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SUMMARY

An electric vehicle (EV) is powered by an electric motor rather than a gasoline

engine. EVs provide significant potential for increasing energy efficiency in trans-

portation, reducing greenhouse gas emissions, and relieving reliance on foreign oil.

In addition to the economical and environmental benefits, the large-scale adoption of

EVs presents an opportunity to provide electric energy storage (EES)-based ancillary

services for smoothing the natural intermittency of renewable energy sources (RES)

and ensuring grid-wide frequency stability as large-scale renewable energy sources

(RES) are integrated into the power grid.

However, the potential benefits of EVs come with a multitude of challenges in-

cluding those in the integration into the electric power grid. The charging of EVs has

an impact on the distribution grid because they consume a large amount of electrical

energy and this demand of electrical power can lead to extra large and undesirable

peaks in the electrical consumption. Many simulation-based studies have suggested

that, if no regulation on EV charging is implemented, even a 10% penetration of

EVs may cause unacceptable variation in voltage profiles. It was shown, however,

that adopting “smart” charging strategies for the high penetration of EVs can alle-

viate some of the integration challenges and defer infrastructure investment needed

otherwise.

Among a variety of EV charging strategies, the decentralized “valley-filling” ap-

proach, which minimizes the total load variance, is the most popularly researched, and

many of its variations have been proposed for different objectives. It was shown that

the valley-filling charging strategy is the most versatile for a given daily load profile

prediction in that it achieves the maximum load factor and simultaneously minimizes

xxii



the daily operating costs of utilities. However, the decentralized valley-filling charg-

ing strategy has a number of technical limitations: it generates a charging schedule

through a day-ahead negotiation process between a utility and EVs; it is very sensitive

to the accuracy of the prediction of non-EV power demand; and it also requires simul-

taneous participation of all EVs in the negotiation process, with exact knowledge of

EV charging profiles. Moreover, the valley-filling charging strategy does not take into

account EV owners’ charging requirements such as desired departure state-of-charge

(SOC) and plug-out time.

It is observed that the technical limitations of the valley-filling EV charging strat-

egy can be tackled by applying real-time scheduling techniques, which have been

widely researched and applied to a variety of real-time systems, where timing con-

straints are as important as the correctness of system outputs. In this research, a

real-time scheduling algorithm for an EV charging system, which enables EV charg-

ing to be controlled in real time without exact knowledge of EV charging profiles

as well as to satisfy EV owners’ preferences, is proposed, and its technical feasibil-

ity and capability to fill the technical gaps of the valley-filling charging strategy are

evaluated. In addition, a methodology for incorporating V2G-based frequency regu-

lation into the real-time EV charging system is presented, and their interactions are

investigated. Furthermore, a simulation framework for developing the real-time EV

charging algorithm with V2G-based frequency regulation incorporated is presented.

xxiii



CHAPTER I

INTRODUCTION

1.1 Motivation

1.1.1 Need for Electric Vehicles

An electric vehicle (EV) is powered by an electric motor rather than a gasoline engine

[29]. EVs use energy stored in rechargeable batteries. Unlike a hybrid car, which

is fueled by gasoline and also uses a battery, which is continuously recharged with

power from the internal combustion engine and regenerative braking rather than

from the electric grid, and an electric motor to improve efficiency, EVs are powered

by electricity from the electric grid or a battery with chemical energy stored in [29].

Based upon how their batteries are recharged, EVs can be categorized into several

groups: battery electric vehicles (BEVs), plug-in electric vehicles (PEVs), and plug-in

hybrid electric vehicles (PHEVs). A BEV uses chemical energy stored in rechargeable

battery packs as its only source for driving, and does not have an internal combustion

engine (ICE) at all. A PEV is any electric vehicle with rechargeable battery packs that

can be charged from the electric grid, and the electricity stored in batteries is used

for driving the wheels. PEVs are also sometimes referred to as grid-enabled vehicles

(GEVs), and they do not have an internal combustion engine, either. A PHEV is

a hybrid electric vehicle with rechargeable battery packs that can be restored to

full charge by connecting a plug to an external electric power source. PHEVs share

the characteristics of both a conventional hybrid electric vehicle and an all-electric

vehicle. Since the impacts of a large population of EVs on the electric grid and their

interactions with the grid will be investigated in this research, PEVs and PHEVs will

be only considered, and the terminology “EV” will be used as a collective name for
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PEVs and PHEVs, unless otherwise stated.

EVs have not been widely adopted because of its limited driving range and long

recharging time [29]. However, as battery technology improves, in other words, the

amount of energy storage in a battery increases and the related costs are reduced

simultaneously, major automakers are expected to begin introducing a new generation

of EVs [29]. EVs provide significant potential for increasing energy efficiency in

transportation, reducing greenhouse gas emissions, and relieving reliance on foreign

oil [12]. Figure 1 compares EVs with internal combustion engine (ICE) vehicles,

i.e., gasoline-powered vehicles. According to [80], EVs convert about 59-62% of the

electrical energy from the grid to power at the wheels while gasoline-powered vehicles

only convert about 17-21% of the energy stored in gasoline. Also, it is demonstrated

that an EV requires the energy equivalent of about 0.89 gallons of gas to go 100 miles,

or about 112 miles per gallon equivalent (refer to Table 1 for details) [79].

The Environmental Protection Agency’s 2011 U.S. Greenhouse Gas Inventory Re-

port estimates that the transportation sector accounted for more than 31 percent of

annual greenhouse gas emissions in 2009 [85], and most of the growth in CO2 emissions

is accounted for by the electricity generation and transportation (see Figure 2(a)).

Figure 1: Comparison of electric vehicles and gasoline-powered vehicles [29].
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Table 1: Vehicle efficiency by fuel type [79].

Technology Source
fuel

Well-to-
station
efficiency

Vehicle
mileage

Vehicle
efficiency

Well-to-
wheel
efficiency

Tesla electric Natural
gas

52.5% 110
Wh/km

2.18
km/MJ

1.14
km/MJ

Hybrid
(gas/electric)

Crude oil 81.7% 55 mpg 0.68
km/MJ

0.556
km/MJ

Commuter
car (gas)

Crude oil 81.7% 51 mpg 0.63
km/MJ

0.478
km/MJ

Sports car
(gas)

Crude oil 81.7% 20 mpg 0.24
km/MJ

0.202
km/MJ

Although power plants use various types of fuel to generate electricity, EVs emit

about 50 percent fewer greenhouse gases compared with conventional vehicles. Even

PHEVs powered by older coal plants emit approximately 25 percent fewer greenhouse

gases, and can achieve a 66 percent reduction in emissions if charged with electricity

from zero emission power plants [13]. An EV recharged from the U.S. electric power

grid emits about 115 grams of CO2 per kilometer driven (6.5 oz CO2/mile), whereas

(a) U.S. carbon dioxide emissions by sector
fuel, 2005 and 2035 (million metric tons)

(b) U.S. liquids fuel consumption, 1970-2035
(million barrels per day)

Figure 2: U.S. carbon dioxide emissions and liquids fuel consumption [83].
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a conventional vehicle emits 250 grams of CO2 per kilometer (14 oz CO2/mile), most

of which are from its tailpipe, and some of which are from the production and dis-

tribution of gasoline [39]. Therefore, broad adoption of EVs will dramatically lower

emissions from the transportation sector [85]. In the United States, 84 percent of

cars, trucks, ships, and planes depend on oil. In 2009, the U.S. imported 11.7 million

barrels of crude oil and refined petroleum products per day, which is about 52% of

the petroleum the U.S. consumes (see Figure 2(b)) [83, 84]. To ensure stability in

the world oil markets, American troops are deployed on oil-security missions, costing

U.S. taxpayers $67 billion to $83 billion a year, according to [68]. The United States

also faces increased competition for oil from developing nations. According to the

U.S. Energy Information Administration (EIA), developing nations will account for

85 percent of new energy demand through 2035 [82]. Furthermore, since electric-

ity generation from renewable sources grows by 72 percent, raising its share of total

generation from 11 percent in 2009 to 14 percent in 2035 (see Figure 3) [83], elec-

tricity can be an alternative sources of fuel for U.S. vehicle fleet to avoid economic

impacts and security effects of dependence on foreign oil that is getting scarce and

more expensive.

In addition to the economical and environmental benefits, there are many technical

Figure 3: U.S. nonhydropower renewable electricity generation, 1990-2035 (billion
kilowatts per year) [83].
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benefits that are expected by deploying a large number of EVs. The most promis-

ing, but least proven, providers of ancillary services are electric energy storage (EES)

technologies such as flywheels and advanced batteries, which store and release electric

energy on demand and are prized for their fidelity and rapid response functionality

[44]. However, high costs associated with the operation of EES assets have prevented

their deployment at a meaningful scale. The large-scale adoption of EVs presents an

opportunity to overcome this barrier. With recent advancements in demand response,

vehicle-to-grid (V2G), and battery technologies, many researches have suggested that

networks of aggregated EVs could provide EES-based ancillary services at a compet-

itive price. According to [16], an average private vehicle remains parked 90% of the

time to realize that parked EVs could soon constitute a massive amount of persistent

stored energy connected to the grid. This is potentially very attractive to utilities

that can utilize such grid-connected storage devices as an alternative ancillary service

resource [66] for regulating voltage profiles, ride-through support for fault protection,

and even compensating fluctuating renewable energy generation [51].
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1.1.2 Technical Challenges of Integration of EVs

Currently, several types of EVs are either already in the U.S. market or about to

enter, and the electrification of transportation is at the forefront of many research

and development agendas (see Figure 4). According to [83], the maximum market

penetration of EVs is estimated to be about 70 percent under the baseline oil price

scenario and almost 90 percent of light-duty vehicle (LDV)1 market under the high

oil price scenario (see Figure 5). Therefore, the potential benefits of EVs described

in the previous section come with a multitude of challenges including those in the

integration into the electric power grid. The charging of EVs has an impact on

1The light-duty vehicle classification includes cars, light trucks, SUVs, minivans, and trucks with
gross vehicle weight less than 8,500 pounds.

Figure 4: New and upcoming electric vehicles [29].
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the distribution grid because they consume a large amount of electrical energy and

this demand of electrical power can lead to extra large and undesirable peaks in

the electrical consumption [6]. It also increases the demand side uncertainties, and

presumably reduces the distribution circuit and transformer lifespan [69]. Moreover,

power losses and voltage variations become more likely [5]. The simulation-based

study in [52] suggests that, if no regulation on EV charging is implemented, even a

10% penetration of EVs may cause unacceptable variation in voltage profiles.

Depending on when and where they are plugged in, EVs could cause local or

regional constraints on the grid. They could require the addition of new electric gen-

eration and transmission capacity and increase the utilization of existing capacity [24].

A study by National Renewable Energy Laboratory (NREL) shows that large PHEV

penetration would place increased pressure on peaking units with an uncontrolled

charging strategy [63]. Researches from Oak Ridge National Laboratory (ORNL) in-

dicates that most regions would need to build additional generation capacity to meet

the added demand when charging PHEVs in the evening [24].

However, the U.S. electric power infrastructure is a strategic national assets that

is underutilized most of the time [36]. With the proper changes in the operational

paradigm, it could generate and deliver the necessary energy to fuel the majority

of the U.S. light-duty vehicle (LDV) fleet. If electric vehicles are properly charged,

especially during off-peak periods, the technical potential of the current grid is to

(a) market share of electric vehicles (b) light-vehicle sales and fleet composition

Figure 5: U.S. market share and fleet composition of electric vehicles [2].
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cover 73 percent of light-duty vehicles, which has an estimated gasoline displacement

potential of 6.5 million barrels of oil equivalent per day, or approximately 52 percent

of the nation’s oil imports (see Figure 6) [64]. The general expectation has been that

the grid will not be greatly affected by the use of EVs because the recharging will

occur during off-peak hours, or the number of vehicles will grow slowly enough so that

capacity planning will respond adequately [24]. However, this expectation does not

consider that EV owners will control the timing of recharging, and their inclination

will be to plug in when convenient, rather than when utilities would prefer.

Many studies demonstrate that adopting “smart” charging strategies can mitigate

some of the integration challenges, defer infrastructure investment needed otherwise,

and even stabilize the grid [19]. For example, scheduling EV charging so that aggre-

gated EV load fills the overnight valley in demand may reduce daily cycling of power

plants and operational costs of electricity utilities [9]. From EV owners’ point of view,

the batteries of the EVs have to be charged overnight so that the owners can drive

off in the morning with a fully-charged batteries. This also gives opportunities for

intelligent or smart charging control.

Figure 6: Technical potential of the current power grid (Source: R. Pratt, et al. [64]).
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In summary, a large deployment of EVs will involve the following technical chal-

lenges [52]:

• evaluation of the impacts that battery charging have in system operations;

• identification of adequate operational management and control strategies re-

garding batteries’ charging periods;

• identification of the best strategies to be adopted in order to use preferentially

renewable energy sources (RES) to charge EVs; and

• assessment of the EV potential to participate in the provision of power systems

services, including reserves provision and power delivery, within a vehicle-to-grid

(V2G) concept.

All the aforementioned technical challenges except for the third one will be addressed

in this research.

1.2 Research Statement

As addressed in §1.1, the potential benefits of the integration of EVs into the power

grid come with unavoidable technical challenges. It is shown, however, that “adopt-

ing smart charging strategies for the high penetration of EVs can alleviate some of

the integration challenges and defer infrastructure investment needed otherwise” [19].

Also, EVs will play an important role as energy storage devices for smoothing the

natural intermittency of renewable energy sources (RES) and ensuring grid-wide fre-

quency stability as large-scale renewable energy sources (RES) are integrated into the

power grid [62]. In this context, a “smart” charging strategy must take into account

possible vehicle-to-grid (V2G) applications along with vehicle charging to fully uti-

lize the potential benefits of a high penetration level of EVs. Furthermore, timing

constraints must be considered since it is highly likely that EV owners will control

the timing of recharging their vehicles rather than utilities. Therefore, a “smart” EV
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charging system is required to be developed such that it cannot only facilitate V2G

applications but also satisfy EV owners’ charging requirements.

1.2.1 Research Objective

The purpose of this research is to develop a framework for designing a “smart” or

“intelligent” EV charging control system that cannot only mitigate the impacts of

the high penetration of EVs on the grid without reinforcement of the infrastructure

but also facilitate V2G-based applications. For the sake of the development of an EV

charging control system, existing technical approaches will be investigated and com-

pared with the proposed EV charging control system. As discussed in the previous

paragraph, EV owners’ charging requirements as well as possible V2G-based appli-

cations are also considered within the development framework of the EV charging

control system.

1.2.2 Thesis Organization

The technical challenges related to EVs and the need for this research have been

outlined in this chapter. Chapter II addresses previous efforts in the literature relevant

to the topic of this research. In Chapter III, research questions and related hypotheses

are presented. A theoretical foundation is given to assist in facilitating the course of

the thesis in Chapter IV, followed by detailed information on the simulation model

and implementation of the proposed design methodology in Chapter V. Chapter VI

presents and explores a set of simulation studies as a proof of concept. Finally, a brief

recapitulation of the research and proposed future work are addressed in Chapter VII.

The overall structure of this thesis is provided in Figure 7, where the interdependency

and flow amongst chapters and sections are described to help readers understand the

work presented in this thesis.
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CHAPTER II

LITERATURE REVIEW

This chapter reviews key topics related to the focus of the research and the technical

challenges mentioned in Chapter I. In order to identify technical limitations or gaps

leading to formulating the real-time EV charging control problem, a variety of EV

charging control strategies, which have been previously proposed to aim at minimizing

the impacts of EV integration on the electric power grid, are reviewed in the first

section, followed by the review of attempts to applying scheduling techniques to

electric power systems. The next section addresses the previous efforts regarding the

vehicle-to-grid (V2G) concept, which is one of technical potentials of high penetration

of EVs and is expected to have some interactions with EV charging control so that

it must be considered when an EV charging control strategy is developed. Finally,

the last section of this chapter summarizes the literature review and presents the

observations from the review of the literature.

2.1 Operational Management and Control Strategies
Regarding EV Charging

2.1.1 Centralized/Coordinated EV Charging Control Strategies

The likely impacts of the introduction of EVs on the existing power distribution were

evaluated in [67]. In order to evaluate the impacts, the authors assumed that the

charging would be occurred during overnight off-peak hours of 8:00 pm to 8:00 am,

and they performed two case studies for 10% and 20% EV penetration levels. For the

case of the 10% penetration level, the new load caused by EV charging is comfortably

absorbed by total area loads without any adverse effect on the distribution system,
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and in fact it appears to improve the system performance since EV charging load

fills up some portion of the off-peak valley without increasing the peak load in total

load curves as illustrated in Figure 8(a). However, if the residential load is considered

separately, the new peak is higher than the peak load without EV charging load,

as depicted in Figure 8(b), which requires the distribution system to be upgraded

to accommodate the additional charging load. Thus, at the residential distribution

system, EV charging load, even at a low penetration level of 10%, may not be absorbed

without any adverse effect on the distribution system, suggesting that a charging

strategy and proper economic incentives may be required to alleviate the adverse

effects by distributing charging load during the off-peak hours, even at low levels

of EV penetration. Needless to say, the EV penetration level of 20% introduces a

significantly higher new peak, and the system cannot absorb EV loads of above 20%

penetration level unless a strict control over temporal distribution of EV charging

is implemented (see Figure 9). The case studies revealed several important issues

regarding the impacts that EV charging may have on the distribution system. First,

it is not desirable to have only sufficient generation capacity during off-peak hours

to ensure the system performance and reliability since EV loads can introduce an

additional peak load or near-peak load in early off-peak periods. Secondly, a typical

distribution system may not be able to supply EV loads of beyond 20% penetration

(a) total area (b) residential area

Figure 8: Load profiles with EV charging of 10% penetration level [67].
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level unless charging load is properly managed.

Ford summarized previous studies on the potential impacts of EVs on the Southern

California Edison (SCE) System, and investigated how two widely defined charging

control schemes affect load shapes and efficiency of operations [17]. The study con-

firmed that EVs can improve load shapes and efficiency of operations, and claimed

that the management of EV loads is needed even if the daytime charging is min-

imal and EV charging may otherwise lead to secondary peaks, as claimed in [67].

To avoid undesirable secondary peaks due to EV charging, the author proposed a

load management strategy with different electric rates for different charging periods,

which can discourage EV owners from initiating the nighttime charging until later

in the evening. The author examined two widely defined charging control schemes

in the Southern California Edison studies: blind control and smart control. In the

blind control where only one-way communication exists, the utility sends signals to

EVs to initiate charging while not receiving any information from EVs. Since the

controller does not know how long EVs need to be charged, it sends the signals out

early in the evening in order to ensure that all EVs are fully charged in time when EV

owners leave for work, which prevents EV load from being filled in the early morning

hours as depicted in Figure 10(a). For the smart control system, it is assumed that

two-way communication is established between the controller and EV chargers. The

(a) total area (b) residential area

Figure 9: Load profiles with EV charging load of 20% penetration level [67].
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utility sends signals to initiate charging, and the status of EVs can be monitored by

the controller. Figure 10(b) illustrates that the load shape, obtained by applying the

smart control, shows an improvement over the one by the blind control in that it fills

in the valley from around midnight and early in the morning. It was concluded that,

if advanced batteries are utilized and EV charging is properly controlled, the Edison’s

power system would be able to accommodate a large number of EVs. Furthermore,

it was also demonstrated that, from the system operations perspective, around 90%

of the electricity required to charge EVs would come from natural gas fired units,

which in turn leads to a significant reduction in tailpipe emission, and higher costs

to operate the SCE system would be outweighed by the increase in electricity sales,

caused by EV charging.

Denholm and Short evaluated the effects of optimal PHEV charging on the grid,

under the assumption that utilities have a direct or an indirect control authority on

when charging takes place while providing customers with the possibly lowest cost of

driving energy [9]. With direct control, it is assumed that a utility would send a signal

to an individual vehicle or a group of vehicles to allow to start charging, similarly

with the one in [17]. An indirect control, on the other hand, would have each vehicle

responding intelligently to real-time price signals or some other price schedule to buy

(a) blind control (b) smart control

Figure 10: Power demand for different charging control schemes with 2 million EVs
[17].

15



or sell electricity at an appropriate time. In either control scheme, vehicles would

be effectively dispatched to provide the most economic charging and discharging to

consumers. It was shown through simulation studies that low-cost off-peak electricity

would accommodate up to 50% of the vehicle fleet with no additional electric gener-

ation capacity under optimal dispatch rules and the assumption that PHEVs derive

40% of their miles from electricity. It was also shown that, while increasing total

electrical energy consumption – but without requiring additional generation capacity

– the optimal dispatch of the additional PHEV demand would increase the load factor

of baseload power plants (Figure 11(a)) and substantially decrease the daily cycling

of power plants (Figure 11(b)), both of which can be translated into lower opera-

tional costs. It appears that PHEVs are much better suited for short-term ancillary

services such as regulation and spinning reserve and a large fleet of PHEVs could

possibly replace a fraction of conventional low-capacity generation used for periods

of extreme demand or system emergencies. In conclusion, the authors indicated that

current electric power systems have large amount of underutilized capacity, which

could potentially offer electricity to PHEVs, provided utilities have some control over

when charging occurs, and they also claimed that an optimal dispatch for PHEVs

charging and their ability to provide power to the grid could significantly increase the

utilization of power systems.

(a) utility load factor (b) average daily cycling

Figure 11: Effects of optimal dispatch of PHEV charging demand [9].
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Lemoine et al. studied how many PHEVs could be served by the California In-

dependent System Operator (CAISO) without additional generation/transmission

infrastructure by investigating the cost per mile of all-electric operation and how

real-time electricity pricing affects the charging behaviors of PHEVs [43]. However,

although there has been considerable interest in the use of PHEVs, especially to

provide energy or energy services to the electric grid, the authors did not consider

this application, and also ignored distribution-level constraints on the quantity and

pattern of PHEV charging. The study suggested that, if most PHEVs are charged

after the time of peak electricity demand, millions of PHEVs could be economically

deployed in California without requiring new generation capacity even with modest

gasoline prices and real-time electricity pricing, and that the number of PHEVs as

well as their charging patterns would strongly influence the power grid. In addition,

the paper showed that the state’s PHEV fleet size is not likely to reach into mil-

lions within the current electricity sector planning cycle. The authors indicated that,

although the real-time electricity pricing would encourage PHEV owners to charge

their vehicles at night, they might choose to charge even during peak hours unless

real-time price for PHEV charging is sufficiently cheap compared with gasoline price,

and, therefore, if peak-hour charging is undesirable, it is needed to implement new

pricing structures or technical means to coordinate PHEV charging and electric power

system operations. For this reason, the authors analyzed three different charging sce-

narios to see the impact of PHEV charging on the grid: optimal charging, evening

charging, and twice per day charging. In the optimal charging scenario, it is assumed

that PHEV charging can be perfectly allocated by charging vehicles during periods

of lowest demand and by allowing vehicles to charge with interruptions so that the

system load curve is flattened as much as possible (see Figure 12(a)). In this best

case, PHEVs would not require additional generation, transmission, or distribution

since generators currently shut off at night might pick up PHEV charging demand. In

17



the evening charging scenario, the authors assumed that PHEVs begin charging when

the owners return home from work between 6:00 pm and 8:00 pm and each PHEV

charges for 4 continuous hours. As shown in Figure 12(b), 5 million PHEVs would call

for more generation capacity since the peak load grows by 4 GW, or 12%. The twice

per day charging scenario assumed that those same evening-charging cars are plugged

in and charged again in the morning when the owners arrive at work between 8:00

am and 9:00 am with drained batteries. In this scenario, adding more than 5 million

PHEVs creates a very different load shape with two peaks per day, implying addi-

tional electricity generation, but 1 million compact cars still do not affect the system’s

peak load, as illustrated in Figure 12(c) The analysis showed that, as long as on-peak

charging is avoided, the CAISO may be able to accommodate 1 million PHEVs before

new generation or transmission investments are required, but, if PHEV fleets grow to

several million vehicles and charging is not optimally timed, new investments would

be required. The authors concluded that, without special PHEV pricing structures

or charging control, adopting a large number of PHEVs could raise system peaks,

which depends upon the timing of the system peak and the as-yet-unknown charging

behaviors of PHEV owners, and suggested, as a future research, the investigation on

how consumers who would buy PHEVs will tend to operate their cars so that effective

technologies and efficient tariff can be devised, tested, and implemented in order to

allow possible large-scale PHEV deployment.

(a) optimal charging (b) evening charging (c) twice per day charging

Figure 12: 1999 CAISO system daily load curves for different charging scenarios [43].
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Letendre and Watts assessed the effect, greenhouse gas (GHG) emissions, and end-

user costs of large number of PHEVs on the electric grid in the state of Vermont, which

is a small power system with peak demand of approximately 1 GW, in terms of PHEV

penetration levels, i.e., 50,000 PHEVs (about 9% of the total light duty vehicle LDV)

fleet), 100,000 PHEVs (approximately 17% of LDVs), and 200,000 PHEVs (more

than 35% of the total LDV fleet) [45]. In order to examine the impact of PHEVs,

considered are four different charging scenarios: 1) an uncontrolled evening charging,

2) an uncontrolled twice per day charging, 3) a delayed nighttime charging, and 4) an

optimal nighttime charging with smart grid technology. In the uncontrolled evening

charging scenario, one-third of PHEVs start charging at 6:00 pm, and, even at a low

PHEV penetration level of 50,000 vehicles, the demand for PHEV charging could add

to the system peak demand as illustrated in Figure 13. For the uncontrolled twice

per day charging, a second peak demand would be added during daytime hours,

from 8:00 am to 2:00 pm as shown in Figure 14. However, the delayed nighttime

charging scheme could accommodate 100,000 PHEVs without adding to system peak

demand, indicating that it would not be required to build additional generation and

transmission, as depicted in Figures 15. Furthermore, the optimal charging scheme, in

which vehicles are charged in a pattern that increases utility load factors by charging

during the periods of lowest demand, could allow 200,000 PHEVs, or approximately

one-third of Vermont LDVs, to fully charge daily from the grid without adding to

(a) typical winter day (b) typical summer day

Figure 13: Load profiles for uncontrolled evening charging scheme [45].
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system level peak demand (see Figure 16). The conclusion of this paper is that a

large fleet of PHEVs could be accommodated in Vermont’s power grid without the

need to build additional generation, transmission, or distribution infrastructure if

either financial incentives for off-peak charging or direct control of PHEV charging is

properly utilized. For future study, the authors suggested the impact assessment of

PHEVs with vehicle-to-grid (V2G) capability, using PHEVs as load leveling devices,

and the investigation of the potential benefits of V2G technology.

(a) typical winter day (b) typical summer day

Figure 14: Load profiles for uncontrolled twice per day charging scheme [45].

(a) typical winter day (b) typical summer day

Figure 15: Load profiles for delayed nighttime charging scheme [45].

(a) typical winter day (b) typical summer day

Figure 16: Load profiles for optimal charging scheme [45].
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Lopes et al. investigated the impact of massive integration of EVs in a representa-

tive medium-voltage electricity distribution network, installed in residential areas in

Portugal, in terms of different integration level of EVs and different charging methods

to identify solutions to accommodate a large population of EVs in electricity grids,

and try to minimize the need for reinforcements or changes in the existing electrical

power infrastructures [53]. They suggested three EV charging management meth-

ods: dumb charging, dual tariff policy, and smart charging. In the dumb charging

approach, they assumed that EV owners are completely free to plug in their vehicles

and start charging whenever they want. According to the authors, it is important to

investigate the dumb charging approach since it provides a measure for the assessment

of the effectiveness of the other management methods even though it cannot be de-

scribed as a charging control strategy. The charging control strategy utilizing a dual

tariff policy intends to simulate a situation in which electricity is less expensive during

some specific hours of a day, and they investigated the effect of electricity price on EV

charging. They supposed that the economic incentive is enough to make 25% of EV

owners shift their charging to the cheaper period, i.e., off-peak periods, rather than

start charging their cars immediately after EVs are connected to the grid. For the

smart charging strategy, they considered a hierarchical control structure, which con-

tinuously monitors all the elements connected to the grid and determines when EVs

start charging. This type of charging management strategy tries to utilize resources

available at each moment efficiently. In order to determine the charging period, they

proposed an optimization approach that maximizes the integration level of EVs, as

follows:

maximize EV integration (2.1)
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subject to

V min
i ≤ Vi ≤ V max

i , i ∈ [1, l] (2.2a)

Sj ≤ Smax
j , j ∈ [1, m] (2.2b)

EEV
k,∆t = EEV required

k,∆t , k ∈ [1, n] (2.2c)

where

l is the number of buses;

m is the number of branches;

n is the number of EVs;

Vi is the voltage at bus i;

V min
i / V max

i are the minimum/maximum allowable voltages at bus i;

Sj is the apparent power flowing at branch j;

Smax
j is the maximum allowable apparent power flow at branch j;

EEV
k,∆t is the battery energy level of the EV k at the end of the

connection period ∆t;

EEV required
k,∆t is the required battery energy level for EV k at the end of

the connection period ∆t.

The optimization is performed iteratively by increasing the number of EVs in a step-

wise manner until it violates the constraints imposed on the optimization problem.

They performed simulation studies for five different scenarios with the same number

of vehicles, as summarized in Table 2. According to the results of power flow analy-

sis in terms of voltage deviations, branches’ congestion level, power losses, and load

profiles, it was concluded that the grid could handle 10% penetration level of EVs

without changes in or reinforcements on the electricity network if a dumb charging

approach is used, as shown in Figure 17. Figure 17 also shows that two other ap-

proaches – dual tariff policy and smart charging – can be implemented to allow the
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Table 2: Scenarios description [53].

Scenario no. 0 1 2 3 4

No. of vehicles 12744 12744 12744 12744 12744

EVs % 0% 5% 10% 14% 52%

Hybrid share - 70% 40% 30% 10%

Medium EV share - 15% 30% 35% 45%

Large EV share - 15% 30% 35% 45%

Energry consumption
for the selected day
(MWh)

277.1 283.2 294.0 301.7 388.1

integration of higher share of EVs while avoiding capital expenditures by the utility

in network reinforcements. The simple dual tariff policy is proved to be more effective

than the dumb charging approach, increasing the integration capability of the grid

up to 14%. Further, this paper proved that the smart charging approach is the most

effective charging strategy in that it could increase the EV deployment capability of

the grid to 52% by solving a simple set of rules, i.e., the optimization problem.

While most of the previously published studies related to PHEVs focused on the

Figure 17: Voltage level for different charging strategies [53].
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potential impacts of PHEVs at the generation level, Shao et al. examined the adapt-

ability of the residential distribution network to support PHEVs, and evaluated the

impact of charging PHEVs on a distribution transformer under two different charg-

ing scenarios, that is, normal charging and quick charging strategies [71]. A typical

25 kVA distribution transformer, generally serving four to seven houses in a neigh-

borhood, was considered, and a distribution network having five houses with two

PHEVs, which represents the penetration level of about 9%, was evaluated. Without

PHEVs, the hourly residential load curve, derived from the RELOAD database, has

the peak load of about 14 kW in winter and 13 kW in summer around 6:00 pm, and

the distribution transformer is lightly loaded at about 35% on average, i.e., at the

highest efficiency, and about 52-57% at the peak (see Figure 18). The normal charg-

ing scenario with all PHEVs starting charging at 6:00 pm demonstrates the worst

case that all PHEVs come home with the minimum SOC and start charging at the

same time, leading to the increase in the maximum transformer load levels by 68% in

winter and 52% in summer (Figure 19(a)). If all PHEVs are charged during off-peak

hours (10:00 pm to 11:00 am for summer; 9:00 pm to 7:00 am and 11:00 am to 5:00

pm for winter) under the normal charging scenario, new load peaks are created at the

start of off-peak hours in both summer and winter load profiles (Figure 19(b)). The

new peaks are a little higher than the case without PHEVs, i.e., 58% in winter and

Figure 18: Efficiency of a typical distribution transformer against load [71].
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52% in summer, implying that transformer efficiency during off-peak hours is slightly

increased since charging PHEVs during off-peak hours will increase transformer load-

ing level close to 35%, which yields the maximum transformer efficiency. The authors

also evaluated the quick charging scenarios, in which a PHEV draws power from a

240V/30A outlet. It is illustrated that quick charging starting at 6:00 pm will lead to

the transformer overload, i.e., increase in the peak load by 103% in winter and 98%

in summer, thus reducing the transformer efficiency by at least 1% (Figure 20(a)).

The quick charging during off-peak hours causes a new peak load, a little less than

the quick charging starting at 6:00 pm case, but leads to a significant issue on the

distribution network (Figure 20(b)). In order to mitigate the adverse effects caused

(a) normal charging scheme all at 6:00 pm (b) off-peak normal charging scheme

Figure 19: Load profiles for two charging schemes [71].

(a) quick charging scheme all at 6:00 pm (b) off-peak quick charging scheme

Figure 20: Load profiles for two quick charging schemes [71].
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by a large fleet of PHEVs, the authors proposed demand management, which can be

accomplished by 1) staggering PHEV charging time or 2) performing household load

control, rather than installing additional transformer capacity. The proposed demand

management requires advanced metering infrastructure (AMI), together with a PHEV

control unit and remote switches, which controls the On/Off status of PHEV outlets

and household loads. The staggered charging time implies that PHEVs are allowed

to be charged only when the current load, seen by the distribution transformer, is

less than a specified value, e.g., its original peak load. It is shown that the stagger

control can reduce the peak load caused by charging PHEV and smooth the load,

thus mitigating the additional peak issue, as illustrated in Figure 21, when compared

with Figures 19 and 20. For the household load control, non-critical loads (e.g., water

heaters or clothes dryers) can be shed or deferred when PHEVs are being charged,

and it is shown that the household load control can also alleviate the new peak loads,

resulting in peak increase to about 15 kW, which is less than the quick charging

scenario without household load management, as shown in Figure 22. In contrast to

the staggered charging control, the household load control does not require PHEV

owners to wait longer for their vehicles to be charged; however, the household load

control requires to be done without the notice of PHEV owners or the utility would

(a) staggered normal charging scheme (b) staggered quick charging scheme

Figure 21: Load profiles for staggered normal/quick charging schemes [71].

26



provide incentives to PHEV owners who are willing to let their non-critical loads be

controlled. This work makes a contribution in the sense that it examined the impact

of PHEV charging on a residential distribution network and considered both charg-

ing control and household load management to mitigate the impact of PHEVs on the

distribution transformer. However, the proposed charging control does not take into

account PHEV owners charging preferences, and the impact of only a small number

of PHEVs is evaluated. For future research, the authors suggested the exploration of

the impact of a large-scale PHEV penetration on electricity infrastructure, esp. at

the distribution level.

According to [65], EVs can be considered as active loads, increasing the demand

during being charged, and as distributed generators when being discharged, and their

impacts on the grid are expected to be significant due to their high energy capacity

and mass deployment of EVs in the future. The authors investigated the effects

of EV deployment on existing distribution networks in terms of 1) load profile and

uncontrolled peak demand, 2) change in voltage levels and violation of statutory

limits, and 3) voltage imbalance, the last two of which are out of the scope of this

thesis and will not be described here. The authors also considered three charging

Figure 22: Household load control with PHEV quick charging scheme [71].
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scenarios, i.e., uncontrolled charging, off-peak charging, and phased charging, which

is considered smart charging, for three different penetration levels of EVs: 10%, 20%,

and 30%. For the uncontrolled charging, EV owners are assumed to start charging

their cars as soon as they get home from work, at approximately 6:00 pm, resulting

in an even larger peak at the early evening on a winter day, as shown in Figure 23(a).

The off-peak charging assumed that EVs charging are scheduled to start charging

at 1:00 am and remain until 7:00 am, and Figure 23(b) shows the improvement to

the load curve compared with the uncontrolled charging case even though there is an

additional peak after midnight and a dip at around 7:00 am. The phased charging

leads to a more uniform load profile, as shown in Figure 23(c), by splitting the total

charging load into four schedules. The same scenarios with the three penetration

(a) uncontrolled charging for a typical winter
day

(b) off-peak charging for a typical winter day

(c) phased charging for a typical winter day (d) three charging scenarios for a typical sum-
mer day

Figure 23: Demand per 11kV/400V substation for typical winter/summer days [65].
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level were applied for a typical summer day, and it was shown that the charging

scheduling requirements for summer are somewhat different from ones for winter,

as charging during the early morning hours would result in a peak demand at this

period as shown in Figure 23(d). The investigation presented in this paper showed

that the deployment of large-scale EVs could result in mismatching between supply

and demand and violation of statutory voltage limits and, under certain operating

conditions, they may also lead to power quality problems and voltage imbalance. It

was concluded that a“smart” charging control or incentives for EV owners would need

to be introduced to minimize or even eliminate the effects of EVs on the network,

i.e., distribute EV loads throughout the day, and avoid additional peak demands,

and EVs could be designed to provide ancillary services with appropriate control and

communication within the “smart grid” concept.

Shao et al. presented a demand response model for residential customers with

the presence of PHEVs to assess the impacts of different time of use (TOU) pricing

schemes on distribution feeder load shapes [70]. In order to generate PHEV charging

demand profiles, the authors considered two charging strategies, i.e., normal charging

and quick charging, and modeled PHEV arrival times (or plug-in times) using a

normal probability distribution function with mean at 6:00 pm and one hour standard

deviation. The normal charging is defined as the standard PHEV charging from the

110V/15A outlet, and the quick charging is assumed to be accomplished by charging

from a 240V/30A outlet. Figures 24 illustrates the aggregated PHEV charging loads

using both normal and quick charging strategies for the low penetration of 20% and

the high penetration of 40%, respectively. The total household load profiles with

PHEVs for a typical summer and winter days are depicted in Figures 25, and it can

be seen that charging PHEVs significantly aggravates peak loads since, compared

with flat rates, TOU rates provide more incentives for customers to shift their power

demand to the less expensive hours, i.e., off-peak hours. The authors also evaluated
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the impact of TOU rates on load shapes by considering two TOU pricing policies from

Baltimore Gas & Electricity (BG&E) and Dominion Virginia Power (DOM). Figure 26

illustrates the TOU rates, which are considered in this paper. The authors classified

nine residential customers’ load types into three groups: critical, interruptible, and

deferrable loads, as summarized in Table 3. Based on the total household load profiles

with PHEV charging loads and the proposed DR strategies, the impacts of different

pricing structures on distribution feeder load shapes were evaluated. In the summer

low penetration of PHEVs (Figure 27), it can be seen that the demand response

can help lower the system peak in both normal and quick charging strategies.

In the high penetration scenario (Figure 28), similar results are observed. For the

winter low penetration scenario (Figure 29), the demand response can help lower

the system peak as in the summer load penetration scenario. However, for the high

(a) 156 PHEVs (b) 312 PHEVs

Figure 24: Aggregated charging profiles using normal and quick charge strategies [70].

(a) summer month (b) winter month

Figure 25: Household load profiles with PHEVs [70].
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Table 3: Demand Response (DR) strategy by load type [70].

Priority Type DR strategy

Critical loads Refrigerator, freezer,
cooking, lighting

These loads will not be shifted or
shed.

Deferrable
loads

Water heating, clothes
drying, others, PHEV

Shut down the equipment when the
price is higher than a pre-determined
value, the load will be shifted to the
less-expensive hours.

Interruptible
loads

Space cooling/heating From 9 am to 5 pm: turn off; from
5 pm to 9 am: adjust by 10 ◦F and
resume after peak hours

Optional lighting
(50%)

Turn off 50% of the lighting loads
when the price is higher than a pre-
determined value.

(a) summer month (b) winter month

Figure 26: TOU rates from the chosen utilities [70].

(a) normal charging (b) quick charging

Figure 27: Summer load profiles with low PHEV penetration [70].
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penetration scenario with the normal charging strategy, DOM’s winter TOU pricing

scheme introduces a new peak (see Figure 30). The authors pointed out that the

design of TOU rates is important in terms of selecting the appropriate peak/off-

peak price levels and periods. It is, however, claimed that if the TOU rate for peak

hours is too high, more customers are willing to shift their loads to off-peak hours,

thereby creating additional peak loads. In this paper, the authors presented a demand

(a) normal charging (b) quick charging

Figure 28: Summer load profiles with high PHEV penetration [70].

(a) normal charging (b) quick charging

Figure 29: Winter load profiles with low PHEV penetration [70].

(a) normal charging (b) quick charging

Figure 30: Winter load profiles with high PHEV penetration [70].
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response model and evaluated the effect of time-of-use rates on PHEV charging and

system load profiles, but did not provide a specific strategy for setting the electricity

price for PHEV charging. Moreover, even though the authors claimed the importance

of TOU rate design for demand response (DR) and PHEV charging control, TOU

pricing schemes does not seem to be effective compared with other smart PHEV

charging control strategies in terms of peak loads mitigation.

