
IMPROVED ANALYTICAL METHODS FOR
ASSESSMENT OF HYPERSONIC DRAG-MODULATION

TRAJECTORY CONTROL

A Thesis
Presented to

The Academic Faculty

by

Zachary R. Putnam

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
Daniel Guggenheim School of Aerospace Engineering

Georgia Institute of Technology
May 2015

Copyright c© 2015 by Zachary R. Putnam



IMPROVED ANALYTICAL METHODS FOR
ASSESSMENT OF HYPERSONIC DRAG-MODULATION

TRAJECTORY CONTROL

Approved by:

Dr. Robert D. Braun, Advisor
Daniel Guggenheim School of
Aerospace Engineering
Georgia Institute of Technology

Dr. Michael J. Grant
School of Aeronautics and
Astronautics
Purdue University

Dr. Mark Costello
Daniel Guggenheim School of
Aerospace Engineering
Georgia Institute of Technology

Mr. Gregg H. Barton
Mission Design Group, Algorithms
and Software Division
Charles Stark Draper Laboratory

Dr. Marcus J. Holzinger
Daniel Guggenheim School of
Aerospace Engineering
Georgia Institute of Technology

Mr. Christopher J. Cerimele
Aerosciences and Flight Mechanics
Division, Johnson Space Center
National Aeronautics and Space Ad-
ministration

Date Approved: March 5, 2015



ACKNOWLEDGEMENTS

This work was supported by a NASA Space Technology Research Fellowship.

iii



TABLE OF CONTENTS

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

NOMENCLATURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

I INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Planetary Aeroassist Systems . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Aeroassist Maneuvers . . . . . . . . . . . . . . . . . . . . . . 1

1.1.2 Deployable Decelerators . . . . . . . . . . . . . . . . . . . . . 5

1.2 Aeroassist Flight Dynamics . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.1 The Equations of Motion . . . . . . . . . . . . . . . . . . . . 8

1.2.2 Trajectory Control Options . . . . . . . . . . . . . . . . . . . 11

1.2.3 Aerodynamic Force Parameterization . . . . . . . . . . . . . 18

1.2.4 Planetary Entry Corridors . . . . . . . . . . . . . . . . . . . 20

1.2.5 Flight Performance Evaluation . . . . . . . . . . . . . . . . . 21

1.3 Contributions of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 26

II SURVEY OF ANALYTICAL SOLUTIONS FOR PLANETARY
ENTRY TRAJECTORIES . . . . . . . . . . . . . . . . . . . . . . . . 29

2.1 Approximating Trajectory Solutions for Planetary Entry . . . . . . . 30

2.2 Analytical Approximate Solutions . . . . . . . . . . . . . . . . . . . 31

2.2.1 Ballistic Entry . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2.2 Lifting Entry . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.2.3 General Methods . . . . . . . . . . . . . . . . . . . . . . . . 51

2.3 Hybrid Analytical-Numerical Approximate Solutions . . . . . . . . . 57

2.3.1 Chapman and Vinh . . . . . . . . . . . . . . . . . . . . . . . 57

2.3.2 Yaroshevskiy . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

iv



2.3.3 Matched Asymptotic Solutions . . . . . . . . . . . . . . . . . 59

2.4 Numerical Approximate Solutions and Machine Computation . . . . 60

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

III ENHANCEMENT OF THE ALLEN-EGGERS SOLUTION . . . 62

3.1 Methods and Assumptions . . . . . . . . . . . . . . . . . . . . . . . 64

3.2 Review of the Allen-Eggers Solution . . . . . . . . . . . . . . . . . . 66

3.2.1 Altitude-Velocity Profile . . . . . . . . . . . . . . . . . . . . 66

3.2.2 Acceleration Magnitude . . . . . . . . . . . . . . . . . . . . . 67

3.2.3 Convective Heat Rate . . . . . . . . . . . . . . . . . . . . . . 68

3.2.4 Simplified Expressions . . . . . . . . . . . . . . . . . . . . . . 69

3.2.5 Application to Example Trajectories . . . . . . . . . . . . . . 70

3.3 Enhancement of the Allen-Eggers Solution . . . . . . . . . . . . . . 74

3.3.1 Determining the Constant Flight-Path Angle . . . . . . . . . 74

3.3.2 Bounding the Domain of Applicability . . . . . . . . . . . . . 77

3.3.3 Closed-Form Expressions for Range . . . . . . . . . . . . . . 83

3.3.4 Trajectory States as a Function of Time . . . . . . . . . . . . 89

3.4 Assessment of Approximation Error and Applicability . . . . . . . . 95

3.4.1 The Extended and Enhanced Allen-Eggers Approximation . . 95

3.4.2 Applicability to Other Initial Conditions . . . . . . . . . . . 98

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

IV ANALYTICAL ASSESSMENT OF DISCRETE-EVENT DRAG-
MODULATION SYSTEMS . . . . . . . . . . . . . . . . . . . . . . . 105

4.1 Application of the Enhanced Allen-Eggers Solution . . . . . . . . . . 105

4.2 Range Control Authority . . . . . . . . . . . . . . . . . . . . . . . . 107

4.3 Minimizing Peak Deceleration for Single-Stage Systems . . . . . . . 110

4.4 Minimizing Stagnation-Point Heat Rate . . . . . . . . . . . . . . . . 115

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

v



V APPLICATION OF DRAG-MODULATION TRAJECTORY CON-
TROL TO AEROASSIST SYSTEMS: NUMERICAL FEASIBIL-
ITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.1 Precision Landing at Mars Using Discrete-Event Drag-Modulation . 118

5.1.1 System Concept . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.1.2 Numerical Analysis Methods and Assumptions . . . . . . . . 126

5.1.3 Corridor Definition and Divert Capability . . . . . . . . . . . 130

5.1.4 Entry, Descent, and Landing Flight Performance . . . . . . . 135

5.1.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.2 Drag-Modulation System Options for Planetary Aerocapture . . . . 146

5.2.1 Drag Modulation Flight Control Concepts . . . . . . . . . . . 147

5.2.2 Real-time Guidance . . . . . . . . . . . . . . . . . . . . . . . 150

5.2.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5.2.4 Corridor and Feasibility . . . . . . . . . . . . . . . . . . . . . 154

5.2.5 Case Study: Aerocapture at Mars . . . . . . . . . . . . . . . 160

5.2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

5.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

VI COMPARISON OF LIFT AND DRAG-MODULATION SYSTEMS
USING NONLINEAR VARIATIONAL METHODS . . . . . . . . 168

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

6.2 Nonlinear Variational Methods . . . . . . . . . . . . . . . . . . . . . 169

6.3 Application to Ballistic Entry Using the Allen-Eggers Solution . . . 171

6.3.1 Robustness to Atmospheric Parameters . . . . . . . . . . . . 172

6.4 Comparison of Lift and Drag-Modulation Systems for Steep Entry
Trajectories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

6.4.1 Atmospheric Parameters . . . . . . . . . . . . . . . . . . . . 182

6.4.2 Initial State Parameters . . . . . . . . . . . . . . . . . . . . . 183

6.4.3 Vehicle Aerodynamic Parameters . . . . . . . . . . . . . . . . 183

6.5 Integrated Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

vi



VII CONCLUSIONS AND FUTURE WORK . . . . . . . . . . . . . . 192

7.1 Research Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 192

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

vii



LIST OF TABLES

1 Approximations in Selected Flight Dynamics Texts . . . . . . . . . . 30

2 Closed-form Ballistic Entry Solutions and Assumptions . . . . . . . . 34

3 Parameters for example trajectories at Earth . . . . . . . . . . . . . . 66

4 Vehicle states at peak acceleration . . . . . . . . . . . . . . . . . . . . 72

5 Vehicle states at peak heat rate . . . . . . . . . . . . . . . . . . . . . 72

6 Nominal Parameters for Example Trajectory . . . . . . . . . . . . . . 107

7 Mars Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

8 Monte Carlo Simulation Uncertainty Models and Parameters . . . . . 131

9 Nominal Trajectory Parameters . . . . . . . . . . . . . . . . . . . . . 136

10 Monte Carlo Simulation Results . . . . . . . . . . . . . . . . . . . . . 142

11 Planetary Model Parameters . . . . . . . . . . . . . . . . . . . . . . . 152

12 Monte Carlo Simulation Input for Mars Trajectories . . . . . . . . . . 153

13 Monte Carlo Simulation Results for Single-stage System at Mars . . . 162

14 Monte Carlo Simulation Results for Two-stage System at Mars . . . . 163

15 Monte Carlo Simulation Results for Continuously-variable System at
Mars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

16 Parameters in the Allen-Eggers Solution . . . . . . . . . . . . . . . . 170

17 Ballistic Entry Trajectory Parameters . . . . . . . . . . . . . . . . . . 174

18 MSL-Class Vehicle Entry Trajectory Parameters . . . . . . . . . . . . 188

19 Lift Versus Drag Modulation for an MSL-Class Vehicle . . . . . . . . 190

viii



LIST OF FIGURES

1 Example planetary aeroassist trajectories: a) entry and b) aerocapture. 1

2 Example Earth entry trajectory: lunar return with V0 = 11 km/s,
γ0 = −8 deg, L/D = 0, β = 315 kg/m2, rN = 3.0 m. . . . . . . . . . . 3

3 Deployable hypersonic aerodynamic decelerator concepts: a) IRVE-3,
b) ADEPT, c) trailing ballute. . . . . . . . . . . . . . . . . . . . . . . 8

4 Coordinate systems and free-body diagram for planar entry trajectories. 11

5 Bank-angle steering for blunt body entry vehicle. . . . . . . . . . . . 15

6 Bank reversal, wind-relative velocity vector is directed out of the page. 15

7 Required L/D to achieve a particular limit on peak deceleration during
planetary entry at several velocities. . . . . . . . . . . . . . . . . . . . 16

8 Example lift-modulation entry trajectory using bank-angle steering. . 16

9 Options for parameterizing the aerodynamic force. . . . . . . . . . . . 19

10 Planetary entry corridor. . . . . . . . . . . . . . . . . . . . . . . . . . 21

11 Notional corridor-bounding entry trajectories for a lift-modulation en-
try system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

12 Applicability of various first-order approximations of the equations of
motion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

13 Comparison of the applicability of select first-order methods. . . . . . 32

14 H. Julian Allen with his blunt body theory. . . . . . . . . . . . . . . . 35

15 Sänger’s and Bredt’s rocket bomber. . . . . . . . . . . . . . . . . . . 42

16 Gazley’s lifting entry corridor. . . . . . . . . . . . . . . . . . . . . . . 44

17 Comparison of analytical and numerical spherical planet solutions with
analytical flat planet solutions. . . . . . . . . . . . . . . . . . . . . . . 49

18 Loh’s second-order solution applied to an oscillatory endoatmospheric
trajectory (R/H = 900). . . . . . . . . . . . . . . . . . . . . . . . . . 53

19 Comparison of Allen-Eggers, Citron-Meir, Loh, and numerical integra-
tion (R/H = 900). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

20 Comparison of Citron-Meir, Loh, and numerical integration for lifting
entry: a) altitude and b) flight-path angle versus normalized velocity
(R/H = 900). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

ix



21 Comparison of Citron-Meir, Loh, and numerical integration for ballistic
entry: a) altitude and b) flight-path angle versus normalized velocity
(R/H = 900). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

22 Comparison of solution methods to the matched asymptotic solution. 60

23 Example application of the Allen-Eggers solution (solid) compared to
numerical integration (dashed): a) altitude, b) acceleration, c) flight-
path angle, and d) heat rate versus velocity. . . . . . . . . . . . . . . 72

24 Allen-Eggers approximation error for a) altitude, b) acceleration, c)
flight-path angle, and d) heat rate versus velocity. . . . . . . . . . . . 73

25 Three methods for computing the Allen-Eggers constant flight-path
angle, γ∗, for the sample-return example entering with three different
values of γ0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

26 Comparison of the approximation error with γ∗ = γ0 (dashed) and the
proposed method for computing γ∗ (solid): a) altitude, b) acceleration,
c) flight-path angle, and d) heat rate versus velocity. . . . . . . . . . 77

27 Vehicle state approximation error at peak conditions for γ∗ = γ0 and
the proposed method for computing γ∗. . . . . . . . . . . . . . . . . . 78

28 Allen-Eggers approximation error in altitude-velocity profile a) early
and b) late in the trajectories. . . . . . . . . . . . . . . . . . . . . . . 79

29 Example bounds on the Allen-Eggers domain of applicability for the
sample-return example case. . . . . . . . . . . . . . . . . . . . . . . . 81

30 Allen-Eggers approximation error versus a) the initial dynamic pressure
stand-off factor and b) the final velocity stand-off factor for the sample-
return example case. . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

31 Comparison of the approximation error for bounded (solid, δV = 0.05,
δq = 2) and unbounded (dashed) domains: a) altitude, b) acceleration,
c) flight-path angle, and d) heat rate versus velocity. . . . . . . . . . 84

32 Allen-Eggers approximation error of vehicle states at peak conditions
for bounded (δV = 0.05, δq = 2) and unbounded domains. . . . . . . . 84

33 Planetary entry range and range angle. . . . . . . . . . . . . . . . . . 86

34 Comparison of numerical integration (dashed) and estimates (solid) of
a) range and b) range-to-go. . . . . . . . . . . . . . . . . . . . . . . . 89

35 Comparison of range estimation error for Eq. (97) (solid) and Kornre-
ich’s expression (dashed) a) percent error with respect to total range
and b) absolute error. . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

x



36 Range-to-go estimation error: a) percent error with respect to total
range and b) absolute error. . . . . . . . . . . . . . . . . . . . . . . . 90

37 Comparison of states from the time-dependent Allen-Eggers solution
(solid) with numerical integration (dashed): a) velocity, b) altitude, c)
flight-path angle, and d) range angle versus time. . . . . . . . . . . . 94

38 Comparison of states from the time-dependent Allen-Eggers solution
(solid) with numerical integration (dashed): a) acceleration and b) heat
rate versus time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

39 Absolute error in trajectory time estimates for Eq. (102c) (solid) and
Kumagai’s solution (dashed). . . . . . . . . . . . . . . . . . . . . . . 95

40 Comparison of the extended and enhanced Allen-Eggers solution (solid),
the original Allen-Eggers solution (gray), and numerical integration
(dashed): a) altitude, b) acceleration, c) flight-path angle, and d) heat
rate versus velocity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

41 Comparison of approximation error for the extended and enhanced
Allen-Eggers solution (solid) and the original Allen-Eggers solution
(dashed): a) altitude, b) acceleration, c) flight-path angle, and d) heat
rate versus velocity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

42 Approximation error for the original and extended and enhanced Allen-
Eggers solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

43 Improvements to the domain of applicability of the Allen-Eggers (Ga-
zley) solution [1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

44 Normalized integrated error in acceleration, heat rate, and range-to-go
over a range of initial conditions for the sample-return example vehicle
(β = 60 kg/m2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

45 Normalized integrated error in acceleration, heat rate, and range-to-
go over a range of initial conditions for the strategic example vehicle
(β = 10000 kg/m2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

46 Normalized integrated error in acceleration, heat rate, and range-to-go
over a range of initial conditions for the LEO-return example vehicle
(β = 450 kg/m2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

47 Percent error in a) peak acceleration and b) peak heat rate estimates. 103

48 Example application of the Allen-Eggers solution. . . . . . . . . . . . 106

49 Range profiles for several VJ . . . . . . . . . . . . . . . . . . . . . . . . 108

50 Divert capability over a range of ballistic coefficients. . . . . . . . . . 109

51 Acceleration profiles for several VJ . . . . . . . . . . . . . . . . . . . . 111

xi



52 Jettison velocity for minimum amax as a function of (β1, β2). . . . . . 113

53 Minimum amax as a function of (β1, β2). . . . . . . . . . . . . . . . . . 113

54 Jettison velocity for minimum amax as a function of ballistic coefficient
ratio. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

55 Minimum amax as a function of ballistic coefficient ratio. . . . . . . . 115

56 Heat rate as a function of velocity for several VJ . . . . . . . . . . . . 116

57 Discrete-event drag-modulation vehicle concept. . . . . . . . . . . . . 122

58 Discrete-event drag-modulation trajectory control concept EDL se-
quence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

59 Guidance and targeting modes. . . . . . . . . . . . . . . . . . . . . . 123

60 Example corridor-bounding entry trajectories for a drag-modulation
trajectory control system at Mars. . . . . . . . . . . . . . . . . . . . . 133

61 Total entry range as a function of a) drag skirt jettison time and b)
planet-relative velocity at jettison. . . . . . . . . . . . . . . . . . . . . 134

62 Change in total entry range and nominal g-load as a function of drag
skirt jettison time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

63 Altitude versus downrange for corridor-bounding trajectories over three
different density profiles. . . . . . . . . . . . . . . . . . . . . . . . . . 135

64 Nominal entry trajectory for guidance mode 1. . . . . . . . . . . . . . 137

65 Dispersed entry trajectories for guidance mode 1. . . . . . . . . . . . 141

66 Post-jettison drag skirt segment trajectories for guidance mode 1. . . 143

67 Terminal a) downrange, b) crossrange, and c) total range error for all
three guidance modes. . . . . . . . . . . . . . . . . . . . . . . . . . . 144

68 Parachute deploy conditions for a) pre-set velocity trigger and b) range-
based trigger. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

69 Single-stage jettison drag modulation aerocapture system. . . . . . . 148

70 Two-stage jettison drag modulation aerocapture system. . . . . . . . 149

71 Continuously-variable drag modulation aerocapture system. . . . . . . 149

72 Example bounding trajectories for aerocapture aerodynamic corridor
at Mars: a) altitude, b) flight-path angle, and c) sensed deceleration
versus planet-relative velocity. . . . . . . . . . . . . . . . . . . . . . . 155

73 Aerocapture corridor bounding AI flight-path angles versus AI velocity
for several β at Mars. . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

xii



74 Aerodynamic corridor width as a function of β for several AI velocities
at Mars. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

75 Aerodynamic corridor width as a function of β1 for several β-ratios at
Mars for AI velocity of 6 km/s. . . . . . . . . . . . . . . . . . . . . . 158

76 Aerocapture aerodynamic corridor widths at a) Mars, b) Titan, and c)
Venus for two values of β1 and several β-ratios. . . . . . . . . . . . . 159

77 Peak stagnation-point convective heat rates for several β. . . . . . . . 160

78 Monte Carlo results for single-stage system at Mars: a) apoapsis error
versus jettison time and b) periapsis raise ∆V and c) apoapsis correc-
tion ∆V versus apoapsis error. . . . . . . . . . . . . . . . . . . . . . . 162

79 Monte Carlo results for two-stage system at Mars: a) stage 2 versus
stage 1 jettison time and b) periapsis raise ∆V and c) apoapsis correc-
tion ∆V versus apoapsis error. . . . . . . . . . . . . . . . . . . . . . . 163

80 Monte Carlo results for CV system at Mars: a) area command versus
time (black curve denotes nominal) and b) periapsis raise ∆V and c)
apoapsis correction ∆V versus apoapsis error. . . . . . . . . . . . . . 164

81 Comparison of drag modulation aerocapture system options for Mars:
a) apoapse error and b) total ∆V . . . . . . . . . . . . . . . . . . . . . 165

82 Closed form solution for ∂sf/∂ρref using the Allen-Eggers solution. . 173

83 Effect of reference density perturbations on final range. . . . . . . . . 174

84 Change in final range for various β values, analytical solution. . . . . 175

85 Change in final range for various β values, numerical root-finding com-
putation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

86 Effect of reference density perturbations on range divert capability. . 177

87 Effect of scale height perturbations on final range. . . . . . . . . . . . 178

88 Change in final range with respect to changes in scale height for various
β values, analytical solution. . . . . . . . . . . . . . . . . . . . . . . . 179

89 Change in final range with respect to changes in scale height for various
β values, numerical solution with analytical solution superimposed in
blue. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

90 First-order change in final range in km for various β with respect to
perturbations in H and ρref . . . . . . . . . . . . . . . . . . . . . . . . 180

91 Combined first and second-order change in final range in km for various
β with respect to perturbations in H and ρref . . . . . . . . . . . . . . 181

xiii



92 Comparison of perturbations in final range relative to atmospheric pa-
rameter perturbations for lift and drag-modulation systems. . . . . . 184

93 Comparison of perturbations in final range relative to initial state per-
turbations for lift and drag-modulation systems. . . . . . . . . . . . . 185

94 Comparison of perturbations in final range relative to vehicle parame-
ter perturbations for lift and drag-modulation systems. . . . . . . . . 186

95 Change in final range in km due to perturbations in β and L/D for
ballistic systems (red) and lifting systems (blue, L/D = 0.1) at Earth. 187

96 Change in final range in km due to perturbations in β and L/D for
ballistic systems (red) and lifting systems (blue, L/D ≈ 0.24). Black
box shows approximate uncertainty in MSL aerodynamics. . . . . . . 188

xiv



NOMENCLATURE

Abbreviations

ADEPT Adaptive Deployable Entry and Placement Technology

AI Atmospheric interface

c.g. Center of gravity

DGB Disk-Gap-Band

DHD Deployable Hypersonic Decelerator

EDL Entry, Descent, and Landing

EI Entry Interface

GNC Guidance, Navigation, and Control

HIAD Hypersonic Inflatable Aerodynamic Decelerator

ICBM Intercontinental Ballistic Missile

IRBM Intermediate Range Ballistic Missile

IRVE Inflatable Re-entry Vehicle Experiment

MER Mars Exploration Rover

MSL Mars Science Laboratory

NPC Numerical Predictor-Corrector

RCS Reaction Control System

SLE Steep lifting entry

xv



TPS Thermal Protection System

Subscripts

0 Initial condition

f Final condition

I Inertial frame

i Index

L Local horizontal frame

W Wind frame

rel Planet-relative frame

Symbols

α Angle of attack, rad

β Ballistic coefficient, kg/m2

∆t Time between measurements, s

∆V Change in velocity, m/s

Q̇ Stagnation-point heat rate, W/cm2

η Noise magnitude

γ Flight-path angle, rad

a Acceleration vector, m/s2

D Drag vector, N

e Error vector

xvi



L Lift vector, N

PSS Steady-state covariance matrix

r Position vector, m

V Velocity vector, m/s

W Weight vector, N

x Markov-process random variable vector

φ Longitude, rad

ψ Latitude, rad

ρ Atmospheric density, kg/m3

ρref Reference density, kg/m3

σ Bank angle, rad

σ Standard deviation

τ Time constant, s

θ Range angle, rad

a Acceleration magnitude, m/s2

CD Drag coefficient

CL Lift coefficient

D Drag magnitude, N

g Acceleration due to gravity, m/s2

H Atmospheric scale height, m

xvii



h Altitude, m

href Reference altitude, m

J2 Gravity perturbation

L Lift magnitude, N

L/D Lift-to-drag ratio

m Mass, kg

q Dynamic pressure, N/m2

R Planetary radius, m

r Radius vector magnitude, m

s Range, m

Sref Aerodynamic reference area, m2

t Time, s

V Velocity magnitude, m/s

VC Circular velocity, m/s

W Weight magnitude, N

x Markov-process random variable

xviii



SUMMARY

During planetary entry, a vehicle uses drag generated from flight through the

planetary atmosphere to decelerate from hyperbolic or orbital velocity. To date, all

guided entry systems have utilized lift-modulation trajectory control. Deployable

aerodynamic devices enable drag-modulation trajectory control, where a vehicle con-

trols its energy and range during entry by varying drag area. Implementation of

conventional lift-modulation systems is challenging for deployable systems. In con-

trast, drag-modulation trajectory control may be simpler and lower-cost than current

state-of-the-art lift-modulation systems.

In this investigation, a survey of analytical methods for computing planetary en-

try trajectories is presented and the approximate analytical solution to the entry

equations of motion originally developed by Allen and Eggers is extended to enable

flight performance evaluation of drag-modulation trajectory control systems. Re-

sults indicate that significant range control authority is available for vehicles with

modestly sized decelerators. The extended Allen-Eggers solution is closed-form and

enables rapid evaluation of nonlifting entry trajectories. The solution is utilized to

develop analytical relationships for discrete-event drag-modulation systems. These

relationships have direct application to onboard guidance and targeting systems.

Numerical techniques were used to evaluate drag-modulation trajectory control

for precision landing and planetary aerocapture missions, including development of

prototype real-time guidance and targeting algorithms. Results show that simple,

discrete-event drag-modulation trajectory control systems can provide landed accu-

racies competitive with the current state of the art and a more benign aerothermal

xix



environment during entry for robotic-scale exploration missions. For aerocapture,

drag-modulation trajectory control is shown to be feasible for missions to Mars and

Titan and the required ∆V for periapsis raise is insensitive to the particular method

of drag modulation. Overall, results indicate that drag-modulation trajectory control

is feasible for a subset of planetary entry and aerocapture missions.

To facilitate intelligent system selection, a method is proposed for comparing

lift and drag-modulation trajectory control schemes. This method applies nonlinear

variational techniques to closed-form analytical solutions of the equations of motion,

generating closed-form expressions for variations of arbitrary order. This comparative

method is quantitative, performance-based, addresses robustness, and applicable early

in the design process. This method is applied to steep planetary entry trajectories and

shows that, in general, lift and drag-modulation systems exhibit similar responses to

perturbations in environmental and initial state perturbations. However, significant

differences are present for aerodynamic perturbations and results demonstrate that

drag systems may be more robust to uncertainty in aerodynamic parameters.

Finally, the results of these contributions are combined to build a set of guidelines

for selecting lift or drag-modulation for a Mars Science Laboratory-class planetary

entry mission.
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CHAPTER I

INTRODUCTION

1.1 Planetary Aeroassist Systems

1.1.1 Aeroassist Maneuvers

Spacecraft traveling near planetary bodies with atmospheres may use the planetary

atmosphere to change their trajectory with aerodynamic forces. Termed aeroassist,

these maneuvers may be used to reduce vehicle energy, change the direction of a

vehicle’s trajectory, or both, while using only a small amount of propellant, often

providing a significant mass savings over equivalent fully-propulsive maneuvers. Fig-

ure 1 shows two types of aeroassist maneuvers: a) entry and b) aerocapture.

During entry, a vehicle uses drag generated from flight through the planetary

atmosphere to decelerate from hyperbolic or orbital velocity. The vehicle state at

the top of the atmosphere, commonly referred to as entry interface (EI), is typically

considered to be the initial condition for entry trajectories. EI is defined at a specific

altitude at which atmospheric density, and therefore aerodynamic force, is negligible.

Planet Planet 

a) b) 

ΔV at apoapsis 
to raise 
periapsis 

Hyperbolic 
approach 
trajectory 

Transfer orbit 
Parking orbit 

ΔV at 
periapsis to 
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apoapsis error 

Atmospheric 
pass 

Direct entry 
(hyperbolic 
approach) 

Atmospheric 
descent to 
surface 

Entry        
from orbit 

Deorbit ΔV 
to lower 
periapsis 

Entry interface 
(EI) Aerocapture 

interface (AI) 

Figure 1: Example planetary aeroassist trajectories: a) entry and b) aerocapture.
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After an entry vehicle passes through EI, hypersonic aerodynamic forces begin to build

on the vehicle until they dominate its motion as shown in the example entry trajectory

in Fig. 2. As atmospheric density increases with decreasing altitude, deceleration

magnitude builds to a peak value (Fig. 2b). Aerodynamic heating from the high-

speed flow peaks just before deceleration (Fig. 2c); integrated heat load continues

to build throughout entry (Fig. 2d). The majority of the deceleration and heat

pulses occur in a relatively narrow altitude band (Fig. 2a). Entry vehicles must

be designed to accommodate both the high loads and high heat fluxes experienced

during hypersonic flight through the atmosphere. For this reason, and to increase

drag, entry vehicles utilize blunted aerodynamic surfaces; the flow field surrounding

blunted surfaces carries away most of the thermal energy associated with the vehicle’s

decrease in kinetic energy [2]. Even so, a substantial thermal protection system (TPS)

is required to protect the vehicle and its payload from the aerothermal environment.

Once sufficient deceleration has occurred, planetary entry vehicles either deploy a

terminal descent system, such as a parachute, or glide to a runway landing as the

Space Shuttle did. Planetary entry maneuvers are accomplished solely through the

dissipation of kinetic energy through aerodynamic control; to do so propulsively would

require a deceleration system mass fraction on the order of that required for launch

(near 90% at Earth). Such a vehicle would have to be launched itself and generally

represents an infeasible scenario.

During aerocapture (see Fig. 1b), a vehicle performs a single pass through the

atmosphere and returns to space, using drag to reduce energy to transition from a

higher-energy orbit to a lower-energy orbit. For identical initial conditions, aerocap-

ture trajectories typically exhibit lower peak deceleration and heat flux values relative

to entry trajectories, because they deplete less energy. The challenges and benefits

inherent in aerocapture are similar to that of entry, including exposure to a severe
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aerothermal environment and significant mass savings relative to full-propulsive op-

tions. Aerocapture typically requires two small propulsive changes in velocity (∆V )

after the atmospheric pass: one at the apoapsis of the transfer orbit to raise periapsis

out of the atmosphere and one at periapsis to correct for any apoapse error. Relative

to propulsive orbit insertion, the reduced propellant mass required for aerocapture

may result in vehicle mass savings of 15% to nearly 300%, depending on mission

and destination [3]. Plane changes are also possible during entry and aerocapture if

out-of-plane control is available.

Atmospheric entry has been performed by numerous vehicle systems since the

dawn of the space age. Early robotic systems, such as that used by the Corona

program, utilized an entry vehicle to return film containing orbital reconnaissance

imagery to the surface of Earth [4]. Atmospheric entry has also been a major part

of every human spaceflight system, from Vostok to the Space Shuttle [5]. Recently

developed entry systems include NASA’s Mars Science Laboratory [6] and Orion Mul-

tipurpose Crew Vehicle [7] and Space Exploration Technologies’ Dragon capsule [8].

While numerous test flights for aerocapture have been proposed, such as the Aeroas-

sist Flight Experiment [9] and ST7 [10], aerocapture has never been demonstrated.

However, aerocapture was a flight option for the Apollo Command Module [11] and

has been the subject of extensive study. Because aerocapture utilizes nearly identi-

cal technology and flight systems as atmospheric entry, it is considered to be nearly

flight-ready with current technology [12].

Atmospheric entry missions to date have relied on technology developed in the

1960s and 70s. While incorporating skip entry as a flight option, the current Project

Orion largely uses Apollo-era entry technology developed in the 1960s [7]; the Space

Shuttle entry system was developed in the 1970s [13]. Current Mars missions, capable

of landed masses of approximately 1 metric ton, are near the performance limit of

their Viking-era entry technology, also developed in the 1960s and 1970s [14]. Future
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missions of interest at Earth, Mars, Venus, Titan, and the outer planets will require

a significant improvement in the performance capabilities of planetary entry systems

to accommodate the more massive payloads necessary to complete more ambitious

mission goals while limiting launch costs [15]. This increase in capability may be

achieved through the development of new technologies for planetary entry.

1.1.2 Deployable Decelerators

Future planetary entry systems must be able to provide more accurate delivery of

more massive payloads than current systems to support the next generation of ex-

ploration missions. This performance improvement and increase in delivered payload

mass may be achieved by reducing or eliminating the diameter and shape constraints

placed on the entry system by the launch vehicle payload fairing, allowing the entry

vehicle to assume an aerodynamic form that best facilitates mission success. Current

launch vehicle fairings restrict maximum payload diameter to about 5 m. Deploy-

able aerodynamic devices, both rigid and inflatable, have the potential to enable

a broad spectrum of next-generation missions by mitigating launch vehicle payload

fairing shape and size constraints on aeroassist vehicles and potentially providing

an in-flight reconfiguration capability. While deployable decelerators have long been

used for low-speed systems (e.g. parachutes for descent, projectile control via deploy-

able fences), only recently has technology matured sufficiently to make deployable

decelerators attractive for hypersonic applications.

The NASA draft Entry, Descent, and Landing Space Technology Roadmap re-

leased in November of 2010 lists Deployable hypersonic decelerators (DHDs) as a key

recommended technology development area, stating “deployed rigid or flexible drag

devices for both the entry and descent phases” and “improved entry and descent

control authority through higher L/D, control surfaces, c.g. modulation, and con-

trollable descent decelerators” [15] are enabling for the next generation of planetary
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exploration missions. DHDs may be used to decrease a vehicle’s ballistic coefficient,

increase trajectory control authority, and provide additional robustness during entry.

Ballistic coefficient (β) is defined by:

β =
m

CDSref
(1)

and may be thought of as the ratio of inertial to drag forces for a particular vehi-

cle configuration of mass m, aerodynamic reference area Sref , and hypersonic drag

coefficient CD. The Space Technology Roadmap identifies “low ballistic coefficient

deployable decelerators” as a“key push technology” for missions to “all [planetary]

destinations” [15]. DHDs are an enabling technology for low ballistic coefficient ve-

hicles. A lower ballistic coefficient allows the vehicle to decelerate higher in the

atmosphere, preserving altitude and timeline margin while reducing the severity of

the aerothermodynamic environment. This reduces stress on the TPS and vehicle

structure and reduces the criticality of the terminal descent timeline.

DHDs are frequently classified by their structure, which range from hypersonic

inflatable aerodynamic decelerators (HIADs) to semi-rigid systems, where rigid spars

support a flexible drag area, to fully rigid systems. Several examples are shown in

Fig. 3: a) the Inflatable Re-entry Vehicle Experiment (IRVE-3) flight-test vehicle [16],

b) the Adaptive Deployable Entry and Placement Technology (ADEPT) semi-rigid

concept [17], and c) a trailing toroidal ballute concept for aerocapture missions [18].

These vehicles all provide deployable, lightweight drag areas that are compatible with

current launch vehicle maximum diameter constraints.

Ref. [19] provides a summary of inflatable deployable decelerator development

through 2005, conducted by both NASA and the Department of Defense. Since then,

NASA has continued to mature HIAD technology through the IRVE sub-scale flight-

test program [16] and wind-tunnel testing of larger-diameter concepts [20]. IRVE-3,

the latest flight of the IRVE program, demonstrated lifting flight of a 3-m-diameter

HIAD for the first time; lift was generated using a c.g. offset mechanism, but no
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active control of the lift was attempted [21]. HIAD-based entry system architecture

options were also featured prominently in NASAs Entry, Descent, and Landing Sys-

tems Analysis Study where they were used to decelerate large payloads in the thin

Mars atmosphere [22, 23].

While significant development work has been completed for HIADs, little work

has been completed for semi-rigid and rigid deployables. NASA’s Space Technology

Roadmap identifies the development of rigid deployable systems as an “immediate

action,” calling for investigation into “deployable entry systems that would be an

alternative to inflatable approaches (currently being investigated) in order not to de-

pend on a single path”[15]. Semi-rigid and rigid deployables may provide several

advantages over HIADs, including reduced sensitivity to fluid-structure interaction

effects, better micrometeoroid damage tolerance, and possible reconfigurabilty that

may be used for steering [24]. The only significant development effort being con-

ducted for these types of vehicles is the umbrella-like ADEPT semi-rigid concept [17].

Currently, ADEPT development is focused on a potential planetary entry mission

at Venus, where its relatively large drag area will be used primarily to reduce the

severity of the aerothermal environment [25].

Regardless of their structural class, only limited work has been completed to

date in the area of guidance and control for DHDs, making current assessments of

DHD flight performance suspect, despite their promise. The NASA Space Technol-

ogy Roadmap notes that “advanced guidance and navigation systems adapted to

deployable system controllers” will be required [15]. Initial feasibility studies have

outlined the potential benefits of DHDs, particularly HIADs, but have made numer-

ous simplifying assumptions regarding vehicle guidance and flight control systems

[26, 22, 23, 17, 27, 28]. In general, these studies have assumed that DHD vehicles

may be steered in the much the same way as more traditional entry systems and fail

to take into account the potential complexities and limitations of effectors required
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a) b) c) 

Figure 3: Deployable hypersonic aerodynamic decelerator concepts: a) IRVE-3, b)
ADEPT, c) trailing ballute.

for large, and potentially flexible, vehicles. Future work must build on these early

studies by increasing the level of detail, reevaluating assumptions, and investigating

additional flight control methods and vehicle configurations.

1.2 Aeroassist Flight Dynamics

1.2.1 The Equations of Motion

The equations of motion for aeroassist systems are well-documented in the literature.

For example, the full six-degree-of-freedom equations of motion are presented by Pla-

tus in [29]. This thesis focuses on translational motion and neglects rotational motion

of the vehicle, allowing use of the two and three-degree-of-freedom formulations of the

equations of motion.

The hypersonic phase of an aeroassist (aerocapture or planetary entry) maneuver

is typically unpowered, in the sense that thrust is used only for attitude control.

The small amount of thrust required for attitude control results in a nearly constant

vehicle mass. Using Newton’s Second Law, the three-degree-of-freedom translational

equation of motion for a general entry vehicle with constant mass m is:

∑
Fext = L + D + W = m

dV

dt
(2)
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In scalar form, the three-degree-of-freedom equations of motion for a nonrotating

spherical planet are given by [30]:

dV

dt
=− D

m
− g sin γ (3a)

V
dγ

dt
=
L

m
cosσ − g cos γ +

V 2

r
cos γ (3b)

V
dψ

dt
=
L

m

sinσ

cos γ
− V 2

r
cos γ cosψ tanφ (3c)

dr

dt
=V sin γ (3d)

dθ

dt
=
V cos γ cosψ

r cosφ
(3e)

dφ

dt
=
V cos γ sinψ

r
(3f)

where

L =
1

2
ρV 2SrefCL (4a)

D =
1

2
ρV 2SrefCD (4b)

h =r −R (4c)

where ρ is the atmospheric density, Sref is the aerodynamic reference area, and CL

and CD are the hypersonic aerodynamic lift and drag coefficients, respectively. Lees

and Hartwig, and Cohen provide a good justification for assuming a non-rotating

planet and atmosphere, resulting in the inertial and planet-relative velocities being

equal [31].

The two-degree-of-freedom equations of motion restrict the three-degree-of-freedom

equations to the plane defined by r0 and V0 (see Fig. 4). The scalar, planar equa-

tions of motion may be derived for a non-rotating planet (in a similar manner as

Ch. 7 of Ref. [32]) by considering the coordinate systems and free-body diagram for

a planar entry trajectory shown in Fig. 4. The coordinate frames are the planet-

centered inertial frame (XI , ZI), the local horizontal frame (XL, ZL), and the wind

frame (XW , ZW ). Expressing the vectors in Eq. (2) in the wind frame, one obtains
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two scalar equations of motion:

dV

dt
= −D

m
− g sin(γ) (5a)

dγ

dt
=
dθ

dt
+

1

V

L

m
− g

V
cos(γ) (5b)

where the range angle, θ, is the angle between the XI and XL directions and the

flight-path angle, γ, is the angle between XL and XW directions and is defined to

be positive above the local horizontal. From kinematics, two more equations may

be written for altitude above the planetary surface, h, and range angle, assuming a

spherical planet:

dh

dt
= V sin γ (6a)

dθ

dt
=
V cos(γ)

h+RE

(6b)

Combining Eqs. (5), (6), (4a), and (1); recognizing that CL/CD = L/D; and rearranging

terms, the planar equations of motion for an aeroassist vehicle may be written as:

dV

dt
= −

(
ρ

2β

)
V 2 − g sin(γ) (7a)

dγ

dt
=
V cos γ

RE + h
+

(
ρ

2β

)(
L

D

)
V − g

V
cos(γ) (7b)

dh

dt
= V sin(γ) (7c)

dθ

dt
=
V cos γ

RE + h
(7d)

The acceleration due to gravity changes little during entry, as altitude changes are

typically in the 10s of km compared to planetary radii in the 1000s of km. Therefore,

g is assumed to be constant during entry. Atmospheric density is assumed to vary

exponentially with altitude according to:

ρ = ρref exp

[
href − h

H

]
(8)

where H is the scale height and ρref is the reference density at a reference altitude,

href . While the scale height varies with altitude in a real atmosphere, peak decel-

eration, peak heating, and most interesting aspects of planetary entry occur in a
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Figure 4: Coordinate systems and free-body diagram for planar entry trajectories.

relatively narrow altitude band, making the assumption of constant H reasonable.

This assumption is consistent with an isothermal atmosphere in that altitude band.

The reference density need not be selected as the zero-altitude density. Due to the

variation in scale height, choosing a reference density and scale height base on a higher

altitude may produce a more accurate representation of the true atmospheric density

profile over the altitude range in which entry occurs.

