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ˆ Mean/estimated value.
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āX
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Y/Z).

Ag Ag = [ĪS
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g aX
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J2

aX
J2
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+ ε0.

ᾱX
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αX
Y/Z αX
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Y/Z).
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bω Dual bias: bω = bω + εbv.

bn bn = (0, bn).

bn Bias of the non-dimensional specific force measurement.

bω bω = (0, bω).

bω Bias of the angular velocity measurement.

bv bv = (0, bv).
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bv Bias of the linear velocity measurement.

c Scaling constant defined in the user manual of the IMU: c = 9.8 m/s2.

∗ Center of mass of ∗.

CR Center of rotation of the 5-DOF platform.

∆fB

d Estimation error of fB

d .

∆MB Estimation error of MB.

δqB/I Unit error quaternion: δqB/I = q̂∗B/IqB/I.

δqB/I Unit dual error quaternion: δqB/I = q̂∗B/IqB/I.

∆? Optimal Kalman state update.

∆V Change in velocity associated with an orbital maneuver.

ε Dual unit.

ηn ηn = (0, ηn).

ηn Noise of the non-dimensional specific force measurement assumed to
be a Gaussian white-noise process.

ηω ηω = (0, ηω).

ηω Noise of the angular velocity measurement assumed to be a Gaussian
white-noise process.

ηω Dual noise: ηω = ηω + εηv.

ηv ηv = (0, ηv).

ηv Noise of the linear velocity measurement assumed to be a Gaussian
white-noise process.

f̄X Force vector expressed in the X-frame.

f̄c,∗/# Contact force vector acting on ∗ due to #.

fX

∇g fX

∇g = 0 + ετX
∇g.

fX fX = (0, f̄X).

γ γ = [γ1, γ2, γ3, γ4]T.

γi Gimbal angle of VSCMG i.

H Set of quaternions.
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Hr
d Set of dual scalar quaternions with zero dual part.

Hs
d Set of dual scalar quaternions.

Hu
d Set of unit dual quaternions.

PHX

∗/Z Dual momentum of ∗ with respect to the Z-frame about point P ex-
pressed in the X-frame.

Hv
d Set of dual vector quaternions.

Hs Set of scalar quaternions.

Hu Set of unit quaternions.

Hv Set of vector quaternions.

IB IB =

[
1 01×3

03×1 ĪB

]
.

ĪY First axis of the Y-frame.

Icg Icg = diag([ c1IG1
c1,11,

c2IG2
c2,11,

c3IG3
c3,11,

c4IG4
c4,11]).

Ics Ics = diag([ c1IG1
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c2IG2
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c3IG3
c3,22,

c4IG4
c4,22]).

Ict Ict = diag([ c1IG1
c1,33,

c2IG2
c2,33,

c3IG3
c3,33,

c4IG4
c4,33]).

P ĪX
∗ Mass moment of inertia of ∗ about point P expressed in the X-frame.

In×n n-by-n identity matrix.

Iws Iws = diag([ c1IG1
w1,22,

c2IG2
w2,22,

c3IG3
w3,22,

c4IG4
w4,22]).

J2 J2 = 0.0010826267.

J̄Y Second axis of the Y-frame.

K̄Y Third axis of the Y-frame.

MX Dual inertia matrix about the center of mass expressed in the X-frame.

m Mass.

MX Dual inertia operator about the center of mass expressed in the X-
frame.

µ Earth’s gravitational parameter: µ = 398600.4418 km3/s2.
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nB
A/I nB

A/I = (0, nB
A/I).

nB
A/I Non-dimensional specific force at the location of the accelerometer

with respect to the inertial frame expressed in the body frame.

νm Innovation/residual of EKF with m dimensions.

Ω Ω = [Ω1,Ω2,Ω3,Ω4]T.

ω̄X
Y/Z Angular velocity vector of the Y-frame with respect to the Z-frame

expressed in the X-frame.

Ωi Angular speed of the wheel of VSCMG i.

ωX
Y/Z ωX

Y/Z = (0, ω̄X
Y/Z).

ωX
Y/Z Dual velocity of the Y-frame with respect to the Z-frame expressed in

the X-frame.

φY/Z Roll angle of the Euler angles in aerospace sequence that represent the
orientation of the Y-frame with respect to the Z-frame.

ψY/Z Yaw angle of the Euler angles in aerospace sequence that represent the
orientation of the Y-frame with respect to the Z-frame.

pX
Y/Z First coordinate of ω̄X

Y/Z.

qY/Z Unit dual quaternion that represents the pose of the Y-frame with
respect to the Z-frame.

qY/Z Unit quaternion that represents the orientation of the Y-frame with
respect to the Z-frame.

qXY/Z Second coordinate of ω̄X
Y/Z.

r̄XY/Z Translation vector from point Z (if Z is a point) or from the origin
of the Z-frame (if Z is a frame) to point Y (if Y is a point) or to the
origin of the Y-frame (if Y is a frame) expressed in the X-frame.

Re Earth’s mean equatorial radius: Re = 6378.137 km.

Rm×n Set of m-by-n matrices.

Rn Set of n-dimensional column vectors.

RX←Y Rotation matrix in 3-dimensional space that transforms the coordi-
nates of a vector for the Y-frame to the X-frame.

rXY/Z rXY/Z = (0, r̄XY/Z) or third coordinate of ω̄X
Y/Z, depending on the context.

rX
Y/Z rX

Y/Z = rXY/Z + ε0.
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SO(3) Special orthogonal group of all rotations about the origin of three-
dimensional Euclidean space.

T T = [T1, T2, ..., T12]T.

P τ̄X Moment vector about point P expressed in the X-frame.

P τ̄c,∗/# Contact moment vector acting on ∗ due to # about point P .

PτX PτX = (0, P τ̄X).

θY/Z Pitch angle of the Euler angles in aerospace sequence that represent
the orientation of the Y-frame with respect to the Z-frame.

Ti One of the coordinates of f̄ S
Ti

(see Section 6.4.2).

Ti,max Maximum thrust of thruster i measured experimentally.

Ti,max,LP Upper bound on Ti defined by the user and enforced as an inequality
constraint on the LP problem.

Ti,off Lower threshold of the hysteresis loop of the Schmitt trigger on Ti.

Ti,on Upper threshold of the hysteresis loop of the Schmitt trigger on Ti.

uX
Y/Z First component of v̄X

Y/Z.

v̄X
Y/Z Linear velocity vector of point Y (if Y is a point) or of the origin of

the Y-frame (if Y is a frame) with respect to the Z-frame expressed in
the X-frame.

v(MB) Vectorized version of MB: v(MB) = [I11 I12 I13 I22 I23 I33 m]T.

vm Measurement noise of EKF with m dimensions.

vX
Y/Z vX

Y/Z = (0, v̄X
Y/Z) or second component of v̄X

Y/Z, depending on the context.

wp Process noise of EKF with p dimensions.

wX
Y/Z Third component of v̄X

Y/Z.

xn State of EKF with n dimensions.

xX
Y/Z First coordinate of r̄XY/Z.

yX
Y/Z Second coordinate of r̄XY/Z.

zX
Y/Z Third coordinate of r̄XY/Z.

ACRONYMS

ARRM Asteroid Redirect Robotic Mission.
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ASTROS Autonomous Spacecraft Testing of Robotic Operations in Space.

AWGN Additive White Gaussian Noise.

CMG Control Moment Gyro.

CW Clohessy-Wiltshire.

DART Demonstration of Autonomous Rendezvous Technology.

DQ-MEKF Dual Quaternion Multiplicative Extended Kalman Filter.

ECI Earth-Centered-Inertial.

EKF Extended Kalman Filter.

FREND Front-end Robotics Enabling Near-term Demonstration.

GEO Geosynchronous Earth Orbit.

GLPK GNU Linear Programming Kit.

GNC Guidance, Navigation, and Control.

GSSAP Geosynchronous Space Situational Awareness Program.

KYP Kalman-Yakubovich-Popov.

LIIVe Low-design Impact Inspection Vehicle.

LP Linear Programming.

LQ Linear Quadratic.

LQG Linear Quadratic Gaussian.

LTI Linear Time-Invariant.

LTV Linear Time-Varying.

MEV Mission Extension Vehicle.

MPC Model Predictive Control.

NASA National Aeronautics and Space Administration.

NRL Naval Research Laboratory.

PWM Pulse-Width-Modulator.

Q-MEKF Quaternion Multiplicative Extended Kalman Filter.

QP Quadratic Programming.
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QV-AEKF Quaternion-Vector Additive Extended Kalman Filter.

RAAN Right Ascension of the Ascending Node.

RW Reaction Wheel.

SIS Space Infrastructure Servicing.

SQV-AEKF Split Quaternion-Vector Additive Extended Kalman Filter.

SUMO Spacecraft for the Universal Modification of Orbits.

TH Tschauner-Hempel.

USAF United States Air Force.

VSCMG Variable-Speed Control Moment Gyro.

ZOH Zero-Order-Hold.
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SUMMARY

The term proximity operations has been widely used in recent years to describe

a wide range of space missions that require a spacecraft to remain close to another

space object. Such missions include, for example, the inspection, health monitoring,

surveillance, servicing, and refueling of a space asset by another spacecraft. One of

the biggest challenges in autonomous space proximity operations, either cooperative

or uncooperative, is the need to autonomously and accurately track time-varying

relative position and attitude references, i.e., pose references, with respect to a moving

target, in order to avoid on-orbit collisions and achieve the overall mission goals. In

addition, if the target spacecraft is uncooperative, the Guidance, Navigation, and

Control (GNC) system of the chaser spacecraft must not rely on any help from the

target spacecraft. In this case, vision-based sensors, such as cameras, are typically

used to measure the relative pose between the spacecraft. Although vision-based

sensors have several attractive properties, they introduce new challenges, such as

no direct linear and angular velocity measurements, slow update rates, and high

measurement noise.

This dissertation investigates the problem of autonomously controlling and esti-

mating the pose of a chaser spacecraft with respect to a moving target spacecraft,

possibly uncooperative. Since this problem is inherently hard, the standard approach

in the literature is to split the attitude-tracking problem from the position-tracking

problem. Whereas the attitude-tracking problem is relatively simple, since the ro-

tational motion is independent from the translational motion, the position-tracking

problem is more complicated, as the translational motion depends on the rotational
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motion. Hence, whereas strong theoretical results exist for the attitude problem,

the position problem typically requires additional assumptions. An alternative, more

general approach to the pose control and estimation problems is to consider the fully

coupled 6-DOF motion. However, fewer results exist that directly address this higher

dimensional problem.

The main contribution of this dissertation is to show that dual quaternions can be

used to extend the theoretical results that exist for the attitude motion into analogous

results for the combined position and attitude motion. Moreover, this dissertation

shows that this can be accomplished by (almost) just replacing quaternions by dual

quaternions in the original derivations. This is because dual quaternions are built on

and are an extension of classical quaternions. Dual quaternions provide a compact

representation of the pose of a frame with respect to another frame.

Using this approach, three new results are presented in this dissertation. First,

a pose-tracking controller that does not require relative linear and angular velocity

measurements is derived with vision-based sensors in mind. Compared to existing lit-

erature, the proposed velocity-free pose-tracking controller guarantees that the pose

of the chaser spacecraft will converge to the desired pose independently of the ini-

tial state, even if the reference motion is not sufficiently exciting. In addition, the

convergence region does not depend on the gains of the controller.

Second, a Dual Quaternion Multiplicative Extended Kalman Filter (DQ-MEKF) is

developed from the highly successful Quaternion MEKF (Q-MEKF) as an alternative

way to achieve pose-tracking without velocity measurements. Existing dual quater-

nion EKFs are additive, not multiplicative, and have two additional states. The

DQ-MEKF is experimentally validated and compared with two conventional EKFs

on the 5-DOF platform of the Autonomous Spacecraft Testing of Robotic Operations

in Space (ASTROS) facility at the School of Aerospace Engineering at Georgia Tech.
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Finally, the velocity-free pose-tracking controller is compared qualitatively and quan-

titatively to a pose-tracking controller that uses the velocity estimates produced by

the DQ-MEKF through a realistic proximity operations simulation.

Third, a pose-tracking controller that does not require the mass and inertia matrix

of the chaser satellite is suggested. This inertia-free controller takes into account the

gravitational acceleration, the gravity-gradient torque, the perturbing acceleration

due to Earth’s oblateness, and constant – but otherwise unknown – disturbance forces

and torques. Sufficient conditions on the reference pose are also given that guarantee

the identification of the mass and inertia matrix of the satellite. Compared to the

existing literature, this controller has only as many states as unknown elements and

it does not require a priori known upper bounds on any states or parameters.

Finally, the inertia-free pose-tracking controller and the DQ-MEKF are tested on

a high-fidelity simulation of the 5-DOF platform of the ASTROS facility and also

experimentally validated on the actual platform. The equations of motion of the 5-

DOF platform, on which the high-fidelity simulation is based, are derived for three

distinct cases: a 3-DOF case, a 5-DOF case, and a (2+1)-DOF case. Four real-time

experiments were run on the platform. In the first, a sinusoidal reference attitude

with respect to the inertial frame is tracked using VSCMGs. In the second, a constant

reference attitude is maintained with respect to a target object using VSCMGs and

measurements from a camera. In the third, the same sinusoidal reference attitude

with respect to the inertial frame tracked in the first experiment is now tracked using

cold-gas thrusters. Finally, in the fourth and last experiment, a time-varying 5-DOF

reference pose with respect to the inertial frame is tracked using cold-gas thrusters.
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CHAPTER I

INTRODUCTION

Although the term proximity operations has been widely used in recent years to

describe a wide range of missions in space, it is hard to find a proper definition for

it. The Dictionary of Militarily Terms and Acronyms by the U.S. Department of

Defense [90] defines proximity operations as:

In space operations, on-orbit activities of a resident space object that deliberately

and necessarily maintains a close distance from another space object for a specific

purpose. Two objects in space that pass each other by natural orbital mechanics (e.g.,

routine orbital conjunctions or close approaches) or Department of Defense space

systems which are designated to utilize cluster or formation flight to maintain required

proximity to provide required system functionality do not fall within this definition.

Under this definition, proximity operations in space include, for example, the

inspection, health monitoring, surveillance, servicing, and refueling of a spacecraft by

another spacecraft in orbit [93, 51, 52, 73]. Depending on the author, the former may

be called the chief, leader, or target spacecraft, whereas the latter may be called the

deputy, follower, or chaser spacecraft. In this dissertation, they are called the target

and chaser spacecraft, respectively.

Proximity operations in space can be classified as autonomous or non-autonomous

and cooperative or non-cooperative. Even today, most proximity operations in space

are non-autonomous and cooperative. In other words, they require a human in the

loop and some kind of cooperation between the two spacecraft.
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1.1 Proximity Operation Missions

A well known example of non-autonomous cooperative proximity operations in space

is the docking of the Space Shuttle with the International Space Station (ISS). In this

operation, all docking maneuvers up to the last one were controlled from the ground,

whereas the last arc, up to contact, was manually controlled by the pilot using a black

and white pattern on the ISS [26].

A more sophisticated approach to dock with the ISS is used by the European

Automated Transfer Vehicle (ATV). Whereas the ATV docks autonomously (no hu-

mans in the loop) with the ISS, it requires cooperation between the two vehicles.

First, it requires both vehicles to share their Global Positioning System (GPS) mea-

surements in order to implement Relative GPS (RGPS). Second, the ATV relies on

an optical sensor and on a known optical pattern on the ISS to estimate relative

range, Line-Of-Sight (LOS) direction, and attitude [26, 89]. Other vehicles that have

used autonomous cooperative systems include the Russian Soyuz and Progress space-

craft, which use the Kurs relative navigation system. The Kurs system is based on

an S-band radio transponder (transmitter-responder) that measures relative range,

range-rate, pitch, and yaw [89]. The Orbital Express mission by the Defense Ad-

vanced Research Projects Agency (DARPA) also performed autonomous cooperative

docking by using retro-reflective visual markers on a target satellite to estimate the

full 6-Degree-Of-Freedom (DOF) relative state [46]. A similar approach has been

used by the Centre National d’Études Spatiales (CNES) in their Prisma mission,

where Light-Emitting-Diode (LED) patterns on a target satellite were used to per-

form autonomous rendezvous from 10 km to 50 m [23]. The Synchronized Position

Hold Engage Reorient Experimental Satellites (SPHERES) from the Massachusetts

Institute of Technology (MIT) are yet another example of an autonomous cooper-

ative system. The three SPHERES micro-satellites have been operating inside the

crew volume of the ISS since 2006. In 2012, they were upgraded with a vision-based
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navigation system. The target micro-satellite has a set of textured stickers applied to

it to increase its visual texture. However, this visual pattern is not preprogrammed

into the chaser’s memory [89, 88]. Finally, the Engineering Test Satellite #7 (ETS-

VII) launched in 1997 by the National Space Development Agency of Japan (NASDA)

successfully performed autonomous cooperative rendezvous and docking between two

satellites using RGPS (beyond 500 m from the target), a laser radar (between 2 m

and 520 m), and a CCD camera (within 2 m) [72, 49].

The more challenging problem of uncooperative autonomous proximity operations

has been tackled by at least three missions. The first one, the eXperimental Satellite

System-11 (XSS-11) by the Air Force Research Laboratory (AFRL), demonstrated

rendezvous and proximity operations with its expended rocket body [2]. The sec-

ond one, the Demonstration of Autonomous Rendezvous Technology (DART) mission

by the National Aeronautics and Space Administration (NASA), did not complete

its mission. During proximity operations, the spacecraft began using more propellant

than expected. When the craft detected that its propellant supply was depleting faster

than expected, it began a series of maneuvers to departure from the target satellite

and de-orbit. Although not known at the time, it made contact with target satellite

and boosted its orbit by 1.2 nautical miles. The target satellite was not damaged [70].

The third one, the Geosynchronous Space Situational Awareness Program (GSSAP)

by the U.S. Air Force (USAF) consists of two satellites launched in July 2014 designed

to monitor and collect images of other satellites near the geosynchronous belt. Ac-

cording to the USAF, they have the capability to perform rendezvous and proximity

operations.

Currently ongoing projects include SUMO/FREND (Spacecraft for the Universal

Modification of Orbits/Front-end Robotics Enabling Near-term Demonstration), spon-

sored by DARPA and managed by the Naval Research Laboratory (NRL). The goal
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of SUMO/FREND is to demonstrate the feasibility of autonomously servicing unco-

operative satellites in Geosynchronous Earth Orbit (GEO) using robotic arms [71].

Another ongoing project is DARPA’s Phoenix project, which envisions a servicing

spacecraft that could remove components from a defunct satellite and transport them

to another satellite [53]. Finally, NRL’s Low-design Impact Inspection Vehicle (LIIVe)

consists of a small and inexpensive spacecraft capable of autonomously inspecting a

host vehicle. Operationally, LIIVe would be docked to its host and would be released

in case of a deployment failure or another issue in orbit [45].

Although all the projects mentioned above are government-sponsored, proximity

operations are also starting to get some traction in the private sector. A joint venture

between ATK Space Systems and U.S. Space called ViviSat is currently offering a

life extension service to satellites in GEO through their Mission Extension Vehicle

(MEV). This vehicle is designed to rendezvous and dock with a customer’s satellite.

Once docked, it uses its own thrusters to provide orbit and attitude control to the

client satellite. At the AIAA Space 2014 Conference and Exposition, ViviSat an-

nounced having procured its first paying customers. MDA has a competing design

for the refueling of satellites in orbit called Space Infrastructure Servicing (SIS) ve-

hicle. However, no clients are known at this time. Finally, Skycorp’s CEO Dennis

Wingo has recently announced that his company is currently working with NASA to

send a servicing spacecraft to the ISS for testing.

1.2 Pose Control and Estimation in Space Proximity Op-
erations

As demonstrated by past, ongoing, and future missions, the interest among the

aerospace community for proximity operations is substantial, and so are its appli-

cations.

One of the biggest challenges in autonomous space proximity operations, either
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cooperative or uncooperative, is the need to autonomously and accurately track time-

varying relative position and attitude references with respect to a moving target, in

order to avoid on-orbit collisions and achieve mission goals. In addition, if the target

spacecraft is uncooperative, the Guidance, Navigation, and Control (GNC) system

of the chaser spacecraft must not rely on any help from the target spacecraft, such

as a priori known visual reference markers or other fiducials. In an extreme case,

even the general shape of the target spacecraft might be unknown. In this case,

vision-based sensors, such as cameras, are typically used to measure the relative

position and attitude between the spacecraft. Although vision-based sensors have

several attractive properties, e.g., small size, passive, low power requirements, and no

moving parts, they also introduce new challenges, like no direct linear and angular

velocity measurements, slow update rates, and high measurement noise.

This dissertation investigates the problem of autonomously controlling and esti-

mating simultaneously the attitude and position of a chaser spacecraft with respect

to a moving target spacecraft. From now on, the term pose will be used to designate

both position and attitude.

1.3 Literature Review

Since the problem of controlling and estimating the attitude and position of a chaser

spacecraft with respect to a moving target spacecraft is inherently hard, the standard

approach in literature is to split the attitude problem from the position problem.

This section reviews some interesting solutions to each problem and a few solutions

that attempt to solve both problems simultaneously. This review does not intend to

be comprehensive as the literature on these topics is vast.

1.3.1 Relative Attitude Control and Estimation

Let frame B and frame D be two moving frames defined with respect to the chaser

and target spacecraft, respectively. Then, the angular acceleration of frame B with
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respect to frame D is given by

ᾱB/D = ᾱB/I − ᾱD/I − ω̄D/I × ω̄B/I, (1)

where ω̄Y/Z is the angular velocity of frame Y with respect to frame Z, ᾱY/Z is the

angular acceleration of frame Y with respect to frame Z, and frame I is an inertial

frame. According to this equation, the relative angular motion between the two

spacecraft does not depend on the linear motion. Hence, the relative angular motion

can be treated as uncoupled from the linear motion, which simplifies the problem

substantially. Note that ᾱB/I might depend on the linear motion if one or more

external torques acting on the chaser spacecraft dependent on the linear motion.

One such external torque is the gravity-gradient torque. However, since this external

torque is usually small, it is reasonable to assume that the relative angular motion is

independent from the linear motion.

The literature on nonlinear control of the relative angular motion is substantial.

Nonlinear control is the area of control engineering that deals directly with nonlinear

systems, like Eq. (1). For example, in Ref. [100], three attitude-tracking controllers are

given: one that does not require knowledge of the inertia matrix of the chaser satellite

under some conditions on the desired attitude; one that does require knowledge of

the inertia matrix of the chaser satellite but yields better transient response; and an

adaptive controller with gains that dependent on bounds on the eigenvalues of the

inertia matrix. In Ref. [1], another adaptive attitude-tracking controller is given that

requires no knowledge about the inertia matrix of the chaser satellite and, under some

conditions on the desired attitude, can even estimate it. Reference [79] proposes an

adaptive attitude-tracking controller that eliminates the degradation of the closed-

loop dynamics caused by the estimation of the inertia matrix and stops the estimation

process if the true inertia matrix is found. However, the controller has 27 states, which

may limit its applicability to small satellites with limited on-board computational

resources. In Ref. [3], an attitude-tracking controller is given that, unlike the previous
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controllers, only requires measurements of the relative attitude between the B-frame

and the D-frame, in other words, it does not require measurements of ω̄B/D. However,

the controller in Ref. [3] requires full knowledge of the inertia matrix of the chaser.

An attitude-tracking controller that also does not require measurements of ω̄B/D and

only requires bounds on the eigenvalues of the inertia matrix is given in Ref. [20].

As far as the author knows, the controller in Ref. [20] is the only attitude-tracking

controller that requires neither measurements of ω̄B/D nor full knowledge of the inertia

matrix.

In Ref. [67], an attitude-tracking controller is given that requires neither measure-

ments of ω̄B/D nor any information about the inertia matrix. However, this controller

cannot guarantee that the relative attitude error between the B-frame and the D-

frame will converge to zero.

1.3.2 Relative Position Control and Estimation

The linear acceleration of the B-frame with respect to the D-frame is given by

āB/D = āB/I − āD/I − ᾱD/I × r̄B/D − ω̄D/I × (ω̄D/I × r̄B/D)− 2ω̄D/I × v̄B/D, (2)

where āY/Z is the linear acceleration of the origin of frame Y with respect to frame Z,

r̄Y/Z is the position vector from the origin of frame Z to the origin of frame Y, and

v̄Y/Z is the velocity of the origin of frame Y with respect to frame Z. This equation

shows that the relative linear motion between the two spacecraft depends on the

angular motion. Hence, unlike the relative angular motion, the relative linear motion

cannot be treated as an uncoupled problem. The only way to treat it as an uncoupled

problem is to assume that the angular motion is known.

This coupling between the linear and angular motions is studied in Ref. [66] in

the context of a spacecraft orbiting a small celestial body. The trajectory of the

rigid body is compared to that of a point mass having the same mass as the rigid

body and the same initial states. The numerical results show that the trajectory of
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the rigid body is substantially different from the trajectory of the point mass. It

is concluded that the coupling between the linear an angular motions is indeed an

important perturbation that needs to be accounted for during small body proximity

operations.

By far, the most common assumption to decouple the relative linear motion from

the angular motion is to assume that the target spacecraft is fixed to the Hill frame

of a circular Earth orbit [26, 98]. If, in addition, Eq. (2) is linearized, then the

resulting equations are the celebrated Clohessy-Wiltshire (CW) equations. The CW

equations give the position of the chaser spacecraft with respect to the origin of the

Hill frame. They are especially attractive because they form a Linear Time-Invariant

(LTI) system. Hence, several well-known linear control techniques can be applied.

Several assumptions limit however the usefulness of the CW equations:

1) The CW equations do not take into account that the target spacecraft might be

rotating/tumbling with respect to the Hill frame and that the desired motion

might be defined with respect to the rotating target spacecraft.

2) By assuming that the target spacecraft is in a circular orbit, the CW equations

assume that the target’s orbit has constant radius, constant orbital angular

velocity, and zero orbital angular acceleration.

3) These equations do not take into account that the orbital plane of the target

satellite might be rotating due to orbital perturbations such as Earth’s oblate-

ness.

4) Whereas Eq. (2) explicitly takes into account that the target satellite might

activate its thrusters and momentum exchange devices through ᾱD/I and āD/I,

the CW equations do not.

5) Since the CW equations are a linearized version of Eq. (2), they are only valid

close enough to the target spacecraft.
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6) Finally, the CW equations do not take into account the fact that the two space-

craft may be affected differently by the same orbital perturbations. For example,

if the target is larger than the chaser, atmospheric drag may affect the former

more than the latter.

In Ref. [98], the CW equations are used to implement a relative position controller

based on Linear-Quadratic (LQ) Model Predictive Control (MPC) with dynamically

reconfigurable linear constraints. The MPC controller prescribes impulsive velocity

changes and can handle 3D LOS cone constraints, exhaust-plume magnitude and

direction constraints, in-track target overshoot constraints, thrust-vector alignment

constraints, and contact speed constraints. An Extended Kalman Filter (EKF) is

employed to estimate the relative linear and angular velocity. In Ref. [11], the same

control framework is used to handle thrust magnitude constraints and a target tum-

bling with respect to the Hill frame with constant angular velocity perpendicular to

the orbital plane. In Refs. [98] and [11], nonlinear constraints are linearized so that

efficient and computationally affordable Quadratic Programming (QP) algorithms can

be used. However, this MPC controller suffers from the same limitations of the CW

equations. In particular, it cannot handle elliptical orbits. Moreover, the docking

phase is treated as a stabilization problem, where the position and velocity of the

docking port are the time-invariant reference. Hence, all the constraints must be

taken into account in the design of the MPC controller. If, instead, the docking

phase had been treated as a tracking problem, all the constraints could have been

(at least softly) satisfied by properly designing a time-varying reference, thus, greatly

simplifying the design of the controller.

An advancement with respect to the CW equations is to consider that the target

spacecraft is in an elliptical orbit and nadir pointing. In this case, the linearization

of Eq. (2) leads to the Tschauner-Hempel (TH) equations. A good description of
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these equations and of their analytical solutions is given in Ref. [81]. The Tschauner-

Hempel equations are no longer LTI, like the CW equations, but rather Linear Time-

Varying (LTV). The TH equations are applied in Ref. [99] together with a Linear

Quadratic Gaussian (LQG) controller to spacecraft rendezvous. Another feature of

this controller is that the Riccati equations are integrated forward in time and not

backwards. Moreover, the LQG controller does not require relative velocity mea-

surements. However, if one looks again at the assumptions associated with the CW

equations, this new formulation only removes assumption 2). Assumptions 1), 3), 4),

5), and 6) still hold. Moreover, this controller, like the controller in Ref. [98], is a

stabilizing controller and, therefore, cannot handle time-varying references.

Similarly to Ref. [99], Ref. [51] considers that the target spacecraft is in an elliptical

orbit and nadir pointing. However, instead of using the linearized TH equations,

it uses the nonlinear version of these equations to develop five different nonlinear

tracking controllers. The mass of the chaser spacecraft and all orbital disturbances

are assumed to be known. Hence, Ref. [51] deals with assumptions 2) and 5), but not

with assumptions 1), 3), 4), and 6).

1.3.3 Relative Pose Control and Estimation

A more general approach is to consider the fully nonlinear, coupled, angular and

linear, relative equations of motion given by Eqs. (1) and (2). Obviously, this formu-

lation does not require the angular motion to be known a priori as in Section 1.3.2.

In fact, this formulation removes all the assumptions of the CW equations listed in

Section 1.3.2.

Some interesting results based on these more general equations are given in this

section. Additional references and details are given at the beginning of each chapter,

when appropriate.

In Ref. [73], using the vectrix formalism, a nonlinear adaptive tracking controller is
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designed that guarantees almost global asymptotic stability of the linear and angular

tracking errors. As is usually done in the literature, the terminology almost global

asymptotic stability is used in this dissertation to designate stability over an open and

dense set. It has been shown that this is the best one can achieve with a continuous

controller for the rotational motion, because the special group of rotation matrices

SO(3) is a compact manifold [7]. This controller does not require the mass and

inertia matrix of the chaser spacecraft to be known. However, it has 392 states,

which substantially limits its applicability.

In Ref. [104], another nonlinear adaptive tracking controller is designed based

on the vectrix formalism. In this case, the mass and inertia matrix of the chaser

spacecraft need to be known, but no measurements of the linear and angular veloc-

ity between the spacecraft are required. However, this controller suffers from two

problems. First, the attitude of the chaser cannot be more than 180 deg away from

the desired attitude. Second, the region of convergence is dependent on the gains

chosen by the user. In other words, an infinitely large region of convergence requires

infinitely large gains.

In Ref. [52], the authors of Ref. [51] extend their relative position controllers to

relative position and attitude controllers. They present three nonlinear controllers

for 6-DOF space proximity operations: a passivity-based PD+ controller, a sliding

surface controller, and an integrator backstepping controller. All controllers require

velocity measurements and knowledge of the mass and inertia matrix of the chaser

spacecraft. Moreover, like in Ref. [52], the authors use a relative translation model

that assumes that the target satellite is in an elliptical elliptical orbit and nadir point-

ing. Hence, their controllers cannot handle tumbling targets. A similar translation

model is used in Ref. [82], which presents a relative pose tracking controller that re-

quires no linear and angular velocity measurements and no mass and inertia matrix

information. However, this controller cannot guarantee that the relative pose error
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will converge to zero, since this controller is based on Ref. [67].

In Ref. [61], it is shown that a locally asymptotically stable closed-loop system

can be obtained by combining an almost globally asymptotically stable attitude-only

tracking controller with a locally exponentially convergent angular velocity observer.

Although the theory presented in Ref. [61] can in principle be extended to combined

attitude and position control, only attitude control is demonstrated. Reference [10]

only addresses the pose stabilization problem and is neither model-independent nor

velocity-free.

Finally, in Ref. [93], an adaptive terminal sliding-mode pose tracking controller

is proposed based on dual quaternions that does not require full knowledge of the

mass and inertia matrix of the chaser spacecraft. This controller takes into account

the gravitational acceleration, the gravity-gradient torque, constant – but otherwise

unknown – disturbance forces and torques, but not the perturbing acceleration due

to Earth’s oblateness. Moreover, this controller requires a priori knowledge of upper

bounds on the mass, on the maximum eigenvalue of the inertia matrix, on the constant

but otherwise unknown disturbance forces and torques, on the desired relative linear

and angular velocity between the spacecraft and their first derivative, on the linear

and angular velocity of the chaser spacecraft with respect to the inertial frame, and

on the position of the chaser spacecraft with respect to the inertial frame. In addition,

the convergence region is not specified.

1.3.4 Summary

The different results applicable to space proximity operations described in Section 1.3

are summarized in Table 1.

1This controller cannot guarantee convergence of the attitude error to zero.
2This controller cannot guarantee convergence of the pose error to zero.
3The region of convergence is dependent on the gains chosen by the user.
4Although pose control might be possible, only attitude control is demonstrated.
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Table 1: Summary of the literature review. Legend: Ref. - Reference; L/N - Linear
or Nonlinear; PC - Position Control; AC - Attitude Control; MI - Model-Independent;
VF - Velocity-Free; S/T - Stabilization or Tracking; TT - Tumbling Target.

Ref. L/NL PC AC MI VF S/T TT

[100] NL no yes
bounds
required no T yes

[1] NL no yes yes no T yes
[79] NL no yes yes no T yes
[3] NL no yes no yes T yes

[20] NL no yes
bounds
required yes T yes

[67] NL no yes yes1 yes T yes

[98] L yes no no

no
(EKF
used) S no

[11] L yes no no no S partially
[99] L yes no no yes S no
[51] NL yes no no yes T no
[82] NL yes yes yes2 yes T yes

[73] NL yes yes
yes

(392 states) no T yes
[104] NL yes yes no yes3 T yes
[52] NL yes yes no no T no
[61] NL yes yes no yes4 T yes
[10] NL yes yes no no S no

[93] NL yes yes
bounds
required no T yes

1.4 Dual Quaternions

As stated in Section 1.2, this dissertation investigates the problem of controlling

and estimating simultaneously the attitude and position of a chaser spacecraft with

respect to a moving target spacecraft. As shown in Section 1.3, this problem can be

tackled in two ways: as two separate 3-DOF problems or as one 6-DOF problem. The

biggest disadvantage of tackling this problem as two separate 3-DOF problems is that

the linear motion is not independent from the angular motion. Hence, the only way

to treat the linear motion by itself is to assume that the angular motion is known.

Since the target spacecraft might be uncooperative, the angular motion may not be
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known. Hence, this dissertation focuses on the combined 6-DOF problem.

One of the conclusions that can be taken from Table 1 is that the 6-DOF problem

is harder than each individual 3-DOF problem. For example, all the pose controllers

listed in Table 1 require at least partial knowledge of the mass and inertia matrix of

the chaser spacecraft. The only exception is Ref. [73], which has 392 states. However,

the attitude-only controller presented in Ref. [1] does not require knowledge about the

inertia matrix of the chaser spacecraft and has only 6 states. Moreover, all the pose

controllers listed in Table 1 require relative linear and angular velocity measurements.

The only exception is Ref. [104], whose region of convergence depends on the gains

chosen by the user. However, the attitude-only controller presented in Ref. [3] does

not require relative angular velocity measurements and its region of convergence does

not depend on the selected gains. Hence, instead of tackling the 6-DOF problem head

on, this dissertation proposes taking advantage of these existing attitude-only results.

By using dual quaternions, this dissertation shows how these and other attitude-only

results can be extended into combined position and attitude results.

Dual quaternions were first introduced by Clifford in 1873 [17]. They provide

a compact representation of the attitude and position of a frame with respect to

another frame. They are built on and are an extension of classical quaternions.

Dual quaternions are closely related to Chasles Theorem, which states that the gen-

eral displacement of a rigid body can be represented by a rotation about an axis

(called the screw axis) and a translation along that axis, creating a screw-like mo-

tion [105, 69]. Compared to other representations of this screw-like motion, such as

dual orthogonal 3-by-3 matrices, dual special unitary 2-by-2 matrices, and dual Pauli

spin matrices, dual quaternions have been found to be the most efficient represen-

tation to perform basic pose transformations in terms of storage requirements and

number of operations [37]. Under the same metrics, dual quaternions have also been
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found to be more efficient than 4-by-4 homogeneous matrix transformations and Ro-

driguez parameters/translation vector pairs for solving the direct kinematic problem

in robotics [5]. Moreover, dual quaternions allow attitude and position controllers to

be written as a single control law. It has also been shown that they automatically take

into account the natural coupling between the linear and angular motions [44, 43].

Dual quaternions have been successfully applied to inertial navigation [105], rigid

body control [75, 24, 44, 43, 95, 55, 96, 93, 56], inverse kinematic analysis [38, 74],

and computer vision [22, 40] and animation [39]. The connections between dual

quaternions and Lie algebra are analyzed in Refs. [18, 94].

The most useful property of dual quaternions is that the combined translational

and rotational kinematic and dynamic equations of motion written in terms of dual

quaternions have the same form as the rotational-only kinematic and dynamic equa-

tions of motion written in terms of quaternions. This is shown in Chapter 2. Inspired

by this property, this dissertation derives combined position and attitude results from

existing attitude-only results by almost simply replacing quaternions by dual quater-

nions in the original derivations.

The proposed approach based on dual quaternions to develop combined position

and attitude controllers has some advantages over techniques based on differential

algebra, where rotations are represented directly by rotation matrices [54, 61, 10].

In the latter, asymptotically stability of the combined rotational and translational

motion is proven by either defining two different error functions for the position

and attitude [10] or, in two steps, by first proving the asymptotic stability of the

rotational motion before the asymptotic stability of the translational motion can be

proven [54] (recall that the translational motion depends on the rotational motion).

With dual quaternions, a single error function, the error dual quaternion (defined

analogously to the error quaternion) is used to represent the combined position and

attitude error. As a result, the asymptotic stability of the combined rotational and
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translational motion is proven in a single step by using a Lyapunov function with the

same form as the Lyapunov function used to prove the asymptotic stability of the

rotational-only controller. Moreover, whereas quaternions produce two closed-loop

equilibrium points (since quaternions cover SO(3) twice [12], both representing the

identity rotation matrix), rotation matrices produce a minimum of four closed-loop

equilibrium points [61, 54], only one of which is the identity rotation matrix. On

the other hand, dual quaternions inherit the so-called unwinding phenomenon from

classical quaternions [7]. This problem is well documented and possible solutions

exist in literature [43, 7, 63, 93].

1.5 Outline of the Dissertation

A condensed description of the contributions of this dissertation, per chapter, is given

next.

• Chapter 2 - Quaternion and Dual Quaternion Algebra

This chapter provides a comprehensive introduction to quaternion and dual

quaternion algebra. It is important to note that dual quaternion algebra is

constructed on top of quaternion algebra. It is impossible to completely grasp

the former without a good understanding of the latter. All operations on and

properties of dual quaternions used in this dissertation are presented or deduced

in this chapter. Although a significant part of the material given in this chapter

is not original, some is. In particular, Lemmas 33, 38, and 55 are new and

essential to prove Theorems 2 and 3. However, the most important contribution

of this chapter is the derivation of an alternative representation of the rigid body

dynamics in terms of dual quaternions. This representation is based on the dual

inertia matrix, an 8-by-8 symmetric positive definite matrix constructed from

the mass and inertia matrix of the rigid body.

16



• Chapter 3 - Pose-Tracking Without Relative Linear and Angular Velocity Feed-

back

Since vision-based sensors typically cannot measure the relative linear and an-

gular velocities between two spacecraft, it is useful to develop pose-tracking

controllers that do not require such measurements. Hence, using dual quater-

nions, an attitude-only tracking controller that does not require relative angu-

lar velocity measurements [3] is extended in this chapter into a pose-tracking

controller that does not require relative linear and angular velocity measure-

ments [29, 28, 36]. Compared to existing literature, the velocity-free pose-

tracking controller presented in this chapter is almost globally asymptotically

stable. In particular, this controller guarantees that the pose of the chaser

spacecraft will converge to the desired pose independently of the initial state

and even if the reference motion is not sufficiently exciting. In addition, the

convergence region does not depend on the gains chosen by the user. This

controller is verified through simulation in the last section of this chapter.

• Chapter 4 - Dual Quaternion Multiplicative Extended Kalman Filter (DQ-

MEFK) for Spacecraft Pose Estimation

An alternative way to perform pose-tracking when the relative linear and angu-

lar velocities are not known is to estimate them from relative pose measurements

via a filter. A comprehensive survey of nonlinear estimation methods [21] con-

cluded that the classical Extended Kalman Filter (EKF) is still the most useful

and practical solution to estimate the attitude and angular velocity of a space-

craft. Hence, based on the highly successful Quaternion Multiplicative Extended

Kalman Filter (Q-MEKF) for spacecraft attitude and angular velocity estima-

tion, this chapter proposes a Dual Quaternion Multiplicative Extended Kalman
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Filter (DQ-MEKF) for spacecraft pose and linear and angular velocity estima-

tion [32, 33]. By using the concept of error dual quaternion, defined analogously

to the concept of error quaternion in the Q-MEKF, this chapter proposes, as

far as the author knows, the first multiplicative EKF for pose estimation. Com-

pared to existing results, only six elements of the dual quaternion are used

in the state of the DQ-MEKF, instead of eight, resulting in obvious computa-

tional savings. The state estimate of the DQ-MEKF can be used directly by the

pose-tracking controllers proposed in Chapters 3 and 5, without any additional

conversions. Three formulations of the DQ-MEKF are presented. The first

takes continuous-time linear and angular velocity measurements with noise and

bias and discrete-time pose measurements with noise. The second takes only

discrete-time pose measurements with noise and, hence, is the one suitable for

uncooperative satellite proximity operation scenarios where the chaser satellite

has only access to measurements of the relative pose, but requires the relative

linear and angular velocities for control. The third formulation takes continuous-

time angular velocity and linear acceleration measurements with noise and bias

and discrete-time pose measurements with noise. The DQ-MEKF is experi-

mentally validated and compared with two alternative EKF formulations on a

5-DOF air-bearing platform. Finally, the velocity-free pose-tracking controller

presented in Chapter 3 is compared qualitatively and quantitatively to a pose-

tracking controller that uses the velocity estimates produced by the DQ-MEKF,

through a realistic proximity operations simulation.

• Chapter 5 - Pose-Tracking Without Mass and Inertia Matrix Information

Whereas pose-stabilization controllers do not require the mass and inertia ma-

trix to be precisely known, pose-tracking controllers typically do. However, the

mass and inertia matrix of most satellites are not precisely known, especially

once they are in orbit. Hence, a pose-tracking controller for space proximity
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operations that does not require the mass and inertia matrix of the satellite is

derived in this chapter [27, 35, 30, 31]. This controller is a direct extension of the

attitude-tracking controller presented in Ref. [1]. This controller takes into ac-

count the gravitational acceleration, the gravity-gradient torque, the perturbing

acceleration due to Earth’s oblateness, and constant – but otherwise unknown

– disturbance forces and torques. Sufficient conditions on the reference pose to

identify the mass and inertia matrix of the satellite are also given. Compared to

existing results, this controller has only as many states as unknown parameters

and is almost globally asymptotically stable. In particular, this controller does

not require a priori known upper bounds on the states and parameters of the

problem. Two numerical examples are included to demonstrate the approach.

In the first, the controller is used to approach, circumnavigate, and dock with

a target satellite in a Molniya orbit. In the second, the controller is used to

identify the mass and inertia matrix of a satellite in GEO. The controller is

further tested in Chapter 6.

• Chapter 6 - High-Fidelity Simulation and Experimental Results

In Chapter 6, the inertia-free pose-tracking controller described in Chapter 5

and the DQ-MEKF described in Chapter 4 are tested on a high-fidelity simu-

lation of the 5-DOF platform of the Autonomous Spacecraft Testing of Robotic

Operations in Space (ASTROS) facility at the School of Aerospace Engineering

of the Georgia Institute of Technology and also experimentally validated on the

actual platform [110]. Most of this chapter is dedicated to the derivation of the

equations of motion of the 5-DOF platform, on which the high-fidelity simula-

tion is based. Three cases are considered: a 3-DOF case, a 5-DOF case, and a

(2+1)-DOF case. The allocation of the control moment to the Variable-Speed

Control Moment Gyros (VSCMGs) on the platform and the allocation of the

control moment and force to the thrusters is addressed. The conversion from
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continuous thrust to on-off commands is also explained.

• Chapter 7 - Conclusion

Finally, in Chapter 7, the main conclusions of this dissertation are stated and

recommendations for future work are given.
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CHAPTER II

QUATERNION AND DUAL QUATERNION ALGEBRA

This chapter provides an introduction to quaternion and dual quaternion algebra.

Since dual quaternions are constructed on top of quaternions, it is important to

address the latter first.

2.1 Quaternion Algebra

Quaternions were first introduced by Hamilton in 1843 [44]. They are an extension

of complex numbers to R4. A quaternion is defined as q = q0 + q1i + q2j + q3k,

where q0, q1, q2, q3 ∈ R and i, j, and k satisfy i2 = j2 = k2 = −1, i = jk = −kj,

j = ki = −ik, and k = ij = −ji [44]. A quaternion can also be represented as

the ordered pair q = (q0, q̄), where q = [q1 q2 q3]T ∈ R3 is the vector part of the

quaternion and q4 ∈ R is the scalar part of the quaternion. Vector quaternions and

scalar quaternions are quaternions with zero scalar part and vector part, respectively.

The set of quaternions, vector quaternions, and scalar quaternions will be denoted by

H = {q : q = q0 + q1i + q2j + q3k, q0, q1, q2, q3 ∈ R}, Hv = {q ∈ H : q0 = 0}, and

Hs = {q ∈ H : q1 = q2 = q3 = 0}, respectively.

The basic operations on quaternions are defined as follows:

Addition: a+ b = (a0 + b0, ā+ b̄) ∈ H, (3)

Multiplication by a scalar: λa = aλ = (λa0, λā) ∈ H, (4)

Multiplication: ab=(a0b0 − ā · b̄, a0b̄+ b0ā+ ā× b̄) ∈ H, (5)

Conjugation: a∗ = (a0,−ā) ∈ H, (6)

Dot product: a · b = 1
2
(a∗b+ b∗a) = 1

2
(ab∗ + ba∗) = (a0b0 + ā · b̄, 0̄) ∈ Hs, (7)
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Cross product: a× b = 1
2
(ab− b∗a∗) = (0, b0ā+ a0b̄+ ā× b̄) ∈ Hv, (8)

Norm: ‖a‖2 = aa∗ = a∗a = a · a = (a2
0 + ā · ā, 0̄) ∈ Hs, (9)

Scalar part: sc(a) = (a0, 0̄) ∈ Hs, (10)

Vector part: vec(a) = (0, ā) ∈ Hv, (11)

where a, b ∈ H, λ ∈ R, and 0̄ = [0 0 0]T. The quaternion addition is commutative

and associative, whereas the quaternion multiplication is associative and distributive

[40], but not commutative. In fact, some authors [57] define Eq. (5) as ba, and not

as ab as originally defined by Hamilton [42]. This work follows the original definition

by Hamilton. Finally, the quaternions (1, 0̄) and (0, 0̄) will be denoted by 1 and 0,

respectively.

The bijective mapping between the set of quaternions and R4 will be denoted

by [ · ] : H → R4, where [q] = [q0 q1 q2 q3]T. Under this mapping, the square of

the quaternion norm and the dot product on H correspond to the square of the

Euclidean norm and to the dot (inner) product on R4, respectively. Moreover, using

this mapping, the cross product of a ∈ Hv with b ∈ Hv can be computed as [a× b] =

[a]×[b], where [ · ]× : Hv → R4×4 is defined as

[a]× =

 0 01×3

03×1 [a]×

 , where [a]× =


0 −a3 a2

a3 0 −a1

−a2 a1 0

 . (12)

Likewise, the left quaternion multiplication of a ∈ H with b ∈ H can be computed as

[ab] = [a]L[b], where [ · ]L : H→ R4×4 is defined as

[a]L =

[
[a]L4×1 [a]L4×3

]
, [a]L4×1 ,

a0

a

 , and [a]L4×3 ,

 −aT

a0I3×3 + [a]×

 . (13)

The multiplication of a matrix M ∈ R4×4 with a quaternion q ∈ H will be defined
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as M ∗ q = (M11q0 +M12q,M21q0 +M22q) ∈ H, where

M =

M11 M12

M21 M22

 ,
M11 ∈ R, M12 ∈ R1×3, M21 ∈ R3×1, and M22 ∈ R3×3. This definition is analogous to

the multiplication of a 4-by-4 matrix with a 4-dimensional vector.

The L∞-norm of a function u : [0,∞) → H is defined as ‖u‖∞ = supt≥0 ‖u(t)‖.

Moreover, the function u ∈ L∞, if and only if ‖u‖∞ <∞.

The following properties follow from the previous definitions.

Lemma 1. If a, b ∈ H, then a · b = b · a.

Proof. If a, b ∈ H, then a · b = (a0b0 + ā · b̄, 0̄) = (b0a0 + b̄ · ā, 0̄) = b · a.

Lemma 2. If a, b, c ∈ H, then (a+ b) · c = a · c+ b · c and a · (b+ c) = a · b+ a · c.

Proof. If a, b, c ∈ H, then (a+b)·c = (a0+b0, ā+b̄)·(c0, c̄) = (a0c0+b0c0+ā·c̄+b̄·c̄, 0̄) =

a·c+b·c and a·(b+c) = (a0, ā)·(b0 +c0, b̄+ c̄) = (a0b0 +a0c0 +ā· b̄+ā· c̄, 0̄) = a·b+a·c.

Lemma 3. If a, b, c ∈ H, then (a+b)×c = a×c+b×c and a× (b+c) = a×b+a×c.

Proof. If a, b, c ∈ H, then (a + b) × c = (0, c0(ā + b̄) + (a0 + b0)c̄ + (ā + b̄) × c̄) =

(0, c0ā+ c0b̄+a0c̄+ b0c̄+ ā× c̄+ b̄× c̄) = a× c+ b× c and a× (b+ c) = (0, (b0 + c0)ā+

a0(b̄+ c̄) + ā× (b̄+ c̄)) = (0, b0ā+ c0ā+ a0b̄+ a0c̄+ ā× b̄+ ā× c̄) = a× b+ a× c.

Lemma 4. If a, b ∈ H and λ ∈ R, then (λa) · b = a · (λb) = λ(a · b).

Proof. If a, b ∈ H and λ ∈ R, then (λa) · b = ((λa0)b0 + (λā) · b̄, 0̄) = (a0(λb0) + ā ·

(λb̄), 0̄) = a · (λb) = (λ(a0b0) + λ(ā · b̄), 0̄) = λ(a · b).