Lopes et al. presented a conceptual framework for successful integration of electric

vehicles into electric power systems, which considered two different domains: the grid

technical management and the electricity market operation [52]. The authors claimed

that the technical management of a large-scale deployment of EVs will require a

combination of a centralized hierarchical management and control structure and a local

control located at the EV grid interface since there will be issues, such as managing

branches’ congestion levels or enabling EVs to participate in the electricity markets,

that cannot be solved by the simple use of smart EV grid interfacing devices, and will

require a higher control level, i.e., a hierarchical, coordinated management and control

structure. The maximum number of EVs that could be safely integrated into the grid

was evaluated without any kind of charging control of EVs, meaning that EV owners

are completely free to connect and charge their vehicles after parking, and the charging

starts automatically when EVs plug in and lasts for the next few hours. They showed

that the distribution network can handle up to 10% EV penetration, of which power

consumption and load profile are shown in Figure 31, respectively, without changes

in the usual electricity grid operation and planning procedures, indicating that grid

restrictions may limit the growth of EV penetration, if no additional measures are

adopted. Additionally, the increase in load consumption at peak hours, due to the

presence of EVs, will require generation levels to increase, leading to a subsequent

increase on electricity prices. The authors indicated that different approaches need

to be adopted to deal with this problem, allowing a higher level of integration of
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EVs while avoiding capital expenditures by the utility in network reinforcements.

By analyzing the impacts of a large population of EVs on the distribution network,

they realized that grid restrictions may limit the growth of EV penetration if there

is no changes in the usual electricity grid operation and planning procedures, and,

in order to allow a higher share of EV integration without capital expenditures in

network reinforcements, the authors proposed and tested two solutions to deal with

this problem: a simple dual tariff system and a more complex approach, based on

a smart charging mechanism, to be performed by the distribution system operator

(DSO). The dual tariff policy intends to simulate a situation where electricity is

cheaper during some specific hours of the day. The aggregator might implement this

approach by making specific dual tariff contracts with EV owners, who are willing to

take advantage of cheaper electricity price periods, similarly to what already happens

between electricity traders and their clients. On the other hand, the smart charging

algorithm determines the amount of EV load that needs to be shifted for the safe

operation of the distribution network by iteratively disconnecting a small percentage

of EVs, like 2% or 5%, to reduce EV charging load and giving priority to EVs that are

disconnected first from the grid when enough power for battery charging is available.

The EV load profiles obtained with the two proposed algorithms during one entire

(a) EV power consumption (b) load profile

Figure 31: EV power consumption and load profiles for the dumb charging with 10%
penetration of EVs [52]
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day are presented in Figure 32(a), showing that the allowable share of EVs is 14%

with the dual tariff policy and 52% with the smart charging. The smart charging

method provides better results by making the load distribution along the day more

uniform, consequently reducing the grid’s peak demand. The load profiles for 52% of

EVs, i.e., the maximum percentage of conventional vehicles replaced by EVs without

any reinforcement of the grid evaluated in this paper, with the two different charging

strategies, compared with the case without EVs and the dumb charging approach –

without charging control – are presented in Figure 32(b). With the dumb charging

approach, the load in the peak hour increase by 85%, from the scenario without EVs

to the scenario with 52% penetration of EVs, whereas with the dual tariff policy only

by 11%. The conclusion of this work is that the adoption of advanced centralized EV

charging control strategies will allow the integration of a larger number of EVs in the

grid without the need of grid reinforcements.

In [73], the authors identified the relationship between feeder power losses, load

factor, and load variance in the context of coordinated charging of PHEVs, and for-

mulated objective functions for coordinated PHEV charging, based on load factor

and variance, which in effect minimize system losses and improve voltage deviation.

(a) EV power consumption for the dual tariff
policy and for the smart charging

(b) load profile for the three charging strate-
gies with 52% of EVs

Figure 32: EV power consumption and load profiles for different charging strategies
[52].
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According to the paper, the relationship between losses and load factor is that mini-

mizing losses maximizes load factor since the maximum losses and the load factor are

given by

lossesmax = kI2
max and load factor =

Iavg

Imax

(2.3)

where k is a positive constant, Imax, the maximum load current, and Iavg, the average

load current, respectively. Also, they claimed that, since the system current at a

specific time, It, and the load variance seen by the substation, σ2
I , are related to each

other as

µI2 = µ2
I + σ2

I (2.4)

and µi is constant, minimizing the load variance, σ2
I , minimizes the losses, lossestotal =

µI2R. Finally, it was argued that, since the load factor is maximized when Iavg = Imax

from Equation (2.3), maximizing the load factor is equivalent to minimizing the load

variance σ2
I according to Equation (2.4). Base upon the analysis results for the rela-

tionship between feeder power losses, load factor, and load variance, they formulated

three optimization objectives for coordinated PHEV charging: minimizing losses,

maximizing load factor, and minimizing load variance. They performed simulations

on the proposed objective functions with two test systems, and compared their av-

erage losses and PHEV load profiles for different penetration levels of PHEVs. Load

profiles for the different charging algorithms are illustrated in Figure 33. The authors

showed through simulation studies that the uncoordinated charging significantly adds

to the peak load in all cases, and minimizing the load variance produces almost same

load profiles as minimizing power losses as they proved analytically. However, maxi-

mizing the load factor does not minimize the load variance or power losses, and shows

different load profiles. The authors concluded that minimizing losses maximizes the

load factor and minimizing load variance minimizes losses exactly under the assump-

tion that the distribution system of interest is a single feeder from the substation
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(a) 10% PHEV penetration (b) 20% PHEV penetration

(c) 50% PHEV penetration (d) 100% PHEV penetration

Figure 33: Load profiles for different charging algorithms [73].

37



with all loads connected at the end. It was also indicated that the load variance

minimization is more versatile than minimizing losses since it produces result in a

fraction of time, important for real-time dispatch of PHEVs.

The paper by Deilami et al. proposed a real-time load management algorithm

to coordinate multiple PEVs charging while mitigating its impact on the reliability,

security, and performance of the distribution grid [8]. Since conventional optimization

techniques such as genetic algorithm (GA) are not computationally efficient for real-

time applications with short time steps (e.g., 5 minutes), the proposed coordination

algorithm employs the maximum sensitivities selection (MSS) optimization approach

for real-time charging coordination, in which the sensitivities of system losses due

to each node with PEVs are computed and nodes with lowest sensitivities are first

allocated for charging to minimize the impacts of PEV charging on system losses. The

proposed PEV charging coordination problem is based on real-time cost minimization,

and improves voltage profile while considering charging time zones designated by PEV

owners. The objective function as defined by

minimize Fcost =
∑
∆t

KEP
total loss
∆t +

∑
∆t

K∆t,GP
total demand
∆t , (2.5)

where ∆t is the time interval, KE, the cost per MWh of losses, and K∆t,G, the cost

per MWh of generation at time interval ∆t based on the variable price of purchas-

ing or producing the energy, can be interpreted as the minimization of total cost of

purchasing or producing the energy for charging PEVs (the first term) plus the as-

sociated grid energy losses (the second term). The cost of purchasing or producing

the energy for charging PEVs can be minimized by defining time zones to minimize

a utility’s generation costs during on-peak hours, and there are three different charg-

ing time zones considered in this work: 18:00 to 22:00, 22:00 to 01:00, and 01:00

to 08:00. The optimization problem is solved by minimizing system losses at each

time interval and incorporating time-varying energy prices along with PEV owners

preferred charging time zones. The proposed coordination algorithm is a centralized
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charging control scheme in that it decides which PEVs will be charged at what time,

thereby PEV charging control is scheduled automatically without any interactions

with PEV owners except for the indication of their preferred time zones for charging.

The contribution of this paper is that it proposed an algorithm, which is solved by

minimizing the cost for purchasing or producing electricity while maintaining voltage

profiles within generation limits, capable of real-time coordination of randomly ar-

riving and departing PEVs based on PEV owners’ charging time zone priorities. In

addition, it demonstrated that the proposed pricing and time-zone priority scheme

for PEV charging is feasible and works effectively with the charging coordination, and

showed that the smart load management is beneficial in reducing overall system over-

loads and power peaks. However, in order to apply the MSS technique, the proposed

algorithm is required to perform power flow analysis first, which needs a sophisticated

power flow model with high computational costs and might not be run in real time

(e.g., every 5 minute) as the complexity of the distribution grid to be coordinated

increases.

A possible solution for EV smart charging with the consideration of EVs as con-

trollable loads was investigated under electricity market in [40]. However, even though

EV smart charging is considered within electricity market, the functionality of the ag-

gregator of EVs for providing regulation services is not discussed in this paper. In the

paper, centralized control architecture was presumed, in which an aggregator directly

generates charging profiles of all EVs and coordinates their charging/discharging op-

erations. It was assumed that the aggregator does not have sufficiently large market

share to affect electricity price so that most of charging takes place in the nighttime

when given less expensive electricity prices. It was also assumed that the following

data are available for the aggregator to generate charging profiles: predicted electric-

ity price, future driving pattern, energy requirement during every trip, and EV status
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data such as state-of-charge (SOC) of EV battery. The authors presented a mathe-

matical formulation and a dynamic programming based algorithm for optimizing EV

charging, given electricity prices and driving patterns. The total cost, fU0 , which is

to be minimized, is given by the cost of the final step, fN(xN), plus the cost for all

other steps, vk(xk, uk, k):

fU0 (x0) = fN(xN) +
N−1∑
k=1

vk(xk, uk, k). (2.6)

The optimal control strategy, u∗ = {u∗0, u∗1, . . . , u∗N−1}, can be obtained using

a classic dynamic programming formulation. Since the charging profiles is to be

generated so as to satisfy EV owners charging requirements, i.e., the battery is fully

charged before the first trip of the following morning, the cost of the final step fN(xN)

should be defined as fN(xN) = 0. The state transition models for the SOC of the

battery, xk, are given by

xk+m = xk −
∑m

j=1 Pdr(j)∆t

Emax
× 100% (2.7)

for driving mode and

xk+1 = xk + ηkuk
Pmax−plug∆t

Emax
× 100% (2.8)

for plug-in charging mode, where ∆t is the time interval, Pdr(j) denotes power re-

quired for driving, Pmax−plug is the maximum charging power, ηk, charging efficiency

parameter, and uk, charging control strategy at time k, respectively. It was shown

through a case study that the smart charging strategy without provision of regulation

service reduces daily electricity costs for driving, and, with the proposed smart charg-

ing, EVs are recharged during off-peak hours, where electricity price is the lowest. For

future research, the authors suggested that the proposed optimization model needs

to be extended to account for the provision of regulation service, different types of

electric vehicles, and various driving patterns.
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In [27], Hemphill presented a methodology, utilizing a series of tools, to assess the

impact of PEV charging on the distribution network of a New South Wales metropoli-

tan area in Australia. The tools, developed in this work, are 1) a modeling tool for

charging energy requirements and charging availability of PEVs, 2) load profile gen-

eration tool for various charging options, and 3) cost estimation tool for charging

options. The modeling tool for PEV charging energy requirements consists of three

key tasks: calculating PEV load, determining PEV charging availability times, and

modeling travel distances. First, the author used a simple battery charging model to

calculate the time required for charging, as given by

Tc =
dC

rηPg
(2.9)

where d is the traveling distance, C is the battery pack capacity, r is the driving

range of a PEV, η is the charging efficiency, and Pg is the power supplied by the grid.

In addition, they modeled PEV availability for charging as a function of the average

number of weekday travelers on roads, fk, by combining two gamma distribution

functions to characterize the data sets with time intervals 5:00 am to 2:00 pm and

3:00 pm to 12:00 am, given by

g(t) =
k1

βα1
1 Γ(α1)

tα1−1e−t/β1 +
k2

βα2
2 Γ(α2)

tα2−1e−t/β2 (2.10)

where

k1 =

∑29
k=11(fk+1 − fk)∑29

k=11(fk+1 − fk) +
∑49

k=31(fk+1 − fk)
(2.11a)

k2 = 1− k1 (2.11b)

and modeled PEVs’ traveling distance using a log-normal distribution function,

f(x) =

{
1√

2πσx
e−[ln(x)−µ2]/2σ2

, x > 0

0, x ≤ 0
(2.12)
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Table 4: Time of use pricing strategy [27].

Period Time Price Ratio

Peak 2:00 pm to 8:00 pm 40.1 ¢/kWh 13.1%

Shoulder 8:00 pm to 10:00 pm 16.4 ¢/kWh 32.1%

Off-peak 10:00 pm to 7:00 am 9.6 ¢/kWh 54.8%

where E(X) = eµ+ 1
2
σ2

and MODE(X) = eµ−σ
2
, respectively. To generate and evalu-

ate load profiles of various charging options, an unmanaged PEV charging, a time of

use metering, and two smart charging control strategies were taken into account. Sim-

ilarly to other studies, the unmanaged charging allows PEV owners to start charging

right after they plug in their vehicles to the outlet, i.e., the plug-in times are sam-

pled from g(t) in Equation (2.10), and PEVs’ initial SOCs are calculated based on

the samples from the distribution f(t) in Equation (2.12). A time of use metering

strategy was developed, based upon the pricing strategy, as summarized in Table 4,

which assumes that PEV customers would respond to time of use pricing and start

charging at the earliest possible time to gain the price incentive. For smart charging

control, two scenarios are considered: 1) PEVs with the lowest SOC first for Level 1

charging (230V/15A) and 2) PEVs with the highest SOC first for Level 2 charging

(230V/32A). Figure 34(a) shows PEV load profiles for various charging options, su-

perimposed on a historical load profile, for the penetration level of 80% and Level 1

charging. It is seen that the time of use metering introduces significant new daily peak

loads by encouraging PEV owners to delay charging until the shoulder or off-peak

periods starts and allowing a large number of PEVs to start charging simultaneously.

The results also demonstrated that the smart charging strategies prevent PEV loads

from contributing to the peak demand for all penetration levels of PEVs with Level
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1 charging and support penetration levels up to 80% with Level 2 charging. In ad-

dition, the author claimed that the lower SOC first is the optimal strategy for Level

1 charging and the highest SOC first for Level 2 charging. Figure 34(b) shows the

peak loading for various charging schemes against the increasing level of PEV pen-

etration for Level 1 charging. The unmanaged PEV charging causes the rating of

substation to be exceeded for any penetration level, and the time of use metering is

the worst for all penetration levels. Either of the smart control strategies proposed in

this study can potentially avoid additional peak load due to PEV charging demand.

The case studies confirmed that a relatively small penetration level of PEVs will re-

quire investment in the distribution network and that unmanaged PEV charging will

potentially have a drastic impact of peak demand on distribution assets. Contrary to

the conclusion in [70], it was demonstrated that a time of use metering strategy is not

likely to be suitable for the management of PEV charging demand since it introduces

additional peaks to demand profiles at the penetration level greater than 10%. Also,

it was revealed that a smart PEV demand control strategy can be more effective for

preventing PEV load from contributing to the peak demand of distribution assets,

(a) load profiles (b) peak substation loading

Figure 34: Load profiles and peak substation loading for 80% PEV penetration with
Level 1 charging [27].
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compared with the time of use metering strategy.

In this subsection, literature on coordinated/centralized EV charging strategies

was reviewed. Most studies revealed that a large population of EVs has a signifi-

cant impact on power systems and their charging must be optimally dispatched by

implementing new pricing structures or technical means in order to accommodate

a large number of EVs and minimize their impacts on the grid. Without special

EV pricing structures or charging control, a large number of EVs could raise system

peaks, depending upon the timing of the system peak and the as-yet-known charging

behaviors of EV owners, and degrade the system stability and reliability. Various

papers proposed EV charging control schemes such as blind control, where a utility

sends a signal to an individual vehicle or a group of vehicles to allow to start charging,

time-of-use (TOU), i.e., different rates for different charging periods, smart charging

control, where a hierarchical control structure continuously monitors all the elements

connected to the grid and determines when EVs start charging, and so forth. Several

optimization problems were also proposed to determine the timing of EV charging in

terms of minimizing load variance or voltage deviation, maximizing load factor, or

maximizing the number of EVs that could be accommodated in the grid. Further-

more, a few papers claimed that a large fleet of EVs could possibly replace a fraction

of conventional low-capacity generation, used for periods of extreme demand or sys-

tem emergencies, and they are well suited for short-term ancillary services such as

regulation and spinning reserve with appropriate control and communication within

the smart grid concept for regulating the voltage in distribution networks and even

compensating fluctuating renewable energy generation. The impact assessment of

EVs with vehicle-to-grid (V2G) capability, using EVs as load leveling devices, and

the investigation of the potential benefits of V2G technology were also suggested.
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2.1.2 Decentralized EV Charging Control Strategies

A few studies have been conducted on decentralized EV charging control, while EV

charging schemes based on a centralized structure have been consistently proposed

since the mid 1990s. This subsection will review several approaches for controlling

EV charging with a decentralized control structure, and address their technical limi-

tations, which will lead to the research statement of this thesis.

In [55], the authors argued that the implementation of centralized charging control

for large populations of PEVs is computationally intractable and it may also be

impractical because PEV owners might not be willing to allow their utility to directly

control their vehicles charging. Therefore, proposed was a decentralized charging

control algorithm, in which each PEV implements a local optimal charging control,

resulting in a valley-filling load curve aggregately. According to the Nash Certainty

Equivalence (NCE) principle, “a collection of each PEV’s local charging profile is

a Nash equilibrium (NE), if each charging profile is optimal with respect to one

commonly observed charging profile, and the average of local optimal charging profiles

is equal to the common charging profile” [55]. Furthermore, for homogeneous PEVs,

the common charging profile, i.e., the average of all PEVs charging profiles, turns out

to flatten out a load profile by filling the valley(s) of the profile. The authors modeled

the PEV charging dynamics as follows:

xnt+1 = xnt +
αn

βn
unt , t = T0, . . . , T − 1 (2.13)

with an initial state-of-charge (SOC) of xn0 , where xnt ∈ [0, 1] is the SOC of the vehicle

n at time t, αn, the charging efficiency, βn, the battery size, and unt ≥ 0, the charging

rate at time t. They assumed that a PEV is fully charged at the end of the charging

interval, i.e. xnT = 1, and defined the set of feasible full charging controls,

Un ,
{
un ≡

(
unT0 , . . . , u

n
T−1

)
; s.t. unt ≥ 0, xnT = 1

}
. (2.14)
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The cost function of the proposed decentralized charging control problem is formu-

lated as

Jn(u) ,
T−1∑
t=T0

{
ptu

n
t + δ (unt − avg(ut))

2} , (2.15)

where δ is a non-negative constant, avg(ut) = 1
N

∑N
n=1 u

n
t , and the price pt ≡

p (dt +Navg(ut)) denotes the electricity price at time instant t, which is dependent

on the non-PEV demand, dt, and the total PEV power demand, Navg(ut). It can

be implied from Equation (2.15) that each PEV’s optimal charging strategy is try-

ing to achieve a trade-off between the total electricity cost for charging, pun, and

the tracking cost incurred in deviating from the average charging profile of the PEV

population, (un − avg(u))2, i.e., a Nash equilibrium. The NCE-based decentralized

charging algorithm is implemented through a charging negotiation procedure, which

takes place at some time prior to the actual charging period, as follows [55]:

(S1) The utility broadcasts the prediction of non-PEV base demand d to all the PEV

agents.

(S2) Each of the PEVs proposes a charging control minimizing its charging cost with

respect to a common aggregate PEV demand broadcast by the utility.

(S3) The utility collects all the individual optimal charging strategies proposed in

(S2), and updates the aggregate PEV demand corresponding to the proposed

charging strategies. This updated aggregate PEV demand is rebroadcast to all

of the PEVs.

(S4) Repeat (S2) and (S3) until the optimal strategies proposed by the PEVs no

longer change.

In order to investigate the performance of the proposed algorithm, a number of illus-

trative examples are simulated with a homogeneous PEV population of 1× 107, i.e.,

10% of all the vehicles in the Midwest Independent System Operator (MISO) region,

and a heterogeneous population of two groups, of which size is 0.5×107 for each with
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the same values for all charging parameters except for battery size. In Figure 35(a),

it is shown that, if a PEV minimizes its charging cost regardless of other PEVs, the

iterative scheduling procedure is unlikely to converge, and that, by penalizing PEVs

for deviating from the average behavior of all other PEVs, the scheduling process

is guaranteed to converge to a unique Nash equilibrium. Figure 35(b) and Figure

35(c) show the iterations of optimal charging profiles with a tracking-cost constant

δ = 0.007 and different sets of initial charging controls – the one with zero initial

charging controls and the other with non-zero initial charging controls – for the ho-

mogenous case, and Figure 35(d) illustrates the convergence of charging controls for

the heterogeneous case, respectively. It can be seen from these figures that the nego-

tiation procedure converges to the unique Nash equilibrium, i.e., filling the overnight

(a) optimal charging strategy for homoge-
neous PEVs with zero tracking cost, δ = 0

(b) converging to a Nash equilibrium (red) for
homogeneous PEVs with u0 = 0 and δ = 0.007

(c) converging to a Nash equilibrium (blue)
for homogeneous PEVs with u0 6= 0 and δ =
0.007

(d) converged Nash equilibrium (red) for het-
erogeneous PEVs with δ = 0.007

Figure 35: Optimal charging strategies using Nash Certainty Equivalence [55].
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demand valley, in a finite number of negotiation iterations, no mater whether or not

initial charging controls are zero, or regardless of the homogeneity of the PEV pop-

ulation. For the homogeneous case, the converged solution optimally fills the valley,

all PEVs will adopt an identical charging strategy, and the tracking cost associated

with deviating from the average will be zero. On the other hand, if the PEV popula-

tion is heterogeneous, the solution is a nearly valley-filling, and charging profiles for

PEVs will be similar, but not identical, thereby the tracking cost will be small but

not zero. It can be seen that the proposed decentralized charging control algorithm

successfully achieves the social optimality, i.e., valley-filling, as the authors argued,

in a decentralized manner. But the limitations of the proposed algorithm are, as

the authors indicated, that the negotiation procedure must occur ahead of the actual

charging period and that it is based on predictions of non-EV demand and of charging

requirements of the PEV population. The conditions in negotiating charging profiles

must differ from the actual charging conditions, and the non-EV demand will never

exactly match the prediction. Moreover, there will be some mismatch between the

PEVs participating in the prior negotiations and those being actually charged.

Ma et al. elaborated their decentralized optimization algorithm for PEV charging

in [55], formulated as a class of finite-horizon, non-cooperative, dynamic games, to

find the PEV charging profile that minimizes individual charging costs, and suggested

and proved a sufficient condition for the uniqueness and convergence of its solution

that guarantees the social optimality, so called “valley-filling” [54]. In this formula-

tion, PEVs are coupled through a common price signal, determined by the average

charging profiles of all PEVs, through which each PEV effectively interacts with the

rest of PEVs in the population. The authors claimed that, “as the population size

increases, the influence of each individual PEV on the average charging profile be-

comes negligible.” The remaining part of this paragraph quotes Ma et al.’s work in

[55] frequently, including the explanation of the problem formulation and a theorem
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for a sufficient condition on the uniqueness and convergence of Nash equilibrium.

They used the same charging dynamics model as in Equation (2.13), and defined the

feasible charging control un for PEV n as:

Un ,
{
un ≡

(
unT0 , . . . , u

n
T−1

)
; s.t. unt ≥ 0, xnT = 1

}
. (2.16)

The cost function of the proposed decentralized charging control problem is formu-

lated as

Jn(u) ,
T−1∑
t=0

{
p(rt)u

n
t + δ (unt − avg(ut))

2} , (2.17)

where rt ≡ dt+avg(ut)
c

, and the tracking parameter δ is a non-negative constant, which

is very similar to Equation (2.15) except that Equation (2.17) assumes an electricity

price function, p(·), to be dependent on the ratio of the total aggregated demand in

the grid and the generation capacity, defined by

p(·) ≡ p

(
Dt +

∑N
n=1 u

n
t

C

)
= p

(
dt + avg(ut)

c

)
(2.18)

where Dt is the aggregate non-PEV base demand at time instant t, C, the grid

generation capacity, N , the PEV population size, and a positive constant c = C/N .

The optimization algorithm computes a day-ahead charging schedule, i.e., prior to

the actual charging periods, based on predictions of load profiles, and simply flattens

the load at a certain point in the distribution network. In this work, the authors

presented a theorem for a sufficient condition on the uniqueness and convergence of

Nash equilibrium as follows [54]:

Theorem 1 (A sufficient condition on the uniqueness and convergence of Nash equi-

librium) Assume the retail price p(r) is continuously differentiable and increasing on

r, such that

sup
r∈[rmin, 1]

dp

dr
< 2 inf

r∈[rmin, 1]

dp

dr
, (2.19)
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and the tracking parameter δ satisfies

1

2c
sup

r∈[rmin, 1]

dp

dr
≤ δ ≤ a

c
inf

r∈[rmin, 1]

dp

dr
, (2.20)

for some a, with 1
2
< a < 1. Then the system converges to a unique Nash equilibrium

for the decentralized charging problem.

Assumed that the minimum ratio between the total demand and the generation capac-

ity, rmin, is approximately 0.6, the decentralized negotiation procedure is guaranteed

to converge to a unique Nash equilibrium from Theorem 1 if the tracking parameter

δ satisfies

1

2c
sup

r∈[rmin, 1]

dp

dr
= 0.015 ≤ δ ≤ a

c
inf

r∈[rmin, 1]

dp

dr
= 0.018a, (2.21)

for some a with 1
2
< a < 1, i.e., 0.015 ≤ δ ≤ 0.018. The authors presented a number

of numerical examples with a PEV population of 1 × 107, which is approximately

30% of all the vehicles in the Midwest Independent System Operator (MISO) region,

to explore the convergence properties and valley-filling performance of the proposed

decentralized charging control process. In the case of homogeneous PEV populations,

where all PEVs have the same initial state-of-charge (SOC) and an identical charging

efficiency, the Nash equilibrium coincides with the valley-filling strategy as illustrated

in Figure 35(b). Figure 36(a) shows that charging profiles of PEVs are getting con-

verged to an equilibrium since the conditions in Theorem 1 are sufficient to ensure

that a Nash equilibrium obtained by the decentralized optimization process is unique

and charging profiles of each PEV converges to that equilibrium, and the tracking

parameter δ = 0.015 satisfies the conditions. For the heterogeneous case, where half

of the PEVs have a battery of 20kWh and the other half have a 10kWh battery, the

optimal charging profile obtained by the algorithm is shown in Figure 36(b) to con-

verge to the unique Nash equilibrium under the assumption that there is an infinite

population of PEVs, even though the proposed algorithm does not guarantee fair al-

location of available power to PEVs. It is also seen from Figure 37 that the conditions
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from Theorem 1 are not necessary to ensure the uniqueness and convergence of Nash

equilibrium. The convergent process in Figure 37(a) is obtained with δ = 0.007, not

satisfying the conditions specified in Theorem 1, and converges to the same Nash

equilibrium as in Figure 36(a). However, if the tracking parameter δ is negligible

to some extent, for example, δ = 0.003, then the process would not converge to an

equilibrium, as depicted in Figure 37(b). The contribution of this paper is that it

established a sufficient condition under which the system converges to a unique Nash

equilibrium, and that it proposed a decentralized optimization problem for generat-

ing an optimal charging strategy, of which optimality is, however, guaranteed only

for homogeneous cases, where all EVs plug at the same time with the same charging

finish time and need to consume the same amount of energy at the same maximum

(a) homogeneous PEV population (b) heterogeneous PEV population

Figure 36: Converged Nash equilibrium with δ = 0.015 [54].

(a) δ = 0.007 (b) δ = 0.003

Figure 37: Sufficient condition on tracking parameter δ for convergence [54].
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charging rate.

In [20], the authors proposed a decentralized EV charging scheduling algorithm,

exploiting EV charging demand as deferrable loads to fill the valleys in electric load

profiles. By decentralized, the authors meant that EVs choose their own charging

profiles, instead of being determined by a centralized controller or an aggregator. The

authors considered a scenario where a utility negotiates with N EVs to schedule their

charging profiles over T time slots of length ∆T in the future with the assumptions

that all EVs are available when an optimal charging profile is determined, EVs are

charged at a fixed rate, and the charging process cannot be interrupted. The utility

is also assumed to precisely predict the inelastic baseload profile (aggregate non-

EV load), and attempts to flattening the total load profile (baseload plus aggregate

EV load) by shaping the aggregate EV load. The schematic view of the proposed

scheduling algorithm and a valley-filling load profile generated by the algorithm are

presented in Figure 38. (In the remaining part of this paragraph, the details of Gan

et al.’s work in [20] are frequently quoted since their formulation will be used as a

benchmark to evaluate the proposed real-time EV charging control strategy.) Let

D(t) denote the baseload at time slot t, rn(t) denote the charging rate of EV n at

time slot t, and rn := (rn(1), . . . , rn(T )) denote the charging profile of EV n for

(a) schematic view of information flows (b) valley-filling load profile

Figure 38: Optimal decentralized charging (ODC) algorithm [19].
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t ∈ T := {1, . . . , T} and n ∈ N := {1, . . . , N}. Let r := (r1, . . . , rN) denote the

charging profile of all EVs. The intent of flattening the total load profile is captured

by minimizing

L(r) = L(r1, . . . , rN) :=
∑
t∈T

U

(
D(t) +

∑
n∈N

rn(t)

)
(2.22)

where U : R→ R is strictly convex, and the charging rate, rn(t), is defined by

0 ≤ rn(t) ≤ r̄n(t), t ∈ T , n ∈ N (2.23)

and r̄n(t) is the maximum charging rate of EV n at time slot t. The charging dynamics

of EV n, a constraint that it needs to reach its final state-of-charge (SOC) by its

deadline, is given by

ηn
∑
t∈T

rn(t)∆T = Bn (sn(T )− sn(0)) , n ∈ N , (2.24)

and can be re-expressed in

Rn :=
T∑
t=1

rn(t) = Bn (sn(T )− sn(0)) / (ηn∆T ) , n ∈ N , (2.25)

where Bn denotes its battery capacity, sn(0) and sn(T ) denote initial and final SOCs,

respectively, ηn for charging efficiency, and Rn, the sum of charging rates over the

time period of T . Using the equations aforementioned, the authors made the following

definition for their EV charging control scheme.

[Definition] Let U : R→ R be strictly convex. A charging profile r = (r1, . . . , rN) is

1) feasible, if it satisfies the constraints given in Equations (2.23) and (2.25);

2) optimal, if it solves the optimal decentralized charging (ODC) problem

minimize
r1,...,rN

∑
t∈T

U

(
D(t) +

∑
n∈N

rn(t)

)
(2.26)

such that

0 ≤ rn(t) ≤ r̄n(t), t ∈ T , n ∈ N (2.27a)∑
t∈T

rn(t) = Rn, n ∈ N (2.27b)
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3) valley-filling, if it is feasible, and there exists A ∈ R such that

∑
n∈N

rn(t) = [A−D(t)]+ , t ∈ T (2.28)

If the objective is to track a given load profile G rather than to flatten the total load

profile, the objective function in Problem ODC can be modified as

∑
t∈T

(∑
n∈N

rn(t)−G(t)

)2

. (2.29)

Based upon these assumptions, they formulated an EV charging scheduling problem

as a discrete optimization problem, of which objective, as shown in Equation (2.26),

is to minimize the total load variance, if U(x) = x2, resulting in a flat valley-filling.

Based on the formulated optimization problem, two decentralized algorithms to solve

the optimization problem for computing optimal charging profiles were proposed: a

synchronous algorithm and an asynchronous algorithm. The synchronous algorithm

requires all EVs to make their own charging profiles at the same time with up-to-date

information, meaning that all EVs are available for negotiation at the beginning of

the planning horizon, while EVs are allowed to make decisions at different times using

possibly outdated information with bounded delays in the asynchronous algorithm. In

both algorithms, each EV optimizes its own charging profile based on the optimization

problem, given by

minimize
rn∈Fn

{〈
pk−an(k), rn

〉
+

1

2
‖rn − rkn‖2

}
, (2.30)

where Fn denotes a set of feasible charging profiles for EV n, and rkn denotes the

charging profile of EV n at the kth iteration, with a control signal, i.e., electricity

price, pk−an(k), broadcast by a utility company. Note that the delay an(k) is zero for

the synchronous algorithm, but is a delay for the asynchronous algorithm, implying

that EV n does not determine its charging profile at every iteration. Similarly to

other decentralized charging control algorithms, electricity price, seen by all EVs, is
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Algorithm 1 Pseudocode of optimal decentralized charging (ODC) [20].

Input: Scheduling horizon T . The utility knows the base load profile D and the
number N of EVs. Each EV n ∈ N knows its charging rate sum Rn and charging
profile upper bound r̄n, therefore the set Fn of its feasible charging profiles.
Output: Charging profile r = (r1, . . . , rN)

Pick a parameter γ satisfying 0 < γ < 1/ (Nβ)
i) Initialize the charging profile r0 as

r0
n(t) := 0, t ∈ T , n ∈ N

Set k ← 0, repeat step (ii)-(iv).
ii) The utility calculates the control signal pk as

pk(t) := γU ′

(
D(t) +

∑
n∈N

rkn(t)

)
, t ∈ T

and broadcasts the control signal pk to all EVs.
iii) Each EV n ∈ N calculates a new charging profile rk+1

n by solving

min
〈
pk, rn

〉
+

1

2

∣∣∣∣rn − rkn∣∣∣∣2 s.t. rn ∈ Fn

and reports rk+1
n to the utility.

iv) Set k ← k + 1, go to step (ii).

assumed to be a function of the total demand on the grid, which is the summation of

the inelastic non-EV base demand together with the aggregated charging demand of

the whole population of EVs. The electricity price is set to be higher for time slots

with higher total demand to give EVs the incentive to shift their energy consumption

to slots with lower total demand. Through iterative negotiation processes, which

take place prior to the actual charging interval, all EVs’ charging profiles converge

to an optimal charging profile that is as flat as it can possibly be. The decentralized

scheduling algorithm for solving the problem given by Equation (2.26) is presented

in Algorithm 1, which is called the optimal decentralized charging (ODC) algorithm.

For case studies, the authors used the same baseload profile, i.e., non-EV demand,
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and EV charging parameters used in [54] to evaluate the optimality of their algo-

rithms by comparing the algorithm in [54], which does not guarantee the optimality

for non-homogeneous scenarios, in which maximum charging rate and charging ca-

pacity are not necessarily the same for all EVs and EVs may plug in at different times

with different deadlines. Figure 39 show the optimality of the proposed algorithm,

compared with the one in [54]. Figure 39(a), for the homogeneous case, where all

EVs have the same maximum charging rate and charging capacity along with the

same plug-in time and deadline, demonstrates that both algorithms converge to a flat

charging profile although the proposed algorithm converges within a single iteration

while the algorithm in [54] takes several iterations to converge. Figures 39(b) and

(a) homogeneous case

(b) non-homogeneous case with different
charging capacity

(c) heterogeneous case with different plug-in
times & deadlines

Figure 39: Optimality comparison [20].

56



39(c) indicate that the proposed algorithm does guarantee the optimality even for

non-homogeneous cases, while the algorithm in [54] does not straightforwardly ex-

tend to non-homogeneous cases. The author also, to derive a more realistic model,

proposed an online algorithm, which incorporates EVs when they are available for

negotiation, e.g., when they are plugged in for charging. For 20 EVs out of 100

houses, with the same deadline and charging capacity of 10 kWh, participating in

negotiation for charging scheduling, simulation results show as illustrated in Figure

40 that the proposed online algorithm performs well even with increasing uncertainty

in arrival time, but tends to deviate more from the optimal charging profile as arrival

(a) plugged in uniformly between 20:00 and
23:00

(b) plugged in uniformly between 20:00 and
01:00

(c) plugged in uniformly between 20:00 and
03:00

(d) plugged in uniformly between 20:00 and
05:00

Figure 40: Optimality of the online algorithm for different plug-in times [20].
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uncertainty increases. The contribution of this work is that the proposed algorithm

can define an optimal charging profile of EVs explicitly, as the authors claimed, by

generalizing the implicit definition in [54], and that it reformulated the decentral-

ized charging control algorithm to allow tracking of system variations as suggested in

[54]. Also, the study proposed a decentralized charging strategy that guarantees the

optimality in both homogeneous and non-homogeneous cases. The proposed online

scheduling algorithm is more likely to be implemented, if a utility is willing to miti-

gate the impact of EV charging on the gird, since EV fleet will be non-homogeneous,

that is, EVs will have different plug-in times/deadlines and different charging ca-

pacities, which are, however, difficult to predict. However, it is obvious that the

proposed online algorithm would deviate more from the optimal charging profile for

more realistic situations, where the charging process can be interrupted and the us-

age of renewable energy resources gets increasing more and more. Furthermore, it is

difficult to accurately predict the future demand from non-EV loads, the number of

EVs being charged at each time slot, and their initial states of charge. Required is,

therefore, a new approach for computing an optimal charging profile, which can take

into account all the stochastic behaviors of EV charging and thus provide a robust,

optimal charging profile.

In this subsection, attempts at controlling EV charging in a decentralized man-

ner were reviewed. Compared with centralized EV charging schemes, relatively a

small number of studies have been done on decentralized schemes, but their technical

approaches for controlling EV charging are similar to ones based on a centralized

control structure: minimizing the total load variance, i.e., filling the valley(s) in the

baseload profile (aggregated non-EV demand). The decentralized EV charging con-

trol algorithms, based on an optimization problem to minimize the load variance,

were proposed under some assumptions that are quite different from the reality. In

order to develop an algorithm to tackle their practical limitations, it is more desirable
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to control EV charging in real time so that it can satisfy EV owners’ charging pref-

erences, which is somewhat random, and utilize the economic and technical benefits

that a large population of EVs can provide. In the following subsection, studies on

the application of real-time scheduling techniques to electric power systems will be

addressed.

2.1.3 Scheduling Techniques for Electric Power Systems

As reviewed in §2.1.1 and §2.1.2, the common technical limitations of existing EV

charging strategies result from the following facts:

• All of them are based on accurate day-ahead prediction of load profiles.

• They do not take account of EV owners’ charging requirements and preferences.

• They are required to have the information of EV charging profiles before they

are plugged in.

• They do not take into account the initial and departure states-of-charge.

However, in reality, the predicted load profiles almost always do not match the ac-

tual load profiles, and satisfying EV owners’ charging preferences/requirements are

more important than those of any organizing entities. Also, it is not practical that

coordinating entities know EV charging profiles before they start charging. In order

to cope with these technical limitations, EV charging control must be done in real

time rather than ahead of time, and, thus, real-time scheduling1 techniques might be

utilized. A very few papers regarding the application of real-time scheduling tech-

niques to electric power systems have been published. In this subsection, literature

related to the application of real-time scheduling techniques to electric power systems

is reviewed.

1“Real-time scheduling allows managing the execution of tasks on processors under timing con-
straints. In more general terms, real-time scheduling can be seen as the discipline of allocating
resources over time to a set of time-consuming tasks, so that given timing constraints are satisfied”
[14].
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Facchinetti et al. proposed a method for applying real-time scheduling techniques

to balance the power usage of electric loads in cyber-physical energy systems [14]. The

authors claimed that “it is the first attempt of using real-time scheduling techniques

to organize the activation of electric loads in a cyber-physical energy system.” They

presented “a methodology for modeling a power system as periodic activities that

can be scheduled by adapting traditional real-time scheduling algorithms” such as

Rate Monotonic (RM) and partitioning scheduling algorithm. (The remaining part

of this paragraph is excerpted from Facchinetti et al.’s paper [14], since it could

help readers grasp the idea on how real-time scheduling techniques can be applied

to electric power systems more accurately.) Consider a system composed of a set

Λ = {λ1, . . . , λn} of n independent electric loads that request to be turned on and off

(or activated/deactivated), depending on their specific timing requirements. At time

ri,j happens the j-th request for activating the i-th load λi that is modeled by the

tuple (Ti, Ci, Pi), where

• Ti is the minimum separation between two consecutive requests of activation

ri,j, ri,j+1. Hence,

∀λi, ∀j ri,j+1 ≥ ri,j + Ti (2.31)

• Ci is the longest time the load λi can be active between two consecutive requests;

• Pi is the nominal power consumed by the load λi during its active time.