The equations of motion may be further simplified by assuming constant val-

ues for the aerodynamic coefficients, CL and CD, and thus for β and L/D. While

these parameters generally vary with Mach number and angle-of-attack to first order,

Mach-number independence in the hypersonic flight regime (Mach numbers above

about 5) and the lack of angle-of-attack control on most entry vehicles make constant

aerodynamic coefficients a good assumption for entry trajectories [33].

1.2.2 Trajectory Control Options

Exerting a measure of control over an entry trajectory during flight is important

for many missions, whether it is used to limit peak deceleration, perform precision
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landing, or accomplish another objective. Mission designers typically choose initial

conditions (γ0, V0) for a particular trajectory to ensure favorable flight performance.

However, even the most perfectly selected initial conditions do not eliminate the need

to steer out error during entry caused by uncertainty in vehicle properties, onboard

state estimation, and the planetary environment, as well as delivery error. The planar

equations of motion (Eq.(7)) show that only two vehicle parameters are available to

control the vehicle trajectory during flight: lift-to-drag ratio (L/D) and ballistic

coefficient (β). All other parameters are either states or environmental parameters

over which no direct control is possible. While hypersonic trajectory control may be

achieved by varying one or both of these parameters, atmospheric entry systems to

date have used control of L/D exclusively. In this thesis, trajectory control achieved

through changes in L/D will be termed lift modulation; trajectory control achieved

through changes in β will be termed drag modulation.

1.2.2.1 Lift-Modulation Trajectory Control

To date, all guided hypersonic systems have utilized lift modulation for trajectory

control. Specifically, all guided entry systems have utilized a bank-angle (σ) steer-

ing scheme where only the direction of the lift is modulated for trajectory control.

Notable bank-to-steer entry vehicles include the Apollo Command Module [11], the

Soyuz Descent Module [34], the Mars Science Laboratory [35], and the forthcoming

Orion Crew Module [36]. Existing and proposed planetary entry systems have also

utilized angle-of-attack (α) control during entry, but this capability has been reserved

to maintain a specific angle-of-attack profile to reduce uncertainty in aerodynamic

properties, not to control the vehicle trajectory directly. Examples of entry vehicles

that utilize angle-of-attack control coupled with bank-angle steering include the Space

Shuttle Orbiter [37], NASA’s HL-20 [38], and the Sierra Nevada Corporation’s Dream

Chaser [39].
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Figure 5 shows an example bank-angle steering maneuver for a blunt body vehicle:

changing the bank angle, σ, rotates the lift vector (L) about the vehicle’s wind-relative

velocity vector (VW ). Bank angle does not appear explicitly in Eqs. (7); rather it is

implicitly included in the value of L/D. Because Eqs. (7) are two-dimensional, the

L/D in Eq. (7b) is the in-plane L/D, were L is the amount of lift in the in-plane

direction. The in-plane L/D is related to the bank angle and the total L/D by:

L

D
= cosσ

(
L

D

)

total

(9)

While bank maneuvers have no direct effect on the drag vector (D), they do change

the amount of lift pointed in the vertical direction. A more lift-up orientation causes

the vehicle to decelerate at a higher altitude and lower atmospheric density, reducing

the magnitude of the drag vector; a more lift-down orientation causes the vehicle to de-

celerate at a lower altitude and higher atmospheric density, increasing the magnitude

of the drag vector. In this manner, a vehicle may use bank-angle steering to control

its flight path and energy depletion rate, allowing it to satisfy a variety of trajectory

constraints on range, peak deceleration, and heating. However, because the vehicle

has no control over its lift magnitude, bank angles other than 0 deg and 180 deg result

in an out-of-plane component of lift that causes the vehicle to turn. This out-of-plane

component may be used for crossrange control but must be continuously managed

through bank reversals to maintain the desired heading. A bank reversal (see Fig. 6)

is a maneuver in which the vehicle changes the sign of its out-of-plane component

of lift while maintaining the same in-plane, or vertical, lift magnitude, e.g. changing

the bank angle from 60 deg to -60 deg. Periodic bank reversals maintain heading but

cause disturbances to the in-plane lift due to their finite nature: bank slew maneuvers

may require a significant amount of time to complete, during which the in-plane lift

is not at its prescribed value.

Bank-angle steering is particularly well suited to blunt-body capsules. Blunt-body

capsules are typically axisymmetric; lift is generated by offsetting the c.g. from the
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centerline, causing the vehicle to fly at a nonzero angle-of-attack (as shown in Fig. 5).

While capsule-type vehicles have simpler TPS and exhibit excellent packaging effi-

ciency, they do not possess the ability to control the magnitude of their lift: the

restoring aerodynamic pitch moment is generally too large to be overcome by the

onboard reaction control system (RCS) jets. However, winged and lifting body vehi-

cles that possess aerodynamic control surfaces capable of countering the aerodynamic

pitch moment still use bank-angle steering as the primary means of trajectory control

in the hypersonic regime. For example, while the Space Shuttle’s body flap could

control the magnitude of the lift vector, the body flap was instead used to main-

tain a prescribed angle-of-attack (and therefore L/D) profile to reduce aerodynamic

uncertainty while bank-angle steering was used to control energy and range [37].

For lift-modulation trajectory control systems, hypersonic L/D is the control au-

thority metric. Higher values of L/D imply a greater ability to control a given

trajectory, while lower values of L/D imply a lesser ability. An example of this is the

ability of higher L/D vehicles to limit peak deceleration during entry, as shown in

Fig. 7.

Figure 8 shows an example trajectory for a bank-to-steer lift-modulation system:

Orion return from low-Earth orbit [40]. The vehicle in this trajectory has a modest

L/D of 0.25 at Mach 25. As the vehicle decelerates, it maintains a relatively constant

flight-path angle; the presence of lift also allows it to limit deceleration to less than

4 g while accurately targeting a landing site (see Fig. 8c). The on-board guidance

algorithm varies the bank angle (Fig. 8d) to reach the desired landing site. The mag-

nitude of the bank angle is commanded to manage vehicle energy and downrange,

while the sign of the bank angle is commanded to limit out-of-plane error. Bank re-

versals are commanded when out-of-plane errors exceed a pre-set deadband (Fig. 8e).

However, control lag when performing bank reversals results in command tracking

errors (Fig. 8d); these errors require additional control authority to steer out during
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Figure 6: Bank reversal, wind-relative velocity vector is directed out of the page.

entry. This trajectory performs four bank reversals, introducing significant error.

1.2.2.2 Drag-Modulation Trajectory Control

DHDs enable new options for trajectory control during atmospheric flight. One such

option is drag-modulation trajectory control. Consider the ballistic coefficient defined

in Eq. (1). The ballistic coefficient may be thought of as the ratio of inertial to drag

forces; decreasing the ballistic coefficient increases the influence of drag forces relative

to inertial forces, increasing the rate of energy depletion during atmospheric flight.

Increasing the ballistic coefficient has the opposite effect. Therefore, an entry vehicle

that can vary its ballistic coefficient is capable of controlling its energy or range in a

manner similar to that of a lift-modulation vehicle. Operationally, changing vehicle

mass by a significant amount is difficult and undesirable. For an entry vehicle of

constant mass m, drag-modulation trajectory control is accomplished by changing
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the drag area (CDSref ) to change ballistic coefficient and adjust the magnitude of the

drag force.

Drag-modulation trajectory control is a prime candidate for use with large, flexible

heatshields, such as those envisioned by NASA’s HIAD program. While NASA’s

HIAD development program will lead to mature inflatable devices suitable for drag-

modulation trajectory control applications, studies to date have not considered drag

modulation as a trajectory control option [22, 23]. Instead, they have assumed that

lift-modulation trajectory control is possible for these types of vehicles, either through

bank-angle or angle-of-attack modulation. However, effector requirements for large

inflatable vehicles may make lift modulation infeasible or undesirable. For these types

of vehicles, or for missions in which a simpler system is enabling in terms of cost and

risk, drag-modulation trajectory control presents a solution that does not require

complex effectors or asymmetric flight conditions. The ability to fly at zero angle of

attack reduces the criticality of vehicle aerodynamic properties at asymmetric flight

conditions; the absence of an RCS eliminates concerns about effector latency and

jet interaction with a flexible structure and complex wake flow field; the absence of

propellant tanks, propellant, and ejectable ballast masses (for c.g. control) greatly

simplifies packaging, system integration, and operational complexity.

Only a small number of studies on drag modulation for aeroassist missions is avail-

able in the literature. In the 1960s, Levy determined a closed-form solution using drag

modulation to limit the rate of increase of deceleration during entry [42], Rose and

Hayes evaluated drag modulation as means for orbit phasing and entry targeting [43],

and Warden developed analytical solutions for entry with varying ballistic coefficients

to describe trajectories with significant TPS mass loss through ablation [44]. More

recently, Vinh et al. proposed an explicit analytical guidance algorithm for aeroas-

sisted orbit transfer [45] and Kuo et al. examined the use of drag modulation to track

reference trajectories for ballistic missiles [46]. These studies all assumed drag could
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be controlled continuously within a given interval.

Discrete-event drag modulation has been studied for planetary aerocapture mis-

sion applications at the conceptual level. McRonald conducted several studies ad-

dressing discrete-event drag modulation options for aerocapture at several planetary

bodies of interest [47, 48, 49]. Hall and Le identified common trajectory properties

for discrete-event drag-modulation systems across different vehicles, missions, and

atmospheric compositions [50]. Westhelle and Masciarelli performed a more detailed

study of a discrete-event system for use at Titan [51]. Only two studies in the cur-

rent literature attempt to address real-time trajectory control issues for discrete-event

systems, beyond identifying that jettison timing is critical: Miller et al. present a

real-time predictive algorithm for single-stage jettison aerocapture at Titan using a

trailing toroidal ballute but provide only limited information on flight performance

[18]; Johnson and Lyons use a computationally simple heuristic trigger based on curve

fits of the aerocapture vehicle dynamics to perform single-stage jettison aerocapture

at Titan, but results show that this technique results in a relatively high failure rate

in the presence of expected uncertainty [52].

Overall, the feasibility of using drag-modulation trajectory control for aerocapture

has not been conclusively addressed in the literature; the feasibility of using drag-

modulation trajectory control for planetary entry is not addressed at all in the current

literature. Specifically, no studies have comprehensively addressed the costs and bene-

fits of continuous versus discrete-event drag-modulation systems, determined whether

real-time targeting is feasible, or investigated flight performance for drag-modulation

systems for planetary entry.

1.2.3 Aerodynamic Force Parameterization

It is perhaps important to note that the common decomposition and parameteri-

zation of aerodynamic forces into lift and drag components is inherently arbitrary.
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Figure 9: Options for parameterizing the aerodynamic force.

Although convenient, the lift and drag forces are merely one realization of the to-

tal aerodynamic force acting on an atmospheric flight vehicle. For example, in two

dimensions, one could just as easily parameterize the total aerodynamic force A in

terms of its magnitude A and an angle η, as shown in Figure 9.

This inherent arbitrariness raises the question of whether there is a fundamental

difference between lift and drag-modulation systems, since the basis for their separate

designation is arbitrary. For example, a lift-modulation vehicle that controls its L/D

through angle-of-attack modulation changes not only its lift but also its drag when

changing angle of attack. For the purposes of this work, lift and drag modulation will

be defined in the following manner. Lift-modulation trajectory control is that which

utilizes changes in lift to directly modify the trajectory in the desired manner; drag-

modulation trajectory control is that which utilizes changes in drag to directly modify

the trajectory. Hybrid systems which specify changes in lift and drag to achieve

trajectory objectives are also possible. Under these definitions, the Space Shuttle

Orbiter is a pure lift-modulation system in the hypersonic regime. While angle-of-

attack modulation is available and used, indicating some level of drag-modulation

capability, it is only used in an open-loop sense to maintain a particular angle-of-

attack profile, with the primary goal of reducing aerodynamic uncertainty during

hypersonic flight. Range, deceleration, and heating constraints are all met through

the use of lift modulation through bank-angle steering.
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1.2.4 Planetary Entry Corridors

A central goal of trajectory analyses for planetary entry systems is the definition

of the entry corridor for a specific mission and entry vehicle. For a given inertial

velocity at entry interface, there are many possible trajectories that satisfy a given

set of trajectory constraints. The entry corridor is the locus of initial states at the

top of the atmosphere for which the vehicle can achieve its mission objectives, in-

cluding satisfying relevant trajectory and terminal constraints. The entry corridor is

illustrated in Fig. 10: an undershoot trajectory results from trajectories below the

corridor, overshoot trajectories result from trajectories above the corridor. The entry

corridor is frequently defined in terms of the range of acceptable EI flight-path angles.

For entry, if the initial flight-path angle is too shallow, the vehicle will skip out of the

atmosphere. If the initial flight-path angle is too steep, the vehicle will not dissipate

enough energy before it reaches the surface of the planet. The steep, or undershoot,

and shallow, or overshoot, trajectories bound the aerodynamic corridor.

Additional requirements may be imposed on entry trajectories that define an

operational corridor. Such constraints may include limits on the peak heat rate,

total integrated heat load, or on the peak deceleration. Peak heat rate and peak

deceleration typically limit the undershoot boundary, whereas limits on the integrated

heat load will limit the overshoot boundary [53].

Entry vehicles that possess a means of trajectory control, either through lift or drag

modulation, may use their control authority to widen the corridor. Figure 11 shows

example aerodynamic and operational corridor-bounding trajectories for a bank-to-

steer lift-modulation system. The lift vector is used to allow the vehicle to enter the

atmosphere at a wider range of EI flight-path angles. The overshoot boundary is

achieved with a lift-down orientation, followed by constant altitude flight to reduce

peak deceleration. The aerodynamic undershoot boundary is achieved with a lift-up

orientation and a 90-deg flight-path angle; this trajectory reaches a peak declaration
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Figure 10: Planetary entry corridor and bounding entry trajectories [53].

in excess of 360 g and represents a vertical dive. The operational undershoot boundary

is achieved with a lift-up orientation and constant deceleration flight to limit peak

deceleration to 5 g.

1.2.5 Flight Performance Evaluation

The equations of motion for planetary entry flight dynamics are a set of coupled, first-

order, nonlinear, ordinary differential equations. While these equations are not com-

plex, they are highly nonlinear due to the presence of the planetary atmosphere and

defy analytical solution unless simplifying assumptions are applied. When planetary

entry flight performance was first studied in the 1950s and 60s, analytical approxi-

mations were developed to enable vehicle and mission designers to evaluate vehicle

performance without or with minimal computer usage. New approximations con-

tinued to be developed into the 1970s. However, advances in computing eventually

made high-accuracy numerical integration of the equations of motion feasible for most
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Figure 11: Notional corridor-bounding entry trajectories for a lift-modulation entry
system [41].

applications. Today, vehicle and missions designers have significant computational re-

sources available, enabling rapid, low-cost assessments of entry trajectories.

Early approximations by Sänger [54], Allen and Eggers [55, 56], Lees [31], Ting

[57], Loh [58], Arthur [59], Kornreich [60], and others from the middle 1940s to the

early 1960s addressed specific classes of aeroassist trajectories and vehicles. Figure 12

shows how these early, first-order approximations each addressed only a small area

of the entry trajectory space of interest to the community (in Fig. 12, EI flight-path

angle is denoted by θf , with positive values below the local horizontal). For example,

Loh’s solution is only valid for L/D less than zero and small initial flight-path angles;

positive values of L/D require the use of a totally different approximate solution.

This limited applicability made these early first-order approximations difficult to use:

determining the boundaries of applicability was difficult when numerical solutions

were not generally available for comparison and evaluation purposes.

The limited applicability of most first-order approximations led to the develop-

ment of more generally applicable second-order approximations. In 1962, Loh pro-

posed a second-order method for a wide range of entry conditions [61], with later

extensions to skipping entry and other more complex trajectories [62, 63]. Loh’s
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Figure 12: Applicability of various first-order approximations of the equations of
motion [1].

method utilizes insights gained from the development of first-order solutions. Specifi-

cally, he found that combinations of certain terms were insensitive to integration over

trajectory states, allowing analytical integration of a specific form of the equations of

motion. This results in two coupled, transcendental equations that relate flight-path

angle, atmospheric density, and velocity. Solutions are obtained by choosing a state

for a domain, typically velocity, then iteratively solving the system of two equations

and two unknowns for the other two states over the domain.

In 1965, Citron and Meir published a second-order approximation that assumes

density variation can be approximated by a power series of a velocity-like parameter

[64] . By neglecting powers higher than two, Citron and Meir were able to develop

explicit expressions for density and flight-path angle as functions of velocity. This

approximation is generally superior to Loh’s in accuracy. Citron and Meir also show

how Low’s solution can be derived using their method when powers above one are
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neglected; the authors point out that this is equivalent to “neglecting the gravity and

centrifugal forces compared to the inertia and drag forces for a ballistic vehicle.”

These second-order approximations trade better accuracy for ease of evaluation.

Loh’s approximation requires iterative solution of two transcendental equations at

each point on the trajectory; the Citron-Meir approximation requires evaluation of

the exponential integral at each point. The level of complexity required to utilize

either of these approximations is comparable to that required to numerically integrate

the equations of motion on a modern computer. However, such analytical solutions

provide additional information beyond trajectory data: analytical solutions may be

used to provide information on partial derivatives, sensitivities, and other insights

into a particular trajectory.

Using a different approximation paradigm, hybrid numerical-analytical solutions

to the equations of motion were developed that were more accurate than the analyt-

ical approximations developed in the 1960s. These hybrid approximations required

numerical integration, but sought to limit computational resource requirements. The

first of these was the approximation developed by Chapman in 1959 [65]. Chapman

was able to collapse the equations of motion into a single second-order ordinary dif-

ferential equation by performing a carefully orchestrated change of variables. This

differential equation only needed to be solved once numerically; other trajectories

could then be found through arithmetic manipulations of the single trajectory. Vinh

and his students at the University of Michigan revised, enhanced, and extended Chap-

man’s method to all aeroassist trajectory types, including orbit decay, to additional

degrees of freedom, to exact solutions, and phugoid modes [66, 30, 67]. Ferreira

contributed further refinements to this body of work as late as 2000 [68]. However,

similar to the second-order solutions, these solutions trade reduced computational

requirements for increased mathematical complexity.
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As computers became both powerful and ubiquitous, engineers began to approxi-

mate entry trajectory solutions by integrating the equations of motion directly using

numerical techniques instead of using the previously developed analytical and hybrid

approximate techniques. Numerical integration of the equations of motion allows one

to determine trajectory and performance parameters of interest for a particular entry

system configuration. Complex computer programs, typically described as simula-

tions, have been developed to handle a wide variety of systems and environments,

such as the Program to Optimize Simulated Trajectories (POST) [69], the Dynamic

Simulator for ENtry Descent and Surface landing (DSENDS) [70], and the Advanced

NASA Technology Architecture for Exploration Studies (ANTARES) [71]. These

simulations include a range of environment and vehicle models of varying fidelity and

can accommodate complex nonlinearities, such as vehicle configuration changes at

parachute deploy.

These complex simulations require significant effort to set up for a particular anal-

ysis and a relatively large quantity of information to model a given aeroassist vehicle

and its mission. Early in the design phase, using a complex simulation typically

requires one to either wait until the design matures to evaluate its performance or

make a large number of assumptions about yet-to-be-determined vehicle parameters.

Making assumptions about unknown vehicle parameters may lead to misleading re-

sults and create design inertia based on an arbitrary choice that is difficult to change

later in the design process. These issues can be exacerbated by the widely-held mis-

conception that high-fidelity numerical simulations always produce accurate results.

For these reasons, the power of high-fidelity numerical simulation and readily avail-

able inexpensive computational resources have limited exploration of both vehicle

and mission designs and understanding of those designs early in the design phase

when exploration and understanding may have the largest positive impact on the

final design.

25



1.3 Contributions of Thesis

The body of work presented in this thesis advances the state of the art in several areas

of interest to the aeroassist and design methods communities. Specific contributions

are listed below and are discussed in detail in subsequent chapters.

• Extended the Allen-Eggers ballistic entry trajectory solution.

The closed-form analytical solution to the equations of motion for ballistic en-

try developed by Allen and Eggers is enhanced and extended. Specifically, a

method of choosing an appropriate constant flight-path angle is identified, a

closed-form expression for range to go is developed, and limits based on the

equations of motion and acceptable approximation error are proposed to bound

the domain of applicability of the Allen-Eggers solution. These extensions ad-

dress key weaknesses in the original solution and a gap in the current literature:

existing analytical solutions for ballistic entry do not provide closed-form ex-

pressions for flight range. These new relations are placed in the proper context

through completion of a comprehensive survey of analytical methods for the

solution of planetary entry trajectories.

• Developed closed-form analytical relationships for discrete-event drag modula-

tion systems.

The extended and enhanced Allen-Eggers approximate solution is used to eval-

uate discrete-event drag-modulation trajectory control systems for planetary

entry. Closed-form, analytical boundaries on jettison conditions are developed

to limit peak deceleration and peak heating. The ratio of the maximum to mini-

mum ballistic coefficient is shown analytically to be the control authority metric

for drag-modulation systems, analogous to L/D for lift-modulation systems.

• Demonstrated feasibility of drag-modulation trajectory control for planetary en-

try and aerocapture missions. This investigation further demonstrates that
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discrete-event drag-modulation trajectory control for planetary entry and ae-

rocapture missions is feasible and exhibits flight performance competitive with

state-of-the-art lift-modulation systems. Prototype guidance and targeting al-

gorithms for drag-modulation trajectory control are developed and tested to

verify that it is possible for onboard systems to determine and execute the drag

profiles necessary to meet mission requirements.

• Leveraged variational methods and closed-form analytical solutions to provide

quantitative, performance-based measures of robustness for planetary entry sys-

tems.

A quantitative method for comparing bank-to-steer lift-modulation and discrete-

event drag-modulation systems to facilitate system selection is developed with

the following properties:

– Quantitative, to provide transparency.

– Performance-based, to provide a common basis to compare disparate so-

lutions.

– Includes robustness, to capture off-nominal performance considerations.

– Applicable early in design process, to facilitate timely decision-making.

This is accomplished by applying nonlinear variational methods to established

closed-form analytical trajectory solutions. This method results in closed-form

solutions for variations of arbitrary order due to perturbations in initial state,

environment parameters, and vehicle parameters. Lift and drag-modulation

systems are shown to exhibit nearly identical responses to model and state per-

turbations with the exception of aerodynamic perturbations. Drag-modulation

systems are not generally susceptible to lift perturbations, as they may be spun

to null out the integrated effects of any lift generated. Lift-modulation systems

are still subject to uncertainty in drag as well as lift, decreasing their robustness
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relative to drag-only systems and requiring them to devote additional control

authority to steering out error caused by uncertainty in lift.

• Developed guidelines for choosing between lift and drag-modulation trajectory

control systems for planetary entry.

Results of the previous contributions are combined to build a table of guidelines

for selecting lift or drag-modulation systems early in the design cycle. This set of

guidelines will aid mission and vehicle designers in making intelligent decisions

about trajectory control systems for planetary applications.
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CHAPTER II

SURVEY OF ANALYTICAL SOLUTIONS FOR

PLANETARY ENTRY TRAJECTORIES

Early efforts to understand planetary entry flight dynamics utilized analytical ap-

proximations for two reasons: computational resources were limited (although some

capability was available) and a desire to gain a thorough understanding of the topic.

Eventually, inexpensive and universal access to significant computational resources

made numerical integration the approximation method of choice. Today, numerical

integration techniques are the standard method for evaluating the equations of mo-

tion for planetary entry. However, approximate analytical solutions remain useful for

many applications, including onboard real-time Guidance, Navigation, and Control

(GNC) algorithms, mission planning, optimization, and first-order conceptual design

and architecture studies. The literature contains a plethora of different analytical so-

lutions to the equations of motion for planetary entry; unfortunately, many of these

sources are becoming difficult to find, either due to their age or being out of print. A

number of texts (see [72], [1],[73], [74], [30], [32], [75]) include overviews of analytical

approximations for planetary entry, but none are comprehensive (see Table 1). For

example, the Allen-Eggers solution for ballistic entry trajectories is the only analytical

solution that is consistently covered.

A survey of analytical methods available in the literature is presented in this

chapter. This survey serves to find appropriate analytical solutions for use in this

thesis and to document these analytical methods and their sources for posterity. This

survey considers only approximate solutions for translational motion. Aerodynamic

heating and attitude dynamics are not addressed.
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2.1 Approximating Trajectory Solutions for Planetary En-
try

The equations of motion for planetary entry defy analytical solution unless simplifying

assumptions are made. This is due to the highly nonlinear nature of the atmospheric

density as a function of altitude. There are two options for solution: apply simplifying

assumptions to reach an analytical solution or integrate the equations numerically.

Hybrid solutions that utilize a mix of these two methods are also possible. With the

exception of Sänger’s work in the 1940s, the flight dynamics community began to

develop (and publish) approximate solutions for the equations of motion in the early

1950s.

The first planetary entry applications of interest were defense-oriented and were

typically associated with the final leg of an IRBM or ICBM trajectory. Civil appli-

cations, especially those geared toward crewed vehicles, began to gain interest later

as the Space Race between the United States and the Soviet Union started [76].

Planetary entry vehicles are part spacecraft, part aircraft, and part projectile.

Planetary entry trajectories exhibit several unique properties that differentiate them

30



from conventional subsonic and supersonic aircraft and make the analytical approx-

imations for conventional aircraft of limited use. First, planetary entry occurs at

extremely high speeds. This requires use of hypersonic aerodynamics and often re-

quires one to account for the curvature of the planet due to the long distances traveled.

Second, because planetary entry vehicles are descending from space to the planetary

surface, the density variation with altitude must be considered–the steady cruise flight

condition often assumed for conventional aircraft simply does not occur. Planetary

entry trajectories enable new simplifying assumptions. Vehicle aerodynamic proper-

ties may be assumed constant to first order due to Mach number independence in the

hypersonic regime. Planetary entry trajectories are also typically unpowered, elimi-

nating the need to account for thrust or changes in vehicle mass. Lastly, planetary

entry missions of interest lead to flight scenarios quite different than those experienced

by conventional aircraft. Trajectories are often concerned with precision targeting,

landing on another planet with a highly uncertain atmosphere, or simply surviving

the deceleration and heat pulses during entry.

2.2 Analytical Approximate Solutions

Analytical solutions were developed in the 1950s and 1960s for two reasons: 1) compu-

tational resources were extremely limited, if available at all and 2) analytical solutions

provided more information than a single, numerically integrated trajectory. The for-

mer was especially important, given the newness of planetary entry systems at the

time.

In general, analytical solutions apply multiple simplifying assumptions to facilitate

solution of the equations of motion. However, these assumptions limit the applica-

bility of any one solution (see Figure 13). The earliest analytical solutions were

narrowly focused on a particular class of trajectory. However, by the early 1960s,

unified trajectory solutions appeared that were able to treat much broader classes of
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Figure 13: Comparison of the applicability of select first-order methods.[1]

trajectories.

Approximation error varies widely over the analytical solutions available in the

literature, as well as within analytical solutions for varying trajectory parameters. It

also appears that there was a bit of a rivalry amongst flight dynamicists, at least in

the United States: journal articles published on the topic were frequently contested

and defended in the same journal shortly after (for example, see Wang and Loh’s

discussion of Ref. [61] in Refs. [77, 78]).

Solution methods typically apply one or more of the following strategies to simplify

the equations of motion such that they are analytically soluble:

• Assume two-degree-of-freedom motion (in-plane motion only)

• Neglect a force (e.g. D � W , L = 0)

• Assume a flat planet (i.e. θ̇ = 0 or R→∞)
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• Assume a state or parameter is constant (e.g. γ, H, dV/dt)

• Assume a state or parameter is small (e.g. γ)

• Assume convenient relationships (ρ = ρreg exp(−h/H), D = kρV n)

• Assume a term is insensitive to integration (see Ref. [61])

2.2.1 Ballistic Entry

Ballistic, or nonlifting, entry is perhaps the simplest scenario in planetary entry.

For ballistic entry, L = 0 and trajectories are essentially planar. The most significant

solutions available in the literature are summarized in Table 2 along with their central

assumptions and content.

2.2.1.1 Allen-Eggers and Moe

Amongst all analytical solutions for planetary entry trajectories, the Allen-Eggers

solution is the most well-known. It appears in nearly every text on planetary entry

flight dynamics, as well as in texts focused on spacecraft design. It’s popularity is

due to its simplicity.

Harry “Harvey” Julian Allen (Figure 14) and Alfred J. Eggers, working at the

Ames Aeronautical Laboratory, first documented their analytical solution for ballis-

tic entry in a classified NACA research memorandum in 1953 [79]. This memorandum

was declassified in 1957 [79], and subsequently republished as a NACA report in 1958

[56]. Allen and Eggers developed the analytical solution “to determine means avail-

able to the designer for minimizing aerodynamic heating” for missile applications

[56]. The Allen-Eggers solution is based on the insight that, for ballistic entry at a

sufficiently steep initial flight-path angle, the gravitational force may be neglected rel-

ative to the drag force [56]. This yields a closed-form analytical relationship between

velocity and altitude:

V = V0 exp [(Hρref )/(2β sin γ0) exp (−h/H)] (10)
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Table 2: Closed-form Ballistic Entry Solutions and Assumptions
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Figure 14: H. Julian Allen with his blunt body theory.[81]

From Eq. (10), Allen and Eggers were able to derive closed-form analytical expressions

for deceleration and heating as functions of velocity, including state values at peak

conditions of interest. Other assumptions in this solution include constant aerody-

namic coefficients, a constant flight-path angle, and planar motion; these assumptions

typically have only a small effect on the hypersonic portion of a ballistic entry. How-

ever, taken together, these assumptions limit the applicability of the Allen-Eggers

solution to initial flight-path angles steeper than -5 to -10 deg [80].

Gazley independently developed the same solution for ballistic entry trajectories:

he published his work just before the Allen-Eggers solution was declassified [82].

Gazley not only replicates the Allen-Eggers solution, but extends it to include time

of flight for both the hypersonic and gravity-turn portions of an entry trajectory. He

also considers application to Mars and Venus entry vehicles, in addition to Earth

[83, 84].

Miller developed a closed-form solution for time as a function of altitude as a

truncated series in 1961 [85]. This solution requires about six terms of the series.

Miller provides no examples or evidence of the efficacy of his solution.

Kornreich developed a truncated-series expression for range as a function of den-

sity ratio in 1963 [60]. He argues that the bulk of the range traveled during ballistic

entry occurs when the flight-path angle is near its minimum value, allowing it to
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be approximated with a series expansion. However, he then proceeds to neglect all

higher order terms; this is equivalent to assuming that the flight-path angle is con-

stant over the range integral. Kornreich suggests using the maximum value of the

flight-path angle in the range-estimation relationship; this insight produces results

that are significantly more accurate than using the initial flight-path angle as pro-

posed by Allen and Eggers. However, Kornreich does not advocate extending this to

the rest of the Allen-Eggers approximate solution. Lastly, while Kornreich’s range

equation is explicit, computation of the maximum flight-path angle requires iteration.

In 1960, Moe was able to include the effects of gravity and a varying flight-path

angle in an improved analytical approximate solution for ballistic entry, but still

utilized constant aerodynamic coefficients and an exponential atmosphere model [86].

The price of this was an increase in complexity. Moe’s solution requires use of the

exponential integral, a result that is common for analytical approximate solutions.

cos γ = cos γ0
{

1 + 2 ln (r/r0) + (2gR2e−z0)/(V 2
0 r

2
0/H) [Ei(z)− Ei(z0)]

}−1/2
(11a)

V =V0(cos γ0/ cos γ)(r0/r)e
−(z−z0)/2 (11b)

where

z = −
(
Hβρrefe

−h/H) / sin γ (12)

Moe’s solution reduces to the Allen-Eggers solution in the special case where g = 0.

Moe’s solution is a more general form of that developed by Munk in 1944 for

subsonic vertical dives [87]. Munk states that his work is not valid for high speeds

because of Mach-number dependency of aerodynamic coefficients (which he assumes

are constant). However, Munk was working in a propeller-driven aircraft world, and

does not consider hypersonic speeds. Munk’s result is given by:

V 2 = 2gHe−βHρ [Ei (βHρ)− Ei (βHρ0)] (13)

Eqs. (11b) and (13) are equivalent if V0 = 0, γ = −90 deg, and one assumes h� r.
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In 1958, prior to the publication of Moe’s work, Turnacliff and Hartnett proposed

a closed-form solution to velocity as a function of altitude including the effects of

gravity for both vertical and “inclined” (nonvertical) flight. This solution utilizes

a truncated infinite series and the authors comment that it converges well for low-

drag vehicles but not for high-drag vehicles [88]. Squire points out that this solution

merely replicates Munk’s solution from 1944 with the exponential integral replaced

by a particular expansion of its series approximation [89].

In 1962, Blum notes that Moe’s approximation does a poor job of predicting

performance in the lower atmosphere [90]. Specifically, the gravity turn is not modeled

accurately. Blum proposes using a flat-planet approximation to derive a more accurate

solution for the gravity turn. The principal result of his work is an expression for

the beginning of the gravity turn, assumed to be at the maximum curvature of the

trajectory:

3g sin γ = −βρV 2 (14)

Blum proposes this condition be utilized to determine whether the Allen-Eggers ap-

proximate solution is valid for a given trajectory.

Kumagai developed an expression for trajectory time based in 1964 that is appro-

priate for use with the Allen-Eggers and Moe solutions [91]. Kumagai’s derivation is

based on the decay of angular momentum during entry; it approximates an infinite

series with the first several terms to achieve a closed-form expression. While Kumagai

states that gravity is assumed to have an inverse-square relationship with altitude,

this is immaterial, since g divides out in the derivation.

Norman published a comprehensive review of the Allen-Eggers solution and its

extensions in 1963 [80]. Norman’s stated goal was to improve estimates of peak

acceleration for ballistic entry. Norman identifies three central assumptions inherent

in the Allen-Eggers solution: neglecting gravity, constant atmospheric scale height,

and constant flight-path angle. Norman then identifies solutions for which only two of
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these assumptions are enforced. While this results in an excellent review of analytical

trajectory solutions for ballistic entry and the relationships between them, Norman

presents little new information.

Adler modifies the Allen-Eggers solution to include gravity by assuming drag

and gravity effects on velocity are linearly independent.[92] The resulting expression

captures vehicle performance where drag and gravity forces are on the same order. A

piecewise atmosphere is also used to improve accuracy.

V =
[
V 2
0 − (2gR2)/(R− h0) + (2gR2)/(R− h)

]1/2

+ V0 exp [(ρrefH)/(2β sin γ0) exp (−h/H)]− V0 (15)

Adler also proposes a modified version of this expression where the inverse scale height

varies linearly with altitude.

In 1970 Randall developed a piecewise solution for step changes in ballistic coef-

ficient during entry based on the Allen-Eggers solution [93]. Most recently, in 2014

Putnam and Braun derive equations for range and range-to-go that are consistent with

the Allen-Eggers solution [94]. Previous range equations have generally assumed a

flat planet, which Allen and Eggers did not. A simpler derivation for range and time-

of-flight equations for the Allen-Eggers solution was also proposed, through direct

integration of the simplified two-dimensional equations of motion. Most importantly,

Putnam and Braun propose an analytical method for determining the constant flight-

path angle used in the Allen-Eggers solution. This addresses a long-standing weakness

in applying the Allen-Eggers solution to a real problem. Putnam and Braun also at-

tempt to develop hybrid heuristic-analytical bounds on the domain of applicability

for the Allen-Eggers solution.

A more detailed discussion of the derivation of the Allen-Eggers solution and

relationships is provided in Chapter 3.
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2.2.1.2 Loh’s Higher-Order Solution

Loh published his higher-order solution for ballistic entry in 1962, where “higher-

order” refers to the solution being more accurate than his earlier, more general

“second-order” solution (discussed in Sec. 2.2.3.1) [95, 96]. Loh’s solution method

is to rewrite the two-degree-of-freedom equations of motion in terms of two first-

order ordinary differential equations in ρ and cos γ. Loh is able to integrate these

equations directly by assuming the quantity

[H/R][cos γ/ρ][(gR/V 2)− 1] (16)

is insensitive to integration with respect to ρ or cos γ. The result is two equations in

V , ρ, and cos γ which, choosing one state as the domain, can be solved for the other

two states over that domain.

cos θ = cos θf/(1 + [1/(βR0)][1/x− 1][1− ρf/ρ]) (17a)
(
x

xf

)
=

(
4

βR0

)(
1

xf

)
F1(θ)

+

[(
1− 4

βR0

)(
1

xf

)
F1(θf )

]
exp

[−R0(CDA/m)(θ − θf )ρ
cos θ[(1/x)− 1]

] (17b)

where

x = V 2/(gR0) = V 2/V 2
C (18)

and

F1(θ) = C16 [C1 sin θ − cos θ] + C16 [(1/2)C1 sin 2θ − cos 2θ]

− C17 sin2 θ [C1 sin θ − 3 cos θ] (19)

for steep θ and

F1(θ) ≈
[
ln (θ/2) + C1θ + (C1θ)

2/4 + (C1θ)
3/18

]
e−C1θ

−
[

(C1θ)
3

720C4
1

− (C1θ)
2

240C4
1

+

(
1

120C4
1

+
1

12C2
1

)
C1θ −

(
1

120C4
1

+
1

12C2
1

)]
(20)
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for shallow θ. The constants are given by:

C1 =

[(
cos θm
ρmR0

)(
m

CDA

)(
1

xm
− 1

)]−1
(21a)

C15 =

1

cos θf
+
C2

1 + 32

cos2 θf
− 6

cos3 θf
)

(2)(C2
1 + 1)(C2

1 + 32)
(21b)

C16 =(1/2)
[
cos2 θf (C

2
1 + 22)

]−1
(21c)

C17 =(1/2)
[
cos3 θf (C

2
1 + 32)

]−1
(21d)

The different values of F1 are based on different approximations made during the

derivation of Eqs. 17b.

2.2.1.3 Defined Relationships

Defining a convenient relationship between a particular parameter or state and other

parameters or states can aid closed-form solution of the equations of motion. The

most common relationship assumed is an exponential atmosphere relationship, such

as in Eq. (8).

Robinson and Besonis develop equations of motion for entry in which the drag

coefficient varies such that deceleration is constant with altitude [97]. Warden devel-

ops an approximate solution in which the ballistic coefficient is defined in terms of a

polynomial in altitude of arbitrary order [44]. From this, Warden is able to develop

closed-form expressions for velocity, deceleration, maximum deceleration, and the at-

titude at maximum deceleration. These solutions are relatively complex and require

evaluation of the complete and incomplete gamma functions. In 1965, Cohen derived

closed-form expressions for ballistic entry when the drag coefficient is assumed to be

a specific function of density and flight-path angle [98]. The result is a set of complex

closed-form expressions written in terms of the exponential integral.

More recently, Barbera utilized hypersonic drag coefficient data for sphere-cones

(available in 1981) to develop a heuristic analytical expression for the inviscid drag
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coefficient [99]. This expression applies to both the hypersonic and supersonic regimes

when appropriate parameters are used. The expression is a single-term polynomial

in V and captures the bulk of the Mach-number variation in the drag coefficient.

While this relationship yields simple closed-form solutions, Barbera is forced to break

trajectories into four piecewise “zones” to ensure accurate approximation.

2.2.1.4 Others

A variety of other solutions for ballistic entry trajectories are also available in the

literature. In addition to co-developing the Allen-Eggers solution, Gazley developed

an approximate solution for ballistic decay from orbit that is applicable to entry

following de-orbit for small initial flight-path angles (i.e. deorbit ∆V � V0) [84].

In 1962, Ambrosio developed solutions for functions of the form f = KρiV j that

are applicable to a variety of entry trajectory parameters of interest [100]. These

solutions involve complicated functions, such as the complete and incomplete gamma

functions and the exponential integral.

2.2.2 Lifting Entry

2.2.2.1 Equilibrium Glide

In 1944, Sänger and Bredt published a treatise on suborbital, high-speed flight with

specific application to long-range, rocket-powered bombers (see Figure 15) [54]. This

publication was translated into English by the U.S. Navy Department Bureau of Aero-

nautics (BuAer) and released to the public in 1952. Through analytical and numerical

calculations, the rocket-powered boost-glide bombers were shown to have near-global

reach when skipping trajectories were employed. Sänger and Bredt developed an

analytical approximation for computing the portion of high-speed atmospheric flight

they refer to as an “equilibrium trajectory,” which is now commonly referred to as

equilibrium glide.