Lemma 5. If a, b ∈ H and λ ∈ R, then (λa)× b = a× (λb) = λ(a× b).
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Proof. If a, b ∈ H and λ ∈ R, then (λa) × b = (0, b0(λā) + (λa0)b̄ + (λā) × b̄) =

(0, (λb0)ā+ a0(λb̄) + ā× (λb̄)) = a× (λb) = (0, λ(b0ā) +λ(a0b̄) +λ(ā× b̄)) = λ(a× b).

Lemma 6. If a, b ∈ H, then (ab)∗ = b∗a∗.

Proof. If a, b ∈ H, then (ab)∗ = (a0b0− ā · b̄,−a0b̄− b0ā− ā× b̄) = (b0a0− b̄ · ā,−b0ā−

a0b̄+ b̄× ā) = b∗a∗.

Lemma 7. If a, b, c ∈ H, then a · (bc) = b · (ac∗) = c · (b∗a).

Proof. If a, b, c ∈ H, then a·(bc) = 1
2
(a(c∗b∗)+(bc)a∗) = 1

2
((ac∗)b∗+b(ca∗)) = (ac∗)·b =

b · (ac∗) and a · (bc) = 1
2
(a∗(bc) + (c∗b∗)a) = 1

2
((a∗b)c+ c∗(b∗a)) = (b∗a) · c = c · (b∗a).

Lemma 8. If a ∈ H, then (a∗)∗ = a.

Proof. If a ∈ H, then (a∗)∗ = (a0,−ā)∗ = (a0, ā) = a.

Lemma 9. If a, b ∈ H, then a∗ · b∗ = a · b.

Proof. If a, b ∈ H, then a∗ · b∗ = (a0b0 + (−ā) · (−b̄), 0̄) = (a0b0 + ā · b̄, 0̄) = a · b.

Lemma 10. If a, b ∈ H, then ‖ab‖ = ‖a‖‖b‖.

Proof. If a, b ∈ H, then ‖ab‖ =
√
abb∗a∗ =

√
‖a‖2‖b‖2 = ‖a‖‖b‖.

Lemma 11. If a, b ∈ H and M ∈ R4×4, then (M ∗ a) · b = a · (MT ∗ b).

Proof. If a, b ∈ H and M ∈ R4×4, then (M ∗a)·b = (M11a0 +M12a,M21a0 +M22a)·b =

((M11a0) · b0 + (M12a) · b0 + (M21a0) · b̄+ (M22a) · b̄, 0̄) = (a0 · (MT
11b0) + a · (MT

12b0) +

a0 · (MT
21b̄) + a · (MT

22b̄), 0̄) = a · (MT
11b0 +MT

21b̄,M
T
12b0 +MT

22b̄) = a · (MT ∗ b).

Lemma 12. If a ∈ H, then ‖a∗‖ = ‖a‖.

Proof. If a ∈ H, then ‖a∗‖ =
√
a∗(a∗)∗ =

√
a∗a = ‖a‖.
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Lemma 13. If a, b ∈ H, then |a · b| ≤ ‖a‖‖b‖.

Proof. If a, b ∈ H and using Cauchy-Schwarz inequality, |a · b| = (|a0b0 +a1b1 +a2b2 +

b3b3|, 0̄) ≤ ‖a‖‖b‖.

Lemma 14. If a, b ∈ H, then d
dt

(ab) = ȧb+ aḃ.

Proof. If a, b ∈ H, then d
dt

(ab) = (ȧ0b0 + a0ḃ0− ˙̄a · b̄− ā · ˙̄b, ȧ0b̄+ a0
˙̄b+ ḃ0ā+ b0 ˙̄a+ ˙̄a×

b̄+ ā× ˙̄b) = (ȧ0b0− ˙̄a · b̄, ȧ0b̄+ b0 ˙̄a+ ˙̄a× b̄) + (a0ḃ0− ā · ˙̄b, a0
˙̄b+ ḃ0ā+ ā× ˙̄b) = ȧb+ aḃ.

Lemma 15. If a, b ∈ H, then d
dt

(a · b) = ȧ · b+ a · ḃ.

Proof. If a, b ∈ H, then d
dt

(a · b) = d
dt

(1
2
(a∗b + b∗a)) = 1

2
(ȧ∗b + a∗ḃ + ḃ∗a + b∗ȧ) =

1
2
(ȧ∗b+ b∗ȧ) + 1

2
(a∗ḃ+ ḃ∗a) = ȧ · b+ a · ḃ.

Lemma 16. If a, b ∈ H, then d
dt

(a× b) = ȧ× b+ a× ḃ.

Proof. If a, b ∈ H, then d
dt

(a × b) = d
dt

(1
2
(ab − b∗a∗)) = 1

2
(ȧb + aḃ − ḃ∗a∗ − b∗ȧ∗) =

1
2
(ȧb− b∗ȧ∗) + 1

2
(aḃ− ḃ∗a∗) = ȧ× b+ a× ḃ.

Lemma 17. If M ∈ R4×4 and q ∈ H, then d
dt

(M ∗ q) = dM
dt
∗ q +M ∗ dq

dt
.

Proof. If M ∈ R4×4 and q ∈ H, then d
dt

(M ∗ q) = d
dt

(M11q0 +M12q,M21q0 +M22q) =

(Ṁ11q0+M11q̇0+Ṁ12q+M12q̇, Ṁ21q0+M21q̇0+Ṁ22q+M22q̇) = (Ṁ11q0+Ṁ12q, Ṁ21q0+

Ṁ22q) + (M11q̇0 +M12q̇,M21q̇0 +M22q̇) = dM
dt
∗ q +M ∗ dq

dt
.

Lemma 18. If A,B ∈ R4×4 and q ∈ H, then A ∗ (B ∗ q) = (AB) ∗ q.

Proof. If A,B ∈ R4×4 and q ∈ H, then A ∗ (B ∗ q) = A(B11q0 +B12q, B21q0 +B22q) =

(A11B11q0+A11B12q+A12B21q0+A12B22q, A21B11q0+A21B12q+A22B21q0+A22B22q) =

((A11B11+A12B21)q0+(A11B12+A12B22)q, (A21B11+A22B21)q0+(A21B12+A22B22)q) =

(AB) ∗ q.

Lemma 19. If A,B ∈ R4×4 and q ∈ H, then (A+B) ∗ q = A ∗ q +B ∗ q.
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Proof. IfA,B ∈ R4×4 and q ∈ H, then (A+B)∗q = ((A11+B11)q0+(A12+B12)q, (A21+

B21)q0)+(A22+B22)q) = (A11q0+A12q, A21q0)+A22q)+(B11q0+B12q, B21q0)+B22q) =

A ∗ q +B ∗ q.

Lemma 20. If M ∈ R4×4 and a, b ∈ H, then M ∗ (a+ b) = M ∗ a+M ∗ b.

Proof. IfM ∈ R4×4 and a, b ∈ H, thenM∗(a+b) = (M11(a0+b0)+M12(a+b),M21(a0+

b0) +M22(a+ b)) = (M11a0 +M12a,M21a0 +M22a) + (M11b0 +M12b,M21b0 +M22b) =

M ∗ a+M ∗ b.

Lemma 21. Let M ∈ R4×4 be a symmetric (i.e., M = MT) positive-definite matrix

(i.e., xTMx > 0, x 6= 0) of the form

M =

M11 M12

MT
12 M22

 , M11 ∈ R, M12 ∈ R1×3, M22 ∈ R3×3. (14)

Then, the function V1 : H → R defined as V1(a) = a · (M ∗ a) satisfies V1(a) > 0 for

a ∈ H\{0} and V1(a)→∞ as ‖a‖ → ∞.

Moreover, if N ∈ R4×4 is of the form

N =

N11 N12

N21 N22

 , (15)

where N22 ∈ R3×3 is a symmetric positive-definite matrix, then the function V2 : Hv →

R defined as V2(a) = a · (N ∗ a) satisfies V2(a) > 0 for a ∈ Hv\{0} and V2(a) → ∞

as ‖a‖ → ∞.

Proof. By definition, V1(a) = a · (M ∗ a) = (a0, ā) · (M11a0 +M12ā,M
T
12a0 +M22ā) =

(a0M11a0+a0M12ā+ā·(MT
12a0)+ā·(M22ā), 0̄) = ([a0 ā

T]M [a0 ā
T]T, 0̄), which is strictly

positive for all a ∈ H\{0} and radially unbounded since M is a symmetric positive-

definite matrix. Likewise, V2(a) = a · (N ∗ a) = (0, ā) · (N12ā, N22ā) = (ā · (N22ā), 0̄),

which is strictly positive for all a ∈ Hv\{0} and radially unbounded since N22 is a

symmetric positive-definite matrix.
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Finally, note that the dot product and cross product of two vector quaternions are

composed by the dot product and cross product of their vector parts, respectively,

i.e., a · b = (ā · b̄, 0̄) ∈ Hs and a × b = (0, ā × b̄) ∈ Hv, where a, b ∈ Hv. Hence,

many of the properties of the dot product and cross product of vectors in R3 can be

extended to the dot product and cross product of vector quaternions. In particular,

the following properties hold for vector quaternions:

a · (b× c) = b · (c× a) = c · (a× b), a, b, c ∈ Hv, (16)

a× a = 0, a ∈ Hv, (17)

a× b = −b× a, a, b ∈ Hv. (18)

2.1.1 Attitude Representation with Unit Quaternions

The relative orientation of a body frame with respect to an inertial frame can be

represented by the unit quaternion

qB/I =

(
cos(

φ

2
), sin(

φ

2
)n̄

)
,

where the body frame is said to be rotated with respect to the inertial frame about

the unit vector n̄ (i.e., n̄ · n̄=1) by an angle φ. Note that it does not make a difference

whether n̄ is written in the inertial frame or in the body frame as the coordinates of n̄

are invariant under the rotation [64]. The quaternion qB/I is a unit quaternion because

it belongs to the set Hu = {q ∈ H : q · q = 1}. From this constraint and assuming

that −180 < φ < 180 deg, the scalar part of a unit quaternion can be computed from

q0 =
√

1− ‖q‖2, (19)

where ‖ · ‖ denotes the usual Euclidean norm in R3.

The body coordinates of a vector, v̄B, can be calculated from the inertial coordi-

nates of that same vector, v̄I, and vice-versa, through

vB = q∗B/Iv
IqB/I and vI = qB/Iv

Bq∗B/I, (20)
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where vB = (0, v̄B) and vI = (0, v̄I). This is equivalent to vB = RB←IvI and vI =

RI←BvB, where RX←Y is the rotation matrix that transforms the coordinates of a

vector from the Y-frame to the X-frame.

Another important result about unit quaternions and attitude representation is

given by the following lemma [100].

Lemma 22. Let the relative orientation of frame Y with respect to frame Z be given by

the unit quaternion qY/Z. Then, qY/Z and −qY/Z represent the same relative orientation

between the two frames.

Proof. Given the coordinates of a vector in the Z-frame, the coordinates of that same

vector in the Y-frame are given by

vY = q∗Y/Zv
ZqY/Z or vY = (−q∗Y/Z)vZ(−qY/Z).

In particular, when qY/Z = 1 and qY/Z = −1, the two frames have the same

orientation.

2.1.2 Quaternion Representation of the Relative Rotational Kinematic
Equations

The rotational kinematic equations of the body frame and of a frame with some

desired orientation, both with respect to the inertial frame and represented by the

unit quaternions qB/I and qD/I, respectively, are given by [105]

q̇B/I=
1
2
qB/Iω

B

B/I=
1
2
ωI

B/IqB/I and q̇D/I=
1
2
qD/Iω

D

D/I=
1
2
ωI

D/IqD/I, (21)

where ωX
Y/Z = (0, ω̄X

Y/Z), and ω̄X
Y/Z = [pX

Y/Z, q
X
Y/Z, r

X
Y/Z]T is the angular velocity of the

Y-frame with respect to the Z-frame expressed in the X-frame. The error quaternion

[101, 103]

qB/D = q∗D/IqB/I (22)

is the unit quaternion that rotates the desired frame onto the body frame. By differ-

entiating Eq. (22) and using Eq. (21), the kinematic equations of the error quaternion
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turn out to be

q̇B/D = 1
2
qB/Dω

B

B/D = 1
2
ωD

B/DqB/D, (23)

where ωB
B/D = ωB

B/I − ωB
D/I (and ωD

B/D = ωD
B/I − ωD

D/I). Note that qB/D is a better repre-

sentation of the error between qB/I and qD/I than qB/I − qD/I. Like qB/I and qD/I, qB/D

belongs to Hu, whereas qB/I − qD/I does not. Hence, qB/I − qD/I does not represent a

relative orientation between two frames.

2.1.3 Quaternion Representation of the Relative Rotational Dynamic
Equations

In quaternion algebra, the rotational(-only) dynamic equations of a rigid body about

its center of mass with respect to a rotating frame are given by [93]

ω̇B

B/D=(IB)−1∗
(
τB−(ωB

B/D+ωB

D/I)×
(
IB∗(ωB

B/D+ωB

D/I)
))
−q∗B/Dω̇

D

D/IqB/D−ωB

D/I×ωB

B/D, (24)

where

IB=

 1 01×3

03×1 ĪB

 , ĪB=


I11 I12 I13

I12 I22 I23

I13 I23 I33

 , (25)

ĪB ∈ R3×3 is the mass moment of inertia of the body about its center of mass expressed

in the body frame, τB = (0, τ̄B), and τ̄B = [τB
1 , τ

B
2 , τ

B
3 ]T is the total external moment

vector applied to the body about its center of mass expressed in the body frame.

2.2 Dual Quaternion Algebra

Dual quaternions were introduced by Clifford in 1873 [17]. A dual quaternion is

defined as q = qr + εqd, where ε is the dual unit defined by ε2 = 0 and ε 6= 0.

The quaternions qr, qd ∈ H are called the real part and the dual part of the dual

quaternion, respectively.

Dual vector quaternions and dual scalar quaternions are dual quaternions formed

from vector quaternions (i.e., qr, qd ∈ Hv) and scalar quaternions (i.e., qr, qd ∈
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Hs), respectively. The set of dual quaternions, dual scalar quaternions, dual vec-

tor quaternions, and dual scalar quaternions with zero dual part will be denoted by

Hd = {q : q = qr + εqd, qr, qd ∈ H}, Hs
d = {q : q = qr + εqd, qr, qd ∈ Hs},

Hv
d = {q : q = qr + εqd, qr, qd ∈ Hv}, and Hr

d = {q : q = qr + ε0, qr ∈ Hs},

respectively.

The basic operations on dual quaternions are defined as follows [43, 93]:

Addition: a+ b = (ar + br) + ε(ad + bd) ∈ Hd, (26)

Multiplication by a scalar: λa = aλ = (λar) + ε(λad) ∈ Hd, (27)

Multiplication: ab = (arbr) + ε(arbd + adbr) ∈ Hd, (28)

Conjugation: a∗ = a∗r + εa∗d ∈ Hd, (29)

Swap: as = ad + εar ∈ Hd, (30)

Dot product: a ·b=1
2
(a∗b+b∗a)=1

2
(ab∗+ba∗)=ar · br + ε(ad · br +ar · bd) ∈ Hs

d, (31)

Cross product: a× b = 1
2
(ab− b∗a∗) = ar × br + ε(ad × br + ar × bd) ∈ Hv

d, (32)

Dual norm: ‖a‖2
d = aa∗ = a∗a = a · a = (ar · ar) + ε(2ar · ad) ∈ Hs

d, (33)

Scalar part: sc(a) = sc(ar) + ε sc(ad) ∈ Hs
d, (34)

Vector part: vec(a) = vec(ar) + ε vec(ad) ∈ Hv
d, (35)

where a, b ∈ Hd and λ ∈ R. The dual quaternion addition is commutative and

associative, whereas the dual quaternion multiplication is associative and distributive.

However, the dual quaternion multiplication is not commutative. Finally, the dual

quaternions 1 + ε0 and 0 + ε0 will be denoted by 1 and 0, respectively.

Since the dot product and dual norm yield in general a dual scalar quaternion (and

not a dual scalar quaternion with zero dual part), the norm of a dual quaternion will

be defined as [9, 93]

‖a‖2 = a ◦ a ∈ Hr
d, (36)
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where ◦ denotes the dual quaternion circle product given by

a ◦ b = ar · br + ad · bd ∈ Hr
d, (37)

where a, b ∈ Hd. Other authors have used alternative norms, for example, based

on the logarithm of the dual quaternion [94, 96, 97, 44, 95]. In this work, the dual

quaternion norm is defined as in Eq. (36) because the real part of Eq. (36) matches

the quaternion norm used in Ref. [1]. Since dual quaternions are used in this work to

extend the attitude-only results presented in Ref. [1], selecting this dual quaternion

norm facilitates this extension.

The bijective mapping between the set of dual quaternions and R8 will be denoted

by [ · ] : Hd → R8, where [q] = [[qr]
T[qd]

T]T. Using this mapping, the square of the

dual quaternion norm and the circle product on Hd correspond to the square of the

Euclidean norm and to the dot (inner) product on R8, respectively. Moreover, using

this mapping, the left dual quaternion multiplication of a ∈ Hd with b ∈ Hd can be

computed as [ab] = [a]L[b], where [ · ]L : Hd → R8×8 is defined as

[a]L =

[ar]
L 04×4

[ad]
L [ar]

L

 . (38)

Finally, it is convenient to define · : Hd → R6 as a = [aT
r a

T
d]

T, [ · ]× : Hd → R6×6 as

[a]× =

[ar]
× 03×3

[ad]
× [ar]

×

 , (39)

and [ · ]L8×6 : Hd → R8×6 as

[a]L8×6 =

[ar]
L
4×3 04×3

[ad]
L
4×3 [ar]

L
4×3

 . (40)

The multiplication of a matrix M ∈ R8×8 with a dual quaternion q ∈ Hd will be

defined as M ? q = (M11 ∗ qr +M12 ∗ qd) + ε(M21 ∗ qr +M22 ∗ qd), where

M =

M11 M12

M21 M22

 , M11,M12,M21,M22 ∈ R4×4.
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This definition is analogous to the multiplication of a 8-by-8 matrix with a 8-dimensional

vector.

The L∞-norm of a function u : [0,∞)→ Hd is defined as ‖u‖∞ = supt≥0 ‖u(t)‖.

Moreover, the function u ∈ L∞, if and only if ‖u‖∞ <∞.

The following properties follow from the previous definitions.

Lemma 23. If a, b ∈ Hd, then a · b = b · a.

Proof. If a, b ∈ Hd, then a·b = ar ·br+ε(ad ·br+ar ·bd) = br ·ar+ε(br ·ad+bd ·ar) = b·a.

Lemma 24. If a, b ∈ Hd, then a ◦ b = b ◦ a.

Proof. If a, b ∈ Hd, then a ◦ b = ar · br + ad · bd = br · ar + bd · ad = b ◦ a.

Lemma 25. If a, b, c ∈ Hd, then (a+b) ·c = a ·c+b ·c and a · (b+c) = a ·b+a ·c.

Proof. If a, b, c ∈ Hd, then (a+b)·c = ((ar+br)+ε(ad+bd))·(cr+εcd) = (ar+br)·cr+

ε((ar+br)·cd+(ad+bd)·cr) = (ar·cr+br·cr)+ε(ar·cd+br·cd+ad·cr+bd·cr) = a·c+b·c and

a·(b+c) = (ar+εad)·((br+cr)+ε(bd+cd)) = ar ·(br+cr)+ε(ad·(br+cr)+ar ·(bd+cd)) =

(ar · br + ar · cr) + ε(ad · br + ad · cr + ar · bd + ar · cd) = a · b+ a · c.

Lemma 26. If a, b, c ∈ Hd, then (a+b)◦c = a◦c+b◦c and a◦(b+c) = a◦b+a◦c.

Proof. If a, b, c ∈ Hd, then (a + b) ◦ c = ((ar + br) + ε(ad + bd)) ◦ (cr + εcd) =

ar·cr+br·cr+ad·cd+bd·cd = a◦c+b◦c and a◦(b+c) = (ar+εad)◦((br+cr)+ε(bd+cd)) =

ar · br + ar · cr + ad · bd + ad · cd = a ◦ b+ a ◦ c.

Lemma 27. If a, b, c ∈ Hd, then (a + b) × c = a × c + b × c and a × (b + c) =

a× b+ a× c.

Proof. If a, b, c ∈ Hd, then (a+b)×c = ((ar+br)+ε(ad+bd))×(cr+εcd) = (ar+br)×

cr+ε((ar+br)×cd+(ad+bd)×cr) = (ar×cr+br×cr)+ε(ar×cd+br×cd+ad×cr+bd×cr) =
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a×c+b×c and a×(b+c) = (ar+εad)×((br+cr)+ε(bd+cd)) = ar×(br+cr)+ε(ad×(br+

cr)+ar×(bd+cd)) = (ar×br+ar×cr)+ε(ad×br+ad×cr+ar×bd+ar×cd) = a×b+a×c.

Lemma 28. If a, b ∈ Hd and λ ∈ R, then (λa) · b = a · (λb) = λ(a · b).

Proof. If a, b ∈ Hd and λ ∈ R, then (λa) · b = ((λar) + ε(λad)) · (br + εbd) =

(λar) · br + ε((λar) · bd + (λad) · br) = ar · (λbr) + ε(ar · (λbd) + ad · (λbr)) = a · (λb) =

(λ(ar · br)) + ε(λ(ar · bd) + λ(ad · br)) = λ(a · b).

Lemma 29. If a, b ∈ Hd and λ ∈ R, then (λa)× b = a× (λb) = λ(a× b).

Proof. If a, b ∈ Hd and λ ∈ R, then (λa) × b = ((λar) + ε(λad)) × (br + εbd) =

(λar) × br + ε((λar) × bd + (λad) × br) = ar × (λbr) + ε(ar × (λbd) + ad × (λbr)) =

a× (λb) = (λ(ar × br)) + ε(λ(ar × bd) + λ(ad × br)) = λ(a× b).

Lemma 30. If a, b ∈ Hd and λ ∈ R, then (λa) ◦ b = a ◦ (λb) = λ(a ◦ b).

Proof. If a, b ∈ Hd and λ ∈ R, then (λa) ◦ b = ((λar) + ε(λad)) ◦ (br + εbd) =

(λar) · br + (λad) · bd = ar · (λbr) +ad · (λbd) = (ar + εad)◦ ((λbr) + ε(λbd)) = a◦ (λb) =

λ(ar · br) + λ(ad · bd) = λ(a ◦ b).

Lemma 31. If a, b ∈ Hd, then (ab)∗ = b∗a∗.

Proof. If a, b ∈ Hd, then (ab)∗ = (arbr)
∗+ ε(arbd + adbr)

∗ = (b∗ra
∗
r) + ε(b∗da

∗
r + b∗ra

∗
d) =

(b∗r + εb∗d)(a
∗
r + εa∗d) = b∗a∗.

Lemma 32. If a, b, c ∈ Hd, then a · (bc) = b · (ac∗) = c · (b∗a).

Proof. If a, b, c ∈ Hd, then a·(bc) = (ar+εad)·((brcr)+ε(brcd+bdcr)) = (ar ·(brcr))+

ε(ar ·(brcd)+ar ·(bdcr)+ad ·(brcr)) = (cr ·(b∗rar))+ε(cd ·(b∗rar)+cr ·(b∗dar)+cr ·(b∗rad)) =

(cr + εcd) · ((b∗rar) + ε(b∗dar + b∗rad)) = c · (b∗a) and a · (bc) = (ar · (brcr)) + ε(ar ·

(brcd) + ar · (bdcr) + ad · (brcr)) = (br · (arc∗r)) + ε(br · (arc∗d) + bd · (arc∗r) + br · (adc∗r)) =

(br + εbd) · ((arc∗r) + ε(arc
∗
d + adc

∗
r)) = b · (ac∗).
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Lemma 33. If a, b, c ∈ Hd, then a ◦ (bc) = bs ◦ (asc∗) = cs ◦ (b∗as).

Proof. If a, b, c ∈ Hd, then a◦(bc) = (ar+εad)◦((brcr)+ε(brcd+bdcr)) = ar·(brcr)+ad·

(brcd)+ad·(bdcr) = cr·(b∗rar)+cd·(b∗rad)+cr·(b∗dad) = (cd+εcr)◦((b∗rad)+ε(b∗rar+b∗dad)) =

(cd + εcr) ◦ ((b∗r + εb∗d)(ad + εar)) = cs ◦ (b∗as) and a ◦ (bc) = ar · (brcr) + ad · (brcd) +

ad · (bdcr) = br · (arc∗r) + br · (adc∗d) + bd · (adc∗r) = (bd + εbr) ◦ ((adc
∗
r) + ε(arc

∗
r + adc

∗
d)) =

(bd + εbr) ◦ ((ad + εar)(c
∗
r + εc∗d)) = bs ◦ (asc∗).

Lemma 34. If a ∈ Hd, then (a∗)∗ = a.

Proof. If a ∈ Hd, then (a∗)∗ = (a∗r + εa∗d)
∗ = ar + εad = a.

Lemma 35. If a, b ∈ Hd, then a∗ · b∗ = a · b.

Proof. If a, b ∈ Hd, then a∗ · b∗ = (a∗r + εa∗d) · (b∗r + εb∗d) = (a∗r · b∗r) + ε(a∗rb
∗
d + a∗db

∗
r) =

(ar · br) + ε(arbd + adbr) = a · b.

Lemma 36. If a, b ∈ Hd, then a∗ ◦ b∗ = a ◦ b.

Proof. If a, b ∈ Hd, then a∗◦b∗ = (a∗r+εa
∗
d)◦(b∗r+εb∗d) = a∗r ·b∗r+a∗d·b∗d = ar ·br+ad·bd =

a ◦ b.

Lemma 37. If a, b ∈ Hd, then as ◦ bs = a ◦ b.

Proof. If a, b ∈ Hd, then as ◦ bs = (ad + εar) ◦ (bd + εbr) = ad · bd + ar · br = a ◦ b.

Lemma 38. If a, b ∈ Hd, then ‖ab‖ ≤
√

3/2 ‖a‖‖b‖.

Proof. By definition, ‖ab‖2 = ‖(arbr) + ε(arbd + adbr)‖2 = ‖arbr‖2 + ‖arbd + adbr‖2 ≤

‖arbr‖2+(‖arbd‖+‖adbr‖)2 = ‖arbr‖2+‖arbd‖2+‖adbr‖2+2‖arbd‖‖adbr‖ = ‖ar‖2‖br‖2+

‖ar‖2‖bd‖2 + ‖ad‖2‖br‖2 + 2‖ar‖‖bd‖‖ad‖‖br‖ = ‖ar‖2(‖br‖2 + ‖bd‖2) + ‖ad‖2‖br‖2 +

2‖ar‖‖bd‖‖ad‖‖br‖. Using ‖ar‖‖ad‖ ≤ 1
2
(‖ar‖2 + ‖ad‖2) = 1

2
‖a‖2 and ‖br‖‖bd‖ ≤

1
2
(‖br‖2 + ‖bd‖2) = 1

2
‖b‖2, yields ‖ar‖‖bd‖‖ad‖‖br‖ ≤ 1

4
‖a‖2‖b‖2. It follows that

‖ab‖2 ≤ ‖ar‖2‖b‖2 + ‖ad‖2‖b‖2 + 1
2
‖a‖2‖b‖2 = (‖ar‖2 + ‖ad‖2)‖b‖2 + 1

2
‖a‖2‖b‖2 =

‖a‖2‖b‖2 + 1
2
‖a‖2‖b‖2 = 3

2
‖a‖2‖b‖2. The result follows by taking the square root of

both sides of the last inequality.
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Lemma 39. If a, b ∈ Hd and M ∈ R8×8, then (M ? a) ◦ b = a ◦ (MT ? b).

Proof. If a, b ∈ Hd and M ∈ R8×8, then (M ? a) ◦ b = ((M11 ∗ ar + M12 ∗ ad) +

ε(M21 ∗ ar +M22 ∗ ad)) ◦ (br + εbd) = (M11 ∗ ar) · br + (M12 ∗ ad) · br + (M21 ∗ ar) · bd +

(M22 ∗ ad) · bd = ar · (MT
11 ∗ br) + ad · (MT

12 ∗ br) + ar · (MT
21 ∗ bd) + ad · (MT

22 ∗ bd) =

(ar + εad) ◦ ((MT
11 ∗ br +MT

21 ∗ bd) + ε(MT
12 ∗ br +MT

22 ∗ bd)) = a ◦ (MT ? b).

Lemma 40. If a ∈ Hd, then ‖a∗‖ = ‖a‖.

Proof. If a ∈ Hd, then ‖a∗‖ = a∗r · a∗r + a∗d · a∗d = ar · ar + ad · ad = ‖a‖.

Lemma 41. If a ∈ Hd, then ‖as‖ = ‖a‖.

Proof. If a ∈ Hd, then ‖as‖ = ad · ad + ar · ar = ‖a‖.

Lemma 42. If a, b ∈ Hd, then (a+ b)s = as + bs.

Proof. If a, b ∈ Hd, then (a+ b)s = ((ar + br) + ε(ad + bd))
s = (ad + bd) + ε(ar + br) =

(ad + εar) + (bd + εbr) = as + bs.

Lemma 43. If a, b ∈ Hd, then |a ◦ b| ≤ ‖a‖‖b‖.

Proof. If a, b ∈ Hd, then |a ◦ b| = |ar · br + ad · bd| ≤ |ar · br|+ |ad · bd| ≤ ‖ar‖‖br‖+

‖ad‖‖bd‖ ≤ ‖ar‖‖br‖+ ‖ad‖‖bd‖+ ‖ar‖‖bd‖+ ‖ad‖‖br‖ = ‖a‖‖b‖.

Lemma 44. If a, b ∈ Hd, then d
dt

(ab) = ȧb+ aḃ.

Proof. If a, b ∈ Hd, then d
dt

(ab) = d
dt

((arbr)+ε(arbd+adbr)) = (ȧrbr+arḃr)+ε(ȧrbd+

arḃd + ȧdbr + adḃr) = ((ȧrbr) + ε(ȧrbd + ȧdbr)) + ((arḃr) + ε(arḃd + adḃr)) = ȧb+ aḃ.

Lemma 45. If a, b ∈ Hd, then d
dt

(a · b) = ȧ · b+ a · ḃ.

Proof. If a, b ∈ Hd, then d
dt

(a ·b) = d
dt

((ar · br)+ ε(ar · bd+ad · br)) = (ȧr · br +ar · ḃr)+

ε(ȧr ·bd+ar ·ḃd+ȧd·br+ad·ḃr) = ((ȧr ·br)+ε(ȧr ·bd+ȧd·br))+((ar ·ḃr)+ε(ar ·ḃd+ad·ḃr)) =

ȧ · b+ a · ḃ.
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Lemma 46. If a, b ∈ Hd, then d
dt

(a× b) = ȧ× b+ a× ḃ.

Proof. If a, b ∈ Hd, then d
dt

(a× b) = d
dt

((ar × br) + ε(ar × bd + ad × br)) = (ȧr × br +

ar × ḃr) + ε(ȧr × bd + ar × ḃd + ȧd× br + ad× ḃr) = ((ȧr × br) + ε(ȧr × bd + ȧd× br)) +

((ar × ḃr) + ε(ar × ḃd + ad × ḃr)) = ȧ× b+ a× ḃ.

Lemma 47. If a, b ∈ Hd, then d
dt

(a ◦ b) = ȧ ◦ b+ a ◦ ḃ.

Proof. If a, b ∈ Hd, then d
dt

(a◦b) = d
dt

(ar ·br+ad ·bd) = ȧr ·br+ar · ḃr+ ȧd ·bd+ad · ḃd =

ȧ ◦ b+ a ◦ ḃ.

Lemma 48. If M ∈ R8×8 and a ∈ Hd, then d
dt

(M ? a) = dM
dt
? a+M ? da

dt
.

Proof. If M ∈ R8×8 and a ∈ Hd, then d
dt

(M ?a) = d
dt

((M11 ∗ ar +M12 ∗ ad) + ε(M21 ∗

ar +M22 ∗ ad)) = (Ṁ11 ∗ ar +M11 ∗ ȧr + Ṁ12 ∗ ad +M12 ∗ ȧd) + ε(Ṁ21 ∗ ar +M21 ∗ ȧr +

Ṁ22 ∗ ad + M22 ∗ ȧd) = (Ṁ11 ∗ ar + Ṁ12 ∗ ad) + ε(Ṁ21 ∗ ar + Ṁ22 ∗ ad) + (M11 ∗ ȧr +

M12 ∗ ȧd) + ε(M21 ∗ ȧr +M22 ∗ ȧd) = Ṁ ? a+M ? ȧ.

Lemma 49. If M,N ∈ R8×8 and a ∈ Hd, then M ? (N ? a) = (MN) ? a.

Proof. If M,N ∈ R8×8 and a ∈ Hd, then M ? (N ? a) = M ? ((N11 ∗ ar +N12 ∗ ad) +

ε(N21 ∗ ar +N22 ∗ ad)) = [M11 ∗ (N11 ∗ ar) +M11 ∗ (N12 ∗ ad) +M12 ∗ (N21 ∗ ar) +M12 ∗

(N22 ∗ad)]+ ε[M21 ∗ (N11 ∗ar)+M21 ∗ (N12 ∗ad)+M22 ∗ (N21 ∗ar)+M22 ∗ (N22 ∗ad)] =

[(M11N11) ∗ ar + (M11N12) ∗ ad + (M12N21) ∗ ar + (M12N22) ∗ ad)] + ε[(M21N11) ∗ ar +

(M21N12)∗ad+(M22N21)∗ar+(M22N22)∗ad] = [(M11N11 +M12N21)∗ar+(M11N12 +

M12N22) ∗ ad] + ε[(M21N11 + M22N21) ∗ ar + (M21N12 + M22N22) ∗ ad] = (MN) ? a.

Lemma 50. If M,N ∈ R8×8 and a ∈ Hd, then (M +N) ? a = M ? a+N ? a.

Proof. If M,N ∈ R8×8 and a ∈ Hd, then (M +N) ? a = [(M11 +N11) ∗ ar + (M12 +

N12) ∗ ad] + ε[(M21 +N21) ∗ ar + (M22 +N22) ∗ ad] = [M11 ∗ ar +N11 ∗ ar +M12 ∗ ad +

N12 ∗ ad] + ε[M21 ∗ ar +N21 ∗ ar +M22 ∗ ad +N22 ∗ ad] = M ? a+N ? a.
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Lemma 51. If M ∈ R8×8 and a, b ∈ Hd, then M ? (a+ b) = M ? a+M ? b.

Proof. If M ∈ R8×8 and a, b ∈ Hd, then M ? (a+ b) = M ? [(ar + br) + ε(ad + bd)] =

[M11 ∗ar +M11 ∗ br +M12 ∗ad+M12 ∗ bd]+ ε[M21 ∗ar +M21 ∗ br +M22 ∗ad+M22 ∗ bd] =

M ? a+M ? b.

Lemma 52. Let M ∈ R8×8 be a symmetric (i.e., M = MT) positive-definite matrix

(i.e., xTMx > 0, x 6= 0) of the form

M =

M11 M12

MT
12 M22

 , M11,M12,M22 ∈ R4×4. (41)

Then, the function V1 : Hd → R defined as V1(a) = a ⊗ (M ? a) satisfies V1(a) > 0

for a ∈ Hd\{0} and V1(a)→∞ as ‖a‖ → ∞.

Moreover, if N ∈ R8×8 is of the form

N =



N11 N12 N13 N14

N21 N22 N23 N24

N31 N32 N33 N34

N41 NT
24 N43 N44


(42)

where N11, N13, N31, N33 ∈ R, N12, N14, N32, N34 ∈ R1×3, N22, N24, N44 ∈ R3×3, and

N21, N23, N41, N43 ∈ R3×1, and the submatrix

N̄ =

N22 N24

NT
24 N44

 ∈ R6×6 (43)

is a symmetric positive-definite matrix, then the function V2 : Hv
d → R defined as

V2(a) = a⊗(N?a) satisfies V2(a) > 0 for a ∈ Hv
d\{0} and V2(a)→∞ as ‖a‖ → ∞.

Proof. By definition, V1(a) = a ⊗ (M ? a) = (ar + εad) ⊗ ((M11 ∗ ar + M12 ∗ ad) +

ε(MT
12∗ar+M22∗ad)) = ar ·(M11∗ar)+ar ·(M12∗ad)+ad ·(MT

12∗ar)+ad ·(M22∗ad) =

([ar,0 a
T
r ad,0 a

T
d]M [ar,0 a

T
r ad,0 a

T
d]

T, 0̄), which is strictly positive for all a ∈ Hd\{0}

and radially unbounded since M is a symmetric positive-definite matrix. Likewise,
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V2(a) = a ⊗ (N ∗ a) = ([0 aT
r 0 aT

d]N [0 aT
r 0 aT

d]
T, 0̄) = ([aT

r a
T
d]N̄ [aT

r a
T
d]

T, 0̄), which is

strictly positive for all a ∈ Hv
d\{0} and radially unbounded since N̄ is a symmetric

positive-definite matrix.

Lemma 53. The unit dual quaternion qY/Z = qY/Z + ε1
2
qY/Zr

Y
Y/Z ∈ L∞ (where qY/Z is

a unit quaternion), if and only if rYY/Z ∈ L∞.

Proof. If qY/Z ∈ L∞, then qY/Zr
Y
Y/Z ∈ L∞. Note that the unit quaternion qY/Z ∈ L∞ by

definition. Moreover, since ‖qY/Zr
Y
Y/Z‖ = ‖rYY/Z‖, this also implies that rYY/Z ∈ L∞. On

the other hand, it is trivial to see that if qY/Z, r
Y
Y/Z ∈ L∞, then qY/Z = qY/Z+ε1

2
qY/Zr

Y
Y/Z ∈

L∞ as well.

It can also be shown that the following properties hold for dual vector quaternions.

Lemma 54. If a, b, c ∈ Hv
d, then a · (b× c) = b · (c× a) = c · (a× b).

Proof. If a, b, c ∈ Hv
d, then a · (b× c) = (ar + εad) · ((br × cr) + ε(br × cd + bd× cr)) =

(ar ·(br×cr))+ε(ar ·(br×cd)+ar ·(bd×cr)+ad ·(br×cr)) = (br ·(cr×ar))+ε(br ·(cd×ar)+

bd ·(cr×ar)+br ·(cr×ad)) = (br+εbd) ·((cr×ar)+ε(cd×ar+cr×ad)) = b ·(c×a) and

a·(b×c) = (ar ·(br×cr))+ε(ar ·(br×cd)+ar ·(bd×cr)+ad·(br×cr)) = (cr ·(ar×br))+ε(cd·

(ar×br)+cr·(ar×bd)+cr·(ad×br)) = (cr+εcd)·((ar×br)+ε(ar×bd+ad×br)) = c·(a×b).

Lemma 55. If a, b, c ∈ Hv
d, then a◦(b×c)=bs◦(c×as)=cs◦(as×b).

Proof. If a, b, c ∈ Hv
d, then a◦(b×c) = (ar + εad) ◦ ((br × cr) + ε(br × cd + bd× cr)) =

ar · (br× cr) +ad · (br× cd) +ad · (bd× cr) = cr · (ar× br) + cd · (ad× br) + cr · (ad× bd) =

(cd + εcr)⊗ ((ad × br) + ε(ar × br + ad × bd)) = cs◦(as×b) and a◦(b×c) = ar · (br ×

cr) + ad · (br × cd) + ad · (bd × cr) = br · (cr × ar) + br · (cd × ad) + bd · (cr × ad) =

(bd + εbr)⊗ ((cr × ad) + ε(cr × ar + cd × ad)) = bs◦(c×as).

Lemma 56. If a ∈ Hv
d, then a× a = 0.
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Proof. If a ∈ Hv
d, then a×a = (ar×ar)+ε(ar×ad+ad×ar) = 0+ε(ar×ad−ar×ad) = 0.

Lemma 57. If a, b ∈ Hv
d, then a× b = −b× a.

Proof. If a, b ∈ Hv
d, then a × b = (ar × br) + ε(ar × bd + ad × br) = −((br × ar) +

ε((bd × ar + br × ad))) = −b× a.

2.2.1 Attitude and Position Representation with Unit Dual Quaternions

The position and orientation, i.e., pose, of a body frame with respect to an inertial

frame can be represented by a unit quaternion and by a translation vector. Alterna-

tively, the pose of a body frame with respect to an inertial frame can be represented

more compactly by the unit dual quaternion [105]

qB/I = qB/I,r + εqB/I,d = qB/I + ε1
2
rIB/IqB/I = qB/I + ε1

2
qB/Ir

B

B/I, (44)

where rXY/Z = (0, r̄XY/Z) and r̄XY/Z = [xX
Y/Z, y

X
Y/Z, z

X
Y/Z]T is the translation vector from the

origin of the Z-frame to the origin of the Y-frame expressed in the X-frame. Note

that the dual part of qB/I, i.e., qB/I,d, is a representation of the position of the body

frame with respect to the inertial frame that is neither expressed in the B-frame nor

in the I-frame. Given the unit dual quaternion qB/I = qB/I,r + εqB/I,d, r
B
B/I and rIB/I can

be recovered through

rIB/I = 2qB/I,dq
∗
B/I,r and rBB/I = 2q∗B/I,rqB/I,d. (45)

Figure 1 illustrates the relation between rBB/I, qB/I,d, and rIB/I. Note that whereas the

relation between rBB/I and rIB/I is quadratic in qB/I, the relation between qB/I,d and rBB/I

and between qB/I,d and rIB/I is linear in qB/I.

Lemma 58. The dual quaternion given by Eq. (44) is a unit dual quaternion, i.e.,

qB/I ∈ Hu
d = {q ∈ Hd : q · q = qq∗ = q∗q = ‖q‖d = 1}.
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
B/I
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I
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( )q q

 *
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( )q q


B/I

0.5 ( )q  *

B/I
2( )q

Figure 1: Relation between the different representations of position.

Proof. First, note that q · q = qr · qr + ε(qr · qd + qd · qr) = qr · qr + ε(2qr · qd). Hence,

for a dual quaternion to be a unit dual quaternion, it must satisfy two algebraic

constraints,

qr · qr = 1 and qr · qd = 0. (46)

The dual quaternion given by Eq. (44) satisfies these two algebraic constraints since

qr · qr = qB/I · qB/I = 1 and qr · qd = qB/I · (1
2
rIB/IqB/I) = (1

2
rIB/I) · (qB/Iq

∗
B/I) = (1

2
rIB/I) ·1 = 0.

Since only three elements are necessary to represent a rotation, a unit quaternion,

which has four elements, must satisfy one algebraic constraint. Likewise, since only

six elements are necessary to represent a pose, a unit dual quaternion, which has

eight elements, must satisfy two algebraic constraints, given by Eq. (46). From these

constraints and assuming that −180 < φ < 180 deg, the scalar parts of the real and

dual parts of a unit dual quaternion can be computed from their respective vector

parts from

qr,0 =
√

1− ‖qr‖2 and qd,0 =
−qrTqd
qr,0

. (47)

In the same way as unit quaternions can be used to transform the coordinates of

a vector quaternion between frames, unit dual quaternions can be used to transform

the coordinates of a dual vector quaternion between frames, with a small caveat. This

result is presented in the next lemma.
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Lemma 59. Given a dual vector quaternion expressed in frame Y, vY = vY
r + εvY

d ,

and the unit dual quaternion describing the pose of frame X with respect to frame Y,

qX/Y = qX/Y + ε1
2
qX/Yr

X
X/Y = qX/Y + ε1

2
rYX/YqX/Y, then

vX , q∗X/Yv
YqX/Y = vX

r + ε(vX

d + vX

r × rXX/Y). (48)

Likewise, given a dual vector quaternion expressed in frame X, vX = vX
r + εvX

d , and

qX/Y, then

vY , qX/Yv
Xq∗X/Y = vY

r + ε(vY

d − vY

r × rYX/Y). (49)

Proof. By definition,

q∗X/Yv
YqX/Y = (qX/Y + ε1

2
qX/Yr

X

X/Y)∗(vY

r + εvY

d )(qX/Y + ε1
2
qX/Yr

X

X/Y)

= (qX/Y + ε1
2
qX/Yr

X

X/Y)∗(vY

r qX/Y + ε(vY

r
1
2
qX/Yr

X

X/Y + vY

d qX/Y))

= q∗X/Yv
Y

r qX/Y + ε(1
2
(rXX/Y)∗q∗X/Yv

Y

r qX/Y + q∗X/Yv
Y

r
1
2
qX/Yr

X

X/Y + q∗X/Yv
Y

d qX/Y)

= vX

r + ε(1
2
(rXX/Y)∗vX

r + 1
2
vX

r r
X

X/Y + vX

d )

= vX

r + ε(vX

d + 1
2
vX

r r
X

X/Y − 1
2
(rXX/Y)∗(vX

r )∗) = vX

r + ε(vX

d + vX

r × rXX/Y),

qX/Yv
Xq∗X/Y = (qX/Y + ε1

2
qX/Yr

X

X/Y)(vX

r + εvX

d )(qX/Y + ε1
2
qX/Yr

X

X/Y)∗

= (qX/Y + ε1
2
qX/Yr

X

X/Y)(vX

r q
∗
X/Y + ε(vX

r
1
2
(rXX/Y)∗q∗X/Y + vX

d q
∗
X/Y))

= qX/Yv
X

r q
∗
X/Y + ε(1

2
qX/Yr

X

X/Yv
X

r q
∗
X/Y + qX/Yv

X

r
1
2
(rXX/Y)∗q∗X/Y + qX/Yv

X

d q
∗
X/Y)

= vY

r + ε(1
2
qX/Yr

X

X/Yq
∗
X/YqX/Yv

X

r q
∗
X/Y + qX/Yv

X

r q
∗
X/YqX/Y

1
2
(rXX/Y)∗q∗X/Y + vY

d )

= vY

r + ε(vY

d + 1
2
rYX/Yv

Y

r + 1
2
vY

r (rYX/Y)∗)

= vY

r + ε(vY

d + 1
2
rYX/Yv

Y

r − 1
2
(vY

r )∗(rYX/Y)∗)

= vY

r + ε(vY

d + rYX/Y × vY

r ) = vY

r + ε(vY

d − vY

r × rYX/Y).

Note that whereas it might seem intuitive that q∗X/Yv
YqX/Y = vX

r + εvX
d and

qX/Yv
Xq∗X/Y = vY

r + εvY
d , Lemma 59 shows that this is not true. An extra term appears

in the dual part of the transformed dual vector quaternion, as shown in Eq. (48) and

Eq. (49).
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The following lemma shows that in the same way as qY/Z and −qY/Z represent the

same relative orientation between frames, qY/Z and −qY/Z represent the same relative

pose between frames.

Lemma 60. Let the relative pose of frame Y with respect to frame Z be given by the

unit dual quaternion qY/Z. Then, qY/Z and −qY/Z represent the same relative pose

between the two frames.

Proof. According to Lemma 22, qY/Z and −qY/Z represent the same relative orientation

between the two frames. Hence, qY/Z = qY/Z+ε1
2
rZY/ZqY/Z and (−qY/Z)+ε1

2
rZY/Z(−qY/Z) =

−qY/Z represent the same relative pose between the two frames.

In particular, when qY/Z = 1 and qY/Z = −1, the two frames have the same pose.

2.2.2 Dual Quaternion Representation of the Relative Rotational and
Translational Kinematic Equations

The following proposition shows that the combined rotational and translational kine-

matic equations written using dual quaternion algebra and the rotational-only kine-

matic equations written using quaternion algebra, given by Eq. (21), have the same

form.

Proposition 1. The combined rotational and translational kinematic equations of

frame X with respect to frame Y written using dual quaternion algebra are [105]

q̇X/Y = 1
2
ωY

X/YqX/Y = 1
2
qX/Yω

X

X/Y, (50)

where ωX
Y/Z is the dual velocity of the Y-frame with respect to the Z-frame expressed

in the X-frame, so that ωX
Y/Z = ωX

Y/Z + ε(vX
Y/Z + ωX

Y/Z × rXX/Y), ωX
Y/Z = (0, ω̄X

Y/Z), ω̄X
Y/Z =

[pX
Y/Z, q

X
Y/Z, r

X
Y/Z]T is the angular velocity of the Y-frame with respect to the Z-frame

expressed in the X-frame, vX
Y/Z = (0, v̄X

Y/Z), and v̄X
Y/Z = [uX

Y/Z, v
X
Y/Z, w

X
Y/Z]T is the linear

velocity of the origin of the Y-frame with respect to the Z-frame expressed in the

X-frame.
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Proof. The time derivative of qX/Y = qX/Y + ε1
2
rYX/YqX/Y is given by q̇X/Y = q̇X/Y +

ε1
2
ṙYX/YqX/Y + ε1

2
rYX/Yq̇X/Y. Using Eq. (21) to substitute q̇X/Y yields q̇X/Y = 1

2
ωY

X/YqX/Y +

ε1
2
ṙYX/YqX/Y + ε1

2
rYX/Y

1
2
ωY

X/YqX/Y. Note that ṙYX/Y = vY
X/Y and 1

2
rYX/Yω

Y
X/Y = rYX/Y × ωY

X/Y +

1
2
ωY

X/Yr
Y
X/Y. Hence, q̇X/Y = 1

2
ωY

X/YqX/Y + 1
2
ε(vY

X/YqX/Y +(rYX/Y×ωY
X/Y)qX/Y + 1

2
ωY

X/Yr
Y
X/YqX/Y),

which can be factorized into q̇X/Y = 1
2
(ωY

X/Y + ε(vY
X/Y + rYX/Y×ωY

X/Y))(qX/Y + ε1
2
rYX/YqX/Y).

Thus, if ωY
X/Y = ωY

X/Y+ε(vY
X/Y+rYX/Y×ωY

X/Y), one obtains q̇X/Y = 1
2
ωY

X/YqX/Y. Finally, by

applying Lemma 59 to this form of the kinematics yields q̇X/Y = 1
2
(qX/Yq

∗
X/Y)ωY

X/YqX/Y =

1
2
qX/Yω

X
X/Y, where ωX

X/Y = ωX
X/Y + εvX

X/Y.