Then, the utilization of λi is defined as Ui = Ci/Ti, and the total utilization of Λ is

U =
∑n

i=1 Ui. The load activity is controlled by a load scheduler that decides when

each load is activated/deactivated. In other words, the scheduler assigns to each load

λi a schedule that is modeled by the function si(t)

si(t) =

 1 if λi is active at t

0 otherwise
(2.32)
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The schedule of loads is then given by S = {s1, . . . , sn}, and a schedule S is said to

be valid if it assigns to each load λi an amount of activity time equal or larger than

Ci between two consecutive requests:

∀λi, ∀j
∫ ri,j+1

ri,j

si(t)dt ≥ Ci. (2.33)

For a given schedule S, the actual power consumed by the load λi at time t is

pi(t) = Pisi(t), (2.34)

and the overall actual power consumption p(t) at time t is then given by

p(t) =
n∑
i=1

pi(t). (2.35)

The peak load can be defined as P = maxt≥0 p(t). Given these hypotheses, the authors

proposed to use classic real-time scheduling algorithms such as Rate Monotonic (RM)

or Earliest Deadline First (EDF) to schedule the loads in Λ. Specifically, each load can

be considered as a task with computation time Ci and period (equal to the deadline)

Ti. For example, when U ≤ 1, the EDF scheduling algorithm can build a schedule

S with the minimum possible peak power, that is, P = maxi Pi. However, if U > 1,

some loads must be contemporarily activated, leading to a possibly larger peak power

consumption P . Hence, the authors suggested to partition the load set Λ into m

disjoint sets Λj, j = 1, . . . ,m, that is called scheduling groups. Scheduling groups are

determined such that their total utilization, defined as

U(Λj) =
∑
λi∈Λj

Ui, (2.36)

is smaller than or equal to 1 so that the EDF or RM can find a valid schedule

within each scheduling group. The problem of partitioning the set of loads can be

formulated as a level packing problem. In level packing, a strip must accommodate

a set of rectangles such that the total height is minimized. The peculiarity of level

packing is that rectangles are partitioned in horizontal levels of decreasing height
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from the bottom to the top. In each level, items are packed from left to right by

decreasing height, similarly to the arrangement of books within a bookshelf. Each

load is modeled as a rectangle whose height corresponds to the power consumption

pi and width is determined by its utilization ui. Without loss of generality, all loads

are assumed to be sorted by decreasing power, namely pi ≥ pj ⇔ i ≤ j. A set of n

variables yi ∈ {0, 1} defines level initialization. There is one such variable for each

load, being yi = 1 if an item i initializes level i, yi = 0 otherwise. A level is labeled

by the index of the item initializing it. The variables xi, j with i ∈ {1, . . . , n− 1} and

j > i define the packing of the item j when it does not initialize a level. The value

xi, j is set to 1 if the item j is packed in the level i, xi,j = 0 otherwise. Then, the

optimization problem can be formulated as minimizing the sum of the peak powers

on each group, that is,

minimize
n∑
i=1

pi yi (2.37)

subject to

yi +

j−1∑
i=1

xi, j = 1, ∀j = 1, . . . , n (2.38)

and

n∑
j=i+1

ujxi, j ≤ (W − ui)yi, ∀i = 1, . . . , n− 1 (2.39)

where W is defined to be equal to the utilization upper bound that guarantees the

schedulability of a load set. For example, if EDF with implicit deadlines is used, then

W is set to 1. The authors introduced a heuristic algorithm to address the problem

of generating scheduling groups. Algorithm 2 shows the pseudocode of the proposed

algorithm, called the RM-FFDU (Rate Monotonic First-Fit Decreasing Utilization)

partitioning scheme for scheduling fixed priority real-time tasks on a multiprocessor

system [60], where bin-packing techniques are used to allocate tasks on processors

(Facchinetti et al. [14]). In this paper, a methodology for modeling electric loads
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Algorithm 2 Pseudocode of the load balancing heuristic [14].

1: sort Λ in decreasing order of power
2: λ1 . . . λm are the scheduling groups
3: m = 1 is the initial number of scheduling groups
4: for all λi ∈ Λ do
5: for j = 1 to m do
6: if λj is schedulable in Λj then
7: add λj to Λj

8: goto end-loop
9: end if

10: end for
11: create a new schedule group Λm+1

12: add λi to Λm+1

13: m = m+ 1
14: :end-loop
15: end for

as periodic activities that can be scheduled by traditional real-time scheduling al-

gorithms is presented. However, this methodology is not intended to be used for

event-driven, or aperiodic, load activations. Also, it is assumed that there are no

interactions among loads when an optimal scheduling strategy is developed. More-

over, the proposed algorithm tries to minimize the total power usage of electric loads

rather than make it constant during the period of scheduling, which an algorithm for

EV charging must do in order to minimize the total load variance, i.e., achieve a flat

load profile by filling its valley(s).

Vedova et al. proposed the application of real-time physical systems (RTPS) as

a novel approach, which is based on real-time scheduling techniques, to model the

physical process of cyber-physical energy systems (CPES) [87]. Therefore, the phys-

ical process is modeled in terms of real-time parameters and timing constraints, so

that real-time scheduling algorithms can be applied to manage the timely allocation

of resources, i.e., electric power. Table 5 summarizes the analogy between real-time

computing systems and energy systems based on real-time parameters. The approach
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Table 5: Analogy between real-time computing systems and cyber-physical energy
systems [87].

Features Real-time
computing systems

Cyber-physical
energy systems

Domain Computing systems Energy systems

Resource Task Load

Ci Execution time Activation time

Ti Period Period

Di Deadline Deadline

s(t) Schedule Switching signal

Objective Consumed energy Peak power

is to exploit the periodic task model, widely studied in real-time systems, to repre-

sent electric loads as periodically triggered activities, and the goal is to reduce the

peak load of power consumption. An example of schedule of real-time periodic tasks

is given in Figure 41. Figure 41(a) depicts the normal power consumption of some

electric loads, both measured power and contributions of specific loads. Figure 41(b)

shows that the application of a real-time scheduling technique to electric load ac-

tivations allows to achieve a peak load reduction of 25%. Once electric loads have

been modeled using real-time timing parameters, a priority-based scheduling algo-

rithm such as Earliest Deadline First (EDF) or Rate Monotonic (RM) can be applied

(a) normal power consumption (b) real-time scheduling

Figure 41: Measurements of consumed power in an apartment [87].
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to selectively activate/deactivate electric devices. The two algorithms are known to

be optimal for uniprocessor systems with full preemption and can be suitably applied

only when the total utilization does not exceed an upper bound that guarantees their

optimality. Also, multiple simultaneous activations of electric loads can be managed

by partitioning the set of loads as in [14] that translates the scheduling problem

of a multiprocessor into the scheduling problem of multiple uniprocessors, to which

aforementioned, well-known scheduling algorithms, EDF or RM can be applied. The

approach fosters the possibility to use real-time scheduling techniques to model energy

systems in order to achieve its predictable timing behaviors. However, the approach is

limited to periodic tasks with fixed priorities and repetitive rates. Also, it is assumed

that power consumptions of each load are invariant.

2.2 EV Potential to Participate in the Provision of Power
System Services

As described in Chapter 1, one of the potential benefits that a large population of

EVs can provide is that EVs can generate or store electricity when parked, and, with

appropriate connections and controls, they can feed power to the grid, which is the

basic concept of “vehicle-to-grid” power or V2G power. According to Kempton and

Tomić, there would be conflicts between vehicle owners and the grid operator: the

vehicle owners need enough energy stored in their vehicles for driving and also want

to sell some electricity to the grid for economic benefits, while the grid operator needs

power generation to be turned on and off whenever it wants at precise times [34]. In

order to resolve these potential issues, they proposed three strategies for V2G: (1) add

extra energy capacity to batteries of the vehicles; (2) draw V2G power from the fleet

of particular vehicles, such as delivery vehicles and forklifts in a warehouse, which are

typically in use from 9:00 am to 5:00 pm and could then be predictably used for V2G

most or all of the remaining 16 hours of the day; and (3) use intelligent controls for
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the complementary needs. They claimed that, in order to realize the full potential of

V2G, we need the third strategy so that non-fleet vehicles can also participate.

The electric power system must satisfy two unique requirements: one is to main-

tain a near real-time balance between generation and load, and the other is to adjust

generation (or load) to manage power flows through individual transmission facilities

[37]. The services required to meet these requirements, called “ancillary services,”

are those functions performed by equipment and people that generate, control, and

transmit electricity in support of the basic services of generating capacity, energy sup-

ply, and power delivery, according to the definition by the Federal Energy Regulatory

Commission (FERC) [15]. It is difficult to balance generation and load instanta-

neously and continuously since generation and load keep fluctuating. The random

turning on and off of millions of individual loads results in minute-to-minute load

variability, and longer-term variability results from daily and seasonal load patterns

as well as more random events like shifting weather patterns. Generators also intro-

duce unexpected fluctuations because they do not follow their generation schedules

exactly and they trip unexpectedly when their operations are beyond their range of

equipment failures. Among ancillary services, regulation and load following are the

two services that ensure the continuous balance between generation and load un-

der normal conditions. They utilize on-line generation, storage, or load equipment

to track the moment-to-moment fluctuations or the intra- and inter-hour changes in

customer loads. The authors in [37] claimed that some storage technologies should be

ideal providers of several ancillary services, including regulation, contingency reserves

(spinning reserve, supplemental reserve, replacement reserve), and voltage support.

EVs are utilized only 4% of the time for transportation and are potentially avail-

able the remaining 96% of time for a secondary function [33]. With appropriate

connections, they can provide power to the grid while parked, which, according to

many studies, is one of promising options for quick-response, high-value electric power
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services that can be used to balance constant fluctuations in load and adapt to un-

expected equipment failures. However, compared with traditional, large generators,

EVs have low durability and high cost per kWh of electric energy, and thus V2G power

should be sold only to high-value, short-duration power markets [33]. Although there

are many publications studying the economical viability of V2G technologies, a few

papers dealing with technical implementation of V2G for specific ancillary services

has been published. This section reviews the studies exploiting the V2G concept and

identifying the most suitable one using the concept among various ancillary services.

Han et al. developed an optimal V2G aggregator that makes efficient use of the

distributed power of EVs to produce the desired grid-scale power for frequency regu-

lation, and focused on the individual EV charging scheduling rather than collectively

organizing the EVs [26]. They proposed an optimization problem, with practical con-

straints such as the energy restriction of batteries, that can be solved by applying the

dynamic programming algorithm to compute the optimal charging control for each

vehicle. The authors claimed that charging control should be on or off at the maxi-

mum charging rate to maximize the revenue and, in the end, the charging scheduling

problem is to determine the charging sequence (when to turn on the charging). The

discrete form of charging dynamics used in this study is described as follows:

x(n+ 1) = KC(n) + x(n) (2.40)

where x is the state-of-charge (SOC), n is a discrete step during the time interval

(t1 ≤ t ≤ t2), K is a maximum charging rate for each vehicle, and C(n) is a charging

control sequence, i.e., a sequence of 1’s and 0’s. They formulated the performance

measure to maximize the revenue, which is defined as

M (t1, t2, C(t)) ,
∫ t2

t1

[PR(t, x(t))− C(t)(PR(t, x(t)) + PC(t))] dt− α (x(t2)− xT )2

(2.41)
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and, in a discretized form,

M (k1, k2, C(k)) =

k2−1∑
n=k1

[PR(n, x(n))− C(n)(PR(n, x(n)) + PC(n))]− α (x(k2)− xT )2

(2.42)

where PR is the regulation price, PC is the unit price for purchasing power from the

grid, α is a weighting factor that reflects the relative importance of the desire to drive

the system to the final SOC, xT . Figure 42(a) shows a set of optimal charging control

sequences derived through the simulation varying the initial SOC from 0% to 100%

by 10%. According to the simulation results, all control sequences successfully trans-

fer the SOC to 90%, the designated departure SOC, regardless of the initial SOC. In

this formulation, the entire control sequence could be obtained through the dynamic

programming immediately after a vehicle is plugged in as shown in Figure 42(b). In

this study, an aggregator for V2G frequency regulation with the consideration of op-

timal charging is developed, and an optimal charging control is obtained by applying

the dynamic programming. However, the study does not consider discharging EVs,

i.e., selling power to the grid, and the formulated optimization problem does not deal

with minimizing the impacts of EV charging on the grid.

(a) optimal control sequences for each SOC
with α = 0.01

(b) optimal control tables. “o” means charg-
ing while “x” means idle.

Figure 42: Simulation results of the optimal V2G aggregator [26].
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Ota et al. proposed an autonomous distributed V2G control scheme providing a

distributed spinning reserve for the unexpected intermittency of the renewable energy

resources (RES) with the consideration of a smart charging control of EVs, and

evaluated the satisfaction of vehicle owners’ convenience and the effect to the load

frequency control [62]. A droop control based on the frequency deviation at plug-in

terminal due to the imbalance of supply and demand of the power grid, realizing a

fast and synchronized response among multiple EVs, is also proposed so that EVs’

SOCs can be managed by a balance control, and the scheduled charging requests

by vehicle users can be satisfied. As shown in Figure 43(a), V2G power (PV2G) is

controlled with droop characteristics against the frequency deviation (∆f) as follows:

PV2G =

 KV2G∆f if |KV2G∆f | ≤ Pmax

Pmax if Pmax < |KV2G∆f |
(2.43)

where maximum V2G power (Pmax) is limited by the specifications of the home outlet,

and V2G gain (KV2G) is determined considering a tradeoff between the effect for the

load frequency control (LFC) and the fluctuation range of the batter SOC. When

the SOC is near to full (empty), a high-power charging (discharging) should not be

(a) V2G control with droop against frequency
deviation

(b) battery SOC balance control

Figure 43: V2G control based on frequency deviation and SOC balance [62].
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implemented for preventing overcharge (over discharge). Therefore, if the SOC can

be accurately estimated, a balance control can be installed as follows:

KV2G = Kmax

{
1−

(
SOC − SOClow(high)

SOCmax(min) − SOClow(high)

)2
}
. (2.44)

where SOCmin, SOClow, SOChigh, SOCmax, and n are designed as the SOC is balanced

around 50% as shown in Figure 43(b). For satisfying the scheduled charging, the

V2G control is switched to a smart charging control with a charging offset of half the

maximum V2G power (Pmax) and a half droop gain against the frequency deviation

as follows and shown in Figure 43(a):

PSC =



Kmax/(2∆f) + Pmax/2 if |Kmax∆f | ≤ Pmax

Pmax if Pmax < Kmax∆f

0 if Kmax∆f < Pmax

−Pmax if ∆f < ∆fmin

(2.45)

In this paper, a simplified battery model consisting of voltage source expressed as open

circuit voltage (OCV ) and internal resistance (Rint) is assumed, and the battery OCV

is defined as the following Nernst equation:

OCV = Vnom + α
RT

F
ln

(
SOC

Cnom − SOC

)
(2.46)

where Vnom and Cnom are nominal voltage and capacity, respectively. Necessary en-

ergy (E) from the current SOC(SOCi) to the desired SOC (SOCd) is calculated by

integrating the OCV as follows:

E =

∫ SOCd

SOCi

OCV dSOC (2.47)

During charge or discharge with current I, battery closed circuit voltage (CCV ) and

the V2G power (PV2G) are calculated as follows:

CCV = OCV +RintI (2.48)

PV2G = CCV · I = OCV · I +RintI
2 (2.49)
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Thus, the battery SOC is updated by the V2G power as the following differential

equation:

dSOC

dt
= ηI = η

(
−OCV +

√
OCV 2 − 4RintPV2G

2Rint

)
. (2.50)

where η is the efficiency of the battery. Simulation results, not included in this thesis,

indicate that frequency fluctuations caused by RES fluctuations are compensated

by the proposed V2G control while the proposed smart charging control satisfies

the scheduled charging by the vehicle owner. The contribution of the study is that

it proposes an autonomous distributed V2G control scheme providing a distributed

spinning reserves that can compensate for the unexpected intermittency of RESs. In

addition, the proposed scheme is integrated with a smart charging control to satisfy

the scheduled charging request by a vehicle owner. The advantages of the proposed

scheme in this work is that it could be easily incorporated into automotive power

electronics circuits or household charging units to facilitate plug-and-play operation.

However, the study verified the capability of the proposed scheme only on the limited

number of vehicles, i.e., 2 EVs and 1 PHEV, and did not consider the minimization

of the impacts of EV charging on the grid.
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2.3 Summary of Literature Review

2.3.1 Synthesis of Literature Review

Figure 44 presents the overview of literature relevant to smart EV charging systems,

some of which have been reviewed in this chapter at some length and the others are

only presented for readers’ reference.

A lot of literature on the assessment of EV charging on the power gird and cen-

tralized/coordinated charging strategies have been published. Rahman and Shrestha

suggested that a charging strategy, i.e., a strict control over temporal distribution of

EVs, and proper economic incentives may be required to alleviate the adverse effects

such as additional, undesirable peak loads by distributing charging load during off-

peak hours, even at low levels of EV penetration. Ford confirmed that, without a

proper management, EV charging may lead to a secondary peak. If advanced bat-

teries are utilized and EV charging is properly controlled, the power system of the

area of interest would be able to accommodate a large number of EVs. Denholm and

Short evaluated the effects of optimal PHEV charging on the grid when a utility has a

direct or an indirect control authority on EV charging while providing customers with

the possibly lowest cost of driving energy. They showed through simulation studies

that low-cost off-peak electricity would accommodate up to 50% of the vehicle fleet

with no additional electric generation capacity under optimal dispatch rule and that

PHEVs are much better suited for short-term ancillary services such as regulation

and spinning reserve. Lemoine et al. studied how many PHEVs could be served by

the CAISO without additional generation/transmission infrastructure, and revealed

that millions of PHEVs could be economically deployed in California without requir-

ing new generation capacity if new pricing structures or technical means to coordinate

PHEV charging is implemented. Letendre and Watts assessed the effect, greenhouse

gas emissions, and end-user costs of a large number of PHEVs on the electric grid in
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the state of Vermont with four different charging scenarios considered. They con-

cluded that a large fleet of PHEVs could be accommodated in Vermont’s power gird

if either financial incentives for off-peak charging or direct control of PHEV charging

is properly utilized. Lopes et al. investigated the impact of massive integration of

EVs in a representative medium-voltage electricity distribution network in residential

areas in Portugal, and suggested three EV charging management methods: dumb

charging, dual tariff policy, and smart charging. For the smart charging strategy,

they considered a hierarchical control structure, and proposed an optimization ap-

proach that maximizes the integration level of EVs. They proved that the smart

charging approach is the most effective strategy that could increase the EV deploy-

ment capability of the grid by solving a simple optimization problem. Shao et al.

examined the adaptability of the residential distribution network to support PHEVs,

and evaluated the impact of charging PHEVs on a distribution transformer under two

different charging scenarios: normal charging and quick charging. This work makes a

contribution in the sense that it considers both charging control and household load

management to mitigate the impact of PHEVs. They also presented a demand re-

sponse model for residential customers and explored the effect of higher price during

peak hours on shifting EV load in another paper. They pointed out that the design of

TOU rates is important in terms of selecting the appropriate peak/off-peak price lev-

els and periods since too high TOU rate for peak hours would create additional peak

loads during off-peak hours. Putrus et al. investigated the effects of EV deployment

on existing distribution networks in terms of 1) load profile and uncontrolled peak

demand, 2) change in voltage levels and violation of statutory limits, and 3) volt-

age imbalance. The authors also considered three charging scenarios: uncontrolled,

off-peak, and phased charging, and concluded that a smart charging control or incen-

tives for EV owners would need to be introduced to minimize or even eliminate the

effects of EV charging on the network. Lopes et al. evaluated the maximum share
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of electric vehicles, which can be integrated into a specific grid without violating the

system’s technical restrictions and complying with drivers’ requests concerning the

foreseen use of vehicles, and analyzed the impacts of dumb charging and smart charg-

ing. Sortomme et al. explored the relationship between feeder losses, load factor,

and load variance in the context of coordinated PHEV charging, from which they

developed three optimal charging algorithms that minimize the impacts of PHEV

charging on the distribution network. These strategies require a centralized structure

to collect information from all EVs and centrally optimize over their charging profiles.

Deilami et al. proposed a real-time load management algorithm employing the max-

imum sensitivities selection (MSS) optimization approach to coordinate the charging

of multiple PEVs, and demonstrated that the smart load management is beneficial in

reducing overall system overloads and power peaks. Lan et al. investigated a possible

solution for EV smart charging with the consideration of EVs as controllable loads.

An aggregator directly generates charging profiles of all EVs and coordinates their

charging/discharging operations. It is shown through a case study that the smart

charging strategy without the provision of regulation service reduces daily electricity

costs for driving, and, with the proposed smart charging, EVs are recharged during

off-peak hours.

Compared with centralized/coordinated charging strategies, a relatively small

number of studies dealing with decentralized charging schemes have been published.

Ma et al. proposed a decentralized charging strategy, based on the Nash Certainty

Equivalence (NCE) principle, in which individual PEV implements a local optimal

charging control algorithm, resulting in a valley-filling load profile aggregately. The

NCE-based decentralized charging algorithm is implemented through a charging ne-

gotiation procedure between a utility and EVs. The authors proved its optimality

in terms of total load variance for the homogeneous case; however, if the PEV pop-

ulation is heterogeneous, the solution is a nearly valley-filling, and charging profiles
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for PEVs are similar, but not identical unlike the homogeneous case. Gan et al.

proposed another decentralized charging strategy, and they partially alleviated some

of the restrictions imposed in the studies of Ma et al. in that they defined optimal

charging profiles of EVs explicitly, and their algorithm guarantees optimality in both

homogeneous and heterogeneous cases, where EVs can plug in at different times with

different SOC, have different maximum charging rates. They also proposed an online

scheduling algorithm that is more likely to be implemented by utilities to mitigate

the impacts of EV charging on the grid.

Next, literature on applying real-time scheduling techniques to electric power sys-

tems were reviewed. Facchinetti et al. proposed a method for applying real-time

scheduling techniques to balance the power usage of electric loads in cyber-physical

energy systems. They modeled electric loads such as periodic events that can be

scheduled by traditional real-time scheduling algorithms such as Earliest Deadline

First (EDF) or Rate Monotonic (RM), and the problem of partitioning the set of

loads is formulated as a level packing problem. Vedova et al. also proposed the ap-

plication of real-time physical systems (RTPS) as a novel approach, which is based

on real-time scheduling techniques, to model the physical process of cyber-physical

energy systems (CPES). They modeled the physical process in terms of real-time

parameters and timing constraints, and summarized the analogy between real-time

computing systems and energy systems. The approach fosters the possibility to use

real-time scheduling techniques to model energy systems in order to achieve its pre-

dictable timing behaviors.

Also, papers addressing vehicle-to-grid (V2G) applications were reviewed. Han

et al. proposed an algorithm that enables EVs to discharge based on their state-

of-charge (SOC) responding to the regulation up/down requests from an aggregator.

They formulated an optimization problem to maximize the revenue, and claimed that

charging control should be on or off at the maximum charging rate to maximize the

76



revenue. In this formulation, the entire control sequence could be obtained through

the dynamic programming. Ota et al. presented an autonomous distributed V2G con-

trol scheme providing a distributed spinning reserve for the unexpected intermittency

of the renewable energy resources (RES) with the consideration of a smart charging

control of EVs, and evaluated the satisfaction of vehicle owners’ convenience and the

effect to the load frequency control.

In addition to literature reviewed in the previous sections, recent researches on the

application of real-time scheduling techniques to EV charging were reviewed further

to make extra certain that there is no published work similar to what is presented

in this thesis. Subramanian et al. presented a model for reserve services by apply-

ing three heuristic causal scheduling policies, Earliest Deadline First (EDF), Least

Laxity First (LLF), and Receding Horizon Control (RHC) in 2012 [78]. They showed

that EDF is optimal unless power constraints are considered. In [47], the authors

proposed two real-time price-based scheduling algorithms based on EDF and LLF

for a demand side management program, which can facilitate possible penetration

of renewable energy sources and better system stability. In 2015 and 2016, the au-

thors investigated two common scheduling heuristics, EDF and LLF, and proposed

a trajectory tracking algorithm based on a convex optimization model and a Model

Predictive Control (MPC) for real-time scheduling of a fleet of EVs to provide V2G-

based frequency regulation services [32, 89]. They claimed that the two scheduling

heuristics “show several deficiencies in terms of excessive battery cycling and limited

regulation capacity.” Several attempts to applying real-time scheduling techniques to

electric power systems have been made for evaluating V2G-based applications, but

not much for EV charging itself. It seems necessary to find out more literature that

can explain why real-time scheduling techniques have not been applied for controlling

EV charging.
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2.3.2 Observations and Technical Gaps

Among a variety of EV charging schemes, the decentralized “valley-filling” approach,

which minimizes the total load variance, is the most recently and popularly re-

searched, and many of its variations have been proposed for different objectives such

as minimizing system loss or maximizing load factor. It is shown that the valley-filling

charging strategy is the most versatile for a given daily load profile prediction in that

it achieves the maximum load factor simultaneously and minimizes the daily operat-

ing costs of utilities [73]. However, the decentralized valley-filling charging strategy

has a number of technical limitations as addressed in §2.1:

• It only deals with day-ahead negotiation of charging profiles.

• The prediction of non-EV power demand must be accurate.

• All EVs must participate in the negotiation simultaneously.

• Energy demand of EVs must be known to utilities beforehand.

• The charging requirements of EVs must not change.

• The scheme does not take into account EV owners’ timing constraints.

Since an optimal EV charging profile is determined through a day-ahead negoti-

ation based on the prediction of load profiles, its optimality is very sensitive to the

accuracy of load profile prediction. However, the prediction of load profiles might not

exactly match the actual load profiles. Also, it it not practical that all EVs partic-

ipate in the negotiation process at the same time a day before the actual charging,

and energy demand of EVs is not necessarily known to utilities beforehand. Finally,

the charging requirements of EVs (e.g., plug-in/plug-out time, desired SOC, partic-

ipation in V2G programs) are subject to change depending on many non-technical

factors such as EV owners’ charging preferences and daily driving patterns. Therefore,

EV charging control must be done in real time rather than through the day-ahead

negotiation process in order to tackle all the aforementioned technical limitations of
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the valley-filling EV charging strategy.

It is observed that the technical limitations of the valley-filling EV charging strat-

egy can be tackled by applying real-time scheduling techniques, which have been

widely researched and applied to a variety of real-time systems, where the satisfac-

tion of timing constraints are as important as the correctness of system outputs.

There have been a few attempts to apply a real-time scheduling technique to electric

power systems, most of which deal with only deterministic electric load control. The

technical limitations of the proposed techniques are as follows:

• They deal with only periodic tasks (i.e., electric loads), of which periods must

be known before generating schedule.

• Tasks are assumed to have pre-specified priorities and fixed processing times.

• Each electric load consumes the invariant amount of energy.

However, based on its characteristics, EV charging control must deal with event-

driven (i.e., aperiodic) tasks, of which processing times and energy consumed are not

invariant, which depend on plug-in/plug-out time and initial/desired SOC. Moreover,

in the previous studies, the problem was formulated to minimize household power

usage to shave load peak, which does not fit for the EV charging control problem,

where the energy in the valley(s) of load profile should be fully utilized, not minimized.

Hence, the real-time scheduling algorithms reviewed in §2.1.3 could not be applied to

EV charging control problem without any modification, or a new real-time scheduling

algorithm needs to be developed to be applied to the EV charging system.

Finally, one of the potential technical benefits of the high penetration of EVs is

that an aggregated network of EVs can be used for ancillary service such as frequency

regulation and spinning reserves to smooth out the intermittency of renewable energy

sources and improve the stability of the grid. There have been many publications that

investigate the economic viability of EVs as storage devices for ancillary services and

propose a methodology for technical implementation of V2G applications. However,
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there are a few papers dealing with both the EV charging control problem and V2G

applications. Han et al. [25] and Ota et al. [62] proposed methods for V2G applica-

tions along with EV charging considered, which are verified for the limited number of

EVs in the system. Therefore, it is required to develop a smart EV charging system

that cannot only accommodate the high penetration of EVs but also facilitate V2G

applications.
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CHAPTER III

RESEARCH QUESTIONS AND HYPOTHESES

Given the discussion in Chapter 2, research questions are stated herein summariz-

ing the issues raised. These research questions also promote the development of

hypotheses that are the main thrust for this research. This chapter consists of two

sections. In the first section, a methodology for investigating the applicability of

real-time scheduling techniques to EV charging control and developing a real-time

EV charging control strategy is discussed, and the other section describes how the

proposed real-time EV charging system is augmented with consideration of integrat-

ing a vehicle-to-grid (V2G)-based application into the real-time EV charging system

in order to evaluate and characterize the impacts of the V2G-based application on

real-time EV charging control.

3.1 Real-time Scheduling Techniques for EV Charging Con-
trol

As discussed in §2.1.2, the valley-filling EV charging control strategy is claimed to be

socially optimal in that it tries to minimize the impacts of EV charging on the power

grid while accommodating as many EVs as possible without any further financial in-

vestment to the existing electric power infrastructure. It achieves its social optimality

by trying to use up available electric energy in the valley(s) of load profiles without the

consideration of EV owners’ charging preferences/requirements when generating EV

charging profiles through a day-ahead negotiation in which all EV owners are required

to participate simultaneously; however, from the practical point of view, satisfying

EV owners’ charging preferences/requirements is as important as or might be much
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more important than minimizing the impacts of EV charging on the power grid. For

example, if an EV owner plug out his/her EV from the charging station at an arbi-

trary, pre-specified time, the valley-filling strategy might not guarantee the desired

state-of-charge (SOC) that he/she specified before starting charging. Furthermore,

the valley-filling strategy is not likely to guarantee its optimality either if the predic-

tion of a baseload profile (non-EV demand) is inaccurate, if the baseload profile that

is used when a set of EV charging profiles are generated is fluctuating due to some

reasons, or if actual EV charging requirements (EV demand) are different from ones

used for the negotiation process. Therefore, in order to make up for these technical

limitations of the valley-filling strategy, an EV charging system should cope with EV

owners’ random charging behaviors/patterns as well as unpredictable changes in load

profiles.

In conclusion, although it is quite obvious, it is desirable to substantiate the ex-

pected technical limitations of the valley-filling strategy and, if it turns out to be

the case, it is necessary to develop a new EV charging control strategy to satisfy

both of the two different – maybe conflicting – objectives: 1) satisfying EV owners’

charging preferences/requirements and 2) minimizing the impacts of EV charging on

the power grid. Then the question is how to satisfy EV owners’ charging prefer-

ences/requirements as well as to make the EV charging system less sensitive to the

prediction accuracy and/or fluctuation of load profiles and the changes in EV charging

requirements, while still guaranteeing the optimality, i.e., minimizing the impacts of

EV charging on the power grid. Accordingly, the first research question is formulated

as follows:

Research Question I (Application of real-time scheduling techniques to

EV charging control): How can EV charging be controlled to satisfy EV owners’

charging preferences/requirements while filling the technical gaps of the valley-filling

strategy?
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This research question is directly related to filling the technical gaps of the valley-

filling EV charging scheme. It is claimed in §2.3.2 that the technical limitations

can be alleviated by introducing real-time scheduling techniques for controlling EV

charging. This argument is made based on three reasons. First, the baseload profile

(non-EV demand) is difficult to predict accurately and is likely to change in a random

manner as electricity generation does, resulting from the introduction of renewable

energy sources (RES) such as solar and wind. Therefore, an EV charging system

should control EV charging based upon real-time demand measurements to respond

quickly to the changes in load profiles. Secondly, since it is also almost impossible

to force all EV owners to take part in the negotiation process at the same time to

generate EV charging profiles, which is required by the valley-filling strategy, and EV

owners’ charging behaviors/patterns are also quite unpredictable, an EV charging

system must deal with EV owners’ charging preferences/requirements based on the

information that EV owners provide when they plug in their cars to the charging

station at home or work. Lastly, it is furthermore required to make an EV charging

system guarantee the satisfaction of timing constraints, not to mention filling the

battery up to the SOC that EV owners want to have when they drive off their cars.

Therefore, the following hypothesis is to be investigated in response to the above

research question.

Hypothesis I: The application of real-time scheduling techniques will enable EV

charging to be controlled in real time so that it can fill the technical gaps of the valley-

filling charging strategy as well as achieve the social optimality of the valley-filling EV

charging strategy.

Real-time scheduling techniques have been widely researched and applied to many

real-time embedded systems, where the satisfaction of timing constraints is as impor-

tant as the correctness of system responses or outputs. The EV charging problem
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can be interpreted as a real-time scheduling problem in that one of its objectives is

to obtain a solution by which a battery is charged up to a certain level – the correct-

ness of system responses – by the time an EV owner specifies – the satisfaction of

timing constraints. Also, it is expected that the effects of inaccuracy of load profile

prediction and random EV owners’ charging behaviors/patterns on the optimality

of the EV charging system can be mitigated by applying real-time scheduling tech-

niques since a real-time scheduling algorithm will allow the system to be controlled

based upon real-time demand measurements and the information EV owners provide

when they plug their vehicles in. Accordingly, it is safely postulated that the issues

described herein can be resolved by applying real-time scheduling techniques to the

EV charging control problem, if possible.

3.1.1 EV Charging Control System as a Real-time System

A smart EV charging system might need to control the charging of EVs in real time

to guarantee its optimality in terms of minimizing total load variance as well as to

satisfy EV owners’ charging preferences/requirements as reviewed in Chapter 2. Also,

it is hypothesized that real-time scheduling techniques can be utilized to achieve these

goals. According to [14], in order to apply a real-time scheduling technique, a system

must have the features that real-time systems typically have so that its tasks (τi) can

be mathematically represented with real-time system parameters such as period (pi),

execution time (ei), and deadline (di). Therefore, the first step to develop a real-time

EV charging control strategy is to see if an EV charging system can be modeled with

the parameters enumerated above as a real-time system.

Research Question I-1: How can real-time scheduling techniques be applied to

EV charging control?

As discussed above, if an EV charging system can be modeled as a real-time
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system, then a real-time scheduling problem can be formulated to tackle the technical

limitations of the existing EV charging control strategy, while still providing the

technical/economical benefits that the valley-filling strategy can offer. In order to

answer this research question, the following hypothesis is postulated:

Hypothesis I-1: Real-time scheduling techniques can be applied to EV charging

control if an EV charging system can be modeled such that its system model has all

generic parameters required to apply real-time scheduling techniques.

In general, a real-time system requires a real-time operating system that provides

a real-time scheduling capability and typically consists of a waiting queue (or ready

queue), a real-time scheduler, and processing queues (or processors) as depicted in

Figure 45. Once a task or an event has arrived at the real-time system, it is first

assigned to the waiting queue, where tasks are waiting to be released to the processing

queue by the real-time scheduler. The real-time scheduler determines which tasks can

be released to the processing queue in accordance with a specific real-time scheduling

algorithm, for example, Earliest Deadline First (EDF) scheduling algorithm with

static- or dynamic-priority assignment policy.

From the illustration in Figure 46, if each charging station can be viewed as a

processor or processing queue, then an EV charging system can be represented as

a soft real-time system1 with variable number of heterogeneous, multiple processors

1“A soft real-time system is a real-time system in which performance is degraded but not destroyed

Figure 45: Schematic representation of a generic real-time system.
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Table 6: System timing characteristics.

Real-time system EV charging system

Task, τi Charging an EV

Period, Ti N/A

Execution time, Ci Charging time

Deadline, Di Plug-out time

because power ratings of each charging station will be different and the number of

charging stations that can be activated simultaneously will keep varying, depending

on the available energy for EV charging. Also, charging an EV can be viewed as a

task or an event in a real-time system, of which execution time (ei) can be estimated

based on the difference between current and desired SOC, and of which deadline (di)

will be plug-out time (tplugout). Timing characteristics of the EV charging system are

summarized in Table 6. It can be seen that the task, i.e., charging an EV, has all

the timing parameters required to design or apply a real-time scheduling algorithm.

However, there is no parameter that can be directly related to the period (pi) of

a real-time task because charging an EV could be a periodic event, but its period

by failure to meet response-time constraints” [41].

Figure 46: System model of an EV charging system as a real-time system.
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may not be deterministic. Furthermore, only a daily EV charging scheduling is dealt

with in this research, and the typical time interval between daily charging is 24 hours

in average. Thus, the period needs not necessarily be considered in this research.

Also, the priority of an EV could be assigned based on the amount of time to refill

the battery up to desired SOC specified by the EV owner. As a result, it can be

concluded that real-time scheduling techniques are applicable to the EV charging

control problem, and, in doing so, the technical gaps of the valley-filling charging

scheme can be filled, in other words, EV charging control can be done in real time.

EVs could be charged at different places such as a company’s parking deck, public

charging stations, or home. However, since it is not realistic to assume that EVs could

be charged at any places where a standard power outlet is present, the batteries of the

vehicles are assumed to be charged at home, equipped with a charger, in this research.

Figure 47 illustrates the operating scenario for real-time EV charging control, pro-

posed in this research. After coming from work, an EV owner plugs his/her car in to

the charging station connected to the outlet on the wall, and sets up his/her charging

preferences/requirements such as desired SOC on departure and expected plug-out

time. Then, the charging station sends an activation request message containing the

charging requirements to the real-time EV charging dispatch scheduler in a substa-

tion via a communication link such as Ethernet, power line communication or carrier

(PLC), etc. EVs having sent activation request messages are assigned to the waiting

Figure 47: Operating scenario for the proposed real-time EV charging system.
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queue of the real-time EV charging scheduler. Once after priorities are calculated and

assigned to each charging station based on the charging requirements, the real-time

EV charging scheduler determines a feasible charging schedule, and sends activation

signals back to charging stations that can be assigned to a processing queue or wait

signals back to charging stations that cannot be assigned to a processing queue due

to their lower priorities. EVs not assigned to a processing queue are waiting to be as-

signed to any of available processing queues at the next scheduling iteration, typically

after 15 minutes.

Figure 48 overviews the schematic representation of the proposed method of real-

time EV charging control. As mentioned earlier, the EV charging system can be

viewed as a soft real-time system with charging stations analogous to multiple pro-

cessors, the number of which we must know to apply a real-time scheduling algorithm.

Since each active charging station — a charging station activated to charge an EV

— can be viewed as a processor or a processing queue, the number of charging sta-

tions that can be activated to charge EVs can be calculated by dividing the difference

Figure 48: Overview of real-time scheduling for EV charging control.
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between the reference EV power demand and real-time non-EV power demand mea-

surements, which can be utilized to refill the batteries of EVs, by the maximum

charging rate as follows:

nPQ(t) = (Pref(t)− Pnon-EV(t)) /rmax (3.1)

where nPQ is the number of processing queues, i.e., charging stations that can be

activated simultaneously, Pref is the reference EV power demand, Pnon-EV is the real-

time non-EV power demand measurements, and rmax is the maximum charging rate.

A day-ahead generation plan, which can be established based on the prediction

of non-EV power demand, can play an role as a reference EV power demand, from

which the deviation will be minimized to achieve the social optimality of the valley-

filling scheme. Based on the charging requirements of EV owners, the real-time

scheduling algorithm assigns and updates dynamic priorities of charging stations, and

determines which charging stations can be activated/deactivated. For the purpose of

incorporating the V2G concept into the real-time EV charging system, the electricity

prices for grid-to-vehicle (G2V) and V2G can also be taken into account. As will be

discussed later, an optimization problem for charging rate control is also formulated

since the assumption that an EV can be refilled only at the maximum charging

rate might degrade the performance of the proposed algorithm and the longevity

of the battery, and it is also impractical to increase charging current from zero to

maximum ratings. The most important task when developing a real-time EV charging

system is to design or choose a real-time scheduling algorithm and a dynamic-priority

assignment policy for the EV charging system, which are discussed in the following

section.

The proposed real-time EV charging system can be viewed as an extension of the

existing valley-filling charging strategy in that it can achieve the optimality of the

valley-filling charging strategy in terms of minimizing total load variance (a utility’s

functional requirement), but, in addition, it can also guarantee the satisfaction of
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EV owners’ charging preferences/requirements, i.e., complete charging (consumers’

functional requirements) by when they want to plug out their cars (consumers’ timing

constraints). Therefore, by definition, it can be thought of as a real-time system

where timing constraints as well as functional requirements must be satisfied.

3.1.2 Real-time Scheduling Algorithms for EV Charging Control

As discussed in §3.1.1, the characteristics of an EV charging system implies that

it can be viewed as a soft real-time system with variable number of multiple, het-

erogeneous processors, or processing queues, because power ratings of each charging

station might be different and the number of processing queues keeps varying based

on electric power available for EV charging. In addition, the real-time scheduling

for EV charging must be event-driven as well as online, and its tasks have variable

processing (charging) times, and the priorities of the tasks might need to be assigned

and updated dynamically based on the amount of time to refill their batteries. If it is

possible to model an EV charging system as a real-time system, then the next step is

to identify a real-time scheduling algorithm that can be applied to the EV charging

system. Hence, the second sub research question arises as follows:

Research Question I-2: Is there any real-time scheduling algorithm applicable

to the EV charging system that can be represented as a multiprocessor system with

variable number of heterogeneous processors?

There are a number of standard scheduling algorithms such as First Come, First

Served (FCFS), Shortest Job First (SJF), Earliest Deadline First (EDF), and Rate

Monotonic (RM). Then, how do we select a right scheduling algorithm for EV charg-

ing control? Is there any scheduling algorithm that can be immediately applied to

the problem without any modification? In fact, there is no intuitive and direct way,
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based on an educated guess, to know whether or not a real-time scheduling algo-

rithm is applicable to the scheduling problem with multiple processors. There are

many approaches for simple, uniprocessor cases, such as Rate Monotonic Analysis

(RMA), Worst Case Execution Time Analysis (WCETA), and system-level perfor-

mance modeling analysis, which are claimed to be extremely difficult to be deployed

for multiprocessor problems and in many cases impossible to configure [1]. Therefore,

in order to figure out a right scheduling algorithm without a lot of efforts and time, the

simplest way is to identify all real-time scheduling algorithms that seem to be applica-

ble to EV charging, evaluate them with heuristics such as Monte Carlo simulations,

and select the best one that can provide the best results in terms of performance

metrics, defined for the problem of interest. As a consequence, the hypothesis that

can answer the research question can be formulated as:

Hypothesis I-2: If it can deal with all the aforementioned characteristics of

the real-time EV charging system, a real-time scheduling algorithm could be applied

to the real-time EV charging system, and, among those satisfying the requirements,

the most suitable real-time scheduling algorithm can be determined through statistical

performance evaluation.