For equilibrium glide, the flight-path angle is assumed to be small and constant
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Figure 15: Sänger’s and Bredt’s rocket bomber.[54]

(dγ/dt = 0). Sänger and Bredt realized that, for sufficiently high velocities, the

curvature of the Earth must be taken into account when computing an equilibrium

trajectory, instead of just equating the lift to weight as done for conventional aircraft.

This may be expressed mathematically as:

L+mV 2/r = mg (22)

If constant aerodynamic properties are assumed, an expression for velocity as a func-

tion of altitude at this flight condition may be derived from Eq. (22). This expression

can in turn be used, in conjunction with Eq. (7a) where the gravity term is neglected,

to develop expressions for time of flight as a function of velocity and for velocity and

range as functions of time:

t =
R(L/D)

2VC
ln

[
(VC + V0) (VC − V )

(VC − V0) (VC + V )

]
(23a)

V =VC
(VC + V0) / (VC − V0)− exp [(2VCt) / (R(L/D))]

(VC + V0) / (VC − V ) + exp [(2VCt) / (R(L/D))]
(23b)

s =VCt+R(L/D) ln

[
1 + (VC + V0) / (VC − V0)

exp [(2VCt) / (R(L/D))] + (VC + V0) / (VC − V0)

]
(23c)

where it is assumed that t0 = 0, s0 = 0, and r = R + h ≈ R. These expressions

are derived by Sänger and Bredt. Unfortunately, Sänger and Bredt provide little

information on their derivation of these expressions in Ref. [54].

In 1955, Eggers, Allen, and Neice revisited the equilibrium glide solution in a

confidential NACA memo [101]. In addition to crediting Sänger and Bredt for the
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original development of this theory, they present relations for velocity as a function

of range and of density:

V =VC

[
1−

(
1− V 2

f /V
2
C

)
exp

(
2θ

LD

)]1/2
(24a)

V =VC

[
1 +

(
L

D

)
rρ

2βg
+ 1

]−1/2
(24b)

These equations are manipulated to determine the maximum range of the vehicle as

a function of L/D and final velocity:

smax =
R

2

(
L

D

)
ln

(
1

1− V 2
f /V

2
C

)
(25)

This work was re-released in 1957 as a NACA technical note [102] and in 1958 as a

full NACA technical report [55], neither of which was considered confidential.

Gazley, apparently unaware of the previous work of Sänger, Bredt, Eggers, Allen,

and Neice, derived the equilibrium glide approximation again in 1957 [82]. Gazley

recognized that one need only assume a slowly-varying flight-path angle to derive the

equilibrium glide equations. Gazley extended the approximation to include expres-

sions for acceleration, flight-path angle, and a simplified equation for range:

a =
1

(L/D) + 1/ [rρ (L/D) /(2βg)]
(26a)

sin γ =
2H

r(L/D)(V/V0)2
(26b)

s =
r

2

(
L

D

)
ln

[
r

H

(
1− V 2

V 2
0

)]
(26c)

Eq. (26b) is derived from combining Eq. (26a) with Eq. (7a). While not explicitly

stated, Galzey’s equilibrium glide formulation assumes r = R + h ≈ R and that

V0 =
√
gr = VC .

Gazley notes that no maximum acceleration occurs during equilibrium glide; the

acceleration increases continuously, asymptotically approaching:

amax = 1/(L/D) (27)

43



Figure 16: Gazley’s lifting entry corridor.[82]

Gazley also presents equations more similar to those developed by Sänger and Bredt

tailored for boost-glide trajectories.

Gazley was able to use this work to define a graphical flight corridor for lifting

entry vehicles, shown in Figure 16, a corridor remarkably similar to that developed for

the Space Shuttle Orbiter nearly 20 years later. A more polished, but limited version

of these results was published in 1959 [83]. In 1960 Gazley extended his work to

include analyses of corridors and Chapman’s method of computing entry trajectories;

this is the first time this approximation is referred to as “equilibrium glide” [84].

2.2.2.2 Steep Lifting Entry

In the same set of documents in which they discuss equilibrium glide, Eggers, Allen,

and Neice also developed closed-form analytical solutions for lifting skip trajectories

where gravity is neglected in both the lift and drag equations [101, 102, 55]. In this

solution, gravity is neglected relative to aerodynamic forces in both the drag and

lift equations (Eq. (7a) and (7b), respectively). Integrating these equations using an

exponential atmosphere results in:

ρ− ρ0 =
2β

H(L/D)
(cos γ − cos γ0) (28a)

V =V0 exp

(
γ0 − γ
L/D

)
(28b)
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Eggers et al. developed these equations to model the atmospheric flight portion of a

multiple-skip trajectory. From Eq. (28a), Eggers et al. realized that the flight path

angles at atmospheric entry and exit must be equal and opposite on a skip trajectory,

as the vehicle returns to the same altitude. While large L/D or a steep γ are not

explicitly mentioned as assumptions, it is under these conditions that gravity may be

neglected. The modern name of steep lifting entry (SLE) derives from this fact.

Lees, Hartwig, and Cohen extended this theory in 1958, developing an expression

for acceleration in terms of the flight-path angle [103]:

a =

[
γ20 − γ2

2gH(L/D)
+
ρ0
gβ

]
V 2
0

√
1 +

(
L

D

)2

exp

[
2 (γ − γ0)
L/D

]
(29)

where the flight-path angle is assumed to be small. The flight-path angle at peak

acceleration is then:

γamax =
2

2

(
L

D

){√
1 +

4

(L/D)2

[
γ20 +

H(L/D)

β

]
− 1

}
(30)

The theory was used to assess discrete-event lift-modulation trajectory control. This

report is also available as a journal article, published in 1959 [31].

The work of Lees et al. was in turn extended to greater entry velocities by Wang

and Ting in 1960 [57]. Wang and Ting retain the gravity term in the lift equation,

resulting in:

γ =

√
γ20 −

H

β

L

D
(ρ− ρ0)−

(
2H

R
− 2gH

V 2
0

)
ln

(
ρ

ρ0

)
(31)

The key difference between Eq. (31) and Lees et al. is that the velocity from the top

of the atmosphere to peak acceleration assumed to be constant.

Braun and Tauber developed an expression for range travelled during steep lifting

entry[104], given by:

s = H (γ0 − γ)−H 2A√
1− A2

(
tanh−1

[
(A− 1) tan (γ/2)√

1− A2

]
− tanh−1

[
(A− 1) tan (γ0/2)√

1− A2

])

(32)
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where:

A = Hρ0(L/D)/(2β)− cos γ0 (32a)

The range traveled during the atmospheric flight segments of a skipping trajectory

was neglected by Eggers et al. in Ref. [55]; inclusion of the atmospheric flight range

improves total range estimates. Eq. (32) may also be used for direct entries for

which the steep-lifting entry assumptions are appropriate, i.e. lifting entry trajectories

that exhibit no positive altitude rate. This criterion generally corresponds to entry

trajectories that are either steep, have small L/D, or both.

2.2.2.3 Three-Degree-of-Freedom Solutions: Approximating Crossrange

Eggers and Wong review solutions for lifting entry available in 1961 and extend equi-

librium glide to the lateral plane, or out-of-plane motion. Their resulting expression

for maximum crossrange is

lmax =
π2

48
R

(
L

D

)2

+ H.O.T. (33)

where the bank angle is assumed to be constant at 45 deg.

Nyland and Chen of the RAND Corp. further improved upon extending equilib-

rium glide to out-of-plane motion. Nyland developed an equation for an equilibrium

glide turn at constant L/D and constant bank angle, writing the heading change as

[105]:

ω = (L/D) sinσ ln (V0/V ) (34)

Nyland also determines expressions for the time of flight and path length of such a

turn, which are nearly identical to those developed by Sänger and Bredt for planar

motion, but expressed in terms of velocity and including the bank angle:

t =
VC(L/D) cosσ

2g
ln

[
(1− V/VC) (1 + V0/VC)

(1 + V/VC) (1− V0/VC)

]
(35a)

s =
R

2

(
L

D

)
cosσ ln

(
1− V 2/V 2

C

1− V 2
0 /V

2
C

)
(35b)
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Expressions for downrange and crossrange are also presented as infinite series that

are complicated, but “uniformly convergent in the region of interest.”

x =
Rg

tanσ

{
∞∑

n=1

(V/V0)
2n sin

[
L

D
sinσ ln

V

V0
+ tan−1 (an)

]
−
∞∑

n=1

(V/V0)
2n an√

1 + a2n2

}

(36a)

y =
Rg

tanσ

{
∞∑

n=1

(V/V0)
2n sin

[
L

D
sinσ ln

V

V0
+ tan−1

(
1

an

)]
+
∞∑

n=1

(V/V0)
2n an√

1 + a2n2

}

(36b)

where

a = 2 [(L/D) sinσ]−1 (37)

Nyland also develops expressions describing flight at bank angles near 90 deg. At

this flight condition, there is no lift in the vertical plane, and Nyland arrives at the

non-lifting solution of Allen and Eggers.

Chen presents approximate solutions for five different scenarios: equilibrium glide

with γ = 0, equilibrium glide with non-zero flight-path angle, high-altitude constant-

speed glide, constant-deceleration glide at constant altitude, and constant-deceleration

glide at constant flight-path angle. Chen’s coverage of equilibrium glide merely re-

peats that documented by Nyland. However, Chen extends Nyland’s work on equi-

librium glide to non-zero flight-path angles, resulting in the following equations to

describe a constant-bank, constant-L/D, constant-γ turn:

V =VC

√
1− 2

ζ
−
(

1− 2

ζ
− u20

)
exp

[
ζ

(
h0 − h
R + h0

)]
(38a)

ω =
tanσ

γ (ζ − 2)

[
2

ζ
ln

(
ζV 2 − V 2

C (ζ − 2)

ζV 2
0 − V 2

C (ζ − 2)

)
+ ln

(
V 2
0

V 2

)]
(38b)

t =
V 2
0 (L/D) cosσ

2gV 2
C

√
ζ

ζ − 2
ln

[(
V
√
ζ − VC

√
ζ − 2

) (
V0
√
ζ + VC

√
ζ − 2

)
(
V
√
ζ + VC

√
ζ − 2

) (
V0
√
ζ − VC

√
ζ − 2

)
]

(38c)

s =
V 2
0

gγζ
ln

[
ζV 2 − V 2

C (ζ − 2)

ζV 2
0 − V 2

C (ζ − 2)

]
(38d)

where

ζ = 2/ [γ(L/D) cosσ] (39)
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The associated expressions for crossrange and downrange are integral expressions

that must be evaluated numerically. Chen notes that by assuming ζ = 0, the classic

equilibrium glide solution is obtained from Eqs. (38).

Chen also provides closed-form expressions for the change in heading for constant-

altitude, constant-velocity glide; constant acceleration, constant-altitude glide; and

constant-acceleration, constant-flight-path-angle glide:

ω =ω0 +
HDL

2
√
A1

sinσ

[
exp

(
− 1

H

h

R + h0

)
− exp

(
− 1

H

h0
R + h0

)]
(40a)

ω =ω0 +
g tanσ

2ā

[
ln

(
V 2
0

V 2

)
+
V 2 − V 2

0

V 2
C

]
(40b)

ω =ω0 −
g sinσ

2ā

[
ln

(
V 2

V 2
0

)
+
V 2
0 − V 2

V 2
C

]
(40c)

where ā is the value of the constant acceleration.

Wang presents closed-form solutions for heading angle, downrange, and crossrange

as functions of velocity and density[106, 107]. For a flat planet, with bank angle equal

to 90 deg and small crossrange:

ψ =(L/D) ln (V0/V ) (41a)

λ =
2gβ

(L/D)ρV 2
C

(1− cosψ) (41b)

µ =
2gβ

(L/D)ρV 2
C

sinψ (41c)

For a spherical planet with σ =90 deg:

cosψ =
cos η + C2

√
(1 + C2)2 − 4C2 sin4 (η/2)

(42a)

sinλ =C

(
1− cosψ

√
1− C2 sin2 ψ

1 + C2 cos2 ψ

)
(42b)

sinµ =C sinψ (42c)

where

C =
2βg

(L/D)ρV 2
C

(43a)

η =(L/D)
√

1 + C2 ln (V/V0) (43b)
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Comparison of analytical solution with numerical
solution.

in Ref. 3, and it suffices to examine Fig. 1 to see that the
approximation is reasonably accurate. Figure 1 is a plot of
Eq. (2) in terms of sm<p.

There was an approximated model considered in Ref. 2,
namely, the "flat-earth" approximation in which the lateral
centrifugal force term Vg cos^ tanX/7s

2 was omitted from
Eq. (3). The "flat-earth" approximation has been shown

in Ref. 2 to be acceptable for low values of C regardless of
the magnitude of lateral range and initial velocity when
compared with the spherical earth solutions. The solutions
of l l . ( "flat-earth" model together with the approximations
sin<p = 1 and small X can be readily obtained by integrating
Eqs. (7-9). They are

^0 = (L/D) ln(7</7)

= C

(10)

(11)
(12)

Here the subscript 0 indicates the "flat-earth" approximation,
and i indicates the initial condition. These approximate
solutions have been shown in Ref. 3 to agree extremely well
with numerical solutions that do not assume sin<£> = 1. A
sample of the calculation is shown in Fig. 2 together with
the spherical earth solutions, which will be discussed later.

One interesting observation can be made of the "flat earth"
solution. Combining Eqs. (11) and (12), one gets

(X0- C)2 (13)

= 270 deg ^=90 deg

ORIGINAL
HEADING
OF VEHICLE

This equation represents a circle with its center at Xo = C
and its radius equal to C. This shows that the vehicle, while
making a constant-altitude turn, describes a circular path.
Depending on the aerodynamics, the mass characteristics,
and the altitude, the vehicle may find itself anywhere along
the circumference of the circle by the time it reaches equilib-
rium glide. As indicated in Fig. 3, the vehicle could make a
180° turn in which case it would have acquired a lateral dis-
placement of 2C with no net forward displacement by the
time it reaches the equilibrium glide line. From that mo-
ment on, the vehicle would fly in the direction opposite to
its original heading. In fact, the vehicle could make a full
360° turn and find itself back to the original location at a
much lower velocity. For a vehicle with  L/D = 2, W/CLA

= 25 psf, and 7,- = 32,000 fps, the 180° turn must be per-
formed at an altitude of 184,000 ft whereas the 360° turn re-
quires 104,000 ft. The radius of the turn is 242 and 9.7
naut miles, and the final velocity is 6650 and 1380 fps, respec-
tively. The aerodynamic loading and heating would be
prohibitive in these cases.

The full solutions to Eqs. (7-9) including the lateral
centrifugal force term (called spherical earth solutions) were
obtained in Ref. 3 by the method of perturbation, since the
spherical earth correction was not large for the normal range
of W/CnAp as indicated in Ref. 2. The approximation sin<p

= 1 remained. In reviewing the results of Ref. 3, however,
Levin4 suggested a closed-form solution in which the only ap-
proximation was sin<p = 1. Since the closed-form solutions
are mathematically neater, they are illustrated below. We
combine Eqs. (7) and (8) and get

(14)

(15)

(16)

(17)

(18)

(19)

(20)

or

Thus,

(1 — C cosi/'

d(C cosi/' cosX)/dX = — cosX

sinX = (7(1 — cos^ cosX)

or

sinX == C <l- 1 + C2 cos
The solutions for ju and $ are given by

sin/i = C sin \l/

] + C2

COS!/' = [(1 + C2)2-4C2sin4(77/2)]1/2

where
rj = (L/D) (1 + C2)1/2ln(7/yO

It can be readily shown that, for small values of C, these
spherical earth solutions degenerate to the "flat-earth"
solutions. The accuracy of Eqs. (17-19) is extremely high
when compared with numerical solutions as shown in Fig. 2.

In Fig. 2, a nonrotating earth is assumed, and the constant-
altitude glide ends at the equilibrium glide line; thus, the
final velocity is given by

= Vs/[l (21)

Fig. 3 Vehicle flight path at very small C.

It is also seen in Fig. 2 that the approximate "flat-earth"
solutions do not deviate too much from the approximate
spherical earth solutions. For preliminary design work, the
simple "flat earth" solutions are often sufficient.

The sample calculations presented in this note are for L/D
= 2 and V% = 26,000 fps. The analytic solutions for both
earth models have been shown in Ref. 3 to be sufficiently
accurate for other values of L/D and Vi. Thus, one is led
to conclude that the motion of a re-entry vehicle "flying"
at a constant altitude at a banked attitude can be accurately
described with the approximation sin <p = 1.
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Figure 17: Comparison of analytical and numerical spherical planet solutions with
analytical flat planet solutions [107].

Figure 17 shows how these solutions compare to numerical evaluation of the equations

of motion.

In 1965, Arthur and Baxter point out that Wang’s solution was a special case of

a more general approximate solution for a minor-circle turn, where the ratio of the

side force to the component of centrifugal force in the vertical direction is maintained

at some constant value [108].

2.2.2.4 Defined Relationships

Convenient relationships are often assumed with the goal of simplifying the equations

of motion such that analytical solutions may be found. However, these defined rela-

tionship solutions are typically more focused on determining a closed-form solution

than modeling realistic flight conditions or addressing flight mechanics problems of

general interest.

The solutions developed for defined relationships mostly address solutions where

ρV n is assumed to be constant. Loh discusses solutions for n values of 1, 2, 3 [58, 109];
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Tikhonravov considers n = 2. In general, the different values of n correspond to:

• n = 1 Flight at constant Reynold’s number[58, 109]

• n = 2 Constant aerodynamic load factor, approximately constant accelera-

tion, constant dynamic pressure [58, 109, 110]

• n = 3 Constant heat rate, constant equilibrium temperature [58, 109]

These solutions are common because assuming ρV n constant reduces or eliminates

much of the dependence of the solution on the aerodynamic force terms.

Others have defined relationships, or programs, for aerodynamic coefficients. Wang

and Chu develop solutions for a lift coefficient represented by CL = a− b(cρ)n, where

a,b,and c are constants; the drag coefficient is repressed by a parabolic drag polar.

The resulting approximate solutions are truncated infinite series solutions and are

quite complicated [111].

Cohen develops simpler solutions by assuming L/D is a function of the square of

the velocity [98]. This assumption results in a separable differential equation relating

V and γ that can be solved analytically.

2.2.2.5 Others

In approximate solutions for planar motion, flight is generally assumed to be in a

great-circle plane of the planet. Loh generalized several solutions to flight on minor

circles in 1960, specifically flight at positive L/D and small γ (equilibrium glide,

although not identified as such) and flight at negative L/D and steep γ [58].

In 1961 Arthur and Karrenberg developed an extension of the Allen-Eggers ap-

proximation for small L/D [59]. They assume that small L/D implies small γ̇ and

allowing the flight-path angle to be approximated as γ = γ0 + δγ. An integral ex-

pression for δγ is found and integrated to “first order,” resulting in the following

closed-form “first-order” expressions for density and flight-path angle as functions of
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velocity:

γ =γ0 −
(
L

D

)(
ρh0

2β sin γ0

)
(44a)

ρ =
2β sin γ0

h0

[
1− L

D

cot γ0
2

ln

(
V

V0

)]
ln

(
V

V0

)
(44b)

Arthur and Karrenberg then proceed to develop expressions for peak acceleration and

conditions at peak acceleration in a similar manner as Allen and Eggers. The solution

of Allen and Eggers may be recovered from the solution of Arthur and Karrenberg

by setting L/D = 0.

In 1980, Nachtsheim and Lehman unified the work of Lees[31], Arthur[59], and

Chapman[65] with a focus on the effect of lift on peak acceleration [112]. Nachtsheim

and Lehman proposed the following improved equation for peak acceleration:

amax = − 1

2Hg
sin γamaxV

2
0 exp

[
γ0 − γamax

(1/2)(L/D)

]√
1 + (L/D)2 (45)

However, this result is restricted to entry velocities near VC .

2.2.3 General Methods

Experience, and perhaps frustration, with the restricted methods discussed above led

to the development of analytical solutions that provide trajectories for both lifting

and ballistic entry vehicles. Loh’s Second Order implicit solution is perhaps the

most well-known of these closed-form analytical solutions. The solution developed by

Citron and Meir is less well-known, but provides similar accuracy in an explicit form.

2.2.3.1 Loh’s Second-Order Solution

Loh first published his relatively well-known “second-order” solution in 1962 [61]. Loh

rewrites the equations of motion in terms of ρ and cos γ and is able to analytically

integrate them by assuming [H/R][cos γ/ρ][(gR/V 2)−1] is insensitive to that integra-

tion, and therefore constant. The resulting solution is composed of two closed-form
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equations in V , ρ, and cos γ:

cos γ =

cos γ0 +
1

2

L

D

Hρ

β

(
1− ρ0

ρ

)

1 +
H

R

(
gR

V 2
− 1

)(
1− ρ0

ρ

) (46a)

H

β
ρ =

H

R
cos γ

(
gR

V
− 1

)
ln

(
V 2

V 2
0

)

1

2

L

D
ln

(
V 2

V 2
0

)
+ (γ − γ0)

(46b)

A trajectory may be approximated by choosing one of the three states as a domain,

then solving these implicit equations for the other two at selected points on that

domain. While this solution is applicable over a wide range of vehicle and initial

state parameters (including both lifting and ballistic entry), the implicit nature of

the equations makes application more difficult.

Loh extended his second-order theory to exoatmospheric and endoatmospheric

oscillatory (skip) trajectories in 1965 and 1967, respectively [62, 63]. In these exten-

sions, Loh identifies methods for determining whether a trajectory is oscillatory and

whether it has exited the atmosphere. Each trajectory oscillation must be computed

separately using Eqs. (46); the resulting solution is a piecewise trajectory (see Fig-

ure 18). For both types of oscillatory trajectory, Loh proposes useful mathematical

shortcuts to reduce the number of required computations. However, the solution is

still inherently implicit. These extensions apply only to vehicles with nonzero L/D.

2.2.3.2 The Citron-Meir Solution

In 1965, Citron and Meir published an explicit solution to the equations of motion

of the same order of accuracy as Loh’s second-order solution [64]. Citron and Meir

are able to show that Loh’s solution is a special case of their more general solution

method. The derivation of the Citron-Meir solution is also more straightforward than

Loh’s: Loh’s apparently arbitrary assumption that certain terms are insensitive to

integration is not required. The derivation of this solution is based on approximating
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Fig. 2 Comparison of analytical solution with exact nu-
merical machine calculations.

D. From point 5 to 9

Repeat procedures A, B and C, by using point 5 as the new
initial condition for step A; the results are shown in Table

Point

6
7
8
9

10
11
12
13

0

0°
-9.6°

0°
+ 10.0°

0°
-6.6°

0°
+9.78°

py
9.61

11.0
12.38
10.6
9.3
9.62

10.09
9.22

[V/(gR^]
0.522
0.431
0.410
0.385
0.295
0.245
0.21
0.17

1 Np.

+275.5

-993

+202

-258

1. Now using point 13 as the new initial condition /, Eq.
(6b') and (7a') no longer yield any solution (as the previous
loop did), so the trajectory after point 13 is no longer oscilla-
tory and it is becoming continuously descent. Using the
second-order solution [Eqs. (5a;) and (7) ] yields the following
trajectory points:

5.4°
20°

fly = 7.97
6.78

= 0.1
0.05

Comparison with Numerical Exact Solutions

In order to verify the analytical solution and check the
accuracy of the analytical solutions, a comparison with the
exact solution is made. The exact numerical solutions are
obtained from the IBM-7094 computer, whereas the analyti-
cal solutions are calculated according to the procedures given
in the previous section. These results are plotted in Figs.
2a and 2b. They show that the analytical solution checks
very well with the numerical exact solution.
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Figure 18: Loh’s second-order solution applied to an oscillatory endoatmospheric
trajectory (R/H = 900) [63]

.

53



the density as a power series in terms of lnV . Retaining the zeroth and first order

terms in this expansion is shown to yield the Allen-Eggers result for ballistic entry;

the authors retain up to the second-order term in their solution. The authors also

show that Loh’s second-order solution may be derived starting from a second-order

expansion of density with respect to lnV and utilizing a series expansion for sin γ.

The Citron-Meir solution (Eqs. (47)-(48)), while apparently more complex than

Loh’s, is simpler to apply because it is explicit in ρ and γ. The solution requires

evaluation of the exponential integral once for each trajectory point. Series-expansion

estimates for the exponential integral may be used to evaluate this term [113].

f ′ =− f ′0 − Jz̄/2 + 2F (z̄) (47a)

f =f0 − Jz̄2/4 + z̄F (z̄) (47b)

where

z̄ =− ln (V/V0)
2 (48a)

zc =− ln (VC/V0)
2 (48b)

f0 =ρ0/ρref (48c)

f ′0 =− β sin γ0/(Hρref ) (48d)

F (z̄) =
{
f ′20 − f ′0Jz̄/2 + (Jz̄/4)2

+I
[
e−zc (Ei(z̄)− γ̄ − ln z̄)−

(
1− e−zc

)
ln (1 + f ′0z̄/f0)

]}1/2
(48e)

I =(β cos γ0/ρref )2/(RH) (48f)

J =(1/2)(L/D)(IR/H)1/2 (48g)

The nomenclature in Eqs. 47 and 48 is the same as that proposed by Eggers et al. in

Ref. [114].

In their paper, Citron and Meir provide comparisons of their method, Loh’s

second-order solution, the Allen-Eggers solution, and numerical integration. Fig-

ure 19 shows a comparison between Citron-Meir, Allen-Eggers, Loh, and numerical
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4 0 — he= 400,000 ft
Ve=36,000fps

35-t--a'°
- B = 100  psf

30 -

^ 25

u- 20

— Exact Numerical Solution
A Present Analysis
o ton's Results

•— Alien a Eggers Solution

23,500ft

V 0.0027^

Fig. 7 Comparison of altitude profile for semi-shallow
super-circular entry.

Fig. 8 Effect of ballistic coefficient on altitude profile.

may be approximately determined as shown below. Ex-
panding the integrand yields

one obtains

f i= Jo
/. f.  1 dz (A2)

The first two terms on the right-hand side are in a form that
may be directly integrated utilizing the series expansion for
exp£. Since, in general, fe/f rapidly decreases as z increases,
the contribution of the second two terms can be expected to
be important only for small  z. Thus, using

(A3)

and substituting into (A2) one obtains

dz (A4)

Each of the terms in (A4) may now be integrated. If small
terms are neglected, the result simplifies to yield

, Z'"

'-, n-n I -7- (A5)

Using the definition of the exponential integral in the form

zn/: - da = C +
a.

+ (A6)

where the constant is Eulers const C = 0.577. . . one need
not evaluate the series in (A5), but may instead substitute
the relationship of (A6). Values for the exponential inte-
gral are tabulated in many sources.15 Thus, the expression
for GI  is written in its final form

- C - Inl) - (1 - e~*

ln(l+f) (AT)

By applying the approximation of Eq. (38) to the definition
of 6r2, where

= fJo (A8)

Jo 2 (A9)

Integration yields

G» =>[/-/.+//2] (A10)
Again applying (38), the expression may be put in the form

& = (2/4) If' + 3/.'] (All)
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Figure 19: Comparison of Allen-Eggers, Citron-Meir, Loh, and numerical integration
(R/H = 900).[64]

integration. Citron-Meir and Loh are slightly more accurate than Allen-Eggers and

are both able to account for the beginning of the gravity turn. Figures 20 and 21 show

Citron-Meir and Loh compared to numerical integration for a variety of trajectory

parameters. While results are not identical, both solutions provide similar accuracy.

This implies that the chief benefits of the Citron-Meir solution are a more logical

derivation and simpler application.
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Fig. 2 Comparison of altitude profiles for tangential entry
at circular satellite velocity.

where Eq. (4) has been used to fix the constant. Integrating
once more, one finds

which can be rewritten as

V

'< + (Pe/Po)

g(p - PO)\
7e

 6XPt 2^sinTJ

(26)

(27)

Equation (27) is the result obtained by Alien and Eggers.1
Loh8 departed from the previously mentioned methods to

obtain his second order solution. Rearranging Eqs. (1) and
(2) under the assumption of an exponential density, he ob-
tained

1 COST (VLU2~
g V*/gr 2

= 2DfB
 (28)

— ( — I + -dp \gr / PB sinT fir p

Noting that the particular grouping of variables

_I /CQST\ (ffr_ _ ^

(29)

(30)

is relatively insensitive to integration over p and 7, and thus
may be considered constant, Eq. (28) is integrated to give

COST = COST
_ T 1 / L \ g I COST (gr AT, ,

. + [2 (p) -p-B-pr~(v>- 1 ) J (P - P.)
(31)

Neglecting the small right-hand side of Eq. (29), the equation
may be rewritten as

- (-} - -dp \gr /
(32)

Substituting Eq. (28) into (32) and integrating, again con-
sidering the grouping of Eq. (30) a constant, yields

In ( ̂  } = - 7.)
- (l/,8r)(cos7/p)[(<7r/F2) -

which can be rewritten as
QP = (l/WKgr/F2) - I]cos7_____
ftB k (L/D) ln(F«/F)2 + (7 - 7«)

(33)

(34)

Combining (31) and (33) to eliminate the denominator of the
latter, one obtains

Any two of the Eqs. (31, 34, and 35) may be used to deter-
mine two of the variables p, V, and 7 in terms of the third.
One notes, however, that since the equations are coupled, an
explicit relationship for two of the variables in terms of the
third is not obtained. Thus, an iterative numerical tech-
nique is required, in general, before actual values for the vari-
ables may be obtained.

In the following work, solutions to Eq. (20) will be sought
to determine explicitly the density, or altitude, and flight path
angle as a function of velocity.

Solution of the Basic Equation

To solve Eq. (20) it was assumed that the quantity / could
be represented in a power series of the variable z. Thus

/ = fe + + A

2Az

+ (36)

(37)

If Eq. (37) is solved for the coefficient A and the result sub-
stituted into Eq. (36) neglecting terms of higher order than
Az*} one obtains

The validity of the approximations made will be verified by a
comparison of the approximate solutions obtained with exact
results. On the basis of the assumption made in (38), once
f'(z) is known one obtains, without further integration, an
expression for / as a function of z.

A comparison can be made between Eq. (38) and results ob-
tained by Loh who derived Eq. (35) from the equations of
motion. It is shown later that Eq. (35) is directly equivalent

to Eq. (38), derived here from a series expansion. One might
thus infer that Loh's assumption is basically equivalent to the
truncation of Eq. (36) after the first three terms.

Multiplying both sides of-Eq. (38) by/'' one obtains

fT+f.'f = ~ (/.//)] (39)
The left-hand side of Eq. (39) may be integrated directly to
give

£+'*•-!/."-;:[?'('-?)]• (40)

Substituting from Eq. (20) for //" on the right-hand side, one
obtains

where
2f,'f - 3//2 = 47ft - 47(?2

. e * — -

dz

(41)

(42)

(43)

The functions Gi  and (?2 are approximately determined in
Appendix A to be

[Ei*(z) - C - Inf] - (1 - + "

where

(44)
(45)

- dx = C-» x )
-1 n-nl
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and C = 0.577 . . . (Eulers const). Substituting (44) and (45)
into (41), one then obtains
f + 2/e'/' - 3//2 = 4,l{e~Ze[E^(z) - C - Inz] -

(1 -e-*)ln[l +/.'*//.]} -
+/') (46)

Equation (46) is quadratic in the variable /' and thus may
be solved for /' yielding

2) (47)

where

+ (?)' +
7 «-*(#<*(«) - C - Ing) - (1 - e-*>) X

ln(l+^ (48)

Applying Eq. (38) to (47) one obtains without further in-
tegration that

/ = /. - (/iV4) + zF(z) (49)
The quantity /' is known as an explicit function of z from Eq.
(47). Since the flight path angle is directly proportional to /'
from Eq. (14), (47) determines gamma as a function of z.
In a similar manner the determination of / as an explicit func-
tion of z from Eq. (49) yields density (11) and altitude (6) as
functions of z. One should note that Eqs. (47) and (49) do
not require an iterative evaluation as in Loh's work.

Results

In this section the solution developed is compared with
other approximate analytic solutions and with exact numeri-
cal solutions. Since the solution of Loh appears to be the
most accurate over the widest regions of entry conditions,
considerable comparison will be made with that work.
For the purpose of the comparisons to be made, results of
the solution developed will be presented in two groupings.
Results for entry at circular satellite velocity will first appear,
to be followed by those for super-circular entry.

Entry at Circular Satellite Velocity

The altitude-velocity profiles generated by the solution for
various lift conditions are presented in Fig. 2, using entry
conditions chosen by Loh. The exact numerical solution to

the equations and the approximate results of Loh are also
presented for the purpose of comparison. Since the initial
entry angle in this figure is zero, these results are especially
significant. No previous analytic solution was valid in this
region except that presented by Loh. It is interesting to
note that over the regions of lift to drag ratio between plus

and minus one, both solutions yield good results. The in-
accuracy present in both solutions, when the lift to drag ratio
is one, can be attributed to the fact that the entry vehicle
experiences a slight skip under these conditions. In general,
for skipping-type trajectories, the accuracy of both the solu-
tion developed by Loh and the one presented here is com-
promised.

Plots of the variation in the inclination angle during entry
under the same initial conditions used in Fig. 2 are shown in
Fig. 3. Since the flight path inclination is proportional to the
derivative of density, one would expect that any inaccuracy in
the previous figure would be magnified in Fig. 3. As can be
seen, agreement is still satisfactory.

Figures 4 and 5 are plots for a ballistic vehicle of the alti-
tude profile and flight path angle, respectively, for various
entry angles. Figures 2-5 demonstrate the validity of both

Exact Numerical Solution
A Present Analysis

o Loh's Results

/3~' = 23,500ft

P0= 0.0027 !

— 1.0

Fig. 3 Comparison of inclination angle variation for
tangential entry at circular satellite velocity.

the solution presented and that developed by Loh over wide
regions of lifting conditions and initial entry angles. Since
both solutions are accurate to the same order of magnitude, it
is difficult to judge which provides the better agreement. It
is felt, however, that the solution presented here is easier to
use in making numerical calculations since an iterative method
is not required as in the case of Loh's work.
Entry at Super-Circular Velocity

Figure 6 is a plot of the altitude-velocity profile for ballistic
entry at a super-circular velocity as compared with the exact
solution of Lovelace14 and the approximate solutions of Loh
and Alien and Eggers. The entry angle chosen is near the
value at which the vehicle would pass completely through the
atmosphere. The skipping effect shown in the plot may be
attributed to the curvature of the planet since the entry
vehicle does not develop lift. It is easily seen that for this
set of critical entry conditions, neither the solution developed
by Loh nor the one presented here provide very good agree-
ment. If an analytical solution is needed for this case, the
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Fig. 4 Comparison of altitude profile for nontangential
entry at circular satellite velocity.

D
ow

nl
oa

de
d 

by
 G

A
 In

st 
of

 T
ec

hn
ol

og
y 

on
 S

ep
te

m
be

r 2
4,

 2
01

2 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I: 

10
.2

51
4/

3.
28

88
 

a) b) 

Figure 20: Comparison of Citron-Meir, Loh, and numerical integration for lifting en-
try: a) altitude and b) flight-path angle versus normalized velocity (R/H = 900).[64]
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simple one developed by Alien and Eggers provides about the
same degree of accuracy as any other.

If one increases the initial flight path angle by only a small
amount from the critical case described in the previous para-
graph, one may see that the solution developed again agrees
well with exact results. These results are shown in the
altitude-velocity profile of Fig. 7. Although the values gen-
erated by the solution developed are more accurate than those
of the Alien and Eggers solution, one questions the worth of
the somewhat more difficult calculations necessary for alti-
tude determination. One case where such calculations might
be justified would be when one wanted the deceleration ex-
perienced by the vehicle. Since the deceleration is an ex-
ponential function of the altitude, any additional accuracy
that one can obtain by an analytic solution is often justified.

Figure 8 again demonstrates the validity of both the solu-
tion developed by Loh and that presented here for various
ballistic coefficients at super-circular entry velocity. It
should be noted that the values calculated from the solution
developed agree remarkably well with the exact numerical
solution to the equations. It should also be mentioned that

the values are slightly more accurate than the values calcu-
lated from Loh's solution.

Analytical Comparison with Loh's Solution

The approximate relationship obtained in this work by
terminating the series expansion of density is (38)

Writing the quantity / and its derivative in terms of the
entry variables, and utilizing the definition of z,

(51)

The approximate series expansion for the sine is employed to
yield

(52)

The right-hand side is seen to be the approximate expansion
for the cosine, such that

YeJ 2CDA

One may multiply both sides of (52) by (7 — ye) and obtain

CnA  (7 - 7.)

COS7 — COS7e ~
CpA (7 ~~ 7e)
m/3 In (7/7.)2|J (P ~ Pe..) (54)

which is the relationship obtained in Eq. (35) by combining
Loh's results which are given in Eqs. (33) and (34). The re-
sult shown in Eq. (54) was obtained by terminating the series
expansion of density as a function of velocity, whereas Loh
obtained the equivalent result from the observation that the
particular grouping of variables shown in Eq. (30) may be
considered approximately constant over p and 7 integra-
tions. The present work thus provides a possible interpreta-
tion of Loh's procedure.

Conclusions
From the solution developed here, a possible interpretation

has been provided for the statement by Loh that a certain
combination of the entry variables is insensitive to p or 7 in-
tegration. This interpretation results from the derivation of
the equivalent (54) to one of Loh's two basic equations (33)
and (34) by assuming that the atmospheric density can be ap-
proximately represented by a power series through the quad-
ratic terms in the logarithm of the velocity.

It should be noted that in every instance examined, the
solution presented here provided at least as good agreement
with exact numerical solutions as did the solution of Loh.
The solution developed is felt to be somewhat easier to use
than the solution by Loh as it does not require iterative
techniques over any portion of the range of applicability.

Because of the lack of good agreement of both the solution
presented and that by Loh for certain skipping-type trajec-
tories, there still does not exist an approximate analytical
solution to the entry equations which is valid over all of the
entry conditions in which there is interest.

Appendix A: Approximate Determination of the
Functions Gi and G%

The function Gi, defined by

m/3 ln(7/7«) .(P-P.) (53)
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Fig. 5 Comparison of inclination angle variation for
nontangential entry at circular satellite velocity.
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and C = 0.577 . . . (Eulers const). Substituting (44) and (45)
into (41), one then obtains
f + 2/e'/' - 3//2 = 4,l{e~Ze[E^(z) - C - Inz] -

(1 -e-*)ln[l +/.'*//.]} -
+/') (46)

Equation (46) is quadratic in the variable /' and thus may
be solved for /' yielding

2) (47)

where

+ (?)' +
7 «-*(#<*(«) - C - Ing) - (1 - e-*>) X

ln(l+^ (48)

Applying Eq. (38) to (47) one obtains without further in-
tegration that

/ = /. - (/iV4) + zF(z) (49)
The quantity /' is known as an explicit function of z from Eq.
(47). Since the flight path angle is directly proportional to /'
from Eq. (14), (47) determines gamma as a function of z.
In a similar manner the determination of / as an explicit func-
tion of z from Eq. (49) yields density (11) and altitude (6) as
functions of z. One should note that Eqs. (47) and (49) do
not require an iterative evaluation as in Loh's work.

Results

In this section the solution developed is compared with
other approximate analytic solutions and with exact numeri-
cal solutions. Since the solution of Loh appears to be the
most accurate over the widest regions of entry conditions,
considerable comparison will be made with that work.
For the purpose of the comparisons to be made, results of
the solution developed will be presented in two groupings.
Results for entry at circular satellite velocity will first appear,
to be followed by those for super-circular entry.

Entry at Circular Satellite Velocity

The altitude-velocity profiles generated by the solution for
various lift conditions are presented in Fig. 2, using entry
conditions chosen by Loh. The exact numerical solution to

the equations and the approximate results of Loh are also
presented for the purpose of comparison. Since the initial
entry angle in this figure is zero, these results are especially
significant. No previous analytic solution was valid in this
region except that presented by Loh. It is interesting to
note that over the regions of lift to drag ratio between plus

and minus one, both solutions yield good results. The in-
accuracy present in both solutions, when the lift to drag ratio
is one, can be attributed to the fact that the entry vehicle
experiences a slight skip under these conditions. In general,
for skipping-type trajectories, the accuracy of both the solu-
tion developed by Loh and the one presented here is com-
promised.

