunaga trees to obtain insightful, analytic results which correspond well with those 

observed in nature (Dodds and Rothman 1999; Menabde and Sivapalan 2001; Peckham 

1995). They have also been used to understand the connections between Hack’s law and 

Horton’s laws as described in section 2.4.5 (Dodds and Rothman 1999; Peckham 1995). 

Tokunaga trees are self-similar in the topologic sense, also referred to as 

structurally self-similar (Dodds and Rothman 1999; Peckham 1995). To understand what 

is meant by topologic self-similarity, consider the class of deterministic trees where every 

stream of order ω has b � 2 upstream tributaries of order (ω-1) and Tω,k side tributaries of 

order k, where ω varies from 2 up to the maximum order of the network, Ω, and k varies 

from 1 up to (ω-1). Then the numbers Tω,k can be arranged into a square lower triangular 

matrix as (Peckham 1995) 

 

  ¡"�2 �¡¢�2 ¡¢�" £ �£ �¤ ¤¡��2 ¡��" ¥ ¤£ ¡���32
¦ (2.50) 

 

This set of numbers will define a self-similar tree if the matrix in equation 2.50 is 

a Toeplitz matrix, or in other words the values are constant along the diagonals such that 
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  ¡���3§ � ¡§  (2.51) 
 

Self-similar trees require, in general, (Ω-1) parameters to completely define the 

generating matrix defined in equation 2.50. Tokunaga trees have an additional constraint 

which reduces the number of required parameters to two. The additional constraint that 

defines Tokunaga trees is as follows 

  ¨©FG¨© � j¨ (2.52) 

 

where RT is a fixed constant for a given network. From 2.52 Tokunaga’s numbers Tk can 

all be defined by two fundamental parameters as  

  ¡§ � ¡2j¨§32 (2.53) 

 

where TU is the average number of major side tributaries per stream segment, i.e. there 

will be on average TU side tributaries of order (k-1) entering a stream of order k for each 

segment (Dodds and Rothman 1999). 

One famous self-similar Tokunaga tree is the Mandelbrot-Vicsek tree 

(Mandelbrot and Vicsek 1989). This is a fractal tree constructed by recursive 

replacement, and can be described using Tokunaga’s law (equation 2.53) as (Peckham 

1995) 

 

 ¡2 � ��     ¡§ � V§3"�   { � U (2.54) 

 



25 
 

 

Figure 2 is a Mandelbrot-Vicsek tree at the 4th step of recursion, and corresponds to a 

network of Horton-Strahler order 5. A similar tree will be used further on in the thesis 

with a Horton-Strahler order 9. 

 

 

 

Figure 2 Mandelbrot-Vicsek tree with Horton-Strahler order 5 
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2.4.7 Relation between Tokunaga’s Law and Horton’s 

Laws 

There have been several authors who have attempted to understand what the 

relationship is between Tokunaga’s law and Horton’s laws, most recently Peckham 

(1995), and Dodds and Rothman (1999) have attempted to understand the connections 

and how they arise from self-similarity in the topological structure of the network. One 

important aspect of this research is that it has shown that Horton’s laws are not an artifact 

of the Horton-Strahler ordering scheme (Kirchner 1993; Peckham and Gupta 1999). The 

study of the relationship between these laws in river networks has given a unified 

understanding of scaling laws and what properties of river networks lead to them. 

Peckham and Gupta (1999) stated that log linearity of Horton plots is a 

mathematical consequence of the recursive formulas that all self-similar tree graphs obey. 

Using these relationships, several researchers have shown that Tokunaga’s law leads to 

Horton’s laws and other scaling laws under the following three assumptions: 1. river 

networks are topologically self-similar, 2. individual streams are self-affine curves, and 3. 

drainage density is uniform across a basin (e. g. Dodds and Rothman 1999; Peckham 

1995). These three assumptions are to be discussed in the following paragraphs and then 

an outline of the derived connection between the various scaling laws. 

The first assumption is that river networks are topologically self-similar. This 

property of self-similarity has been observed in many river networks over a large range of 

scales (Dodds and Rothman 1999). Self-similarity in the context discussed here is the 

property by which the matrix of equation 2.50 is a Toeplitz matrix. This essentially 

means that the relative difference between the number of successive Horton-Strahler 

order streams is the same for all orders. It is important to note that this property in river 

networks has a physical range of applicability, namely an upper limit which is the overall 

scale of the landscape, and a lower limit which is the characteristic separation of channels 

(Dodds and Rothman 1999). This can be understood that at the smallest scales processes 
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are dominated by the hillslope dynamics and at the largest scales processes are dominated 

by the geologic structure of the region, and at the intermediate scales, self-similarity 

arises in the network topology. 

The second assumption is that individual stream shapes are self-affine (Dodds and 

Rothman 1999). This assumption is consistent with the work and observation of others 

(Maritan et. al. 1996; Rigon et. al. 1996) who found that both main channels and 

watershed boundaries are self-affine curves. The main consequence of this assumption is 

that streams grow in length at a faster rate than the basin does, and the basin grows in 

length at a faster rate than it does in width. This property has been observed in many 

natural watersheds throughout the world and is one of the main contributing factors to 

Hack’s exponent being greater than 0.5 (Dodds and Rothman 1999; Peckham 1995; 

Rigon et. al. 1996). 

The third, and final assumption made is that the drainage density is uniform 

throughout a watershed or basin (Dodds and Rothman 1999). Drainage density is a 

measure of average area drained per unit length of stream (Strahler 1957). A uniform 

drainage density can also be interpreted as the average distance between channels 

remains constant throughout the watershed (Dodds and Rothman 1999). This assumption 

has been found to be consistent with observations in nature (Dodds and Rothman 1999). 

One of the first recursion relationships that arise naturally from Tokunaga’s law 

(equation 2.53) is an expression for number of streams of a given order. This has been 

recognized by many to lead directly to Horton’s law of stream numbers (equation 2.43) 

(Dodds and Rothman 1999; Peckham 1995). The expression for binary trees shown in 

equation 2.55 is presented both by Peckham (1995), and Dodds and Rothman (1999), 

where the definition for binary trees is given as those trees in which each stream of 

Horton-Strahler order ω+1 is headed by two streams of order ω. It should be noted that 

order ω streams can appear as side tributaries as well for any stream with order greater 
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than ω. Given this condition of binary trees, Tokunaga trees follow the following 

relationship where the total number of streams, Nω, is given as 

  �� � V��B2 � ¬ ¡§��B§�3�§­2  (2.55) 

 

Combining equation 2.55 with 2.53 and 2.43, Horton’s bifurcation ratio is 

expressed in terms of the Tokunaga parameters as (Peckham 1995; Dodds and Rothman 

1999) 

  j� � 2" ®-V � j¨ � ¡2/ � ¯-V � j¨ � ¡2/" � °j¨± (2.56) 

 

Following from the assumption that the tributaries are evenly spaced and drainage 

density is uniform, Peckham (1995) developed the following expressions for the 

remaining Horton’s ratios which hold true asymptotically in all Tokunaga trees 

  jg � j¨ (2.57) 

  j� � j� (2.58) 

 

The redundancy found in equation 2.58 leads to the conclusion that there are only 

two independent Horton’s ratios, RB, and RL, which compares with the two independent 

Tokunaga parameters (Dodds and Rothman 1999). Furthermore, the relationships can be 

inverted as shown by Dodds and Rothman (1999) such that the Tokunaga parameters are 

obtained by the two independent Horton ratios. 