As will be detailed in Chapter 4, Theoretical Foundations, there are two categories

of real-time scheduling algorithms for multiprocessor systems: partitioning algorithm

and global scheduling algorithm. Algorithms that can be applied to the problem

depend on both what the real-time system model of the EV charging system looks

like and what real-time characteristics it has. In order to apply the two categories

of algorithms to EV charging scheduling, four different EV charging modes, which

might be specified by an EV owner when plugging in or might be contracted with

utilities, are introduced as summarized in Table 7. EVs with charging mode 1 will

start charging right after plugged in and charging requirements are specified, or right
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Table 7: EV charging modes.

Mode Description

1 charge now

2 charge when power is available

3 charge when given electricity price is
less expensive

4 charge/supply (V2G)

after the charging window that is set by a utility begins. EVs with charging mode 2

will start charging when power is available after all EVs with charging mode 1 have

started charging. EVs with charging mode 3 will start charging when the electricity

price is less expensive than what EV owners have set or contract with utilities. EVs

with charging mode 4 will draw power from the grid or supply power to the grid

depending on electricity price set by owners or contract with utilities.

By introducing the different EV charging modes, either partitioning or global

scheduling algorithms, or both, that is, hybrid algorithms, may be applied to the

real-time EV charging system. Charging stations can be partitioned into the set of

charging stations based on the charging modes of EVs plugged in to the charging

stations, and priorities are assigned to charging stations within the set of a charging

mode. Charging stations of a charging mode are activated based on the priorities,

exclusively from the sets of other charging modes. Thus, a partitioning scheduling

algorithm can be applied to the real-time EV charging system. On the other hand,

a global scheduling algorithm can be applied to the real-time EV charging system

as follows: a priority is assigned to each charging station based on both the amount

of time to refill the battery and charging mode of the EV that is plugged in to the

charging station, and the real-time scheduling algorithm allows a charging station

with higher priority to be activated, no matter what charging mode it belongs to.
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After identifying all scheduling algorithms applicable to the problem, they will be

evaluated in terms of performance metrics and, among those, the best algorithm that

has the highest guarantee ratio, defined as the ratio of the number of EVs satisfying

their desired SOCs at their deadlines to the total number of EVs in the system, the

largest averaged plug-out SOC over all EVs, and the least total load variance will be

chosen and used for simulation studies.

3.1.3 Charging Rates Control for Maximum Energy Utilization

From the proof-of-concept simulation, which will be presented in §6.2, it is observed

that all EVs are not fully charged even though, theoretically, they should be fully

charged because the reference EV power demand is estimated based on the total

energy required for the EVs to be fully charged. The main reason is that the end of

the charging window for the reference EV power demand estimation is set to be later

than plug-out times of all EVs so that the two valleys, which can be seen in typical

winter load profiles, are fully filled. For another reason, it is hypothesized that EVs

with lower priorities won’t have enough opportunities to occupy virtual processing

queues, and, as a result, fail to meet their deadlines. Therefore, in order to increase

the guarantee ratio of the proposed real-time EV charging system, it is required to

increase the probability that EVs with lower priorities can occupy processing queues

by increasing the number of available processing queues at a given time slot, in other

words, not charging EVs at the maximum charging rates.

For example, there are four EVs as illustrated in Figure 49. EV 1 has the highest

priority while EV 4 has the lowest priority. The number of vertically-stacked squares

represents the number of processing queues in a given time slot and the height of

a square represents the maximum charging rate. It is assumed that 6 consecutive

squares are required for EV 4 to be fully charged. Since the algorithm is designed to

refill the battery at the maximum rate, EV 4 misses its deadline even though there
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are unused processing queues. If EV 4 can be charged at the rate higher than the

maximum rate, which does not make sense, then the unused processing queues can

be used up and thus EV4 can be fully charged. Therefore, it can be inferred that

EVs with lower priorities are more likely to occupy processing queues earlier during

the charging window if the number of processing queues is increased by adjusting

charging rates for a given time slot. This observation leads to the third sub research

question:

Research Question I-3: Do charging rates affect the optimality and the guaran-

tee ratio of the real-time EV charging system, and, if so, how can they be controlled

so as for its optimality and guarantee ratio to be improved?

The proposed real-time EV charging control algorithm achieves the “valley-filling”

by adjusting the number of EVs that can be charged simultaneously at the maximum

charging rate (rmax), calculated based on the difference between the reference power

demand (Pref) and the aggregated non-EV demand for a given time slot. In other

words, the number of EVs that can be charged at the same time is determined so that

it can maximize the energy utilization, defined as the ratio of the energy consumed

by EVs to the available energy for EV charging during a time slot. However, if EVs

are charged at the maximum charging rate, the number of EVs that can be charged

Figure 49: Underutilization of processing queues.
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simultaneously is minimum, which indicates that the number of the charging stations,

where EVs with lower priorities were plugged in, can be activated will be minimum.

Therefore, the charging rate must be determined based on both the energy utilization

and the number of EVs that can be charged at the same time to increase the guarantee

ratio, and thus the following hypothesis is formulated to answer the research question:

Hypothesis I-3: If charging rates are controlled based on both the energy utiliza-

tion and the number of EVs that are charging simultaneously for a given time slot,

then the performance of the real-time EV charging system will be improved.

Let Ea(t) and Ec(t) denote the available energy for EV charging and the energy

consumed by EVs at time t, respectively, defined as:

Ea(t) , (Pref(t)− Pbase(t))∆t and Ec(t) , nPQ(t)
r(t)

η
∆t, (3.2)

if it is assumed that all EVs are charging at the same charging rate with the same

charging efficiency, where Pref(t) and Pbase(t) are the reference power demand and

the non-EV power demand at time t, respectively, nPQ(t) is the number of charging

stations activated at time t, η is the charging efficiency, r(t) is the charging rate at

time t, and ∆t is the duration of a time slot. Then, the energy utilization at time t,

U(t), can be defined as:

U(t) ,
Ec(t)

Ea(t)
, (3.3)

where Ea(t) ≥ Ec(t) for all t. In order to achieve the near-optimality in terms

of minimizing the total load variance, i.e., to maximize the energy utilization, an

optimization problem can be formulated as:

maximize
Ec(t)

Ea(t)
for t = 1, . . . , T (3.4)

or

minimize {Ea(t)− Ec(t)}2 for t = 1, . . . , T (3.5)
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In accordance with Equation (3.5), if, without loss of generality, charging stations

having activated by time t are indexed as 1, 2, . . . , m(t), then the optimization prob-

lem can be reformulated as:

minimize
r(·),m(t)

(Pref(t)− Pbase(t))−
m(t)∑
i=1

ri(t)

ηi


2

for t = 1, . . . , T (3.6)

subject to

0 ≤ ri(·) ≤ rmax(i) for i = 1, . . . , m(t) (3.7)

where r(·) ,
{
r1(·), . . . , rm(t)(·)

}
, ri(t) is the charging rate of the i-th EV at time

t, ηi is the charging efficiency of the i-th EV, and m(t) can be seen as the number

of processing queues occupied by EVs at time t. In addition, the total number of

available processing queues is calculated as:

nPQ(t) ,
Pref(t)− Pbase(t)

max(rmax(n))/max(ηn)
(3.8)

for n = 1, . . . , N and t = 1, . . . , T . If it is assumed that rn(t) and ηn(t) are the

same for all EVs for all t, i.e., r(t) , r1(t) = · · · = rn(t) and η , η1 = · · · = ηn, then

Equations (3.6) and (3.8) can be written as:

minimize
r(t),m(t)

{
(Pref(t)− Pbase(t))−m(t)

r(t)

η

}2

for t = 1, . . . , T (3.9)

subject to

0 ≤ r(t) ≤ min
i
rmax(i) for i = 1, . . . , m(t), (3.10a)

nPQ(t) =
Pref(t)− Pbase(t)

rmax/η
for t = 1, . . . , T. (3.10b)

From Equations (3.9) and (3.10b), the optimization problem maximizing the energy

utilization becomes:

minimize
r(t),m(t)

1

η
{nPQ(t)rmax −m(t)r(t)}2 for t = 1, . . . , T. (3.11)

96



subject to

0 ≤ r(t) ≤ min
i
rmax(i) for i = 1, . . . , m(t), (3.12a)

0 ≤ m(t) ≤ nPQ(t) for t = 1, . . . , T (3.12b)

Therefore, it is mathematically proved that the energy utilization is maximized when

r(t) = rmax and m(t) = nPQ(t) for all t, which indicates that charging rate should be

the same with one used for calculation of nPQ(t) and the available processing queues

should be fully utilized.

Let nrem(t) and nreqi
(t) denote the number of remaining time slots and the number

of time slots necessary for the i-th EV to be fully charged at time slot t, respectively.

Then, the probability that an EV would miss its deadline can be expressed as:

Prob
{
i-th EV would miss its deadline

}
,

0 if nreqi
(t) = 0

nreqi
(t)/nrem(t) if 0 < nreqi

(t) < nrem(t)

1 if nreqi
(t) ≥ nrem(t)

(3.13)

Hence, an optimization problem to minimize the probability of failure can be formu-

lated as:

minimize

∑N
i=1 nreqi

(t)

nrem(t)
= minimize

r(t)

∑N
n=1En(t)/(ηr(t)∆t)

T − t
(3.14)

for t = 1, . . . , T . From Equation (3.14), it can be seen that the charging rate r(t)

must be maximum in order for the probability of failure to be minimized, which is

the same as the maximum energy utilization problem.

On the other hand, since, based on the observation described previously, charging

EVs at the maximum rates leads to the minimum number of EVs that can be charged

at the same time, which keeps EVs with lower priorities from charging, the charging

rate should be controlled so as to accommodate as many EVs as possible to provide

more chance to occupy processing queues for EVs with lower priorities . Therefore,
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an optimization problem maximizing the number of available processing queues (nPQ)

can be formulated as:

maximize
r(t)

Pref(t)− Pbase(t)

r(t)/η
for t = 1, . . . , T, (3.15)

subject to

0 ≤ r(t) ≤ min
i
rmax(i) for i = 1, . . . , N (3.16)

which requires r(t) to be minimized in order to obtain as many available processing

queues as possible.

In consequence, Equations (3.14) and (3.15) are two conflicting objectives that the

real-time EV charging system needs to accomplish simultaneously: one objective is

to maximize the energy utilization, i.e., to minimize the deviation from the reference

power demand (Pref), by maximizing r(t), and the other is to maximize the number

of available processing queues, i.e., to increase the chance for EVs with lower priori-

ties to occupy processing queues by minimizing r(t). However, combining Equation

(3.14) with Equation (3.15) yields a new optimization problem that satisfies both the

objectives:

minimize
r(t)

{
ω1

[∑N
n=1En(t)/(ηr(t)∆t)

T − t

]
︸ ︷︷ ︸

minimize probability of failure
m

maximize
the energy utilization

+ω2

[
r(t)/η

Pref(t)− Pbase(t)

]
︸ ︷︷ ︸

maximize # of
processing queues

}
(3.17)

subject to

0 ≤ r(t) ≤ min
i
rmax(i) for i = 1, . . . , N (3.18)

for t = 1, . . . , T , where ω1 and ω2 are weighting factors, and ω1 + ω2 = 1. Since,

through Equation (3.17), r(t) is determined such that it maximizes the energy uti-

lization while maximizing the number of available processing queues, it is expected

that the proposed real-time scheduling algorithm for EV charging will provide better
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optimality and guarantee ratio by allowing more EVs to be charged simultaneously

even though some EVs take more time to complete their charging.

3.2 V2G-based Ancillary Services within Real-time EV
Charging Control Framework

As large-scale renewable energy sources (RES) are integrated in the power grid, the

battery energy storage is believed to perform an important role for smoothing their

natural intermittency in order to ensure grid-wide frequency stability. “An EV can

be used as both a load and a generating source to balance the system frequency by

charging the battery when there is too much generation in the grid and acting as

a generator by discharging the battery when there is too much load in the system”

[35]. In addition, a large population of EVs not only introduce a potential benefit as

distributed battery energy storages but also provide plenty of time for control because

they are almost plugged in to power outlets for most of the time. Therefore, vehicle-

to-grid (V2G) technology, which will be detailed in §4.3.2, is expected to be one of the

key technologies in the smart grid. As reviewed in §2.2, most publications on V2G

technologies dealt with either the economic viability or technical implementations of

the technologies, but a few made an attempt to address scheduled EV charging along

with consideration of V2G-based ancillary services such as load frequency control

(LFC) and spinning reserves.

However, since V2G-based services can be operated only while EVs are connected

to the grid, it is highly likely that EV charging will be interrupted by V2G-based

services, which means that EVs might not complete charging by their plug-out times

and might not have the desired departure SOC that EV owners might specify before

starting charging. Therefore, the operation of V2G-based services must be done in

such a way that its impacts on EV owners’ convenience is negligible, or at least

minimized. In this context, the following research question arises:
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Research Question II (Integration of V2G-based Ancillary Services into

the Real-time EV Charging System): How can the impacts of the operations of

V2G-based services on EV charging be investigated?

As discussed in Chapter 2 and the above, V2G-based services can be provided

only when EVs are connected to the grid. EVs might be charged or in idle state,

depending on the schedule generated by the real-time EV charging system. EVs in

charging state will not supply power to the grid, and EVs plugged in to deactivated

charging stations will not draw power from the grid. In addition, some EV owners

might not want to sell power to the grid, and others might be willing to provide power

to the grid. Therefore, V2G-based services are closely related to the EV charging

system and EV owners’ preferences. Hence, the following hypothesis is formulated to

answer the question:

Hypothesis II: If V2G-based services can be incorporated into the real-time EV

charging control strategy, then the impacts of the operations of V2G-based services on

EV charging can be investigated and characterized.

The participation of EVs in the V2G ancillary market will be determined based on

its charging status, i.e., active/inactive and state-of-charge (SOC). For instance, if it

is plugged in and with higher SOC and it has enough time to complete charging, then

an EV can sell power to the grid for up-regulation. If it is plugged in, but with lower

SOC, or if there is not enough time to complete charging, it cannot sell power, but

still continues charging to satisfy its charging requirements. For down-regulation, the

charging rates of EVs with lower SOC can be increased depending on their current

charging rates as well as power ratings of the charging station to which they are

plugged in, and, in turn, the system frequency will decrease down to the nominal

system frequency; however, the charging rate of an EV with higher SOC cannot be

increased for down-regulation. In the similar fashion, an aggregated network of EVs
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can provide V2G-based services to the grid while their charging requirement are still

satisfied.

According to Kempton et al., “the most economic entry for V2G-based applica-

tions is the market for ancillary services (A/S), among which frequency regulation is

the most valuable market” [35]. Therefore, in this research, amongst various V2G-

based ancillary services, frequency regulation is only considered to narrow down the

scope of work, and it is expected that other ancillary services can be incorporated into

the proposed real-time EV charging control strategy in the similar way that frequency

regulation is incorporated. In the following subsections, sub research questions related

to Research Question II and corresponding hypotheses regarding a methodology for

incorporating V2G-based frequency regulation into the real-time EV charging system

are discussed.

3.2.1 Integration of V2G-based Frequency Regulation into
Real-time EV Charging Control

As issued previously, it is suspected that V2G-based applications might affect the

performance of the real-time EV charging system. Accordingly, the second research

question arises, and in order to answer the question, it is hypothesized that the

incorporation of V2G-based services into the real-time EV charging algorithm will

enable their impacts on real-time EV charging to be investigated and characterized.

Therefore, the following fundamental question is required to be answered first to test

Hypothesis II.

Research Question II-1: How can V2G-based frequency regulation be incorpo-

rated within the framework of real-time EV charging control?

Some of EV owners might want to participate in V2G-based frequency regulation,

but some might not. Also, some of EV owners might be willing to take part in the

program only when benefits they could get is larger than costs they might need to pay.
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Furthermore, the participation in V2G-based programs could be determined by EV

owners’ daily preferences or contracts with utilities. In conclusion, the participation

in V2G-based programs will be determined by EV owners’ preferences and electricity

price for frequency regulation market. In addition, charging rates of EVs will need

to be determined by the type of V2G-based regulation and current SOCs of EVs, as

well as the amount of energy required to stabilize the system frequency. Thus, the

following hypothesis can be formulated:

Hypothesis II-1: The introduction of different charging modes and the control

of both charging rates of EVs that opt to participate in V2G-based frequency regula-

tion and the number of EVs charging simultaneously will enable V2G-based frequency

regulation to be incorporated in the real-time EV charging system.

As explained in §3.1.2, there might be several charging options depending on EV

owners’ preferences. In this research, four charging modes are considered: 1) charge

now, 2) charge when power is available, 3) charge when given less expensive electricity

price, and 4) buy(sell) power from(to) the grid (V2G). Figure 50 illustrates how the

different charging modes can be translated in the context of the real-time EV charging

system. For charging mode 1, EVs will start charging when the number of processing

queues is greater than 0, that is, when power is available. EVs with charging mode

2 will initiate charging process when there are still available processing queues after

some of processing queues have been assigned to all the EVs with charging mode 1.

The charging of EVs with mode 3 will be activated when market electricity prices is

less than the price that EV owners have set. Lastly, EVs with mode 4 will buy/sell

power from/to the grid depending on real-time V2G market clearing price. EVs that

participate in V2G-based programs could be identified by owner’s charging preferences

or contracts with utilities. Therefore, the participation in V2G-based programs can

be controlled in the real-time EV charging system by introducing different charging
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modes to let some portion of EVs in the system sell electricity to the grid.

By introducing different charging modes, the real-time EV charging system can

include V2G-based frequency regulation in its scheduling process. For instance, if

EVs need to purchase power from the grid for down-regulation, i.e., when generation

exceeds load, the real-time EV charging system will increase the number of EVs that

can be charged at the same time (i.e., increase nPQ(t)), encourage EVs with charging

mode 3 by reducing electricity price, or increase charging rates. On the other hand,

for up-regulation, when load exceeds generation, the real-time EV charging system

will increase electricity price to discourage EVs to start charging, deactivate EVs

with lower priorities or lower charging modes to reduce power demand due to EV

charging, or decrease the number of EVs being charged at the same time based on

their priorities.

Additionally, charging rates are required to be adequately sized and balanced in

the long run so that the SOC of an EV opting to participate in V2G-based frequency

regulation would only fluctuate around its SOC before participating in the program;

it should be neither completely drained or filled. In developing the real-time schedul-

ing algorithm for EV charging and the optimization problem for charging rates, only

Figure 50: Possible EV charging modes.
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positive charging rates, that is, drawing power from the grid, are only considered.

However, it is necessary to consider negative charging rates, which represent selling

power to the grid, in order to consolidate V2G-based frequency regulation into the

real-time EV charging system. Therefore, the constraint for charging rates in Equa-

tion (3.17) needs to be modified to facilitate the V2G-based frequency regulation

as:

minimize
r(t)

{
ω1

[∑N
n=1 En(t)/(ηr(t)∆t)

T − t

]
+ ω2

[
r(t)/η

Pref(t)− Pbase(t)

]}
(3.19)

subject to

−min
i
rmax(i) ≤ r(t) ≤ min

i
rmax(i) for i = 1, . . . , N (3.20)

for t = 1, . . . , T , where ω1 and ω2 are weighting factors, and ω1 + ω2 = 1. Further-

more, in order to force the SOC of an EV to fluctuate around its SOC right before

participating in the program, the following constraint should also be satisfied:

nup∑
i=1

rup(i) ≈
ndown∑
j=1

rdown(j) (3.21)

where nup and ndown are the number of participations for up- and down-regulation,

respectively, and rup and rdown are charging rates for up- and down-regulation, re-

spectively.

Another factor that needs to be considered is SOCs of EVs. The key benefit we

can get by introducing the real-time scheduling technique to the EV charging system

is that it enables to satisfy timing constraints of EV owners while maintaining the

optimality in terms of minimizing total load variance. Therefore, timing constraints

must be satisfied even when V2G-based frequency regulation is contained in the real-

time EV charging system. To achieve this goal, the participation in V2G-based

frequency regulation must be determined based on the SOC. For example, an EV

with higher SOC is more appropriate than one with lower SOC for up-regulation in

that the former is more likely to arrive at the desired departure SOC than the latter
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after returning from the service for a given number of time slots. For down-regulation,

an EV with lower SOC needs to be charged earlier than one with higher SOC so that

the overall probability of failure can be minimized. Therefore, EVs will have different

desirabilities for participating in the program depending on their SOC.

As discussed above, with the appropriate control of charging rates and the deter-

mination of participation depending on SOCs, the introduction of various charging

modes with the adjustment of ancillary service clearing price will enable the incor-

poration of V2G-based frequency regulation into the real-time EV charging system

along.

3.2.2 Statistical Reference EV Power Demand Estimation

One of the technical limitations of the “valley-filling” strategy for EV charging control

is that the optimality of the charging profile generated by the strategy is significantly

sensitive to uncertainties such as inaccurate load prediction, unexpected load changes,

or generator failures. Accordingly, an EV charging system should be capable of coping

with those uncertainties in order to achieve the optimality (in terms of minimizing

total load variance) that can be guaranteed only when there are no such unfavorable

conditions. The real-time EV charging system has a possibility to minimize the effects

of uncertainties in that it controls EV charging based on real-time measurements

of power demand and generation capacity, which results in a kind of V2G-based

frequency regulation that would correct the frequency deviation due to EV power

demand. Even though energy flow is quite different, the total energy consumed by

EV charging, however, is the same for both cases: without and with V2G-based

frequency regulation. Therefore, it can be claimed that EVs opting to participate

in frequency regulation might violate their timing constraints or might not arrive

at the desired departure SOCs since they need to provide power to the grid during

the process of charging, which implies that they would take longer time to complete
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charging. Hence, the following sub research question arises:

Research Question II-2: How can the real-time EV charging system be made

to satisfy timing constraints while providing V2G-based frequency regulation?

Since, in the proposed real-time EV charging system, the number of available

processing queues is calculated as

nPQ(t) =
Pref(t)− Pbase(t)

ropt(t)
(3.22)

where Pref(t) and Pbase(t) are the reference EV power demand and non-EV power

demand at time t, respectively, and ropt(t) is the optimized charging rate, uncertainties

in the prediction of load profiles are reflected in Pbase(t) and, thus, the effects of

uncertainties might be minimized so that the optimality can still be maintained.

Moreover, in case of generation insufficiency, where power demand is greater than the

predicted or there is a generator failure, V2G-based frequency up-regulation can be

operated to compensate for the lack of generation rather than simply reducing the

number of EVs being activated for charging, at the expense of the degradation of

guarantee ratio. As a result, a compensation for V2G-based frequency regulation is

necessary to make the guarantee ratio as high as that of the case without V2G-based

frequency regulation. Therefore, the following hypothesis is claimed to answer the

question:

Hypothesis II-2: If the statistics of EV charging profiles (and/or frequency reg-

ulation) is taken into account in generating charging schedules, then the real-time EV

charging system can satisfy timing constraints while providing V2G-based frequency

regulation.

The proposed real-time EV charging system utilizes a reference EV power demand,

which is subtracted by predicted non-EV power demand and then divided by the

optimal charging rate to calculate the number of available processing queues, that is,
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the number of charging stations that can be activated simultaneously (see Algorithm

4 in §5.3 on page 171). The reference EV power demand is calculated for a given

exact knowledge of EV charging requirements, esp. plug-in SOC and desired plug-

out SOC under the assumption that daily driving patterns and EV charging profiles

are not significantly changed even if they might fluctuate from day to day. However,

if V2G-based frequency regulation is contained in the real-time EV charging system,

energy required to refill batteries might significantly differ from the reference EV

power demand, resulting in performance degradation of the proposed charging system.

Hence, the reference EV power demand needs to be adequately increased to make

up for extra energy consumption due to V2G-based frequency regulation since the

reference power demand is correlated with the optimality of the charging system, that

is, the minimization of total load variance.

In order to offer V2G-based frequency regulation as well as to satisfy EV own-

ers’ charging requirements, it is hypothesized that the inclusion of the statistics of

EV charging profiles or frequency regulation in the scheduling algorithm will help

accomplish these two goals. Assumed that driving patterns and charging profiles will

vary depending on day of the week, the statistics on a specific day of week such as

the mean and standard deviation of plug-in/-out time and SOC, etc., can be derived

from historical data. Furthermore, based on the statistics, the concept of timing buffer

can be introduced to compensate for variability in plug-in/-out times and SOCs and

extra energy requirement due to V2G-based frequency regulation and also to allow

additional time for EVs opting to participate in V2G-based frequency regulation to

complete their charging process. The timing buffer of the n-th EV (tbuffer(n)) can be

calculated as (refer to Figure 51(a)):

tbuffer(n) = σtplugin(n) + σtplugout(n) (3.23)

where σtplugin(n) and σtplugout(n) are the standard deviations of plug-in times and plug-

out times of the n-th EV on a specific day of the week, respectively. Also, from Figure
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51(b), time period allowable for charging the n-th EV should satisfy the following

constraint:

tplugin(n) ≤ t ≤ tplugout(n)− tbuffer(n) (3.24)

where tplugin(n) and tplugout(n) are plug-in/-out time of the n-th EV, respectively.

Therefore, the energy queue length, redefined as energy required to fully refill the

battery up to the desired plug-out SOC, of the n-th EV as in Equation (5.6) (on page

169) can be rewritten as:

En = (µfSOC
(n)− µiSOC

(n))× βn + tbuffer(n)× rmax(n) (3.25)

where µiSOC
is the averaged plug-in SOC, µfSOC

is the averaged plug-out SOC, βn

is the battery capacity, rmax is the maximum charging rate, and tbuffer is the timing

buffer. According to Equation (3.25), the modification of the equation for energy

queue length will increment total energy required to refill batteries, which cannot

cover extra energy requirement for V2G-based frequency regulation but also increase

the safety margin for guarantee ratio by forcing EVs to complete charging earlier than

their plug-out times.

The incorporation of V2G-based frequency regulation into the real-time EV charg-

ing system may cause the degradation of guarantee ratio since the real-time scheduling

of EV charging is generated using the reference EV power demand, calculated without

the consideration of V2G-based frequency regulation. In order to alleviate this perfor-

mance degradation of real-time EV charging, the concept of timing buffer, calculated

(a) calculation of timing buffer (b) Timing diagram for tbuffer

Figure 51: Concept of timing buffer for V2G-based frequency regulation.
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based on historical data of EV charging profiles, is introduced, and it increases en-

ergy required for EV charging by forcing EVs to complete charging earlier than their

plug-out times, which, as a result, allows EVs to be compensated for participation

in the V2G program. However, it is beyond one’s grasp whether or not V2G-based

frequency regulation may affect real-time EV charging. Therefore, the impacts of

V2G-based frequency regulation on real-time EV charging is first investigated, and

then the hypothesis will be tested to see if the concept of timing buffer can alleviate

the impacts.

Table 8 overviews the entire thesis including the research statement, research ques-

tions, hypotheses, and tasks required to do for testing the hypotheses, as described

in this chapter.
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CHAPTER IV

THEORETICAL FOUNDATIONS

The objective of this chapter is to provide necessary information to help readers to

grasp the context in this thesis more easily. The chapter begins with explaining the EV

charging control problem and some problem formulations that have been proposed

so far to provide a solution for EV charging control. The next section introduces

the real-time scheduling theory and elucidates a variety of widely-known real-time

scheduling algorithms since they serve as a main thrust to this research. In the last

section, a brief introduction to frequency regulation and the information on how to

utilize vehicle-to-grid (V2G) technology for frequency regulation are provided.

4.1 EV Charging Control Problems

Table 8 presents a summary of all EV charging strategies that have been presented

and reviewed so far. (The definition for each strategy is borrowed from Valentine et

al.’s paper [86].) Unregulated charging refers to a scheme that allows an EV to start

charging as soon as the owner arrive home and finishes charging when the battery

becomes full or when the owner leaves home. This type of charging scheme is expected

to exacerbate peak load – even create other undesirable peaks – and increase electricity

price due to additional large power consumption for charging EVs. Valley-filling is

an approach that allocates the energy required for EV charging at off-peak hours,

when electricity price is relatively cheap, incurring the lowest steady-state cost, and

thus fills the valley(s) of electricity demand profiles. The traditional, flat valley-fill

approach charges EVs such that certain hours of the valley achieve a flat load. There
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Table 8: Summary of EV charging schemes [86].

Charging method Description

Unregulated Charging begins immediately after a commuter returns
home from work, incurring the highest cost.

Flat valley-fill Charging is regulated to take place when system de-
mand is lowest, i.e., off-peak, incurring the lowest
steady-state cost.

Smooth valley-fill A valley-fill variation with minor smoothing at the end-
points of the valley to reduce ramping cost.

Intelligent Charging can be dispatched whenever commuters are at
home to minimize total system cost from steady-state
and ramping operations.

are several variations on this basic approach, including minor smoothing at the end-

points of the valley to reduce ramping costs of generators. In the Intelligent charging

scheme, an aggregator allows EVs to charge such that total system cost from both

steady-state and ramping costs can be minimized.

EVs have the valuable characteristic of being a deferrable load because their elec-

tricity demand is not constant during the course of a 24-hour period. As illustrated

in Figure 52(a), the shaded area is the underutilized capacity available for charging

EVs. The annual operating cost of electricity generation for utilities can potentially

be greatly minimized by reducing reliance on expensive peaking plants, which gener-

ally run only when there is a high demand [9]. This can be accomplished by increasing

the utilization of installed capacity, thereby spreading fixed costs over a greater quan-

tity of electricity, i.e., filling the valley of demand profile [7]. Figure 52(b) illustrates

technical potential for a 24-hour and a 12-hour night-charging period to show the

impacts of a constrained charging period from a regional perspective [36]. It can be

seen that a significant fraction of the regional vehicle fleet could still be supported

with the existing grid infrastructure even when constraining the battery charging to
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the night period.

In order to formulate a problem for EV charging, let’s consider a scenario where a

utility company tries to generate a schedule for charging N EVs over time period of

T , which is composed of smaller time slots of ∆t, typically 15 minutes or 1 hour. The

utility is assumed to know the baseload (non-EV demand), which is not necessary to

be precisely predicted, and is trying to flatten the total load (baseload plus aggregate

EV demand) profile by scheduling the charging profiles of the EVs. On the other

hand, each EV starts charging after being plugged in and is required to charge a

pre-specified amount of energy by the time it is plugged out. First, the charging

dynamics of an EV can be simply represented as follows:

sn(t+ 1) = sn(t) +
ηn
βn
rn(t), t = T0, . . . T − 1 (4.1)

where sn(t) ∈ [0, 1] is the state-of-charge (SOC) of the vehicle at time t with an

initial condition of sn(T0), ηn, the charging efficiency, βn, the battery capacity, and

rn(t) ≥ 0, charging rate at time t. In addition, T0 is the plug-in time and T is the

plug-out time, respectively. There are many other models for the charging dynamics

of batteries based on their chemical characteristics; however, this research aims to

investigating the system-level behavioral characteristics of EV charging control, and

(a) concept of “valley-filling” approach (b) regional technical potential of “valley-filling”
approach

Figure 52: Concept and technical potential of “valley-filling” approach [36].
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the simplest form as in Equation (4.1) is used. If the vehicle is assumed to be fully

charged at the end of the charging interval, i.e., t = T , a set of feasible charging rates

for the N EVs is defined as

R , {rn ≡ (rn(T0), . . . rn(T − 1)) , n = 1, . . . , N ; s.t. sn(T ) = 1} (4.2)

The objective function for an individual EV to minimize with respect to rn so that

available energy in the valley(s) of a load profile is used up by charging EVs and every

EV is fully charged at the end of its charging interval is given by

J(R) ,
T−1∑
t=T0

U

(
d(t) +

N∑
n=1

rn(t)

)
(4.3)

such that

0 ≤ rn(t) ≤ rmax
n (4.4a)

T−1∑
t=T0

rn(t) =
βn (sn(T )− sn(T0))

ηn∆T
(4.4b)

where U : R→ R is any strictly convex function, d(t) denotes the non-EV demand at

time t, and rmax
n is the maximum charging rate of the charging station to which EV

n is plugged in. The constraint (4.4b), whose numerator represents the amount of

energy EV n is required to charge if the charging efficiency is not considered, captures

the second objective that EV n needs to reach the desired SOC sn(T ) by its plug-out

time T . If a feasible solution minimizing the objective function J(R) can be obtained

and there exists A ∈ R such that

N∑
n=1

rn(t) = max {0, A− d(t)} , t ∈ [T0, T − 1], (4.5)

then the charging profile R = (r1, . . . , rN) is valley-filling [20]. If the objective is to

track a given load profile G rather than to flatten the total load profile, the objective

function can be modified as [20]:

T−1∑
t=T0

(
N∑
n=1

rn(t)−G(t)

)2

(4.6)
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There exists another type of optimization problem formulation by which each EV

minimizes its own charging cost by adding the electricity price to the objective func-

tion as follows [55]:

Jn ,
T−1∑
t=T0

{
p(t)rn(t) + δ [rn(t)− avg (r(t))]2

}
, (4.7)

such that

0 ≤ rn(t) ≤ rmax
n (4.8a)

sn(T ) = sT (n) (4.8b)

where p(t) ≡ p (d(t) +Navg(r(t))) is the electricity price at time t, which is a function

of non-EV and EV demand, δ is a positive constant – weighting factor – for two

objectives, that is, minimizing charging costs and minimizing the deviation from

average of other EVs’ charging profiles, r(t) is a set of charging rates for each EV in

the system at time t, which can be mathematically defined as

r(t) , {r1(t), r2(t), . . . , rN(t)} , (4.9)

rmax
n , the power ratings of the charging station to which the EV n is plugged in, and

sT (n), the desired plug-out SOC that the owner specified before starting charging.

In summary, an EV charging control problem can be formulated to achieve a

specific objective such as maximizing the revenue or the utilization of energy in the

nighttime valley(s), minimizing charging costs, and so on. The solution to the EV

charging control problem is a set of feasible charging profiles R for EVs in the system.

The inputs to the problem are the day-ahead prediction or real-time measurements

of baseload profile (non-EV demand), according to which generation is planned and

operated, and EV charging requirements with EV owners’ preferences reflected.
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4.2 Real-time Scheduling Techniques

4.2.1 Real-time Systems

A real-time system is a system that must satisfy explicit (bounded) response-time

constraints or risk severe consequences, including failure, where the response time is

defined as the time between the presentation of a set of inputs to a system (stimulus)

and the realization of the required behavior (response) [38]. There exist various

other definitions for real-time systems, depending on the characteristics of the system

itself, but the most common definition among them is that the system must satisfy

time constraints, i.e., deadlines, in order to be correct. In other words, the logical

correctness of a real-time system is based on both the correctness of the responses

and their timeliness [41].

Real-time systems spans a broad spectrum from computer simulations to electronic

engines as shown in Figure 53. In general, there are three types of real-time systems:

soft, firm, and hard real-time systems. (Laplante’s definitions in [41] are quoted for

the definitions of these systems.) “A soft real-time system is one in which performance

is degraded but not destroyed by failure to meet timing constraints.” Contrarily, “a

system where failure to meet timing constraints leads to complete and catastrophic

system failure is called hard real-time systems.” A firm real-time system can tolerate

some arbitrarily small number of missed deadlines. From these definitions, it can be

Figure 53: Spectrum of real-time systems (Source: Lee [42]).
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Table 9: Examples of soft, firm, and hard real-time systems [41].

System Real-time
classifica-
tion

Explanation

Automated teller machine Soft Missing even many deadlines will
not lead to catastrophic failure, only
degraded performance.

Embedded navigation
controller for autonomous
robot weed killer

Firm Missing critical navigation deadlines
causes the robot to veer hopelessly
out of control and damage crops.

Avionics weapons delivery
system in which pressing a
button launches an air-to-
air missile

Hard Missing the deadline to launch the
missile within a specified time after
pressing the button can cause the
target to be missed, which will re-
sult in catastrophe.

seen that all practical system can be represented as a soft real-time system. Table 9

gives some examples of soft, firm, and hard real-time systems.

“A real-time application is normally comprised of multiple tasks with different tim-

ing characteristics and with different levels of temporal criticality,” based on which

tasks can be classified [57]. First, tasks can be classified according to the predictability

of their arrival. There are many tasks in real-time systems that are done repetitively

and of which periods are predictable. These tasks are called periodic tasks, and the

periodicity of them is known beforehand, and so such tasks can be prescheduled of-

fline. In contrast, there are many other tasks that are aperiodic, that occur only

occasionally, and aperiodic tasks with a bounded inter arrival time are called spo-

radic tasks. Real-time tasks can also be classified according to the consequences of

their not being executed on time. Critical tasks are those whose timely execution is

critical, in other words, if their deadlines are missed, catastrophic failures take place.

Noncritical real-time (or soft real-time) tasks are, as the name implies, not critical to
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the application, but it is desirable to maximize the percentages of jobs successfully

executed within their deadlines..

Figure 54 shows the schematic block diagram of a real-time system in control of

some process. The state of the controlled process and of the operating environment is

acquired by sensors, which provide inputs to the controller, the real-time computer.

There is a fixed set of tasks, the job list, that need to be assigned to processors or

memories, and the question arises as to which tasks should be assigned to which

processors or memories (allocation problem), and when and in which order, with

respect to other tasks, they must start their execution (scheduling problem). This

relates to the allocation and scheduling of tasks that can be done by a real-time

scheduling algorithm and will be discussed in detail in the following subsections.

4.2.2 Taxonomy of Real-time Scheduling Algorithms

“The problem of real-time scheduling spans a broad spectrum of algorithms from sim-

ple uniprocessor to highly sophisticated multiprocessor scheduling algorithms” [57].

The goals of real-time scheduling are completing tasks within specific time constraints

Figure 54: A schematic block diagram of a real-time system (Source: Krishna and
Shin [38]).
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and preventing from simultaneous access to shared resources and devices [31, 38]. Pre-

dictability and temporal correctness are the principal concerns in real-time scheduling

although system resource utilization is of interest. A variety of real-time scheduling

algorithms have been proposed and applied to different practical systems. However, a

real-time scheduling algorithm is very problem-specific so that it is required to be tai-

lored or even newly developed in order to be applied to a specific problem. Real-time

scheduling algorithms can be categorized based on the characteristics of the systems

to which they are applied. Figure 55 shows the classification of real-time scheduling

algorithms.

Real-time scheduling algorithms for uniprocessor systems, that is, systems in

which there is exactly one processor available and all tasks in the system are re-

quired to execute on this single processor, can be divided into two major classes:

Figure 55: Classification of real-time scheduling algorithms [57].
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off-line and on-line. On-line scheduling algorithms can be grouped into either static-

or dynamic-priority based algorithms. Static-priority based algorithms, where the

task priority does not change within a mode, are further divided into preemptive and

non-preemptive algorithms, depending on whether or not a task can be preempted by

another task based on their priority. A schedule is preemptive if tasks can be inter-

rupted by other tasks and then resumed if there is a processor available. By contrast,

once a task is processed in a nonpreemptive scheduling algorithm, it must be run to

completion or until it gets blocked due to a resource limitation. Preemption allows for

the flexibility of not committing the processor to run a task through completion once

it starts executing. On the other hand, dynamic-priority algorithms assume that pri-

ority can change with time. The best known examples of static- and dynamic-priority

algorithms are the Rate Monotonic (RM) algorithm and the Earliest Deadline First

(EDF) algorithm, respectively. Dynamic-priority based algorithms can be grouped

into two classes: planning based and best effort scheduling algorithms [57].

Multiprocessor scheduling algorithms are another class of real-time scheduling al-

gorithms. Unlike uniprocessor systems, the real-time scheduling of multiprocessor

systems, where several processors are available on which tasks may execute, has not

been widely studied because of the complexity of the problem, and the Pfari schedul-

ing is one of the few known optimal scheduling algorithms for multiprocessor systems

[57]. The optimal assignment of tasks to multiple processors is, in almost all practical

cases, an NP -hard1 problem [22, 46, 58]. Therefore, the real-time scheduling of mul-

tiprocessor systems must be done with scheduling heuristics. A heuristic approach

with two steps is usually adopted: a heuristic algorithm is first employed to assign

tasks to processors, and then a scheduling algorithm for uniprocessor systems is used

to schedule tasks on each individual processor. The problem of assigning tasks onto

1A decision problem Πi is NP -hard if every problem in NP is polynomial-time reducible to Πi

[23].
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a minimal number of processors has many similarities to bin-packing problems, in

which items of variable sizes are packed into as few bins as possible. Therefore, many

of the bin-packing heuristics are used to assign tasks onto processors. The key dif-

ference, however, is that bins in bin-packing problems have a unitary size while the

size (“utilization” in the context of real-time scheduling) of a processor in a multipro-

cessor system varies dynamically according to some pre-defined functions, referred to

as “schedulability conditions”; in other words, when a task is assigned to a proces-

sor, the real-time scheduler must make sure that the addition of the task should not

jeopardize the schedulability of those tasks that have already been assigned to the

processor.

Real-time scheduling algorithms for multiprocessor systems can fall into two cat-

egories: partitioning scheduling algorithms and global scheduling algorithms as illus-

trated in Figure 56. Partitioning scheduling algorithms partition tasks into several

sets such that all tasks in a partition are assigned to the same processor. Tasks are not

allowed to migrate, that is, a job that has been preempted on a particular processor

is not allowed to resume execution on a different processor, hence the multiproces-

sor scheduling problem can be translated to many uniprocessor scheduling problems

[18, 38]. The next-fit algorithm for RM scheduling is one of multiprocessor schedul-

ing algorithms based on the partitioning strategy [38]. Global scheduling algorithms

assign the tasks, which have arrived but not finished their execution, in one system-

wide waiting queue that is shared by all processors. If, for instance, there exist m

(a) partitioning scheduling algorithm (b) global scheduling algorithm

Figure 56: Real-time scheduling algorithms for multiprocessor systems.
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processors, then, at every moment, the m tasks with highest priority stored in the

waiting queue are selected for execution on the m processors using preemption and

migration if necessary. The focused addressing and bidding algorithm is an example

of global scheduling algorithms [38].