Hence, based on Proposition 1, the rotational and translational kinematic equa-

tions of the pose of a body frame and of a desired frame with respect to an inertial

frame, represented by the unit dual quaternions qB/I and qD/I = qD/I + ε1
2
rID/IqD/I =

qD/I + ε1
2
qD/Ir

D
D/I, respectively, are given by [105]

q̇B/I=
1
2
ωI

B/IqB/I=
1
2
qB/Iω

B

B/I and q̇D/I=
1
2
ωI

D/IqD/I=
1
2
qD/Iω

D

D/I, (51)

where

ωB

B/I = ωB

B/I + εvB

B/I, (52)

ωI

B/I = ωI

B/I + ε(vI

B/I − ωI

B/I × rIB/I). (53)

By direct analogy to Eq. (22), the error dual quaternion [93, 44] is defined as

qB/D , q∗D/IqB/I. (54)

This definition has some desirable properties. First, qB/D is a unit dual quaternion.

(In Ref. [75], the error dual quaternion is defined as qB/D = qD/I − qB/I. In this case,

qB/D is not a unit dual quaternion.)

Lemma 61. The error dual quaternion given by Eq. (54) is a unit dual quaternion,

i.e., qB/D ∈ Hu
d.

Proof. By definition, qB/D · qB/D = q∗B/DqB/D = q∗B/IqD/Iq
∗
D/IqB/I = 1.
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Moreover, qB/D can be shown to represent the relative pose of the body frame with

respect to the desired frame.

Lemma 62. The error dual quaternion given by Eq. (54) is equal to qB/D = qB/D +

ε1
2
qB/Dr

B
B/D = qB/D + ε1

2
rDB/DqB/D, where rBB/D = rBB/I − rBD/I.

Proof. By definition, qB/D , q∗D/IqB/I = (qD/I+ε
1
2
qD/Ir

D
D/I)
∗(qB/I+ε

1
2
qB/Ir

B
B/I) = q∗D/IqB/I+

ε(1
2
(rDD/I)

∗q∗D/IqB/I + 1
2
q∗D/IqB/Ir

B
B/I). Using Eq. (22), qB/D = qB/D + ε(1

2
(rDD/I)

∗qB/D +

1
2
qB/Dr

B
B/I) = qB/D +ε(1

2
qB/Dq

∗
B/D(rDD/I)

∗qB/D + 1
2
qB/Dr

B
B/I) = qB/D +ε(−1

2
qB/D(q∗B/Dr

D
D/IqB/D)+

1
2
qB/Dr

B
B/I) = qB/D + ε(−1

2
qB/Dr

B
D/I + 1

2
qB/Dr

B
B/I) = qB/D + ε1

2
qB/D(rBB/I − rDD/I) = qB/D +

ε1
2
qB/Dr

B
B/D = qB/D + ε1

2
rDB/DqB/D.

Hence, the error dual quaternion represents the attitude (qB/D) and position (rBB/D)

of the body frame with respect to the desired frame. This is illustrated in Figure 2.

D/I
r

I
I

I
J

I
K

B/I
rB

I

B
J

B
K

D
O

I
O

B
O

D
I

D
J

D
K

B/D B/I D/I
r r r 

B/I
q

D/I
q

B/D
q

Figure 2: Relation between the desired, body, an inertial frames.

By direct application of Proposition 1, the dual quaternion representation of the

relative rotational and translational kinematic equations is given by [93]

q̇B/D = 1
2
qB/Dω

B

B/D = 1
2
ωD

B/DqB/D, (55)

where ωB
B/D = ωB

B/I − ωB
D/I, ω

B
D/I = q∗B/Dω

D
D/IqB/D, and ωD

B/I = qB/Dω
B
B/Iq

∗
B/D. Note

that the kinematic equations of the dual error quaternion, Eq. (55), and of the error

quaternion, Eq. (23), have the same form.
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2.2.3 Dual Quaternion Representation of the Relative Rotational and
Translational Dynamic Equations

Whereas much has been published about dual quaternions and rigid body kinemat-

ics [75, 43, 74, 105], the formulation of the rigid body dynamics in terms of dual

quaternions has been given less attention.

In Ref. [44], the rigid body dynamics are written component-wise in terms of the

real and dual parts of ω̇B

B/I, and not in dual quaternion algebra (as Eq. (51) for the

rigid body kinematics). Moreover, as stated in Ref. [95], “the equations of motion

are quite complicated and the physical significance of the variables is not intuitively

apparent.”

In Ref. [95], like in Ref. [44], the rigid body dynamics are written component-wise

in terms of the real and dual parts of ω̇B

B/I. Moreover, the derivation of the dynamic

equations in Ref. [95] is based on an incorrect form of the second law of Newton,

namely m
Bd2r̄B/I

dt2
= f̄ , where m is the mass of the rigid body, f̄ is the total external

force vector applied to the body, and
Bd2(.)

dt2
is the second time derivative with respect

to the body frame. Note that the correct form of Newton’s second law is m
Id2r̄B/I

dt2
= f̄ .

In Ref. [24], the rigid body dynamics are written in terms of the second derivative

of the dual quaternion (q̈B/I), i.e., the elements of the first derivative of the dual

quaternion (q̇B/I) are chosen as generalized speeds. Even though mathematically

there is nothing wrong with this formulation, it is easier to interpret the motion of

a rigid body by looking at ωB
B/I. Moreover, since in most cases ω̄B

B/I and v̄B
B/I (i.e.,

the real and dual parts of ωB
B/I) are directly measured by on-board sensors, it is also

easier to implement feedback control laws based on ωB
B/I than on q̇B/I. Hence, the

elements of ωB
B/I are a better choice for generalized speeds than the elements of q̇B/I.

Finally, Ref. [24] does not take advantage of the properties of dual quaternion algebra.

Instead, it uses vector-matrix algebra to develop the equations of motion.

In this work, an alternative representation of the rigid body dynamics based on
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Refs. [93, 9, 106] is proposed. According to Ref. [9], the dual quaternion representation

of the dynamic equations is analogous to the classical translational and rotational

dynamic equations and is given by

dHB

B/I

dt
+ ωB

B/I ×HB

B/I = fB, (56)

where HB

B/I are the body coordinates of the dual momentum of the body with respect

to the inertial frame about its center of mass and fB are the body coordinates of the

total external dual force applied to the body about its center of mass. In Ref. (56),

HB

B/I and fB are defined as

HB

B/I = mvB

B/I + ε(IB ∗ ωB

B/I), (57)

fB = fB + ετB, (58)

where fB = (0, f̄B), and f̄B = [fB
1 , f

B
2 , f

B
3 ]T are the body coordinates of the total

external force vector applied to the body. By substituting Eqs. (57), (58), and (52)

in Eq. (56), the equivalence between Eq. (56) and the classical translational and

rotational rigid body dynamic can be confirmed:

dHB

B/I

dt
+ ωB

B/I ×HB

B/I = fB

d(mvB
B/I + ε(IB ∗ ωB

B/I))

dt
+ (ωB

B/I + εvB

B/I)× (mvB

B/I + ε(IB ∗ ωB

B/I)) = fB + ετB

mv̇B

B/I + ε(IB ∗ ω̇B

B/I) + ωB

B/I× (mvB

B/I) + ε(ωB

B/I× (IB ∗ ωB

B/I) + vB

B/I× (mvB

B/I)) = fB + ετB

(mv̇B

B/I + ωB

B/I × (mvB

B/I)) + ε(IB ∗ ω̇B

B/I + ωB

B/I × (IB ∗ ωB

B/I)) = fB + ετB. (59)

Comparing the real and dual parts of Eq. (59) yields mv̇B
B/I +ωB

B/I× (mvB
B/I) = fB and

IB ∗ ω̇B
B/I + ωB

B/I × (IB ∗ ωB
B/I) = τB, which are indeed the classical translational and

rotational rigid body dynamic equations.

Note that Eq. (56) is expressed in the body frame. The dynamic equations can

also be expressed in the inertial frame. To do that, it is convenient to introduce the

following proposition.
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Proposition 2. Let a dual vector quaternion expressed in frame D, vD, and the unit

dual quaternion qB/D describing the pose of frame B with respect to frame D, such

that vB = q∗B/Dv
DqB/D, be given. Then, the time derivative of vB is related to the time

derivative of vD by v̇B = q∗B/D(v̇D + ωD
D/B × vD)qB/D.

Proof. By definition,

v̇B =
d

dt
(q∗B/Dv

DqB/D) = q̇∗B/Dv
DqB/D + q∗B/Dv̇

DqB/D + q∗B/Dv
Dq̇B/D.

Replacing q̇B/D by Eq. (55) yields

v̇B = 1
2
q∗B/D(ωD

B/D)∗vDqB/D + q∗B/Dv̇
DqB/D + q∗B/Dv

D 1
2
ωD

B/DqB/D

= q∗B/D(1
2
(ωD

B/D)∗vD + v̇D + vD 1
2
ωD

B/D)qB/D.

Finally, since vD is a dual vector quaternion, (vD)∗ = −vD and

v̇B = q∗B/D(v̇D + 1
2
vDωD

B/D − 1
2
(ωD

B/D)∗(vD)∗)qB/D = q∗B/D(v̇D+vD×ωD

B/D)qB/D

= q∗B/D(v̇D+ωD

D/B×vD)qB/D.

Proposition 2 is the dual quaternion counterpart to the classical transport theorem

used to compute the rate of change of a vector in a certain reference frame when

observations are made about its rate of change in a different reference frame [76].

By applying Proposition 2 to Eq. (56), the dual quaternion representation of the

rigid body dynamics expressed in the inertial frame can be calculated to be

dH I

B/I

dt
= f I, (60)

where H I

B/I are the inertial coordinates of the dual momentum of the body with

respect to the inertial frame about its center of mass and f I are the inertial coordinates

of the total external dual force applied to the body about its center of mass. From

Lemma 59 and Eqs. (57) and (58), H I

B/I and f I are given by

H I

B/I = qB/DH
B

B/Iq
∗
B/D = mvI

B/I + ε(qB/I(I
B ∗ ωB)q∗B/I + rIB/I × (mvI

B/I)), (61)
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f I = qB/Df
Bq∗B/D = f I + ε(τ I + rIB/I × f I). (62)

Until this point, the dual quaternion representation of the rigid body dynamics

used in this work matches the representation used in Refs. [93, 9, 106]. However, the

representation used in this work differs from the representation used in Refs. [93, 9,

106] in the way the dual momentum HB

B/I is written from the dual velocity ωB
B/I. In

Ref. [93], the authors write the dual momentum as HB

B/I = MBωB
B/I, where MB is

the dual inertia operator defined in Refs. [8, 9, 19] as MB = m d
dε
I4×4 + εIB. The

operator d
dε

is defined by the properties d
dε
a = d

dε
(ar + εad) = ad and

(
d
dε

)2
= 0, where

a = ar + εad ∈ Hd. In this work, the dual inertia operator is replaced by the dual

inertia matrix, which is defined as the following 8-by-8 symmetric positive-definite

matrix

MB =



1 01×3 0 01×3

03×1 mI3×3 03×1 03×3

0 01×3 1 01×3

03×1 03×3 03×1 ĪB


. (63)

Then, the dual momentum HB

B/I is written from the dual velocity ωB
B/I as

HB

B/I = MB ? (ωB

B/I)
s. (64)

Note that the dual inertia matrix has the same form as Eq. (42) in Lemma 52. As

a result, from Eq. (64) and Eq. (56), the dual quaternion representation of the rigid

body dynamics can be written as

MB ? (ω̇B

B/I)
s = fB − ωB

B/I × (MB ? (ωB

B/I)
s), (65)

or equivalently,

(ω̇B

B/I)
s = (MB)−1 ? (fB − ωB

B/I × (MB ? (ωB

B/I)
s)), (66)

where (MB)−1 is simply the matrix inverse of MB. Recently, Ref. [56] has proposed

rewriting Eq. (65) without the swap operation by defining the dual inertia matrix
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as a block anti-diagonal matrix. Although this matrix is always invertible, it is no

longer symmetric. Since the inertia matrix is symmetric and the results presented in

this dissertation are based on existing attitude-only results, it is desirable to have a

symmetric dual inertia matrix.

This formulation based on the dual inertia matrix has two advantages over the

formulation used in Refs. [93, 9, 106]. First, the inverse of MB is simply the matrix

inverse of MB. Thus, Eq. (66) can be obtained by simply multiplying Eq. (65) on the

left by (MB)−1. However, using the dual inertia operator to go from

MBω̇B

B/I = fB − ωB

B/I × (MBωB

B/I) (67)

to

ω̇B

B/I = (MB)−1
(
fB − ωB

B/I × (MBωB

B/I)
)
, (68)

requires defining the inverse of MB as (MB)−1 = (IB)−1 d
dε

+ε 1
m
I4×4 [93], which means

that MB(MB)−1 = (MB)−1MB = 2I4×4. Thus, Eq. (68) cannot be calculated by

simply multiplying Eq. (67) on the left by (MB)−1. Moreover, the inverse of MB is

not as straightforward to calculate as the inverse of MB. Hence, it is more intuitive

to operate with the dual inertia matrix than with the dual inertia operator.

Second, the multiplication of a 8-by-8 matrix with a dual quaternion is a more

general operation than the multiplication of operator d
dε

with a dual quaternion. As

an example, note that any dual quaternion y defined as y =
(
M12

d
dε

+ εM21

)
x, where

M12,M21 ∈ R4×4 and x = xr + εxd ∈ Hd, can also be calculated as

y =

04×4 M12

M21 04×4

 ? x. (69)

In both cases, y = M12xd + εM21xr. However, the operation

y =

M11 M12

M21 M22

 ? x (70)
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cannot be performed using the operator d
dε

. In particular, the multiplication of a

8-by-8 matrix with a dual quaternion is used in Chapter 3 to define a general Linear

Time-Invariant (LTI) system, where the input, output, and state are dual quaternions.

This could have not been done with the operator d
dε

.

Finally, the following proposition gives the dual quaternion representation of the

relative rotational and translational dynamic equations of motion of a rigid body.

Equivalent equations have been used in Ref. [93].

Proposition 3. The dual quaternion representation of the relative rotational and

translational dynamic equations of motion of a rigid body is given by

(ω̇B

B/D)s=(MB)−1?
(
fB−(ωB

B/D+ωB

D/I)×
(
MB?((ωB

B/D)s+(ωB

D/I)
s)
)

−MB?(q∗B/Dω̇
D

D/IqB/D)s−MB?(ωB

D/I×ωB

B/D)s
)
. (71)

Proof. Differentiating ωB
B/D = ωB

B/I−ωB
D/I and noting that the swap of the addition is

equal to the addition of the swaps (see Lemma 42) yields (ω̇B

B/D)s = (ω̇B

B/I)
s− (ω̇B

D/I)
s.

The first term is given by Eq. (66). Using Proposition 2, the second term can be

written as (ω̇B

D/I)
s = (q∗B/D(ω̇D

D/I+ω
D
D/B×ωD

D/I)qB/D)s = (q∗B/Dω̇
D

D/IqB/D)s+(ωB
D/I×ωB

B/D)s.

Finally, subtracting (ω̇B

D/I)
s from (ω̇B

B/I)
s yields Eq. (71).

Note the similarity between the dual quaternion representation of the combined

rotational and translational relative dynamic equations given by Eq. (71) and the

quaternion representation of the rotational(-only) relative dynamic equations given

by Eq. (24).

For the case of a spacecraft in Earth orbit, the total external dual force acting on

the spacecraft is decomposed as

fB = fB

g + fB

∇g + fB

J2
+ fB

d + fB

c , (72)

where fB

g = maB
g ,a

B
g = aB

g + ε0, aB
g = (0, āB

g ), āB
g is the gravitational acceleration given
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by

āB

g = −µ
r̄BB/I

‖r̄BB/I‖3
, (73)

µ = 398600.4418 km3/s2 is Earth’s gravitational parameter [91], fB

∇g = 0 + ετB
∇g,

τB
∇g = (0, τ̄B

∇g), τ̄
B
∇g is the gravity gradient torque given by [93]

τ̄B

∇g = 3µ
r̄BB/I × (ĪBr̄BB/I)

‖r̄BB/I‖5
, (74)

fB

J2
= maB

J2
,aB

J2
= aB

J2
+ ε0, aB

J2
= (0, āB

J2
), āB

J2
is the perturbing acceleration due to

J2 [78] given by

āI

J2
= −3

2

µJ2R
2
e

‖r̄IB/I‖4


(1− 5(

zI
B/I

‖r̄I
B/I
‖)

2)
xI
B/I

‖r̄I
B/I
‖

(1− 5(
zI
B/I

‖r̄I
B/I
‖)

2)
yI
B/I

‖r̄I
B/I
‖

(3− 5(
zI
B/I

‖r̄I
B/I
‖)

2)
zI
B/I

‖r̄I
B/I
‖

 , (75)

J2 = 0.0010826267, Re = 6378.137 km is Earth’s mean equatorial radius [91], fB

d =

fB
d + ετB

d is the dual disturbance force, and fB

c = fB
c + ετB

c is the dual control force.

This work does not explicitly take into account other disturbance forces and torques

due to, for example, atmospheric drag, solar radiation, and third-bodies. Instead,

this work assumes that fB

d is a constant (or slowly varying), but otherwise unknown,

dual force that captures all neglected (but small) external forces and torques. For

the sake of simplicity and compactness, it is convenient to write fB

g , fB

∇g, and fB

J2
in

terms of the dual inertia matrix as follows:

fB

g = MB ? aB

g , (76)

fB

∇g =
3µrB

B/I

‖rB
B/I‖5

× (MB ? (rB

B/I)
s), (77)

fB

J2
= MB ? aB

J2
, (78)

where rB
B/I = rBB/I + ε0.
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CHAPTER III

POSE-TRACKING WITHOUT RELATIVE LINEAR AND

ANGULAR VELOCITY FEEDBACK

In this chapter, dual quaternions are used to design a pose-tracking controller without

angular and linear velocity feedback.

Velocity-free pose-tracking controllers have been proposed by several authors. In

particular, in Ref. [82], a velocity-free pose-tracking controller that does not require

mass and inertia matrix information is proposed. However, as explained in Ref. [85],

if the reference pose is not sufficiently exciting, the pose of the rigid body might not

converge to the desired pose. In Ref. [104], another velocity-free pose-tracking con-

troller is designed based on the vectrix formalism. This controller suffers from two

problems. First, the attitude of the rigid body cannot be more than 180 deg away

from the desired attitude. Second, the region of convergence is dependent on the

gains chosen by the user. In other words, an infinitely large region of convergence

requires infinitely large gains. In turn, high gains lead to actuator saturation and

poor noise rejection. Finally, in Ref. [61], it is shown that a locally asymptotically

stable closed-loop system can be obtained by combining an almost globally asymptot-

ically stable attitude-only tracking controller with a locally exponentially convergent

angular velocity observer. Although the theory presented in Ref. [61] can, in princi-

ple, be extended to combined attitude and position control, only attitude control is

demonstrated.

Compared to existing literature, the velocity-free pose-tracking controller pre-

sented in this chapter is almost globally asymptotically stable. In particular, the
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pose of the rigid body converges to the desired pose independently of the initial con-

dition and, unlike in Ref. [82], the reference motion does not need to be exciting.

Moreover, the region of convergence does not depend on the gains chosen by the user.

This chapter starts with the derivation of a pose-tracking controller that actu-

ally requires linear and angular velocity measurements (Section 3.1). Based on this

velocity-feedback controller, the velocity-free controller is derived in Section 3.2. The

chapter ends with the numerical verification of these controllers. Two examples are

presented. In the first example, a rigid body subject to no external forces and mo-

ments is required to track a relatively demanding sinusoidal pose reference. In the

second example, a chaser spacecraft is required to track a more realistic pose reference

around a target spacecraft.

The following assumptions are made in this chapter.

i) The mass and inertia matrix of the rigid body are constant and known.

ii) The center of mass of the rigid body is known.

iii) The external forces and torques are known.

iv) There are no constraints on the control force and torque.

v) In the second example, the linear and angular velocity and acceleration of the

target satellite with respect to the inertial frame are known.

3.1 Velocity-Feedback Pose-Tracking Controller

When the relative linear and angular velocities are known, the controller proposed in

Theorem 1 can be used to track a time-varying reference pose.

Theorem 1. Consider the rigid body relative kinematic and dynamic equations given

by Eq. (55) and Eq. (71), respectively. Let the total external dual force acting on the

53



rigid body be defined by the feedback control law

fB=− kpvec(q∗B/D(qsB/D − 1s))−kd(ωB

B/D)s+MB?(q∗B/Dω̇
D

D/IqB/D)s

+ ωB

D/I × (MB ? (ωB

D/I)
s), kp, kd > 0, (79)

and assume that ω̇D

D/I,ω
D
D/I ∈ L∞. Then, qB/D → ±1 (i.e., qB/D → ±1 and rBB/D → 0)

and ωB
B/D → 0 (i.e., ωB

B/D → 0 and vB
B/D → 0) as t→ +∞ for all initial conditions.

Proof. First, note that qB/D = ±1 and ωB
B/D = 0 are in fact the equilibrium conditions

for the closed-loop system formed by Eqs. (71), (55), and (79). Consider now the

following candidate Lyapunov function for the equilibrium point qB/D = +1 and

ωB
B/D = 0:

V (qB/D,ω
B

B/D) = kp(qB/D − 1) ◦ (qB/D − 1) + 1
2
(ωB

B/D)s ◦ (MB ? (ωB

B/D)s).

Note that V is a valid candidate Lyapunov function since V (qB/D = 1,ωB
B/D = 0) = 0

and V (qB/D,ω
B
B/D) > 0 for all (qB/D,ω

B
B/D) ∈ Hu

d ×Hv
d\{1,0}, according to Lemma 52.

The time derivative of V is equal to V̇ = 2kp(qB/D−1)◦ q̇B/D+(ωB
B/D)s◦(MB?(ω̇B

B/D)s).

Then, by plugging in Eqs. (71) and (55) and using Lemma 33, it follows that

V̇=(ωB

B/D)s ◦ (kpq
∗
B/D(qsB/D − 1s) + fB−(ωB

B/D+ωB

D/I)×(MB?((ωB

B/D)s+(ωB

D/I))
s

−MB?(q∗B/Dω̇
D

D/IqB/D)s −MB?(ωB

D/I×ωB

B/D)s).

Introducing the feedback control law given by Eq. (79) yields

V̇ = (ωB

B/D)s ◦ (−kd(ωB

B/D)s) + (ωB

B/D)s ◦
(
kpq

∗
B/D(qsB/D − 1s)− kpvec(q∗B/D(qsB/D − 1s))

)
+(ωB

B/D)s ◦ (−(ωB

B/D + ωB

D/I)× (MB ? ((ωB

B/D)s + (ωB

D/I))
s)−MB ? (ωB

D/I × ωB

B/D)s

+ωB

D/I × (MB ? (ωB

D/I)
s)).

Note that the second term is zero because it is the circle product of a dual vector

quaternion with a dual scalar quaternion. Moreover, the third term can be shown to

be equal to zero as follows:

(ωB

B/D)s ◦ (−(ωB

B/D + ωB

D/I)× (MB ? ((ωB

B/D)s + (ωB

D/I))
s)−MB ? (ωB

D/I × ωB

B/D)s
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+ωB

D/I × (MB ? (ωB

D/I)
s)) = ((ωB

B/I)
s − (ωB

D/I)
s) ◦ (−ωB

B/I × (MB ? (ωB

B/I)
s)

−MB ? (ωB

D/I × (ωB

B/I − ωB

D/I))
s + ωB

D/I × (MB ? (ωB

D/I)
s))

= (ωB

B/I)
s ◦ (−ωB

B/I × (MB ? (ωB

B/I)
s)−MB ? (ωB

D/I × ωB

B/I)
s + ωB

D/I × (MB ? (ωB

D/I)
s))

−(ωB

D/I)
s ◦ (−ωB

B/I × (MB ? (ωB

B/I)
s)−MB ? (ωB

D/I × ωB

B/I)
s + ωB

D/I × (MB ? (ωB

D/I)
s))

= −(ωB

B/I)
s ◦ (ωB

B/I × (MB ? (ωB

B/I)
s))− (ωB

B/I)
s ◦ (MB ? (ωB

D/I × ωB

B/I)
s)

+(ωB

B/I)
s ◦ (ωB

D/I × (MB ? (ωB

D/I)
s)) + (ωB

D/I)
s ◦ (ωB

B/I × (MB ? (ωB

B/I)
s))

+(ωB

D/I)
s ◦ (MB ? (ωB

D/I × ωB

B/I)
s)− (ωB

D/I)
s ◦ (ωB

D/I × (MB ? (ωB

D/I)
s)).

Note that the first and last terms are zero due to Lemmas 55 and 56. Moreover, using

Lemmas 39 and 37, the second and fifth terms can be rewritten as

−(MB ? (ωB

B/I)
s)s ◦ (ωB

D/I × ωB

B/I) + (ωB

B/I)
s ◦ (ωB

D/I × (MB ? (ωB

D/I)
s))

+(ωB

D/I)
s ◦ (ωB

B/I × (MB?(ωB

B/I)
s)) + (MB ? (ωB

D/I)
s)s ◦ (ωB

D/I × ωB

B/I).

Finally, applying Lemmas 55 and 57 to the first and last terms of the previous ex-

pression yields

−(ωB

D/I)
s ◦ (ωB

B/I×(MB?(ωB

B/I)
s))+(ωB

B/I)
s ◦ (ωB

D/I×(MB?(ωB

D/I)
s))

+(ωB

D/I)
s ◦ (ωB

B/I×(MB?(ωB

B/I)
s))−(ωB

B/I)
s ◦ (ωB

D/I×(MB?(ωB

D/I)
s)) = 0.

Therefore, the time derivative of the Lyapunov function is equal to V̇ = −kd(ωB
B/D)s ◦

(ωB
B/D)s ≤ 0, for all (qB/D,ω

B
B/D) ∈ Hu

d×Hv
d\{1,0}. Hence, qB/D and ωB

B/D are uniformly

bounded, i.e., qB/D,ω
B
B/D ∈ L∞.

Since V ≥ 0 and V̇ ≤ 0, limt→∞ V (t) exists and is finite. By integrating both sides

of V̇ = −kd(ωB
B/D)s ◦ (ωB

B/D)s ≤ 0, one obtains limt→∞
∫ t

0
V̇ (τ) dτ = limt→∞ V (t) −

V (0) = − limt→∞
∫ t

0
kd(ω

B
B/D(τ))s ◦ (ωB

B/D(τ))sdτ or

lim
t→∞

∫ t

0

kd(ω
B

B/D(τ))s ◦ (ωB

B/D(τ))s dτ ≤ V (0). (80)

Since qB/D,ω
B
B/D ∈ L∞ and ω̇D

D/I,ω
D
D/I ∈ L∞ by assumption, from Eq. (79) it follows
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that fB ∈ L∞ as well. Then, from Eq. (71) it also follows that ω̇B

B/D ∈ L∞. Along with

Eq. (80), this implies that ωB
B/D → 0 as t→∞, according to Barbalat’s lemma [41].

It can also be shown that ω̇B

B/D → 0 as t→∞. First, note that

lim
t→∞

∫ t

0

ω̇B

B/D(τ) dτ = lim
t→∞

ωB

B/D(t)− ωB

B/D(0) = −ωB

B/D(0)

exits and is finite. Now note that ω̈B

B/D ∈ L∞ since ω̇D

D/I,ω
D
D/I, ω̇

B

B/D,ω
B
B/D, qB/D, q̇B/D ∈

L∞. Hence, by Barbalat’s lemma, ω̇B

B/D → 0 as t→∞.

Finally, calculating the limit as t→∞ of both sides of Eq. (71) yields

vec(q∗B/D(qsB/D − 1s))→ 0 as t→∞. (81)

Note that

vec(q∗B/D(qsB/D − 1s)) = vec((q∗B/I + ε1
2
(rBB/I)

∗q∗B/I)(
1
2
qB/Ir

B

B/I + ε(qB/I − 1))

= vec(1
2
rBB/I + ε(1− q∗B/I + 1

4
(rBB/I)

∗rBB/I)) = vec(1
2
rBB/I − εq∗B/I)→ 0

is equivalent to qB/D → ±1.

The closed-loop system created with the feedback law derived in Theorem 1 is

illustrated in Figure 3.
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Figure 3: Closed-loop system with velocity feedback.
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3.2 Velocity-Free Pose-Tracking Controller

The pose-tracking controller presented in Section 3.1 is almost globally asymptotically

stable, but requires measurements of ωB
B/D. The next theorem shows that it is still

possible to obtain an almost globally asymptotically stable pose-tracking controller

without measurements of ωB
B/D.

Theorem 2. Consider the rigid body relative kinematic and dynamic equations given

by Eq. (55) and Eq. (71), respectively. Let the total external dual force acting on the

rigid body be defined by the feedback control law

fB = −kpvec(q∗B/D(qsB/D−1s))−2vec(q∗B/Dz
s)+MB?(q∗B/Dω̇

D

D/IqB/D)s

+ωB

D/I × (MB ? (ωB

D/I)
s), kp > 0, (82)

where z is the output of the LTI system ẋp = A ? xp + B ? qB/D and z = (CA) ?

xp + (CB) ?qB/D, (A,B,C) is a minimal realization of a strictly positive real transfer

matrix Csp(s), and B is a full rank matrix. Assume that ω̇D

D/I,ω
D
D/I ∈ L∞. Then,

qB/D → ±1, ωB
B/D → 0, and xsp = ẋp → 0 as t→ +∞ for all initial conditions.

Proof. First, rewrite the LTI system as follows:

ẋsp = A ? xsp +B ? q̇B/D and z = C ? xsp. (83)

Note that qB/D = ±1, ωB
B/D = 0, and xsp = 0 is the equilibrium condition of the

closed-loop system formed by Eqs. (71), (55), (83), and (82). Consider the candidate

Lyapunov function

V (qB/D,ω
B

B/D,xsp)=kp(qB/D−1)◦(qB/D−1)+1
2
(ωB

B/D)s◦(MB?(ωB

B/D)s)+2xsp◦(P?xsp)

for the equilibrium point qB/D = 1, ωB
B/D = 0, and xsp = 0, where P = P T > 0

satisfies ATP + PA = −Q, PB = CT, and Q = QT > 0. By the Kalman-Yakubovich-

Popov (KYP) conditions [41], there always exist matrices P and Q satisfying these
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conditions, since (A,B,C) is a minimal realization of a strictly positive real transfer

matrix Csp(s). Note that V is a valid candidate Lyapunov function since V (qB/D =

1,ωB
B/D = 0,xsp = 0) = 0 and V (qB/D,ω

B
B/D,xsp) > 0 for all (qB/D,ω

B
B/D,xsp) ∈

Hu
d × Hv

d × Hd\{1,0,0}. The time derivative of V is equal to V̇ = 2kp(qB/D − 1) ◦

q̇B/D + (ωB
B/D)s ◦ (MB ? (ω̇B

B/D)s) + 4ẋsp ◦ (P ? xsp). By plugging in Eqs. (55) and (71)

and applying Lemma 33 and the KYP conditions, it follows that

V̇ = (ωB

B/D)s ◦ (kpq
∗
B/D(qsB/D − 1s) + fB − (ωB

B/D + ωB

D/I)× (MB ? ((ωB

B/D)s + (ωB

D/I)
s))

−MB ? (q∗B/Dω̇
D

D/IqB/D)s −MB ? (ωB

D/I × ωB

B/D)s)+4(A ? xsp +B ? q̇B/D) ◦ (P ? xsp).

Introducing the feedback control law given by Eq. (82) yields

V̇ = (ωB

B/D)s ◦ (−2vec(q∗B/Dz
s)) + (ωB

B/D)s ◦ (kpq
∗
B/D(qsB/D − 1s)

−kpvec(q∗B/D(qsB/D − 1s))) + (ωB

B/D)s ◦ (−(ωB

B/D + ωB

D/I)× (MB ? ((ωB

B/D)s + (ωB

D/I)
s))

−MB?(ωB

D/I × ωB

B/D)s + ωB

D/I × (MB?(ωB

D/I)
s)) + 4(A ? xsp +B ? q̇B/D) ◦ (P ? xsp).

Again, note that the second term is zero because it is the circle product of a dual

vector quaternion with a dual scalar quaternion. Moreover, the third term has been

shown to be equal to zero in the proof of Theorem 1. As for the fourth term, it can

be simplified as follows:

V̇ = (ωB

B/D)s ◦ (−2vec(q∗B/Dz
s))+4(A ? xsp) ◦ (P ? xsp)+4(B ? q̇B/D) ◦ (P ? xsp)

=(ωB

B/D)s◦(−2vec(q∗B/Dz
s)) + 2((ATP + PA) ? xsp) ◦ xsp + 4q̇B/D ◦ ((BTP ) ? xsp)

= (ωB

B/D)s ◦ (−2vec(q∗B/Dz
s))−2xsp ◦ (Q ? xsp)+2(qB/Dω

B

B/D) ◦ (C ? xsp)

=(ωB

B/D)s ◦ (2q∗B/Dz
s − 2vec(q∗B/Dz

s))− 2xsp ◦ (Q ? xsp) = −2xsp ◦ (Q ? xsp) ≤ 0

for all (qB/D,ω
B
B/D,xsp) ∈ Hu

d × Hv
d × Hd\{1,0,0}. Hence, qB/D, ωB

B/D, and xsp are

uniformly bounded, i.e., qB/D,ω
B
B/D,xsp ∈ L∞.

It is now shown that xsp → 0 as t → ∞. Since V ≥ 0 and V̇ ≤ 0, limt→∞ V (t)

exists and is finite. By integrating both sides of V̇ = −2xsp◦(Q?xsp) ≤ 0, one obtains
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limt→∞
∫ t

0
V̇ (τ) dτ = limt→∞ V (t)− V (0) = − limt→∞

∫ t
0

2xsp(τ) ◦ (Q ? xsp(τ))dτ or

lim
t→∞

∫ t

0

2xsp(τ) ◦ (Q ? xsp(τ)) dτ ≤ V (0). (84)

Since qB/D,ω
B
B/D,xsp ∈ L∞, it follows that q̇B/D ∈ L∞ and ẋsp ∈ L∞. Along with

Eq. (84), this implies that xsp → 0 as t→∞, according to Barbalat’s lemma. This,

in turn, implies that z → 0 as t→∞ from Eq. (83).

It can also be shown that ẋsp → 0 as t→∞. First, note that

lim
t→∞

∫ t

0

ẋsp(τ) dτ = lim
t→∞

xsp(t)− xsp(0) = −xsp(0)

exits and is finite. Since ẍsp = A ? ẋsp +B ? q̈B/D and

qB/D,ω
B

B/D,xsp, q̇B/D, ẋsp, ω̇
D

D/I,ω
D

D/I, z, ω̇
B

B/D, q̈B/D ∈ L∞,

it follows that ẍsp ∈ L∞. Hence, by Barbalat’s lemma, ẋsp → 0 as t→∞.

Thus, calculating the limit as t→∞ of both sides of Eq. (83) yields q̇B/D → 0 as

t→∞, since B is assumed to be full rank. Given that Eq. (55) can be rewritten as

ωB
B/D = 2q∗B/Dq̇B/D, this implies that ωB

B/D → 0 as t→∞.

Now, it is shown that ω̇B

B/D → 0 as t→∞. First, note that limt→∞
∫ t

0
ω̇B

B/D(τ) dτ =

limt→∞ω
B
B/D(t)− ωB

B/D(0) = −ωB
B/D(0) exits and is finite. Since

(ω̈B

B/D)s = (MB)−1 ? (−kpvec(q̇∗B/D(qsB/D − 1s))− kpvec(q∗B/D(q̇sB/D))−2vec(q̇∗B/Dz
s)

−2vec(q∗B/D(ż)s)+ω̇B

D/I×(MB ? (ωB

D/I)
s)+ωB

D/I×(MB ? (ω̇B

D/I)
s)−ω̇B

B/I×(MB ? (ωB

B/I)
s)

−ωB

B/I × (MB ? (ω̇B

B/I)
s)−MB ? (ω̇B

D/I × ωB

B/D)s −MB ? (ωB

D/I × ω̇B

B/D)s)

and ω̇B

B/D,ω
B
B/D, ω̇

B

B/I,ω
B
B/I, qB/D, q̇B/D, z, ż ∈ L∞, it follows that ω̈B

B/D ∈ L∞. Hence, by

Barbalat’s lemma, ω̇B

B/D → 0 as t→∞.

Finally, calculating the limit as t → ∞ of both sides of Eq. (71) yields Eq. (81),

which is equivalent to qB/D → ±1 (as shown in the proof of Theorem 1).

Remark 1. Theorems 1 and 2 state that qB/D converges to either +1 or −1. Note

that qB/D = +1 and qB/D = −1 represent the same pose. Therefore, either equilibrium
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is acceptable. However, this can lead to the so-called unwinding phenomenon, where

a large rotation (greater than 180 deg) is performed despite the fact that a smaller

rotation (less than 180 deg) exits. This problem of quaternions is well documented

and possible solutions exist in literature [43, 7, 63, 93].

Remark 2. If the reference pose is constant, i.e., ωD
D/I = 0, then the pose-tracking

controllers suggested in Theorems 1 and 2 become pose-stabilization controllers. Note

that in this special case, the feedback control laws given by Eqs. (79) and (82) do not

depend on MB, i.e., they do not depend on the mass and inertia matrix of the rigid

body.

Remark 3. The closed-loop system created with the feedback law derived in Theo-

rem 2 is illustrated in Figure 4 in state space form. By choosing A and B as −kfI8
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Figure 4: Closed-loop system without velocity feedback in state-space form.

and kfI8, respectively, where kf > 0, and by defining Q = −kd(B-TA+ ATB-T) as in

Ref. [60], the KYP conditions yield P = kdB
-T and C = kdI8. Then, the closed-loop

system represented in Figure 4 in state space form can be represented in transfer

matrix form as shown in Figure 5, where d = kdkf and a = kf . In this case, z is

obtained by differentiating qB/D and passing q̇B/D through a low-pass filter. Theo-

rem 2 proves that in the absence of measurement noise, the cut-off frequency of the
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Figure 5: Closed-loop system without velocity feedback in transfer matrix form.

low-pass filter can be chosen arbitrarily. In practice, in the presence of measurement

noise, the cut-off frequency of the low-pass filter has to be chosen low enough to reject

high-frequency noise.

3.3 Simulation Results

The velocity-free pose-tracking controllers given by Eqs. (79) and (82) are numerically

verified and compared in this section via two examples.

3.3.1 Rigid Body Example

The first example consist of a rigid body subject to no external forces and torques

that is required to track a relatively demanding sinusoidal pose reference.

The inertia matrix and mass of the rigid body are assumed to be

ĪB =


1 0 0

0 0.63 0

0 0 0.85

 kg ·m2

and m = 1 kg. The initial conditions for this example are r̄BB/D(0) = [20, 20, 10]T m,

[qB/D(0)] = [0.3320, 0.4618, 0.1917, 0.7999]T, v̄B
B/D(0) = [0.1,−0.2, 0.3]T m/s, ω̄B

B/D(0) =

[−0.1, 0.2,−0.3]T rad/s, and [xp(0)] = 08×1.
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The reference pose is given by v̄D
D/I = −[0.1, 0.2, 0.3]T cos(2π[10−1, 10−1, 10−1]T +

π
180

[30, 60, 90]T) m/s and ω̄D
D/I = [0.1, 0.2, 0.3]Tcos(2π[10−1, 10−1, 10−1]T+ π

180
[0, 45, 90]T)

rad/s. It is illustrated in Figure 6.

The control gains are chosen as kp = 0.2 (both in Eq. (79) and Eq. (82)) and

kd = 0.4 (in Eq. (79)). The matrices of the LTI system are chosen as in Remark 3.
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Figure 6: Desired linear and angular velocity expressed in the desired frame.

The pose of the body frame with respect to the desired frame obtained with the

controller given by Eq. (79) (with velocity feedback) and with the controller given by

Eq. (82) (without velocity feedback) for kf = 1 and kf = 10 is shown in Figure 7. In

all three cases, qB/D → 1 and rBB/D → 0 as t → ∞, as expected. Figure 8 shows the

linear and angular velocity of the body frame with respect to the desired frame for

the same three cases studied in Figure 7. As expected, ωB
B/D → 0 and vB

B/D → 0 as

t→∞. Finally, Figure 9 shows the control force and torque for the same three cases.
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Figure 7: Pose of the body frame with respect to the desired frame.

3.3.2 Satellite Proximity Operations Example

The second example consists of a satellite proximity operations scenario where a

chaser satellite is required to track an elliptical motion around a target satellite while

pointing at it.

Four reference frames are defined: the inertial frame, the target frame, the desired

frame, and the body frame. The inertial frame is the Earth-Centered-Inertial (ECI)

frame. The body frame is some frame fixed to the chaser satellite and centered at its

center of mass. The target frame and the desired frame are defined as

ĪT =
r̄T/I

‖r̄T/I‖
, J̄T = K̄T × ĪT, K̄T =

ω̄T/I

‖ω̄T/I‖

and

ĪD =
r̄D/T

‖r̄D/T‖
, J̄D = K̄D × ĪD, K̄D ‖ K̄T,

respectively, where ω̄T/I =
r̄T/I×v̄T/I

‖r̄T/I‖2
is calculated from the orbital angular momentum
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Figure 8: Linear and angular velocity of the body frame with respect to the desired
frame expressed in the body frame.

vector of the target spacecraft with respect to the inertial frame given by H̄T/I =

m‖r̄T/I‖2ω̄T/I = r̄T/I× (mv̄T/I). The target satellite is assumed to be fixed to the target

frame. The different frames are illustrated in Figure 10. The control objective is to

superimpose the body frame onto the desired frame.

The target spacecraft is assumed to be in a highly eccentric Molniya orbit with

initial orbital elements given in Table 2 and nadir pointing. The relative motion of

the desired frame with respect to the target frame is defined as an ellipse in the ĪT-J̄T

plane with semi-major axis equal to 20 m along J̄T and semi-minor axis equal to 10 m

along ĪT. The relative motion has constant angular speed equal to the mean motion

of the target satellite. More precisely, during this phase, ω̄T
D/T = [0, 0, n]T rad/s and

v̄T
D/T = [−aen sin(nt), ben cos(nt), 0]T m/s, where ae = 10 m, be = 20 m, n =

√
µ/a3 is

the mean motion of the target satellite (assuming no J2-perturbation), and a is the

semi-major axis of the target satellite (assuming no J2-perturbation).
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Figure 9: Control force and torque expressed in the body frame.

The linear velocity of the target satellite with respect to the inertial frame is calcu-

lated by numerically integrating the gravitational acceleration and also the perturbing

acceleration due to Earth’s oblateness. On the other hand, the angular acceleration of

the target satellite with respect to the inertial frame is calculated analytically through

αI

T/I = ω̇I

T/I =
(rIT/I × aI

T/I)‖rIT/I‖2 − (rIT/I × vI
T/I)2(rIT/I · vI

T/I)

‖rIT/I‖4
. (85)

Note that the J2-perturbation changes the direction of the target’s angular velocity

Table 2: Initial orbital elements of the target satellite.

Molniya orbit GEO
Perigee altitude (km) 813.2 35786
Eccentricity (-) 0.7 0
Inclination (deg) 63.4 0
Argument of perigee (deg) 270 0
RAAN (deg) 329.6 0
True anomaly (deg) 180 0
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with respect to the inertial frame. However, this change is relatively small in this

scenario due to the critical inclination of the Molniya orbit. The rotational and

translational kinematic equations of the target frame with respect to the inertial

frame and of the desired frame with respect to the target frame are calculated through

Eq. (50).

The pose-tracking controllers given by Eqs. (79) and (82) are functions of ωD
D/I

and ω̇D

D/I. These variables are calculated using dual quaternion algebra as follows:

ωD

D/I = ωD

T/I + ωD

D/T = q∗D/Iω
I

T/IqD/I + q∗D/Tω
T

D/TqD/T, (86)

ω̇D

D/I = q∗D/Iα
I

T/IqD/I − ωD

D/I × ωD

T/I + q∗D/Tα
T

D/TqD/T, (87)

where αT
D/T = ω̇T

D/T = αT
D/T+ε(aT

D/T−αT
D/T×rTD/T−ωT

D/T×vT
D/T) and αI

T/I = ω̇I

T/I = αI
T/I+

ε(aI
T/I−αI

T/I×rIT/I−ωI
T/I×vI

T/I). Equation (87) is calculated by differentiating Eq. (86)

and using Proposition 2. Note that instead of using dual quaternion algebra to

calculate ωD
D/I and ω̇D

D/I, one could instead calculate ωD
D/I, ω̇

D
D/I, v

D
D/I, and v̇D

D/I using the

traditional equations for a point moving with respect to a rotating frame. However,

this would require the calculation of four parameters instead of just two and significant

more work to calculate vD
D/I and v̇D

D/I, whose expressions are coupled with the rotational
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motion. Thus, Eqs. (86) and (87) are another good example of the benefits in terms

of compactness and simplicity of using dual quaternions.

The inertia matrix and mass of the chaser satellite are assumed to be [93]

ĪB =


22 0.2 0.5

0.2 20 0.4

0.5 0.4 23

 kg · m2

and m = 100 kg. The initial conditions for this example are r̄BB/D(0)=[5, 5, 5]T m,

qB/D(0) = [0.3320, 0.4618, 0.1917, 0.7999]T, v̄B
B/D(0) = [0.1, 0.1, 0.1]T m/s, ω̄B

B/D(0) =

[0.1, 0.1, 0.1]T rad/s, and xp(0) = qB/D(0). The constant disturbance force and torque

acting on the chaser satellite are set to f̄B
d = [0.005, 0.005, 0.005]T N and τ̄B

d =

[0.005, 0.005, 0.005]T N · m, respectively.

The control gains are chosen as kp = 0.2 (both in Eq. (79) and Eq. (82)) and

kd = 4 (in Eq. (79)). The matrices of the LTI system are chosen as in Remark 3 with

kf = 10.

Figure 11 shows the linear and angular velocity of the desired frame with respect

to the inertial frame expressed in the desired frame for the complete maneuver. These

signals define the desired motion.

Figure 12 shows the initial transient response of the pose of the body frame with

respect to the desired frame obtained with Eq. (79) (feedback law with velocity feed-

back) and with Eq. (82) (feedback law without velocity feedback). Both controllers

are able to superimpose the body frame onto the desired frame after the initial tran-

sient response.

Figure 13 shows the linear and angular velocity of the body frame with respect to

the desired frame obtained with Eqs. (79) and (82). Again, after the initial transient

response, both controllers cancel the relative linear and angular velocity of the body

frame with respect to the desired frame.

Figure 14 shows the control force and control torque during the initial transient
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Figure 11: Reference motion.

response produced by Eqs. (79) and (82). For completeness, Figure 15 shows the

control force and torque for the complete maneuver. As a comparison, the complete

maneuver requires a ∆V of 3.7614 m/s if done with Eq. (79) (with velocity feedback)

and 0.0196 m/s more if done with Eq. (82) (without velocity feedback).
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Figure 12: Pose of the body frame with respect to the desired frame.
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Figure 13: Linear and angular velocity of the body frame with respect to the desired
frame.

69



0 10 20 30 40
-5

0

5

Time (s)
=

B c,
1
(N

.m
)

0 10 20 30 40
-5

0

5

Time (s)

=
B c,
2
(N

.m
)

0 10 20 30 40
-5

0

5

Time (s)

=
B c,
3
(N

.m
)

0 100 200 300 400
-1

0

1

Time (s)

f
B c,
1
(N

)

0 100 200 300 400
-1

0

1

Time (s)

f
B c,
2
(N

)
0 100 200 300 400
-1

0

1

Time (s)
f

B c,
3
(N

)

Velocity-feedback
Velocity-free

Figure 14: Control force and torque during the initial transient response.
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Figure 15: Control force and torque during the complete maneuver.
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CHAPTER IV

DUAL QUATERNION MULTIPLICATIVE EXTENDED

KALMAN FILTER (DQ-MEFK) FOR SPACECRAFT

POSE ESTIMATION

The highly successful Quaternion Multiplicative Extended Kalman Filter (Q-MEKF)

based on unit quaternions for spacecraft attitude estimation, described in detail in

Section XI of Ref. [57], has been used extensively in several NASA spacecraft [21]. It

has been analyzed in great detail throughout the years [109, 62]. Part of its success

lies on the fact that unit quaternions provide a global non-singular representation of

attitude with the minimum number of parameters. Moreover, they appear linearly in

the kinematic equations of motion, unlike Euler angles which require the calculation

of computationally expensive trigonometric functions. Another reason for the success

of the Q-MEKF is that it does not rely on a model of the system dynamics. In fact,

the lack of success of Kalman filtering before 1967 is attributed to the inability to

model the system dynamics accurately enough [57]. Although newer approaches, such

as nonlinear observers, have been shown to have some advantages over the classical

EKF, a comprehensive survey of nonlinear attitude estimation methods [21] concluded

that the classical EKF is still the most useful and practical solution.

An additional major advantage of the Q-MEKF described in Ref. [57] is that the

4-by-4 covariance matrix of the four elements of the unit quaternion does not need to

be computed. As stated in Ref. [57], propagating the state covariance matrix is the

largest computational burden in any Kalman filter implementation. By rewriting the

state of the EKF in terms of the three elements of the vector part of the unit error

quaternion between the true unit quaternion and its estimate, only a 3-by-3 covariance
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matrix needs to be computed. The unavoidable drawback of this approach is that

with just three elements, it is impossible to represent the attitude error globally.

Indeed, by construction, the Q-MEKF will fail if the attitude error between the true

attitude and its estimate is larger than 180 deg. However, unlike the true attitude of

the body which can vary arbitrarily, the attitude error between the true attitude of

the body and its estimate is expected to be close to zero, especially after the Q-MEFK

has converged. Hence, in the Q-MEKF described in Ref. [57], whereas the attitude

covariance matrix is only 3-by-3, the body can still have any arbitrary attitude. This

is one of the most appealing properties of the Q-MEKF.

Based on the analogies between quaternions and dual quaternions, a Dual Quater-

nion Multiplicative EKF (DQ-MEKF) for spacecraft pose estimation based on the

classical Q-MEKF for attitude estimation is derived in this chapter. As far as the

author knowns, this is the first multiplicative EKF for combined position and attitude

estimation.

The traditional approach to estimate the pose of a body consists on developing

separate estimators for attitude and position. For example, Ref. [77] suggests two

discrete-time linear Kalman filters to estimate the relative attitude and position sep-

arately. Since the translation Kalman filter requires the attitude estimated by the

rotation Kalman filter, the former is only switched on after the latter as converged.

