
A MODELING TRADE-OFF FORECASTING
ENVIRONMENT FOR MILITARY AIRCRAFT

SUSTAINMENT

A Thesis
Presented to

The Academic Faculty

by

Elizabeth Saltmarsh

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Aerospace Engineering

Georgia Institute of Technology
May 2015

Copyright c© 2015 by Elizabeth Saltmarsh

A MODELING TRADE-OFF FORECASTING
ENVIRONMENT FOR MILITARY AIRCRAFT

SUSTAINMENT

Approved by:

Regents’ Professor Dimitri Mavris,
Advisor
School of Aerospace Engineering
Georgia Institute of Technology

Assistant Professor John Salmon
Department of Mechanical
Engineering
Brigham Young University

Professor Daniel Schrage
School of Aerospace Engineering
Georgia Institute of Technology

Dr. Kelly Griendling
School of Aerospace Engineering
Georgia Institute of Technology

Assistant Professor Graeme Kennedy
School of Aerospace Engineering
Georgia Institute of Technology

Date Approved: April 3, 2015

ACKNOWLEDGEMENTS

I would first like to thank Dr. Mavris for his guidance throughout the thesis process,

especially for his help in scoping and framing the work. Dr. Schrage provided helpful

information about the military sustainment context into which my specific problem

fit. Dr. Kennedy’s insight into the optimization studies was key in fully exploring

this aspect of the problem. Dr. Salmon’s advice about the model, the visualization

of results, and how this related back to the overall thesis goals was much appreciated,

as were Dr. Griendling’s unique contributions to these areas. Dr. Griendling also

contributed the idea for a use case methodology to help explain how SustainME works,

which helped to ground the results chapter. Burak Bagdatli’s modeling insights were

helpful for finding alternative solutions to problems I initially encountered in this

area, and his advice on how to visualize some of the results was helpful. Nick Molino

contributed ideas for how to normalize the objective function in the optimization, and

Scott Wilson was instrumental in helping to work out some of the practical aspects of

the optimization problem as well as contributing visualization advice. My work with

Phil Fahringer, Anne Flannigan and Heather Miller at Lockheed Martin over the years

helped prepare me to understand and model military aircraft sustainment, and much

of this experience was helpful in both developing and verifying the model. Finally,

many members of the Aerospace Systems Design Lab and Aerospace Department

support staff have contributed their assistance throughout this process by providing

information and support; but Loretta Carroll deserves special recognition for her help

in facilitating each step, both major and minor.

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

LIST OF TABLES . viii

LIST OF FIGURES . ix

LIST OF SYMBOLS OR ABBREVIATIONS xiv

SUMMARY . xvi

I INTRODUCTION . 1

1.1 Sustainment . 1

1.2 Paradigm Shift . 4

1.3 Sustain-ME Use Case . 9

1.3.1 General Use Case . 9

1.3.2 Example Study . 12

1.4 Novel Maintenance Paradigm . 14

1.5 Thesis Organization . 15

II BACKGROUND . 16

2.1 Maintenance Philosophies . 16

2.1.1 Unscheduled Maintenance Alone 17

2.1.2 Scheduled Maintenance With Unscheduled Maintenance . . . 18

2.1.3 Condition Based Maintenance 20

2.1.4 Alternate Maintenance Paradigms 22

2.1.5 Three Level and Hole-in-the-Wall Maintenance 24

2.1.6 Reliability Models . 25

2.2 Prognostic Health Management . 27

2.3 Sustainment Details . 31

2.3.1 Reactive Maintenance Steps 31

2.3.2 Condition Based Maintenance with Inspection Steps 33

2.3.3 Condition Based Maintenance with PHM Steps 34

iv

2.3.4 Sustainment Conclusions . 34

2.4 Maintenance Metrics . 35

2.5 Supply Chain Management . 36

2.6 Optimization and Decision Making Methods 38

2.7 Modeling . 43

2.7.1 Markov Chains . 43

2.7.2 Stochastic Petri Nets . 45

2.7.3 Agent Based Modeling and Multi-Agent Systems 47

2.7.4 System Dynamics Modeling 48

2.7.5 Discrete Event Simulation 49

2.7.6 Modeling Conclusions . 50

2.8 Conclusions . 51

III MODEL FORMULATION AND EXPERIMENTS 53

3.1 Sustainment Modeling . 54

3.1.1 Operations Modeling . 54

3.1.2 Maintenance Modeling . 59

3.1.3 Supply Chain Modeling . 62

3.1.4 Additional Modeling Assumptions 62

3.1.5 Modeling Conclusions . 70

3.2 Hypotheses and Experiments . 70

3.2.1 Hypothesis 1 Testing . 71

3.2.2 Hypothesis 2 Testing . 72

3.3 CBM-MiMOSA Strategy . 73

3.3.1 Problem Definition . 73

3.3.2 Optimization Implementation 86

IV SUSTAIN-ME VERIFICATION . 93

4.1 Inputs . 97

4.2 Assumptions . 97

v

4.3 Sortie Generation: Verification . 98

4.4 Sortie Assignment: Verification . 105

4.5 Fleet Operations Excluding Supply Chain: Verification 108

4.5.1 Event Activity Verification 111

4.5.2 Distribution Verification . 121

4.5.3 Operational Availability . 127

4.5.4 Fleet Operations Excluding Supply Chain Conclusions 128

4.6 Fleet Operations Including Supply Chain: Verification 128

4.6.1 Supply Chain with High Inventory Level Comparison 129

4.6.2 Effect of Inventory on Operational Availability 130

4.6.3 Event Activity Verification 134

4.6.4 Supply Chain Behavior . 145

4.6.5 Multiple Part Categories . 150

4.6.6 Fleet Operations Including Supply Chain Conclusions 155

4.7 CBM with PHM: Verification . 155

4.8 CBM-MiMOSA: Verification . 158

4.9 Verification Conclusions . 176

V EXPERIMENTS AND MAINTENANCE PARADIGM STUDY 177

5.1 Use Case and Use Methodology . 177

5.2 Step 1: Metrics of Interest . 179

5.3 Step 2: Sustainment Requirements 182

5.4 Step 3: Potential Sustainment Strategies 188

5.5 Step 4: Additional Logic . 188

5.5.1 OEC Weighting Study . 189

5.5.2 Maintenance Resource Study 199

5.6 Step 5: Define Experiments . 207

5.7 Step 6: Analyze Results . 209

5.7.1 PHM Detection Lead Time Study 210

vi

5.8 Initial Inventory Investment Required 214

5.9 Use Case Conclusions . 218

VI CONCLUSION . 220

6.1 Thesis Results Summary . 220

6.2 Contributions and Future Work . 225

6.3 Final Thoughts . 227

APPENDIX A — SUSTAIN-ME CODE 229

REFERENCES . 286

VITA . 296

vii

LIST OF TABLES

1 Modeling method evaluation against criteria 51

2 Mission preparation time distributions 58

3 Maintenance time distributions[39] 62

4 Steps required to generate specific part failure and detection times . . 66

5 Model inputs for each section . 97

6 Model assumptions . 98

7 Sortie generation test cases . 99

8 Scheduled events for surge and weekend test case 104

9 Frequency and percent of path occurrence for fleet operations 118

10 Theoretical and observed parameters of simulation step distributions 126

11 Time averaged operational availability comparison 130

12 Frequency and percent of path occurrence for fleet operations 134

13 Frequency and percent of path occurrence for fleet operations 139

14 Frequency and percent of path occurrence for fleet operations 143

15 Unsorted optimization inputs . 160

16 Optimization inputs, sorted by minimum part life 161

17 Mission settings for optimized problem 164

18 Mission settings for optimized problem 164

19 Maintenance time settings for optimized problem 164

20 Minimum, maximum and standard deviation of maintenance intervals 194

21 Minimum, maximum and standard deviation of all intervals 197

22 Average across ten repetitions of high level metrics 214

viii

LIST OF FIGURES

1 Sustainment components . 4

2 Air Force operational paradigm shift 5

3 Hazard rate function – bathtub curve[66] 26

4 Sustainment steps under reactive maintenance strategy (all failures
assumed critical) . 32

5 Sustainment steps under inspection enabled CBM strategy 33

6 Sustainment steps under PHM enabled CBM strategy 35

7 Condition based maintenance objectives 39

8 Condition based maintenance objectives 40

9 Sustainment steps under CBM strategy with predictable scheduling . 41

10 Hierarchy of modeling types . 44

11 Discrete event simulation[103] . 49

12 Mission preparation activities . 56

13 Mission recovery activities . 59

14 Maintenance activities . 61

15 Supply chain activities . 63

16 Illustration of Sustain-ME part failure 65

17 Illustration of Sustain-ME part failure detection 66

18 Notional timeline of evenly spaced maintenance visits T0 through T7 . 88

19 Notional timeline of unevently spaced maintenance visits T0 through T7 89

20 Notional timeline of unevently spaced maintenance visits T0 through T7 89

21 Sustain-ME to sustainment translation 94

22 Sustain-ME to sustainment translation 96

23 Unflown missions for shorter backlog test case 100

24 Unflown missions for longer backlog test case 101

25 Unflown missions for baseline test case 102

26 Unflown missions for baseline with surge test case 102

ix

27 Unflown missions for baseline with weekend hours test case 103

28 Unflown missions for surge with weekend hours test case 105

29 Aircraft awaiting missions – fleet of 10 aircraft 107

30 Aircraft awaiting missions – fleet of 30 aircraft 107

31 Aircraft awaiting missions – fleet of 50 aircraft 108

32 Aircraft order of events flowchart . 109

33 Path 1 event trace diagram . 112

34 Path 2 event trace diagram . 113

35 Path 3 event trace diagram . 114

36 Aircraft event trace diagram, 30 days 116

37 Aircraft event trace diagram, 30 days 117

38 Aircraft event trace diagram, 365 days 120

39 Comparison of distributions for mission scheduling step 121

40 High granularity histogram . 122

41 Comparison of distributions for preflight check step 122

42 Comparison of distributions for refueling step 122

43 Comparison of distributions for load weapons step 123

44 Comparison of distributions for engine start, final weapons check and
taxi step . 123

45 Comparison of distributions for takeoff step 123

46 Comparison of distributions for fly mission step 124

47 Comparison of distributions for landing step 124

48 Comparison of distributions for parking and recovery step 124

49 Comparison of distributions for servicing step 125

50 Comparison of await inventory step 125

51 Comparison of paperwork step . 125

52 Comparison of documentation step 126

53 Operational availability with minimum resources 127

54 Interdependence of sequential queues 130

x

55 Model behavior with 250 spare parts 131

56 Model behavior with 150 spare parts 132

57 Model behavior with 50 spare parts 132

58 Model behavior with 0 spare parts . 133

59 Time averaged AO versus inventory 135

60 Event trace diagram for 225 spare parts, 365 days 136

61 Event trace diagram for 225 spare parts, 30 days 137

62 Event trace diagram for 180 spare parts, 365 days 140

63 Event trace diagram for 180 spare parts, last 6000 hours 141

64 Event trace diagram for 180 spare parts, 5 years 142

65 Event trace diagram for 25 spare parts, 365 days 144

66 Part event order check with 225 spare parts 147

67 Part event order check with 180 spare parts 148

68 Part event order check with 25 spare parts 149

69 Number of parts in each state for 225 spare parts 151

70 Number of parts in each state for 180 spare parts 151

71 Number of parts in each state for 25 spare parts 152

72 Event trace diagram for six parts . 153

73 Number of parts in each state for low reliability part 154

74 Number of parts in each state for high reliability part 154

75 PHM operation for low reliability part 157

76 PHM operation for high reliability part 158

77 Optimization module problem statement 163

78 PHM operation under optimization for low reliability part 167

79 PHM operation under optimization for high reliability part 168

80 Updated aircraft operational logic . 170

81 Path 1 aircraft order of events . 171

82 Path 2 aircraft order of events . 172

83 Path 3 aircraft order of events . 173

xi

84 New path 4 aircraft order of events 174

85 New path 5 aircraft order of events 175

86 Order of paths for one aircraft under optimization 176

87 Use case methodology . 179

88 AO vs. RO for varying inventory . 180

89 AO vs. RO for varying ground crew 181

90 Inventory impact on AO over full inventory range 183

91 Inventory impact on AO over select inventory range 184

92 Inventory impact on RO . 185

93 Single model run: AO vs. time with 312 total spare parts 186

94 Ten model runs: operational availability (AO) vs. time with 312 total
spare parts . 186

95 Single model run: operational reliability (RO) vs. time with 312 total
spare parts . 187

96 Ten model runs: RO vs. time with 312 total spare parts 187

97 OEC weight study results – all weight settings 191

98 OEC weight study results – zero weightings excluded 193

99 Interval length (log scale) . 195

100 Maintenance visit spacing for optimized solution 195

101 Maintenance visit spacing for CBM-MiMOSA, CBM alone, and reac-
tive maintenance . 195

102 Maintenance visit spacing for CBM-MiMOSA, CBM alone, and reac-
tive maintenance . 197

103 Effect on aircraft available on missions flown 198

104 Average AO and RO for two maintenance paradigms 200

105 Average maintenance interval for two maintenance paradigms 200

106 Average mission aborts and unflown missions for two maintenance
paradigms . 201

107 Average mission aborts and unflown missions for two maintenance
paradigms . 202

108 Percent of time spent in different states 204

xii

109 Average operational availability for three maintenance paradigms and
with additional maintenance resources 205

110 Average operational reliability for three maintenance paradigms and
with additional maintenance resources 206

111 Average unflown missions for three maintenance paradigms and with
additional maintenance resources . 206

112 Convergence of AO repetition average vs. number of repetitions . . . 209

113 Effect of PHM detection lead time on operational availability 211

114 Effect of PHM detection lead time on operational reliability 211

115 Ten repetitions of operational availability – reactive maintenance . . . 216

116 Ten repetitions of operational availability – CBM paradigm 216

117 Ten repetitions of operational availability – CBM-MiMOSA 217

118 Ten repetitions of operational availability – CBM-MiMOSA 217

119 Mapping use case methodology to thesis work 219

120 Sustain-ME modules . 229

xiii

LIST OF SYMBOLS OR ABBREVIATIONS

3LM Three Level Maintenance.

ABM Agent Based Model.

ALIS Autonomic Logistics Information System.

AM Materiel Availability.

AO Operational Availability.

CBM Condition Based Maintenance.

CBM-MiMOSA Condition Based Maintenance Mission and Maintenance Optimiza-
tion of Scheduling Alternatives.

DoE Design of Experiments.

GA Genetic Algorithm.

JDIS Joint Distributed Information System.

JSF Joint Strike Fighter.

LP Linear Program.

LRU Line Replaceable Unit.

MAS Multi Agent System.

MC Mission Capable.

MFHBF Mean Flight Hours Between Failures.

MFOP Maintenance Free Operating Period.

MILP Mixed-Integer Linear Program.

MIQCP Mixed-Integer, Quadratically Constrained Program.

MTBF Mean Time Between Failures.

NMC Non Mission Capable.

OEC Overall Evaluation Criterion.

OEM Original Equipment Manufacturer.

O&M Operations and Maintenance.

xiv

PBL Performance Based Logistics.

PDF Probability Density Function.

PHM Prognostic Health Management.

RM Materiel Reliability.

RO Operational Reliability.

R&R Remove and Replace.

SPN Stochastic Petri Net.

Sustain-ME Sustainment Modeling Environment.

VMI Vendor Managed Inventory.

xv

SUMMARY

Military aircraft sustainment is a traditionally difficult problem that has sig-

nificant consequences if managed incorrectly. First and foremost it is an expensive

problem even at the best of times, and frequently costs more money that was antic-

ipated. Because of the uncertainty associated with so many aspects of sustainment,

supplying operational military aircraft with spare parts in a timely fashion is both

difficult and costly. History shows this to have been true throughout the history of

military aviation.

Because sustainment has been a difficult and insufficiently solved problem in the

past, current Air Force doctrine has focused on ways of improving both the perfor-

mance and affordability of sustainment. In particular, a new paradigm shift has been

proposed that combines several promising operational methods. The first of these

are vendor managed inventory and performance based logistics, which act together

to shift the responsibility for supplying spare parts for systems to outside parties,

often the manufacturer that developed the systems. The goal of these two paradigms

is to allow the vendor to determine the most efficient way to supply the aircraft,

which should lead to savings that can benefit both the manufacturers and the mili-

tary. However, this new method of operating is being introduced at the same time as

another paradigm shift is taking place which makes the aforementioned goals much

more difficult.

These additional paradigms are condition based maintenance and affordability

based operations. Condition based maintenance is a relatively new maintenance

paradigm that seeks to improve maintenance by predicting, rather than reacting to or

xvi

preventing failures. This is done through inspection or monitoring of aircraft compo-

nents for signs of failure, which are then used to more accurately predict when failures

may occur. Condition based maintenance generally assumes that this information will

be used to delay maintenance for as long as possible without actually allowing the

component to fail. This has an advantage in terms of inventory use, because parts

are used to their fullest possible extent, as compared to a preventive maintenance

paradigm where they are removed after a certain number of flight hours regardless of

whether these components have worn out. However, it introduces a disadvantage in

that part failures occur at stochastic times, whereas under preventive maintenance

the times could be predicted well in advance and were planned at regular intervals.

The final paradigm’s focus on affordability only complicates the issue by removing

spare inventory margins. However, the stochasticity of maintenance times that is

inherent to condition based maintenance makes it difficult to reduce inventory levels

because some margin is needed to react to the stochastically high failure periods

which will occur. This only further complicates the role of the vendor, who has been

contracted to provide these spare parts based on abstracted goals. Performance based

contracts require that a certain level of availability or mission requirements be met

at all times, whereas the traditional supply based contracts required the military to

determine up front how many spares were required. Under this paradigm shift, the

vendor must determine how many spares are needed based on uncertain information,

and at low cost.

If the above set of paradigms are to be at all successful together, some form of

planning tool is absolutely essential. This thesis describes the development of such

a tool, a sustainment trade-off modeling environment that allows decisions such as

those involved in the Air Force paradigm shift to be simulated and their behavior

forecasted. The modeling environment, called Sustain-ME for Sustainment Modeling

Environment, was developed based on information that is available in the literature,

xvii

and the assumptions made in creating it are directly addressed within this document.

Additionally, the activities performed for verifying the behavior of Sustain-ME are

extensively listed to build confidence in the model and the results that are obtained

from it.

Once Sustain-ME was created, it was used to answer several of the questions as-

sociated with the current Air Force paradigm shift. The fact that the paradigm shift

represents a highly stochastic way of operating was hypothesized, tested, and found

to be true. The behavior of condition based maintenance was particularly found to

be nonstationary at the conditions associated with the paradigm shift, particularly

the reduced inventory levels desired. Additionally, the question of which metrics are

appropriate for measuring the performance of sustainment was addressed through

additional testing. This testing showed that two of the primary metrics used, opera-

tional availability and operational reliability, do not have a simple relationship that

correlates to one another at all times. Therefore both metrics are deemed necessary

to explain the true behavior of a set of operational conditions.

Sustain-ME was also demonstrated for a sample use case, which compared three

different maintenance paradigms to one another under similar conditions. The three

maintenance paradigms are reactive maintenance, condition based maintenance, and

a novel strategy for using condition based maintenance information to schedule main-

tenance that uses optimization to regain some of the benefits of a preventive mainte-

nance strategy. These paradigms were compared in several categories, including the

inventory required to achieve a 70% operational availability, the variability of each

over time and between different repetitions of the sustainment process, and the ability

of each to fly a required set of missions. The condition based maintenance strategy

was found to be the most effective generally speaking, though the novel paradigm

was found to perform better when the detection time for failures is low.

xviii

CHAPTER I

INTRODUCTION

Military aircraft represent the forefront of aerospace technology and are frequently

tasked with operating to their limits. For any complex system operating in this

manner, component failures are common and repairs must be completed in an effec-

tive and timely manner. This procedure of operating a fleet of aircraft to achieve

military objectives and carrying out the necessary support activities is commonly re-

ferred to as “sustainment”. Explicitly, the Joint Chiefs of Staff define sustainment as

“the provision of logistics and personnel services necessary to maintain and prolong

operations...”[86]. Though this definition implies a binary nature of sustainment (i.e.

the aircraft is either sustained or not sustained), in reality the level of investment in

sustainment leads to different outcomes for how well operations may be maintained

and prolonged. The availability and effectiveness of aircraft, the affordability of sus-

tainment, and the risk associated with operating at a level of sustainment are all

priorities which must be balanced against one another to provide adequate perfor-

mance with certainty at an acceptable cost.

1.1 Sustainment

From a financial standpoint a significant component of any weapon system’s total

life cycle cost is spent on sustainment, an estimated 60 to 75 percent, the majority

of which covers supply chain costs[112]. This translates to billions of dollars every

year; in 2011, the United States Air Force spent over fifty billion dollars on Oper-

ations and Maintenance (O&M) activities, with eight billion alone going to O&M

for its primary combat forces [91]. Furthermore, the number is growing, not shrink-

ing. O&M costs consistently increase by 2 to 3 percent per year after inflation[112].

1

From a performance perspective, sustainment is also critical, and is often not ade-

quate to meet the evolving requirements of the military. According to the Air Force’s

Scientific Advisory Board, “...the sustainment enterprise consistently falls short of

the targets whenever funding falls short of the requirements, which is frequent.[111]”

With unnecessary maintenance activities accounting for as much as 33% of the total

maintenance costs[84], this is hardly surprising. However, these issues are already well

known within the military and not trivial to resolve. Past efforts at increasing afford-

ability have had mixed success[6], and as a result it is important to gather as much

information as possible before making decisions to balance cost with performance. If

such efforts are undertaken without full understanding of the consequences, it is fully

possible to sacrifice performance without gaining any significant affordability benefits

in return.

According to the Air Force’s 2013 Contract Sustainment Support Guide, two of

the most broadly applicable ways for gauging the performance of sustainment are

the operational availability (AO) and operational reliability(RO) of the fleet[117, 30].

These are, respectively, the percent of time the fleet’s aircraft spent flying or available

to fly missions[62, 27] and the percent of mission objectives achieved by the fleet[117].

AO and RO are listed as key performance metrics for several of the current “best

practices” identified in the document, including condition based maintenance which

will play a key role in this thesis. It should be noted that the recent DODI5000.02, also

from 2013, defines material availability and materiel reliability as Key Performance

Parameters (materiel availability) and Key System Attributes (materiel reliability)

respectively[1]. Though this might appear at first glance as if these metrics supercede

those drafted in the Contract Sustainment Support Guide from three months earlier,

a bit of reading reveals two key facts. First, materiel availability and operational

availability are, in some cases, defined by the same equation. The version that will be

used in this thesis computes AO and AM as the percent of time that a fleet of aircraft

2

as a whole spends in an available state, or total fleet uptime divided by the total

fleet downtime. Computing availability in this way seems to satisfy several of the

formulative documents for Sustainment that currently dictate Air Force policy. The

second key fact distilled from the literature is that materiel reliability is controlled by

design rather than operational policy[27, 1]. This means that, depending on the point

in the lifecycle that sustainment is being planned, RM may be either a fixed value

set by a preexisiting design, or a value that can still be changed with future design

decisions. After a certain point in the design process, however, RM will represent

a fixed parameter for the aircraft rather than a changing metric that reflects the

effectiveness of sustainment policy. For this reason AO and RO should be retained as

primary metrics for evaluating sustainment.

AO and RO are dependent on several factors. First, the aircraft design plays

a role: aircraft materiel reliability[27, 1] (distinct from the operational reliability of

the fleet) determines the rate at which parts will break as a function of the aircraft’s

utilization[70], which is determined by fleet level operational requirements. Opera-

tional requirements are driven by whether it is peacetime or wartime and by the

specific strategic objectives associated with either type of operation, such as a list of

targets to be destroyed or payload to be delivered. Maintenance paradigms impact

fleet level performance by controlling when and under which conditions aircraft are

maintained; this influences the number of times each aircraft visits maintenance over

a specific period of time, the likelihood of other aircraft being present when main-

tenance is performed, and the likelihood that an aircraft will experience part failure

during a flight. Finally, sustainment resources in the form of personnel, equip-

ment, facilities, fuel, weapons and spare inventory influence the rate at which aircraft

can be maintained and returned to an operational status. The need to replenish these

resources necessitates a supply chain, the effectiveness of which also impacts fleet

level performance. Aside from the design of the aircraft, these influencing factors are

3

the major components of military aircraft sustainment, represented in Figure 1.

Figure 1: Sustainment components

1.2 Paradigm Shift

Given the high degree of complexity associated with sustainment combined with its

importance in seeing operational benefit from a system, different paradigms have

been proposed for how to operate, maintain and supply military aircraft over the

years. These paradigms gain favor with different groups and individuals within the

military, and as time goes on concrete evidence may be gathered to determine their

effectiveness. However, this evidence gathering process takes years and is subject

to the effects of political and personal motivations on reporting and interpreting

data. While politics will to some degree always influence decision-making, gaining

information with greater transparency and speed can help to offset biases simply

by providing everyone with the same information while there is still time to affect

change. One way of doing this is to use computer models to emulate the effects of

different operational paradigms on the sustainment process. While such models will

require some degree of abstraction to provide performance and cost estimates, they

allow many of the effects and interactions within sustainment to be captured so that

high level trends can be found. Useful models will provide information of the form “if

A then B” which may then be applied to the real world sustainment process to make

improvements or avoid pitfalls. This thesis presents a modeling environment of this

type, and uses it to compare the estimated performance, cost, and risk of different

sustainment paradigms.

4

Figure 2: Air Force operational paradigm shift

5

In particular, this thesis is motivated by a paradigm shift that has occurred over

the past few years within the United States Air Force. Figure 2 shows the tradi-

tional paradigms alongside those that replace them. The first is a shift from organic

(i.e. government-owned and managed) inventory to Vendor Managed Inventory

(VMI), where an outside entity is contracted to refurbish spare parts when they

break and manage spare inventory levels across the Air Force[30]. Another shift

from supply based contracts to Performance Based Logistics (PBL) contracts

requires the vendor to supply inventory to meet a level of performance rather than

a specific number of spare parts, increasing the level of abstraction and therefore

risk for the vendor. The two in combination are well-established for aircraft engines

[89, 80] and helicopters[42], and have recently begun to propagate to the airframe level

[100, 14, 93]. In particular Lockheed Martin is interested in adopting this business

model in support of the F-35 Joint Strike Fighter[100, 79], though formal agreements

currently only cover initial sustainment activities[113]. VMI and PBL together are

intended to serve the purposes of both vendor and Air Force by allowing the vendor

more freedom to operate efficiently, with profit emerging as the number of spares

required to provide a level of performance is optimized[30], and by giving the military

a guaranteed level of service at a reasonable price.

However, two additional paradigm shifts complicate the task. The military has

traditionally used a combination of preventive (scheduled) maintenance to replace

parts when statistics suggest they need to be replaced, and reactive (unscheduled)

maintenance when these predictions do not catch failures in time to prevent them.

The advantages of primarily preventive maintenance are that parts are usually re-

placed regularly and before they break, reducing in-flight failures and therefore risk;

however, parts are also replaced before they have been fully utilized. As a result, the

Air Force has recently begun to focus on using Condition Based Maintenance

(CBM) which replaces parts when inspection or monitoring suggest they are close

6

to failure. CBM thus reduces the waste of parts which are still serviceable, but does

so by allowing the uncertain timing of maintenance events to return. This uncertainty

makes it difficult for vendors, who are removed by distance and organizational bar-

riers from the maintenance process, to predict inventory needs and to supply those

needs in a timely manner.

The final complication is driven by an increasing focus on scalable contracts and

visible costs in the interest of affordability, which increases vendor risk by asking

vendors to achieve the previous three goals at lower cost than ever before. This is done

in part by aiming for a level of inventory where operations are in perfect balance with

supply chain and aircraft availability is at a medium level, 70% according to the Air

Force[111]. However, as the Department of Defense states in their 2009 “Weapon Sys-

tem Acquisition Reform Product Support Assessment”, “[t]he ideal situation would

be steady state, where resources are adequate to fully support requirements. The re-

ality is this rarely occurs; requirements consistently exceed available resources.[112]”

The reason steady state performance is usually not achieved is answered in another

quote, this time from the RAND Corporation in a report prepared for the Air Force in

1993: “Parts demand processes are frequently nonstationary [emphasis added], i.e.,

the expected number of demands for a given stock number in a time period of specified

length varies over time, and the magnitude and direction of that variation are almost

never predictable. The problem of minimizing the number of items in long supply

given a system performance goal is made extremely difficult by this uncertainty.[2]”

And if demand uncertainty makes it difficult to operate with minimized inventory,

this is expected to be especially true under a CBM approach.

Taken together, these paradigms suggest a nontrivial challenge for vendors, who

will be responsible for achieving prespecified performance levels under highly un-

certain circumstances in order to meet requirements. Failure to do so would mean

7

sacrificing bonuses or even paying penalties[26], so the risk associated with this com-

bination of paradigms is high. On the Air Force’s side, risks may be even higher

depending on how performance shortfalls translate to military objectives, and what

the military consequences of not meeting those objectives are. For all these reasons,

it is important to correctly formulate contracts and planning up front to quantify

the degree of uncertainty associated with sustainment decisions and reduce the im-

pacts of this uncertainty where possible. High level calculation models are helpful

for formulating initial predictions about the likelihood of success of these decisions,

but may not capture enough detail to fully understand the implications of those de-

cisions. Given the type of behavior described in the literature, particularly the word

“nonstationary”, more detailed models should be used to carefully examine the as-

sumptions and decisions being made to ensure the performance of sustainment under

those decisions and assumptions is adequate to achieve requirements. Furthermore,

such models should be transparent and available to all parties involved in sustain-

ment so that everyone has the best information possible to plan a cohesive and high

performing operational structure. This is supported by a statement from the former

Under Secretary of Defense for Acquisition, Technology, and Logistics and current

Secretary of Defense, Ashton Carter: “In our country we buy our military equipment

from private industry, so they’re our partners in equipping our forces...I would like

to have a relationship of candor and dialogue...we’re in this together.[22]” If open

dialogue is good, then open models are even better. At the moment, no open source

modeling environment of this type exists. This thesis demonstrates how such a sus-

tainment trade-off modeling environment, or Sustain-ME1 for short, can be used to

provide information to all decision makers early on in the contracting or planning

process as a basis for making reasonable and consistent decisions.

1Named from Sustainment Modeling Environment.

8

1.3 Sustain-ME Use Case

The specific decisions made in developing a sustainment forecasting model are de-

tailed in Chapter 2. However, it is first important to establish the intentions behind

creating this environment beyond the desire to provide a sustainment planning ability

to decision makers. To do this, a general use case for Sustain-ME is first described.

Next, a specific example study is developed which will be used to demonstrate the

utility of Sustain-ME throughout the thesis.

1.3.1 General Use Case

At a high level, Sustain-ME is designed to discover trade-offs within the design and

operational strategy space by manipulating inputs and assumptions and forecasting

trends. This allows the user to provide evidence to support or belie assumptions

that have been made about the best way to design and operate an aircraft with

sustainment goals in mind. Depending on what is changeable from the perspective

of the user, different aspects of sustainment may be tested to quantify their impact

on fleet level parameters2. From this high level perspective of Sustain-ME’s purpose,

a few questions can be posed which will directly impact how the environment is

formulated.

Because Sustain-ME needs to capture high level sustainment behavior, the first

question that naturally arises is which metrics should be captured. Section 1.1 dis-

cussed operational availability and operational reliability, two metrics that the Air

Force uses to evaluate sustainment performance. However, the availability of aircraft

and the goals achieved by those aircraft are not unrelated metrics. This prompts the

following research question:

2Focusing on the fleet level allows the behavior of the whole sustainment process to emerge,
rather than assuming that trends for a single aircraft scale to the fleet level. Also, focusing at a fleet
level provides more information, as the aircraft level parameters can still be captured and output
for each of the aircraft in the fleet.

9

Research Question 1: Are metrics AO and RO both required to capture the be-

havior of sustainment?

To answer this question, all that is needed are examples of the relationship between

AO and RO changing under different conditions. Put simply, if AO and RO have a pre-

dictable relationship, only one metric needs to be captured to determine the impact

on both. However, if the relationship between the two varies according to the specific

test being run, then both metrics must be captured to form a complete picture of

the behavior of sustainment. This leads to the first hypothesis for the development

of Sustain-ME.

Hypothesis 1: The relationship between AO and RO is complex and cannot be

represented by a simple correlation.

The means by which Hypothesis 1 will be tested will be discussed in Chapter 3.

Because Sustain-ME needs to capture sufficient behavior to discover where trade-

offs exist and what behavior may occur under different design and sustainment de-

cisions, the second question pertaining to Sustain-ME concerns what type of effects

must be captured by the environment. Specifically, Section 1.2 quoted a passage in

a report from 1993 which highlights demand uncertainty as a source of difficulty in

managing inventory[2]; Section 1.2 theorized that the nonstationary nature of part

demand would continue to play a role under condition based maintenance. Given

that both modern[112] and older[2] references predict the possibility of nonstationary

behavior within sustainment, it seems reasonable that these effects would need to be

captured by sustainment models to fully represent sustainment.

At this point it is helpful to discuss a few terms: stochastic process, uncertainty,

and stationary. Lawler defines a stochastic process as “...a random process evolving

10

with time.[72]” Where a deterministic process will always end in the same result given

the same initial state, a stochastic process may evolve in different ways over time given

the same initial state. For stochastic processes, underlying random effects play enough

of a role that the outcome cannot be determined without observing the evolution of the

process over time. Uncertainty is frequently used to mean two different things: first, a

lack of knowledge about a process (also known as epistemic uncertainty) and second,

an inability to predict the outcome of a process or the state of a system (also known

as aleatory uncertainty)[8]. It is this second form of uncertainty that is present in

sustainment when demand fluctuations occur and which therefore makes sustainment

a stochastic process. Epistemic uncertainty is also present in sustainment in that the

benefits and consequences of different decisions are not always known; this form of

uncertainty is the motivation for creating Sustain-ME in the first place. Finally, a

stochastic process is stationary if its behavior reaches a point over time where the

probability of being in a given state is constant[72]. This does not necessarily mean

that the final state is known, but rather that the set of final states is known and the

probability of being in any of them is also known. The reference in Section 1.2 to

nonstationary part demand processes can thus be interpreted to mean that the long

term part demand for sustainment under the conditions assumed in the paper does

not exhibit steady-state behavior.

Finally, because Sustain-ME needs to incorporate enough aspects of sustainment

to capture different design and operational decisions that might be made, the third

question pertaining to Sustain-ME concerns which steps and processes must be mod-

eled to represent sustainment. For instance, what supply chain elements must be

included to capture the major real world effects? The answer will, of course, depend

on the focus of the study. A study focusing on different supply chain paradigms might

need a much more in-depth supply chain model than one focusing on maintenance

11

paradigms. But there is likely to be a baseline level of fidelity that must be cap-

tured in order to not miss basic supply chain behavior effects. This is generalized in

Research Question 2.

Research Question 2: What level of fidelity is required to capture the major

trends within sustainment?

Answering this question is nontrivial. As stated in Section 1.1, sustainment is gen-

erally composed of three interacting processes: operations, maintenance, and supply

chain. Each of these processes needs to be present to fully capture sustainment be-

havior. However, even the basic level of fidelity required may depend on the process.

Rather than forming a hypothesis, Research Question 2 will be explored in-depth in

Chapter 2 and at that point hypotheses may be formed.

1.3.2 Example Study

The paradigm shift discussed in Section 1.2 involves a separation between the supply

chain and the operations and maintenance portions of sustainment. In transferring

responsibility for spare parts supply to an external entity, the Air Force is moving

toward a policy known as “hole-in-the-wall maintenance[70]”. The colloquial name

comes from the fact that parts are taken off the aircraft and essentially forgotten

about until they return as refurbished spares. This differs from the traditional Three

Level Maintenance (3LM) paradigm[109, 30] which is discussed in more depth in

Chapter 2. Though the problem of how to achieve rapid turnaround of spare parts is

a significant one, as has already been stated, from the Air Force’s perspective it will

soon be someone else’s problem. For this reason the example study used to illustrate

the development and use of Sustain-ME will focus on the aspects of sustainment that

the Air Force intends to control, namely operations and maintenance. The supply

chain will be modeled using reasonable assumptions, but will be taken as a given for

12

the operations and maintenance side.

Of operations and maintenance, the maintenance process has been included in the

paradigm shift in the decision to switch to condition based maintenance. Therefore

the example study will focus on this decision and evaluate the performance of CBM

under a variety of other conditions. However, it will also be compared to a more

traditional maintenance paradigm and a novel maintenance paradigm to show the

ability of Sustain-ME to represent a variety of decisions and compare them. The

inclusion of a novel maintenance paradigm allows Sustain-ME to be demonstrated for

maintenance paradigms that have not yet been conceptualized or tested in the real

world, as this would be an important application of such an environment. For this

thesis, the novel maintenance paradigm will be developed to test assumptions made in

the traditional CBM approach. For CBM, many authors have assumed that the part

condition information would best be used to maintain parts at the last minute, just

before failure[119, 111, 48], known as just in time replacement[120]. However, this is

not the only option for performing condition based maintenance; Jardine recognizes

maintenance decision making as the crucial third step of the CBM process after

data acquisition and data processing[60], and other authors also acknowledge that

external factors may influence the best time to conduct maintenance[53, 68, 67, 122].

Given this possibility, the additional benefit of Sustain-ME can be demonstrated in

comparing a new approach representing a different assumption about CBM to the

traditional CBM logic. Therefore the example study will compare the behavior of a

traditional maintenance paradigm, a traditional CBM paradigm, and a novel CBM

paradigm under similar operational and design conditions. The logic behind the novel

CBM paradigm will be discussed in Section 1.4.

Because the example study will be performed for a situation where nonstationary

behavior can reasonably be expected to occur, one further research question arises.

Despite the seemingly reasonable expectation that stochasticity will dominate the

13

region of interest under the paradigm shift, where inventory is minimized to match a

target value of AO and a CBM maintenance paradigm creates stochastic part failure

times, operations research is a field that commonly returns results that could not

be predicted using common sense. Nonlinearities within the model frequently yield

surprising behavior, and the only way to determine this is to model the problem

with a sufficient degree of detail. This is one of the motivations behind the modeling

environment created in this thesis. As a result, this expecation is one of the most

important tests that Sustain-ME will perform. It is formalized in Hypothesis 2.

Hypothesis 2: At the conditions cited in the Air Force sustainment paradigm shift,

where minimal inventory is selected to meet a target value of 70% AO, and where

maintenance is performed based on a condition based maintenance policy, stochastic-

ity will dominate the performance of sustainment.

The means by which Hypothesis 2 will be tested will be discussed in Chapters 2

and 3.

The remainder of this thesis will describe the logic behind, development of, and

testing of a sustainment modeling trade-off forecasting environment that can serve

as an open source basis for sustainment decision making. This environment will first

be developed for a general case, and will then be used to implement three specific

maintenance paradigms for the purpose of demonstrating how the environment may

be used to facilitate trade-off studies among different sustainment alternatives.

1.4 Novel Maintenance Paradigm

The thinking behind the novel maintenance paradigm used to test Sustain-ME comes

from the recognition that condition based maintenance has some unfortunate similar-

ities to reactive maintenance, as was discussed in Sections 1.2 and 1.3.2. As discussed

in Section 1.2, the uncertainty associated with when part failures occur will control

14

CBM under the assumption of just in time maintenance, and this will make it diffi-

cult for vendors to achieve required performance levels with certainty. Consequently,

the novel CBM strategy modeled in Sustain-ME will seek to counteract this effect

by performing maintenance at regular intervals, as was done for scheduled mainte-

nance. Unlike scheduled maintenance, however, replacements will not occur until a

failure signal is detected; therefore parts that are still indicated as functional are

never replaced. Similar ideas have been proposed for scheduled maintenance [20],

opportunistic maintenance (grouping maintenance activities based on soon-to-occur

failures) [68], workforce planning [67], and machine failure [122]. A similar concept

was implemented from the mission scheduling side by Iavkovidis, who asked individual

officers to choose scheduling philosophies based on experience or intuition designed to

allow maintenance to occur with minimal impact on fleet performance[56]. However,

as Iakovidis discusses, these philosophies are not rigorously determined nor scientifi-

cally tested. This thesis seeks to develop a new strategy based on mathematical prin-

ciples, which will shift the balance between unscheduled and scheduled maintenance

benefits and drawbacks toward a region that is more stationary, but less wasteful.

The means by which this will be accomplished will be discussed in Chapter 2.

1.5 Thesis Organization

The remainder of the thesis is organized as follows: Chapter 2 discusses several top-

ics from the literature that will inform the development of Sustain-ME. Chapter 3

takes this information to inform the development of experiments to test the research

questions and hypotheses developed in this chapter. Chapter 4 discusses the develop-

ment and testing of Sustain-ME, as well as the results of the experiments developed in

Chapter 3. Chapter 5 then uses Sustain-ME to perform the example study established

in Section 1.3.2. Finally Chapter 6 draws conclusions and discusses contributions and

future work.

15

CHAPTER II

BACKGROUND

Chapter 1 introduced a paradigm shift in military aircraft sustainment and discussed

how modeling and simulation could be used to evaluate the behavior of sustainment

under new paradigms. This chapter looks at topics from the literature which may

contribute to the development of a modeling environment intended to represent this

paradigm shift, Sustain-ME. The first of these is maintenance philosophy, which en-

capsulates the variety of ways maintenance may be performed and the reasons these

methods are chosen (Section 2.1). Next, the literature on an enabling technology for

condition based maintenance, prognostic health management (PHM), is reviewed to

provide additional insight into how CBM may work (Section 2.2). Next supply chain

management is described since, though this field is tangent to the specific example

study performed in this thesis, the supply chain informs the work being done here

(Section 2.5). Next the details of sustainment that must be included in Sustain-ME

will be researched in order to help answer Research Question 2. Maintenance met-

rics will then be defined in more detail (Section 2.4), after which optimization and

decision-making methods will be reviewed since these will inform the novel approach

to performing CBM used to demonstrate Sustain-ME’s abilities (Section 2.6). Fi-

nally this information will be synthesized to inform the discussion on modeling type

(Section 2.7).

2.1 Maintenance Philosophies

Bateman states that there are three kinds of maintenance: reactive (also known as

unscheduled or corrective), preventive (scheduled), and predictive[11, 36]. Although

16

predictive maintenance through Condition Based Maintenance has already been in-

troduced as an important aspect of the Air Force sustainment paradigm shift, an

explanation of where it fits into the larger set of maintenance philosophies will be

helpful. Next two alternate maintenance paradigms will be discussed. Though these

maintenance paradigms are not the focus of the paradigm shift that motivates this

thesis, and are therefore not modeled using Sustain-ME, it would be fairly straight-

forward to implement these alternate policies using Sustain-ME. How this might be

achieved is also discussed.

It will also be helpful to point out that, though the risk levels and enabling meth-

ods associated with each may be different, they are all designed to efficiently keep

systems running. As a result, the maintenance steps that are carried out will largely

be the same between the different philosophies. The primary change will always be

the basis for the decision to perform maintenance, even when small adjustments to

the steps are necessary. As a result Condition Based Maintenance practitioners can

and should learn from the experiences gained over the history of aircraft maintenance

under different philosophies. Next the military strategies of Three Level Maintenance

and Hole-in-the-Wall maintenance are discussed to augment what is known about

the paradigm shift toward vendor managed inventory. Finally some reliability the-

ory must be discussed, specifically the bathtub curve trend and what it means for

Condition Based Maintenance.

2.1.1 Unscheduled Maintenance Alone

Unscheduled maintenance, also referred to as corrective maintenance, is the most

basic maintenance philosophy when applied alone. This is because it requires the

least amount of effort to implement: the system is used until it breaks, and then

fixed so the process can start over[106]. This philosophy does not require awareness

of the system’s inevitable future breakages, but if awareness exists, budgeting for

17

maintenance or setting aside maintenance facilities and supplies can mitigate the risks.

Any person operating a vehicle without paying attention to standard upkeep uses

this maintenance philosophy. This policy is also common in factories; according to

Bateman more than 50% of factories use pure unscheduled maintenance[11]. Though

it may be the simplest strategy, unscheduled maintenance is also the least responsible

since there is a chance of ruining the system. This applies even more so when the

risks are compounded, either through more aggressive use (such as the stresses on

an individual racing vehicle) or when an individual or organization is responsible for

multiple systems (such as a rental car company or airline).

Aside from simplicity, the major benefit of unscheduled maintenance as a strategy

is that lower maintenance cost may theoretically be achieved[106]. This reasoning

is based on the notion that maintaining a system before failure, as with scheduled

maintenance, wastes the usable life remaining to the part or fluid. Such reasoning is

most valid when the consequence of failure is low, such as when a car’s battery dies

or its headlights burn out. These problems may be nuisances for the user, but do

not cause any harm to the car under normal circumstances. The reasoning becomes

problematic when allowing the system to operate to the breaking point causes damage

to expensive components (or the system as a whole)[11]. If a car’s tires are used until

bald, this risks an accident that could total the car. When air filters or oil are not

changed regularly, this can damage the engine and lead to more expensive repairs

down the line[84]. It is because of this second situation that scheduled maintenance

combined with unscheduled maintenance is the standard maintenance philosophy for

many systems.

2.1.2 Scheduled Maintenance With Unscheduled Maintenance

Scheduled maintenance, or preventive maintenance, requires that the system be main-

tained at fixed intervals based on usage hours or real-time hours[106]. It can be a much

18

more effective maintenance philosophy when intelligently combined with unscheduled

maintenance. This means that, when appropriate, a scheduled maintenance policy is

implemented to proactively handle system degradation through use. The default, un-

scheduled maintenance, is used whenever unexpected failures occur or when scheduled

maintenance is not deemed appropriate. Determination of when scheduled mainte-

nance is appropriate may depend on the risks of component failure, as with the case

mentioned in Section 2.1.1, or on the cost of components. When components are

inexpensive it quickly becomes worthwhile to replace them if doing so can potentially

avoid more costly repairs later on[23]. Cheung also examines how to mitigate the

disadvantages of scheduled maintenance in production lines by manufacturing safety

stores to sell while systems are offline for maintenance[21]. Unfortunately this is not

an option for systems which must be constantly operational, such as military aircraft.

An additional advantage of increasing the amount of scheduled maintenance is

the increased predictability of maintenance timing, which may be more convenient

than repairing the system whenever a failure occurs. This is especially true when

including opportunistic maintenance[87], which carries out multiple repairs at once

wherever possible, reducing the frequency with which maintenance must occur. For

individual systems this advantage may not be significant, but for groups of systems

this advantage is critical. Airlines are a prime example of this fact, since they sched-

ule operations to get the most use possible out of aircraft[96]. Unexpected events

tend to have far reaching effects due to the high utilization rates and tight schedules

of passengers, air traffic resources, and airport resources. As a result, predictability

through a carefully executed maintenance policy is necessary to keep this system func-

tioning properly. However, airlines are able to pass on the cost of such predictability

to customers; the military must work within its budget and satisfy government over-

sight bodies that such expenditures are necessary. This makes it difficult to take full

advantage of opportunistic maintenance policies.