The following two subsections will explain a few well-known examples of real-time

scheduling algorithms for uniprocessor and multiprocessor systems in depth.

4.2.3 Real-time Scheduling Algorithms for Uniprocessor Systems

4.2.3.1 Rate-monotonic (RM) Scheduling Algorithm

The Rate Monotonic (RM) scheduling algorithm is one of the most widely studied and

used in practice, which is an optimal static-priority uniprocessor scheduling algorithm

[38]. The task set consists of periodic, preemptible tasks whose relative deadlines are

assumed to be equal to their task periods. According to [49], a task set of n tasks is

schedulable under RM if

U =
n∑
i=1

ei
pi
≤ n

(
2n/1 − 1

)
(4.10)

where U is the total processor utilization of the task set, ei and pi are the execution

time and the period of the i-th task, respectively. Task priorities are static and

inversely related to their periods; if task τi has a smaller period than task τj, τi

has higher priority than τj. Higher-priority tasks can preempt lower-priority tasks.

Figure 57 shows an example of the rate-monotonic scheduling algorithm, excerpted

from Krishna and Shin’s book [38], whose task set is summarized in Table 10. Since

p1 < p2 < p3, task τ1 has the highest priority, and every time it is released, it preempts

the other tasks: for instance, at time t = 2, it preempts task τ2, which is resumed

at time t = 2.5, at which point task τ1 is finished. Similarly, task τ3 cannot execute

when either task τ1 or τ2 is unfinished.
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Table 10: Task set for the example of RM scheduling algorithm in Figure 57.

Task, τi Arrival
time, ai

Execution
time, ei

Period, pi

τ1 0 0.5 2

τ2 1 2.0 6

τ3 3 1.75 10

4.2.3.2 Earliest Deadline First (EDF) Scheduling Algorithm

First proposed by Liu and Layland [49], EDF is one of the oldest and most well-

known dynamic-priority scheduling algorithms; “the task priorities are not fixed but

change depending on the closeness of their absolute deadline.” EDF is also called

the deadline-monotonic scheduling algorithm. The priority of each task is determined

by its absolute deadline; the task with the earliest deadline will always have the

highest priority. It has been proved that “EDF is an optimal uniprocessor scheduling

algorithm, that is, if EDF cannot feasibly schedule a task set on a uniprocessor, there

is no other scheduling algorithm that can schedule the task set” [49]. For a task set

Figure 57: Example of RM scheduling algorithm (Source: Krishna and Shin [38] with
modifications, Kj denotes the j-th release of task τK).
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Table 11: Task set for the example of EDF scheduling algorithm in Figure 58.

Task, τi Arrival
time, ai

Execution
time, ei

Absolute
deadline,
di

τ1 0 5 15

τ2 1 3 5

τ3 2 4 10

whose n tasks are periodic and have relative deadlines equal to their periods, if

U =
n∑
i=1

ei
pi
≤ 1, (4.11)

where U is the total utilization of the task set, ei and pi are the execution time and

the period of the i-th task, respectively, the task set can be feasibly scheduled on a

single processor by the EDF algorithm, which is a necessary and sufficient condition

for EDF to be able to schedule tasks [49]. Figure 58 contains an example of the EDF

scheduling algorithm, excerpted from Krishna and Shin’s book [38], whose task set

consists of three aperiodic tasks, as summarized in Table 11:

When task τ1 arrives at time t = 0, it is the only task waiting to execute,

Figure 58: Example of EDF scheduling algorithm (Source: Krishna and Shin [38]
with modifications).
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and so starts executing immediately. Task τ2 arrives at time t = 1, since

d2 < d1, it has higher priority than τ1 and preempts it. Task τ3 arrives at

time t = 2; however, since d3 > d2, it has lower priority than τ2 and must

wait for τ2 to complete. When τ2 finishes (at time t = 4), τ3 is released

first (since it has higher priority than τ1). τ3 runs until t = 8, at which

point τ1 can resume and run to completion.

4.2.4 Real-time Scheduling Algorithms for Multiprocessor Systems

Satisfying the deadlines of a set of real-time tasks in a multiprocessor system requires a

scheduling algorithm that determines, for each task in the system, in which processor

they must be executed (allocation problem), and when and in which order, with

respect to other tasks, they must start their execution (scheduling problem) [91].

The allocation problem has been solved assuming a fixed or an infinite number of

processors. In the fixed case, the objective is to find an allocation algorithm and a

schedulability test to verify that a given task set is schedulable on a fixed number of

processor [50]. In the infinite case, the problem of allocating a set of tasks is analogous

to the Bin-Packing problem [11], in which the processor is a bin, whose capacity is

given by the utilization bound of the processor. In the Bin-Packing problem, it is

required to put n tasks with weight uk (i.e., utilization of a task) into the minimum

number of bins (i.e., processors) such that the total sum of weights of the tasks on

each bin do not exceed the maximum capacity of the bin.

As described earlier, the scheduling of real-time tasks on multiprocessors can be

performed under the partitioning scheme or under the global scheme. In the fol-

lowing paragraphs, the partitioned multiprocessor approach under RM and EDF is

introduced and the best-known heuristic algorithms and different schedulability con-

ditions are described. Also, the best-known heuristic algorithms based on the global

multiprocessor approach under RM and EDF and their schedulability conditions are
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introduced.

4.2.4.1 Global EDF

As previously explained, a set of independent, periodic tasks, in which the deadline

of each task is equal to its period, is always successfully scheduled by EDF on a

single processor if the total utilization of the tasks does not exceed 1. However,

unfortunately, this optimality of EDF is not guaranteed on multiprocessor systems.

The authors in [18] showed that a system of independent, periodic tasks can be

scheduled successfully on m processors by EDF scheduling if

U =
n∑
i=1

ei
pi
≤ m(1− umax) + umax (4.12)

where umax is the maximum utilization of any individual task, that is, umax =

maxi u(i). They also showed that this utilization bound is tight, in the sense that

there is no utilization bound Û > m(1 − umax) + umax + ε, where ε > 0, for which

U ≤ Û guarantees EDF schedulability. Also, according to [77], the authors examined

the global EDF scheduling of periodic tasks on multiprocessors, and showed that any

system of independent, periodic tasks for which the utilization of every individual

task is at most m/(2m− 1) can be scheduled successfully on m processors if

U ≤ m2

2m− 1
. (4.13)

Global EDF is an extension of EDF for multiple processors [3]. Similar to EDF,

tasks are sorted in a non-decreasing order with respect to their absolute deadlines

in a system-wide queue, from which the first k tasks are released to execute on the

available k processors. Scheduling events occur only when new tasks are introduced

or when a task completes. In order to help understand the algorithm, let’s take for

example a set of tasks, of which timing information is summarized in Table 12. When

task τ1 arrives, there is no tasks running, so it takes processor P1. Similarly, task τ2

takes processor P2. Tasks τ3 and τ4 arrive at the same time, t = 2, but τ4 occupies
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Table 12: Task set for the example of global EDF scheduling algorithm.

Task, τi Arrival
time, ai

Execution
time, ei

Absolute
deadline,
di

τ1 0 2 5

τ2 1 3 7

τ3 2 2 10

τ4 2 4 9

τ5 3 3 12

τ6 3 3 15

τ7 3 4 14

the first available processor, P3, since its absolute deadline is earlier than τ3’s, that is,

it has the higher priority than τ3. As a result, task τ3 takes the remaining processor,

P4. The same procedure is applied to tasks τ5, τ6, and τ7. Since d5 < d7 < d6 and

processor P3 is not available when the tasks arrive, task τ5 is assigned to processor

(a) tasks ordered by absolute deadline

(b) processor assignment

Figure 59: Example of global EDF scheduling algorithm.
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Table 13: Class definition for the example of next-fit algorithm for RM scheduling
algorithm (Source: Krishna and Shin [38]).

Class Bound

C1 (0.41, 1]

C2 (0.26, 0.41]

C3 (0.19, 0.26]

C4 (0.00, 0.19]

P1, τ6 to P4, and τ7 to P2. Figure 59 shows the order of the tasks with respect to

their absolute deadlines and the processor assignment scheduled by the global EDF

algorithm.

4.2.4.2 Next-Fit Algorithm for RM Scheduling

The next-fit algorithm for RM scheduling is a utilization-based allocation heuristic

that is proposed specifically to be used in conjunction with the rate-monotonic (RM)

scheduling algorithm described in §4.2.3.1. The task set has the properties of RM

scheduling algorithm (i.e., independence, preemptibility, and periodicity). A mul-

tiprocessor is assumed to consist of identical processors and tasks are assumed to

require no resources other than processor time. Task τi is in class m < M (M > 3) if

21/(m+1) − 1 <
ei
pi
≤ 21/m − 1 (4.14)

and in class M otherwise [38]. The set of tasks is divided into various classes based

on their utilization, and a set of processors is exclusively assigned to each task class.

Then, tasks are allocated, one by one, to the appropriate processor class until all

the tasks have been scheduled, adding processors to classes if necessary for RM-

schedulability, which is that if a set of nm tasks in the class m is scheduled according

to the rate-monotonic scheduling algorithm, then the minimum achievable utilization
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Table 14: Task set for the example of next-fit algorithm for RM scheduling algorithm
(Source: Krishna and Shin [38] with modifications, u(i) = ei/pi, refer to Equation
(4.14) for class assignment).

τ1 τ2 τ3 τ4 τ5 τ6 τ7 τ8 τ9 τ10

ei 5 7 3 1 10 16 1 3 9 17

pi 10 21 22 24 30 40 50 55 70 90

u(i) 0.50 0.33 0.14 0.04 0.33 0.40 0.02 0.05 0.13 0.19

Class C1 C2 C4 C4 C2 C2 C4 C4 C4 C3

factor is nm(21/nm − 1) as in Equation (4.10). The function f(nm) = nm(21/nm − 1) is

a strictly decreasing function with regard to nm, the number of tasks on a processor.

In order to clarify the process, let’s look into an example. Suppose there are four

classes (M = 4), whose utilization bound are summarized in Table 13, and consider

the periodic task set in Table 14. Let processor Pi be reserved for tasks in class Ci,

1 ≤ i ≤ 4. Since class C1 has only one task, τ1, of which utilization u1 is less than

1, it is RM-schedulable, so task τ1 is assigned to processor P1. Similarly, task τ2 is

assigned to P2, and τ3 to P4. Since τ4 ∈ C4 and u3 + u4 < 2(21/2 − 1) = 0.83 (refer

to Equation (4.10)), {τ3, τ4} is RM-schedulable on the same processor P4, and, thus,

task τ4 is also assigned to processor P4. Also, since τ5 ∈ C2 and u2 + u5 < 0.83,

{τ2, τ5} is RM-schedulable, and task τ5 is assigned to processor P2. However, even

though τ6 ∈ C2, {τ2, τ5, τ6} is not RM-schedulable on the same processor p2 because

u2 + u5 + u6 > 3(21/3 − 1) = 0.78, and so an additional processor P5 is assigned to

C2 tasks and task τ6 is assigned to processor P5. In the same manner, {τ3, τ4, τ7}

is RM-schedulable on the same processor p4 since u3 + u4 + u7 < 0.78, so task τ7 is

assigned to processor p4. The similar procedure can be done on tasks τ8, τ9, τ10. The

processor assignments are summarized in Table 15. With this assignment, the RM

scheduling algorithm can be run on each processor.
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Table 15: Task assignments for the example of next-fit algorithm for RM scheduling
algorithm.

Processor Tasks

p1 τ1

p2 τ2, τ5

p3 –

p4 τ3, τ4, τ7, τ8, τ9, τ10

p5 τ6

4.2.4.3 Bin-packing Algorithm for Task Assignment to Processors

“The bin-packing algorithm assigns tasks to processors under the constraint that the

total processor utilization must not exceed a given threshold, which is set in such a way

that the uniprocessor scheduling algorithm is able to schedule the tasks assigned to

each processor” [38]. Suppose that there is a set of periodic independent preemptible

tasks to be assigned to a multiprocessor consisting of identical processors. The task

deadlines equal their periods and tasks require no other resources than processor time.

For example, so long as the sum of the utilizations of the tasks assigned to a processor

is no greater than n(21/n−1) (or 1) (refer to Equations (4.10) and (4.11)), the task set

is RM-schedulable (or EDF-schedulable) on that processor. So, the problem reduces

to making task assignments with the property that the sum of the utilizations of the

tasks assigned to a processor does not exceed n(21/n − 1) (or 1). It is also desirable

to minimize the number of processors required, which can be viewed as the famous

bin-packing problem and there exist many algorithms for solving the bin-packing

problem. One of the solutions for the bin-packing problem is the first-fit decreasing

algorithm. Suppose there are n tasks to be assigned, and tasks are sorted out so that

their utilizations (i.e., ui = ei/pi, where ei is the execution time and pi is the period)
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Table 16: Task assignments for the example of first-fit algorithm.

Step Task τi u(i) Assigned to Post-assignment U vector

1 τ1 0.50 P1 (0.50)

2 τ6 0.40 P1 (0.90)

3 τ2 0.33 P2 (0.90, 0.33)

4 τ5 0.33 P2 (0.90, 0.66)

5 τ10 0.19 P2 (0.90, 0.85)

6 τ3 0.14 P2 (0.90, 0.99)

7 τ9 0.13 P3 (0.90, 0.99, 0.13)

8 τ8 0.05 P3 (0.90, 0.99, 0.18)

9 τ4 0.04 P3 (0.90, 0.99, 0.22)

10 τ7 0.02 P3 (0.90, 0.99, 0.24)

are in non-increasing order. The algorithm is listed in Algorithm 3 on page 133.

To help understand the algorithm, consider the task set in Table 14, which will

be assigned by applying the first-fit decreasing algorithm. The ordered list of tasks is

L = (τ1, τ6, τ2, τ5, τ10, τ3, τ9, τ8, τ4, τ7), based on their utilization. The assignment

process is summarized in Table 16, where the vector U = (U1, U2, U3, . . .) contains

the total utilization of processor Pi in Ui.

4.2.4.4 Focused Addressing and Bidding Algorithm

The focused addressing and bidding (FAB) scheduling algorithm is simple enough

to be an online procedure and is used for task sets consisting of both critical and

non-critical real-time tasks [38]. Based upon the partitioning strategy, the algorithm

assumes that tasks arrive at the individual processors in the multiprocessor system.

Once a task arrives at a processor, the processor checks if it has all resources and

time to execute the task by its deadline while satisfying the deadlines of the other
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Algorithm 3 Pseudocode of first-fit decreasing algorithm [38].

1: initialize i to 1.
2: Set U(j) = 0 for all j.
3: while i ≤ n do
4: Let j = min{k|U(k) + u(i) ≤ 1.
5: Assign the i-th task in L to pj.
6: i← i+ 1.
7: end while

tasks it already has. If it has resources and time, then it adds the task to its list of

tasks to be executed. However, if it finds itself unable to meet the deadline or other

constraints of all its tasks, then it tries to move some of its tasks onto other processors

by announcing which task(s) it would like to move and waiting for the other processors

to offer to take them up, which is done by the algorithm, called the FAB algorithm.

The FAB algorithm works as follows. Let’s assume that there is an overloaded

processor PV that has a task to be moved to another processor to satisfy the timing

constraints of the task. Each processor has a list or table containing which tasks it

has already committed to run. As well, they have a table with the computational

capacity of every other processor in the system. When searching for another processor

on which it moves its task that cannot be executed on itself, the processor PV checks

its information on other processors, selects a processor (called the focused processor)

PS, which is believed to be the most likely to be able to execute the task by its

deadline, and sends the task to the processor PS. Also, processor PV sends out

requests for bids (RFB), which contain the information of the task (execution time,

deadline, etc.), to other lightly loaded processors. Any processor that can successfully

execute the task sends a bid to the focused processor PS, stating how quickly it can

process the task. After receiving all bids, the focused processor PS reviews the bids

to see which other processor is most likely to be able to do so, and transfers the task

to that processor if the processor sending the bid can process the task better than PS

itself.
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4.3 Frequency Regulation and Vehicle-to-Grid (V2G) Tech-
nologies

4.3.1 Frequency Regulation

According to the Federal Energy Regulatory Commission (FERC), ancillary services

are defined as “those services necessary to support the transmission of electric power

from seller to purchaser, given the obligations of control areas and transmitting util-

ities within those control areas, to maintain reliable operations of the interconnected

transmission system” [15]. Ancillary services provide the system operators with re-

sources required to reliably maintain the instantaneous and continuous balance be-

tween generation and load. Traditionally, ancillary services have been provided by

generators; however, the integration of intermittent generation such as solar and wind

and the development of smart grid technologies have prompted a shift in the equip-

ment that can be used to provide ancillary services. Generators are manufactured in

order to work best within a given frequency range, and if the system frequency goes

out of bounds, they disconnect themselves to avoid damages, and blackouts can occur.

To avoid this scenario, automatic regulation mechanisms using ancillary services are

utilized. The network operator holds online power capacity that can be activated at

any time to bring balance between generation and demand to the grid. The primary

reserve such as frequency responsive spinning reserves stops the frequency drift in

case of an event, e.g., a plant going down, and the secondary reserve (supplemental

reserve) brings the frequency back to its nominal value. Tertiary reserve (replacement

reserve) can solve longer-term (a few hours) imbalances. Key ancillary services are

summarized in Table 17.

Frequency regulation and load following are the two ancillary services that are

required to continuously balance generation and load under “normal operating con-

ditions” [37]. Figure 60 shows an example of the morning ramp-up decomposed into

base energy, load following, and regulation. The smooth load following ramp – the
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Table 17: Definitions of key ancillary services [37].

Service Service description

Response speed Duration Cycle time

Regulation Power sources online, on automatic generation control, that
can respond rapidly to system-operator requests for up and
down movements; used to track the minute-to-minute fluctu-
ations in system load and to correct for unintended fluctua-
tions in generator output to comply with Control Performance
Standards (CPSs) 1 and 2 of the North American Reliability
Council (NERC 2002)

∼1 min Minutes Minutes

Spinning
reserve

Power sources online, synchronized to the grid, that can in-
crease output immediately in response to a major generator
or transmission outage and can reach full output within 10
min to comply with NERC’s Disturbance Control Standard
(DCS)

Seconds to < 10 min 10 to 120 min Days

Supplemental
reserve

Same as spinning reserve, but need not respond immediately;
units can be offline but still must be capable of reaching full
output within the required 10 min

< 10 min 10 to 120 min Days

Replacement
reserve

Same as supplemental reserve, but with a 30-min response
time; used to restore spinning and supplemental reserves to
their pre-contingency status

< 30 min 2 hours Days

Voltage
control

The injection or absorption of reactive power to maintain
transmission-system voltages within required ranges

Seconds Seconds Continuous
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blue curve – is shown to start as a base energy of 3566 MW and rise to 4035 MW.

Regulation – the dark green curve – consists of the rapid fluctuations around the un-

derlying trend, also shown on an expanded scale to the right with a ±55 MW range

– the red curve. Regulation is performed at the system level and uses on-line gen-

erators, storage, or load that is equipped with automatic generation control (AGC)

and that can change quickly (MW/min) to track the constantly fluctuating load and

to correct for unintended fluctuations in generation as well. This is accomplished

primarily by turning large generators on and off, or ramping them up and down,

some on a minute-by-minute basis, which incurs a great deal of operating cost. Like

regulation, load following also uses on-line generation, storage, or load equipment

that is not necessary to equip with AGC to track the intra- and inter-hour changes in

customer loads. The characteristics of regulation and load following are summarized

in Table 18.

In order to synchronize generation assets for electric power grid operations, the

system frequency – the measure for the balance between generation and load – must

be maintained within tight tolerance bounds, typically ±0.5 Hz around the nominal

value, for instance 60 Hz in the U.S. A gap between power generation and demand

Figure 60: An example of frequency regulation [37].
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Table 18: Characteristics of regulation and load following [37].

Regulation Load following

Patterns Random and uncorrelated Highly correlated

Control Requires AGC Can be manual

Maximum swing Small 10–20 times regulation

Ramp rate (MW/min) 5–10 times load following Slow

Sign changes per unit time 20–50 times load following Few

on the grid causes the grid frequency to move away from its nominal value, which is

the same everywhere on an interconnected grid, and the grid frequency must remain

as close as possible from this value. For instance, if load is less than generation, then

the system frequency increases, and if load exceeds generation, it decreases. Without

frequency regulation, the frequency deviation from the nominal one keeps increasing

or decreasing (Line 1 in Figure 61); on the other hand, the frequency regulation keeps

the deviation from the nominal minimized (Line 2 Figure 61). Within a typical utility

system, a 1% change in frequency will lead to a 1% change in load, as illustrated in

Figure 62. If, for example, there is a 1000 MW load and frequency drops by 1% to

Figure 61: Frequency drop [88].
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59.4 Hz, the load will also reduce by 1%, that is by about 10 MW to 990 MW.

The authors in [37] claimed that some storage technologies should be excellent

regulation providers because this matches a zero net energy resource with a zero net

energy service and that the quick response and precise control offered by storage is

also superior to the control capabilities of many conventional generators. They also

claimed that technologies capable of performing repeated high cyclic storage without

degradation in their performance will be best suited for regulation.

4.3.2 Vehicle-to-Grid (V2G) Concept

The electric power grid and light vehicle fleet are exceptionally complementary as

systems for managing energy and power. The power grid has essentially no storage,

so it is necessary to continuously manage generation and transmission to match fluc-

tuating customer load. By contrast, light vehicles inherently must have storage since

their prime mover and fuel must be mobile, and they are designed to have large and

frequent power fluctuations due to their nature of road driving. The high capital

cost of large generators motivates high use (average 57% capacity factor); however,

personal vehicles are cheap per unit of power and are utilized only 4% of the time

for transportation, making them potentially available the remaining 96% of time for

Figure 62: Frequency deviation due to load change [21].
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a secondary function [33].

EVs can generate or store electricity when parked, and with appropriate connec-

tions can communicate with the power grid to sell demand response (DR) services by

either selling electricity back to the grid or by adjusting their charging rates, which is

called vehicle-to-grid (V2G). Figure 63 illustrates the basic concept of V2G, connec-

tions between vehicles and the electric power grid, and benefits that can be obtained

by applying the V2G technology. The basic concept of V2G is that the batteries

in EVs could be used to let electricity flow from vehicles to the electric distribution

network and back since at any given time almost 95% of EVs are parked. Vehicles

can be fully electric vehicles, hybrids, or any other vehicle with an onboard battery.

V2G is classified into two categories based on the power flow direction: unidirectional

V2G and bidirectional V2G. In the concept of unidirectional V2G, all legacy EVs

can participate without any retrofit to the EVs themselves or substantial additional

infrastructures in charging stations since they only act as controllable loads. On the

other hand, bidirectional V2G enables EVs to act as both controllable loads and en-

ergy source, which is expected to generate more benefits than what they could obtain

using unidirectional V2G.

In order to provide power to the grid, an EV must have three elements [34]:

(1) a connection to the grid for electrical energy flow,

(2) control or logical connection necessary for communication with the grid opera-

tor, and

(3) controls and metering on-board the vehicle.

Typically electricity flows one-way from the generators through the grid to customers.

On the other hand, with the concept of V2G, electricity flows back to the grid from

EVs, or with battery EVs, the flow is two-way (shown in Figure 63 as two arrowed

lines). The control signal from the grid operator could be a broadcast radio signal, or

through a cellular phone network, direct Internet connection, or power line carrier.
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In any case, the grid operator sends requests for participation to demand response

(DR) services to a large number of EVs. The signal may go directly to each individual

vehicle, or to the office of a fleet operator, which in turn controls vehicles in a sin-

gle parking lot, or through a third-party aggregator of dispersed individual vehicles’

power.

From EV owners’ perspective, they could save money by running their home from

their EV’s battery during peak hours. At night time, when the grid is less strained,

they charge their EV’s battery and take advantage of off-peak pricing. They could

also use excess power to sell back to the grid and get a discount on energy bills.

Viewed from the utility’s standpoint, a large population of EVs can help even out

peak load and stabilize the system frequency to maintain grid stability and reliability.

The concept allows EVs to provide power to the grid to help balance loads by “valley-

filling” – charging at night when demand is low – and “peak shaving” – selling power

back to the grid when demand is high. It also allows utilities not to build additional

generation plants to meet peak demand or as an insurance against blackouts. The

V2G technology can also provide utilities with new ways for ancillary services such as

regulation – keeping voltage and frequency stable – and spinning reserves – meeting

sudden demands or managing generator failures. Furthermore, EVs could be used

to complement renewable power sources (RES) such as solar and wind power, for

example, by storing excess energy during windy periods and providing power back to

the grid during high demand periods, thus effectively stabilizing the intermittency of

wind power.

4.3.3 V2G-based Frequency Regulation

EVs can act as both controllable loads and energy source within vehicle-to-grid (V2G)

framework. There are several ways in which the energy stored in EVs might be used

including [59]:

141



• peak shaving,

• load smoothing,

• smoothing intermittent output of renewable energy sources (RES),

• backup power supply, and

• ancillary services (e.g., voltage control, frequency regulation, etc.).

According to [59], EVs as distributed energy resources (DERs) are ideal for short

duration services such as frequency regulation, load following, or spinning reserves,

and for residential services such as load smoothing or peak reduction, based on their

power and energy characteristics. Among those services, several recent studies, as

reviewed in Chapter 2, have shown that there is potential for significant economic

return for using V2G as a frequency regulation provider.

As already described in the previous section, the purpose of frequency regulation

is to keep the balance between demand and supply of electricity. EVs could be used

to balance generation and load in two ways:

• smooth loads, esp. residential loads, to reduce variations in loads, and

• provide regulating reserves as an aggregate energy source.

Consider a scenario where an EV provides regulation service when being plugged in

but idle and is paid from the grid operator depending on the amount of energy it

sends back to the grid, while it has to pay for purchasing power from the grid to

charging its battery. Then, a revenue function for the EV can be defined as follows

[48]:

R (TC , r(t)) ,
∫
T−TC

PR(t)dt−M
∫
TC

r(t)PC(t)dt (4.15)

subject to

M

∫
TC

r(t)dt = Q, (4.16a)

0 ≤ r(t) ≤ 1 (4.16b)

142



where T is the expected plug-in duration, TC , the amount of time required to charge

up to the desired SOC, PR(t), price for providing regulation service, PC(t), price

for purchasing power from the grid, M , the maximum possible charging rate, r(t),

charging rate, and Q, energy required for the desired SOC. Equation (4.15) can be

rewritten as

R (TC , r(t)) =

∫
T

PR(t)dt−
∫
TC

[Mr(t)PC(t) + PR(t)] dt (4.17)

In order to maximize the revenue gained by providing regulation service, the second

integral term of Equation (4.17) should be minimized, and assuming that the prices

are given in an hourly basis yields the second integral term in a discrete form:

minimize
r(k)

N−1∑
k=0

[Mr(k)PC(k) + PR(k)] (4.18)

subject to

M
N−1∑
k=0

r(k) = Q and 0 ≤ r(k) ≤ 1 (4.19)

where N is the number of hourly timeslots in the expected plug-in duration T . Since

the on/off charging control at the maximum charging rate, i.e., r(k) = 1, maximizes

the revenue as claimed in [48], the solution to the optimization problem, Equation

(4.18), is to determine the charging sequence, a sequence of 1’s and 0’s, rather than

charging rates r(k). It is also proved in §3.1.3 that the on/off charging control would

maximize the utilization of the energy in the valley(s) of the load profile, resulting in

“valley-filling.”

In addition to maximizing the revenue, state-of-charge (SOC) is another factor

to be considered when investigating the V2G-based frequency regulation since the

charge and discharge are inherently disallowed at the top and bottom of the SOC,

respectively. For example, from the moment the SOC of an EV reaches 100%, down-

regulation, which corresponds to charging of the battery, cannot be performed since
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the battery cannot be charged any more. When SOC is near the bottom, the ve-

hicle cannot provide power to the grid for up-regulation, i.e., discharge the battery.

Furthermore, EV owners want to gain economical benefits by providing the ancillary

service, and also want to complete charging by when they plug out their vehicles

from the charging station. Therefore, SOC should be appropriately reflected in the

V2G-based frequency regulation. As shown in Figure 64, a weight function can be

applied to the revenue function, Equation (4.17), in order to consider the SOC in the

optimization problem. With the weight functions included, the price for regulation

PR(t) in Equation (4.17) can be rewritten as follows [25]:

Pr (t, s(t)) = PUR(t)WU (s(t)) + PDR(t)WD (s(t)) (4.20)

where PUR and PDR are the prices for up- and down-regulation, WU and WD are

the weight functions for up- and down-regulation, and s(t) is the SOC of the vehicle

battery. Since the prices PUR and PDR are contracted on hourly basis at most energy

markets, the price of regulation PR(t) could also be discretized as Equation (4.18).

In this chapter, the EV charging control problem, the main thrust of this research,

is introduced, and real-time systems and scheduling algorithms for those systems are

reviewed. In addition, the concept of vehicle-to-grid (V2G) technologies, one of the

Figure 64: Weighting functions on SOC for V2G-based frequency regulation [25].
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technical benefits that a large population of EVs can provide, and possible applica-

tions based on V2G technologies are addressed, and V2G-based frequency regulation,

which will be integrated to the framework for real-time EV charging control, is lastly

reviewed.
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CHAPTER V

TECHNICAL APPROACHES

The main objective of this chapter is to explain how each component of the real-time

scheduling algorithm for EV charging is implemented and how a simulation framework

for evaluating the algorithm and investigating its interactions with vehicle-to-grid

(V2G)-based frequency regulation is designed. In order to explain the implementa-

tion process more efficiently, the schematic overview of the real-time EV charging

scheduling algorithm with subsection numbers, where the corresponding component

is explained, is presented again in Figure 65. This chapter starts with the introduction

of the object-oriented models for EVs and the scheduler, followed by the explanations

for each component in Figure 65 and the front-end graphical user interface (GUI) of

the simulation framework.

Figure 65: Revisit of real-time scheduling algorithm for EV charging control.
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5.1 System Model of EV Charging Control System

As claimed in Chapter 3, an EV charging system can be modeled as a soft real-time

system, where the dissatisfaction of a few of timing constraints will not result in

a severe system failure. An EV charging system can be interpreted in two different

ways as illustrated in Figure 66. Since available power can be viewed as processors or,

conceptually, computing power of a real-time computing system, the concatenation

of available power for each time slot, t1, t2, ..., that is, total available power for EV

charging, can be regarded as the resource (i.e., computing power) of a uniprocessor

in a real-time computing system, as depicted in Figure 66(a). Available power for

(a) interpreted as a uniprocessor

(b) interpreted as a multiprocessor

Figure 66: Interpretation of EV charging as a real-time system.
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EV charging can be estimated based on the prediction of load profiles and the day-

ahead generation planning, or based on real-time measurements of load and generation

capacity because the scheduling of EV charging is done in real time, which will be

explained in §5.3.1 in depth. On the other hand, if available power for each time slot

is chopped up into small chunks of power and joined together as illustrated in Figure

66(b), the EV charging system can be modeled as a multiprocessor system with N

processors or CPUs, whose availability keeps changing, depending on available power.

According to the classification of real-time scheduling algorithms (refer to Figure

55 on page 120), there are two big categories of algorithms for multiprocessor sys-

tems: global scheduling and partitioning algorithms. For global scheduling cases, all

tasks are evaluated simultaneously for priority assignment; however, in partitioning

algorithms, tasks are divided into groups, within which tasks are evaluated. This

being interpreted in the domain of EV charging problem, for global scheduling, the

real-time EV charging scheduler allows the charging station with the highest priority

to be activated first, no matter what charging mode it belongs to; on the other hand,

in case of partitioning algorithms, the real-time EV charging scheduler first puts to-

gether EVs with the same charging mode into groups, and evaluates EVs of the same

group for assigning priorities.

For the purpose of the investigation of real-time scheduling algorithms applicable

to EV charging, two different queue structures are considered. For algorithms belong-

ing to global scheduling, all EVs are put in the same waiting queue to be evaluated

for priorities, based on the “urgency” combined with charging modes, are sorted out

with respect to their priorities at every time slot, and the EV with the highest prior-

ity is first released to the processing queue. For partitioning algorithms, four waiting

queues and four processing queues for the four different charging modes are imple-

mented. The size of the waiting and processing queues are determined proportional

to the number of EVs with the same charging mode. EVs are assigned to one of
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the waiting queues based on their charging mode, evaluated for priorities compared

with the other EVs in the same waiting queue, and EVs with higher priorities are re-

leased to the corresponding processing queue. The difference between the two queue

structures is illustrated in Figure 67.

(a) global scheduling algorithms

(b) partitioning algorithms

Figure 67: Queue structures for real-time scheduling algorithms.
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5.2 Object-oriented Programming (OOP) Model for
EV Charging Control System

A model for an EV charging system is implemented in MATLAB using its object-

oriented programming capability, which will allow for an extension to a more com-

plex environment using an agent-based modeling and simulation (ABM&S) toolkit

like the Recursive Porous Agent Simulation Toolkit, commonly known as Repast.

“The object-oriented programming (OOP) is a formal programming approach that

combines data and associated actions (methods) into logical structures (objects), and

this approach improves the ability to manage software complexity – particularly im-

portant when developing and maintaining large applications and data structures”

[56]. The object-oriented programming provides a number of benefits, including [61]:

1. Modularity: The source code for an object can be written and maintained

independently of other objects. Once created, an object can be easily passed

around inside the system.

2. Information-hiding: By interacting only with an object’s methods, the details

of its internal implementation remain hidden from the outside world.

3. Code reusability: If an object already exists, the object can be used in other

program. This allows for use of complex, task-specific objects, developed by

experts.

4. Pluggability/debuggability: If a particular object turns out to be problematic,

it can be simply removed from an application and a different object can be

plugged in as its replacement.

In this section, it will be explained how to implement a model for an EV charging

system using the object-oriented programming technique.
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5.2.1 EV Class

The modeling of an EV charging system begins by defining a class to describe an

EV in MATLAB with a class definition file as shown in Figure 68. A class is a

prototype that models the states and behaviors of a real world object, and an object,

created from a class, is a software bundle of related states and behaviors. The initial

representation contains only charging status/requirements such as plug-in/-out time

and state-of-charge (SOC), representing them as class properties. Then, methods –

operations that can be carried out on objects – are added to the class definition files.

The EV class constructor creates an EV object containing related parameters (or

Figure 68: Anatomy of EV class.
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Table 19: State definition for EV objects.

State Description

STATE 0 plugged out

STATE 1 plugged in, but not being charged

STATE 2 plugged in, and being charged

STATE 3 completed charging

variables), and it could also be a copy constructor, which makes a clone of existing ob-

jects. In addition, two underlying methods, getParameter() and setParameter(),

are implemented to allow the EV class for two basic operations on class proper-

ties, “read” and “write”, respectively. The updateStatus() method checks whether

an EV is plugged in to the system, and if so, it calculates the information such

as energy queue length, current SOC, and so on, and updates the properties (i.e.,

class variables) of the EV object. When it updates the properties of an object,

it invokes the getParameter() and setParameter() methods. Lastly, the method

msg2scheduler(), allowing an EV object to send a request for activation as well as

up-to-date information to the scheduler through a simple communication protocol,

is also added. The inclusion of the msg2scheduler() method enables a more realis-

tic model for the EV charging control system in that it mimics the communication

between the dispatch scheduler and EVs in the real world.

5.2.2 Finite State Machine for EV Class

Objects share two characteristics: states and behaviors. Identifying states and be-

haviors for objects is the first step of designing a class in terms of object-oriented

programming. Depending on whether it is plugged in, being charged, or completed

charging, an EV object has four states, which are summarized in Table 19. STATE 0
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represents a state in which an EV object is not plugged in yet. In STATE 1, the EV

is plugged in, but not allowed to refill its battery yet. If, then, it is allowed to start

charging, the EV switches its state to STATE 2. The last state identified is STATE 3

where the EV finishes charging up to the desired plug-out SOC.

The state transition diagram for EV objects, in terms of system variables and EV

object variables, is provided in Figure 69. Initially, an EV is in STATE 0, and it stays

there during the time period of t < tplugin where t is the current time and tplugin is the

plug-in time of the EV. Once it has been plugged in to the system (t ≥ tplugin), the

state of the EV is switched to STATE 1, in which the charging station, to which the

EV is connected, sends an activation request message to the scheduler, but it does

not start charging and is waiting for an activation signal from the scheduler; in other

words, in terms of scheduling, the EV has been assigned to the waiting queue, but has

not had a chance to be assigned to the processing queue yet. The scheduler determines

if an EV can be assigned to the processing queue, i.e., start charging, depending on

power available for EV charging (nPQ, number of available processing queues) and

Figure 69: State transition diagram for EV objects.
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Table 20: State transition table for EV objects.

Current
state

Condition Next state Behaviors

STATE 0
t < tplugin STATE 0 none

t ≥ tplugin STATE 1 send a message to scheduler
for activation; added to waiting
queue

STATE 1

t ≥ tplugout STATE 0 plugged out

nPQ ≤ nEVsInPQ STATE 1 send a message to scheduler for
status update

nPQ > nEVsInPQ STATE 2 assigned to processing queue;
start charging

STATE 2

t ≥ tplugin STATE 0 plugged out

nPQ ≤ nEVsInPQ STATE 1 stop charging; moved back to
waiting queue

nPQ > nEVsInPQ STATE 2 keep charging; send a message for
status update

s(t) = splugout STATE 3 removed from processing queue

STATE 3
t ≥ tplugout STATE 0 plugged out

t < tplugout STATE 3 none

the utilization level of the processing queue (nEVsInPQ, number of EVs in processing

queues), and sends an activation signal back to the charging station. Then, the EV

connected to the station gets activated, starts refilling the battery, and is switched

to STATE 2. In STATE 2, the EV can possibly go to every state depending on its

plug-out time (tplugout) and power availability (nPQ and nEVsInPQ). If the current time

is greater than its plug-out time, the EV goes to STATE 0; otherwise, it stays in STATE

2, i.e., keeps charging its battery when power is available (nPQ−nEVsInPQ > 0) or goes

to STATE 1, by stopping charging when power is not available (nPQ − nEVsInPQ ≤ 0)

or being preempted by EVs with higher priorities. If the battery of the EV is fully
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charged (s(t) = splugout, where s(t) is the current SOC), then it switches its state to

STATE 3. In STATE 3, there are only two possibilities: stays in STATE 3 if it is not

plugged out (t < tplugout) or goes to STATE 0 if it is plugged out (t ≥ tplugout). The

state transition and behaviors of an EV object are summarized in Table 20.

5.2.3 Scheduler Class

Once the class for EV objects has been designed, the next step is to design a class for

a scheduler object. First, class variables are declared, which includes two matrices for

the waiting and processing queue, the number of which depends on the type of real-

time scheduling algorithms (global vs. partitioning), and two scalar pointer variables

for indexing the queues, one scalar variable for the number of available processing

queues at a specific time, and two fractional weighting factors for dynamic priority

calculation: one for the urgency (γn) and the other for charging mode. The structure

of the scheduler class is shown in Figure 70.

In this research, two types of real-time scheduling algorithms for multiprocessor

systems are considered: global scheduling algorithm and partitioning algorithm. De-

pending on the type of real-time scheduling algorithms applied, the structure of queue

is different as depicted in Figure 67. For global scheduling algorithms, every task is

waiting to be released in a system-wide waiting queue, and based on scheduling policy,

it is released, i.e., assigned to an available processing queue among multiple processing

queues. In a real-time computing system, the number of precessing queues or proces-

sors is typically known; however, based on the interpretation of EV charging control

as a real-time multiprocessor system, it is not possible to know the number of process-

ing queues before an actual charging schedule is generated. In the following section,

the determination of the number of available processing queues will be explained in

depth. On the other hand, for partitioning algorithms, multiple waiting queues, ded-

icated to different classes of tasks, are required, and the number of waiting queues
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Figure 70: Anatomy of scheduler class.
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is determined by the class definition of tasks, for instance, a utilization-based class

definition for the next-fit algorithm for rate monotonic (RM) scheduling, introduced

in §4.2.4.2.

For scheduling purposes, waiting queues (wq) and processing queues (pq) are de-

signed to have various information such as charging mode, urgency, as illustrated

in Figure 71, rather than having only station ID information, since, in this work,

a variety of real-time scheduling algorithms and priority assignment policies are in-

vestigated to identify scheduling algorithms applicable to EV charging control and

characterize the effects of priority assignment policies on scheduling performance.

For global earliest deadline first (EDF), where the closeness to deadline determines

priorities, information on plug-out time is used to determine priorities. The two

parameters, charging mode and urgency, which is defined as energy required per

unit time, En/(tplug out − t), where En is energy queue length, are also utilized to

determine dynamic priorities as a variant of global EDF, and their weights are de-

termined by the weighting factors, wgt1 and wgt2. The pointers (wt and pt), also

declared in the definition file of the scheduler class, are designed to point to the last

EV in the queue. The number of available processing queues (npq), derived from

available power, is also contained in the scheduler class, based on which the scheduler

determines the approximate number of EVs that can be assigned to processing queues

Figure 71: Example of the information contained in queues.
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and their charging rates.