Because of this inherent coupling between rotation and translation, several authors

have proposed estimating the attitude and position simultaneously. For example, in

Ref. [68], a lander’s terrain-relative position and attitude are estimated simultane-

ously using an EKF. The state of the EKF contains the vector part of the unit error

quaternion (like in the Q-MEKF) and the position vector of the lander with respect

to the inertial frame expressed in the inertial frame. Also in Ref. [50], the relative

position and attitude of two satellites are estimated simultaneously using an EKF. In

this case, the state of the EKF contains the vector part of the unit error quaternion
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(like the Q-MEKF) and the position vector of the chaser satellite with respect to the

target satellite expressed in a reference frame attached to the target satellite. The

approach described in Ref. [50] is cooperative, in the sense that the two satellites

share their angular velocity measurements. Finally, Ref. [40] also estimates the po-

sition and attitude between two frames simultaneously using a discrete-time EKF.

In Ref. [40], the state contains the position vector of a body with respect to some

reference frame expressed in that reference frame and the four elements of the true

quaternion describing the orientation of the body. Hence, Reference [40] does not take

advantage of the concept of unit error quaternion. Moreover, in Ref. [40], the opti-

mal Kalman state update is added to, and not multiplied with, the current best unit

quaternion estimate, making the EKF presented in Ref. [40] additive and not multi-

plicative. However, Ref. [40] takes advantage of the compactness of dual quaternions

to represent 3-D lines and their relative pose to develop the measurement update of

the EKF.

As far as the author knows, the only previous EKF formulations where the state

includes a unit dual quaternion are given in Refs. [6, 112]. However, these EKF for-

mulations include the true unit dual quaternion describing the pose of the body and

not the error unit dual quaternion between the true unit dual quaternion and its best

estimate. Therefore, the state of the EKF formulations presented in Refs. [6, 112]

contains all eight elements of a unit dual quaternion. Moreover, the EKF formulations

proposed in Refs. [6, 112] are additive EKF formulations, i.e., the optimal Kalman

state update is added to and not multiplied with the current best unit dual quaternion

estimate. As a consequence, the predicted value of the unit dual quaternion immedi-

ately after a measurement update does not fulfill the two algebraic constraints that

a unit dual quaternion must satisfy. Hence, in Ref. [6], this predicted value after a

measurement update is further modified to satisfy these constraints through a pro-

cess that includes parameters that must be tuned by the user. On the other hand, in

73



Ref. [112], these two algebraic constraints are simply not enforced after a measure-

ment update, which can lead to numerical problems. Finally, it should be mentioned

that the discrete-time EKF formulations in Refs. [6, 112] are designed to take only

measurements from a camera.

Compared to the existing literature, the main contributions of this chapter are:

1) By using the concept of error unit dual quaternion defined analogously to the

concept of error unit quaternion of the Q-MEKF, this chapter proposes, as far

as the author knows, the first multiplicative EKF for pose estimation. As a

consequence, the predicted value of the unit dual quaternion immediately after

a measurement update automatically satisfies the two algebraic constraints of

a unit dual quaternion. Unlike in Ref. [6], no additional parameters need to be

tuned by the user.

2) By using the error unit dual quaternion instead of the true unit dual quaternion,

the state of the DQ-MEKF is reduced from eight elements (as in Refs. [6, 112])

to just six. As a consequence, the associated computational cost is reduced.

Moreover, the state estimate of the DQ-MEKF can be directly used by the pose

controllers given in Refs. [28, 30] without additional conversions.

3) Similarly to the Q-MEKF, the DQ-MEKF is a continuous-discrete Kalman fil-

ter [59], i.e., the state and its covariance matrix are propagated continuously

between discrete-time measurements. One of the advantages of this approach

is that the discrete-time measurements do not need to be equally spaced in

time, making irregular or intermittent measurements easy to handle. Moreover,

this structure eases the integration of different sensors with different update

rates. In particular, the DQ-MEKF described in this chapter is designed to

take continuous-time linear and angular velocity measurements with noise and

bias and discrete-time pose measurements with noise. This work also proposes

two extensions of this standard DQ-MEKF. The first extension is designed to
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take only discrete-time pose measurements with noise and estimate the linear

and angular velocities. This version is suitable for uncooperative satellite prox-

imity operation scenarios where the chaser satellite has only access to measure-

ments of the relative pose (e.g., from a camera), but requires the relative linear

and angular velocities for control. In the second extension, the linear velocity

measurements of the standard DQ-MEKF are replaced with linear accelera-

tion measurements with bias and noise. This version is suitable for a satellite

equipped with an accelerometer and having no means of directly measuring

linear velocity.

4) Finally, the two extensions of the standard DQ-MEKF are validated experi-

mentally on a 5-DOF air-bearing platform. Moreover, the first extension is

compared with two alternative EKF formulations, similar to the ones used in

Refs. [68, 50, 40].

This chapter is organized as follows. In Section 4.1, the main equations of an EKF

are reviewed. Then, the linear and angular velocity measurement model is defined

in Section 4.2. The standard DQ-MEKF is derived in Section 4.3, whereas its two

extensions are derived in Sections 4.4 and 4.5. In Section 4.6, the two extensions of

the DQ-MEKF are validated experimentally and the first extension is compared with

two alternative EKF formulations. Finally, two alternative solutions to the problem

of pose-tracking without relative linear and angular velocity feedback are compared

in Section 4.7. The first consists on using directly the velocity-free controller derived

in Theorem 2, whereas the second consists on using the velocity-feedback controller

derived in Theorem 1 while estimating the relative linear and angular velocities using

the DQ-MEKF described in Section 4.4.

75



4.1 The Extended Kalman Filter

The main equations of the EKF are first reviewed in order to introduce the necessary

notation for the remaining sections. The review is based on a similar review provided

in Ref. [57] and serves as the starting point of the DQ-MEKF formulation.

The state equation of the EKF can be written as

ẋn(t) = fn(xn(t), t) + gn×p(xn(t), t)wp(t), (88)

where xn(t) ∈ Rn is the state and wp(t) ∈ Rp is the process noise. The process

noise is assumed to be a Gaussian white-noise process, whose mean and covari-

ance function are given by E {wp(t)} = 0p×1 and E
{
wp(t)w

T
p(τ)

}
= Qp×p(t)δ(t− τ),

where Qp×p(t) ∈ Rp×p is a symmetric positive semidefinite matrix. The initial mean

and covariance of the state are given by E {xn(t0)} , x̂n(t0) = xn,0 ∈ Rn and

E {(xn(t0)− xn,0)(xn(t0)− xn,0)T} , Pn×n(t0) = Pn×n,0 ∈ Rn×n and are assumed

to be known. (Note that in Refs. [6, 112], p = n and gn×p(xn(t), t) = In×n.)

4.1.1 Time Update

Given the initial mean of the state, the minimum covariance estimate of the state at

a future time t in the absence of measurements is given by the conditional expecta-

tion x̂n(t) = E {xn(t)|x̂n(t0) = xn,0}. This estimate satisfies the differential equation

˙̂xn(t) = E {fn(xn(t), t)}, which is typically approximated as

˙̂xn(t) ≈ fn(x̂n(t), t). (89)

Hence, in the absence of measurements, the state estimate is propagated using Eq. (89).

In addition to the state estimate, also the covariance matrix of the state needs to

be propagated. The covariance matrix of the state is given by

Pn×n(t) = E {∆xn(t)∆xT

n(t)} ∈ Rn×n, (90)
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where ∆xn(t) = xn(t)− x̂n(t) ∈ Rn is the state error. As a first-order approximation,

the derivative of the state error is given by

d

dt
∆xn(t) = Fn×n(t)∆xn(t) +Gn×p(t)wp(t) (91)

and the covariance matrix of the state satisfies the Riccati equation

Ṗn×n(t) = Fn×n(t)Pn×n(t) + Pn×n(t)F T

n×n(t) +Gn×p(t)Qp×p(t)G
T

n×p(t), (92)

where

Fn×n(t) ,
∂fn(xn, t)

∂xn

∣∣∣∣
x̂n(t)

∈ Rn×n and Gn×p(t) , gn×p(x̂n(t), t) ∈ Rn×p. (93)

Hence, in the absence of measurements, the covariance matrix of the state is propa-

gated using Eq. (92).

4.1.2 Measurement Update

Assume that a measurement is taken at time tk that is related with the state of the

EKF through the nonlinear output equation

zm(tk) = hm(xn(tk)) + vm(tk) ∈ Rm, (94)

where vm(tk) ∈ Rm is the measurement noise assumed to be a discrete Gaussian white-

noise process whose mean and covariance function are given by E {vm(tk)} = 0m×1

and E {vm(tk)v
T
m(t`)} = Rm×m(tk)δtkt` , where Rm×m(tk) ∈ Rm×m is a symmetric

positive-definite matrix.

Immediately following the measurement at time tk, the minimum variance esti-

mate of xn(tk) is given by

x̂+
n (tk) = x̂−n (tk) + ∆?x̂n(tk), (95)

where

∆?x̂n(tk) = Kn×m(tk)νm(tk), (96)
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νm(tk) = zm(tk)− ẑm(tk), (97)

∆?x̂n(tk) is the optimal Kalman state update, νm(tk) is termed the innovation or

residual [25], ẑm(tk) = E {zm(tk)} ≈ hm(x̂−n (tk)), x̂
−
n (tk) and x̂+

n (tk) are the predicted

values of the state immediately before and after the measurement, and Kn×m(tk) is

the Kalman gain. The Kalman gain is given by

Kn×m(tk) = P−n×n(tk)H
T

m×n(tk)[Hm×n(tk)P
−
n×n(tk)H

T

m×n(tk) +Rm×m(tk)]
−1, (98)

where P−n×n(tk) is the predicted state covariance matrix immediately before the mea-

surement and

Hm×n(tk) =
∂hm(xn)

∂xn

∣∣∣∣
x̂−n (tk)

∈ Rm×n (99)

is the measurement sensitivity matrix.

Immediately after the measurement, the state covariance matrix is given by

P+
n×n(tk) = (In×n −Kn×m(tk)Hm×n(tk))P

−
n×n(tk) (100)

= (In×n −Kn×m(tk)Hm×n(tk))P
−
n×n(tk)(In×n −Kn×m(tk)Hm×n(tk))

T

+Kn×m(tk)Rm×m(tk)Kn×m(tk)
T, (101)

where Eq. (101) is numerically more stable than Eq. (100).

Finally, the covariance matrix of the innovation is given by [25]

Sm×m(tk) = E {νm(tk)ν
T

m(tk)} = Rm×m(tk) +Hm×n(tk)P
−
n×n(tk)H

T

m×n(tk). (102)

4.2 Angular and Linear Velocity Measurement Model

The dual velocity measurement model is defined analogously to the angular velocity

measurement model typically used in literature [57, 21] as follows:

ωB

B/I,m = ωB

B/I + bω + ηω, (103)

where ωB
B/I,m = ωB

B/I,m + εvB
B/I,m ∈ Hv

d, ω
B
B/I,m = (0, ωB

B/I,m), ωB
B/I,m is a measurement of

ωB
B/I, v

B
B/I,m = (0, vB

B/I,m), vB
B/I,m is a measurement of vB

B/I, bω = bω + εbv is the dual bias,
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bω = (0, bω), bω ∈ R3 is the bias of the angular velocity measurement, bv = (0, bv),

bv ∈ R3 is the bias of the linear velocity measurement, ηω = ηω+εηv is the dual noise,

ηω = (0, ηω), ηω ∈ R3 is the noise of the angular velocity measurement assumed to be

a Gaussian white-noise process, ηv = (0, ηv), ηv ∈ R3 is the noise of the linear velocity

measurement assumed to be a Gaussian white-noise process, E {ηω} = 06×1,

E {ηω(t)ηT

ω(τ)} = Qω(t)δ(t− τ) =

Qω(t) Qωv(t)

Qωv(t) Qv(t)

 δ(t− τ), (104)

and Qω(t) ∈ R6×6 is a symmetric positive semidefinite matrix. The dual bias is

not constant, but assumed to be driven by another Gaussian white-noise process as

follows:

ḃω = ηbω , (105)

where ηbω = (0, ηbω) + ε(0, ηbv), E
{
ηbω

}
= 06×1,

E
{
ηbω(t)ηT

bω(τ)
}

= Qbω(t)δ(t− τ) =

 Qbω(t) Qbωbv(t)

Qbωbv(t) Qbv(t)

 δ(t− τ), (106)

and Qbω(t) ∈ R6×6 is a symmetric positive semidefinite matrix.

In this chapter, the I-frame denotes a general frame, not necessary inertial. If

the I-frame is inertial, ωB
B/I should be interpreted as the inertial angular and linear

velocities of the satellite. In that case, ωB
B/I can be measured from a combination of,

for example, rate-gyros, Doppler radar, and GPS. On the other hand, if the I-frame is

not inertial, ωB
B/I should be interpreted as the relative angular and linear velocities of

the satellite with respect to a moving frame, for example, a frame attached to another

satellite. In that case, ωB
B/I can be measured from a combination of, for example, rate-

gyros on both satellites [50], Doppler radar, differential GPS, and LIDAR.
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4.3 Derivation of the DQ-MEKF

In this section, the DQ-MEKF for pose estimation is derived. The state and process

noise of the DQ-MEKF are initially selected as

x16 =

[δqB/I]

[bω]

 ∈ R16 and w16 =

 [ηω]

[ηbω ]

 ∈ R16, (107)

where the unit dual error quaternion δqB/I ∈ Hu
d is defined analogously to the unit

error quaternion δqB/I = q̂∗B/IqB/I ∈ Hu defined in Ref. [57] as follows

δqB/I = q̂∗B/IqB/I ∈ Hu
d , (108)

i.e., δqB/I is the unit dual quaternion between the actual dual quaternion qB/I and its

estimate q̂B/I , E
{
qB/I

}
. Note that E

{
δqB/I

}
= 1. Similarly to the typical EKF

approximation given by Eq. (89), given E {qB/I} , q̂B/I and E
{
rIB/I

}
, r̂IB/I, it is

assumed that q̂B/I can be constructed from

q̂B/I=E
{
qB/I+ε

1
2
rIB/IqB/I

}
=E {qB/I}+ε1

2
E
{
rIB/IqB/I

}
≈q̂B/I+ε

1
2
r̂IB/Iq̂B/I. (109)

Similarly, given q̂B/I and E
{
rBB/I

}
= E

{
δq∗B/Ir

B̂
B/IδqB/I

}
≈ E

{
rB̂B/I

}
, r̂B̂B/I, it is assumed

that q̂B/I can be constructed from

q̂B/I=E
{
qB/I+ε

1
2
qB/Ir

B

B/I

}
=E {qB/I}+ε1

2
E
{
qB/Ir

B

B/I

}
≈q̂B/I+ε

1
2
q̂B/Ir̂

B̂

B/I, (110)

where the B̂-frame is defined as a frame with orientation and position with respect to

the I-frame given by q̂B/I and r̂B/I, respectively. Note that r̂B/I denotes the expected

value of rB/I, i.e., the expected value of the translation vector from the origin of the

I-frame to the origin of the B-frame (not expressed in any specific reference frame).

Note also that, if qB/I and rIB/I can be assumed to be independent random variables,

then Eqs. (109) and (110) are equalities.

A geometric interpretation of the dual error quaternion δqB/I is given in Figure 16.

It shows that δqB/I is the unit dual quaternion that represents the pose of the B-
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Figure 16: Interpretation of the dual error quaternion.

frame with respect to the B̂-frame. This can be seen from expanding Eq. (108) using

Eq. (109) as follows

δqB/I = q̂∗B/IqB/I = δqB/I,r + εδqB/I,d = (q̂B/I + ε1
2
r̂IB/Iq̂B/I)

∗(qB/I + ε1
2
rIB/IqB/I)

= q̂∗B/IqB/I + ε(1
2
q̂∗B/Ir

I

B/IqB/I + 1
2
q̂∗B/I(r̂

I

B/I)
∗qB/I)

= δqB/I + ε(1
2
q̂∗B/IqB/Iq

∗
B/Ir

I

B/IqB/I − 1
2
q̂∗B/IqB/Iq

∗
B/Ir̂

I

B/IqB/I)

= δqB/I + ε(1
2
δqB/Ir

B

B/I − 1
2
δqB/Ir̂

B

B/I) (111)

= δqB/I + ε1
2
δqB/Ir

B

B/B̂ = δqB/I + ε1
2
rB̂B/B̂δqB/I.

Note that from Eq. (111), rBB/I can be written in terms of δqB/I,r and δqB/I,d as follows

rBB/I = 2δq∗B/I,rδqB/I,d + r̂BB/I = 2δq∗B/I,rδqB/I,d + δq∗B/I,rr̂
B̂

B/IδqB/I,r, (112)

whereas rIB/I can be written in terms of δqB/I,r and δqB/I,d from Eq. (112) as

rIB/I = qB/Ir
B

B/Iq
∗
B/I = qB/I(2δq

∗
B/I,rδqB/I,d + δq∗B/I,rr̂

B̂

B/IδqB/I,r)q
∗
B/I

= 2q̂B/IδqB/I,dδq
∗
B/I,rq̂

∗
B/I + q̂B/Ir̂

B̂

B/Iq̂
∗
B/I. (113)

To determine the state equation of the DQ-MEKF, the time derivative of δqB/I

needs to be calculated. Taking the time derivative of Eq. (108) yields

d

dt
(δqB/I) =

d

dt
(q̂∗B/I)qB/I + q̂∗B/I

d

dt
(qB/I). (114)
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Whereas d
dt

(qB/I) is given by Eq. (51), d
dt

(q̂∗B/I) is approximated according to Eq. (89)

by

d

dt
(q̂B/I) =

d(E
{
qB/I

}
)

dt
= E

{
q̇B/I

}
= E

{
1
2
qB/Iω

B

B/I

}
≈ 1

2
q̂B/Iω̂

B̂

B/I, (115)

where, from Eq. (103),

ω̂B̂

B/I , E
{
ωB̂

B/I

}
= E

{
δqB/Iω

B

B/Iδq
∗
B/I

}
≈ E

{
ωB

B/I

}
= E

{
ωB

B/I,m − bω − ηω

}
= ωB

B/I,m − b̂ω, (116)

with b̂ω , E {bω}. Likewise,

d

dt

(
b̂ω

)
=

d

dt
E {bω} = E

{
ḃω

}
= E

{
ηbω

}
= 0. (117)

Substituting Eqs. (51) and (115) in Eq. (114) yields

d

dt
(δqB/I) ≈ 1

2
(ω̂B̂

B/I)
∗q̂∗B/IqB/I + 1

2
q̂∗B/IqB/Iω

B

B/I = −1
2
ω̂B̂

B/IδqB/I + 1
2
δqB/Iω

B

B/I. (118)

Combining Eqs. (116) and (103) yields

ωB

B/I ≈ ω̂
B̂

B/I + b̂ω − bω − ηω. (119)

Finally, inserting Eq. (119) in Eq. (118) results in

d

dt
(δqB/I) ≈ −1

2
ω̂B̂

B/IδqB/I + 1
2
δqB/Iω̂

B̂

B/I + 1
2
δqB/Ib̂ω − 1

2
δqB/Ibω − 1

2
δqB/Iηω. (120)

The state equations of the DQ-MEKF are then given by Eq. (120) and Eq. (105),

yielding

f16(x16(t), t) =

[−1
2
ω̂B̂

B/IδqB/I + 1
2
δqB/Iω̂

B̂

B/I + 1
2
δqB/Ib̂ω − 1

2
δqB/Ibω]

08×1

 , (121)

g16×16(x16(t), t) =

−1
2
[δqB/I]

L 08×8

08×8 I8×8

 . (122)
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At this point, as in the derivation of the Q-MEKF, reduced state and process

noise vectors are selected, namely

x12 =

δqB/I

bω

 ∈ R12 and w12 =

ηω

ηbω

 ∈ R12, (123)

where δqB/I and bω are the vector parts of δqB/I and bω, respectively. By replacing

δqB/I,r,0 and δqB/I,d,0 through Eq. (47) in Eqs. (121) and (122) and using Eq. (93),

F12×12(t) and G12×12(t) can be determined to be

F12×12(t) =

−[ω̂B̂

B/I]
× −1

2
I6×6

06×6 06×6

 and G12×12(t) =

−1
2
I6×6 06×6

06×6 I6×6

 . (124)

4.3.1 Time Update

For the time update of the DQ-MEKF, the estimates of qB/I, ω
B
B/I, and bω are prop-

agated using Eqs. (115), (116), and (117), respectively, given q̂B/I(t0) and b̂ω(t0).

Numerical errors in the propagation of qB/I through Eq. (115) can result in the

violation of the algebraic constraints that define a unit dual quaternion, given by

Eq. (46). Hence, after each integration step, these algebraic constraints are enforced

by calculating

[qB/I,r] =
[qB/I,r]

‖[qB/I,r]‖
and [qB/I,d] =

(
I4×4 −

[qB/I,r][qB/I,r]
T

‖[qB/I,r]‖2

)
[qB/I,d]. (125)

As for the covariance matrix of x12, i.e.,

P12×12(t) , E {∆x12(t)∆x12(t)T}]

, E



δqB/I(t)

bω(t)

−
 06×6

b̂ω(t)




δqB/I(t)

bω(t)

−
 06×6

b̂ω(t)




T
 , (126)

it is propagated according to Eq. (92) given P12×12(t0) and where

Q12×12(t) =

Qω(t) 06×6

06×6 Qbω(t)

 . (127)
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Note that it is not very intuitive to define P12×12(t0). It is more intuitive to define

the covariance matrix

P̃16×16(t0) , E



[qB/I(t0)]

[bω(t0)]

−
[q̂B/I(t0)]

[b̂ω(t0)]




[qB/I(t0)]

[bω(t0)]

−
[q̂B/I(t0)]

[b̂ω(t0)]




T
 .

Given P̃16×16(t0), P12×12(t0) can be calculated by first computing

P16×16(t0) , E



[δqB/I(t0)]

[bω(t0)]

−
 [1]

[b̂ω(t0)]




[δqB/I(t0)]

[bω(t0)]

−
 [1]

[b̂ω(t0)]




T


= SP̃16×16(t0)ST, (128)

where

S =

[q̂∗B/I]
L 08×8

08×8 I8×8

 . (129)

Then, P12×12(t0) can be obtained from P16×16(t0) by removing the first, fifth, ninth,

and thirteenth rows and columns of P16×16(t0).

4.3.2 Measurement Update

In this section, it is assumed that a direct measurement of qB/I corrupted by additive

white Gaussian noise is available. If the I-frame is a moving frame, this measurement

can come, for example, from a vision-based system. If the I-frame is an inertial

frame, this measurement can come, for example, from a combination of a star sensor

and a GPS. If the pose measurement is available in terms of a quaternion and a

translation vector, then the corresponding dual quaternion can be computed from

Eq. (44). Under this assumption, the output equation that relates a measurement

taken at time tk with the state x12 at time tk is given by

[qB/I,m(tk)] = [q̂B/I(tk)δqB/I(tk)] + v8(tk), (130)

where, in accordance with Eq. (94), z8(tk) = [qB/I,m(tk)] is the measurement at time

tk of qB/I(tk) and h8(x12(tk)) = [q̂B/I(tk)δqB/I(tk)].
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Replacing δqB/I,r,0 and δqB/I,d,0 through Eq. (47) in Eq. (130) and calculating the

measurement sensitivity matrix using Eq. (99) yields

H8×12(tk) =

[
[q̂B/I]

L
8×6 08×6

]
. (131)

In summary, for the measurement update of the DQ-MEKF, the Kalman gain

is calculated from Eq. (98), whereas the optimal Kalman state update is calculated

from Eq. (96) as

∆?x̂12(tk) ,

∆?δq̂B/I(tk)

∆?b̂ω(tk)

 = K12×8(tk)(z8(tk)− ẑ8(tk)). (132)

The estimate of the state at time tk after the measurement is then calculated from

q̂+
B/I(tk) = q̂−B/I(tk)∆

?δq̂B/I(tk), (133)

b̂
+

ω(tk) = b̂
−

ω(tk) + ∆?b̂ω(tk), (134)

where ∆?δq̂B/I is defined as the unit dual quaternion

(√
1−‖∆?δq̂B/I,r‖2,∆?δq̂B/I,r

)
+ε

−∆?δq̂B/I,r
T
∆?δq̂B/I,d√

1−‖∆?δq̂B/I,r‖2

,∆?δq̂B/I,d

 . (135)

If the initial guess of the state is not close enough to the real state, the norm of

∆?δq̂B/I,r can become larger than one, which will make the scalar part of the quater-

nions in Eq. (135) complex. Hence, if the norm of ∆?δq̂B/I,r is larger than one,

Eq. (135) is replaced by

 1√
1+‖∆?δq̂B/I,r‖2

,
∆?δq̂B/I,r√

1+‖∆?δq̂B/I,r‖2

+ε

 −∆?δq̂B/I,r
T
∆?δq̂B/I,d

1

/√
1+‖∆?δq̂B/I,r‖2

,∆?δq̂B/I,d

 . (136)

Note that whereas Eq. (134) is a direct application of Eq. (95), Eq. (133) is

not. Since ∆?δq̂B/I(tk) is a unit dual quaternion, q̂+
B/I(tk) is calculated using the dual

quaternion multiplication, making the proposed EKF multiplicative. Finally, the
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covariance matrix of the state immediately after the measurement at tk is computed

from Eq. (101).

Note that any measurement that is a nonlinear function of the state of the DQ-

MEKF, i.e., any measurement that satisfies Eq. (94), can be used in the measurement

update. If another measurement is used, only the measurement sensitivity matrix

given by Eq. (131) needs to be recalculated. For example, if it is assumed that

direct measurements of qB/I and rIB/I corrupted by additive white Gaussian noise are

available, then, by using Eq. (113), the output equation becomes[qB/I,m(tk)]

rIB/I,m(tk)

=

 [q̂B/I,r(tk)δqB/I,r(tk)]

2q̂B/I,r(tk)δqB/I,d(tk)δq∗B/I,r(tk)q̂
∗
B/I,r(tk)+q̂B/I,r(tk)r̂B̂B/I(tk)q̂

∗
B/I,r(tk)


+v7(tk), (137)

and the new sensitivity matrix is given by

H7×12(tk) =

[q̂B/I]
L
4×3 04×3 04×3 04×3

03×3 2R̂I←B 03×3 03×3

 , (138)

where R̂I←B is the estimated value of RI←B, which can be formed from q̂B/I.

4.3.3 Summary

For the convenience of the reader, a step-by-step breakdown of the DQ-MEKF is

provided here, assuming that the output equation is given by Eq. (130).

1. Initialization:

1.1. If q̂B/I(t0) is given in terms of q̂B/I(t0) and r̂IB/I(t0) (or r̂B̂B/I(t0)), construct

q̂B/I(t0) using Eq. (109) (or Eq. (110)).

1.2. If b̂ω(t0) is given in terms of b̂ω(t0) and b̂v(t0), construct b̂ω(t0) using

b̂ω(t0) = b̂ω(t0) + εb̂v(t0).
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1.3. If P12×12(t0) is given in terms of P̃16×16(t0), calculate P16×16(t0) from Eq. (128)

and remove the first, fifth, ninth, and thirteenth rows and columns of

P16×16(t0) to obtain P12×12(t0).

1.4. Perform step 2.

2. Time Update:

2.1. Let tk be the current time. Normalize q̂B/I(tk) using Eq. (125).

2.2. If a new measurement of qB/I,m is available at time tk, perform step 3.

2.3. If ωB
B/I,m(tk) is given in terms of ωB

B/I,m(tk) and vB
B/I,m(tk), construct ωB

B/I,m(tk)

using ωB
B/I,m(tk) = ωB

B/I,m(tk) + εvB
B/I,m(tk).

2.4. Given ωB
B/I,m(tk) and b̂ω(tk), calculate ω̂B̂

B/I(tk) using Eq. (116).

2.5. Output q̂B/I(tk) and ω̂B̂

B/I(tk).

2.6. Given ω̂B̂

B/I(tk), calculate F12×12(tk) and G12×12(tk) using Eq. (124).

2.7. Given ω̂B̂

B/I(tk), q̂B/I(tk), P12×12(tk), F12×12(tk), G12×12(tk), and Q12×12(tk),

calculate qB/I(tk+1), bω(tk+1), and P12×12(tk+1) by propagating Eqs. (115),

(117), and (92), respectively, where tk+1 is the time after one time step of

the clock. Note that since P12×12 is a symmetric matrix, only the upper

triangular part of P12×12 needs to be propagated.

2.8. Repeat step 2 with tk = tk+1.

3. Measurement Update:

3.1. Let tk be the current time. Given q̂B/I(tk), calculate H8×12(tk) using

Eq. (131).

3.2. Given H8×12(tk), P12×12(tk), and R8×8(tk), calculate K12×8(tk).
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3.3. If qB/I,m(tk) is given in terms of qB/I,m(tk) and rIB/I,m(tk) (or rBB/I,m(tk)),

construct qB/I,m(tk) using qB/I,m(tk) = qB/I,m(tk) + ε1
2
rIB/I,m(tk)qB/I,m(tk) =

qB/I,m(tk) + ε1
2
qB/I,m(tk)r

B
B/I,m(tk).

3.4. GivenK12×8(tk), qB/I,m(tk), and q̂B/I(tk), calculate ∆?δq̂B/I(tk) and ∆?b̂ω(tk)

using Eq. (132).

3.5. Given ∆?δq̂B/I(tk), if the norm of ∆?δq̂B/I,r(tk) is smaller or equal to one,

calculate ∆?δq̂B/I using Eq. (135). Otherwise, calculate ∆?δq̂B/I using

Eq. (136).

3.6. Given ∆?δq̂B/I, q̂B/I(tk), ∆?b̂ω(tk), and b̂ω(tk), update q̂B/I(tk) and b̂ω(tk)

using Eqs. (133) and (134).

3.7. Given K12×8(tk), H8×12(tk), P12×12(tk), and R8×8(tk), update P12×12(tk)

using Eq. (101).

3.8. Perform step 2.3.

4.4 Special Case: No Angular and Linear Velocity Mea-
surements

A special case of particular interest is when pose measurements are available, but

angular and linear velocity measurements are not. Although angular and linear ve-

locity measurements are not available, angular and linear velocity estimates might

be required for pose stabilization/tracking, as in Theorem 1. In this section, it is

shown how this special case can be handled by modifying the inputs and parameters

of the DQ-MEKF algorithm, without any modifications to the structure and basic

equations of the DQ-MEKF algorithm.

As before, the I-frame may or many not be inertial. However, this version of the

DQ-MEKF is specially suited for satellite proximity operations where the relative

pose is measured using vision-based systems, which typically do not provide relative

velocity measurements [15]. In this scenario, the I-frame is the moving frame of the
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target satellite.

If angular and linear velocity measurements are not available, but estimates are

required, ωB
B/I,m and ηω are set to zero in Eq. (103). This results in

bω = −ωB

B/I (139)

and Qω = 06×6. The dual velocity estimate is still given by Eq. (116), which now has

the form ω̂B̂

B/I ≈ −b̂ω. The time derivative of bω is still calculated as in Eq. (105).

However, since bω is now expected to be time-varying and not constant, the noise

ηbω might have to be increased by increasing Qbω .

In summary, this special case can be handled by just setting ωB
B/I,m and Qω to

zero and, if necessary, by increasing Qbω .

4.5 Special Case: Linear Acceleration Measurements

Unlike in Section 4.4, the structure of the DQ-MEKF algorithm described in Sec-

tion 4.3 needs to be modified for the case of a satellite having no means of directly

measuring linear velocity, but with the ability to measure linear acceleration using

an accelerometer or an Inertial Measurement Unit (IMU). Since an accelerometer

measures accelerations with respect to an inertial frame, in this section, the I-frame

should be interpreted as an inertial frame. The main modifications compared to the

algorithm described in Section 4.3 are the addition of the bias of the accelerometer

to the state of the DQ-MEKF and a new expression for the time derivative of bv,

which in this case is not calculated from Eq. (105). Since angular (but not linear)

velocity measurements and linear (but not angular) acceleration measurements are

assumed to be available, the duality between the linear and angular motion is broken

in this case. Hence, the equations of the DQ-MEKF for this particular case cannot

be written compactly in terms of dual quaternions as in Sections 4.3 and 4.4.

First, similarly to the angular and linear velocity measurement model, the linear

89



acceleration measurement model is defined as [68]

nB

A/I,m = nB

A/I + bn + ηn, (140)

where nB
A/I = (0, nB

A/I), n
B
A/I is the non-dimensional specific force at the location of the

accelerometer with respect to the inertial frame expressed in the body frame, nB
A/I,m =

(0, nB
A/I,m), nB

A/I,m is a measurement of nB
A/I produced by the accelerometer/IMU, bn =

(0, bn), bn is the bias of the specific force measurement, ηn = (0, ηn), ηn is the noise

of the specific force measurement assumed to be a Gaussian white-noise process,

E {ηn} = 03×1, E {ηn(t)ηT
n(τ)} = Qn(t)δ(t − τ), and Qn(t) ∈ R3×3 is a symmetric

positive semidefinite matrix. The bias is not constant, but assumed to be driven by

another Gaussian white-noise process as follows:

ḃn = ηbn , (141)

where ηbn = (0, ηbn), E
{
ηbn
}

= 03×1, E
{
ηbn(t)ηT

bn
(τ)
}

= Qbn(t)δ(t−τ), and Qbn(t) ∈

R3×3 is a symmetric positive semidefinite matrix. From Eq. (140), the expected value

of nB
A/I is given by

n̂B̂

A/I , E
{
nB̂

A/I

}
= E

{
δqB/In

B

A/Iδq
∗
B/I

}
≈ E

{
nB

A/I

}
= nB

A/I,m − b̂n, (142)

where b̂n , E {bn}. Likewise,

d

dt

(
b̂n

)
=

d

dt
E {bn} = E

{
ḃn

}
= E {ηbn} = 0. (143)

Moreover, combining Eqs. (140) and (142) yields

nB

A/I ≈ n̂B̂

A/I + b̂n − bn − ηn. (144)

The state and process noise of the DQ-MEKF are now initially selected as

x20=[[δqB/I]
T [bω]T [bn]T]T ∈ R20 and w20=[[ηω]T [ηbω ]T [ηn]T [ηbn ]T]T ∈ R20, (145)
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where the state equation for δqB/I is given by Eq. (120) and the state equation for

bω, i.e., the real part of bω, is given as in Eq. (105) by ḃω = ηbω , which implies that

d

dt

(
b̂ω

)
=

d

dt
E {bω} = E

{
ḃω

}
= E {ηbω} = 0. (146)

Whereas in Section 4.3 the time derivative of bv was also calculated from Eq. (105),

here the time derivative of bv is calculated as follows. Since there are no linear velocity

measurements, vB
B/I,m and ηv are set to zero (as in Section 4.4) in Eq. (103), resulting

in bv = −vB
B/I and Qv = Qωv = 03×3. This in turn implies that

v̂B̂

B/I ≈ −b̂v. (147)

Taking the time derivative of both sides of bv = −vB
B/I leads to ḃv = −v̇B

B/I. Note that

v̇B
B/I is related to nB

A/I through

v̇B

B/I = −ωB

B/I × vB

B/I + cnB

A/I − q∗B/Ig
IqB/I − αB

B/I × rBA/B − ωB

B/I × (ωB

B/I × rBA/B), (148)

where c ∈ R is a scaling constant specific to each accelerometer, gI = (0, gI), gI

is the local gravity acceleration vector expressed in the inertial frame (assumed to

be known), αB
B/I = (0, αB

B/I), α
B
B/I is the angular acceleration of the body frame with

respect to the inertial frame expressed in the body frame, rBA/B = (0, rBA/B), and rBA/B is

the translation vector from the origin of the body frame to the accelerometer expressed

in the body frame (assumed to be known). Hence, ḃv = −v̇B
B/I = −ωB

B/I × bv − cnB
A/I +

q∗B/Ig
IqB/I +αB

B/I× rBA/B +ωB
B/I× (ωB

B/I× rBA/B). Finally, neglecting αB
B/I, which is assumed

to be unknown, and using Eq. (144) and the real parts of Eqs. (108) and (119),

results in

ḃv=−v̇B

B/I≈−(ω̂B̂

B/I+b̂ω−bω−ηω)×bv−c(n̂B̂

A/I+b̂n−bn−ηn)+δq∗B/Iq̂
∗
B/Ig

Iq̂B/IδqB/I

+(ω̂B̂

B/I+b̂ω−bω−ηω)×((ω̂B̂

B/I+b̂ω−bω−ηω)×rBA/B)

=−(ω̂B̂

B/I+b̂ω−bω)×bv−c(n̂B̂

A/I+b̂n−bn)+δq∗B/Iq̂
∗
B/Ig

Iq̂B/IδqB/I

+(ω̂B̂

B/I+b̂ω−bω)×((ω̂B̂

B/I+b̂ω−bω)×rBA/B)
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−bv×ηω+cηn−ηω×((ω̂B̂

B/I+b̂ω−bω)×rBA/B)+(ω̂B̂

B/I+b̂ω−bω)×(−ηω×rBA/B)

+(−ηω)×(−ηω×rBA/B). (149)

Since the last term in Eq. (149) is quadratic in ηω and, thus, does not have the same

form as Eq. (88), it is ignored.

Note that by using the typical approximation given by Eq. (89), the time deriva-

tive of b̂v can be calculated from Eq. (149) to be

˙̂
bv≈−ω̂B̂

B/I×b̂v−cn̂B̂

A/I+q̂
∗
B/Ig

Iq̂B/I+ω̂
B̂

B/I×(ω̂B̂

B/I×rBA/B). (150)

Hence, in summary, the state equations of the DQ-MEKF when linear acceleration

measurements are available are defined by f20(x20(t), t) and g20×20(x20(t), t) given by,

respectively,



[− 1
2
ω̂B̂

B/IδqB/I + 1
2
δqB/Iω̂

B̂
B/I + 1

2
δqB/Ib̂ω − 1

2
δqB/Ibω ]

04×1

[−(ω̂B̂
B/I

+b̂ω−bω)×bv−c(n̂B̂
A/I

+b̂n−bn)+δq∗
B/I

q̂∗
B/I

gIq̂B/IδqB/I+(ω̂B̂
B/I

+b̂ω−bω)×((ω̂B̂
B/I

+b̂ω−bω)×rB
A/B

)]

04×1


,



− 1
2 [δqB/I,r]L 04×4 04×4 04×4 04×4

− 1
2 [δqB/I,d]L − 1

2 [δqB/I,r]L 04×4 04×4 04×4

04×4 04×4 I4×4 04×4 04×4

−[bv]×+[(ω̂B̂
B/I+b̂ω−bω)×rBA/B]×+[ω̂B̂

B/I+b̂ω−bω]×[rBA/B]× 04×4 04×4 cI4×4 04×4

04×4 04×4 04×4 04×4 I4×4


.

At this point, as before, reduced state and process noise vectors are selected,

namely

x15 = [δqB/I

T
b

T

ω b
T

n]T ∈ R15 and w15 = [ηT

ω ηT

bω η
T

n η
T

bn ]T ∈ R15. (151)

By replacing δqB/I,r,0 and δqB/I,d,0 through Eq. (47) in f20(x20, t) and g20×20(x20, t) and
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using Eq. (93), F15×15(t) and G15×15(t) can be determined to be, respectively,

−[ω̂B̂
B/I]
× 03×3 −1

2
I3×3 03×3 03×3

−[v̂B̂
B/I]
× −[ω̂B̂

B/I]
× 03×3 −1

2
I3×3 03×3

03×3 03×3 03×3 03×3 03×3

2[q̂∗B/Ig
Iq̂B/I]

× 03×3 −[b̂v]
×+[ω̂B̂

B/I×rBA/B]×+[ω̂B̂
B/I]
×[rBA/B]× −[ω̂B̂

B/I]
× cI3×3

03×3 03×3 03×3 03×3 03×3


,



−1
2
I3×3 03×3 03×3 03×3 03×3

03×3 −1
2
I3×3 03×3 03×3 03×3

03×3 03×3 I3×3 03×3 03×3

−[b̂v]
×+[ω̂B̂

B/I×rBA/B]×+[ω̂B̂
B/I]
×[rBA/B]× 03×3 03×3 cI3×3 03×3

03×3 03×3 03×3 03×3 I3×3


.

4.5.1 Time Update

When acceleration measurements are available, for the time update of the DQ-MEKF,

the estimates of qB/I, bω, bv, bn, vB
B/I, ω

B
B/I are propagated using Eqs. (115), (146), (150),

(143), (147), and the real part of Eq. (116), i.e., ω̂B̂
B/I ≈ ωB

B/I,m− b̂ω, respectively, given

q̂B/I(t0), b̂ω(t0), and b̂n(t0). As for the covariance matrix of x15, i.e., P15×15(t) ,

E {∆x15(t)∆x15(t)T} or

P15×15(t) = E





δqB/I(t)

bω(t)

bn(t)

−


06×6

b̂ω(t)

b̂n(t)





δqB/I(t)

bω(t)

bn(t)

−


06×6

b̂ω(t)

b̂n(t)




T
 , (152)

it is propagated according to Eq. (92) given P15×15(t0) and where

Q15×15(t) =



Qω(t) 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3

03×3 03×3 Qbω(t) 03×3 03×3

03×3 03×3 03×3 Qn(t) 03×3

03×3 03×3 03×3 03×3 Qbn(t)


. (153)
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Given

P̃20×20(t0) , E






[qB/I(t0)]

[bω(t0)]

[bn(t)]

−


[q̂B/I(t0)]

[b̂ω(t0)]

[b̂n(t)]






[qB/I(t0)]

[bω(t0)]

[bn(t)]

−


[q̂B/I(t0)]

[b̂ω(t0)]

[b̂n(t)]




T
 ,

P15×15(t0) can be calculated by first computing

P20×20(t0) , E






[δqB/I(t0)]

[bω(t0)]

[bn(t)]

−


[1]

[b̂ω(t0)]

[b̂n(t)]






[δqB/I(t0)]

[bω(t0)]

[bn(t)]

−


[1]

[b̂ω(t0)]

[b̂n(t)]




T


= SP̃20×20(t0)ST, (154)

where

S =


[q̂∗B/I]

L 08×8 08×4

08×8 I8×8 08×4

04×8 04×8 I4×4

 . (155)

Then, P15×15(t0) can be obtained from P20×20(t0) by removing the first, fifth, ninth,

thirteenth, and seventeenth rows and columns of P20×20(t0).

4.5.2 Measurement Update

When acceleration measurements are available, the measurement update is performed

as in Section 4.3 with the measurement sensitivity matrix now given by

H8×15(tk) =

[
[q̂B/I]

L
8×6 08×6 08×3

]
. (156)

The optimal Kalman state update is now calculated from Eq. (96) as follows

∆?x̂15(tk) ,


∆?δq̂B/I(tk)

∆?b̂ω(tk)

∆?b̂n(tk)

 = K15×8(tk)(z8(tk)− ẑ8(tk)). (157)

Finally, the estimate of the state at time tk after the measurement is calculated from

Eqs. (133) and (134) and from b̂
+

n (tk) = b̂
−

n (tk) + ∆?b̂n(tk).
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4.6 Experimental Results

In this section, the two special cases of the DQ-MEKF are validated experimentally

on the Autonomous Spacecraft Testing of Robotic Operations in Space (ASTROS)

facility at the School of Aerospace Engineering of Georgia Tech. This experimental

facility includes a 5-DOF platform supported on hemispherical and linear air-bearings

moving over a flat epoxy floor in order to simulate as best as possible the frictionless

environment of space. It also includes a VICON motion capture system mounted

on an aluminum grid above the experimental area. The VICON system measures

the attitude and position of the platform with respect to a reference frame fixed to

the room. These measurements are then transmitted wirelessly to the platform. A

picture of the platform is shown in Figure 17. More information about the ASTROS

facility and its 5-DOF platform can be found in Refs. [87, 14]. The most relevant

characteristics of the sensors used in the experiments are summarized in Table 3,

where SD stands for Standard Deviation. The scaling constant of the IMU is c =

9.8 m/s2 and it is located at r̄BA/B = [0.113,−0.016,−0.089]T m.

Figure 17: The 5-DOF experimental platform of the ASTROS facility.
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Table 3: Characteristics of the sensors.

Meas. Sensor Noise SD Bias Refresh Rate

ω̄B
B/I,m

Humphrey RG02-3227-1 rate-
gyro

0.027 deg/s <2 deg/s 100 Hz

n̄B
A/I,m

Crossbow AHRS400CC-100
IMU

1.5 mg <8.5 mg 100 Hz

qB/I,m 8 VICON Bonita B10 cameras < 7× 10−5 -
Variable
(≤ 250 Hz)

r̄IB/I,m 8 VICON Bonita B10 cameras < 1 mm -
Variable
(≤ 250 Hz)

The ground truth for attitude and position was obtained from VICON measure-

ments at 100 Hz. The ground truth for linear velocity was obtained by passing these

position measurements through a LTI system with transfer matrix H(s) = 3s
s+3

I3×3.

The position of the pole was chosen by trial-and-error to minimize noise and lag.

Finally, the ground truth for angular velocity was obtained by passing the quaternion

measurements through a LTI system with transfer matrix H(s) = 3s
s+3

I4×4 and by

using the relation ωB
B/I = 2q∗B/Iq̇B/I. Note that whereas the LTI filters can reduce the

noise at the cost of lag, they cannot totally eliminate it.

4.6.1 DQ-MEKF With No Angular and Linear Velocity Measurements

For this experiment, the DQ-MEKF was fed attitude and position measurements from

the VICON system at 10 Hz modeled through the output equation given by Eq. (137).

The initial estimate of the state is given in Table 4. The same table also shows an a

posteriori guess of the initial state based on the measurements. The DQ-MEKF was

initialized with the covariance matrices given in Table 5.

The pose estimated by the DQ-MEKF is compared with the ground truth in

Figure 18. The two appear almost superimposed. This is to be expected due to the

relatively high update rate of the pose measurements in this case. Note that the

motion only starts around 20 sec after the beginning of the experiment.
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Table 4: Case 1: Initial estimate and a posteriori guess of the state.

Variable Initial Estimate A Posteriori Guess
qB/I(0) [0.7071, 0, 0, 0.7071]T (-) [0.7987,−0.0221,−0.0195, 0.6009]T (-)
r̄IB/I(0) [0, 0,−1.4]T (m) [−0.5256, 2.0425,−0.9887]T (m)
b̄ω(0) [0, 0, 0]T (deg/s) [0, 0, 0]T (deg/s)
b̄v(0) [0, 0, 0]T (m/s) [0, 0, 0]T (m/s)

Table 5: Case 1: Covariance matrices.

P̃16×16(0)
diag([0.0069, 0.0069, 0.0069, 0.0069, 0.69, 0.69, 0.69, 0.69,
0, 1×10−9, 1×10−9, 1×10−9, 0, 1×10−9, 1×10−9, 1×10−9])

Q12×12
diag([0, 0, 0, 0, 0, 0, 1×10−4, 1×10−4, 1×10−4, 1×10−4, 1×
10−4, 1× 10−4])

R7×7
diag([1×10−6, 1×10−6, 1×10−6, 1×10−6, 2.5×10−6, 2.5×
10−6, 2.5× 10−6])

The pose estimation error obtained with the DQ-MEKF is plotted in Figure 19.

Note that the pose error increases at around 20 sec, when the motion starts. The

same figure also shows the pose estimation error obtained with two alternative EKF

formulations.

This first alternative EKF formulation, hereby referred to as the QV-AEKF, is

an additive EKF where the state contains the vector part of the unit error quater-

nion (like in the Q-MEKF) and the position vector of the body with respect to the

inertial frame expressed in the body frame. The QV-AEKF is derived in detail in

Appendix A. The biggest differences between the DQ-MEKF and the QV-AEKF are

that in the former the position is represented by the dual part of the dual quaternion

and the position measurement update is performed using the dual quaternion multi-

plication, whereas in the latter the position is represented by the body coordinates

of the position vector and the position measurement update is performed by adding

the optimal correction to the current best estimate.

The second alternative EKF formulation, hereby referred to as the SQV-AEKF,
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is essentially the QV-AEKF split into two additive EKFs, one for the attitude and

another one for the position. The SQV-AEKF is derived in detail in Appendix B.

For the comparison between the DQ-MEKF, the QV-AEKF, and the SQV-AEKF

to be fair, the three filters were fed the same measurements, were initialized with the

same initial estimate of the state (given in Table 4), and were tuned with the same

noise covariance matrices (given in Table 5).

Figure 20 shows the linear and angular velocity estimation errors obtained with

the three filters.

The Root-Mean-Square (RMS) attitude, position, angular velocity, and linear

velocity estimation errors after 20 sec obtained with the three filters are given in

Table 6. Note that the RMS attitude and angular velocity estimation errors obtained

with the three filters are the same. This is not surprising since the DQ-MEKF,

the QV-AEKF, and the SQV-AEKF represent and update the attitude in the same

way and the attitude is independent from the position. However, whereas the RMS

position and linear velocity estimation errors obtained with the DQ-MEKF and the

QV-AEKF are the same, the RMS position and linear velocity estimation errors

obtained with the SQV-AEKF are higher. This is understandable since whereas the

DQ-MEKF and the QV-AEKF take into consideration that the position vector of the

body with respect to the inertial frame expressed in the body frame depends on the

attitude of the body, the SQV-AEKF does not. Another way to see this is to realize

that some of the elements of Eqs. (248), (249), and (255) do not appear in Eqs. (261),

(262), (272), (273), (268), and (277).

The consistency of the DQ-MEKF is checked in two ways. First, in Figure 21,

δqB/I is plotted against its 3σ bounds obtained from P12×12. Whereas the state of

the DQ-MEKF is composed by δqB/I and bω, only the consistency of δqB/I is checked,

since a direct measurement of the ground truth of bω is not available. From Figure 21,

it is possible to calculate that the probability that each element of δqB/I is inside its
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Table 6: Case 1: RMS estimation errors after 20 sec obtained with the three filters
(pose measurements at 10 Hz).

RMS Estimation Error DQ-MEKF QV-AEKF SQV-AEKF
Attitude (deg) 0.16 0.16 0.16
Position (mm) 5.2 5.2 5.7
Angular Velocity (deg/s) 0.36 0.36 0.36
Linear Velocity (mm/s) 3.5 3.5 19.1

respective 3σ bounds is no less than 96.7%. Second, in Figure 22, the innovation is

plotted against its 3σ bounds obtained from S7×7, given by Eq. (102). It is possible

to calculate that the probability that each element of ν7 is inside its respective 3σ

bounds is no less than 98.8%.

To compare the filters in a more demanding scenario, the same experimental data

was fed into the DQ-MEKF, QV-AEKF, and SQV-AEKF, but now with an update

rate of 0.5 Hz. All other parameters were kept the same. The pose estimated by the

DQ-MEKF is compared with the ground truth in Figure 23. As expected, the pose

estimation error in this case is visibly higher than in Figure 18.