This invertible transformation between the parameters in Tokunaga’s law and the 

Horton’s ratios, in addition to the fact that there are only two independent Horton’s ratios, 

leads to the conclusion that the Horton’s laws are equivalent to Tokunaga’s law (Dodds 
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and Rothman 1999). Dodds and Rothman further demonstrated that from the independent 

Horton’s ratios and the fractal dimension of an individual stream channel, all other 

commonly used scaling laws can be derived. This result demonstrates the power and 

utility of the Horton’s laws and the recognition of self-similarity in river networks. 
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CHAPTER III: THE EFFECT OF CROSS-SECTIONAL PROPERTIES 

ON FLOOD ROUTING 

Geometric and hydraulic properties of a cross-section play an important role in 

hydraulic flood routing, due to their influence on storage capacity and conveyance in the 

channel and floodplain (Ghavasieh et al. 2006; Mejia and Reed 2011a, 2011b). Because 

of this effect on the flow dynamics of a channel, and the considerable uncertainty in 

observing these parameters, many researchers have studied the impacts on flow attributed 

to the cross-section (e. g. Anderson et al. 2006; Johnson 1996; Myers 1991; Sholtes and 

Doyle 2011; Wohl 1998; Wolff and Burges 1994; Woltemade and Potter 1994). 

However, the primary focus of other studies has been either how flood frequency is 

modified by geometric properties, or how a particular geometric shape can affect the 

flood hydrograph (Mejia and Reed 2011a, 2011b; Orlandini and Rosso 1998). Little 

research has been found that considers variability in geometric scale of the cross-section 

and a comparison over a range of watershed scales, therefore the purpose of this chapter 

is to present an analysis of the effect of variability in cross-sectional properties on flood 

routing, with an emphasis on geometric scale and hydraulic resistance. The analysis is 

repeated for several basin sizes. 

3.1 Model Framework 

HEC-RAS was chosen to conduct the proposed simulations because it is widely 

and readily available, and it numerically solves the 1D Saint Venant equations (Brunner 

2010a, 2010b). This provides a more general flood routing method, potentially 

eliminating error due to simplification of the flow dynamics (Henderson 1966; Mejia and 

Reed 2011a; Sturm 2010; Wormleaton and Karmegam 1984), which allows for a more 

direct evaluation of the effect from cross-sectional properties. 

The model stream to be simulated is a straight channel with no lateral inflows 

along its length. The cross-section geometry is a simplified compound trapezoid to be 
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described in section 3.1.2. The length of the stream channel and the width parameters in 

the cross-section geometry are scaled with respect to the Horton order of the simulated 

stream. For each model the cross-sections are spaced at intervals of approximately 15 

times the mean channel width (Castellarin et al 2009). 

Monte Carlo (MC) simulation was chosen as the method of experimentation. 

Because of the highly nonlinear system with no known analytical solution, standard 

methods of uncertainty analysis could not be performed, so MC provided the most direct 

solution (Chang et al. 1994). Using the MC method, one thousand simulations were 

performed for each Horton order stream from order 1-9.  

3.1.1 Inflow Hydrograph 

The upstream boundary condition for the simulations is a flood hydrograph. For 

the simulations it was decided to choose a single peak hydrograph with a steep rising 

limb and gradual falling limb, as is often observed in nature (Hager et al. 1986; 

Henderson 1966). The hydrographs used were kept constant for all simulations for their 

respective Horton order. The peak discharge, Qp, was be scaled along with the time to 

peak discharge, tp, according to the Horton order of the stream.  

Much research has been put into synthesis of hydrographs for flood flows 

(Bhunya et al. 2003, 2008, 2011; McCuen 1998; Mediero et al. 2010; Singh 2009). While 

most of the methods developed are for unit hydrographs, they still permit appropriate 

scaling and provide the desired shape characteristics for this study. Of the available 

methods, the method of fitting a probability density function (pdf) to the hydrograph is 

used with increasing success (Bhunya et al. 2008, 2011; Pramanik et al. 2010) and was 

used in this study. 

Following the procedure of Bhunya et al. (2003, 2008) a two parameter Gamma 

distribution is used to derive an inflow hydrograph for each Horton order 1-9. The form 

of the hydrograph is derived as (Bhunya et al. 2003, 2008; McCuen 1998): 
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  L-³/ � L´ ��µ
 ¶ ;23 ··µ< (3.1) 

 

where Qp, is the peak discharge, tp, is the time to peak discharge, t is the time ordinate, 

and n is a shape parameter derived by Bhunya et al. (2008) as: 

  ¸ ¹ U � ºN" � N¯U � -ºN/" (3.2) 

and  N � �#J°X �&�&»�$#DD jg$#$D (3.3) 

 

where RB  = 4.25, is the Horton bifurcation ratio; RA  = 4.5, is the Horton area ratio; RL  = 

2.2 is the Horton length ratio. 

The time to peak discharge was calculated for each Horton order stream based on 

the length of the stream and the relationship from Bhunya et al. (2008) 

  ³´-�/ � U#J°X �&�&»�$#DD jg3$#¢%l32�� (3.4) 

 

where v is the mean flow velocity in the stream reach and is assumed to be a constant 

0.75 m/s for this study, which is consistent with the observations of other researchers (e. 

g. Blöschl and Sivapalan 1995; Carlston 1969; Leopold 1953; Phillips and Harlin 1984). Lω, is the length of the channel given according to Hack’s Law as shown in equation 

2.48. 

The peak discharge for each Horton order stream was estimated using the 2001 

USGS regression equation for the 100 yr return period flow (modified for S. I units) as 

(Eash 2001) 
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  L´-�/ � J�#½¾-�#W°¿�f�/$#À2D (3.5) 

where Adω, is the drainage area for the Horton order stream calculated according to 

equation 2.47. 

Combining equations 3.1 through 3.5 and adding an assumed baseflow similar to 

Wolff and Burges (1994), the final form of the inflow hydrograph is: 

  L-³� �/ � L´-�/ `�#W � ��µ-�/ ¶ ;23 ··µ-Á/<b (3.6) 

 

The hydrograph of equation 3.6 provides flow magnitudes that are expected to be 

out of bank for a given Horton order stream, and resemble conditions that are likely in a 

design flood scenario. Using equations 3.4 and 3.5, with addition of the assumed 

baseflow, Table 2 lists the peak discharge and time to peak discharge for each of the 

corresponding Horton orders 1-9. Figure 3 is a plot of the inflow hydrographs used in the 

simulations. 

Horton order tp (hr) Qp (cms)
1 0.17 17
2 0.37 32
3 0.83 60
4 1.8 112
5 4 208
6 9 389
7 20 727
8 45 1356
9 99 2531  

Table 2 Time to peak discharge and peak discharge of the inflow 
hydrograph for each Horton order 
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Figure 3 Inflow hydrographs used in simulations. (a) Horton orders 1-3 (b) Horton orders 
4-6 (c) Horton orders 7-9 
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3.1.2 Downstream Boundary Condition and Initial 

Condition 

Since the Saint Venant equations form a hyperbolic system of equations, a 

boundary condition is required at both ends of the channel (Dooge 1982; Henderson 

1966, Sturm 2010). In the absence of a known control structure in the channel, a 

commonly used downstream boundary condition for flood routing is normal depth at the 

downstream cross-section (Brunner 2010a, Sturm 2010). While this is rarely the case in 

natural channels, it provides a way to systematically apply a boundary condition to the 

simulations that is consistent with engineering practice. For this reason the downstream 

boundary condition is assumed normal depth for all simulations. 

The Saint Venant equations also require an initial condition of the water surface at 

the start of the simulation. The standard practice, unless other information is available, is 

to assume the channel flow is at steady state for sufficient time that the water surface in 

the channel has reached its steady state level prior to the simulation (Brunner 2010a). For 

all simulations performed an initial condition of steady state flow is assumed using the 

baseflow as the initial flow condition. 

3.1.3 Channel Geometry 

Channel geometry is a combination of all relevant geometric properties to the 

simulations, specifically the cross-sectional form and scale, the river channel length, and 

the bed slope of the channel. For the simulations, each of these properties was scaled 

according to the Horton order and the relationships presented in Chapter 2 and the scaling 

parameters listed in Table 1 

The river channel length was developed based upon the Horton law for stream 

lengths, equation 2.44 for each stream of a given Horton order. Because the emphasis of 

this study was to understand the influence of variability in cross-sectional properties, the 

river channel length was maintained constant across simulations. 
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The bed slope of the channel was based on the drainage area scaling equation 2.40 

and the Horton law for areas, equation 2.47. The channel bed slope was assumed constant 

over the length of the channel and was maintained constant across simulations to prevent 

its effect from influencing the results. 