Similar to the EV class, the scheduler class has a class constructor for creating

or cloning objects and two basic methods getParameter() and setParameter() for

reading class variables from the queues or writing them to the queues, respectively.

The method msgHangler() is, in addition, added to the class definition to decode

messages sent by charging stations and to assign EVs – that have sent messages –

to the waiting queue for scheduling. For the purpose of easy exchange of schedul-

ing algorithms for the investigation of real-time scheduling algorithms, the meth-

ods genSchedule() and switchQueue() are implemented separately. The method

switchQueue() moves EVs in the waiting queue to the processing queue when power

is available or moves EVs in the processing queue back to the waiting queue when

power is not available or when EVs with lower priorities are preempted by EVs with

higher priorities. The method genSchedule() generates a schedule based on the in-

formation sent by EVs, determining which EVs can be assigned to which processing

queues or which EVs should be preempted by which EVs. Once a charging schedule is

determined, the method sends activation signals along with allowable charging rates

back to EVs that requested activations.

5.2.4 Message Protocols between EVs and Scheduler

EV charging should be scheduled online and in real time through the interactions

between EV objects and a scheduler object, which must be done via a kind of com-

munication channel in the real world. Since it is obvious that a kind of digital com-

munications will be used for this purpose, the communications between EV objects

and the scheduler object are assumed to be done via simple digital message protocols.

This kind of approach will allow further studies on the investigation of requirements

of communication system supporting the EV charging system such as bandwidth,

channel capacity, and so on.
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Table 21: Message protocol for EV objects.

Packet Bit length Range

Station ID 8-bit 0 – 255

EV State 2-bit 0 – 3

Energy Queue Length 20-bit (5 bits for integer
part, 15 bits for fractional
part)

0 – 32

Plug-out Time 11-bit (5 bits for hour, 6 bits
for minutes)

0:00 – 23:59

Charging Mode 2-bit 0 – 3

The message format that an EV sends to the scheduler consists of five data pack-

ets, as depicted in Figure 72, each of which contains Station ID, EV State, Energy

Queue Length, Plug-out Time, and Charging Mode, respectively. A binary sequence

containing the information sent by EVs through charging stations is composed of 43

bits, and, for expandability, each data packet is designed to have extra bits. Details

such as bit length and representable range are summarized in Table 21. An 8-bit data

packet is assigned for Station ID, and it can represent 256 EVs (or charging stations)

in the grid. As previously described in §5.2.2, an EV object has four different states,

which can be represented by a 2-bit binary sequence. For Energy Queue Length, 20

bits are assigned, of which 5 bits are for integer part and 15 bits for fractional part.

For example, let’s assume that an EV has a battery capacity of 16 kWh and a 15%

plug-in SOC, and wants to refill its battery up to 100%, which means that its energy

Figure 72: Message format of an EV charging station to scheduler.
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queue length, i.e., energy required to refill the battery, is 13.6 kWh. Then, the energy

queue length of 13.6 kWh can be encoded as a 20-bit binary sequence as follows:

13.6 = 23 + 22 + 20 + 2−1 + 2−4 + 2−5 + 2−8 + 2−9 + 2−12 + 2−13

= 01101︸ ︷︷ ︸
13

100110011001100︸ ︷︷ ︸
0.6

The same encoding policy is applied for Plug-out Time. The 5 bits for hour can

represent 0 to 31 and the 6 bits for minutes can represent 0 to 63. Therefore, if an

EV wants to complete charging by 8:30 in the morning, then the binary representation

of the plug-out time is

8 : 30⇒ 01000︸ ︷︷ ︸
8

+ 011110︸ ︷︷ ︸
30

Similar to EV State, Charging Mode is also represented as a 2-bit binary sequence.

A scheduler object has a function capable of translating encoded messages and the

decoding process is done in the opposite direction to the encoding procedure.

On the other hand, the scheduler object broadcasts activation signals along with

charging rates to EV objects, and each EV object, which has been plugged in, receives

the message, extracts the information belonging to itself, and starts charging or keeps

requesting an activation to the scheduler. The message format that a scheduler object

broadcasts to EV objects is designed in the similar fashion with the message from

EV objects to an scheduler object. An example message is depicted in Figure 73,

and detailed information is summarized in Table 22. In this case, a binary sequence

consists of 30 bits, of which 8 bits are for Station ID, 2 bits for Activation signals,

Figure 73: Message format from scheduler to EV objects.
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Table 22: Message protocol for scheduler object.

Packet Bit length Range

Station ID 8-bit 0 – 255

Activation 2-bit (00: deactivated, 01:
activated)

0 – 3

Charging Rate 20-bit (1 bit for sign, 4 bits
for integer part, 15 bits for
fractional part)

−16 – +16

and 20 bits for Charging Rate. A binary sequence 00 for Activation indicates that

an EV is not allowed for charging or is preempted by an EV with higher priority,

while a sequence 01 allows an EV to start charging. As mentioned before, 20 bits

are assigned for Charging Rate, of which 1 bit is for sign, allowing negative power

flow, from EVs to grid, for the purpose of V2G-based frequency regulation, 4 bits

for integer part, and 15 bits for fractional part of charging rates. The procedure to

encode the Charging Rate packet of a message within a scheduler object is the same

as described earlier for the message from EV objects to a scheduler object. Similarly,

the translation of a coded message can be done as follows: let’s assume that an EV

receives a message from the scheduler, saying that it is allowed to start charging at

a certain charging rate, encoded as 0 0011 010011001101000. Then, the charging

rate for the EV can be decoded as follows:

0 0011 010011001101000 = 0︸︷︷︸
+

+ 21 + 20︸ ︷︷ ︸
3

+ 2−2 + 2−5 + 2−6 + 2−9 + 2−10 + 2−12︸ ︷︷ ︸
0.3

= +3.3 kW

which means that the EV can purchase power from the grid to refill its battery. If

the sign bit is set to 1, that is, 1 0011 010011001101000, then the charging rate is

decoded as −3.3 kW, indicating that the EV is required to sell power to the grid, if
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possible.

Introduced in this subsection are two simple message protocols for 1) request

for activation of charging stations to the scheduler and 2) broadcast of activation

signals and charging rates of the scheduler to charging stations. The protocols are

implemented in such a way that they can be utilized for further analysis on the

scalability of the simulation framework and communication system capability, e.g.,

channel bandwidth, channel capacity, and so on.

5.2.5 Overall OOP Model for EV Charging Control System

Figure 74 overviews the overall OOP model for an EV charging system. It is as-

sumed that the measurements of power consumption are acquired by a utility and

are provided to the scheduler object. Hence, the function generating load profiles is

contained in the module UTILITY. Furthermore, it is also assumed that the utility

performs the estimation of EV power consumption and provides the information to

the scheduler object to calculate available power for EV charging at a specific time

instant. The flowchart in Figure 75 illustrates the order of the process and informa-

tion flow of scheduling EV charging. At first, EV objects are created by calling the

class constructor and initialized based on EV profiles provided by a user. At the same

time a scheduler object is created and initialized by receiving a predicted load profile,

which is provided by the Utility module.

Once it has been plugged in (t ≤ tplugin), an EV starts sending a message via the

message protocol, as introduced in §5.2.4, to request the activation of the charging

station to which it has been plugged in, and, after that, keeps sending a message to let

the scheduler know its current status, based upon which the scheduler can generate

a charging schedule. The scheduler object decodes messages from EV objects, and

determines which EVs can be assigned to the processing queues or should remain in

the waiting queue. After determining EVs assignable to the processing queues, the
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scheduler generates a charging schedule in accordance with a scheduling policy, and

broadcasts activation signals along with charging rates back to EV objects. Based on

the message containing activation and charging rate information, the EV updates its

status such as energy queue length and SOC. If the EV has completed charging, the

scheduler deactivates the charging station based on the EV’s energy queue length or

SOC information, and the charging station stops sending a message to the scheduler.

If not, the EV keeps sending a message to the scheduler to update the information on

the waiting queue or processing queue and obtain a chance to recharge its battery.

Figure 75: Flowchart for real-time EV charging algorithm.
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5.3 Real-time Scheduling for EV Charging

In this section, details on the implementation of the blocks in Figure 65 are described,

and the order of the explanation follows the numbers on each block.

5.3.1 Reference EV Power Demand Estimation

Basically, a real-time scheduler allocates a limited resource of processors, i.e., com-

puting power, to different tasks, of which requirements may be conflicting with each

other, in such a way that their timing constraints as well as functional requirements

can be satisfied. In a typical real-time computing system, the number of processors

or the amount of computing power is known before an actual scheduling process is

carried out. Therefore, as well for the real-time EV charging system, it is important

to know the charging capability of the system. In this research, since, contrasted with

the day-ahead valley-filling scheme, the number of EVs that can be charged at the

same time is controlled to achieve a flat load curve with EV owners’ charging require-

ments satisfied, the number of processing queues must be known before a charging

schedule is generated. For this reason, available power is discretized into small energy

packets, called charging packets, as illustrated in Figure 76, whose duration is ∆t and

amplitude is rmax. The number of charging packets at a time instant can be translated

into the number of processing queues, denoted by nPQ, which is equal to the number

of EVs being charged simultaneously. However, in case of real-time EV charging,

available power would keep varying, and thus the number of processing queues is not

invariant. Consequently, the number of available processing queues is required to be

expressed as a function of time, and can be estimated by dividing available power

at a time instant (Pa(t)) by a maximum charging rate (rmax) for homogeneous cases,

where all charging stations have the same power ratings as follows:

nPQ(t) =

⌈
Pa(t)

rmax

⌉
(5.1)
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(However, this approach is not applicable to heterogeneous cases where all charging

stations might not have the same power ratings, and thus another approach for het-

erogeneous cases will be explained later.) As a result, available power is required

to be estimated in order to calculate the number of available processing queues. In

this subsection, it is explained how to estimate available power (Pa), followed by the

explanation of the determination of the number of available processing queues (nPQ)

for heterogeneous cases in the following subsection.

In order to determine the number of available processing queues at a time instant,

it is required to estimate the amount of power available for EV charging as previously

explained. Available power can be estimated by taking the difference between gen-

eration capacity and non-EV power consumption at a specific time instant. Since a

utility makes a plan of generation based on predicted load profiles, the utility’s cost

running generation plants can be minimized if actual power consumption is forced

not to be deviated from the generation plan a lot. Hence, it is desirable to design

an EV charging system such that total power consumption follows the generation

plan as possible as it can. For this reason, the reference EV power demand hereafter

Figure 76: Concept of charging packets.
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refers to the day-ahead generation plan. For the purpose of estimating a reference

EV power demand, the optimal decentralized charging (ODC) algorithm presented

in [19] can be used (refer to Algorithm 1 on page 55); however, from the simulation

point of view, as the penetration level of EVs increases, the algorithm becomes more

computationally expensive, because the number of nonlinear optimization problems

to be solved increases, and, moreover, it does not take into account timing constraints

when generating a day-ahead planning. So the optimization problem for the valley-

filling as in Equation (2.26) is reformulated as Equation (5.2) so that a day-ahead

generation planning can be done very quickly, and, thus, the simulation runtime is

significantly reduced:

minimize
Pref(·)

(
T∑
t=1

(Pref(t)− Pbase(t))× (∆t/η)−
N∑
n=1

En

)2

(5.2)

where Pref is an optimal reference total demand, Pbase is the aggregated non-EV

demand, η is the charging efficiency, ∆t is the duration of each time slot, and En is the

energy queue length of the n-th EV, defined as En = (splugout(n)−sn(t))×βn, splugout,

sn and βn are the plug-out SOC, the SOC at time t, and the battery capacity of the

n-th EV, respectively. Equation (5.2) can be interpreted as follows: find a Pref such

that it minimizes the difference between energy available for EV charging and energy

required for EV charging. The ODC algorithm tries to find an optimal charging rate

that minimizes the total load variance while the reformulated optimization problem

minimizes the total load variance with respect to the reference total demand. Hence,

Equation (5.2) solves only one optimization problem rather than solves n optimization

problems until the algorithm converges to a solution as in the ODC algorithm [19].

However, this formulation does not take into account EV owners’ timing constraints

when finding an optimum reference EV power demand in terms of minimizing total

load variance, which might cause any of timing constraints not to be satisfied. If

timing constraints are available before the scheduler generates a charging schedule,
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then this drawback can be alleviated. Since it is reasonable to assume that almost all

EVs wanting to recharge are plugged in before midnight, the real-time EV charging

scheduler might be able to have information on plug-out times of almost all EVs, and

then let Tplugout denote the plug-out time of the last EV that will be plugged out from

the system such as:

Tplugout = max
n

tplugout(n), n = 1, 2, . . . , N (5.3)

where tplugout(n) is the plug-out time of the n-th EV, and N , the total number of EVs

in the system. Hence, Equation (5.2) can be re-expressed as

minimize
Pref(·)

Tplugout∑
t=1

(Pref(t)− Pbase(t))× (∆t/η)−
N∑
n=1

En

2

. (5.4)

The graphical difference between solutions for reference EV power demand provided

by Equations (5.2) and (5.4) is illustrated in Figure 77.

In order to solve the optimization problem in Equation (5.4), the binary search

algorithm is utilized. Since, in contrast to real-time computing systems, available

power for EV charging is discretized into many charging packets, if, for simplicity,

it is assumed that the scheduler allows an EV to be charged only at the maximum

charging rate in a time slot, the energy required to refill the battery of the n-th EV,

(a) estimated by Equation (5.2) (b) estimated by Equation (5.4)

Figure 77: Reference EV power demand estimation.
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i.e., energy queue length, can be expressed as

En = ηnrmax(n)∆tk(n) (5.5)

where ηn is the charging efficiency, rmax, the maximum charging rate, ∆t, the duration

of a time slot, and k, the total number of charging packets required to refill the battery

up to splugout, whose duration is ∆t and amplitude is rmax as depicted in Figure 76.

To clarify this relationship, take an example as shown in Figure 78, in which there is

an EV that has a 100% charging efficiency, its initial plug-in SOC is 20%, and wants

to charge up to 10 kWh. If it can be charged only at the maximum charging rate, 2

kW, and a charging schedule is generated at every 30 minutes, then the duration and

the amplitude of a charging packet is 0.5-hour and 2 kW, respectively. Therefore,

to recharge its battery up to 10 kWh, it must be assigned kn = 8 charging packets,

taking 4 hours to refill the battery. Furthermore, since, as previously assumed, the

scheduler has the charging information of the EVs, En can be calculated as follows:

En = {splugout(n)− splugin(n)} × βn, (5.6)

where splugin(n) and splugout(n) are the plug-in and plug-out SOCs, and βn, the battery

capacity of the n-th EV, respectively. Therefore, the number of charging packets

required for the n-th EV to be recharged can be obtained as

k(n) =

⌈
En

ηnrmax(n)∆t

⌉
=

⌈
{splugout(n)− splugin(n)} βn

ηnrmax(n)∆t

⌉
, (5.7)

Figure 78: Relationship between charging packets and energy queue length.
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where dxe = {n ∈ Z|n ≥ x}, and, in consequence, the total number of charging pack-

ets for the N EVs is

K =
N∑
n=1

k(n) =
N∑
n=1

⌈
{splugout(n)− splugin(n)} βn

ηnrmax(n)∆t

⌉
. (5.8)

Let P 0
ref denote an initial guess of the reference EV power demand, which can be

safely assumed to be the midpoint of the minimum non-EV power demand (Pmin
base)

and the maximum non-EV power demand (Pmax
base ), that is,

P 0
ref =

(
P 0

min + P 0
max

)
/2, (5.9)

where P 0
min = Pmin

base and P 0
max = Pmax

base , since EV power demand is most likely to

lie between them. From the initial guess for the EV power demand, the number of

charging packets available in a time slot t can be estimated as

k̂(t) =

⌈
Pa(t)

rmax

⌉
=

⌈
P 0

ref − Pbase(t)

rmax

⌉
. (5.10)

If

K̂ =

Tplugout∑
t=1

k̂(t) ≥ K, (5.11)

then P 0
ref is assigned to P 1

max; otherwise, P 0
ref is assigned to P 1

min. Then, Pref is updated

as follows:

P 1
ref =

(
P 1

min + P 1
max

)
/2. (5.12)

This process is repeated until the iteration reaches at the maximum number of iter-

ations or |K − K̂| < ε, ε > 0. The pseudocode of the reference EV power demand

estimation is listed in Algorithm 4.

As can be seen in Figure 77(b), however, both of the end parts of the estimated

reference EV power demand might not be smooth, in other words, the estimated

reference EV power demand might not be a C1-continuous curve1, resulting in abrupt

1A C1-continuous curve is a curve of which first derivatives are continuous.
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Algorithm 4 Pseudocode of the reference EV power demand estimation.

1: initialize Pmin and Pmax

2: for n = 1 to N do
3: En ← (splugout(n)− splugin(n))× βn
4: k(n)← d(En/(ηnrmax(n)∆t)e
5: end for
6: for i = 0 to Imax do
7: P i

ref ← (P i
min + P i

max)/2
8: for t = 1 to Tplugout do

9: k̂(t)← d(P i
ref − Pbase(t))/rmaxe

10: if k̂(t) < 0 then
11: k̂(t)← 0
12: end if
13: end for
14: if

∑
t k̂(t) >

∑
n k(n) then

15: P i+1
max ← P i

ref

16: else
17: P i+1

min ← P i
ref

18: end if
19: if |

∑
t k̂(t)−

∑
n k(n)| < ε then

20: goto end-loop
21: end if
22: :end-loop
23: end for
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changes in power consumption, which might cause higher ramping costs of generation

plants. In consequence, it is desirable to make the reference EV power demand as

smooth as possible to minimize the ramping costs of generation plants. In order

to make the reference EV power demand smooth, the method for constructing a

quadratic Bézier curve2 is introduced. The method for constructing a quadratic

Bézier curve is illustrated in Figure 79. Let’s assume that there are three points

P0, P1, P2 that need to be connected by a quadratic Bézier curve, and let (x0, y0),

(x1, y1), and (x2, y2) denote their coordinates, respectively. Let Q0 denote a point

that moves along the straight line from P0 to P1, and let Q1 denote a point moving

along the straight line from P1 to P2. Also, let’s assume that points Q0 and Q1 start

moving at t = 0 and stops at t = 1. Then, the coordinates of the points can be

expressed as

Q0 : (xq0 , yq0) = ((x1 − x0)t+ x0, (y1 − y0)t+ y0) (5.13a)

Q1 : (xq1 , yq1) = ((x2 − x1)t+ x1, (y2 − y1)t+ y1) (5.13b)

where 0 ≤ t ≤ 1. If another point B moves along the straight line connecting Q0 and

Q1, starting at t = 0 and stopping at t = 1, then the locus of point B is given by

B : (xB, yB) = ((xq1 − xq0)t+ xq0 , (yq1 − yq0)t+ yq0) , (5.14)

leading to a quadratic Bézier curve. Figure 80 shows the estimation results of reference

EV power demand using linear Bézier and quadratic Bézier curves.

In this subsection, it is explained how to estimate power available for EV charging

to calculate the number of available processing queues by estimating energy required,

called a reference EV power demand. The ODC algorithm proposed in [19] can be

used with a few modifications for this purpose, but for taking into account timing

constraints as well as for improving simulation efficiency, a new algorithm to estimate

2Bézier curves are widely used in computer graphics to model smooth curves.
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Figure 79: Construction of a quadratic Bézier curve (solid blue line: quadratic Bézier
curve, dashed gray line: straight lines connecting P0, P1, P2).

Figure 80: Reference EV power demand estimation using Bézier curve (solid blue
line: non-EV power demand, dashed red line: without smoothing, dash-dot black
line: linear Bézier, solid red line: quadratic Bézier).
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available power is proposed and implemented. In order to find an optimal reference

EV power demand, the popular binary search algorithm is utilized. Additionally, to

minimize ramping costs of generation plants, a method to smooth out the end parts

of the reference EV power demand using the construction method of quadratic Bézier

curves is introduced. In the following subsection, it will be explained how to calculate

the number of available processing queues based on the estimated reference EV power

demand.

5.3.2 Determination of the Number of Processing Queues and
Charging Rates

As explained in the previous subsection, it is required to calculate available charging

capacity, i.e., the number of available processing queues (nPQ) before an actual charg-

ing schedule is generated. The determination of the number of processing queues can

be divided into two cases, depending on the homogeneity of charging stations in the

system. For homogenous cases, where all charging stations have the same power rat-

ings, especially maximum allowable charging rate, the number of available processing

queues can be calculated using Equation (5.1). However, for heterogeneous cases, the

maximum charging rate (rmax) cannot be used to calculate the number of available

processing queues any longer since all charging stations have different power ratings.

Thus, Equation (5.1) needs to be reformulated in a different way.

First, let’s take a look at how the charging rates for homogeneous cases are deter-

mined. Since, for simplicity, all EVs can be charged only at the maximum charging

rate for homogeneous cases, the charging rates for n EVs in the processing queue at

time t are simply given by

r̄(t) =
{
r1, r2, . . . , rn(t)

}
= {rmax, rmax, . . . , rmax︸ ︷︷ ︸

n(t)

}, (5.15)

where n(t) ≤ nPQ(t), if Pa(t) is a multiple of rmax, i.e., Pa(t) − nPQ(t)rmax = 0,

nPQ(t) = dPa(t)/rmaxe, as illustrated in Figure 81(a). However, if Pa(t) is not a
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multiple of rmax and the processing queues are fully utilized, i.e., n(t) = nPQ(t), then

Pa(t) becomes less than nPQ(t)rmax, i.e., Pa(t)−nPQ(t)rmax < 0, and, as a consequence,

charging the EV, assigned to the nPQ-th processing queue, at the maximum charging

rate rmax will cause energy to be overutilized, which would, in turn, aggravate the

flatness of load curves. In order to avoid this undesirable situation, the EV assigned to

the nPQ-th processing queue might need to be charged at a fraction of the maximum

charging rate rather than the maximum charging rate. Therefore, in this case, the

charging rates need to be modified as

r̄(t) = {rmax, rmax, . . . , rmax, [Pa(t)− (nPQ(t)− 1)rmax]︸ ︷︷ ︸
nPQ(t)

}, (5.16)

which is illustrated in Figure 81(b).

A similar situation can take place when the energy queue length of an EV is

less than the maximum charging rate, which, in contrast, might result in energy

(a) Pa(t) is a multiple of rmax (b) Pa(t) is not a multiple of rmax

Figure 81: Energy overutilization resulting from being charged at the maximum charg-
ing rate.

Figure 82: Energy underutilization due to energy queue length.
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underutilization. Since it is assumed to be charged only at the maximum charging

rate, an EV might be allocated maximum allowable energy even though it requires

only a smaller amount of energy to be fully charged as illustrated in Figure 82. In order

to avoid this situation, the charging rates given by Equation (5.16) is reformulated

as follows:

Find n(t) such that

n(t)−1∑
i=1

ri(t) ≤ Pa(t) <

n(t)∑
i=1

ri(t) (5.17)

where

ri(t) = min {rmax, Ei(t)/(ηi∆t)} , i = 1, . . . , n(t). (5.18)

As a result, the charging rate is given by

r̄(t) = {r1, r2, . . . , rn(t)}, 0 ≤ n(t) ≤ nPQ(t) (5.19)

where

ri(t) =

 min{rmax, Ei(t)/(ηi∆t)} i = 1, . . . , (n(t)− 1)

Pa(t)−
∑n(t)−1

i=1 ri(t) i = n(t)
. (5.20)

The pseudocode of determining charging rates for homogeneous cases is listed in

Algorithm 5.

Now let’s consider the determination of the number of available processing queues

and charging rates for heterogeneous cases. Different from homogeneous cases, the

number of available processing queues cannot be calculated using Equation (5.1) for

heterogeneous cases. Therefore, another approach needs to be come up with. For

heterogeneous cases, rather than being assigned by means of charging packets, avail-

able power is directly allocated to active charging stations as follows. First, let’s

assume that all charging stations need to be registered to the controlling authority
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Algorithm 5 Pseudocode of determining charging rates for homogeneous cases.

1: Pa(t)← Pref(t)− Pbase(t)
2: for i = 1 to nPQ(t) do
3: if Ei(t)/(ηi∆t) ≥ rmax then
4: ri(t)← rmax

5: else
6: ri(t)← (Ei(t)/(ηi∆t)
7: end if
8: if Pa(t)− ri(t) ≥ 0 then
9: Pa(t)← Pa(t)− ri(t)

10: else
11: ri(t)← Pa(t)
12: break
13: end if
14: end for

when installed, meaning the controlling authority have all power rating information

of charging stations at hand. Then, if all EVs in the system can be arranged ac-

cording to their priorities, for instance, (EV1,EV2, . . . ,EVN), where N is the total

number of EVs in the system and, without loss of generality, EV1 has the highest

priority and EVN has the lowest priority, then the number of EVs that can be charged

simultaneously at time t, n(t), can be obtained so as to maximize energy utilization

as

minimize
n(t)

Pa(t)−
n(t)∑
i=1

ri(t)


2

, t = 1, . . . , T, (5.21)

where

0 ≤ ri(t) ≤ min {rmax(i), Ei(t)/(ηi∆t)} and 0 ≤ n(t) ≤ N. (5.22)

Since it is assumed that the N EVs are sorted out with respect to their priorities, the

optimization problem in Equation (5.21) can be solved as follows:

Find the maximum n(t) such that

n(t)−1∑
i=1

ri(t) ≤ Pa(t) <

n(t)∑
i=1

ri(t), 0 ≤ n(t) ≤ N, (5.23)
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where

ri(t) =

 min{rmax(i), Ei(t)/(ηi∆t)} i = 1, . . . , (n(t)− 1)

Pa(t)−
∑n(t)−1

i=1 ri(t) i = n(t)
. (5.24)

Note that Equation (5.24) is the same as Equation (5.20), except that rmax is replaced

by rmax(i) since not all EVs have the same maximum charging rate .

In this subsection, the methods to calculate the number of available processing

queues both for homogeneous and heterogeneous cases are introduced and the al-

location of available power to activated charging stations is also explained. These

technical approaches will be evaluated through simulation studies, which will be pre-

sented in the next chapter.

5.3.3 Electricity Prices for V2G-based Frequency Regulation and
EV Charging

As introduced in Chapter 3, four different charging modes are considered in this

research: 1) charge now, 2) charge when power is available, 3) charge when given

less expensive electricity price, and 4) charge/supply. In order to make EVs with

charging mode 3, electricity price for charging must be made less expensive when

there are available spots in the processing queue than when EVs with charging modes

1 and 2 occupy the entire processing queue. In addition, electricity price for V2G-

based frequency regulation is set higher than the nominal price for EV charging to

encourage EV owners to participate in V2G-based frequency regulation.

One of the objectives of this research is to investigate and characterize the system-

level interactions between real-time EV charging and V2G-based frequency regulation,

and thus it is not necessary and beyond the scope of this research to establish an accu-

rate model of electricity prices for V2G-based frequency regulation and EV charging.

Therefore, electricity price for EV charging when power is available for charging EVs

with modes 1 and 2 is assumed to be a nominal price and set to $1 per megawatt-hour.
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When the amount of available power is more than power required to charge EVs with

modes 1 and 2, electricity price for charging EVs is made less than the nominal price,

$0.5 per megawatt-hour, to encourage EV owners who select the charging modes 3

and 4 to start charging. On the other hand, for down-regulation, where load exceeds

generation, the real-time EV charging system must increase electricity price for EV

charging to discourage EVs with charging mode 3 from charging batteries and, at

the same time, pay higher price for V2G-based frequency regulation to make EVs

with charging mode 4 participate in the service. For this case, the prices for both EV

charging and V2G-based frequency regulation are set to $1.5 per megawatt-hour.

5.3.4 Real-time Scheduling Algorithms and Dynamic Priority

Referred to Figure 65 on page 146, the next step is the determination of priority as-

signment policies, followed by the implementation of real-time scheduling algorithms,

introduced in §3.1.2. Since priority assignment is closely related to type of scheduling

algorithms, which are applied to a problem of interest, two topics are dealt with to-

gether in this subsection. Basically, in this research, two perspectives are considered

when priority assignment policies are designed: 1) when EV owners want their cars

to be charged (i.e., charging mode) and 2) how quickly EVs need to be recharged to

meet their timing constraints. Hence, a priority assignment policy is implemented

such that a priority is dynamically assigned to each charging station where an EV

is plugged in and updated every 15 minutes, based on 1) the charging mode of the

EV and 2) the amount of time required to refill the battery. For this purpose, a pa-

rameter, called “urgency”, taking account to the time required to refill the battery,

is introduced and calculated as:

γn(t) =
En(t)

tplugout(n)− t
for n = 1, . . . , N, t = 1, . . . , T (5.25)

where γn is the dynamic urgency of the n-th EV, tplugout(n), the plug-out time of

the n-th EV, and t, the index of the current time slot, and En is the energy queue
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length, i.e., energy necessary for the n-th EV to be fully charged, defined as En =

(splugout(n)− sn(t)) × βn, where βn is the battery capacity, splugout(n), the plug-out

SOC, sn(t), the current SOC, and ηn, charging efficiency of the n-th EV, respectively.

Combined with its charging mode, an EV with larger necessary energy (En) and

shorter time-to-complete-charging (tplugout−t) will have a higher priority.

As a proof of concept, a global EDF algorithm is first implemented, and its two

variants with different priority assignment policies are also implemented to see the

effects of the priority assignment on the performance of real-time EV charging. In

order to apply the global EDF to EV charging control, the multiprocessor system

model as illustrated in Figure 66(b) on page 147 is used. For the original global EDF

algorithm, the priorities of EVs are determined by the closeness to their absolute

deadline, i.e., tplugout − t, where t is the current time; the EV with the shorter time

to plug-out always has the highest priority. However, the n highest-priority EVs are

being charged by the n processing queues in every time slot, where n(t) is the number

of unoccupied processing queues at a time instant, calculated as

n(t) = nPQ(t)− nEVsInPQ(t), (5.26)

where nPQ is the number of available processing queues, and nEVsInPQ is the number

of EVs occupying processing queues, respectively. With global EDF, EVs that are

plugged in and ready to charge are placed in the waiting queue and sorted in a non-

decreasing order with respect to their closeness to absolute deadlines, from which the

first n EVs with higher priorities are assigned to the n available processing queues, if

any. The pseudocode of the real-time EV charging scheduling algorithm is listed in

Algorithm 6.

Figure 83 illustrates the process of investigating the applicability of the existing

real-time scheduling algorithms to real-time EV charging control. In order to test the

Hypotheses I-1 and I-2, real-time scheduling algorithms are first surveyed and quali-

tatively evaluated based on the characteristics of the problem. Scheduling algorithms
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Algorithm 6 Pseudocode of the global EDF algorithm for real-time EV charging.

1: estimate Pref

2: initialize w and p . w (p): pointer for waiting (processing) queue
3: for t = 1 to T do
4: nPQ(t)← (Pref(t)− Pbase(t))/rmax(t) . rmax: maximum charging rate
5: for n = 1 to N do
6: En(t)← (splugout(n)− sn(t))× βn
7: end for
8: W(w : w +m)← EV(1 : m) . W: waiting queue
9: w ← w +m . m: number of EVs plugged in

10: if (tplugout(i)− t) < (tplugout(j)− t) then
11: W(j)←W(i), W(i)←W(j) . sort waiting queue
12: P(j)←W(i), W(i)← P(j) . preemption
13: end if
14: if nPQ(t)− nEVsInPQ(t) > m then
15: k ← m . k: number of available processing queues
16: else
17: k ← nPQ(t)− nEVsInPQ(t)
18: end if
19: if k > 0 then
20: P(p : p+ k − 1)←W(1 : k) . P: processing queue
21: W(1 : w − k − 1)←W(k + 1 : w − 1)
22: p← p+ k
23: w ← w − k
24: end if
25: if (tplugout(i)− t) < (tplugout(j)− t) then
26: P(j)← P(i), P(i)← P(j) . sort processing queue
27: end if
28: for n = 1 to N do
29: sn(t+ 1)← 1− (En(t)− ηnr(t)∆t)/βn . update state-of-charge (SOC)
30: end for
31: end for

Figure 83: Investigation process of real-time scheduling algorithms.
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that can be applied to the problem are tailored and quantitatively evaluated with a

number of random EV charging profiles and load profiles in terms of the performance

metrics such as guarantee ratio, averaged plug-out SOC, and total load variance.

5.3.5 Effects of Charging Rates Control on Real-time EV Charging
Control

As mentioned in §3.1.3, it is observed from the proof-of-concept simulation, which will

be presented in §6.2.1, that all EVs, especially EVs with charging modes 3 and 4, are

not fully charged even though the day-ahead generation is planned based on the total

energy required for all the EVs to be fully charged. In order to increase the number

of EVs with modes 3 and 4 that are fully charged, formulated was the following

hypothesis: if charging rates are controlled based on both the energy utilization and

the number of EVs that are charging simultaneously for a given time slot, then the

guarantee ratio, defined as the ratio of fully charged EVs meeting their deadlines

to the total number of EVs in the system, will be improved (Hypothesis I-3). In

addition, it was mathematically proved that charging rates need to be determined to

maximize the energy utilization by charging batteries at the maximum charging rate

while maximizing the number of EVs that can be charged simultaneously by making

charging rates as low as possible, and thus an optimization problem for charging rates

was formulated.

In this research, rather than solved with some optimization problem solving tech-

niques, the optimization problem, given by Equation (3.17) on page 98, is solved in a

heuristic approach. Figure 84 illustrates the experimental setting for testing Hypoth-

esis I-3. To test the first part of the hypothesis, the charging rate will be swept by the

unit of 0.1 C-rate (1 C-rate charging fills up the SOC as much as 100% in an hour)

in the allowable range to see if the change in charging rates affects the performance

of the proposed EV charging system. It is expected that, at the very beginning of
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charging process where available power is relatively small and the number of EVs

required to be charged is relatively large, a smaller charging rate will provide the

better performance because it can allow more EVs to start charging. However, for

time slots where available power is relatively large, a higher charging rate will pro-

vide better performance because the number of EVs to be charged is relatively small,

compared with available energy, and smaller charging rates might result in lower en-

ergy utilization, resulting in the degradation of the optimality. Once the effects of

charging rates on the performance of the real-time EV charging system is confirmed,

the charging rate will be optimized with heuristics and evaluated through statistical

simulations, in which the real-time EV charging system will be exposed to a variety

of pseudorandom EV charging profiles and load profiles, in order to test the second

part of the hypothesis.

Figure 84: Experimental setting for testing Hypothesis I-3.
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5.4 Real-time EV Charging Scheduling in Support of V2G-
based Frequency Regulation

5.4.1 V2G-based Frequency Regulation within Real-time EV
Charging Control

Figure 85 overviews the verification process of the incorporation of V2G-based fre-

quency regulation into the real-time EV charging system. First, in order to verify

the capability of the proposed real-time EV Charging control strategy to provide

V2G-based frequency regulation, it is necessary to make non-EV demand fluctuating

around the baseload profile. According to an ORNL’s technical report, “Regulation

is a zero-energy service, making it an ideal candidate for supply by storage” [37]. To

validate this assertion, a set of real frequency regulation data is acquired from Cali-

fornia ISO, as shown in Figure 86. The average of the data is 9.77% of peak loads;

however, the net sum is −5.88×10−13. Therefore, it is safely assumed that frequency

deviation can be modeled as an additive White Gaussian noise (AWGN) with zero

mean and σ2-variance. Then, the following question arises: how can we determine the

magnitude of frequency deviation, σ? FERC requirements for frequency regulation

Figure 85: Overview of verification of V2G-based frequency regulation (blue: external
data, green: algorithms).
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is that frequency deviation must be less than 1% of peak load, and the maximum

percentage of frequency deviation per 5-minute interval is no greater 10% as depicted

in Figure 86. So, for the proof of the support of V2G-based frequency regulation

as a by-product by applying real-time scheduling techniques to EV charging, 10%

frequency deviation, that is, an AWGN with zero-mean and 10%-variance is applied

to the baseload profile (non-EV power demand), and the following equation is used

to calculate the frequency deviation from the nominal frequency:

−d∆f

dt
= ∆P (t) = Pgen(t)− Pdemand(t) (5.27)

For V2G-based frequency regulation, the V2G control methodology proposed in

[62] will be used, and the proposed optimization algorithm for charging rates control

will be utilized for scheduled charging. The number of available processing queues for

the real-time scheduling will be calculated based on measurements of the real-time

non-EV power demand and the reference EV power demand estimation. Through the

process, it will be verified that the impacts of V2G-based frequency regulation on the

real-time EV charging scheduling can be minimized if the interaction between V2G-

based regulation and real-time scheduling is considered when designing a real-time EV
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Figure 86: Frequency regulation in CAISO (Source: California ISO Open Access
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charging system. In addition, the relationship between EVs’ SOCs and desirability for

participation in V2G-based frequency regulation as illustrated in Figure 87, is used.

The figure indicates that EVs with higher SOC are more desirable for up-regulation,

while EVs with lower SOC are more suitable for down-regulation.

5.4.2 Effects of V2G-based Frequency Regulation on Real-time EV
Charging Control

It is claimed in §3.2.2 that the incorporation of V2G-based frequency regulation may

degrade the performance, esp. guarantee ratio, of the real-time EV charging sys-

tem since EV charging possibly keep interrupted by the frequency regulation, which

causes EVs to take longer time to complete their scheduled charging. In order to avoid

this performance degradation, it is hypothesized that if the statistics of EV charging

profiles (and/or frequency regulation) is taken into account in generating charging

schedules, then the real-time EV charging system can satisfy timing constraints while

providing V2G-based frequency regulation (Hypothesis II-2), and the concept of “tim-

ing buffer”, in which the statistics of EV charging profiles are reflected, is introduced

to avoid this undesirable situation. It is expected that the timing buffer will allow
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extra energy for V2G-based frequency regulation besides EV charging, and also ex-

pedite the charging process by encouraging EVs to complete refilling their batteries

earlier than their plug-out times. A timing buffer is calculated based on the statistics

of EV charging profiles on a specific day of the week, and included in each EV’s timing

constraint.

Figure 88 illustrates the consolidation of the concept of timing buffer in the es-

timation process for statistical reference EV power demand and the real-time EV

charging scheduling, and overviews the process for testing Hypothesis II-2. Since it is

not known whether or not V2G-based frequency regulation affects the performance of

real-time EV charging control, the scheduling algorithm will be first exposed to a set

of baseload profiles that are corrupted by an AWGN to confirm the effects of V2G-

based frequency regulation on real-time EV charging. Once the effects are confirmed,

it will be ensured that the concept of timing buffer is able to improve the performance

of the real-time EV charging control strategy even when it provides V2G-based ancil-

lary service while charging EVs. The statistics of EV charging profiles, such as means

and standard deviations of plug-in/-out times and plug-in/-out SOCs, are calculated

Figure 88: Schematic overview of testing Hypothesis II-2 (blue: external data, green:
algorithms).
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based upon historical data of daily EV charging profiles; however, it is not possi-

ble to collect such historical data because EVs are not widely commercialized and it

is not confirmed that such charging stations that can accept user-specified charging

profiles have been released. Therefore, a set of fictitious EV charging profiles, which

can represent charging profiles on day of the week, will be generated instead. Once

the statistics of EV charging profiles have been calculated, a day-ahead reference EV

power demand will be optimized based on the statistics and a day-ahead prediction of

non-EV power demand. Finally, the statistically estimated day-ahead reference EV

power demand will be applied to the real-time EV charging scheduling algorithm, of

which performance will be, in turn, evaluated to test Hypothesis II-2.

5.5 Simulation Framework for Real-time EV Charging Con-
trol

A simulation framework for evaluating the real-time EV charging scheduling algo-

rithm is implemented using MATLAB Graphical User Interface Development Envi-

ronment (GUIDE). It has the following features:

• It provides several representative EV and baseload (non-EV demand) profiles.

• It allows a user to create or specify one’s own profiles.

• It provides statistics information of EV and load profiles in a graphical way.

• It offers a simulation environment for different scheduling policies, timing con-

straints, etc.

• It lets a user to simulate and characterize real-time EV charging with V2G-based

frequency regulation.

Figure 89(a) is the first window that appears when the program is run. It con-

tains a set of instructions for setting up parameters and running a simulation. On

the window in Figure 89(b), a user can select an EV profile or generate EV profiles.

It provides users with a default profile and several existing profiles, and also allows
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a user to create one’s own profiles with different statistics. In addition, it provides

statistics information and graphical interpretation of the selected EV profile. A user

can save the profile figures for later use. The window in Figure 89(c) offers an in-

terface for selecting a load profile. It provides a default baseload profile and several

representative profiles for typical winter and summer days. It also provides an envi-

ronment and a guideline for a user to create one’s own baseload profiles. A user can

save the profile figure for later use. The window in Figure 89(d) enables a user to

run simulations for the chosen profiles. For comparing with the valley-filling strategy,

it allows a user to run a simulation on the valley-filling strategy, too. It provides a

variety of simulation parameters for case studies such as no timing constraints, load

fluctuation, V2G-based frequency regulation, and various scheduling policies. A user

can also run Monte Carlo simulations on a set of different EV profiles or baseload

profiles.