Plots of the variation in the inclination angle during entry
under the same initial conditions used in Fig. 2 are shown in
Fig. 3. Since the flight path inclination is proportional to the
derivative of density, one would expect that any inaccuracy in
the previous figure would be magnified in Fig. 3. As can be
seen, agreement is still satisfactory.

Figures 4 and 5 are plots for a ballistic vehicle of the alti-
tude profile and flight path angle, respectively, for various
entry angles. Figures 2-5 demonstrate the validity of both
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A Present Analysis

o Loh's Results

/3~' = 23,500ft

P0= 0.0027 !
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Fig. 3 Comparison of inclination angle variation for
tangential entry at circular satellite velocity.

the solution presented and that developed by Loh over wide
regions of lifting conditions and initial entry angles. Since
both solutions are accurate to the same order of magnitude, it
is difficult to judge which provides the better agreement. It
is felt, however, that the solution presented here is easier to
use in making numerical calculations since an iterative method
is not required as in the case of Loh's work.
Entry at Super-Circular Velocity

Figure 6 is a plot of the altitude-velocity profile for ballistic
entry at a super-circular velocity as compared with the exact
solution of Lovelace14 and the approximate solutions of Loh
and Alien and Eggers. The entry angle chosen is near the
value at which the vehicle would pass completely through the
atmosphere. The skipping effect shown in the plot may be
attributed to the curvature of the planet since the entry
vehicle does not develop lift. It is easily seen that for this
set of critical entry conditions, neither the solution developed
by Loh nor the one presented here provide very good agree-
ment. If an analytical solution is needed for this case, the
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Figure 21: Comparison of Citron-Meir, Loh, and numerical integration for ballistic en-
try: a) altitude and b) flight-path angle versus normalized velocity (R/H = 900).[64]
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2.3 Hybrid Analytical-Numerical Approximate Solutions

Hybrid analytical-numerical solutions were proposed alongside fully analytical solu-

tions. These hybrid solutions sought to leverage the limited computer power available.

For example, Chapman’s solution allowed a single numerical integration of a differ-

ential equation of motion to be transformed to compute trajectories for a variety of

vehicle and missions. These numerical solutions were tabulated, eliminating the need

for others to access a computer to utilize the solution.

2.3.1 Chapman and Vinh

Dean Chapman first published his well-known hybrid analytical-numerical solution

in 1959 [65]. By changing variables and manipulating the planar equations of mo-

tion, Chapman is able to collapse the equations of motion into a single, second-order

equation:

ū
d

dū

(
dZ

dū
− Z

ū

)
− 1− ū2

ūZ
cos4 γ +

√
Hr

L

D
cos3 γ = 0 (49)

where

Z =
ρ∞

2

(
m

CDSref

)
√
r

β
ū (50)

and ū is the horizontal velocity normalized by the circular velocity. Equation (49)

is independent of ballistic coefficient (mass, drag coefficient, and reference area) and

reference density and acceleration due to gravity. In this manner, tables of Z as a

function of the normalized velocity ū may be created then transformed to whatever

trajectory is necessary. Chapman and Kapphahn did precisely this in a NASA tech-

nical report in 1961, providing 271 pages of tables of Z-values for a range of initial

velocities, L/D, and initial flight-path angles [115]. Chapman utilized this hybrid so-

lution to study entry corridors and other problems of interest to the community [53].

Nonweiler concurrently developed a solution identical to Chapman’s, but limited to

ballistic entry [116].
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In 1960, Levy extended Chapman’s solution to include trajectories in which the

aerodynamic properties and shape of the vehicle are varied during flight [117]. Gazley

proposed a parameter change to improve Chapman’s solution, namely introduction of

the parameter Γ = Z/ū, which Gazley asserts more clearly separates the generalized

altitude and velocity in Eq. (49) [84]. Lastly, Boltz further modified Chapman’s

solution in 1963 by including all terms from the equations of motion as well as rotating

atmosphere effects [118].

Vinh’s unified theory, originally developed by Buseman, Vinh, and Culp, is based

on Chapman’s original work, but extends it to three degrees of freedom [119] and

the full range of atmospheric entry conditions, from steep entry to orbit contraction

from atmospheric drag [66]. The most comprehensive discussion of this solution is

provided in Vinh’s book, Hypersonic and Planetary Entry Flight Mechanics [30], an

adaptation of an earlier technical report prepared for NASA [120]. In general, this

solution maintains the character of Chapman’s solution: the equations of motion

are manipulated, primarily through a change of variables, such that their solution

is independent of vehicle parameters. This allows a single numerically-integrated

trajectory to be utilized for a range of problems. The work of Vinh et al. takes

Chapman’s equation a step further in that L/D is generalized, in addition to ballistic

coefficient. Vinh and his co-authors have continued to publish extensions to this

theory to the present day: second-order, closed-form analytic solutions for ballistic,

skipping, and equilibrium glide trajectories [121], phugoid motion [67][122], specific

ballistic entry trajectories [68], ballute aerocapture [123], and ballistic entry at large

flight-path angles [124].

2.3.2 Yaroshevskiy

In 1964, Yaroshevskiy also collapsed the equations of motion for planetary entry into

a single, second-order differential equation [125, 126]. For ballistic entry, this equation
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is given by:

d2y

dx2
=
e2x − 1

y
(51)

where

x = ln

√
gR

V
(52a)

y =
1

2β

√
RHρ (52b)

In these equations, Yaroshevskiy assumes that aerodynamic parameters are constant,

the flight-path angle is small, and g sin γ is small relative to the drag.

Yaroshevskiy used the collapsed differential equation to approximate analytical

solutions for specific trajectory cases. This is done using series expansions about

intelligently selected solutions for a simplified version of the second-order equation.

This work has been revisited and extended several times, including work by Ikawa

[127], Gates[123], and Saikia[128].

2.3.3 Matched Asymptotic Solutions

The theory of matched asymptotic solutions was first applied to planetary entry tra-

jectories by Willes et al. in 1967 [129]. The theory of matched asymptotic solutions is

fundamentally a perturbation method. For planetary entry, the equations of motion

are rewritten in terms of perturbation parameters, then expanded in a linear fashion

about those perturbations. The great advantage of matched asymptotic solutions

is that approximate solutions for different flight regimes may be easily stitched to-

gether, resulting in more general solutions that are applicable across a wider range

of conditions (see Figure 22). However, these solutions are algebraically complex and

frequently require numerical integration of scalar equations.

The solution of Willes et al. includes three parts: the aerodynamic-dominated

regime, the Kepler regime (gravity only), and a middle, “aerogravity,” regime, where

aerodynamic and gravitational forces are of a similar magnitude. In 1969, Shi and
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Figure 22: Comparison of solution methods to the matched asymptotic solution [129].

Pottsepp improved on the solution of Willes et al. by eliminating the need for the

“aerogravity” flight regime in the solution [130]. Eckstein further extended the work

of Shi and Pottsepp to oscillating skip trajectories in 1971 [131], and Shi was able to

use the matched asymptotic solution for a study of optimal lifting entry [132]. Lastly,

Hough published several extensions to this theory in the early 1980s focusing on

ballistic entry: including an inviscid, velocity-dependent drag model[133] and gravity

[134].

2.4 Numerical Approximate Solutions and Machine Com-
putation

The rapid development and rise computers is well documented in the literature, in-

cluding the significant role played by the aerospace industry in driving that devel-

opment [135, 136]. Many of the analytical approximate solutions discussed earlier in

this chapter were developed alongside computers in the 1950s and 1960s. As early

as 1955, the presence of numerical solutions (computed by machine) for planetary

entry trajectories was assumed [137]. Numerical solutions became common in the
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literature around 1960 (see [138],[97],[139],[140]). In 1962 Duncan published an en-

tire textbook that relied extensively on numerical solution of the equations of motion

[141]. Researchers also began to utilize numerical solutions to evaluate the accuracy

of analytical approximate solutions (see [142], [143]). And by 1962, Blum commented

that “it is customary to find the re-entry trajectories of rockets integrated numerically

by machine computation” [90].

The maturation of computers and programming languages for them eventually

led to the creation of general-purpose programs designed to evaluate trajectories.

Examples include the Program to Optimize Simulated Trajectories (POST)[69] and

Simulation and Optimization of Rocket Trajectories (SORT)[144]. This has become

the dominate method for evaluating planetary entry trajectories. Modern simulations

may be quite complex and include detailed models for the environment, entry vehicle,

and onboard systems [71].

2.5 Summary

The current literature contains numerous closed-form analytical approximate solu-

tions to the equations of motion for planetary entry. Although most contributions

to this body of work were written in the 1950s and 1960s, new contributions have

been published at a steady rate since then. These analytical solutions still have value

for modern analyses. In particular, they have direct applicability to onboard guid-

ance and targeting systems (e.g. the work of Tannas [145, 146]), optimal control (see

Vinh [147]), and first-order performance analyses that support conceptual design and

architecture studies.

This thesis seeks to show the feasibility of drag-modulation systems for planetary

entry. Of particular interest is the ability of such systems to provide range control

during entry. The development of such an expression is the subject of the next

chapter.
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CHAPTER III

ENHANCEMENT OF THE ALLEN-EGGERS SOLUTION

When planetary entry was first studied in the middle of the twentieth century, analyti-

cal approximations were developed to enable vehicle and mission designers to evaluate

vehicle trajectories and performance with minimal or no computer usage. Seminal

examples of analytical approximations include, in chronological order, Sänger’s and

Bredt’s expressions for lifting entry [54], the Allen-Eggers approximation for ballis-

tic entry [56], Chapman’s Z-function [65], Loh’s “second-order” approximation [61],

and the solutions developed by Vinh et al. [30]. Analytical and hybrid analytical-

numerical approximate solutions utilize assumptions to make the nonlinear equations

of motion soluble. As a result, they typically only apply to limited classes of entry

vehicles and trajectories.

Subsequent advances in computing made high-accuracy approximation via numer-

ical integration of the equations of motion feasible for most applications [135]. Today,

vehicle and mission designers have significant computational resources available, en-

abling relatively rapid, low-cost, and high-fidelity assessment of entry trajectories.

However, analytical solutions are still desirable for applications for which simplicity

and execution speed are paramount, such as real-time guidance, navigation, and con-

trol systems; optimization; and conceptual design. Analytical solutions provide more

information about entire families of trajectories, in contrast to the single trajectories

generated by numerical methods, and may be manipulated to determine parameter

sensitivities and partial derivatives. It is with these identified applications in mind

that this study enhances the Allen-Eggers solution for ballistic entry through devel-

opment of a method for computing the assumed constant flight-path angle, bounds
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for the domain of applicability, and closed-form expressions for trajectory range and

time.

Harry “Harvey” Julian Allen and Alfred J. Eggers, working at the Ames Aeronau-

tical Laboratory, first documented their approximate solution for ballistic (nonlifting)

entry in a classified National Advisory Committee for Aeronuatics (NACA) research

memorandum in 1953 [79]. The memorandum was declassified in 1957 [79], and sub-

sequently republished as a NACA report in 1958 [56]. Allen and Eggers developed

their approximate analytical solution “to determine means available to the designer

for minimizing aerodynamic heating” for missile applications [56]. The Allen-Eggers

solution is based on the insight that, for ballistic entry at a sufficiently steep initial

flight-path angle, the gravitational force may be neglected because its magnitude is

small relative to the magnitude of the drag force [56]. Neglecting gravity yields a

closed-form analytical relationship between velocity and altitude from which Allen

and Eggers were able to derive closed-form analytical expressions for acceleration and

heating as functions of velocity, including state values at peak conditions of inter-

est. The solution is composed of relatively simple explicit, closed-form analytical

expressions.

Several extensions to the Allen-Eggers solution have been published, including

expressions for range [60] and time of flight [85, 80, 91]. Published extensions typi-

cally utilize additional assumptions not present in the original Allen-Eggers solution.

Norman provides an excellent discussion and analysis of most early extensions [80].

Unfortunately, many of the references are becoming difficult to locate, due to age or

being out of print. While derivations of the Allen-Eggers solution are available in

the current literature [32, 148, 75], in-print treatments of the Allen-Eggers approx-

imation are generally incomplete and utilize nomenclature that is inconsistent with

current conventions within the entry community. To address this gap, a consistent

and complete derivation of the Allen-Eggers approximation is presented and several
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extensions are proposed to enhance the approximation. The extensions are compared

to the literature where applicable.

3.1 Methods and Assumptions

In this chapter, approximation errors generally are presented as a percentage relative

to Eqs. (7). Eqs. (7) are solved numerically using Matlab’s intrinsic “ode45” function

(based on the Dortmand-Prince method) with absolute and relative error tolerances

of 10−12 [149]. Error presented as absolute error is the absolute value of the error

magnitude.

The relatively short flight times associated with planetary entry, the drag-only

trajectories considered in this study, and the unpredictable nature of atmospheric

properties make the omission of the planet’s rotation and its effects on wind-relative

velocity the largest consistent source of error in Eq. (7) relative to higher-fidelity

trajectory models. The wind-relative velocity error may be reduced by utilizing the

planet-relative velocity in Eqs. (7).

The normalized integrated error is used to compare approximation error across

multiple trajectories and is defined by:

εX =
1

εX,norm

√√√√
N∑

i=1

(
Xi,approx −Xi,EOM

Xi,EOM

)2

(53)

where N is the total number of points computed for the trajectory and X represents

the trajectory state of interest. The error is normalized by a reference value. This

error metric provides information about the error over an entire trajectory relative to

another trajectory (typically associated with the normalization value) in a single num-

ber. This allows one to compare error over a range of trajectory parameters. While

individual values of this integrated error are physically meaningless, they provide an

estimate of the efficacy of an approximate solution relative to a known trajectory.

The Mathematica computer algebra system was used to symbolically evaluate the

complicated integrals in this study [150].
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Three example ballistic entry trajectories were chosen to illustrate the enhance-

ment of the Allen-Eggers solution: interplanetary robotic sample return, strategic

reentry, and low-Earth orbit (LEO) return of crew from the International Space Sta-

tion. The example trajectories include hyperbolic, orbital, and suborbital entry en-

ergies and span several orders of magnitude of ballistic coefficient; they represent

current ballistic missions of interest at Earth to the entry community (see Table 3).

The sample-return example is based on NASA’s Stardust Sample Return Capsule,

which successfully landed after a ballistic entry in 2006 [151, 152]. Stardust had the

greatest entry velocity of any Earth-return mission. The strategic example features

a high ballistic coefficient vehicle on a steep, high-energy suborbital trajectory [153].

The LEO-return example represents ballistic entry of a crewed vehicle and is based on

data from the off-nominal ballistic entry of Soyuz TMA-11 [154]. The Soyuz ballistic

coefficient is consistent with other blunt-body crewed entry systems and enters the

atmosphere at a shallow flight-path angle. A reference nose radius of 1 m is assumed

for all three vehicles for simplicity.

All example trajectories occur at Earth, with an equatorial radius R = 6378 km

and gravitational acceleration g = 9.81 m/s. An atmospheric scale height H = 8.5 km

and reference density ρref = 1.215 kg/m3 at reference altitude href = 0 km are

assumed [155]. While the analyses presented in this work are restricted to Earth,

Gazley has applied the Allen-Eggers solution to Mars and Venus with good results,

indicating applicability at the terrestrial planets with atmospheres [83]. Evaluation of

the efficacy of the Allen-Eggers approximate solution at other planetary destinations

is left for future investigation.
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Table 3: Parameters for example trajectories at Earth

Example Sample Return Strategic LEO Return
Reference [151, 152] [153] [154]
Initial velocity 12.8 km/s 7.2 km/s 7.9 km/s
Initial flight-path angle -8.2 deg -30.0 deg -1.35 deg
Initial altitude 125 km 125 km 100 km
Ballistic coefficient 60 kg/m2 10000 kg/m2 450 kg/m2

3.2 Review of the Allen-Eggers Solution

The Allen-Eggers approximate solution is rederived using modern nomenclature to

provide a consistent basis for this study. The results differ slightly from those pre-

sented in Ref. [56] due to use of current conventions for the definition of flight-path

angle and ballistic coefficient.

3.2.1 Altitude-Velocity Profile

The Allen-Eggers altitude-velocity profile may be derived starting with the planar

equations of motion. The planar equations of motion are well-suited to ballistic

entries because ballistic trajectories are nearly planar due to the absence of any out-

of-plane lift. The key assumption in this derivation is that, for sufficiently steep

entries, the drag contribution to the change in velocity is much greater than the

gravity contribution. Additionally, the gravity term is multiplied by the sine of the

flight-path angle, further reducing its magnitude for more shallow trajectories where

the drag magnitude is less.

Starting from Eq. (7a) and neglecting the gravity term relative to the drag term,

one may write:

dV

dt
= −ρref

2β
exp

(
href − h

H

)
V 2 (54)

Rearranging Eq. (7c) yields:

V =
1

sin γ

dh

dt
(55)
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Substituting Eq. (55) into Eq. (54) and separating variables gives:

1

V

dV

dt
= − ρref

2β sin γ
exp

(
href − h

H

)
dh

dt
(56)

Assuming a constant flight-path angle γ∗ and eliminating dt, this expression can be

integrated from some state 1 to some state 2 and solved for V2:

V2 = V1 exp

{
Hρref

2β sin γ∗

[
exp

(
href − h2

H

)
− exp

(
href − h1

H

)]}
(57)

Eq. (57), first derived by Allen and Eggers, determines an altitude-velocity profile

(h2, V2) as a function of the planetary atmosphere (ρref , href , H), vehicle properties

(β), and a reference vehicle state (V1, h1, γ1 = γ∗). The altitude-velocity relation-

ship may be expressed in terms of either V2 or h2. The constant flight-path angle

assumption approximates the flight-path angle history to first order for sufficiently

steep ballistic entries and implicitly assumes a nonlifting trajectory for such steep

entry trajectories. Allen and Eggers suggest using the initial flight-path angle for

γ∗ [56]; this approach works well for the steep entry trajectories (γ0 � 0) that were

of interest to Allen and Eggers. Lastly, Eq. (57) assumes that velocity is monoton-

ically decreasing with altitude, limiting application of this approximate solution to

trajectories with no positive altitude rate.

3.2.2 Acceleration Magnitude

Combining Eqs. (54) and (57) results in an equation for the acceleration magnitude.

The resulting expression, normalized by g, is given by:

a2 =
ρref
2βg

V 2
1 exp

(
href − h2

H

)
exp

{
Hρref
β sin γ∗

×
[
exp

(
href − h2

H

)
− exp

(
href − h1

H

)]}
(58)

Differentiating Eq. (58) with respect to h2 yields:

da2
dh2

= −a2
H

[
1 +

Hρref
β sin γ∗

exp

(
href − h2

H

)]
(59)
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Setting da2/dh2 = 0 and rearranging produces a relatively simple expression for the

altitude at peak acceleration:

hamax = href +H ln

(
− Hρref
β sin γ∗

)
(60)

Combining Eq. (60) and Eq. (57), the velocity at peak acceleration is:

Vamax =
V1√
e

exp

[
− Hρref

2β sin γ∗
exp

(
href − h1

H

)]
(61)

The maximum acceleration is given by:

amax = −sin γ∗

2egH
V 2
1 exp

[
− Hρref
β sin γ∗

exp

(
href − h1

H

)]
(62)

If hamax is below the planetary surface, peak acceleration occurs at minimum altitude.

3.2.3 Convective Heat Rate

Allen and Eggers formulated an equation for the convective heat rate at the stagnation

point of a blunt-body vehicle [56]:

Q̇ = k
√
ρ/rnV

3 (63)

The expression assumes that the vehicle is sufficiently blunt such that a detached

bow shock exists ahead of the body. Blunt leading edges for hypersonic vehicles are

an innovation developed by Allen as a way to reduce the severity of entry heating

on the vehicle [156]. In their original document, Allen and Eggers give a k value of

6.8× 10−6 without units [56]; dimensional analysis indicates k has units of kg1/2m−1.

The method developed by Sutton and Graves was used to compute a value for k

suitable for application at Earth of 1.7623× 10−4 kg1/2/m [157].

Combining Eq. (63) and Eq. (57) results in an expression for heat rate as a function

of altitude:

Q̇2 = k

√
ρref
rn

V 3
1 exp

(
href − h2

2H

)
exp

{
3Hρref

2β sin γ∗
×

[
exp

(
href − h2

H

)
− exp

(
href − h1

H

)]}
(64)
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The altitude and velocity at maximum heat rate may be derived in a similar way as

maximum acceleration and are given by:

hQ̇max = href +H ln

(
− 3Hρref
β sin γ∗

)
(65)

VQ̇max =
V1
e1/6

exp

[
− Hρref

2β sin γ∗
exp

(
href − h1

H

)]
(66)

The maximum heat rate is (for hQ̇max ≥ hmin):

Q̇max = k

√
−β sin γ∗

3eHrn
V 3
1 exp

[
− 3Hρref

2β sin γ∗
exp

(
href − h1

H

)]
(67)

Otherwise, the maximum heat rate occurs at the minimum altitude.

3.2.4 Simplified Expressions

Setting href to 0 m, state 2 to the current state (without subscript), and state 1

to the initial vehicle state near the top of the atmosphere (subscript 0) such that

exp [−h/H] � exp [−h0/H], a simpler expression for the altitude-velocity profile

results:

V = V0 exp

[
Hρref

2β sin γ∗
exp

(
− h
H

)]
(68)

where ρref is now the density at zero altitude. The assumptions also simplify the

expressions for acceleration and the conditions at maximum acceleration. Eq. (58)

becomes:

a =
ρref
2βg

V 2
0 exp

(
− h
H

)
exp

[
Hρref
β sin γ∗

exp

(
− h
H

)]
(69)

The conditions at peak acceleration are then given by (for hamax > hmin):

hamax = H ln

(
− Hρref
β sin γ∗

)
(70)

Vamax =
V0√
e
≈ (0.6065)V0 (71)

amax = −sin γ∗

2egH
V 2
0 (72)
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The expression for heat rate becomes:

Q̇ = k

√
ρref
rn

V 3
0 exp

(
− h

2H

)
exp

[
3Hρref

2β sin γ∗
exp

(
− h
H

)]
(73)

The conditions at peak heat rate are then (for hQ̇max > hmin):

hQ̇max = H ln

(
− 3Hρref
β sin γ∗

)
(74)

VQ̇max =
V0
e1/6
≈ (0.8465)V0 (75)

Q̇max = k

√
−β sin γ∗

3eHrn
V 3
0 (76)

The simplified expressions in Eqs. (68)-(76) are typically presented in texts on

atmospheric entry [73, 32, 148, 158, 75], as they readily provide insight into several

ballistic entry phenomena. First, the altitudes at which maximum acceleration and

heat rate occur are not functions of velocity to first order: they are determined by

vehicle parameters, planetary parameters, and the flight-path angle. In contrast, the

velocities at maximum acceleration and heat rate are fractions of the initial velocity

to first order, and peak heating always occurs prior to peak acceleration. Lastly,

maximum acceleration and heat rate are driven primarily by the initial velocity of

the vehicle: greater initial kinetic energies result in greater values of acceleration and

heat rate.

3.2.5 Application to Example Trajectories

Figure 23 shows the application of the Allen-Eggers solution to the three example

trajectories specified in Table 3. The approximate trajectories are co-plotted with

numerical solutions to Eqs. (7). Error plots are provided in Fig. 24. The Allen-Eggers

solution shows good agreement with the numerically integrated planar equations of

motion for the strategic case: vehicle state estimation errors are less than 10% for the

bulk of the trajectory. The altitude (Fig. 23a) and heat-rate profiles (Fig. 23d) show

small approximation errors for the sample-return case, but the acceleration error is
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nearly constant at 30-40%. The Allen-Eggers solution does a poor job approximating

the LEO-return case due to its shallow entry.

The assumptions used in the derivation of the Allen-Eggers solution lead to the

smallest error during the hypersonic portion of the trajectory. The hypersonic regime

encompasses the acceleration and heating pulses, including peak values for these

quantities. These quantities and qualities of a planetary entry trajectory typically

drive entry vehicle and mission design, making the Allen-Eggers solution a useful tool

for conceptual design and analysis. Values of vehicle states at peak acceleration and

peak heat rate estimated by the Allen-Eggers approximation are given in Tables 4 and

5, respectively. As before, errors for the strategic example are uniformly low. While

estimates of conditions at peak heat rate are within 20% for both the sample-return

and LEO-return cases; estimation error for peak acceleration is significantly larger.

The limited accuracy reduces the utility of the Allen-Eggers solution for shallow entry

trajectories.

The nature of the error in Fig. 24 reveals several weaknesses in the solution.

First, while the initial flight-path angle appears to be a good choice for γ∗ for the

strategic case, this is not true for the other cases. Second, development of bounds on

the domain of applicability of the solution would provide greater confidence in the

approximation without requiring direct comparison with numerical solutions. Lastly,

the Allen-Eggers solution does not provide any information on range or time of flight

for entry, both of which are useful quantities for onboard guidance and targeting

systems.
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Figure 23: Example application of the Allen-Eggers solution (solid) compared to
numerical integration (dashed): a) altitude, b) acceleration, c) flight-path angle, and
d) heat rate versus velocity.

Table 4: Vehicle states at peak acceleration

Acceleration Velocity Altitude
Earth g Error, % km/s Error, % km Error, %

Sample return 50.0 34.9 7.64 -2.1 60.3 -4.6
Strategic 57.2 -5.1 4.37 -1.8 6.2 3.6
LEO return 3.3 -57.3 4.81 34.9 58.5 27.0

Table 5: Vehicle states at peak heat rate

Heat rate Velocity Altitude
W/cm2 Error, % km/s Error, % km Error, %

Sample return 391.5 12.3 10.67 -1.2 69.7 -3.6
Strategic 1764.3 -6.5 6.09 -1.8 15.5 1.3
LEO return 108.5 -18.0 6.71 4.7 67.8 9.2
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Figure 24: Allen-Eggers approximation error for a) altitude, b) acceleration, c) flight-
path angle, and d) heat rate versus velocity.
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3.3 Enhancement of the Allen-Eggers Solution

Several enhancements to the Allen-Eggers solution are developed in this section to ad-

dress implementation weaknesses, provide additional information, and extend appli-

cability of the solution: an analytical method for computing an appropriate constant

flight-path angle, bounds on the domain of applicability, and consistent closed-form

expressions for range and time. The enhancements obtained result in explicit, ana-

lytical expressions that maintain the character and advantages of the Allen-Eggers

solution.

3.3.1 Determining the Constant Flight-Path Angle

A singular issue when applying the Allen-Eggers solution is determining a proper

value for γ∗, the assumed constant flight-path angle. Steep entries exhibit only a

small change in flight-path angle from their initial value in the hypersonic regime,

making γ0 a good approximation of γ∗; shallow trajectories fly at near-constant flight-

path angles that are significantly different from the initial value, making γ0 a relatively

poor choice for γ∗ (see Fig. 25). The ability to accurately determine more appropriate

values for γ∗ will extend the domain of applicability of the Allen-Eggers solution to

more shallow initial flight-path angles and improve overall accuracy.

It is desirable to develop a method for determining γ∗ based on available informa-

tion that is closed-form, explicit, and does not require numerical integration to pre-

serve the advantages of the Allen-Eggers solution. The solution for flight-path angle

as a function of velocity developed by Citron and Meir meets the criteria [64]. Other

approximate solutions for flight-path angle were considered: Loh’s “Second-order” so-

lution [61], Yaroshevskiy’s series approximation [125, 126], and Chapman’s Z-function

solution [65]. However, none were explicit, analytical, and generally-applicable.

The Citron-Meir expression for flight-path angle is, rederived to be consistent with
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nomenclature defined in this study and with L/D = 0:

sin γ = sin γ0 (2F (V )− 1) (77)

where

F (V ) =

[
1 +

H

R tan2 γ0

{
V 2
C

V 2
0

[
Ei

(
ln
V 2
0

V 2

)
− γ̄ − ln

(
ln
V 2
0

V 2

)]
+

(
V 2
C

V 2
0

− 1

)
ln

(
1− β sin γ0

Hρ0
ln
V 2
0

V 2

)}]1/2
(77a)

where ρ0 is the density at V0 and Ei is the exponential integral, defined by:

Ei(x) = −
∫ ∞

−x

(
e−y/y

)
dy (78)

where x is an arbitrary argument. The exponential integral may be approximated

using the explicit, analytical method developed by Cody and Thacher [113]. Given

an initial state, planetary properties, and ballistic coefficient, Eq. (77) determines the

flight-path angle as a function of velocity for most non-skipping entry trajectories

[64].

Comparing Fig. 23b and 23c with Fig. 25, the value of the flight-path angle near

peak acceleration appears to be a better representation of the constant flight-path

angle γ∗ than the initial flight-path angle. The velocity at this condition, V ∗ = Vamax ,

can be found using existing relationships in the Allen-Eggers solution; V ∗ may then

be used in Eq. (77) to determine γ∗. Either Allen-Eggers expression for Vamax may

be used to determine V ∗: Eq. (61) or the simplified expression, Eq. (71). Using the

simplified expression for Vamax yields a more compact expression for γ∗. Substituting

Eq. (71) into Eq. (77) gives:

sin γ∗ = sin γ0 (2F ∗ − 1) (79)

where

F ∗ =

[
1 +

H

R tan2 γ0

{
C
V 2
C

V 2
0

+

(
V 2
C

V 2
0

− 1

)
ln

(
1− β sin γ0

Hρ0

)}]1/2
(79a)
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Figure 25: Three methods for computing the Allen-Eggers constant flight-path angle,
γ∗, for the sample-return example entering with three different values of γ0.

and

C = Ei(1)− γ̄ ≈ 1.3179 (79b)

The constant C need only be determined once to the desired accuracy. As such, this

expression does not require repeated evaluation of the exponential integral.

Figure 25 shows the efficacy of the proposed method for estimating γ∗ for the

sample-return trajectory at different initial flight-path angles. The resulting values

for γ∗ more closely approximate numerical solutions of flight-path angle as a function

of velocity. The difference between the proposed method and using γ0 for γ∗ increases

with more shallow initial flight-path angles, but improvement is present for all initial

flight-path angles shown. Both options for computing V ∗ are shown; the additional

complexity of using Eq. (61) with Eq. (77) does not yield results that are appreciably

different from those generated by Eq. (79).

The proposed method for determining γ∗ improves the accuracy of the Allen-

Eggers solution across all three example cases (Fig. 26 and Fig. 27). The improvement

is most significant for the sample-return example: acceleration and flight-path angle

estimation error is reduced by nearly 40% near mid-trajectory. For the LEO-return

case, error is reduced and more balanced about zero, but remains large. Improvements
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Figure 26: Comparison of the approximation error with γ∗ = γ0 (dashed) and the
proposed method for computing γ∗ (solid): a) altitude, b) acceleration, c) flight-path
angle, and d) heat rate versus velocity.

to the strategic case are small.

As shown in Fig. 27, estimates of vehicle states at peak acceleration and heat

rate are improved for all three cases with the exception of the peak heat rate for the

LEO-return case. The increase in error is accompanied by an equally large decrease

in the error for the estimate of the peak acceleration, as well as smaller reductions in

error for estimates of the velocity and altitude at peak conditions.

3.3.2 Bounding the Domain of Applicability

Figure 28 shows the Allen-Eggers altitude-velocity profile relative to the numerical

solution to the equations of motion early and late in the trajectory as a function of

velocity, normalized by the initial velocity. Early in the trajectory (Fig. 28a) at high

altitudes, atmospheric density is low; therefore drag is low and gravity dominates
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Figure 27: Vehicle state approximation error at peak conditions for γ∗ = γ0 and the
proposed method for computing γ∗.

the dynamics, causing the vehicle to accelerate as it descends into the planetary

gravity well. As vehicle altitude decreases, atmospheric density builds, causing drag to

increase and surpass gravity as the dominant force, causing the vehicle to decelerate.

There is a region in which the drag and gravity forces are nearly balanced: above this

region, gravity dominates; below, drag dominates. The assumptions inherent in the

Allen-Eggers solution are only valid when drag dominates the dynamics.

Late in the trajectory, the Allen-Eggers approximation error becomes large (Fig. 28b).

After passing through peak acceleration vehicle velocity continues to decrease, de-

creasing the dynamic pressure and the drag force. Eventually, the drag force decreases

enough that gravity becomes significant again, causing a negative flight-path angle

rate known as the gravity turn. In this region of the trajectory, the Allen-Eggers as-

sumptions on gravity and constant flight-path angle are both violated. The strategic

case is not depicted because it reaches the surface at a much higher velocity.

While the Allen-Eggers solution shows significant error early and late in the ex-

ample trajectories where its underlying assumptions are invalid, it is accurate in the

middle of the trajectories, encompassing the hypersonic regime. The direct link be-

tween the inaccuracies in the Allen-Eggers solution early and late in the trajectory
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Figure 28: Allen-Eggers approximation error in altitude-velocity profile a) early and
b) late in the trajectories.

and the approximation’s underlying assumptions suggest that a bounded domain can

be identified, based on the equations of motion, over which the Allen-Eggers solution

is valid.

3.3.2.1 Bound on Initial Dynamic Pressure

Figure 28a shows that the Allen-Eggers approximation is inaccurate in the region

when velocity is increasing under the influence of gravity. The point at which the

gravity and drag forces balance occurs when velocity is at a maximum. At this point,

from Eq. (7a):

dV

dt
= 0 = − ρ

2β
V 2 − g sin γ (80)

The Allen-Eggers approximation assumes the gravity force is negligible relative to the

drag force, or:

ρV 2/ (2β)� −g sin γ (81)

where γ < 0 for entry, making the right-hand side positive. In terms of dynamic

pressure:

q̄ � −gβ sin γ (82)
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The limit on the initial dynamic pressure, q̄0, may then be defined in terms of a

stand-off factor, δq, and the initial flight-path angle such that:

q̄0 = −δqgβ sin γ0 (83)

Eq. (83) defines a limit on the initial dynamic pressure, and therefore on the ac-

ceptable set of (V0, h0), as a function of the initial flight-path angle, vehicle properties,

planetary properties, and the initial dynamic pressure stand-off factor δq. A δq value

of 1 indicates the dynamic pressure at maximum velocity; a value of 2 or higher is

recommended to ensure the vehicle is outside the region in which the gravity and drag

magnitudes are similar. Figure 29 shows how this dynamic pressure limit leads to

limits on the initial velocity and altitude for several values of δq. Conventionally, the

initial conditions for entry are defined at an arbitrary altitude; Eq. (83) simply rede-

fines the initial conditions for entry trajectories based on when aerodynamic forces

begin to dominate vehicle dynamics.

An appropriate value for δq may be chosen by examining the Allen-Eggers state

approximation error as a function of δq. Figure 30a shows approximation error for the

sample-return example at 95% of V0 as a function of δq. The lower velocity is used

because there is no approximation error in the altitude at the initial state because

it is the initial condition used in the approximation. The percent error in heat rate

is not shown; heat rate is small in this region due to high altitude and low density.

A δq value of 2 is chosen to provide margin relative to the maximum velocity point

(δq = 1) while limiting the approximation error in acceleration to approximately 10%

(see Fig. 30a).

3.3.2.2 Bound on Minimum Velocity

A bound on the terminal state will complete the specification of the domain of ap-

plicability for the Allen-Eggers solution. A minimum-velocity bound may be derived
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by considering Eq. (7b) for ballistic vehicles, rearranged:

dγ

dt
=

(
V

R + h
− g

V

)
cos γ (84)

As shown in Figs. 23c and 28b, the Allen-Eggers solution becomes inaccurate when

the flight-path angle begins to change significantly, indicating a nonzero (and nega-

tive) value of dγ/dt. Since cos γ tends to decrease with increasingly negative γ, any

significant increase in the magnitude of dγ/dt must be caused by an increase in the

magnitude of the other factor. Larger magnitudes of dγ/dt occur late in the trajec-

tory and the sign of dγ/dt is negative; therefore, a significant dγ/dt results when the

gravity term, g/V , is larger than the range-angle term, V/(R+ h). The Allen-Eggers

solution is then valid for velocities where the range-angle term is larger than the

gravity term by some factor, 1/δ2:

g/V <
(
1/δ2

)
V/ (R + h) (85)

Neglecting h relative to R (a good assumption at low altitudes near the end of the

trajectory) and solving for V determines a lower limit on velocity past which the

gravity term exceeds the range-angle term:

V > δ
√
gR (86)

Defining the minimum acceptable final velocity as Vf and designating δ as δV , one

finds the minimum final velocity is:

Vf = δV VC (87)

The minimum velocity bound is a fraction of the circular velocity, the velocity of a

notional circular orbit at the planetary surface. The final velocity stand-off factor,

δV , provides margin beyond the minimum velocity to limit error. Figure 29 shows the

minimum velocity bounds for three values of δV . Larger values of δV imply a more

restrictive domain for the Allen-Eggers approximation.
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An appropriate value of δV may be chosen by examining the Allen-Eggers ap-

proximation error as a function of δV , as shown in Fig. 30b for the sample-return

example trajectory. The figure indicates that a δV of 0.05 will limit approximation

error in altitude, acceleration, and heat rate to less than approximately 20%. While

the flight-path angle error remains large at this value of δV , the Allen-Eggers solution

does not attempt to estimate the flight-path angle, making this error less significant.

3.3.2.3 Improvements to Approximation Accuracy

Figures 31 and 32 show the decrease in approximation error for the example trajec-

tories with the Allen-Eggers approximation restricted to its domain of applicability

by limits on q̄0 and Vf with δq = 2 and δV = 0.05. Modest improvement in approx-

imation error across all estimated parameters is apparent for the sample-return and

strategic examples. No improvement is seen in the LEO-return case because its initial

dynamic pressure exceeds that associated with a δq of 2.

3.3.3 Closed-Form Expressions for Range

Closed-form, explicit approximations for entry range have generally been restricted to

vehicles with nonzero L/D, such as Sänger’s and Bredt’s equilibrium glide and steep

lifting entry [54]. For ballistic entry, approximate trajectory solutions in the litera-

ture typically omit range [82] or evaluate range through integrals that must be solved

numerically [86, 96]. Kornreich’s truncated-series approximation of range during bal-

listic entry is the only closed-form expression found in the current literature [60]. The

dearth of range approximations is likely due to the complexity of analytical solutions

for altitude, velocity, and flight-path angle: these complicated state approximations

must be combined in an integral expression to compute range. The complexity of the

range integrand generally defies analytical solution.

While other solutions for ballistic entry are more accurate, such as those of Moe

[86] and Loh [96], the simplicity of the Allen-Eggers solution permits development
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angle, and d) heat rate versus velocity.

0

10

20

30

40

50

60

Ab
so

lu
te

 e
rro

r, 
%

Unbounded 
     Sample return 
     Strategic 
     LEO return 
 
Bounded 
     Sample return 
     Strategic 
     LEO return 

amax Vamax
hamax Q̇max

VQ̇max
hQ̇max

Figure 32: Allen-Eggers approximation error of vehicle states at peak conditions for
bounded (δV = 0.05, δq = 2) and unbounded domains.

84



of closed-form expression of range and range-to-go as functions of the velocity. The

range expressions extend the Allen-Eggers solution to cover all four states in Eqs. (7).

3.3.3.1 Derivation

The energy over weight for an entry vehicle is defined by:

E =
[
(1/2)mV 2 +mgh

]
/ (mg) = V 2/(2g) + h (88)

The derivative of the energy over weight with respect to time is given by, substituting

in Eqs. (7a) and (7c):

dE

dt
=
V

g

dV

dt
+
dh

dt
= − ρ

2gβ
V 3 (89)

The derivative of the subtended range angle with respect to the energy over weight

is then:

dθ

dE
=

dθ/dt

dE/dt
=
−2βg cos γ

ρV 2(R + h)
(90)

Range is the distance traveled over the surface of a spherical planet, as shown in

Fig. 33. For a spherical planet, the range is related to the range angle by the arc-

length formula. Assuming the initial range s0 and range angle θ0 are zero:

s = Rθ = R

∫ E

E0

−2βg cos γ

ρV 2(R + h)
dE (91)

If the final range is sf , the range-to-go is:

stogo = sf − s = R

∫ Ef

E

−2βg cos γ

ρV 2(R + h)
dE (92)

A differential change in energy over weight may be described by:

dE = d(V 2)/(2g) + dh (93)

Applying Eq. (93) to Eq. (91) and rearranging yields:

s =

∫ V 2
0

V 2

Rβ cos γ

(R + h)ρV 2
d(V 2) +

∫ h0

h

2Rβg cos γ

(R + h)ρV 2
dh (94)
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Figure 33: Planetary entry range and range angle.