The attitude, position, angular velocity, and linear velocity estimation errors ob-

tained with the DQ-MEKF, the QV-AEKF, and the SQV-AEKF are compared in

Figures 24 and 25 and in Table 7. Like in Table 6, the RMS attitude and angu-

lar velocity estimation errors obtained with the three filters are the same and the

SQV-AEKF exhibits the highest RMS position and linear velocity estimation errors.

However, unlike in Table 6, the RMS position and linear velocity estimation errors ob-

tained with the DQ-MEKF are smaller than the ones obtained with the QV-AEKF. In

other words, as the update rate of the pose measurements decreases, the DQ-MEKF

starts producing better position and linear velocity estimates than the QV-AEKF.

This can be justified in part by Figure 1. Since the relation between rBB/I and rIB/I

is quadratic in qB/I, whereas the relation between qB/I,d and rIB/I is linear in qB/I, the
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Figure 18: Case 1: estimated and true pose (pose measurements at 10 Hz).

linearization error committed when linearizing the output equations of the QV-AEKF

and of the DQ-MEKF (i.e., Eq. (254) and Eq. (137), respectively) with respect to

δqB/I is smaller in the DQ-MEKF case.

Table 7: Case 1: RMS estimation errors after 20 sec obtained with the three filters
(pose measurements at 0.5 Hz).

RMS Estimation Error DQ-MEKF QV-AEKF SQV-AEKF
Attitude (deg) 2.20 2.20 2.20
Position (mm) 68.8 70.2 124.2
Angular Velocity (deg/s) 1.90 1.90 1.90
Linear Velocity (mm/s) 21.8 22.2 83.8

4.6.2 DQ-MEKF With Linear Acceleration Measurements

For this experiment, the DQ-MEKF was fed attitude and position measurements

from the VICON system at 1 Hz, linear acceleration measurements from the IMU at
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Figure 19: Case 1: pose estimation error (pose measurements at 10 Hz).

100 Hz, and angular velocity measurements from the rate-gyro at 100 Hz. The initial

estimate of the state is given in Table 8. The same table also shows an a posteriori

guess of the initial state based on the measurements. The DQ-MEKF was initialized

with the covariance matrices given in Table 9.

Table 8: Case 2: Initial estimate and a posteriori guess of the state.

Variable Initial Estimate A Posteriori Guess
qB/I(0) [0.6947,−0.0004, 0.0247, 0.7189]T [0.7987,−0.0221,−0.0195, 0.6009]T

r̄IB/I(0) [0, 0, 0]T (m) [−0.5256, 2.0425,−0.9887]T (m)
b̄ω(0) [−1, 1, 1]T (deg/s) [−0.7583, 1.044, 0.6717]T (deg/s)
b̄v(0) [0, 0, 0]T (m/s) [0, 0, 0]T (m/s)
b̄n(0) [0, 0, 0]T (-) [0.0251, 0.0160, 0.0005]T (-)

The measured and estimated (i.e., without bias) non-dimensional specific force

captured by the accelerometer are plotted in Figure 26. The difference between them
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Figure 20: Case 1: angular and linear velocity estimation errors (pose measurements
at 10 Hz).

is the estimated bias of the accelerometer. This estimated bias is higher than the

expected bias listed in the accelerometer’s datasheet given in Table 3. In addition,

the estimated bias varies with time when the platform is moving. These two phe-

nomena can be interpreted as the DQ-MEKF trying to compensate for errors in the

determination of the center of rotation of the upper stage of the 5-DOF platform,

errors in the determination of the position of the accelerometer, and errors due to the

assumption of zero angular acceleration in Eq. (149).

The measured and estimated (i.e., without bias) angular velocity captured by the

rate-gyro are compared in Figure 27. The difference between them is the estimated

bias of the rate-gyro. This estimated bias is within the expected bias listed in Table 3

and, compared with Figure 26, does not show any signification variation with time.

This is expected as the errors that effect the bias of the accelerometer do not affect
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Figure 21: Case 1: consistency check of the DQ-MEKF using the pose estimation
error.

the bias of the rate-gyro.

The estimated pose is compared with the ground truth in Figure 28 and the pose

estimation error is plotted in Figure 29. After 80 sec, the RMS attitude estimation

error is 0.20 deg and the RMS position estimation error is 1.6 cm.

Finally, Figure 30 shows the linear and angular velocity estimation errors for this

case. Whereas after 80 sec the RMS angular velocity estimation error is 0.70 deg/s,

the RMS linear velocity estimation error is 3.3 cm/s.

4.7 Comparison between the Velocity-Free Pose-Tracking
Controller and the Velocity-Feedback Pose-Tracking Con-
troller in conjunction with the DQ-MEKF

Until now, two alternative solutions to the problem of pose-tracking without relative

linear and angular velocity feedback, i.e., without ωB
B/D feedback, have been proposed.

The first consist of using directly the velocity-free controller derived in Theorem 2.
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Figure 22: Case 1: consistency check of the DQ-MEKF using the innovation.

The second consists of using the velocity-feedback controller derived in Theorem 1 and

the DQ-MEKF described in Section 4.4 to estimate the unmeasured relative linear

and angular velocities. Both solutions have theoretical and numerical pros and cos,

which are analyzed in this section.

The first solution has three main advantages over the second solution. The first

main advantage is that under the conditions specified in Theorem 2, pose-tracking

is guaranteed (i.e., qB/D → ±1 and ωB
B/D → 0 as t → +∞) independently of the

initial condition chosen for xp. On the other hand, because the DQ-MEKF is based

on first-order approximations, if the initial guess of the state is not close enough to

the true state, the DQ-MEKF may diverge, causing the velocity-feedback controller

to fail. The second main advantage of the velocity-free controller is that Theorem 2

essentially establishes a separation principle, by which the LTI system in the feedback-

loop can be designed independently of the value of kp. On the other hand, there is
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Figure 23: Case 1: estimated and true pose (pose measurements at 0.5 Hz).

no theoretical guarantee that the connection between the velocity-feedback controller

derived in Theorem 1 and the DQ-MEKF will ensure pose-tracking. The third and

final main advantage of the velocity-free controller is the fewer number of states.

Whereas the velocity-free controller requires the propagation of 8 states, the DQ-

MEKF requires the propagation of 92 states (mostly due to the propagation of the

state covariance matrix). This might make the DQ-MEKF unsuitable for satellites

with limited computational resources.

On the other hand, the solution based on the velocity-feedback controller and the

DQ-MEKF has three important advantages over the velocity-free controller. First,

the DQ-MEKF is specifically designed to handle measurement noise, whereas the

velocity-free controller described in Theorem 2 assumes no noise. In particular, the

DQ-MEKF filters out measurement noise (albeit, at the cost of lag), whereas the

velocity-free controller does not. Second, the DQ-MEKF is specifically designed to
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Figure 24: Case 1: pose estimation error (pose measurements at 0.5 Hz).

handle discrete-time measurements, whereas the velocity-free controller described in

Theorem 2 assumes continuous-time measurements. Finally, the DQ-MEKF produces

a direct estimate of ωB

B/D
, whereas the velocity-free controller does not. This estimate

can be used to estimate ωB
D/I = ωB

B/I − ωB
B/D, which in turn is used in both Eqs. (79)

and (82). In an uncooperative satellite proximity operations scenario, where ωB
D/I

is unknown, and assuming that the chaser satellite can measure its own linear and

angular velocities with respect to the inertial frame, i.e., ωB
B/I, this provides a method

to estimate ωB
D/I, which is not available with the velocity-free controller. Note also that

the DQ-MEKF provides a measure of the uncertainty associated with the estimate of

ωB

B/D
through the state covariance matrix.

To compare the two solutions numerically, both controllers are applied to the
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Figure 25: Case 1: angular and linear velocity estimation errors (pose measurements
at 0.5 Hz).

same satellite proximity operations scenario described in Section 3.3.2, but now un-

der more realistic conditions. Instead of continuous-time measurements, both con-

trollers are now fed pose measurements at 10 Hz. Since the velocity-free controller

requires continuous-time measurements, a Zero-Order-Hold (ZOH) is used to convert

the discrete-time measurements into continuous-time signals. Note that the DQ-

MEKF can deal with the discrete-time measurements directly. Moreover, zero-mean

Additive White Gaussian Noise (AWGN) is added to the measurements of qB/D and

rBB/D, with standard deviation of 1 × 10−4 (-) and 1.7 × 10−3 m, respectively. After

the AWGN is added to qB/D, qB/D is re-normalized through [qB/D] = [qB/D]/‖[qB/D]‖ .

Additionally, each element of the control torque and force is saturated at ±5 N·m and

±5 N, respectively. Finally, the controllers are run at 100 Hz to simulate a satellite

with limited computational resources.
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Table 9: Case 2: Covariance matrices.

P̃20×20(0)
diag([0.0069, 0.0069, 0.0069, 0.0069, 0.69, 0.69, 0.69, 0.69,
0, 2 × 10−6, 2 × 10−6, 2 × 10−6, 0, 1 × 10−9, 1 × 10−9, 1 ×
10−9, 0, 1.6× 10−5, 1.6× 10−5, 1.6× 10−5])

Q15×15

diag([7 × 10−7, 7 × 10−7, 7 × 10−7, 0, 0, 0, 2 × 10−6, 2 ×
10−6, 2 × 10−6, 1.9 × 10−5, 1.9 × 10−5, 1.9 × 10−5, 1.6 ×
10−5, 1.6× 10−5, 1.6× 10−5])

R8×8
diag([1×10−9, 1×10−9, 1×10−9, 1×10−9, 2.5×10−7, 2.5×
10−7, 2.5× 10−7, 2.5× 10−7])

The measurement update of the DQ-MEKF is based on Eq. (130). Moreover, the

DQ-MEKF is initialized with the covariance matrices given in Table 10 and the initial

guess given in Table 11. The true initial state is also given in Table 11. All the other

parameters of the scenario are identical to the parameters specified in Section 3.3.2.

In particular, to make the comparison as fair as possible, the controls gains are chosen

as kp = 0.2 and kd = 0.4 in both Eq. (79) and Eq. (82). Note that the steady-state

output value of the lead-compensator illustrated in Figure 5 to a unit ramp input is

kd.

Table 10: Covariance matrices.

P̃16×16(0)
diag([0.0069, 0.0069, 0.0069, 0.0069, 0.69, 0.69, 0.69, 0.69,
0, 1×10−9, 1×10−9, 1×10−9, 0, 1×10−9, 1×10−9, 1×10−9])

Q12×12
diag([0, 0, 0, 0, 0, 0, 1×10−6, 1×10−6, 1×10−6, 1×10−4, 1×
10−4, 1× 10−4])

R8×8
diag([1×10−8, 1×10−8, 1×10−8, 1×10−8, 2.5×10−6, 2.5×
10−6, 2.5× 10−6, 2.5× 10−6])

Figure 31 shows the initial transient response of the true (i.e., continuous-time and

noise-free) pose of the body frame with respect to the desired frame obtained with

the velocity-free controller and with the velocity-feedback controller in series with the

DQ-MEKF. It demonstrates that, even under these more realistic conditions, both

solutions succeed in tracking the desired pose. In fact, Figure 31 is relatively similar to
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Figure 26: Case 2: estimated and measured non-dimensional specific force.

Table 11: Initial guess and true initial state.

Variable Initial Guess True State
qB/D(0) [0.3320, 0.4618, 0.1917, 0.7999]T [0.3320, 0.4618, 0.1917, 0.7999]T

r̄BB/D(0) [5, 5, 5]T (m) [5, 5, 5]T (m)
b̄ω(0) [0, 0, 0]T (rad/s) [−0.1,−0.1,−0.1]T (rad/s)
b̄v(0) [0, 0, 0]T (m/s) [−0.1,−0.1,−0.1]T (m/s)

Figure 12, obtained under ideal conditions. The pose-tracking error is shown in more

detail in Figure 32. Whereas the pose-tracking error during the transient response

is smaller with the velocity-feedback controller and the DQ-MEKF, both controllers

achieve similar steady-state errors.

Figure 33 shows the true (i.e., continuous-time and noise-free) linear and angular

velocity of the body frame with respect to the desired frame obtained with both

solutions under these more realistic conditions. Both controllers succeed in tracking

the desired velocities. Moreover, Figure 33 is relatively similar to Figure 13, obtained

under ideal conditions.
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Figure 27: Case 2: estimated and measured angular velocity.

Finally, Figure 34 shows the control force and torque produced by both controllers

under these more realistic conditions. The control force and torque produced by the

velocity-free controller exhibits noise and oscillations that are not visible in the control

force and torque produced by the velocity-feedback controller with the DQ-MEKF.

They also do not appear in Figure 14 under ideal conditions. This is expected since,

unlike the DQ-MEKF, the velocity-free controller does not filter out the measurement

noise nor is designed to take discrete-time measurements.

Hence, in this particular scenario, and assuming the computational resources allow

it, the velocity-feedback controller in series with the DQ-MEKF seems to be the

more robust solution to the pose-tracking problem without relative linear and angular

velocity measurements.

110



0 50 100
-1

0

1

Time (s)

q̂B/I,0 (-)

qB/I,0 (-)

0 50 100
-0.1

0

0.1

Time (s)

q̂B/I,1 (-)

qB/I,1 (-)

0 50 100
-0.1

0

0.1

Time (s)

q̂B/I,2 (-)

qB/I,2 (-)

0 50 100
-2

0

2

Time (s)

q̂B/I,3 (-)

qB/I,3 (-)

0 50 100
-2

0

2

Time (s)

7̂r
I
B/I,1 (m)

7rI
B/I,1 (m)

0 50 100
0

2

4

Time (s)

7̂r
I
B/I,2 (m)

7rI
B/I,2 (m)

0 50 100
-2

-1

0

Time (s)

7̂r
I
B/I,3 (m)

7rI
B/I,3 (m)

Figure 28: Case 2: estimated and true pose.
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Figure 29: Case 2: pose estimation error.
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Figure 30: Case 2: angular and linear velocity estimation errors.
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Figure 31: Pose-tracking using the velocity-free controller and the velocity-feedback
controller with the DQ-MEKF.
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Figure 32: Pose-tracking error using the velocity-free controller and the velocity-
feedback controller with the DQ-MEKF.
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Figure 33: Relative linear and angular velocity using the velocity-free controller and
the velocity-feedback controller with the DQ-MEKF.
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feedback controller with the DQ-MEKF.
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CHAPTER V

POSE-TRACKING WITHOUT MASS AND INERTIA

MATRIX INFORMATION

The problem of deriving control laws for satellite proximity operations when the mass

and/or inertia matrix of the chaser satellite are unknown has a long history. For ex-

ample, in Ref. [73], nonlinear control and adaptation laws are designed using the

vectrix formalism ensuring almost global asymptotic convergence of the pose error,

despite the presence of unknown mass and inertia parameters. However, the controller

in Ref. [73] is a very high-order dynamic compensator, which limits its applicability,

especially for satellites with limited on-board computational resources. In Ref. [82],

a relative pose-tracking controller that requires no linear and angular velocity mea-

surements and no mass and inertia matrix information is presented. As explained in

Ref. [85], if the reference trajectory is not sufficiently exciting, this controller cannot

guarantee that the relative pose error will converge to zero. In Ref. [93], an adaptive

terminal sliding-mode pose-tracking controller is proposed, based on dual quaternions,

that does not require full knowledge of the mass and inertia matrix of the spacecraft.

This controller takes into account the gravitational acceleration, the gravity-gradient

torque, constant – but otherwise unknown – disturbance forces and torques, but not

the perturbing acceleration due to Earth’s oblateness. In addition, the convergence

region of the controller is not specified in Ref. [93] and no conditions for identifying

the mass and inertia matrix of the spacecraft are given. Moreover, this controller re-

quires a priori knowledge of upper bounds on the mass, on the maximum eigenvalue

of the inertia matrix, on the constant but otherwise unknown disturbance forces and

torques, on the desired relative linear and angular velocity between the spacecraft
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and their first derivative, on the linear and angular velocity of the chaser spacecraft

with respect to the inertial frame, and on the position of the chaser spacecraft with

respect to the inertial frame.

This chapter proposes an adaptive pose-tracking controller based on dual quater-

nions. In particular, this chapter extends the results presented in Ref. [1] to include

position-tracking and mass identification. Unlike Ref. [93], the controller proposed in

this chapter does not require a priori knowledge of any upper bounds on the system

parameters or states. Another contribution of this work with respect to Ref. [93] is

the consideration of the perturbing acceleration due to Earth’s oblateness, which is

typically the largest perturbing acceleration on a satellite below GEO [92]. Moreover,

unlike Ref. [93], the controller proposed in this chapter is proven to ensure almost

global asymptotical stability of the linear and angular position and velocity track-

ing errors. In regards to Ref. [73], the controller proposed in this chapter has only

as many states as unknown parameters and, hence, requires less computational re-

sources. A final contribution of this work with respect to existing literature is the

definition of sufficient conditions for both mass and inertia matrix identification. Al-

though these conditions are not needed for tracking, they can be useful to design

maneuvers to identify these parameters, if needed (e.g., after a docking maneuver,

after the deployment of antennas or solar panels, etc).

The chapter is organized as follows. In Section 5.1, the inertia-free pose-tracking

controller for satellite proximity operations is deduced and proved to ensure almost

global asymptotical stability of the linear and angular position and velocity tracking

errors. Then, sufficient conditions on the reference motion are given that ensure mass

and inertia matrix identification in Section 5.2. Finally, the results of two numerical

examples are presented and analyzed in Section 5.3.

The following assumptions are made in this chapter.

i) The mass and inertia matrix of the chaser satellite are constant but unknown.
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ii) The center of mass of the chaser satellite is known.

iii) The chaser satellite knowns its position with respect to the inertial frame, its

relative pose with respect to the target satellite, and its relative linear and

angular velocity with respect to the target satellite.

iv) There are no constraints on the control force and torque.

v) The linear and angular velocity and acceleration of the target satellite with

respect to the inertial frame are known.

vi) The disturbance forces and torques acting on the chaser satellite are constant

but unknown.

5.1 Inertia-Free Pose-Tracking Controller

The next theorem presents the inertia-free pose-tracking controller for satellite prox-

imity operations and shows that it ensures almost global asymptotic stability of the

linear and angular position and velocity tracking errors.

Theorem 3. Consider the rigid body relative kinematic and dynamic equations given

by Eq. (55) and Eq. (71), respectively. Let the dual control force be defined by the

feedback control law

fB

c=−M̂B ? aB

g−
3µrB

B/I

‖rB
B/I‖5

× (M̂B ? (rB

B/I)
s)−M̂B ? aB

J2
−f̂B

d

−vec(q∗B/D(qsB/D − 1s))−Kd ? s
s+ωB

B/I×(M̂B ? (ωB

B/I)
s) (158)

+M̂B?(q∗B/Dω̇
D

D/IqB/D)s+M̂B ? (ωB

D/I×ωB

B/D)s−M̂B ? (Kp ?
d

dt
(q∗B/D(qsB/D − 1s))),

where

s = ωB

B/D + (Kp ? (q∗B/D(qsB/D − 1s)))s, (159)

Kp =

 Kr 04×4

04×4 Kq

 , Kd =

 Kv 04×4

04×4 Kω

 ,
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Kr =

 0 01×3

03×1 K̄r

 , Kq =

 0 01×3

03×1 K̄q

 , Kv =

 0 01×3

03×1 K̄v

 , Kω =

 0 01×3

03×1 K̄ω

 ,
K̄r, K̄q, K̄v, K̄ω ∈ R3×3 are symmetric positive-definite matrices, M̂B is an estimate

of the dual inertia matrix updated according to

d

dt
v(M̂B) = Ki

[
− h((s× ωB

B/I)
s, (ωB

B/I)
s) + h((s×

µrB
B/I

‖rB
B/I‖

)s, (rB

B/I)
s)

+h(ss,−(q∗B/Dω̇
D

D/IqB/D)s−(ωB

D/I × ωB

B/D)s+Kp?
d(q∗B/D(qsB/D − 1s))

dt
+aB

g+aB

J)
]
, (160)

Ki ∈ R7×7 is a symmetric positive-definite matrix, v(MB) = [I11 I12 I13 I22 I23 I33 m]T

is a vectorized version of the dual inertia matrix MB, the function h : Hv
d × Hv

d →

R7 is defined as a ◦ (MB ? b) = h(a, b)Tv(MB) = v(MB)Th(a, b) or, equivalently,

h(a, b) = [ad,1bd,1, ad,2bd,1+ad,1bd,2, ad,3bd,1+ad,1bd,3, ad,2bd,2, ad,3bd,2+ad,2bd,3, ad,3bd,3,

ar,1br,1+ar,2br,2+ar,3br,3]T, f̂B

d is an estimate of the dual disturbance force updated ac-

cording to

d

dt
f̂B

d = Kj ? s
s, (161)

Kj =

 Kf 04×4

04×4 Kτ

 , Kf =

 1 01×3

03×1 K̄f

 , Kτ =

 1 01×3

03×1 K̄τ

 , (162)

and K̄f , K̄τ ∈ R3×3 are symmetric positive-definite matrices. Assume that qD/I,ω
D
D/I,

ω̇D

D/I ∈ L∞ and rB
B/I 6= 0. Then, for all initial conditions, limt→∞ qB/D = ±1 (i.e.,

limt→∞ qB/D = ±1 and limt→∞ r
B
B/D = 0), limt→∞ω

B
B/D = 0 (i.e., limt→∞ ω

B
B/D = 0 and

limt→∞ v
B
B/D = 0), and v(M̂B), f̂B

d ∈ L∞.

Proof. First, define the dual inertia matrix and dual disturbance force estimation

errors as

∆MB = M̂B −MB and ∆fB

d = f̂B

d − fB

d , (163)

respectively. Note that qB/D = ±1, s = 0, v(∆MB) = 07×1, and ∆fB

d = 0 are the

equilibrium conditions of the closed-loop system formed by Eqs. (71), (72), (55),

119



(160), and (161). Consider now the following candidate Lyapunov function for the

equilibrium point (qB/D, s, v(∆MB), ∆fB

d) = (+1,0, 07×1,0):

V (qB/D, s, v(∆MB), ∆fB

d) = (qB/D − 1) ◦ (qB/D − 1) + 1
2
ss ◦ (MB ? ss)

+ 1
2
v(∆MB)TK−1

i v(∆MB) + 1
2
∆fB

d ◦ (K−1
j ? ∆fB

d).

(164)

Note that V is a valid candidate Lyapunov function since

V (qB/D = 1, s = 0, v(∆MB) = 07×1, ∆f
B

d = 0) = 0

and

V (qB/D, s, v(∆MB), ∆fB

d) > 0

for all (qB/D, s, v(∆MB), ∆fB

d) ∈ Hu
d × Hv

d × R7 × Hv
d\{1,0, 07×1,0}. Note also that

the real part of the first three terms of Eq. (164) is equal to the Lyapunov function

used in Ref. [1]. The time derivative of V is equal to

V̇ = 2(qB/D−1)◦q̇B/D+ss◦(MB?ṡs)+v(∆MB)TK−1
i

d

dt
v(∆MB)+∆fB

d◦(K−1
j ?

d

dt
∆fB

d).

Then, since from Eq. (55), ωB
B/D = 2q∗B/Dq̇B/D, Eq. (159) can be rewritten as q̇B/D =

1
2
qB/Ds− 1

2
qB/D(Kp ? (q∗B/D(qsB/D − 1s)))s, which can then be plugged into V̇ , together

with the time derivative of Eq. (159), to yield

V̇=(qB/D−1)◦(qB/Ds−qB/D(Kp?(q
∗
B/D(qsB/D−1s)))s)+ss◦(MB?(ω̇B

B/D)s)

+ss◦(MB?(Kp?
d(q∗B/D(qsB/D−1s))

dt
))+v(∆MB)TK−1

i

d

dt
v(∆MB)+∆fB

d◦(K−1
j ?

d

dt
∆fB

d).

Applying Lemma 33, inserting Eq. (71), and using ωB
B/D + ωB

D/I = ωB
B/I yields

V̇=ss◦(q∗B/D(qsB/D−1s))−(Kp?(q
∗
B/D(qsB/D−1s)))◦(q∗B/D(qsB/D−1s))+ss◦(fB

−ωB

B/I×(MB?(ωB

B/I)
s)−MB?(q∗B/Dω̇

D

D/IqB/D)s−MB?(ωB

D/I×ωB

B/D)s)

+ss◦(MB?(Kp?
d(q∗B/D(qsB/D−1s))

dt
))+v(∆MB)TK−1

i

d

dt
v(∆MB)+∆fB

d◦(K−1
j ?

d

dt
∆fB

d).

Introducing the control law given by Eq. (158) and using Lemmas 55, 37, and 24
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yields

V̇=−(q∗B/D(qsB/D−1s))◦(Kp?(q
∗
B/D(qsB/D−1s)))+ss◦(ωB

B/I×
(
∆MB?(ωB

B/I)
s
)

+∆MB?(q∗B/Dω̇
D

D/IqB/D)s+∆MB?(ωB

D/I×ωB

B/D)s

−∆MB?(Kp?
d(q∗B/D(qsB/D−1s))

dt
)−∆MB?aB

g−
3µrB

B/I

‖rB
B/I‖5
×(∆MB?(rB

B/I)
s)

−∆MB?aB

J2
−∆fB

d)−ss◦(Kd?s
s)+v(∆MB)TK−1

i

d

dt
v(∆MB)+∆fB

d◦(K−1
j ?

d

dt
∆fB

d)

or

V̇=− (q∗B/D(qsB/D − 1s)) ◦ (Kp ? (q∗B/D(qsB/D − 1s)))+(s× ωB

B/I)
s ◦ (∆MB ? (ωB

B/I)
s)

+ss ◦ (∆MB?(q∗B/Dω̇
D

D/IqB/D)s +∆MB?(ωB

D/I×ωB

B/D)s

−∆MB ? (Kp ?
d(q∗B/D(qsB/D − 1s))

dt
)−∆MB ? aB

g−∆MB ? aB

J2
−∆fB

d)

−(s×
3µrB

B/I

‖rB
B/I‖5

)s ◦ (∆MB ? (rB

B/I)
s)−ss ◦ (Kd ? s

s) + v(∆MB)TK−1
i

d

dt
v(∆MB)

+∆fB

d ◦ (K−1
j ?

d

dt
∆fB

d).

Therefore, if d
dt

v(∆MB) is defined as in Eq. (160) and d
dt
∆fB

d is defined as in Eq. (161),

it follows that V̇=−(q∗B/D(qsB/D−1s))◦(Kp?(q∗B/D(qsB/D−1s)))−ss◦(Kd?s
s) ≤ 0, for all

(qB/D, s, v(∆MB), ∆fB

d) ∈ Hu
d ×Hv

d ×R7 ×Hv
d\{1,0, 07×1,0}. Hence, the equilibrium

point (qB/D, s, v(∆MB), ∆fB

d) = (+1,0, 07×1,0) is uniformly stable and uniformly

bounded, i.e., qB/D, s, v(∆MB), ∆fB

d ∈ L∞. Moreover, from Eqs. (159) and (163), this

also means that ωB
B/D, v(M̂B), f̂B

d ∈ L∞. Since V ≥ 0 and V̇ ≤ 0, limt→∞ V (t) exists

and is finite. Hence, limt→∞
∫ t

0
V̇ (τ) dτ = limt→∞ V (t)−V (0) also exists and is finite.

Since qB/D, s, v(∆MB), ∆fB

d ,ω
B
B/D, v(M̂B), f̂B

d , ω̇
D

D/I,ω
B
D/I, qD/I ∈ L∞ and rB

B/I 6= 0, then

from Eqs. (55), (158), and (71) and from Lemma 53, rB
B/I, q̇B/D,f

B, ω̇B

B/D, ṡ ∈ L∞.

Hence, by Barbalat’s lemma, vec(q∗B/D(qsB/D − 1s)) → 0 and s → 0 as t → ∞. In

the proof of Theorem 1, it is shown that vec(q∗B/D(qsB/D − 1s)) → 0 is equivalent to

qB/D → ±1. Finally, calculating the limit as t→∞ of both sides of Eq. (159) yields

ωB
B/D → 0.

In addition to Remark 1, the following remarks are in order.

121



Remark 4. The terms M̂B ? aB
g ,

3µrB
B/I

‖rB
B/I
‖5 × (M̂B ? (rB

B/I)
s), M̂B ? aB

J2
, and f̂B

d of the

control law given by Eq. (158) are estimates of the gravitational force, gravity-

gradient torque, perturbing force due to Earth’s oblateness, and dual disturbance

force calculated using the estimated mass and inertia matrix. These terms can be

thought of as approximate cancellations of these forces and torques. The remaining

terms of the control law are a result of the rigid body dynamics [27]. As shown in

the proof of Theorem 1, the term vec(q∗B/D(qsB/D − 1s)) is equal to 1
2
rBB/D + εvec(qB/D)

and, hence, is the feedback of the relative position vector and of the vector part of

the relative quaternion. The term Kd ? s
s can be thought of as a damping term,

where s takes the place of ωB
B/D. The terms ωB

B/I×(M̂B ?(ωB
B/I)

s), M̂B?(q∗B/Dω̇
D

D/IqB/D)s,

and M̂B ? (ωB
D/I×ωB

B/D)s are a direct cancellation of identical terms in Eq. (71) with

the true mass and inertia matrix replaced by their estimates. Finally, the term

M̂B ? (Kp ?
d
dt

(q∗B/D(qsB/D − 1s))) is a result of using s instead of ωB
B/D in the damping

term and, ultimately, guarantees that the pose error will converge to zero even if the

reference motion is not sufficiently exciting, unlike in Ref. [82].

Remark 5. Apart from the terms due to the gravitational field, the dual part of the

control law given by Eq. (158) is

τB=−vec(qB/D)−Kω ∗ ωB

B/D−(KωKq) ∗ qB/D+ωB

B/I × (ÎB ∗ ωB

B/I)+Î
B ∗ (q∗B/Dω̇

D

D/IqB/D)

+ÎB ∗ (ωB

D/I × ωB

B/D)−(ÎBKq) ∗
d

dt
(qB/D), (165)

where ÎB is an estimate of the inertia matrix. This control law is identical to the

attitude(-only) control law proposed in Ref. [1].

Remark 6. It can be easily shown that the nonadaptive version of the control law
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given by Eq. (158), where the estimates of the dual inertia matrix and dual distur-

bance force are replaced by their true values, i.e.,

fB

c=−MB?aB

g−
3µrB

B/I

‖rB
B/I‖5
×(MB?(rB

B/I)
s)−MB?aB

J2
−fB

d

−vec(q∗B/D(qsB/D−1s))−Kd?s
s+ωB

B/I×(MB?(ωB

B/I)
s) (166)

+MB?(q∗B/Dω̇
D

D/IqB/D)s+MB?(ωB

D/I×ωB

B/D)s−MB ? (Kp?
d

dt
(q∗B/D(qsB/D−1s))),

still guarantees that, for all initial conditions, limt→∞ qB/D = ±1 and limt→∞ω
B
B/D =

0.

Remark 7. Even though the control law given by Eq. (158) requires no information

about the mass and inertia matrix of the chaser spacecraft, it still requires the center

of mass of the chaser spacecraft to be known. This is because Eq. (71) is only valid

if the origin of the body frame coincides with the center of mass of the spacecraft.

5.2 Sufficient Conditions for Mass and Inertia Matrix Iden-
tification

In this section, sufficient conditions on the reference pose are given that guarantee

that the estimate of the dual inertia matrix will converge to the true dual inertia

matrix. Note however that the result presented in Theorem 3 does not depend on the

convergence of this estimate. In other words, the controller proposed in Theorem 3

guarantees almost global asymptotical stability of the linear and angular position

and velocity tracking errors even if the true mass and inertia matrix are not iden-

tified. Nevertheless, identification of the mass and inertia matrix of the satellite

might be important, for example, for fuel consumption estimation, for calculation of

re-entry trajectories and terminal velocities, for state estimation, for fault-detecting-

and-isolation systems, or for docking/undocking scenarios.

Proposition 4. Let the dual disturbance force be exactly known or estimated so that

f̂B

d can be replaced by fB

d in Eq. (158). Moreover, assume that qD/I,ω
D
D/I, ω̇

D

D/I, ω̈
D

D/I ∈
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L∞, rB
B/I 6= 0, and qD/I is periodic. Furthermore, let W : [0,∞)→ R8×7 be defined as

W(t)v(∆MB) = [ωD

D/I(t)× (∆MB ? (ωD

D/I(t))
s) +∆MB ? (ω̇D

D/I(t))
s −∆MB ? aD

g

−
3µrD

D/I

‖rD
D/I‖5

× (∆MB ? (rD

D/I)
s)−∆MB ? aD

J2
] (167)

or, equivalently, W(t) = Wrb(t) + Wg(t) + W∇g(t) + WJ2(t), where

Wrb(t) =

 04×6 [v̇D
D/I + ωD

D/I × vD
D/I]

Wrb,I(t) 04×1

 , W∇g(t) =

 04×6 04×1

3µ
‖r̄D

D/I
‖5 W∇g,I(t) 04×1

 ,

Wrb,I(t)=



0 0 0 0 0 0

ṗD
D/I

q̇D
D/I
−pD

D/I
rD
D/I

ṙD
D/I

+pD
D/I

qD
D/I

−qD
D/I

rD
D/I

(qD
D/I

)2−(rD
D/I

)2 qD
D/I

rD
D/I

pD
D/I

rD
D/I

ṗD
D/I

+qD
D/I

rD
D/I

(rD
D/I

)2−(pD
D/I

)2 q̇D
D/I

ṙD
D/I
−pD

D/I
qD
D/I

−pD
D/I

rD
D/I

−pD
D/I

qD
D/I

(pD
D/I

)2−(qD
D/I

)2 ṗD
D/I
−qD

D/I
rD
D/I

pD
D/I

qD
D/I

q̇D
D/I

+pD
D/I

rD
D/I

ṙD
D/I


,

W∇g,I(t)=



0 0 0 0 0 0

0 xD
D/I

zD
D/I

−xD
D/I

yD
D/I

yD
D/I

zD
D/I

(zD
D/I

)2−(yD
D/I

)2 −yD
D/I

zD
D/I

−xD
D/I

zD
D/I

−yD
D/I

zD
D/I

(xD
D/I

)2−(zD
D/I

)2 0 xD
D/I

yD
D/I

xD
D/I

zD
D/I

xD
D/I

yD
D/I

(yD
D/I

)2−(xD
D/I

)2 yD
D/I

zD
D/I

−xD
D/I

yD
D/I

−xD
D/I

zD
D/I

0


,

Wg(t) =

04×6 [aD
g,D/I]

04×6 04×1

 , WJ2(t) =

04×6 [aD
J2,D/I

]

04×6 04×1

 ,

aD

g,D/I=
µrDD/I

‖r̄DD/I‖3
, aD

J2,D/I=q
∗
D/Ia

I

J2,D/IqD/I, [aI

J2,D/I]=−
3

2

µJ2R
2
e

‖r̄ID/I‖5



0

(1−5(
zI
D/I

‖r̄I
D/I
‖)

2)xI
D/I

(1−5(
zI
D/I

‖r̄I
D/I
‖)

2)yI
D/I

(3−5(
zI
D/I

‖r̄I
D/I
‖)

2)zI
D/I


.

Let also 0 ≤ t1 ≤ t2 ≤ ... ≤ tn be such that

rank


W(t1)

...

W(tn)

 = 7. (168)

Then, under the control law given by Eq. (158), limt→∞ M̂B = MB.
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Proof. The first step is to prove that limt→∞ ω̇
B

B/D = 0. (Note that limt→∞ω
B
B/D = 0

does not imply that limt→∞ ω̇
B

B/D = 0.) Note that

lim
t→∞

∫ t

0

ω̇B

B/D(τ) dτ = lim
t→∞

ωB

B/D(t)− ωB

B/D(0) = −ωB

B/D(0)

exits and is finite. Furthermore, since

qD/I,ω
D

D/I, ω̇
D

D/I, ω̈
D

D/I, q̇B/D, q̈B/D, ω̇
B

B/D,
dv(M̂B)

dt
,
df̂B

d

dt
∈ L∞

and rB
B/I 6= 0, it follows that ω̈B

B/D ∈ L∞ by differentiating Eq. (71). Hence, by

Barbalat’s lemma, limt→∞ ω̇
B

B/D = 0. Now, calculate the limit as t→∞ of both sides

of Eq. (71). Next, substitute in the control law given by Eq. (158) and replace f̂B

d by

fB

d in Eq. (158) (note that fB

d is assumed to be known). Finally, using the fact that,

according to Theorem 3, limt→∞ω
B
B/D = 0 and limt→∞ qB/D = ±1 (in other words, in

the limit the body frame and the desired frame have the same pose) yields

lim
t→∞

(ωD

D/I×(∆MB?(ωD

D/I)
s)+∆MB?(ω̇D

D/I)
s−∆MB?aD

g,D/I

−
3µrD

D/I

‖rD
D/I‖5

×(∆MB?(rD

D/I)
s)−∆MB ? aD

J2,D/I)=0, (169)

where aD
g,D/I = aD

g,D/I + ε0 and aD
J2,D/I

= aD
J2,D/I

+ ε0. Moreover, note that if qD/I

is periodic with period T , so are q̇D/I, ω
D
D/I, ω̇

D

D/I, r
D
D/I, a

D
g,D/I, a

D
J2,D/I

, and W(t).

Finally, noting that limt→∞
d
dt

v(M̂B) = 07×1 from Eq. (160) and Theorem 3, under

the conditions of Proposition 4, Eq. (169) implies that limt→∞ v(∆MB) = 07×1 or,

equivalently, limt→∞ M̂B = MB.

Remark 8. In practice, the true dual disturbance force fB

d may not be known.

Moreover, there is no guarantee that the estimate of the dual disturbance force will

converge to its true value. Hence, in practice, the estimate of the mass and inertia

matrix of the spacecraft will only be as good as the estimate of the dual disturbance

force.
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Remark 9. An alternative, and more general, sufficient condition than Eq. (168) for

mass and inertia matrix identification, which does not require qD/I to be periodic, is

that the 7× 7 symmetric matrix
∫ t+T2
t

WT(t)W(t) dt is positive-definite for all t ≥ T1

for some T1 ≥ 0 and T2 > 0 [86, 83].

5.3 Simulation Results

In this section, two examples are considered. In the first example, the inertia-free

pose-tracking controller is applied to a conceivable satellite proximity operations sce-

nario, where a chaser satellite approaches, circumnavigates, and docks with a target

satellite. In the second example, the same controller is used to identify the mass and

inertia matrix of a satellite in GEO.

5.3.1 Satellite Proximity Operations

In this example, the versatility of the controller is demonstrated by using it, in se-

quence, to approach, circumnavigate, and dock with a target satellite, while always

pointing at it.

The inertial frame, the target frame, the desired frame, and the body frame are

defined as in Section 3.3.2 and represented in Figure 10. The target spacecraft is

assumed to be in a Molniya orbit with initial orbital elements given in Table 2 and

nadir pointing. The relative motion of the desired frame with respect to the target

frame is divided into the following three phases.

- Phase #1: Straight line approach along J̄T from −30 m to −20 m at a constant

speed of 0.025 m/s. In other words, during this phase, ω̄T
D/T = [0, 0, 0]T rad/s

and v̄T
D/T = [0, 0.025, 0]T m/s, with initial condition r̄TD/T = [0,−30, 0]T m.

- Phase #2: Circular circumnavigation around the target satellite with a radius

of 20 m in the J̄T-K̄T plane (so that chaser satellite does not cross the nadir

direction of the target satellite) and with constant angular speed equal to the
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mean motion of the target satellite. In other words, during this phase, ω̄T
D/T =

[−n, 0, 0]T rad/s, v̄T
D/T = [0,−aen sin(nt), ben cos(nt)]T m/s, and ae = be = 20 m,

where n =
√
µ/a3 is the mean motion of the target satellite (assuming no J2-

perturbation) and a is the semi-major axis of the target satellite (assuming no

J2-perturbation).

- Phase #3: Straight-line docking along J̄T from -20 m to contact at a constant

speed of 0.025 m/s. In other words, during this phase, ω̄T
D/T = [0, 0, 0]T rad/s

and v̄T
D/T = [0, 0.025, 0]T m/s.

The linear velocity of the target satellite with respect to the inertial frame is calcu-

lated by numerically integrating the gravitational acceleration and also the perturbing

acceleration due to Earth’s oblateness. On the other hand, the angular acceleration of

the target satellite with respect to the inertial frame is calculated analytically through

Eq. (85). Moreover, qT/I and qD/I are propagated according to Eq. (50). Finally, ωD
D/I

and ω̇D

D/I are calculated from Eqs. (86) and (87).

As in Section 3.3.2, the inertia matrix and mass of the chaser satellite are assumed

to be [93]

ĪB =


22 0.2 0.5

0.2 20 0.4

0.5 0.4 23

 kg · m2

and m = 100 kg. The initial conditions for this simulation are r̄BB/D(0)=[2, 2, 2]T m,

qB/D(0) = [0.3320, 0.4618, 0.1917, 0.7999]T, v̄B
B/D(0) = [0.1, 0.1, 0.1]T m/s, ω̄B

B/D(0) =

[0.1, 0.1, 0.1]T rad/s. The initial estimates for the mass, inertia matrix, and dual dis-

turbance force are set to zero. The constant disturbance force and torque acting on the

chaser satellite are set to f̄B
d = [0.005, 0.005, 0.005]T N and τ̄B

d = [0.005, 0.005, 0.005]T

N · m, respectively.

The control gains are chosen to be K̄r = 0.1I3×3, K̄q = 0.25I3×3, K̄v = 15I3×3,

K̄ω = 15I3×3, Ki = 100I7×7, K̄f = 0.8I3×3, and K̄τ = 0.8I3×3.
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Figure 35 shows the linear and angular velocity of the desired frame with respect

to the inertial frame expressed in the desired frame for the complete maneuver. These

signals form the reference for the controller.
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Figure 35: Reference motion.

Figure 36 shows the initial transient response and the transient response between

phases #1 and #2 of the pose of the body frame with respect to the desired frame

using the controller given by Eq. (158) (adaptive) and the controller given by Eq. (166)

(nonadaptive). Note that the transition between phases #1 and #2 occurs at 400 s.

The transient response between phases #2 and #3 is similar and, thus, not shown

here. Both controllers successfully cancel the relative pose error at the beginning of

the maneuver and between phases. These latter are due to the fact that ω̄T
D/T and

v̄T
D/T are discontinuous between phases. In other words, between phases ωD

D/I /∈ L∞,

which instantaneously violates the conditions of Theorem 3.

Figure 37 shows the relative linear and angular velocity of the body frame with
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Figure 36: Relative pose expressed in the body frame.

respect to the desired frame for the same two cases studied in Figure 36. Again, both

controllers successfully cancel the relative linear and angular velocity errors at the

beginning of the maneuver and between phases.

Figure 38 shows that even though the adaptive controller is not able to identify

the true mass and inertia matrix of the chaser satellite, it is still able to track the

reference motion. As a matter of fact, the similarities between the responses obtained

with the adaptive controller (which has no information about the true mass, inertia

matrix, and dual disturbance force) and the nonadaptive controller (which knowns

the true mass, inertia matrix, and dual disturbance force) are quite remarkable. For

this reference motion, the minimum singular value of the matrix in Eq. (168) for

t1 = 0, t2 ≈ 3.4e−2, ..., t32847 ≈ 3.8e4 s is 1.5e−6.

Figure 39 shows that the estimates of the disturbance force and torque converge

to values of the same order of magnitude as the true disturbance force and torque.

Note that Theorem 3 only guarantees that these estimates will be uniformly bounded.
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Figure 37: Relative linear and angular velocity expressed in the body frame.

Relatively small oscillations in the estimates can be seen between phases as a result

of the discontinuities in ωD
D/I.

Finally, Figure 40 shows the control force and torque produced by the adaptive and

nonadaptive controllers during the initial transient response and between phases #1

and #2. The relatively high values of control force and torque during the initial

transient response are required to eliminate the initial linear and angular position

and velocity errors that were arbitrarily set between the body frame and the desired

frame. As a comparison, the complete maneuver requires a ∆V of 3.9211 m/s if done

with Eq. (166) (nonadaptive) and 0.1722 m/s more if done with Eq. (158) (adaptive).

5.3.2 Identification of the Mass and Inertia Matrix of a Satellite in GEO

In this example, the adaptive control law is used to identify the mass and inertia

matrix of a satellite in a Geosynchronous Earth Orbit (GEO) with initial orbital
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Î 2
2
(k

g.
m

2
)

0 500
0

0.5

1

Time (s)
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Figure 38: Mass and inertia matrix estimation for low-exciting reference motion.

elements given in Table 2.

In this scenario, the target frame is the unperturbed Hill frame [52] of the satellite.

Note that in this case there is not a physical spacecraft attached to the target frame.

The desired frame is defined to have the same position and orientation as the target

frame at the beginning of the simulation. The inertial frame and the body frame are

defined as in Section 3.3.2.

The satellite has the same mass and inertia matrix as the chaser satellite in the

previous example. As assumed in Proposition 4, the dual disturbance force is assumed

to be known and, in this example, equal to zero. The body frame is assumed to have

the same position, attitude, linear velocity, and angular velocity as the desired frame

at the beginning of the simulation. The initial estimates for the mass and inertia

matrix are set to zero. The control gains are the same as in Section 3.3.2.

The relative motion of the desired frame with respect to the target frame is defined
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Figure 39: Dual disturbance force estimation.

in Figure 41. It is composed by a pure translation and several pure rotations designed

to identify the mass and the elements of the inertia matrix in sequence, while keeping

the control forces and torques within reasonable values. This reference motion was

created by taking into consideration the structure of matrix W(t) and the results

presented in Ref. [1]. For this reference motion, the minimum singular value of the

matrix in Eq. (168) for t1 = 0, t2 ≈ 1.0e−5, ..., t14030 = 900 s is 1.15.

The mass and inertia matrix identification is shown in Figure 42. Note that the

mass and inertia matrix are identified even though their initial estimates are zero.

They are identified in sequence: m is identified during the first triangle waveform

(on vD
D/T), I12, I22, and I23 are identified during the second triangle waveform (on

qDD/T), I11 and I13 are identified during the third triangle waveform (on pD
D/T), and I33

is identified during the fourth and last triangle waveform (on rDD/T). The associated

control forces and torques are shown in Figure 43. As a comparison, the complete

maneuver requires a ∆V of 16.0103 m/s if done with Eq. (166) (nonadaptive) and
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Figure 40: Control force and torque.

0.1143 m/s more if done with Eq. (158) (adaptive).
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Figure 41: Reference motion for identification.

0 500 1000
-10

0

10

20

30

Time (s)
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Figure 42: Mass and inertia matrix identification.
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Figure 43: Control force and torque during identification.
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CHAPTER VI

HIGH-FIDELITY SIMULATION AND EXPERIMENTAL

RESULTS

In this chapter, the inertia-free pose-tracking controller described in Chapter 5 and

the DQ-MEKF described in Chapter 4 are tested on a high-fidelity simulation of the

5-DOF platform of the ASTROS facility and also experimentally validated on the

actual platform.

The high-fidelity simulation is implemented as a Simulink model, which is shown

in Figure 44. One of the biggest advantages of this implementation is that the exact

same control software used in the simulations is used in the experiments, thanks to

Simulink’s xPC Target environment. After a certain piece of code has been tested

in simulation, only the block that simulates the dynamics of the platform needs to

be replaced by an existing xPC Target block that takes care of all communications

between the control software and the sensors and actuators on the platform. After

this, a single button wirelessly uploads the control software to the on-board computer

and the same piece of code tested in simulation is ready to be tested on the platform.

This process substantially reduces the time between simulation and experiment.

The outputs of the Simulink model also drive a virtual-reality environment that

provides a relatively realistic 3D visualization of the platform’s motion.

This chapter starts with the derivation of the equations of motion of the 5-DOF

platform, on which the high-fidelity simulation is based. Then, in Section 6.2 the real-

world effects (e.g., noise and bias of the sensors, deadzone of the actuators) included in

the high-fidelity simulation are detailed. The allocation of the control moment to the

Variable-Speed Control Moment Gyros (VSCMGs) and the allocation of the control
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Figure 44: High-fidelity Simulink model of the 5-DOF platform.

moment and force to the thrusters is explained in Sections 6.3 and 6.4, respectively.

Since the thrusters on the platform only accept on-off commands, the continuous-

time signals generated by the controller need to be converted. This conversation is

explained in Section 6.5. A few comments about the coding of the controller are given

in Section 6.6. Finally, the results of four experiments are presented in Section 6.7

and used to validate the high-fidelity 5-DOF simulation, the inertia-free pose-tracking

controller, and the DQ-MEKF.

6.1 Derivation of the Equations of Motion of the 5-DOF
Platform

The equations of motion of the 5-DOF platform are derived in this section using

classical Newton/Euler dynamics. Three cases are considered.

1) 3-DOF case: pure rotation of the upper stage.

2) (2+1)-DOF case: rotation and translation of the upper stage when rigidly con-

nected to the lower stage.

3) 5-DOF case: rotation and translation of the upper stage when levitated with

respect to the lower stage.
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To validate this derivation, the equations of motion of the 5-DOF platform were

also derived using analytical dynamics, in particular, using Eqs. (4.166) and (4.167)

of Ref. [65]. In analytical dynamics, these equations are the equations of motion with

respect to an arbitrary system of axes, not necessarily centered at the center of mass.

The two derivations yielded the same equations of motion. Only the first derivation

is shown here.

The derivation of the equations of motion is organized as follows. In Section 6.1.1,

the angular momentum of a system of N particles with respect to the inertial frame

about an arbitrary moving point P is derived. This result is used in the subsequent

sections. In Section 6.1.2, the reference frames used in the derivation of the equations

of motion are defined. In Section 6.1.3, the assumptions made in the derivation of the

equations of motion are summarized. In Sections 6.1.4 and 6.1.5, the rotational and

translational dynamic equations of the upper stage and of the lower stage are deduced.

The free-body diagrams are also presented. In Section 6.1.6, the equations of motion

for the 3-DOF case are deduced based on the results shown in Sections 6.1.4 and 6.1.5.

Likewise, in Sections 6.1.7 and 6.1.8, the equations of motion for the (2+1)-DOF case

and for the 5-DOF case, respectively, are derived.