The cross-section form chosen is a compound trapezoid shown in Figure 4. This 

geometry was chosen because it is simple, allowing a specific description of the 

geometric parameters involved (i. e. width and depth), and because the cross-section 

width varies with depth, unlike rectangular sections, it provides a more realistic 

approximation to natural river channels (Mejia and Reed 2011a; Orlandini and Rosso 

1998). 

 

Figure 4 Compound cross-section shape used in simulations 

Figure 4 shows the typical cross-section for all simulations. The cotangent of the 

channel and floodplain side slope, M, is maintained constant across simulations and 

Horton order streams as 1:1 H:V. The value was chosen arbitrarily as 1:1 because in 

natural streams the side slope can vary significantly; therefore there was no clear basis for 

choosing the value. The bankfull depth, y, was chosen as the mean hydraulic depth 

calculated from the hydraulic geometry scaling equation 2.37 and was kept at a constant 

value for all simulations of a given Horton order. Lf and Lc are the floodplain and 

channel bottom width respectively. Both Lf and Lc were considered as random variables 
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(RVs) for the simulations as will be discussed further in section 3.1.5. Lc has a mean 

value for a given Horton order as calculated from the hydraulic geometry relationship 

equation 2.36 and Lf has a mean value equal to 4.0 times Lc which is consistent with 

Wolff and Burges (1994). 

The mean values for the channel geometry used in the simulations are listed in 

Table 3 

Horton order
Channel length 

(m)
Bed slope 

(m/m)
y (m) Lc (m) Lf (m)

1 300 0.02 0.6 15.8 63.2
2 660 0.01 0.9 17.4 69.6
3 1452 0.008 0.9 18.9 75.6
4 3194 0.005 1.2 20.7 82.8
5 7028 0.003 1.5 22.9 91.6
6 15461 0.002 1.8 25 100
7 34014 0.001 2.1 27.1 108.4
8 74831 0.0007 2.4 29.6 118.4
9 164628 0.0005 3 32.3 129.2

Mean Channel Geometry

 

Table 3 Mean geometric properties used in the simulations for each Horton order stream 

3.1.4 Hydraulic Resistance 

In addition to the channel geometry, hydraulic resistance is a significant variable 

to flood routing (Sturm 2010; Yen 2002). Because of this significance, many researchers 

have devoted much time towards its estimation (e. g. Henderson 1966; Sturm 2010; Yen 

1992, 2002). However; even with modern research there is still much uncertainty in 

hydraulic resistance estimates (Johnson 1991; Wohl 1998), therefore it is appropriate that 
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an analysis of the influence of variability in hydraulic resistance on flood routing is 

performed. 

There have been many empirical relationships suggested for open channel flow 

resistance, including the Darcy-Weisbach equation, Manning’s formula, and the Chézy 

equation (Henderson 1966; Sturm 2010; Yen 1992, 2002). The most popular resistance 

equation is undoubtedly the Manning’s formula, and because there is no theoretical 

preference for other equations (Yen 1992, 2002), it was used in this study.  

For each cross-section, a Manning’s resistance coefficient, n, was chosen for the 

main channel, and a separate coefficient for the overbank flow. Due to uncertainty in the 

parameter as observed in nature, and with intent on investigating the role its variability 

has in flood routing, the Manning’s coefficients were treated as RVs with mean values of 

0.048 and 0.08 for the main channel and the overbanks respectively. These values 

correspond well with an average of possible conditions reported by various researchers 

(e. g. Henderson 1966; McCuen 1998; Sturm 2010). There have been several researchers 

that suggest the Manning’s resistance coefficient scales similarly to the hydraulic 

geometry (e. g. Knighton 1975; Singh et al. 2003), but for this study the Manning’s 

resistance coefficient is treated as a scale invariant parameter. 

3.1.5 Monte Carlo Experiment 

MC experimentation is the procedure of repeating a process several times while 

varying some or all of the required inputs according to some prescribed manner (Chang et 

al. 1994). MC experimentation provides an effective tool to systematically investigate the 

effect of uncertainty in parameters for nonlinear models (Chang et al. 1994; 

Scharffenberg and Kavvas 2011; Warwick and Cale 1986). For this reason, and the large 

domain of input parameters for each simulation, MC simulation was chosen for this 

investigation. 
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For the experiment, 1,000 simulations were performed for each Horton order 

stream 1-9. For each simulation, both the geometric and the resistance characteristics at 

each cross-section were independently sampled from their respective distributions, 

resulting in a wide range of input conditions for the simulations. The resulting 1,000 

routed hydrographs were then compared with a baseline simulation described in section 

3.1.6 using the evaluation criteria discussed in section 3.1.7. 

For the cross-sectional geometry, the width variables were treated as normally 

distributed RVs with mean value for each Horton order as listed in Table 3. A constant, 

scale invariant, coefficient of variation (CV) was chosen for each geometric parameter as 

1/6. This value is consistent with the observed CV from measured bathymetric data in the 

Iowa River between Iowa City, IA and Lone Tree, IA. Figure 5 shows a comparison 

between observed variability in the Iowa River of channel bottom width and simulated 

variability in channel bottom width. The bottom width for the observed cross-sections 

was defined by approximating a trapezoid to the cross-section which had the same area 

and top width between banks, and had a side slope cotangent of 1:1. As can be inferred 

from Figure 5, the variability between two cross-sections is greater in the simulated 

results due to an absence of correlation between two adjacent cross-sections. The overall 

variability for the observed cross-sections in terms of CV is on the order of 1/6. Figure 6 

shows a comparison of the range of observed cross-sections in the Iowa River and the 

range of simulated cross-sections. Figure 6 demonstrates that natural rivers have much 

variability in the form of their cross-sectional geometry, but the simulated cross-sections 

have a mean conveyance area comparable to the observed cross-sections. 
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Figure 5 Comparison of observed variability in channel bottom width with simulated 
variability in channel bottom width. (a) 331 cross-sections observed in the Iowa River 
between Iowa City, IA and Lone Tree, IA (b) 331 simulated cross-sections with equal 
mean to observed cross sections and CV = 1/6 

 

Figure 6 Comparison of 331 observed cross-sections in the Iowa River between Iowa 
City, IA and Lone Tree, IA with 331 simulated cross-sections of equal scale 
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The Manning’s resistance coefficient, n, was assumed to be a RV with a uniform 

distribution with upper and lower bounds of 0.07 and 0.026 respectively for the main 

channel, and 0.12 and 0.04 for the overbank flow. While several researchers have 

reported various pdfs to describe variability in n in different geographic regions (e. g. 

Johnson 1991; Scharffenberg and Kavvas 2011), Johnson (1991) reported a uniform 

distribution based purely on a survey of estimates for a stream reach provided by a 

sample of professional engineers. Based upon the results of Johnson (1991), and without 

giving consideration to specific geographic regions, the uniform distribution is the most 

appropriate for the resistance coefficient. Figure 7 gives a graphical representation of the 

variability in the simulated resistance coefficients. 

 

Figure 7 Variability in simulated Manning's resistance coefficient along a channel length 
for overbank and main channel flow 

The sampling properties for the input variables (cross-section widths and 

resistance coefficients) used in the MC simulations are summarized in Table 4. 
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Input Variable Distribution Mean CV
Lc (m) normal see Table 3 1/6
Lf (m) normal see Table 3 1/6
Overbank resistance uniform 0.08 0.289
Main channel resistance uniform 0.048 0.265  

Table 4 Sampling properties of input variables used in MC simulations 

3.1.6 Baseline Simulation 

The baseline simulation for each Horton order stream is a prismatic channel with 

cross-sectional properties composed of the mean values listed in Table 3 and Table 4. 