The integral expression for range in Eq. (94) makes no assumptions relative to

Eqs. (7). Analytical solution is possible using the Allen-Eggers assumptions: ne-

glecting gravity eliminates the altitude integral and assuming a constant flight-path

angle simplifies the velocity integral. Also, from Eq. (57):

ρ =
β sin γ∗

H
ln

(
V 2

V 2
1

)
+ ρ1 (95a)

h =href −H ln

[
β sin γ∗

ρrefH
ln

(
V 2

V 2
1

)
+

ρ1
ρref

]
(95b)

Applying the assumptions, substituting Eqs. (95) for altitude and density, and inte-

grating Eq. (94) from state 2 to the initial state, with state 1 as a reference state:

s2 = Rβ cos γ∗
∫ V 2

0

V 2
2

{[
R + href −H ln

(
β sin γ∗

ρrefH
ln

(
(V 2)

V 2
1

)
+

ρ1
ρref

)]
×

[
β sin γ

H
ln

(
(V 2)

V 2
1

)
+ ρ1

]
(V 2)

}−1
d(V 2) (96)

Evaluating the integral in Eq. (96) using Mathematica’s symbolic solver [150] results

in a closed-form solution for range as a function of velocity:

s2 = R cot γ∗
(

ln

{
H ln

[
ρ1
ρref

+
β sin γ∗

Hρref
ln

(
V 2
2

V 2
1

)]
− href −R

}
−

ln

{
H ln

[
ρ1
ρref

+
β sin γ∗

Hρref
ln

(
V 2
0

V 2
1

)]
− href −R

})
(97)

Similarly, starting from Eq. (92), the range-to-go at a particular velocity is given by:

stogo,2 = R cot γ∗
(

ln

{
H ln

[
ρ1
ρref

+
β sin γ∗

Hρref
ln

(
V 2
f

V 2
1

)]
− href −R

}
−

ln

{
H ln

[
ρ1
ρref

+
β sin γ∗

Hρref
ln

(
V 2
2

V 2
1

)]
− href −R

})
(98)
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Eqs. (97) and (98) are closed-form, analytical expressions for range as a function

of velocity or altitude, vehicle and planetary parameters, initial conditions, and a

constant flight-path angle. The constant flight-path angle may be set to the initial

flight-path angle, as advocated by Allen and Eggers, or determined with the method

outlined in Sec. 3.3.1.

Alternately, solving Eq. (96) assuming R/(R + h) ≈ 1 and setting V1 = V0, the

range may be reduced to a simple function of altitude:

s2 = cot γ∗ (h2 − h0) (99)

The additional assumptions made in deriving Eq. (99) make the trajectory a straight

path through space; this is not the case for Eqs. (97) and (98). Eq. (99) is equivalent

to expressing Kornreich’s solution for range as a function of altitude instead of density.

Kornreich’s range expression is given by:

s2 = H cot γ0 ln ρ2/ρ0 + higher order terms (100)

where higher order terms are neglected [60]. Eqs. (99) and (100) reflect the assumption

of a flat planet, an assumption not made by Allen and Eggers.

3.3.3.2 Example Application

Figure 34 shows Eqs. (97) and (98) applied to the example trajectories. The ap-

proximation is applied over the domain bounded by δV and δq values of 0.05 and

2, respectively, and γ∗ is determined using Eq. (79). Figure 34a uses the Allen-

Eggers equations for the vehicle state at peak acceleration for the state-1 reference

point; Fig. 34b uses the initial condition for the state-1 reference point. The range

and range-to-go estimates are good for the strategic case; estimation of range-to-go

appears to result in lower error relative to range for all three cases.

Figure 35 shows the percent and absolute approximation errors for Eq. (97) as well

as Kornreich’s solution (Eq. (100)), where both utilize Eq. (79) to compute γ∗. Initial
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range predictions have near-zero error because the initial range traveled is zero. For

all three cases, the error in Eq. (97) quickly climbs to a near-constant value: about

10% for the sample-return case, -2% for the strategic case, and -50% for the LEO-

return case. While approximation error is low for the strategic case, the 10% error for

the sample-return case corresponds to an absolute error of nearly 80 km. Overall, the

errors in Eq. (97) and Kornreich’s solution are similar. Both approximations produce

nearly identical poor representations of the LEO-return case; Kornreich’s solution

shows slightly lower error for the strategic case; Eq. (97) shows slightly lower error

for the sample-return case.

Eq. (97) includes the altitude variation of dθ/dt; Kornreich’s solution does not.

Inclusion of the altitude correctly reduces the range rate, and therefore total range,

implying that Kornreich’s solution should, in general, overestimate the range, as

shown for the sample-return case. However, the selection of γ∗ also influences the

magnitude of dθ/dt. For the strategic example in Fig. 35, the computed γ∗ is less

than the velocity-averaged flight-path angle; this also reduces the range flown and

is an artifact of the choice of V ∗ at which γ∗ is computed. Kornreich’s solution’s

tendency to overestimate the range largely counters this effect. Eq. (97) does not,

resulting in a larger error. However, the difference in error signatures is small, with

a maximum difference of approximately 300 m. Eq. (97) and Eq. (99) show similar

error signatures; the differences in error can be overwhelmed by other factors, such

as the choice of V ∗. The primary benefit of Eq. (97) over Eq. (99) is that it does not

require any additional assumptions beyond those made by Allen and Eggers.

Approximation error for range-to-go (Eq. (98)) is shown in Fig. 36. Percent error

is within 2% for the sample-return case and less than 1% for the strategic case.

Approximation error is below 3% for even the LEO-return case. The spikes present

in Fig. 36b are caused by sign changes in the error. Overall, errors are approximately

an order of magnitude less than they are for the range estimate. In addition, because

88



0 5 10
0

500

1000

1500

R
an

ge
, k

m

Velocity, km/s
0 5 10

0

500

1000

1500

R
an

ge
 to

 g
o,

 k
m

Velocity, km/sa) b) 

Sample return 
Strategic 
LEO return 
Numerical int.  

Sample return 
Strategic 
LEO return 
Numerical int.  

Figure 34: Comparison of numerical integration (dashed) and estimates (solid) of a)
range and b) range-to-go.

0 5 10
−50

0

50

Er
ro

r, 
%

Velocity, km/s
0 5 10

100

102

104

Ab
so

lu
te

 e
rro

r, 
km

Velocity, km/sa) b) 

Sample return 
Strategic 
LEO return 
proposed 
Kornreich 

Sample return 
Strategic 
LEO return 
proposed 
Kornreich 
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expression (dashed) a) percent error with respect to total range and b) absolute error.

range-to-go is always decreasing, the absolute error trends to a near-zero final value.

Results indicate that while Eq. (97) provides a only a rough estimate of the

range traveled during entry, the accuracy of Eq. (98) may be sufficient for use in

onboard guidance and targeting algorithms for ballistic entry systems, particularly

drag-modulation trajectory control systems [159].

3.3.4 Trajectory States as a Function of Time

Three significant assumptions relative to the planar equations of motion (as given in

Eqs. (7)) are made in the derivation of the Allen-Eggers solution:
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1. Ballistic entry: L/D = 0

2. Constant flight-path angle: dγ/dt = 0

3. Gravity is negligible relative to drag: ρV 2/(2β)� −g sin γ

The equations of motion with the above assumptions applied are, reduced from

Eqs. (7):

dV

dt
= −ρref

2β
exp

(
href − h

H

)
V 2 (101a)

dγ

dt
= 0 (101b)

dh

dt
= V sin γ∗ (101c)

dθ

dt
=
V cos γ∗

R + h
(101d)

The original Allen-Eggers solution is an exact solution to the reduced equations when

t is eliminated by combining Eq. (101a) and (101c). This includes the Allen-Eggers

assumption that γ∗ = γ0; as shown previously, more accurate results are obtained

when γ∗ is computed using the method proposed in Sec. 3.3.1.
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Eqs. (101) may be integrated directly with respect to time. Using Mathematica,

the resulting solution is [150]:

V = C1 exp

[
ρrefH

2β sin γ∗
exp

(
href − h

H

)]
(102a)

γ = γ∗ (102b)

−HEi

[
− ρrefH

2β sin γ∗
exp

(
href − h

H

)]
= C1 sin γ∗t+ C2 (102c)

θ = C3 + cot γ∗ ln (R + h) (102d)

If the initial condition is given by V0, h0, γ0 = γ∗, θ0 = 0, and t0 = 0, the constants

of integration are:

C1 = V0 exp

[
− ρrefH

2β sin γ∗
exp

(
href − h0

H

)]
(103a)

C2 = −HEi

[
− ρrefH

2β sin γ∗
exp

(
href − h0

H

)]
(103b)

C3 = − cot γ∗ ln (R + h0) (103c)

Eq. (102a) is similar in structure to the altitude-velocity profile first derived by Allen

and Eggers, and is exactly that derived earlier (Eq. (57)) when Eq. (103a) is applied.

The range equations, Eqs. (97) and (98), may be derived from Eq. (102d) by multi-

plying by R to convert from range angle to range and replacing instances of h with V

using Eq. (57). Lastly, Eq. (102c) provides a relationship between time and altitude.

The time expression was first derived by Norman in 1963 [80]. Miller developed a

time expression for ballistic entry in 1961, but failed to recognize that the series ap-

proximations in his solution were the exponential integral, causing him to erroneously

state that there was no closed-form solution for time [85, 80].

Evaluation of Eqs. (102) is most convenient when altitude is chosen for the do-

main; this allows time to be found without iterative root finding. Vehicle states

computed using Eqs. (102) are compared to numerical integration of Eqs. (7) as a

function of time in Fig. 37; acceleration and heating as a function of time are shown
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in Fig. 38. Eqs. (102) show good agreement with numerical integration of Eqs. (7) for

the strategic case. Agreement for the sample-return case is good for approximately

100 s, which encompasses the acceleration and heat-rate pulses. Agreement for the

LEO-return case is poor as in previous examples.

Numerical difficulties may occur when evaluating Eqs. (102) due to the exponen-

tial integral in Eq. (102c): for large arguments (greater than 100), the exponential

integral is large, i.e. hundreds of orders of magnitude greater than its argument.

Large arguments occur at low altitudes for small β and shallow γ∗ and correspond

to violations of two Allen-Eggers assumptions. First, shallow trajectories (shallow

γ∗) are not well-approximated by a constant flight-path angle, as shown by the LEO-

return example throughout this study. Second, low-β vehicles decelerate higher in

the atmosphere. While small β increases the magnitude of the drag force relative

to gravity, it also causes gravity to become significant at higher altitudes, violating

the Allen-Eggers negation of gravity. Figure 37c shows an example of this obser-

vation for the sample-return trajectory: the analytical solution for time from the

Allen-Eggers equations of motion is a good approximation until an altitude of ap-

proximately 50 km, at which point the argument of the exponential integral on the

left-hand side of Eq. (102c) becomes large causing the left-hand side of the equation

to become large, ultimately resulting in large, unrealistic values of t.

Norman’s solution for time during entry, given by Eq. (102c), was compared to

Kumagai’s expression for time of flight for ballistic entry, given by:

t = [(R + h0)V0 |sin γ0|]−1 exp

(
− Hρref

2β sin γ
e−h0/H

)

×
[

(R + h0)
2 − (R + h)2

2
+H

∞∑

n=1

e−nh/H

n(n!)

(
− Hρref

2β sin γ

)n(
R + h+

H

n

)

−H
∞∑

n=1

e−nh0/H

n(n!)

(
− Hρref

2β sin γ

)n(
R + h0 +

H

n

)]
(104)
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where t0 = 0. Kumagai’s solution is based on a representation of the exponential

decay of angular momentum during entry and does not neglect gravity nor assume a

constant flight-path angle [91]. The similarity between Eq. (104) and Eq. (102c) be-

comes apparent if one recognizes that the infinite-series expression for the exponential

integral is [113]:

Ei(x) = γ̄ + lnx+
∞∑

n=1

xn

n(n!)
(105)

Figure 39 shows that the error curves of Kumagai’s solution (utilizing 10 terms in

each series approximation and γ = γ∗) and Norman’s solution (Eq. (102c)) are nearly

identical for the sample-return and LEO-return examples; Eq. (102c) provides a small

improvement in accuracy for the strategic case at low altitude. Given the similar ac-

curacy of the two methods, the primary benefits of Eq. (102c) relative to Kumagai’s

solution are its simpler form and more straightforward derivation as a direct integra-

tion of the simplified equations of motion.
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Figure 37: Comparison of states from the time-dependent Allen-Eggers solution
(solid) with numerical integration (dashed): a) velocity, b) altitude, c) flight-path
angle, and d) range angle versus time.
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3.4 Assessment of Approximation Error and Applicability

3.4.1 The Extended and Enhanced Allen-Eggers Approximation

Figure 40 shows example applications of the extended and enhanced Allen-Eggers

approximation. Application of the original Allen-Eggers approximation is shown in

grey. Figure 41 shows the approximation error of the original and extended and en-

hanced versions. The figures indicate that significant improvements in approximation

error were achieved relative to the planar equations of motion. Approximation error

for the strategic case is below 5% across Fig. 41, with the exception of altitude at low

velocities (Fig. 41a). Approximation error for the sample-return example is below

10% over most of the hypersonic flight regime, typically the most important part of

an entry trajectory. The LEO-return example exhibits large, but reduced error that

is better centered about zero. A large error magnitude is not unexpected, as the

initial flight-path angle for this example is too shallow for the Allen-Eggers negation

of gravity to be a good assumption.

Figure 42 shows the approximation error in peak conditions for the extended and

enhanced solution relative to the original. Significant improvement is apparent across

nearly all parameters, with the exception of the peak heat-rate estimate for the LEO-

return case.
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Figure 40: Comparison of the extended and enhanced Allen-Eggers solution (solid),
the original Allen-Eggers solution (gray), and numerical integration (dashed): a)
altitude, b) acceleration, c) flight-path angle, and d) heat rate versus velocity.
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Figure 41: Comparison of approximation error for the extended and enhanced Allen-
Eggers solution (solid) and the original Allen-Eggers solution (dashed): a) altitude,
b) acceleration, c) flight-path angle, and d) heat rate versus velocity.
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Figure 43: Improvements to the domain of applicability of the Allen-Eggers (Gazley)
solution [1].

These improvements have the net effect of improving accuracy of the solution such

that it is applicable for more shallow initial flight-path angles than in the original

formulation. This may be shown on Loh’s chart (see Fig. 43). Loh credits this

solution to Gazley (since Allen and Eggers’ solution was classified at the time), this

work extends the range of the solution as shown by the red box.

3.4.2 Applicability to Other Initial Conditions

Initial velocity and flight-path angle were varied for the three examples used in this

study to determine the applicability of the extended Allen-Eggers solution across a

broader mission set. The initial flight-path angle and velocity bounds were chosen

to cover a wide range of potential entries at Earth. Domains for application of the

Allen-Eggers solution to individual trajectories were bound by δV and δq values of

0.05 and 2, respectively.
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3.4.2.1 Normalized Integrated Trajectory Error

Contours of the normalized integrated trajectory approximation error (see Eq. (53))

for acceleration, heat rate, and range-to-go were computed over a range of initial

conditions for each example vehicle. Initial conditions resulting in trajectories with

any positive altitude rate are not considered; the boundary for these trajectories is

marked with a hatched line. The integrated error is normalized by the integrated

error for the associated example trajectory, marked on the plot by ⊗. For example,

in Fig. 44, the black 1 contour represents the locus of initial conditions (and their

corresponding trajectories) for which the integrated range-to-go error is equal to that

shown in the example sample-return trajectory. Trajectories inside the space bounded

by the black 1 contour have lessor integrated range-to-go error; trajectories outside

this space have greater integrated range-to-go error.

Figure 44 shows integrated error contours for the sample return vehicle. The error

contours for acceleration and heat rate show similar trends above 9 km/s: trajectories

with steeper initial flight-path angles have lower integrated error while more shallow

initial flight-path angles have greater error. Above 9 km/s, the error contours are

also relatively insensitive to the initial velocity. For velocities below 9 km/s, the

acceleration and heat-rate error contours no longer track the positive altitude-rate

boundary. Additionally, a region of relatively low error appears for steep initial flight-

path angles. Overall, accuracy is poor for slower, more shallow initial conditions.

The integrated range-to-go error contours in Fig. 44 follow a different trend: a

region with error equal to or less than the example trajectory exists between initial

flight-path angles of -5 and -15 deg for velocities greater than 6 km/s. Outside this

region, error grows for more steep or shallow initial flight-path angles. However, error

growth is slow for steeper initial flight-path angles, with error only rising to twice the

example trajectory for initial flight-path angles of -80 deg.

For the strategic vehicle (Fig. 45), acceleration and heat-rate error contours are
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mostly coincident over the range of initial conditions assessed, with error decreasing

with distance from the positive altitude-rate boundary. The contour values are larger

than in the sample-return case because the error is normalized by the relatively low

integrated error associated with the strategic case. As in the sample-return case, the

range-to-go error contours show a different behavior: integrated range-to-go error is

consistently low for flight-path angles steeper than about 10 deg.

The integrated error for the LEO-return vehicle, shown in Fig. 46, is consistent

with the LEO-return example trajectory being outside the domain of applicability for

the Allen-Eggers solution. Accuracy improves significantly for steeper trajectories,

and overall trends are similar to the sample-return example for acceleration, heat-rate,

and range-to-go error contours.

Some general trends are apparent across all three figures. First, integrated accel-

eration and heat-rate error decrease for steeper and faster trajectories. The contours

also show that the error in acceleration and heat-rate predictions is relatively low

over a broad range of initial conditions. The error increases quickly near the positive

altitude rate boundary. The integrated error associated with the range-to-go approx-

imation is larger, with minimum values near -10 deg for velocities over about 6 km/s

for the lower β sample-return and LEO-entry vehicles. The region shifts to steeper

flight-path angles for the high-β strategic vehicle. The region of low error, and the

subsequent increase in error for steeper initial flight-path angles and larger initial

velocities, is due to the natures of percent error and estimating range-to-go. Range-

to-go is fundamentally tied to the final point of the trajectory; however, unlike the

initial point, the final conditions are not specified. This introduces additional error

into the range-to-go solution. Additionally, as the flight-path angle steepens, the total

range and range-to-go decrease to small values. This can lead to large percent errors

that are not necessarily indicative of large absolute error. For example, if γ0 = −90

deg, the Allen-Eggers range is identically zero, while numeric integration may arrive
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Figure 44: Normalized integrated error in acceleration, heat rate, and range-to-go over
a range of initial conditions for the sample-return example vehicle (β = 60 kg/m2).

at some small number, resulting in a large percent error. Despite the greater error

relative to the acceleration and heat rate, the integrated error for range-to-go remains

relatively low over over the velocities considered for trajectories steeper than -7 deg

for the sample-return vehicle, steeper than about -10 deg for the strategic vehicle,

and steeper than about -8 deg for the LEO-return vehicle.

3.4.2.2 Peak Acceleration and Heat-rate Error

Figure 47 shows contours of the percent error in the Allen-Eggers estimates of the

peak acceleration (Fig. 47a) and peak heat rate (Fig. 47b) for all three example vehi-

cles. The different ballistic coefficients of the vehicles result in three vehicle-specific

positive altitude-rate boundaries. The trends across all three vehicles are surprisingly

consistent, with many contours nearly coincident, implying that the approximation

error is nearly independent of the vehicle’s ballistic coefficient. For initial flight-path

angles steeper than approximately -10 deg, error in the peak acceleration prediction

is within 5%; for initial velocities above 8 km/s, error is below 5% for trajectories

steeper than -7 deg. For peak heat rate, error is below 5% for all trajectories steeper
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Figure 45: Normalized integrated error in acceleration, heat rate, and range-to-go over
a range of initial conditions for the strategic example vehicle (β = 10000 kg/m2).
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Figure 46: Normalized integrated error in acceleration, heat rate, and range-to-go over
a range of initial conditions for the LEO-return example vehicle (β = 450 kg/m2).
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Figure 47: Percent error in a) peak acceleration and b) peak heat rate estimates.

than -8 deg, and for trajectories steeper than -6 deg with initial velocities greater

than 8 km/s. Overall, Fig. 47 shows that the Allen-Eggers approximate solutions for

peak acceleration and peak heat rate are accurate to 5% for a broad range of initial

conditions and ballistic coefficients.

3.5 Summary

The Allen-Eggers approximate solution to the planar equations of motion for ballistic

entry has been extended and enhanced. A method has been developed for determining

appropriate values for the constant flight-path angle assumed to exist in the Allen-

Eggers solution. Determining the constant flight-path angle for use in the Allen-

Eggers solution has long been viewed as a practical challenge when applying the

approximation to a real-world problem. The proposed method preserves the simplicity

and speed inherent in the Allen-Eggers solution and improves approximation accuracy

significantly.

The domain of applicability for the Allen-Eggers solution for given trajectory

parameters has been bounded by nondimensional initial dynamic pressure and final

velocity stand-off factors. Values may be selected for the stand-off factors to ensure
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that Allen-Eggers solution approximation error is limited to acceptable magnitudes.

Closed-form, analytical expressions for range and range-to-go have been devel-

oped, extending the Allen-Eggers approximation to all four two-dimensional vehicle

states in a consistent manner. These expressions adhere to the assumptions made by

Allen and Eggers for the rest of the solution.

Lastly, it has been shown that the Allen-Eggers solution may be derived directly,

including Norman’s expression for time of flight, by applying the Allen-Eggers so-

lution assumptions to the planar equations of motion. The enhancements address

key weaknesses in the original solution and are fully consistent with the Allen-Eggers

assumptions.

When combined, the enhancements developed in this investigation improve the

accuracy of the Allen-Eggers solution relative to the planar equations of motion by

up to an order of magnitude. Exploration of approximation error over a range of

trajectory parameters shows that the extended and enhanced Allen-Eggers solution

provides good accuracy across a range of ballistic coefficients and is generally appli-

cable for ballistic entries at Earth with initial flight-path angles steeper than -7 deg;

accuracy for more shallow trajectories may be acceptable depending on specific tra-

jectory parameters.

Lastly, the improved accuracy of the extended and enhanced Allen-Eggers solution

and the closed-form expressions for range may form a basis for onboard guidance

and targeting algorithms for ballistic entry systems, especially those employing drag-

modulation trajectory control. In particular, the Allen-Eggers closed-form analytical

expressions may be used to generate vehicle state predictions or be used to supply

initial guesses or solution bounds for high-accuracy numerical guidance schemes.
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CHAPTER IV

ANALYTICAL ASSESSMENT OF DISCRETE-EVENT

DRAG-MODULATION SYSTEMS

4.1 Application of the Enhanced Allen-Eggers Solution

The enhanced Allen-Eggers solution may be used to assess drag-modulation trajectory-

control systems for planetary entry. Consider an entry vehicle capable of discrete-

event drag-modulation trajectory control that modulates its drag by reducing drag

area through a single jettison event at a particular point during entry. The drag-area

jettison is assumed to be instantaneous; vehicle properties are constant on either side

of the jettison. These properties may be described by the pre-jettison ballistic coeffi-

cient, β1, and post-jettison ballistic coefficient, β2. Furthermore, we will assume that

β2 > β1.

An example application is shown in Fig. 48. For this trajectory (parameters given

in Table 6), agreement between numerical integration of the equations of motion

and the enhanced Allen-Eggers solution (referred to as the Allen-Eggers solution in

this chapter) is excellent. The trajectory is constructed using two separate, constant

ballistic coefficient segments that join at the jettison point. The first segment starts

from the initial condition in Table 6 with β = β1. The second segment has β = β2;

the jettison point serves as the initial condition for the second trajectory segment,

where V0,2 = VJ , h0,2 = f(VJ), and γ0,2 = γ∗1 .

The altitude-velocity plot (Fig. 48(a)) shows the corridor-bounding trajectories

for this initial state. These trajectories correspond to the cases where no jettison

occurs (entry with constant β = β1) and where jettison occurs at the initial state

(entry with constant β = β2). Figure 48(c) shows the discrete change in acceleration
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Figure 48: Example application of the Allen-Eggers solution.

at jettison; Figure 48(d) shows the discrete change in the rate of change of the heat

rate.

106



Table 6: Nominal Parameters for Example Trajectory

Parameter Value
Planet Earth
V0 7500 m/s
γ0 -20 deg
h0 90 km
β1 50 kg/m2

β2 300 kg/m2

VJ 5000 m/s

4.2 Range Control Authority

The Allen-Eggers approximate solution may be used to show analytically how changes

in ballistic coefficient may be used to control range during entry. By varying the

jettison velocity, a drag-modulation entry vehicle may control its range (see Fig. 49).

The maximum possible range occurs when jettison occurs immediately, resulting in

constant-β flight at maximum β, β2. The minimum possible range occurs when no

jettison occurs, resulting in constant-β flight at the minimum β, β1.

The control authority metric for drag-modulation trajectory control systems is

ratio of the maximum to minimum ballistic coefficients, or β2/β1. This may be shown

analytically, starting with the equation for range-to-go over a flat planet:

stogo = cot γ∗ (hf − h) (106)

The divert capability at jettison for a discrete-event drag-modulation system is:

∆s =

max. range︷ ︸︸ ︷
cot γ∗2 (hf − hJ)−

min. range︷ ︸︸ ︷
cot γ∗1 (hf − hJ) (107)

Altitude may be written as a function of velocity and ballistic coefficient through the

Allen-Eggers altitude-velocity profile:

h = href −H ln

[
β sin γ∗

ρrefH
ln

(
V 2

V 2
1

)
+

ρ1
ρref

]
(108)
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If we choose our reference point (denoted by subscript 1 above) to be the jettison

velocity, we find:

∆s = cot γ∗2

(
H ln

[
β2 sin γ∗2
ρrefH

ln

(
V 2
f

V 2
J

)
+

ρJ
ρref

]
−H ln

[
ρJ
ρref

])

− cot γ∗1

(
H ln

[
β1 sin γ∗1
ρrefH

ln

(
V 2
f

V 2
J

)
+

ρJ
ρref

]
−H ln

[
ρJ
ρref

])
(109)

Assuming that γ∗1 ≈ γ∗2 for the same γ0, this equation simplifies to:

∆s = H cot γ∗ ln




β2 sin γ∗

ρrefH
ln

(
V 2
f

V 2
J

)
+

ρJ
ρref

β1 sin γ∗

ρrefH
ln

(
V 2
f

V 2
J

)
+

ρJ
ρref


 (110)

Further,recognizing that ρJ is given by:

ρJ =
β1 sin γ∗1

H
ln

(
V 2
J

V 2
0

)
+ ρ0 (111)

and neglecting ρ0 relative to ρref , we find:

∆s = H cot γ∗ ln

[
(β2/β1) ln

(
V 2
f /V

2
J

)
+ ln (V 2

J /V
2
0 )

ln
(
V 2
f /V

2
0

)
]

(112)
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Figure 50: Divert capability over a range of ballistic coefficients.

This shows the divert capability is a function of the initial and final velocities, the

jettison velocity, the ballistic coefficient ratio, and the flight-path angle. The de-

pendence on trajectory parameters is intuitive, but the sole dependence on ballistic

coefficient ratio (as opposed to the magnitude of the ballistic coefficients) is not.

The maximum divert capability occurs at the top of the atmosphere. At this state,

jettison occurs at a high altitude relative to href , the ρJ/ρref term will be small and

we can neglect it in Eq. (110). This results in:

∆smax = H cot γ∗ ln

(
β2
β1

)
(113)

This equation shows the relationship between ∆smax and β ratio. Increasing the ratio

results in a larger maximum divert capability and increased range control authority.

The maximum divert range is a weaker function of the magnitude of the ballistic

coefficients, which influences the value of γ∗.

Figure 50 shows the maximum divert capability, i.e. ∆s at V0, across a range

of values for (β1, β2). Numerical integration of the equations of motion is shown in

Fig. 50(a); computation using Allen-Eggers is shown in Fig. 50(b). Lines of constant

ballistic coefficient ratio are shown in white. The results nearly identical, showing

that the Allen-Eggers solution is accurate. Also, it is clear that divert capability
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is primarily a function of ballistic coefficient ratio: divert capability increases with

increasing β ratio. In this manner, the ballistic coefficient ratio is analogous to the

lift-to-drag ratio (L/D) for lift-modulation systems.

4.3 Minimizing Peak Deceleration for Single-Stage Systems

The minimum peak deceleration for single-stage drag-modulation systems occurs

when the deceleration at jettison is equal to the peak deceleration in the β2 tra-

jectory segment. Figure 51 shows the effect of different jettison velocities on the peak

deceleration. If the jettison occurs after the β1 peak deceleration, then the β2 decel-

eration pulse is much smaller and does not affect the peak value (black curves). If

the jettison occurs early in the trajectory, the opposite occurs: the deceleration pulse

for the β2 trajectory segment is relatively large and dictates the peak deceleration

(red curve). From the figure, one can see that some intermediate jettison velocity

may yield the minimum peak deceleration for these types of systems (blue curve).

Further, the accuracy of the Allen-Eggers solution for the deceleration as a function

of velocity indicates it may be used here to determine the jettison velocity associated

with the minimum peak deceleration.

Using the Allen-Eggers solution, the deceleration at jettison is:

a1,J =
ρJ

2βg
V 2
J =

V 2
J

2β1g

(
β1 sin γ∗1

H
ln

(
V 2
J

V 2
0

)
+ ρ0

)
(114)

Where the adjusted constant flight-path angle may be computed via:

sin γ∗1 = sin γ0 (2F ∗1 − 1) (115)

where

F ∗1 =

[
1 +

H

R tan2 γ0

{
C
V 2
C

V 2
0

+

(
V 2
C

V 2
0

− 1

)
ln

(
1− β1 sin γ0

Hρ0

)}]1/2
(115a)

The peak deceleration for the β2 trajectory segment is given by:

a2,max = −sin γ∗2
2egH

V 2
J exp

(
− HρJ
β2 sin γ∗2

)
(116)
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Figure 51: Acceleration profiles for several VJ .

The adjusted constant flight-path angle for this segment may be computed via:

sin γ∗2 = sin γ∗1 (2F ∗1 − 1) (117)

where

F ∗2 =

[
1 +

H

R tan2 γ∗1

{
C
V 2
C

V 2
J

+

(
V 2
C

V 2
J

− 1

)
ln

(
1− β2 sin γ∗1

HρJ

)}]1/2
(117a)

Setting Eq. (114) and (116) equal and eliminating common factors, we find:

− sin γ∗2
eH

exp

(
− HρJ
β2 sin γ∗2

)
=
ρJ
β1

(118)

The density at jettison is given by Eq. (111). If we assume ρ0 is small relative to the

other term in Eq. (111) and substitute for ρJ in Eq. (118), we find:

− sin γ∗2
e

exp

(
−β1 sin γ∗1 ln (V 2

J /V
2
0 )

β2 sin γ∗2

)
= sin γ∗1 ln

(
V 2
J

V 2
0

)
(119)

Taking the natural logarithm of both sides yields:

ln

(
−sin γ∗2

e

)
− β1
β2

sin γ∗1
sin γ∗2

ln

(
V 2
J

V 2
0

)
= ln

[
sin γ∗1 ln

(
V 2
J

V 2
0

)]
(120)

Rearranging, one finds:

− β1
β2

sin γ∗1
sin γ∗2

ln

(
V 2
J

V 2
0

)
= ln

[
sin γ∗1
sin γ∗2

ln

(
V 2
J

V 2
0

)]
+ 1 (121)
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If we further assume that sin γ∗1/ sin γ∗2 ≈ 1 and rearrange in terms of the ballistic

coefficient ratio, we find:

β2
β1

=
ln (V 2

0 /V
2
J )

ln [ln (V 2
0 /V

2
J )] + 1

(122)

This relationship gives the jettison velocity for minimum peak deceleration for a

particular β ratio. Beyond the Allen-Eggers assumptions, this relationship only as-

sumes that the initial density at the top of the atmosphere is negligible and that the

corrected constant flight path angles are of similar magnitudes. While this relation-

ship is unfortunately transcendental in VJ , it does show that the jettison velocity for

minimum amax (as a fraction of V0) is only a function of the ballistic coefficient ratio,

not the magnitude of the ballistic coefficients, planetary parameters, or the initial

flight-path angle.

To test the validity of this equation, we will compare it to two other solution meth-

ods: 1. numerical minimization coupled with numerical integration of the equations

of motion and 2. direct solution of Eq. (118) via numerical root-finding. Figure 52

shows the jettison velocity associated with minimum amax over a range of different

ballistic-coefficient pairs evaluated using the two different methods. Lines of con-

stant ballistic-coefficient ratio are shown in white. The lower right half of the figure

represents β ratios less than one, or β1 > β2. This case is not considered, since it

violates the assumed deceleration profile. Also, the jettison velocity is not defined for

a β ratio of one, since β1 = β2. The figure shows that jettison velocity for minimum

amax appears to be a function of ballistic coefficient only. The velocity decreases with

decreasing β ratio, but is relatively constant for a large range of β ratios (those above

about 5). Agreement between the a) numerical solution and b) Allen-Eggers solution

appears to be good in both trend and overall magnitude.

Figure 53 shows the minimum amax associated with the jettison velocities in Fig-

ure 52. Again, agreement is good between the two methods and a similar trend is

seen where amax is only a function of ballistic-coefficient ratio. The peak deceleration
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Figure 52: Jettison velocity for minimum amax as a function of (β1, β2).
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Figure 53: Minimum amax as a function of (β1, β2).

increases with decreasing ballistic coefficient ratio, but is relatively flat for ballistic

coefficient ratios above about 5. The maximum peak deceleration shown is 48 g,

which corresponds to the case where β1 = β2. This is the deceleration for this par-

ticular trajectory for a vehicle with a constant ballistic coefficient. The lower values

of amax shown in the figure show the ability of a drag-modulation system to reduce

peak acceleration.

To compare the two methods shown in Figures 52 and 53, as well as the relation-

ship proposed in Eq. (122), the data points for these figures are plotted as a function

of ballistic coefficient ratio in Figure 54 and Figure 55. Figure 54 shows that there is

excellent agreement between the numerical solution and the Allen-Eggers solution. It
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also shows that Eq. (122) effectively predicts the trend in jettison velocity. The agree-

ment in Figure 55 is also good: the Allen-Eggers prediction of the peak deceleration

is within 3% of the numerical solution.

The reduction in peak deceleration can be quantified as the drag-modulation amax

over the amax associated with a constant-β1 trajectory. It turns out to be (again,

neglecting ρ0 relative to ρJ):

aDM
amax

= e
V 2
J

V 2
0

ln

(
V 2
0

V 2
J

)
(123)

This expression shows that the reduction in peak deceleration is only a function

of VJ as a fraction of V0, which in turn is only a function of ballistic-coefficient ratio

(see Eq. (122)).

114



10
0

10
1

10
2

10
3

34

36

38

40

42

44

46

48

50

52

a
m

a
x
, 
E

a
rt

h
 g

β ratio, nd

 

 

Numerical Solution

Allen−Eggers Solution

Figure 55: Minimum amax as a function of ballistic coefficient ratio.

4.4 Minimizing Stagnation-Point Heat Rate

Larger ballistic coefficients imply flight at lower altitude (and correspondingly higher

density) and smaller effective nose radii, increasing in heat rate. With this in mind,

it becomes apparent that the best way to minimize peak heat rate during entry is to

maintain a low ballistic coefficient through peak heating. After the initial heat pulse,

changing to a higher ballistic coefficient may still cause the heat rate to rise above

the previous peak if the jettison velocity is too close to the velocity at the first peak

(see Fig. 56). An expression may be derived for a limit on the jettison velocity such

that the peak of the initial heat-rate pulse is not exceeded.

To determine the jettison velocities that minimize peak heat rate, we start by

enforcing the condition:

Q̇max,1 > Q̇max,2 (124)

We can use the Allen-Eggers solution to write expressions for these peak heat rates

in terms of known trajectory parameters:

k

√
−β1 sin γ∗1

3eHrn,1
V 3
0 exp

(
− 3Hρ0

2β1 sin γ∗1

)
> k

√
−β2 sin γ∗2

3eHrn,2
V 3
J exp

(
− 3HρJ

2β2 sin γ∗2

)
(125)
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Figure 56: Heat rate as a function of velocity for several VJ .

Substituting Eq. (111) for ρJ and neglecting ρ0 because it is small relative to other

densities, we find:

k

√
−β1 sin γ∗1

3eHrn,1
V 3
0 > k

√
−β2 sin γ∗2

3eHrn,2
V 3
J exp

(
− 3H

2β2 sin γ∗2

β1 sin γ∗1
H

ln
V 2
J

V 2
0

)
(126)

Simplifying leads to:
√
β1
β2

sin γ∗1
sin γ∗2

rn,2
rn,1

V 3
0 > V 3

J exp

(
−3

2

β1 sin γ∗1
β2 sin γ∗2

ln
V 2
J

V 2
0

)
(127)

Taking the natural logarithm to map the multiplication above to addition yields:

1

2
ln

(
β1
β2

sin γ∗1
sin γ∗2

rn,2
rn,1

)
+ 3 lnV0 > 3 lnVJ − 3

β1
β2

sin γ∗1
sin γ∗2

(lnVJ − lnV0) (128)

Grouping like terms and solving for VJ leads to a condition on VJ for minimizing the

peak heat rate:

VJ < V0 exp




ln

(
β1
β2

sin γ∗1
sin γ∗2

rn,2
rn,1

)

6

(
1− β1

β2

sin γ∗1
sin γ∗2

)


 (129)

If one assumes that sin γ∗1 ≈ sin γ∗2 and that the effective nose radius does not

change across the jettison event, this inequality reduces to:

VJ < V0 exp

[
ln (β1/β2)

6 (1− β1/β2)

]
(130)
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Figure 56 shows the effect of varying jettison time on the heat rate (trajectory

parameters are given in Table 6), the proposed VJ limit in Eq. (130), and the peak

heat rate as a function of VJ for the example trajectory (see Table 6). The proposed

limit on the jettison velocity to limit the peak heat rate appears to be correct–at this

jettison velocity, the two peaks of the heat pulse are nearly equal. The trajectory

data in this figure were generated using numerical integration, but it agrees well with

the proposed analytical condition on VJ .

4.5 Summary

In this chapter, the enhanced Allen-Eggers solution for ballistic entry was applied

to discrete-event drag-modulation systems. The Allen-Eggers solution was shown

to accurately reproduce trajectories relative to numerical solutions to the equations

of motion for discrete-event drag-modulation systems. Analytical relationships were

developed that show ballistic coefficient ratio is the control authority metric for drag-

modulation systems. Ballistic coefficient ratio governs range control authority, peak

deceleration reduction capability, and the jettison velocity associated with minimum

peak heat rate. Relationships for constraining the jettison velocity for single-stage

systems were also developed to limit peak deceleration and peak heat rate. These

relationships may be of significant benefit in the development of efficient onboard

guidance and targeting systems.
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CHAPTER V

APPLICATION OF DRAG-MODULATION

TRAJECTORY CONTROL TO AEROASSIST SYSTEMS:

NUMERICAL FEASIBILITY

State-of-the-art numerical techniques were used to evaluate the feasibility of a no-

tional drag-modulation trajectory control systems, for precision landing at Mars and

for planetary aerocapture at Venus, Mars, and Titan. While work-intensive, numer-

ical techniques allow one to model all aspects of planetary entry, including complex

nonlinearities, such as parachute deployment. This level of modeling detail allows

one to address nuanced feasibility questions, such as the ability of an onboard real-

time system to target a specific landing site target using drag-modulation trajectory

control. Numerical evaluation of the equations of motion also allows one to conduct

uncertainty analysis via Monte Carlo simulation from which statistics about flight

performance can be determined, such as landed accuracy. These types of analysis

also facilitate development of prototype guidance and targeting algorithms for use

with drag-modulation trajectory control systems. However, such analyses are lim-

ited in the sense that they apply only to the single point design examined, and not

necessarily to broader classes of planetary entry vehicles and architectures.