6.1.1 Angular Momentum of Two Groups of Particles with respect to a
Moving Point

By definition, the angular momentum of a system of N particles with respect to an

inertial frame about an arbitrary moving point P is given by

P H̄system/I =
N∑
i=1

r̄mi/P
×mi

Idr̄mi/P

dt
, (170)

where r̄Y/X is the vector that goes from point X to point Y ,
Xdȳ
dt

is the time derivative

of vector ȳ with respect to the X-frame, mi is the mass of particle i, and P H̄Y/Z is

the angular momentum vector of system Y with respect to reference frame Z about

point P . This system of particles is divided into two groups of particles, one with N1
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particles and another one with N2 particles, as represented in Figure 45. The particles
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Figure 45: System of particles.

of each group are assumed to be rigidly fixed to each other. In other words, each group

of particles behaves like a rigid body. Each group of particles has its own center of

mass and these centers of mass might be moving with respect to each other and with

respect to point P . The objective in this section is to calculate the contribution to

P H̄system/I of each group of particles. First, the summation in Eq. (170) is divided

into two terms as follows

P H̄system/I =

N1∑
i=1

r̄mi/P
×mi

Idr̄mi/P

dt
+

N2∑
i=1

r̄mi/P
×mi

Idr̄mi/P

dt
. (171)

The first term is now analyzed. Note that the analysis of the second term is analogous.

By writing r̄mi/P
= r̄

1/P + r̄mi/ 1
, Eq. (171) can be rewritten as

N1∑
i=1

r̄mi/P
×mi

Idr̄mi/P

dt
=

N1∑
i=1

(r̄
1/P + r̄mi/ 1

)×mi(
Idr̄

1/P

dt
+

Idr̄mi/ 1

dt
), (172)

where 1 denotes the center of mass of the N1 particles. The S-frame is defined

as a frame with an arbitrary orientation and with origin coincident with point P .

Moreover, frame B1 is defined as a frame fixed to the N1 particles and with origin

coincident with the center of mass of the N1 particles. Then,
Idr̄

1/P

dt
=

Sdr̄
1/P

dt
+ ω̄S/I×

r̄
1/P = v̄

1/S + ω̄S/I × r̄ 1/P and
Idr̄mi/ 1

dt
=

B1dr̄mi/ 1

dt
+ ω̄B1/I × r̄mi/ 1

, where ω̄X/Y is the

angular velocity vector of the X-frame with respect to the Y-frame. Since the N1
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particles are assumed to be rigidly fixed to each other,
B1dr̄mi/ 1

dt
= 0. Substituting

Idr̄
1/P

dt
and

Idr̄mi/ 1

dt
into Eq. (172) and expanding yields

N1∑
i=1

(r̄
1/P+r̄mi/ 1

)×mi(
Idr̄

1/P

dt
+

Idr̄mi/ 1

dt
)

=

N1∑
i=1

(r̄
1/P+r̄mi/ 1

)×mi(v̄ 1/S+ω̄S/I×r̄ 1/P+ω̄B1/I×r̄mi/ 1
)

=

N1∑
i=1

r̄
1/P×miv̄ 1/S+

N1∑
i=1

r̄
1/P×mi(ω̄S/I×r̄ 1/P )+

N1∑
i=1

r̄
1/P×mi(ω̄B1/I×r̄mi/ 1

)

+

N1∑
i=1

r̄mi/ 1
×miv̄ 1/S+

N1∑
i=1

r̄mi/ 1
×mi(ω̄S/I×r̄ 1/P )+

N1∑
i=1

r̄mi/ 1
×mi(ω̄B1/I×r̄mi/ 1

)

=r̄
1/P×m1v̄ 1/S−m1r̄ 1/P×(r̄

1/P×ω̄S/I)+r̄ 1/P×(ω̄B1/I×
N1∑
i=1

mir̄mi/ 1
)

+

N1∑
i=1

mir̄mi/ 1
×v̄

1/S+

N1∑
i=1

mir̄mi/ 1
×(ω̄S/I×r̄ 1/P )−

N1∑
i=1

mir̄mi/ 1
×(r̄mi/ 1

×ω̄B1/I),

where m1 is the total mass of the N1 particles. Note that the third, fourth, and fifth

terms are zero because
N1∑
i=1

mir̄mi/ 1
= 0. Using the identity ω̄B1/I = ω̄B1/S + ωS/I yields

N1∑
i=1

(r̄
1/P + r̄mi/ 1

)×mi(
Idr̄

1/P

dt
+

Idr̄mi/ 1

dt
)

= r̄
1/P ×m1v̄ 1/S −m1r̄ 1/P × (r̄

1/P × ω̄S/I)−
N1∑
i=1

mir̄mi/ 1
× (r̄mi/ 1

× ω̄B1/S)

−
N1∑
i=1

mir̄mi/ 1
× (r̄mi/ 1

× ω̄S/I)

= r̄
1/P ×m1v̄ 1/S −m1r̄ 1/P × (r̄

1/P × ω̄S/I) + 1 ĪB1
ω̄B1/S + 1 ĪB1

ω̄S/I

where Y ĪX is the inertia matrix of body X about point Y. Thus, using the Parallel

Axis Theorem, 1 ĪB1
ω̄S/I −m1r̄ 1/P × (r̄

1/P × ω̄S/I) = P ĪB1
ω̄S/I and

N1∑
i=1

r̄mi/P
×mi

Idr̄mi/P

dt
= P ĪB1

ω̄S/I + 1 ĪB1
ω̄B1/S + r̄

1/P ×m1v̄ 1/S. (173)

Note that the same analysis for the N2 particles would have yielded

N2∑
i=1

r̄mi/P
×mi

Idr̄mi/P

dt
= P ĪB2

ω̄S/I + 2 ĪB2
ω̄B2/S + r̄

2/P ×m2v̄ 2/S. (174)
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Finally, Eq. (171) is equal to the sum of Eqs. (173) and (174), i.e.,

P H̄system/I = P ĪB1
ω̄S/I+ 1 ĪB1

ω̄B1/S+r̄ 1/P×m1v̄ 1/S+
P ĪB2

ω̄S/I+ 2 ĪB2
ω̄B2/S+r̄ 2/P×m2v̄ 2/S

= P ĪB1+B2
ω̄S/I+ 1 ĪB1

ω̄B1/S+
2 ĪB2

ω̄B2/S+r̄ 1/P×m1v̄ 1/S+r̄ 2/P×m2v̄ 2/S. (175)

Note that is rather trivial to extend this result to a system with more than two groups

of particles.

6.1.2 Reference Frames

The following reference frames are defined for the 5-DOF platform:

- Inertial reference frame or I-frame: reference frame with K̄I aligned with the

gravity acceleration vector ḡ, ĪI and J̄I aligned as shown in Figure 46, and origin

at the point of the epoxy floor shown in Figure 46.

- Upper stage reference frame or S-frame: reference frame with ĪS parallel to the

surface of the upper stage bus and pointing in the direction of VSCMG 1, J̄S

parallel to the surface of the upper stage bus and pointing in the direction of

VSCMG 2, K̄S completing the right-hand frame, and origin at the center of

rotation (illustrated in Figure 47).

- Upper stage bus reference frame or F-frame: reference frame with the same

orientation as the S-frame and origin at the center of mass of the upper stage

bus (does not include the gimbals and the wheels of the VSCMGs) (illustrated

in Figure 48).

- Lower stage reference frame or L-frame: reference frame with K̄L parallel to the

vertical column of the lower stage and pointing down, ĪL fixed to a certain point

of the lower stage, J̄L completing the right-hand frame, and origin at the center

of rotation (illustrated in Figure 49).
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- Ground reference frame or G-frame: reference frame with K̄G orthogonal to the

floor at point Q (point along K̄L) and pointing down, ĪG tangent to the floor

and in the ĪI − K̄I plane, J̄G tangent to the floor and in the J̄I − K̄I plane, and

origin at point Q (illustrated in Figure 49).

- Gimbal i reference frame or Gi-frame: reference frame with ĪGi
along the axis

of rotation of gimbal i, J̄Gi
along the axis of rotation of wheel i (inside gimbal

i), K̄Gi
completing the right-hand frame, and origin at the center of mass of

gimbal i (illustrated in Figure 48).

- Wheel i reference frame or Wi-frame: reference frame with J̄Wi
along the axis

of rotation of wheel i, ĪWi
fixed to a certain point of wheel i, K̄Wi

completing

the right-hand frame, and origin at the center of mass of wheel i (illustrated in

Figure 48).

I
I

I
J

I
K

Figure 46: Definition of the I-frame with respect to the epoxy floor.

6.1.3 Assumptions

The following assumptions are made in the derivation of the equations of motion.

1) The bus of the upper stage (not including the gimbals and the wheels of

the VSCMGs), the gimbals of the VSCMGs (not including the wheels of the

VSCMGs), the wheels of the VSCMGs, and the lower stage are assumed to be

rigid bodies.
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Figure 47: Definition of the S-frame with respect to the upper stage.

2) The mass of the bus of the upper stage (not including the gimbals and the wheels

of the VSCMGs), the mass of the gimbals of the VSCMGs (not including the

wheels of the VSCMGs), the mass of the wheels of the VSCMGs, and the mass of

the lower stage are assumed to be constant. Note that assuming that the masses

of the upper stage bus and of the lower stage are constant implies assuming that

the change in mass due to the depletion of the air-bottles is negligible. Table 12

shows the maximum air-mass that the air-bottles of the upper stage bus and

lower stage can take. This mass is deemed small when compared to the mass

Table 12: Maximum air-mass that the air-bottles of the upper stage bus and lower
stage can take, assuming ideal gas and an air temperature of 298.15 K.

Lower Stage Upper Stage
Volume (in3) 3× 1000 2× 225
Maximum Pressure (psi) 3300 2500
Maximum Air-Mass (kg) 13.1 1.5

of the upper stage bus and of the lower stage.
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3) The centers of mass of the gimbals and wheels of the VSCMGs cannot move

with respect to the center of rotation.

4) The center of mass of gimbal i and the center of mass of wheel i have the same

position.

5) The vector perpendicular to the floor at point Q is always parallel to the vertical

column of the lower stage. In particular, this implies that K̄L and K̄G are

parallel.

6) The angular velocity of the G-frame with respect to the I-frame can be neglected.

In particular, this implies that the angular velocity of the L-frame with respect

to the I-frame is equal to the angular velocity of the L-frame with respect to

the G-frame.

7) The contact force between the lower stage and the floor is applied at point Q.

8) The epoxy floor is frictionless (This assumption can be easily removed if a model

for the friction of the epoxy floor is available.) In particular, this assumption
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Figure 49: Free-body diagram of the lower stage.

implies that the contact force between the lower stage and the floor has no

components along ĪL and J̄L and that the contact moment between the lower

stage and the floor has no component along K̄L

9) The axes of the Gi-frame are principal axes of gimbal i.

10) The axes of the Wi-frame are principal axes of wheel i.

11) The inertia matrix of the upper stage bus (does not include the gimbals and the

wheels of the VSCMGs) about the center of rotation expressed in the S-frame

does not change with time (this assumption can be easily removed if a model

for this time variation is available).

12) The inertia matrix of the lower stage about the center of rotation expressed in

the L-frame does not change with time (this assumption can be easily removed

if a model for this time variation is available).

13) In the 3-DOF case and in the 5-DOF case, the contact moments between the
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upper stage and the lower stage are assumed to be zero. (However, the contact

forces are NOT assumed to be zero.)

14) The center of rotation is a point of both the upper stage and the lower stage.

(In particular, this implies that the upper stage cannot move in a direction

perpendicular to the floor with respect to the lower stage.)

15) When coding the equations of motion and in the control allocation block, the

forces due to the thrusters are assumed to be parallel to the axes of the S-frame.

This assumption is only made when coding the equations of motion and in the

control allocation block. It is not used in the derivation of the equations of

motion.

16) The closed-loop dynamics of the control systems that drive the wheels and

gimbals of the VSCMGs are not modeled.

Note that the equations of motion take into account the following effects.

1) The center of mass of the upper stage bus (does not include the gimbals and

the wheels of the VSCMGs) and therefore the center of mass of the upper stage

(includes the gimbals and the wheels of the VSCMGs) can move with respect

to the center of rotation.

2) The center of mass of the lower stage can move with respect to the center of

rotation.

3) The epoxy floor is NOT perfectly flat.

6.1.4 Equations of Motion of the Upper Stage

6.1.4.1 Translational Motion

From classical Newton/Euler dynamics, the translational dynamic equations of the

center of mass of the upper stage (including the gimbals and the wheels of the
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VSCMGs) are given by

msā s/I = f̄g,s + f̄c,s/l +
12∑
i=1

f̄Ti , (176)

where āY/X is the acceleration vector of point Y with respect to reference frame X, m∗

is the mass of ∗, ∗ is the center of mass of ∗, f̄g,∗ is the gravitational force acting on

∗, f̄c,∗/# is the contact force acting on ∗ due to #, and f̄Ti is the force due to thruster

i. The symbols ∗ and # will be replaced by the symbols s, f , l, g, wi, gi, ci when

representing the upper stage (including the gimbals and wheels of the VSCMGs), the

upper stage bus (which does not include the gimbals and the wheels of the VSCMGs),

the lower stage, the ground, the wheel of VSCMG i, the gimbal of VSCMG i (without

the wheel), and the wheel and gimbal of VSCMG i together. The acceleration of the

center of mass of the upper stage with respect to the inertial frame can be rewritten

in terms of the acceleration of the center of rotation, point CR, with respect to the

inertial frame as follows:

ms(āCR/I + ā
s/S +

Sdω̄S/I

dt
× r̄

s/CR + 2(ω̄S/I × v̄ s/S) + ω̄S/I × (ω̄S/I × r̄ s/CR))

= f̄g,s + f̄c,s/l +
12∑
i=1

f̄Ti . (177)

6.1.4.2 Rotational Motion

From classical Newton/Euler dynamics, the rotational dynamic equations of the sys-

tem composed by the upper stage bus (not including the gimbals and wheels of the

VSCMGs) and the gimbals and the wheels of the VSCMGs about the center of rota-

tion (which moves with respect to the inertial frame) are given by

IdCRH̄system/I

dt
+ r̄

s/CR ×msāCR/I = r̄
s/CR × f̄g,s +

12∑
i=1

r̄Ti/CR × f̄Ti + CRτ̄c,s/l, (178)

where P τ̄c,∗/# is the contact moment vector on ∗ due to # about point P . Note that

CRτ̄c,s/l is assumed to be zero in the 5-DOF case and in the 3-DOF case, but not in
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the (2+1)-DOF case. Using Eq. (175), CRH̄system/I can be calculated as follows:

CRH̄system/I = CRĪsω̄S/I + f Īf ω̄F/S +
4∑
i=1

wi Īwi
ω̄Wi/S

+
4∑
i=1

gi Īgiω̄Gi/S

+ r̄
f/CR × (mf v̄ f/S) +

4∑
i=1

r̄
wi

/CR × (mwi
v̄

wi
/S) +

4∑
i=1

r̄
gi

/CR × (mgi v̄ gi
/S),

where P Ī∗ is the inertia matrix of ∗ about point P . This equation can be simplified

by noting that ω̄F/S = 0 and ω̄Wi/S
= ω̄Wi/Gi

+ ω̄Gi/S
and assuming that the centers

of mass of the gimbals coincide with the centers of mass of the wheels and that the

centers of mass of the wheels and of the gimbals do not move with respect to the

S-frame (which implies that mf v̄ f/S = msv̄ s/S). This yields

CRH̄system/I = CRĪsω̄S/I +
4∑
i=1

ci Īwi
ω̄Wi/Gi

+
4∑
i=1

ci Īciω̄Gi/S
+ r̄

f/CR × (msv̄ s/S). (179)

The I-frame time derivative of the previous equation is given by

IdCRH̄system/I

dt
=

SdCRH̄system/I

dt
+ ω̄S/I × CRH̄system/I

=
SdCRĪs

dt
ω̄S/I+

CRĪs
Sdω̄S/I

dt
+

Sd

dt

4∑
i=1

ci Īwi
ω̄Wi/Gi

+
Sd

dt

4∑
i=1

ci Īciω̄Gi/S
+r̄

f/CR×(msā s/S)

+ω̄S/I ×
(
CRĪsω̄S/I +

4∑
i=1

ci Īwi
ω̄Wi/Gi

+
4∑
i=1

ci Īciω̄Gi/S
+ r̄

f/CR × (msv̄ s/S)
)
. (180)

Finally, combining Eq. (180) with Eq. (178) yields

SdCRĪs
dt

ω̄S/I + CRĪs
Sdω̄S/I

dt
+

Sd

dt

4∑
i=1

ci Īwi
ω̄Wi/Gi

+
Sd

dt

4∑
i=1

ci Īciω̄Gi/S
+ r̄

f/CR × (msā s/S)

+ω̄S/I×(CRĪsω̄S/I+
4∑
i=1

ci Īwi
ω̄Wi/Gi

+
4∑
i=1

ci Īciω̄Gi/S
+r̄

f/CR×(msv̄ s/S))+r̄ s/CR×msāCR/I

=r̄
s/CR × f̄g,s +

12∑
i=1

r̄Ti/CR × f̄Ti + CRτ̄c,s/l. (181)
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6.1.5 Equations of Motion of the Lower Stage

6.1.5.1 Translational Motion

From classical Newton/Euler dynamics, the translational dynamic equations of the

center of mass of the lower stage are given by

mlā l/I
= f̄g,l + f̄c,l/s + f̄c,l/g. (182)

The acceleration of the center of mass of the lower stage with respect to the inertial

frame can be rewritten in terms of the acceleration of the center of rotation, point

CR, with respect to the inertial frame as follows (using f̄c,l/s = −f̄c,s/l)

ml(āCR/I + ā
l/L

+
Ldω̄L/I

dt
× r̄

l/CR + 2(ω̄L/I × v̄ l/L
) + ω̄L/I × (ω̄L/I × r̄ l/CR))

= f̄g,l − f̄c,s/l + f̄c,l/g. (183)

6.1.5.2 Rotational Motion

From classical Newton/Euler dynamics, the rotational dynamic equations of the lower

stage about the center of rotation (which moves with respect to the inertial frame)

are given by

IdCRH̄l/I

dt
+ r̄

l/CR ×mlāCR/I = r̄
l/CR × f̄g,l + CRτ̄c,l/s + CRτ̄c,l/g + r̄Q/CR × f̄c,l/g. (184)

Note that CRτ̄c,l/s = −CRτ̄c,s/l. Moreover, the epoxy floor is assumed to be frictionless.

Hence, the only non-zero component of f̄c,l/g is along K̄L and, thus, r̄Q/CR× f̄c,l/g = 0.

Using Eq. (175), CRH̄l/I can be calculated as follows:

CRH̄l/I = CRĪlω̄L/I + r̄
l/CR × (mlv̄ l/L

). (185)

Its I-frame time derivative is equal to

IdCRH̄l/I

dt
=

LdCRH̄l/I

dt
+ ω̄L/I × CRH̄l/I

=
LdCRĪl

dt
ω̄L/I+

CRĪl
Ldω̄L/I

dt
+r̄

l/CR×(mlā l/L
)+ω̄L/I×

(
CRĪlω̄L/I+r̄ l/CR×(mlv̄ l/L

)
)
.
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Finally, combining the previous equation with Eq. (184) and assuming that
Ld
dt

(CRĪl) =

0 yields

CRĪl
Ldω̄L/I

dt
+ r̄

l/CR × (mlā l/L
) + ω̄L/I ×

(
CRĪlω̄L/I + r̄

l/CR × (mlv̄ l/L
)
)

+ r̄
l/CR ×mlāCR/I = r̄

l/CR × f̄g,l − CRτ̄c,s/l + CRτ̄c,l/g. (186)

6.1.6 Equations of Motion for the 3-DOF case

The equations of motion when the lower stage is fixed with respect to the inertial

frame and only the upper stage is allowed to rotate with respect to the inertial frame

are given by Eq. (181). In this case, āCR/I = 0. Moreover, the connection between

the upper stage and the lower stage is assumed to be frictionless, i.e., CRτ̄c,s/l = 0.

With this simplifications, Eq. (181) becomes

SdCRĪs
dt

ω̄S/I + CRĪs
Sdω̄S/I

dt
+

Sd

dt

4∑
i=1

ci Īwi
ω̄Wi/Gi

+
Sd

dt

4∑
i=1

ci Īciω̄Gi/S
+ r̄

f/CR × (msā s/S)

+ ω̄S/I ×
(
CRĪsω̄S/I +

4∑
i=1

ci Īwi
ω̄Wi/Gi

+
4∑
i=1

ci Īciω̄Gi/S
+ r̄

f/CR × (msv̄ s/S)
)

= r̄
s/CR × f̄g,s +

12∑
i=1

r̄Ti/CR × f̄Ti . (187)

Note that the previous equation is in a vector form. For numerical implementation,

it will be rewritten in the S-frame. In what follows, ȳX denotes the vector ȳ expressed

in the X-frame and ĪX denotes the inertia matrix Ī expressed in the X-frame. First,

note that
4∑
i=1

ci ĪS

ci
ω̄S

Gi/S
= AgIcgγ̇, (188)

where Ag = [ĪS
G1
, ĪS

G2
, ĪS

G3
, ĪS

G4
], Icg = diag([ c1IG1

c1,11,
c2IG2

c2,11,
c3IG3

c3,11,
c4IG4

c4,11]), γ̇ =

[γ̇1, γ̇2, γ̇3, γ̇4]T, ĪS
Gi

is the unit vector ĪGi
expressed in the S-frame, γ̇i is the angular

speed of gimbal i, and

ci ĪGi
ci

=


ciIGi

ci,11 0 0

0 ciIGi
ci,22 0

0 0 ciIGi
ci,33

 (189)
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is the inertia matrix of gimbal i and wheel i with respect to their (common) center

of mass expressed in the Gi-frame. Note that the Gi-frame axes are assumed to be

principal axes of gimbal i and wheel i. Moreover, note that

4∑
i=1

ci ĪS

wi
ω̄S

Wi/Gi
= As(γ)IwsΩ, (190)

where As(γ) = [J̄S
G1

(γ1), J̄S
G2

(γ2), J̄S
G3

(γ3), J̄S
G4

(γ4)], Ω = [Ω1,Ω2,Ω3,Ω4]T, J̄S
Gi

is the

unit vector J̄Gi
expressed in the S-frame (which is a function of γi), Ωi is the angular

speed of wheel i, Iws = diag([ c1IG1
w1,22,

c2IG2
w2,22,

c3IG3
w3,22,

c4IG4
w4,22]), and

ci ĪGi
wi

=


ciIGi

wi,11 0 0

0 ciIGi
wi,22 0

0 0 ciIGi
wi,33

 (191)

is the inertia matrix of wheel i with respect to its center of mass expressed in the

Gi-frame. Note that the Gi-frame axes are assumed to be principal axes of wheel i.

Finally, note that

CRĪS

s = CRĪS

f +
4∑
i=1

CRĪS

ci
= CRĪS

f +
4∑
i=1

ci ĪS

ci
−

4∑
i=1

mci [r̄
S

ci
/CR]×[r̄S

ci
/CR]×

= CRĪS

f+AgIcgA
T

g+As(γ)IcsAs(γ)T+At(γ)IctAt(γ)T−
4∑
i=1

mci [r̄
S

ci
/CR]×[r̄S

ci
/CR]×

= CRĪS

f+mci
+AgIcgA

T

g+As(γ)IcsAs(γ)T+At(γ)IctAt(γ)T, (192)

where

CRĪS

f+mci
= CRĪS

f −
4∑
i=1

mci [r̄
S

ci
/CR]×[r̄S

ci
/CR]×,

At(γ) = [K̄S
G1

(γ1), K̄S
G2

(γ2), K̄S
G3

(γ3), K̄S
G4

(γ4)], Ics = diag([ c1IG1
c1,22,

c2IG2
c2,22,

c3IG3
c3,22,

c4IG4
c4,22]), Ict = diag([ c1IG1

c1,33,
c2IG2

c2,33,
c3IG3

c3,33,
c4IG4

c4,33]), and K̄S
Gi

is the unit vector

K̄Gi
expressed in the S-frame (which is a function of γi).

Calculating the time derivative of Eqs. (188), (190), and (192) using [107]

Ȧs = At diag (γ̇) and Ȧt = −As diag (γ̇),
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assuming that d
dt

(CRĪS
f ) = 0, and substituting the results into Eq. (187) expressed in

the S-frame yields

(
At diag(γ̇)(Ics−Ict)AT

s+As diag(γ̇)(Ics−Ict)AT

t

)
ω̄S

S/I+
CRĪS

s

dω̄S
S/I

dt
+At(γ)Iws diag(Ω)γ̇

+As(γ)IwsΩ̇ + AgIcgγ̈ + r̄S
f/CR × (msā

S

s/S
) + ω̄S

S/I × (CRĪS

s ω̄
S

S/I + As(γ)IwsΩ

+AgIcgγ̇ + r̄S
f/CR × (msv̄

S

s/S
)) = r̄S

s/CR × f̄ S

g,s +
12∑
i=1

r̄STi/CR × f̄ S

Ti
, (193)

where f̄ S
g,s = msR

S←I[0, 0, g]T, RX←Y is the rotation matrix that transforms the coor-

dinates of a vector from the Y-frame to the X-frame, and

CR ˙̄IS

s (γ̇) = At diag(γ̇)(Ics−Ict)AT

s+As diag(γ̇)(Ics−Ict)AT

t . (194)

Note that Eq. (193) matches Eq. (9) of Ref. [107] assuming that r̄S
s/CR = 0 and f̄ S

Ti
= 0.

Moreover, note that Ag, As(γ), and At(γ) can be calculated from Ag0 , Ag(γ = 0),

As0 , As(γ = 0), and At0 , At(γ = 0) as follows [107]

Ag = Ag0, (195)

As(γ) = As0 diag(cos(γ)) + At0 diag(sin(γ)), (196)

At(γ) = At0 diag(cos(γ))− As0 diag(sin(γ)). (197)

6.1.6.1 Kinematics

The quaternion representation of the kinematic equations for this case is given by

q̇S/I = 1
2
qS/Iω

S

S/I, (198)

where ωS
S/I = (0, ω̄S

S/I).

6.1.7 Equations of Motion for the 5-DOF case

The equations of motion for the 5-DOF case describe the rotation of the upper stage

with respect to the inertial frame and the translation of the center of rotation with

respect to the inertial frame. Like in Section 6.1.6, the connection between the upper
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stage and the lower stage is assumed to be frictionless, i.e., CRτ̄c,s/l = 0, but now

āCR/I 6= 0. From Eq. (181), the rotational motion is then described by

SdCRĪs
dt

ω̄S/I + CRĪs
Sdω̄S/I

dt
+

Sd

dt

4∑
i=1

ci Īwi
ω̄Wi/Gi

+
Sd

dt

4∑
i=1

ci Īciω̄Gi/S
+ r̄

f/CR × (msā s/S)

+ω̄S/I×
(
CRĪsω̄S/I+

4∑
i=1

ci Īwi
ω̄Wi/Gi

+
4∑
i=1

ci Īciω̄Gi/S
+r̄

f/CR×(msv̄ s/S)
)
+r̄

s/CR×msāCR/I

=r̄
s/CR × f̄g,s +

12∑
i=1

r̄Ti/CR × f̄Ti . (199)

Note that, alternatively, Eq. (199) can be written using the time derivative with

respect to the inertial frame (instead of the time derivative with respect to the S-

frame) as follows:

Id

dt
(CRĪsω̄S/I)+

Id

dt
(

4∑
i=1

ci Īwi
ω̄Wi/Gi

)+
Id

dt
(

4∑
i=1

ci Īciω̄Gi/S
)+

Id

dt
(r̄

f/CR×(msv̄ s/S))

+ r̄
s/CR×msāCR/I = r̄

s/CR × f̄g,s +
12∑
i=1

r̄Ti/CR × f̄Ti , (200)

which makes it easier to compare with Eq. (1) of Ref. [14].1

1A different version of Eq. (200) is given in Ref. [14]. In the notation used in this document,
Eq. (1) of Ref. [14] can be written as (neglecting terms due to the proof-masses considered in Ref. [14])

Id

dt
(CRĪsω̄S/I) +

4∑
i=1

CRĪwi

Id

dt
(ω̄Wi/Gi

) +

4∑
i=1

CRĪci

Id

dt
(ω̄Gi/S) + r̄ s/CR ×msāCR/I

+ v̄
s/S × (msv̄CR/I) + ω̄S/I × (r̄

s/CR × (msv̄CR/I)) = r̄
s/CR × f̄g,s +

12∑
i=1

r̄Ti/CR × f̄Ti
. (201)

The differences between Eq. (201) and Eq. (200) are:

i) In Eq. (201), Īwi
and Īci are inertia matrices about the center of rotation and not about the

center of mass of the gimbals/wheels. This is considered to be a typo.

ii) In Eq. (201),
Id(CRĪwi

)

dt and
Id(CRĪci )

dt are neglected.

iii) In Eq. (201), the term
Id
dt (r̄ f/CR × (msv̄ s/S)) does not appear. This can be traced to the

fact that the total kinetic energy calculated in Ref. [14] does not account for terms due to
v̄

f/S and v̄
l/L.

iv) Two additional terms appear in Eq. (201), v̄
s/S× (msv̄CR/I) and ω̄S/I× (r̄

s/CR× (msv̄CR/I)).
If the term ω̄S/I × (r̄

s/CR × (msv̄CR/I)) is assumed to be mistyped, where the correct term
should be (ω̄S/I × r̄ s/CR)× (msv̄CR/I), then these two additional terms can be traced to the
fact that Eq. (4.157) of Ref. [65] was used to calculate Eq. (201), whereas Eq. (4.167) should
have been used.
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Following the same steps used in Section 6.1.6, Eq. (199) can be expressed in the

S-frame as follows:

CR ˙̄IS

s (γ̇)ω̄S

S/I+
CRĪS

s
˙̄ωS

S/I+At(γ)Iws diag(Ω)γ̇+As(γ)IwsΩ̇

+AgIcgγ̈+r̄S
f/CR×(msā

S

s/S
)+ω̄S

S/I×
(
CRĪS

s ω̄
S

S/I+As(γ)IwsΩ+AgIcgγ̇+r̄S
f/CR×(msv̄

S

s/S
)
)

=r̄S
s/CR×f̄ S

g,s+
12∑
i=1

r̄STi/CR×f̄ S

Ti
−r̄S

s/CR×ms(R
S←L ˙̄vL

CR/I)−r̄Ss/CR×ms(ω̄
S

L/I×v̄S

CR/I), (202)

where RS←L = RS←I(RL←I)T.

Moreover, assuming that CRτ̄c,s/l = 0 and expressing Eq. (186) in the L-frame

results in

CRĪL

l
˙̄ωL

L/I + r̄L
l/CR × (mlā

L

l/L
) + ω̄L

L/I ×
(
CRĪL

l ω̄
L

L/I + r̄L
l/CR × (mlv̄

L

l/L
)
)

+ r̄L
l/CR ×ml( ˙̄vL

CR/I + ω̄L

L/I × v̄L

CR/I) = r̄L
l/CR × f̄L

g,l + CRτ̄L

c,l/g. (203)

Finally, the translational dynamic equations of the center of rotation of the plat-

form are composed by first rewriting Eq. (183) in terms of f̄c,s/l and then substituting

the result in Eq. (177). This yields

mtāCR/I +ms(ā s/S +
Sdω̄S/I

dt
× r̄

s/CR + 2(ω̄S/I × v̄ s/S) + ω̄S/I × (ω̄S/I × r̄ s/CR))

+ml(ā l/L
+

Ldω̄L/I

dt
× r̄

l/CR + 2(ω̄L/I × v̄ l/L
) + ω̄L/I × (ω̄L/I × r̄ l/CR))

= f̄g,s + f̄g,l + f̄c,l/g +
12∑
i=1

f̄Ti , (204)

where mt = ms + ml is the total mass of the platform.2 Expressing the previous

2A different version of Eq. (204) is given in Ref. [14]. In the notation used in this document, the
equation given in Ref. [14] is (neglecting terms due to the proof-masses considered in Ref. [14])

mtāCR/I +ms(
Sdω̄S/I

dt
× r̄

s/CR + (ω̄S/I × v̄ s/S) + ω̄S/I × (ω̄S/I × r̄ s/CR))

+ml(
Ldω̄L/I

dt
× r̄

l/CR + ω̄L/I × (ω̄L/I × r̄ l/CR)) =

12∑
i=1

f̄Ti
. (205)

The differences between Eq. (205) and Eq. (204) are:

i) In Eq. (205), the terms ā
s/S, ā

l/L, and v̄
l/L are neglected.
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equation in the L-frame yields

mt( ˙̄vL

CR/I+ω̄
L

L/I×v̄L

CR/I)+ms(ā
L

s/S
+RL←S ˙̄ωS

S/I×r̄Ls/CR+2(ω̄L

S/I×v̄L

s/S
)+ω̄L

S/I×(ω̄L

S/I×r̄Ls/CR))

+ml(ā
L

l/L
+ ˙̄ωL

L/I×r̄Ll/CR+2(ω̄L

L/I×v̄L

l/L
)+ω̄L

L/I×(ω̄L

L/I×r̄Ll/CR))

=f̄L

g,s+f̄
L

g,l+f̄
L

c,l/g+
12∑
i=1

f̄L

Ti
. (206)

If the connection between lower stage and the epoxy floor is frictionless, then the

contact moment due to the floor on the lower stage is zero along K̄L, i.e., CRτ̄L

c,l/g =

[CRτ̄L

c,l/g,1,
CRτ̄L

c,l/g,2, 0]T. Under the same assumption, the contact force due to the floor

on the lower stage is only nonzero along K̄L, i.e., f̄L

c,l/g = [0, 0, f̄L

c,l/g,3]T.

Moreover, the floor constrains the angular velocity of the lower platform with

respect to the G-frame to be along K̄L. Since it is assumed that ω̄G/I = 0, then

ω̄L
L/I = ω̄L

L/G + ω̄L
G/I = ω̄L

L/G = [0, 0, rLL/I]
T. In addition, the floor constrains the velocity

of the center of rotation with respect to the inertial frame to be zero along K̄L, i.e.,

v̄L
CR/I = [uL

CR/I, v
L
CR/I, 0]T.

Hence, the three coordinates of Eq. (202), the third coordinate of Eq. (203), and

the first and second coordinates of Eq. (206) form a system of 6 equations and 6

unknowns: ṗS
S/I, q̇

S
S/I, ṙ

S
S/I, u̇

L
CR/I, v̇

L
CR/I, and ṙLL/I, where ˙̄ωS

S/I = [ṗS
S/I, q̇

S
S/I, ṙ

S
S/I]

T, ˙̄vL
CR/I =

[u̇L
CR/I, v̇

L
CR/I, 0]T, and ˙̄ωL

L/I = [0, 0, ṙLL/I]
T. These equations are the dynamic equations

for this case.

6.1.7.1 Kinematics

The kinematic equations for the rotation of the upper stage are given by Eq. (198).

Assuming that ω̄G/I = 0, the kinematic equations for the rotation of the lower

ii) In Eq. (205), the term (ω̄S/I × v̄ s/S) should be multiplied by two.

iii) In Eq. (205), the floor is assumed to be perfectly flat. Since f̄c,l/g, f̄g,s, and f̄g,l are perpen-
dicular to the direction of motion, they are neglected in Eq. (205).
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stage are given by ω̄L
L/I = ω̄L

L/G + ω̄L
G/I = ω̄L

L/G = [0, 0, rLL/I]
T = [0, 0, ψ̇L/I]

T, or simply,

ψ̇L/I = rLL/I, (207)

where ψL/I is the angle from ĪG to ĪL (or from J̄G to J̄L). Then, the orientation of the

L-frame with respect to the I-frame can be calculated from RL←I = RL←GRG←I, where

RL←G =


cos(ψL/I) sin(ψL/I) 0

− sin(ψL/I) cos(ψL/I) 0

0 0 1

 . (208)

If the position of point Q (the contact point between the epoxy floor and the lower

stage) with respect to the origin of the inertial frame can be expressed in the inertial

frame as r̄IQ/OI
= [xI

Q/OI
, yI

Q/OI
, zI

Q/OI
= f(xI

Q/OI
, yI

Q/OI
)]T, for some function f(xI

Q/OI
, yI

Q/OI
),

then the rotation matrix RG←I is given by

RG←I = (RI←G)T =


(ĪIG)T

(J̄ IG)T

(K̄I
G)T

 , (209)

where

ĪIG =
[1, 0,

∂f(xI
Q/OI

,yI
Q/OI

)

∂xI
Q/OI

∣∣
Q
]T

||[1, 0,
∂f(xI

Q/OI
,yI

Q/OI
)

∂xI
Q/OI

∣∣
Q
]T||

, J̄ IG =
[0, 1,

∂f(xI
Q/OI

,yI
Q/OI

)

∂yI
Q/OI

∣∣
Q
]T

||[0, 1,
∂f(xI

Q/OI
,yI

Q/OI
)

∂yI
Q/OI

∣∣
Q
]T||

, K̄I
G = ĪIG × J̄ IG.

The partial derivatives
∂f(xI

Q/OI
,yI

Q/OI
)

∂xI
Q/OI

∣∣
Q

and
∂f(xI

Q/OI
,yI

Q/OI
)

∂yI
Q/OI

∣∣
Q

have been measured at

different points of the epoxy floor. In the main file of the simulation, the user can

choose to linearly interpolate these measurements during the simulation or assign

constant values to
∂f(xI

Q/OI
,yI

Q/OI
)

∂xI
Q/OI

∣∣
Q

and
∂f(xI

Q/OI
,yI

Q/OI
)

∂yI
Q/OI

∣∣
Q
.

Finally, the kinematic equations for the translation of the center of rotation with

respect to the inertial frame are given by ˙̄rICR/OI
= RI←Lv̄L

CR/I, or equivalently,

˙̄rIQ/OI
= RI←Lv̄L

CR/I, (210)

since ˙̄rICR/OI
= v̄I

CR/I = v̄I
Q/I + v̄I

CR/G + ω̄I
G/I × r̄ICR/Q = v̄I

Q/I = ˙̄rIQ/OI
, where ω̄G/I = 0 is an

assumption and v̄CR/G = 0.
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6.1.8 Equations of Motion for the (2+1)-DOF case

The translational dynamic equations for the (2+1)-DOF case are given by Eq. (204).

Note that in this case, ω̄L/I = ω̄S/I and
Sdω̄S/I

dt
=

Sdω̄L/I

dt
=

Ldω̄L/I

dt
+ ω̄L/S × ω̄L/I =

Ldω̄L/I

dt
,

since ω̄L/S = 0. Using these results in Eq. (204) and expressing it in the L-frame yields

mt( ˙̄vL

CR/I+ω̄
L

L/I×v̄L

CR/I)+ms(ā
L

s/S
+ ˙̄ωL

L/I×r̄Ls/CR+2(ω̄L

L/I×v̄L

s/S
)+ω̄L

L/I×(ω̄L

L/I×r̄Ls/CR))

+ml(ā
L

l/L
+ ˙̄ωL

L/I×r̄Ll/CR+2(ω̄L

L/I×v̄L

l/L
)+ω̄L

L/I×(ω̄L

L/I×r̄Ll/CR))

=f̄L

g,s+f̄
L

g,l+f̄
L

c,l/g+
12∑
i=1

f̄L

Ti
. (211)

As for the rotational dynamic equations, note that now CRτ̄c,s/l 6= 0. Hence,

writing Eq. (186) in terms of CRτ̄c,s/l and substituting it in Eq. (181) yields

SdCRĪs
dt

ω̄S/I+
CRĪl

Ldω̄L/I

dt
+CRĪs

Sdω̄S/I

dt
+

Sd

dt

4∑
i=1

ci Īwi
ω̄Wi/Gi

+
Sd

dt

4∑
i=1

ci Īciω̄Gi/S

+ r̄
f/CR × (msā s/S) + r̄

l/CR × (mlā l/L
) + ω̄S/I × (CRĪsω̄S/I +

4∑
i=1

ci Īwi
ω̄Wi/Gi

+
4∑
i=1

ci Īciω̄Gi/S
+ r̄

f/CR × (msv̄ s/S)) + ω̄L/I ×
(
CRĪlω̄L/I + r̄

l/CR × (mlv̄ l/L
)
)

+ r̄
s/CR ×msāCR/I + r̄

l/CR ×mlāCR/I = r̄
s/CR × f̄g,s +

12∑
i=1

r̄Ti/CR × f̄Ti + r̄
l/CR × f̄g,l

+ CRτ̄c,l/g. (212)

Finally, expressing Eq. (212) in the L-frame and using ω̄L/I = ω̄S/I,
Sdω̄S/I

dt
=

Ldω̄L/I

dt
,

and Eqs. (192), (190), and (188) and their time derivatives yields

RL←S
(
At diag(γ̇)(Ics−Ict)AT

s+As diag(γ̇)(Ics−Ict)AT

t

)
RS←Lω̄L

L/I+
CRĪL

l
˙̄ωL

L/I

+RL←S(CRĪS

s )RS←L ˙̄ωL

L/I+R
L←S(At(γ)Iws diag(Ω)γ̇+As(γ)IwsΩ̇)+RL←S(AgIcgγ̈)

+r̄L
f/CR × (msā

L

s/S
)+r̄L

l/CR × (mlā
L

l/L
)+ω̄L

L/I ×
(
RL←S(CRĪS

s )RS←Lω̄L

L/I+
CRĪL

l ω̄
L

L/I

+RL←S(As(γ)IwsΩ)+RL←S(AgIcgγ̇)+r̄L
f/CR × (msv̄

L

s/S
) + r̄L

l/CR × (mlv̄
L

l/L
)
)

+r̄L
s/CR ×ms( ˙̄vL

CR/I + ω̄L

L/I × v̄L

CR/I)+r̄
L

l/CR ×ml( ˙̄vL

CR/I + ω̄L

L/I × v̄L

CR/I) = r̄L
s/CR × f̄L

g,s
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+r̄L
l/CR × f̄L

g,l +
12∑
i=1

r̄LTi/CR × f̄L

Ti
+ CRτ̄L

c,l/g. (213)

If the connection between lower stage and the epoxy floor is frictionless, then the

contact moment due to the floor on the lower stage is zero along K̄L, i.e., CRτ̄L

c,l/g =

[CRτ̄L

c,l/g,1,
CRτ̄L

c,l/g,2, 0]T. Under the same assumption, the contact force due to the floor

on the lower stage is only nonzero along K̄L, i.e., f̄L

c,l/g = [0, 0, f̄L

c,l/g,3]T.

Moreover, the floor constrains the angular velocity of the lower platform with

respect to the G-frame to be along K̄L. Since it is assumed that ω̄G/I = 0, then

ω̄L
L/I = ω̄L

L/G + ω̄L
G/I = ω̄L

L/G = [0, 0, rLL/I]
T. In addition, the floor constrains the velocity

of the center of rotation with respect to the inertial frame to be zero along K̄L, i.e.,

v̄L
CR/I = [uL

CR/I, v
L
CR/I, 0]T.

Hence, the third coordinate of Eq. (213) and the first and second coordinates of

Eq. (211) form a system of 3 equations and 3 unknowns: u̇L
CR/I, v̇

L
CR/I, and ṙLL/I, where

˙̄vL
CR/I = [u̇L

CR/I, v̇
L
CR/I, 0]T and ˙̄ωL

L/I = [0, 0, ṙLL/I]
T. These equations are the dynamic

equations for this case.

6.1.8.1 Kinematics

The kinematic equations of motion for this case are given by Eq. (207) and Eq. (210).

Note that, in this case, the orientation of the S-frame with respect to the I-frame

can be calculated from

RS←I(t) = RS←L(0)RL←I(t),

where RS←L(0) = RS←I(0)(RL←I(0))T, since in the (2+1)-DOF case, RS←L does not

change with time.

6.2 Real-World Effects

In addition to the equations of motion, the high-fidelity simulation of the platform

takes into consideration the following real-world effects. The default values presented

here are defined and can be easily changed in the input file of the simulation.
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1) The opening and closing of the solenoid valves of the cold-gas thrusters is mod-

eled as a first-order system with transfer function H(s) = 1/τ
s+1/τ

. The value of

τ was measured experimentally for each thruster. From thruster 1 to thruster

12, τ is given by 6.7, 20.0, 6.7, 6.7, 13.3, 6.7, 6.7, 33.3, 6.7, 6.7, 6.7, and 6.7 ms.

2) The angular velocity measurement produced by the IMU (after being filtered by

a 4-th order discrete-time Butterworth filter) is simulated by adding noise, bias,

and drift to the true angular velocity. The default values for these parameters,

based on experimental data, are [0.14, 0.14, 0.14]T deg/s (standard deviation

of AWGN), [0, 0, 0]T deg/s, and [0, 0, 0]T deg/s2, respectively. Moreover, the

measurement of qS/I produced by the IMU (after being filtered by a 4-th order

discrete-time Butterworth filter) is simulated by adding AWGN to the true

value of qS/I. The default value of the standard deviation of this AWGN is

[0, 0, 0, 0]T, based on experimental data. After the AWGN is added to qS/I, qS/I

is re-normalized through [qS/I] =
[qS/I]

‖[qS/I]‖
.

3) The non-dimensional specific force measurement produced by the IMU is sim-

ulated by calculating n̄S
A/I,m = (āS

A/I + RS←IRI←Itrue [0, 0, g]T)/c, where āS
A/I is the

true linear acceleration at the location of the IMU with respect to the inertial

frame, c = 9.8 m/s2 is a scaling constant defined in the user manual of the IMU,

g is assumed to be 9.8 m/s2, and RI←Itrue is a rotation matrix used to simulate

the misalignment between K̄I (defined experimentally) and the true direction

of the local gravity acceleration vector. By default, RI←Itrue = I3×3. Noise and

bias is also added to n̄S
A/I,m. The default values for these parameters, based on

experimental data, are [4.3e−4, 4.3e−4, 4.3e−4]T (standard deviation of AWGN)

and [0.014, 0.021,−0.0006]T s−1.

4) The angular velocity measurement produced by the rate-gyros is simulated by

adding noise, bias, and drift to the true angular velocity. The default values for

159



these parameters, based on experimental data, are [0.05, 0.05, 0.05]T deg/s (stan-

dard deviation of AWGN), [−0.9, 1.1, 0.8]T deg/s, and [1.2e−3,−2.3e−3,−1.0e−3]T

deg/s2, respectively.

5) The measurement of qS/I produced by the VICON system is simulated by adding

AWGN to the true qS/I, with standard deviation [1.2e−3, 1.2e−3, 1.2e−3, 1.2e−3]T.

After the AWGN is added to qS/I, qS/I is re-normalized through [qS/I] =
[qS/I]

‖[qS/I]‖
.

Similarly, the measurement of r̄ICR/OI
produced by the VICON system is simu-

lated by adding AWGN to the true r̄ICR/OI
, with standard deviation [1.5, 1.5, 1.5]T

mm.

6) The measurement of qS/T produced by the vision-based pose estimation algo-

rithm described in Ref. [111], where the T-frame is a frame fixed to the target

object, is simulated by adding AWGN to the true qS/T, with standard deviation

[1e−4, 1e−4, 1e−4, 1e−4]T. After the AWGN is added to qS/T, qS/T is re-normalized

through [qS/T] =
[qS/T]

‖[qS/T]‖ . In the current implementation of the code, the true

value of qS/T is calculated from the true value of qS/I and from the (constant)

value of qT/I specified in the input file of the simulation. Similarly, the measure-

ment of r̄TCR/OT
produced by the vision system is simulated by adding AWGN

to the true r̄TCR/OT
, with standard deviation [1.7, 1.7, 1.7]T mm. In the current

implementation of the code, the true value of r̄TCR/OT
is calculated from the true

value of r̄ICR/OI
and from the (constant) values of qT/I and r̄IOT/OI

specified in the

input file. The update rate of the vision system is defined in the input file and

is 10 Hz by default.

7) The measurement of γ produced by US Digital MA3 miniature absolute mag-

netic shaft encoders is simulated by adding AWGN to the true γ, with standard

deviation [0.3, 0.3, 0.3, 0]T deg.

8) The measurement of Ω produced by Hall sensors is simulated by adding AWGN
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to the true Ω, with standard deviation [5, 5, 5, 0]T rpm.

9) Experimental tests have shown that the motors that control the gimbals of the

VSCMGs cannot produce angular rates smaller than approximately 4 deg/s in

absolute value. This deadzone is included in the high-fidelity simulation.

10) The maximum thrust produced by each thruster has been measured experimen-

tally. These measurements are used as is in Section 6.5 to convert continuous-

time thrust into on-off commands. However, the actual maximum thrust pro-

duced by each thruster during an experiment is expected to differ significantly

from these measurements. Hence, to simulate this mismatch, the maximum

thrust of each thruster is currently simulated to be 10% higher than the mea-

sured maximum thrust.

6.3 Allocation of the Control Moment to the Variable-Speed
Control Moment Gyros

Note that whereas the control force calculated by the controller can only be allo-

cated to the cold-gas thrusters, the control moment can be allocated to the cold-gas

thrusters and/or the Variable-Speed Control Moment Gyros (VSCMGs). The current

implementation of the control software allows the user to choose either to allocate the

control moment to the cold-gas thrusters or to the VSCMGs. This section addresses

the allocation of the control moment to the latter.

6.3.1 Assumptions

The following assumptions are made in the allocation of the control moment to the

VSCMGs:

1) In all cases, the term AgIcgγ̈ is assumed to be zero.

2) In the (2+1)-DOF case only, the epoxy floor is assumed to be perfectly flat.
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6.3.2 Control Moment Allocation in the 3-DOF and 5-DOF cases

Since the 3-DOF case is similar to the 5-DOF case (note that Eq. (202) is identical

to Eq. (193), apart from two additional terms resulting from the translation of the

center of rotation), the control moment allocation for these two cases can be analyzed

at the same time. First, the attitude dynamic equations for the 5-DOF case, given

by Eq. (202), are rearranged as follows

CRĪS

s
˙̄ωS

S/I+ω̄
S

S/I×(CRĪS

s ω̄
S

S/I)

= −CR ˙̄IS

s (γ̇)ω̄S

S/I−At(γ)Iws diag(Ω)γ̇−As(γ)IwsΩ̇−AgIcgγ̈−ω̄S

S/I×
(
As(γ)IwsΩ+AgIcgγ̇

)
+r̄S

s/CR×f̄ S

g,s−r̄Ss/CR×ms(R
S←L ˙̄vL

CR/I)−r̄Ss/CR×ms(ω̄
S

L/I×v̄S

CR/I)

−ω̄S

S/I×
(
r̄S

f/CR×(msv̄
S

s/S
)
)
−r̄S

f/CR×(msā
S

s/S
)

+
12∑
i=1

r̄STi/CR×f̄ S

Ti
. (214)

The first line corresponds to terms coming from the rigid body dynamics. They cannot

be used to control the platform. The second line corresponds to terms coming from

the dynamics of the VSCMGs. These terms can be used to control the platform. The

third and fourth lines correspond to unwanted terms coming from having the centers

of mass not coincident with the center of rotation. Finally, if the cold-gas thrusters are

used exclusively for control force allocation (and not for control moment allocation),

the fifth line corresponds to unwanted moments created by the cold-gas thrusters due

to, for example, misalignments.