This was chosen as the baseline case because it is unambiguous. The properties of the 

routed hydrographs: peak discharge, Qp, time to peak discharge, tp, and time of duration, 

tb, are summarized in Table 5. The definition of these properties will be given in section 

3.1.7. Figure 8 is a plot of the routed hydrographs for the baseline simulations. 

Horton order Qp (cms) tp (hr) tb (hr)
1 14 0.40 0.46
2 25 0.83 1.03
3 59 1.45 1.85
4 108 3 4
5 208 6 10
6 388 13 20
7 725 26 45
8 1353 56 98
9 2527 124 219  

Table 5 Peak discharge, time to peak discharge, and time of 
duration for baseline hydrographs of a given Horton order 
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Figure 8 Baseline simulation hydrographs. (a) Horton orders 1-3 (b) Horton orders 4-6 (c) 
Horton orders 7-9 
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3.1.7 Evaluation Criteria 

Because the output of each simulation was a time series rather than a single value, 

it was necessary to define a consistent method to compare one hydrograph to another. 

There has been much discussion of the problem of comparing two or more hydrographs 

with each other, or evaluating models, and there are many suggested evaluation 

parameters (e. g. McCuen et al. 2006; McCuen and Snyder 1975; Moriasi et al. 2007; 

Nash and Sutcliffe 1970). Four measures are defined here that were used to evaluate and 

compare the simulations; 3 measures of valued quantities in river flow forecasting and 

one as a measure of overall agreement between hydrographs. 

To establish the first three measures, the hydrograph was first characterized, as in 

Figure 9 by; Qp, which is the peak discharge, or maximum flow occurring in the 

hydrograph; tp, which is the time to peak discharge, or the time at which the hydrograph 

reaches its maximum value; and tb, which is the time of duration, or the length of time 

that the outflow hydrograph has a discharge greater than 35% of the peak discharge of the 

inflow hydrograph. 

Using the characterization defined in the previous text and in Figure 9, a relative 

difference was used to compare and evaluate the simulated hydrographs. The relative 

difference, calculated by equation 3.7, was used to provide multiple criteria for the 

analysis, and because the ratio is a percentage, it permits comparisons across Horton 

orders. 

  jxÂ � ÂÃ3Â�Â�  (3.7) 

 

where RD is the relative difference, P is the parameter of interest, S is the simulated value 

of P and B is the baseline value of P. 
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Figure 9 Definition of hydrograph characterization parameters Qp, tp, and tb 

The fourth measure chosen is the Nash-Sutcliffe efficiency (NSE) (McCuen et al. 

2006; Moriasi et al. 2007; Nash and Sutcliffe 1970). NSE was chosen because it gives an 

indicator of overall agreement between two hydrographs. NSE, given by equation 3.8, 

can range from -∞ to 1.0 with 1.0 being perfect agreement between the hydrographs. 

 

 ��Ä � U � ¬ -�� ÅÆÇ[^�È[3�� Ç�ÉÊ^Æ·[Ë/!È�ÌG¬ -�� ÅÆÇ[^�È[3�ÅÆÇ[^�È[/!È�ÌG  (3.8) 

 

3.2 Results and Analysis 

The MC simulations provided 1,000 hydrographs for each Horton order stream 1-

9. The hydrographs were then summarized by their characteristics Qp, tp, and tb. Figure 

10-18 provide the histograms of Qp, tp, and tb for their respective Horton orders. Figure 

19-21 present the spectrum of outflow hydrographs from the simulations. 
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Figure 10 Histograms describing simulation outputs for Horton order 1. (a) Peak 
discharge (b) Time to peak discharge (c) Time of duration 
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Figure 11 Histograms describing simulation outputs for Horton order 2. (a) Peak 
discharge (b) Time to peak discharge (c) Time of duration 



48 
 

 

 

Figure 12 Histograms describing simulation outputs for Horton order 3. (a) Peak 
discharge (b) Time to peak discharge (c) Time of duration 
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Figure 13 Histograms describing simulation outputs for Horton order 4. (a) Peak 
discharge (b) Time to peak discharge (c) Time of duration 
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Figure 14 Histograms describing simulation outputs for Horton order 5. (a) Peak 
discharge (b) Time to peak discharge (c) Time of duration 
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Figure 15 Histograms describing simulation outputs for Horton order 6. (a) Peak 
discharge (b) Time to peak discharge (c) Time of duration 



52 
 

 

 

Figure 16 Histograms describing simulation outputs for Horton order 7. (a) Peak 
discharge (b) Time to peak discharge (c) Time of duration 
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Figure 17 Histograms describing simulation outputs for Horton order 8. (a) Peak 
discharge (b) Time to peak discharge (c) Time of duration 
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Figure 18 Histograms describing simulation outputs for Horton order 9. (a) Peak 
discharge (b) Time to peak discharge (c) Time of duration 
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Figure 19 Spectrum of all routed hydrographs from the simulations. (a) Horton order 1 
(b) Horton order 2 (c) Horton order 3 
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Figure 20 Spectrum of all routed hydrographs from the simulations. (a) Horton order 4 
(b) Horton order 5 (c) Horton order 6 
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Figure 21 Spectrum of all routed hydrographs from the simulations. (a) Horton order 7 
(b) Horton order 8 (c) Horton order 9 
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As can be observed from Figures 10-21, there is a relatively small spread in the 

1,000 simulated hydrographs for each Horton order, and the range of values decreases 

with increasing order. Further analysis of the coefficient of variation (CV) for the 

metrics, Qp, tp, and tb, demonstrates the narrow range of values computed from the 

simulations, and also the trend for variability to reduce with increased Horton order. 

 

Figure 22 Coefficient of variation vs. Horton order. (a) CV for peak discharge (b) CV for 
time to peak discharge (c) CV for time of duration 



59 
 

 

In addition to comparing the simulations with each other, it was desired to see 

how each simulation compared with a baseline simulation. As discussed in section 3.1.6, 

the baseline simulation is a model with the input parameters comprised of the mean 

values of the input domain. The criteria for comparing the simulations are the relative 

difference (equation 3.7), and the Nash-Sutcliffe efficiency (equation 3.8).  

 

Figure 23 Nash-Sutcliffe efficiency vs. Horton order 



60 
 

 

 

Figure 24 Relative differences vs. Horton order. (a) relative difference in peak discharge 
(b) relative difference in time to peak discharge (c) relative difference in time of duration 
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Figures 22-24 demonstrate a clear trend of reduction in variability of routed 

hydrographs with increasing Horton order. In addition to a reduction in variability, the 

hydrographs apparently converge toward the baseline simulation. This observation 

inspires the question, is the hydrograph produced by the baseline simulation equivalent to 

the expected value of the MC simulations? A rigorous approach to answering this 

question is to establish a confidence interval for the mean of the MC simulations and 

determine if the baseline simulation lies within the bounds. 

The distributions for Qp, tp, and tb are not easily approximated by a normal 

distribution; therefore a non-parametric approach must be taken to establish confidence 

intervals for their means. One such way to derive confidence intervals is by the use of the 

bootstrap method (DeVore 2004; Efron and Tibshirani 1986). Using bootstrap sampling 

with replacement, 95% confidence intervals are established for the means of Qp, tp, and tb 

and summarized in Table 6. 

Horton order Qp (cms) tp (hr) tb (hr)
1 13.75 - 13.81 0.416 - 0.418 0.461 - 0.464
2 24.69 - 24.82 0.853 - 0.857 1.08 - 1.09
3 58.74 - 58.92 1.44 - 1.45 1.86 - 1.87
4 109.83 - 109.95 2.76 - 2.77 4.08 - 4.09
5 205.51 - 205.54 6.45 - 6.46 9.16 - 9.17
6 386.01 - 386.03 13.02 - 13.03 20.34 - 20.35
7 722.61 - 722.63 26.99 - 27.00 44.62 - 44.63
8 1350.49 - 1350.51 57.80 - 57.83 98.90 - 98.91
9 2522.20 - 2522.22 127.56 - 127.59 219.31 - 219.32  

Table 6 95% bootstrap confidence intervals on simulated hydrograph characteristics 
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By comparing the values from the baseline simulations in Table 5 with the 

confidence intervals in Table 6, it is apparent that the prismatic baseline simulation is not 

a statistically equivalent substitution to the case where the model accounts for all inter-

cross-section variability. Specifically, the expected value of the simulations is different 

from the baseline simulation with a statistical level of significance of 5%. 