5.1 Precision Landing at Mars Using Discrete-Event Drag-
Modulation

Over the past several decades, NASA has compiled an impressive record of successful

missions to the surface of Mars. However, landing payloads of useful size at scien-

tifically interesting locations on the surface of Mars remains a significant challenge
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[14]. For example, the Mars Science Laboratory (MSL) mission required a complex

entry, descent, and landing (EDL) system to meet modest landed accuracy and alti-

tude requirements for a payload of approximately one metric ton [6]. The MSL EDL

system utilized a lifting aeroshell, RCS, and a bank-to-steer guidance, navigation,

and control system to achieve the required terminal accuracy and maintain altitude

margin for terminal descent. MSL was the first demonstration of such a system at

Mars. Bank-to-steer systems provide good terminal accuracy, but add significant

complexity, mass, and cost to an EDL system. All bank-to-steer systems to date

have required an RCS with its associated thrusters, propellant, tanks, and plumbing;

an off-centerline center of gravity (c.g.) position to produce the required lift; and

an onboard guidance, navigation, and control system. In addition to the cost, mass,

and complexity of these systems, including design, manufacture, and test, bank-to-

steer subsystems may also impact other EDL subsystems. For MSL, these subsystem

impacts required the use of two sets of ballast masses and their associated jettison

events to control c.g. position during the mission [6] and extensive study of aerother-

modynamic jet-interaction effects in the hypersonic flow regime around the vehicle

[160].

A simple EDL architecture for precision landing on the surface of Mars is presented

in this chapter: discrete-event drag-modulation trajectory control, achieved through

a one-time jettison of a rigid, annular forebody heatshield skirt. The jettison event

instantly changes the vehicle’s ballistic coefficient, β, defined by Eq. (1), and may

be thought of as adjusting the ratio of inertial to aerodynamic forces such that the

desired range is flown. The one-time jettison event instantaneously reduces the drag

area, raises β, and lowers the sensed deceleration. Using measurements from the

inertial measurement unit, the onboard guidance algorithm selects the jettison point

in real time to achieve the desired range; crossrange errors are not controlled. No lift

is required for this architecture, so no c.g. offset is necessary and the vehicle c.g. may
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remain on centerline through all mission phases. This architecture does not require

any vehicle attitude maneuvers during EDL, eliminating the need for an RCS on the

entry vehicle. Lastly, the jettisonable drag area may be rigid and deployed prior to

launch; the maximum diameter of the drag skirt is restricted to maintain compatibility

with current launch vehicle payload fairing diameters. This EDL architecture utilizes

existing designs and technologies to minimize development and flight risk, allowing

the architecture to facilitate significant scientific investigation while also serving as a

low-risk technology demonstration for drag-modulation trajectory control.

A more detailed discussion of this work is presented in Ref. [159].

5.1.1 System Concept

5.1.1.1 Vehicle Configuration

The proposed EDL architecture is comprised of four major parts: a Mars Exploration

Rover (MER) class aeroshell, a rigid annular heatshield extension, a 14-m diameter

MER-class supersonic disk-gap-band (DGB) parachute [14], and an airbag landing

system. The MER-class aeroshell is a 2.65-m diameter 70-deg sphere cone with a

nose radius of 0.66 m [161]. The rigid heatshield extension, or drag skirt, is shaped

to maintain the 70-deg sphere cone geometry while increasing the outer diameter

from 2.65 m to 4.5 m. This outer diameter allows the vehicle to fit within current

5-m diameter launch fairings in its entry configuration (see Fig. 57), eliminating the

need for in-space deployment events prior to atmospheric entry at Mars. The total

vehicle entry mass is 950 kg, composed of a 830-kg MER entry vehicle and a 150-kg

drag skirt. The mass of the drag skirt was approximated using the areal mass of

the MER heatshield. This drag skirt mass estimate is likely conservative, because

the skirt is not part of the primary structure or load path and because expected heat

rates are significantly lower for this EDL architecture relative to MER. Jettison of the

drag skirt, in three segments, is accomplished by three sets of redundant pyrotechnic

separation bolts. The MER-sized aeroshell β is significantly higher than the three
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expended drag skirt segments, aiding in performance of a reliable separation and

decreasing re-contact risk.

Drag skirt jettison and parachute deploy are commanded by the onboard guidance,

navigation, and control system. The navigation system is anticipated to be a strap-

down inertial system, with a state update provided immediately prior to entry by the

Deep Space Network using standard high-accuracy state determination techniques,

such as delta-differenced one-way range measurements [162].

The entry sequence for the system concept is shown in Fig. 58. Prior to EI, a final

navigation state update is received and the interplanetary cruise stage is jettisoned.

The vehicle then enters the atmosphere and begins the low-β deceleration phase. The

onboard guidance algorithm determines when to jettison the rigid drag skirt based

on onboard inertial measurement unit data. Peak heating and peak deceleration

may occur either before or after jettison depending on the target range and day-of-

flight dispersions. At jettison, vehicle β immediately rises and the vehicle continues

to decelerate in the high-β phase to the proper parachute deploy conditions. The

supersonic parachute is then deployed and the vehicle descends to terminal descent

initiation and touchdown.

5.1.1.2 Real-time Guidance and Targeting Algorithm

During atmospheric entry, the onboard guidance algorithm uses data from the navi-

gation system to determine, in real time, when to jettison the drag skirt and deploy

the parachute based on day-of-flight conditions. Performance assessment of this al-

gorithm will provide information on the feasibility of selecting jettison conditions in

a rate-limited, real-time system.

Three different operational modes of the guidance algorithm were evaluated (see

Fig. 59). Mode 1 targets the parachute deploy point. Mode 2 models the parachute

descent phase, enabling the algorithm to target the touchdown point. For modes 1
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and 2, the parachute is deployed at a preset velocity. Mode 3 uses a range-based

parachute deploy trigger to reduce range error at touchdown, effectively creating a

two-stage drag-modulation system.

After EI, the guidance algorithm begins targeting computations once the sensible

atmosphere has been reached, defined by sensed accelerations greater than 0.5 m/s2.

Targeting is performed with a numerical predictor-corrector (NPC). The NPC deter-

mines the drag skirt jettison time that nulls the terminal range error, subject to a

minimum velocity jettison limit. This minimum jettison velocity is chosen to pro-

vide at least 60 m/s between jettison and parachute deploy. Guidance execution

terminates after parachute deploy.

The guidance target is input as a set of geodetic latitude-longitude coordinates.

At initialization, these coordinates are transformed into a planet-centered inertial

position vector. Current target position is then estimated based on the initial target

position, the estimated time of flight computed by the predictor, and the planet

rotation rate.
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The guidance predictor models Mars as an oblate spheroid with inverse-square

gravity including J2 oblateness effects and a nominal altitude-density atmosphere

table. The vehicle is modeled as a point mass that generates only drag. Vehicle and

parachute drag are modeled with constant CD values. The predictor integrates the

three-degree-of-freedom equations of motion using a 4th-order Runge-Kutta method.

While the bulk of the integration is performed with a constant time step of 1 s,

the step sizes immediately adjacent to the jettison event are adjusted such that the

jettison occurs at a major integration step. This method enhances the accuracy and

stability of the prediction without significantly increasing computational resource

requirements, i.e. the predictor may utilize a relatively large step size while allowing

accurate modeling of more precise jettison times. Protection is provided for off-

nominal cases through an integration time limit (2000 s) and minimum and maximum

altitude bounds (-1.5 and 130 km, respectively). For mode 1, prediction is terminated

at parachute deploy. For modes 2 and 3, the predictor models the parachute descent

phase assuming a preset parachute deploy velocity and prediction is terminated at

touchdown. For mode 3, after drag skirt jettison, the predictor continues to run,

terminating at touchdown, but the parachute is now deployed at a velocity determined

by the corrector.

In all three algorithm modes, the corrector utilizes the terminal states computed

by the predictor to determine when the drag skirt should be jettisoned to satisfy the

terminal range error tolerance. First, the corrector computes the terminal range error

from the estimated target position and the predicted terminal vehicle position. If the

computed range error is less than the tolerance, the jettison time and corresponding

range error are stored and the NPC terminates. If the range error is greater than

the tolerance and no previous (jettison time, range error) prediction pairs exist, the

corrector adjusts the jettison time in the direction of decreasing range error and

recomputes the range error with the updated jettison time estimate. If the range error
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is greater than the tolerance, and a previous prediction pair exists, the corrector uses

a linear fit of the two available points to update the jettison time estimate. The linear

curve fit computation includes divide-by-zero protection. The predictor is then re-

run with the updated jettison time. This process repeats until either the range error

tolerance is satisfied (0.1 km) or the NPC iteration limit is reached (5 iterations). For

mode 3, a similar corrector algorithm is used after drag skirt jettison to determine

the parachute deploy velocity that nulls the range error at touchdown.

The guidance algorithm estimates a constant-bias atmospheric density correction

factor at the start of each guidance cycle. This estimation accounts for day-of-flight

variability in the Mars atmosphere and is required to achieve accurate terminal state

predictions. The correction factor is computed from navigated acceleration and ve-

locity and an onboard table look-up atmosphere model. The current estimate of the

density is determined from Eq. (131) as done in the PredGuid algorithm developed

by Bairstow and Barton [36]. Since aaxial and VW are not available directly in the

absence of a flush air data system, they are approximated with the sensed acceleration

magnitude and the planet-relative velocity magnitude, respectively.

ρest =
2maaxial
V 2
WSrefCA

≈ 2masens
V 2
relSrefCA

(131)

Using a correction factor allows the predictor to update the onboard atmosphere

model by multiplying it by a constant parameter. To improve the estimate, the factor

is limited to minimum and maximum values and filtered with previous values using a

discrete-time low-pass filter. A filter gain of 0.05 provides a balance between reducing

noise and capturing short-period changes in the atmosphere relative to the onboard

model. The bounded, filtered estimate is then stored for use by the predictor.

Two different parachute deploy triggers were evaluated: a velocity trigger (modes 1

and 2) and a range-based trigger (mode 3). The velocity trigger deploys the parachute

at a pre-set planet-relative velocity of 450 m/s. This type of trigger was used on
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the Phoenix and MSL missions [163]. The deploy velocity was selected to ensure

compliance with the MER DGB parachute deployment box [164]. The range-based

trigger utilizes the drag skirt jettison predictor-corrector to determine the parachute

deploy velocity which minimizes the range error at touchdown. The range-based

trigger deploy velocity is restricted to planet-relative velocity values between 420 and

480 m/s. The lower velocity bound was selected to ensure at least 70 s were available

for terminal descent, similar to Mars Pathfinder [165, 166]. The upper velocity bound

was selected to limit Mach number and dynamic pressure at deploy to the MER

parachute deployment box [164].

The guidance algorithm is run at 0.5 Hz to balance call rate with computational

load on the flight computer, and is consistent with previous entry guidance algorithms

[11, 36]. Guidance parameters may be adjusted to reduce the computational resource

requirements of the algorithm as required, including the call rate, internal iteration

limit, the nominal prediction time step, and the size of the onboard atmosphere table.

Future design studies should examine trade-offs with respect to these settings between

improved performance at higher rates and fidelities and reduced computational load

at lower rates and fidelities, but the relatively high-performance system selected is

more appropriate for determining feasibility of determining the jettison point in real

time.

5.1.2 Numerical Analysis Methods and Assumptions

A three-degree-of-freedom trajectory simulation was used to evaluate flight perfor-

mance of the proposed EDL system concept. The simulation is written in Matlab

and is auto-coded to C and compiled to improve execution speed. A constant time

step 4th-order Runge-Kutta technique is used to integrate the equations of motion at

100 Hz.
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Table 7: Mars Properties

Property Value
Equatorial radius 3396.2 km
Polar radius 3376.2 km
Gravitational parameter 4.283× 1013 m3/s2

J2 perturbation 1.9605× 10−3

Mars-GRAM date, time 6 August 2012, 5:17 UTC
Mars-GRAM dusttau 0.3
Ratio of specific heats 1.2941
Sutton-Graves coefficient 1.898× 10−4 kg0.5/m

Table 7 summarizes the relevant parameters used to characterize the Mars environ-

ment. The Mars atmosphere is modeled using Mars-GRAM 2010 [167]. Atmospheric

data is generated as a function of altitude at the equator for the same day MSL

landed using default Mars-GRAM settings. The surface of Mars is modeled as an

oblate spheroid. Gravity is modeled as an inverse-square relation with J2 oblateness

effects. Convective stagnation point heat rates are estimated using the Sutton-Graves

relation [157]. Radiative heating is assumed to be negligible for the entry velocities

and energies considered in this study [168].

The vehicle is modeled as a point mass. The drag skirt jettison event is accom-

panied by a step change in the vehicle mass and aerodynamic reference area. Tables

of aerodynamic coefficients were generated for a 70-deg sphere cone as a function of

Mach number and angle-of-attack using CBAero, a modified-Newtonian panel code

[169]. The aerodynamic coefficients are assumed to be constant across the jettison

event, since the overall shape of the vehicle remains a 70-deg sphere cone, although

aerodynamic force magnitudes change drastically due to the reduction in aerody-

namic reference area. The vehicle is given a constant 2 RPM bank rate to mitigate

the integrated effects from lift generated by potential off-centerline c.g. positions.

The MER aeroshell nose radius of 0.66 m is used to compute stagnation point heat-

ing rates [161]. The parachute drag coefficient is computed as a function of Mach
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number using data from the MSL program [170]. Parachute inflation is not mod-

eled; parachute deployment is considered to be instantaneous. Terminal descent and

impact attenuation systems are not modeled.

The jettisoned drag skirt segments are modeled as point masses with CD equal to

0.85 and CL equal to 0. These values represents the average hypersonic CD and CL for

a flat plate over all possible angles of attack using modified Newtonian aerodynamics

and provides a first-order approximation of the drag generated by a tumbling drag

skirt segment.

The vehicle flight computer is modeled as collection of rate-differentiated pro-

cesses. Navigation is run at 40 Hz; the navigation model computes vehicle state

information used by guidance and flight control. Guidance runs at 0.5 Hz; it deter-

mines the time at which drag skirt jettison and parachute deployment should occur.

Flight control runs at 20 Hz; it continuously checks drag skirt jettison, and then

parachute deploy, criteria and issues the jettison and deploy commands when the

criteria are satisfied.

The navigation system is modeled as a Markov process. The model generates

navigation errors that would be observed if the navigation system performed according

to a given set of navigation accuracy requirements. The Markov-process random

variable is given by Eq. (132), where ∆t is the time between measurements; τ is the

time constant, set to 3600 seconds for this model; and ηi is the noise magnitude at a

given time step.

xi+1 = e(
−∆t
τ )xi + ηi (132)

The incremental error at a given time step, ei, is then given by Eq. (133), where PSS

is the steady-state error covariance matrix, defined by the required navigation system

performance and xi is a vector of Markov-process random variables.

ei = PSSxi (133)
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Defining ηi as shown in Eq. (134) ensures that the knowledge error in the navigation

system does not exceed that defined by PSS.

ηi = 1− e(−2∆t
τ ) (134)

The incremental errors are then applied to the inertial position, velocity, and accel-

eration truth state vectors generated from the equations of motion to determine the

current navigated vehicle state, as shown in Eq. (135). This navigated vehicle state

is then used to compute state quantities required for the guidance algorithm.




r

V

a



nav,i

= ei +




r

V

a



truth,i

(135)

Monte Carlo simulation techniques were used to evaluate system performance in

the presence of day-of-flight dispersions, including state, vehicle, and environmental

uncertainties. Table 8 summarizes the uncertainty models and their parameters used

for Monte Carlo simulation.

Both delivery and knowledge errors were modeled. Correlated delivery error was

modeled using a covariance matrix generated from MSL navigation data [162]. State

knowledge error was modeled during entry using a Markov-process navigation error

model. Vehicle aerodynamic properties were varied based on vehicle configuration and

flight regime. Uncertainties in aeroshell aerodynamics in the supersonic and hyper-

sonic regimes were modeled with correlated normal distributions [171]. Uncertainty

in aeroshell aerodynamics in the subsonic regime was not modeled, as the subsonic

aerodynamics are dominated by the parachute. Parachute drag coefficient uncertainty

was modeled as a function of Mach number and a uniformly-distributed factor [170].

In addition to aerodynamic coefficients, vehicle angle of attack was dispersed about

a nominal of zero degrees and the initial bank angle was dispersed with a uniform
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distribution over 360 degrees to account for off-centerline c.g. positions. A constant

bank rate was used to mitigate the effects of nonzero angles of attack; the constant

bank rate was dispersed about its nominal of 2 RPM with a normal distribution.

Vehicle mass uncertainty was modeled with a normal distribution. Dispersed atmo-

spheric data were generated using Mars-GRAM 2010 [167]. The required number of

dispersed atmosphere tables were generated offline and stored for use in the Monte

Carlo simulation.

Downrange and crossrange at the landing site were determined relative to a ref-

erence azimuth. The reference azimuth was defined to be the planet-relative azimuth

angle of a nominal trajectory at parachute deploy. The reference azimuth and the

target landing site position vector define a plane; downrange is then the in-plane

distance traveled over the surface of Mars during EDL and crossrange is the out-of-

plane distance, both relative to the target position. Range over the surface of Mars

is calculated using Vincenty’s algorithm for computing geodesics [172]. Accuracy was

determined by the total range error, the distance between the vehicle’s position and

the target landing site.

5.1.3 Corridor Definition and Divert Capability

The feasibility of utilizing a discrete-event drag-modulation trajectory control system

for trajectory control during entry at Mars was assessed using simplified models for

the Mars environment: an exponential atmosphere and a spherical planet. Entry

trajectories shown in this section are eastbound equatorial. The MER-B entry inter-

face state is used: EI inertial velocity of 5.5 km/s and EI inertial flight-path angle of

-11.47 deg [14].

The EI flight-path angle corridor for a drag-modulation trajectory control system

is defined by two trajectories: the minimum-β trajectory, which carries the drag skirt

all the way to the surface, and the maximum-β trajectory, which jettisons the drag
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Table 8: Monte Carlo Simulation Uncertainty Models and Parameters

Parameter Dispersion Notes
min/max or 3σ

Atmosphere model Mars-GRAM, default settings for 6 AUG
2012, 5:17 UTC

Hypersonic CA 3% Correlated with supersonic CA [171]
Supersonic CA 10% Correlated with hypersonic CA [171]
Hypersonic CN 5% Correlated with supersonic CN [171]
Supersonic CN 8% Correlated with hypersonic CN [171]
Parachute CD factor ±1 MSL DGB parachute [170]
Trim angle of attack 2 deg Accounts for off-centerline c.g. positions
Initial bank angle ±180 deg Covers all possible c.g. offset orientations
Bank angle rate 5%
Vehicle mass 2 kg Ref. [171]
EI velocity 0.65 m/s Correlated delivery error [162]
EI flight-path 0.018 deg Correlated delivery error [162]
EI azimuth 0.006 deg Correlated delivery error [162]
EI latitude 0.013 deg Correlated delivery error [162]
EI longitude 0.017 deg Correlated delivery error [162]
EI altitude 1.17 km Correlated delivery error [162]
State knowledge model Markov-process with MSL knowledge error

estimate
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skirt at EI. For a given entry range, the most shallow EI flight-path angle possible

is achieved by the minimum-β trajectory, while the steepest possible EI flight-path

angle possible is achieved by the maximum-β trajectory. Figure 60 shows example

corridor-bounding trajectories at Mars. In Fig. 60, the maximum-β is that of MER

and the minimum-β corresponds to the MER entry mass with a 4.5-m diameter

forebody heatshield. The maximum-β trajectory utilizes the MER-B EI flight-path

angle of -11.47 deg. The minimum-β trajectory decelerates higher in the atmosphere

(Fig. 60a) and requires a more shallow EI flight-path angle (-10.41 deg) to achieve

the same range as the maximum-β trajectory, approximately 738 km (Fig. 60b). This

results in a flight-path angle corridor width of approximately 1 deg; this is well within

current approach navigation capabilities at Mars [162].

From a given EI state, the maximum-β trajectory will have the longest possi-

ble entry range and the minimum-β trajectory will have the shortest possible entry

range. The difference between these ranges is the total divert capability of the vehi-

cle; jettisoning the drag skirt at different points during the trajectory will result in

intermediate ranges. Figure 61a shows total entry range as a function of drag skirt

jettison time and planet-relative velocity for the MER-B EI state. Early jettisons

result in a range of approximately 738 km and late jettisons result in a range of

approximately 634 km, resulting in a divert capability of over 100 km. Figure 61b

shows that the change in entry range with vehicle velocity at jettison is nearly linear.

While not explored in this study, this relationship may provide an avenue for future

development of a simple guidance law. The slope of the jettison time versus range

curve shown in Fig. 61a, ∆(range)/∆(jettison time), is plotted in Fig 62. This slope

is the range control sensitivity with respect to jettison time. Peak control sensitivity

roughly corresponds to peak deceleration for the minimum-β entry and has a value

of approximately -1.1 km/s. This peak occurs near the middle of the flight, indicat-

ing that jettison must be acceptable both before and after peak deceleration (and
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Figure 60: Example corridor-bounding entry trajectories for a drag-modulation tra-
jectory control system at Mars.

peak heating) to capitalize fully on the available range control authority. However,

the data also indicate that the vehicle must be able to calculate the jettison time to

within less than 1 s to achieve precision landing.

Figure 63 shows bounding minimum- and maximum-β trajectories (maximum-β

is that of MER, minimum-β corresponds to the MER entry mass with a 4.5-m di-

ameter forebody heatshield) for the MER-B EI state for three atmospheric density

biases: −30% (dashed), nominal (black), and +30% (grey). These represent first-

order estimates of the bounding cases for dispersed entry performance: atmospheric

uncertainty typically dominates flight dispersions. Each of these sets of trajectories

shows that the vehicle is capable of range diverts over 100 km. More significantly,

there exists a nearly 50 km range “window” between the minimum-β, low-density

trajectory and the maximum-β, high-density trajectory (the two central dashed and

grey trajectories, respectively). This provides an estimate of the remaining range

control authority available under off-nominal atmospheric conditions, and indicates

that discrete-event drag-modulation trajectory control may be feasible for entry at

Mars when drag skirt diameters are limited to 4.5 m.
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different density profiles.

5.1.4 Entry, Descent, and Landing Flight Performance

5.1.4.1 Mission Design

The nominal EI state and target landing site used for the rest of this study are given

in Table 9. The landing site corresponds to Gale Crater, MSL’s landing site. The

nominal EI state was selected to match the inertial velocity of the MER-B entry.

The EI flight-path angle was selected to be more shallow than MER-B’s value of

-11.47 deg to accommodate the lower initial β of the proposed EDL architecture.

The EI latitude and longitude were selected to line up the EI point with the target

landing site while maintaining an initial azimuth of 45 deg. For this EI-target pair,

the flight range is approximately 900 km.

The selection of the initial position is critical and places a constraint on interplan-

etary navigation performance, since drag-modulation trajectory control systems have

no out-of-plane (crossrange) control authority. The EI state error can be tailored

to reduce specific initial state errors [173]; this strategy should be used to minimize

initial crossrange and azimuth errors for drag-modulation EDL systems to minimize

the effect of their lack of out-of-plane control authority on terminal accuracy.
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Table 9: Nominal Trajectory Parameters

Item Parameter Nominal value
EI state Altitude 125 km

Geodetic latitude -16.258 deg N
Longitude 127.165 deg E
Inertial velocity magnitude 5.5 km/s
Inertial flight-path angle -11.0 deg
Inertial azimuth 45 deg

Target Altitude -1.5 km
Latitude -5.4 deg
Longitude 137.7 deg

5.1.4.2 Nominal Flight Performance

The nominal guided entry performance of the proposed EDL architecture was assessed

through numerical simulation using mode 1 of the algorithm (parachute deploy tar-

get). Figure 64 shows the simulated nominal trajectory, including the trajectory of a

single piece of the jettisoned drag skirt. The jettison event occurs near 175 s and the

parachute is deployed at 450 m/s. After drag-skirt jettison, the vehicle’s higher β im-

mediately reduces the sensed deceleration (Fig. 64b) and causes the altitude-velocity

curve to steepen (Fig. 64a). The hypersonic peak deceleration is approximately 6 g;

while parachute opening loads reach 9 g, parachute inflation is not modeled, so this

number may be inaccurate. Range error is approximately 300 m at parachute deploy,

increasing to 4.7 km at touchdown. This increase in range error during parachute de-

scent is due to the relatively shallow flight-path angle of -27 deg at parachute deploy:

the vehicle still has significant horizontal velocity well into the parachute descent

(Fig. 64c).

Post-jettison, the vehicle has a β of approximately 90 kg/m2 and each skirt seg-

ment has a β of 17.0 kg/m2. This difference in β between the vehicle and jettisoned

skirt segments provides a favorable jettison scenario where re-contact is unlikely. Fig-

ure 64d shows that re-contact does not appear to be an issue for this trajectory.
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Figure 64: Nominal entry trajectory for guidance mode 1.
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5.1.4.3 Dispersed Flight Performance

Monte Carlo simulation was used to assess the performance of the proposed EDL

architecture in the presence of day-of-flight uncertainties for all three guidance modes

about the nominal trajectory described in Table 9. A sample size of 1000 was used

for each Monte Carlo simulation. Results are summarized in Table 10; uncertainty

inputs are given in Table 8.

Figure 65 shows the nominal and dispersed entry trajectories for guidance mode 1.

Figure 65a shows that, while the range of expected conditions is relatively small prior

to drag skirt jettison, the range of drag skirt jettison times lead to a much wider range

of conditions post-jettison. Figure 65b highlights the range of conditions over which

the drag skirt is jettisoned. However, similar trends emerge across all trajectories. For

this EI-target pair, all jettisons occur after hypersonic peak deceleration (and peak

heating). This is due to intentional bias of the jettison point towards the end of the

trajectory to improve terminal accuracy; the bias is created by choosing a relatively

short target range that forces the vehicle to retain the drag skirt for more of the

trajectory. This strategy also reduces peak heat rate and integrated heat load, because

the vehicle retains its minimum β through peak heating at approximately 4.8 km/s

(Fig. 65c). This results in a more benign heating environment than that estimated for

the MER entries. Specifically, the mean-plus-3σ heat rate for this system is over 30%

lower than the estimated MER value; the mean-plus-3σ integrated heat load is nearly

20% lower [164]. These low heat rates indicate that the heritage SLA561V forebody

heatshield material may be used with considerable margin in this EDL architecture.

Peak deceleration is similar to that of MER: the reduction in peak deceleration from

the more shallow EI flight-path angle used for this trajectory, relative to MER, is

largely countered by the increase in peak deceleration associated with the decrease

in the initial β of the vehicle [164]. Lastly, the step change in sensed deceleration at

drag skirt jettison becomes much smaller as jettison time increases.
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Figure 66 shows trajectories for a single drag skirt segment for the mode 1 Monte

Carlo simulation data. The range of drag skirt jettison times leads to a relatively large

drag skirt impact footprint (Fig. 66a). However, Fig. 66b shows that the minimum

separation distance at vehicle touchdown is over 14 km, with an average separation

distance near 65 km. Additionally, the separation after 3 s is found to be above

100 m, which compares favorably to the MER requirement for heatshield separation

of 21 m in 3 s[174].

Overall, hypersonic flight performance and drag skirt jettison results were similar

for all three guidance modes, as shown in Table 10. All three modes exhibit a more

benign heating environment relative to the MER EDL system and preserve at least

70 s of parachute descent time. However, significant differences are present in the

parachute deploy conditions and in terminal accuracy.

Significantly, terminal accuracy is competitive with the MSL requirement (within

10 km of the target landing site), even for mode 1. While mode 1 does not satisfy the

requirement at touchdown, its mean-plus-3σ range error at parachute deploy is only

6.35 km. The mode 1 touchdown range error is larger due to the unaccounted-for bias

incurred during parachute descent, which raises the total error to 11.28 km. Modeling

the parachute descent, as done in mode 2, effectively removes this bias, reducing the

total range error (mean-plus-3σ) to 5.54 km, well within the MSL accuracy require-

ment. The addition of the range-based parachute trigger in mode 3 further improves

landed accuracy, with a mean-plus-3σ range error of only 3.11 km and a maximum

below 5 km. Figure 67a shows that modeling the parachute descent phase (mode

2) removes the touchdown range bias, but without changing the overall shape of the

distribution of range error relative to mode 1. In contrast, adding the range-based

parachute trigger (mode 3) reduces the variability of the range error by shrinking the

standard deviation. Figure 67b shows that crossrange error is approximately con-

stant, with a constant bias of about 0.5 km, regardless of guidance mode. This is the
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expected behavior, as the vehicle does not possess any out-of-plane control authority.

Lastly, Fig. 67c shows the total touchdown range error cumulative density functions

for all three modes, and highlights the improvements in performance from modeling

the parachute descent and including a range-based parachute trigger. Interestingly,

the larger improvement comes from modeling the parachute descent. These results

indicate that the proposed discrete-event drag-modulation EDL system is capable

of achieving MSL-class landed accuracy without thrusters, propellant, tanks, or the

complexity of lift modulation, a significant improvement relative to the MER EDL

system.

Figure 68 shows the parachute deploy conditions for all three guidance modes.

The margined MER parachute deploy criteria are represented by the dashed line,

with a dynamic pressure limit of 810 N/m2. The dotted line represents the MER

parachute design limits, with a dynamic pressure limit of 900 N/m2 [164]. Lines

of constant velocity are shown in grey in 10 m/s increments; the parachute deploy

velocity (modes 1 and 2) and box (mode 3) are shown as black lines. For modes 1 and

2 (Fig. 68a), the parachute deploy conditions are similar. The margined MER deploy

box is exceeded, but the peak dynamic pressure at deploy remains below 850 N/m2

for both modes, satisfying the MER design limits. Most trajectories deploy slightly

below the trigger velocity of 450 m/s because of latency in the control system. The

segmentation into two groups of the deploy conditions is also due to control system

latency and is reflective of the control rate of 20 Hz. This latency is the primary

cause of error in the deploy velocity; navigation system error is present, but is a

small contributor to the error. Figure 68b shows the range of parachute deploy

conditions for the range-based trigger. Trajectories are grouped near the deploy

box boundaries (also in two groups at each boundary, due to latency). The deploy

box velocity boundaries were chosen to satisfy the MER design limit criteria, and

while those criteria are satisfied, little margin exists at the top of the deploy box
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Figure 65: Dispersed entry trajectories for guidance mode 1.

in either Mach or dynamic pressure. However, small excursions from the accepted

DGB flight qualification envelope may be acceptable: the MSL program successfully

enlarged its DGB parachute and increased the maximum deployment Mach number

[163]. Alternately, a reduction in the size of the velocity deploy box will decrease the

range of parachute deploy conditions that must be accommodated at the expense of

increasing terminal range error.

5.1.5 Summary

Numerical analysis techniques were used to develop and evaluate a point-design

discrete-event drag-modulation trajectory control EDL architecture for an assumed
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Table 10: Monte Carlo Simulation Results

Parameter Mean σ Mean−3σ Mean+3σ Min. Max.
Guidance Mode 1: Parachute Deploy Target

Drag skirt jettison Mach 10.23 2.06 4.04 16.42 3.72 16.45
Parachute deploy altitude, km 5.89 0.41 4.67 7.12 4.63 7.71
Parachute deploy velocity, m/s 447.49 2.27 440.69 454.29 443.97 450.18
Parachute deploy dynamic pres-
sure, N/m2

760.44 26.16 681.96 838.92 657.33 848.56

Parachute deploy Mach 1.98 0.01 1.95 2.01 1.95 2.01
Parachute deploy range error, km 2.12 1.41 -- 6.35 0.07 8.77
Parachute descent time, s 95.24 6.18 76.70 113.78 76.52 115.22
Touchdown range error, km 5.17 2.04 -- 11.28 0.82 12.48
Peak deceleration (hypersonic),
Earth g

6.06 0.19 5.48 6.64 5.42 6.68

Peak heat rate, W/cm2 30.16 0.58 28.41 31.91 28.58 31.95
Integrated heat load, J/cm2 2276 47.7 2133 2419 2180 2466

Guidance Mode 2: Touchdown Target
Drag skirt jettison Mach 9.24 2.03 3.14 15.34 3.07 15.35
Parachute deploy altitude, km 5.94 0.44 4.61 7.27 4.64 9.02
Parachute deploy velocity, m/s 447.65 2.24 440.94 454.37 443.89 450.25
Parachute deploy dynamic pres-
sure, N/m2

758.06 28.31 673.14 842.98 574.20 848.37

Parachute deploy Mach 1.98 0.01 1.95 2.01 1.95 2.01
Parachute deploy range error, km -- -- -- -- -- --
Parachute descent time, s 95.42 6.37 76.30 114.54 76.00 125.88
Touchdown range error, km 1.85 1.23 -- 5.54 0.03 7.92
Peak deceleration (hypersonic),
Earth g

6.06 0.19 5.48 6.64 5.42 6.68

Peak heat rate, W/cm2 30.16 0.58 28.41 31.91 28.58 31.95
Integrated heat load, J/cm2 2251 40.8 2128 2373 2169 2411

Guidance Mode 3: Range-based Parachute Deploy Trigger
Drag skirt jettison Mach 8.92 2.03 2.83 15.00 2.80 15.00
Parachute deploy altitude, km 5.84 0.65 3.88 7.80 4.20 8.05
Parachute deploy velocity, m/s 445.36 23.80 373.95 516.78 413.73 480.10
Parachute deploy dynamic pres-
sure, N/m2

755.47 48.29 610.60 900.33 556.50 875.94

Parachute deploy Mach 1.97 0.11 1.64 2.30 1.82 2.14
Parachute deploy range error, km -- -- -- -- -- --
Parachute descent time, s 93.98 8.91 67.25 120.71 72.65 120.87
Touchdown range error, km 1.10 0.67 -- 3.11 0.04 4.96
Peak deceleration (hypersonic),
Earth g

6.06 0.19 5.48 6.64 5.42 6.68

Peak heat rate, W/cm2 30.16 0.58 28.41 31.91 28.58 31.95
Integrated heat load, J/cm2 2243 38.5 2128 2359 2165 2393
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Figure 66: Post-jettison drag skirt segment trajectories for guidance mode 1.

Mars exploration mission. The proposed EDL architecture is a feasible option for

delivering an MER-class payload to the surface of Mars with MSL-class accuracy.

The proposed EDL architecture offers significant benefits over traditional bank-to-

steer lift-modulation systems in terms of cost and complexity. Relative to MSL,

the proposed architecture reduces the number of jettison events and eliminates the

need for an off-centerline c.g. and RCS (including propellent, tanks, and jets) on the

aeroshell. Relative to MER, the proposed architecture has a more benign aerother-

mal environment and superior landed accuracy. The proposed system architecture is

largely enabled by advances in approach navigation at Mars and onboard computing

capabilities. Precise approach navigation reliably provides a narrow range of in-plane

EI states and reduces the need for out-of-plane trajectory control. Modern flight

computers are capable of running advanced NPC algorithms, which can take advan-

tage of real-time parameter estimation to provide precision guidance and targeting

for discrete-event trajectory control systems.

This precision-landing architecture is easily extensible to the low-β vehicles utiliz-

ing HIADs currently being considered by NASA for future high-mass Mars missions
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Figure 67: Terminal a) downrange, b) crossrange, and c) total range error for all three
guidance modes.
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Figure 68: Parachute deploy conditions for a) pre-set velocity trigger and b) range-
based trigger.

[22]. To support the development of this capability, the proposed EDL architec-

ture may be used as a low-risk technology demonstrator for more ambitious drag-

modulation systems while still landing useful payload on surface of Mars. The use

of a jettisonable drag area deployed prior to launch significantly reduces risk and

allows a technology demonstration mission to focus on entry flight performance of

the system concept. Further, the simplicity of this EDL architecture may lend itself

to Discovery-class, low-cost exploration missions that require accurate landing for

targeted science investigation but cannot afford or accommodate the complexity of a

lift-modulation system and its associated system-level impacts.

The detailed numerical analysis and conceptual design of the proposed discrete-

event drag-modulation EDL architecture also revealed new challenges. First, the

drag skirt jettison must be accommodated over wide range of Mach numbers while

ensuring that drag skirt segment re-contact risk is minimized. While Mach number

independence in the hypersonic regime mitigates this risk, verification and valida-

tion approaches have yet to be developed. Second, the proposed drag-modulation

trajectory control concept has less divert capability available to recover from large,

unexpected delivery errors. Given that the presence of such large errors can also
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overwhelm a traditional bank-to-steer lift-modulation system, this is likely a small

increase in overall mission risk relative to a bank-to-steer system.

5.2 Drag-Modulation System Options for Planetary Aero-
capture

Only a small number of studies on using drag modulation for aerocapture missions

is available in the literature. Vinh et al. proposed an explicit analytical guidance

algorithm for aeroassisted orbit transfer assuming drag could be continuously varied

during atmospheric flight.[45] Discrete-event drag modulation has been studied for

planetary aerocapture missions at the conceptual level, but few studies address real-

istic guided system performance.[47, 51, 50] Miller et al. present a real-time predictive

algorithm for single-stage jettison aerocapture at Titan using a trailing toroidal bal-

lute but provide only limited information on flight performance.[18] Johnson and

Lyons use a heuristic trigger based on curve fits of the aerocapture vehicle dynam-

ics to perform single-stage jettison aerocapture at Titan but results show that this

technique results in a significant number of failures when uncertainty is applied.[52]

Recent work has shown that drag modulation may be possible for a specific set of

aerocapture missions at Earth and Mars.[175] The goal of this study is to expand upon

those results by determining the feasibility and relative performance of different drag

modulation flight control system options for planetary aerocapture at Venus, Mars,

and Titan. Three drag modulation flight control system options will be considered:

single-stage jettison, two-stage jettison, and continuously-variable drag modulation

systems. This study improves upon existing results in the literature by utilizing

flight-realistic real-time guidance and targeting algorithms coupled with uncertainty

analysis to provide a realistic assessment of feasibility and flight performance.

A more detailed discussion of this work is presented in Ref. [176].
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5.2.1 Drag Modulation Flight Control Concepts

5.2.1.1 Single-stage Jettison Systems

Single-stage jettison systems, shown in Fig. 69, provide the simplest means of drag

modulation flight control for aerocapture. The vehicle deploys a large drag skirt prior

to atmospheric interface (AI) to lower the vehicle’s β to its minimum value, β1. Al-

ternately, the vehicle may launch in its β1 configuration if the maximum diameter

fits within the launch vehicle payload fairing. During the atmospheric pass, the flight

computer uses available navigation data to determine when the drag skirt should be

jettisoned such that the proper amount of energy is dissipated prior to atmospheric

exit to achieve the desired transfer orbit properties. Once the drag skirt is jetti-

soned, β immediately rises to its maximum value, β2, and the spacecraft coasts to

atmospheric exit.

While simple, single-stage jettison systems are vulnerable to day-of-flight dis-

persions since they have only a single control event. After the jettison, no control

authority is available to correct for unforeseen dispersions. Mission designers may

bias the nominal jettison point towards the end of the atmospheric pass to reduce

the effect of post-jettison uncertainty, but this strategy requires additional control

authority and increases the likelihood of a skip-out trajectory.

5.2.1.2 Two-stage Jettison Systems

In some circumstances, two-stage jettison systems provide performance benefits over

a single-stage systems by reducing vulnerability to day-of-flight dispersions. A two-

stage system splits the drag skirt into two concentric pieces, allowing the spacecraft to

perform a “clean-up” jettison later in the trajectory. This drag modulation strategy

trades additional system complexity for reduced susceptibility to unforeseen late-

trajectory dispersions.

Figure 70 shows a notional aerocapture maneuver using a two-stage jettison drag
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Figure 69: Single-stage jettison drag modulation aerocapture system.

modulation system. As in the single-stage system, the drag skirts are deployed prior

to AI and the vehicle enters the atmosphere with β = β1. The outer drag skirt is

jettisoned first, such that the final apoapsis error is minimized while assuming a pre-

set inner skirt jettison time. The outer skirt jettison changes β to an intermediate

value, β1.5. The inner drag skirt jettison time is then adjusted to null the final transfer

orbit apoapsis altitude error. When the inner drag skirt is jettisoned, β rises to β2 and

the spacecraft coasts to atmospheric exit. This strategy allows the flight computer to

solve two one-dimensional searches in series, reducing flight software complexity and

limiting computational resource requirements. The pre-set inner skirt jettison time

is selected to be later than the expected range of outer skirt jettison times to force

the guidance algorithm to hold some control authority in reserve until later in the

trajectory.

5.2.1.3 Continuously-variable Systems

As the number of jettison stages becomes large, a staged-jettison vehicle may be

approximated by a one-directional continuously-variable drag modulation system.