19

As Section 2.1 mentioned, maintenance scheduling policy is separate from the

steps that are taken to carry out maintenance. Both scheduled and unscheduled

maintenance remove parts from the system, dispose of broken parts or send them to

be fixed, and install a new part to replace the broken one[106]. In addition to these

basic maintenance elements, repairs may be documented, the system may undergo

additional servicing through cleaning or fluid replacement, and the system may be

checked for correct operation after repairs have been completed. Unscheduled main-

tenance must further undergo a troubleshooting process before the system can be

repaired since the exact cause of the failure is unlikely to be known[39]. This intro-

duces additional risk to maintenance due to the possibility of misdiagnosing errors

and continuing to operate the system with a latent failure in place. This possibility

is another reason why unscheduled maintenance should be reserved for parts with a

low chance of causing total system failure.

Though general guidelines for the balance point between scheduled and unsched-

uled maintenance have been discussed, in reality this balance will be found through

a combination of computation and heuristics. Computation can help to determine

the appropriate times to carry out scheduled maintenance to achieve a certain rate

of failure prevention[106], then heuristics might be used to determine which parts

are worth including in scheduled maintenance and which are not. The main point,

however, is that this balance represents a trade between risk, cost, and convenience

which is fully in the hands of the individual or organization responsible for decision

making. However, there is another option for dealing with the uncertainty inherent

in maintenance: condition based maintenance.

2.1.3 Condition Based Maintenance

Condition Based Maintenance (CBM) is a method for determining maintenance times

based on the condition of components. This method is predicated on the assumption

20

that the condition can be measured[49]. The simplest version would check a system’s

components periodically and determine whether they are operating correctly or have

failed, replacing only failed components[57]. More complex versions include the ability

to determine whether a part has degraded partially, indicating a spectrum of operation

between working and failing. Targeting the correct point on this spectrum allows

part replacement to be carried out just before component failure. Still more complex

versions of CBM give the ability to perform these checks in real-time from sensors

installed throughout the system[49], though installed sensors are often paired with

regular checks for other signs of degradation[36]. These increasingly complex abilities

naturally come with added cost of system development and, in the case of sensor-

aided CBM, the potential for new failure modes as a result of additional parts in the

system. Because more sophisticated maintenance cannot be implemented for free,

such strategies should be tailored to the needs of the system. Just as increasing

system complexity or consequence of failure justified adding scheduled maintenance,

the system must be more complex or failure must have higher consequences still to

make CBM worthwhile.

While condition based maintenance will ideally derive advantages from both sched-

uled and unscheduled maintenance, gaining the proactive aspects of scheduled mainte-

nance and the full component utilization of unscheduled maintenance, it does so by ac-

cepting unscheduled maintenance’s fully stochastic timing on when repairs occur[106].

As stated previously, this can be problematic at a system-of-systems level when many

systems are failing stochastically yet the need for these systems to be operational is

constant[11]. The instability in failure times can be mitigated to some extent by hold-

ing regularly scheduled condition checks and maintaining only during these intervals

when it is clear a part will soon fail. This requires part condition to be detectable

along a spectrum from operating to failed, with the condition evolving slowly enough

21

to provide sufficient time to detect failures in advance. It should also be noted that re-

pairing only at regular intervals retains scheduling stability but sacrifices some usable

part life remaining.

Consequently, even condition based maintenance represents a balancing act be-

tween two naturally opposed goals: predictability in maintenance scheduling and

maximum use of resources. Jardine discusses this directly, saying “When is the best

time? That depends on your overall objective. Do you most want to minimize costs or

maximize availability? Sometimes the best preventive replacement time accomplishes

both objectives, but not necessarily.”[61]. Where it makes up for the additional cost

of development, however, is in the additional information it provides to maintainers:

scheduled maintenance had no way of knowing whether maintenance was necessary at

the time it was scheduled, but CBM’s additional knowledge allows maintenance to be

intelligently delayed[106]. In fact, CBM could allow a company to implement some-

thing that resembles traditional scheduled maintenance but with fewer unnecessary

part replacements. The freedom provided by this information is helpful in allowing

maintenance to flexibly react to changing needs, but must be leveraged correctly so

the the best decisions possible are made.

2.1.4 Alternate Maintenance Paradigms

Two alternate maintenance paradigms are discussed here. They represent differ-

ent options for increasing sustainment performance in fairly different ways. The

first paradigm is the Maintenance Free Operating Period (MFOP), which replaces

the traditional Mean Time Between Failures (MTBF) as a reliability metric for the

aircraft[71]. The goal of choosing this as the metric is to increase the period of time

that a system can operate without requiring maintenance activities to be performed,

or realistically the period of time where such a thing occurs with a high degree of

probability. Technically both MTBF and MFOP are functions of the design plus

22

the sustainment process as a whole[74], since aircraft level reliability metrics tend to

be computed in flight hours, while MTBF and MFOP are computed in operational

(real world) hours. However, both metrics are more closely tied to design than AO

and RO, which are based on a higher level of abstraction. Furthermore, MFOP is

much more closely tied to design than CBM, which is tangentially related but not

directly controlled by the inherent parameters of the system. To achieve the goal

of increasing the time during which maintenance is not required, both design and

architecting improvements as well as maintenance strategy through a lifing policy are

required[94]. Design is required to increase the reliability of the system sufficiently

to ensure that the desired MFOP is possible, and lifing policy is required to replace

aircraft that are predicted to fail within the next MFOP. The MFOP policy requires

prognostics[94], making it a subset of condition based maintenance without a just in

time replacement policy. To model a MFOP strategy in Sustain-ME, there are two

options. First, if the assumed design reliability were good enough, the lifing policy

could be programmed into Sustain-ME to attempt to achieve a desired level of MFOP.

However, if the reliability is not sufficient on its own to achieve the desired MFOP,

some form of feedback would have to be used to adjust the design variables by the

required amount.

The second paradigm is phase maintenance. Phase maintenance is similar to

scheduled maintenance, but requires a more involved set of repairs[76]. In essence,

the aircraft is being thoroughly checked, refurbished, and rebuilt where necessary.

The decision point for performing phase maintenance is based on the number of

hours the system has spent in use[31]. Gaguzis found it to be inferior to condition

based maintenance in his master’s thesis, although this observation is limited to the

particular scenarios he studied[43]. If the maintenance strategy were of interest,

however, it could be implemented within Sustain-ME. First, the phase maintenance

period would have to be specified. Each aircraft in Sustain-ME would then track its

23

flight time since the last phase maintenance event and submit itself for a thorough

set of repairs once that period has elapsed. To simulate the time required to perform

phase maintenance, information would have to be provided to Sustain-ME about how

long phase maintenance takes, and what resources are required to carry it out. With

this specified, phase maintenance could then be enacted by Sustain-ME either by

itself, or in concert with other maintenance strategies.

2.1.5 Three Level and Hole-in-the-Wall Maintenance

Three Level Maintenance (3LM) is the current Air Force Standard [109, 30], di-

vided between local and off-site locations. Local maintenance is divided between the

first two of the three eponymous levels: organizational level and intermediate level

maintenance. Organizational level maintenance includes simple actions designed to

quickly turn an aircraft around to available status, such as Remove and Replace

(R&R) activities which replace broken Line Replaceable Units (LRUs) with spares

from inventory[70]. Intermediate level maintenance involves more complex activities

but is usually restricted to standard activities which can be carried out with limited

supplies available at a base[109], primarily major item replacement and refurbishment

of LRUs[70]. During scheduled maintenance, which occurs at the intermediate level,

other flight systems may also be overhauled and alignments or adjustments carried

out if they are needed. Finally, the depot is the third level in Three Level Mainte-

nance, and may be located at military logistics centers or contractor facilities [109].

During depot level maintenance major overhauls and rebuilding are performed, such

as system level replacement.

Under 3LM, the military is still responsible for the majority of the maintenance

and supply chain activities. This suggests that the new Air Force sustainment

paradigm shift is inconsistent with 3LM as it has been performed in the past. What

vendor managed inventory truly starts to look like is a maintenance hierarchy called

24

Hole-in-the-Wall maintenance[70], where the only local maintenance activities per-

formed are R&R actions on LRUs, after which broken parts are passed to the Orig-

inal Equipment Manufacturer (OEM) or separate vendor for refurbishment. Under

Hole-in-the-Wall maintenance, the supply chain is moved out of military hands in

accordance with the Air Force paradigm shift, meaning that the three levels of 3LM

no longer apply.

2.1.6 Reliability Models

Predicting reliability is an important part of sustainment, and will be even more so

under condition based maintenance since failures or near-failures are the most com-

mon source of sustainment activities when using CBM. One of the most commonly

used reliability models is the bathtub curve[66], shown in Figure 3, which represents

the change in the rate of failures over time. The initial portion of the bathtub curve

is known as the infant mortality region. It is characterized by a decreasing failure

rate, caused by the discovery and resolution of initial problems with a fielded system.

This may occur through small-scale redesign, material changes or an adjustment to

operational guidelines. However they are accomplished, these changes will slow and

eventually stop as improvements become marginally harder. After this occurs the

failure rate will be constant for a time, potentially for much of the system’s life. This

constant failure rate region is the one most commonly represented in elementary relia-

bility models since it can be modeled using an exponential distribution[52], which has

several mathematically useful properties. Also, since the exponential failure model

represents the largest portion of a system’s lifecycle any policies based on this as-

sumption will be valuable over this period. The constant failure rate disappears near

the end of the system’s life once the effects of aging begin to show. Over this final

region of the bathtub curve the failure rate increases as degradation leads to a grow-

ing list of system problems. At this point the system has nearly reached its usable

25

Figure 3: Hazard rate function – bathtub curve[66]

life and will soon be scrapped.

If a system is known to display a bathtub curve, this is helpful information since

it reminds maintainers and operators to watch a new system carefully and to include

additional repairs in early planning. However, Klutke et. al. caution that this model

is somewhat in contention, and that there may not be empirical evidence supporting

its validity[66]. Even if it were known to exist, there is no way of knowing the exact

failure rates that will be experienced by a system ahead of time. Predictions may

be made based on individual component testing and the amount of redundancy built

into the system, but uncertainty is unavoidable in this process – otherwise infant

mortality would not occur. Since the exact shape of the bathtub curve cannot be

known until after its effects have been felt, the utility of this information is limited.

Furthermore, most of the work done in sustainment will occur regardless of which

portion of the lifecycle the system is currently experiencing. And so far as condition

based maintenance is concerned, the bathtub curve might as well not exist since its

sensor readings operate on the system’s condition, not mathematical models predict-

ing its condition. Though the technology through which CBM is implemented will

most likely experience its own infant mortality and aging periods, as stated before

these will not necessarily be clearly predictable in the moment and as a result they

should not impact the logic behind CBM.

26

2.2 Prognostic Health Management

Prognostic Health Management uses a suite of sensors installed throughout the air-

craft to detect off-nominal conditions that suggest failures will occur. Each sensor is

tailored to a particular aircraft part based on known fault modes; these are signaled

by previously identified precursors which are based on monitorable system properties

[88, 100]. Internal logic then processes these sensor readings to determine whether a

part failure will soon occur[119]. The ideal system would, based on a signal, be able

to identify exactly when a component’s performance begins to degrade and use this to

predict the exact time at which it will fail. In reality, the signal being monitored will

be noisy, making identification difficult and increasing the probability of the system

experiencing false alarms. As Malley determines in his thesis [78], the true PHM will

have to trade these two goals since the same mechanism that leads to better detection

also increases the risk of experiencing a false alarm. Additionally, data for detection

lead time will give only a probability measure of the remaining part life once failure

has been signaled, not an exact part life remaining.

Multiple authors have modeled PHM’s impacts at a fleet level[78, 39, 123], but

many use a simplified approach in which the PHM is assumed to predict failure at

some user input percentage of the part life, or at a distribution around a percentage

of the part life [123]. One author even assumes that the PHM will be able to predict

failure with sufficient time to order any spare parts that are necessary before the

parts actually fail, allowing maintenance to be carried out the moment a failure

occurs while only keeping on site the parts needed for detected failures[123]. This

last approach can be thought of as an idealized version of CBM under PHM which

is useful for providing an upper bound on the effectiveness of any method which uses

PHM enabled CBM as part of a larger goal. However, the true utility of CBM at a

fleet level and any methods based on it will need to take into account the eventual

degree of accuracy of the system.

27

Those authors that do model the PHM more fully use some variation of an algo-

rithm that analyzes a sensor signal to determine whether the signal indicates failure,

and if so how soon. Elwany and Gebraeel modeled sensor data as a stochastic process

with linear and exponential degradation models and brownian error terms[37, 38];

Gebraeel and Lawley also explore Bayesian and neural network approaches for up-

dating residual-life distributions[45, 44]. Doksum and Hoyland use Wiener pro-

cesses to model the degradation[32], and Kharoufeh uses Markov processes[63] and

semi-Markov processes[64]. Swanson describes using Kalman filtering to process the

signal[105]. Wu et al. examine two-phase degradation models, in which the presence

of a signal is necessary to recognize failure, but not sufficient[121]. After failure signs

are detected, inspection must confirm their validity. Akturk and Gurel incorporate

usage conditions into the prediction for failure[4]. Bae et al. forumlate a method for

forming new models by adding or multiplying simpler ones to create specific lifetime

distributions[9]. Chinnam explores polynomial regression as a method for predicting

failure[19]. Meeker et al. describe how accelerated testing can be used to estimate

the degradation predictions from testing data[83]. Malley uses neural networks to an-

alyze a signal, then creates look-up tables of distributions for use in his broader fleet

model[78]. Finally, Chin describes how the specific properties of engine failure at high

temperatures can be modeled to create prognostics[18]. What these approaches have

in common is that many signals are obtained over time through direct observation

and knowledge of the system, or these signals are notionally generated, and the signal

is then used to predict at what point a part will fail. Often new signals are used to

update the system and allow it to “learn” from new operational data. However, with

the exception of Malley’s work, these papers do not study the length of time over

which the signal will evolve as failure occurs, nor predict the operational time during

which detection can occur. While the detailed approach is helpful in implementing

practical PHM, for the purpose of a simulation where the part failure data is notional

28

anyway, these methods provide additional complexity without adding value.

What is of interest for an operational model is information about when failures

can be detected, and only Malley discusses this in any fashion. Since his PHM is

modeled as part of a broader sustainment simulation, he assumes that a failure signal

will begin to appear at 90% of part life, and that the detection will occur at 95% of

part life[78]. This is a much different assumption that Yager made, where detection

time was assumed to be sufficient to order parts and have them arrive before failure

occured[123], an effective detection time on the order of a few months. In reality,

PHM signals as a percentage of part life will most likely vary between these two

extremes from part to part, as will part life itself.

One final aspect of PHM is worth mentioning. For many of the PHM systems that

exist today, the prognostic information is confined to individual subsystems or sys-

tems — rarely is it integrated to the equivalent of the fleet level. However, Lockheed

Martin is developing the ability to do so with its Autonomic Logistics Information

System (ALIS), which integrates a PHM with their Joint Distributed Information

System (JDIS)[100]. The JDIS is a network which interfaces with the entire fleet,

integrating the information provided by the PHM for each aircraft[123]. This capa-

bility allows the ALIS to go beyond traditional PHM systems by automating aspects

of maintenance which do not require human involvement including troubleshooting

problems, ordering parts, scheduling maintenance events and completing operational

checks. The goal is to free maintenance personnel for other tasks, potentially to a

degree that overall fleet availability is improved. Alternately, maintenance personnel

may be reduced slightly, lowering costs. Either way, the JDIS enhances the PHM

significantly by providing the ability to know at any given time the fleet’s opera-

tional status as well as information about degraded components which are close to

failure[99]. Under a system like ALIS, new strategies for using PHM information

(such as the one that will be modeled in this thesis) are especially easy to implement

29

because they may be programmed into the fleet manager program and can account

for overall fleet level behavior patterns. Thus the system as a whole can make sug-

gestions about the best way to carry out maintenance activities after accounting for

all the failure information from the fleet.

In conclusion, the PHM literature provides a wealth of information about the dif-

ferent methods by which sensor signals can be analyzed to predict failure. Specifically,

signals are analyzed in some fashion to provide a reading of nominal or off-nominal,

and if the signal is off-nominal an additional prediction about whether and when

failure may occur is generated. Depending on the sensitivity of the algorithm that

analyzes the signal, the balance may swing toward missed detections or false alarms.

However, the literature provides very little information about when during a part’s

life this signal is likely to evolve past a nominal value, which is of much greater con-

sequence at the level of fleet behavior. The studies that have focused on fleet level

behavior have made assumptions about when failure detections will occur, but do

not provide insight into values for real systems. Therefore Sustain-ME will explore a

range of values for PHM effectiveness, as well as a range of part reliabilities on which

detections are based. Since the detection details are less relevant to the broader

sustainment process, these will be simplified to a surrogate for this behavior which

retains the stochasticity of the detection time but is otherwise a simple function of

the part reliability. False alarms and missed detections will not be modeled, because

though they impact the effectiveness of a PHM, they have little impact on decision

making. Finally, the novel CBM strategy used as an example of Sustain-ME will as-

sume that some form of JDIS is available to integrate fleet level information together

and make decisions based on it.

30

2.3 Sustainment Details

Up to this point, the thesis has focused on the broad strategies for sustainment,

and more speficially different maintenance strategies. This section explores the steps

involved with each segment of the sustainment process introduced in Figure 1. Be-

cause the specific steps that are included as well as the flow between them vary for

the different maintenance strategies that will be modeled in this thesis, several dif-

ferent versions of sustainment are presented in Section 2.3.1 through 2.3.3. Each

one links back to the overall segments of sustainment presented in Figure 1, in part

to show that sustainment remains the same process when viewed at a high level.

The specific changes related to each maintenance strategy will be discussed, and the

strategies that will be modeled using Sustain-ME will be highlighted. These mainte-

nance event breakdowns have been created by synthesizing several sources from the

literature[59, 6, 39, 123, 20, 109, 110].

2.3.1 Reactive Maintenance Steps

The first version of sustainment to be described in detail is with reactive (unscheduled)

maintenance. Figure 4 shows the major steps of sustainment under this paradigm.

For operations, three major steps must be completed (shown in blue in Figure 4):

first, fleet personnel prepare the aircraft to fly a mission. Next, the mission is flown,

and finally, mission recovery actions are performed. Both mission prep and mission

recovery have several substeps, and these will be introduced in Chapter 3. Under

reactive maintenance, failures will generally occur during operations. The orange

boxes in Figure 4 show the steps associated with failures under a reactive maintenance

paradigm. When failures occur, the aircraft will either be able to continue with the

mission, or have to abort. Only aborts are pictured in Figure 4 because Sustain-ME

makes the simplifying assumption that all failures during a mission cause aborts; this

is due to a lack of data in the literature about the comparative rates of failures and

31

critical failures, critical failures being failures which require maintenance immediately.

Therefore Figure 4 actually represents sustainment if all failures are critical failures.

Figure 4: Sustainment steps under reactive maintenance strategy (all failures as-
sumed critical)

Once the mission has been flown and either completed or aborted, the green steps

in Figure 4 show the major maintenance steps. If a critical failure has occurred and

the mission has therefore been aborted, maintenance is performed. If a critical failure

has not occurred, the aircraft returns to an available status where it is once again able

to fly a mission. The maintenance process also involves querying the local inventory

to determine if required parts are on hand; if they are not the aircraft must wait on

the supply chain, shown in purple in Figure 4. Chapter 3 will discuss the specifics

of the part ordering strategy used in Sustain-ME, as well as the individual steps of

maintenance.

32

2.3.2 Condition Based Maintenance with Inspection Steps

The second verison of sustainment described in detail is with a CBM paradigm,

shown in Figure 5. Since CBM relies on diagnostic or prognostic information but

does not specify how this information will be obtained, the first version of CBM

presented uses inspection on the ground to determine whether maintenance must be

carried out. Under this paradigm the operations steps remain the same as for reactive

maintenance. Also, since in air failures can still occur under a CBM paradigm (though

they occur less frequently), the steps associated with failure remain the same. Where

the difference lies is in the maintenance steps, which now must include an inspection

to see if forthcoming failures can be detected by signs of wear on the aircraft’s parts.

If the aircraft was not aborted due to failure and inspection does not find any signs

that failure is needed, the aircraft can return to an available state; otherwise it must

complete the steps of maintenance as before. Also, under this paradigm, the supply

chain behavior remains unchanged from unscheduled maintenance.

Figure 5: Sustainment steps under inspection enabled CBM strategy

33

2.3.3 Condition Based Maintenance with PHM Steps

The third version of sustainment described in detail is for a CBM paradigm with

a prognostic health management system equipped, shown in Figure 6. Under this

paradigm, operations, maintenance, and supply chain look the same as they did

under reactive maintenance. In this case, the aircraft is monitored for upcoming faults

automatically while in operation, meaning that inspection activities are unnecessary.

(In reality, a combination of the two will most likely be used for different types of

parts and part failures, but the explanation is simpler when assuming that information

comes purely from the PHM system.) However, as with CBM under inspection, the

possibility of unexpected failures can never be completely eliminated, and aborts will

still occur. It is also possible for the PHM system to detect a failure while on a

mission and predict that the failure will occur before the mission is over; though this

is distinct from an unexpected failure that the PHM is unable to detect, the overal

aircraft behavior is the same. Thus, under CBM with PHM, there are now more ways

for aborts to occur, although depending on the properties of the PHM prediction they

should be less likely.

2.3.4 Sustainment Conclusions

The sustainment approaches detailed in the literature will form the basis of the sus-

tainment methods tested in Sustain-ME. The goal of these tests will be to establish

how the different sustainment activities between the methods propagate to high-level

sustainment metrics. Also, the novel maintenance paradigm developed in Chapter 3

will be based on these existing paradigms, with small changes added to shift the

behavior more toward the scheduled maintenance side.

34

Figure 6: Sustainment steps under PHM enabled CBM strategy

2.4 Maintenance Metrics

As stated in Chapter 1, the two main maintenance metrics used in this thesis are op-

erational availability and operational reliablity. This does not mean that additional

maintenance metrics could not be captured with Sustain-ME; the model could real-

istically capture many maintenance metrics. However, in the interest of focus, this

thesis limits itself to two. Equation 1 shows the computational basis for the version

of operational availability used in this thesis.

AO =
∑
Fleet

TimeAvailable + TimeFlying
TimeTotal

(1)

AO indicates how often systems are Mission Capable (MC) as opposed to Non Mis-

sion Capable (NMC). However, it is sometimes a misleading metric because medium

35

values of operational availability may translate to 100% performance in other met-

rics. This is because no system can avoid maintenance entirely, and any time spent in

maintenance counts against operational availability whether the aircraft was needed

at the time or not. As a result this metric does not directly measure quantities which

the Air Force may care the most about. However, the metric cannot be ignored ei-

ther; contracts have traditionally dictated a set level of operational availability as the

performance metric to meet and this may continue to occur[15, 117].

Operational reliability has also been traditionally used in contracts, and focuses

more closely on the true behavior of interest for sustainment[117]. RO is computed

as a percent of mission objectives met. These may include objectives such as percent

of targets killed or percent of missions flown. For the purpose of this thesis, which

focuses on peacetime operations, no modeling of targets or mission success rate needs

to occur. Therefore the percent of missions flown is the most appropriate version of

RO for assessing sustainment behavior. It will be computed as shown in Equation 2.

%MissionsF lown =
#MissionsRequired

#MissionsF lown
(2)

2.5 Supply Chain Management

Supply chain management studies the processes that move goods from one place to

another, usually from a manufacturer to the end customer. True supply chains incor-

porate raw materials purchases, item storage at different stages of the supply chain,

and transportation along the entire chain[104]. The military sustainment supply

chain tends to include only a few links: the military, as the end customer, often deals

directly with the manufacturer of parts or interfaces through a single contractor[30].

Supply chain management as a field seeks to answer questions about style of supply

chain that best applies, how to set up the different nodes to ensure the best per-

formance, how to most efficiently transport goods, and how to maintain adequate

36

inventory. For military sustainment, questions of where to place depots for foreign

operations may also come into play since tariffs, export restrictions and politics will

place limitations on these locations.

Due to the stochastic nature of supply chains, supply chain management has

long dealt with nonstationary behavior. A central supply chain problem is handling

what has been termed the bullwhip effect, where fluctuations in demand create large

scale oscillations further up the supply chain. One of the biggest contributors to

this effect is having long supply chains with limited communication between the

organizations[73]. This should make it less of a concern for the military sustainment

process which as described has only one or two links, although the Air Force states

it as a problem to be addressed[30]. And in fact, Lee et. al. also identify demand

distortion as an effect which operates even for supply chains with only two links[73].

In addition to these propagating effects, it should be noted that the bullwhip effect’s

original source is fluctuating demand, something the supply chain management field

sees as an unchangeable aspect of their problem. The novel maintenance approach

tested with Sustain-ME in this thesis takes a different approach by targeting demand

fluctuation directly through the selection of more regular intervals for maintenance.

The purpose of proposing and testing a novel approach such as this is to demonstrate

how Sustain-ME may be used to evaluate new maintenance paradigms and compare

them to established standards.

When it comes to the supply chain, the most important parameter in achieving

the goal of minimum sustainment cost is the inventory required to match contractual

levels of fleet performance. At first glance this would seem to be purely an aspect of

the system’s reliability. However, when viewed as a supply chain problem it becomes

clear that to achieve a satisfactory level of orders filled the manufacturer must supply

spare parts in excess of the demand for them. This excess supply is in part due to

the lead time required to produce and ship spares [6], but is compounded by the

37

fact that such complex systems have many spare parts, a high portion of which fail

only rarely if ever [3]. However, when components fail, spares must be available to

replace them since the time required to manufacture the spare would be unacceptable.

Yet producing spares for each component on the aircraft, many of which will not

require replacement for years, is extremely costly. In fact, the U.S. Government

Accountability Office wrote a report on the wasteful ordering of 7.1 billion dollars

worth of unneeded spare parts by the U.S. Department of Defense between 2006

and 2008 [115]. As additional parts which fail more often are incorporated, the

problem quickly becomes ill-defined and difficult to predict. Add in the fact that

these inventory levels must sustain an entire fleet of aircraft, each with uncertain

needs in terms of spares over the lifetime, and it quickly becomes clear that minimizing

inventory cost is not a simple matter[62]. This is a part of the reason that this thesis

seeks to model the behaviors associated with sustainment early, in order to determine

which approaches work within the constraints established by the military.

2.6 Optimization and Decision Making Methods

Chapter 1 introduced the idea behind a novel maintenance paradigm. In Section 1.4,

the idea of performing maintenance at more regular intervals while taking into account

information from the PHM was described, but the details were left for later. Though

the full formulation will be developed in Chapter 3, an initial exploration of the logic

behind this approach will be briefly described here to justify the need for optimization

and decision making methods. Reference has already been made to the fact that

CBM’s purpose is to reduce the part life wasted under a scheduled maintenance

paradigm, at the expense of the regularity of maintenance visits that occur under

scheduled maintenance. Another purpose of the sustainment process as a whole, as

discussed in Chapter 1 and Section 2.4, is to maximize the operational reliability

of the fleet as measured by the ability to fly required missions. Figure 7 shows the

38

relationship between these two objectives of the sustainment process under CBM and

the parameters that impact these objectives.

Figure 7: Condition based maintenance objectives

In Figure 7, the two objectives are effectively independent of one another. The

parameters that control these objectives are the assignment of aircraft to required

missions, and the scheduling of maintenance visits as failures are detected. Because

the aircraft assignment is determined first, and the maintenance schedule is based on

when failures are detected as missions are flown, the two objectives can be maximized

and minimized, respectively, without needing to make a common decision. Figure 8

shows how this problem changes due to the desire to move to regular maintenance

spacing while accounting for failure information. Under this set of objectives, the

goals of sustainment become coupled.

To change the regularity of maintenance events, the maintenance schedule must

be shifted by maintaining aircraft at different times. The boundaries of this decision

are, on the early side, the time at which failure is detected, and on the late side, the

time at which failure will occur. However, maintaining earlier than the last possi-

ble minute also increases the part life wasted from what occurred under the just in

time maintenance strategy; this is the primary trade-off of the novel CBM strategy.

39

Figure 8: Condition based maintenance objectives

Maintenance times are a required variable for performing CBM differently, but these

are not the only variables available. Where the aircraft assignment to missions was

performed based on some default assignment logic under CBM, they present an oppor-

tunity to mitigate the additional part life wasted due to creating regular maintenance

events. Depending on the total number of aircraft available to fly missions and the

total number of missions required, this may even be accomplished without sacrificing

any operational reliability. However, it does present a more complicated problem to

solve as the two decisions (how to assign aircraft to missions and when to schedule

maintenance events) couple the objectives. Furthermore, the aircraft assignment,

maintenance times and the relationship between these two variables are constrained

by the boundaries of the problem. The combination of objectives, decision variables

and constraints suggests a solution method in the form of an optimization or decision

making method; this is why the literature about these fields has been surveyed. This

is also where the novel CBM maintenance paradigm gets its name: since it is a strat-

egy for performing CBM based Mission and Maintenance Optimization of Scheduling

Alternatives, it will hereafter be referred to as CBM-MiMOSA. This literature will

40

next be discussed, but first CBM-MiMOSA should be tied back to the literature-

based maintenance paradigms discussed in Sections 2.3.1 through 2.3.3. Figure 9

shows how CBM-MiMOSA can be mapped to the high level sustainment phases of

operations, maintenance, maintenance paradigms, and supply chain as was done in

Figures 4 through 6.

Figure 9: Sustainment steps under CBM strategy with predictable scheduling

From the field of optimization, many methods are can potentially be used. How-

ever, existing schedule optimization problems tend to use Linear Programming (LP)

variants[108] and Genetic Algorithms (GAs)[24]. This is because these methods work

well with the kind of variables which are available in scheduling, which tend to be

integer-based, discrete choices with large numbers of constraints. As a result this

literature search will limit itself to these two methods.

Linear Programming comes in several varieties[101, 13, 12, 77]. The most basic

41

is solved with the simplex method; integer programming is a subset of linear pro-

gramming where variables can only take on integer values and Mixed Integer Linear

Programming (MILP) is a hybrid between the two; quadratic programming, nonlinear

programming and stochastic programming relax the linearity requirement. All these

methods have been richly explored in the literature and solution methods as well as

computer codes exist for solving these types of problems. LP methods return deter-

ministic solutions, and can be completed very quickly. This last factor is ideal since

whichever optimization method is used will be run many times within Sustain-ME.

GAs are based on the idea of evolution, using computer-simulated versions of

mutation and breeding to improve a population of variables to find the best solution.

In the past they have proved effective at solving difficult problems, and they take

advantage of exploratory behavior to attempt to find global optima. Since many

methods struggle at doing this, Genetic Algorithms are well-suited to problem spaces

with many local extreme points[118]. However, because they find a stochastic solution

each time, multiple iterations of the optimization may be needed to ensure a good

solution has been found. This makes the method less than ideal for use inside a

model.

Finally, decision making methods have a role in trading different solution options

found by more basic optimizers. Finding the whole Pareto frontier, which contains the

set of the best solutions[25], can be used for a posteriori decision making – providing

all the information needed to make a decision later. Other methods, such as an

Overall Evaluation Criterion (OEC) set preference information a priori in order to

avoid the need for user input before proceeding. The method selected is usually based

on whether the decision making inputs are qualitative or quantitative, as well as how

preference information will be provided.

At the moment, there is not enough information about CBM-MiMOSA to de-

termine whether optimization or decision making is appropriate. This topic will be

42

reexplored once the full approach has been developed in Chapter 3.

2.7 Modeling

In modeling, there are four main options. The first division is between mathematical

models and simulation. Mathematical models look at the process as a whole and

attempt to estimate its general attributes and behaviors. Many inventory base stock

level assessments[7] and maintenance optimization models are of this type[10, 102,

28, 29]. They have also been used to determine when to replace parts based on

PHM information to both minimize breaks and reduce cost[58, 75]. These are usually

the fastest to execute and may have closed-form solutions. However, their modeling

power can be limited and if time-dependent behavior is important these models are

generally not used in this capacity; they are intended to rapidly provide information

about what conditions result in time-dependent behavior.

If this is not sufficient, simulation models are better able to provide time-dependent

information, though for stochastic processes the time behavior may change signifi-

cantly between repeated model executions. Sadoun states that there are three main

simulation types: Monte Carlo for stochastic processes which are invariant through-

out time, continuous time models and discrete event simulations[97]. As discussed in

Chapter 1, models which can capture nonstationary behavior must be constructed.

For this reason Monte Carlo models should not be used. However, continuous time

and discrete event simulations provide alternatives to mathematical models should

these be needed. This hierarchy of modeling is presented in Figure 10.

2.7.1 Markov Chains

Markov chains are mathematical models of stochastic processes. They are fairly

accurate when those processes obey the Markov property, which requires that the

state of the system only be based on its previous state or a finite set of previous states,

not the entire history of the system[72]. Using these models, powerful observations

43

Figure 10: Hierarchy of modeling types

can be made about the long-term behavior (or lack thereof) of stochastic systems.

These observations are mathematically derived from the basic rules of probability,

but through linear algebra and differential equations this math can be compressed

into a few representative equations which provide a closed-form solution for the long

term behavior of a system.

However, while Markov chains can be developed for many stochastic problems,

even complex ones, increasing model complexity limits the ability to solve for closed-

form solutions. Thus, using Markov chains to solve more complex problems is often

a balancing act between achieving the complexity required to capture all important

effects while keeping the model simple enough to gain meaningful answers[51]. In

the case of sustainment, the main difficulty of a Markov chain representation is the

supply chain’s rules. Though it would be possible to assume a supply chain that

obeys the Markov property, such an assumption requires the supply chain to be

either independent of the maintenance process’s need for inventory (modeled purely

as a stochastic arrival rate) or tied to inventory but without any ability to specify the

time delay in receiving inventory (modeled as a finite state Markov chain). Despite

the benefits of simplicity and mathematical certainty associated with Markov chains,

these fidelity sacrifices in the way the supply chain would have to be modeled preclude

44

their use in truly understanding the sustainment process. In addition, even if these

problems could be resolved, the complexity of the problem is unlikely to allow Markov

chain math to be applied to find a closed-form solution.

Another problem with Markov chains relates to their main purpose: finding long

term system behavior. Markov chains represent stochastic processes, and as was

discussed in Section 1.3.1 stochastic processes are either stationary or nonstationary.

Whether a Markov chain is stationary is determined by looking at how the probability

of being in different states is distributed for a single transition event. By multiplying

these probabilities together for many transition events (essentially adding up all the

probabilities for getting to a given state in different ways), the probabilities for cer-

tain stochastic processes will eventually stop changing as more transition events are

added. This does not indicate that the system itself stops changing, but that over

many repeated cycles of the process there are set probabilities of being in any given

state, regardless of the system’s initial state[72]. However, not all stochastic processes

display this behavior; some rotate between multiple long-term probability distribu-

tions, some are dependent on the initial state, and others never settle into a consistent

behavior. Markov chains are very useful for determining when steady-state behavior

will occur and what it will be, but if the stochastic process of interest is one which

does not display steady-state behavior the Markov chain cannot efficiently provide

insight into the process. Since this thesis has already identified a non steady-state

region of the sustainment process as the region where minimal inventory and cost

should occur, Markov chains have limited usefulness in identifying strategies which

can help manage this region intelligently.

2.7.2 Stochastic Petri Nets

Stochastic Petri Nets (SPNs) are another attractive modeling option. They retain the

ability to assess a model without needing to simulate its behavior, reducing analysis

45

time significantly. Unlike Markov chains they require computers to do this analysis,

but this gives SPNs a greater degree of modeling power than Markov chains can

achieve[51]. Despite this, SPNs use a few basic building blocks to model stochastic

processes, making them simple to learn and use. Additionally, the visual nature of

SPNs make them somewhat intuitive to understand and validate[124]. The model’s

building blocks are places, which represent states the individual elements can occupy,

transitions, which link places to one another either immediately or after a timed delay,

and tokens, which represent individual entities within the stochastic process. Tokens

are moved between places depending on three functions: input functions require that

a token be in the originating place before one is put in the destination place, inhibitor

functions prevent transitions from occurring unless the inhibitor place is empty, and

output functions move a token from a place to a transition. Intricate models can

be constructed from these elements by building up intermediate structures such as

queues, parallel activities and enabling activities, and linking these together at a

higher level. This also means the pieces of the model can be tested individually to

enable model verification in a more intuitive way.

Despite the wide variety of problems which can be modeled with SPNs, one impor-

tant drawback of this method is that tokens are identical to one another and do not

retain information about their history or specific attributes. Though colored Stochas-

tic Petri Nets do allow for some differentiation between different types of entities[51],

no concept of unique individuals exists in SPNs[46]. This can be problematic when

implementing policy. For instance, in a maintenance process, a policy that services

the individual in the queue with the easiest problem to fix could not be modeled

using SPNs, even if policy were the central question of interest for the model. It

also prevents metrics from being compiled at an individual level, which could be a

problem, for instance, if entities with different attributes were being compared to one

another.

46

Though to some extent these disadvantages can be managed through intelligent

modeling, Stochastic Petri Nets have one more similarity to Markov chains which

makes them less suitable for modeling sustainment: they also focus on the long-

term behavior of the system[51]. Consequently, they are more suited to modeling

sustainment than Markov chains are, but other models may be more preferred still.

2.7.3 Agent Based Modeling and Multi-Agent Systems

Agent Based Models (ABMs) and Multi-Agent Systems (MASs) are two variants of

the same type of model, where agents are modeled with simple behavioral rules but

their interactions lead to more complex behaviors[90]. In Agent Based Models this

is known as emergent behavior[47] and is one of the main reasons these types of

models are studied. According to literature, their purpose is not to solve engineering

type problems but to examine natural processes[47]. Multi-Agent Systems also use

the interacting agents mechanism, but are designed to find distributed solutions to

complex problems[92]. In organization, they are effectively the opposite of Stochastic

Petri Nets, since each individual is completely autonomous and self-aware but there

is no central organization to their behavior. Though this addresses some of the

problems with SPNs, it eliminates the benefit of being designed to model stochastic

processes with a definite structure. As a result, MASs are also unsuited to model

the sustainment process. However, it is possible that MASs would be helpful for

implementing complex policies within a sustainment model, effectively filling in one

of the blocks without interacting with the rest of the system.

Since ABMs and MASs are simulation models, they are more computationally in-

tensive than Markov chains and SPNs. However, they do provide the ability to mon-

itor how the system’s behavior plays out over time, which the mathematical models

cannot. The ability to see the evolution of model attributes over time is invaluable

to understanding non-steady behavior, but because it will change as stochastic draws

47

return different values in subsequent model runs it is important to take several repet-

itive data points to capture the model’s variability, enough that the metrics being

studied (such as the mean across repetitions) stabilize. The model’s size can become

an issue, as large numbers of agents and repetitions may lead to long run times. De-

pending on the time frame for analysis, this problem may or may not constrain the

choice of a model.

2.7.4 System Dynamics Modeling

System dynamics is another type of simulation model which is designed to show the

behavior of complex systems over time[16]. It has the ability to model resources,

the flow of entities, event delays, and feedback which means it has all the elements

necessary to model a logistical process such as sustainment. System dynamics is also

good at illustrating how individual processes which are simple can come together to

exhibit complex nonlinear behavior. It does so by combining model elements using

math from arithmetic through calculus, where the modeler defines the initial param-

eters needed to solve these problems. However, these models generally do not include

stochasticity which limits their applicability to a process such as sustainment[107].

Aside from this flaw, system dynamics has a few other drawbacks. First, like

Markov chains and Stochastic Petri Nets, system dynamics does not track entities

as unique individuals[107]. Thus, like with these simpler models, system dynamics

models are limited to monitoring the gross behavior of the system. This is often

adequate, but depending on the information needed from the simulation more may

be required. Second, system dynamics is designed for monitoring systems which

evolve continuously with time[107]. Sustainment does not. It experiences distinct

changes in state, though these changes occur at random times as defined by stochastic

distributions. Though system dynamics is capable of modeling discrete changes, it

does not do so in the most efficient manner possible. This brings the discussion to

48

the topic of Discrete Event Simulation, discussed in Section 2.7.5.

2.7.5 Discrete Event Simulation

Figure 11: Discrete event simulation[103]

Discrete Event Simulation is an appropriate simulation tool for modeling the type

of system described in Section 2.7.4 where the system state changes at distinct mo-

ments rather than continuously throughout time. It does so by having each element

within the model compute the time when its next event will occur and compiling

these into a queue of events[41]. The model then jumps from event to event, evaluat-

ing the changes that occur each time and updating the system’s state. By doing so,

a continuous model that could potentially require millions of time steps to simulate

the timeline might only require thousands when replaced by a discrete event model.

This change means a DES executes the model more efficiently, and consequently more

quickly than continuous time models. Figure 11 shows a notional image of a discrete

event simulation, which combines the clock, distributions associated with individual

processes, the properties of unique model elements, and the data to be collected.

Because DESs are suited to logistics (and by extension the sustainment process),

they are one of the most commonly used modeling techniques for logistics problems[54,

95, 107]. DES models can be tailored to the fidelity required for a given logistics

49

problem, which allows conclusions to be drawn about a system even when every

detail of its behavior is not known a priori. This may allow for repeated modeling

cycles where the concept is refined as the problem becomes better understood. Most

DES packages, such as SimPy for Python, come packaged with model elements such

as resources, containers and stores which can be used to build up logistics processes.

The logic behind waiting for another entity to act before proceeding is also pre-

implemented, meaning a process like maintenance translates fairly naturally to the

DES language[81].

DES also has its drawbacks, namely the fact that events which occur at the same

simulation time are still processed in the order they entered the event queue. As a

result, events which should occur simultaneously actually occur in sequence. This

means care must be taken in initiating the simulation’s entities, or behaviors which

are artifacts of the code and not true representations of the real process may emerge.

The solution is usually to randomize the order in which entities are processed, but

even this may just be an approximation of the true behavior. Whenever possible, logic

should be applied to link the model to the real world process and use this process as

the basis of programmed behavior.

2.7.6 Modeling Conclusions

Section 2.7 has described several different modeling methods from the literature and

outlines their benefits and drawbacks. Table 1 was created to synthesize this in-

formation in the key criteria that will be used to determine the modeling type for

Sustain-ME: whether the model type can represent stochasticity, whether it can cap-

ture time dependent behavior, and how quick the run time is. An “X” denotes that

the model type satisfies the criterion, and a “/” denotes that the model type partially

satisfies the criterion.

The only modeling method that can truly model stochasticity in a time dependent

50

Table 1: Modeling method evaluation against criteria

Stochasticity
Captures time

dependent behavior
Rapid run time

Markov chain X / X
Stochastic Petri Nets X / X

Monte Carlo X X
Agent Based Models X X

System Dynamics Models X
Discrete Event Simulation X X /

fashion and which runs fairly rapidly is Discrete Event Simulation. This modeling

style is appropriate for sustainment because it captures the necessary stochastic ef-

fects, through the use of distributions on the time to complete steps; it simulates

the behavior throughout time as opposed to forming high level conclusions about

the steady-state behavior; and it runs fairly rapidly, gaining efficiency by scheduling

events and jumping from one to another. Additionally, DES has the built-in ability

to model queues for resources, another aspect of sustainment. For these reasons, a

DES framework was chosen to build Sustain-ME for this thesis.

2.8 Conclusions

This chapter began by explaining several different maintenance philosophies from the

literature to ground the maintenance paradigms that are modeled in Sustain-ME.

Next, an enabling technology for CBM, prognostic health management, was intro-

duced. The literature provided information about how PHM might work in the real

world, but little information about how effective it is expected to be. For the purposes

of this thesis, the overall effectiveness is a much more important quality for the PHM,

and therefore the PHM will be modeled at this level of fidelity. Next this chapter

explored the different options for creating models; discrete event simulation was de-

termined to be the most appropriate modeling method for the sustainment process.

At this point the sustainment process was described in greater depth, highlighting

the differences between the different maintenance paradigms that will be modeled in

51

this thesis. Next maintenance metrics were defined, and supply chain management

was briefly discussed to provide a foundation for a portion of Sustain-ME that will

recieve less focus in this thesis. Finally optimization and decision making methods

were explored to help inform the decision about how to develop for the purpose of

demonstrating the abilities of Sustain-ME. Having now explored the concepts relevant

to the creation of a sustainment model, Chapter 3 will next develop a framework for

developing and testing both Sustain-ME as well as the different maintenance paradims

that will be compared with it.

52

CHAPTER III

MODEL FORMULATION AND EXPERIMENTS

In Chapter 1 a set of paradigm shifts for military aircraft sustainment were introduced

and a new modeling environment able to predict the effects of those paradigms,

Sustain-ME, was introduced. In Chapter 2 different fields and methods from literature

were introduced to provide the background necessary for implementing Sustain-ME

and its example use case. This chapter focuses on synthesizing the two to formulate

the details of Sustain-ME and develop the experiments that will be used to check

that it is modeling the right effects.

Keep in mind that the purpose of Sustain-ME is not to capture all sustainment

behaviors observed in the real world, but to create a basis for making decisions about

sustainment into the future. Thus Sustain-ME should capture enough aspects of

sustainment that general interactions between different sustainment processes can

be observed, while future trade-off studies will define and incorporate any relevant

aspects of new sustainment strategies that are tested. For instance, this thesis will

demonstrate Sustain-ME by comparing different maintenance paradigms; future stud-

ies might focus on supply chain decisions and in that case the modeled supply chain

would be developed to reflect those decisions. However, this does not mean the

supply chain will be neglected in this thesis. Since the most relevant aspect of the

supply chain is that it is based on limited resources with long turnaround times for

refurbished parts, modeling this primary behavior should provide a reasonable ap-

proximation of real world behavior without needing to explore in great detail the

different options the supply chain at a high level of fidelity.

The first part of this chapter will focus on the behaviors that must be captured

53

in Sustain-ME when the focus is maintenance. In doing so, Research Question 2 will

be explored and answered. Once Sustainme has been conceptually developed, further

questions will be explored. Hypotheses 1 and 2 will be revisited, and experiments

to test them will be described based on the specifics of Sustain-ME. Finally, CBM-

MiMOSA will be revisited to develop the mathematical basis for this strategy.

3.1 Sustainment Modeling

Research Question 2 asks, “What level of fidelity is required to capture the major

trends within sustainment?” Because this question is broad, a specific hypothesis

could not be developed to determine an answer. Instead, the characterization of sus-

tainment begun in Chapter 2 will be continued, drawing from literature to provide

specific steps within the sustainment process and distributions associated with these

steps. These steps will form the basis for Sustain-ME’s logic. In specifying the exact

behavior of the sustainment process modeled here, the thesis’s stated goal of provid-

ing a transparent, open-source sustainment modeling environment will be partially

achieved. From the basis of this formulation, any future efforts will have the ability

to examine the currently modeled behavior and either deem it appropriate or update

it to match future problems. The completion of the goal will come through demon-

strating Sustain-ME’s adherence to these intended behaviors, and demonstrating the

types of studies that such a model enables. This section addresses the behaviors of

Sustain-ME derived from literature. After developing the main behaviors, additional

assumptions that had to be made to create Sustain-ME and their justification are

discussed.