Strictly one cannot replace bathymetric cross-section data with a reach wise 

average cross-section as shown by the confidence intervals in Table 6. This seems to 

conflict with the results presented in Figures 23-24, which suggests that the error 

committed by such a substitution is small. This example illustrates an understated point; 

that statistical significance is a very restrictive condition, and may not be absolutely 

necessary in engineering applications. 

A less restrictive condition that is appropriate for engineering application is the 

condition of practical significance. The condition of practical significance is that the 

maximum difference between measurements of interest falls below some acceptable 

tolerance level. While there are no objective criteria to specify what tolerance level is 

acceptable, consideration of the relative uncertainty in model input parameters provides 

one systematic approach to establish acceptable performance. Other, more subjective, 

methods to establish such tolerance levels would be to evaluate the relative change in 

impact between outputs, for example if a flood peak is 1,350 cms, the inundated area will 

not be much different from a flood wave of 1,355 cms, or societal perception, such as 

whether a two minute difference in flood peak arrival times is significant. 

 Using the approaches described above, it is argued that there is no practical 

significance in the difference between the MC simulations and the baseline simulation. 

To assess this statement, tolerance levels are placed upon the characteristics, Qp, tp, and tb 

based upon uncertainty in model inputs and societal perception. 

First, a tolerance level for difference in the magnitude of peak discharge, Qp, is 

established based upon the uncertainty in peak discharge for the inflow hydrograph. The 
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peak discharge of the inflow for this study is assumed using the USGS regression 

equations for Iowa (Eash 2001). The error in estimates from regression equations comes 

both from inability for the mathematical regression equation to fit observed data (model 

error) and error induced from limited amount of observations among other things. While 

the reported errors in USGS regression equations vary from one region to another, they 

range from 34% – 45% in the state of Iowa as reported by Eash (2001). Another common 

source of inflow hydrograph in practice is from a gauging station located on the stream of 

interest (i.e. USGS gauges). Gauge read discharge values also have significant error, 

mostly due to neglecting hysteresis in the rating curves. Research has shown that the 

error in gauge measured discharge varies between sites and events, but has a mean value 

typically around 25% (Di Baldassarre & Montanari, 2009). Given this level of 

uncertainty, a suitable tolerance level can be assumed to be < 25%. Figure 24 shows that 

the maximum difference between baseline simulation and MC simulation with respect to 

Qp, is < 15%, and the maximum expected difference is even less at < 3%. Given that the 

divergence from the MC simulations of the baseline simulation is well below the 

expected uncertainty in the inflow hydrograph peak, the variance between simulations is 

considered within acceptable tolerance levels and therefore not of practical significance. 

Second, a tolerance level for difference in time characteristics needs to be 

established. The criteria used to establish this tolerance level is a time interval that will 

not be perceived as considerable by the general population. This is a very difficult and 

subjective criteria as the perception of time varies considerably based upon 

environmental and psychological conditions. Because of the subjectivity in this criteria 

and the lack of research data available, the author assumes that a 10% difference in time 

is not perceivable, for example it is not believed that a group of people will react to a 

difference between 25 minutes and 28 minutes. Given a tolerance level of 10% on the 

time characteristics of a flood hydrograph, and the simulation data presented in Figure 

24, it can be said that there is no practical significance between the baseline simulation 
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and the MC simulations. While there are significant differences for some of the 

simulations of Horton orders 1-3, the expected value of the differences is well within 

tolerance levels for all orders. 

As a conclusion to the results of the MC simulations, it is found, as expected, that 

there is a statistically significant difference between the baseline simulations and the MC 

simulations. This statistically significant difference may not be enough to restrict the 

replacement of a fully detailed bathymetric description in river flood routing models with 

a reach wise averaged cross-section. It was demonstrated that given a definition of 

acceptable tolerance, the difference between the baseline simulations and the MC 

simulations may be practically insignificant. The potential for this result as it applies to 

hydraulic flood routing in practice is demonstrated further in the case study presented in 

Chapter 5. 
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CHAPTER IV: THE EFFECT OF SIDE TRIBUTARIES ON FLOOD 

ROUTING MODELS 

In a flood routing model, one is typically concerned with the transport of water 

from the head of a watershed to its outlet through its largest or main river. Often times, 

depending upon the size of the watershed, there can be hundreds of incoming streams that 

feed the main river with water from all over the watershed between the head and the 

outlet. Because of the potential number of streams involved, it can become practically 

impossible to account for all inflows in a flood routing model. Because the complexity of 

real river networks, and the lack of input data available, modelers often simplify the 

working network by neglecting some or all tributary streams (Cantone and Schmidt 2009; 

Choudhury et. al. 2002; Choudhury 2007). Another simplification often made is to 

consider lateral inflow as uniformly distributed over a particular reach rather than coming 

from a particular point of entrance (Moramarco et. al. 1999). While these simplifications 

are common, and in some situations justified, they can lead to significant errors in both 

outflow hydrograph timing and magnitude (Cantone and Schmidt 2009). 

Because of the potential risk involved with errors in flood routing, it is desired to 

understand how side tributaries influence flood routing. In an effort to understand what 

effect model simplifications have on the routed flood hydrograph, a numerical 

experiment was conducted on a Mandelbrot-Vicsek tree network to evaluate the 

sensitivity of hydraulic flood routing to various simplifications. 

4.1 Model Framework 

The simple experiment conducted is a simulation of river network flow using an 

unsteady HEC-RAS model (Brunner 2010b). For the network, several cases were 

simulated, each with varying simplifications to be described in detail in section 4.1.3. 
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4.1.1 Stream and Network Model 

The simulation routes a hydrograph through a single stream of Horton-Strahler 

order 9 with lateral inflow. The stream geometry is equivalent to the baseline geometry 

described for the Horton-Strahler order 9 stream in section 3.1.6. A prismatic stream was 

chosen for the simulation because it is easily defined, and it is assumed that the general 

result would not be affected by inter-cross-section variability, based upon the results of 

chapter 3. The incoming side tributaries were evenly distributed along the reach with 1 

kilometer (km) of stream length between them. 

The side tributary order and magnitude was determined based upon a theoretical 

Tokunaga tree referred to as the Mandelbrot-Vicsek tree, which is described in section 

2.4.6. The tree Horton-Strahler order is order 9, which results in 127 incoming side 

tributaries of Horton-Strahler orders 1-7. If we define a link as the stream segment 

between two tributaries, and the incoming side tributary for a given link as the tributary 

which enters at the downstream node of the link, then Figure 25 gives the structure of 

how the 127 incoming tributaries are distributed. 

 

Figure 25 Side tributary structure for main stream of an order 9 Mandelbrot-Vicsek tree 
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As observed in Figure 25, the tributaries follow the following sequence: 
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h (4.1) 

 

 4.1.2 Inflow Hydrographs and Downstream Boundary 

Condition 

The model constructed has 128 points of inflow, one at the beginning of the 

modeled stream reach, and 127 inflow tributaries spaced at a uniform 1 km. The inflow 

hydrographs are calculated based upon the Horton-Strahler order of the tributary in the 

same manner as described in section 3.1.1. The inflow hydrograph at the beginning of the 

stream reach is calculated as the summation of two hydrographs for a Horton Strahler 

order 8 stream. 

The downstream boundary condition is chosen to be the normal depth calculated 

using Manning’s equation with a friction slope of 0.0009. The boundary condition is 

applied at the downstream node of the link 128. 

4.1.3 Simulations 

For this experiment six simulations were performed with various simplifications 

of the model or modifications to the input hydrographs. Each case simulated was chosen 

to evaluate the effect from common practice. 
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The first simulation (S1) was considered the baseline simulation. The model was 

constructed with no simplifications to the inflow distribution or arrangement, and 

accounted for all inflows. 

The second simulation (S2) accounts for all inflows, as does S1, but has the 

simplification of uniformly distributing the inflow from each side tributary over its 

respective link. 

The third simulation (S3) maintains the uniform distribution of each side tributary 

over its link, as does S2. An additional simplification is made to the model by removing 

all Horton-Strahler order 1 streams. This simplification effectively removes half of the 

incoming tributaries. 