(a) Main window (b) Window for EV profile selection

(c) Window for baseload profile selection (d) Window for simulation running

Figure 89: Front-end graphical user interface of simulation framework.
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CHAPTER VI

SIMULATION STUDIES

The purpose of simulation studies is to test the hypotheses presented in Chapter

3. First, the preparation of a dataset such as baseload profiles and EV charging

profiles and the implementation of a benchmark system, i.e. the valley-filling charg-

ing strategy, are explained, and then the technical gaps of the benchmark system

are substantiated. After the dataset and the benchmark system are prepared, the

applicability of real-time scheduling techniques to EV charging control and various

real-time scheduling algorithms is examined, and then the effects of charging rates

control on the performance of the proposed EV charging strategy is tested. Once the

applicability of real-time scheduling techniques to EV charging is confirmed, the pro-

posed real-time EV charging control strategy is proved to fill the technical limitations

of the valley-filling EV charging strategy. Finally, the capability of the proposed

EV charging concept to provide V2G-based frequency regulation within the same

framework is demonstrated.

6.1 Preparation of Dataset and Benchmark System

The first step for simulation studies is to generate a set of input data such as EV

charging profiles and baseload profiles for simulations, and to develop a benchmark

system, with which the proposed real-time EV charging scheme can be compared.

This section articulates how to generate a dataset for demonstrating the applicability

of real-time scheduling techniques to EV charging control, followed by the explanation

on the implementation of a benchmark system.
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6.1.1 Baseload Profiles and EV Charging Profiles

A variety of load profiles are available from the websites of almost all Independent

Service Operators (ISOs), and, for this study, data from California ISO is utilized

to investigate the proposed real-time EV charging scheme. In order to compare the

proposed real-time EV charging strategy with the “valley-filling” control strategy

proposed in [19], the same load profile used in [19], the average residential load profile

in a service area of Southern California Edison (SCE) from 20:00 on February 13th,

2011 to 19:00 on February 14th, 2011, is selected as a non-EV base demand profile

and scaled down to represent 20% penetration level of EVs, as shown in Figure 90.

The EV charging parameters for simulation studies are summarized in Table 23.

According to the typical charging characteristics of EVs in [30], it is assumed that

the battery capacity is 16 kWh, the maximum charging rate is 3.3 kW, and the

charging efficiency is 0.95. The maximum charging rate of 3.3 kW is limited by

the on-board charger of an EV, although a single-phased, Level 2 charger supplies

240V/30A and allows for a wide range of charging speeds, all the way up to 19.2 kW.

Note that simulations are first performed on a set of homogenous fleet of EVs, that
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Figure 90: Baseload profile (Source: Southern California Edison [76]).
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Table 23: EV charging parameter settings for simulation studies.

Parameter Value

Number of EVs 100

Battery capacity 16 kWh

Max. charging rate 3.3 kW

Charging efficiency 0.95

Charging window 0:00 – 17:00

is, the aforementioned characteristics are assumed to be identical for all EVs, and,

later, this restriction is relaxed for more realistic simulation studies. The scheduling

horizon, typically 24 hours, is divided into 96 time slots, each of 15 minutes, during

which the charging rate of each EV is assumed to be not changed. Based on the

averaged non-EV power consumption, the number of EVs is assumed to be 100,

representing 20% penetration level1, according to which the non-EV base demand

profile is appropriately scaled. In addition, the charging window is assumed to be

12:00 am to 5:00 pm to achieve the flattened load shape of the“valley-filling” charging

scheme.

In order to take account of EV owners’ charging preferences including timing

constraints for charging, a variety of sets of EV charging profiles such as plug-in

time, plug-out time, plug-in SOC, and plug-out SOC are generated in a random

fashion and an example is shown in Figure 91. The plug-in time is assumed to be

normally distributed around 6:00 pm with standard deviation of 2 hours. Similarly,

it is assumed that the plug-out time has a normal distribution with mean of 7:00 am

and standard deviation of 2 hours. The initial plug-in SOC is uniformly distributed

between 10% and 30%, and the plug-out SOC is assumed to be 1. The charging modes

1“In 2010, the average annual electricity consumption for a U.S. residential utility customer was
11,496 kWh, an average of 958 kWh per month, and an average of 32 kWh per day” [81].
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Figure 91: An example of EV charging profiles.
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as summarized in Table 7 are assigned to each EV based on its urgency measure, γ,

defined as

γn(t) =
En(t)

tplugout − t
(6.1)

where γn(t) is the urgency of the n-th EV at time t, tplugout, plug-out time, En, the

energy queue length, given as En(t) = (splugout(n) − sn(t)) × (βn/ηn), βn, battery

capacity, and ηn, charging efficiency. Equation (6.1) can be interpreted as follows:

the energy queue length is the amount of energy required to refill the battery, and

(tplugout − t) can be viewed as the time required to be fully recharged; therefore, the

more the energy required to refill is and the shorter the time to full charge is, the

greater the urgency is, that is, the more likely an EV owner prefers a charging mode

with higher priority in order to refill the battery by the time he/she wants to drive off.

The fleet mix is assumed to have, in descending order of the urgency, 20% of EVs for

charging mode 1, 40% for charging mode 2, 30% for charging 3, and 10% for charging

mode 4, the lowest priority(for V2G-based frequency regulation), respectively.

Figure 92 shows how many EVs are plugged in to the system with respect to time

of day (see Figure 92(a)) and the distribution of averaged duration for which EVs

are plugged in (see Figure 92(b)) for the exemplary EV charing profile presented in
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Figure 92: Timing characteristics of the exemplary EV profile.
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Figure 91. Based on Table 23, it takes approximately 5 hours, that is, 20 consecutive

time slots, for an EV to be fully recharged, and, as shown in Figure 92(b), EVs have

been plugged in for about 13 hours on average, which is plenty of time for EVs to

refill their batteries unless available power is considered. The dataset, necessary to

verify the benchmark system and the proposed real-time EV charging system and

to compare with each other, is ready, and then the next step is to implement and

verify the benchmark system, and substantiate its technical gaps before the proposed

real-time EV charging scheme is verified and investigated.

6.1.2 Implementation of a Benchmark System and Substantiation of Its
Technical Gaps

As addressed in §2.3.2, the decentralized “valley-filling” charging scheme has a number

of technical limitations from the practical point of view, which are re-summarized as

follows:

1. It only deals with day-ahead negotiation of charging profiles.

2. The prediction of non-EV power demand must be accurate.

3. All EVs must participate in the negotiation simultaneously.

4. Energy demand of EVs must be known to utilities beforehand.

5. The charging requirements of EVs must not change to guarantee the optimality.

6. The scheme does not take into account EV owners’ timing constraints.

The first, third and fourth limitations are too obvious to substantiate because the

algorithm is derived based on the assumption that the scheduler, i.e., a utility, can

predict load profile quite precisely and knows charging requirements of EV owners

beforehand. The second limitation can be justified by introducing some uncertainty

to the baseload profile or an abrupt change in the baseload profile. In the similar

manner, the last two limitations can be shown by applying EV charging profiles with

timing constraints and then introducing some discrepancies to the EV charging profile
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that is used for the day-ahead charging schedule.

In order to substantiate the technical gaps of the benchmark system, the valley-

filling EV charging strategy proposed in [19] is implemented. Basically, the charging

profile generated by their valley-filling charging scheme is a Nash equilibrium that is

converged through the day-ahead negotiation process, which is identical for all EVs,

and, hence, the scheme allocates available power equally to all EVs. Therefore, the

charging profile of the benchmark system can be approximately derived by dividing

available power by the total number of EVs to be charged, and it can be obtained by

applying the algorithm for estimating the reference EV demand explained in §5.3.1.

For case studies, Gan et al. chose “the average residential load profile in the service

area of Southern California Edison (SCE) from 20:00 on February 13th, 2011 to 19:00

on February 14th, 2011 as the normalized base demand profile” as mentioned in §6.1.1

[19]. All EVs are assumed to plug in at 20:00 and have deadline 19:00 the next day,

and the maximum charging rate is set to 3.3 kW.

Figure 93 shows the aggregated demand profile of the implemented benchmark

system for the case described in the previous paragraph, and compares with the one

presented in Gan et al.’s study. In the ideal case where no EV owners’ timing con-

(a) aggregated demand presented in Gan et
al.’s study [19]
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Figure 93: Verification of the implemented benchmark system.
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straints (i.e., plug-in/-out time) are taken into account and all charging requirements

(i.e., plug-out SOC) are assumed to be known to the utility beforehand, the imple-

mented benchmark system achieves the same flat load curve as illustrated in Figure

93(b), albeit the amplitude of the load curve is a little smaller than the one presented

in Figure 93(a), resulting from the fact that the EV charging profiles used to estimate

the reference EV demand doest not exactly match the ones for Gan et al.’s case study

and are normalized on a different scale.

Even though the effect of load variations on the valley-filling charging scheme is

obvious, the implemented benchmark valley-filling scheme is applied to the SCE’s

baseload profile corrupted with an additive White Gaussian noise (AWGN) to jus-

tify the claim that the valley-filling EV charging scheme is sensitive to the change

in load/generation capacity, i.e., the second claim in the very first paragraph of this

subsection. First, a load fluctuation, modeled as an AWGN, as explained in §5.4.1,

is applied to the baseload profile and simulations are run to capture the effects of

load fluctuations on the valley-filling charging scheme. It is assumed that generation

adheres to its day-ahead plan and there is no failure of generation. As seen in Figure
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Figure 94: Load profile of valley-filling strategy with load fluctuation (blue circle:
base, red triangle: base + EV).
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94(b), although the load profile is fluctuating, all EVs charge their batteries in ac-

cordance with the day-ahead charging plan, regardless of the actual load profile, and,

thus, the scheme does not provide a flat load profile any longer, reflecting the exact

load fluctuation on the load profile; in other words, it is literally not “valley-filling”

any longer (see Figure 94(a) for the predicted load profile based on the day-ahead

charging plan). As illustrated in Figure 95, no matter whether instantaneous power

consumption increases or decreases, all EVs are recharging their batteries in accor-

dance with their day-ahead charging schedules, sharing all available power, if any,

and, therefore, it still provides the same plug-out SOCs (Figure 96(b)) as the ones

without load fluctuation (Figure 96(a)).

In order to justify the fifth and sixth claims on the technical limitations of the

valley-filling strategy, a set of EV charging profiles, introduced in §6.1.1, is applied to

the valley-filling charging scheme. First, the fifth claim is verified by applying two EV

profiles to the valley-filling scheme. A set of EV charging profiles is used to generate

a charging plan, and then another set of EV profiles, which is slightly different from

the one used for planning, is used when actual charging takes place. As claimed,

Figure 97(a) shows a load profile that is not flat any longer, and none of EVs satisfies
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Figure 95: Number of EVs being charged of valley-filling strategy with load fluctua-
tion.
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its timing constraints, as illustrated in Figure 97(e). To justify the sixth claim that,

if EV owners’ timing constraints are considered, the valley-filling scheme would not

guarantee the flat load curve, let alone the satisfaction of the timing constraints, a

charging schedule is generated based only upon energy required to fill the batteries of

all EVs, which is directly related to the initial and departure SOCs, and then EVs are

made stop recharging on the plug-out times that EV owners would specify when they

plugged in their vehicles. As illustrated in Figure 97(b), if timing constraints are taken

into account, then the valley-filling scheme does not guarantee its optimality, that is,

the load curve is not flat any more. Since the optimal charging profiles are generated

one day before the actual charging takes place such that the shape of the load profile

is flattened out all over the charging window and all EVs share available power at the

same time, all EVs start charging simultaneously at the beginning of the charging

window, i.e., 12:00 am, and finish charging at the end of the charging window, i.e.,

5:00 pm. Therefore, if many EVs are plugged out from charging stations earlier than

the schedule generated the day before actual charging as illustrated in Figure 97(d),

then its optimality is no longer guaranteed, not to mention ending up with not fully

charged batteries, as illustrated in Figure 97(f), which looks a little worse compared to
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Figure 96: State-of-charge (SOC) of valley-filling strategy with load fluctuation (blue
circle: plug-in SOC, red rectangle: plug-out SOC).
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base + EV)
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(b) load profile (blue circle: base, red triangle:
base + EV)

time of day

20:00 0:00 4:00 8:00 12:00 16:00

n
u

m
b

e
r 

o
f 

E
V

s
 b

e
in

g
 c

h
a

rg
e

d

0

20

40

60

80

100

120

(c) number of EVs being charged (solid blue:
actual, dashed green: scheduled)

time of day

20:00 0:00 4:00 8:00 12:00 16:00

n
u

m
b

e
r 

o
f 

E
V

s
 b

e
in

g
 c

h
a

rg
e

d

0

20

40

60

80

100

120

(d) number of EVs being charged (solid blue:
actual, dashed green: scheduled)

vehicle ID

0 10 20 30 40 50 60 70 80 90 100

s
ta

te
 o

f 
c

h
a

rg
e

 (
%

)

0

10

20

30

40

50

60

70

80

90

100

(e) state-of-charge (blue circle: plug-in SOC,
red rectangle: plug-out SOC)
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red rectangle: plug-out SOC)

Figure 97: Valley-filling strategy with different EV profiles and timing constraints
(left figures: with different EV profiles, right figures: with timing constraints).
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Figure 96(a). Through simulations are substantiated the technical gaps of the valley-

filling EV charging scheme that it is very sensitive to changes in load/generation

and does not guarantee the social optimality if EV owners’ timing constraints are

taken into account. Next section will verify the applicability of real-time scheduling

techniques to EV charging control and compare the proposed real-time EV charging

scheme with the valley-filling scheme.

6.2 Applicability of Real-time Scheduling Techniques to EV
Charging Control

In the previous section, the preparation of a dataset for simulation studies is ex-

plained, a benchmark system is implemented and verified, and its technical gaps are

substantiated. As expected, the benchmark system, i.e., the valley-filling EV charging

strategy, does not guarantee its social optimality if non-EV power demand fluctuates

or EV charging requirements are different from the ones used for the day-ahead ne-

gotiation process for generating EV charging profiles, not to mention that it does not

satisfy EV owners’ timing constraints at all. In this section, the implemented real-

time EV charging control in accordance with the technical approaches described in

the previous chapter is verified and compared with the valley-filling charging scheme

in order to see if it could be another approach for charging EVs to mitigate its impacts

on the power grid and how well it fills the technical gaps of the valley-filling scheme.

6.2.1 (HYP I-1) Verification of Real-time EV Charging Control

As demonstrated in the previous section, the day-ahead valley-filling EV charging

scheme cannot guarantee a flat load curve, let alone the satisfaction of EV owners’

charging requirements, if EV owners’ timing constraints are considered when EV

charging is scheduled. Also, it is demonstrated that the valley-filling charging scheme

is very sensitive to change in load, and, furthermore, it can be expected that its
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optimality will severely depend on change in generation capacity, too.

To verify the implemented real-time EV charging scheme, simulations are run on

the real-time scheduler with global EDF. In order to verify that the proposed control

scheme works identically with the valley-filling scheme, out of the timing constraints,

only the plug-out time constraints are relaxed and simulations are run since the

charging window starts at 12:00 am after all EVs have been plugged in to the system

and, thus, the plug-in time does not affect the charging scheduling. If the plug-out

time constraints are relaxed, then the real-time charging scheme achieves exactly

the same load profile as the one of the valley-filling scheme as shown in Figure 98;

however, from Figure 99, it can be seen that all EVs are charging simultaneously

at the charging rate varying over time in the valley-filling case while the proposed

real-time charging scheme adjusts the number of EVs being charged simultaneously

with the fixed charging rate, i.e., maximum charging rate, based on instantaneous

power consumption. Therefore, it can be concluded from the both figures that the

real-time charging scheme does the same job in a different way.

Now, plug-out time constraints are applied to the charging scheme in order to see

the effects of timing constraints on EV charging scheduling. Note that the global
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(a) valley-filling charging scheme
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(b) real-time charging by global EDF

Figure 98: Load profiles of valley-filling and real-time charging by global EDF with
no timing constraints (blue circle: base, red triangle: base + EV).
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(c) charging profile for valley-filling charging
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(d) charging profile for real-time charging

Figure 99: Number of EVs being charged and charging rate of valley-filling and real-
time charging by global EDF with no timing constraints.
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EDF with preemption – will be explained later in this subsection – allowed is used for

real-time EV charging control and the charging window is assumed to be 12:00 am to

5:00 pm. As illustrated in Figure 100, both charging schemes do not make the load

curve flat since many EVs are plugged out based on EV owners’ timing constraints

much before the charging window ends at 5:00 pm. It can also be seen that the real-

time charging scheme consumes more power early in the morning to charge as many

EVs as possible. The difference between the valley-filling and real-time EV charging

schemes can be seen more obviously in Figure 101. The valley-filling scheme adjusts

charging rates, which is the same for all EVs, while the number of EVs being charged

simultaneously at the maximum rate is controlled in the real-time charging scheme.

In case of the valley-filling scheme, all of the 100 EVs start charging at the same

time at a non-maximum charging rate to achieve a flat load curve, and the number of

EVs being charged simultaneously decreases as EVs are plugged out from wall outlets,

compared with Figure 99(a). On the other hand, the real-time charging scheme varies

the number of EVs being charged simultaneously at the maximum charging rate along

with available power over charging period and allows the EVs with higher charging
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(a) valley-filling charging scheme
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(b) real-time charging by global EDF

Figure 100: Load profile of valley-filling and real-time charging by global EDF with
timing constraints (blue circle: base, red triangle: base + EV, green: generation
plan).
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modes and shorter time-to-complete-charging to be charged earlier.

Figure 102 illustrates how well the real-time EV charging strategy satisfies EV

owners’ timing constraints as well as a utility’s requirement, that is, a flat load curve,

compared with the day-ahead valley-filling scheme. For the valley-filling case (Figure

102(a)), since all EVs are charging simultaneously at the same charging rate, none

of EVs are fully charged to their desired departure SOCs when they are plugged out;

however, all EVs are evenly charged compared with the real-time case (Figure 102(b)).
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(a) valley-filling charging scheme
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(b) real-time charging by global EDF

Figure 101: Number of EVs being charged of valley-filling and real-time charging by
global EDF with timing constraints (dashed green: day-ahead schedule for valley-
filling).
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(b) real-time charging by global EDF

Figure 102: State-of-charge (SOC) of valley-filling and real-time charging by global
EDF with timing constraints (blue circle: plug-in SOC, red rectangle: plug-out SOC).
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On the other hand, the real-time charging scheme fully charges the batteries of EVs

with higher charging modes (1: highest, 4: lowest) and shorter time to full charge

while many EVs with lower charging modes and longer time to full charge miss their

deadlines, in other words, are not fully charged when plugged out, as illustrated in

Figure 103. Out of 100 EVs, 16 EVs missed their deadlines, 6 of which are of charging

mode of 3, and 10 of which have charging mode 4, the lowest charging mode.

For the previous simulation studies, the global EDF with priority assigned based

both on charging mode and the closeness to absolute deadline, i.e., plug-out time, is

used, and the concept of “preemption” is also allowed. In this study, the preemption

means that EVs with higher priorities can interrupt the charging of EVs with lower

priorities: in other words, higher-priority EVs are allowed to preempt slots of the

processing queue that are occupied by EVs with lower priorities. The effect of allow-

ing the preemption for scheduling real-time EV charging can be obviously seen by

comparing Figures 104 and 105. In Figure 104, EVs with higher priorities, i.e., higher

charging modes (1 or 2) and shorter time to deadlines, start charging earlier than

others with lower priorities. Once they start charging, the charging process cannot

be interrupted except when power is not available for EV charging. Even when power
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Figure 103: Number of EVs being charged (global EDF).
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is not available, the charging of EVs with lower priorities is interrupted, and EVs

with higher priorities are seldom interrupted, as seen in Figure 104, where the num-

bers above vertical bars denote the charging mode for each vehicle, white rectangles

represent plug-in but idle periods, and blue rectangles indicate charging periods. On

the other hand, if the preemption is allowed, the charging of EVs, even EVs with

charing mode 1, is interrupted frequently, as illustrated in Figure 105, in accordance

with the dynamic priority assignment policy that updates the priorities of EVs based

on required energy and time to deadline, also depending on available power for EV

charging.

In this subsection, the applicability of real-time scheduling techniques to the EV

charging control problem is experimentally shown. Based upon the case studies pre-

sented in this subsection, it can be concluded that even when EV owners’ charging

requirements, esp. timing constraints, are considered, the proposed real-time EV

charging scheme can fill the technical gaps of the existing valley-filling scheme in that

it can achieve a flat load curve (less total load variance) with higher satisfaction of

EV owners’ charging requirements (higher guarantee ratio).

6.2.2 (HYP I-2) Evaluation of Real-time Scheduling Algorithms for EV
Charging

Various real-time scheduling algorithms are reviewed in §4.2.3 and §4.2.4. Among

those algorithms, the global EDF is selected, and two variants of the global EDF

with different priority assignment policies are considered for simulation studies. One

have a priority assignment policy that assigns EVs with priority based on charging

mode and urgency, introduced in §5.3.4. The other assigns priorities to EVs based

only on their urgency, to see the effects of charging mode on the performance of the

proposed real-time EV charging strategy. In addition to the global EDF family, two

additional algorithms are investigated: max EVs and first come, first served (FCFS).
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Table 24: Quantitative comparison of real-time scheduling algorithms.

Performance Measures

Algorithms Load
variance

Guarantee
ratio

Average
final SOC

# Missed EVs
(mode 1/2/3/4)

Max EVs 2.0862e-04 29% 94.97% 20/31/15/5

FCFS 2.4856e-04 80% 95.55% 0/0/10/10

Global EDF 2.0879e-04 84% 96.24% 0/0/6/10

Global EDF
variant 1

2.3714e-04 74% 95.95% 0/0/16/10

Global EDF
variant 2

2.3714e-04 74% 95.95% 0/0/16/10

In the max EVs algorithm, a charging schedule is generated to allow the maximum

number of EVs to charge their batteries for a given time slot like the valley-filling

strategy. In the FCFS algorithm, as the name implies, EVs are assigned to the

processing queue according to their order of being plugged in to the charging station

and sending a request signal to the real-time dispatch scheduler. The five algorithms

are applied to a set of EV profiles with the baseload profile of SCE, and simulation

results are summarized in Table 24.

The Max EVs algorithm yields the worst results since it tries to allow as many

EVs as possible to charge no matter how urgently an EV need to charge its battery

by the plug-out time, similarly to the valley-filling strategy. However, it shows the

least total load variance among the algorithms, indicating that its load profile is the

flattest, i.e., fills the valley the best. For the FCFS case, the guarantee ratio and the

averaged plug-out SOC are improved, compared with the Max EVs case, and EVs

with charging modes 1 and 2 do satisfy their timing constraints since the charging

mode is also considered when a priority is assigned. Unlike the expectation that

the concept of “urgency” would provide better performance as a factor for priority
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assignment policy, among the global EDF family, the original version shows better

performance than the other variants. The priority assignment policy for the original

version of global EDF is to assign priorities based on 1) charging mode, 2) closeness

to deadline, and 3) current SOC, while the other variants assigns priorities based on

both on charging mode and urgency or only urgency, respectively. Since the original

version of global EDF shows better results, it is used for the following simulation

studies.

6.2.3 (HYP I-3) Effects of Charging Rates Control on Real-time EV
Charging

From the previous simulation studies, it is observed that the real-time EV charging

algorithm does not utilize a small chunk of energy around 5:00 am (see Figure 100(b)

on page 204), due to the fact that at that time there are not enough EVs to use

the energy and EVs are charged only at the maximum rate. Therefore, in §3.1.3,

it is hypothesized that if charging rates are controlled based on both the energy

utilization and the number of EVs that are charging simultaneously for a given time

slot, then the performance of the real-time EV charging algorithm will be improved.

Additionally, it is mathematically proved that the charging rate should be maximized

to fully utilize available energy in the valley(s) and, to increase the probability that

EVs are fully charged as well as satisfy their deadlines, it is advantageous to make

the charging rate as low as possible (refer to Equation (3.17) on page 98). To see

the effects of charging rates on the performance of the proposed charging scheme, the

following experiment is conducted. The charging rate is increased from 10% to 100%

of the maximum rate by 10%, and the weighting factors ω1 and ω2 in Equation (3.17)

are set to 0.5. Simulations with the global EDF algorithm are run, and the results

are summarized in Table 25.

It can be seen that the total load variance decreases as the charging rate increases,
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Table 25: Performance measures for different charging rates.

Performance Measures

Charging rate
(% of max rate)

Total load
variance

Averaged
plug-out SOC

# Missed
EVs for modes

10 2.0145e-04 97.06% 19/20/2/2

20 2.0145e-04 97.22% 19/20/2/2

30 2.0145e-04 97.44% 19/21/3/2

40 1.8832e-04 97.63% 16/23/5/4

50 1.6544e-04 98.05% 15/19/11/8

60 1.6544e-04 98.15% 5/8/18/8

70 1.3990e-04 98.08% 2/0/16/8

80 1.3990e-04 97.43% 0/0/4/8

90 1.3990e-04 97.40% 2/0/16/8

100 1.3990e-04 97.48% 0/0/20/8
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which confirms the mathematical proof in §3.1.3. On the other hand, the averaged

plug-out SOC is the highest when the charging rate is 60% as high as the maximum

rate, and the number of EVs missing deadlines is the smallest when the charging rate

is 80% of the maximum rate. This contradicts the claim that the charging rate is made

as small as possible in order to increase the number of EVs satisfying their timing

constraints. Simulations are run on 100 EVs, and charging those EVs simultaneously

won’t use up available energy since eventually the number of EVs being charged times

the charging rate is equal to utilized energy. Therefore, if there are enough EVs in the

system, then decreasing the charging rate will improve the guarantee ratio to some

extent, but, if not, it is not helpful for the real-time EV charging algorithm. Also,

it is observed that the total load variance does not change for charging rates within

some range: for instance, the total load variance is the same for charging rate greater

than 70% of the maximum rate no matter how high the charging rate is. Contrarily,

the averaged plug-out SOC and the number of EV missing deadlines show the highest

value for a specific value of charging rates. Figure 106 shows the effect of near-optimal

charging rate on the load profile. Through a heuristic approach, the charging rate

of 82% is proved to offer the best guarantee ratio, and is chosen to calculate the
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Figure 106: Effects of charging rate on load profile with global EDF (blue circle: base,
red triangle: base + EV, green: generation plan).
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number of processing queue to see the change in the load profile. Compared with

Figure 106(a), the unused chunk of energy at 5:00 am is utilized and the load profile

becomes flat like the ideal valley-filling case as depicted in Figure 106(b). In addition,

it can be seen that the performance in terms of averaged plug-out SOC is improved

as illustrated in Figure 107; however, the guarantee ratio, defined as the ratio of the

number of EVs satisfying their desired plug-out SOCs to the total number of EVs in

the system, is degraded compared with the case of the maximum rate charging.

From the simulation studies described in this subsection, the effects of charging

rates on the real-time EV charging is investigated, and Hypothesis I-3 is tested. It is

proved that the performance of the real-time EV charging algorithm is affected by the

charging rate, and it is confirmed that charging EVs at the maximum rate maximizes

the energy utilization, that is, minimizes the total load variance. However, the claim

that as the charging rate gets smaller, the guarantee ratio will increase is proved to

be wrong. Since EVs have a limited time to be plugged in and also have the amount

of energy required to refill their batteries, the claim does not make sense in reality,
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Figure 107: Effects of charging rate on state-of-charge (SOC) with global EDF (blue
circle: plug-in SOC, red rectangle: plug-out SOC).
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or the mathematical formulation in §3.1.3 is wrong in that the energy constraint

T−1∑
t=0

rn(t) =
(s(T )− s(0))βn

η∆t
, (6.2)

where rn is the charging rate, s(0) and s(T ) are plug-in and plug-out SOCs, respec-

tively, βn is the battery capacity, ηn is the charging efficiency, and ∆t is the period

of the time slot, must be included when the optimization problem is established to

guarantee the satisfaction of timing constraints with batteries fully charged.

6.2.4 (HYP I) Real-time Charging Control Strategy vs.
Valley-filling Control Strategy

In §6.2.1, it is verified that the proposed real-time EV charging algorithm somewhat,

not perfectly, satisfies EV owners’ timing constraints while providing an almost flat

load profile. It is also observed that the real-time EV charging algorithm does the

same job as the valley-filling strategy in a slightly different way in that it adjusts

the number of EVs being charged simultaneously with a fixed charging rate in real

time; on the other hand, the valley-filling strategy generates a charging schedule by

adjusting charging rate through a day-ahead negotiation process with EVs and let all

EVs charge at the same time.

As the next step, the effects of load fluctuations on the real-time EV charging

strategy is investigated. In order to verify that it can still provide a flat load curve

even in the existence of load fluctuation and satisfy EV owners’ charging prefer-

ences/requirements, the same baseload profile corrupted with an AWGN, described

in §6.1.2, is applied to the real-time EV charging algorithm, and simulation results are

presented in Figures 108, 109, and 110. As can be seen in Figure 108, the real-time

EV charging still provides a flat load curve even with fluctuating load by adjusting

the number of EVs being charged in real time, i.e., when actual charging takes place.

This fact can be confirmed by the later part of the load curve where all EVs are

plugged out and thus the load fluctuation cannot be compensated for and is directly
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reflected in the load profile. From Figure 109(b), it can also be seen that the number

of EVs being charged keep changing, depending on real-time measurements of avail-

able energy for EV charging, while the valley-filling strategy cannot adjust charging

rates since it determines the charging rate through the day-ahead negotiation with

EVs. Figure 110 shows that the proposed real-time EV charging scheme makes more

EVs satisfy their deadlines with fully charged battery than the valley-filling scheme

does; however, the uniformity of plug-out SOCs of the valley-filling scheme is still

better although it does not fully charge any of EVs by their plug-out times.
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Figure 108: Load profiles of valley-filling and real-time with load fluctuation (blue
circle: base, red triangle: base + EV, green: generation plan).
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Figure 109: Number of EVs being charged of valley-filling and real-time with load
fluctuation.
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To see the effects of fluctuating load on the scheduling algorithm in more detail,

the simulation results of the case with load fluctuation are compared with the one

without load fluctuation. It can be seen in Figure 111 that the aggregated demand

(base + EV demand), i.e., the load profile, of the case with load fluctuation is the

same as the one of the without-load-fluctuation case. The tail of the flat curve

part of the load profile results from the fact that all EVs are plugged out around

9:00 am and thus there is no available EVs to use up the available energy, i.e., the

difference between generation plan (green curve) and non-EV demand (blue curve).
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Figure 110: State-of-charge (SOC) of valley-filling and real-time with load fluctuation
(blue circle: plug-in SOC, red rectangle: plug-out SOC).
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Figure 111: Load profile of real-time charging scheme with load fluctuation (blue
circle: base, red triangle: base + EV, green: generation plan).
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The performance of the proposed charging scheme is not affected by load fluctuation,

or inaccurate prediction of non-EV demand, since it keeps adjusting the number of

EVs being charged at the same time and charging rates as well, based upon real-time

measurements of non-EV demand and communications with EVs in the system as

illustrated in Figure 112. In addition, it is observed that the load fluctuation has

sometimes a positive effect on EV charging since energy available for charging EVs

might increase if load fluctuates in the direction of getting less than the day-ahead

prediction as shown in Figure 113. Negative values of demand prediction error n

Figure 113(a) represent that power is consumed less than the day-ahead prediction

and the underutilized power can be used for charging EVs. Figure 113(b) shows that,

from time to time, available power for EV charging increases due to load fluctuation,

compared to one of the case without load fluctuation. For instance, there are some

EVs charging from 20:00 to 0:00 as illustrated in Figure 112(b) while there are no

EVs charging during that time period in the case without load fluctuation (see Figure

112(a)).

From the perspective of the satisfaction of timing constraints, the number of EVs

missing their deadlines is slightly increased – totally 10 EVs to 20 EVs, especially
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Figure 112: Number of EVs per mode without and with load fluctuation.
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EVs with mode 3 increases by 10, as shown in Figure 114, but the averaged plug-

out SOC is improved by about 1%. However, in the case without load fluctuation,

total power available for EV charging is 5.4081 MW, while power of 5.5130 MW is

available and slightly greater in the case with load fluctuation. As can be seen in

Figure 115, the 8 EVs with mode 4, of which plug-out SOCs are far below the desired

plug-out SOCs, that is, 100%, for both the cases, get charged more in the case with

load fluctuation than the case without fluctuation, and the 12 EVs with mode 3 are

almost fully charged. In consequence, the performance of the proposed real-time EV
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Figure 113: Load prediction error (positive: actual > predicted, negative: actual <
predicted) and available power for EV charging with load fluctuation.
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Table 26: Summary of real-time charging scheme performance with load fluctuation.

without
fluctuation

with
fluctuation

# of EVs missing deadlines 0/0/2/8 0/0/12/8

Sample variance of total load 1.3990e-04 7.0445e-03

Guarantee ratio 90% 80%

Averaged plug-out SOC 97.37% 98.03%

charging algorithm gets improved in spite of load fluctuation, which is modeled as an

AWGN and could represent the prediction error of or continuous changes in non-EV

demand. Simulation results for both the cases, in terms of the performance metrics,

are summarized in Table 26.

Since simulation results on a specific set of EV profiles are presented previously,

Monte Carlo simulations are run on 100 sets of baseload profiles, which are generated

by applying 100 sets of an AWGN to the SCE’s typical winter baseload profile, to

see the effects of load fluctuation thoroughly on the proposed scheduling algorithm,

and the results are summarized in Table 27 and the number of EVs missing deadlines
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Figure 115: State-of-charge (SOC) of real-time charging scheme with load fluctuation
(blue circle: plug-in SOC, red rectangle: plug-out SOC).
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Table 27: Summary of Monte Carlo simulation on effects of load fluctuation.

without
fluctuation

with
fluctuation

Averaged # of EVs missing deadlines 17.6 20.4

Sample variance of total load 9.88× 10−6 3.26× 10−4

Averaged guarantee ratio 82.4% 79.6%

Averaged plug-out SOC 96.3% 96.4%

for the 100 cases is presented in Figure 116. In average, smaller number of EVs miss

their deadlines in the case without load fluctuation, but there is no case where all

EVs satisfy their timing constraints. On the other hand, the number of EVs missing

deadlines of the case with load fluctuation is relatively large, but quite a few cases

meet EV owners’ charging preferences/requirements.

From this case study, it can be concluded that the proposed real-time EV charging

algorithm can provide a near-optimality, i.e., almost minimize total load variance,

and fill the valley of the load profile while satisfying EV owners’ timing constraints

regardless of whether load fluctuates or not. However, the performance of the strategy,
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Figure 116: Monte Carlo simulation of number of EVs missing deadlines with load
fluctuation (red rectangle: number of EVs, orange horizontal straight line: average).
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especially in terms of guarantee ratio, is somehow affected by the changing patterns

and degree of load fluctuation.

For the last step to compare the proposed scheme with the existing valley-filling

scheme, since the superiority of the proposed real-time EV charging control scheme

is demonstrated only for a specific set of EV charging profiles and a specific load

profile previously, it is necessary to show that the real-time EV charging scheme

outperforms the valley-filling charging scheme for comprehensive sets of EV charging

profiles and load profiles. Therefore, as shown in Figure 117, Monte Carlo simulations

with various sets of EV charging profiles and baseload profiles are also run. A number

of EV charging profiles, randomly generated in the similar way as described in §6.1.1,

are used to take into account the random charging behaviors/patterns of EV owners.

Baseload profiles are also generated by applying a set of AWGN with the same mean

and variance, that is, zero mean and the variance of 1% of peak load. The statistics

of performance metrics such as the number of EVs missing their deadlines, sample

total load variances for optimality measure, and guarantee ratios of the valley-filling

and real-time charging schemes, defined as the ratio of the number of EVs satisfying

their deadlines to the total number of EVs are summarized in Tables 28 and 29.

As can be seen in the tables above, the valley-filling strategy does not satisfy

timing constraints of any of the cases, but the real-time charging provides much better

performance in terms of the satisfaction of timing constraints, even if it does not

Figure 117: Overview of sensitivity analysis.
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Table 28: Summary of Monte Carlo simulation runs on a set of load profiles.

Valley-filling Real-time

Averaged # of EVs missing deadlines 100 12.8

Sample variance of total load 2.43× 10−5 9.54× 10−6

Average guarantee ratio 0% 87.2%

Averaged plug-out SOC 82.9% 98.66%

Table 29: Summary of Monte Carlo simulation runs on a set of EV profiles.

Valley-filling Real-time

Averaged # of EVs missing deadlines 100 15.1

Sample variance of total load 1.04× 10−5 9.98× 10−6

Average guarantee ratio 0% 84.9%

Averaged plug-out SOC 83.7% 97.46%

satisfy the charging requirements of all EVs in every case perfectly. In addition, the

real-time charging strategy yields improved total load variance since the valley-filling

strategy generates a charging schedule through the day-ahead negotiation based on

the prediction of load and thus can’t compensate for the changes in load or generation

capacity when EVs charge their batteries. However, in terms of the uniformity of plug-

out SOCs, the valley-filling strategy performs better, and it is necessary to improve

the real-time scheduling algorithm so that it allocates available energy to every EV

uniformly while maintaining its guarantee ratio and averaged plug-out SOCs.
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6.3 Real-time EV Charging Control Strategy
in Support of V2G-based Frequency Regulation

As discussed in §1.1.1, one of the most promising benefits that an aggregated network

of EVs can provide is that it can be used as electric energy storage (EES) so that it

can mitigate the intermittency of renewable energy sources (RES) such as wind and

solar, and thus stabilize the system frequency. According to many studies, the most

valuable V2G-based service is frequency regulation; however, it is highly likely that

V2G-based frequency regulation will degrade the performance of the proposed real-

time EV charging system if they are designed independently of each other. To cope

with this technical challenge, it is claimed that if V2G-based frequency regulation can

be incorporated into the real-time EV charging system, then the real-time scheduling

can be done without any performance degradation. For this reason, in §3.2.1, it

is hypothesized that the introduction of different charging modes and the control of

charging rates of EVs that opt to participate in V2G-based frequency regulation will

enable V2G-based frequency regulation to be incorporated in the real-time EV charging

system (Hypothesis II-1), and a methodology for incorporating V2G-based frequency

regulation into the real-time EV charging system is introduced. In this section, the

functionality of the V2G-based frequency regulation that is incorporated into the real-

time charging algorithm is examined, its effects on the performance of the real-time

charging strategy are investigated, and the relevant hypotheses are tested.

6.3.1 (HYP II-1) Incorporation of V2G-based Frequency Regulation into
Real-time EV Charging

For the V2G-based frequency regulation, the algorithm encourages EVs with charging

mode 4 to provide power to the grid after plugged in, rather than adjusts the number

of EVs being charged simultaneously, when actual aggregated demand is greater than

generation plan. No lower limit for SOC is considered in verifying the functionality of
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V2G-based frequency regulation incorporated in the real-time EV charging algorithm.

EVs with mode 4 sell electricity stored in their batteries when EVs with other modes

are required to charge but power is not available for charging EVs. For the purpose

of verification, the same EV profiles and baseload profile are used.

The load profile for the case with V2G-based frequency regulation implemented

is given in Figure 118 along with the one of the case without V2G-based frequency

regulation in order to see the effects of V2G-based frequency regulation. As can be

seen in Figure 118(b), the V2G-based frequency regulation makes the load profile get

worse, compared with the one that does not have V2G-based frequency regulation

implemented, and consequently EVs do not fully utilize available power. Without

V2G-based frequency regulation, the real-time scheduling algorithm tries to fully uti-

lize available power and compensate for load fluctuation by adjusting the number of

EVs that can be charged simultaneously; however, the V2G-based frequency regu-

lation makes up for load fluctuation by encouraging EVs with mode 4 to sell their

power to the grid in order to fill the batteries of EVs with other modes. Accordingly,

EVs with modes 1 and 2 can be fully charged by their deadlines, but the SOCs of

EVs with modes 3 and 4 are significantly decreased. The total number of EVs being
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Figure 118: Load profiles without and with V2G-based FR (blue circle: base, red
triangle: base + EV, green: generation plan).
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charged, which reflects the available power at a time slot, is similar to the one without

V2G-based frequency regulation, but, after 7:00 am, the real-time charging algorithm

with V2G-based frequency regulation does not utilize the available processing queues,

depicted with the green curve in Figure 119(b), since many EVs are plugged out at

that time even though there is power available, and EVs with mode 4 don’t have

enough time to fill their batteries since they sell their power to the grid to charge

EVs with other modes while they are plugged in. As expected, the average of plug-

out SOCs gets lowered and the number of EVs missing their deadlines increases, as

illustrated in Figure 120(b). The reason generation capacity (green curve in Figure

118(b)), which is planned based on the information EVs provide when plugged in, is

not fully utilized can be obviously seen in Figure 121. First, EVs with mode 1 start

charging earlier in the evening when actual demand is less than the predicted demand,

although the real-time dispatch scheduler does not start scheduling – it starts at 0:00

am, and the number of them decreases around 7:00 am next day. Similarly, EVs

with mode 2 charge their batteries as soon as power is available, and the maximum

number of them are charging around 1:00 am. EVs with those two modes charge in

the same way as the one without V2G-based frequency regulation, as illustrated in
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Figure 119: Total number of EVs being charged without and with V2G-based FR
(blue: # of EVs being charged, green: # of available processing queues).
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Figure 121(a). However, EVs with mode 4 sell their electricity when actual demand is

greater than the predicted demand and EVs with higher modes need to be charged.