Denote the desired control moment with respect to the center of rotation expressed

in the S-frame by τ̄ S
c . This moment should be equal to the terms of Eq. (214) coming

from the dynamics of the VCCMGs, i.e.,

τ̄ S

c =−CR ˙̄IS

s (γ̇)ω̄S

S/I−At(γ)Iws diag(Ω)γ̇−As(γ)IwsΩ̇−AgIcgγ̈

−ω̄S

S/I×
(
As(γ)IwsΩ+AgIcgγ̇

)
. (215)

The problem is now to choose γ̇ and Ω̇ so that the right-side of Eq. (214) matches
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τ̄ S
c . A common assumption [107, 108, 47, 48] is to consider the term AgIcgγ̈ equal to

zero, since it is relatively small compared to the other terms. Under this assumption,

Eq. (215) can be rewritten as

τ̄ S

c +ω̄S

S/I×(As(γ)IwsΩ)=−CR ˙̄IS

s (γ̇)ω̄S

S/I−At(γ)Iws diag(Ω)γ̇−As(γ)IwsΩ̇−ω̄S

S/I×(AgIcgγ̇)

or

[
C D

]γ̇
Ω̇

 = Lτ , (216)

where

C , −At(γ)Iws diag(Ω)− [ω̄S

S/I]
×AgIcg − V (Ics−Ict), (217)

V , [
(
J̄S

G1
(K̄S

G1
)T + K̄S

G1
(J̄S

G1
)T
)
ω̄S

S/I, ..., (J̄
S

G4
(K̄S

G4
)T + K̄S

G4
(J̄S

G4
)T)ω̄S

S/I], (218)

D , −As(γ)Iws, (219)

Lτ , τ̄ S

c + ω̄S

S/I × (As(γ)IwsΩ). (220)

The VSCMGs can be run in three modes:

1) Reaction Wheel (RW) mode: γ̇ = 04×1 and Ω̇ ∈ R4.

2) Control Moment Gyro (CMG) mode: γ̇ ∈ R4 and Ω̇ = 04×1.

3) Variable-Speed Control Moment Gyro (VSCMG) mode: γ̇ ∈ R4 and Ω̇ ∈ R4.

When the VSCMGs are run in VSCMG mode or RW mode, the control moment

allocation problem is solved by solving the following minimization problem [107]

y∗ = arg min
y

1
2
yTW−1y, subject to Qy = L, (221)

where

y = [γ̇, Ω̇]T, (222)
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Q = [C,D], L = Lτ , and W is a weighting matrix. Depending on how this weighting

matrix is defined, the VSCMGs can operate in VSCMG mode, RW mode, or even

CMG mode. (However, in the current implementation, a different optimization prob-

lem is solved in CMG mode. More details follow.) In particular, if this weighting

matrix is defined as

W =

w1e
−w2σcINON×NON

0NON×NON

0NON×NON
INON×NON

 , (223)

W =

0NON×NON
0NON×NON

0NON×NON
INON×NON

 , (224)

W =

INON×NON
0NON×NON

0NON×NON
0NON×NON

 , (225)

the VSCMGs will operate in VSCMG mode, RW mode, or CMG mode, respectively.

In Eqs. (223)-(225), w1 and w2 are positive gains, σc is the condition number of

matrix C (i.e., the ratio between its largest and smallest singular value), and NON

is the number of operational VSCMGs. The solution to the minimization problem

defined by Eq. (221) is given by [107]

y∗ = W
1
2 (QW

1
2 )†L, (226)

where † denotes the Moore-Penrose pseudoinverse.

In VSCMG mode, depending on the condition number of matrix C, the VSCMGs

can operate either as reaction wheels (close to a singularity, i.e., when σc is large) or as

regular CMGs (away from a singularity, i.e., when σc is small) [107]. As a singularity

is approached, the VSCMGs will smoothly switch to RW mode. As a result, this

method can handle temporary rank deficiencies in matrix C.

When the VSCMGs are run in CMG mode, in order to escape or avoid singular-

ities, the steering logic suggested in Refs. [102] and [47] is employed. This steering
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logic consists on solving the following minimization problem:

γ̇∗ = arg min
γ̇

(Cγ̇ − Lτ )TV −1(Cγ̇ − Lτ ) + γ̇TW−1γ̇, subject to Cγ̇ = Lτ , (227)

where

V = α


1 ε3 ε2

ε3 1 ε1

ε2 ε1 1

 > 0, (228)

W is a NON-by-NON positive-definite matrix with diagonal elements W11,...,WNONNON

and non-diagonal elements equal to α,

α = α0 exp(−µ det(CCT)),

εk = ε0 sin(ωt+ φk),

and α0, µ, ε0, ω, φk, and Wii are constants to be properly selected. The solution to

the minimization problem defined by Eq. (227) is given by

γ̇∗ = C#Lτ , (229)

where

C# = (CTV −1C +W−1)−1CTV −1 = WCT(CWCT + V )−1. (230)

To simulate the limitations of the VSCMGs and to protect them during ex-

periments, γ̇i and Ω̇i are limited to ±25 deg/s and ±74 rad/s2, respectively, for

i = 1, 2, 3, 4. Likewise, the simulation/experiment is automatically stopped if Ωi

reaches ±3500 rpm. These values are specified and can be changed in the input file

of the simulation.

6.3.3 Wheel Speed Equalization

When the VSCMGs are running in VSCMG mode, if the spin rate of some wheels

becomes too small, it may not be possible to generate the required torque by changing
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the gimbal angles [107]. If this is the case, the remaining degrees of freedom may not

be enough to achieve attitude-tracking. Moreover, if the spin rate of some wheels

becomes too high, they might saturate. Hence, in VSCMG mode, it is desirable to

equalize the spin rates of the wheels of all operational VSCMGs, whenever possible.

Two methods for wheel speed equalization are proposed in Ref. [107]. The first one

guarantees exact equalization of the wheel speeds, but requires an additional degree

of freedom. The second method shows a tendency for wheel speed equalization, but

does not guarantee it. However, this method does not require an additional degree of

freedom.

The first method was chosen for implementation. This method introduces the

performance index

Jw1 = 1
2

NON∑
i=1

(Ωi − Ω̄)2 = 1
2
(Ωe)

TΩe, (231)

where Ω̄ = 1
NON

∑NON

i=1 Ωi,

Ωe = Ω− Ω̄1NON×1 = (INON×NON
− 1

NON

1NON×NON
)Ω, (232)

and 1m×n is a m-by-n matrix of ones. The wheel speed equalization requirement is

enforced by requiring Jw1 to exponentially decay, that is,

d

dt
Jw1 = (Ωe)

TΩ̇e = (Ωe)
T(INON×NON

− 1

NON

1NON×NON
)Ω̇ = −k2Jw1 , (233)

where k2 > 0. This condition is added to the minimization problem given by Eq. (221),

where now

Q =

 C D

01×NON
E

 , (234)

L = [Lτ ,−k2Jw1 ]
T, and E = (Ωe)

T(INON×NON
− 1

NON
1NON×NON

).

6.3.4 Control Moment Allocation in the (2+1)-DOF case

This section shows that the control moment allocation to the VSCMGs in the (2+1)-

DOF case can be done as in the other two cases. First, the attitude dynamic equations
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for the (2+1)-DOF case, given by Eq. (202), are rearranged as follows (ignoring the

term CRτ̄L

c,l/g, since only the third coordinate of Eq. (202) is of interest):

(RL←S(CRĪS

s )RS←L + CRĪL

l ) ˙̄ωL

L/I + ω̄L

L/I × ((RL←S(CRĪS

s )RS←L+CRĪL

l )ω̄L

L/I)

= −RL←SCR ˙̄IS

sR
S←Lω̄L

L/I−RL←SAt(γ)Iws diag(Ω)γ̇−RL←SAs(γ)IwsΩ̇

−RL←SAgIcgγ̈ − ω̄L

L/I ×
(
RL←SAs(γ)IwsΩ+RL←SAgIcgγ̇

)
+r̄L

s/CR × f̄L

g,s + r̄L
l/CR × f̄L

g,l − r̄Lf/CR × (msā
L

s/S
)− r̄L

l/CR × (mlā
L

l/L
)

−ω̄L

L/I ×
(
r̄L

f/CR × (msv̄
L

s/S
) + r̄L

l/CR × (mlv̄
L

l/L
)
)

−r̄L
s/CR ×ms( ˙̄vL

CR/I + ω̄L

L/I × v̄L

CR/I)− r̄Ll/CR ×ml( ˙̄vL

CR/I + ω̄L

L/I × v̄L

CR/I)

+
12∑
i=1

r̄LTi/CR × f̄L

Ti
. (235)

The first line corresponds to terms coming from the rigid body dynamics. They

cannot be used to control the platform. The second and third lines correspond to

terms coming from the dynamics of the VSCMGs. These terms can be used to control

the platform. The fourth, fifth, and sixth lines correspond to unwanted terms coming

from having the centers of mass not coincident with the center of rotation. Finally,

if the cold-gas thrusters are used exclusively for control force allocation (and not

for control moment allocation), the seventh line corresponds to unwanted moments

created by the cold-gas thrusters due to, for example, misalignments.

Denote the desired control moment with respect to the center of rotation expressed

in the L-frame by τ̄L
c . This moment should be equal to the terms of Eq. (235) coming

from the dynamics of the VCCMGs, i.e.,

τ̄L

c = −RL←SCR ˙̄IS

sR
S←Lω̄L

L/I−RL←SAt(γ)Iws diag(Ω)γ̇−RL←SAs(γ)IwsΩ̇

−RL←SAgIcgγ̈ − ω̄L

L/I ×
(
RL←SAs(γ)IwsΩ+RL←SAgIcgγ̇

)
. (236)

By multiplying Eq. (236) on the left by RS←L and noting that in the (2+1)-DOF

case ω̄S
S/I = ω̄S

L/I, one obtains Eq. (215). Hence, the control moment allocation in the

(2+1)-DOF case can be done as in the other two cases.
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The only difference between the control moment allocation in the (2+1)-DOF

case and the other two cases is that the first two inertial coordinates of the control

moment supplied by the controller block to the control moment allocation block, i.e.,

τ̄ I
c,1 and τ̄ I

c,2 in τ̄ I
c = [τ̄ I

c,1, τ̄
I
c,2, τ̄

I
c,3]T, are set to zero in the control moment allocation

block. This is done to protect the epoxy floor from damage since in the (2+1)-DOF

case and assuming that the epoxy floor is perfectly flat, these two coordinates would

just press the lower stage against the epoxy floor, without producing any motion.

6.3.5 Control Moment Allocation With Less Than Four VSCMGs

The control moment allocation to the VSCMGs can still be realized with less than

four operational VSCMGs. An nonoperational VSCMG is defined as a VSCMG that

cannot be commanded, in other words, a VSCMG with Ω̇i ≡ 0 and γ̇i ≡ 0, but

possibly with Ωi 6= 0.

The algorithms described in Sections 6.3.2, 6.3.3, and 6.3.4 can be easily adapted

to handle nonoperational VSCMGs. Let NON be the number of operational VSCMGs

and i(j) the indexes of the operational VSCMGs for j = 1, ..., NON. Then, redefine

At(γ) = [K̄S

Gi(1)
(γi(1)), ..., K̄

S

Gi(NON)
(γi(NON))],

Iws = diag([ ci(1)I
Gi(1)

wi(1),22, ...,
ci(NON)I

Gi(NON)

wi(NON),22]),

Ω = [Ωi(1), ...,Ωi(NON)]
T, (237)

Ag = [ĪS

Gi(1)
, ..., ĪS

Gi(NON)
],

Icg = diag([ ci(1)I
Gi(1)

ci(1),11, ...,
ci(NON)I

Gi(NON)

ci(NON),11]),

V=


[
(
J̄S

Gi(1)
(K̄S

Gi(1)
)T+K̄S

Gi(1)
(J̄S

Gi(1)
)T
)
ω̄S

S/I]
T

...

[(J̄S
Gi(NON)

(K̄S
Gi(NON)

)T+K̄S
Gi(NON)

(J̄S
Gi(NON)

)T)ω̄S
S/I]

T


T

,
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Ics = diag([ ci(1)I
Gi(1)

ci(1),22, ...,
ci(NON)I

Gi(NON)

ci(NON),22]),

Ict = diag([ ci(1)I
Gi(1)

ci(1),33, ...,
ci(NON)I

Gi(NON)

ci(NON),33]),

As(γ) = [J̄S

Gi(1)
(γi(1)), ..., J̄

S

Gi(NON)
(γi(NON))],

γ̇ = [γ̇i(1), ..., γ̇i(NON)]
T,

in Eqs. (217), (219), (222), and (227), while keeping the original definitions of As(γ),

Iws, and Ω in Eq. (220). Then, the new minimization problems are still described by

Eq. (221) and Eq. (227) and their solutions are still given by Eq. (226) and Eq. (229),

respectively. Moreover, the wheel speeds of the operational VSCMGs can still be

equalized as described in Section 6.3.3 by replacing the definition of Ω in Eqs. (232)

and (233) by Eq. (237).

6.4 Allocation of the Control Moment and Force to the
Thrusters

This section addresses the allocation of the control force and moment to the cold-gas

thrusters. In the current implementation, the user can choose to allocate the control

moment to the cold-gas thrusters or to the VSCMGs.

6.4.1 Assumptions

The following assumptions are made in the allocation of the control force and moment

to the cold-gas thrusters:

1) The forces due to the thrusters are assumed to be parallel to the axes of the

S-frame.

2) The exact location of each thruster with respect to the center of rotation ex-

pressed in the S-frame is known.
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3) The epoxy floor is assumed to be perfectly flat.

4) The total force produced by the thrusters is insufficient to levitate the upper

stage with respect to the lower stage.

6.4.2 Control Allocation in the 5-DOF Case

Denote the desired control force and the desired control moment expressed in the

S-frame by f̄ S
c and τ̄ S

c . Since the forces due to the thrusters are assumed to be

parallel to the axes of the S-frame, they can be written as f̄ S
T1

= [0, T1, 0]T, f̄ S
T2

=

[0, 0, T2]T, f̄ S
T3

= [0,−T3, 0]T, f̄ S
T4

= [−T4, 0, 0]T, f̄ S
T5

= [0, 0, T5]T, f̄ S
T6

= [T6, 0, 0]T, f̄ S
T7

=

[0,−T7, 0]T, f̄ S
T8

= [0, 0, T8]T, f̄ S
T9

= [0, T9, 0]T, f̄ S
T10

= [T10, 0, 0]T, f̄ S
T11

= [0, 0, T11]T, and

f̄ S
T12

= [−T12, 0, 0]T from Figure 47. Then, the control allocation problem consists on

finding appropriate Ti, i = 1, 2, ..., 12, to produce f̄ S
c and τ̄ S

c .

Note that due to the geometry of the problem and assuming that the epoxy

floor is perfectly flat, if the desired control force is expressed in the I-frame as f̄ I
c =

[f̄ I
c,1, f̄

I
c,2, f̄

I
c,3]T, only f̄ I

c,1 and f̄ I
c,2 need to be produced by the thrusters. Note that the

coordinate f̄ I
c,3 does not produce any translational motion due to the contact force on

the upper stage due to the floor and assuming that the thrusters cannot levitate the

upper stage with respect to the lower stage. However, to produce the desired control

moment τ̄ S
c , the total force produced by the thrusters might have to have a component

perpendicular to the epoxy floor. This is because the upper stage cannot generate

pure moments along ĪS and J̄S, since it cannot generate forces along the −K̄S axis.

With this in mind, the control allocation problem is formally defined as the fol-

lowing minimization problem:

T ∗ = arg min
T
wTT (238)
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subject to

0 ≤ Ti ≤ Ti,max,LP, i = 1, 2, ..., 12, (239)

u = PT, (240)

where T = [T1, T2, ..., T12]T, w = [w1, w2, ..., w12]T is an array of weights specified by

the user, Ti,max,LP is the maximum value of Ti allowed by the user, u = [f̄ I
c,1, f̄

I
c,2, τ̄

S
c,1,

τ̄ S
c,2, τ̄

S
c,3]T, and P = [P T

f , P
T
τ ]T, with Pf ∈ R2×12 and Pτ ∈ R3×12. The matrix Pf is

defined as 
f̄ I
c,1

f̄ I
c,2

0

 =

 Pf

01×12

T =

 I2 02×1

01×2 0

RI←S

12∑
i=1

f̄ S

Ti
(241)

or, equivalently,

P T

f =



−(2qS/I,0qS/I,3 − 2qS/I,1qS/I,2) −(2q2
S/I,1 + 2q2

S/I,3 − 1)

(2qS/I,0qS/I,2 + 2qS/I,1qS/I,3) −(2qS/I,0qS/I,1 − 2qS/I,2qS/I,3)

(2qS/I,0qS/I,3 − 2qS/I,1qS/I,2) (2q2
S/I,1 + 2q2

S/I,3 − 1)

(2q2
S/I,2 + 2q2

S/I,3 − 1) −(2qS/I,0qS/I,3 + 2qS/I,1qS/I,2)

(2qS/I,0qS/I,2 + 2qS/I,1qS/I,3) −(2qS/I,0qS/I,1 − 2qS/I,2qS/I,3)

−(2q2
S/I,2 + 2q2

S/I,3 − 1) (2qS/I,0qS/I,3 + 2qS/I,1qS/I,2)

(2qS/I,0qS/I,3 − 2qS/I,1qS/I,2) (2q2
S/I,1 + 2q2

S/I,3 − 1)

(2qS/I,0qS/I,2 + 2qS/I,1qS/I,3) −(2qS/I,0qS/I,1 − 2qS/I,2qS/I,3)

−(2qS/I,0qS/I,3 − 2qS/I,1qS/I,2) −(2q2
S/I,1 + 2q2

S/I,3 − 1)

−(2q2
S/I,2 + 2q2

S/I,3 − 1) (2qS/I,0qS/I,3 + 2qS/I,1qS/I,2)

(2qS/I,0qS/I,2 + 2qS/I,1qS/I,3) −(2qS/I,0qS/I,1 − 2qS/I,2qS/I,3)

(2q2
S/I,2 + 2q2

S/I,3 − 1) −(2qS/I,0qS/I,3 + 2qS/I,1qS/I,2)



, (242)

where qS/I = (qS/I,0, q̄S/I). On the other hand, the matrix Pτ is defined as

τ̄ S

c = PτT =
12∑
i=1

r̄STi/CR × f̄ S

Ti
(243)
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or, equivalently,

P T

τ =



−zS
T1/CR 0 xS

T1/CR

yS
T2/CR −xS

T2/CR 0

zS
T3/CR 0 −xS

T3/CR

0 −zS
T4/CR yS

T4/CR

yS
T5/CR −xS

T5/CR 0

0 zS
T6/CR −yS

T6/CR

zS
T7/CR 0 −xS

T7/CR

yS
T8/CR −xS

T8/CR 0

−zS
T9/CR 0 xS

T9/CR

0 zS
T10/CR −yS

T10/CR

yS
T11/CR −xS

T11/CR 0

0 −zS
T12/CR yS

T12/CR



, (244)

where r̄STi/CR = [xS
Ti/CR, y

S
Ti/CR, z

S
Ti/CR]T. (The position vectors r̄STi/CR were experimen-

tally determined using the VICON system.)

The minimization problem specified by Eqs. (238), (239), and (240) is a Linear

Programming (LP) problem. This problem is solved numerically using the GNU

Linear Programming Kit (GLPK).

In the current implementation of the code, Ti,max,LP is 50% higher than Ti,max,

where Ti,max is the maximum thrust of thruster i measured experimentally. This is to

allow Ti to momentarily exceed Ti,max without leading to an infeasible LP problem.

However, it is important that Ti does not exceed Ti,max for too long, as this can lead

to an unstable closed-loop system. In addition, in the current implementation of the

code, the user is given the choice to stop the simulation/experiment if the GLPK

package cannot find an optimal feasible solution to the LP problem, e.g., because the

norm of f̄ S
c is too high.
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6.4.3 Control Allocation in the (2+1)-Case

In the current implementation, the control allocation in the (2+1)-case is identical

to the control allocation in the 5-DOF case. The only difference is that the first two

inertial coordinates of the control moment supplied by the controller block to the

control allocation block, i.e., τ̄ I
c,1 and τ̄ I

c,2 in τ̄ I
c = [τ̄ I

c,1, τ̄
I
c,2, τ̄

I
c,3]T, are set to zero in the

controller block (in the current implementation, they are set to zero in the controller

block and not in the control allocation block). This is done to protect the epoxy

floor from damage since in the (2+1)-DOF case and assuming that the epoxy floor

is perfectly flat, these two coordinates would just press the lower stage against the

epoxy floor, without producing any motion.

6.4.4 Control Allocation in the 3-DOF Case

In the current implementation, the control allocation in the 3-DOF case is identical

to the control allocation in the 5-DOF case. The only difference is that, in 3-DOF

case, the desired control force supplied by the controller block is set to zero in the

controller block.

6.5 Conversion from Continuous-Time Thrust to On-Off
Commands

The thrust values Ti, i = 1, 2, ..., 12, calculated by the linear programming package

cannot be implemented directly by the on-board cold-gas thrusters. Whereas Ti is a

continuous-time signal bounded between 0 and Ti,max,LP, the on-board thrusters only

accept on-off commands. To make this conversion, a scheme based on a Pulse-Width-

Modulator (PWM) [101] and a Schmitt trigger [4, 101] is employed. The PWM creates

a linear mapping between the value of Ti and the duty cycle of a rectangular waveform

with a certain frequency. In particular, if Ti = 0, the duty cycle of the rectangular

waveform is 0%. If Ti,max ≤ Ti ≤ Ti,max,LP, the duty cycle of the rectangular waveform

is 100%. This relation is illustrated in Figure 50. Moreover, to avoid chattering and
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Figure 50: Relation between the duty cycle of the PWM and the desired continuous
thrust.

waste of fuel near the reference pose (at the cost of pose-tracking error), a Schmitt

trigger (i.e., a deadzone and hysteresis) is superposed to the PWM mapping. Finally,

when the rectangular waveform is at its maximum value, thruster i is open. When

the rectangular waveform is at its minimum value, thruster i is closed.

In the current implementation, the rectangular waveform has a frequency of 10 Hz.

Note that the opening and closing time of the solenoid valves of the cold-gas thrusters

imposes an upper limit on this frequency.

6.6 Implementation of the Inertia-Free Pose-Tracking Con-
troller

The high-fidelity simulation of the 5-DOF platform includes an implementation of the

adaptive and nonadaptive pose-tracking controllers given by Eq. (158) and Eq. (166),

respectively. Since the 5-DOF platform operates in a 1-g environment, the terms due

to the gravitational field in Eq. (158) and Eq. (166) are disregarded, as in Ref. [27].

Since these controllers were developed for 6-DOF motion, a few notes are in order

about their implementation in the 3-DOF, (2+1)-DOF, and 5-DOF cases. From the

point of view of the controller, in the 5-DOF and (2+1)-DOF cases, the epoxy floor

is assumed to be perfectly flat.

In all cases, the third coordinate of r̄ICR/OI
, r̄IOD/OI

, v̄I
CR/I, v̄

I
D/I, and ˙̄vI

D/I are set zero

and m = mt in Eq. (166).
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In the 3-DOF case, f̄B
c is set to zero and ĪB = CRĪS

s in Eq. (166).

In the 5-DOF case, ĪB = CRĪS
s in Eq. (166) and the third coordinate of f̄ I

c is set to

zero.

In the (2+1)-DOF case, ĪB = CRĪS
s + RS←L(CRĪL

l )RL←S in Eq. (166), the third

coordinate of f̄ I
c is set to zero, and the first and second coordinates of τ̄ I

c are set to

zero.

6.7 Experimental Results and Validation of the High-Fidelity
Simulation

To experimentally validate the derivation of the equations of motion, the allocation of

the control moment to the VSCMGs, the allocation of the control moment and force to

the thrusters, the conversion from continuous-time thrust to on-off commands, and the

implementation of the inertia-free pose-tracking controller and of the DQ-MEKF, four

experiments were run in real-time on the 5-DOF platform. In the first, a sinusoidal

reference attitude with respect to the inertial frame is tracked using the VSCMGs

and measurements from the IMU. In the second, a constant reference attitude is

maintained with respect to a target object using the VSCMGs and measurements

from the rate-gyros and a camera. In the third, the same sinusoidal reference attitude

with respect to the inertial frame tracked in the first experiment is now tracked using

the cold-gas thrusters and measurements from the VICON system, rate-gyros, and

IMU merged with the DQ-MEKF. Finally, in the fourth experiment, a time-varying

reference pose with respect to the inertial frame is tracked using the cold-gas thrusters

and measurements from the VICON system, rate-gyros, and IMU merged with DQ-

MEKF.

6.7.1 Attitude-Tracking using the IMU and the VSCMGs

In the first experiment, three VSCMGs were used to track a time-varying attitude

reference. The angular velocity and attitude of the upper stage with respect to the
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inertial frame were measured with the IMU at 100 Hz. These measurements were

passed through a 4-th order discrete-time Butterworth filter to reduce their noise and

fed directly into the pose-tracking controller and into the control moment allocation

block. The on-board computer was run at 100 Hz. The VSCMGs were run in VSCMG

mode with no wheel speed equalization, w1 = 0.01 and w2 = 0.01 in Eq. (223), and

Iws = diag([0.004224, 0.004224, 0.004224, 0.004224]) kg · m2,

Ics = diag([0.01456, 0.01456, 0.01456, 0.01456]) kg · m2,

Icg = diag([0.0082, 0.0082, 0.0082, 0.0082]) kg · m2,

Ict = diag([0.0121, 0.0121, 0.0121, 0.0121]) kg · m2.

Only VSCMGs #1, #2, and #3 were operational.

The reference attitude is given by ψD/I = 30 sin( 2π
100
t) deg, θD/I = 0 deg, and

φD/I = 5 sin(2π
50
t) deg, as in Ref. [48], where ψD/I, θD/I, and φD/I are the Euler angles

(aerospace sequence) that describe the desired orientation of the S-frame with respect

to the I-frame.

The control gains are chosen to be K̄r = 0.1I3×3, K̄q = 0.1I3×3, K̄v = 15I3×3,

K̄ω = 15I3×3, and Ki = 1e4I7×7. At the beginning of the experiment, the initial state

of the inertia-free pose-tracking controller is

v(M̂B) = [12.0534, 0.5348, 2.1950, 13.0253, 1.5343, 25.5473, 525.6481]T.

The initial state of the platform at the beginning of the experiment is given

by ω̄S
S/I(0) = [0.0161,−0.0020,−0.0045]T rad/s, ψS/I(0) = −6.1477 deg, θS/I(0) =

0.3568 deg, φS/I(0) = 1.4642 deg, γ(0) = [183.25, 359.37, 124.90, 0]T deg, and Ω(0) =

[1797, 1775, 1791, 0]T rpm.

Figure 51 compares the desired attitude and angular velocity with the attitude

and angular velocity measured with the IMU. The error between them is shown in

Figure 52. After the initial transient response, each desired Euler angle is tracked
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within±2 deg and each desired angular velocity coordinate is tracked within±1 deg/s.

According to a posteriori high-fidelity simulations, the attitude-tracking error can be

attributed to the measurement noise (by itself, responsible for an attitude-tracking

error of ∼0.6 deg), to the ±4 deg/s deadzone on γ̇ (by itself, responsible for an

attitude-tracking error of ∼0.5 deg), and to the misalignment between the center

of mass of the upper stage and the center of rotation (by itself, responsible for an

attitude-tracking error of ∼1 deg).
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Figure 51: Data from attitude-tracking experiment with VSCMGs: desired attitude
and angular velocity versus actual attitude and angular velocity.

Figure 53 shows the angular speeds and the commanded angular accelerations of

the wheels of the VSCMGs. As explained in Section 6.3.2, when σc is large, i.e.,

when the VSCMGs are close to a singularity, the VSCMGs are operated as reaction

wheels in order to avoid or escape the singularity. Otherwise, they are run as regular

CMGs, i.e., Ω̇ is zero. Two such transitions from CMG mode to RW mode are

visible in Figure 53, one at around 29 sec and another one at around 93 sec. The
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Figure 52: Data from attitude-tracking experiment with VSCMGs: attitude-tracking
error and angular velocity tracking error.

condition numbers of matrices C and D defined in Eq. (216) are given in Figure 54.

As expected, the transitions from CMG mode to RW mode occur when σc peaks. A

posteriori high-fidelity simulations have shown that these singularities are mainly a

result of using only three VSCMGs.

The angles and the angular speeds of the gimbals of the VSCMGs, as measured

by the on-board sensors, are presented in Figure 54. The deadzone in γ̇ is visible.

Finally, Figure 56 compares the states of the inertia-free pose-tracking controller

with the best guess of the true inertia matrix of the upper stage. According to a

posteriori high-fidelity simulations, the controller was not expected to be able to

identify the inertia matrix in this experiment, mainly due to the many real-word

effects that violate the conditions of Proposition 5.2.

The same 3-DOF case, with the same conditions, parameters and initial state,

was run on the high-fidelity simulator to validate the simulated results against the
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Figure 53: Data from attitude-tracking experiment with VSCMGs: wheel speeds
and accelerations.

experimental results shown above. The real-world effects specified in Section 6.2 were

applied and the following parameters were defined in the input file of the simulation:

T1,max = 3.65 N, T2,max = 1.10 N, T3,max = 3.86 N, T4,max = 4.99 N,

T5,max = 1.00 N, T6,max = 4.68 N, T7,max = 2.32 N, T8,max = 0.97 N,

T9,max = 3.11 N, T10,max = 3.04 N, T11,max = 0.88 N, T12,max = 5.23 N,

w = 112×1, Ti,off = 0.075 N, Ti,on = 0.1 N, mt = 410 kg, ms = 134 kg,

r̄S
s/CR = [5e−6, 5e−6, 0]T m, r̄S

f/CR = [0, 0, 0]T m, r̄L
l/CR = [0, 0, 1]T m,

āS

s/S
= [0, 0, 0]T m/s2, v̄S

s/S
= [0, 0, 0]T m/s, āL

l/L
= [0, 0, 0]T m/s2,

v̄L

l/L
= [0, 0, 0]T m/s, r̄SA/CR = [0.113,−0.016,−0.089]T m,

CRĪS

f+mci
=


12.2012 −0.0899 −0.0469

−0.0899 12.9943 −0.4187

−0.0469 −0.4187 16.2764

 kg · m2, CRĪL

l =


20 0 0

0 20 0

0 0 10

 kg · m2,
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Figure 54: Data from attitude-tracking experiment with VSCMGs: condition num-
bers.

rST1/CR = [0.482,−0.078,−0.017]T m, rST2/CR = [0.483, 0.002,−0.106]T m,

rST3/CR = [0.484, 0.080,−0.018]T m, rST4/CR = [0.077, 0.483,−0.015]T m,

rST5/CR = [−0.001, 0.483,−0.107]T m, rST6/CR = [−0.080, 0.482,−0.013]T m,

rST7/CR = [−0.481, 0.081,−0.022]T m, rST8/CR = [−0.483,−0.002,−0.116]T m,

rST9/CR = [−0.486,−0.091,−0.035]T m, rST10/CR = [−0.078,−0.484,−0.026]T m,

rST11/CR = [0.001,−0.483,−0.117]T m, rST12/CR = [0.086,−0.485,−0.036]T m.

Figure 57 compares the desired attitude and angular velocity with the attitude

and angular velocity measured by the IMU in simulation. The error between them

is shown in Figure 58. Whereas each desired Euler angle is tracked within ±2 deg in

Figure 52, here each desired Euler angle is tracked within ±1 deg. Moreover, whereas

each desired angular velocity coordinate is tracked within ±1 deg/s in Figure 52,
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Figure 55: Data from attitude-tracking experiment with VSCMGs: gimbal angles
and speeds.

here each desired angular velocity coordinate is tracked within ±0.5 deg/s. Hence,

the simulation with the current parameters slightly overestimates the performance of

the hardware. However, the transient response of ψS/D (note that the amplitude of ψD/I

is the highest of the three desired Euler angles) obtained in simulation is relatively

similar to one obtained experimentally. Comparing Figure 58 with Figure 52 also

shows that the experimental measurement noise of the IMU is not perfect AWGN as

in the simulation.

Figure 60 gives the condition numbers of matrices C and D defined in Eq. (216)

throughout the simulation. Compared to Figure 54, it is obvious that the number and

location of the singularities in the simulation and in the experiment do not match.

However, the simulation predicts the existence of singularities and the effectiveness of

the algorithm in escaping them. Since the angular speeds and the commanded angular

accelerations of the wheels of the VSCMGs depend on these singularities, Figure 59
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Figure 56: Data from attitude-tracking experiment with VSCMGs: mass and inertia
matrix estimates.

and Figure 53 are necessarily different. A posteriori simulations have shown that

moving the center of mass of the upper stage by as little as 5e−6 m will result in a

completely different pattern of singularities. Since the true location of the center of

mass is unknown and moves every time the upper stage of the platform is balanced

(each happens at the beginning of every experiment), it is not reasonable to expect

the simulation to accurately predict the location of these singularities.

The simulated angles and angular speeds of the gimbals of the VSCMGs are

presented in Figure 61. Compared to Figure 54, the gimbals of the VSCMGs achieve

much higher angular accelerations in the simulation. This is not surprising since the

closed-loop dynamics of the control systems that drive the gimbals are not modeled

in the simulation. Hence, the angular speeds of the gimbals can vary instantaneously

in the simulation. The inertia of the gimbals prevents this from happening in real
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Figure 57: Data from attitude-tracking simulation with VSCMGs: desired attitude
and angular velocity versus actual attitude and angular velocity.

life.

Finally, Figure 62 shows that the simulation predicts the order of magnitude and

overall behavior of the states of the adaptive controller.

6.7.2 Attitude-Regulation using the Camera and the VSCMGs

Another 3-DOF experiment using three VSCMGs was run on the platform in combi-

nation with the vision-based pose estimation algorithm described in Ref. [111]. This

algorithm estimates the pose of the S-frame with respect to a frame fixed to a known

pattern on a target object, hereafter denoted as the T-frame. A PC-104 Meteor II-

Morphis frame grabber (MOR+/2VD/J2K by Matrox Imaging) is used to grab im-

ages obtained from an analog CCD camera (TMS-730p by Pulnix) with a resolution

of 640 × 480 pixels. The pose estimate is updated asynchronously, at approximately
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Figure 58: Data from attitude-tracking simulation with VSCMGs: attitude-tracking
error and angular velocity tracking error.

10 Hz. Measurements of ω̄S
S/I are obtained from the rate-gyros at 100 Hz. These mea-

surements are passed through a 4-th order discrete-time Butterworth filter to reduce

their noise. It is assumed that the angular velocity of the T-frame with respect to

the inertial frame is zero, i.e., ω̄S
T/I = 0. Under this assumption, the rate-gyros on

the platform give a direct measurement of the relative angular velocity between the

S-frame and the T-frame, since ω̄S
S/T = ω̄S

S/I − ω̄S
T/I = ω̄S

S/I. The measurements of q̄S/T

and ω̄S
S/T are merged in a Q-MEKF. The Q-MEKF is described in detail in Ref. [57]

and is the real part of the DQ-MEKF algorithm described in Section 4.3. The out-

put of the Q-MEKF is fed into the inertia-free pose-tracking controller and into the

control moment allocation block. The initial estimate of the state of the Q-MEKF

is given in Table 13. The same table also shows an a posteriori guess of the initial

state based on the measurements. The Q-MEKF was initialized with the covariance

matrices given in Table 14.
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Figure 59: Data from attitude-tracking simulation with VSCMGs: wheel speeds and
accelerations.

Table 13: Initial estimate and a posteriori guess of the state of the Q-MEKF.

Variable Initial Estimate A Posteriori Guess
qS/T(0) [0.7061,−0.7044, 0.0616, 0.0370]T [0.7090,−0.7018, 0.0570, 0.0385]T

b̄ω(0) [−1, 1, 1]T (deg/s) [−1.5, 1.6, 1.3]T (deg/s)

The VSCMGs were run in VSCMG mode with no wheel speed equalization, w1 =

0.01 and w2 = 0.01 in Eq. (223), and Iws, Ics, Icg, and Ict defined as in Section 6.7.1.

Only VSCMGs #1, #2, and #3 were operational.

During the first 20 sec, no control commands were issued and the Q-MEKF was

allowed to converge. After 20 sec, the reference attitude is given by ψD/T ≡ −2 deg,

θD/T ≡ 8 deg, and φD/T ≡ −90 deg. The upper stage is levitated at around 16 sec.

The control gains are chosen to be K̄r = 0.3I3×3, K̄q = 0.1I3×3, K̄v = 25I3×3,

K̄ω = 15I3×3, and Ki = 1e5I7×7. At the beginning of the experiment, the initial state
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Figure 60: Data from attitude-tracking simulation with VSCMGs: condition num-
bers.

Table 14: Covariance matrices of the Q-MEKF.

P̃8×8(0) diag([0, 0.0069, 0.0069, 0.0069, 0, 2× 10−6, 2× 10−6, 2× 10−6])

Q6×6 diag([7×10−7, 7×10−7, 7×10−7, 2×10−9, 2×10−9, 2×10−9])
R3×3 diag([1× 10−6, 1× 10−6, 1× 10−6])

of the inertia-free pose-tracking controller is

v(M̂B) = [8.5408,−0.0629,−0.0328, 9.0960,−0.2931, 11.3935, 287]T.

The initial state of the platform at the beginning of the experiment is given by

ω̄S
S/T(0) = [0, 0, 0]T rad/s, ψS/T(0) = −1.5 deg, θS/T(0) = 7.8 deg, φS/T(0) = −89.5 deg,

γ(0) = [3.57, 359.82, 124.76, 0]T deg, and Ω(0) = [0, 0, 0, 0]T rpm. During the first

20 sec, the wheels of the operational VSCMGs were accelerated up to 1800 rpm.

Figure 63 compares the attitude and angular velocity of the S-frame with respect
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Figure 61: Data from attitude-tracking simulation with VSCMGs: gimbal angles
and speeds.

to the T-frame measured by the vision algorithm and by the rate-gyros, respectively,

with the estimates produced by the Q-MEKF. The Q-MEKF is used to smooth out

the discrete-time attitude measurements, to bridge the gap between them, and to

remove the biases of the rate-gyros (which are clearly visible in Figure 63).

Figure 64 compares the desired attitude and angular velocity of the S-frame with

respect to the T-frame (constant in this experiment) with the best guess of the state

of the platform (given by the outputs of the Q-MEKF). The error between them is

presented in Figure 65. At approximately 42 sec after the beginning of the experiment,

the target was slowly rotated, leading to a decrease of approximately 3 deg in ψS/T

and θS/T. At approximately 68 sec after the beginning of the experiment, the target

was slowly rotated to its original orientation, leading to an increase of approximately

3 deg in ψS/T and θS/T. Finally, at approximately 92 sec after the beginning of the
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Figure 62: Data from attitude-tracking simulation with VSCMGs: mass and inertia
matrix estimates.

experiment, the target was rotated again, leading again to a decrease of approximately

3 deg in ψS/T and θS/T. The third Euler angle remained approximately constant

throughout the experiment. After each rotation of the target, each desired Euler

angle was matched within ±2 deg and each desired angular velocity coordinate was

matched within ±1 deg/s. This is approximately the same closed-loop performance

observed in Section 6.7.1.

Figure 66 shows the angular speeds and the commanded angular accelerations of

the wheels of the VSCMGs. Compared to Figure 53, the angular speeds remained

approximately constant and no angular acceleration commands were issued. This is

explained by Figure 68, which shows that no singularities were traversed. Hence,

the VSCMGs remained in CMG mode throughout the experiment. Note that the

singularity at the very beginning of the experiment is due to the fact that the wheels
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Figure 63: Data from attitude-regulation experiment with VSCMGs: attitude mea-
sured by the vision algorithm and angular velocity measured by the rate-gyros versus
attitude and angular velocity estimated by the Q-MEKF.

were not spinning at this point and, thus, the VSCMGs could not produce any torque

in CMG mode at this point. Note also that it is easier to avoid singularities in this

experiment because the desired attitude is time-invariant, unlike in Section 6.7.1.

The angles and the angular speeds of the gimbals of the VSCMGs, as measured by

the on-board sensors, are presented in Figure 68. The deadzone in γ̇ is again visible.

Finally, Figure 69 shows the states of the adaptive controller. In this experiment,

these states were propagated from the very beginning, even though the first control

commands were only issued 20 sec into the experiment. Because of this and because

of the adaptive controller was fed bad data while the Q-MEKF was converging, the

states of the adaptive controller associated with the inertia matrix varied substantially
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Figure 64: Data from attitude-regulation experiment with VSCMGs: desired at-
titude and angular velocity versus attitude and angular velocity estimated by the
Q-MEKF.

during the first instants of the experiment. This can be avoided by not propagating

the states of the adaptive controller while the navigation filters are converging. This

has already been modified in the latest version of the code, as can be seen from

Figures 76 and 96.

6.7.3 Attitude-Tracking using the VICON System and the Thrusters

In this experiment, the thrusters were used to track the same time-varying attitude

reference tracked in Section 6.7.1 using three VSCMGs. The DQ-MEKF described

in Section 4.5 was used to estimate the attitude and angular velocity of the upper

stage with respect to the inertial frame. The DQ-MEKF was fed pose measurements

at 1 Hz from the VICON system, angular velocity measurements at 100 Hz from

the rate-gyros, and linear acceleration measurements at 100 Hz from the IMU. The
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Figure 65: Data from attitude-regulation experiment with VSCMGs: attitude and
angular velocity regulation error.

initial estimate of the state of the DQ-MEKF is given in Table 15. The same table

also shows an a posteriori guess of the initial state based on the measurements. The

DQ-MEKF was initialized with the covariance matrices given in Table 16.

Table 15: Initial estimate and a posteriori guess of the state of the DQ-MEKF in
the 3-DOF experiment.

Variable Initial Estimate A Posteriori Guess
qS/I(0) [1, 0, 0, 0]T [0.9997,−0.0124,−0.0026,−0.0193]T

r̄ICR/OI
(0) [0.6, 2.125, 0]T (m) [−0.4714, 2.2190,−0.9960]T (m)

b̄ω(0) [−1, 1, 1]T (deg/s) [−1.0800, 1.397, 0.9648]T (deg/s)
b̄v(0) [0, 0, 0]T (m/s) [0, 0, 0]T (m/s)
b̄n(0) [0, 0, 0]T (-) [0.0012, 0.0257, 0.0009]T (-)

The control gains are chosen to be K̄r = 0.3I3×3, K̄q = 0.1I3×3, K̄v = 25I3×3,

K̄ω = 15I3×3, and Ki = 1e5I7×7. At the beginning of the experiment, the initial state

191



0 50 100
-5000

0

5000

+
1

(r
p
m

)

Time (s)

0 50 100
-5000

0

5000
+

2
(r

p
m

)

Time (s)

0 50 100
-5000

0

5000

+
3

(r
p
m

)

Time (s)

0 50 100
-5000

0

5000

+
4

(r
p
m

)

Time (s)

0 50 100
-1000

0

1000

+̇
1
(r

p
m

/s
)

Time (s)

0 50 100
-1000

0

1000

+̇
2
(r

p
m

/s
)

Time (s)

0 50 100
-1000

0

1000

+̇
3
(r

p
m

/s
)

Time (s)

0 50 100
-1000

0

1000

+̇
4
(r

p
m

/s
)

Time (s)

Maximum
Minimum

Figure 66: Data from attitude-regulation experiment with VSCMGs: wheel speeds
and accelerations.

of the inertia-free pose-tracking controller is given by

v(M̂B) = [12.2012,−0.0899,−0.0469, 12.9943,−0.4187, 16.2764, 410]T.

All other parameters required by the control software were defined as in the simulation

presented in Section 6.7.1.

During the first 20 sec, the controller is off and the DQ-MEKF is allowed to

converge. During the next 20 sec, the controller is turned on and the reference

attitude is given by ψD/I = 0 deg, θD/I = 0 deg, and φD/I = 0 deg. Finally, 40 sec after

the beginning of the experiment, the reference attitude turns into the same sinusoidal

reference tracked in Section 6.7.1.

The upper stage was levitated approximately 13.10 sec after the beginning of the

experiment. At that instant, the state of the platform is approximately given by

ω̄S
S/I = [0, 0, 0]T rad/s, v̄I

CR/I = [0, 0, 0]T m/s, ψS/I = −2.3268 deg, θS/I = 0.0838 deg,

φS/I = −1.2606 deg, and r̄ICR/OI
= [−0.4686, 2.2191,−0.9931]T m. At the same time
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Figure 67: Data from attitude-regulation experiment with VSCMGs: condition num-
bers.

instant, the state of the DQ-MEKF (apart from the state covariance matrix) was

ˆ̄ωS
S/I = [0.0035, 0.0002,−0.0008]T rad/s, ˆ̄vI

CR/I = [0.0020, 0.0007,−0.0006]T m/s, ψ̂S/I =

−2.2239 deg, θ̂S/I = −0.2760 deg, φ̂S/I = −1.4014 deg, ˆ̄rICR/OI
= [−0.4711, 2.2191,

−0.9959]T m, ˆ̄bω = [−0.9896, 1.3004, 0.9493]T deg/s, and ˆ̄bn = [0.0014, 0.0261, 0.0005]T.

Figure 70 compares the attitude and angular velocity estimated by the DQ-MEKF

with the ground truth. The error between them is shown in Figure 71. The ground

truth was obtained as in Section 4.6. After 20 sec, the RMS attitude estimation error

is 0.35 deg and the RMS angular velocity estimation error is 0.58 deg/s.

Figure 72 shows the real-time solution to the LP problem calculated by the GLPK

package throughout the experiment. It can be seen that the maximum thrust of each

thruster is not exceeded. Figure 73 shows the resulting on-off commands produced

from this solution. During the experiment, the small thrusters were fired more times
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Figure 68: Data from attitude-regulation experiment with VSCMGs: gimbal angles
and speeds.

than the large thrusters. Note that the disturbance torque created by the misalign-

ment between the center of rotation and the center of mass of the upper stage is

compensated primarily with the small thrusters.

Figure 74 compares the desired attitude and angular velocity with the attitude

and angular velocity estimated by the DQ-MEKF. The error between them is shown

in Figure 75. After the initial transient response, the yaw angle is tracked within

±2 deg, whereas the pitch and roll angles are tracked within ±1 deg (apart from a

peak in the pitch error around 127 sec, most probably due to a thruster not firing

when commanded). After the initial transient response, each desired angular velocity

coordinate is tracked within ±1 deg/s (apart from the peak at 127 sec).

Finally, Figure 76 compares the states of the inertia-free pose-tracking controller

with the best guess of the true inertia matrix. As in Section 6.7.1, the controller

was not expected to be able to identify the inertia matrix in this experiment, mainly
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Figure 69: Data from attitude-regulation experiment with VSCMGs: mass and
inertia matrix estimates.

due to the many real-word effects that violate the conditions of Proposition 5.2. The

rapid increase of mt is due to the fact that, even though the controller is calculating

control force commands, the platform cannot translate, since the lower stage is not

levitated.

The same 3-DOF case, with the same conditions and parameters, was run on

the high-fidelity simulator to validate the simulated results against the experimental

results. In particular, the position of the center of mass of the upper stage with respect

to the center of rotation in the simulation is given by r̄S
s/CR = [5e−6, 5e−6, 0]T m. The

initial state of the simulation was defined as the state of the experiment at 13.10 sec,

i.e., at the instant the upper stage was levitated. The real-world effects specified in

Section 6.2 were applied.

Figure 77 compares the attitude and angular velocity estimated by the DQ-MEKF

with the true attitude and angular velocity, which is available in the simulation. The
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Figure 70: Data from attitude-tracking experiment with thrusters: attitude and
angular velocity estimated by the DQ-MEKF versus ground truth.
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Figure 71: Data from attitude-tracking experiment with thrusters: attitude and
angular velocity estimation error.
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Figure 72: Data from attitude-tracking experiment with thrusters: solution of the
LP problem calculated by the GLPK package.

0 100 200
0

0.5

1

Time (s)

T
1

(-
)

0 100 200
0

0.5

1

Time (s)

T
2

(-
)

0 100 200
0

0.5

1

Time (s)

T
3

(-
)

0 100 200
0

0.5

1

Time (s)

T
4
(-
)

0 100 200
0

0.5

1

Time (s)

T
5
(-
)

0 100 200
0

0.5

1

Time (s)

T
6
(-
)

0 100 200
0

0.5

1

Time (s)

T
7

(-
)

0 100 200
0

0.5

1

Time (s)

T
8

(-
)

0 100 200
0

0.5

1

Time (s)

T
9

(-
)

0 100 200
0

0.5

1

Time (s)

T
1
0
(-
)

0 100 200
0

0.5

1

Time (s)

T
1
1
(-
)

0 100 200
0

0.5

1

Time (s)

T
1
2
(-
)

Figure 73: Data from attitude-tracking experiment with thrusters: on-off commands
issued to the thrusters. The thrusters are open at 0 and closed at 1.
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Figure 74: Data from attitude-tracking experiment with thrusters: desired atti-
tude and angular velocity versus attitude and angular velocity estimated by the DQ-
MEKF.
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Table 16: Covariance matrices of the DQ-MEKF.

P̃20×20(0)
diag([0.0069, 0.0069, 0.0069, 0.0069, 0.69, 0.69, 0.69, 0.69,
0, 2 × 10−6, 2 × 10−6, 2 × 10−6, 0, 1 × 10−9, 1 × 10−9, 1 ×
10−9, 0, 1.6× 10−5, 1.6× 10−5, 1.6× 10−5])

Q15×15

diag([7 × 10−7, 7 × 10−7, 7 × 10−7, 0, 0, 0, 2 × 10−6, 2 ×
10−6, 2×10−6, 2×10−7, 2×10−7, 2×10−7, 1.6×10−5, 1.6×
10−5, 1.6× 10−5])

R8×8
diag([1×10−9, 1×10−9, 1×10−9, 1×10−9, 2.5×10−7, 2.5×
10−7, 2.5× 10−7, 2.5× 10−7])

error between them is shown in Figure 78. After 20 sec, the RMS attitude estimation

error is 0.35 deg and the RMS angular velocity estimation error is 0.27 deg/s. Hence,

the same RMS attitude estimation error obtained in the experiment was obtained

in the simulation, whereas the RMS angular velocity estimation error obtained in

the experiment is approximately two times the one obtained in the simulation. A

better match can potentially be achieved by fine-tuning the simulated measurement

noise specified in Section 6.2. However, this difference can also be a consequence of

the extra noise introduced by differentiating the ground truth for the attitude when

computing the ground truth for the angular velocity in the experiment.