The fourth simulation, (S4) is similar to S3, except instead of removing the order 

1 streams, the order 2 streams are removed. 

The fifth simulation (S5) has no incoming flow from the side tributaries. This is 

the maximum simplification possible for a model. 

The sixth simulation (S6) is designed to show the potential effect from timing on 

a hydrograph. It is designed to demonstrate the worst case scenario. For each of the side 

tributaries, the time to peak for the hydrograph was modified so that it coincided with the 

arrival of the flood peak from upstream in the main channel, resulting in a summation of 

peak flows. 

4.2 Results and Analysis 

The results of the simulations are summarized in Figure 26-Figure 27. In addition 

to Figure 27, the NSE for simulations S2, S3, and S4 was calculated according to 

equation 3.8, using simulation S1 as the baseline simulation. This provides a quantitative 

evaluation of performance, and way to assess the effect of simplifications as compared to 

S1. For simulations S5 and S6, the magnitude of peak discharge was chosen as the more 

relevant evaluation metric rather than the NSE. 
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Figure 26 Hydrographs from simulations on Mandelbrot-Vicsek tree network. 
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Figure 27 Plot of Simulations S2, S3, and S4 vs baseline simulation (S1). Red line is the 
1:1 line 
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Simulation NSE
Regression 

slope
Regression 

intercept
Qp (cfs) tp (hr)

S1 1.0 1.0 0.0 149,097 63.5
S2 0.999 0.999 48.96 149,072 63.5
S3 0.828 0.998 -8835.32 140,111 63.67
S4 0.85 0.998 -8232.54 140,722 63.67
S5 N/A N/A N/A 94,912 67.75
S6 N/A N/A N/A 256,194 40.167  

Table 7 Summary of comparison metrics for simulation on Mandelbrot-Vicsek 
tree 

Table 7 provides a summary of calculated metrics to compare the simulations. 

The regression slope and intercept are calculated using the ordinary least squares method 

(DeVore 2004) with the ordinates of S1 as the independent variable, and the ordinates of 

S2, S3, and S4 as the dependent variables. The NSE and regression lines were not 

calculated for simulations S5 and S6 because they would have very poor fit. 

Several interesting conclusions can be drawn from the results in Table 7. The first 

conclusion that can be made from simulation S2 is that uniformly distributing the 

incoming flow over a link has a negligible effect on hydraulic flood routing in terms of 

both timing and magnitude of the hydrograph. Simulations S3 and S4 suggest several 

things, first that the sum of incoming flows from order 1 streams is approximately equal 

in magnitude to the sum of inflow from order 2 streams. As far as effect on flow 

dynamics, it appears that there is limited effect from ignoring the lower order streams. 

This conclusion is from the fact that for both simulations the regression slope is 

approximately unity, and the line is only offset by a constant intercept. While both 

simulations S3 and S4 were close in comparison to each other, it can be concluded in this 

case that ignoring order 1 streams does have a greater effect then does ignoring order 2 

streams. Simulation S5, as expected, greatly under predicts the magnitude of the flood, 
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but in spite of its great simplifications, it provides a reasonable estimate for time of 

arrival. Finally, simulation S6 demonstrates the potential for very large flows with a short 

arrival time in a network if the inflow tributaries are such that the peaks of hydrographs 

coincide with each other during a particular event. 

4.3 Future Work 

The work presented in this chapter is incomplete and the results given should be 

considered tentative. Two extreme cases have been presented, one where no tributary 

flow exists, and one where the maximum possible flow event occurs due to tributary 

flows timed such that there is direct interaction of the hydrograph peaks. More 

investigation however is necessary to provide a complete picture. Some potential future 

work to provide the missing detail is as following: 

A more complete investigation of the effect from neglecting tributary flows is 

needed. In this simulation, first and second order streams were ignored and it was found 

that their individual effect was negligible. It is necessary to continue this systematic 

pruning of individual orders for streams of third through seventh order, while leaving all 

other orders intact. This analysis will provide insight on the individual influence of each 

order stream in the network. 

The work here began to investigate the individual effect of each Horton order 

stream, but in practice a combination of several Horton order streams are neglected. To 

fully understand the impact of neglecting tributary streams, simulations need to be 

performed in which more than one stream order tributary is neglected. There are many 

combinations of this, but future research can consider that in practice a hierarchy will be 

assigned to streams and that an engineer would not choose to neglect a large order stream 

while including a lower order stream as a tributary. With this consideration, the 

simulation could be systematically pruning the network to reduce its order with the limit 

being the simulation S5 with no tributaries. 
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The simulation S6 demonstrates a potential maximum flow condition in the 

channel network due to interaction between peak flows. It is not obvious how this 

situation, should it arise, would be affected by the various simplifications discussed 

(uniform flow distribution and neglect of tributary flows). The connection can be made 

by performing the simulations already performed, and those discussed in this section, for 

the flow hydrographs that have a time to peak such that peak flows interact. 
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CHAPTER V: CASE STUDY ON THE IOWA RIVER 

The results of Chapter 3 gave considerable motivation to perform flood routing 

with very simplified cross-sectional geometry in a natural river. It was shown that the 

inter-cross-section variability did not play a significant role in influencing the routed 

hydrograph under the conditions simulated. The simulations performed in Chapter 3 were 

highly idealized however, and it was not clear if the result could be directly applied to a 

natural river. In Chapter 3, the only flows considered were extreme event in channels 

with no lateral inflows and no hydraulic structures, such as bridges. In an effort to resolve 

simplifications applied in Chapter 3, a simulation of the Iowa River between the USGS 

gauges at Iowa City, IA and at Lone Tree, IA was performed. The simulation period 

encompassed both extreme flows and frequent low flows. Also included in the model 

were several bridges and two lateral inflow hydrographs from the English River and Old 

Man’s Creek. As will be shown, the results of Chapter 3 hold well. 

5.1 Model Framework 

The model constructed for evaluation is a HEC-RAS (Brunner 2010a, 2010b) 

model based upon measured cross-sections in the Iowa River. The river segment modeled 

begins at the USGS gauge in Iowa City, IA (USGS 05454500) and terminates at the 

USGS gauge in Lone Tree, IA (USGS 05455700) giving a river length of about 38 km. 

The model includes two lateral inflow hydrographs and 3 bridge crossings along its 

reach. The period of simulation is from May 1st 2008 to July 20th 2008. 

5.1.1 Inflow Hydrographs 

There are three inflow hydrographs used to perform the simulation, an upstream 

hydrograph and two lateral inflow hydrographs. The upstream hydrograph used was 

observed directly from the USGS gauge at Iowa City, IA (USGS 05454500) and has a 

temporal resolution of 30 minutes. The lateral inflow hydrographs were routed from 
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USGS gauges on Old Man’s Creek near Iowa City, IA (USGS 05455100) and on the 

English River near Kalona, IA (USGS 05455500) using the Muskingum routing method. 

The Muskingum parameters used in the routing were calibrated by Kyutae Lee of the 

Iowa Flood Center, Iowa City, IA and were used directly. Figure 28 gives a graphical 

representation of the inflow hydrographs used. 

The Muskingum routing method is commonly used in practice; there are 

numerous examples of its use in the literature (e.g. Choudhury et. al. 2002; Dooge et. al. 

1982; McCuen 1998). The parameters used in the Muskingum routing as provided by 

Kyutae Lee of the Iowa Flood Center are listed in Table 8. 

River K (hr) X
Old Man's Creek 3.11 0.349
English River 9.35 0.417  

Table 8 Muskingum routing parameters used 
in routing lateral inflows 
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Figure 28 Inflow hydrographs observed in 2008. (a) Observed hydrograph at USGS 
gauge on the Iowa River near Iowa City, IA (b) Inflow hydrograph at the Iowa River 
from Old Man's Creek (c) Inflow hydrograph at the Iowa River from the English River 

5.1.2 Downstream Boundary Condition 

At the downstream boundary of the model (Lone Tree, IA), another USGS gauge 

was used to provide a stage hydrograph boundary condition, or the water surface 

elevation at the final cross-section vs. time. While the surface elevation does depend 

upon the hydraulic characteristics of the channel and its cross-sections, the same stage 
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hydrograph was used for both the river model with full, measured, bathymetric 

description of the channel cross-section, and the river model with a trapezoidal cross-

section with reach averaged dimensions used (geometries are described in Section 5.1.3). 