3.1.1 Operations Modeling

Figures 4 through 6 list the same three steps for operations: mission prep, fly mission,

and mission recovery. Thus Sustain-ME’s operational modules will remain largely the

same through the different maintenance paradigms of the example use case. Faas and

54

Iakovidis describe the following steps within the mission preparation phase: mission

scheduling, preflight inspection, refueling, load weapons, engine start, final systems

check, taxi, and takeoff[39, 56]. These steps are supported by several entities and re-

sources: flight chief(s)[110], crew chief(s)[39, 109], ground crew(s)[39], and runway(s).

Depending on the step, different resources or entities may be required to be present

for completion of the step; for instance, the flight chief is required to be present

for mission scheduling. These limitations placed on Sustain-ME represent real world

military regulations, and can easily be updated as regulations change. Since these

entities and resources are limited in number, they can be represented in Sustain-ME

by the resource class, which creates queues whenever resources are currently in use.

This preserves the real world behavior associated with work flows for individuals. Ad-

ditional limitations imposed by the real world include the fact that the ground crew

must be present for preflight inspection through taxi, the crew chief must be present

if preflight failure inspection is performed (for the maintenance paradigms modeled

in this thesis, no such check is required, meaning that the crew chief’s role is merely

as a placeholder), and the runway must be available for takeoff. Incorporating these

limited resources helps to capture the true amount of stochasticity associated with

mission preparations, as merely placing delays on each step without requiring limited

resources would create a more predictable system than is realistic. Finally, incorpo-

rating limited resources into Sustain-ME provides the opportunity to perform trades

on the effect and cost of different resources for improving sustainment metrics. In this

thesis, the decision will be made with a calibration activity described in Chapter 4.

Figure 12 illustrates a more in-depth view of mission preparations for a military

aircraft fleet as derived from literature. It shows the relationship between different

mission prep activities and the resources required to carry them out. Activities are

defined by distributions and represented as rectangles, while waits for different re-

sources are defined by queues and represented as ovals. Figure 12 represents the

55

steps that a single aircraft must take to complete mission prep. This distinction is

important because the fleet is composed of many aircraft completing the same steps

in parallel; thus the actions of one aircraft can influence another through the mutual

need for limited resources. Also, it bears stating that Sustain-ME observes the ef-

fects of individual aircraft operating simultaneously, not the behavior of the fleet as

a whole.

Figure 12: Mission preparation activities

56

The mission scheduling step is fairly straightforward; during it pilots and aircraft

receive orders about a mission they will fly. The preflight inspection step checks for

any failures that might have been previously missed. Due to the way failures are

modeled in this thesis, only flight hours count towards part wear. This means that,

under reactive maintenance all failures occur while on missions, and under CBM with

PHM, failures will either occur while on missions or will be predicted and prevented.

As a result, the delay for preflight check is still carried out, but no failures are ever

found. This represents another assumption of Sustain-ME that could be adjusted

depending on the real world process being modeled. The refueling and load weapons

steps are self-explanatory. The engine start, final systems check and taxi step is also

self-explanatory, factoring in the same logic by which the preflight inspection does

not discover failures. Finally, the takeoff step is again self-explanatory.

Table 2 details the time distributions associated with the mission prep steps.

These time distributions represent the fact that there is uncertainty associated with

how long different activities will actually take to carry out. They are also derived

from the literature, and are estimates of the distributions associated with the real

world equivalents of these processes. These distributions are one of the simplest

model parameters to change, especially if the parameters of the distribution change

but not the distribution shape. If the distribution type changes (i.e. from triangular

to normal) this represents a barely more complicated change. This is one of the ways

Sustain-ME can be updated to represent current sustainment processes. Most of the

distribution of step durations in this thesis are based on the triangular distribution,

for which the probability density function (PDF) is presented in Equation 3.

57

Table 2: Mission preparation time distributions

Step Duration Distribution
Mission scheduling Tri(30,45,60) min
Preflight inspection Tri(50,60,70) min[39]
Refueling Tri(20,22,25) min[56]
Load weapons Tri(45,60,75) min[56]
Engine start, final systems check, and taxi Tri(7,10,12) min[39]
Takeoff Tri(2,3,4) min[39, 56]

PDFTriangular =



2(x−a)
(c−a)(b−a) x ∈ [a, b)

2
c−a x = b

2(c−x)
(c−a)(c−b) x ∈ (b, c]

0 else

(3)

For the fly mission phase of operations, the only step is to fly the mission,

which according to Iakovidis follows a truncated normal distribution with mean of

1.3 hours[56]. However, Faas used a truncated normal distribution with mean of 2

hours[39]. Since these two sources did not agree, their mean values were used to

bound the distribution used in this model, which was chosen as a triangular distri-

bution for consistency and boundedness. Again, the behavior of Sustain-ME matters

more than the specific input and assumption values, assuming that those values are

reasonable, because the goal of the thesis is to provide a framework and ensure that

relevant effects are captured. Thus the fly mission duration is modeled as a triangular

distribution with minimum of 1.3 hours, maximum of 2 hours, and mode of 1.5 hours.

The mode was chosen to mimic the behavior of a lower truncated normal distribution,

which will be positively skewed (i.e. have a longer tail toward high values).

For the mission recovery phase of operations, Faas cites the following steps: land-

ing, and parking & recovery[39]. The distributions for these steps are Tri(14,15,16)

minutes and Tri(5,7,9) minutes respectively. Additionally, there is a servicing step

58

that counts as downtime in the AO computation, as do the rest of the steps of mainte-

nance. However, because it does not require maintenance resources and occurs after

every flight, regardless of whether failure has occurred, it is encompassed in the op-

erations portion of sustainment – this can be seen as the operational component of

maintenance and it includes actions such as checking and replenishing fluids. The

distribution associated with servicing is Tri(45,60,75) minutes[39]. As with mission

preparation, certain resources are required to perform these activities. The runway

is required to perform landing, and the ground crew is required to perform park &

recovery. However, the ground crew is also required for subsequent steps which fall

under the maintenance umbrella, so they are not released immediately after park-

ing & recovery have been completed. Figure 13 shows the activities associated with

mission recovery using the same format as Figure 12.

Figure 13: Mission recovery activities

3.1.2 Maintenance Modeling

Figures 4 and 6 list almost the same three steps for maintenance: first a decision point

for whether the mission was aborted (reactive maintenance) or whether repair should

59

occur (CBM paradigms), next a maintenance phase and final a local inventory step.

Thus Sustain-ME’s maintenance modules will also remain largely the same through

the different maintenance paradigms of the example use case. It should be noted

that Figure 5 had slightly different phases within the overall maintenance process,

but that this paradigm will not be modeled using Sustain-ME.

Faas lists the following steps within the maintenance phase: repair need check,

document corrective actions, remove LRU, wait for part to arrive from local inventory,

write inventory paperwork, and replace LRU[39]. The individual rules for what passes

a repair need check vary from paradigm to paradigm, and this has been covered in

Figures 4 through 6. The resources required to carry out maintenance activities

are the maintenance staff and maintenance facilities[123]. Think of the maintenance

facility resource as a berth within a building rather than the building itself. The

detailed breakdown of maintenance steps is shown in Figure 14.

The repair check logic is, as discussed, dependent on the specific maintenance

paradigm being modeled. The document corrective actions step involves writing a

report on the specific parts that failed and the actions planned to fix the failure.

The remove LRU step involves taking the broken part off the aircraft, and the send

parts to depot step involves shipping the part away to the vendor to be refurbished.

The local parts available check looks for replacement parts in local inventory and

preferentially uses these if they are available. If they are, a wait for them to be taken

out of inventory occurs. If they are not available in local inventory, the aircraft must

wait until replacements arrive from the depot. During this time the maintenance

staff are released because they are not needed while the aircraft is awaiting parts; the

maintenance facility is not released because the aircraft must remain in place during

maintenance. Once the parts arrive from the depot, they are then sent from inventory

and after this point the two versions of the maintenance behavior converge. Once

parts are on hand and maintenance staff have been reacquired (if they were initially

60

Figure 14: Maintenance activities

61

released), the new part is installed on the aircraft. Next the inventory paperwork

step requires that paperwork related to the spare parts on hand and on order be

completed, after which the maintenance staff and facilities are released.

Table 3 contains the distributions associated with the activites in Figure 14.

Table 3: Maintenance time distributions[39]

Step Duration Distribution
Document corrective actions Tri(5,10,15) min
Remove LRU Tri(45,60,70) min
Wait for local Tri(0.5,2,2.5) min
Replace LRU Tri(60,84,120) min
Inventory Paperwork Tri(5,10,15) min

3.1.3 Supply Chain Modeling

Figures 4 through 6 list the same two steps for the supply chain: depot part repair and

shipping. Thus Sustain-ME’s supply chain modules will remain the same through the

different maintenance paradigms of the example use case. Figure 15 shows the steps of

the supply chain process, which largely resemble the higher level phases of the supply

chain; these steps are self-explanatory. The distributions associated with shipping to

the depot, depot refurbishment, and shipping to the base are U(0.25,0.5) days[39],

Tri(69,87,104) days[114, 65], Tri(0.1,0.3,0.5) days[39] respectively. Equation 4 shows

the PDF for a uniform distribution.

PDFUniform =


1
b−a x ∈ [a, b]

0 else
(4)

3.1.4 Additional Modeling Assumptions

Though Sections 3.1.1 through 3.1.3 have discussed the steps of sustainment and how

long these are expected to take, as well as the resources required to carry out these

steps, several aspects of sustainment still remain to be determined before a model

62

Figure 15: Supply chain activities

can be created. First, the specifics of the PHM as implemented in Sustain-ME must

be determined. Chapter 2 described how PHM has been modeled in the literature

and briefly conceptualized how it would be addressed in this thesis, but this section

will present a formal explanation of the concept. Next, the issue of how often aircraft

can fly missions is addressed, followed by the replacement part ordering strategy that

will be employed in Sustain-ME as part of the supply chain logic. Next the level of

complexity for aircraft components that must be modeled and the reliability of those

components is discussed. Finally the calibration of Sustain-ME’s resource levels is

discussed.

First, the determination of how to model PHM will be completed. Due to the

precedent set in using the surrogate measure of detection time as a percentage of

part life to represent the PHM[78, 121], this thesis will model the PHM using dis-

tributions around the detection time based on Malley’s findings. The detection time

distributions will be used to calculate the percentage of a modeled component’s life

at which failure is detected, as shown in Figures 16 and 17. Once the failure is de-

tected it is assumed that the simulation perfectly predicts when failure will occur.

63

This second assumption mirrors Malley’s implementation. Though this assumption

is slightly unrealistic, it isolates the effectiveness of the maintenance paradigm from

the effectiveness of the PHM. Also, the maintenance paradigm will operate the same

whether false alarms are included or not because maintainers can only rely on the

information at their disposal. The internal functioning of the PHM model itself is not

relevant to the manner in which the maintenance logic determines when to schedule

maintenance; on the contrary, only the outputs of the PHM model (a failure detec-

tion time and predicted failure time) matter. Other methods which assume a PHM

with detection lead times always sufficient to order parts in advance [39, 123, 56] will

not be adequate to answer the questions that will be asked in this thesis. In fact,

the detection lead time may be a significant factor in comparing the effectiveness of

different maintenance paradigms. When lead times are sufficiently long the PHM

system is expected to perform better, and when they are short it is expected to be

less effective.

To capture the essence of the PHM without modeling all the details, the time at

which the PHM will detect failure for any individual part is illustrated in Figures 16

and 17. Figure 16 shows how failure will be modeled. When a new part is installed

on the aircraft, a failure time for that part will be generated from a random distribu-

tion. As stated in Chapter 2, the exponential distribution will be used to represent

component reliability because it will be assumed that Sustain-ME represents the bulk

of the aircraft’s life, rather than the burn-in and wear-out periods that characterize

the early and late life of the system. The reliability will be based on values derived

later in this section, but importantly, will be based on the wear and tear on the

part accrued during flight, rather than the total clock time. Once the failure time is

drawn from the distribution, the part “knows” when it will fail, and every flight hour

flown on the part deducts from the time remaining until failure. For the maintenance

paradigm where parts are used until they fail, this will continue until the part fails,

64

at which time the rest of the simulation will become aware that the part needs to

be fixed. For the two paradigms with a PHM implemented, the simulation is able

to become aware that the part has an impending failure only once a detection event

has occurred. Figure 16 shows the failure time being drawn from the exponential

distribution.

Figure 16: Illustration of Sustain-ME part failure

The detection event is illustrated in Figure 17. Recall that any individual part

within Sustain-ME will acquire a failure time when it is first installed on the aircraft.

At the same time, a detection time will be generated based on the specific value drawn

from the failure distribution. The detection time is also based on a distribution to

simulate the fact that the warning time for a part is not likely to be deterministic.

The distribution in this case will be a truncated normal distribution centered around

some value µ and truncated between 0 and the failure time. µ will be computed as

a percentage of the specific failure time for the part at the time of installation, for

instance at 75% of tPartfailure. This percentage is the value that will be varied as the

PHM detection lead time to simulate different levels of effectiveness for the PHM.

Once both the failure time and distribution time are known, both will be deducted

for each mission flown until the detection time is reached, at which point the rest of

the simulation will gain full knowledge of the failure time. Table 4 lays this process

out in three steps.

The next discussion of a modeling decision involves the number of missions that

may be flown by any given aircraft over the course of a single day. Multiple sources

65

Figure 17: Illustration of Sustain-ME part failure detection

Table 4: Steps required to generate specific part failure and detection times

Step 1
Draw an instance of failure time from failure distribution
tPartfailure

Step 2
Determine mean of detection time distribution for this part instance
µ = Detectionleadtime ∗ tPartfailure

Step 3
Draw from the detection time distribution with mean µ
tFailuredetection

reference the idea of quickly turning around to fly secondary missions immediately

after completing a primary mission [39, 56]. However, the guidelines for doing so are at

the discretion of individual fleets; these secondary missions occur only as needed and

the limit on how many may be flown by a single aircraft or pilot in a day will depend

on the mission tempo. During heavy duty operations this number may be higher

to allow the Air Force to achieve target requirements, whereas during peacetime the

number of missions may be limited to one per day, or one every few days. In reality,

even the time of year may affect flight scheduling [56], though this thesis will use

regular flight scheduling over time to show that, even with the best case scenario of

perfectly even flight scheduling, nonstationary behavior still appears. For the purpose

of this model, turn-around missions will not be modeled. However, this assumption

could easily be adjusted if a specific scenario called for it.

Another modeling decision that must be made and justified is the inventory or-

dering strategy, or the logic by which replacement parts are ordered to replenish the

inventory. The strategy that is appropriate will depend on the scenario being mod-

eled; in many cases, storage of inventory and shipping costs are primary drivers and

66

these suggest much different scenarios than when these effects are not accounted for.

Since the overall goal of this thesis is to develop a model that can be used to model

a variety of strategies, the formulation of Sustain-ME does not prevent modeling this

type of problem. However, for the maintenance strategies modeled to demonstrate

Sustain-ME, the issue of storage space and shipping costs are tangent to the problem

of interest. A better approach is to use a one-in-one-out ordering strategy that has

been used before in sustainment models, such as the one Faas created[39]. Muckstadt

refers to this strategy as an (s,s-1) ordering strategy and proves that under certain

conditions, this strategy is an optimal one because it matches ordering directly to

demand[85]. One other advantage of this strategy is that inventory will be directly

replaced, making it easy to identify the inventory level needed to achieve desired

performance.

The final modeling decision concerns the required level of complexity needed to

model the aircraft’s individual components in implementing the failure portion of the

simulation. In reality military aircraft have thousands of parts and modeling them

all is infeasible due to both computing power and the availability of data. However,

statistical methods can be used to mathematically represent many components with

a few representative ones[98]. This suggests that, even if data cannot be found for

the reliability of all an aircraft’s components, using representative parts is not as

problematic as it might seem. The manner of choosing which representative parts

to model should be based on a few important parameters. First, parts that have

high reliability are expected to have a different effect on system behavior than parts

that have low reliability. Care should be taken that parts with low reliability are

not chosen with reliability that is too low, since for the aggregate part the possibility

exists of having multiple failures on the same mission, which complicates the modeling

significantly. On another axis, the cost of parts could impact which maintenance

paradigms are best from a financial perspective. Recall that an overall metric of the

67

system is inventory cost, and for some parts the cost alone might not justify paradigms

that require early replacement such as what occurs under CBM or will occur more

strongly for CBM-MiMOSA. A third axis of repair time or depot turn around time

could also have an impact on the effectiveness of maintenance optimization, but this

effect will be reserved for later discussion if the results of maintenance optimization

warrant it. For this reason only reliability and cost will be included in helping to

determine representative parts for Sustain-ME. Combining reliability at low (but not

too low) and high values with cost at low and high values gives six parts that are

necessary to be modeled.

In order to determine realistic values for overall aircraft reliability, the literature

was once again examined. Though any military aircraft could be used to model

military aircraft sustainment (the F-16 would be a good option because of the wealth

of data available in the literature), one in particular stands out as an appropriate

choice. The F-35 Joint Strike Fighter (JSF) is a new system being built and planned

for at the same time as the paradigm shift is occurring in the way the Air Force will

sustain aircraft. Due to this fact it will, as mentioned in Chapter 2, be equipped

with an automated PHM system at the fleet level (ALIS). Thus the F-35 is a good

aircraft for which to demonstrate the relative merits of different current maintenance

paradigms. The predicted reliability for the JSF was found to be 6 Mean Flight

Hours Between Failure (MFHBF)[116]. Since six parts with two distinct reliability

values are to be modeled, these were chosen so that the overall aircraft reliability

would be 6 MFHBF and so that the two values would be distinct. This holds true

for part reliabilities of 25 MFHBF, 25 MFHBF and 300 MFHBF. This determination

was based on the standard assumption of exponential part failures, which holds true

over the middle part of the bathub curve discussed in Section 2.1.6. For exponential

failures the individual part means aggregate as shown in Equation 5.

68

MFHBFAll =
1∑

i
1

MFHBFi

(5a)

MFHBFAll =
1

2
MFHBFHigh

+ 4
MFHBFLow

(5b)

6 =
1

4
25

+ 2
300

(5c)

Since cost is only incorporated into Sustain-ME when differentiating parts, part costs

may be relative. To keep cost and reliability values consistent, the cost values will

have the same ratio as the part reliabilities (1 : 12). For simplicity, costs of 1 unit

and 12 units respectively will be used.

The final aspect that should be addressed is the determination of what resource

levels, other than inventory, should be used for Sustain-ME. In reality, these decisions

are made by studying the budget and determining the most cost effective way to meet

operational requirements. Models may be created to determine staffing levels, but

more likely these decisions will be made gradually as they are needed. To emulate

this process with Sustain-ME, a resource level that creates adequate performance but

does not move past the point of diminishing returns will be selected. Though in

the real world this would be done for each maintenance paradigm independently, for

a modeling environment that is intended to compare different options on a similar

foundation the best approach is to select one level and use it for all comparisons.

If individual adjustments need to be made, these will be identified and discussed as

part of the study. The metrics used to determine the appropriate resource levels

should be AO and RO, as is true for the rest of the studies in this thesis. However,

to facilitate decision making several aggregate values such as the mean, standard

deviation, maximum and minimum of the response over time will be collected and

used as surrogates for the full response. This will allow the effect of several resources

to be examined rapidly and an overall combination of resources that is best for the

69

fleet to be chosen.

3.1.5 Modeling Conclusions

Research Question 2 asked what level of fidelity is required to capture the effects of

military aircraft sustainment so that decision making can be facilitated. Section 3.1.1

through 3.1.4 have addressed this question by searching the literature for descriptions

of military aircraft sustainment processes and compiling both activity flows as well

as distributions associated with the time to complete different activities. In the few

cases where information was not available in literature, engineering judgement and

experience was applied. Additional aspects of sustainment were also explored in the

literature and used to determine how to model the PHM, what rules to apply to

aircraft assignment to missions, how to order parts, and how to model the aircraft’s

reliability. The activity flows, distributions and rules listed in this section will form

the basis of the logic modeled within the sustainment trade-off environment. However,

part of the benefit of creating Sustain-ME based on a clearly specified set of rules is

that it should be easy to update under different sets of assumptions or with a different

research focus. Appendix A, which provides all code used to build Sustain-ME, will

also be a helpful reference for recreating or updating this work.

3.2 Hypotheses and Experiments

Chapter 1 introduced two hypotheses for testing the formulation of Sustain-ME. Now

that more details about Sustain-ME are known, the specifics of how these hypothe-

ses will be tested using this modeling environment can be discussed. Hypotheses 1

and 2 are reproduced in Sections 3.2.1 and 3.2.2 so that they can be revisited and

experiments to test them can be developed.

70

3.2.1 Hypothesis 1 Testing

Hypothesis 1: The relationship between AO and RO is complex and cannot be

represented by a simple correlation.

Hypothesis 1 was posed because the two metrics measure similar aspects of sus-

tainment, but measuring both is not required from a military contracting context.

However, it is predicted that there will be situations for which AO and RO will

demonstrate different trends, suggesting that using only one metric might make the

sustainment process appear to be performing well when in fact it is suffering in an-

other metric dimension. This is predicted in part due to the fact that the availability

metric, AO, should not be maximized under the best circumstances. As mentioned

before, AO must be less than 100% for a fleet that is correctly operating, because it

is unrealistic to expect never to have to perform maintenance1. There may be some

cases where the availability is high, making sustainment appear to be performing well,

when in fact aicraft are available because they are not flying and are simply waiting

in one of the states that counts as available. If this is the case, the RO would most

likely be low to reflect what is occurring.

Since all that is needed to support Hypothesis 1 is an example of a reversal in

trends between AO and RO for different sustainment assumptions, two scenarios will

be posed here that are expected to demonstrate different AO to RO relationships.

These will then be tested with Sustain-ME to determine if they in fact lead to different

correlations between AO and RO, and if this is the case Hypothesis 1 will be supported.

The two scenarios chosen are based on the initial inventory provided to the fleet,

and the resources provided to sustainment in the form of flight chief, crew chief,

ground crew, runway, maintenance facilities, and maintenance staff. It is expected

1Even the zero maintenance paradigm acknowledges this[5]

71

that, as the inventory is increased, both AO and RO will increase because the addi-

tional spares will reduce the average time that aircraft are required to wait for repairs.

This should increase AO by increasing the proportion of uptime versus downtime. It

should increase RO due to the greater number of aircraft available on average, as

these aircraft are no longer unavailable due to a wait time in maintenance. On the

other hand, as sustainment resources associated with the mission prep activities are

decreased, it is expected that though RO will decrease, AO will increase. This is

because significant queues for these resources could create delays for aircraft waiting

to be sent on missions, leading to a drop in RO if aircraft are not able to fly these

missions in a timely fashion. However, AO would still remain high for this scenario,

because the wait time would take place in a state that is considered as uptime – it

contributes positively to AO. Furthermore, if the RO is affected, the fleet’s aircraft

will have less total flying time and therefore fewer overall failures, leading to less time

spent in maintenance as well.

The test for Hypothesis 1 will vary the initial inventory and resource levels inde-

pendently. To avoid conflating two trends, reasonable inventory values will be used

when studying the effects of resource levels and reasonable resource levels will be

used when studying the effect of inventory. Both will be varied and the effect of each

variable on AO and RO will be examined to determine if trend reversal occurs. The

correlation between AO and RO will also be plotted for these cases.

3.2.2 Hypothesis 2 Testing

Hypothesis 2: At the conditions cited in the Air Force sustainment paradigm shift,

where minimal inventory is selected to meet a target value of 70% AO, and where

maintenance is performed based on a condition based maintenance policy, stochastic-

ity will dominate the performance of sustainment.

72

Hypothesis 2 is simple to test because it aligns with model distinctions that are

already being planned. Sustain-ME with the CBM maintenance paradigm is expected

to exhibit stochastic behavior at inventory levels that provide approximately 70% AO.

Testing this simply requires that this version of Sustain-ME be run for a variety of

initial inventory investment levels and that the region around an average of 70% AO be

characterized as stationary or nonstationary. To do so, not only will the operational

availability be examined but the operational reliability (percent of missions flown) as

well. The behavior of these two metrics over time will be highly variable and will

not show a clear trend if the Hypothesis is supported by testing. Also indicative

of the stochasticity at play, the results on subsequent repetitions of the same model

(analagous to running experiments for different but similar fleets or the same fleet in

different years) should exhibit nonstationary behavior that is different from what was

observed for other repetitions. If these are true, then Hypothesis 2 will be supported;

if clear time-dependent trends emerge for this inventory level, the hypothesis will be

falsified.

3.3 CBM-MiMOSA Strategy

Chapter 2 described the idea behind the CBM-MiMOSA, a novel maintenance strat-

egy that will use the assignment of aircraft to missions and mainenance visit schedul-

ing to try to create more regular maintenance visits, in turn ideally reducing the in-

herent nonstationary of CBM under a limited inventory situation. Having described

the parameters which are available to an optimizer, the actual problem to be opti-

mized must now be defined mathematically. Then the optimizer that will be used

will be chosen from the options discussed in Section 2.6.

3.3.1 Problem Definition

CBM-MiMOSA will use an optimizer to determine the ideal time to schedule main-

tenance for aircraft as well as the missions to assign to individual aircraft. To do

73

so, it must have access to the fleet’s PHM data and current inventory levels in or-

der to perform maintenance scheduling as well as access to mission requirements and

aircraft flight history to perform mission assignments. The objectives of this prob-

lem are to create a steady flow of aircraft to maintenance while still using as much

part life as possible, and while continuing to fly as many of the required missions as

possible. The formulation as an optimization problem is meant to translate the high

level objectives into actionable information about which aircraft should be flown and

maintained and at what times. Therefore the different goals and limitations of the

problem must be translated into mathematical form, and these must be directly re-

lated to the degrees of freedom available within the simulation, namely those related

to aircraft operations.

The first of these goals, as stated above, is to create a steady stream of aircraft

into maintenance at regular intervals. However, the bounds of the problem matter

as well. Over the period of operations for the fleet, the goal is to have aircraft visit

maintenance evenly but also for them to fill the timeline completely; in other words,

if the number of maintenance visits over this period is n, and the time period of

operations is Tend, the time between each pair of temporally adjacent maintenance

visits will ideally be Tend/n. At this point it is helpful to define a set of variables T1

to Tn representing the time at which n subsequent visits to the maintenance process

occur. Thus the difference between each pair of maintenance visits, Ti+1 - Ti, should

be as close as possible to Tend/n. This is formalized mathematically in Equation 6.

given Tend (time period of interest)

n (number of maintenance visits in Tend)

Ti (time of ith maintenance visit)

target Ti+1 − Ti =
Tend
n

(6)

74

When the number of maintenance visits and the time period are defined as the

entire span of operations for the fleet, the value Tend/n is also equivalent to the mean

time between repairs for the fleet, µF . Thus the objective function representing steadi-

ness for maintenance visits can be formalized for any two adjacent maintenance visits

as minimize |Ti+1 − Ti − µF |. Since the absolute value function dictates nonnegativ-

ity, the overall objective function can be created by summing the individual objective

function over all pairs of adjacent maintenance visits without worrying about long

intervals and short intervals canceling. Also, presuming some initial conditions for

the problem, there may have been another maintenance visit prior to the optimiza-

tion being run. To keep continuity between the optimization period and previous

operations, the most recent prior maintenance visit can be integrated into the objec-

tive function as well, where the difference between the first maintenance visit during

optimization and the most recent prior maintenance visit should also equal µF . This

objective function is shown in Equation 7 as an update of Equation 6.

given Tend (time period of interest)

n (number of maintenance visits in Tend)

Ti (time of ith maintenance visit)

µF =
Tend
n

(mean time between failures for the fleet)

minimize
n∑
i=0

|Ti+1 − Ti − µF |

(7)

Having quantified a function for defining a steady flow of aircraft into mainte-

nance, a function for quantifying part life wasted must now be defined. As stated in

Section 3.1.4, the PHM has been assumed for this thesis to detect an upcoming fail-

ure for an aircraft component at some percentage of the part’s actual life, distributed

around that percentage as a truncated normal distribution. Both the part life and

the detection time are quantified in flight hours, meaning that once a certain number

75

of flight hours have been flown by the aircraft with the part installed, detection or

failure will occur. Once the detection occurs, the part’s remaining flight hours until

failure are known. This temporal nature of the problem combined with the inherent

stochasticity mean that only some of the fleet’s aircraft will be detecting failure at any

given time, and at some points in time none may be. Thus the fleet can be split into

three subsets of aircraft: aircraft which are available to fly and not detecting failure

for any installed parts (ACAvail), aircraft which are available to fly but which detect

failure for one or more installed parts (ACPF), and aircraft which are unavailable

to fly due to needing maintenance for installed parts (ACU). Only aircraft from the

second subset are relevant to the computation of part life wasted, since only these

have part lives which can be known to the optimizer. By the same logic, only the

second subset is relevant to the computation of maintenance time spacing, since plan-

ning maintenance for aircraft which are not predicting failure violates the underlying

purpose of maintenance schedule optimization. However, this subset of aircraft does

not remain constant through time; as aircraft are repaired and flown they will con-

stantly shift between the three subsets. This in turn means that the optimizer must

be run many times over the course of the operational period to continue to make good

decisions.

Since the optimizer will only have a limited capacity for making predictions, it

must be set up to make decisions based on the current state of the fleet and to assume

that this state will change according to predictable rules. Predictable rules include

the parts installed on an aircraft degrading as the aircraft flies missions, or the total

number of missions flown not being able to exceed the number of missions required.

As a result the optimizer will act as if no aircraft may move between subsets without

direct action by the optimizer, meaning that an aircraft is able to fly missions until

the optimizer decides to schedule maintenance for that aircraft, after which it must

76

stay in this state2. Under this assumption, there is no reason to plan missions and

maintenance visits for the entire period of operations for the aircraft; instead, a period

restricted between the time the optimizer is run and the furthest-most maintenance

visit currently predicted will suffice since all decisions past this point will not involve

maintenance scheduling. Finally, since the ideal spacing between maintenance visits

is known to be µF , this means the time period over which the optimizer will make

decisions should end a period µF ∗ ACPF into the future. As mentioned before, the

optimizer should be updated whenever new aircraft enter the set ACPF , and the

optimization period should be updated accordingly.

Now that the aircraft subsets and time period over which optimization will occur

are better understood, the part life wasted can be defined. It was stated before

that there are multiple parts installed on each aircraft, and that any number of

these parts may simultaneously be detecting failures. Since the need to maintain

the aircraft depends solely on the part with the fewest flight hours remaining, the

aircraft’s flight hours remaining until maintenance must be carried out is the same as

for this limiting part. Thus the aircraft in the set of aircraft predicting failure have

a value Lj which defines the upper limit of flight hours that may be flown on that

aircraft before maintenance must occur. The actual flight hours that will be flown

on the aircraft are defined by the number of missions flown over that period and the

duration of the mission. Thus the aircraft will ideally fly as many missions as possible

before maintaining, with an upper bound dictated by the flight hours remaining to

the aircraft. This can be defined mathematically through an objective function and

a constraint, where the objective is to minimize the difference between the part life

remaining and the flight hours flown on the aircraft before maintenance, and the

constraint is not to let this value become negative.

2In actuality, the aircraft will not stay in a state of being maintained forever, but the optimizer
cannot predict how long maintenance will take because this is dependent on the state of maintenance
resources and spare inventory.

77

For a single aircraft, the objective function can be constructed as minimize Lj −∑D
k=1mj,kd where mj,k is the number of missions flown by aircraft j of ACPF in

the subset of aircraft predicting failure and D is the number of days over which the

optimization is run. Since the optimization period was previously defined in hours,

the number of days to operate can be obtained by dividing the number of hours by

24 and rounding up. Thus for the set of aircraft predicting failure, the total amount

of part life wasted over the optimization period can be defined by summing over all

the aircraft. The problematic aspect of minimizing a function that can technically

return negative values which violate the intention of the problem (if the simulation

were to fly more missions than the part can sustain) is counteracted by defining a

set of constraints which enforce the nonnegativity of this function. These constraints

are defined for each aircraft j of ACPF as Lj −
∑D

k=1mj,kd ≥ 0. The mathematical

formulation is shown in Equation 8.

given ACPF (number of aircraft predicting failure)

j (index of aircraft from 1 to ACPF)

D =

⌈
µF ∗ ACPF

24

⌉
(optimization period in days)

k (index of days from 1 to D)

mj,k (missions flown by aircraft j on day k)

Lj (flight hours remaining on aircraft j)

d (mission duration)

minimize

ACPF∑
j=1

[
Lj −

D∑
k=1

mj,kd

]

subject to Lj −
D∑
k=1

mj,kd ≥ 0 ∀ j

(8)

Here it is beneficial to have a brief discussion about mission duration. Recall that

78

the mission duration is a stochastic value based on a triangular distribution. Since

this value will not be realized until the mission is actually flown, the optimizer cannot

know the actual duration of missions that will be flown in the future. Instead, an

assumed value must be used. Furthermore, since a guiding principle behind ALIS

is to prevent any unplanned maintenance events, it seems reasonable that it is more

important to replace parts before they break than to try to get a small amount

of additional part life from them. Therefore the optimizer will assume the mission

duration to equal the maximum possible mission duration. As the optimizer is re-run

for changing subsets of aircraft, the true part life remaining will update and should

help the optimizer to approach a true prediction value.

The two objective functions and set of constraints in Equation 7 through 8 form

the core of the goal setting for the optimization problem, but other practical concerns

must be considered as well. For instance, with the optimizer controlling the missions

that are flown, it must be aware of any previously existing requirements for missions

such as the required operational tempo for the fleet. This tempo provides a required

number of missions to be flown each day, though if no aircraft are available some

missions may go unflown and lead to backlog. Because the operational tempo cannot

be set as a hard requirement (constraint) for the optimization problem, another pair

of objective function and constraints can be constructed to lead the problem towards

favorable solutions. If the operational tempo is defined as OTk, the total number

of missions that must be flown by the fleet on day k, the objective function and

constraints pair can be defined as shown in Equation 9.

79

given ACPF (number of aircraft predicting failure)

j′ (index of aircraft from 1 to ACAvail)

D =

⌈
µF ∗ ACPF

24

⌉
(optimization period in days)

k (index of days from 1 to D)

mj′,k (missions flown by aircraft j’ on day k)

OTk (operational tempo of the fleet on day k)

maximize

ACAvail∑
j′=1

D∑
k=1

mj′,k

subject to OTk −
ACAvail∑
j′=1

mj′,k ≥ 0 ∀ k

(9)

Two more practical concerns must be accounted for when considering the opti-

mization in the context of an evolving simulation. The first is the fact that, when

the optimization is initialized, some of the available aircraft may have already been

selected to fly a mission for the day and may therefore be unavailable to fly more due

to the daily mission limit for each aircraft. This leads to Equation 10. The second

is the fact that, at certain times the optimization must be re-run when some of the

aircraft are currently flying missions and unable to fly more. If this is the case, an

additional constraint as in Equation 11 must be added.

given j′′ index of aircraft exceeding mission quotas for the day

mj′′,0 missions flown by aircraft j′′ on first day

subject to mj′′,0 = 0

(10)

80

given j′′′ index of aircraft currently flying missions

mj′′′,0 missions flown by aircraft j′′′ on first day

subject to mj′′′,0 = 0

(11)

Finally, the fact that the first objective function, Equation 7, was defined using

subsequent visits to maintenance must be addressed. The indices for Equations 7 and

8 are the same because they include the same subset of aircraft. However, if one were

to assign those indices to aircraft in a random fashion, the first objective function

would not match the intended purpose. In order to translate this requirement, con-

sider a specific assignment of indices to aircraft by the order in which those aircraft

visit maintenance. Since this order is not defined a priori, it must be determined.

To do so, one further assumption must be made. As discussed previously, the repair

time for aircraft is uncertain due to limited resources. This fact makes it difficult to

determine a time when aircraft can safely begin to be assigned to missions during the

optimization period once maintenance has been scheduled to occur. To account for

this fact, the assumption will be made within the optimization problem that aircraft

cannot fly during the optimization period once maintenance has been scheduled for

them. Keep in mind that, due to the frequency with which the optimization will be

re-run based on new information, this fact is not expected to lead to aircraft being

underutilized. Instead, it makes it much easier to avoid violating the requirements of

the maintenance loop as well as making it possible to define a function that enforces

the ordering of maintenance times.

To do this, first define a set of decision variables that assign the j aircraft in

ACPF to the ACPF subsequent maintenance times. The variable matching aircraft

j to maintenance time i, ai,j equals 1 if the aircraft is fixed in the ith maintenance

slot and 0 otherwise. Since no two aircraft can be fixed exactly simultaneously, the

sum of these decision variables over j for any given maintenance slot i should be

81

1, and since no aircraft can be assigned to multiple maintenance slots in the same

optimization period the same is true of the sum over i for any given j. These are

codified in Equation 12.

given ACPF (number of aircraft predicting failure)

i (index of maintenance slots from 1 to ACPF)

j (index of aircraft from 1 to ACPF)

subject to

ACPF∑
j=1

ai,j ∀ i

ACPF∑
i=1

ai,j ∀ j

(12)

These variables are used to assign the aircraft to maintenance visits, but without

one further constraint this assignment would have no impact on the optimization prob-

lem because its decision variables do not appear in any objective functions. However,

there is another condition to enforce which specifies the assumption already listed

that an aircraft cannot fly any missions after visiting maintenance. Rewording this,

maintenance must be carried out after the aircraft’s last mission. This leads to one

final function that must be defined. It is easy for a person to look at the set of mis-

sions and determine the last day an aircraft flew a mission. However, to define this in

mathematical terms is less trivial. Logically speaking, if one looks at all the variables

mj,k for a given aircraft j, the mj,k with the highest index k which is nonzero tells us

that the last mission flown by aircraft j occurs on day k. To return this value k for the

first nonzero mission day requires that all higher and lower values of k be multiplied

by zero if no mission was flown. A function which achieves this for a given aircraft j is

the indicator function ξ =
∑D

k=1 kmj,k0
∑D

k′=k+1mj,k′ . Looking at the second and third

multiplication terms, the only day on which the addition term should be nonzero is

the day on which mj,k = 1 and on which 0
∑
mj,k′≥k = 00 = 1. This means that the

82

final constraint can now be defined. The constraint specifies that the maintenance

event i which aircraft j is assigned to must occur after the final mission flown by

this aircraft. The time at which the aircraft is finished with the final mission can be

defined as 24(ξj−1)+ST +PT +d where ST is the hour of the day on which missions

begin to be assigned, and PT is the prep time required to ready an aircraft to fly a

mission. The prep time is stochastic, as it requires the subsequent completion of a

series of steps which are either distribution-based or which depend on the presence

of limited resources. However, for the same reason that the optimization assumed

a value for the duration of the mission d, in this case the optimization will ask the

simulation its most recent value for PT, which will be computed as a rolling average

of the prep time over the previous day’s flights. The final version of the constraint is

presented in Equation 13.

given ACPF (number of aircraft predicting failure)

i (index of maintenance slots from 1 to ACPF)

j (index of aircraft from 1 to ACPF)

ai,j (assignment of maintenance slot i to aircraft j)

Ti (time of ithmaintenancevisit)

D =

⌈
µF ∗ ACPF

24

⌉
(optimization period in days)

k (index of days from 1 to D)

mj,k (missions flown by aircraft j on day k)

ST (time of day that missions start to be flown)

PT (rolling average of mission prep time)

d (maximum mission duration in hours)

(13)

83

subject to

ACPF∑
j=1

(ai,jTi)− 24

[
D∑
k=1

kmj,k0
∑D

k′=k+1mj,k′ − 1

]
− ST − PT − d ≥ 0

∀ i ∈ ACPF

The optimization problem as currently written is shown in Equation 14. It is

multi-objective and non-linear, and allows a great deal of freedom in choosing which

aircraft to operate and maintain and when these things occur. The practical aspects

of implementing this type of optimization problem will be discussed in Section 3.3.2.

84

given

ACPF (number of aircraft predicting failure)

ACAvail (number of aircraft available to fly missions)

i (index of maintenance slots from 1 to ACPF)

j (index of aircraft from 1 to ACPF)

j′ (index of aircraft from 1 to ACAvail)

j′′ (index of aircraft from 1 to number exceeding daily missions)

j′′′ (index of aircraft from 1 to number currently unavailable)

D =
⌈
µF ∗ACPF

24

⌉
(optimization period in days)

k (index of days from 1 to D)

Ti (Time of ith maintenance slot)

µF (mean time between failures for the fleet)

Lj (flight hours remaining to aircraft j)

mj,k (missions flown by aircraft j on day k)

d (maximum mission duration)

mj′,k (missions flown by aircraft j′ on day k)

OTk (operational tempo on day k)

mj′′,0 (missions flown by aircraft j′′ on day k)

mj′′′,0 (missions flown by aircraft j′′′ on day k)

ai,j (assignment of maintenance slot i to aircraft j)

ST (time of day missions start being flown)

PT (mission preparation time)

minimize∑n
i=0 |Ti+1 − Ti − µF |∑ACPF

j=1

[
Lj −

∑D
k=1mj,kd

]
maximize∑ACAvail

j′=1

∑D
k=1mj′,k

(14)

85

subject to

Lj −
∑D

k=1mj,kd ≥ 0∀ j ∈ ACPF

OTk −
∑ACAvail

j=1 mj,k ≥ 0 ∀ k ∈ D

mj′′,0 = 0∀ j′′ exceeding daily missions

mj′′′,0 = 0∀ j′′′ currently unavailable∑ACPF

j=1 ai,j ∀ i ∈ ACPF∑ACPF

i=1 ai,j ∀ j ∈ ACPF∑ACPF

j=1 (ai,jTi)− 24
[∑D

k=1 kmj,k0
∑D

k′=k+1mj,k′ − 1
]
− ST − PT − d ≥ 0

∀ i ∈ ACPF

0 ≤ mj′,k ≤ 1 ∀j′ ∈ ACAvail, k ∈ D

0 ≤ ai,j ≤ 1∀i, j ∈ ACPF

0 ≤ Ti ≤ 24D ∀i ∈ ACPF

mj′,k, ai,j integer

3.3.2 Optimization Implementation

Though Equation 14 is complete and makes only one simplifying assumption, it cre-

ates some difficulties for implementation within a simulation that represents the op-

erational history of a fleet over the course of a year or more. Optimization solution

time scales which are trivial in the real world (on the order of seconds to minutes) cre-

ate significantly more difficulties for a simulation which calls the optimization many

times and which provides answers in seconds. The problem as stated, because it is

multi-objective and nonlinear in several of the constraints, and therefore cannot be

solved through the preferred mixed-integer linear program, requires the use of some

form of stochastic optimizer to solve. However, stochastic optimizers take on the

order of seconds to minutes to run and do not provide consistent answers on multiple

repetitions of the same problem. Also, these methods have a more difficult time with

the strict enforcement of constraints. For this reason it would be better to use a

86

MILP which would start with a fesible problem and then optimize, always return the

same answer, and would run on the order of milliseconds.

Formulating the problem in this manner requires one further assumption. Since

the main source of nonlinearity is based on the requirement that missions not be flown

after the aircraft is maintained due to the need to determine the final mission day and

assign aircraft to maintenance times, these requirements can be removed by assuming

that aircraft are maintained in order of those with the fewest flight hours remaining

to those with the most flight hours remaining. This removes some degrees of freedom

from the problem, but since the optimization must assume that all missions take

the maximum mission duration to run, aircraft are largely interchangeable when it

comes to the part life wasted objective function. It is therefore not expected that this

assumption will reduce the freedom of the optimization method to fly all missions

with the least part life wasted. By making this assumption, however, all constraints

can be linearized. However, this requires a slight redefinition of the design variables.

If aircraft are ordered by the number of flight hours remaining to them, the set

of aircraft ACi from 1 to ACPF is assigned to the Ti maintenance times by index

number. To enforce the requirement that maintenance occur after the aircraft has

flown its final mission of the optimization period, the day on which each aircraft visits

maintenance is computed from the assumption that these maintenance times will be

occur with close to the ideal spacing value. Thus the maintenance day for aircraft

i is computed as MDi = µF i/24 when rounded up to the next whole number. The

value MDi is then used to determine the bounds for when the maintenance visits can

occur and when missions can be flown.

In removing the assignment of aircraft to maintenance times, the constraints asso-

ciated with those decision variables disappear. However, one final pair of constraints

must be added to address the absolute value used in the first objective function us-

ing a method introduced in Linear Programming: A Concise Introduction [40]. The

87

absolute value function is nonlinear, but when used in a minimization problem can

be replaced with a variable ζ and two additional constraints. ζ replaces the entire

absolute value expression as follows: ζi = Ti − Ti−1 − µF . To enforce the abso-

lute value criterion, two constraints are added as ζi − (Ti − Ti−1 − µF) ≥ 0∀i and

ζi + (Ti − Ti−1 − µF) ≥ 0 ∀i.

Due to the multiple objectives, an OEC in the form of a weighted sum must be

used to form a single objective function as discussed in Chapter 2 and as suggested in

the literature[33, 17]. To ensure that none of the objectives is unfairly weighted, the

individual objectives must first be normalized. Normalization requires dividing each

objective by its maximum possible value so that it is scaled from zero to one. This is

simpler in some cases than in others. For the objective function in Equation 9, the

maximum possible value is the sum of the operational tempo over the time period

of optimization,
∑D

j=1OTj. For the objective function in Equation 8, the maximum

possible value is the sum of the part life remaining at the beginning of the optimiza-

tion period over all aircraft predicting failure,
∑ACPF

i=1 Li. However, the maintenance

interval objective seeks to make the interval close to a target value µF . Depending on

the scenario, spacing of less than µF or greater than µF could be larger. This question

is explored in more detail in Figures 18 through 20 and the supporting equations.

Figure 18: Notional timeline of evenly spaced maintenance visits T0 through T7

Figure 18 shows one possible way the maintenance visits can be spaced. In this

case, they are at the optimum value, where every interval from T2−T1 through T7−T6

is equal to µF (T1 − T0 cannot possibly be any closer to µF in this case). F is the

distance between the last scheduled maintenance event, T0, and the beginning of the

optimization period at zero. However, the value of interest is the maximum value.

88

Figures 19 and 20 show the two possibilities for the maximum maintenance spacing.

Figure 19: Notional timeline of unevently spaced maintenance visits T0 through T7

Figure 20: Notional timeline of unevently spaced maintenance visits T0 through T7

In Figure 19, one good possibility for the maximum of Equation7 is shown. This

would theoretically maximize the objective because, discounting T0, the maximum

amount any two subsequent maintenance events Ti+1 and Ti can be separated by

within the optimization period is D. At this separation value, the contribution to the

objective function from those two maintenance visits is D−µF . Since the rest of the

maintenance visits by definition must occur at either time 0 or time D, as is shown in

Figure 19 the contribution from the remaining maintenance events is (ACPF − 2)µF ,

or in this case 5µF . Thus for the scenario shown in Figure 19, the maximum possible

value of the objective function is D − µF + (ACPF − 2)µF , or D + (ACPF − 3)µF ,

or D+ 4µF . While still discounting the T0 maintenance event, the scenario shown in

89

Figure 20 yields a maximum value of (ACPF − 1)µF , or in this case 6µF . Assuming

that D > 2µF , the spacing shown in Figure 19 maximizes the objective function.