Figure 79 shows the solution to the LP problem calculated by the GLPK package

throughout the simulation. The simulation correctly predicts that the maximum

thrust of each thruster is not violated. Figure 80 shows the corresponding on-off

commands issued to the thrusters in the simulation. As in the experiment, the small

thrusters are fired more times than the large thrusters. The differences between

Figures 80 and 73 can be attributed to residual friction between the upper and lower

stages of the platform and to small changes in the position of the center of mass with

the respect to the center of rotation during the experiment. Neither one of these

effects was considered in this simulation.

Figure 81 compares the desired attitude and angular velocity with the attitude and
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Figure 75: Data from attitude-tracking experiment with thrusters: attitude and
angular velocity tracking error.

angular velocity estimated by the DQ-MEKF in the simulation. The error between

them is shown in Figure 82. After the initial transient response, the yaw angle is

tracked within ±2 deg, whereas the pitch and roll angles are tracked within ±1 deg.

After the initial transient response, each desired angular velocity coordinate is tracked

within ±1 deg/s. Hence, the simulation correctly predicts the tracking error obtained

in the experiment. Note however that the simulation does not account for thruster

misfires and, therefore, cannot reproduce the peak in pitch error shown in Figure 75.

Finally, Figure 83 shows that the simulation predicts the order of magnitude and

overall behavior of the states of the adaptive controller.

6.7.4 Pose-Tracking using the VICON System and the Thrusters

In this final experiment, the thrusters were used to track a time-varying attitude and

position reference. The DQ-MEKF described in Section 4.5 was used to estimate the
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Figure 76: Data from attitude-tracking experiment with thrusters: mass and inertia
matrix estimates.
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Figure 77: Data from attitude-tracking simulation with thrusters: attitude and
angular velocity estimated by the DQ-MEKF versus ground truth.

pose and velocities of the upper stage with respect to the inertial frame. The DQ-

MEKF was fed pose measurements at 10 Hz from the VICON system, angular velocity

measurements at 100 Hz from the rate-gyros, and linear acceleration measurements

at 100 Hz from the IMU. The initial estimate of the state of the DQ-MEKF is given

in Table 17. The same table also shows an a posteriori guess of the initial state based

on the measurements. The DQ-MEKF was initialized with the covariance matrices

given in Table 16.

The control gains are chosen to be K̄r = 0.74I3×3, K̄q = 0.2I3×3, K̄v = 84.37I3×3,

K̄ω = 15I3×3, and Ki = 500I7×7. At the beginning of the experiment, the initial state

of the inertia-free pose-tracking controller is set to zero. All other parameters required

by the control software were defined as in the simulation presented in Section 6.7.1.

The reference pose is illustrated in Figure 84 and is split in five phases:

- Phase #1: During the first 20 sec, the controller is off and the DQ-MEKF is
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Figure 78: Data from attitude-tracking simulation with thrusters: attitude and
angular velocity estimation error.
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Figure 79: Data from attitude-tracking simulation with thrusters: solution of the
LP problem calculated by the GLPK package.
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Figure 80: Data from attitude-tracking simulation with thrusters: on-off commands
issued to the thrusters. The thrusters are open at 0 and closed at 1.
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Figure 81: Data from attitude-tracking simulation with thrusters: desired attitude
and angular velocity versus attitude and angular velocity estimated by the DQ-
MEKF.
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Figure 82: Data from attitude-tracking simulation with thrusters: attitude and
angular velocity tracking error.

allowed to converge.

- Phase #2: During the next 20 sec, the controller is turned on. During this phase,

the desired position of the center of rotation of the platform with respect to

the inertial frame is given by (xI
OD/OI

, yI
OD/OI

) = (3.003, 2.151) m and the desired

orientation of the S-frame with respect to the I-frame is given by ψD/I = −90 deg,

θD/I = 0, and φD/I = 0.

- Phase #3: During the next 60 sec, the center of rotation of the platform should

describe a quarter of a circle with a radius of 1.2 m around the center of the

floor with constant angular speed. The upper stage should remain leveled and

−J̄S should point to the center of the circle. In other words, during this phase,

(xI
OD/OI

, yI
OD/OI

) = (1.803 + 1.2 cos( 2π
240
t), 2.151 + 1.2 sin( 2π

240
t)) m, ψD/I = −π

2
+

2π
240
t rad, θD/I = 0, φD/I = 0, and t is the elapsed time since the beginning of the
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Figure 83: Data from attitude-tracking simulation with thrusters: mass and inertia
matrix estimates.
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Table 17: Initial estimate and a posteriori guess of the state of the DQ-MEKF in
the 5-DOF experiment.

Variable Initial Estimate A Posteriori Guess
qS/I(0) [0.7071, 0, 0,−0.7071]T [0.7036,−0.0032, 0.0113,−0.7105]T

r̄ICR/OI
(0) [2.903, 2.051, 0]T (m) [3.004, 2.151,−1.006]T (m)

b̄ω(0) [−1, 1, 1]T (deg/s) [−1.022, 1.309, 0.7889]T (deg/s)
b̄v(0) [0, 0, 0]T (m/s) [0, 0, 0]T (m/s)
b̄n(0) [0, 0, 0]T (-) [0.0002, 0.0170,−0.0002]T (-)

phase.

- Phase #4: During the next 60 sec, the center of rotation of the platform should

describe a straight-line along the −J̄I direction with constant linear speed. The

upper stage should remain leveled and −J̄S should point to the center of the

circle. In other words, during this phase, (xI
OD/OI

, yI
OD/OI

) = (1.803, 3.351 −
1.2
60
t) m, ψD/I = 0, θD/I = 0, φD/I = 0, and t is the elapsed time since the

beginning of the phase.

- Phase #5: During the next 20 sec, the upper stage should maintain the desired

position and attitude reached at the end of phase #4. In other words, during

this phase, (xI
OD/OI

, yI
OD/OI

) = (1.803, 2.151) m, ψD/I = 0, θD/I = 0, and φD/I = 0.

The upper stage and the lower stage were levitated approximately 13.01 sec and

17.50 sec after the beginning of the experiment, respectively. The state of the plat-

form 17.50 sec after the beginning of the experiment is approximately given by

ω̄S
S/I = [0.3462, 0.1096, 0.1624]T deg/s, v̄I

CR/I = [0, 0, 0]T m/s, ψS/I = −90.4911 deg,

θS/I = 1.4355 deg, φS/I = −0.3164 deg, and r̄ICR/OI
= [3.0043, 2.1512,−1.0060]T m. At

the same time instant, the state of the DQ-MEKF (apart from the state covariance

matrix) was ˆ̄ωS
S/I = [0.1445, 0.6120, 0.1319]T deg/s, ˆ̄vI

CR/I = [−0.0012,−0.0122, 0.0028]T

m/s, ψ̂S/I = −90.4954 deg, θ̂S/I = 1.4158 deg, φ̂S/I = −0.3118 deg, ˆ̄rICR/OI
= [3.0040,

2.1523,−1.0066]T m, ˆ̄bω = [−0.9027, 0.8736, 0.7450]T deg/s, and ˆ̄bn = [−0.0096, 0.0171,
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Figure 84: Reference pose. The desired trajectory of the center of rotation is illus-
trated in black, whereas the desired orientation of the upper stage is illustrated in
red.

−0.0015]T.

Figure 85 compares the attitude and angular velocity estimated by the DQ-MEKF

with the ground truth. The error between them is shown in Figure 86. The ground

truth was obtained as in Section 4.6. After 20 sec, the RMS attitude estimation error

is 0.13 deg and the RMS angular velocity estimation error is 0.41 deg/s. Likewise,

Figure 87 compares the position and linear velocity estimated by the DQ-MEKF with

the ground truth, obtained as in Section 4.6. The error between them is shown in

Figure 88. After 20 sec, the RMS position estimation error is 1.0 mm and the RMS

linear velocity estimation error is 6.3 mm/s. Note that the apparent vertical motion

of the center of rotation is not only due to the slope of the epoxy floor, but also to

errors in the experimental determination of the center of rotation.

Figure 89 shows the real-time solution to the LP problem calculated by the GLPK

package throughout the experiment. Unlike in Figure 72, the maximum thrust of

thrusters 7 and 8 is momentarily exceeded. Note that this is possible since Ti,max,LP

is set 50% higher than Ti,max, as explained in Section 6.4.2. The control gains used in

this experiment were tuned in simulation in order to prevent Ti from exceeding Ti,max

for too long, as this could have led to an unstable closed-loop. Figure 90 shows the

on-off commands produced from the solution of the LP problem. In Figure 90, the
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Figure 85: Data from pose-tracking experiment with thrusters: attitude and angular
velocity estimated by the DQ-MEKF versus ground truth.

large thrusters are fired more times than in Figure 73. This is not surprising since now

the large thrusters are required to track not only the desired attitude, but also the

desired position. Because the epoxy floor is not perfectly flat, the large thrusters must

also counteract gravity, which acts as a continuous disturbance force. As a result, the

large thrusters must fire almost continuously in order to keep the position-tracking

error within the values shown in Figure 95.

Figure 91 compares the desired attitude and angular velocity with the attitude

and angular velocity estimated by the DQ-MEKF. The error between them is shown

in Figure 92. The desired pitch and roll angles were tracked within approximately

±1 deg. However, during phase #3, the yaw-tracking error reached approximately

11 deg, although during phase #5 it did not exceed ±2 deg. The large yaw-tracking

error during phase #3 is believed to have been caused by thruster 12 momentarily

not firing when commanded. (In the mean time, thruster 12 has been serviced and
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Figure 86: Data from pose-tracking experiment with thrusters: attitude and angular
velocity estimation error.
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Figure 87: Data from pose-tracking experiment with thrusters: position and linear
velocity estimated by the DQ-MEKF versus ground truth.

should operate normally in future experiments.) Similarly, the first and second co-

ordinates of the desired angular velocity were tracked within ±1 deg/s, whereas the

third coordinate was tracked within ±2 deg/s.

Figure 93 compares the desired position and linear velocity with the position and

linear velocity estimated by the DQ-MEKF. The error between them is shown in

Figure 95. Moreover, the desired position and the position estimated by the DQ-

MEKF are projected onto the ĪI-J̄I plane in Figure 94. After the transient response

between phases #2 and #3 and phases #3 and #4, xI
CR/OD

is kept within ±6 cm and

±4 cm, respectively. Likewise, after the transient response between phases #2 and

#3 and phases #3 and #4, yI
CR/OD

is kept within ±3 cm and ±4 cm, respectively.

Moreover, at the end of the experiment, xI
CR/OD

and yI
CR/OD

are 1.3 cm and -1.9 cm,

respectively. As for the desired linear velocity coordinates, they were tracked within

±0.05 m/s. A posteriori simulations have shown that the biggest contributor for the
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Figure 88: Data from pose-tracking experiment with thrusters: position and linear
velocity estimation error.
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Figure 89: Data from pose-tracking experiment with thrusters: solution of the LP
problem calculated by the GLPK package.
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Figure 90: Data from pose-tracking experiment with thrusters: on-off commands
issued to the thrusters. The thrusters are open at 0 and closed at 1.
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Figure 91: Data from pose-tracking experiment with thrusters: desired attitude and
angular velocity versus attitude and angular velocity estimated by the DQ-MEKF.
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Figure 92: Data from pose-tracking experiment with thrusters: attitude and angular
velocity tracking error.

position-tracking error is the slope of the epoxy floor.

Finally, Figure 96 compares the states of the inertia-free pose-tracking controller,

which were started at zero, with the best available guess of mt and CRĪS
s . Again,

the controller was not expected to be able to identify the mass and inertia matrix

in this experiment, due to the many real world effects that violate the conditions of

Proposition 5.2.

The same 5-DOF case, with the same conditions and parameters, was run on

the high-fidelity simulator to validate the simulated results against the experimental

results. In particular, in the simulation, the position of the center of mass of the upper

stage with respect to the center of rotation is given by r̄S
s/CR = [5e−6, 5e−6, 0]T m and

the slope of the epoxy floor is linearly interpolated from a finite set of measurements,

as explained in Section 6.1.7.1. The initial state of the simulation was defined as the

state of the experiment at 17.50 sec, i.e., at the instant the lower stage was levitated.
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Figure 93: Data from pose-tracking experiment with thrusters: desired position and
linear velocity versus position and linear velocity estimated by the DQ-MEKF.
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Figure 94: Data from pose-tracking experiment with thrusters: desired position
versus position estimated by the DQ-MEKF within the limits of the epoxy floor.

The real-world effects specified in Section 6.2 were applied.

Figure 97 compares the attitude and angular velocity estimated by the DQ-MEKF

with the true attitude and angular velocity, which is available in the simulation. The

error between them is shown in Figure 98. After 20 sec, the RMS attitude estimation

error is 0.24 deg (compared to 0.13 deg in the experiment) and the RMS angular

velocity estimation error is 0.37 deg/s (compared to 0.41 deg/s in the experiment).

Unlike in the experiment, in the simulation the measurement noise is perfect AWGN

and the true attitude and angular velocity are known. Hence, the RMS attitude and

angular velocity estimation errors in the simulation and in the experiment are not

expected to be exactly the same. The current match is deemed acceptable.

Likewise, Figure 99 compares the position and linear velocity estimated by the

DQ-MEKF with the true position and linear velocity, which is available in the sim-

ulation. The error between them is shown in Figure 100. After 20 sec, the RMS
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Figure 95: Data from pose-tracking experiment with thrusters: position and linear
velocity tracking error.
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Figure 96: Data from pose-tracking experiment with thrusters: mass and inertia
matrix estimates.
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Figure 97: Data from pose-tracking simulation with thrusters: attitude and angular
velocity estimated by the DQ-MEKF versus ground truth.
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Figure 98: Data from pose-tracking simulation with thrusters: attitude and angular
velocity estimation error.
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position estimation error is 2.4 mm (compared to 1.0 mm in the experiment) and

the RMS linear velocity estimation error is 12.5 mm/s (compared to 6.3 mm/s in the

experiment). Hence, the simulation is currently overestimating the RMS position and

linear velocity estimation errors by a factor of two, approximately. A better match

can potentially be achieved by fine-tuning the simulated measurement noise specified

in Section 6.2.

0 50 100 150

2

3

Time (s)

x̂I
CR/OI

(m)

xI
CR/OI

(m)

0 50 100 150
2

2.5

3

3.5

Time (s)

ŷI
CR/OI

(m)

yI
CR/OI

(m)

0 50 100 150
-1.05

-1

-0.95

Time (s)

ẑI
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Figure 99: Data from pose-tracking simulation with thrusters: position and linear
velocity estimated by the DQ-MEKF versus ground truth.

Figure 101 shows the solution to the LP problem calculated by the GLPK pack-

age throughout the simulation. By comparing Figure 101 with Figure 89, one can

conclude that the simulation predicted that the maximum thrust of thruster 7 would

be exceeded. In fact, the simulation provides a relatively good estimate of the max-

imum thrust that each thruster had to produce. This is probably one of the most
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Figure 100: Data from pose-tracking simulation with thrusters: position and linear
velocity estimation error.
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important features of the simulation, as it allows the gains of the inertia-free pose-

tracking controller to be properly tuned in the simulation before running an experi-

ment. Figure 102 shows the corresponding on-off commands issued to the thrusters

in the simulation. As in Figure 90, the large thrusters must fire almost continuously

in order to counteract gravity and keep the position-tracking error within the values

shown in Figure 107.
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Figure 101: Data from pose-tracking simulation with thrusters: solution of the LP
problem calculated by the GLPK package.

Figure 103 compares the desired attitude and angular velocity with the attitude

and angular velocity estimated by the DQ-MEKF in the simulation. The error be-

tween them is shown in Figure 104. As in Figure 92, the desired pitch and roll angles

are tracked within ±1 deg. However, unlike in Figure 92, apart from the transient

response between phases #2 and #3, the desired yaw angle is tracked within ±2 deg.

Hence, the simulation correctly predicted the pitch- and roll-tracking errors, but not
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Figure 102: Data from pose-tracking simulation with thrusters: on-off commands
issued to the thrusters. The thrusters are open at 0 and closed at 1.

the yaw-tracking error. As mentioned before, the large yaw-tracking error shown in

Figure 92 is believed to have been caused by a momentarily malfunction of thruster 12.

Since the simulation does not account for thrusters misfires, this large yaw-tracking

error does not appear in Figure 104. Thus, the results shown in Figure 104 represent

the best attitude-tracking error that can be expected if all thrusters operate as in-

tended. Likewise, the first and second coordinates of the desired angular velocity are

tracked within ±1 deg/s in the simulation (same as in the experiment), whereas the

third coordinate is tracked within ±1 deg/s in the simulation (±2 deg/s in the exper-

iment), apart from the transitions between phases #2 and #3 and between phases

#3 and #4.

Figure 105 compares the desired position and linear velocity with the position and

linear velocity estimated by the DQ-MEKF in the simulation. The error between them

is shown in Figure 107. Moreover, the desired position and the position estimated
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Figure 103: Data from pose-tracking simulation with thrusters: desired attitude and
angular velocity versus attitude and angular velocity estimated by the DQ-MEKF.
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Figure 104: Data from pose-tracking simulation with thrusters: attitude and angular
velocity tracking error.
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by the DQ-MEKF in the simulation are projected onto the ĪI-J̄I plane in Figure 106.

After the transient response between phases #2 and #3 and phases #3 and #4,

xI
CR/OD

is kept within ±3 cm (±6 cm in the experiment) and ±4 cm (±4 cm in

the experiment), respectively. Likewise, after the transient response between phases

#2 and #3 and phases #3 and #4, yI
CR/OD

is kept within ±3 cm (±3 cm in the

experiment) and ±4 cm (±5 cm in the experiment), respectively. Moreover, at the

end of the simulation, xI
CR/OD

and yI
CR/OD

are -0.4 cm (1.3 cm in the experiment) and

-2.2 cm (-1.9 cm in the experiment), respectively. As for the desired linear velocity

coordinates, they were tracked within ±0.05 m/s (±0.05 m/s in the experiment). The

current match between the simulation and the experiment is deemed acceptable.
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Figure 105: Data from pose-tracking simulation with thrusters: desired position and
linear velocity versus position and linear velocity estimated by the DQ-MEKF.

Finally, Figure 108 shows that the simulation predicts the order of magnitude and

overall behavior of the states of the adaptive controller.
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Figure 107: Data from pose-tracking simulation with thrusters: position and linear
velocity tracking error.
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Figure 108: Data from pose-tracking simulation with thrusters: mass and inertia
matrix estimates.
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CHAPTER VII

CONCLUSION

One of the most common questions asked at the end of a technical presentation about

dual quaternions is: apart from providing a compact representation of pose, why are

dual quaternions relevant? In other words, why should anyone bother to learn dual

quaternions? In the author’s opinion, this is a very good question that, at least until

now, was not easy to answer. The truth is, people have being solving position and

attitude control and estimation problems for many years with relative success. Most

solutions, at least in aerospace, are based on quaternions and translation vectors.

However, this requires solving two separate problems, one for the rotational motion

and another one for the translational motion. The latter problem is particularly hard

since the translational motion depends on the rotational motion. Dual quaternions

provide a way to solve both problems at the same time. Even more important than

that, dual quaternions serve as a bridge between the rich literature on attitude con-

trol and estimation (with quaternions) and the harder problems of pose control and

estimation. This dissertation shows that results that otherwise would have been hard

to obtain are more or less simple to derive from existing attitude-only results via the

use of dual quaternions. In the author’s opinion, this is the most important property

of dual quaternions and the main reason why people should look at them.

In space, the attitude of a satellite is typically controlled and estimated sepa-

rately from its position. This makes sense since, whereas the attitude of a satellite

needs to be controlled/estimated continuously, e.g., to point at Earth or at the Sun,

position/orbital corrections are expensive and thus only performed when required.

However, with the advent of space proximity operations for spacecraft servicing and
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inspection, a real need for combined position and attitude controllers and estimators

is starting to emerge in space. Dual quaternions and the results presented in this

dissertation are especially suitable for these applications.

The first main contribution of this dissertation is Proposition 3, where the relative

rotational and translational dynamic equations are written in dual quaternion alge-

bra in the same form as the relative rotational-only dynamic equations are written in

quaternion algebra. In particular, these equations are based on the dual inertia ma-

trix. Like an inertia matrix, the dual inertia matrix is symmetric and positive-definite.

Proposition 3 is the foundation on which the controllers proposed in Chapters 3 and

5 are built on.

The first demonstration of the usefulness of dual quaternions to extend existing

attitude-only results is given in Chapter 3, where a velocity-free pose-tracking con-

troller is derived from a velocity-free attitude-tracking controller presented in Ref. [3].

This pose controller requires only relative pose measurements, which can be provided

by a vision-based sensor. This controller is also useful in the case of a velocity-sensor

malfunction. Like all the controllers derived in this dissertation, this controller is

based on the nonlinear 6-DOF equations of motion. Hence, it can handle, for exam-

ple, elliptical orbits, tumbling targets, and long-range proximity operations.

An alternative way to perform pose-tracking with no velocity measurements is

given in Chapter 4. It is based on a Dual Quaternion Multiplicative Extended Kalman

Filter (DQ-MEKF) derived from the popular Quaternion Multiplicative Extended

Kalman Filter (Q-MEKF) given in Ref. [57]. By using the Q-MEKF as a starting

point, the DQ-MEKF is able to improve on other existing dual quaternion EKF

formulations, which otherwise would be hard. In particular, the DQ-MEKF uses

the concept of dual error quaternion, defined analogously to the concept of error

quaternion in the Q-MEKF, to automatically satisfy the two algebraic constraints

that unit dual quaternions must satisfy and to reduce the number of states from

234



eight to six. Three different formulations of the DQ-MEKF are presented, each with

a different application in mind. The experimental results run on the ASTROS facility

show that the DQ-MEKF does not encounter singularities and is accurate, precise,

and fast enough for operational use. Whereas the derivations presented in Chapter 4

do not account for the system dynamics, as they can be hard to model accurately

enough, it should be relatively straightforward to account for them if desired.

The two methods to perform pose-tracking without velocity measurements sug-

gested in this dissertation are compared theoretically and numerically in the last

section of Chapter 4. Although both methods have advantages and disadvantages,

if the computational resources allow it, two points tilt the scale in favor of the for-

mulation based on the DQ-MEKF. First, under the same circumstances, the tran-

sient responses obtained with the DQ-MEKF are less sensitive to noise, discrete-time

measurements, and discrete-time implementation. Second, the DQ-MEKF produces

direct estimates of the relative linear and angular velocities between the spacecraft,

whereas the velocity-free controller presented in Chapter 3 does not. In an uncoop-

erative satellite proximity operations scenario and assuming that the chaser satellite

can measure its own linear and angular velocities with respect to the inertial frame,

these estimates can be used to estimate the linear and angular velocity of the target

spacecraft with respect to the inertial frame. Like most other pose-tracking con-

trollers suggested in literature, the controllers presented in this dissertation require

these velocities.

Another pose-tracking controller with unique properties is developed in Chap-

ter 4 using dual quaternions, based on an existing attitude-tracking controller. This

controller guarantees almost global asymptotic stability of the pose-tracking error

without requiring any information about the mass and inertia matrix of the chaser

satellite. On top of that, this controller can identify the mass and inertia matrix
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if certain sufficient conditions on the reference motion given in Chapter 4 are satis-

fied. Moreover, the relatively low order of the controller makes it suitable for satel-

lites with limited computational resources. Note that by combining this inertia-free

pose-tracking controller with the DQ-MEKF described in Section 4.4, one obtains a

velocity-free inertia-free pose-tracking control scheme for space proximity operations.

With the ultimate goal of testing the controllers and estimators derived in this

dissertation on the 5-DOF platform of the ASTROS facility, a high-fidelity simulation

of the platform is developed in Chapter 6. The equations of motion of the platform

are carefully derived for three cases: a 3-DOF case, a 5-DOF case, and a (2+1)-DOF

case. In particular, a special effort is put on defining all the reference frames and

stating all the assumptions. Hopefully, this groundwork will be useful to others in

the upcoming years. The high-fidelity simulation has a modular design to permit the

test of new modules, such as a new controller or a new control allocation method,

while keeping the remaining modules unaltered. Based on experimental data, the lim-

itations of all actuators and sensors are simulated. Thanks to Simulink’s xPC Target

environment, the exact same control software used in the high-fidelity simulation can

also be uploaded to the platform and run hardware-in-the-loop. All the parameters

of the simulation are defined in a single input file for easy access and modification.

To experimentally validate the high-fidelity simulation, the DQ-MEKF, and the

inertia-free pose-tracking controller, four experiments were run in real-time on the

5-DOF platform. A direct comparison between experimental results and simulated

results indicates that the high-fidelity simulation is able to predict with a reasonable

degree of accuracy the behavior of the platform.

7.1 Future Work

Some possible directions for future work are highlighted next, in no specific order.

1. The next obvious step for this research is to demonstrate experimentally the
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capability to track a time-varying reference pose with respect to a target object

by using measurements from a camera.

2. It has been shown [16, 61, 80] that the separation principle holds for the attitude-

tracking problem under some conditions, i.e., under some conditions a stable

closed-loop can be obtained by independently designing and combining a stable

observer and a stable controller. As far as the author knowns, a similar result

has not been demonstrated for the pose-tracking problem. This seems like

another good application for the dual quaternion technique proposed in this

dissertation.

3. Most vision-based algorithms for pose estimation are based on detecting and

matching point features. However, line features have the potential to work

better in space proximity operations. First, because they only appear in man-

made objects in space and, second, because they are visible under a wider range

of lighting conditions [40]. Because lines can be compactly represented using

dual vector quaternions and their relative pose can be compactly represented

using unit dual quaternions, some vision-based algorithms have been developed

in the past based on line features and dual quaternions [40, 6]. However, these

algorithms were not specifically designed and tested with space applications in

mind. Moreover, since these algorithms were published, much work has been

done in computer vision. Furthermore, the DQ-MEKF was not available to

efficiently process the measured line features. Therefore, it would be interesting

to take advantage of these new results to develop a vision-based algorithm

for pose estimation based on line features and dual quaternions specifically

designed for space proximity operations. By combining the inertia-free pose-

tracking controller, the DQ-MEKF, and this new vision-based algorithm, the

pose-tracking problem would be completely solved using dual quaternions.
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4. Although it has been said that the classical EKF is still the most useful and

practical solution for nonlinear attitude estimation, newer approaches such as

nonlinear observers, Unscented Kalman Filters (UKFs), and Particle Filters

(PFs) have been shown to have some advantages over it [21]. Thus, it would

be interesting to try to extend some of these newer attitude estimation results

into pose estimation results using dual quaternions.

5. As mentioned in Remark 7, although the mass and inertia matrix of the chaser

spacecraft do not need to be known to implement the inertia-free controller

given by Eq. (158), the center of mass of the chaser spacecraft still needs to be

known. This is because Eq. (71) is only valid if the origin of the body frame is

located at the center of mass. Hence, it would be interesting to rewrite Eq. (71)

with respect to an arbitrary system of axes, not necessarily centered at the

center of mass. Then, it should be possible to derive a more general inertia-free

controller that does not require the center of mass to be known. Moreover,

such a controller would most probably be able to handle changes in the location

of the center of mass, making it an ideal candidate for the capture phase of

NASA’s Asteroid Redirect Robotic Mission (ARRM) [84].

6. The pose-tracking controllers given by Eqs. (158) and (82) are derived using the

dual quaternion norm defined in Eq. (36), which is based on the dual quaternion

circle product. However, other dual quaternion norms exist, such as the dual

quaternion norm based on the dual quaternion logarithm [94, 96, 97, 44, 95].

This dual quaternion norm can potentially be used to extend existing attitude-

only results derived using the quaternion norm based on the quaternion log-

arithm. Moreover, it would be interesting to research other dual quaternion

norms.

7. The gains kp, described in Theorem 2, and kd, described in Remark 3, of the
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velocity-free pose-tracking controller are scalars. As a consequence, the angular

motion and the linear motion share the same gains, which is not ideal. Hence, it

would be interesting to create more general forms of Theorem 2 and Remark 3,

where the gains kp and kd are 8-by-8 matrices. Moreover, the velocity-free

controller is derived in continuous-time, but vision-based sensors have typically

slow update rates. Hence, it would be interesting to re-derive this controller in

discrete-time and compare its performance with the simulation results presented

in Section 4.7.

8. Both the velocity-free and the inertia-free controllers require the angular and

linear velocities and accelerations of the target spacecraft with respect to the

inertial frame to be known. Whereas the DQ-MEKF can be used to estimate

the velocities, for uncooperative satellite proximity operations, it would be in-

teresting to develop a pose-tracking controller with some stability guarantees

that does not require any information about the motion of the target satellite

with respect to the inertial frame. As far as the author knows, such a controller

does not exist, not even for the attitude-tracking problem.

9. In short-distance proximity operations, the exhaust-plumes produced by the

thrusters of the chaser spacecraft can damage the target spacecraft. Hence,

their magnitude and direction must be constrained. Moreover, fuel is a pre-

cious commodity in space. Thus, it is important to minimize its consumption.

Neither of these problems is directly addressed in this dissertation, but both

are important and interesting problems to investigate in the future.

10. Some possible upgrades to the hardware and software of the 5-DOF platform

are suggested hereafter.

10.1. Currently, the center of mass of the upper stage needs to be manually

adjusted before each experiment to coincide with the center of rotation.
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This is a time-consuming task that has the potential to be automated, as

in Ref. [13].

10.2. As discussed in Section 6.2, the motors that control the gimbals of the

VSCMGs cannot produce angular rates smaller than approximately 4 deg/s

in absolute value. Hence, fine attitude control cannot be achieved. A

deadzone compensation algorithm, like the one presented in Ref. [58], could

potentially mitigate the effect of this deadzone.

10.3. The inertia-free controller is currently implemented in the Simulink model

shown in Figure 44 as a C-code S-function. Alternatively, this controller

can be implemented in Simulink as a Matlab Function block and a Discrete-

Time Integrator block, like the DQ-MEKF. Although both implementa-

tions are equivalent, the latter would be easier to maintain and update.

Once this is done, it would be interesting to add the term f̂B

d to the inertia-

free controller currently implemented in the Simulink model. In theory,

this term should help counteract the disturbance force due to the slope of

the epoxy floor and help reduce the position-tracking error.

10.4. A nice feature to add to the virtual-reality environment driven by the

Simulink model would be a visualization of the path of the platform.
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APPENDIX A

DERIVATION OF THE QV-AEKF

Instead of representing the pose of a body with respect to the I-frame with a unit

dual quaternion (expressed neither in the body frame nor in the I-frame), the attitude

and position of a body can be represented separately with a unit quaternion and a

translation vector (expressed either in the body frame or in the I-frame). This is

the approach taken in Refs. [68, 50, 40]. Hereby, an additive EKF based on this

representation of the pose is derived for comparison with the DQ-MEKF with no

linear and angular velocity measurements.

The linear and angular velocity measurement model is still given by Eq. (103) by

separating the real part from the dual part, i.e., ωB
B/I,m = ωB

B/I + bω + ηω and vB
B/I,m =

vB
B/I + bv + ηv, where E {ηω} = 03×1, E {ηv} = 03×1, E {ηω(t)ηT

ω(τ)} = Qω(t)δ(t− τ),

E {ηv(t)ηT
v(τ)} = Qv(t)δ(t − τ), ḃω = ηbω , ḃv = ηbv , E

{
ηbω
}

= 03×1, E
{
ηbv
}

= 03×1,

E
{
ηbω(t)ηT

bω
(τ)
}

= Qbω(t)δ(t− τ), and E
{
ηbv(t)ηT

bv
(τ)
}

= Qbv(t)δ(t− τ).

The state and process noise of the QV-AEKF are initially selected as

x16=[[δqB/I]
T [rBB/I]

T [bω]T [bv]
T]T ∈ R16 and w16=[[ηω]T [ηv]

T [ηbω ]T [ηbv ]T]T ∈ R16.

The time derivative of δqB/I is given by the real part of Eq. (120), i.e., d
dt

(δqB/I) ≈

−1
2
ω̂B̂

B/IδqB/I + 1
2
δqB/Iω̂

B̂
B/I + 1

2
δqB/Ib̂ω − 1

2
δqB/Ibω − 1

2
δqB/Iηω, whereas the time derivative

of rBB/I is given by

ṙBB/I = vB

B/I − ωB

B/I × rBB/I = (v̂B̂

B/I + b̂v − bv − ηv)− (ω̂B̂

B/I + b̂ω − bω − ηω)× rBB/I. (245)
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Hence, the state equations of the QV-AEKF are given by

f16(x16(t), t) =



[−1
2
ω̂B̂

B/IδqB/I + 1
2
δqB/Iω̂

B̂
B/I + 1

2
δqB/Ib̂ω − 1

2
δqB/Ibω]

(v̂B̂
B/I + b̂v − bv)− (ω̂B̂

B/I + b̂ω − bω)× rBB/I

04×1

04×1


, (246)

g16×16(x16(t), t) =



−1
2
[δqB/I]

L 04×4 04×4 04×4

−[rBB/I]
× −I4×4 04×4 04×4

04×4 04×4 I4×4 04×4

04×4 04×4 04×4 I4×4


. (247)

At this point, reduced state and process noise vectors are selected, namely

x12 = [δqB/I

T
(rBB/I)

T b
T

ω b
T

v]
T ∈ R12 and w12 = [ηT

ω η
T

v η
T

bω η
T

bv ]T ∈ R12.

By replacing δqB/I,0 through Eq. (19) in Eqs. (246) and (247) and using Eq. (93),

F12×12(t) and G12×12(t) can be determined to be

F12×12(t) =



−[ω̂B̂
B/I]
× 03×3 −1

2
I3×3 03×3

03×3 −[ω̂B̂
B/I]
× −[r̂B̂B/I]

× −I3×3

03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3


, (248)

G12×12(t) =



−1
2
I3×3 03×3 03×3 03×3

−[r̂B̂B/I]
× −I3×3 03×3 03×3

03×3 03×3 I3×3 03×3

03×3 03×3 03×3 I3×3


. (249)

A.1 Time Update

For the time update of the QV-AEKF, the estimates of qB/I, r
B
B/I, ω

B
B/I, v

B
B/I, bω, and

bv are propagated using the real part of Eq. (115), i.e., d
dt

(q̂B/I) ≈ 1
2
q̂B/Iω̂

B̂
B/I,

d
dt

(r̂B̂B/I) =
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v̂B̂
B/I − ω̂B̂

B/I × r̂B̂B/I, ω̂
B̂
B/I ≈ ωB

B/I,m − b̂ω, v̂B̂
B/I ≈ vB

B/I,m − b̂v, d
dt

(b̂ω) = 0, and d
dt

(b̂v) = 0,

respectively, given q̂B/I(t0), r̂B̂B/I(t0), b̂ω(t0), and b̂v(t0).

Numerical errors in the propagation of qB/I can result in the violation of the alge-

braic constraint associated with unit quaternions. Hence, after each integration step,

this algebraic constraint is enforced by using Eq. (125).

As for the covariance matrix of x12, i.e., P12×12(t) , E {∆x12(t)∆x12(t)T}] or

P12×12(t) , E







δqB/I(t)

rBB/I(t)

bω(t)

bv(t)


−



03×3

r̂
B̂

B/I(t)

b̂ω(t)

b̂v(t)









δqB/I(t)

rBB/I(t)

bω(t)

bv(t)


−



03×3

r̂
B̂

B/I(t)

b̂ω(t)

b̂v(t)





T
, (250)

it is propagated according to Eq. (92) given P12×12(t0) and where

Q12×12(t) =



Qω(t) 03×3 03×3 03×3

03×3 Qv(t) 03×3 03×3

03×3 03×3 Qbω(t) 03×3

03×3 03×3 03×3 Qbv(t)


. (251)

Note that it is not very intuitive to define P12×12(t0). It is more intuitive to define

the covariance matrix

P̃16×16(t0) , E







[qB/I(t0)]

[rBB/I(t0)]

[bω(t0)]

[bv(t0)]


−



[q̂B/I(t0)]

[r̂B̂B/I(t0)]

[b̂ω(t0)]

[b̂v(t0)]









[qB/I(t0)]

[rBB/I(t0)]

[bω(t0)]

[bv(t0)]


−



[q̂B/I(t0)]

[r̂B̂B/I(t0)]

[b̂ω(t0)]

[b̂v(t0)]





T
.
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Given P̃16×16(t0), P12×12(t0) can be calculated by first computing

P16×16(t0) , E







[δqB/I(t0)]

[rBB/I(t0)]

[bω(t0)]

[bv(t0)]


−



[1]

[r̂B̂B/I(t0)]

[b̂ω(t0)]

[b̂v(t0)]









[δqB/I(t0)]

[rBB/I(t0)]

[bω(t0)]

[bv(t0)]


−



[1]

[r̂B̂B/I(t0)]

[b̂ω(t0)]

[b̂v(t0)]





T
= SP̃16×16(t0)ST, (252)

where

S =

[q̂∗B/I]
L 04×12

012×4 I12×12

 . (253)

Then, P12×12(t0) can be obtained from P16×16(t0) by removing the first, fifth, ninth,

and thirteenth rows and columns of P16×16(t0).

A.2 Measurement Update

For direct comparison with the DQ-MEKF with output equation given by Eq. (137),

it is assumed that the QV-AEKF is fed measurements of qB/I and rIB/I corrupted by

additive white Gaussian noise. Hence, the output equation of the QV-AEKF is given

by [qB/I,m(tk)]

rIB/I,m(tk)

=

 [q̂B/I(tk)δqB/I(tk)]

q̂B/I(tk)δqB/I(tk)rBB/I(tk)δq
∗
B/I(tk)q̂

∗
B/I(tk)

+v7(tk). (254)

Replacing δqB/I,0 through Eq. (19) in Eq. (254) and calculating the measurement

sensitivity matrix using Eq. (99) yields

H7×12(tk) =

 [q̂B/I]
L
4×3 04×3 04×3 04×3

−2R̂I←B[r̂B̂B/I]
× R̂I←B 03×3 03×3

 , (255)

where R̂I←B is the expected value of RI←B, which can be formed from q̂B/I.

In summary, for the measurement update of the QV-AEKF, the Kalman gain is

calculated from Eq. (98), whereas the optimal Kalman state update is calculated from
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Eq. (96) as

∆?x̂12(tk) ,



∆?δq̂B/I(tk)

∆?r̂
B̂

B/I

∆?b̂ω(tk)

∆?b̂v(tk)


= K12×7(tk)(z7(tk)− ẑ7(tk)). (256)

The estimate of the state at time tk after the measurement is then calculated from

q̂+
B/I(tk) = q̂−B/I(tk)∆

?δq̂B/I(tk), b̂
+

ω (tk) = b̂
−

ω (tk) + ∆?b̂ω(tk), b̂
+

v (tk) = b̂
−

v (tk) + ∆?b̂v(tk),

and

r̂
B̂,+

B/I (tk) = r̂
B̂,−
B/I (tk) + ∆?r̂

B̂

B/I, (257)

where ∆?δq̂B/I is defined as the unit quaternion

(√
1−‖∆?δq̂B/I‖2,∆?δq̂B/I

)
, or

 1√
1+‖∆?δq̂B/I‖2

,
∆?δq̂B/I√

1+‖∆?δq̂B/I‖2

 (258)

if the norm of ∆?δq̂B/I is larger than one. Note that whereas the optimal Kalman

state update is added in Eq. (257), it is multiplied in Eq. (133). Finally, the covari-

ance matrix of the state immediately after the measurement at tk is computed from

Eq. (101).

Similarly to before, when position and attitude measurements are available, but

linear and angular velocity measurements are not, estimates of ωB
B/I and vB

B/I can be

determined by setting ωB
B/I,m, vB

B/I,m, Qω, and Qv to zero, and by increasing Qbω and

Qbv if necessary.

245



APPENDIX B

DERIVATION OF THE SQV-AEKF

Whereas the states of the DQ-MEKF and of the QV-AEKF include both the attitude

and position of the body, the traditional approach to estimate the pose consists on

developing separate estimators for the attitude and for the position [77]. To compare

this traditional approach to the DQ-MEKF and to the QV-AEKF, the QV-AEKF

is split here into two additive EKFs, one for the attitude and another one for the

position. This alternative formulation is referred to as the SQV-AEKF.

B.1 Attitude Estimation with the SQV-AEKF

As in the QV-AEKF, the angular velocity measurement model is given by ωB
B/I,m =

ωB
B/I + bω + ηω, where E {ηω} = 03×1, E {ηω(t)ηT

ω(τ)} = Qω(t)δ(t − τ), ḃω = ηbω ,

E
{
ηbω
}

= 03×1, and E
{
ηbω(t)ηT

bω
(τ)
}

= Qbω(t)δ(t− τ).

The state and process noise of the attitude part of the SQV-AEKF are initially

selected as

x8=[[δqB/I]
T [bω]T]T ∈ R8 and w8=[[ηω]T [ηbω ]T]T ∈ R8.

As in the QV-AEKF, the time derivative of δqB/I is given by d
dt

(δqB/I) ≈ −1
2
ω̂B̂

B/IδqB/I +

1
2
δqB/Iω̂

B̂
B/I + 1

2
δqB/Ib̂ω − 1

2
δqB/Ibω − 1

2
δqB/Iηω. Hence, the state equations of the attitude

part of the SQV-AEKF are given by

f8(x8(t), t) =

[−1
2
ω̂B̂

B/IδqB/I + 1
2
δqB/Iω̂

B̂
B/I + 1

2
δqB/Ib̂ω − 1

2
δqB/Ibω]

04×1

 , (259)

g8×8(x8(t), t) =

−1
2
[δqB/I]

L 04×4

04×4 I4×4

 . (260)
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At this point, reduced state and process noise vectors are selected, namely

x6 = [δqB/I

T
b
T

ω]T ∈ R6 and w6 = [ηT

ω η
T

bω ]T ∈ R6.

By replacing δqB/I,0 through Eq. (19) in Eqs. (259) and (260) and using Eq. (93),

F6×6(t) and G6×6(t) can be determined to be

F6×6(t) =

−[ω̂B̂
B/I]
× −1

2
I3×3

03×3 03×3

 , (261)

G6×6(t) =

−1
2
I3×3 03×3

03×3 I3×3

 . (262)

B.1.1 Time Update

For the time update of the attitude part of the SQV-AEKF, the estimates of qB/I, ω
B
B/I,

and bω are propagated using d
dt

(q̂B/I) ≈ 1
2
q̂B/Iω̂

B̂
B/I, ω̂

B̂
B/I ≈ ωB

B/I,m − b̂ω, and d
dt

(b̂ω) = 0,

respectively, given q̂B/I(t0) and b̂ω(t0).

Numerical errors in the propagation of qB/I can result in the violation of the alge-

braic constraint associated with unit quaternions. Hence, after each integration step,

this algebraic constraint is enforced by using Eq. (125).

As for the covariance matrix of x6, i.e., P6×6(t) , E {∆x6(t)∆x6(t)T}] or

P6×6(t) , E



δqB/I(t)

bω(t)

−
03×3

b̂ω(t)




δqB/I(t)

bω(t)

−
03×3

b̂ω(t)




T
 , (263)

it is propagated according to Eq. (92) given P6×6(t0) and where

Q6×6(t) =

Qω(t) 03×3

03×3 Qbω(t)

 . (264)

Note that it is not very intuitive to define P6×6(t0). It is more intuitive to define

the covariance matrix

P̃8×8(t0) , E



[qB/I(t0)]

[bω(t0)]

−
[q̂B/I(t0)]

[b̂ω(t0)]




[qB/I(t0)]

[bω(t0)]

−
[q̂B/I(t0)]

[b̂ω(t0)]




T
 .
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Given P̃8×8(t0), P6×6(t0) can be calculated by first computing

P8×8(t0) , E



[δqB/I(t0)]

[bω(t0)]

−
 [1]

[b̂ω(t0)]




[δqB/I(t0)]

[bω(t0)]

−
 [1]

[b̂ω(t0)]




T


= SP̃8×8(t0)ST, (265)

where

S =

[q̂∗B/I]
L 04×4

04×4 I4×4

 . (266)

Then, P6×6(t0) can be obtained from P8×8(t0) by removing the first and fifth rows

and columns of P8×8(t0).

B.1.2 Measurement Update

It is assumed that the attitude part of the SQV-AEKF is fed measurements of qB/I cor-

rupted by additive white Gaussian noise (whereas the position part of the SQV-AEKF

is fed measurements of rIB/I corrupted by additive white Gaussian noise). Hence, the

output equation of the attitude part of the SQV-AEKF is given by

[qB/I,m(tk)] = [q̂B/I(tk)δqB/I(tk)]+v4(tk). (267)

Replacing δqB/I,0 through Eq. (19) in Eq. (267) and calculating the measurement

sensitivity matrix using Eq. (99) yields

H4×6(tk) =
[
[q̂B/I]

L
4×3 04×3

]
. (268)

In summary, for the measurement update of the attitude part of the SQV-AEKF,

the Kalman gain is calculated from Eq. (98), whereas the optimal Kalman state

update is calculated from Eq. (96) as

∆?x̂6(tk) ,

∆?δq̂B/I(tk)

∆?b̂ω(tk)

 = K6×4(tk)(z4(tk)− ẑ4(tk)). (269)
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The estimate of the state at time tk after the measurement is then calculated from

q̂+
B/I(tk) = q̂−B/I(tk)∆

?δq̂B/I(tk) and b̂
+

ω (tk) = b̂
−

ω (tk) + ∆?b̂ω(tk), where ∆?δq̂B/I is the

unit quaternion defined in Eq. (258). Finally, the covariance matrix of the state

immediately after the measurement at tk is computed from Eq. (101).

Similarly to before, when attitude measurements are available, but angular veloc-

ity measurements are not, estimates of ωB
B/I can be determined by setting ωB

B/I,m and

Qω to zero, and by increasing Qbω if necessary.

B.2 Position Estimation with the SQV-AEKF

As in the QV-AEKF, the linear velocity measurement model is given by vB
B/I,m = vB

B/I+

bv+ηv, where E {ηv} = 03×1, E {ηv(t)ηT
v(τ)} = Qv(t)δ(t−τ), ḃv = ηbv , E

{
ηbv
}

= 03×1,

and E
{
ηbv(t)ηT

bv
(τ)
}

= Qbv(t)δ(t− τ).

The state and process noise of the position part of the SQV-AEKF are initially

selected as

x8=[[rBB/I]
T [bv]

T]T ∈ R8 and w8=[[ηv]
T [ηbv ]T]T ∈ R8.

The time derivative of rBB/I is given by Eq. (245). Hence, the state equations of the

position part of the SQV-AEKF are given by

f8(x8(t), t) =

(v̂B̂
B/I + b̂v − bv)− (ω̂B̂

B/I + b̂ω − bω)× rBB/I

04×1

 , (270)

g8×8(x8(t), t) =

−I4×4 04×4

04×4 I4×4

 . (271)

At this point, reduced state and process noise vectors are selected, namely

x6 = [(rBB/I)
T b

T

v]
T ∈ R6 and w6 = [ηT

v η
T

bv ]T ∈ R6.
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Using Eq. (93), F6×6(t) and G6×6(t) can be determined to be

F6×6(t) =

−[ω̂B̂
B/I]
× −I3×3

03×3 03×3

 , (272)

G6×6(t) =

−I3×3 03×3

03×3 I3×3

 . (273)

Note that F6×6(t) is a function of ω̂B̂
B/I, which is an output of the attitude part of the

SQV-AEKF.

B.2.1 Time Update

For the time update of the position part of the SQV-AEKF, the estimates of rBB/I,

vB
B/I, and bv are propagated using d

dt
(r̂B̂B/I) = v̂B̂

B/I − ω̂B̂
B/I × r̂B̂B/I, v̂

B̂
B/I ≈ vB

B/I,m − b̂v, and

d
dt

(b̂v) = 0, respectively, given r̂B̂B/I(t0) and b̂v(t0). Note that d
dt

(r̂B̂B/I) is a function of

ω̂B̂
B/I, which is an output of the attitude part of the SQV-AEKF.

As for the covariance matrix of x6, i.e., P6×6(t) , E {∆x6(t)∆x6(t)T}] or

P6×6(t) , E



rBB/I(t)

bv(t)

−
r̂B̂B/I(t)

b̂v(t)




rBB/I(t)

bv(t)

−
r̂B̂B/I(t)

b̂v(t)




T
 , (274)

it is propagated according to Eq. (92) given P12×12(t0) and where

Q12×12(t) =

Qv(t) 03×3

03×3 Qbv(t)

 . (275)

B.2.2 Measurement Update

It is assumed that the position part of the SQV-AEKF is fed measurements of rIB/I cor-

rupted by additive white Gaussian noise (whereas the attitude part of the SQV-AEKF

is fed measurements of qB/I corrupted by additive white Gaussian noise). Hence, the

output equation of the position part of the SQV-AEKF is given by

rIB/I,m(tk) = q̂B/I(tk)δqB/I(tk)rBB/I(tk)δq
∗
B/I(tk)q̂

∗
B/I(tk) + v3(tk). (276)
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Calculating the measurement sensitivity matrix using Eq. (99) yields

H3×6(tk) =
[
R̂I←B 03×3

]
, (277)

where R̂I←B is the expected value of RI←B, which can be formed from q̂B/I, one of the

outputs of the attitude part of the SQV-AEKF.

In summary, for the measurement update of the position part of the SQV-AEKF,

the Kalman gain is calculated from Eq. (98), whereas the optimal Kalman state

update is calculated from Eq. (96) as

∆?x̂6(tk) ,

 ∆?r̂
B̂

B/I

∆?b̂v(tk)

 = K6×3(tk)(z3(tk)− ẑ3(tk)). (278)

The estimate of the state at time tk after the measurement is then calculated from

b̂
+

v (tk) = b̂
−

v (tk) + ∆?b̂v(tk) and r̂
B̂,+

B/I (tk) = r̂
B̂,−
B/I (tk) + ∆?r̂

B̂

B/I. Finally, the covari-

ance matrix of the state immediately after the measurement at tk is computed from

Eq. (101).

Similarly to before, when position measurements are available, but linear velocity

measurements are not, estimates of vB
B/I can be determined by setting vB

B/I,m and Qv

to zero, and by increasing Qbv if necessary.
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