Figure 29 gives a plot of the stage hydrograph used in the simulations. 

 

Figure 29 Stage hydrograph observed in 2008 at USGS gauge on Iowa River near Lone 
Tree, IA. Used as downstream boundary condition for river models 

5.1.3 Channel and Floodplain Geometry 

Two river models were constructed for numerical simulation, both equal in 

floodplain geometry, but with different channel geometries. The two channel geometry 

models used were one with geometric properties of the 67 cross-sections as observed in 

the Iowa River, and one with geometric properties of the 67 cross-sections approximated 

from a simple trapezoid with dimensions derived so that the cross-section has the reach 

wise averaged cross-sectional area. For both models, the floodplain geometry is extracted 

directly from an aerial LIDAR based digital elevation model (DEM) with a 1 m spatial 

resolution that was obtained through the Iowa Department of Natural Resources (IDNR). 
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The river lengths and stream centerline are from a digitized centerline prepared by 

visually tracing the stream from the DEM. 

Both models contained three bridge crossings along the river reach. The cross-

sections of the bridge were input using the original construction plans provided by the 

Johnson County Secondary Roads Department. 

5.1.4 Hydraulic Resistance and Model Calibration 

Hydraulic resistance plays an important role in determining what water surface 

elevation is required to maintain a certain flow condition. The hydraulic resistance is also 

the parameter usually adjusted to achieve model calibration, or driving the model to agree 

with some measureable criteria (in this case other hydraulic parameters i.e. expansion and 

contraction coefficients are left at default values. See Brunner 2010b for more detail). 

The model with measured bathymetric description was calibrated to an observed water 

surface profile along the model reach during the June 2008 flood on the Iowa River with 

a Nash-Sutcliffe efficiency index of 98.4%. The river model with the approximated 

trapezoidal cross-section was run using two different sets of parameters: the same 

hydraulic resistance parameters as the detailed model, and hydraulic resistance 

parameters calibrated for the trapezoidal cross-section with a Nash-Sutcliffe efficiency 

index of 99%. 

Initially the detailed model was assigned hydraulic resistance parameters from the 

National Land Cover Dataset (NLCD) to give a first order approximation and spatial 

distribution to the Manning’s n parameters used in the cross-sections. After the model 

was constructed, each of the cross-sections had the Manning’s n reduced to a single value 

for each overbank and a single value for the main channel, giving three degrees of 

freedom in adjusting the resistance at each cross-section. After several attempts, the 

Manning’s n values at each cross-section were adjusted in a way to give both close 

agreement with observed water surface profiles and still be within a physically possible 
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range of values. This set of Manning’s n values was also used for the uncalibrated 

approximate model. 

The approximate model was calibrated to the same observed water surface profile 

as the detailed model. There were a couple motivations for this calibration: first to see if 

there was any influence on the routed hydrograph, second to see how much resistance is 

lost or gained by using approximate prismatic channels in a river model in terms of the 

average Manning’s n, and finally to see if the approximate model could achieve a water 

surface profile comparable to the detailed model while remaining within a physically 

justifiable range of Manning’s n values, therefore justifying its use in approximate flood 

inundation studies. Table 9 lists the average Manning’s n values used in both calibrated 

models along with their coefficient of variation. 

Statistic
Left 

Overbank
Channel

Right 
Overbank

Left 
Overbank

Channel
Right 

Overbank
Mean 0.089 0.052 0.089 0.071 0.037 0.073
CV 0.332 0.313 0.333 0.204 0.173 0.195

Approximate Detailed

 

Table 9 Average Manning's n for calibrated models and its coefficient of 
variation (CV). 

5.1.5 CUENCAS Model 

To provide an additional comparison with the hydraulics model, a simplified 

hydrologic routing model was also used to simulate the flood routing along the Iowa 

River reach between the USGS gauge in Iowa City, IA and at Lone Tree, IA. The routing 

method used by CUENCAS is that which is described in equation 2.35 with λ1 set to zero 

and Vc a constant 0.5 m/s providing a linear routing with velocity similar to that observed 

in various watersheds (personal communication with Ricardo Mantilla). The CUENCAS 
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model used had no rainfall input and was given the boundary conditions set by the USGS 

gauges. 

5.1.6 Evaluation Criteria 

There are several evaluation criteria available for comparing various flood routing 

models. Most are designed to give an overall “goodness of fit” for the model as it 

compares to observed data, and an extensive review of commonly used evaluation 

parameters is given by Moriasi et. al. (2007). For the case study there is an observed flow 

hydrograph at the Lone Tree, IA USGS gauge on the Iowa River which will be used as 

the comparison hydrograph for the models. 

Three evaluation statistics were used to compare the four models used in the case 

study. They were all selected to evaluate how well routed flow hydrographs compared to 

the observed hydrograph. The three statistics used are percent bias (PBIAS), Nash-

Sutcliffe efficiency (NSE), and the ratio of root mean square error to the observations 

standard deviation (RSR). A brief discussion of these statistics is provided here, and a 

further discussion is found in Moriasi et. al. (2007) and McCuen et. al. (2006) and 

included references. 

PBIAS is a measure of the average tendency of the simulated data to be larger or 

smaller than the observed data (Moriasi et. al. 2007). Positive values indicate 

underestimation, and negative values indicate overestimation. The optimal value of 

PBIAS is 0.0 (Moriasi et. al. 2007). PBIAS is also an indicator of mass balance because it 

is calculated in a similar way as percent difference in volume, and in the case where both 

observed and simulated data have the same, constant time interval; the two are equivalent 

(Moriasi et. al. 2007). PBIAS is calculated as 

  ÖYi�� � \¬ 8��×ÅÇ3��Ç�É:È�ÌG¬ 8��×ÅÇ:È�ÌG ] -U��Ø/ (5.1) 
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NSE is calculated as shown in equation 3.8, with the parameter LsÙÚQ
Û Q replaced 

with L�sÚ. This was not chosen as the only measure of performance, because as noted by 

several researchers it is not the best suited to inter-model comparison (e.g. McCuen et. al. 

2006; Moriasi et. al. 2007). One major reason stated for it not being well suited for 

comparing two different models is that there is no sampling distribution available for the 

NSE index and therefore it is difficult to interpret the values as being “good” or “bad” 

(McCuen et. al. 2006). Also, it has been shown that the NSE values are sensitive to 

outliers, magnitude bias, and time-offset bias (McCuen et. al. 2006). NSE is still a useful 

statistic, but because of certain limitations it was not solely used to compare the different 

models. 

The ratio of root mean square error (RMSE) to observations standard deviation 

(RSR) is a statistic that has seen increasing use in hydrologic model evaluation (Moriasi 

et. al. 2007). RMSE has been a widely used error statistics in all fields of science and 

mathematics for many years, and while it is commonly accepted that the lower the 

RMSE, the better the prediction, no objective statement has been made about what is 

acceptably low (Moriasi et. al. 2007). Several researchers have suggested that RMSE less 

than half the standard deviation of observations may be considered low and have 

proposed (RSR) as a useful statistic for evaluation (Moriasi et. al. 2007). RSR can be 

calculated as  

 

 j�j � &Ü5Ý5¨ÞÝ
×ÅÇ � ß¬ -��×ÅÇ3��Ç�É/!È�ÌG
ß¬ -��×ÅÇ3�×ÅÇ�������/!È�ÌG  (5.2) 

 

5.2 Results and Analysis 

The simulations of the Iowa River utilized three hydraulic flood routing models 

and one hydrologic flood routing model. As a result of these models, four separate 
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hydrographs were obtained to compare with the observed flow hydrograph. Also, from 

the hydraulic flood routing models, various water surface profiles could be generated to 

compare how the water surface elevation is changed due to simplifications in cross-

sectional geometry and what the potential is for calibration to overcome these limits. 