However, when one accounts for T0, the other scenario yields a more maximum

value. Factoring in T0, Figure 19’s maximum value objective function is F + D +

(ACPF − 3)µF . However, Figure 20’s maximum value objective function is F +D +

(ACPF − 1)µF , which is categorically greater. Thus the maximum possible value for

Equation 7 is F + D + (ACPF − 1)µF . Taken with the maximum possible values

for Equations 8 and 9, the OEC can be developed as shown in Equation 15. This

optimization problem fits the requirements of a MILP.

90

given

ACPF (number of aircraft predicting failure)

ACAvail (number of aircraft available to fly missions)

i (index of aircraft from 1 to ACPF)

i′ (index of aircraft from 1 to ACAvail)

i′′ (index of aircraft from 1 to number exceeding daily missions)

i′′′ (index of aircraft from 1 to number currently unavailable)

D =
⌈
µF ∗ACPF

24

⌉
(optimization period in days)

MDi = µF i
24

ζi (dummy variable for aircraft i)

j (index of days from 1 to D)

Ti (Time of ith maintenance slot)

µF (mean time between failures for the fleet)

Li (flight hours remaining to aircraft i)

mi,j (missions flown by aircraft i on day j)

d (maximum mission duration)

mi′,j (missions flown by aircraft i′ on day j)

OTj (operational tempo on day j)

mi′′,0 (missions flown by aircraft i′′ on day j)

mi′′′,0 (missions flown by aircraft i′′′ on day j)

ST (time of day missions start being flown)

PT (mission preparation time)

W1 (OEC weighting value on objective 1)

W2 (OEC weighting value on objective 2)

W3 (OEC weighting value on objective 3)

F (time between T0 and beginning of optimization period)

(15)

91

minimize

W1

∑ACPF
i=1 ζi

F+D+(ACPF−1)µF
+W2

∑ACPF
i=1

[
Li−

∑MDi
j=1 mi,jd

]
∑ACPF

i=1 Li

+W3

∑ACAvail
i′=1

∑min(MDi,D)
j=1 −mi′,j∑D
j=1OTj

subject to

Li −
∑MDi

j=1 mi,jd ≥ 0 ∀ i ∈ ACPF

OTj −
∑ACAvail

i=1 mi,j ≥ 0∀ j ∈MDi

mi′′,0 = 0∀ i′′ exceeding daily missions

mi′′′,0 = 0∀ i′′′ currently unavailable

ζi − (Ti − Ti−1 − µF) ≥ 0 ∀i ∈ ACPF

ζi + (Ti − Ti−1 − µF) ≥ 0 ∀i ∈ ACPF

0 ≤ mi′,j ≤ 1∀i′ ∈ ACAvail, j ∈ min(MDi, D)

24 ∗ (MDi − 1) + ST + PT + d ≤ Ti ≤ 24MDi + ST + PT + d∀i ∈ ACPF

mi′,j integer

Because the multi-objective aspect of the problem was handled by performing a

simple summation, the weightings of the three objective functions within this summa-

tion should be examined for their impact on the result of the optimization. Depending

on the values of these weightings, the problem may place stronger preferences on dif-

ferent aspects of the problem and may push the overall behavior of the fleet towards an

undesirable situation. For instance, if too strong a preference is placed on minimizing

the part life wasted, the evenness of maintenance visits may be completely sacrified

in an attempt to satisfy a different and conflicting aspect of the problem. This will be

done in Chapter 5. Based on the findings of this study, it may be necessary to use a

more sophisticated multi-objective optimization method than a simple weighted sum.

If this should be the case, Ehrgott[34, 35] and Mavrotas[82] have proposed alternate

methods for performing multi-objective optimization for combinatorial problems.

With this framework in mind, Chapter 4 will discuss the creation of a model to

perform the different experiments.

92

CHAPTER IV

SUSTAIN-ME VERIFICATION

As explained in Chapter 3, the maintenance optimization method will be tested

through a virtual experimentation platform. Chapter 4 describes the development

of this platform through the buildup of several different elements. Chapter 1 de-

scribed the major sustainment elements as operations, maintenance, maintenance

paradigm, and supply chain. Due to the nature of the DES methodology used for

creating Sustain-ME, the modules of the code do not map exactly to these elements.

Figure 21 shows the relationship between the four overarching sustainment pieces; in

it, there is sometimes overlap of what is modeled in each of the code modules along

the sides of the image. This is due to the fact that modules focus on the behavior

of entities within the code, whereas the phase breakdown presented in Chapter 1

focused on the different functions of sustainment. That different entities share these

functions is not terribly surprising, but it does make the description of Sustain-ME’s

development slightly less straightforward.

Figure 22 shows how the code portions presented in Figure 21 were developed

modularly by changing the modeled sustainment behavior small amounts at a time.

The modules that were added build on those that already existed; for instance, the

sortie generation was the first logical element modeled because it does not require

inputs from other segments of the code. The development of the sortie generation

code is described and verified in Section 4.3. Next the sortie assignment logical was

added because it requires the sortie generation logic plus an aircraft available to fly

missions. In this case, a very basic version of the fleet was created as a placeholder

that could fly missions and do nothing else. The development and verification of this

93

Figure 21: Sustain-ME to sustainment translation

94

code is described in Section 4.4.

The next logic to be modeled was the rest of the fleet’s behavior, which draws

from both the operational and maintenance portions of sustainment. In this case, the

behavior of the aircraft in the fleet was modeled, but the supply chain elements (spare

inventory) were defaulted to the assumption that parts are always available after a

delay. The development and verification of this portion is described in Section 4.5.

Next the supply chain behavior was added, as described in Section 4.6. At this point

a sustainment process under a reactive maintenance paradigm had been modeled

since that was the default maintenance behavior used to develop Sustain-ME initially.

Once the behavior of sustainment under reactive maintenance had been verified and

calibrated, the maintenance paradigm for CBM was modeled using the assumption

that a PHM is installed. In Figure 22, this model version appears to be the same as

the one where the supply chain was integrated; however, the fleet’s logic and behavior

was updated to account for the differences due to a CBM paradigm. This is denoted

with a star. The logic implemented for this version of the code is documented in

Section 4.7. Finally, the behavior associated with CBM-MiMOSA was implemented,

and this is documented in Section 4.8.

This method of coding a piece, testing it, and coding some more is known as

test-based coding. By utilizing this method, the results of the code at each stage

are verified against expected behavior and form a solid foundation upon which future

code can be built. By the time Sustain-ME is completed, its behavior should be in line

with the intended behavior as laid out in Chapters 2 and 3. This process will largely

be based on the output of visualizations to confirm that Sustain-ME’s outputs are as

expected, though in some instances logical checks against known sequences of events

will also be employed. The description of the development of Sustain-ME begins in

Section 4.1.

95

Figure 22: Sustain-ME to sustainment translation

96

4.1 Inputs

The inputs to Sustain-ME are values for which estimates were not found in the liter-

ature, or values whose impact on the model could be interesting enough to warrant

study. The values are the operational tempo for sustainment (the number of required

missions to fly over the course of the simulation time), the surge profile(a multiplier

over time signifying ramp up or down in fleet activities), the reliability of the aircraft

(computed in Section 3.1.4), the removal and installation time for LRU’s (loosely

based off of Faas[39]), PHM detection lead time distribution parameters as a percent

of part life, the number of aircraft in the fleet, and the initial inventory investment

(the number of spare parts available at the beginning of the simulation). The values

used in different aspects of development of Sustain-ME are shown in Table 5.

Table 5: Model inputs for each section

Input Distribution/Value Sections Relevant
Operational Tempo 10 Missions/Day All except 4.3 and
Surge Profile Flat All except 4.3
Reliability (Aircraft) 6 hours between repairs 4.3 and 4.5
Reliability (Parts 1&2) 12.5 hours between repairs

4.6
Reliability (Parts 3&4) 300 hours between repairs
Reliability (Parts 1-4) 25 hours between repairs

4.7 and 4.8
Reliability (Parts 5&6) 300 hours between repairs
Removal (All parts) Tri(.75,1.0,1.25) All
Installation (All parts) Tri(1.0,1.5,2.0) All
PHM Detection Time
(All parts)

N(0.8,0.05) 4.7, 4.8, and

Fleet size 30 aircraft All except 4.4
Inventory Investment Varies with section

4.2 Assumptions

The assumptions made in creating Sustain-ME were culled from literature and have

been described in Chapters 3. These include the distributions associated with various

delays in the model, the time of day and day of week during which missions are flown

(based on a twelve hour shift, 7 days a week), the time of day that repairs can be

97

completed (24/7), the daily limit on missions flown (discussed in Section 3.1.4), and

the length of time during which unflown required missions are backlogged to be flown

again, if possible. These quantities are contained in Table 6.

Table 6: Model assumptions

Assumption Distribution/Value
Mission Scheduling Duration Tri(0.5,0.75,1.0) hrs
Preflight Inspection Duration Tri(0.83,1.0,1.2) hrs
Refuel Duration Tri(0.33,0.367,0.4167) hrs
Load Weapons Duration Tri(0.75,1.0,1.25) hrs
Engine Start, Systems Check,
& Taxi Duration Tri(0.1167,0.167,0.2) hrs
Takeoff Duration Tri(0.033,0.05,0.067) hrs
Sortie Duration Duration Tri(1.3,1.5,2.0) hrs
Landing Duration Tri(0.233,0.25,0.267) hrs
Parking & Recovery Duration Tri(0.0833,0.1167,0.15) hrs
Servicing Duration Tri(0.75,1.0,1.25) hrs
Document Corrective Actions Duration Tri(0.0833,0.167,0.25) hrs
Wait for Local Parts Duration Tri(0.5,0.2,0.25) hrs
Inventory Paperwork Duration Tri(0.0833,0.167,0.25) hrs
Depot to Base Shipping Duration Tri(2.4,7.2,12.) hrs
Base to Depot Shipping Duration U(6.0,12.0) hrs
Depot Repair Duration Tri(1666.56,2083.2,2499.84) hrs
Flying Hours 7am-7pm
Repair Hours 24/7
Daily Mission Limit 1 per aircraft per day
Backlog Length 7 days

4.3 Sortie Generation: Verification

This section covers the modules denoted by the letter ‘A’ in Figure 22. Sorties, or

missions, are generated according to the rules set out in Sections 4.1 and 4.2. This

means the Sortie Generation module uses the weekly operational tempo schedule

and surge profile defined in the Inputs module to determine how many missions to

fly each day. The backlog rules established in the Assumptions module determine

how many days non-completed missions are kept in reserve to be flown if aircraft

are still available once completing the current day’s missions. The generation of

98

sorties is performed without reference to the Fleet module, meaning they will continue

regardless of aircraft availability.

The verification test for this portion of the code is to output the mission backlog

every time it changes along with the time at which it changed. The mission backlog

tracks all missions which were required but which have not yet been assigned to an

aircraft for the current day and the past n days, where n is the number of days

established in the Assumptions module’s backlog rules. Examples of this output are

shown in Figures 23 through 28 for different backlog rules, op tempos, and surge

profiles. The combination of these values is shown in Table 7. In the table the Op

Tempo options refer to the number of missions per day and the Surge Profile options

refer to either no surge (op tempo remains the same throughout the simulation) or

3-2-1 surge (op tempo multiplied by three for the first seven days, then by two for

the next thirty days, then by one for the remainder of the simulation).

Table 7: Sortie generation test cases

Test Case Backlog Op Tempo Surge Profile
Shorter backlog 3 Days 10 Per Day Don’t Surge
Longer backlog 30 Days 10 Per Day Don’t Surge
Baseline 7 Days 10 Per Day Don’t Surge
Baseline w/ surge 7 Days 10 Per Day 3-2-1 Surge

Baseline w/ weekend 7 Days
12 Per Day M-F,
5 Per Day S&S

Don’t Surge

Surge with weekend hours 7 Days
12 Per Day M-F,
5 Per Day S&S

3-2-1 Surge

The first test case has a backlog length of three days, an op tempo of ten missions

per day and a standard surge profile. The unflown missions over this period of time as

seen in Figure 23 show that the backlog for the current day starts at zero, rises to ten

missions at 7:00 a.m. on day one of the simulation, and stays at ten missions for the

duration of the simulation. The backlog for one day ago exhibits the same behavior

but waits until 7:00 a.m. on day two of the simulation to rise to ten missions, and

the backlog for two days ago exhibits the same behavior but waits until 7:00 a.m.

99

on day three of the simulation to rise to ten missions. This confirms a few aspects

of the coded model. First, the generation of missions at 7:00 a.m. confirms that

the operating hours defined in the assumptions are being adhered to as far as sortie

generation is concerned. Second, the correct number of daily missions as defined by

the op tempo and surge profile are being generated. Third, unflown missions are being

rolled over in the backlog at the beginning of the operational day as specified in the

sortie generation module’s behavior. This accounts for the delayed rise in the backlog

between the current, one day ago, and two days ago entries. Since this version of

Sustain-ME does not include any sortie assignment logic or aircraft operational logic,

the backlog remains at its maximum value as expected when no missions are being

flown.

Figure 23: Unflown missions for shorter backlog test case

The second test case has a backlog length of thirty days but is otherwise the

same as the first test case. Since the only difference between the two cases is how

long unflown missions are stored to be reflown, the behavior for the second case is

expected to look the same as for the first case, but with a larger number of previous

days to graph. Since the first case showed that each backlog entry has a lag of one

100

additional day, this behavior should continue with the second case. Figure 24 shows

that these expectations are upheld by the code’s output. This additionally confirms

that Sustain-ME correctly uses the input number of backlog days to increase the

length of time that unflown missions are saved to be reflown.

Figure 24: Unflown missions for longer backlog test case

The third test case has a backlog length of seven days and is otherwise the same

as the previous two test cases. Figure 25 shows once again that the input number of

backlog days is correctly represented in the outputs of Sustain-ME.

The fourth test case has a backlog length of seven days and includes a 3-2-1 surge,

but the baseline op tempo (the op tempo when the surge level is one) is still ten

missions per day. Since the correct backlog behavior has already been established,

Figure 26 shows only the current and six days ago backlog entries for ease of viewing.

The figure shows that the current day’s unflown missions go from zero to thirty (3×10)

at 7:00 a.m. on day one of the simulation, from thirty to twenty (2× 10) at 7:00 a.m.

on day eight of the simulation, and from twenty to ten at 7:00 a.m. on day thirty-eight

of the simulation. The unflown missions from six days ago displays the same behavior,

six simulation days after the current day. Taken together, these observations confirm

101

Figure 25: Unflown missions for baseline test case

that Sustain-ME is surging when and how much it was told to, since the times and

number of missions for the current day match the behavior described in the 3-2-1

surge model. They also confirm that backlog continues to behave as proscribed, even

with the presence of a disruptive element such as surge.

Figure 26: Unflown missions for baseline with surge test case

The fifth test case has a backlog length of seven days and an op tempo of 12

102

missions per day on Monday through Friday, 5 missions per day Saturday and Sunday

with no surge. Figure 27 shows that the current day’s backlog goes from zero to five

at 7:00 a.m. on day one of the simulation, from five to twelve at 7:00 a.m. on day

two of the simulation, from twelve to five at 7:00 a.m. on day seven of the simulation,

and then this pattern repeats with five consecutive days spent at 12 missions worth of

backlog and two consecutive days spent at 5 missions worth of backlog for the duration

of the simulation. Again, this behavior is similar for the 6 days ago backlog entry,

but with all times six days after the times listed for the current backlog entry. Taken

together, these observations indicate that the varying op tempo is being correctly

used by Sustain-ME, since the times listed for the current day line up with Sunday

at 7:00 a.m., Monday at 7:00 a.m., and Saturday at 7:00 a.m. respectively. Once

again, the backlog behavior remains consistent through the addition of a disruptive

element.

Figure 27: Unflown missions for baseline with weekend hours test case

The sixth test case combines the surge and op tempo behavior described in the

fourth and fifth test cases. Since the actions scheduled for op tempo and surge occur

at different simulation times, it is helpful to walk through simulated time and show

103

how these parameters are active at different points during the simulation. This work

is shown in Table 8. Because of the more complicated combined schedule between the

op tempo and the surge, surge level changes do not always occur at the same time as

op tempo mission per day changes. This is reflected in both Table 8 and Figure 28.

Because the table values (from a conceptual understanding of the scheduling) match

the figure values (from the output of Sustain-ME), the behavior of the model is

confirmed for more complicated combinations of the inputs.

Table 8: Scheduled events for surge and weekend test case

Sim Time Day/Time
Op Tempo

Value
Surge
Level

Missions

0 Sun 12:00 a.m. 0 missions 3 0
7 Sun 7:00 a.m. 5 missions 3 15
31 Mon 7:00 a.m. 12 missions 3 36
151 Sat 7:00 a.m. 5 missions 3 15
175 Sun 7:00 a.m. 5 missions 2 10
199 Mon 7:00 a.m. 12 missions 2 24
319 Sat 7:00 a.m. 5 missions 2 10
367 Mon 7:00 a.m. 12 missions 2 24
487 Sat 7:00 a.m. 5 missions 2 10
535 Mon 7:00 a.m. 12 missions 2 24
655 Sat 7:00 a.m. 5 missions 2 10
703 Mon 7:00 a.m. 12 missions 2 24
823 Sat 7:00 a.m. 5 missions 2 10
871 Mon 7:00 a.m. 12 missions 2 24
895 Tue 7:00 a.m. 12 missions 1 12
991 Sat 7:00 a.m. 5 missions 1 5
1039 Mon 7:00 a.m. 12 missions 1 12

Having verified that sorties are generated as intended, the assignment of those

sorties to simply modeled aircraft can now be verified. This is done in Section 4.4

104

Figure 28: Unflown missions for surge with weekend hours test case

4.4 Sortie Assignment: Verification

This section covers the modules denoted by the letter ‘B’ in Figure 22. Sorties are as-

signed according to the rules set out in Section 4.2. This means the Sortie Assignment

portion of the Sortie Generation module uses the hours established for flying sorties

and the daily mission limit to determine when missions may be flown and which air-

craft may fly them. If the current model time is between the hours established for

flying missions in the Assumptions module, the Sortie Assignment code will look for

aircraft which are available (defined by the Fleet module) and which have not flown

more than the assumed daily maximum number of missions. These aircraft will then

be specified as unavailable to fly further missions until they have completed the logi-

cal loop of the Fleet module. As long as there are missions remaining in the backlog

which have not been flown, and the simulation time is between the hours specified

for flying sorties, the Sortie Assignment module will attempt to assign aircraft to fly

these missions.

The test for this portion of the code is to output the number of available (waiting

for missions) aircraft versus simulation time. Aircraft count as available when they

105

are waiting for a mission, and are not made available again until they have completed

the aircraft operations loop. For the Sortie Assignment module test, the default values

established for the Sortie Generation test (op tempo of ten missions per day every

day, no surge and seven days of backlog) will be used. To determine whether the

Sortie Assignment portion is behaving as intended, the results will be displayed for

different values of fleet size: ten aircraft, thirty aircraft, and fifty aircraft. Examples

of this output are shown in Figures 29 through 31. Each figure shows the first week

of simulation time, since the remaining simulation time continues to show the same

behavior. Figure 29 shows that each day, all aircraft are assigned to missions at 7:00

a.m. A dummy value of 10 hours was used as the sortie length to provide an offset

between when aircraft are made unavailable (no longer waiting for a mission) and

when they become available again. The figure reflects this as all aircraft become

available at 5:00 p.m. and remain so until 7:00 a.m. the next day. Figure 30 exhibits

the same behavior, but since only ten sorties are generated per day, only ten of the

aircraft are assigned to missions each day and the remaining twenty aircraft remain

available. Figure 31 also follows this behavior, with forty aircraft remaining available

every day. It should be noted that the figure does not mean the same aircraft are

used every day; only that the same number are used every day.

Having confirmed that sorties are assigned as intended to aircraft, the behavior

of the fleet flying those sorties can now be verified. This is done in Section 4.5.

106

Figure 29: Aircraft awaiting missions – fleet of 10 aircraft

Figure 30: Aircraft awaiting missions – fleet of 30 aircraft

107

Figure 31: Aircraft awaiting missions – fleet of 50 aircraft

4.5 Fleet Operations Excluding Supply Chain: Verification

This section covers the modules denoted by the letter ‘C’ in Figure 22. Fleet oper-

ations are derived from Figure 32 (which is itself derived from Figures 12 through

14) and the specific distributions that define each step of the process as laid out in

Section 4.2. Until the point at which parts are ordered, this process operates inde-

pendently from the spare parts cycle and interacts only with the Sortie Generation

module, so this portion was tested before integrating any supply chain logic. Instead,

a minimal wait time for parts was implemented. This represents a best case sce-

nario, where parts are always available when needed. In the real world, this could be

achieved by having a far larger than necessary store of spare parts, which is a realistic

but undesirable condition. The benefit of running Sustain-ME at this condition when

testing is that all negative effects of wait time can be attributed to having insufficient

maintenance resouces.

One verification test for this portion of the code is to output the states of the

discrete event simulation and the time at which they occur to verify that the logic

108

Figure 32: Aircraft order of events flowchart

109

intended has been implemented. This can be visually examined in two different ways.

First, the state of each of the simulation’s aircraft can be plotted on the y-axis of

a graph vs. the time at which the aircraft is in the given state, known as an event

trace diagram. A line on this graph represents the particular sequence of events

the aircraft experienced due to the combination of resource levels and draws from

random distributions. Figures 33 through 35 show notional paths that aircraft may

take; Figure 33 represents what the path looks like if the “NO” path is taken at the

first decision point in Figure 32 (the times that the state transitions occur do not

reflect the actual delay times from Sustain-ME). Figure 34 represents what the path

looks like if the “YES” path is taken at the first decision point and the “NO” path

is taken at the second decision point in Figure 32. Figure 35 represents what the

path looks like if the “YES” path is taken at both decision points. These graphs are

helpful in determining if anything large is wrong in the code, because for the most

part the aircraft proceeds through the states one by one and does not move backwards

until returning to the state “awaiting mission”. If significant delays are introduced

for any reason, it will show clearly in the chart and may help to determine remedies

for reducing delays. Also, should any aircraft fail to continue scheduling events in

the simulation for any reason, this will be evident in the graph as well so long as the

x-axis scale is examined and checked against the simulation time.

However, certain errors will not be evident in this plot. Due to the number of

states and the small delays between certain states, it will not necessarily be easy to

visually match even a single aircraft operations cycle on the chart against the notional

plots shown here. This will be especially true when examining the events of an entire

simulation. For this reason a secondary check of the aircraft state order will be

introduced. This check will compare the event order of individual aircraft against the

known possible paths through the simulation. If aircraft deviate from these paths, a

value of 1 will be given, and if not a value of 0 will be given. By summing up the check

110

values over the entire simulation time, a quick assessment can be made of whether

the event order matches known and acceptable event paths. This information can

also be used to compile data on the percentage of times aircraft followed each of the

different paths, which should remain constant given constant part reliability inputs.

The events of the simulation are dependent on a large number of input and assump-

tion variables, notably the large list of distributions listed in Section 4.2. However,

these parameters do not need to be varied to verify their correct use in the simulation;

instead, over the course of a number of repetitions the duration of each step can be

collected and a histogram of all the duration values can be plotted and compared

to the input distribution. This represents a secondary test for verifying Sustain-ME.

Finally, the operational availability of Sustain-ME will be examined at this state to

ensure that it is high, as would be expected when inventory is always available.

4.5.1 Event Activity Verification

The testing begins by examining Sustain-ME’s behavior for the minimal resource

case to determine that the order of events is correct. Figure 36 shows the evolving

state of an aircraft from the fleet over the course of the first thirty simulation days.

Each vertical line with endpoints denoted indicates the transition of the aircraft from

one state to another, with each state listed on the y-axis corresponding to the state

visited. Thus, for the first aircraft operational cycle in Figure 36, the aircraft is

created, spends a few hours awaiting a mission (indicated by the visibly horizontal

line on the “awaiting mission” line), and then rapidly proceeds through the mission

prep, flying, and landing stages of operations. Though this portion of the cycle may

appear to be strictly vertical, in reality each step takes a very small amount of time to

complete. The aircraft next spends a few hours awaiting the availability of the ground

crew so it can complete the rest of the recovery phase. In this case, the aircraft did

not have any part failures and therefore did not require maintenance, so it returns to

111

F
ig

u
re

3
3
:

P
at

h
1

ev
en

t
tr

ac
e

d
ia

gr
am

112

F
ig

u
re

3
4
:

P
at

h
2

ev
en

t
tr

ac
e

d
ia

gr
am

113

F
ig

u
re

3
5
:

P
at

h
3

ev
en

t
tr

ac
e

d
ia

gr
am

114

an available state. After some time, the aircraft is selected to fly another mission and

the cycle repeats itself. This time, however, the delays associated with the ground

crew are longer than they were the first time; this is because on the first cycle the

aircraft was first in the queue for resources, while on subsequent missions a queue has

formed.

Discussion has been made throughout this thesis of the concepts of uptime and

downtime, which translate to the AO metric. The uptime and downtime can be easily

seen on Figure 36 as all downtime steps are grouped at the top of the figure (all steps

past “servicing complete/ready for failure check”) and all uptime steps are grouped

at the bottom. This is shown more clearly in Figure 37, where those portions of

the graph have been colored red, for downtime, and green, for uptime. In this way,

the relative frequency of maintenance visits can be seen as the red portion is less

populated than the green, indicating that failures do not occur frequently and, due

to the overabundance of parts, aircraft leave rapidly once they require maintenance.

This represents an ideal case, since maintenance must happen for the fleet to continue

operating, but once it occurs it is desirable for it to be fast. Two of the decision points

defined in Figure 32 are visible as the aircraft proceeds three times into the red region

and four times does not. The third decision point is not in evidence since no aircraft

ever wait for parts in this version of the model, as evidenced by the fact that several

of the maintenance steps are skipped every time.

115

F
ig

u
re

3
6
:

A
ir

cr
af

t
ev

en
t

tr
ac

e
d
ia

gr
am

,
30

d
ay

s

116

F
ig

u
re

3
7
:

A
ir

cr
af

t
ev

en
t

tr
ac

e
d
ia

gr
am

,
30

d
ay

s

117

Though Figures 36 and 37 have shown a small window of the operational period

for an aircraft, this small slice of time will not necessarily reveal the whole behavior of

the simulation. To gain this understanding, Figure 38 shows the event trace diagram

for the full simulation time for a single aircraft. This plot shows that the aircraft

operates for the full 365 days (8760 hours) of the simulation, indicating that nothing

prevents it from carrying on its operations as expected. Furthermore, the spacing of

maintenance visits within the red region of the plot indicates that the maintenance

visits occur with stochastic spacing, as theorized in Chapter 1.

Though Figure 38 shows the event trace for a single aircraft, the remainder of

the aircraft are not shown because their behavior looks essentially the same; though

minor differences can be observed, they will not be noticeable and will overwhelm

the plot. However, to show the overall behavior of the fleet the path frequencies have

been computed for each of the individual aircraft as well as the fleet as a whole.

Table 9: Frequency and percent of path occurrence for fleet operations

Path 1 Path 2 Path 3
Frequency 1771 609 0
Percent 0.74 0.26 0

The aircraft had fairly similar results for the path frequency, with the path break-

downs varying from 80%/20% to 64%/36% splits across all the aircraft. Table 9 shows

the number of times each of the different paths was followed by any of the aircraft in

the fleet as well as the percentage of the time that any path was taken; as expected,

the third path indicating that no parts are available is never experienced because by

definition in this version of the model, parts are always available. Furthermore, the

split between the first two paths is that Path 1 was taken about 75% of the time and

Path 2 was taken about 25% of the time. Given that Sustain-ME at this point is

represented only by the overall reliability of the aircraft, with failures every 6 flight

hours, and that the most common sortie duration is 1.5 hours, it is expected that

118

aircraft fail every four missions on average (6
1.5

= 4). This means that 25% of the time

failures should occur, and this matches closely with the frequency that was observed,

indicating that the modeling of aircraft failure is accurate.

119

F
ig

u
re

3
8
:

A
ir

cr
af

t
ev

en
t

tr
ac

e
d
ia

gr
am

,
36

5
d
ay

s

120

4.5.2 Distribution Verification

Having confirmed that the order of events in Sustain-ME follows the expected order,

now the time distributions for the duration of different steps can be examined to con-

firm this aspect of Sustain-ME. These distributions are shown in Figures 39 through

52 as a comparison between the theoretical distribution and the observed values from

Sustain-ME. They indicate that the model correctly generates random step durations

from the distributions as desired. Though most of the histograms were generated from

about 800 observations collected from the model, the mission scheduling histogram

was replotted using about 100,000 observations to show that the limiting case of these

distributions does closely resemble a triangular distribution. The more granular his-

togram is provided in Figure 40. Table 10 further compares the minimum, maximum,

and mode of the observed values to the parameters of the theoretical distributions to

show close agreement between the two.

(a) Theoretical (b) Observed

Figure 39: Comparison of distributions for mission scheduling step

121

Figure 40: High granularity histogram

(a) Theoretical (b) Observed

Figure 41: Comparison of distributions for preflight check step

(a) Theoretical (b) Observed

Figure 42: Comparison of distributions for refueling step

122

(a) Theoretical (b) Observed

Figure 43: Comparison of distributions for load weapons step

(a) Theoretical (b) Observed

Figure 44: Comparison of distributions for engine start, final weapons check and
taxi step

(a) Theoretical (b) Observed

Figure 45: Comparison of distributions for takeoff step

123

(a) Theoretical (b) Observed

Figure 46: Comparison of distributions for fly mission step

(a) Theoretical (b) Observed

Figure 47: Comparison of distributions for landing step

(a) Theoretical (b) Observed

Figure 48: Comparison of distributions for parking and recovery step

124

(a) Theoretical (b) Observed

Figure 49: Comparison of distributions for servicing step

(a) Theoretical (b) Observed

Figure 50: Comparison of await inventory step

(a) Theoretical (b) Observed

Figure 51: Comparison of paperwork step

125

(a) Theoretical (b) Observed

Figure 52: Comparison of documentation step

Table 10: Theoretical and observed parameters of simulation step distributions

Step Min Mode Max

Mission Scheduling
Theoretical

Actual
0.5

0.5109
0.75
0.75

1.0
0.9790

Preflight Check
Theoretical

Actual
0.83

0.8443
1.0

1.009
1.2

1.1876

Refueling
Theoretical

Actual
0.3

0.3343
0.36
0.36

0.416
0.4152

Load Weapons
Theoretical

Actual
0.75

0.7609
1.0
1.02

1.25
1.2473

Engine Start, Final Weapons
Check and Taxi

Theoretical
Actual

0.116
0.1178

0.16
0.16

0.2
0.1968

Takeoff
Theoretical

Actual
0.03

0.03403
0.05
0.05

0.06
0.06648

Fly Mission
Theoretical

Actual
1.3

1.3067
1.5

1.538
2.0

1.9850

Landing
Theoretical

Actual
0.23

0.2346
0.25

0.2453
0.26

0.2664

Parking and Recovery
Theoretical

Actual
0.083

0.08569
0.116
0.116

0.15
0.1485

Servicing
Theoretical

Actual
0.75

0.7680
1.0
1.02

1.25
1.2314

Await Inventory
Theoretical

Actual
0.5

0.5249
2.0
1.94

2.5
2.4666

Paperwork
Theoretical

Actual
0.083

0.08447
0.16
0.17

0.25
0.2404

Documentation
Theoretical

Actual
0.083

0.08819
0.16
0.17

0.25
0.2430

126

4.5.3 Operational Availability

One final verification activity needs to be performed. Since the behavior of the fleet

at this point was modeled with a simple supply chain that is equivalent to a level of

resources that is more than adequate to support the fleet, the operational availability

of Sustain-ME should be checked to determine that the AO is, in fact, high. But more

importantly, this will provide a point of comparison for the model with the supply

chain implemented, as providing that version of Sustain-ME with more than adequate

resources should show similar behavior. Figure 53 shows that the AO of the fleet with

a highly responsive supply chain is very good (essentially bounded between an AO of

1 and 0.95) and remains so over the course of the simulation (only the first 60 days

are shown to avoid compressing the stochasticity in the horizontal dimension). This

figure shows ten reptitions of Sustain-ME, which indicates that there is stochasticity

in the behavior of Sustain-ME, but that it does not affect the overall trend. This

indicates that, as expected, the behavior of sustainment is nonstationary at high

inventory levels.

Figure 53: Operational availability with minimum resources

127

4.5.4 Fleet Operations Excluding Supply Chain Conclusions

Having now explored the behavior of the fleet operations before implementing the

supply chain, the fleet is found to carry out different activities with the frequency

and duration matching the assumed values given to Sustain-ME. The events of the

model also match those that were shown in Figure 32, and the aircraft were found

to operate for the full simulation without getting stopped at any step. Having seen

the results of these tests, confidence in the fleet operations portion of Sustain-ME is

sustained. At this point the supply chain behavior can be integrated, as is verified in

Section 4.6.

4.6 Fleet Operations Including Supply Chain: Verification

This section covers the modules denoted by the letter ‘D’ in Figure 22. The supply

chain was modeled based on the distributions and ordering logic described in Section

3.1.4. Because it opens up the possibility of conditions within Sustain-ME where not

enough spare parts are available, there are several tests that should be performed

to verify the behavior of the model. The first of these should plot the operational

availability over time with a high number of spare parts and compare this plot to the

results from Section 4.5, since this model represents the limiting case of Sustain-ME

with the supply chain included. If the results differ significantly, this suggests that

some error has been introduced in the new model version since the supply chain logic

would not impact the fleet’s performance at conditions of excess inventory.

The next test that should be performed is to plot the operational availability versus

time for a wide range of inventory levels. Logically, decreasing inventory should lead

to a degradation in the operational availability of the fleet as aircraft are forced to wait

longer periods for replacement parts to become available. However, this result should

be observed over a medium range of inventory as was theorized in Chapter 2. Above

this range, the operational availability should be consistently high, with additional

128

spare parts not contributing any further increase in operational availability because

parts are always available when needed. Below this range, the operational availability

should be consistently low, with a decrease in spare parts not significantly impacting

the operational availability because the operational availabilty is already so poor as

to be effectively zero. In the second case, however, the simulation is expected to

show an initial period of high operational availability before any part failures have

occurred, during which time the fleet can operate without difficulty because the initial

inventory investment has not yet been used up.

The next test should duplicate one performed in Section 4.5 as well, plotting the

state of each of the aircraft over time to visually inspect the behavior for anomalies,

and additionally checking the behavior by comparing event sequences to known paths.

However, with the inclusion of parts as objects within the code, a similar test should

be performed to visually inspect the behavior of the parts objects over time to ensure

their adherence to intended rules. The specific way in which parts will be visually

examined will be described in detail later. The final test for this portion of the code

should implement multiple parts on the aircraft, since the introduction of more than

one part category could introduce error.

4.6.1 Supply Chain with High Inventory Level Comparison

Since the first test of the supply chain logic is to compare the behavior of Sustain-ME

to the previous version of Sustain-ME where parts were assumed to be immediately

available, any inventory level which is sufficient to ensure that parts are always on

hand should match the behavior demonstrated in Figure 53. To make certain that

parts were always available, the spare parts inventory was set at 50,000. However,

as will be shown in a future test, a much smaller number of parts is sufficient to

achieve this result. Figure 54 shows that the operational availability of the supply

chain model with 50,000 parts matches that of the fleet model excluding the supply

129

chain. Furthermore, Table 11 shows that the difference between the time averaged

operational availability across ten repetitions is negligible. Taken together, these

indicate that no error has been introduced by the portion of the supply chain code

that sends parts from local inventory to aircraft, or by the creation of parts objects

as a mechanism for allowing aircraft repair.

(a) Fleet Model Excluding Supply Chain (b) Fleet Model Including Supply Chain,
50,000 Parts

Figure 54: Interdependence of sequential queues

Table 11: Time averaged operational availability comparison

Model Excluding Supply Chain 0.9813
Model Including Supply Chain 0.9810
Percent Difference 0.03%

4.6.2 Effect of Inventory on Operational Availability

The next test of the supply chain logic and coding looks at the operational availability

behavior of Sustain-ME over a range of inventory levels to ensure that decreasing

inventory decreases fleet performance as expected. Figures 55 through 58 show that

the behavior at different levels of inventory does in fact decrease as the inventory

is decreased. Note that the behavior of Sustain-ME for 250 spare parts looks very

similar to the behavior of Sustain-ME for 50,000 parts, since both represent cases

where spares were always available when needed. Also note that the behavior of

the model for zero spare parts does not exhibit 0% uptime as might be expected, but

rather shows periods of slight recovery. This occurs because, while no spare parts were

130

created in Sustain-ME, the parts removed from the aircraft are eventually repaired

by the depot and returned to service. This allows for aircraft to be repaired, but over

a time frame limited by the length of the depot repair cycle.

Figure 55: Model behavior with 250 spare parts

A few other observations can be made from this data. The first is illustrated

in Figure 59, which plots the inventory level versus the time averaged operational

availability achieved in ten different repetitions of Sustain-ME (an amount that was

selected based on observing that the mean across repetitions does not change after

about 5 repetitions, so the mean across reptitions can be confidently stated after

ten repetitions). The inventory level is shown on a log scale due to the fact that

the operational availability changes significantly over a narrow band of inventory

levels. In this region, a small change in the spare inventory provided yields a large

change in the average operational availability. Unsurprisingly, this region is also

characterized by larger variability in the operational availability both within a single

model run as well as between model runs. Figure 59 showed the variability between

runs, since at medium inventory levels the spread of the average AO over time for ten

different simulations varied widely. The variability within runs is best demonstrated

131

Figure 56: Model behavior with 150 spare parts

Figure 57: Model behavior with 50 spare parts

132

Figure 58: Model behavior with 0 spare parts

in Figure 56, which shows the variability in operational availability from day to day

(a single line on the chart) as well as from repetition to repetition (the difference

between the lines). This high degree of variability is the same behavior predicted in

Chapter 1 and in the literature. Outside this region of rapid change, Sustain-ME’s

behavior becomes closer and closer to the limiting cases discussed in Chapter 1, where

queue lengths go to zero (at the high end) or queue lengths go to their maximum (at

the low end).

Taken together, these results show that Sustain-ME follows the expected behavior

as the inventory is reduced. Moreover, this behavior emerges not from directly setting

up the model to field fewer aircraft when there are fewer spare parts, but from setting

up a supply chain with basic but realistic rules and seeing how it reacts at different

inventory settings. Though this is not enough on its own to verify that the model is

behaving as desired, it does suggest that some degree of confidence in the effect of

the supply chain can be maitained.

133

4.6.3 Event Activity Verification

The next test of the supply chain model reexamines the states that each of Sustain-

ME’s aircraft moves through over time. In order to ensure that behaviors which come

into play at different inventory levels are not missed, plots will be made of the state

of the model’s aircraft at inventory levels from the three regions of Figure 59: high

average AO, medium average AO, and low average AO. Representing these regions

are, respectively, 225 parts, 180 parts, and 25 parts.

Figures 60 and 61 shows the behavior of the fleet with the supply chain imple-

mented and with 225 spare parts, within the region where parts are always available.

The figure looks remarkably similar to Figure 38 and Figures 36 and 37, and this

makes sense because the behavior of the two models should be fairly similar at high

inventory conditions. Just like in Section 4.5.1, the path frequency data reveals that

the first two paths in Figure 32 are visited while the third is not, since the fleet never

has to wait for parts. This is shown in Table 12, where the percentages are still very

close to 75% for Path 1 and 25% for Path 2.

Table 12: Frequency and percent of path occurrence for fleet operations

Path 1 Path 2 Path 3
Frequency 1727 656 0
Percent 0.72 0.28 0

134

F
ig

u
re

5
9
:

T
im

e
av

er
ag

ed
A
O

ve
rs

u
s

in
ve

n
to

ry

135

F
ig

u
re

6
0
:

E
ve

n
t

tr
ac

e
d
ia

gr
am

fo
r

22
5

sp
ar

e
p
ar

ts
,

36
5

d
ay

s

136

F
ig

u
re

6
1
:

E
ve

n
t

tr
ac

e
d
ia

gr
am

fo
r

22
5

sp
ar

e
p
ar

ts
,

30
d
ay

s

137

Figure 62 shows the events of the simulation when the initial inventory is 180 spare

parts, which is within the region of high variability shown in Figure 59. Where the

behavior was constant throughout time in Figure 60, indicating that the behavior is

nonstationary, in this case significant delays can be seen as large horizontal gaps in the

results of Figure 62. These gaps appear later in the simulation, rather than occurring

throughout; this indicates that it takes time for the aircraft represented to “see” the

effects of not having enough inventory. The other aircraft in the fleet exhibited similar

behavior, though these results are not shown for brevity. Figure 63 shows a closer

view of the time from 6000 simulation hours to the end of the simulation. This closer

image shows that the aircraft goes through cycles of long delays, when it requires

maintenance, and short cycles when it is able to fly without being maintained. The

growing length of delays also indicates that the time length for which the simulation

was run may not be sufficient to reveal the full behavior. Since most of the simulation

time is spent in the same way with a new development near the end, the same 180

initial inventory case was run for a longer period of 5 years of simulation time, shown

in Figure 64 without the states listed along the y-axis to keep as much horizontal

space available as possible. Though it is difficult to see because of the length of time

displayed, the white space in the bottom portion of Figure 64 indicates gaps that

occur due to a wait for spare parts. The figure does not display a repeating pattern,

but rather continues to display periods of delay that are both longer and shorter, and

randomly spaced throughout time. This helps to indicate that the nonstationarity

observed in Figure 56 is not a subset of a broader stationary pattern, but is truly

random. The correspondence between these periods of delays and the spare parts

that are on site will be shown in Section 4.6.4.

The test for path frequency shows that Path 3 is finally being visited now that

aircraft occasionally have to wait for parts. Table 13 shows that the probability of

seeing a failure remains the same, but is now split into two different probabilities

138

corresponding to Paths 2 and 3. Checking these probabilities against a computed

value is more difficult since the amount of time that parts are not on hand is not a

simple computation. However, it is expected that the frequency of Path 3 will go up

as the initial inventory investment decreases.

Table 13: Frequency and percent of path occurrence for fleet operations

Path 1 Path 2 Path 3
Frequency 1653 356 288
Percent 0.72 0.15 0.13

139

F
ig

u
re

6
2
:

E
ve

n
t

tr
ac

e
d
ia

gr
am

fo
r

18
0

sp
ar

e
p
ar

ts
,

36
5

d
ay

s

140

F
ig

u
re

6
3
:

E
ve

n
t

tr
ac

e
d
ia

gr
am

fo
r

18
0

sp
ar

e
p
ar

ts
,

la
st

60
00

h
ou

rs

141

F
ig

u
re

6
4
:

E
ve

n
t

tr
ac

e
d
ia

gr
am

fo
r

18
0

sp
ar

e
p
ar

ts
,

5
ye

ar
s

142

The final aircraft behavior check is for the case where only 25 spare parts are

initially available, which is in the low performing region of Figure 59. Figure 65

shows the event trace for an aircraft over the course of a year. It is characterized by

a single maintenance loop without delays, after which every maintenance visit leads

to delays on the order of eighty days. This amount is close to the refurbishment cycle

length for spare parts, indicating that the consistent but low behavior is due to the

aircraft almost always having to wait for parts to be refurbished and sent back before

they can be again equipped on the aircraft.

Table 14 shows how the prediction made from Table 13 does in fact occur. First

of all, due to the delays for spare parts the overall number of operational cycles

(missions) for each aircraft is much lower than for 225 or 180 spare parts. However,

the split between Paths 2 and 3 can be seen to fall much more heavily toward Path

3, as predicted from the data for 180 spare parts. This indicates that, most of

the time, aircraft are required to wait for parts before returning to available status.

Furthermore, Figure 65 shows that when they wait, they wait for a long time.

Table 14: Frequency and percent of path occurrence for fleet operations

Path 1 Path 2 Path 3
Frequency 344 21 99
Percent 0.74 0.04 0.21

143

F
ig

u
re

6
5
:

E
ve

n
t

tr
ac

e
d
ia

gr
am

fo
r

25
sp

ar
e

p
ar

ts
,

36
5

d
ay

s

144

4.6.4 Supply Chain Behavior

In addition to examining the aircrafts’ state over time, the states of Sustain-ME’s

parts should also be examined at this stage to ensure that the new supply chain

logic is behaving as intended. One caveat is important in introducing these plots:

due to the interchangeability of parts within a given part category, Sustain-ME was

constructed with each part as a unique object, assigned to a state at any given time

and, when appropriate, moved from one state to another. The states are mututally

exclusive and all-encompassing, so any time a part changes its state it is immediately

moved from a list representing one state to another. This is helpful for checking

Sustain-ME, since the length of each list can be printed as the model proceeds and

the total number of parts can be tracked throughout the simulation for consistency,

as well as the number within each category to verify the events being experienced

by parts and aircraft. However, it requires a shift in state of mind when examining

the events than any given part experiences, due to the particular way these lists were

treated. Since parts are interchangeable, individual parts are not passed through the

system by their ID, but rather the top part in the relevant state list is passed to the

next state. Therefore the order of events that parts experience is important and must

be checked against the intended part supply chain cycle, because parts move between

states in a predictable pattern. However, the time at which these events occur does

not necessarily reflect the timing that was experienced by a given instance of the

supply chain logic, because multiple part objects might have been involved in the

transfer of parts from one category to another. For instance, in completing a specific

cycle of the supply chain, a part with ID number 1 might have been transferred from

the state “equipped on the aircraft” to the state “shipping to depot”. But while the

simulation was completing its next action of pausing to emulate waiting for the part

to ship, more parts might have been added to the “shipping to depot” list and would

then supplant part number 1 as the top entry in this list. Then on the next step

145

when the same instance of the supply chain logic moved a part from the “shipping

to depot” list to the “depot repair” list, the part ID number might have been 2 or

2000. Thus, when viewing the results from the perspective of an individual part, the

timing might seem to make little sense.

The relative irrelevance of timing in the part state analysis means that creating

plots such as those for aircraft events will not provide any helpful understanding

beyond the visualization of parts continuing through the states in order. A simpler

way to verify this is to perform the same check that was performed for the aircraft

states. However, since parts do not experience any divergent decision points, each

state can be compared against the immediately previous state to ensure that the same

states follow each other each time. This is visualized by returning a value of the part

number if the previous state is the expected previous state, and returning a value of

0 if it is not. Thus the logical check return value can be plotted for many parts at

once and if all lines on the plot remain horizontal with no dips to the zero line, the

part order matches the allowed and expected part order. Given the number of parts

used in the simulation, one of these plots has been provided for each inventory level

while the rest were checked and found to be fine. Another helpful way to visualize

and check the part behavior is to plot the numbers of parts in each state over time.

It is also important to note that the effects of decreasing inventory are not always

straightforward when viewed from the perspective of a single output metric. For

instance, the total number of parts ordered or the number of repair cycles for any given

part might be low for both very high and very low inventory, but high for medium

inventory levels. Figures 66 through 68 demonstrate this, as they show that over the

time scale the parts in the 180 spare part case go through many more repair cycles

than either the 225 or 25 spare part cases. This occurs because high inventory levels

have many parts are available, meaning orders are delayed or completely unnecessary

for the life of the simulation. For low inventory levels few parts are available, meaning

146

Figure 66: Part event order check with 225 spare parts

147

Figure 67: Part event order check with 180 spare parts

148

Figure 68: Part event order check with 25 spare parts

149

a limitation is placed on the total number of flights that can be flown until parts have

been returned from depot repair; this lower level of utilization means fewer parts are

ordered and fewer repair cycles completed. However, for medium levels of inventory

there is just enough inventory to continue to operate much of the time, but little

enough to require frequent renewals of parts. Consequently, each part goes through

many more repair cycles than in either of the limiting cases.