However, it is likely that such a system would be capable of both decreasing and

increasing β. This continuously-variable (CV) drag modulation system uses a drag
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Figure 70: Two-stage jettison drag modulation aerocapture system.
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Figure 71: Continuously-variable drag modulation aerocapture system.

skirt that can be deployed and retracted during the atmospheric pass. While this in-

flight reconfiguration capability requires significant technology development, current

technology programs indicate that such a system may be feasible.[17]

The CV drag modulation system concept analyzed in this study is shown in

Fig. 71. The vehicle enters the atmosphere with its drag skirt deployed. During

the atmospheric pass, the vehicle determines the constant drag area that minimizes

the final apoapsis altitude error, subject to limits β1 and β2. This type of system

retains a measure of control authority throughout the atmospheric pass, but requires

a more mechanically complex system relative to staged-jettison systems.
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5.2.2 Real-time Guidance

During the atmospheric pass, a real-time guidance algorithm is used to determine

drag skirt jettison times and drag area commands using data from the navigation

system. This strategy allows the vehicle to select a drag profile based on day-of-flight

conditions such that the desired transfer orbit is achieved. A similar algorithm is

used for all three drag modulation system options.

The guidance algorithm is organized into three functional phases. The first phase

is the pre-AI attitude hold phase. During this phase, the guidance algorithm checks

whether the sensible atmosphere has been reached. The sensible atmosphere is defined

by sensed accelerations greater than 0.5 m/s2. The second phase is the numerical

predictor-corrector (NPC) targeting phase. During this phase, the algorithm adjusts

the jettison time or drag area command to minimize the final apoapsis altitude error.

The third and final phase is the exit phase: no additional commands are issued when

the sensed acceleration drops below 0.5 m/s2.

The predictor integrates the three-degree-of-freedom equations of motion to de-

termine the vehicle state at atmospheric exit. While the motion of drag modulation

vehicles is nearly planar, the full three-degree-of-freedom equations allow the predic-

tor to account for a rotating planetary atmosphere and provide a flexible platform

for increasing environment model fidelity.

The predictor models the planetary body of interest as a sphere with inverse-square

gravity and a nominal altitude-density atmosphere table. The vehicle is modeled as

a point mass that generates only drag; vehicle drag is modeled with a constant CD.

While the majority of the integration is performed with a constant time step of 2 s, the

time steps immediately adjacent to jettison events are adjusted such that the jettisons

occur at a major time step. This strategy enhances the accuracy and stability of the

prediction without significantly increasing the computation time. Nominally, predic-

tion terminates at atmospheric exit, defined by a maximum altitude. Protection is
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provided within the predictor against off-nominal cases through limits on integration

time and minimum altitude.

The corrector utilizes the terminal states computed by the predictor to perform a

one-dimensional search for the jettison time or drag area command, for staged-jettison

or CV systems, respectively, that results in acceptable apoapsis altitude error. First,

the corrector computes the properties of the transfer orbit from the estimated ter-

minal vehicle position and velocity vectors at atmospheric exit. Next, if the jettison

time or drag area command solution is bounded, the corrector uses a bisection algo-

rithm to null the transfer orbit apoapsis error. Bisection reduces the error until either

the specified error tolerance is reached or the maximum number of iterations is ex-

ceeded. The bisection algorithm was selected over algorithms with faster convergence

properties because of its simplicity and the nonlinearity of the apoapse altitude as a

function of jettison time or drag area command near the solution.

If the solution is not bounded, the corrector marches the jettison time or drag area

commands by constant amounts to determine bounding values. This typically occurs

during the first guidance pass. For example, if the predicted transfer orbit semi-major

axis is negative, indicating a hyperbolic escape trajectory, the corrector increases the

jettison time or increases the drag area command by a fixed amount to reduce the

energy of the transfer orbit. The predictor is then re-run and new terminal orbit

properties are computed. The jettison time or drag area commands are marched in

this direction until the corrector finds a captured transfer orbit (positive semi-major

axis). The jettison time or drag area command associated with this transfer orbit

bounds the solution on the high-energy side. The low-energy boundary is found in a

similar manner, and is defined to be any trajectory with an apoapsis altitude below

the target altitude, including trajectories that impact the planet’s surface.

The guidance algorithm estimates a constant bias atmospheric density correction

factor to account for day-of-flight uncertainty in the atmosphere and improve the
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accuracy of terminal state predictions.

5.2.3 Methodology

The same three-degree-of-freedom simulation was used to generate aerocapture tra-

jectories. Planetary atmosphere data for Mars, Venus, and Titan were generated

using the Global Reference Atmosphere Models (GRAM) for each planetary body.

[177] Stagnation-point convective heat rates are estimated using the Sutton-Graves

relation for a 1 m reference nose radius [157]. Radiative contributions to total heat

rate are significant at Venus and Titan, but are not modeled. A summary of plane-

tary model parameters is given in Table 11. Two-body orbital mechanics are used to

compute the ∆V required for periapsis raise and apoapsis correction maneuvers. All

numerical simulations begin at AI altitude, defined to be 150 km altitude for Mars

and Venus and 1000 km altitude for Titan.

Table 11: Planetary Model Parameters

Parameter Mars Titan Venus
Gravitational parameter, m3/s2 4.283 ×1013 8.9797 ×1012 3.249 ×1014

Volumetric mean radius , m 3.3895 ×106 2.575 ×106 6.0518 ×106

Atmosphere model Mars-GRAM Titan-GRAM Venus-GRAM
Sutton-Graves coefficient, kg0.5/m 1.898×10−4 1.7407 ×10−4 1.986 ×10−4

Aerocapture vehicles were assumed to have constant mass. A 70-deg spherecone

shape was assumed for Mars and Titan missions and a 60-deg spherecone shape was

assumed for Venus missions. Mach-dependent aerodynamics data were generated for

these shapes using CBAero.[169] For all three drag modulation system options, drag

modulation is accomplished through changes in Sref ; aerodynamic coefficients were

assumed to be constant across all Sref changes. The nominal vehicle center of gravity

(c.g.) position is along the vehicle axis of symmetry. The vehicles are spun about

their axis of symmetry at 2 RPM to reduce the effect of lift generated by off-nominal

c.g. positions.
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Table 12: Monte Carlo Simulation Input for Mars Trajectories

Parameter Dispersion Notes
min/max or 3σ

Atmospheric density and wind Mars-GRAM Default settings for 5 August 2012
Hypersonic CA 3% 70 deg sphere-cone[171]
Hypersonic CN 5% 70 deg sphere-cone[171]
Trim angle of attack 2 deg Accounts for off-centerline c.g.
Initial bank angle ±180 deg Covers all possible c.g. offset orientations
Bank angle rate 5%
Vehicle mass 3 kg
AI velocity 0.49 m/s Correlated MSL error[162]
AI flight-path 0.013 deg Correlated MSL error[162]
AI azimuth 0.0075 deg Correlated MSL error[162]
AI latitude 0.017 deg Correlated MSL error[162]
AI longitude 0.012 deg Correlated MSL error[162]
AI altitude 0.74 km Correlated MSL error[162]

The flight computer was modeled with two rate groups: a low-rate group for

guidance (the predictor-corrector targeting algorithm) running at 0.25 for Titan and

0.5 Hz for Venus and Mars and a high-rate group for jettison and drag area adjustment

logic, running at 25 for Titan and 50 Hz for Venus and Mars. The truth dynamics

are integrated at 50 Hz at Titan and 100 Hz at Venus and Mars. These rates reflect

differences in flight times at Venus, Mars, and Titan. The difference between the

high- and low-rate groups reduces the computational load of guidance while allowing

precision drag area jettisons with respect to time or quick adjustments to the drag

area. The onboard inertial navigation system was assumed to have perfect knowledge

of the vehicle dynamics.

Monte Carlo simulation was used to evaluate aerocapture system performance at

Mars in the the presence of day-of-flight uncertainties, including state, vehicle, and

environmental uncertainties. Monte Carlo simulation uncertainty inputs are given

in Table 12. Correlated state errors are generated based on 3σ 1.5 km position and

1 m/s velocity errors, corresponding to Mars Science Laboratory (MSL) approach

navigation performance.[162] Correlated atmospheric density and wind uncertainties

were generated using Mars-GRAM.

153



5.2.4 Corridor and Feasibility

For aerocapture drag modulation flight control systems, the aerodynamic corridor is

bounded by the minimum-β (β1) and maximum-β (β2) trajectories. These bounding

trajectories represent the most shallow and most steep trajectories, respectively, that

may be flown while reaching a given transfer orbit, regardless of the type of drag

modulation system employed. For single-stage systems, these trajectories represent

either retaining the drag skirt to atmospheric exit (maximum drag area throughout

the atmospheric pass) or jettisoning it at AI (minimum drag area throughout the

atmospheric pass). For CV systems, these trajectories represent flight at a constant

β of β1 or β2 throughout the atmospheric pass. The set of AI flight-path angles

bounded by the AI flight-path angles of these trajectories is the aerodynamic flight-

path angle corridor. For a given AI velocity, with perfect state knowledge, a drag

modulation aerocapture vehicle that can vary β between β1 and β2 should be able

to reach the desired transfer orbit as long as the AI flight-path angle lies within the

corridor.

Figure 72 shows example bounding trajectories for aerocapture at Mars at an

inertial AI velocity of 6 km/s with a 400 km apoapsis altitude transfer orbit target

for a vehicle with β1 = 10 kg/m2 and β2 = 100 kg/m2. AI is denoted by squares and

atmospheric exit by triangles. Figure 72(a) shows that the β2 trajectory decelerates

about 20 km lower in the atmosphere. The β2 trajectory must enter the atmosphere

at a steeper flight-path angle, and exists with a slightly less shallow flight-path angle,

as shown in Fig. 72(b). Figure 72(c) shows the deceleration pulses are similar for both

cases. The ∆V required for the periapsis raise maneuver is similar for both cases:

97.9 and 97.7 m/s for the β1 and β2 trajectories, respectively.

Corridor trends were evaluated at Mars with respect to vehicle and mission design

quantities; similar trends emerge for aerocapture at Titan and Venus. Figure 73 shows

how the aerodynamic corridor changes with respect to AI velocity for several values of
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Figure 72: Example bounding trajectories for aerocapture aerodynamic corridor at
Mars: a) altitude, b) flight-path angle, and c) sensed deceleration versus planet-
relative velocity.

β. The corridor width for a given drag modulation system corresponds to the distance

between the two curves corresponding to the β1 and β2 for that vehicle. Similar to

atmospheric entry, the corridor steepens and widens as AI velocity increases, but at

high velocities, trajectory constraints on deceleration or heat rate may reduce the

width of the corridor. Figure 74 shows the aerodynamic flight-path angle corridor

width as a function of β-ratio for four AI velocities, where β-ratio is the ratio of

β2 to β1. β-ratio is a measure of the gross control authority of a drag modulation

system.[175] A β-ratio of 1 results in a zero-width corridor, since β1 = β2. Increasing

the β-ratio or AI velocity increases the width of the corridor with diminishing returns.

Figure 75 shows the variation in aerodynamic corridor width with respect to β1,

for an AI velocity of 6 km/s . For all but the smallest values of β1, corridor width

is constant with respect to β1 and determined by β-ratio. This implies that only the

relative change in β of a given vehicle is important for determining corridor width,

not the values of β1 or β2.

Aerodynamic flight-path angle corridor width was evaluated as a function of AI

velocity for aerocapture at Mars, Titan, and Venus. The AI velocity range for Mars
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Figure 73: Aerocapture corridor bounding AI flight-path angles versus AI velocity for
several β at Mars.

was selected to capture a range of launch opportunities from Earth, consistent with

the efficient trajectories used for robotic missions.[178] The Titan AI velocity range

spans Titan escape velocity to 10 km/s, the upper bound on approach velocities as-

sumed by Lockwood.[179] Venus AI velocities were selected to correspond to existing

literature.[180] The transfer orbit apoapsis altitude target of 400 km is used at Venus

and Mars and an apoapsis altitude target of 1700 km is used at Titan. The results

presented in Fig. 76 show that, for a given β-ratio, corridor width at Mars is approx-

imately double that at Venus, and corridor width at Titan is nearly two and a half

times that at Mars. With identical approach navigation precision, aerocapture at

Venus would require twice as much control authority as aerocapture at Mars. How-

ever, approach navigation at Venus is likely less precise, requiring even more control

authority relative to Mars. This translates to a larger required initial drag area for

a given spacecraft mass. At Titan, less control authority is required for a given ap-

proach navigation precision. However, approach navigation at Titan is significantly

less precise than at Mars, reducing the impact of this advantage. As discussed in the

previous section, Fig. 76 shows that β-ratio is the primary factor determining corridor
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Figure 74: Aerodynamic corridor width as a function of β for several AI velocities at
Mars.

width, corridor width increases a modest amount with increasing AI velocity, and β1

has only a small effect on the corridor width.

Figure 77 shows peak stagnation-point convective heating rates for aerocapture

trajectories for β values of 1, 10, and 100 kg/m2; radiative heating effects are not

included. For a spacecraft mass of 1500 kg, these β values correspond to diameters

of approximately 33.5, 10.6, and 3.4 m, respectively. The data in Fig. 77 represent

bounding peak heat rates over potential aerocapture corridors. For example, aero-

capture at Mars with an AI velocity of 6 km/s, a β1 of 10 kg/m2, and a β-ratio

of 10 may experience peak convective peak heat rates between 10 and 30 W/cm2.

A 400 km transfer orbit apoapsis altitude target was used for Mars and Venus and

1700 km was used for Titan. While heat rate limits for insulating thermal protec-

tion systems (TPS) are material specific, typical limits are well below 100 W/cm2 for

current flexible insulating TPS suitable for inflatable decelerator systems. Therefore,

100 W/cm2 was adopted as a conservative upper bound on the capabilities of flexible

insulating TPS. Higher heat rates require an ablative TPS, which may require a rigid

heat shield. Therefore, the insulating TPS heat rate limit may be seen as a delimiter
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Figure 75: Aerodynamic corridor width as a function of β1 for several β-ratios at
Mars for AI velocity of 6 km/s.

between currently available inflatable decelerators and traditional rigid aeroshells.

The peak heat rates in Fig. 77 indicate that aerocapture at Venus requires a

low β to limit the peak heat rate if current inflatable decelerators are to be used.

Additionally, at the high velocities associated with Venus aerocapture, the radiative

contribution to total heat rate may be equal to or greater than the convective con-

tribution, increasing the peak heat rate the TPS must accommodate. For Mars, the

radiative component of heating is typically small or negligible,[168] indicating that

inflatable decelerators may be used for aerocapture. Radiative heating may also be

significant at Titan and may lead to a requirement for a low β or ablative TPS.[179]

These results allow one to draw preliminary conclusions on the feasibility of us-

ing drag-only flight control for aerocapture. For Mars missions, adequate flight-path

corridor width to accommodate uncertainties is provided by current approach naviga-

tion precision and β-ratios of less than 10.[171] Additionally, low heat rates at Mars

make the use of lightweight HIAD drag skirts possible. Together, these make Mars

an attractive target for drag modulation aerocapture systems. At Venus, expected

peak heat rates require large diameter drag skirts to lower β to limit peak heat rates
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Figure 76: Aerocapture aerodynamic corridor widths at a) Mars, b) Titan, and c)
Venus for two values of β1 and several β-ratios.

such that current inflatable TPS technology may be used. Smaller drag skirts may

be used, but will require ablative TPS. However, aerocapture at Venus still requires

β-ratios near 10 to provide adequate corridor width, independent of the specific drag

modulation system selected. The requirement for either a large drag skirt using ex-

isting flexible TPS or ablative TPS for a moderately large drag skirt create a system

that is likely not mass competitive with traditional lift modulation systems. This

makes Venus an unattractive target for drag modulation aerocapture. Conclusions

about drag modulation aerocapture at Titan are less clear: while large flight-path

angle corridor widths are available for reasonable β-ratios, distance from Earth and

limited flight experience make approach navigation less precise at Titan than in the
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Figure 77: Peak stagnation-point convective heat rates for several β.

inner Solar System. Also, while convective heat rates are below the insulating TPS

limit for AI velocities below 9 km/s, radiative heating is expected to contribute sig-

nificantly to total heating at Titan.[179] Therefore, drag modulation aerocapture at

Titan may be attractive if the AI velocity or β are sufficiently low for use of insu-

lating flexible TPS, if flexible ablative TPS is developed, or if navigation precision is

sufficient to allow a low β-ratio rigid drag skirt with an ablative TPS to be used. For

these reasons, the remainder of this study focuses on drag modulation flight control

aerocapture missions to Mars and Titan.

5.2.5 Case Study: Aerocapture at Mars

A Mars science orbiter concept vehicle is used to evaluate three drag modulation

system options for aerocapture. The spacecraft mass is nominally 1500 kg, corre-

sponding to the Mars Reconnaissance Orbiter (MRO), less the propellent required

for a Mars orbit insertion burn.[181] The spacecraft is packaged behind a 4 m di-

ameter lightweight heat shield, producing a β2 value of 70.2 kg/m2. This diameter

provides space for a MRO-sized 3 m diameter high-gain antenna. An eastbound equa-

torial trajectory is used, with a nominal AI inertial velocity of 6 km/s and a nominal

AI inertial flight-path angle of -11.11 deg. The AI flight-path angle was selected to
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center the apoapsis altitude target within the vehicle’s capability. The target orbit is

a 400 km circular orbit.

The single-stage system utilizes a HIAD drag skirt, which is deployed prior to AI

to increase vehicle drag area. The inflation pressure is assumed to be sufficient to

maintain a 70-deg spherecone shape throughout the atmospheric pass. The skirt has

an outer diameter of 12.65 m, resulting in a β1 of 7.02 kg/m2 and a β-ratio of 10.

Results are provided in Fig. 78 and Table 13 for a 1000-sample Monte Carlo

simulation. Sufficient apoapsis altitude accuracy is achieved to limit the mean+3σ

total ∆V required to 110.7 m/s. Additionally, apoapsis error is roughly centered

about the target, indicating good guidance algorithm performance. For all samples,

peak deceleration is below 4 g and peak heat rates are below 15 W/cm2, low enough

to allow use of currently available insulating flexible TPS. Out-of-plane errors are

minimal, with final transfer orbit inclinations near zero. Jettison times selected by

the guidance algorithm range from about 160 s to 230 s (Fig. 78(a)). Maximum

apoapsis errors are generally associated with the earliest jettison times: when the

drag area must be jettisoned early in the trajectory, the vehicle is unable to account

for dispersions encountered during the bulk of the atmospheric pass, leading to larger

apoapsis altitude errors. As expected, Fig. 78(b) shows the magnitude of the periapsis

raise ∆V does not vary significantly with apoapsis error, although lower energy cases

with negative apoapsis errors require greater ∆V . The magnitude of the apoapsis

correction ∆V is a strong function of apoapsis error, although most cases require less

than 40 m/s of ∆V (Fig. 78(c)). While the accuracy of the single-stage system does

not lead to large ∆V requirements, apoapsis error may be an issue for extreme cases,

potentially causing reentry into the Mars atmosphere.

The two-stage jettison system was designed such that the first jettison event has

a β-ratio of 5, while the second jettison even has a β-ratio of 2, resulting in a β3

of 35.10 kg/m2 and an inner skirt maximum diameter of 5.66 m; β1 was retained
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Figure 78: Monte Carlo results for single-stage system at Mars: a) apoapsis error
versus jettison time and b) periapsis raise ∆V and c) apoapsis correction ∆V versus
apoapsis error.

Table 13: Monte Carlo Simulation Results for Single-stage System at Mars

Parameter Mean σ Mean−3σ Mean+3σ Min. Max.
Single-stage system

Apoapsis error, km -3.923 37.197 -115.515 107.669 -164.918 292.231
Final inclination, deg 0.225 0.050 0.075 0.374 0.076 0.393
Periapsis raise ∆V , m/s 83.751 0.900 81.053 86.450 80.992 89.643
Apoapsis correction ∆V , m/s 0.921 8.233 -23.779 25.621 -61.839 37.601
Total ∆V , m/s 89.417 6.400 70.216 108.618 82.841 142.831
Peak deceleration, g 3.419 0.235 2.714 4.123 2.618 4.090
Peak conv. heat rate, W/cm2 11.377 0.378 10.245 12.510 10.146 12.494
Integrated heat load, kJ/cm2 1.819 0.100 1.519 2.120 1.415 2.089

from the single stage case. This split creates a course-fine control scheme, where the

initial jettison event has more control authority to remove delivery error and predicted

biases in aerodynamics and atmospheric properties and the second jettison event’s

lesser control authority is adequate to clean up any remaining error resulting from

unforeseen biases or noise during the β3 portion of the atmospheric pass.

Results for the two-stage system are given in Fig. 79 and Table 14. Using a sec-

ond stage improves apoapsis accuracy and reduces the required propulsive ∆V , mostly

through reducing the standard deviation of the apoapsis correction ∆V (Fig. 79(c)).

Figure 79(a) shows the relationship between the first- and second-stage jettison times.

The grey line denotes equal jettison times; the two circled cases jettison both stages
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at the same time to reduce their energy depletion rate early in the trajectory. Fig-

ures 79(b) and (c) also indicate a bias towards positive apoapsis error and the result-

ing retrograde apoapsis correction ∆V . Other performance metrics, including peak

deceleration, peak heating, and heat load are similar to the single-stage system.

a)	
 b)	
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Figure 79: Monte Carlo results for two-stage system at Mars: a) stage 2 versus stage 1
jettison time and b) periapsis raise ∆V and c) apoapsis correction ∆V versus apoapsis
error.

Table 14: Monte Carlo Simulation Results for Two-stage System at Mars

Parameter Mean σ Mean−3σ Mean+3σ Min. Max.
Apoapsis error, km 5.567 27.109 -75.761 86.894 -66.423 173.939
Final inclination, deg 0.222 0.051 0.070 0.375 0.072 0.392
Periapsis raise ∆V , m/s 84.126 0.847 81.586 86.667 81.602 88.306
Apoapsis correction ∆V , m/s -1.207 5.970 -19.116 16.702 -37.503 14.895
Total ∆V , m/s 88.604 3.886 76.946 100.262 83.698 121.538
Peak deceleration, g 3.419 0.235 2.714 4.123 2.618 4.090
Peak conv. heat rate, W/cm2 11.377 0.378 10.245 12.510 10.146 12.494
Integrated heat load, kJ/cm2 1.746 0.079 1.508 1.984 1.409 1.951

Results for a CV system with the same β1 and β2 (diameters of 12.65 and 4 m,

respectively) as the staged-jettison cases are given in Fig. 80 and Table 15. Results

indicate good aerocapture performance, with lower peak deceleration, better apoapsis

altitude accuracy, and a lower total ∆V requirement relative to the staged-jettison

systems. However, while the CV system has a lower total ∆V requirement, it also

has a higher periapsis raise ∆V requirement. The CV system exits the atmosphere

163



with a low β, relative to the staged-jettison systems, which results in a steeper flight-

path angle and lower energy at atmospheric exit for the same transfer orbit apoapsis

altitude. This energy must then be replaced with a larger periapsis raise ∆V when

circularizing. The accumulated out-of-plane error and aerothermal environments re-

main similar to the staged-jettison systems. Figure 80(a) shows that a significant

amount of jitter is present in the area command signal for some cases. This jitter

is caused by Monte Carlo dispersions in the atmosphere that the constant-bias den-

sity estimator is unable to account for. However, for the nominal case, in black, the

area command is nearly constant, validating the guidance algorithm’s constant-area

solution method.
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Figure 80: Monte Carlo results for CV system at Mars: a) area command versus time
(black curve denotes nominal) and b) periapsis raise ∆V and c) apoapsis correction
∆V versus apoapsis error.

Table 15: Monte Carlo Simulation Results for Continuously-variable System at Mars

Parameter Mean σ Mean−3σ Mean+3σ Min. Max.
Apoapsis error, km 0.807 6.870 -19.804 21.418 -19.154 30.989
Final inclination, deg 0.177 0.048 0.034 0.321 0.042 0.336
Periapsis raise ∆V , m/s 92.015 0.470 90.606 93.425 90.465 93.426
Apoapsis correction ∆V , m/s -0.177 1.523 -4.747 4.393 -6.838 4.262
Total ∆V , m/s 93.238 0.999 90.239 96.236 91.849 97.687
Peak deceleration, g 2.508 0.093 2.229 2.787 2.276 2.859
Peak conv. heat rate, W/cm2 12.895 0.579 11.159 14.632 10.985 14.785
Integrated heat load, kJ/cm2 1.586 0.066 1.386 1.785 1.348 1.775
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The results presented indicate that single-stage, two-stage, and continuously-

variable drag modulation systems are all feasible for aerocapture at Mars for the

selected β-ratio of 10. However, a clear trend emerges in accuracy with the single-

stage system being the least accurate and the CV system being the most accurate.

The disparity in accuracy is highlighted in Fig. 81, which shows the high and low

mean+3σ apoapsis errors. However, Fig. 81 also shows that, while better accuracy

reduces the total ∆V required to circularize into a 400 km orbit, the difference in

total ∆V between the three drag modulation system concepts is small. The CV sys-

tem saves less than 15 m/s of ∆V which translates to a propellant mass savings of

only about 10 kg for a 1500 kg spacecraft. However, the two-stage and CV systems

provide additional robustness to uncertainty and design issues over the single-stage

system, where atmospheric reentry may be more likely. Other trajectory metrics of

interest are similar across all three systems, with the exception of peak deceleration,

which is lower for the CV system.
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Figure 81: Comparison of drag modulation aerocapture system options for Mars: a)
apoapse error and b) total ∆V .
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5.2.6 Summary

Results indicate that drag modulation flight control presents an attractive option for

aerocapture systems at Mars where low heat rates enable the use of large, lightweight,

inflatable drag areas. The use of HIADs enables large β-ratios which provide a high

degree of robustness to day-of-flight uncertainties, even for single-stage jettison sys-

tems. Although not discussed in this chapter, drag modulation at Titan is found

to require advanced non-ablative thermal protection systems for inflatable decelera-

tors to withstand peak heat rates during the atmospheric pass or large drag areas to

limit peak heat rates to current non-ablative thermal protection system limits. Re-

sults indicate that a two-stage system with inflatable drag skirts provides acceptable

orbital insertion performance with a potentially lower system complexity than compa-

rable lift modulation systems. The large gravity well and high heat rates experienced

during aerocapture at Venus make drag modulation flight control unattractive when

combined with a non-ablative thermal protection system. Significantly larger drag

areas or advances in fabric-based material thermal properties are required to improve

feasibility at Venus.

5.3 Conclusions

Overall, drag modulation flight control is largely enabled by three technologies: pre-

cise approach navigation, modern flight computers, and, for more massive payloads,

deployable hypersonic decelerators. Current deep space navigation precision results

in minimal delivery and knowledge errors at the top of the atmosphere, making out-

of-plane control optional in the absence of plane-change or crossrange requirements.

Modern flight computers provide enough throughput to allow the use of onboard pa-

rameter estimation techniques coupled with numerical predictor-corrector algorithms,

resulting in accurate terminal state predictions and steering commands. Deployable
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hypersonic decelerators provide a mass-efficient solution to lower the ballistic coeffi-

cient and achieve the required ballistic coefficient ratio and control authority.

Drag-modulation trajectory control has been shown to be feasible for the devel-

oped concepts for both entry and aerocapture and appears to be extensible to other

classes of missions, the full range of applicability for drag-modulation trajectory con-

trol has not been determined. Determining feasibility for point designs is possible, as

as shown in this chapter, but no general method has been identified for determining

whether lift or drag-modulation is best, with respect to some relevant objective func-

tion, for a particular mission. The development of such method is proposed in the

following chapter.
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CHAPTER VI

COMPARISON OF LIFT AND DRAG-MODULATION

SYSTEMS USING NONLINEAR VARIATIONAL

METHODS

6.1 Introduction

Comparing lift and drag-modulation trajectory control systems for planetary entry

applications presents a challenge. Current industry practice would likely utilize Monte

Carlo analysis techniques to assess flight performance and robustness for particular

vehicle design and mission sets. This strategy is both resource-intensive, requiring sig-

nificant computational resources and engineering analysis, and limited, as its results

will apply only to the narrow, mission-specific parameters considered. During design,

this type of analysis typically requires more information about the system than is

available at the time a decision must be made about which type of control system to

select. Therefore, these analyses either will not be conducted for lack of information

or resources, or if conducted, will be tainted by overly detailed assumptions necessary

to populate numerical models.

High-accuracy analytical approximate solutions to the equations of motion allow

one to evaluate the robustness of lift and drag-modulation systems in a more general,

more conclusive manner. Specifically, nonlinear variational methods may be used to

generate expressions for variations in flight-performance parameters of interest with

respect to perturbations in vehicle, mission design, and environment parameters.

A particular system’s response to such perturbations is indicative of that system’s

robustness to such perturbations. A smaller change in a performance parameter of

interest relative to a perturbation implies greater inherent system robustness than a
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larger change.

6.2 Nonlinear Variational Methods

Consider a nonlinear system defined by:

ẋ(t) = f (t,x(t),p) (136)

where x is the state vector and p is a vector of static parameters. The solution to

this nonlinear system of equations is:

x(t) = x(t0) +

∫ t

t0

f (τ,x(τ),p) dτ = φ(t0, t,x0,p) (137)

Using a Taylor Series expansion, one can write the variation in final state (at time

tf ) due to initial state perturbations (at time t0) and static parameter perturbations

as:

xf + δxf = φ(t0, tf ,x0,p) +
∂φ(t0, tf ,x0,p)

∂x0

δx0

+
∂φ(t0, tf ,x0,p)

∂p
δp + H.O.T. (138)

Or:

δxf =
∂φ(t0, tf ,x0,p)

∂x0

δx0 +
∂φ(t0, tf ,x0,p)

∂p
δp + H.O.T. (139)

Where the subscript f denotes the value at the final time, tf . This relation is typically

written in terms of the state transition matrix, Φ(t0, tf ), and the parameter sensitivity

matrix, Ψ(t0, tf ):

δxf = Φ(t0, tf )δx0 + Ψ(t0, tf )δp + H.O.T.

Φ and Ψ contain the first-order information for the series expansion about some refer-

ence trajectory, x(t). The above vector equations represent multiple scalar equations.

For example, if one changes the domain from t to V and wishes to determine the

change in final range with respect to changes in initial altitude, then, to first order:

δsf =
∂s(V )

∂h0

∣∣∣∣
f

δh0 (140)
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Table 16: Parameters in the Allen-Eggers Solution

Category Parameter Description
Environment ρref Reference density

href Reference altitude
H Scale height
g Acceleration due to gravity
R Planetary radius

Initial state V0 Initial velocity
γ0 Initial flight-path angle
h0 Initial altitude
θ0 Initial range angle

Vehicle β Ballistic coefficient
L/D Lift-to-drag ratio

These expressions typically require numerical approximation and evaluation for non-

linear functions, such as the equations of motion. However, if closed-form analytical

solutions are available, the variations may be written in closed form as a function of

perturbations, provided the appropriate partial derivatives exist. Closed-form solu-

tions typically are a function of the environmental, initial state, and vehicle parame-

ters given in Table 16.

Computational symbolic manipulation software, such as Mathematica, may be

used to retain higher-order terms, potentially generating more accurate expressions

for state variations. The Taylor series for a scalar function of several variables is, for

an expansion about some point a = (a1, ..., ad):

f (a1 + x1, ..., ad + xd) ≈ T (x1, ..., xd)

=
∞∑

n1=0

· · ·
∞∑

nd=0

(x1 − a1)n1 · · · (xd − ad)nd
n1! · · ·nd!

(
∂n1+···+ndf

∂n1x1 · · · ∂ndxd

)
(a1, ..., ad) (141)

where x = (x1, ..., xd) is the deviation from point a. If only the linear terms are

retained:

T (x1, ..., xd) = f (a1, ..., ad) +
d∑

j=1

∂f (a1, ..., ad)

∂xj
(xj − aj) + H.O.T. (142)
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If the squared terms are retained:

T (x1, ..., xd) = f (a1, ..., ad) +
d∑

j=1

∂f (a1, ..., ad)

∂xj
(xj − aj)

+
1

2

d∑

j=1

d∑

k=1

∂2f (a1, ..., ad)

∂xj∂xk
(xj − aj) (xk − ak) + H.O.T. (143)

If the cubic terms are retained:

T (x1, ..., xd) = f (a1, ..., ad) +
d∑

j=1

∂f (a1, ..., ad)

∂xj
(xj − aj)

+
1

2

d∑

j=1

d∑

k=1

∂2f (a1, ..., ad)

∂xj∂xk
(xj − aj) (xk − ak)

+
1

6

d∑

j=1

d∑

k=1

d∑

l=1

∂3f (a1, ..., ad)

∂xj∂xk∂xl
(xj − aj) (xk − ak) (xl − al) + H.O.T. (144)

However, for the purpose of evaluating only the change in the function of interest,

letting x− a = δx, we can write the somewhat simpler result using vector notation:

δf = T(δx) (145)

6.3 Application to Ballistic Entry Using the Allen-Eggers
Solution

Applying nonlinear variational methods to the Allen-Eggers solution for ballistic en-

try trajectories results in closed-form expressions for variations in trajectory and

performance parameters of interest.

The Allen-Eggers solution allows us to analytically compute δxf . Writing the

state as a function of V , we have

x(V ) =




V

γ∗

h(V )

θ(V )




(146)
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Where h(V ) and θ(V ) are given by the Allen-Eggers solution. Since we have the

solution for the states, we can always determine x based on some assumed x0. This

means we can write the change in the final state as:

δxf =
∂

∂x
φ (Vf ,x,p) δx +

∂

∂p
φ (Vf ,x,p) δp (147)

Where δxf is variation in the state associated with Vf and changes in Vf have been

neglected. V may still be included in x if desired. Separately, there is no need for x0

to be at the top of the atmosphere; a closed-form solution for the equations of motion

allows one to use any point on the trajectory as the initial point.

6.3.1 Robustness to Atmospheric Parameters

The sensitivity of various ballistic entry performance parameters to changes in the

atmosphere model was evaluated. If an exponential atmospheric density model is

used, the density as a function of altitude is governed by three parameters: ρref , href ,

and H. In particular, we might like to know what the sensitivity of the total entry

range is relative to some change in ρref . To first order, we may write this as:

δsf =
∂sf
∂ρref

δρref (148)

where sf is the range s evaluated at the terminal velocity Vf . Using the Allen-Eggers

approximate solution, we can determine δsf as a function of δρref . A computer algebra

system is used to compute this partial; the result is complicated, and is provided in

Figure 82 for illustrative purposes only.

Figure 83 shows the effect of reference density perturbations on final range; Fig-

ure 84 shows this relationship for several ballistic coefficients for a steep entry at

Earth. Trajectory parameters are given in Table 17.

Figure 83(a) shows the change in final range for different percent changes in ρref .

As one might expect, range increases with decreasing density (the vehicle deceler-

ates more slowly in a thinner atmosphere) and decreases with increasing density.
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Figure 82: Closed form solution for ∂sf/∂ρref using the Allen-Eggers solution.
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Table 17: Ballistic Entry Trajectory Parameters

Parameter Value
Planet Earth
V0 7500 m/s
γ0 -20 deg
h0 90 km
Vf 500 m/s
β 100 kg/m2

R 6378 km
g 9.81 m/s2

ρref 1.215 kg/m3

H 7500 m
href 0 m
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Figure 83: Effect of reference density perturbations on final range.
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Figure 84: Change in final range for various β values, analytical solution.
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Figure 85: Change in final range for various β values, numerical root-finding compu-
tation.

The Allen-Eggers analytical solution provides a good estimate of the total range,

with error in the range of 1-2 km. Figure 83(b) show the partial of final range with

respect to changes in ρref . The numerical (computed using a central difference ap-

proximation) and analytical (computed using analytic differentiation) solutions show

excellent agreement. The curve is nonlinear, and shows that decreases in ρref have a

larger effect on the total range than increases do. Lastly, Figure 83(c) shows that the

analytical partial derivative is within 3% of the numerical solution.

One application of the analytical solution is to look at the sensitivity of the final
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range to reference density perturbations for a range of β, as shown in Figure 84.

As β becomes larger, the magnitude of the change in range becomes insensitive to

ballistic coefficient (see Fig. 84(a)). This is true for ballistic coefficients over about

1 kg/m2, which essentially tells us that the change in range magnitude with respect to

constant biases in density is not a function of ballistic coefficient for realistic systems.

This result shows that estimating a change in range based on a constant-bias density

correction computed during flight is valid for the full range of ballistic coefficients

a vehicle might exhibit during atmospheric flight. However, the percent change in

range due to perturbation in reference density does change with ballistic coefficient

(see Fig. 84(b)). As ballistic coefficient increases, the vehicle becomes relatively less

sensitive to changes in reference density, with the percent change in range approaching

zero as ballistic coefficient becomes large.

This type of plot may also be constructed using numerical methods. One can use

root-finding to determine the ballistic coefficient that satisfies a particular (δs, δρref ).

This is a computationally intensive process (it requires 3-4 orders of magnitude more

time than the analytical solution), and like most numerical solutions, requires some

knowledge of the problem to find an acceptable answer. For example, Figure 85

shows two numerical solutions. Figure 85(a) uses an initial guess of 0.1 kg/m2 for

β; Fig. 85(b) uses an initial guess of 1 kg/m2. These two initial guesses result in

drastically different results, neither of which clearly show the collapsing feature that

is shown by the analytical solution in Fig. 84(a). This highlights the ease with which

these trends may be studied using analytical solutions; analytical solutions reduce

the need for initial guesses and other information that may be difficult to discern a

priori. Lastly, one can easily see that the accuracy of the analytical solutions remains

good across different β.

The same equations may be used to determine the effect of reference density

perturbations on a ballistic entry vehicle’s divert capability. Figure 86 below shows
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Figure 86: Effect of reference density perturbations on range divert capability.

the effects for a vehicle with β1 = 100 kg/m2 and β2 = 300 kg/m2. As expected, ∆s

is insensitive to changes in reference density: because changes in s are independent

of ballistic coefficient, subtracting s2 (at β2) from s1 (at β1) produces little change.

The error is shown to be low for the analytical solution; Figure 86(c) shows the error

in m/kg/m3 instead of km/kg/m3–error is in the 10s of meters per unit change in

density.

We can apply a similar methodology to look at sensitivity to changes in scale

height. Figure 87 shows the change in range with respect to changes in scale height,

the partial of range with respect to change in scale height, and the percent error of the

analytical solution relative to the numerical solution. As with the previous analysis,
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Figure 87: Effect of scale height perturbations on final range.

the error is within 3%. The expected trend with respect to range is also shown: larger

scale heights correspond to density increasing more quickly with changes in altitude.

Looking at how the final range changes with respect to changes in δH for different

β is enlightening (see Figure 88): one can a see that there is a β, near 104 kg/m2,

that minimizes the effect of changes in scale height on range. For ballistic coefficients

greater than this, the sign of the partial of range with respect to changes in scale

height changes such that larger scale height increases range. Unlike changes in final

range due to perturbations in ρref , changes in final range due to H perturbations are a

function of ballistic coefficient. As before, numerical methods may be used to develop

similar results, but the numerical results are highly dependent on the initial guess
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Figure 90: First-order change in final range in km for various β with respect to
perturbations in H and ρref .

provided. Figure 89 shows the numerical solution for an initial guess of 100 kg/m2

and the analytical solutions from Fig. 88 superimposed in blue. The numerical and

analytical solutions match up well, exhibiting the same trends.

Figure 90 show how total range changes when subject to perturbations in both

scale height and reference density. The change in range is given by the first-order

approximation:

δs(Vf ) =
∂s(Vf )

∂ρref
δρref +

∂s(Vf )

∂H
δH (149)

The figure shows that the trends observed when a single perturbation is applied

remain consistent. First, increasing ballistic coefficient reduces the change in final

range due to a change in scale height (a much larger perturbation is required in H

to cause a 10 km change in range for β = 1000 kg/m2 than for 1 kg/m2). Second,

percent changes in H have a relatively greater impact on δs than equivalent percent

changes in ρref . Lastly, changes in δs due to δρref are relatively insensitive to the

magnitude of β.
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One can easily include the second-order terms in the expression for the variation

of range with respect to changes in scale height and reference density:

δs(Vf ) =
1

2

∂2s(Vf )

∂ρ2ref
δρ2ref+

∂s(Vf )

∂ρref
δρref+

∂2s(Vf )

∂ρref∂H
δρrefδH+

∂s(Vf )

∂H
δH+

1

2

∂2s(Vf )

∂H2
δH2

(150)

One can combine the mixed partial derivatives above because both are continuous

on some open interval. This allows one to account for any interaction effects from

simultaneous perturbations in H and ρref . Figure 91 shows that the results are

similar, but not identical, to those presented in Figure 90. Overall trends remain the

same, but responses are more linear, especially for larger ballistic coefficients.