From Figure 121(b), where the negative numbers of EVs represent the number of

EVs selling power to the grid, it can be seen that all EVs with mode 4, of which

number is assumed to be 10% of total EVs in the system, participate in V2G-based

frequency regulation when up-regulation is necessary. Figure 122 shows V2G power

for the two cases. Right after the charging scheduling starts, EVs with mode 4 start

selling power to the grid, and, around 4:00 am, and the number of EVs with mode
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Figure 120: State-of-charge (SOC) without and with V2G-based FR (blue circle:
plug-in SOC, red rectangle: plug-out SOC).
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Figure 121: Number of EVs per mode without and with V2G-based FR.
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3 decreases momentarily in order to pull up the SOCs of EVs with mode 4 to the

pre-specified levels. The SOCs of EVs with mode 4 for both the cases are illustrated

in Figure 123. In the case without V2G-based frequency regulation, the SOCs of the

EVs keep increasing after they start charging, and one of them reaches the desired

SOC of 100%. However, the SOCs of the EVs in the case with V2G-based frequency

regulation start decreasing when the real-time dispatch scheduler starts scheduling,

and they start recharging their batteries around 4:00 am and manage to reach a

certain level of SOC, resulting in the dissatisfaction of timing constraints.
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Figure 122: V2G power without and with V2G-based FR (positive: actual > pre-
dicted, negative: actual < predicted).
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Figure 123: State-of-charge (SOC) of EVs with mode 4 without and with V2G-based
FR (blue circle: plug-in SOC, red rectangle: plug-out SOC).
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In this subsection, the functionality of the real-time EV charging algorithm to

provide V2G-based frequency regulation is investigated through simulations. It is

demonstrated that the real-time charging algorithm can provide the service by en-

couraging EVs with charging mode 4 to sell electricity stored in their batteries to

the grid to match generation with demand. However, as expected, the performance

of the charging strategy is degraded due to the provision of V2G-based frequency

regulation since some EVs need to participate in frequency regulation, not charging

their batteries during the given charging period. In the next subsection, the impacts

of V2G-based frequency regulation on the real-time charging strategy are investigated

for a variety of scenarios, and the hypothesis formulated in §3.2.2 is examined.

6.3.2 (HYP II-2) Evaluation of the Impacts of V2G-based FR on
Real-time EV Charging

In the previous subsection, the impacts of V2G-based frequency regulation on real-

time EV charging are investigated for a specific set of baseload profile and EV profiles.

As expected, the performance, in terms of total load variance and guarantee ratio, of

the charging scheme is degraded, because EVs with mode 4, which are supposed to

provide V2G power to the grid, do not have enough time to charge their batteries,

selling power with which EVs with other modes can be charged and the mismatch

between generation and demand can be balanced out. In order to verify that the

degradation is really due to V2G-based frequency regulation or it happens only for

the specific set of profiles, 100 sets of EV profiles and 100 sets of baseload profiles are

applied to the real-time EV charging algorithm with V2G-based frequency regulation

incorporated.

Figures 124 and 125 show the Monte Carlo simulation results of the case with

100 sets of baseload profiles. For easy comparison, the results of the case without

V2G-based frequency regulation are presented together. It can be seen from Figure
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124 that the number of EVs missing deadlines is noticeably increased when V2G-

based frequency regulation is incorporated into the real-time EV charging scheme.

The reason is that EVs with mode 4 are frequently preempted by other EVs with

higher modes and, to make things even worse, they provide power to the grid so

that it can charge other EVs and make up for the change in non-EV demand. Also,

the extent to which the scheme is affected by the provision of V2G-based frequency

regulation depends on the changing patterns and the amount of energy for up- and

down-regulation requested by the real-time dispatch scheduler. The deterioration
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Figure 124: Monte Carlo simulations on the number of EVs missing deadlines with
100 sets of load profiles.
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Figure 125: Monte Carlo simulations on averaged plug-out SOC with 100 sets of load
profiles.
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in the number of EVs missing deadlines can be also found in plug-out SOCs, as

illustrated in Figure 125. There are a few cases where all EVs are fully charged, but,

compared with the case without V2G-based frequency regulation, the performance in

terms of plug-out SOC is significantly affected by the ancillary service.

Figures 126 and 127 show the results on 100 sets of EV profiles. Both the cases

provide better results on the number of EVs missing deadlines and the averaged plug-

out SOC than the simulations with sets of load profiles. The number of EVs missing

deadlines for every simulation run is evenly distributed, compared with the simulation
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Figure 126: Monte Carlo simulations on the number of EVs missing deadlines with
100 sets of EV profiles.
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Figure 127: Monte Carlo simulations on averaged plug-out SOC with 100 sets of EV
profiles.
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case on load profiles, and, likewise, there are a few runs where all EVs satisfy their

timing requirements. From these simulation studies, it is observed that load profiles

are more likely to affect the performance of the proposed charging algorithm than

EV profiles. A set of EV profiles is generated under the assumption that EV owners

would plug in their vehicles at a similar time every day with a slight change and drive

off their cars for work at a certain time in the morning. In addition, the reference EV

demand, introduced in §5.3.1 and used to calculate the number of processing queues,

is estimated based on the information such as plug-in times, plug-out times, and

desired plug-out SOCs, provided by EV owners, that is, EV profiles. Therefore, the

performance of the proposed charging scheme is less affected by EV profiles. On the

other hand, the scheme must cope with the instantaneous change in non-EV demand,

i.e., load profile, and hence its performance heavily depends on load profiles. Also, if

an EV doesn’t come up to the target SOC, even by less than 1%, it is considered to

fail to satisfy the timing requirement and, in consequence, the performance metric,

the number of EVs missing deadlines, looks worse, even though the averaged plug-

out SOC are sufficiently high. The numeric results of the Monte Carlo simulations

on load profiles and EV profiles are compiled in Table 30.

So far, the impacts of the provision of V2G-based frequency regulation on the

performance of the proposed charging scheme have been examined through simula-

tion studies, and it can be concluded that the performance of the scheme is greatly

influenced by the V2G-based ancillary service as well as circumstances such as non-

EV demand patterns and EV owners’ preferences/requirements, and it is necessary

to come up with an idea to mitigate the impacts.
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Now, Hypothesis II-2, regarding the mitigation of the impacts of V2G-based fre-

quency regulation, is tested. Since the sets of EV profiles are generated in quite a

random way such that charging requirements for an EV from a set have nothing to

do with ones for the EV from other sets, it does not make sense to calculate the

means and standard deviations of plug-in and plug-out times for each EV from the

sets of EV profiles and use them as a timing buffer, of which concept is described

in §3.2.2. Therefore, an arbitrary number is used for all EVs as the timing buffer

to see if the concept can mitigate the impacts of V2G-based frequency regulation on

real-time EV charging. For this purpose, the timing buffer of 2 hours is applied to

calculate the reference EV demand estimation for the real-time scheduling algorithm

with V2G-based frequency regulation, and a simulation is run on the same set of EV

profile and baseload profile that are used for the simulations in §6.3.1.

Figure 128 shows one of the simulation results, aggregated demand profile. It can

be seen that the load profile becomes flat again during the charging window, from 0:00

am until 2 hours before the latest plug-out time, by introducing the timing buffer. It

can also be observed that the timing buffer leads to an increase in the reference EV

demand estimation, which is now slightly greater than the day-ahead generation plan,
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Figure 128: Load profiles without and with timing buffer for V2G-based FR (blue
circle: base, red triangle: base + EV, green: generation plan).
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depicted in green curve. The timing buffer has the effect of encouraging EVs to com-

plete charging 2 hours ahead of their plug-out times and, instead, increasing energy

required for charging EVs. The effects can be seen in plug-out SOCs of the EVs, as

illustrated in Figure 129. Introducing the concept of timing buffer moves the average

of plug-out SOC’s back to the level of the algorithm without V2G-based frequency

regulation. Although the algorithm still does not satisfy the charging requirements

of all EVs, the plug-out SOCs of EVs with mode 4 are significantly improved, com-

pared with the one without timing buffer, and are even better than the one without

V2G-based frequency regulation. In addition, EVs with the other modes complete

recharging, 100%, before they are plugged out.

Like the previous case, in order to verify the effects of timing buffer on the perfor-

mance of the real-time EV charging algorithm with V2G-based FR thoroughly, Monte

Carlo simulations with 100 sets of load profiles and 100 sets of EV profiles are run.

Figure 130 shows the simulation results on the number of EVs missing deadlines with

100 sets of load profiles, which are corrupted with AWGN to represent a situation

where load is fluctuating by 1% of the peak load early in the evening. In overall, the

performance in terms of the number of EVs missing deadlines is improved, compared
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Figure 129: State-of-charge (SOC) without and with timing buffer for V2G-based FR
(blue circle: plug-in SOC, red rectangle: plug-out SOC).
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with the case without timing buffer, but there are still the cases where almost 70%

EVs don’t satisfy their timing constraints although the timing buffer is introduced.

However, scrutinizing the averaged plug-out SOC in Figure 131(b) reveals that most

of the EVs are plugged out with SOCs close to their desired departure SOCs, but

not perfectly 100%, making the number of EVs missing deadlines look worse than it

really is. The number of EVs missing deadlines, averaged out over the 100 sets of load

profiles, is 31.8, and its standard deviation is 13.3, indicating that the performance

of the real-time EV charging algorithm is severely affected by fluctuating patterns in
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Figure 130: Monte Carlo simulations on the number of EVs missing deadlines for
timing buffered V2G-based FR with 100 sets of load profiles.
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Figure 131: Monte Carlo simulations on averaged plug-out SOC for timing buffered
V2G-based FR with 100 sets of load profiles.
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load profiles because the sets of load profiles are generated by corrupting the load

profile from the CAISO database with a variety of random noise.

Now, let’s take a look at the simulation results on EV profiles, presented in Figures

132 and 133. Unlike the case with load profiles, the number of EVs missing deadlines

increases rather than decreases, and there is no case in which all EVs satisfy their

deadlines, even though energy for EV charging is increased by introducing the timing

buffer. The average of the number of EVs missing deadlines for the case without

timing buffer is 16.5, whereas the average for the case with timing buffer is 25.1,
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Figure 132: Monte Carlo simulations on the number of EVs missing deadlines for
timing buffered V2G-based FR with 100 sets of EV profiles.
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Figure 133: Monte Carlo simulations on averaged plug-out SOC for timing buffered
V2G-based FR with 100 sets of EV profiles.
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increasing by 52%. However, Figure 133 explains why the number of EVs missing

deadlines increases. For the same reason as the simulation case on load profiles, the

averaged plug-out SOC for each case is increased, almost up to 100%, and, based

on the standard deviation of 0.77%, their uniformity is improved – by 7%, compared

with the case without timing buffer. The summary of Monte Carlo simulations on

timing buffer are compiled in Table 31.

In this subsection, the impacts of V2G-based frequency regulation on the real-

time EV charging algorithm are addressed. By introducing the different charging

modes and modifying the real-time EV charging algorithm such that charging rates

are adjusted based on both the current SOCs and whether or not they participate

in the service, V2G-based frequency regulation can be provided within the real-time

EV charging framework. V2G-based ancillary services are required to be provided

while EVs are plugged in, implying that the services will have an influence on the

performance of the proposed real-time scheduling algorithm. In order to investigate

the impacts, a various types of simulations are performed on a variety of EV and load

profile sets, which take account of random characteristics of load profiles and EV own-

ers’ charging preferences. It is verified through simulation studies that V2G-based

frequency regulation affects real-time EV charging: it tends to decrease the number

of EVs satisfying their deadlines, especially EVs with mode 4, and makes plug-out

SOCs deviated more from the desired plug-out SOCs, in contrast to the real-time EV

charging algorithm without V2G-based frequency regulation. However, introducing

the concept of timing buffer is shown to mitigate the impacts of V2G-based frequency

regulation on the real-time EV charging, and restores the performance of the algo-

rithm to its previous state without consideration of V2G-based frequency regulation.

Table 32 summarizes all of the hypotheses testing activities and findings from

those activities addressed in this chapter.
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Table 32: Summary of hypotheses testing and findings.

Thesis
section

Hypotheses testing Findings

6.1.2 (Hypothesis Ia) Substantia-
tion of the technical gaps of
the valley-filling EV charging
strategy

- The strategy won’t guarantee its social optimality
when: 1) the prediction of load profile is inaccurate
or the actual non-EV demand is fluctuating, and 2)
EV profiles are different from the ones used for the
day-ahead negotiation.
- It does NOT satisfy any timing constraints EV own-
ers specified when plugging in their vehicles.

6.2.1 (Hypothesis I-1) Verification
of real-time EV charging con-
trol

- The EV charging system can be modeled as a real-
time system so that real-time scheduling techniques
are applicable to EV charging control.
- The real-time EV charging control does the same
job as the valley-filling strategy does in a different
way in terms of the social optimality.
- The real-time EV charging strategy satisfies EV
owners’ timing contraints, but not perfectly 100%.
- EVs with charging mode 4 do not have enough
chances to charge their batteries due to their lower
priorities, leading to non-flat load profiles.

6.2.2 (Hypothesis I-2) Evaluation
of real-time scheduling algo-
rithms for EV charging

- The EV charging system can be viewed as a unipro-
cessor system or a multiprocessor system, depending
on how available power is interpreted.
- A variety of real-time scheduling algorithms can be
tailored to be applied to EV charging control.
- The performance measures such as guarantee ratio
and total load variance are affected by type of real-
time scheduling algorithms and priority assignment
policy.

6.2.3 (Hypothesis I-3) Effects of
charging rates control on real-
time EV charging

- Charging rates have an influence on the perfor-
mance of EV charging control.
- Charging EVs at the maximum rate maximizes the
energy utilization, that is, minimizes the total load
variance.
- The guarantee ratio won’t be improved by mini-
mizing the charging rate since EVs have a limited
time to be plugged in and also have the amount of
energy required to refill their batteries. Therefore,
the energy constraint must be considered when the
charging rate is optimized.

6.2.4 (Hypothesis Ib) Real-time
charging control vs. valley-
filling strategy

- The real-time EV charging strategy will guaran-
tee the social optimality as well as the satisfaction
of EV owners’ charging preferences better than the
valley-filling strategy even when non-EV demand is
fluctuating.
- The valley-filling strategy provides a better uni-
formity on plug-out state-of-charge (SOC), but the
real-time charging strategy is the better in terms of
averaged plug-out SOC.
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Table 32 (continued).

Thesis
section

Hypotheses testing Findings

6.2.4 (cont’d) - The performance of the strategy, especially guaran-
tee ratio, is somehow affected by the changing pat-
terns and degree of load fluctuation.

6.3.1 (Hypothesis II-1) Incorpora-
tion of vehicle-to-grid (V2G)-
based frequency regulation
(FR) into real-time EV charg-
ing

- The functionality of the real-time EV charging al-
gorithm to provide V2G-based FR by introducing
different charging modes and at the same time con-
trolling charging rates of EVs that opt to participate
in the ancillary service is verified.
- The performance of the charging strategy is de-
graded due to the provision of V2G-based FR since
some EVs need to participate in the service, not
charging their batteries during the given charging pe-
riod, and consequently EVs do not fully utilize avail-
able power.

6.3.2 (Hypothesis II-2) Evaluation
of the impacts of V2G-based
FR on real-time EV charging

- The number of EVs missing their deadlines is no-
ticeably increased when V2G-based FR is incorpo-
rated.
- The extent to which the scheme is affected by the
provision of V2G-based FR depends on the chang-
ing patterns and the amount of energy for up- and
down-regulation requested by the real-time dispatch
scheduler.
- It is observed that load profiles are more likely to
affect the performance of the algorithm than EV pro-
files.
- The concept of “timing buffer” can mitigate the im-
pacts of V2G-based FR on the real-time EV charging
algorithm by increasing the reference EV demand es-
timation and encouraging EVs to complete charging
ahead of their plug-out times.
- Most of EVs from the fictitious dataset are plugged
out with SOCs close to their desired departure SOCs,
but not perfectly 100%, making the number of EVs
missing deadlines look worse than it really is.
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CHAPTER VII

CONCLUSION

7.1 Recapitulation of the Thesis

Electric vehicles (EVs) are believed to provide “significant potential for increasing

energy efficiency, reducing greenhouse gas emissions, and relieving reliance on for-

eign oil for transportation” [19]. In addition to these economical and environmental

benefits, the large-scale adoption of EVs is expected to present an opportunity to

provide electric energy storage (EES)-based ancillary services for ensuring grid-wide

frequency stability by smoothing the natural intermittency of large-scale renewable

energy sources (RES) [62]. However, the integration of a large population of EVs

into the electric grid is expected to “come with a multitude of challenges, especially

those in the integration into the electric power grid” [19]. Since EVs consume a large

amount of electrical energy, the charging of a large population of EVs will have many

undesirable impacts on the distribution grid.

“Many simulation-based studies have suggested that adopting a smart charging

strategy for the high penetration of EVs can alleviate some of the integration chal-

lenges and defer infrastructure investment needed otherwise” [19]. This research was

motivated by the suggestion, and focused on the development of a smart EV charging

strategy such that it can minimize the impacts of charging EVs on the grid as well as

leverage the technical benefits as an EES-based ancillary service provider. Reviewing

the literature on the EV charging strategies revealed that the existing strategies have

technical limitations: when generating a charging schedule, those strategies don’t

consider EV owners’ charging preferences, esp. timing constraints, which might be

much more important than the minimization of the impacts of EV charging on the
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grid since a utility will not have the control authority over EV charging; and they

require the perfect knowledge on non-EV demand profile and EV charging profiles

to schedule EV charging; and they are very sensitive to the prediction accuracy and

fluctuation of load profiles.

The real-time scheduling technique was identified as a promising option for a smart

EV charging control strategy, based on the observation of the similarity between

a real-time system and an EV charging system. In response to this finding, the

research questions and hypotheses were formulated to develop and evaluate a real-time

EV charging control strategy. The theoretical foundations on which the formulated

hypotheses can be tested was laid in Chapter 4. The EV charging problem was briefly

introduced, and real-time scheduling algorithms were discussed in detail as these

algorithms provide a main building block to develop and investigate the proposed

real-time charging strategy. The basic concepts of frequency regulation and vehicle-

to-grid (V2G) were reviewed, and a few technical approaches to V2G-based frequency

regulation were introduced. Given the theoretical foundations, an object-oriented

programming (OOP) model for an EV charging system was implemented to capture

the behavioral characteristics of the system, and the development process for a real-

time scheduling algorithm based on global scheduling algorithm was elaborated in

Chapter 5. Also, a simple V2G-based frequency regulation was implemented by

introducing different charging modes to allow EVs to sell electricity to the grid.

For simulation studies, a typical winter day load profile in a residential area from

the CAISO database was corrupted with additive White Gaussian noises to generate

a set of baseload profiles, representing the inaccurate prediction of load profiles and

non-EV demand fluctuation. In a similar approach, a set of EV profiles was generated

to investigate the system behaviors of the proposed charging strategy thoroughly. A

benchmark system was developed to substantiate the technical gaps of the existing

valley-filling strategy, and the performance of the proposed strategy was compared
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with the benchmark system. Once the feasibility of the real-time EV charging algo-

rithm was verified, the hypotheses regarding the algorithm itself were tested, and the

results were given in Chapter 6, followed by the hypothesis testings related to the

capability of the real-time EV charging algorithm for the provision of the V2G-based

frequency regulation.

In order to help readers understand this research, a list of bread-and-butter ref-

erences is presented in Table 32.

7.2 Contributions and Recommendations

The most important contribution of this research is that it proposes and verifies a

novel EV charging control strategy based on real-time scheduling techniques, which

is the first attempt to apply the techniques to the EV charging control problem. It

is meaningful in that a design methodology for an EV charging system, which is a

problem in Electrical Engineering (EE) and Systems Engineering (SE) domains, is

developed by leveraging real-time scheduling techniques that are widely utilized in

Computer Science (CS) and Industrial & Systems Engineering (ISyE) domains. The

proposed real-time EV charging strategy is verified to satisfy EV owners’ charging

requirements, esp. timing constraints, which is one of the technical limitations of

the existing charging strategies, and also minimize the impacts of charging EVs on

the grid so that a large scale of EV population can be deployed with the undesirable

impact on the grid minimized.

Another contribution is that a method to model an EV charging system as a

real-time system is proposed, based on its analogy with a real-time system in order

to apply real-time scheduling techniques to EV charging control. There have been a

few attempts at modeling household appliances to curtail power usage for demand

response, but modeling an EV charging system using real-time system parameters

is the first attempt, which establishes a theoretical foundation for further studies
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Table 32: List of bread-and-butter references.

AREA REFERENCES

Operational
management and
control strategies
for EV charging

Ma, Z., Callaway, D., and Hiskens, I.,“Decentralized Charging Control
for Large Populations of Plug-in Electric Vehicles: Application of Nash
Certainty Equivalence Principle,” in 2010 IEEE International Confer-
ence on Control Applications, pp.191-195, September 2010.

Gan, L., Topcu, U., and Low, S. H., “Optimal Decentralized Protocol
for Electric Vehicle Charging,” in IEEE Transactions on Power Systems,
vol.28, pp.940-951, May 2013.

Real-time scheduling
techniques for
electric power systems

Facchinetti, T., Bini, E., and Bertogna, M., “Reducing the Peak Power
through Real-time Scheduling Techniques in Cyber-Physical Energy Sys-
tems,” in Proceedings of the First International Workshop on Energy
Aware Design and Analysis of Cyber Physical Systems (WEA-CPS),
2010.

Vedova, M. D., Palma, E. D., and Facchinetti, T., “Electric Loads
as Real-time Tasks: An Application of Real-time Physical Sys-
tems,” in Wireless Communications and Mobile Computing Conference
(IWCMC), pp.1117-1123, July 2011.

Real-time systems &
real-time scheduling
algorithms

Laplante, Real-time Systems Design and Analysis, John Wiley & Sons,
3rd Ed., April 2004.

Krishna, C. M. and Shin, K. G., Real-time Systems, MIT Press and
McGraw-Hill Company, 1997.

Mohammadi, A. and Akl, S. G., “Scheduling Algorithms for Real-
time Systems,” Technical Report No. 2005-499, School of Computing,
Queen’s University, July 2005.

Srinivasan, A. and Baruah, S., “Deadline-based Scheduling of Periodic
Task Systems on Multiprocessors,” Information Processing Letters, 84,
pp.93-98, 2002.

Ancillary services &
frequency regulation

Kempton, W. and Tomić, “Vehicle-to-grid Power Fundamentals: Calcu-
lating Capacity and Net Revenue,” Journal of Power Sources, vol.144,
pp.268-279, June 2005.

Kirby, B. J., “Frequency Regulation Basics and Trends,” Technical Re-
port ONRL/TM-2004/291, Oak Ridge National Laboratory, December
2004.

Vehicle-to-grid (V2G)
technologies

Kempton, W. and Tomić, J., “Vehicle-to-grid Power Fundamentals: Cal-
culating Capacity and Net Revenue,” Journal of Power Sources, vol.144,
pp.268-279, June 2005.

Kempton, W. and Tomić, J., “Vehicle-to-grid Power Implementation:
From Stabilizing the Grid to Supporting Large-scale Renewable Energy,”
Journal of Power Sources, vol.144, pp.280-294, June 2005.

Kirby, B. J., “Frequency Regulation Basics and Trends,” Technical Re-
port ONRL/TM-2004/291, Oak Ridge National Laboratory, December
2004.

Object-oriented
programming

MathWorks, “Object-oriented Programming with MAT-
LAB.” http://www.mathworks.com/discovery/object-oriented-
programming.html
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on real-time EV charging control. In addition, to develop the charging strategy, a

variety of real-time scheduling algorithms that are applicable to EV charging control

and priority assignment policies are reviewed and evaluated.

Most of studies regarding the concept of vehicle-to-grid (V2G) have addressed

either the economic viability of the concept or a methodology for the provision of

V2G-based ancillary services, especially frequency regulation. Some researches con-

sidered the EV charging problem along with V2G-based frequency regulation, based

on a simple relationship between V2G-based frequency regulation and the states-

of-charge (SOCs) of EVs; however, no research with consideration of EV owners’

charging preferences have been found. In this research, V2G-based frequency regu-

lation is incorporated within the EV charging control framework, which enables the

characterization of the interactions between EV charging and V2G-based frequency

regulation, and also indicates a possibility to expand the capability of the algorithm

for further investigation with other power systems, such as home energy management

system (HEMS).

Following research topics are recommended for further researches using the devel-

oped algorithm and simulation framework:

• Expansion of the simulation model to a “decentralized”, real-time EV charging

control: The proposed real-time scheduling algorithm controls EV charging in

a centralized way in that the real-time dispatch scheduler determines when and

which EVs can start charging, based on the information EVs provide. The cur-

rent simulation model is implemented using the object-oriented programming

(OOP) technique offered by MathWorks R© Matlab, which can be easily ex-

panded to agent-based modeling and simulation (ABM&S). The expansion will

allow the real-time scheduling algorithm to control EV charging in a decen-

tralized way so that each EV determines its own charging schedule based on

the electricity price information provided by the dispatch scheduler. I believe
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that the ABM&S with timing constraints considered probably will be a novel

approach for Systems Engineering (SE).

• Investigation of the interactions with HEMS: In addition to V2G-based ancillary

services, a HEMS is expected to directly interact with an EV charging system,

since the EV charging system will be the part of the HEMS, as illustrated in Fig-

ure 134, and the HEMS will control EV charging in order to manage household

electricity usage, independently of the real-time dispatch scheduler. Accord-

ingly, the HEMS will influence the performance of the real-time EV charging

algorithm, thus its impacts should be investigated, and the algorithm needs to

be augmented, if necessary. I believe that the expansion of the simulation model

to ABM&S will allow for the investigation of the interactions of the real-time

EV charging system with HEMS.

• Relaxation of the assumptions on the problem: In this research, an EV charging

control strategy over private chargers, to which EVs are assumed to be plugged

in and charged at night, is only considered. However, EVs can be charged at

publicly available chargers at work or at a big shopping mall, anytime during

a day. In addition, a real-time dispatch scheduler might need to control the

Figure 134: Schematic overview of EV charging system with HEMS.
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charging of other vehicles, such as cabs, school buses, forklifts and service vans

at a mall, or a mixture of various types of vehicles, as well as personal EVs.

Therefore, in order to capture and investigate the reality more accurately, fur-

ther studies on the problem with the aforementioned assumptions relaxed need

to be conducted. Furthermore, a study on the impacts of a mixture of Level

1/Level 2/Fast DC chargers on the proposed scheduling algorithm would be

worthwhile.

• Incorporation of renewable energy source (RES), esp. solar energy: One of

the technical benefits a large population of EVs can provide is that they can

be utilized to smooth the natural intermittency of RES for ensuring grid-wide

frequency stability. The number of houses equipped with solar panels increases,

and thus their effects need to be investigated. There are four technical challenges

regarding a large-scale deployment of EVs identified in Chapter 1, of which the

third one is not addressed in this research, and RES’s can be preferentially

used for charging EVs. Therefore, the research can be further carried out by

evaluating the capability of the real-time EV scheduling algorithm to smooth

out the intermittency of solar energy.

7.3 Q & A from the Thesis Defense

In this section, the questions/comments given by the Final Doctoral Examination

Committee during the thesis defense and the responses to those questions/comments

are summarized.

Question 1: What are the implications of real world constraints on an electricity

distribution network (e.g., congestion) that might occur in neighborhoods with more

vehicles charging? (Mr. Caird)
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Answer 1: It’s outside of the scope of what I am looking at, i.e., I assume the sys-

tem can handle the loads; I’m just proposing how to better stage them. Now, on the

other hand, my system could help congestion by taking into account more granular

constraints, e.g., translating distribution capacity limitations in the local neighbor-

hood of different charging vehicles. But that seems to be a different layer of modeling

from what is considered directly by my algorithms. But the outputs of that modeling

layer (i.e., some additional constraints to take into account) could be something that

could be considered. However, trying to do that is not compatible at all with how

my algorithms are currently formulated.

Question 2: What would be the impact on your scheduler (and, the grid performance

metrics) if all EV owners suddenly wanted their charging done as fast as possible, e.g.,

to head to the Braves game, or evacuate? (Mr. Caird)

Answer 2: In the proposed scheduling algorithm, the order of EVs to start charging

depends on real-time electricity price and the urgency based on both the amount of

energy to refill the battery and the closeness to deadline, i.e., plug-out time. When an

EV owner plugs in his/her car to the charger, the owner specifies the charging mode,

reflecting the urgency, and sets the price that he/she is willing to pay for charging or

to be paid for selling electricity to the grid. The algorithm dynamically adjusts the

electricity price for EV charging based on the available power (supply) and the num-

ber of EVs being charged simultaneously (demand). For example, when many EVs

are charging and there is not enough power, the algorithm increases electricity price

to keep EVs from charging; on the other hand, if there is a lot of power underutilized,

then the algorithm reduces electricity price to encourage more EVs to start charging.

If all EV owners suddenly want their charging done as fast as possible, e.g., all EVs

have charging mode 1 (“charge now”), the algorithm first tries to assign priorities to

EVs with respect to their urgencies and apply the dynamic pricing based on demand
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and supply to maximize the satisfaction of EV owners. However, the satisfaction of

EV owners’ preferences would eventually decrease as the number of EV owners willing

to pay higher electricity price to get their charging done quickly increases.

Question 3: Is there some way to incorporate priority for renewable energy sources?

(Mr. Caird)

Answer 3: Seen by the real-time dispatch scheduler, the fluctuations of generation

due to the natural intermittency of renewable energy sources can be thought of as

fluctuating non-EV demand since the algorithm generates a schedule based on the

difference between generation and real-time non-EV demand measurements, and it

does not care from which the fluctuations result; the amount of power available for

EV charging only matters. If generation fluctuates, i.e., the available power for EV

charging changes, then the algorithm will smooth out the intermittency by adjusting

the number of EVs being charged and thus reducing the power consumption for EV

charging. Therefore, it is not necessary to incorporate priority for renewable energy

sources to the current structure of the algorithm, and the incorporation of renewable

energy sources into the algorithm has already been identified for future work in the

thesis.

Question 4: Your choice of scheduling algorithms seemed to be in part a heuristic.

Is there some more rigorous way to select optimal scheduling schemes if you had more

time? (Mr. Caird)

Answer 4: Extensive search for literature regarding the selection of optimal schedul-

ing algorithms revealed that there is no explicit way to identify an optimal algorithm

as stated in §3.1.2. As far as I know, the approach based on heuristics or through

comparative studies is the best option to select an algorithm. For future work, more

algorithms, not presented in this thesis, could be implemented and compared with
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each other to identify the better one, but it does not seem possible to establish a

methodology to select optimal scheduling schemes.

Question 5: How does the charging scheme implied by your scheduling algorithm

drive requirements for communications networks? And, are there communications

standards already that would enable your scheme? (Mr. Caird)

Answer 5: The message protocols proposed in this thesis requires 43 bits for a mes-

sage from each EV to the real-time dispatch scheduler and 30 bits for a message

from the scheduler to EVs. At every 15 minute, EVs and the scheduler communi-

cate with each other, and data of 7,300 bits (100 EVs × 73 bits per communication

between an EV and the scheduler), i.e., less than 1 kByte, need to be transmitted,

indicating that the scheduling algorithm does not require a communication network

with broad bandwidth for EV charging control. Even though the channel capacity

required for scheduling EV charging will increase proportionally as the number of

EVs in the system increases, it is not likely that EV charging would impose a restric-

tion on communications systems. For instance, Ethernet can support a maximum

data rate of 100 Mbps, i.e., about 0.1 billion bits per second, which can support the

communications of 1 million EVs in an area controlled by a dispatch scheduler in a

distribution substation. Power line communication (PLC), one of the standards pro-

posed for the communications between vehicles, off-board charging stations, and the

grid, can support up to 30 Mbits/s. Therefore, data rates that can be provided by the

candidate standards for communications is big enough for the proposed scheduling

algorithms to be implemented. In addition, no standard for message protocols has

been established yet.

Question 6: What is the scalability of your technical work? (Dr. Mavris)

Answer 6: The simulation environment was verified with 100 EVs, representing 20%
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penetration level of EVs in a service area. It is believed to handle more than 100 EVs

since the number of EVs in the system is used as a simulation variable, which, how-

ever, needs to be proved by applying more than 100 EV charging profiles.

Question 7: What methodology do you follow that yielded the simulation environment

you created? (Dr. Mavris)

Answer 7: Figure 135 presents the proposed real-time scheduling algorithm for EV

charging with the numbers representing the steps followed to implement the simula-

tion framework. In a typical real-time computing system, the number of processors

or the amount of computing resources is known before an actual scheduling process is

performed. As well for the real-time EV charging system, it is important to know the

charging capability of the system, and the first step is to estimate the reference EV

power demand based on the prediction of non-EV power demand and EV charging

profiles informed by EV owners. Next, the number of available processing queues

is initially calculated by dividing the reference EV power demand by the maximum

Figure 135: Proposed real-time scheduling algorithm for EV charging.
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charging rate. And then the electricity price is determined based on the number of

EVs that want to start charging and the amount of energy for EV charging at a

time instant. For this purpose, a simple dynamic pricing model based on demand

and supply is implemented. The essence of the proposed real-time scheduling algo-

rithm for EV charging control is to design a dynamic priority assignment policy and

select an existing real-time scheduling algorithm. For dynamic priority assignment,

the concept of “urgency” based on the closeness to plug-out time and the amount of

energy required for full charge is introduced, and through comparative studies, the

best option for real-time scheduling algorithm is chosen and tailored to be applicable

to the problem. In order to achieve the social optimality, i.e., a flat load profile, by

maximizing the energy utilization, the charging rate is optimized and re-applied to

calculate the number of processing queues. Finally, in order to incorporate V2G-

based frequency regulation, different charging modes are introduced, charging rates

are allowed to be negative, and the scheduling algorithm is modified to compensate

for the changes in available power due to load fluctuations and/or the intermittency

of renewable energy sources.

Comment 8: The total charging times achieved by your scheduling method imply

that the cars are charged at a rate faster than what typical U.S. electric plug outlets

can provide; therefore, it is implied that the vehicles participating would need to have

220V charging hardware installed into their homes. This does not invalidate your

method, but this hidden assumption should be mentioned. (Dr. Schrage)

Response 8: Based on the parameter settings for the simulation studies, it takes

about 5 hours to refill the battery with capacity of 16 kWh from 0% to full charge

if an EV is assumed to charge at the maximum charging rate, 3.3 kW, which can

be provided by a single-phase, Level 2 charger that supplies 240V/30A, like what

an electric dryer or oven uses, and allows for a wide range of charging speeds, all
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the way up to 19.2 kW. The same simulation settings as in Gan et al.’s work on

“valley-filling” strategy, a benchmark system, were used for easy comparison and ver-

ification. Another reason that the maximum charging rate is assumed to be 3.3 kW is

as follows. Typically, the maximum charging rate is limited by the on-board charging

electronics. For instance, the first model-year Leafs can only use 3.3 kW, about 12

miles of range per hour, or about 8 hours for a full charge from empty, meaning that

it takes about 22 hours for a full charge if a Level 1 charger is used. The Chevy Volt’s

on-board charger is also limited to 3.3 kW, although its smaller battery pack gets full

sooner. Longer charging periods would complicate the problem much further, and

hence it is assumed that EVs can fully utilize their on-board electronics to narrow

down the scope of work in this research since the maximum charging rate and battery

capacity will obviously increase as battery technologies and on-board electronics have

advanced. However, a further study on the effects of charger mix on the proposed

algorithm is added to the second recommendation for future work.

Question 9: Please comment on the implications of emergency plug-out, i.e., if

people have to withdraw early from the scheduling scheme. (Dr. Schrage)

Answer 9: For the simulation studies, it is assumed that all EVs are plugged out at

the pre-specified time. The algorithm generates a charging schedule every 15 minute

based on the messages sent by EVs that contain the information such as plug-in sta-

tus, state-of-charge (SOC), and plug-out time and those pieces of information are

updated every 15 minute. If an EV is plugged out earlier than its pre-specified plug-

out time, the algorithm tries to maintain the flatness of the load profile by charging

the EV with highest priority in the waiting queue. However, the performance of

the proposed scheduling algorithm will be degraded as the number of EVs that are

plugged out earlier increases. Therefore, the impacts of EVs that are plugged out

earlier than their pre-specified plug-out times on the performance of the proposed
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scheduling algorithm need to be investigated.

Question 10: How might pricing be considered, especially for V2G? For instance, is

it possible for the EV owners to safeguard against selling back (to the grid) electricity

at price rates lower than what they bought it for (from the grid)? (Dr. Schrage)

Answer 10: In the thesis, a simple scheme for electricity pricing is introduced to

encourage EVs with mode 3 to start charging and EVs with mode 4 to sell their

electricity to the grid, which is described in §5.3.3. For example, if the electricity

price is less expensive than the set price EV owners notified the dispatch scheduler

when plugging in their cars, then their EVs with mode 3 are activated to start charg-

ing. The same goes for EVs with mode 4. The dispatch scheduler must adjust the

electricity price for V2G power to encourage EVs with more 4 to sell their power to

the grid. The simple mechanism for pricing described above is implemented in the

simulation framework, making possible to conduct trade studies on electricity pricing

policies over EV charging control and V2G-based applications.

Question 11: Would the consideration be different for fleets than it would be for

individual owners? How would that drive requirements of your system? (Dr. Jagoda)

Answer 11: To determine a charging schedule for any fleet EVs, the following must

be considered [75]:

• the number of vehicles expected to charge, their all-electric ranges, lengths of

their routes and frequency of expected use

• charging-location options (with areas closer to electrical service preferable to

minimize installation costs)

• expected charging time periods

• speed of charging equipment

The considerations for fleet charging are quite similar to those for individual EVs
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except how an optimal charging schedule for the fleet is obtained and how to specify

charging requirements for each EV in the fleet. According to some studies [28, 72],

in order to obtain a charging schedule for an EV fleet, an optimal charging of each

individual vehicle within the fleet is first obtained separately, and then an optimized

schedule on the fleet level is obtained by posing an upper constraint on the grid power

used for charging and coupling together the individual charging optimizations. The

upper constraint on power required for EV fleet charging can be thought of as a

reference EV power demand in the proposed real-time scheduling algorithm for EV

charging, and, therefore, I believe that the proposed real-time scheduling algorithm

in this thesis can be extended to the EV fleet with the considerations enumerated

above and by identifying how to specify charging requirements for individual EVs

within the fleet.

7.4 Concluding Remarks

I believe that the proposed real-time scheduling algorithm for EV charging and the

simulation framework for evaluating the algorithm lay the groundwork for applying

real-time scheduling techniques to EV charging control. As a proof-of-concept, the

algorithm is implemented and verified over a variety of EV and load profiles. It was

verified that the algorithm does not only provide the social optimality – minimize the

impacts of EV charging on the grid and a utility’s operating costs as well – but also

satisfies EV owners’ charging preferences. However, it was shown through simulation

studies that the algorithm does not satisfy EV owners’ preferences perfectly in terms of

plug-out SOC and the uniformity of plug-out SOCs is not as good as the one obtained

by applying the valley-filling strategy, meaning that the guarantee ratio, defined as

the ratio of the number of EVs satisfying their requirements to the total number of

EVs in the system, is increased at the expense of some EV owners’ inconvenience.
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Therefore, in addition to the recommendations for future work, these limitations can

be resolved hopefully. Also, I hope that readers, especially electric power systems

engineers or researchers, who need a simulation environment 1) to investigate the

impacts of EV charging on the grid more realistically, 2) to design and evaluate their

charging strategies based on real-time scheduling techniques, or 3) to evaluate the

communications network capacity for a large-scale deployment of EVs take this work

further.

In 2015, the world-wide sales of EVs, limited to battery electric vehicles (BEVs)

and plug-in hybrid electric vehicle (PHEVs), exceeded 1 million, setting a milestone

in the market. EV sales are expected to continuously increase as major automakers

introduce new EV models to the market and offer sales promotions so that a larger

number of models are readily available. After the Dieselgate scandal, Volkswagen

decided to make investments to roll out 20 new models by 2020 and sell 3 million

EVs by 2025, and Hyundai-Kia also plans to develop 8 EV models by 2020 [90]. At

the same time, “the total number of electric vehicle supply equipment (EVSE) outlets

reached 1.45 million in 2015, up from 0.82 million in 2014 and only roughly 20,000 in

2010” [10].

As the sales of EVs and the number of EVSE outlets increase, the importance

of operational management and control strategies over the large-scale deployment of

EVs will be on the rise more and more. However, the electric power system is one

of the most complex system of systems (SoS) so that it is almost impossible to be

modeled completely and its system behaviors are hard to capture. Therefore, more

research to fill the various technical gaps regarding the integration of EVs to the grid

is still needed. I hope again that the reader will find many motivating ideas from the

proposed methodology and the real-time EV charging control algorithm and gain an

insight into the understanding of the issues and the development of new technologies

for EV integration from this dissertation.
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