Figures 69 through 71 demonstrate the truth of this causality. Figure 69 shows

that the local inventory is never depleted, meaning that each part is used less fre-

quently on average than for the case of Figure 70, where local inventory parts are

depleted but take long enough to be used up that the depot is seeded with enough

parts to provide a steady stream of them for the rest of the simulation. Figure 71

shows that this behavior is fairly different from the case of 25 spare parts, where the

local inventory is depleted much more quickly, resulting in long delays between parts

becoming available (as was also seen in Section 4.6.3), as evidenced by the intermit-

tent activity in the three different state lines on the order of eighty days, the length

of time required to refurbish parts. Finally, note that Figures 69 through 71 confirm

that the total number of parts remains constant through the simulation, suggesting

that parts are not being lost as they are passed between different states.

4.6.5 Multiple Part Categories

The final test for this portion of the code is to run Sustain-ME with multiple part

categories and examine the aircraft event sequences and part event order checks as

well as the numbers of parts in every state to ensure that errors are not introduced

for this additional logic. Since the medium inventory case has already been discussed

as the required operating conditions for the fleet, these tests will be performed at

this condition. However, due to the fact that multiple part categories with different

150

Figure 69: Number of parts in each state for 225 spare parts

Figure 70: Number of parts in each state for 180 spare parts

151

Figure 71: Number of parts in each state for 25 spare parts

reliability levels have been introduced to Sustain-ME, this medium inventory condi-

tion is different for each part. For the case of six parts with reliabilities as shown in

Section 4.2, the required medium inventory is 37 for the low reliability parts and 3

for the high reliability parts.

Figure 72 shows that the features described earlier as correct fleet behavior are

once again present when Sustain-ME has been expanded to six part categories. Once

again the aircraft operate for the entire length of the simulation and cycle through the

states in order, splitting at the known decision points. Path adherence checks reinforce

that aircraft operations remain correct. Since the behavior of Sustain-ME remains in

line with expected results, the next observation to be made is that part delays as were

seen in Section 4.6.3 still occur. Taken together, these tests indicate that Sustain-ME

behaves as expected once multiple part categories have been introduced.

152

F
ig

u
re

7
2
:

E
ve

n
t

tr
ac

e
d
ia

gr
am

fo
r

si
x

p
ar

ts

153

Figure 73: Number of parts in each state for low reliability part

Figure 74: Number of parts in each state for high reliability part

154

4.6.6 Fleet Operations Including Supply Chain Conclusions

At this point an extensive amount about Sustain-ME has been tested. With the

supply chain incorporated, the behavior of the aircraft and parts have been tested;

the effect of changing inventory levels on the model has been observed and veri-

fied; Sustain-ME has been verified against a version of Sustain-ME with an assumed

near-perfect supply chain, and the distribution of failures within the model has been

checked against expected values and trends. Together, these suggest that the model

with the supply chain incorporated is accurately portraying the sustainment process

that has been described throughout this thesis. Furthermore, at this point the model

is an accurate representation of the sustainment process under a reactive maintenance

paradigm. Though more work will have to be done to incorporate the behavior of the

other two maintenance paradigms, Sustain-ME at this point can be called a complete

portrait of sustainment.

4.7 CBM with PHM: Verification

This section covers the modules denoted by the letter ‘E’ in Figure 22. The module

representing a CBM maintenance paradigm as enabled by PHM was modeled based

on the assumptions made in Section 3.1.4. In brief, the PHM detects that parts are

failing with some amount of warning. It was assumed that the detection time is a set

percentage of the part life, which is a stochastic value, and the detection time was

modeled with a truncated normal distribution around the detection time which has

a minimum value of zero and a maximum value of the full part life. Once detection

has occurred, it was assumed that the PHM has perfect knowledge of when the part

will fail.

The test for this module is to output the part life remaining and time until de-

tection each time these values change along with the simulation time at which they

change. Whenever the simulation becomes aware of a part’s life (when the detection

155

time passes), this is output as well. Also, whenever a part fails this information is

output along with whether the failure was detected in advance or not. This informa-

tion was plotted for individual parts on individual aircraft. The graph should show

two lines which are, generally speaking, vertically shifted from each other: the top

line shows the part life remaining, and the bottom line shows the time until failure is

detected. The vertical spacing between these should be the lead time in flight hours,

i.e. the number of flight hours before failure occurs that failure can be detected. The

horizontal spacing between when these lines come closest to the x-axis gives the lead

time in real world hours. The time until detection line is confined between the part

life line and the x axis, and as a result it should also remain to the left of the part

life line unless the two are both being reset. If these relationships are not observed,

some error has occurred in Sustain-ME. There are also three possibilities for the time

relationship between events. First, the repair can either be classified as a PHM repair

or as an unscheduled repair. A PHM repair means that the failure is detected before

the mission on which the part fails; an unscheduled repair means that the failure is

detected on the same mission as repair occurs. If the repair is unscheduled, detection,

repair and installation of a new part are recorded at the same time. If the repair is

a PHM repair the detection can either occur on the same mission that results in the

repair, or can occur before this mission. If the events occur in any other way, this

indicates that an error has occurred in Sustain-ME.

Figure 75 shows the PHM’s behavior for a part with comparatively low reliability,

and Figure 76 shows what this looks like for a part with comparatively high reliability.

In Figure 75, the part is replaced on the aircraft several times during the simula-

tion. The first time this occurs, the detection occurs only a short time before the part

will fail, and the part is replaced on the same mission as the failure is detected, but

before the failure actually occurs. This happens again for the second replacement,

when a fairly short part life is generated. On the third replacement, there is a fairly

156

F
ig

u
re

7
5
:

P
H

M
op

er
at

io
n

fo
r

lo
w

re
li
ab

il
it

y
p
ar

t

157

Figure 76: PHM operation for high reliability part

large lead time before failure will occur, and several missions are flown with the knowl-

edge that the part will eventually fail. Finally, on the last replacement, the detection

occurs on the same mission on which the part fails, and so an unscheduled replace-

ment occurs. Throughout all these cycles, the predicted relationships are maintined

between the part life and time remaining until detection lines, and the correct order

and combination of events are observed along the timeline. In Figure 76, the part life

generated is long enough that the part is never replaced. If the simulation were run

longer this failure would eventually occur, and there would be a significant period

over which entities within the simulation would know the part is failing but still able

to be flown.

4.8 CBM-MiMOSA: Verification

This section covers the modules denoted by the letter ‘F’ in Figure 22. The CBM-

MiMOSA module was created based on the optimization problem developed in Section

3.3.2. A preexisting open source solver, Gurobi, was used to implement this portion

because it is fast and has been verified by the wider programming community. Gurobi

uses an overall branch and bound technique to deal with integer variables, with the

158

simplex method used to evaluate each branch and bound node. As Hillier states,

the combinatorial nature of mixed integer programming problems can create a huge

number of solutions to solve[55]. It was therefore crucial for the simulation, which will

evaluate optimal schedules frequently over the course of the simulation time, to have

as effient a solver as possible. Gurobi provides this by performing several techniques

to reduce the size of the problem where possible, including cutting planes, presolve,

heuristics, and parallelism[50]. The output of the optimization was examined before

integrating it into the full model as a means of deciding when to perform mission and

maintenance scheduling. The main purpose of this examination was do verify that the

solution returned by the optimizer is not only meeting the constraints as set out in the

problem, but that the result of those constraints and objectives yields a reasonable

solution. Thus this step was intended as much to check that the optimization problem

was correctly formulated as that the optimizer returns reasonable results.

At this stage the means for using this information to replace existing mission and

maintenance scheduling logic were carefully considered, as well as the determination of

when to rerun the optimization to reflect changes within the simulation. Since these

adaptations were not considered previously as part of Sustain-ME’s development,

and since the decisions made are somewhat dependent on the specifics of the fleet

at any given moment, careful attention was then paid to the behavior of the model

after implementing these changes. In addition to the previous information used for

verification, the actions recorded and output by the PHM were updated to reflect

new possibilities introduced by the optimizer.

Since the first step in verifying the optimizer was to examine the solution for a

single point during the simulation, that work is reproduced here for a fleet of six

aircraft rather than thirty for length considerations. Since the fleet size was reduced,

the operational tempo of ten missions per day was also reduced proportionally to

two missions per day. First, the optimizer inputs are shown and reorganized as the

159

optimizer reorganizes them. Next, these values are input into the equations outlined

in Section 3.3.2 and a set of specific objective functions and constraints is generated

and compared to those generated by the optimization. Finally, the solution found by

the optimizer is checked for feasibility. Table 15 shows the inputs to the optimization

and Table 16 shows that data reorganized.

Table 15: Unsorted optimization inputs

AC Part 1 Life Part 2 Life Part 3 Life Part 4 Life Part 5 Life Part 6 Life
0 100000 100000 100000 100000 100000 100000
1 100000 100000 100000 100000 44.27418 100000
2 100000 100000 0 100000 100000 100000
3 6.53144 100000 100000 100000 100000 100000
4 100000 100000 100000 12.90057 100000 100000
5 100000 100000 100000 100000 100000 100000

Recall that the modeled PHM detects the upcoming failure of one of the aircraft’s

parts at some point during each part’s life. Once the detection occurs the PHM is

assumed to have perfect knowledge of when the part will fail, so the data in Tables 15

and 16 shows whether the aircraft is available or unavailable to fly, and if available

whether it is detecting failure or not. This is reflected in the value shown for each

aircraft’s six parts. If the PHM value is 100000, the aircraft is not detecting a failure

for that part. The value 100000 acts as a stand-in for an assumed infinite part life,

since this value is significantly longer than the mean time for any of the aircraft’s

parts and represents a theoretical maximum generated part life. If the PHM value

for a part is zero, the part has failed and is currently or will soon be repaired by the

simulation. If the PHM value for a part is neither zero nor 100000, the PHM detects

a failure for that part, and the value given is the number of flight hours remaining

before the part will fail. Recall as well that the most important part on any aircraft is

the one closest to failure, since this will automatically determine its state and eventual

need for repair. Thus, for aircraft with at least one part registering 0 as a part life,

the aircraft is failed and any other PHM readings on the aircraft’s other parts are

160

currently irrelevant. Similarly, for an aircraft with at least one part registering that

failure is detected (but no parts actually failed), this minimum part life is the sole

determiner for when maintenance will be necessary. This means that each aircraft

can effectively be represented by its minimum PHM reading of part life when being

considered by the optimizer. It is this logic that dictates the organization of Table 16,

which is sorted by each aircraft’s minimum part life, highlighted in bold in the table.

However, aircraft which are down for maintenance have been moved to the end of

the list so that all available aircraft appear at the beginning of the table. Thus there

are three aircraft which are available and predicting failure, two aircraft which are

available and not predicting failure, and one aircraft which is currently unavailable

due to maintenance.

Table 16: Optimization inputs, sorted by minimum part life

AC Part 1 Part 2 Part 3 Part 4 Part 5 Part 6 RD
3 6.53144 100000 100000 31.48111 100000 100000 2
4 100000 100000 100000 12.90057 100000 100000 3
1 100000 100000 100000 100000 44.27418 100000 5
0 100000 100000 100000 100000 100000 100000 N/A
5 100000 100000 100000 100000 100000 100000 N/A
2 100000 100000 0 100000 100000 100000 N/A

Once the number of aircraft in each of the three categories has been determined,

the optimizer uses the information to set up the specific version of the optimization

problem to be run. Equation 16 shows this problem for the inputs in Table 16, where

the value of Li for each aircraft in ACPF is the bold value in the table. The equations

are directly translated from those of Equation 15 for the specific state of the fleet

defined in Tables 15 and 16, not copied from the optimization model. The variable

indices are numbered not according to the aircraft ID number from the simulation,

but according to the order they appear in Table 16 as this is how the optimization

processes the data. The results of the optimization are then translated back into their

original aircraft identification numbers for use in the simulation model.

161

min

ζ1 + ζ2 + ζ3 + [6.53− 2m1,1 − 2m1,2] + [12.9− 2m2,1 − 2m2,2 − 2m2,3]

+ [44.27− 2m3,1 − 2m3,2 − 2m3,3 − 2m3,4 − 2m3,5]

−m1,1 −m1,2 −m2,1 −m2,2 −m2,3 −m3,1 −m3,2 −m3,3 −m3,4 −m3,5

−m4,1 −m4,2 −m4,3 −m4,4 −m4,5 −m5,1 −m5,2 −m5,3 −m5,4 −m5,5

subject to

6.53− 2m1,1 − 2m1,2 ≥ 0

12.9− 2m2,1 − 2m2,2 − 2m2,3 ≥ 0

44.27− 2m3,1 − 2m3,2 − 2m3,3 − 2m3,4 − 2m3,5 ≥ 0

2−m1,1 −m2,1 −m3,1 −m4,1 −m5,1 ≥ 0

2−m1,2 −m2,2 −m3,2 −m4,2 −m5,2 ≥ 0

2−m2,3 −m3,3 −m4,3 −m5,3 ≥ 0

2−m3,4 −m4,4 −m5,4 ≥ 0

2−m3,5 −m4,5 −m5,5 ≥ 0

ζ1 − (T1 − 36) ≥ 0

ζ1 + (T1 − 36) ≥ 0

ζ2 − (T2 − T1 − 36) ≥ 0

ζ2 + (T2 − T1 − 36) ≥ 0

ζ3 − (T3 − T2 − 36) ≥ 0

ζ3 + (T3 − T2 − 36) ≥ 0

0 ≤ m1,1 ≤ 1 , 0 ≤ m1,2 ≤ 1 , 0 ≤ m2,1 ≤ 1 , 0 ≤ m2,2 ≤ 1 , 0 ≤ m2,3 ≤ 1

0 ≤ m3,1 ≤ 1 , 0 ≤ m3,2 ≤ 1 , 0 ≤ m3,3 ≤ 1 , 0 ≤ m3,4 ≤ 1 , 0 ≤ m3,5 ≤ 1

0 ≤ m4,1 ≤ 1 , 0 ≤ m4,2 ≤ 1 , 0 ≤ m4,3 ≤ 1 , 0 ≤ m4,4 ≤ 1 , 0 ≤ m4,5 ≤ 1

0 ≤ m5,1 ≤ 1 , 0 ≤ m5,2 ≤ 1 , 0 ≤ m5,3 ≤ 1 , 0 ≤ m5,4 ≤ 1 , 0 ≤ m5,5 ≤ 1

39.8 ≤ T1 ≤ 63.8 , 63.8 ≤ T2 ≤ 87.8

111.8 ≤ T3 ≤ 135.8

mi,j integer ∀i ≤ 5, j ≤ min(MDi, 5)

(16)

162

Figure 77: Optimization module problem statement

Figure 77 shows SutstainME as defined by the optimization module when the

data defined in Table 15 are provided as inputs. One difference is notable: the

optimization module starts its indexing with 0 rather than 1, so all the indices are one

less than those shown in Equation 16. However, aside from this cosmetic difference,

the variables required to define the problem, the specific constants used in objective

functions and constraints, and the bounds of the continuous design variables match

those shown in Equation 16. This indicates that, as a first check, the optimization

module is correctly coding the optimization problem.

The optimization module’s solution to the problem is shown in Tables 17, 18 and

19 along with the values of constraints associated with those decision variables. For

the missions, constraints are mostly associated with the summation of the missions

in different dimensions, and the structures of Tables 17 and 18 reflect this. The

163

constraints associated with summing all missions flown on a given day are presented

along the bottom of Table reft:mOut1, and the value of this summation is presented

in the row above, below the values being summed. The constraints associated with

summing all missions flown by a given aircraft are presented along the bottom of

Table 18, and the value of this summation is presented in the row above, beneath

the values being summed. One further constraint, that the mission variables are

restricted to binary settings, can be confirmed visually in the middle portion of both

tables. Constraints which are highlighted green are constraints which are met by the

problem; in this case all constraints are satisfied for both sets of decision variables.

Table 17: Mission settings for optimized problem

Day 1 Day 2 Day 3 Day 4 Day 5
AC 3 0 1
AC 4 1 1 1
AC 1 1 0 1 1 1
AC 0 0 0 0 1 1
AC 5 0 0 0 0 0∑ACAvail

i′=1 mi.j 2 2 2 2 2
≤ OTj OT1 = 2 OT2 = 2 OT3 = 2 OT4 = 2 OT5 = 2

Table 18: Mission settings for optimized problem

AC 3 AC 4 AC 1 AC 0 AC 5
Day 1 0 1 1 0 0
Day 2 1 1 0 0 0
Day 3 1 1 0 0
Day 4 1 1 0
Day 5 1 1 0∑MDi

j=1 (mi,jd) 2 6 8 4 0

≤ Li L3 = 6.5 L4 = 12.9 L1 = 44.3

Table 19: Maintenance time settings for optimized problem

Maintenance Time Lower Bound Optimum Value Upper Bound
T1 39.8 ≥ 39.8 ≤ 63.8
T2 63.8 ≥ 75.8 ≤ 87.8
T3 111.8 ≥ 111.8 ≤ 135.8

164

Having shown that the optimizer has returned a feasible solution, the objective

function values at the optimum will be discussed. The maintenance times selected

make a great deal of sense, since they are spaced from each other by exactly the mean

time between failures, and are as far apart from one another as the constraints allow.

At these values, the objective function associated with the spacing of maintenance

events is zero, its minimum possible value. For these maintenance times, the part life

wasted for each part is about 4.5, 7, and 36 hours for the three parts for a total of about

48 hours wasted. This same value could have been achieved if aircraft 3 had been

flown on the first day of the optimization instead of aircraft 4 since the two additional

hours taken from aircraft 3’s part would have been added onto aircraft 4’s part; this

suggests that will be several equally good solutions to the problem in some situations.

Future efforts might take advantage of this fact by adding additional information to

the optimization about the other parts equipped on the aircraft, trying to wear them

out faster or slower depending on what is desirable to the overall behavior of the fleet.

However, such fine-tuning is beyond the scope of this particular problem. Finally, the

total number of missions flown reached its maximum possible value with the full

operational tempo flown over this five day period. However, keep in mind that this

solution was returned when five of the six aircraft were available to fly missions; at

other conditions this might not be possible.

The next step in verifying the optimizer’s behavior within the simulation was to

examine the behavior of several different entities within Sustain-ME with the opti-

mizer in place. As was done for the PHM module, the simulation’s decision making

process for performing repairs is reviewed. The data provided to the optimization at

each point in time was also reviewed to verify that it matches the knowledge available

to the PHM at any given moment; this was found to be the case but difficult to visu-

alize because of the relatively small magnitude of the part lives at detection compared

to the 100000 value used as the default for parts not detecting failure. Consequently

165

only the part life remaining and flight hours until detection were plotted in Figure 78,

along with the major events which accompanied any strong transitions.

Figure 78 shows that several obvious behavior violations are not occurring: re-

placements are not occurring before detection; unschedule maintenance is occurring

immediately after detection, not after detection and then flying several missions; and

detection time is never greater than part life or less than zero. Beyond these obvious

signs of correct behavior, the plot shows that in some cases, replacement is occurring

sooner than it would have under a pure PHM model, where parts are only replaced

when they will fail on the next mission. However, at least for the part and aircraft

shown, the part life wasted as represented by the distance below a line that moves

vertically upward on the graph is not egregiously large. This indicates that the sim-

ulation is respecting the desire to fly missions and use part life as well as to evenly

space maintenance visits.

Figure 79 shows the behavior for a different part with high reliability. Due to

the part’s much higher probability of generating long part lives, the cycle time to

repair parts is much lower and this particular part was in use for almost all of the

simulation before requiring replacement. However, once failure was detected for this

part it was immediately replaced by the optimizer, even though there were about 25

flight hours remaining that the part could have flown. This occurred because the

optimizer was told to fix the aircraft during a period fairly soon after detection as

per the assumptions of the optimization problem. This highlights one of the sacrifices

made to implement maintenance optimization: some parts will be repaired long before

they need to in order to achieve more even spacing of maintenance visits. However,

this is still preferable to a scheduled maintenance paradigm where parts are replaced

even if no indication has been obtained that parts may soon fail; in this case the part

is at least partially degraded if it is registering an upcoming failure.

The final step in verifying the inclusion of the optimizer in the modeling logic is to

166

F
ig

u
re

7
8
:

P
H

M
op

er
at

io
n

u
n
d
er

op
ti

m
iz

at
io

n
fo

r
lo

w
re

li
ab

il
it

y
p
ar

t

167

Figure 79: PHM operation under optimization for high reliability part

re-examine the states of the fleet’s aircraft over time; however, before that can happen

a discussion of how the aircraft operating logic changed should first occur. For the

most part the aircraft’s operating logic remained unchanged, since the PHM module

works within the aircraft’s code but is largely separate from its operations; it affects

the decision to enter certain portions of the operational logic, but not what those

steps actually are. However, one necessary change needed to be introduced because

of the way the optimizer is able to schedule aircraft to missions. The optimizer has

the freedom to formulate its schedule so that aircraft do not fly on the day they will be

repaired. Under previous logic, aircraft are repaired immediately upon experiencing

any sort of failure, but with the possibility to delay a maintenance visit by a few days

to increase steadiness of maintenance visits a new logical check had to be created.

This decision point determines whether an aircraft which is in the “awaiting mission”

state has a maintenance event scheduled during the current day. If this is so, the

aircraft is reactivated for the purpose of completing the maintenance loop only, so it

skips all the states associated with flying a mission and enters the maintenance cycle,

after which it once again returns to an “awaiting mission” state. Since this decision

168

point leads into another decision point based on whether parts are available, two new

loops are created by adding this one decision point. The aircraft operational logic is

shown in Figure 80 with the updated logic.

The loops shown in Figures 33 through 35 now look like the loops represented in

Figures 84 through 83.

Given the fact that the aircraft operational order of events has been largely con-

firmed at this point, the check for aircraft behavior will focus instead on comparing

the steps encountered by the aircraft in the simulation against the known paths.

Figure 86 shows this, where the amount of time spent in any given path can be de-

termined by its length on the time axis. If the aircraft fails to adhere to one of the

known behavioral loops, a gap will appear on the plot to indicate a failure which must

be investigated. Other potential sources of concern could arise if aircraft spend too

long completing a loop, and if this is the case the specific behavior of that loop can

be delved into further.

In Figure 86, the line is unbroken meaning that the aircraft does not deviate from

its alotted choice of paths and states. Note, however, that not all paths represented

by specific values on the y axis are visit in this plot. In some cases, especially the

paths that are less likely to be traveled, the specific conditions that trigger a path

may not occur for a given aircraft during the simulation time. If this path never

appears for any of the aircraft this could potentially be cause for concern, but in

this case path 5 was visited by other aircraft during the simulation. Thus the aircraft

behavior is confirmed to match what was predicted under optimization. At this point,

a reasonable degree of confidence in the modeling of CBM-MiMOSA can be upheld.

169

Figure 80: Updated aircraft operational logic

170

F
ig

u
re

8
1
:

P
at

h
1

ai
rc

ra
ft

or
d
er

of
ev

en
ts

171

F
ig

u
re

8
2
:

P
at

h
2

ai
rc

ra
ft

or
d
er

of
ev

en
ts

172

F
ig

u
re

8
3
:

P
at

h
3

ai
rc

ra
ft

or
d
er

of
ev

en
ts

173

F
ig

u
re

8
4
:

N
ew

p
at

h
4

ai
rc

ra
ft

or
d
er

of
ev

en
ts

174

F
ig

u
re

8
5
:

N
ew

p
at

h
5

ai
rc

ra
ft

or
d
er

of
ev

en
ts

175

Figure 86: Order of paths for one aircraft under optimization

4.9 Verification Conclusions

With the inclusion of the optimization in Sustain-ME, all of the maintenance paradigms

have now been incorporated into Sustain-ME, and their behvior verified. Through use

of many different tests, the full behavior of the model has been explored and checked

against known and expected values. This completes the development and verification

portion for Sustain-ME. Chapter 5 will delve into the full picture of what occurs in

the sustainment process under these three maintenance paradigms.

176

CHAPTER V

EXPERIMENTS AND MAINTENANCE PARADIGM

STUDY

Having created and verified Sustain-ME in Chapter 4, Chapter 5 will now demon-

strate how such an environment may be used for performing sustainment decision

trade studies. The methodology by which such a study is prepared is first defined.

Next the steps of the methodology are performed, or if they have already been com-

pleted in other portions of this thesis those sections are referenced and the results

summarized. Finally the information that can be gained from such a study is pre-

sented and explained in the context of a decision maker using quantifiable information

to reach conclusions about a specific version or versions of sustainment.

5.1 Use Case and Use Methodology

The use case and example study for demonstrating Sustain-ME in this thesis were

described in Chapter 1. Recall that the general use case referred to a decision maker

attempting to justify or explore a specific decision. Sustain-ME enables decision mak-

ing by translating information about the specific sustainment process being modeled

into data on how the high level sustainment metrics evolve over time. Additionally,

any information about how specific parameters within Sustain-ME change over time

or about the frequency of different events within the simulation can be output to

augment the high level metric information. In the case of this thesis, the fictional

decision maker is attempting to determine which of three maintenance policies is the

best, where “best” is defined by high RO, a target value of 70% AO, and ideally low

177

variability for both metrics. Aside from these high level metrics, the cost of the main-

tenance paradigm as captured by the level of initial inventory investment required to

achieve a 70% level of AO is an important parameter.

The fictional decision maker in this scenario is planning for future operations,

meaning that she has some information about the expected reliability of the aircraft

as well as the expected operational and supply chain structures. The order of main-

tenance activites is also well-understood, but there is uncertainty surrounding the

capabilities of a new technology, the PHM, which will aid maintenance staff in pre-

dicting and diagnosing component failures. As a result the decision maker is aware

that the maintenance strategies may perform differently as the assumptions about

the PHM are varied. Thus one of her goals in using Sustain-ME is to quantify the

regions where each maintenance paradigms is the best option, if there is such a region.

Another goal is to determine the initial inventory investment level required to meet

the AO target for each of the maintenance paradigms under the most likely level of

PHM effectiveness.

Before the decision maker is able to perform those studies, she must complete

the methodology shown in Figure 87. As part of this methodology, specific questions

about the modeling capabilities introduced to perform the trades must be answered.

These include the questions posed in Chapter 1 from which Hypotheses 1 and 2

were developed; first whether the metrics of interest are both necessary to capture

sustainment behavior, and second whether the prediction about stochasticity that

motivated the study can be confirmed. The decision maker must also answer the

question raised in Chapter 3 about what weighting parameters should be used for the

CBM-MiMOSA optimizer. Finally, the decision maker must study CBM-MiMOSA

in some depth before comparing it to other maintenance paradigms to ensure that

the results gained are truly comparable.

178

Figure 87: Use case methodology

Having fully captured the notional scenario for decision making that will demon-

strate the utility of Sustain-ME, Section 5.2 will now describe how each of the steps

in Figure f:UCM have been or are implemented.

5.2 Step 1: Metrics of Interest

The use case methodology’s first step is to identify the metrics of interest. This was

begun in Chapter 1 and continued in Chapter 2. The metrics chosen were operational

availability and operational reliability, as well as the initial inventory investment as

a surrogate for cost. However, Chapter 1 also recognized that AO and RO are closely

related metrics and asked whether both must be measured by Sustain-ME to fully

capture the sustainment behavior. Hypothesis 1 states that both are necessary.

Hypothesis 1: The relationship between AO and RO is complex and cannot be

represented by a simple correlation.

This is the point at which the fictional decision maker should test such a hypothesis,

179

so that the correct metrics are identified before collecting any data. Section 3.2.1 de-

scribed how this hypothesis would be tested: by varying the inventory with resonable

resources and the resources with reasonable inventory. Hypothesis 1 will be supported

if these two studies identify different relationships between AO and RO, particularly if

a reversal in trend between the two occurs from one study to another. These studies

were performed and the data was used to plot the correlation between AO and RO as

inventory and other resources were varied. Figure 88 shows this relationship as the

inventory was varied, and Figure 89 shows the relationship as the number of ground

crews was varied.

Figure 88: AO vs. RO for varying inventory

Figure 88 shows that the traditional and expected relationship between opera-

tional availability and reliability holds when the inventory is varied. Adding more

spare parts to the system allows more aircraft to be available, and this in turn allows

more of the required missions to be flown. The relationship is nonlinear, as the op-

erational reliability nears its maximum faster than the operational availability, and

therefore shows diminishing returns for higher AO levels. This in part helps to explain

why the Air Force might want to contract for lower AO levels, because almost perfect

180

Figure 89: AO vs. RO for varying ground crew

ability to fly all required missions occurs at lower AO values than 90%. However, it

is important to remember that the points shown here represent the mean over time

as well as over several repetitions, and therefore this neat relationship is subject to a

lot of uncertainty.

Figure 89 does not quite show a reversal in trend. However, it does show that,

for some conditions, high AO does not necessarily translate to high RO. In this case,

having a single ground crew led to high operational availability because, as missions

are generated, the aircraft must queue for ground crew in order to fly those missions.

Because the prep time for missions without any wait for a ground crew takes a few

hours, and the ground crew is required to be present for those few hours, aircraft that

arrive later to the queue wind up waiting an unreasonable amount of time – in some

cases as much as 50 hours. This in turn leads to low values for RO, because required

missions are not flown. However, AO remains high because the aircraft are categorized

as available during that time. Furthermore, because fewer missions are flown there

are fewer opportunities to break and require repair, which reinforces the high AO

result. For this reason alone, it is clear that both AO and RO are necessary metrics

181

to capture and evaluate decisions against. This observation leads to the conclusion

that Hypothesis 1 is supported by Sustain-ME.

Having determined that both metrics are necessary to any discussion of sustain-

ment behavior, the decision maker may now proceed to identifying sustainment re-

quirements.

5.3 Step 2: Sustainment Requirements

The use case methodology’s second step is to identify the requirements of the sus-

tainment process. This was performed throughout Chapters 1 through 3, as the

sustainment requirements had to be defined to develop Sustain-ME1. Particularly,

the expected activities associated with operations, maintenance and the supply chain

were derived from literature, as well as the required metric values or directions of im-

provement. In this case, the desire to have 70% AO and the maximum possible RO and

lowest possible initial inventory investment was determined from several government

contracting sources.

In addition to these basic requirement definitions, Chapter 1 spent a great deal of

time discussing the potential impact of stochasticicy on sustainment under the partic-

ular operational conditions associated with the Air Force sustainment paradigm shift.

In particular, Hypothesis 2 predicted that nonstationary behavior will be observed

for sustainment under CBM with minimal inventory investment.

Hypothesis 2: At the conditions cited in the Air Force sustainment paradigm shift,

where minimal inventory is selected to meet a target value of 70% AO, and where

maintenance is performed based on a condition based maintenance policy, stochastic-

ity will dominate the performance of sustainment.

1Now that Sustain-ME is developed, however, the particular sustainment requirements associated
with whatever study is being performed with Sustain-ME must be defined independently.

182

As stated in Chapter 3, the test for this hypothesis will run Sustain-ME with a

traditional CBM paradigm implemented over a wide range of inventory values. This

was done and, from the data collected, a plot similar to Figure 59 was created to show

the effect of inventory change on AO. Each point on the plot represents the average

of AO over the course of a year of simulation time. Since the inventory investment

took time to be used up, leading to an initial period of uncharacteristically high

performance, the average was taken over the last 265 days of the year. Figure 90

shows the average operational availability as the total initial inventory investment

across all the part categories is varied under traditional condition based maintenance.

Figure 90: Inventory impact on AO over full inventory range

As predicted, Figure 90 looks similar to Figure 59 from Chapter 4 in that the

transition period between low and high AO as inventory increases is characterized

by a wide (vertical) range of time averaged AO values. Figure 91 shows the same

data, but focused on this medium range of inventory where the time average of AO is

close to 70%, as specified in Hypothesis 2. In this limited range, which represents the

desired operating conditions for the Air Force sustainment paradigm shift, the range

of AO is significant, around 30%. This is problematic because it makes it difficult

183

to be certain that a targeted and contracted level of AO can be achieved, since the

circumstances have such a large effect on AO.

Figure 91: Inventory impact on AO over select inventory range

Another test for sustainment nonstationarity under a CBM paradigm and mini-

mal inventory is to look at the operational reliability (percent of missions flown) as

inventory is varied. Figure 92 shows how the RO varies with inventory. The overall

behavior is the same, with the time averaged RO increasing as inventory is increased,

but the shape of the curve is slightly different. Where the AO plot forms an S curve,

the RO plot is generally linear up to the point that it reaches a maximum and lev-

els out. This suggests that, though the RO also experiences increased variability for

transitional inventory levels, it has a slightly more predictable behavior. Nonetheless,

for the inventory level that achieved an average value of 70% AO, 312, the spread in

RO between different repetitions is still a fairly large 10%. Though this is better, it

is still not desirable. Moreover, the variability within a single repetition, as can be

seen in Figures 93 (one model run) and 94 (all ten model runs), and Figures 95 (one

model run) and 96 (all ten model runs), is much larger even than Figures 90 and 92

indicate. The effect of collapsing an entire time series of data into a single mean value

184

is to hide much of the variability that exists.

Figure 92: Inventory impact on RO

Figures 90 through 96 clearly indicate that sustainment under condition based

maintenance displays nonstationary behavior for inventory levels at which the AO is

70%. This is concluded due to the large scale oscillations in the responses of AO and

RO over time, the lack of any clear trend that emerges from these responses (i.e. a

regular period of oscillation), and the inconsistency of the average of the responses

over several repeated trials with the same inventory level. This is, of course, based on

the specific assumptions made in creating Sustain-ME for this thesis. However, given

the indicators in literature and the conceptual reasons for thinking this would be the

case, it seems to indicate that this is a concerning region for anyone to be operating.

This leads to the conclusion that Hypothesis 2 is supported for the conditions

modeled in this thesis.

Having determined that nonstationary behavior does seem like a reasonable ex-

pectation for sustainment under the paradigm shift conditions, the decision maker

may now select sustainment strategies with this fact in mind.

185

Figure 93: Single model run: AO vs. time with 312 total spare parts

Figure 94: Ten model runs: operational availability (AO) vs. time with 312 total
spare parts

186

Figure 95: Single model run: operational reliability (RO) vs. time with 312 total
spare parts

Figure 96: Ten model runs: RO vs. time with 312 total spare parts

187

5.4 Step 3: Potential Sustainment Strategies

The use case methodology’s third step is to identify potential sustainment strategies.

This was done in Chapter 1 to some extent, but moreso in Chapters 2 and 3. In this

case, due to the knowledge from Step 2 that traditional CBM is likely to create non-

stationary behavior under conditions of minimal inventory, the decision maker would

like to test the assumptions underlying traditional CBM regarding the decisions for

when to schedule maintenance. She recognizes that the focus of CBM on maintain-

ing as late as possible may be introducing new problems by allowing stochasticity

to dominate maintenance scheduling. To determine whether a better option exists

for using the PHM information that enables CBM, she conceptualizes an optimiza-

tion problem that will relax the assumption that repair occurs at the last minute.

Instead, the optimization will trade off the part life wasted when parts are repaired

early against the benefit that may be gained from shifting maintenance visits to more

even times. The decision maker also knows that CBM has not been modeled before,

so its benefit as compared to a traditional maintenance paradigm like reactive main-

tenance is unknown. The decision maker therefore decides to study and compare

three maintenance paradigms: reactive maintenance, traditional CBM and the novel

CBM paradigm that she calls CBM-MiMOSA.

5.5 Step 4: Additional Logic

The use case methodology’s fourth step is to implement and verify additional logic.

Since this thesis built a full modeling environment to capture this logic, all logic

needed to be verified; however, future efforts using Sustain-ME will only need to ver-

ify changes that are made to the model. This means that much of the implementation

and verification for this use case example has been done in Chapter 4. However, two

additional efforts must now be discussed. The decision maker is aware that the objec-

tive function that is used for the optimization portion of CBM-MiMOSA is based on

188

the values used to define the OEC. Particularly, the weights placed on the individual

components of the overall objective function may influence the solution chosen. The

decision maker must therefore perform an initial study to determine the appropri-

ate weighting values. Additionally, the decision maker expects that the increase in

part life waste associated with CBM-MiMOSA as compared to CBM will lead to a

need for more maintenance resources; more initial inventory investment may or may

not be required, but additional maintenance staff or facilities are expected to be re-

quired based on the fact that the total number of maintenance events will increase.

Thus the decision maker will also perform a preliminary study of the performance of

CBM-MiMOSA and determine what additional resources are required, if any.

5.5.1 OEC Weighting Study

The decision maker would like to determine the ideal values for the weightings on the

individual objectives of the optimization problem. Since the objective functions were

normalized, the weightings can be varied from 0 to 1 and should have equal impacts

at those levels on the individual objectives. This is helpful because it means no

objective can dominate the others. A full factorial design of experiments (DoE) was

run on the weightings, where each weighting was varied in increments of 0.2. This test

was performed first on the results from a single solution of the optimization problem.

What this means is a representative set of optimization inputs was taken from Sustain-

ME. These inputs are the decision variables of the objective function, which means

the state of the fleet at a single moment in time from the simulation was selected as

the test case for the optimization problem. For this test case, the weightings were

varied and the optimization problem solutions were collected. The fleet conditions

used for testing weight sensitivities vary from 10% to 100% of aircraft available. Since

results from running the PHM version of Sustain-ME suggest that approximately 2/3

of aircraft detect failure of those which are available, this result was kept constant

189

as the number available was varied. To ensure these numbers, an initial fleet was

generated from the simulation which had 20 aircraft available predicting failure, and

10 aircraft avilable predicting no failures. For the 90% available fleet, three aircraft

were chosen at random from the initial fleet, two from the predicting failure portion

and one from the not predicting failure portion. One of the parts for each of these

aircraft was selected at random to be failed, although which part was failed would

have no impact on the results of the optimization. This process was repeated for

each additional percentage available fleet down to three aircraft available with two

predicting failure and one not. Each of these fleet makeups was tested over a wide

range of weightings on each of the three objective functions, with one weighting being

adjusted at a time to determine the independent contribution of each sub function’s

weighting value.

Figure 97 shows the results of this DoE as a scatterplot matrix, which allows

several individual scatterplots to be compiled together in a single graphic. This

graphic can be read by looking at the input variable, along the x axis of the matrix,

and the output variable along the y axis. In this case the input variables are the

weightings from 0 to 1 in increments of 0.2, and the output variables are the actual

values of the individual components of the objective function. Recall that the overall

goal was to minimize the maintenance interval and part life wasted objectives and to

maximize the missions flown. This translates to low values in the first two rows of

the scatterplot matrix being preferable, and high values being preferable in the third

row.

Figure 97 shows a few clear trends. If the top left to lower right diagonal of the

matrix is viewed, these plots represent the impact of the weighting of an objective

on the best value of that objective found by the optimizer. The trends for the two

objectives (that are to be minimized) is negative as the weighting value increases, that

is, the optimized objective function valule improves. The trend for the third objective

190

Figure 97: OEC weight study results – all weight settings

191

(that is to be maximized) is positive as the weighting value increases, indicating

that this objective function also improves with weighting value. Given this fact, an

interesting result emerges when the zero values are removed. Keep in mind that

weighting a component of the objective function to zero implies that that objective

is no longer being used to find a solution; doing so is like deciding not to optimize

that value after all. Figure 98 shows that for all nonzero values of weightings, i.e. all

reasonable weighting values, there is no impact of weightings on the optimization’s

solution. As a secondary observation, this means that all objectives are necessary

to find the best overall solution, as a worse solution is found if any of them are

zeroed out. A tertiary observation is that none of the objectives are correlated with

one another for this particular optimization problem, indicating that none should be

dominating the behavior of the response.

This further suggests that the optimization problem as constructed has a sin-

gle optimum solution, with no ability to adjust the solution found by adjusting the

weightings of the different portions of the objective function. This result naturally

calls into question whether the solution has been improved at all, since it is possible

for an optimizer to return the same solution that was obtained before optimizing.

This can be formalized as a research question, since it is central to determining the

usefulness of CBM-MiMOSA.

Research Question 3 Does CBM-MiMOSA improve the maintenance visit distri-

bution over time?

To test this research question, a baseline solution to a momentary scheduling sit-

uation with the same fleet composition must be extracted from the simulation and

compared to determine if the maintenance visit spacing has improved. This can be

192

Figure 98: OEC weight study results – zero weightings excluded

193

done by looking at a number of parameters. First, the maximum of all the mainte-

nance intervals over this period should be smaller under optimization, indicating that

fewer periods of underutilized maintenance occur. Second, the minimum of all the

maintenance intervals should be larger, indicating fewer times when multiple aircraft

fail and visit maintenance at once. Finally, the standard deviation of the maintenance

intervals should be smaller indicating that each one more closely matches the mean

value.

To test this, the fleet with 30 aircraft available was used to allow as large a

sample size of maintenance intervals as possible. The fleet was initialized with the

same composition as was used in the optimization only test, and the maintenance

visits over the same few day period were measured using the PHM model and the

original baseline. The times at which aircraft enter maintenance for these models

were collected and compared to the maintenance times determined by the optimizer.

Table 20: Minimum, maximum and standard deviation of maintenance intervals

CBM-MiMOSA CBM Reactive
Min 7.20 0.23 0.39
Max 9.60 648.88 621.00
Standard Deviation 0.76 176.51 154.89

Table 20 shows that the spacing between maintenance visits of the optimized

solution is far more even than for either of the other models, and this is reinforced in

Figure 99 which plots the interval length between adjacent maintenance visits on a log

scale on the y-axis versus the maintenance event order on the x-axis. This shows that

the maintenance times vary by a much greater amount for the reactive and traditional

CBM paradigms. However, the area under these curves indicate the time it takes to

complete the full list of maintenance events, and this time is much shorter for CBM-

MiMOSA. To see why this occurs, Figures 100 and 101 plot the times of each of

the maintenance visits along the x-axis for the different operational paradigms (the

y-axis values are only present to create spacing between series). However, two things

194

Figure 99: Interval length (log scale)

Figure 100: Maintenance visit spacing for optimized solution

Figure 101: Maintenance visit spacing for CBM-MiMOSA, CBM alone, and reactive
maintenance

195

must be pointed out. First, the period of time over which the optimizer performs the

repairs is much shorter than the period over which the other two methods act, by

a factor of 17. This indicates that, because of the formulation of the optimization,

repairs are being made with a much different schedule than before. Though this was

ostensibly the intention of CBM-MiMOSA, the degree to which part repair has been

accelerated by the optimization suggests that part usage will dramatically increase,

leading to a need for more parts at the very least. It was hoped that the optimization

could instead shift maintenance visits around over the same or a similar period to

what occurred before implementing optimization.

The second aspect of the problem to remember is that Figures 100 and 101 and

Table 20 show only the repairs that directly correspond to those parts which had

planned repairs within the one instance of the optimization problem. A more direct

analogy might be to show all the maintenance visits that occurred over this period,

shown in Table 21 and Figure 102. These confirm that, though the spacing is much

more even when accounting for all repairs that occur over this period, it still falls far

short of the maintenance spacing achieved by a single run of the optimization. Thus

even though the optimization is insensitive to weightings, suggesting that the problem

may have been overly constrained in its formulation, and even though it seemingly

creates many more maintenance events than existed for the baseline models, it does

still represent an improvement in the intended parameter over the baseline scheduling

methods. Furthermore, though the optimization formulation is overly constrained, it

does suggest that the assumptions made in creating that formulation help to achieve

the primary intended goal for the method, to evenly distribute maintenance visits

over time. However, the fact that the visits are compressed over a small time period

may mean that the assumptions made reduced the freedom of the optimizer to reduce

the penalty associated with this goal. This will be discussed further in Section 5.5.2.

To round out the analysis of the optimization problem in isolation, the data will

196

Table 21: Minimum, maximum and standard deviation of all intervals

CBM-MiMOSA CBM Reactive
Min 7.20 0.23 0.24
Max 9.60 359.35 189.73
Standard Deviation 0.76 60.85 41.96

Figure 102: Maintenance visit spacing for CBM-MiMOSA, CBM alone, and reactive
maintenance

also be examined to determine at what fleet availability percentage the fleet begins

to have difficulty flying 100% of missions during the optimization period. This rela-

tionship is similar to the one that relates operational ability to operational reliability,

although operational availability has a slightly different computation from the percent

of aircraft available at any given time. In Figure 103, the missions flown only stay

at 100% from 30 to 27 aircraft available; below this point the optimization cannot

satisfy mission requirements over the entire operational period. This is due to the

fact that 2/3 of the aircraft must be repaired and are therefore not available to fly

after a certain day of the optimization period. In the greater simulation, the num-

ber of aircraft needed simultaneously to keep flying all missions may be lower than

this number due to the fact that maintained aircraft will be repaired and re-enter

service, which does not happen in the optimization problem. However, depending on

the number of maintenance resources and parts available at any given moment, this

factor could cease to be relevant. Combined, these facts suggest that there is a dan-

gerous potential to drive the operations of the fleet to a far inferior region by creating

more maintenance events, though with more even spacing, than the current resources

of the simulation can handle. Should this happen, the optimization will begin to fly

197

fewer missions due to the smaller number of aircraft available to fly them, which will

in turn impact the rate of utilization of aircraft and the evenness of maintenance

visits. These possibilities will be fully explored within the simulation later.

Figure 103: Effect on aircraft available on missions flown

Having identified that the OEC weightings do not influence the optimization so-

lution found, the decision maker can move forward with the knowledge that any

weighting values will suffice. However, the more important conclusion that may be

reached from this study is that the optimization problem defined in Chapter 3 may

not be the best option for achieving the decision maker’s goal. Having examined

the data further and found that the optimization problem does in fact yield a more

even set of maintenance events, but that these maintenance events occur in a shorter

amount of time2, the decision maker decides to move forward with the comparison

study to see what impact CBM-MiMOSA has on sustainment.

2Note that more even maintenance events over a shorter time period was the intended goal of
CBM-MiMOSA, but that the degree by which the maintenance events are accelerated my overturn
any benefit gained from reducing the stochastically occurring maintenance events.

198

5.5.2 Maintenance Resource Study

The decision maker would like to determine the impact of the maintenance scheduling

rules of CBM-MiMOSA on the performance of sustainment to see if additional main-

tenance resources are required to support the new maintenance paradigm. Since CBM

is the expected maintenance strategy under the Air Force’s paradigm shift, and since

CBM-MiMOSA is an attempt to modify the behavior of CBM, the decision maker

will compare the two paradigms to see what changes in AO and RO occur under the

altered CBM logic. To begin to tell the story of how these maintenance paradigms

compare with each other as modeled, a single aggregated number was pulled from

the simulation which collected data either every simulation day or every time a spe-

cific event occurred, with ten repetitions of Sustain-ME being run for each of the

experimental settings. This single representative number first takes the average for

a given repeated run of the metric over the simulation time. It next averages these

averages to determine a broad approximation for the effect of these settings. The full

simulation data contains much more information and will be presented later, but the

aggregate allows a quick comparison between the different maintenance approaches.

Figures 104 through 106 show specific aggregated parameters for each of the models,

where the labels along the x-axis correspond to the different metrics. The y-axis gives

the average of the average values for that metric, and where there are error bars these

show the full range of the time-averages from the ten repetitions. Finally, the colors

in the legend correspond to the two different models.