Beginning with the hydrographs resulting from the simulation, it was found that 

all models performed well, confirming the results presented in Chapter 3 with respect to 

the hydraulic model and verifying the hydrologic model developed by Mantilla (2007). 

Graphical representations of the three evaluation statistics are presented in Figure 30 

 

Figure 30 Summary of model performance. Ellipses represent detailed hydraulic routing 
model, squares represent calibrated approximate hydraulic model, diamonds represent 
approximate hydraulic model, triangles represent CUENCAS hydrologic model 

It should be noted that the models were compared with the observed data 

beginning two days after the simulation began in an effort to eliminate any bias or error 
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coming from the initial conditions used in the models. This gave a simulation period of 

about 78 days and an observation sample size of about 3,750 points to compare with. For 

all models the output had the same temporal resolution as the observed data set. 

As shown in Figure 30 the models all provided similar results. CUENCAS 

performed best with respect to PBIAS, but was comparable to the calibrated approximate 

hydraulic routing model for the other two statistics. These results once again confirm the 

potential for utilizing a simplified geometry in hydraulic river models in the absence of 

surveyed bathymetric data. 

A more qualitative representation of how the models agree with observed flow 

values is a plot of the outflow hydrograph observed at the USGS gauge in Lone Tree, IA, 

and the outputs at the same location from the various models. This plot is given in Figure 

31. 

 

Figure 31 Outflow hydrographs at Lone Tree, IA 



84 
 

 

Figure 31 confirms the results of Figure 30 in a qualitative sense. As observed in 

Figure 31, the hydraulic models are very similar in estimated value, especially at their 

peak flow. The divergence is small between the calibrated models and the uncalibrated 

model. Also shown is that the hydrologic model, CUENCAS is able to satisfactorily 

approximate the observed hydrograph. 

One greatly desired result from hydraulic routing models is an estimation of the 

water surface profile. A water surface profile allows estimation of inundated area and can 

be used as a risk monitoring tool during extreme flood events. Because this information is 

valuable it is important to assess whether or not a simplified geometry in the main 

channel can result in comparable estimation of the water surface to a detailed hydraulic 

routing model. Figure 32 is a graphical comparison of the maximum water surface 

elevation calculated for the three hydraulic models and a comparison of the minimum 

water surface elevation. 

As is shown in Figure 32, there is a significant divergence in the water surface 

profile between the approximate models and the detailed model. The approximate model 

on average underestimates the water surface elevation along the river reach. While the 

results for the calibrated approximate model are significantly better, especially for the 

maximum water surface, they are not a suitable replacement for a detailed model in flood 

inundation mapping. They can be used as a first approximation, but any analysis 

depending upon reliable estimates of the water surface elevation would fail if using the 

approximate model. 
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Figure 32 Plot of maximum and minimum water surface profiles computed by the three 
hydraulic routing models 
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CHAPTER VI: SUMMARY, CONCLUSIONS, AND FUTURE WORK 

Simple numerical experiments were conducted to estimate the sensitivity of 

hydraulic flood routing models to both variability in hydraulic geometry and to 

simplification in network flow and composition. The experiments were conducted within 

a multiscale framework, which led to further insight of how scale of a watershed 

influences results in flood routing models. The overall intent of the experiments was to 

address the question of how much detail in description of a river model is needed to 

provide reliable results for flood routing. 

6.1 Variability in Hydraulic Geometry 

Several important findings came from both the MC simulations and the case study 

found in Chapters 3 and 5 respectively. Most of the conclusions made are specific to the 

discharge hydrograph at the stream outlet, but the case study did provide an opportunity 

to examine how a water surface profile is influenced by the hydraulic geometry. 

From the simulations, it was made apparent that the sensitivity of a given flood 

routing model to variability in hydraulic geometry is highly dependent on the scale of the 

modeled stream. In general it was found that a model becomes less sensitive to hydraulic 

geometry as the scale increases. In addition to being less sensitive to variability in 

hydraulic geometry, the average hydrograph characteristics (peak discharge, time to peak 

discharge, and time of duration) approached the baseline hydrograph characteristics as 

the scale increased. 

It was found that the error committed in estimation of the peak discharge 

magnitude was insignificant when compared to the error in measurement or estimation 

using other standard practices (i.e. USGS observations or regional regression equations). 

This result held for all scales of streams simulated, and was also verified using data from 

a natural river in the case study conducted on the Iowa River. 
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The final important result addressed is the influence of variability in hydraulic 

geometry on the water surface profile. It was found that a river hydraulic model is highly 

sensitive to variations in hydraulic geometry with respect to the water surface profile and 

stage hydrograph. Even with calibration, a simplified river model does not perform 

comparatively to the detailed model. 

In conclusion, the low sensitivity of a flood hydrograph to variation in hydraulic 

geometry suggests potential for deterministic flood routing methods in ungauged basins 

without the need for extensive field surveys, permitting greater confidence in the flow 

boundary conditions for more detailed hydraulic models. Also LIDAR derived data may 

provide a useful alternative to field surveys, in spite of low resolution, especially for 

strictly flow routing. 

As far as the results extend to inundation mapping, the usefulness is limited due to 

poor performance. Even with calibration, the simplified geometry did not permit 

successful estimation of the water surface profile for conditions that departed from the 

calibration event. The use of simplified geometry for water surface estimation may be 

useful for planning purposes, but is unacceptable for risk assessment or detailed analysis. 

6.2 Simplification to Tributaries and Lateral Inflows 

The experiments performed on an idealized river network illuminated the effect 

from some common simplifications in river network hydraulic analysis. The primary 

analysis investigated how a uniform distribution of flows over a river reach modifies a 

flood hydrograph compared to a point insertion of the tributary flow, and what is the error 

committed by neglecting certain lower order streams as is common in engineering 

practice. 

For the conditions tested, it was found that distributing the flood hydrograph 

uniformly over a stream reach had little effect on the calculated flood hydrograph. The 



88 
 

 

magnitude of the peak was attenuated more (<0.1%) with uniformly distributing the flow 

along a stream reach, but the time of arrival for the peak was unchanged. 

Neglecting smaller tributaries does affect the magnitude of the flood hydrograph 

(< 6%), but interestingly had a small effect on the time to peak and the overall flow 

dynamics. Also it was found that the 2nd order streams had almost the same contribution 

as the 1st order streams. 

An attempt was also made to identify what the maximum flood would be if all the 

hydrograph peaks coincided with each other. It was found that the result is a peak 

magnitude about 67% greater than the conditions where the arrival time is based upon 

stream scale, and that the flood peak arrived about 27 hours earlier. This demonstrates 

that serious error can come from incorrectly estimating the timing of hydrographs. 

In conclusion, it was found that many of the common practices in engineering 

analysis and design (i.e. neglecting low order streams and uniformly distributing lateral 

inflows) do cause error in flood routing, but the level of error is within acceptable 

tolerance levels. Also, the flow dynamics are not greatly affected by these 

simplifications, and the hydrographs demonstrate the same characteristics. Furthermore, a 

constant correction can be added to the case where lower order streams are neglected in 

order to preserve magnitude of flow and volume. 

6.3 Future Work 

The main future work suggested by the investigation described is further analysis 

of hydraulic geometry and its influence on the flood hydrograph. Several issues still need 

to be addressed to further the understanding of the role of hydraulic geometry in flood 

routing. The first issue to address is whether the results are an artifact from high 

magnitude, low frequency flows. All of the experiments conducted in this work were 

based upon an assumed 100 yr return period flood, which may significantly affect the 

outcome. It would be suggested to repeat the results for the return period floods with 
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intervals of 2 yr, 5 yr, 10 yr, 25 yr, 50 yr, and 500 yr to verify that the results hold true for 

other magnitudes flows. 

Another point to address is that the hydrograph was of simple, smooth shape, 

whereas in nature multi-peak hydrographs are common. It is recommended that the 

simulations be repeated for at least one multi-peak hydrograph. 

While it is necessary to conduct these experiments to verify the conclusions of 

this thesis, it is expected that the outcome will be positive based upon the case study 

described in Chapter 5 because the observed hydrograph used in that simulation had 

multiple peaks and a wide range of peak magnitudes for the simulation period. 
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