Overall, one can see that higher-β vehicles are less susceptible to atmospheric

perturbations. This is perhaps intuitively obvious, since β appears in the denominator

of the aerodynamic force terms in the equations of motion. However, it does help

explain why single-event drag-modulation systems work so well: while the vehicle no

longer has any control authority after the jettison event, it is also less susceptible to
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uncertainty since its ballistic coefficient has risen significantly.

6.4 Comparison of Lift and Drag-Modulation Systems for
Steep Entry Trajectories

Comparisons of flight performance and robustness for steep entry between lift and

drag-modulation vehicles may be accomplished through application of nonlinear varia-

tional methods to closed-form trajectory solutions. This section illustrates the method

using the steep lifting entry and Allen-Eggers solutions with a focus on changes in

final range. These solutions are applicable to the same types of trajectories, allow-

ing use of identical initial conditions and vehicle properties for comparison purposes.

While these solutions assume constant vehicle properties, they provide trajectory so-

lutions that may represent nominal flight. For example, the Apollo guidance Final

Phase algorithm is based around a reference trajectory, flown at a constant, reference

L/D.

While the steep-lifting entry approximation requires a small L/D (or steep γ0),

these results are applicable to vehicles with larger L/D. Lifting vehicles cannot

fly at maximum L/D. Doing so saturates the trajectory control system. Again,

while the Apollo Command Module had a maximum hypersonic lift-to-drag ratio of

approximately 0.3, the Apollo Final Phase reference trajectory was designed about a

constant L/D of 0.18, or 60% lift up (σ ≈ 53.13 deg).

6.4.1 Atmospheric Parameters

Figure 92 shows a comparison of the range response of lifting and ballistic entry

vehicles to single, first-order atmospheric model parameter perturbations. Trajectory

parameters are given in Table 17; the lifting vehicle has a lift-to-drag ratio of 0.1.

Figure 92 shows that the lifting and ballistic vehicles exhibit nearly identical responses

to these perturbations. The one small difference is that lifting systems appear to be

slightly less susceptible to H perturbations. This is likely due to the fact that lifting
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systems achieve more shallow flight-path angles during entry than a ballistic system

for a given initial flight-path angle. This renders any difference in the way density

changes with altitude less significant.

Lastly, responses to perturbations in reference density (Figure 92(a)) and reference

altitude (Figure 92(c)) are similar; this is as one might expect, given the coupled

nature of these parameters. For example, a higher-than-expected density at 0 km

altitude could be caused by a larger ρref or a lower value of href .

Figure 92 shows both analytical and numerical solutions. Accuracy is quite good

for both lifting and ballistic entry cases, to the extent that the analytical solutions

correctly model the small difference in response to scale height perturbations.

6.4.2 Initial State Parameters

Figure 93 shows numerical and analytical solutions for the change in range due to first-

order, single-parameter perturbations in initial state for the same lifting and ballistic

vehicles. Performance is similar for perturbations in initial altitude (Figure 93(c)).

The ballistic vehicle is slightly more robust to initial flight-path angle perturbations

(Figure 93(b)).

However, responses are quite different for changes in initial velocity (Figure 93(a)).

First, the accuracy of the analytical solutions is poor for this case because changing

V0 directly changes the domain over which the analytical solutions are derived and

applied. Second, the numerical evaluation shows that ballistic entry vehicles are

slightly more robust to changes in initial velocity.

6.4.3 Vehicle Aerodynamic Parameters

Figure 94 shows the effect on final range due to perturbations in β and L/D. Once

again, results are similar for lifting and ballistic vehicles for perturbations in β (see

Figure 94(a)). Results are markedly different for L/D perturbations. Specifically,

ballistic entry vehicles are not subject to uncertainty in L/D. While ballistic vehicles
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Figure 92: Comparison of perturbations in final range relative to atmospheric param-
eter perturbations for lift and drag-modulation systems.
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Figure 93: Comparison of perturbations in final range relative to initial state pertur-
bations for lift and drag-modulation systems.
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Figure 94: Comparison of perturbations in final range relative to vehicle parameter
perturbations for lift and drag-modulation systems.

may generate small amounts of lift due to shape and c.g. position uncertainties,

ballistic vehicles are typically spun at a small rate to null out the integrated effects

of any lift generated. So, while ballistic vehicles are not sensitive to perturbations in

lift, lifting vehicles are still subject to perturbations in β: lifting vehicles still have

mass and generate drag.

One can develop a second-order solution to perturbations in final range relative

to perturbations in aerodynamic parameters, including interaction effects between β

and L/D perturbations. Results are shown for the same ballistic and lifting vehicles

in Figure 95. Changes in final range are as expected: greater β and greater L/D

produce greater positive changes in final range.

To show the value of a plot such as that shown in Figure 95, an example is shown

below for an MSL-class vehicle entering the Mars atmosphere. Trajectory parameters

for this example are provided in Table 18. Results are shown in Figure 96. The

lifting vehicle has an L/D of 0.144, equivalent to 60% of the maximum L/D of MSL;

this roughly corresponds to a nominal lifting trajectory for a guided vehicle. The

ballistic coefficient is 145 kg/m2 for both vehicles, the same as MSL. Just as before,

the figure shows that lifting vehicles are less robust to atmospheric perturbations. For
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Figure 95: Change in final range in km due to perturbations in β and L/D for ballistic
systems (red) and lifting systems (blue, L/D = 0.1) at Earth.

example, the black box in Figure 96 shows the approximate preflight uncertainty in

MSL’s aerodynamics [171]. For the lifting system, the maximum change in final range

due to aerodynamic perturbations within this box is roughly ±7 km; for the ballistic

system, it is only ±2 km. This extra effect on final range must be flown out by the

lifting control system during entry, reducing the control authority available for other

trajectory goals, such as maintaining altitude, limiting deceleration, or out-of-plane

maneuvers.
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Table 18: MSL-Class Vehicle Entry Trajectory Parameters

Parameter Value
Planet Mars
V0 5900 m/s
γ0 -12 deg
h0 50 km
Vf 1000 m/s
β 145 kg/m2

R 3389.5 km
g 3.71 m/s2

ρref 0.02 kg/m3

H 11000 m
href 0 m
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Figure 96: Change in final range in km due to perturbations in β and L/D for ballistic
systems (red) and lifting systems (blue, L/D ≈ 0.24). Black box shows approximate
uncertainty in MSL aerodynamics.
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6.5 Integrated Results

The results presented in this thesis may be combined to build a set of guidelines for

selecting lift or drag-modulation systems early in the design cycle for planetary entry

missions. Table 19 shows example compiled results for an MSL-class vehicle landing

on Mars. This set of guidelines may help mission and vehicle designers make more

intelligent decisions about trajectory control systems. For example, if crossrange

is required, a lifting system must be used. However, in the absence of crossrange

requirements, a drag-modulation system is preferable if peak deceleration limits are

not strict.
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Table 19: Lift Versus Drag Modulation for an MSL-Class Vehicle

Metric Lift Modulation Drag Modulation

Landed crossrange Capable No capability
Limit peak deceleration More capable Less capable
Limit peak heat rate Less capable More capable
Landed accuracy Similar
Range sensitivity to atmo-
spheric perturbations

Similar

Range sensitivity to initial
state perturbations

Similar

Range sensitivity to aerody-
namic perturbations

Larger (±7 km) Smaller (±2 km)

6.6 Conclusions

Nonlinear variational methods have been applied to closed-form analytical solutions

to the equations of motion to analyze planetary entry systems. This approach allows

one to evaluate the robustness of planetary entry systems relative to one another in

a quantitative fashion.

While it is possible to compute many of the curves and quantities shown in this

chapter numerically, there are distinct advantages to analytical solutions. First, the

analytical solutions execute quickly. Second, the analytical solutions represent exact

solutions to the equations of motion under certain assumptions; the partial deriva-

tives and other expressions shown in this chapter are also exact, and do not include

numerical computation error. Third, analytical expressions for variations in state

parameters of interest have direct application to onboard guidance and targeting al-

gorithms. For example, the Apollo Final Phase reference trajectory is pre-generated

and includes range, altitude rate, and drag as a function of velocity, in addition to

control gains which are simply partial derivatives. Because the trajectory is gener-

ated prior to flight, it is only capable of accounting for error in the states carried.

However, one could easily carry analytical solutions onboard that could account for
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any number of perturbations experienced during flight. This would allow inclusion of

correction parameters for L/D or atmospheric density estimated by the navigation

system. This type of algorithm would also preserve much of the simplicity that is the

hallmark of the Apollo Final Phase algorithm.
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CHAPTER VII

CONCLUSIONS AND FUTURE WORK

7.1 Research Contributions

This thesis advances the state of the art in several ares of interest to the aeroassist

and design methods community.

The closed-form analytical solution to the equations of motion for ballistic entry

developed by Allen and Eggers is enhanced. A method of choosing an appropriate

constant flight-path angle was identified, a closed-form expression for range to go was

developed, and limits based on the equations of motion and acceptable approximation

error were proposed to bound the domain of applicability of the solution. These

extensions address key weaknesses in the original solution and a gap in the current

literature: existing analytical solutions for ballistic entry in the literature did not

provide closed-form expressions for flight range. A comprehensive survey of analytical

methods for the solution of planetary entry trajectories was completed to place the

extended Allen-Eggers solution in proper context. This survey is especially important

as many of the sources that document such solutions in the literature are becoming

more difficult to find due to their age.

The extended and enhanced Allen-Eggers solution was utilized to develop closed-

form analytical relationships for discrete-event drag modulation systems. Analytical

boundaries on jettison conditions were developed to limit peak deceleration and peak

heating. The ratio of the maximum to minimum ballistic coefficient was shown an-

alytically to be the control authority metric for drag-modulation systems, analogous

to L/D for lift-modulation systems.
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The feasibility of drag-modulation trajectory control for planetary entry and aero-

capture missions was demonstrated for several missions of interest to the community.

Flight performance was shown to be competitive with state-of-the-art lift-modulation

systems. Prototype guidance and targeting algorithms for drag-modulation trajectory

control were developed and tested to verify that onboard systems could determine and

execute the drag profiles necessary to meet mission requirements.

Variational methods were applied to closed-form analytical solutions for planetary

entry trajectories to provide quantitative, performance-based measures of robustness

to compare lift and drag-modulation systems. This technique results in closed-form

solutions for variations of arbitrary order due to perturbations in initial state, envi-

ronment parameters, and vehicle parameters. Lift and drag-modulation systems are

shown to exhibit nearly identical responses to model and state perturbations with the

exception of aerodynamic perturbations. Drag-modulation systems are not generally

susceptible to lift perturbations, as they may be spun to null out the integrated ef-

fects of any lift generated. Lift-modulation systems are still subject to uncertainty

in drag as well as lift, decreasing their robustness relative to drag-only systems and

requiring them to devote additional control authority to steering out error caused by

uncertainty in lift.

7.2 Future Work

The results presented in this thesis point to several areas in which additional contri-

butions to the current literature may be made.

The analytical solutions developed and surveyed have direct application to real-

time onboard guidance and targeting algorithms. Specifically,

• Analytical partials may be used to speed the convergence of other algorithms

• Analytical solutions may be used to provide better initial guesses for numerical

algorithms
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• Analytical relationships may provide useful bounds on solutions

• Fully-analytical algorithms may be developed

For example, the Apollo Final Phase algorithm utilizes a table of trajectory states

and partials as a function of velocity to generate bank angle commands during en-

try. It may be possible to completely replace the table with closed-form analytical

relationships for the trajectory states and partials. This would eliminate the need

to maintain ground-support software and checkout for reference trajectories for the

algorithm.

While there is some discussion of analytical approximate solutions for grazing or

skip trajectories in the literature, there are not solutions which are generally appro-

priate for aerocapture. This is largely because most analytical solutions predate the

concept of aerocapture. Existing solutions for entry trajectories point towards pos-

sible closed-form aerocapture solutions. Such solutions would have applicability to

first-order engineering analysis and real-time guidance and targeting algorithms.

Closed-form solutions to the equations of motion may also have application to a

wide range of engineering problems of interest beyond real-time algorithms, includ-

ing closed-form first-order uncertainty analysis using covariance methods and rapid

trajectory optimization.

This thesis has shown that drag-modulation trajectory-control systems are feasi-

ble from a guidance, navigation, and control standpoint. However, significant efforts

are required to mature the concept before an aerocapture or entry flight test. First,

higher-fidelity, six-degree-of-freedom numerical simulations should be conducted to

determine stability characteristics of drag-modulation vehicles. These simulations

may also be used, in conjunction with computational fluid dynamics, to assess hyper-

sonic separation dynamics for discrete-event systems. Computational fluid dynamics,

in conjunction with shock-tube and wind-tunnel tests, may be used to assess aero-

dynamic properties of the vehicle over changes in drag area. System-level studies
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are also needed to provide more detailed data for comparison among potential drag-

modulation mechanisms, including mass, power, and volume requirements. The scal-

ability of drag-modulation trajectory-control systems to higher-mass vehicles should

be evaluated; this is especially important to determine the feasibility of utilizing drag

modulation in support of future human missions to Mars. Lastly, hybrid lift and

drag-modulation systems should be explored.
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[68] de Olivé Ferreira, L., , Vinh, N. X., and Greenwood, D. T., “Critical Cases
of Ballistic Entry: New, Guidance-Oriented, Higher-Order Analytic Solutions,”
Journal of Spacecraft and Rockets , Vol. 37, No. 5, Sept. 2000, pp. 630–637.

[69] Brauer, G. L., Cormick, D. E., and Stevenson, R., “Capabilities and Applica-
tions of the Program to Optimize Simulated Trajectories (POST),” Tech. Rep.
NASA CR-2770, Feb. 1977.

[70] Cameron, J., Balaram, J., Jain, A., Kuo, C., Lim, C., and Myint, S., “Next Gen-
eration Simulation Framework for Robotic and Human Space Missions,” AIAA
SPACE 2012 Conference & Exposition, American Institute of Aeronautics and
Astronautics, Reston, Virigina, Sept. 2012.

[71] Hoelscher, B., “Orion Entry, Descent and Landing Simulation,” AIAA Guid-
ance, Navigation, and Control Conference and Exhibit , American Institute of
Aeronautics and Astronautics, Reston, Virigina, Aug. 2007.

201



[72] Miele, A., Flight Mechanics , Vol. 1, Addison-Wesley, Reading, MA, 1962.

[73] Martin, J. J., Atmospheric Reentry , Prentice-Hall, Englewood Cliffs, NJ, 1966.

[74] Loh, W. T., editor, Re-entry and Planetary Entry Physics and Technology ,
Vol. 1, Springer-Verlag, New York, NY, 1968.

[75] Gallais, P., Atmospheric Re-Entry Vehicle Mechanics , Springer, Berlin, 2007.

[76] Launius, R. D. and Jenkins, D. R., Coming Home: Reentry and Recovery from
Space, NASA, Washington, DC, 2011.

[77] Wang, K. N., “Comment on ”A Second-Order Theory of Entry Mechanics into a
Planetary Atmosphere”,” AIAA Journal , Vol. 1, No. 4, April 1963, pp. 0977b–
0977b.

[78] Loh, W. T., “Author’s Reply to Comment by Kenneth Wang,” AIAA Journal ,
Vol. 1, No. 4, April 1963, pp. 0978a–0978a.

[79] Allen, H. J. and Eggers, A. J., “A Study of the Motion and Aerodynamic Heat-
ing of Missiles Entering the Earth’s Atmosphere at High Supersonic Speeds,”
Tech. Rep. NACA RM A53D28, Washington, DC, Aug. 1953.

[80] Norman, W. S., “Improvements to the Allen and Eggers Solution for Ballistic
Re-Entry,” Air Force Science and Engineering Symposium, edited by J. Seiden
and J. O. Hamlet, Colorado Springs, CO, Oct. 1963, pp. M–1 to M–48.

[81] “H. Julian Allen with Blunt Body Theory,” NASA Ames Research Center, Dec.
1957.

[82] Gazley, C., “Deceleration and Heating of a Body Entering a Planetary Atmo-
sphere from Space,” Tech. Rep. P-955, Feb. 1957.

[83] Gazley, C., “The Penetration of Planetary Atmospheres,” Journal of Heat
Transfer , Vol. 81, No. Series C, Nov. 1959, pp. 315–322.

[84] Gazley, C., “Atmospheric Entry,” Tech. Rep. P-2052, RAND Corp., Santa Mon-
ica, CA, July 1960.

[85] Miller, B. P., “Approximate Velocity, Position and Time Relationship for Bal-
listic Re-Entry,” ARS Journal , Vol. 31, No. 3, March 1961, pp. 437–438.

[86] Moe, M. M., “An Approximation to the Re-Entry Trajectory,” ARS Journal ,
Vol. 30, No. 1, Jan. 1960, pp. 50–53.

[87] Munk, M. M., “Mathematical Analysis of the Vertical Dive,” Aero Digest ,
Vol. 44, Feb. 1944, pp. 114–213.

[88] Turnacliff, R. D. and Hartnett, J. P., “Generalized Trajectories for Free-Falling
Bodies of High Drag,” Jet Propulsion, Vol. 28, No. 4, April 1958, pp. 263–266.

202



[89] Squire, W., “Some Comments on Generalized Trajectories for Free Falling Bod-
ies of High Drag,” Jet Propulsion, Vol. 28, No. 12, Dec. 1958, pp. 838–839.

[90] Blum, R., “Re-Entry Trajectories: Flat Earth Approximation,” ARS Journal ,
Vol. 32, No. 4, April 1962, pp. 616–620.

[91] Kumagai, T. T., “Approximation of time of ballistic entry,” Journal of Space-
craft and Rockets , Vol. 1, No. 6, Nov. 1964, pp. 675–676.

[92] Adler, A. A., “Calculation of Re-Entry Velocity Profile,” Jet Propulsion,
Vol. 28, No. 12, Dec. 1958, pp. 827–828.

[93] Randall, D. E., “Influence of staging on re-entry trajectory characteristics,”
Journal of Spacecraft and Rockets , Vol. 7, No. 3, March 1970, pp. 370–372.

[94] Putnam, Z. R. and Braun, R. D., “Extension and Enhancement of the Allen-
Eggers Solution for Ballistic Entry Trajectories,” Journal of Guidance, Control,
and Dynamics , Jan. 2015.

[95] Loh, W. H. T., “A Higher Order Theory of Ballistic Entry,” American Astro-
nautical Society Eighth Annual Meeting , American Astronautical Society 8th
Annual Meeting, Washington, DC, Jan. 1962, pp. 529–540.

[96] Loh, W. H. T., “Ballistic Re-Entry at Small Angles of Inclination,” ARS Jour-
nal , Vol. 32, No. 5, 1962, pp. 718–721.

[97] Robinson, A. and Besonie, A., “On the Problems of Re-Entry into the Earth’s
Atmosphere,” Journal of the Astronautical Sciences , Vol. 7, No. 1, April 1960,
pp. 7–21.

[98] Cohen, M. J., “Some closed form solutions to the problem of re-entry of lift-
ing andnon-lifting vehicles,” 2nd Aerospace Sciences Meeting , Northhampton
College of Advanced Technology, American Institute of Aeronautics and Astro-
nautics, New York, NY, Jan. 1965.

[99] Barbera, F. J., “Closed-Form Solution for Ballistic Vehicle Motion,” Journal of
Spacecraft and Rockets , Vol. 18, No. 1, Jan. 1981, pp. 52–57.

[100] Ambrosio, A., “A General Atmospheric Entry Function and Its Characteris-
tics,” ARS Jounral , Vol. 32, No. 6, June 1962, pp. 906–910.

[101] Eggers, A. J., Allen, H. J., and Neice, S. E., “A Comparative Analysis of
the Performance of Long-Range Hypervelocity Vehicles,” Tech. Rep. NACA
RM A54L10, NACA - Ames Aeronautical Laboratory, Washington, DC, March
1955.

[102] Eggers, A. J., Allen, H. J., and Neice, S. E., “A Comparative Analysis of
the Performance of Hypervelocity Vehicles,” Tech. Rep. Technical Note 4046,
Washington, DC, Oct. 1957.

203



[103] Lees, L., Hartwig, F. W., and Cohen, C. B., “The Use of Aerodynamic Lift
During Entry Into the Earth’s Atmosphere,” Tech. Rep. GM-TR-0165-00519,
Nov. 1958.

[104] Braun, R. D. and tauber, M. E., “Planetary Entry,” Georgia Tech, Atlanta,
GA, 2005.

[105] Nyland, F. S., “Hypersonic Turning With Constant Bank Angle Control,” Tech.
Rep. RM-4483-PR, RAND Corp., March 1965.

[106] Wang, H. E., “Approximate Solutions of the Lateral Motion of Re-Entry Ve-
hicles During Constant Altitude Glide,” Tech. Rep. TDR 169 (3560-10) TN-1,
Aerospace Corp., El Segundo, CA, Feb. 1963.

[107] Wang, H. E., “Motion of re-entry vehicles during constant-altitude glide,” AIAA
Journal , Vol. 3, No. 7, July 1965, pp. 1346–1348.

[108] Arthur, P. D. and Baxter, B. E., “Approximate Atmospheric Entry Trajectories
on a Cylindrical Planet,” AIAA Journal , Vol. 4, No. 8, Aug. 1966, pp. 1436–
1437.

[109] Loh, W. T., “Some Exact Analytical Solutions of Planetary Entry,” AIAA
Journal , Vol. 1, No. 4, April 1963, pp. 836–842.

[110] Tikhonravov, M. K., Iatsunskii, I. M., Maksimov, G. I., Bazhinov, I. K., and
Gurko, O. V., Principles of the Theory of Flight and Elements of Projections
of Artificial Earth Satellites , Mashinostroenie, Moscow, 1967.

[111] Wang, H. E. and Chu, S. T., “Variable-Lift Re-Entry at Superorbital and Or-
bital Speeds,” AIAA Journal , Vol. 1, No. 5, May 1963, pp. 1047–1055.

[112] Nachtsheim, P. R. and Lehman, L., “Unified Treatment of Lifting Atmospheric
Entry,” Journal of Spacecraft and Rockets , Vol. 17, No. 2, March 1980, pp. 119–
122.

[113] Cody, W. J. and Thacher, H. C., “Rational Chebyshev Approximations for the
Exponential Integral E1(x),” Mathematics of Computation, Vol. 22, No. 103,
July 1968, pp. 641–649.

[114] Eggers, A. J. and Wong, T. J., “Motion and Heating of Lifting Vehicles During
Atmosphere Entry,” ARS Journal , Vol. 31, No. 10, Oct. 1961, pp. 1364–1375.

[115] Chapman, D. R. and Kapphahn, A. K., “Tables of Z Functions for Atmosphere
Entry Analyses,” Tech. Rep. NASA TR R-106, Washington, DC, 1961.

[116] Nonweiler, T., “The Motion of an Earth Satellite on Re-entry to the Atmo-
sphere,” Astronautica Acta, Vol. 5, No. 1, 1959, pp. 40–62.

204



[117] Levy, L. L., “An Approximate Analytical Method for Studying Atmosphere
Entry of Vehicles With Modulated Aerodynamic Forces,” Tech. Rep. TN D-
319, Ames Research Center, Washington, DC, Oct. 1960.

[118] Boltz, F. W., “Z-Function Solutions for the Motion and Heating During At-
mosphere Entry from Equatorial Orbits of a Rotating Planet,” Tech. Rep. TN
D-1555, Ames Research Center, Washington, DC, Feb. 1963.

[119] Busemann, A., Vinh, N. X., and Culp, R. D., “Optimum Three-Dimensional At-
mospheric Entry from the Analytical Solution of Chapman’s Exact Equations,”
Tech. Rep. CR-132571, 1974.

[120] Busemann, A., Vinh, N. X., and Culp, R. D., “Hypersonic Flight Mechanics,”
Tech. Rep. NASA CR-149170, Washington, DC, Sept. 1976.

[121] Vinh, N. X., Kim, E.-K., and Greenwood, D. T., “Second-order Analytic So-
lutions for Re-entry Trajectories,” AIAA Guidance, Navigation, and Control
Conference, University of Michigan, Monterrey, CA, Aug. 1993.

[122] Vinh, N. X., Ferreira, L. d.-O., Kim, E.-K., and Greenwood, D. T., “Higher-
order Analytic Solutions for Critical Cases of Ballistic Entry,” AIAA Atmo-
spheric Flight Mechanics Conference, San Diego, CA, July 1996.

[123] Gates, K. L., Ayoubi, M. A., Longuski, J. M., and Lyons, D. T., “Analytic Solu-
tions for Aerocapture, Descent, and Landing Trajectories for Dual-Use Ballute
Systems,” AIAA/AAS Astrodynamics Specialist Conference and Exhibit , Key-
stone, CO, Aug. 2006, pp. 1–25.

[124] Longuski, J. M. and Saikia, S. J., “Analytical Theory for Ballistic Entry at
Circular Speed for Various Flight Path Angles,” 2013.

[125] Yaroshevskiy, V. A., “Approximate Calculation of Trajectory for Entry Into
Atmosphere I,” Kosmicheskiye Issledovaniya (Cosmic Research), Vol. 2, No. 4,
1964.

[126] Yaroshevskiy, V. A., “Approximate Calculation of Trajectory for Entry Into
Atmosphere II,” Kosmicheskiye Issledovaniya (Cosmic Research), Vol. 2, No. 5,
1964.

[127] Ikawa, H., “A Methodology for Aerodecelerating Entry Trajectory Analy-
sis,” AIAA Atmospheric Flight Mechanics Conference, Rockwell International,
Gatlinburg, TN, Aug. 1983.

[128] Saikia, Sarag J., L. J. M. and Rhoads, J. F., “Solution of Yaroshevksii’s Plan-
etary Entry Equation Via a Perturbative Method,” 2013.

[129] WIlles, R. E., Francisco, M. C., Reid, J. G., and Lim, W. K., “An application
of matched asymptotic expansions to hypervelocity flight mechanics,” AIAA
Guidance, Control, and Flight Dynamics Conference, American Institute of
Aeronautics and Astronautics, Huntsville, AL, Aug. 1967.

205



[130] Shi, Y.-Y. and Pottsepp, L., “Asymptotic expansion of a hypervelocity atmo-
spheric entry problem.” AIAA Journal , Vol. 7, No. 2, Feb. 1969, pp. 353–355.

[131] Eckstein, M. C., Pottsepp, L., and Shi, Y.-Y., “A Matched Asymptotic Solution
for Skipping Entry Into Planetary Atmosphere,” AIAA Journal , Vol. 9, No. 4,
April 1971, pp. 736–738.

[132] Shi, Y.-Y., “Matched Asymptotic Solutions for Optimum Lift Controlled At-
mospheric Entry,” AIAA Journal , Vol. 9, No. 11, Nov. 1971, pp. 2229–2238.

[133] Hough, M., “Ballistic Entry Motion Using a Generic Inviscid Drag Model,”
AIAA/AAS Astrodynamics Conference, American Institute of Aeronautics and
Astronautics, San Diego, CA, Aug. 1982.

[134] Hough, M. E., “Ballistic Entry Motion, Including Gravity - Constant Drag
Coefficient Case,” Journal of Guidance, Control, and Dynamics , Vol. 5, No. 6,
Nov. 1982, pp. 553–557.

[135] Ceruzzi, P. E., Beyond the Limits: Flight Enters the Computer Age, MIT Press,
Cambridge, MA, 1989.

[136] Ceruzzi, P. E., A History of Modern Computing , MIT Press, Cambridge, MA,
2nd ed., 2003.

[137] Friedrich, H. R. and Dore, F. J., “The Dynamic Motion of A Missile Descending
Through the Atmosphere,” Journal of the Aeronautical Sciences , Vol. 22, No. 9,
Sept. 1955, pp. 628–632.

[138] Grant, F. C., “Importance of the Variation of Drag With Lift in Minimization of
Satellite Entry Acceleration,” Tech. Rep. TN D-120, Langley Research Center,
Washington, DC, Oct. 1959.

[139] Lichtenstein, J. H., “Analytical Investigation of the Dynamic Behavior of a
Nonlifting Manned Reentry Vehicle,” Tech. Rep. TN D-416, Washington, DC,
Sept. 1960.

[140] Cheatham, D. C., Young, J. W., and Eggleston, J. M., “The Variation and
Control of Range Traveled in the Atmosphere by a High-Drag Variable-Lift
Entry Vehicle,” Tech. Rep. NASA TN D-230, Washington, DC, March 1960.

[141] Duncan, R. C., Dynamics of Atmospheric Entry , McGraw-Hill Series in Missile
and Space Technology, McGraw-Hill, New York, 1962.

[142] Loh, W. H. T., “Numerical and Approximate Solutions of Re-Entry at Large
Angles of Inclination,” Journal of the Aerospace Sciences , Vol. 28, Dec. 1961,
pp. 982–983.

[143] Loh, W. H. T., “On Exact Numerical and Approximate Analytical Solution for
Ballistic Re-Entry at Nearly-Zero-Degree Angle of Inclination,” Journal of the
Aerospace Sciences , Vol. 29, No. 4, 1962, pp. 495–496.

206



[144] Wahbah, M. M., Berning, M. J., and Choy, T. S., “Simulation of Airplane and
Rocket Trajectories,” Tech. Rep. MSC-20933, Houston, TX, July 1987.

[145] Tannas, L. E., “Manual Entry Guidance,” Journal of Spacecraft and Rockets ,
Vol. 3, No. 2, Feb. 1966, pp. 175–181.

[146] Tannas, L. E., “Re-entry Guidance Through Closed-form Equations.” AIAA
Journal , Vol. 5, No. 6, June 1967, pp. 1102–1109.

[147] Vinh, N. X., Chern, J. S., and Lin, C. F., “Phugoid oscillations in optimal
reentry trajectories,” Acta Astronautica, Vol. 8, 1981, pp. 311–324.

[148] Hale, F. J., Introduction to Space Flight , Prentice-Hall, 1994.

[149] Matlab R2013b, The Mathworks, Natick, MA, 2013.

[150] Mathematica 10 , Wolfram Research, Champaign, IL, 2014.

[151] Desai, P. N. and Qualls, G. D., “Stardust Entry Reconstruction,” Journal of
Spacecraft and Rockets , Vol. 47, No. 5, Sept. 2010, pp. 736–740.

[152] Kontinos, D. A. and Wright, M. J., “Introduction: Atmospheric Entry of the
Stardust Sample Return Capsule,” Journal of Spacecraft and Rockets , Vol. 47,
No. 6, Nov. 2010, pp. 865–867.

[153] King, H. H., “Ballistic missile re-entry dispersion,” Journal of Spacecraft and
Rockets , Vol. 17, No. 3, May 1980, pp. 240–247.

[154] Oberg, J., “Internal NASA Document Gives Clues to Scary Soyuz Return
Flight,” IEEE Spectrum, May 2008.

[155] Fegley, B., “Properties and Composition of the Terrestrial Oceans and of the
Atmosphere of the Earth and Other Planets,” Global Earth Physics: A Hand-
book of Physical Constants , American Geophysical Union, Washington, DC,
1995, pp. 320–345.

[156] Memorial Tributes , Vol. 1, National Academy of Engineering, Washington, DC,
1979.

[157] Sutton, K. and Graves, R. A., “A General Stagnation-point Convective-heating
Equation for Arbitrary Gas Mixtures,” Tech. Rep. NASA TR R-376, NASA,
Washington, DC, Nov. 1971.

[158] Griffin, M. D. and French, J. R., Space Vehicle Design, AIAA, Reston, VA,
second edition ed., 2004.

[159] Putnam, Z. R. and Braun, R. D., “Precision Landing at Mars Using Discrete-
Event Drag Modulation,” Journal of Spacecraft and Rockets , Vol. 51, No. 1,
Feb. 2014, pp. 128–138.

207



[160] Schoenenberger, M., Dyakonov, A., Buning, P., Scallion, W., and Van Norman,
J., “Aerodynamic Challenges for the Mars Science Laboratory Entry, Descent
and Landing,” 41st AIAA Thermophysics Conference, San Antonio, Texas,
June 2009, pp. 1–29.

[161] McDaniel, R. D., Wright, M. J., and Songer, J. T., “Aeroheating Predictions
for Phoenix Entry Vehicle,” AIAA Aerospace Sciences Meeting , Reno, Nevada,
Jan. 2008, pp. 1–25.

[162] Martin-Mur, T. J., Kruizinga, G. L., and Wong, M. C., “Mars Science Labo-
ratory Interplanetary Navigation Analysis,” 21st International Symposium in
Space Flight Dynamics , San Jose dos Campos, Brazil, Jan. 2011, pp. 1–15.

[163] Way, D. W., “On the Use of a Range Trigger for the Mars Science Laboratory
Entry, Descent, and Landing,” IEEE Aerospace Conference, Big Sky, Montanta,
March 2011, pp. 1–8.

[164] Desai, P. N., Schoenenberger, M., and Cheatwood, F. M., “Mars Exploration
Rover Six-Degree-of-Freedom Entry Trajectory Analysis,” Journal of Spacecraft
and Rockets , Vol. 43, No. 5, Sept. 2006, pp. 1019–1025.

[165] Braun, R. D., Powell, R. W., Engelund, W. C., Gnoffo, P. A., Weilmuenster,
K. J., and Mitcheltree, R. A., “Mars Pathfinder Six-Degree-of-Freedom Entry
Analysis,” Journal of Spacecraft and Rockets , Vol. 32, No. 6, Nov. 1995, pp. 993–
1000.

[166] Spencer, D. A. and Braun, R. D., “Mars Pathfinder Atmospheric Entry: Trajec-
tory DesignandDispersion Analysis,” Journal of Spacecraft and Rockets , Vol. 33,
No. 5, Sept. 1996, pp. 670–676.

[167] Justh, H. L. and Ramey, H. S., “Mars-GRAM 2010: Improving the Precision of
Mars-GRAM,” 4th International Workshop on the Mars Atmosphere: Modelling
and Observations , Feb. 2011, pp. 1–4.

[168] Tauber, M. E. and Sutton, K., “Stagnation-point Radiative Heating Relations
for Earth and Mars Entries,” Journal of Spacecraft and Rockets , Vol. 28, No. 1,
June 1991, pp. 40–42.

[169] Kinney, D., “Aero-Thermodynamics for Conceptual Design,” 42nd AIAA
Aerospace Sciences Meeting and Exhibit , Reno, Nevada, Jan. 2004, pp. 1–11.

[170] Cruz, J. R., Way, D. W., Shidner, J. D., Davis, J. L., and Kipp, D. M., “Mars
Science Laboratory: Description of the Parachute Models Used in the POST
End-to-end Simulation,” Tech. rep., NASA Langley Research Center, Hampton,
VA, July 2012.

[171] Striepe, S. A., Way, D. W., and Dwyer, A. M., “Mars Science Laboratory Sim-
ulations for Entry, Descent, and Landing,” Journal of Spacecraft and Rockets ,
Vol. 43, No. 2, March 2006, pp. 311–323.

208



[172] Vincenty, T., “Direct and Inverse Solutions of Geodesics on the Ellipsoid with
Application of Nested Equations,” Survey Review , Vol. XXII, No. 176, April
1975, pp. 88–93.

[173] Mase, R. A., Spencer, D. A., Smith, J. C., and Braun, R. D., “Navigation
Stragtegy for the Mars 2001 Lander Mission,” AAS/AIAA Astrodynamics Spe-
cialist Conference, Girdwood, AK, 1999.

[174] Raiszadeh, B., Desai, P. N., and Michelltriee, R., “Mars Exploration Rover
Heat Shield Recontact Analysis,” 21st AIAA Aerodynamic Decelerator Systems
Technology Conference and Seminar , Dublin, Ireland, May 2011.

[175] Putnam, Z. R., Clark, I. G., and Braun, R. D., “Drag modulation flight control
for aerocapture,” Aerospace Conference, 2012 IEEE , 2012, pp. 1–10.

[176] Putnam, Z. R. and Braun, R. D., “Drag-Modulation Flight-Control System
Options for Planetary Aerocapture,” Journal of Spacecraft and Rockets , Aug.
2013, pp. 1–12.

[177] Duvall, A. L., Justus, C. G., and Keller, V. W., “Global Reference Atmospheric
Model (GRAM) Series for Aeroassist Applications,” 43rd AIAA Aerospace Sci-
ences Meeting and Exhibit , Reno, NV, Jan. 2005.

[178] Wooster, P. D., Braun, R. D., Ahn, J., and Putnam, Z. R., “Mission design
options for human Mars missions,” MARS , Vol. 3, 2007, pp. 12–28.

[179] Lockwood, Mary Kae, “Titan Aerocapture Systems Analysis,” 39th
AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit ,
Huntsville, AL, July 2003.

[180] Craig, S. and Lyne, J. E., “Parametric Study of Aerocapture for Missions to
Venus,” Journal of Spacecraft and Rockets , Vol. 42, No. 6, Nov. 2005, pp. 1035–
1038.

[181] Graf, J. E., Johnston, M. D., Zurek, R. W., De Paula, R. P., Eisen, H. J.,
and Jai, B., “The Mars Reconnaissance Orbiter Mission,” 54th International
Astronautical Congress , Bremen, Germany, Oct. 2003.

209


	Titlepage
	Signatures
	Acknowledgements
	Table of Contents
	List of Tables 
	List of Figures 
	Nomenclature
	Summary
	Chapter 1 — Introduction
	Planetary Aeroassist Systems
	Aeroassist Maneuvers
	Deployable Decelerators

	Aeroassist Flight Dynamics
	The Equations of Motion
	Trajectory Control Options
	Aerodynamic Force Parameterization
	Planetary Entry Corridors
	Flight Performance Evaluation

	Contributions of Thesis

	Chapter 2 — Survey of Analytical Solutions for Planetary Entry Trajectories
	Approximating Trajectory Solutions for Planetary Entry
	Analytical Approximate Solutions
	Ballistic Entry
	Lifting Entry
	General Methods

	Hybrid Analytical-Numerical Approximate Solutions
	Chapman and Vinh
	Yaroshevskiy
	Matched Asymptotic Solutions

	Numerical Approximate Solutions and Machine Computation
	Summary

	Chapter 3 — Enhancement of the Allen-Eggers Solution
	Methods and Assumptions
	Review of the Allen-Eggers Solution
	Altitude-Velocity Profile
	Acceleration Magnitude
	Convective Heat Rate
	Simplified Expressions
	Application to Example Trajectories

	Enhancement of the Allen-Eggers Solution
	Determining the Constant Flight-Path Angle
	Bounding the Domain of Applicability
	Closed-Form Expressions for Range
	Trajectory States as a Function of Time

	Assessment of Approximation Error and Applicability
	The Extended and Enhanced Allen-Eggers Approximation
	Applicability to Other Initial Conditions

	Summary

	Chapter 4 — Analytical Assessment of Discrete-Event Drag-Modulation Systems
	Application of the Enhanced Allen-Eggers Solution
	Range Control Authority
	Minimizing Peak Deceleration for Single-Stage Systems
	Minimizing Stagnation-Point Heat Rate
	Summary

	Chapter 5 — Application of Drag-Modulation Trajectory Control to Aeroassist Systems: Numerical Feasibility
	Precision Landing at Mars Using Discrete-Event Drag-Modulation
	System Concept
	Numerical Analysis Methods and Assumptions
	Corridor Definition and Divert Capability
	Entry, Descent, and Landing Flight Performance
	Summary

	Drag-Modulation System Options for Planetary Aerocapture
	Drag Modulation Flight Control Concepts
	Real-time Guidance
	Methodology
	Corridor and Feasibility
	Case Study: Aerocapture at Mars
	Summary

	Conclusions

	Chapter 6 — Comparison of Lift and Drag-Modulation Systems Using Nonlinear Variational Methods
	Introduction
	Nonlinear Variational Methods
	Application to Ballistic Entry Using the Allen-Eggers Solution
	Robustness to Atmospheric Parameters

	Comparison of Lift and Drag-Modulation Systems for Steep Entry Trajectories
	Atmospheric Parameters
	Initial State Parameters
	Vehicle Aerodynamic Parameters

	Integrated Results
	Conclusions

	Chapter 7 — Conclusions and Future Work
	Research Contributions
	Future Work

	References