Figure 104 reveals that both operational availability and operational reliability are

higher for CBM-MiMOSA in isolation. However, the range bars show that there is a

great deal of overlap between the observed time averaged operational availabilities of

the two, suggesting that on any two randomly selected datasets for AO and RO may

show that either of the paradigms has the highest operational availability. However,

the most significant goal for CBM-MiMOSA was to reduce the variability of the

199

Figure 104: Average AO and RO for two maintenance paradigms

Figure 105: Average maintenance interval for two maintenance paradigms

200

Figure 106: Average mission aborts and unflown missions for two maintenance
paradigms

operational availability, not to necessarily increase the average. At the moment,

Figure 104 suggests that this goal has not been achieved. Further tests will determine

whether there is a region of operations or PHM detection lead times where this would

begin to be satisfied. Figure 104 also shows that, despite occasionally having an Ao

as low as 50%, the optimization maintenance method manages to keep an average

operational reliability above 80%.

Figure 105 shows first of all that the distribution around the maintenance interval

length is highly skewed for each of the maintenance paradigms due to fact that the

maintenance interval is naturally bounded by zero. The high variability for both

paradigms is due to the fact that, at 70% AO, there are large periods of time with

no maintenance events due to the wait for parts. However, both the mean and the

total range are lower for CBM-MiMOSA, confirming that this method is at least

successful in improving the evenness of maintenance visits. However, with a fairly

large standard deviation even still, it would be desirable to improve this value even

more, perhaps for different PHM detection lead times.

201

Figure 106 shows the relative frequency of missions which are unflown due to

aborts (where parts fail during the mission) and missions which are unflown due to

aircraft being unavailable. The number of aborted missions decreases from ALIS

enabled maintenance to schedule optimized maintenance. It is not initially clear why

there would be a difference in mission aborts between CBM and the optimized CBM

approach. On the surface, these two methods have the same chance of seeing parts

fail which are not detected in time to repair early. The true reason for this is more

interesting, and will be explored in Section 5.7.1.

One further observation is relevant from Figure 106, and this is that the number

of unflown missions increases between the CBM maintenance paradigm and CBM-

MiMOSA. The more interesting fact is shown in Figure 107, that the total number

of missions not flown during sustainment is greater for the optimized maintenance

version. This shows that the optimization method actually reduces some of the benefit

of the PHM for these particular settings. To explain why this is the case, we return

again to the maintenance visits.

Figure 107: Average mission aborts and unflown missions for two maintenance
paradigms

202

In Figure 105, only the interval between adjacent maintenance visits was of inter-

est. However, the number of maintenance visits tells a bigger story: over the same

simulation period and across ten repeated runs, Sustain-ME under optimized main-

tenance consistently had more maintenance visits, averaging 1164 visits compared to

CBM-MiMOSA’s 830, or 30% more. As mentioned previously, this occurs because

the optimization method accelerates the schedule of maintenance events, replacing

parts early. Over time, the missing part life builds into a greater number of parts

replaced, which in turn requires more maintenance events. Thus the larger number

of unflown missions due to unavailable aircraft for CBM-MiMOSA: aircraft were less

frequently available because they were being maintained.

Another way to show this is to look at the percent of time spent in different

states for each of the models. These categories are really just subcategories of the

greater classifications “uptime” and “downtime” which are used to compute opera-

tional availability. The two “uptime” categories are available (meaning able to fly a

mission and waiting for one) and flying. The three “downtime” categories are broken

awaiting repair, broken awaiting parts, and broken and being repaired. Broken await-

ing repair is also commonly referred to as non mission capable due to maintenance,

and broken awaiting parts is commonly referred to as non mission capable due to

supply[69]. The military distinguishes between these categories because they imply

very different solutions when AO is low, so it is helpful to track the time spent in each

state separately.

Figure 108 shows the time spent in each category across ten repetitions for the

PHM and optimized versions of Sustain-ME. The y-axis shows the percent of time

spent in each of the five states on the x-axis. The error bars again show the range of

values that the average took on over the ten repetitions. Figure 108 reiterates that

the optimized version of Sustain-ME is available less frequently, but interestingly the

percent of time spent flying over this period is barely lower. This does not mean

203

that the percentage is statistically insignificant, as the percentage itself is small and

a small difference might still amount to a noticeably different amount of time spent

flying between the two models. However, it does indicate that most of the operational

availability reduction for CBM-MiMOSA can be attributed to lost time available, i.e.

sitting around waiting for a mission, as opposed to actually flying missions.

Figure 108 also shows that this extra time spent as non mission capable can be

attributed to the broken awaiting repair and broken being repaired categories; broken

awaiting parts is unaffected. This indicates that aircraft under CBM-MiMOSA are

more often present in maintenance, but that when they are there parts are on hand to

fix them at the same rate as for the CBM version of Sustain-ME. This can be believed

since it was one of the core ideas to support the idea of maintenance scheduling

optimization: when parts are regularly utilized they are also regularly resupplied.

Figure 108: Percent of time spent in different states

To conclude this intial investigation into the relative behavior of the two models,

the CBM paradigm alone outperforms CBM-MiMOSA. Due to the greater number of

maintenance events required to even out the maintenance visits, CBM-MiMOSA was

never able to overcome the disadvantages it introduced through further improvements,

204

except for the marginal case of a low PHM detection lead time. If the missions being

flown by the two models were the same, the drop in AO might be acceptable, but in

this case both metrics suffer and this suggests that it might be worthwhile to infuse

more maintenance resources into the optimized version of Sustain-ME to help reduce

the time spent waiting for maintenance. However, if the additional resources have

the same impact on the CBM paradigm as they do on the CBM-MiMOSA paradigm,

this would suggest that one might as well invest the resources into CBM. Figures 109

through 111 explore this question.

Figure 109: Average operational availability for three maintenance paradigms and
with additional maintenance resources

From a macro level performance metric perspective, Figures 109 and 110 show that

the additional maintenance facility does indeed improve the optimized maintenance

model where the CBM version stays the same. Both AO and RO are almost idential

for the CBM version after injecting more resources. This suggests that the additional

maintenance visits cause a degradation in the optimization version which can be offset

by investing in slightly more resources. The caveat of doing so is that the savings

or benefit provided by the method must exceed the additional resources required to

205

Figure 110: Average operational reliability for three maintenance paradigms and
with additional maintenance resources

Figure 111: Average unflown missions for three maintenance paradigms and with
additional maintenance resources

206

support it, but this should be assessed after the fact rather than prematurely imposing

a penalty on the optimization method such that it never shows benefit.

Figure 111 shows the additional effect of prodivding more maintenance resources:

both versions of maintenance have fewer missions which are unflown due to no aircraft

being available, since the additional maintenance facility makes it less likely that

aircraft spend downtime waiting for a facility to become available. The aircraft which

are processed sooner can fly additional missions. However, it is important to note that

the impact is once again greater for the optimized maintenance paradigm, indicating

that the resource injection benefits one more than the other.

The decision maker can now justify why CBM-MiMOSA should be given slightly

more maintenance resources than the baseline methods. At this point she is ready to

define experiments to perform the main study about the three maintenance paradigms.

5.6 Step 5: Define Experiments

The use case methodology’s fifth step is to define the experiments that will be used

to perform the study, and to determine the number of repetitions needed to capture

an accurate picture of sustainment. Due to the stochastic nature of sustainment, one

data point from a combination of parameters will usually not be enough to determine

the true behavior. In this case, the decision maker is interested in determining the

PHM parameters for which different maintenance paradigms perform best, and in the

initial inventory investment required to achieve 70% AO for each paradigm. Therefore

the first experiment will vary Sustain-ME’s PHM parameter, detection lead time, over

a reasonable range of values from 70% to 95% of part life to see how the behavior of the

two CBM-based maintenance paradigms changes. Both CBM-based model paradigms

will be given the same initial inventory investment so the two are comparable. For this

experiment, the traditional reactive maintenance paradigm is not included because

it does not use PHM information. Recall that the detection time defines the center

207

of the detection distribution, which translates into the amount of warning time with

which the failure of a part can be detected before it needs to be replaced. Both CBM

paradigms ought to become less effective as the detection time is decreased, because

the amount of time available to react to upcoming maintenance events is reduced.

However, quantifying this should provide useful information to real world engineers

in creating real PHM systems.

The second experiment will vary Sustain-ME’s initial inventory investment for

all three maintenance paradigms to try to match a time averaged AO value of 70%

and compare the three inventory levels to see which maintenance paradigm is able to

most efficiently achieve the requirement. This will be done for the 95% value of PHM

detection lead time, which is expected to be a somewhat realistic value. In this case

the experimental parameters are not known, since it is the goal (70% AO) that is set.

However, the initial inventory investment values are not expected to be extremely

variable between the three paradigms.

For both experiments, the main metrics are AO, RO, and possibly inventory lev-

els. However, other parameters from within the sustainment process may also need

to be examined and compared to provide additional insight into the processes occur-

ring. In this way a true picture of the effects of the three maintenance paradigms

can be developed, rather than a superficial understanding based only on high level

parameters.

The final element the decision maker must choose before performing the ex-

periments is the number of repetitions required to capture the stochasticity within

Sustain-ME. In this case, an experiment was done to determine the behavior of the

mean over all repetitions as additional repetitions are added. Figure 112 shows how

the mean has essentially stabilized after four repetitions, but that after nine a high

degree of confidence in the mean can be held. As a result, ten was chosen as a round

208

number that should provide sufficient coverage of the stochasticity. This is addition-

ally expected to be a sufficient number of repetitions because the test was performed

at the most stochastic region, with inventory close to the value required to achieve

70% AO.

Figure 112: Convergence of AO repetition average vs. number of repetitions

Having defined the experiments necessary for a comparison study of the three

maintenance paradigms, the decision maker can now perform those experiments and

analyze the results.

5.7 Step 6: Analyze Results

The use case methodology’s sixth step is to perform the experiments defined in Step 5

and analyze the results. In this case, the two experiments will vary the PHM detection

lead time for constant initial inventory investment (Section 5.7.1) and will vary the

initial inventory investment for constant PHM detection lead time (Section 5.8). The

designer will analyze the results of both experiments to determine if any maintenance

paradigm clearly outperforms the others, and if so under what conditions.

209

5.7.1 PHM Detection Lead Time Study

As was stated in Chapter 3, the detection time parameter of the prognosic health man-

agement is expected to affect the behavior of the two CBM maintenance paradigms.

For longer detection times, these paradigms should have more ability to react to up-

coming maintenance events, as well as having less chance of detecting failure so late

that a mission must be aborted. While the CBM maintenance paradigm has only

one option for reacting to upcoming failures (it replaces the part on the last mission

before failure will occur), CBM-MiMOSA can maintain the aircraft earlier if the op-

timizer suggests this would lead to a better solution to the objectives. This suggests

that CBM-MiMOSA should see even greater improvement than the CBM paradigm

for long PHM detection lead times. However, this was not found to be the case.

Figure 113 shows that CBM-MiMOSA demonstrably improved as the detection time

decreased (i.e. occurred at a greater percent of the part life), where the results for

traditional CBM were less clear but if anything exhibited a downward trend in aver-

age and an increase in variability. Figure 114 shows that, though the AO grows for

CBM-MiMOSA as detection time decreases, meaning that the aircraft spends more

time available, the RO peaks at 80% and shows lower variability at 90%, suggesting

that CBM-MiMOSA actually performs best at these detection time ranges.

It should be noted that CBM-MiMOSA has a higher AO than the unscheduled

maintenance paradigm at every detection lead time level except the earliest detection

case. This suggests that it is a promising maintenance strategy in this metric, espe-

cially since it outperforms the CBM paradigm for PHM detection times of 90% of

the part life or greater. Given that military aircraft are utilized in such a way as to

make these detection times seem reasonable, CBM-MiMOSA shows merit. However,

Figure 114 shows that, though the AO of CBM-MiMOSA is better at these values, the

RO of CBM is still better. In this case the decision maker would choose the option

that allows them to fly more missions, as opposed to the option that ensures aircraft

210

Figure 113: Effect of PHM detection lead time on operational availability

Figure 114: Effect of PHM detection lead time on operational reliability

211

are more often available to fly missions.

However, observing these results does not provide nearly as much information as

delving into why they occur. As was mentioned in Section 5.5.2, the formulation of

the optimization problem and the need to have a period over which to optimize led

to the fleet’s detectable maintenance actions being scheduled for maintenance within

a few days of their detection, regardless of the amount of part life remaining. This

decision was made because the mean time between failures for the fleet dictates that,

on average, these maintenance events will occur within a few days. However, due to

the degree of variation in when maintenance events occur, forcing the events to be

maintained at the average interval leads to the acceleration of the pace of maintenance.

The acceleration leads to a greater number of maintenance events occurring, which

was expected, but at a much greater pace than was anticipated. On the whole, this

means that when detection times are long, the optimizer’s mandate to repair within

a certain time span leads to unreasonable scheduling of maintenance for parts that

will not need repair for a long time. This works well when the detection time is only

a few missions long, but when it is longer the consequences outweight the benefits.

One point that should be made here is that, in addition to reducing the variability

of AO by scheduling more regular maintenance visits, Section 5.5.2 found that CBM-

MiMOSA observed fewer aborted missions than CBM, even though aborted missions

should have equal likelihood of occurring for the two paradigms. This effect increases

as the detection lead time grows shorter, leading to an increased benefit from CBM-

MiMOSA. The reason this occurs turns out to be interesting and unexpected. At

short PHM detection lead times, it turns out that the only difference between the

two maintenance paradigms is in the way that they select aircraft to fly missions.

The CBM paradigm operates on a strictly first come, first served basis. However,

CBM-MiMOSA uses optimization to select aircraft. When very little warning about

upcoming part failures is available, as is the case for short PHM detection lead times,

212

many of the aircraft of the fleet will not predict failures until the mission on which the

part will fail. Common sense dictates that neither maintenance paradigm would be

able to do anything about this. In the case of CBM only, this is true: these missions

all lead to aborts. In the case of CBM-MiMOSA, it is true to a point. When these

aircraft that do not detect failure early enough are selected to fly missions, the abort

occurs no matter what. However, these aircraft are selected to fly missions less often

for CBM-MiMOSA than CBM.

This would seem to suggest that some information is available to CBM-MiMOSA

that is not available to CBM. However, what is actually occurring is a preference

within the optimization for aircraft that are detecting failures. These are preferred

within the optimization because one of its three goals is to fly the most missions on

aircraft that are predicting failure as these aircraft will soon be repaired, and the

optimization is trying to minimize the part life wasted. The effect this has when the

PHM detection lead time is short is to place a statistical preference on aircraft that

are less likely to have latent failures, because the aircraft that have latent failures

have no predicted failures and are therefore not flown. This somewhat elegant result

represents a suggestion that could be carried into the real world. When true PHM

systems have limited time in which failures may be predicted, one option would be

to prefer to fly aircraft that are predicting failures soon. However, this does not

present a very helpful solution the rest of the time. In this case the decision maker

would probably implement a scheduled maintenance paradigm, but hold repairs when

signals indicate that the aircraft truly has more time to be flown. Alternately, careful

inspection of these parts might be a better option for having reliably performing

aircraft.

213

5.8 Initial Inventory Investment Required

The decision maker’s final and most important task is to evaluate the three mainte-

nance paradigm alternatives to determine which is able to best meet a target value

of 70% AO with the least initial inventory investment. However, as Section 5.2 illus-

trated, AO should not be explored in isolation; knowing the corresponding value of

RO is important in case the experiment yields unexpected results in this dimension.

Table 22 shows AO and RO for ten repetitions when the inventory was dialed for each

to achieve close to 70% AO. The inventories required to achieve 70% AO for each are

shown in the last row of Table 22, which shows that across ten repetitions, none of

the models were able to exactly match the target AO level. Though the three models

have slightly different AO results, this is not due to any being inherently “better”

than the others. In this case, it is due to the variation between different repetitions,

making it hard to exactly match 70% AO. This is clear from the standard deviation

in the AO average between the ten repetitions.

Table 22: Average across ten repetitions of high level metrics

Unscheduled ALIS Optimization
Average AO 0.597 0.650 0.676
StDev AO 0.0631 0.130 0.0760
Min AO 0.490 0.501 0.539
Max AO 0.706 0.848 0.780
Average RO 0.836 0.889 0.832
StDev RO 0.0418 0.0598 0.0190
Min RO 0.764 0.7925 0.791
Max RO 0.912 0.964 0.857
Inventory 75, 10 73, 10 70, 9

In terms of the variability of metrics, CBM-MiMOSA has a higher standard de-

viation across the average operational availabilities and larger range of average op-

erational availabilities than the reactive maintenance paradigm. It does have better

standard deviation and range than CBM, indicating that to some extent the goal

of reducing variability from a standard CBM approach succeeded. Due to the fact

214

that CBM is more likely to be used today than reactive maintenance, being able to

reliably reduce the variability in its performance is an important contribution. Given

that CBM-MiMOSA is a first attempt at challenging the assumptions underlying

CBM, it is likely that another method for rescheduling maintenance events to reduce

variability would have even greater success.

Up until now, the metrics for the three maintenance paradigms have been exam-

ined across ten reptitions of Sustain-ME, using the aggregate statistics of mean and

standard deviation. Another way to examine the behavior of the three paradigms is to

look at the variability present within a repetition, as the single repetition represents

what will be experienced in reality. Figures 115 through 117 shows the operational

availability for the reactive maintenance, CBM, and CBM-MiMOSA paradigms re-

spectively. The variability over time is significant at this inventory level for all three

paradigms. Even Figure 118, which shows the ten-day rolling average of the oper-

ational availability possesses a high degree of variability over time. This indicates

that at the operating conditions specified in the Air Force paradigm shift, there is

a concerning amount of variability associated with the desired CBM approach, and

the modified approach proposed in this thesis does not allow for improvement in this

regard. One benefit that was obtained was a slight reduction in inventory at this AO

level, but at the cost of uncertainty it may not be worth the savings.

215

Figure 115: Ten repetitions of operational availability – reactive maintenance

Figure 116: Ten repetitions of operational availability – CBM paradigm

216

Figure 117: Ten repetitions of operational availability – CBM-MiMOSA

Figure 118: Ten repetitions of operational availability – CBM-MiMOSA

217

5.9 Use Case Conclusions

The decision maker has now had the opportunity to use Sustain-ME to explore the

behavior of some maintenance strategy alternatives. In doing so, she learned a great

deal about the potential behavior of sustainment under the Air Force paradigm shift

and observed new phenomenon using Sustain-ME that could not have been observed

before. First, she observed that the combination of condition based maintenance (un-

der the assumption of just in time maintenance) and minimal inventory is likely to

yield nonstationary behavior to an undesirable degree. She observed that one solu-

tion, named CBM-MiMOSA, shows promise but has a concerning quality of unduly

increasing maintenance events and repairing extremely early under some conditions.

Those conditions were determined to be when the PHM detection lead time is ear-

lier than about 90% of part life, but after this region CBM-MiMOSA performed

well, in some aspects better even than CBM. CBM, however, was found to be the

best strategy among the three tested under the assumptions specific to this study,

in that it generally resulted in the highest percentage of missions flown regardless of

the value of other parameters. However, CBM-MiMOSA showed promise and it is

likely that if another optimization scheme that requires fewer assumptions were to

be implemented, it might surpass CBM in a more definitive manner. It is important

to remember, though, that all this information is in light of the fact that, at the

inventory conditions and AO level desired, the behavior of sustainment is undesirably

variable. This means that beyond any decisions made about how best to implement

CBM, some decision is likely to be necessary about how to reduce operational vari-

ability. Options that seem clear from the study done in this thesis are to increase

inventory and target a higher level of AO, to use some hybrid of a CBM and scheduled

maintenance approach, or to invest significant resources into reducing the variability

of maintenance times experienced with the standard CBM paradigm. These are all

studies that can be done using Sustain-ME, and the decision maker at this point

218

would most likely report on the results of the current study, discuss future possible

avenues, and do further analysis to refine the sustainment concept going forward.

To close the loop of the use case methodology, Figure 119 shows how the steps

of the methodology have been satisfied with different experiments and other work

throughout this thesis.

Figure 119: Mapping use case methodology to thesis work

219

CHAPTER VI

CONCLUSION

This thesis has introduced a problem concerning a conflict of goals for Air Force

sustainment contractors. These goals require that exact levels of performance be

supported by contractors, but at minimal inventory. Initial examination of the prob-

lem suggested this would be difficult; potentially impossible. This thesis developed

a modeling environment to determine whether the prediction had any merit, as well

as to more broadly be able to study the sustainment problem. Part of this effort

was to explain how the environment was developed and tested, as well as to openly

acknowledge the assumptions made so that the results can be examined in the proper

context. This was done, and Sustain-ME was demonstrated for a sample problem that

compared three maintenance paradigms: a baseline reactive maintenance paradigm,

a modern condition based maintenance paradigm, and a novel version of the CBM

paradigm that adjusts when maintenance visits are scheduled, CBM-MiMOSA. Sev-

eral aspects of the problem were examined, including the complicated nature of the

metrics used to measure sustainment performance, the stochasticity inherent in each

of the models at medium inventory levels, and the overall effect of the different main-

tenance paradigms. Section 6.1 reviews these findings in more depth, and Section 6.2

discusses the contributions made in this thesis as well as future work that could be

done and future applications of the modeling environment developed.

6.1 Thesis Results Summary

The first “results” of the thesis are actually the set of verification activities performed

in Chapter 4. Though a complete list of these activities will not be shown here, a

represenative set are summarized.

220

1. The generation of sorties was tested by varying the parameters from which the

sortie schedule is defined and examining the missions scheduled. Sorties were

found to generate as expected.

2. The assignment of sorties was tested by varying the number of aircraft in the

fleet. Sorties were found to be assigned as expected.

3. The fleet behavior excluding the supply chain was tested in the following ways:

3.1. The events carried out by each of the aircraft in the fleet over time were

examined and compared against allowable event sequences. The events

were found to conform to alloawble event sequences.

3.2. The frequency of different event sequences was computed and verified.

3.3. The distributions for different sustainment step durations were compared

to histograms of samped values from the simulation and found to show

close agreement.

4. The fleet behavior including the supply chain was tested in the following ways:

4.1. The model with a supply chain was compared at high inventory to the

results of the model with an assumed rapid supply chain that was not

modeled. The two were found to have similar behavior.

4.2. The effect of inventory on the operational availability was tested and found

to increase the operational availability as expected.

4.3. The frequency of different aircraft event sequences was again computed

and verified.

4.4. The events carried out by each of the parts in the inventory over time

were examined and compared against allowable event sequences. These

sequences were found to match the behavior observed.

221

4.5. The number of parts in each state was tracked over time and the total

number was confirmed to remain the same throughout the simulation.

5. The PHM behavior was tested by examining the specific events associated with

the PHM and with PHM repair and found to conform to expectations.

6. The coding of CBM-MiMOSA was tested in the following ways:

6.1. The solutions found by the optimizer were output and examined and found

to yield reasonable values.

6.2. The specific behavior associated with the PHM and CBM-MiMOSA was

tracked over time and found to conform to expectations.

6.3. The event sequences carried out by the fleet’s aircraft were again examined

and verified.

In addition to the verification activities performed in Chapter 4, Chapter 5 used

Sustain-ME to answer a series of questions that were meant as a demonstration of the

capabilities of such a modeling environment. Some of these questions were motivated

by research questions and hypotheses discussed earlier in the thesis; they are listed

here as a reminder.

Research Question 1: Are metrics AO and RO both required to capture the be-

havior of sustainment?

Research Question 1 was to be answered by Hypothesis 1:

Hypothesis 1: The relationship between AO and RO is complex and cannot be

represented by a simple correlation.

222

Hypothesis 2: At the conditions cited in the Air Force sustainment paradigm shift,

where minimal inventory is selected to meet a target value of 70% AO, and where

maintenance is performed based on a condition based maintenance policy, stochastic-

ity will dominate the performance of sustainment.

Hypothesis 2 was posed by itself as a prediction about the consequences of the

Air Force sustainment paradigm shift.

Research Question 3 Does CBM-MiMOSA improve the maintenance visit distri-

bution over time?

Research Question 3 was answered through experiments, but not as a test of a

specific hypothesis.

The research questions and hypotheses listed here are the result of disparate as-

pects of sustainment and maintenance explored throughout the thesis. The answers

to these questions and tests of these hypotheses are summarized. Along with these

results are summarized the remainder of the results for this thesis, which were de-

rived from the need to demonstrate how a sustainment decision making process can

be facilitated by Sustain-ME.

1. A use case methodology was defined for using Sustain-ME to answer sustain-

ment questions.

2. In step 1 of the methodology the metric definition from Chapter 1 was referenced

and Hypothesis 1 was tested.

2.1. Hypothesis 1 was supported by Sustain-ME.

2.2. Both AO and RO were found to be necessary metrics for defining sustain-

ment performance.

223

3. In step 2 of the methodology the decisions made in creating Sustain-ME were

summarized and Hypothesis 2 was tested.

3.1. Hypothesis 2 was supported by Sustain-ME.

3.2. High stochasticity was found to occur under the conditions associated with

the Air Force sustainment paradigm shift.

4. In step 3 of the methodology the sustainment strategies determined for testing

Sustain-ME were summarized.

5. In step 4 of the methodology the weightings associated with CBM-MiMOSA’s

objective function OEC were tested and the impact of a different maintenance

strategy on the maintenance resources required was examined.

5.1. The weightings were not found to significantly affect the optimization so-

lution.

5.2. Research Question 3 was posed and answered: CBM-MiMOSA does im-

prove the distribution of maintenance events throughout time.

5.3. CBM-MiMOSA was found to need more maintenance resources than CBM

due to the acceleration in maintenance events due to the optimizer.

6. In step 5 of the methodology the rate of convergence of the mean for experimen-

tal data was tested and found to be fairly converged after four, and definitely

conveged after ten repetitions.

7. In step 6 of the methodology the results of interest defined in Step 1 of the

methodology were analyzed.

7.1. The effect of the PHM detection lead time was explored for both CBM

maintenance paradigms with the same inventory level. Decreasing PHM

224

detection lead time was found to improve the performance of CBM-MiMOSA

but degrade the performance of CBM.

7.2. The ability of each maintenance paradigm to meet a target value of 70%

AO was tested and found to be lacking. However, under the later PHM

detection lead time CBM-MiMOSA was able to achieve the same variable

performance with less inventory than the other two paradigms.

8. The end result of all these results was that Sustain-ME was found to be an

effective way of performing sustainment trade-offs that provided a great deal of

information about sustainment decisions to decision makers.

6.2 Contributions and Future Work

The overarching goal of this thesis was to create a modeling environment, Sustain-

ME, that allows different potential sustainment decisions to be traded off based on

a quantitative modeling environment. Just as important, Sustain-ME was created to

be transparent so that future studies can input different assumed values and logics

to match other questions about the sustainment process. Because Sustain-ME was

created because of the complexities associated with a new Air Force sustainment

paradigm shift, it was also demonstrated for maintenance paradigms related to this

paradigm shift. In creating Sustain-ME and demonstrating it, several sub-goals were

achieved over the course of the thesis and each represents a contribution by itself.

1. A sustainment trade-off modeling environment, Sustain-ME has been developed

for studying different sustainment decisions with a common platform.

2. Sustain-ME’s behavior has been verified against expected results.

3. Sustain-ME’s code has been provided and the process for developing it described

so that it can be used and adapted for other problems.

225

4. Sustain-ME’s capabilities have been demonstrated for a use case where three dif-

ferent maintenance paradigms were compared: a reactive maintenance paradigm,

a modern CBM paradigm, and CBM-MiMOSA.

5. The optimization problem used to perform CBM-MiMOSA has been mathe-

matically defined.

6. A use case methodology was developed for using Sustain-ME to perform sus-

tainment trade studies such as those that follow.

7. The necessity of examining multipe high level sustainment metrics when de-

scribing the performance of sustainment has been demonstrated.

8. The nonstationarity associated with meeting 70% AO under stochastic mainte-

nance paradigms has been demonstrated.

9. The performance of CBM-MiMOSA has been explored and observations made

that would help to further develop this paradigm as a reasonable option for

performing maintenance.

10. The effect of PHM detection lead time has been demonstrated for the two

CBM-based maintenance paradigms.

11. The problems with achieving exact performance levels at low inventory for

a stochastic sustainment process have been shown for all three maintenance

paradigms.

The future work associated with this thesis can be split into two categories: the

work that arises due to the specific use case used to test Sustain-ME, and the work

associated with the model itself. For the former, the primary target for future im-

provement is CBM-MiMOSA, which showed promise but would require work to be

made into a truly viable maintenance option. The main limitation of the method was

226

based on the specific optimization problem developed to characterize its goals and con-

straints, and a first step for demonstrating further improvement would be to expand

the scope of the problem, potentially with a stochastic optimizer as opposed to a linear

program. Future steps might examine other ways to reduce stochasticity of mainte-

nance times without going straight to the option of evenly distributing maintenance

events. It would also be interesting to see either version of maintenance optimization

compared against one additional baseline: purely scheduled maintenance.

For the latter category of future work related to the use of Sustain-ME in other con-

texts, the applications are many. Other maintenance paradigms that have been men-

tioned in this thesis include maintenance-free operating periods, zero maintenance,

and phase maintenance, and studies that compare these methods to the three that

have been used here would be useful. Outside of a maintenance context, Sustain-ME

could be used to test different supply chain policies from the perspective of a vendor

who has been contracted to support the sustainment process. As part of this work,

a cost component of Sustain-ME could be helpful in determining the relative merits

of different options. Finally, Sustain-ME could be used from an operational context

to examine different strategies for fielding aircraft on missions. As this thesis demon-

strated, there is potential improvement that is not obvious on the surface associated

with different aircraft assignment rules. In general this is true of the sustainment

process.

6.3 Final Thoughts

This thesis has described the creation, verification and demonstration of a new mod-

eling environment built to facilitate sustainment decision making: Sustain-ME. The

paradigm shift that motivated the creation of Sustain-ME has been described, and

hypotheses based on this information were stated. Background information about the

sustainment process and Sustain-ME development have been provided, the means by

227

which the hypotheses would be tested were laid out. The reasoning behind a novel

maintenance paradigm based on the principles of condition based maintenance, CBM-

MiMOSA, was explored; a mathematical function was created to quantify the success

CBM-MiMOSA. Sustain-ME was then developed and verified, and it was used to test

the hypotheses introduced in the beginning of the thesis. Finally, the way in which

Sustain-ME can be used to study different sustainment decisions was demonstrated

with a use case based on three maintenance paradigms. These paradigms were stud-

ied and found to be valuable under different conditions. Finally, Appendix A will

provide the code so that anyone can use Sustain-ME to study sustainment behavior

of interest.

228

APPENDIX A

SUSTAIN-ME CODE

The Sustain-ME modeling environment was coded using Python version 2.7, SimPy

version 2.2, and Gurobi version 6.0.0. The code is presented in its entirety below, and

annotated to give clarity about the purpose of the different coded modules. These

modules are those listed in Figure 22. The complete version of the code with all

modules implemented is shown in Figure 120; this figure will be referenced throughout

the code.

Figure 120: Sustain-ME modules

229

The lines of code below provide Python with instructions for accessing libraries

which will be referenced throughout the remainder of the code. These libraries are

freely available and used for doing advanced mathematical computations, generating

pseudo-random numbers, processing and outputting data, and performing other com-

plex functions. The most important two libraries used in this thesis were mentioned

in the introduction of this appendix, SimPy and gurobi. SimPy is a library that

allows discrete event simulations to be built from standard functions, and gurobi is a

mixed integer linear program solver.

-------------#

#- Sustain -ME -#

-------------#

import sys

from SimPy.Simulation import *

import random

import numpy

import math

import csv

from gurobipy import *

The lines of code below establish the individual files to which data will be output

throughout the simulation. These data files contain different types of verification

data that was used throughtout Chapter 4. Some also contain output data that was

used to perform the studies in Chapter 5.

ac_event_file = open(’ACEventVerification.csv’, ’w’)

part_event_file = open(’PartEventVerification.csv’, ’w’)

phm_event_file = open(’PHMEventVerification.csv’, ’w’)

optimization_file = open(’OptimizationInfo.csv’, ’w’)

mis_prep_file = open(’MisPrepInfo.csv’, ’w’)

ao_file = open(’AoVerification.csv’, ’w’)

ro_file = open(’RoVerification.csv’, ’w’)

all_file = open(’all.csv’, ’w’)

part_file = open(’PartVerification.csv’, ’w’)

test_file = open(’testfile.csv’, ’w’)

fcfile = open(’FCVerification.csv’, ’w’)

gcfile = open(’GCVerification.csv’, ’w’)

ccfile = open(’CCVerification.csv’, ’w’)

230

rwfile = open(’RWVerification.csv’, ’w’)

mffile = open(’MFVerification.csv’, ’w’)

msfile = open(’MSVerification.csv’, ’w’)

The lines of code below establish the specific decision alternatives that will be run

in Sustain-ME. The specific options shown below, PHM=0 or PHM=1 and Main-

tenanceOptimizer=0 or MaintenanceOptimizer=1 reference the three maintenance

paradigms that were modeled in Chapter 5. The reactive maintenance paradigm is

run when PHM=0 and MaintenanceOptimizer=0; the traditional CBM paradigm is

run when PHM=1 and MaintenanceOptimizer=0; and CBM-MiMOSA is run when

PHM=1 and MaintenanceOptimizer=1.

#All time steps are in hours

class ModelVersion:

#The following contains toggles for running different versions

of the model

##PHM determines whether PHM information is used to determine

when to fix aircraft and order parts

##PHM = 0 for no PHM , PHM = 1 for PHM

PHM = 1

##MaintenanceOptimizer = 0 for no optimization , 1 for

optimization

MaintenanceOptimizer = 1

The lines of code below define the assumptions made in this version of Sustain-ME,

justified in Chapter 2 and summarized in Section 4.2. This is where changes should

be made to account for different distributions around the duration of the different

steps of sustainment, or where different sustainment steps should be defined. This is

also where alternate flying and maintenance schedules should be defined, and where

different rules for daily aircraft mission limits and rollover missions should be defined.

class Assumption:

#The following designates the time distribution assumptions for

different model steps

##Mission Scheduling

step_mis_sched_min = .5

231

step_mis_sched_mod = .75

step_mis_sched_max = 1.

##Mission Preparation

Preflight

step_mis_prep_pf_min = .8333

step_mis_prep_pf_mod = 1.

step_mis_prep_pf_max = 1.2

Refuel

step_mis_prep_rf_min = .3333

step_mis_prep_rf_mod = .3667

step_mis_prep_rf_max = .4167

###Load Weapons

step_mis_prep_lw_min = .75

step_mis_prep_lw_mod = 1.

step_mis_prep_lw_max = 1.25

###Taxi

step_mis_prep_tx_min = .1167

step_mis_prep_tx_mod = .1667

step_mis_prep_tx_max = .2

Takeoff

step_mis_prep_to_min = .0333

step_mis_prep_to_mod = 0.05

step_mis_prep_to_max = .0667

##Sortie Duration

step_mis_fly_min = 1.3

step_mis_fly_mod = 1.5

step_mis_fly_max = 2.

##Mission Recovery

Landing

step_mis_rec_land_min = .2333

step_mis_rec_land_mod = .25

step_mis_rec_land_max = .2667

Parking and Recovery

step_mis_rec_park_min = .0833

step_mis_rec_park_mod = .1167

step_mis_rec_park_max = .15

##Operational Level Repair

Servicing

step_OL_rep_serv_min = .75

step_OL_rep_serv_mod = 1.

step_OL_rep_serv_max = 1.25

Document Corrective Actions

step_OL_rep_doc_min = 0.0833

step_OL_rep_doc_mod = 0.1667

step_OL_rep_doc_max = .25

Local Inventory Wait Time

step_OL_rep_inv_min = 0.5

step_OL_rep_inv_mod = 2.

step_OL_rep_inv_max = 2.5

Inventory Paperwork

step_OL_rep_pap_min = 0.0833

step_OL_rep_pap_mod = 0.1667

step_OL_rep_pap_max = 0.25

##Shipping

232

Depot to base

step_ship_dep_base_min = 2.4

step_ship_dep_base_mod = 7.2

step_ship_dep_base_max = 12.

###Base to depot

step_ship_base_dep_min = 6.

step_ship_base_dep_max = 12.

##Depot Repair

step_D_rep_min = 1666.56

step_D_rep_mod = 2083.2

step_D_rep_max = 2499.84

#The following designates other assumptions made in this code

##Flying hours are 7am to 7pm

begin_sorties = 7

end_sorties = 19

##Maintenance hours are 24/7

begin_repair = 0

end_repair = 24

repair_sched = [1, 1, 1, 1, 1, 1, 1]

##Daily sortie number limit for any given aircraft is 1

daily_limit = 1

##Backlog tracking for 1 week only - unflown missions are rolled

over but expire after 7 days

backlog = 7

The following lines of code are where several simple model parameters may be changed

based on the specific experiment being done with Sustain-ME. The time period over

which simulations are run, the operational tempo, the surge profile, and several air-

craft definition parameters are contained here. The aircraft parameters are defined

for each aggregated part category, so this is where more detailed information could be

provided based on the actual aircraft reliability information. In this case, the aircraft

is defined by its part reliabilities, the effectiveness of its PHM (relevant only when

the PHM=1 option is selected), as well as the distributions associated with the re-

moval and installation of parts. This is also where the fleet size and initial inventory

investment are defined.

class Input:

#The following designates the duration of the model and the warm

-up period

sim_time = 8760.

warm_up = 0.

233

#The following designates the op tempo (weekly) and surge

profile (entire simulation)

##Op Tempo: Number of missions to be flown by the fleet each day

(mission duration is defined in Assumptions)

OT = [10, 10, 10, 10, 10, 10, 10]

##Surge Profile: Multiplier on missions to be flown by the fleet

over different time intervals

surge_level = [1.]

surge_time = [0., sim_time]

#The following designates the part group inputs - each entry in

these lists are for a different part group

##Mean Flight Hours Between Repairs: Mean time between events

requiring a part to resolve

MFHBR = [25., 25., 25., 25., 300., 300.]

lambda_sum = 0

for I in range(len(MFHBR)):

lambda_sum += 1/MFHBR[I]

aircraft_MFHBR = 1/ lambda_sum

#fleet_MTBR = aircraft_MFHBR /(Assumption.step_mis_fly_max*sum(OT

)/(7*24.))

fleet_MTBR = 9.6

##Removal time: Distribution of time required to remove each

part group (dist type may change)

Partially based on literature review

Rem_min = [.75, .75, .75, .75, .75, .75]

Rem_mod = [1., 1., 1., 1., 1., 1.]

Rem_max = [1.25, 1.25, 1.25, 1.25, 1.25, 1.25]

##Install time: Distribution of time required to install each

part group (dist type may change)

Partially based on literature review

Ins_min = [1., 1., 1., 1., 1., 1.]

Ins_mod = [1.5, 1.5, 1.5, 1.5, 1.5, 1.5]

Ins_max = [2., 2., 2., 2., 2., 2.]

##Global Repair Turnaround Time: Distribution of time required

to overhaul the part and return it to ’new’ status (dist type

may change)

##Cost: Refers to part’s value , which is relevant to the number

of parts ’wasted ’ by repairing before a part has been fully

used

#cost = [1.]

cost = [1., 12., 1., 12., 1., 12.]

##PHM Detection Lead Time: Distribution of detection time for

each part as percentage of part life

lead_time_mean = [.80, .80, .80, .80, .80, .80]

lead_time_std = [.05, .05, .05, .05, .05, .05]

#The following designates the fleet variables

##Fleet Size: Number of aircraft in the fleet

num_ac = 30

#The following designates the calibration variables

##Spare Inventory: Number of spares available initially

num_spares = [75, 75, 75, 75, 10, 10]

234

The following lines of code define several output paramters that are collected through-

out the model. These are the number of broken parts, the number of parts used, the

part life wasted (relevant when the PHM=1 option is selected), and the counts for

negative and missed prediction times which collect statistics about the number of

truncated PHM detection times.

class Output:

##None yet - probably need daily as well as overall AO,

operational reliability , and inventory used

num_broken = [0]* len(Input.MFHBR)

num_used = [0]* len(Input.MFHBR)

part_life_wasted = [0]* len(Input.MFHBR)

negative_prediction_times = [0]* len(Input.MFHBR)

missed_prediction_times = [0]* len(Input.MFHBR)

The following module is denoted by the number ‘10’ in Figure 120. This module is a

function that takes in the current state of the fleet, passed by the variable ACDict,

and runs a mixed integer linear program as defined in Chapter 3. This program is

then output to tell the Fleet module when to schedule maintenance for the fleet’s

aircraft and to tell the SortieGen module which aircraft to fly on what day. This

is where different logic could be implemented to create another novel maintenance

strategy, such as a modification of CBM-MiMOSA to use a stochastic optimizer.

def MILP(ACDict):

#Determine when the last maintenance event was flown

T_initial = Fleet.last_ME - now()

if ((now() -7)/24)%7 >=0 and ((now() -7)/24)%7 < 1:

OT_start = 0

elif ((now() -7)/24)%7 >=1 and ((now() -7)/24)%7 < 2:

OT_start = 1

elif ((now() -7)/24)%7 >=2 and ((now() -7)/24)%7 < 3:

OT_start = 2

elif ((now() -7)/24)%7 >=3 and ((now() -7)/24)%7 < 4:

OT_start = 3

elif ((now() -7)/24)%7 >=4 and ((now() -7)/24)%7 < 5:

OT_start = 4

elif ((now() -7)/24)%7 >=5 and ((now() -7)/24)%7 < 6:

235

OT_start = 5

elif ((now() -7)/24)%7 >=6 or ((now() -7)/24)%7 < 0:

OT_start = 6

#Sort ACDict and order aircraft by predicting failure soonest to

latest

ACDict_sorted = sorted(ACDict ,key=ACDict.get)

ac_order = [-1]*(len(ACDict)/len(Input.MFHBR))

found = [0]*(len(ACDict)/len(Input.MFHBR))

counter = 0

min_failure_time = {}

for I in range(len(ACDict)/len(Input.MFHBR)):

while ac_order[I] < 0:

if found[ACDict_sorted[I+counter][0]] == 0:

ac_order[I] = ACDict_sorted[I+counter][0]

found[ACDict_sorted[I+counter][0]] = 1

min_failure_time[ACDict_sorted[I+counter][0]] =

ACDict[ACDict_sorted[I+counter][0], ACDict_sorted[

I+counter][1]]

else:

counter += 1

for I in range(len(ac_order)):

if min_failure_time[I] == 0:

temp = ac_order.pop(ac_order.index(I))

ac_order.append(temp)

num_predictingfailure = 0

num_available = 0

for I in range(len(ACDict)/len(Input.MFHBR)):

if min_failure_time[I] == 100000:

num_available += 1

elif min_failure_time[I] > 0:

num_predictingfailure += 1

aircraft_to_schedule = num_available + num_predictingfailure

time_period = int(math.ceil(Input.fleet_MTBR*

num_predictingfailure /24.))

RD = {}

for I in range(num_predictingfailure):

RD[I] = int(math.ceil((I+1)*Input.fleet_MTBR /24))

theoretical_best = 0

for I in range(num_predictingfailure):

if min_failure_time[I] <> 100000:

theoretical_best += max(min_failure_time[I]%2,

min_failure_time[I]-time_period *2)

Create the model

so = Model("Schedule_Maintenance_Optimization")

so.setParam("OutputFlag" ,0)

Create variables

missions = {}

for I in range(aircraft_to_schedule):

if I+1 <= num_predictingfailure:

for J in range(RD[I]+1):

missions[I,J] = so.addVar(vtype=GRB.BINARY ,name=’m_’

+str(I)+’_’+str(J))

else:

for J in range(max(time_period ,1)):

236

missions[I,J] = so.addVar(vtype=GRB.BINARY ,name=’m_’

+str(I)+’_’+str(J))

#Maintenance is only performed for aircraft which are predicting

failure

maintenance_time = {}

for I in range(num_predictingfailure):

maintenance_time[I] = so.addVar(lb =24*(RD[I]-1)+Assumption.

begin_sorties+Assumption.step_mis_fly_max+Daily.

average_PT ,ub=24*RD[I]+ Assumption.begin_sorties+

Assumption.step_mis_fly_max+Daily.average_PT ,vtype=GRB.

CONTINUOUS ,name=’T_’ + str(I))

absolute = {}

for I in range(num_predictingfailure):

absolute[I] = so.addVar(vtype=GRB.CONTINUOUS ,name=’zeta_ ’+

str(I))

obj1 = so.addVar(vtype=GRB.CONTINUOUS ,name=’obj1’)

obj2 = so.addVar(vtype=GRB.CONTINUOUS ,name=’obj2’)

obj3 = so.addVar(vtype=GRB.CONTINUOUS ,name=’obj3’)

Integrate new variables

so.update ()

Set objective

weights = [1, 1, 1]

so.setObjective(weights [0]* obj1+weights [1]*obj2 -weights [2]*obj3 ,

GRB.MINIMIZE)

#Add constraint for defining objectives

#Objective 1

max1 = 0 - T_0 + time_period + (

num_predictingfailure -1)*MTBR

so.addConstr(obj1*max1 -quicksum(absolute[I] for I in range(

num_predictingfailure))==0,’cobj1 ’)

#Objective 2

max2 = 0

for I in range(num_predictingfailure):

max2 += min_failure_time[ac_order[I

]]

so.addConstr(obj2*max2 -quicksum(min_failure_time[ac_order[I]]-

Assumption.step_mis_fly_max*quicksum(missions[I,J] for J in

range(RD[I])) for I in range(num_predictingfailure))==0,’

cobj2’)

#Objective 3

max3 = OT[0]* time_period

rhs = quicksum(quicksum(missions[I,J] for J in range(RD[I])) for

I in range(num_predictingfailure))

rhs += quicksum(quicksum(missions[I+num_predictingfailure ,J] for

J in range(max(time_period ,1))) for I in range(num_available

))

so.addConstr(obj3*max3 -rhs==0,’cobj3’)

#Add constraint for op tempo

for I in range(max(time_period ,1)):

lhs = 0

for J in range(num_predictingfailure):

if RD[J] >= I:

lhs += missions[J,I]

for J in range(num_available):

237

lhs += missions[J+num_predictingfailure ,I]

if I == 0:

so.addConstr(lhs <=sum(SortieGen.sortie_backlog),’c0_’+

str(I))

else:

so.addConstr(lhs <= Input.OT[(OT_start+I)%7],’c0_’+str(I))

#Add constraint for not violating failure time (repair before

part actually breaks)

for I in range(num_predictingfailure):

so.addConstr(quicksum(Assumption.step_mis_fly_max*missions[I

,J] for J in range(RD[I])) <=min_failure_time[ac_order[I

]],’c1_’+str(I))

#Add constraint to enforce absolute value

if num_predictingfailure > 0:

so.addConstr(absolute [0]-(maintenance_time [0]-T_initial -

Input.fleet_MTBR) >=0,’c2.1_0’)

so.addConstr(absolute [0]+(maintenance_time [0]-T_initial -

Input.fleet_MTBR) >=0,’c2.2_0’)

for I in range(num_predictingfailure -1):

so.addConstr(absolute[I+1]-(maintenance_time[I+1]-

maintenance_time[I]-Input.fleet_MTBR) >=0,’c2.1_’+str(I+1)

)

so.addConstr(absolute[I+1]+(maintenance_time[I+1]-

maintenance_time[I]-Input.fleet_MTBR) >=0,’c2.2_’+str(I+1)

)

#Add constraint to capture any aircraft which have already flown

missions today

for I in range(aircraft_to_schedule):

if Fleet.AC[ac_order[I]]. daily_mission == Assumption.

daily_limit:

so.addConstr(missions[I,0]==0 ,’c3_’+str(I))

#Add constraint to capture any aircraft which are currently

unavailable if rerunning the optimization

if SortieGen.MILP_rerun == 1:

for I in range(aircraft_to_schedule):

if Fleet.AC[ac_order[I]] not in Fleet.ACAvailable:

so.addConstr(missions[I,0]==0 ,’c4_’+str(I))

#Add constraint so maintenance times don’t keep moving later and

later

#Run the optimization

so.optimize ()

so.write(’file.lp’)

#Pull out the necessary variables to return

total_missions = 0

schedule = {}

for I in range(num_predictingfailure):

for J in range(RD[I]):

if so.getVarByName(’m_’+str(I)+’_’+str(J)).x <> 0:

total_missions += so.getVarByName(’m_’+str(I)+’_’+

str(J)).x

for I in range(num_available):

for J in range(max(time_period ,1)):

238

if so.getVarByName(’m_’+str(I+num_predictingfailure)+’_’

+str(J)).x <> 0:

total_missions += so.getVarByName(’m_’+str(I+

num_predictingfailure)+’_’+str(J)).x

if total_missions > 0:

for I in range(max(time_period ,1)):

schedule[I] = []

for J in range(aircraft_to_schedule):

try:

if so.getVarByName(’m_’+str(J)+’_’+str(I)).x <>

0:

schedule[I]. append(ac_order[J])

except:

dummy = 0

else:

for I in range(max(time_period ,1)):

schedule[I] = []

repair_times = {}

for I in range(num_predictingfailure):

repair_times[ac_order[I]] = so.getVarByName(’T_’+str(I)).x +

now()

optimization_string = str(now())

for I in ACDict:

optimization_string = optimization_string + ’,’ + str(I) + ’

,’ + str(ACDict[I])

optimization_string = optimization_string + ’,’ + str(OT_start)

for I in schedule:

optimization_string = optimization_string + ’,’ + str(I) + ’

,’ + str(schedule[I])

for I in repair_times:

optimization_string = optimization_string + ’,’ + str(I) + ’

,’ + str(repair_times[I])

for I in min_failure_time:

optimization_string = optimization_string + ’,’ + str(I) + ’

,’ + str(min_failure_time[I])

optimization_file.write(optimization_string + ’\n’)

return schedule , repair_times , min_failure_time

The following module is denoted by the number ‘11’ in Figure 120. This module was

created due to the fact that the MILP module may schedule maintenance for aircraft

on a different day than they are scheduled to fly. Under the old logic, if maintenance

is scheduled for an aircraft on a day it is not scheduled to fly, the aircraft will never

actually be maintained because maintenance is one step in the full aircraft operations

loop which is only initiated once a mission has eneded. This module updates that

logic and allows for the possibility that an aircraft that is available and waiting for

239

a mission may have been scheduled for maintenance, and looks for this to occur. If

it does, the MaintenanceSchedule module reactivates the aircraft specifically so that

it skips the mission steps of the operational loop and proceeds straight to maintenance.

class MaintenanceSchedule(Process):

ID_count = 0

def __init__(self):

Process.__init__(self)

self.ID = MaintenanceSchedule.ID_count

MaintenanceSchedule.ID_count += 1

self.day = 0

def Run(self):

#Checks for scheduled maintenance times on aircraft which

are waiting for missions and reactivates them to go

straight to maintenance

while 1:

if self.ID in Fleet.opt_maint.keys() and Fleet.AC[self.

ID] in Fleet.ACAvailable:

if Fleet.opt_maint[self.ID]%24 < 7:

day = math.floor(Fleet.opt_maint[self.ID]/24.) -

1

else:

day = math.ceil(Fleet.opt_maint[self.ID]/24.) -

1

if now() > 24* day + Daily.average_MT and now() <

24*(day + 1) + 7:

Fleet.AC[self.ID]. fly_mission = 0

Fleet.AC[self.ID]. passivated_for_maintenance = 0

Fleet.ACAvailable.pop(Fleet.ACAvailable.index(

Fleet.AC[self.ID]))

yield hold , self , max(Fleet.opt_maint[self.ID] -

now() ,0)

reactivate(Fleet.AC[self.ID])

ac_event_file.write(str(now()) + ’,AC ’ + str(

self.ID) + ’,UT ,reactivated for maintenance ’

+ ’\n’)

elif Fleet.AC[self.ID]. hold_for_opt_maint == 1 and Fleet

.AC[self.ID] in Fleet.ACAvailable:

Fleet.AC[self.ID]. fly_mission = 0

Fleet.AC[self.ID]. passivated_for_maintenance = 0

Fleet.ACAvailable.pop(Fleet.ACAvailable.index(Fleet.

AC[self.ID]))

yield hold , self , max(Fleet.AC[self.ID].hold_time ,0)

reactivate(Fleet.AC[self.ID])

ac_event_file.write(str(now()) + ’,AC ’ + str(self.

ID) + ’,UT ,reactivated for maintenance ’ + ’\n’)

yield hold , self , 0.1

The following module is denoted by the number ‘12’ in Figure 120. It implements the

240

logic that allows the SortieGen module to become inactive until the following day if

all aircraft that were scheduled have been assigned to missions.

class SortieBegin(Process):

def __init__(self):

Process.__init__(self)

def Run(self):

while 1:

if now()%24 <> Assumption.begin_sorties and now() < 24:

yield hold , self , 1

if now()%24 == Assumption.begin_sorties:

reactivate(SortieGen.SortieGen [0])

elif SortieGen.sortie_aborted > 0 or sum(SortieGen.rerun

) > 0:

reactivate(SortieGen.SortieGen [0])

yield hold , self , 1

The following module is denoted by the number ‘1’ in Figure 120. This is where the

logic for how to assign aicraft to missions is defined. The module checks the simula-

tion time and, if it is during the hours that flights may be scheduled, determines the

current day’s required missions. The unflown missions from the previous n1 days are

rolled over in the backlog as potential missions to fly if aircraft are available. The new

day’s missions are then placed as the first entry in the backlog. The next step is to look

for available aircraft or, if the MILP module has been used, to look at the optimizer’s

chosen aircraft for the current day. As many missions as there are available aircraft

are then assigned and the aircraft reactivated. If the MILP module was used and its

full schedule has been assigned, the SortieGen module goes dormant and is reacti-

vated the next day by the SortieBegin module. If not, the aircraft continues to check

whether the full backlog has been flown and whether there are aircraft available to fly.

class SortieGen(Process):

SortieGen = []

sortie_backlog = [0]* Assumption.backlog

sortie_aborted = 0

mission_counter = 0

1n is defined by the backlog from the Assumptions module.

241

MILP_schedule = 0

MILP_day_count = 0

MILP_rerun = 0

MILP_rerun_emptyday = 0

dont_fly = [0]

total_missions_generated = 0

rerun = [0]* Input.num_ac

def __init__(self):

Process.__init__(self)

SortieGen.SortieGen.append(self)

self.passivated = 0

def Run(self):

#Brings together op tempo , surge profile , and backlog to

assign available aircraft to sorties

while 1:

#Determine how many sorties are to be flown at beginning

of flight day

##If beginning of flight day

if now()%24 == Assumption.begin_sorties:

SortieGen.mission_counter = 0

##Reset aircraft daily mission counts

for I in range(Input.num_ac):

Fleet.AC[I]. daily_mission = 0

SortieGen.sortie_aborted = 0

##Erase most previous day of sortie backlog to make

room for current day’s sorties

SortieGen.sortie_backlog = numpy.roll(SortieGen.

sortie_backlog ,-1)

##Check which day of the week it is

for I in range(len(Input.OT)):

##Assign current day’s sorties based on the day

of the week

if ((now() -7)/24.) %7 == I:

##As well as the surge profile

for J in range(len(Input.surge_level)):

if now() >= Input.surge_time[J] and now

() < Input.surge_time[J+1]:

SortieGen.sortie_backlog [-1] = Input

.OT[I]* Input.surge_level[J]

##If optimizer has been used , check whether to fly

missions right now

if SortieGen.MILP_schedule == 1:

SortieGen.MILP_day_count += 1

if SortieGen.MILP_day_count not in Fleet.

opt_schedule:

SortieGen.min_failure_time = [0]* Input.

num_ac

for I in range(Input.num_ac):

SortieGen.min_failure_time[I] = 100000

for J in range(len(Input.MFHBR)):

SortieGen.min_failure_time[I] = min(

SortieGen.min_failure_time[I],

Fleet.ACPHM[(I,J)])

242

###If any aircraft are available , rerun

optimization with rerun=1 to see if a new

schedule can be generated

if len(Fleet.ACAvailable) > 0 and sum(

SortieGen.min_failure_time) > 0:

SortieGen.MILP_rerun = 1

Fleet.opt_schedule , Fleet.opt_maint ,

Fleet.opt_part = MILP(Fleet.ACPHM)

SortieGen.MILP_day_count = 0

SortieGen.MILP_rerun = 0

for I in Fleet.opt_schedule[SortieGen.

MILP_day_count]:

Fleet.AC[I]. mission_day = now()/24.

Fleet.AC[I]. mission_order = 0

Fleet.AC[I]. mission_order +=

SortieGen.mission_counter

SortieGen.mission_counter += 1

Reactivate the selected

aircraft so it can go on with its

operational cycle

reactivate(Fleet.AC[I])

Delete the selected aircraft

from the available aircraft since

it can’t fly more missions until

it has completed the operational

cycle

Fleet.ACAvailable.pop(Fleet.

ACAvailable.index(Fleet.AC[I]))

Assign the sortie with the

highest priority (most recently

generated) to the selected

aircraft

self.sortie_assigned = 0

SortieGen.total_missions_generated

+= 1

for I in reversed(range(len(

SortieGen.sortie_backlog))):

if SortieGen.sortie_backlog[I] >

0 and self.sortie_assigned

== 0:

SortieGen.sortie_backlog[I]

-= 1

self.sortie_assigned = 1

self.passivated = 1

yield passivate , self

else:

self.passivated = 1

yield passivate , self

elif len(Fleet.opt_schedule[SortieGen.

MILP_day_count]) == 0 or len(Fleet.

ACAvailable) == 0:

Check every once in a while for missions

or new aircraft , but don’t fly any now

self.passivated = 1

243

yield passivate , self

else:

Check whether all scheduled aircraft are

in Fleet.ACAvailable

SortieGen.MILP_rerun = 0

for I in Fleet.opt_schedule[SortieGen.

MILP_day_count]:

if Fleet.AC[I] not in Fleet.ACAvailable:

SortieGen.MILP_rerun = 1

###If not , rerun optimization with rerun

flag set to 1

if SortieGen.MILP_rerun == 1:

Fleet.opt_schedule , Fleet.opt_maint ,

Fleet.opt_part = MILP(Fleet.ACPHM)

SortieGen.MILP_day_count = 0

SortieGen.MILP_rerun = 0

Either way , use optimization results to

fly all scheduled aircraft

for I in Fleet.opt_schedule[SortieGen.

MILP_day_count]:

Fleet.AC[I]. mission_day = now()/24.

Fleet.AC[I]. mission_order = 0

Fleet.AC[I]. mission_order += SortieGen.

mission_counter

SortieGen.mission_counter += 1

Reactivate the selected aircraft so

it can go on with its operational

cycle

reactivate(Fleet.AC[I])

Delete the selected aircraft from

the available aircraft since it can’t

fly more missions until it has

completed the operational cycle

Fleet.ACAvailable.pop(Fleet.ACAvailable.

index(Fleet.AC[I]))

Assign the sortie with the highest

priority (most recently generated) to

the selected aircraft

self.sortie_assigned = 0

SortieGen.total_missions_generated += 1

for I in reversed(range(len(SortieGen.

sortie_backlog))):

if SortieGen.sortie_backlog[I] > 0

and self.sortie_assigned == 0:

SortieGen.sortie_backlog[I] -= 1

self.sortie_assigned = 1

self.passivated = 1

yield passivate , self

#Option 1: Assign sorties according to optimizer

schedule

if SortieGen.MILP_schedule == 1 and now()%24 >=

Assumption.begin_sorties and now()%24 < Assumption.

end_sorties:

if SortieGen.sortie_aborted > 0:

244

SortieGen.MILP_rerun = 1

Fleet.opt_schedule , Fleet.opt_maint , Fleet.

opt_part = MILP(Fleet.ACPHM)

SortieGen.MILP_day_count = 0

SortieGen.MILP_rerun = 0

for I in Fleet.opt_schedule[SortieGen.

MILP_day_count]:

Fleet.AC[I]. mission_day = now()/24.

Fleet.AC[I]. mission_order = 0

Fleet.AC[I]. mission_order += SortieGen.

mission_counter

SortieGen.mission_counter += 1

Reactivate the selected aircraft so it

can go on with its operational cycle

reactivate(Fleet.AC[I])

Delete the selected aircraft from the

available aircraft since it can’t fly

more missions until it has completed the

operational cycle

Fleet.ACAvailable.pop(Fleet.ACAvailable.

index(Fleet.AC[I]))

Assign the sortie with the highest

priority (most recently generated) to the

selected aircraft

self.sortie_assigned = 0

SortieGen.total_missions_generated += 1

for I in reversed(range(len(SortieGen.

sortie_backlog))):

if SortieGen.sortie_backlog[I] > 0 and

self.sortie_assigned == 0:

SortieGen.sortie_backlog[I] -= 1

self.sortie_assigned = 1

self.passivated = 1

yield passivate , self

elif sum(SortieGen.rerun) > 0:

for I in range(Input.num_ac):

if SortieGen.rerun[I] == 1:

SortieGen.rerun[I] = 0

SortieGen.MILP_rerun = 1

Fleet.opt_schedule , Fleet.opt_maint , Fleet.

opt_part = MILP(Fleet.ACPHM)

SortieGen.MILP_day_count = 0

SortieGen.MILP_rerun = 0

for I in Fleet.opt_schedule[SortieGen.

MILP_day_count]:

Fleet.AC[I]. mission_day = now()/24.

Fleet.AC[I]. mission_order = 0

Fleet.AC[I]. mission_order += SortieGen.

mission_counter

SortieGen.mission_counter += 1

Reactivate the selected aircraft so it

can go on with its operational cycle

reactivate(Fleet.AC[I])

245

Delete the selected aircraft from the

available aircraft since it can’t fly

more missions until it has completed the

operational cycle

Fleet.ACAvailable.pop(Fleet.ACAvailable.

index(Fleet.AC[I]))

Assign the sortie with the highest

priority (most recently generated) to the

selected aircraft

self.sortie_assigned = 0

SortieGen.total_missions_generated += 1

for I in reversed(range(len(SortieGen.

sortie_backlog))):

if SortieGen.sortie_backlog[I] > 0 and

self.sortie_assigned == 0:

SortieGen.sortie_backlog[I] -= 1

self.sortie_assigned = 1

self.passivated = 1

yield passivate , self

else:

#Option 2: Assign sorties according to basic first -come/

first -served logic

##If it is currently flying hours

if now()%24 >= Assumption.begin_sorties and now()%24

< Assumption.end_sorties:

###While there are missions to fly

self.first_available = 0

while sum(SortieGen.sortie_backlog) > 0:

Exit if no aircraft are available

if len(Fleet.ACAvailable) == 0 or self.

first_available >= len(Fleet.ACAvailable)

:

break

####If first available aircraft has not

exceeded its mission limits

if Fleet.ACAvailable[self.first_available].

daily_mission < Assumption.daily_limit:

Tell the selected aircraft what day

it was given a mission and which

mission was assigned

Fleet.ACAvailable[self.first_available].

mission_day = now()/24.

Fleet.ACAvailable[self.first_available].

mission_order = 0

Fleet.ACAvailable[self.first_available].

mission_order += SortieGen.

mission_counter

SortieGen.mission_counter += 1

Reactivate the selected aircraft so

it can go on with its operational

cycle

reactivate(Fleet.ACAvailable[self.

first_available])

246

Delete the selected aircraft from

the available aircraft since it can’t

fly more missions until it has

completed the operational cycle

Fleet.ACAvailable.pop(self.

first_available)

Assign the sortie with the highest

priority (most recently generated) to

the selected aircraft

self.sortie_assigned = 0

SortieGen.total_missions_generated += 1

for I in reversed(range(len(SortieGen.

sortie_backlog))):

if SortieGen.sortie_backlog[I] > 0

and self.sortie_assigned == 0:

SortieGen.sortie_backlog[I] -= 1

self.sortie_assigned = 1

####If first available aircraft has exceeded

its mission limits

else:

self.first_available += 1

if self.passivated == 0:

yield hold , self , 1

else:

self.passivated = 0

The following module is denoted by the number ‘3’ in Figure 120. It defines the flight

chief resource. This is where the number of flight chiefs should be updated based on

the requirements of the study.

class FlightChief ():

resource = []

def __init__(self):

FlightChief.resource.append(self)

#There is one flight chief on duty for the fleet at a time

self.FlightChief = Resource (4)

The following module is denoted by the number ‘4’ in Figure 120. It defines the crew

chief and ground crew resources. This is where the number of crew chiefs and ground

crews should be updated based on the requirements of the study.

class GroundCrew ():

resource = []

def __init__(self):

247

GroundCrew.resource.append(self)

#There is one crew chief on duty for the fleet at a time

self.CrewChief = Resource (1)

#There is one ground crew teams on duty at a time

self.GroundCrew = Resource (8)

The following module is denoted by the number ‘5’ in Figure 120. It defines the

maintenance staff and maintenance facility resources. This is where the number of

maintenance staff and maintenance facilities should be updated based on the require-

ments of the study.

class Maintenance ():

resource = []

def __init__(self):

Maintenance.resource.append(self)

#There is one maintenance team on duty for the fleet at a

time

self.MaintenanceStaff = Resource (1)

#There is one repair bay available at a time

self.MaintenanceFacilities = Resource (4)

The following module is denoted by the number ‘6’ in Figure 120. It defines the

runway resource. This is where the number of runways should be updated based on

the requirements of the study.

class Runway ():

resource = []

def __init__(self):

Runway.resource.append(self)

#There is one runway available to the fleet

self.Runway = Resource (2)

The following module is denoted by the number ‘2’ in Figure 120. The Fleet module

contains all the logic for aircraft operations, including the behavior of the PHM, if

the PHM=1 option is selected, and the potential to reactivate and go straight to

maintenance, if the MaintenanceOptimizer=1 option is also selected. The full logic

248

is pictured in Figure 80. This is where many of the decisions made in how to oper-

ate the fleet would be updated, depending on the purview of the study. Additional

sustainment steps or decisions could be implemented here; also, the PHM’s behavior

could be updated. The distribution that defines failure for the aircraft’s components

could also be changed if desired.

class Fleet(Process):

ID_count = 0

AC = []

ACAvailable = []

ACPHM = {}

for I in range(Input.num_ac):

for J in range(len(Input.MFHBR)):

ACPHM [(I,J)] = 100000

opt_maint = {}

opt_schedule = {}

opt_part = {}

PartQueue = []

mis_prep_min = 10000

mis_prep_max = 0

mis_prep_avg = []

mis_all_avg = []

last_ME = 0

ACPF = 0

min_failure_time = [0]* Input.num_ac

maintenance_numbers = []

maintenance_times = []

maintenance_aircraft = []

maintenance_numbers_after = []

maintenance_parts = {}

total_missions_flown = 0

num_detections = [0]* len(Input.MFHBR)

mission_failures = [0]* len(Input.MFHBR)

phm_repairs = [0]* len(Input.MFHBR)

flight_hours = 0

low_detect = [0]* len(Input.MFHBR)

one_count = 0

two_count = 0

def __init__(self):

Process.__init__(self)

self.ID = Fleet.ID_count

Fleet.ID_count += 1

Fleet.AC.append(self)

Fleet.ACAvailable.append(self)

self.daily_mission = 0

self.mission_day = -1

self.mission_order = -1

self.part_life = [0]* len(Input.MFHBR)

249

self.prediction = [0]* len(Input.MFHBR)

self.prediction_time = [0]* len(Input.MFHBR)

self.hold_for_opt_maint = 0

self.hold_time = 0

for I in range(len(Input.MFHBR)):

self.part_life[I] = random.expovariate (1/ Input.MFHBR[I])

#self.prediction_time[I] = self.part_life[I] - random.

gauss(Input.lead_time_mean[I]*self.part_life[I],Input

.lead_time_std[I]*self.part_life[I])

self.prediction_time[I] = random.gauss(Input.

lead_time_mean[I]*self.part_life[I],Input.

lead_time_std[I]*self.part_life[I])

while self.prediction_time[I] < 0 or self.

prediction_time[I] > self.part_life[I]:

if self.prediction_time[I] < 0:

Output.negative_prediction_times[I] += 1

elif self.prediction_time[I] > self.part_life[I]:

Output.missed_prediction_times[I] += 1

self.prediction_time[I] = random.gauss(Input.

lead_time_mean[I]*self.part_life[I],Input.

lead_time_std[I]*self.part_life[I])

phm_event_file.write(str(now()) + ’,AC ’ + str(self.ID)

+ ’,Part ’ + str(I) + ’,new part life 1,’ + str(self.

part_life[I]) + ’,’ + str(self.prediction_time[I]) +

’\n’)

self.waited = 0

self.state = 0

self.t_prev = 0

self.available_time = 0

self.flying_time = 0

self.bar_time = 0

self.bap_time = 0

self.bbr_time = 0

self.passivated_for_mission = 0

self.fly_mission = 1

ac_event_file.write(str(now()) + ’,AC ’ + str(self.ID) + ’,

UT ,created ’ + ’\n’)

def Run(self):

while 1:

#Wait for a mission (state is available)

if now()%24 > Assumption.begin_sorties and now()%24 <

Assumption.end_sorties:

if self.daily_mission == 0:

SortieGen.rerun[self.ID] = 1

ac_event_file.write(str(now()) + ’,AC ’ + str(self.ID) +

’,UT ,created ’ + ’\n’)

ac_event_file.write(str(now()) + ’,AC ’ + str(self.ID) +

’,UT ,awaiting mission ’ + ’\n’)

if self.state == 0:

self.available_time += now() - self.t_prev

elif self.state == 1:

self.flying_time += now() - self.t_prev

elif self.state == 2:

self.bar_time += now() - self.t_prev

250

elif self.state == 3:

self.bap_time += now() - self.t_prev

elif self.state == 4:

self.bbr_time += now() - self.t_prev

self.state = 0

self.t_prev = now()

self.passivated_for_mission = 1

self.fly_mission = 1

yield passivate , self

#No longer passivated for mission

self.passivated_for_mission = 0

if self.fly_mission == 1:

Fleet.total_missions_flown += 1

self.t_mis_prep_0 = now()

ac_event_file.write(str(now()) + ’,AC ’ + str(self.

ID) + ’,UT ,awaiting mission ’ + ’\n’)

ac_event_file.write(str(now()) + ’,AC ’ + str(self.

ID) + ’,UT ,have mission/awaiting f.c.’ + ’\n’)

##Seize flight chief and perform mission scheduling

(state is available)

fcfile.write(str(now()) + ’,’ + str(len(FlightChief.

resource [0]. FlightChief.activeQ)) + ’,’ + str(len

(FlightChief.resource [0]. FlightChief.waitQ)) + ’,

’ + str(len(FlightChief.resource [0]. FlightChief.

activeQ)+len(FlightChief.resource [0]. FlightChief.

waitQ)) + ’\n’)

yield request , self , FlightChief.resource [0].

FlightChief

fcfile.write(str(now()) + ’,’ + str(len(FlightChief.

resource [0]. FlightChief.activeQ)) + ’,’ + str(len

(FlightChief.resource [0]. FlightChief.waitQ)) + ’,

’ + str(len(FlightChief.resource [0]. FlightChief.

activeQ)+len(FlightChief.resource [0]. FlightChief.

waitQ)) + ’\n’)

ac_event_file.write(str(now()) + ’,AC ’ + str(self.

ID) + ’,UT ,have mission/awaiting f.c.’ + ’\n’)

ac_event_file.write(str(now()) + ’,AC ’ + str(self.

ID) + ’,UT ,have f.c./ ready to schedule mission ’ +

’\n’)

yield hold , self , random.triangular(Assumption.

step_mis_sched_min , Assumption.step_mis_sched_max

, Assumption.step_mis_sched_mod)

ac_event_file.write(str(now()) + ’,AC ’ + str(self.

ID) + ’,UT ,have f.c./ ready to schedule mission ’ +

’\n’)

ac_event_file.write(str(now()) + ’,AC ’ + str(self.

ID) + ’,UT ,mission scheduled/awaiting g.c.’ + ’\n

’)

##Release flight chief

251

fcfile.write(str(now()) + ’,’ + str(len(FlightChief.

resource [0]. FlightChief.activeQ)) + ’,’ + str(len

(FlightChief.resource [0]. FlightChief.waitQ)) + ’,

’ + str(len(FlightChief.resource [0]. FlightChief.

activeQ)+len(FlightChief.resource [0]. FlightChief.

waitQ)) + ’\n’)

yield release , self , FlightChief.resource [0].

FlightChief

fcfile.write(str(now()) + ’,’ + str(len(FlightChief.

resource [0]. FlightChief.activeQ)) + ’,’ + str(len

(FlightChief.resource [0]. FlightChief.waitQ)) + ’,

’ + str(len(FlightChief.resource [0]. FlightChief.

activeQ)+len(FlightChief.resource [0]. FlightChief.

waitQ)) + ’\n’)

##Sieze ground crew and perform preflight , refuel ,

and load weapons activities (state is available)

gcfile.write(str(now()) + ’,’ + str(len(GroundCrew.

resource [0]. GroundCrew.activeQ)) + ’,’ + str(len(

GroundCrew.resource [0]. GroundCrew.waitQ)) + ’,’ +

str(len(GroundCrew.resource [0]. GroundCrew.

activeQ)+len(GroundCrew.resource [0]. GroundCrew.

waitQ)) + ’\n’)

yield request , self , GroundCrew.resource [0].

GroundCrew

gcfile.write(str(now()) + ’,’ + str(len(GroundCrew.

resource [0]. GroundCrew.activeQ)) + ’,’ + str(len(

GroundCrew.resource [0]. GroundCrew.waitQ)) + ’,’ +

str(len(GroundCrew.resource [0]. GroundCrew.

activeQ)+len(GroundCrew.resource [0]. GroundCrew.

waitQ)) + ’\n’)

ac_event_file.write(str(now()) + ’,AC ’ + str(self.

ID) + ’,UT ,mission scheduled/awaiting g.c.’ + ’\n

’)

ac_event_file.write(str(now()) + ’,AC ’ + str(self.

ID) + ’,UT ,have g.c./ ready for preflight refuel &

load weapons ’ + ’\n’)

yield hold , self , random.triangular(Assumption.

step_mis_prep_pf_min , Assumption.

step_mis_prep_pf_max , Assumption.

step_mis_prep_pf_mod)

yield hold , self , random.triangular(Assumption.

step_mis_prep_rf_min , Assumption.

step_mis_prep_rf_max , Assumption.

step_mis_prep_rf_mod)

yield hold , self , random.triangular(Assumption.

step_mis_prep_lw_min , Assumption.

step_mis_prep_lw_max , Assumption.

step_mis_prep_lw_mod)

ac_event_file.write(str(now()) + ’,AC ’ + str(self.

ID) + ’,UT ,have g.c./ ready for preflight refuel &

load weapons ’ + ’\n’)

ac_event_file.write(str(now()) + ’,AC ’ + str(self.

ID) + ’,UT ,preflight refuel & load weapons done/

awaiting c.c.’ + ’\n’)

252

##Sieze crew chief and perform preflight inspection

(state is available)

Currently no time distribution for this step

ccfile.write(str(now()) + ’,’ + str(len(GroundCrew.

resource [0]. CrewChief.activeQ)) + ’,’ + str(len(

GroundCrew.resource [0]. CrewChief.waitQ)) + ’,’ +

str(len(GroundCrew.resource [0]. CrewChief.activeQ)

+len(GroundCrew.resource [0]. CrewChief.waitQ)) + ’

\n’)

yield request , self , GroundCrew.resource [0].

CrewChief

ccfile.write(str(now()) + ’,’ + str(len(GroundCrew.

resource [0]. CrewChief.activeQ)) + ’,’ + str(len(

GroundCrew.resource [0]. CrewChief.waitQ)) + ’,’ +

str(len(GroundCrew.resource [0]. CrewChief.activeQ)

+len(GroundCrew.resource [0]. CrewChief.waitQ)) + ’

\n’)

ac_event_file.write(str(now()) + ’,AC ’ + str(self.

ID) + ’,UT ,preflight refuel & load weapons done/

awaiting c.c.’ + ’\n’)

ac_event_file.write(str(now()) + ’,AC ’ + str(self.

ID) + ’,UT ,have c.c./ ready for engine start final

systems check & taxi’ + ’\n’)

ccfile.write(str(now()) + ’,’ + str(len(GroundCrew.

resource [0]. CrewChief.activeQ)) + ’,’ + str(len(

GroundCrew.resource [0]. CrewChief.waitQ)) + ’,’ +

str(len(GroundCrew.resource [0]. CrewChief.activeQ)

+len(GroundCrew.resource [0]. CrewChief.waitQ)) + ’

\n’)

yield release , self , GroundCrew.resource [0].

CrewChief

ccfile.write(str(now()) + ’,’ + str(len(GroundCrew.

resource [0]. CrewChief.activeQ)) + ’,’ + str(len(

GroundCrew.resource [0]. CrewChief.waitQ)) + ’,’ +

str(len(GroundCrew.resource [0]. CrewChief.activeQ)

+len(GroundCrew.resource [0]. CrewChief.waitQ)) + ’

\n’)

##Perform engine start , final systems check , and

taxi activities (state is available)

yield hold , self , random.triangular(Assumption.

step_mis_prep_tx_min , Assumption.

step_mis_prep_tx_max , Assumption.

step_mis_prep_tx_mod)

ac_event_file.write(str(now()) + ’,AC ’ + str(self.

ID) + ’,UT ,have c.c./ ready for engine start final

systems check & taxi’ + ’\n’)

ac_event_file.write(str(now()) + ’,AC ’ + str(self.

ID) + ’,UT ,engine start final systems check &

taxi done/awaiting r.w.’ + ’\n’)

##Release ground crew , seize runway , and perform

takeoff (state is flying)

253

gcfile.write(str(now()) + ’,’ + str(len(GroundCrew.

resource [0]. GroundCrew.activeQ)) + ’,’ + str(len(

GroundCrew.resource [0]. GroundCrew.waitQ)) + ’,’ +

str(len(GroundCrew.resource [0]. GroundCrew.

activeQ)+len(GroundCrew.resource [0]. GroundCrew.

waitQ)) + ’\n’)

yield release , self , GroundCrew.resource [0].

GroundCrew

gcfile.write(str(now()) + ’,’ + str(len(GroundCrew.

resource [0]. GroundCrew.activeQ)) + ’,’ + str(len(

GroundCrew.resource [0]. GroundCrew.waitQ)) + ’,’ +

str(len(GroundCrew.resource [0]. GroundCrew.

activeQ)+len(GroundCrew.resource [0]. GroundCrew.

waitQ)) + ’\n’)

###Might need to check if there are rules about how

long a plane would wait for the runway

rwfile.write(str(now()) + ’,’ + str(len(Runway.

resource [0]. Runway.activeQ)) + ’,’ + str(len(

Runway.resource [0]. Runway.waitQ)) + ’,’ + str(len

(Runway.resource [0]. Runway.activeQ)+len(Runway.

resource [0]. Runway.waitQ)) + ’\n’)

yield request , self , Runway.resource [0]. Runway

rwfile.write(str(now()) + ’,’ + str(len(Runway.

resource [0]. Runway.activeQ)) + ’,’ + str(len(

Runway.resource [0]. Runway.waitQ)) + ’,’ + str(len

(Runway.resource [0]. Runway.activeQ)+len(Runway.

resource [0]. Runway.waitQ)) + ’\n’)

ac_event_file.write(str(now()) + ’,AC ’ + str(self.

ID) + ’,UT,engine start final systems check &

taxi done/awaiting r.w.’ + ’\n’)

ac_event_file.write(str(now()) + ’,AC ’ + str(self.

ID) + ’,UT,have r.w./ ready for takeoff ’ + ’\n’)

if self.state == 0:

self.available_time += now() - self.t_prev

elif self.state == 1:

self.flying_time += now() - self.t_prev

elif self.state == 2:

self.bar_time += now() - self.t_prev

elif self.state == 3:

self.bap_time += now() - self.t_prev

elif self.state == 4:

self.bbr_time += now() - self.t_prev

self.state = 1

self.t_prev = now()

yield hold , self , random.triangular(Assumption.

step_mis_prep_to_min , Assumption.

step_mis_prep_to_max , Assumption.

step_mis_prep_to_mod)

ac_event_file.write(str(now()) + ’,AC ’ + str(self.

ID) + ’,UT ,have r.w./ ready for takeoff ’ + ’\n’)

ac_event_file.write(str(now()) + ’,AC ’ + str(self.

ID) + ’,UT ,takeoff accomplished/ready for mission

’ + ’\n’)

##Release runway (state is flying)

254

rwfile.write(str(now()) + ’,’ + str(len(Runway.

resource [0]. Runway.activeQ)) + ’,’ + str(len(

Runway.resource [0]. Runway.waitQ)) + ’,’ + str(len

(Runway.resource [0]. Runway.activeQ)+len(Runway.

resource [0]. Runway.waitQ)) + ’\n’)

yield release , self , Runway.resource [0]. Runway

rwfile.write(str(now()) + ’,’ + str(len(Runway.

resource [0]. Runway.activeQ)) + ’,’ + str(len(

Runway.resource [0]. Runway.waitQ)) + ’,’ + str(len

(Runway.resource [0]. Runway.activeQ)+len(Runway.

resource [0]. Runway.waitQ)) + ’\n’)

Fleet.mis_prep_min = min(Fleet.mis_prep_min , now() -

self.t_mis_prep_0)

Fleet.mis_prep_max = max(Fleet.mis_prep_max , now() -

self.t_mis_prep_0)

Fleet.mis_prep_avg.append(now() - self.t_mis_prep_0)

##Fly mission

self.mis_dur = random.triangular(Assumption.

step_mis_fly_min , Assumption.step_mis_fly_max ,

Assumption.step_mis_fly_mod)

for I in range(len(Input.MFHBR)):

phm_event_file.write(str(now()) + ’,AC ’ + str(

self.ID) + ’,Part ’ + str(I) + ’,about to fly

,’ + str(self.part_life[I]) + ’,’ + str(self.

prediction_time[I]) + ’,’ + str(self.mis_dur)

+ ’,’ + str(Fleet.ACPHM [(self.ID,I)]) + ’,\

n’)

yield hold , self , self.mis_dur

Fleet.flight_hours += self.mis_dur

ac_event_file.write(str(now()) + ’,AC ’ + str(self.

ID) + ’,UT ,takeoff accomplished/ready for mission

’ + ’\n’)

ac_event_file.write(str(now()) + ’,AC ’ + str(self.

ID) + ’,UT ,mission accomplished/awaiting r.w.’ +

’\n’)

##Update ACPHM based on the effect of flying mission

###Only the flying effects should be recorded , not

the maintenance effects

self.num_r = [0]* len(Input.MFHBR)

self.maintenance = [0]* len(Input.MFHBR)

self.reason = [0]* len(Input.MFHBR)

for I in range(len(Input.MFHBR)):

if ModelVersion.PHM == 1:

if self.prediction_time[I] < self.mis_dur

and self.prediction[I] == 0:

self.num_detections[I] += 1

self.prediction[I] = 1

Fleet.ACPHM [(self.ID,I)] = 0

Fleet.ACPHM [(self.ID,I)] += self.

part_life[I]

255

phm_event_file.write(str(now()) + ’,AC ’

+ str(self.ID) + ’,Part ’ + str(I) +

’,failure detected ,’ + str(self.

part_life[I]) + ’,’ + str(self.

prediction_time[I]) + ’,’ + str(self.

mis_dur) + ’,’ + str(Fleet.ACPHM[(

self.ID,I)]) + ’,\n’)

if self.part_life[I] < self.mis_dur:

self.mission_failures[I] += 1

Fleet.one_count += 1

self.num_r[I] += 1

SortieGen.sortie_backlog [-1] += 1

SortieGen.sortie_aborted += 1

self.maintenance[I] = 1

self.reason[I] = 1

if ModelVersion.PHM == 1:

Fleet.ACPHM [(self.ID,I)] = 0

phm_event_file.write(str(now()) + ’,AC ’

+ str(self.ID) + ’,Part ’ + str(I)

+ ’,missed a failure ,’ + str(self.

part_life[I]) + ’,’ + str(self.

prediction_time[I]) + ’,’ + str(self.

mis_dur) + ’,’ + str(Fleet.ACPHM[(

self.ID,I)]) + ’,\n’)

elif ModelVersion.PHM == 1 and ModelVersion.

MaintenanceOptimizer == 0 and self.part_life

< self.mis_dur + Assumption.step_mis_fly_max:

self.phm_repairs[I] += 1

self.num_r[I] += 1

self.maintenance[I] = 1

self.reason[I] = 2

Fleet.ACPHM[(self.ID ,I)] = 0

phm_event_file.write(str(now()) + ’,AC ’ +

str(self.ID) + ’,Part ’ + str(I) + ’,

detect a failure next mission ,’ + str(

self.part_life[I]) + ’,’ + str(self.

prediction_time[I]) + ’,’ + str(self.

mis_dur) + ’,’ + str(Fleet.ACPHM[(self.

ID,I)]) + ’,\n’)

if sum(self.maintenance) > 0:

for I in range(len(Input.MFHBR)):

if ModelVersion.PHM == 1 and self.prediction

[I] == 1 and self.num_r[I] == 0 and self.

part_life[I] < self.mis_dur + 2*

Assumption.step_mis_fly_max:

self.num_r[I] += 1

self.maintenance[I] = 1

self.reason[I] = 2

Fleet.ACPHM [(self.ID,I)] = 0

256

phm_event_file.write(str(now()) + ’,AC ’

+ str(self.ID) + ’,Part ’ + str(I) +

’,repair due to another repair ,’ +

str(self.part_life[I]) + ’,’ + str(

self.prediction_time[I]) + ’,’ + str(

self.mis_dur) + ’,’ + str(Fleet.

ACPHM[(self.ID ,I)]) + ’,\n’)

for I in range(len(Input.MFHBR)):

if self.reason[I] == 1:

Output.num_broken[I] += 1

Fleet.two_count += 1

elif self.reason[I] == 2:

Output.part_life_wasted[I] += self.

part_life[I] - self.mis_dur

self.prediction[I] = 0

else:

self.part_life[I] -= self.mis_dur

if ModelVersion.PHM == 1:

self.prediction_time[I] = max(0,

self.prediction_time[I] - self.

mis_dur)

if Fleet.ACPHM[(self.ID ,I)] > 0 and

Fleet.ACPHM[(self.ID ,I)] <

100000:

Fleet.ACPHM [(self.ID,I)] -= self

.mis_dur

#Fleet.ACPHM [(self.ID,I)] +=

self.part_life[I]

phm_event_file.write(str(now()) + ’,

AC ’ + str(self.ID) + ’,Part ’ +

str(I) + ’,another mission 1,’ +

str(self.part_life[I]) + ’,’ +

str(self.prediction_time[I]) + ’,

’ + str(self.mis_dur) + ’,’ +

str(Fleet.ACPHM[(self.ID ,I)]) + ’

,\n’)

else:

for I in range(len(Input.MFHBR)):

self.part_life[I] -= self.mis_dur

if ModelVersion.PHM == 1:

self.prediction_time[I] = max(0, self.

prediction_time[I] - self.mis_dur)

if Fleet.ACPHM[(self.ID ,I)] > 0 and

Fleet.ACPHM[(self.ID ,I)] < 100000:

Fleet.ACPHM [(self.ID,I)] -= self.

mis_dur

#Fleet.ACPHM [(self.ID,I)] += self.

part_life[I]

257

phm_event_file.write(str(now()) + ’,AC ’

+ str(self.ID) + ’,Part ’ + str(I) +

’,another mission 2,’ + str(self.

part_life[I]) + ’,’ + str(self.

prediction_time[I]) + ’,’ + str(self.

mis_dur) + ’,’ + str(Fleet.ACPHM[(

self.ID,I)]) + ’,\n’)

#Seize runway and land (state is flying)

rwfile.write(str(now()) + ’,’ + str(len(Runway.

resource [0]. Runway.activeQ)) + ’,’ + str(len(

Runway.resource [0]. Runway.waitQ)) + ’,’ + str(len

(Runway.resource [0]. Runway.activeQ)+len(Runway.

resource [0]. Runway.waitQ)) + ’\n’)

yield request , self , Runway.resource [0]. Runway

rwfile.write(str(now()) + ’,’ + str(len(Runway.

resource [0]. Runway.activeQ)) + ’,’ + str(len(

Runway.resource [0]. Runway.waitQ)) + ’,’ + str(len

(Runway.resource [0]. Runway.activeQ)+len(Runway.

resource [0]. Runway.waitQ)) + ’\n’)

ac_event_file.write(str(now()) + ’,AC ’ + str(self.

ID) + ’,UT ,have r.w./ ready for landing ’ + ’\n’)

yield hold , self , random.triangular(Assumption.

step_mis_rec_land_min , Assumption.

step_mis_rec_land_max , Assumption.

step_mis_rec_land_mod)

ac_event_file.write(str(now()) + ’,AC ’ + str(self.

ID) + ’,UT ,landing accomplished/awaiting g.c.’ +

’\n’)

#Release runway

rwfile.write(str(now()) + ’,’ + str(len(Runway.

resource [0]. Runway.activeQ)) + ’,’ + str(len(

Runway.resource [0]. Runway.waitQ)) + ’,’ + str(len

(Runway.resource [0]. Runway.activeQ)+len(Runway.

resource [0]. Runway.waitQ)) + ’\n’)

yield release , self , Runway.resource [0]. Runway

rwfile.write(str(now()) + ’,’ + str(len(Runway.

resource [0]. Runway.activeQ)) + ’,’ + str(len(

Runway.resource [0]. Runway.waitQ)) + ’,’ + str(len

(Runway.resource [0]. Runway.activeQ)+len(Runway.

resource [0]. Runway.waitQ)) + ’\n’)

self.daily_mission += 1

#Sieze ground crew and perform park and recovery

activities (state is available)

gcfile.write(str(now()) + ’,’ + str(len(GroundCrew.

resource [0]. GroundCrew.activeQ)) + ’,’ + str(len(

GroundCrew.resource [0]. GroundCrew.waitQ)) + ’,’ +

str(len(GroundCrew.resource [0]. GroundCrew.

activeQ)+len(GroundCrew.resource [0]. GroundCrew.

waitQ)) + ’\n’)

yield request , self , GroundCrew.resource [0].

GroundCrew

258

gcfile.write(str(now()) + ’,’ + str(len(GroundCrew.

resource [0]. GroundCrew.activeQ)) + ’,’ + str(len(

GroundCrew.resource [0]. GroundCrew.waitQ)) + ’,’ +

str(len(GroundCrew.resource [0]. GroundCrew.

activeQ)+len(GroundCrew.resource [0]. GroundCrew.

waitQ)) + ’\n’)

ac_event_file.write(str(now()) + ’,AC ’ + str(self.

ID) + ’,UT ,have g.c./ ready to recover & park’ + ’

\n’)

if self.state == 0:

self.available_time += now() - self.t_prev

elif self.state == 1:

self.flying_time += now() - self.t_prev

elif self.state == 2:

self.bar_time += now() - self.t_prev

elif self.state == 3:

self.bap_time += now() - self.t_prev

elif self.state == 4:

self.bbr_time += now() - self.t_prev

self.state = 0

self.t_prev = now()

yield hold , self , random.triangular(Assumption.

step_mis_rec_park_min , Assumption.

step_mis_rec_park_max , Assumption.

step_mis_rec_park_mod)

ac_event_file.write(str(now()) + ’,AC ’ + str(self.

ID) + ’,UT ,parking & recovery complete/ready for

servicing ’ + ’\n’)

#Perform servicing activities (state is being

repaired)

if self.state == 0:

self.available_time += now() - self.t_prev

elif self.state == 1:

self.flying_time += now() - self.t_prev

elif self.state == 2:

self.bar_time += now() - self.t_prev

elif self.state == 3:

self.bap_time += now() - self.t_prev

elif self.state == 4:

self.bbr_time += now() - self.t_prev

self.state = 4

self.t_prev = now()

yield hold , self , random.triangular(Assumption.

step_OL_rep_serv_min , Assumption.

step_OL_rep_serv_max , Assumption.

step_OL_rep_serv_mod)

ac_event_file.write(str(now()) + ’,AC ’ + str(self.

ID) + ’,DT ,servicing complete/ready for failure

check ’ + ’\n’)

#Release ground crew

259

gcfile.write(str(now()) + ’,’ + str(len(GroundCrew.

resource [0]. GroundCrew.activeQ)) + ’,’ + str(len(

GroundCrew.resource [0]. GroundCrew.waitQ)) + ’,’ +

str(len(GroundCrew.resource [0]. GroundCrew.

activeQ)+len(GroundCrew.resource [0]. GroundCrew.

waitQ)) + ’\n’)

yield release , self , GroundCrew.resource [0].

GroundCrew

gcfile.write(str(now()) + ’,’ + str(len(GroundCrew.

resource [0]. GroundCrew.activeQ)) + ’,’ + str(len(

GroundCrew.resource [0]. GroundCrew.waitQ)) + ’,’ +

str(len(GroundCrew.resource [0]. GroundCrew.

activeQ)+len(GroundCrew.resource [0]. GroundCrew.

waitQ)) + ’\n’)

##If the maintenance optimizer should be run , rerun

it here

if ModelVersion.MaintenanceOptimizer == 1:

Fleet.min_failure_time = [100000]* Input.num_ac

for J in range(Input.num_ac):

for K in range(len(Input.MFHBR)):

Fleet.min_failure_time[J] = min(Fleet.

min_failure_time[J],Fleet.ACPHM[(J,K)

])

if sum(Fleet.min_failure_time) > 0:

optimization_file.write(’AC’ + str(self.ID)

+ ’ ran optimization after flying a

mission ’ + ’\n’)

Fleet.opt_schedule , Fleet.opt_maint , Fleet.

opt_part = MILP(Fleet.ACPHM)

self.min_maint_time = 100000

for I in Fleet.opt_maint:

self.min_maint_time = min(self.

min_maint_time ,Fleet.opt_maint[I])

if self.min_maint_time - Fleet.last_ME >=

1.5* Input.fleet_MTBR:

for I in Fleet.opt_maint:

if Fleet.opt_maint[I] == self.

min_maint_time:

for J in range(len(Input.MFHBR))

:

if Fleet.AC[I]. part_life[J]

== Fleet.opt_part[I]:

if Fleet.AC[I]. num_r[J]

== 0:

Output.

part_life_wasted[

J] += self.

part_life[J]

Fleet.AC[I].

prediction[J] = 0

Fleet.ACPHM [(I,J)] =

0

Fleet.AC[I].num_r[J]

+= 1

260

phm_event_file.write(str

(now()) + ’,AC ’ +

str(I) + ’,Part ’ +

str(J) + ’,repair due

to exceeding

distance from last ME

parameter 1,’ + str(

self.part_life[J]) +

’,’ + str(self.

prediction_time[J]) +

’,’ + str(self.

mis_dur) + ’,’ + str(

Fleet.opt_maint[I])

+ ’,’ + str(Fleet.

ACPHM[(I,J)]) + ’,\n’

)

elif Fleet.AC[I]. part_life[J

] < 2* Assumption.

step_mis_fly_max and

Fleet.AC[I]. prediction[J]

== 1:

if Fleet.AC[I]. num_r[J]

== 0:

Output.

part_life_wasted[

J] += Fleet.AC[I

]. part_life[J]

Fleet.AC[I].

prediction[J] = 0

Fleet.ACPHM [(I,J)] =

0

Fleet.AC[I].num_r[J]

+= 1

phm_event_file.write(str

(now()) + ’,AC ’ +

str(I) + ’,Part ’ +

str(J) + ’,repair due

to another repair ,’

+ str(self.part_life[

J]) + ’,’ + str(self.

prediction_time[J]) +

’,’ + str(self.

mis_dur) + ’,’ + str(

Fleet.opt_maint[I])

+ ’,’ + str(Fleet.

ACPHM[(I,J)]) + ’,\n’

)

Fleet.AC[I]. hold_for_opt_maint =

1

Fleet.AC[I]. hold_time = self.

min_maint_time - now()

SortieGen.MILP_schedule = 1

SortieGen.MILP_day_count = 0

261

#Compute the maintenance day to determine

whether the aircraft needs to be flagged for

maintenance

try:

if Fleet.opt_maint[self.ID]%24 < 7:

self.day = math.floor(Fleet.opt_maint[

self.ID]/24.) - 1

else:

self.day = math.ceil(Fleet.opt_maint[

self.ID]/24.) - 1

except:

self.day = -100000

if self.ID in Fleet.opt_maint and now() > 24*

self.day + 7 and now() < 24*(self.day + 1) +

7:

for I in range(len(Input.MFHBR)):

if self.part_life[I] == Fleet.opt_part[

self.ID]:

if self.num_r[I] == 0:

self.num_r[I] += 1

Output.part_life_wasted[I] +=

self.part_life[I]

self.prediction[I] = 0

Fleet.ACPHM [(self.ID,I)] = 0

phm_event_file.write(str(now())

+ ’,AC ’ + str(self.ID) + ’,

Part ’ + str(I) + ’,repair

due to optimization ,’ + str(

self.part_life[I]) + ’,’ +

str(self.prediction_time[I])

+ ’,’ + str(self.mis_dur) + ’

,’ + str(Fleet.opt_maint[self

.ID]) + ’,’ + str(Fleet.

ACPHM [(self.ID,I)]) + ’,\n’)

elif self.part_life[I] < 2* Assumption.

step_mis_fly_max and self.prediction[

I] == 1:

if self.num_r[I] == 0:

self.num_r[I] += 1

Output.part_life_wasted[I] +=

self.part_life[I]

self.prediction[I] = 0

Fleet.ACPHM [(self.ID,I)] = 0

phm_event_file.write(str(now())

+ ’,AC ’ + str(self.ID) + ’,

Part ’ + str(I) + ’,repair

due to another repair ,’ + str

(self.part_life[I]) + ’,’ +

str(self.prediction_time[I])

+ ’,’ + str(self.mis_dur) + ’

,’ + str(Fleet.opt_maint[self

.ID]) + ’,’ + str(Fleet.

ACPHM [(self.ID,I)]) + ’,\n’)

self.hold_for_opt_maint = 1

262

self.hold_time = Fleet.opt_maint[self.ID] -

now()

#If an optimization scheduled maintenance event has

occurred , wait for it and repair

if self.hold_for_opt_maint == 1:

yield hold , self , max(self.hold_time ,0)

optimization_file.write(str(now()) + ’,’ + ’AC’

+ str(self.ID) + ’ performed scheduled

maintenance for part’ + str(Fleet.opt_part[

self.ID]) + ’\n’)

self.hold_for_opt_maint = 0

else:

##If doing a maintenance -only run , update parts but

don’t do the mission aspects

###If you came from an aircraft that exceeded the

multiplier*Input.fleet_MTBR limit , do one thing

if self.hold_for_opt_maint == 1:

self.hold_for_opt_maint = 0

for I in range(len(Input.MFHBR)):

if self.num_r[I] > 0:

Output.part_life_wasted[I] += self.

part_life[I]

self.prediction[I] = 0

Fleet.ACPHM [(self.ID,I)] = 0

phm_event_file.write(str(now()) + ’,AC ’

+ str(self.ID) + ’,Part ’ + str(I)

+ ’,repair due to optimization ,’ +

str(self.part_life[I]) + ’,’ + str(

self.prediction_time[I]) + ’,’ + str(

Fleet.ACPHM[(self.ID ,I)]) + ’,\n’)

elif Fleet.ACPHM [(self.ID ,I)] < 2* Assumption

.step_mis_fly_max and self.prediction[I]

== 1:

self.num_r[I] += 1

Output.part_life_wasted[I] += self.

part_life[I]

self.prediction[I] = 0

Fleet.ACPHM [(self.ID,I)] = 0

phm_event_file.write(str(now()) + ’,AC ’

+ str(self.ID) + ’,Part ’ + str(I)

+ ’,repair due to another repair ,’ +

str(self.part_life[I]) + ’,’ + str(

self.prediction_time[I]) + ’,’ + str(

Fleet.ACPHM[(self.ID ,I)]) + ’,\n’)

optimization_file.write(str(now()) + ’,’ + ’AC’

+ str(self.ID) + ’ performed scheduled

maintenance for part’ + str(Fleet.opt_part[

self.ID]) + ’\n’)

else:

self.num_r = [0]* len(Input.MFHBR)

for I in range(len(Input.MFHBR)):

###Fix the min failure time part along with

any others that will fail on the next

mission

263

if self.part_life[I] == Fleet.opt_part[self.

ID]:

self.num_r[I] += 1

Output.part_life_wasted[I] += self.

part_life[I]

self.prediction[I] = 0

Fleet.ACPHM [(self.ID,I)] = 0

phm_event_file.write(str(now()) + ’,AC ’

+ str(self.ID) + ’,Part ’ + str(I)

+ ’,repair due to optimization ,’ +

str(self.part_life[I]) + ’,’ + str(

self.prediction_time[I]) + ’,’ + str(

Fleet.ACPHM[(self.ID ,I)]) + ’,\n’)

elif self.part_life[I] < 2* Assumption.

step_mis_fly_max and self.prediction[I]

== 1:

self.num_r[I] += 1

Output.part_life_wasted[I] += self.

part_life[I]

self.prediction[I] = 0

Fleet.ACPHM [(self.ID,I)] = 0

phm_event_file.write(str(now()) + ’,AC ’

+ str(self.ID) + ’,Part ’ + str(I)

+ ’,repair due to another repair ,’ +

str(self.part_life[I]) + ’,’ + str(

self.prediction_time[I]) + ’,’ + str(

Fleet.ACPHM[(self.ID ,I)]) + ’,\n’)

optimization_file.write(str(now()) + ’,’ + ’AC’

+ str(self.ID) + ’ performed scheduled

maintenance for part’ + str(Fleet.opt_part[

self.ID]) + ’\n’)

Fleet.mis_all_avg.append(now() - self.t_mis_prep_0)

#Perform failure check

if sum(self.num_r) > 0:

Fleet.maintenance_numbers.append(sum(self.num_r))

Fleet.maintenance_times.append(now())

Fleet.maintenance_aircraft.append(self.ID)

Fleet.last_ME = now()

ac_event_file.write(str(now()) + ’,AC ’ + str(self.

ID) + ’,DT ,failure check complete/awaiting m.f. &

m.s.’ + ’\n’)

#Failures have occurred and maintenance must be

performed

##Seize maintenance team and a repair bay (state is

non mission capable due to repair)

if self.state == 0:

self.available_time += now() - self.t_prev

elif self.state == 1:

self.flying_time += now() - self.t_prev

elif self.state == 2:

self.bar_time += now() - self.t_prev

elif self.state == 3:

self.bap_time += now() - self.t_prev

elif self.state == 4:

264

self.bbr_time += now() - self.t_prev

self.state = 2

self.t_prev = now()

mffile.write(str(now()) + ’,’ + str(len(Maintenance.

resource [0]. MaintenanceFacilities.activeQ)) + ’,’

+ str(len(Maintenance.resource [0].

MaintenanceFacilities.waitQ)) + ’,’ + str(len(

Maintenance.resource [0]. MaintenanceFacilities.

activeQ)+len(Maintenance.resource [0].

MaintenanceFacilities.waitQ)) + ’\n’)

yield request , self , Maintenance.resource [0].

MaintenanceFacilities

mffile.write(str(now()) + ’,’ + str(len(Maintenance.

resource [0]. MaintenanceFacilities.activeQ)) + ’,’

+ str(len(Maintenance.resource [0].

MaintenanceFacilities.waitQ)) + ’,’ + str(len(

Maintenance.resource [0]. MaintenanceFacilities.

activeQ)+len(Maintenance.resource [0].

MaintenanceFacilities.waitQ)) + ’\n’)

msfile.write(str(now()) + ’,’ + str(len(Maintenance.

resource [0]. MaintenanceStaff.activeQ)) + ’,’ +

str(len(Maintenance.resource [0]. MaintenanceStaff.

waitQ)) + ’,’ + str(len(Maintenance.resource [0].

MaintenanceStaff.activeQ)+len(Maintenance.

resource [0]. MaintenanceStaff.waitQ)) + ’\n’)

yield request , self , Maintenance.resource [0].

MaintenanceStaff

msfile.write(str(now()) + ’,’ + str(len(Maintenance.

resource [0]. MaintenanceStaff.activeQ)) + ’,’ +

str(len(Maintenance.resource [0]. MaintenanceStaff.

waitQ)) + ’,’ + str(len(Maintenance.resource [0].

MaintenanceStaff.activeQ)+len(Maintenance.

resource [0]. MaintenanceStaff.waitQ)) + ’\n’)

ac_event_file.write(str(now()) + ’,AC ’ + str(self.

ID) + ’,DT ,have m.f. & m.s./ ready for

documentation ’ + ’\n’)

##Document corrective actions (state is non mission

capable due to repair)

yield hold , self , random.triangular(Assumption.

step_OL_rep_doc_min , Assumption.

step_OL_rep_doc_max , Assumption.

step_OL_rep_doc_mod)

##Proceed with part replacement

self.parts_filled = [0]* len(Input.MFHBR)

ac_event_file.write(str(now()) + ’,AC ’ + str(self.

ID) + ’,DT ,documentation complete/awaiting part

removal ’ + ’\n’)

##Check whether parts are on hand or not

self.parts_acquired = [0]* len(Input.MFHBR)

for I in range(len(Input.MFHBR)):

if len(Spares.local_inventory_Dict [(I,)]) >=

self.num_r[I]:

Change part states from local inventory

to in transit

265

for J in range(self.num_r[I]):

Spares.local_transit_Dict [(I,)]. append(

Spares.local_inventory_Dict [(I,)].pop

())

part_event_file.write(str(now()) + ’,

Part ’ + str(Spares.

local_transit_Dict [(I,)][-1].ID) + ’,

sending part to maintenance facility ’

+ ’\n’)

for K in range(len(Input.MFHBR)):

part_string = str(now()/24.) + ’,

Part category ’ + str(K+1)

temp = 0

for L in range(Input.num_ac):

temp += len(Spares.equipped_Dict

[(K,L)])

temp += len(Spares.

local_transit_Dict [(K,)])

temp += len(Spares.

shipping_to_depot_Dict [(K,)])

temp += len(Spares.

shipping_to_base_Dict [(K,)])

temp2 = temp + len(Spares.

local_inventory_Dict [(K,)]) + len

(Spares.depot_repair_Dict [(K,)])

part_string = part_string + ’,’ +

str(len(Spares.

local_inventory_Dict [(K,)])) + ’,

’ + str(len(Spares.

depot_repair_Dict [(K,)])) + ’,’ +

str(temp) + ’,’ + str(temp2) + ’

\n’

part_file.write(part_string)

self.parts_filled[I] += 1

self.parts_acquired[I] = 1

elif len(Spares.local_inventory_Dict [(I,)]) > 0:

for J in range(len(Spares.

local_inventory_Dict [(I,)])):

Spares.local_transit_Dict [(I,)]. append(

Spares.local_inventory_Dict [(I,)].pop

())

part_event_file.write(str(now()) + ’,

Part ’ + str(Spares.

local_transit_Dict [(I,)][-1].ID) + ’,

sending part to maintenance facility ’

+ ’\n’)

for K in range(len(Input.MFHBR)):

part_string = str(now()/24.) + ’,

Part category ’ + str(K+1)

temp = 0

for L in range(Input.num_ac):

temp += len(Spares.equipped_Dict

[(K,L)])

266

temp += len(Spares.

local_transit_Dict [(K,)])

temp += len(Spares.

shipping_to_depot_Dict [(K,)])

temp += len(Spares.

shipping_to_base_Dict [(K,)])

temp2 = temp + len(Spares.

local_inventory_Dict [(K,)]) + len

(Spares.depot_repair_Dict [(K,)])

part_string = part_string + ’,’ +

str(len(Spares.

local_inventory_Dict [(K,)])) + ’,

’ + str(len(Spares.

depot_repair_Dict [(K,)])) + ’,’ +

str(temp) + ’,’ + str(temp2) + ’

\n’

part_file.write(part_string)

self.parts_filled[I] += 1

##Remove all relevant LRU from aircraft in parallel

(state is being repaired)

if self.state == 0:

self.available_time += now() - self.t_prev

elif self.state == 1:

self.flying_time += now() - self.t_prev

elif self.state == 2:

self.bar_time += now() - self.t_prev

elif self.state == 3:

self.bap_time += now() - self.t_prev

elif self.state == 4:

self.bbr_time += now() - self.t_prev

self.state = 4

self.t_prev = now()

self.max_removal_time = 0

for I in range(len(Input.MFHBR)):

if self.num_r[I] > 0:

self.max_removal_time = max(self.

max_removal_time , random.triangular(Input

.Rem_min[I], Input.Rem_max[I], Input.

Rem_mod[I]))

yield hold , self , self.max_removal_time

##Send broken parts away

for I in range(len(Input.MFHBR)):

for J in range(self.num_r[I]):

De = Depot(I, self.ID)

activate(De,De.Run())

ac_event_file.write(str(now()) + ’,AC ’ + str(self.

ID) + ’,DT ,part removal complete/awaiting new

part’ + ’\n’)

##If all parts were not acquired before , try to

acquire them now

self.waited = 0

if sum(self.parts_acquired) < len(Input.MFHBR):

###Check whether part is on hand or not

for I in range(len(Input.MFHBR)):

267

if self.parts_acquired[I] == 0:

if len(Spares.local_inventory_Dict [(I,)

]) >= self.num_r[I] - self.

parts_filled[I]:

Change part state from local

inventory to in transit

for J in range(self.num_r[I] - self.

parts_filled[I]):

Spares.local_transit_Dict [(I,)].

append(Spares.

local_inventory_Dict [(I,)].

pop())

part_event_file.write(str(now())

+ ’,Part ’ + str(Spares.

local_transit_Dict [(I,)][-1].

ID) + ’,sending part to

maintenance facility ’ + ’\n’)

for K in range(len(Input.MFHBR))

:

part_string = str(now()/24.)

+ ’,Part category ’ + str

(K+1)

temp = 0

for L in range(Input.num_ac)

:

temp += len(Spares.

equipped_Dict [(K,L)])

temp += len(Spares.

local_transit_Dict [(K,)])

temp += len(Spares.

shipping_to_depot_Dict [(K

,)])

temp += len(Spares.

shipping_to_base_Dict [(K

,)])

temp2 = temp + len(Spares.

local_inventory_Dict [(K,)

]) + len(Spares.

depot_repair_Dict [(K,)])

part_string = part_string +

’,’ + str(len(Spares.

local_inventory_Dict [(K,)

])) + ’,’ + str(len(

Spares.depot_repair_Dict

[(K,)])) + ’,’ + str(temp

) + ’,’ + str(temp2) + ’\

n’

part_file.write(part_string)

self.parts_filled[I] += 1

self.parts_acquired[I] = 1

elif len(Spares.local_inventory_Dict [(I

,)]) > 0:

Change part state from local

inventory to in transit

268

for J in range(len(Spares.

local_inventory_Dict [(I,)])):

Spares.local_transit_Dict [(I,)].

append(Spares.

local_inventory_Dict [(I,)].

pop())

part_event_file.write(str(now())

+ ’,Part ’ + str(Spares.

local_transit_Dict [(I,)][-1].

ID) + ’,sending part to

maintenance facility ’ + ’\n’)

for K in range(len(Input.MFHBR))

:

part_string = str(now()/24.)

+ ’,Part category ’ + str

(K+1)

temp = 0

for L in range(Input.num_ac)

:

temp += len(Spares.

equipped_Dict [(K,L)])

temp += len(Spares.

local_transit_Dict [(K,)])

temp += len(Spares.

shipping_to_depot_Dict [(K

,)])

temp += len(Spares.

shipping_to_base_Dict [(K

,)])

temp2 = temp + len(Spares.

local_inventory_Dict [(K,)

]) + len(Spares.

depot_repair_Dict [(K,)])

part_string = part_string +

’,’ + str(len(Spares.

local_inventory_Dict [(K,)

])) + ’,’ + str(len(

Spares.depot_repair_Dict

[(K,)])) + ’,’ + str(temp

) + ’,’ + str(temp2) + ’\

n’

part_file.write(part_string)

self.parts_filled[I] += 1

self.waited = 1

else:

Indicate that the parts queue

must be joined

self.waited = 1

###If it is necessary to wait for parts , join

the parts queue

if self.waited == 1:

ac_event_file.write(str(now()) + ’,AC ’ +

str(self.ID) + ’,DT ,still awaiting new

part’ + ’\n’)

269

Continue to wait for parts to be

available , but release maintenance staff

(state is non mission capable due to

supply)

if self.state == 0:

self.available_time += now() - self.

t_prev

elif self.state == 1:

self.flying_time += now() - self.t_prev

elif self.state == 2:

self.bar_time += now() - self.t_prev

elif self.state == 3:

self.bap_time += now() - self.t_prev

elif self.state == 4:

self.bbr_time += now() - self.t_prev

self.state = 3

self.t_prev = now()

msfile.write(str(now()) + ’,’ + str(len(

Maintenance.resource [0]. MaintenanceStaff.

activeQ)) + ’,’ + str(len(Maintenance.

resource [0]. MaintenanceStaff.waitQ)) + ’,

’ + str(len(Maintenance.resource [0].

MaintenanceStaff.activeQ)+len(Maintenance

.resource [0]. MaintenanceStaff.waitQ)) + ’

\n’)

yield release , self , Maintenance.resource

[0]. MaintenanceStaff

msfile.write(str(now()) + ’,’ + str(len(

Maintenance.resource [0]. MaintenanceStaff.

activeQ)) + ’,’ + str(len(Maintenance.

resource [0]. MaintenanceStaff.waitQ)) + ’,

’ + str(len(Maintenance.resource [0].

MaintenanceStaff.activeQ)+len(Maintenance

.resource [0]. MaintenanceStaff.waitQ)) + ’

\n’)

Call something to check periodically for

parts

Fleet.PartQueue.append(self)

yield passivate , self

ac_event_file.write(str(now()) + ’,AC ’ +

str(self.ID) + ’,DT ,have new part/

awaiting part transfer ’ + ’\n’)

##Wait for parts to be sent (state is non mission

capable due to supply) and , if necessary , request

maintenance staff once more (staff is non

mission capable due to repair)

yield hold , self , random.triangular(Assumption.

step_OL_rep_inv_min , Assumption.

step_OL_rep_inv_max , Assumption.

step_OL_rep_inv_mod)

if self.waited == 1:

ac_event_file.write(str(now()) + ’,AC ’ + str(

self.ID) + ’,DT ,part transferred/awaiting m.s

.’ + ’\n’)

270

if self.state == 0:

self.available_time += now() - self.t_prev

elif self.state == 1:

self.flying_time += now() - self.t_prev

elif self.state == 2:

self.bar_time += now() - self.t_prev

elif self.state == 3:

self.bap_time += now() - self.t_prev

elif self.state == 4:

self.bbr_time += now() - self.t_prev

self.state = 2

self.t_prev = now()

msfile.write(str(now()) + ’,’ + str(len(

Maintenance.resource [0]. MaintenanceStaff.

activeQ)) + ’,’ + str(len(Maintenance.

resource [0]. MaintenanceStaff.waitQ)) + ’,’ +

str(len(Maintenance.resource [0].

MaintenanceStaff.activeQ)+len(Maintenance.

resource [0]. MaintenanceStaff.waitQ)) + ’\n’)

yield request , self , Maintenance.resource [0].

MaintenanceStaff

msfile.write(str(now()) + ’,’ + str(len(

Maintenance.resource [0]. MaintenanceStaff.

activeQ)) + ’,’ + str(len(Maintenance.

resource [0]. MaintenanceStaff.waitQ)) + ’,’ +

str(len(Maintenance.resource [0].

MaintenanceStaff.activeQ)+len(Maintenance.

resource [0]. MaintenanceStaff.waitQ)) + ’\n’)

ac_event_file.write(str(now()) + ’,AC ’ + str(

self.ID) + ’,DT ,have m.s./ awaiting part

installation ’ + ’\n’)

else:

ac_event_file.write(str(now()) + ’,AC ’ + str(

self.ID) + ’,DT ,part transferred/awaiting

part installation ’ + ’\n’)

##Once parts and maintenance staff are on hand

proceed with repairs (state is being repaired)

if self.state == 0:

self.available_time += now() - self.t_prev

elif self.state == 1:

self.flying_time += now() - self.t_prev

elif self.state == 2:

self.bar_time += now() - self.t_prev

elif self.state == 3:

self.bap_time += now() - self.t_prev

elif self.state == 4:

self.bbr_time += now() - self.t_prev

self.state = 4

self.t_prev = now()

self.max_install_time = 0

for I in range(len(Input.MFHBR)):

if self.num_r[I] > 0:

271

self.max_install_time = max(self.

max_install_time , random.triangular(Input

.Ins_min[I], Input.Ins_max[I], Input.

Ins_mod[I]))

yield hold , self , self.max_install_time

##Change part states from in transit to equipped ,

update part life , and prediction time and

prediction (if relevant) for all parts that were

replaced

for I in range(len(Input.MFHBR)):

for J in range(self.num_r[I]):

Spares.equipped_Dict [(I,self.ID)]. append(

Spares.local_transit_Dict [(I,)].pop())

Output.num_used[I] += 1

part_event_file.write(str(now()) + ’,Part ’

+ str(Spares.equipped_Dict [(I,self.ID)

][-1].ID) + ’,reinstalling part on

aircraft ’ + ’\n’)

for K in range(len(Input.MFHBR)):

part_string = str(now()/24.) + ’,Part

category ’ + str(K+1)

temp = 0

for L in range(Input.num_ac):

temp += len(Spares.equipped_Dict [(K,

L)])

temp += len(Spares.local_transit_Dict [(K

,)])

temp += len(Spares.

shipping_to_depot_Dict [(K,)])

temp += len(Spares.shipping_to_base_Dict

[(K,)])

temp2 = temp + len(Spares.

local_inventory_Dict [(K,)]) + len(

Spares.depot_repair_Dict [(K,)])

part_string = part_string + ’,’ + str(

len(Spares.local_inventory_Dict [(K,)

])) + ’,’ + str(len(Spares.

depot_repair_Dict [(K,)])) + ’,’ + str

(temp) + ’,’ + str(temp2) + ’\n’

part_file.write(part_string)

self.part_life[I] = random.expovariate (1/

Input.MFHBR[I])

if ModelVersion.PHM == 1:

self.prediction_time[I] = random.gauss(

Input.lead_time_mean[I]*self.

part_life[I],Input.lead_time_std[I]*

self.part_life[I])

while self.prediction_time[I] < 0 or

self.prediction_time[I] > self.

part_life[I]:

if self.prediction_time[I] < 0:

Output.negative_prediction_times

[I] += 1

272

elif self.prediction_time[I] > self.

part_life[I]:

Output.missed_prediction_times[I

] += 1

self.prediction_time[I] = random.

gauss(Input.lead_time_mean[I]*

self.part_life[I],Input.

lead_time_std[I]*self.part_life[I

])

self.prediction[I] = 0

phm_event_file.write(str(now()) + ’,AC ’

+ str(self.ID) + ’,Part ’ + str(I) +

’,new part life 2,’ + str(self.

part_life[I]) + ’,’ + str(self.

prediction_time[I]) + ’,’ + str(self.

mis_dur) + ’,’ + str(Fleet.ACPHM[(

self.ID,I)]) + ’,\n’)

ac_event_file.write(str(now()) + ’,AC ’ + str(self.

ID) + ’,DT ,part installed/ready for paperwork ’ +

’\n’)

##Document corrective actions (state is non mission

capable due to repair)

if self.state == 0:

self.available_time += now() - self.t_prev

elif self.state == 1:

self.flying_time += now() - self.t_prev

elif self.state == 2:

self.bar_time += now() - self.t_prev

elif self.state == 3:

self.bap_time += now() - self.t_prev

elif self.state == 4:

self.bbr_time += now() - self.t_prev

self.state = 2

self.t_prev = now()

yield hold , self , random.triangular(Assumption.

step_OL_rep_pap_min , Assumption.

step_OL_rep_pap_max , Assumption.

step_OL_rep_pap_mod)

ac_event_file.write(str(now()) + ’,AC ’ + str(self.

ID) + ’,DT ,paperwork done’ + ’\n’)

##Release maintenance team and repair bay

mffile.write(str(now()) + ’,’ + str(len(Maintenance.

resource [0]. MaintenanceFacilities.activeQ)) + ’,’

+ str(len(Maintenance.resource [0].

MaintenanceFacilities.waitQ)) + ’,’ + str(len(

Maintenance.resource [0]. MaintenanceFacilities.

activeQ)+len(Maintenance.resource [0].

MaintenanceFacilities.waitQ)) + ’\n’)

yield release , self , Maintenance.resource [0].

MaintenanceFacilities

273

mffile.write(str(now()) + ’,’ + str(len(Maintenance.

resource [0]. MaintenanceFacilities.activeQ)) + ’,’

+ str(len(Maintenance.resource [0].

MaintenanceFacilities.waitQ)) + ’,’ + str(len(

Maintenance.resource [0]. MaintenanceFacilities.

activeQ)+len(Maintenance.resource [0].

MaintenanceFacilities.waitQ)) + ’\n’)

msfile.write(str(now()) + ’,’ + str(len(Maintenance.

resource [0]. MaintenanceStaff.activeQ)) + ’,’ +

str(len(Maintenance.resource [0]. MaintenanceStaff.

waitQ)) + ’,’ + str(len(Maintenance.resource [0].

MaintenanceStaff.activeQ)+len(Maintenance.

resource [0]. MaintenanceStaff.waitQ)) + ’\n’)

yield release , self , Maintenance.resource [0].

MaintenanceStaff

msfile.write(str(now()) + ’,’ + str(len(Maintenance.

resource [0]. MaintenanceStaff.activeQ)) + ’,’ +

str(len(Maintenance.resource [0]. MaintenanceStaff.

waitQ)) + ’,’ + str(len(Maintenance.resource [0].

MaintenanceStaff.activeQ)+len(Maintenance.

resource [0]. MaintenanceStaff.waitQ)) + ’\n’)

for I in range(len(Input.MFHBR)):

if self.num_r[I] > 0 and ModelVersion.PHM == 1:

Fleet.ACPHM [(self.ID,I)] = 100000

phm_event_file.write(str(now()) + ’,AC ’ +

str(self.ID) + ’,Part ’ + str(I) + ’,

fully reset part ,’ + str(self.part_life[I

]) + ’,’ + str(self.prediction_time[I])

+ ’,’ + str(Fleet.ACPHM [(self.ID,I)]) + ’

,\n’)

self.num_r = [0]* len(Input.MFHBR)

optimization_file.write(’AC’ + str(self.ID) + ’ ran

optimization after flying a mission ’ + ’\n’)

if ModelVersion.MaintenanceOptimizer == 1:

Fleet.opt_schedule , Fleet.opt_maint , Fleet.

opt_part = MILP(Fleet.ACPHM)

self.min_maint_time = 100000

for I in Fleet.opt_maint:

self.min_maint_time = min(self.

min_maint_time ,Fleet.opt_maint[I])

if self.min_maint_time - Fleet.last_ME >= 1.5*

Input.fleet_MTBR:

for I in Fleet.opt_maint:

if Fleet.opt_maint[I] == self.

min_maint_time:

for J in range(len(Input.MFHBR)):

if Fleet.AC[I]. part_life[J] ==

Fleet.opt_part[I]:

Output.part_life_wasted[J]

+= self.part_life[J]

Fleet.AC[I]. prediction[J] =

0

Fleet.ACPHM[(I,J)] = 0

Fleet.AC[I]. num_r[J] += 1

274

phm_event_file.write(str(now

()) + ’,AC ’ + str(I) +

’,Part ’ + str(J) + ’,

repair due to exceeding

distance from last ME

parameter 2,’ + str(self.

part_life[J]) + ’,’ + str

(self.prediction_time[J])

+ ’,’ + str(self.mis_dur

) + ’,’ + str(Fleet.

opt_maint[I]) + ’,’ +

str(Fleet.ACPHM[(I,J)]) +

’,\n’)

elif Fleet.AC[I]. part_life[J] <

2* Assumption.step_mis_fly_max

and Fleet.AC[I]. prediction[J

] == 1:

Output.part_life_wasted[J]

+= Fleet.AC[I]. part_life[

J]

Fleet.AC[I]. prediction[J] =

0

Fleet.ACPHM [(I,J)] = 0

Fleet.AC[I].num_r[J] += 1

phm_event_file.write(str(now

()) + ’,AC ’ + str(I) +

’,Part ’ + str(J) + ’,

repair due to another

repair ,’ + str(self.

part_life[J]) + ’,’ + str

(self.prediction_time[J])

+ ’,’ + str(self.mis_dur

) + ’,’ + str(Fleet.

opt_maint[I]) + ’,’ +

str(Fleet.ACPHM[(I,J)]) +

’,\n’)

Fleet.AC[I]. hold_for_opt_maint = 1

Fleet.AC[I]. hold_time = self.

min_maint_time - now()

SortieGen.MILP_schedule = 1

SortieGen.MILP_day_count = 0

Fleet.maintenance_numbers_after.append (1)

Fleet.ACAvailable.append(self)

ac_event_file.write(str(now()) + ’,AC ’ + str(self.ID) +

’,UT,awaiting mission ’ + ’\n’)

The following module has been denoted by the number ‘7’ in Figure 120. It initial-

izes the states of the parts in the simulation as either equipped on the aircraft, or

in local inventory. It also defines the full set of states that parts may occupy, and

275

these states must be mutually exclusive and all-encompassing. These dictionaries are

containers for part objects, which are moved from container to container as the parts

are moved throughout the supply chain cycle. Through this setup, part objects can

be constantly tracked to ensure that a continuous transfer throughout the simulation

occurs. This is where any additional part logic should be implemented, for instance if

the user wanted to create different levels of inventories at different delay times from

which the fleet could order. One implementation of this would be to model not only

refurbishment of parts, but also manufacturing when necessary.

class Spares ():

ID_count = 0

equipped_Dict = {}

local_transit_Dict = {}

local_inventory_Dict = {}

shipping_to_depot_Dict = {}

depot_repair_Dict = {}

shipping_to_base_Dict = {}

for I in range(len(Input.MFHBR)):

for J in range(Input.num_ac):

equipped_Dict [(I,J)] = []

local_transit_Dict [(I,)] = []

local_inventory_Dict [(I,)] = []

shipping_to_depot_Dict [(I,)] = []

depot_repair_Dict [(I,)] = []

shipping_to_base_Dict [(I,)] = []

def __init__(self , location , part , ac):

self.location = location

self.part = part

self.ac = ac

self.ID = Spares.ID_count

Spares.ID_count += 1

if self.location == ’equip’:

Spares.equipped_Dict [(self.part ,self.ac)]. append(self)

part_event_file.write(str(now()) + ’,Part ’ + str(self.

ID) + ’,created equipped ’ + ’\n’)

elif self.location == ’spare’:

Spares.local_inventory_Dict [(self.part ,)]. append(self)

part_event_file.write(str(now()) + ’,Part ’ + str(self.

ID) + ’,created spare’ + ’\n’)

The following module is denoted by the number ‘8’ in Figure 120. It defines behavior

for both parts and aircraft simultaneously, and is used exclusively when aircraft have

276

requested parts from local inventory and not receieved them by the time the removal

process would otherwise begin. In this case, the aircraft must wait until parts are

available, and an external monitor is required to watch for available inventory and

reactivate the aircraft once it has arrived.

class Inventory(Process):

def __init__(self):

Process.__init__(self)

def Run(self):

while 1:

self.number_parts_needed = [0]* len(Input.MFHBR)

for I in range(len(Fleet.PartQueue)):

for J in range(len(Input.MFHBR)):

self.number_parts_needed[J] += Fleet.PartQueue[I

].num_r[J] - Fleet.PartQueue[I]. parts_filled[

J]

for I in range(len(Input.MFHBR)):

while len(Spares.local_inventory_Dict [(I,)]) > 0 and

self.number_parts_needed[I] > 0:

for J in range(len(Fleet.PartQueue)):

if Fleet.PartQueue[J]. num_r[I] > 0:

if len(Spares.local_inventory_Dict [(I,)

]) >= (Fleet.PartQueue[J]. num_r[I] -

Fleet.PartQueue[J]. parts_filled[I]):

for K in range(Fleet.PartQueue[J].

num_r[I] - Fleet.PartQueue[J].

parts_filled[I]):

Spares.local_transit_Dict [(I,)].

append(Spares.

local_inventory_Dict [(I,)].

pop())

part_event_file.write(str(now())

+ ’,Part ’ + str(Spares.

local_transit_Dict [(I,)][-1].

ID) + ’,sending part to

maintenance facility ’ + ’\n’)

for L in range(len(Input.MFHBR))

:

part_string = str(now()/24.)

+ ’,Part category ’ + str

(L+1)

temp = 0

for M in range(Input.num_ac)

:

temp += len(Spares.

equipped_Dict [(L,M)])

temp += len(Spares.

local_transit_Dict [(L,)])

277

temp += len(Spares.

shipping_to_depot_Dict [(L

,)])

temp += len(Spares.

shipping_to_base_Dict [(L

,)])

temp2 = temp + len(Spares.

local_inventory_Dict [(L,)

]) + len(Spares.

depot_repair_Dict [(L,)])

part_string = part_string +

’,’ + str(len(Spares.

local_inventory_Dict [(L,)

])) + ’,’ + str(len(

Spares.depot_repair_Dict

[(L,)])) + ’,’ + str(temp

) + ’,’ + str(temp2) + ’\

n’

part_file.write(part_string)

self.number_parts_needed[I] -= 1

Fleet.PartQueue[J]. parts_filled[

I] += 1

Fleet.PartQueue[J]. parts_acquired[I]

= 1

elif len(Spares.local_inventory_Dict [(I

,)]) > 0:

for K in range(len(Spares.

local_inventory_Dict [(I,)])):

Spares.local_transit_Dict [(I,)].

append(Spares.

local_inventory_Dict [(I,)].

pop())

part_event_file.write(str(now())

+ ’,Part ’ + str(Spares.

local_transit_Dict [(I,)][-1].

ID) + ’,sending part to

maintenance facility ’ + ’\n’)

for L in range(len(Input.MFHBR))

:

part_string = str(now()/24.)

+ ’,Part category ’ + str

(L+1)

temp = 0

for M in range(Input.num_ac)

:

temp += len(Spares.

equipped_Dict [(L,M)])

temp += len(Spares.

local_transit_Dict [(L,)])

temp += len(Spares.

shipping_to_depot_Dict [(L

,)])

278

temp += len(Spares.

shipping_to_base_Dict [(L

,)])

temp2 = temp + len(Spares.

local_inventory_Dict [(L,)

]) + len(Spares.

depot_repair_Dict [(L,)])

part_string = part_string +

’,’ + str(len(Spares.

local_inventory_Dict [(L,)

])) + ’,’ + str(len(

Spares.depot_repair_Dict

[(L,)])) + ’,’ + str(temp

) + ’,’ + str(temp2) + ’\

n’

part_file.write(part_string)

self.number_parts_needed[I] -= 1

Fleet.PartQueue[J]. parts_filled[

I] += 1

if len(Fleet.PartQueue) > 0:

I_delete = 0

for I in range(len(Fleet.PartQueue)):

if sum(Fleet.PartQueue[I-I_delete].

parts_acquired) == len(Input.MFHBR):

reactivate(Fleet.PartQueue[I-I_delete])

Fleet.PartQueue.pop(I-I_delete)

I_delete += 1

yield hold , self , 0.25

The following module is denoted by the number ‘9’ in Figure 120. Where the module

Spares was used to hold the part objects in different categories, the Depot module

is used to define the behavior that moves part objects between different states. It is

activated once parts are removed from aircraft and manages the logic associated with

sending them to the depot for repair, performing the repair, and returning them to

inventory. This is implemented as a separate module due to the delays involved, since

the logic must pause within the simulation in between different part state transitions.

If this were implemented as part of the fleet logic, the aircraft would need to wait

while parts are sent away and back before continuing on with repairs.

class Depot(Process):

ID_count = 1

def __init__(self , part , ac):

Process.__init__(self)

279

self.part = part

self.ac = ac

self.ID = Depot.ID_count

Depot.ID_count += 1

def Run(self):

#Send one part through the depot repair cycle

##Change state to shipping to depot

Spares.shipping_to_depot_Dict [(self.part ,)]. append(Spares.

equipped_Dict [(self.part ,self.ac)].pop())

part_event_file.write(str(now()) + ’,Part ’ + str(Spares.

shipping_to_depot_Dict [(self.part ,)][-1].ID) + ’,shipping

to depot ’ + ’\n’)

for I in range(len(Input.MFHBR)):

part_string = str(now()/24.) + ’,Part category ’ + str(I

+1)

temp = 0

for J in range(Input.num_ac):

temp += len(Spares.equipped_Dict [(I,J)])

temp += len(Spares.local_transit_Dict [(I,)])

temp += len(Spares.shipping_to_depot_Dict [(I,)])

temp += len(Spares.shipping_to_base_Dict [(I,)])

temp2 = temp + len(Spares.local_inventory_Dict [(I,)]) +

len(Spares.depot_repair_Dict [(I,)])

part_string = part_string + ’,’ + str(len(Spares.

local_inventory_Dict [(I,)])) + ’,’ + str(len(Spares.

depot_repair_Dict [(I,)])) + ’,’ + str(temp) + ’,’ +

str(temp2) + ’\n’

part_file.write(part_string)

##Hold for delay while shipping to depot

yield hold , self , random.uniform(Assumption.

step_ship_base_dep_min , Assumption.step_ship_base_dep_max

)

##Change state to being repaired at depot

Spares.depot_repair_Dict [(self.part ,)]. append(Spares.

shipping_to_depot_Dict [(self.part ,)].pop())

part_event_file.write(str(now()) + ’,Part ’ + str(Spares.

depot_repair_Dict [(self.part ,)][-1].ID) + ’,depot repair ’

+ ’\n’)

for I in range(len(Input.MFHBR)):

part_string = str(now()/24.) + ’,Part category ’ + str(I

+1)

temp = 0

for J in range(Input.num_ac):

temp += len(Spares.equipped_Dict [(I,J)])

temp += len(Spares.local_transit_Dict [(I,)])

temp += len(Spares.shipping_to_depot_Dict [(I,)])

temp += len(Spares.shipping_to_base_Dict [(I,)])

temp2 = temp + len(Spares.local_inventory_Dict [(I,)]) +

len(Spares.depot_repair_Dict [(I,)])

part_string = part_string + ’,’ + str(len(Spares.

local_inventory_Dict [(I,)])) + ’,’ + str(len(Spares.

depot_repair_Dict [(I,)])) + ’,’ + str(temp) + ’,’ +

str(temp2) + ’\n’

part_file.write(part_string)

280

##Hold for delay while repairing at depot

yield hold , self , random.triangular(Assumption.

step_D_rep_min , Assumption.step_D_rep_max , Assumption.

step_D_rep_mod)

##Change state to shipping to base

Spares.shipping_to_base_Dict [(self.part ,)]. append(Spares.

depot_repair_Dict [(self.part ,)].pop())

part_event_file.write(str(now()) + ’,Part ’ + str(Spares.

shipping_to_base_Dict [(self.part ,)][-1].ID) + ’,shipping

to base’ + ’\n’)

for I in range(len(Input.MFHBR)):

part_string = str(now()/24.) + ’,Part category ’ + str(I

+1)

temp = 0

for J in range(Input.num_ac):

temp += len(Spares.equipped_Dict [(I,J)])

temp += len(Spares.local_transit_Dict [(I,)])

temp += len(Spares.shipping_to_depot_Dict [(I,)])

temp += len(Spares.shipping_to_base_Dict [(I,)])

temp2 = temp + len(Spares.local_inventory_Dict [(I,)]) +

len(Spares.depot_repair_Dict [(I,)])

part_string = part_string + ’,’ + str(len(Spares.

local_inventory_Dict [(I,)])) + ’,’ + str(len(Spares.

depot_repair_Dict [(I,)])) + ’,’ + str(temp) + ’,’ +

str(temp2) + ’\n’

part_file.write(part_string)

##Hold for delay while shipping to base

yield hold , self , random.triangular(Assumption.

step_ship_dep_base_min , Assumption.step_ship_dep_base_max

, Assumption.step_ship_dep_base_mod)

##Change state to local inventory

Spares.local_inventory_Dict [(self.part ,)]. append(Spares.

shipping_to_base_Dict [(self.part ,)].pop())

part_event_file.write(str(now()) + ’,Part ’ + str(Spares.

local_inventory_Dict [(self.part ,)][-1].ID) + ’,local

inventory ’ + ’\n’)

for I in range(len(Input.MFHBR)):

part_string = str(now()/24.) + ’,Part category ’ + str(I

+1)

temp = 0

for J in range(Input.num_ac):

temp += len(Spares.equipped_Dict [(I,J)])

temp += len(Spares.local_transit_Dict [(I,)])

temp += len(Spares.shipping_to_depot_Dict [(I,)])

temp += len(Spares.shipping_to_base_Dict [(I,)])

temp2 = temp + len(Spares.local_inventory_Dict [(I,)]) +

len(Spares.depot_repair_Dict [(I,)])

part_string = part_string + ’,’ + str(len(Spares.

local_inventory_Dict [(I,)])) + ’,’ + str(len(Spares.

depot_repair_Dict [(I,)])) + ’,’ + str(temp) + ’,’ +

str(temp2) + ’\n’

part_file.write(part_string)

281

The following lines of code are used to record data for output once per simulation

day. This is where additional output metrics could be defined and computed from

other parameters within the code.

class Daily(Process):

average_PT = 6.8

average_MT = 9.8

def __init__(self):

Process.__init__(self)

def Run(self):

while 1:

if now()/24. == 0:

ao_file.write(’Day , Ao , \n’)

ro_file.write(’Day , Ro , \n’)

mis_prep_time_len = 0

mis_all_time_len = 0

if now()%24. == 0 and now()/24. > 0:

old_mis_prep_time_len = 0

old_mis_prep_time_len += mis_prep_time_len

mis_prep_time_len = len(Fleet.mis_prep_avg)

old_mis_all_time_len = 0

old_mis_all_time_len += mis_all_time_len

mis_all_time_len = len(Fleet.mis_all_avg)

try:

Daily.average_PT = sum(Fleet.mis_prep_avg[

old_mis_prep_time_len:mis_prep_time_len])/(

mis_prep_time_len -old_mis_prep_time_len)

Daily.average_MT = sum(Fleet.mis_all_avg[

old_mis_all_time_len:mis_all_time_len])/(

old_mis_all_time_len -mis_all_time_len)

except:

dummy = 0

for I in range(Input.num_ac):

if Fleet.AC[I].state == 0:

Fleet.AC[I]. available_time += now() - Fleet.

AC[I]. t_prev

elif Fleet.AC[I]. state == 1:

Fleet.AC[I]. flying_time += now() - Fleet.AC[

I]. t_prev

elif Fleet.AC[I]. state == 2:

Fleet.AC[I]. bar_time += now() - Fleet.AC[I].

t_prev

elif Fleet.AC[I]. state == 3:

Fleet.AC[I]. bap_time += now() - Fleet.AC[I].

t_prev

elif Fleet.AC[I]. state == 4:

Fleet.AC[I]. bbr_time += now() - Fleet.AC[I].

t_prev

Fleet.AC[I]. t_prev = now()

#Record the day’s Ao

282

available_sum = 0

flying_sum = 0

bar_sum = 0

bap_sum = 0

bbr_sum = 0

available_string = str(now())

flying_string = str(now())

bar_string = str(now())

bap_string = str(now())

bbr_string = str(now())

temp_avail = 0

temp_fly = 0

temp_bar = 0

temp_bap = 0

temp_bbr = 0

for I in range(Input.num_ac):

available_sum += Fleet.AC[I]. available_time

flying_sum += Fleet.AC[I]. flying_time

bar_sum += Fleet.AC[I]. bar_time

bap_sum += Fleet.AC[I]. bap_time

bbr_sum += Fleet.AC[I]. bbr_time

temp_avail += Fleet.AC[I]. available_time

temp_fly += Fleet.AC[I]. flying_time

temp_bar += Fleet.AC[I]. bar_time

temp_bap += Fleet.AC[I]. bap_time

temp_bbr += Fleet.AC[I]. bbr_time

Fleet.AC[I]. available_time = 0

Fleet.AC[I]. flying_time = 0

Fleet.AC[I]. bar_time = 0

Fleet.AC[I]. bap_time = 0

Fleet.AC[I]. bbr_time = 0

ao = (available_sum + flying_sum)/(available_sum +

flying_sum + bar_sum + bap_sum + bbr_sum)

string = str(now() /24.) + ’,’ + str(ao) + ’, \n’

all_string = str(now()/24.) + ’,’ + str(temp_avail)

+ ’,’ + str(temp_fly) + ’,’ + str(temp_bar) + ’,’

+ str(temp_bap) + ’,’ + str(temp_bbr) + ’\n’

ao_file.write(string)

for J in range(len(Input.surge_level)):

if now() > Input.surge_time[J] and now() < Input

.surge_time[J+1]:

ro = 1-(SortieGen.sortie_backlog [-1]/(Input.

OT[int (((now() -24.) /24.) %7)]* Input.

surge_level[J]))

string2 = str(now() /24.) + ’,’ + str(ro) + ’, \n’

ro_file.write(string2)

print now()/24., SortieGen.sortie_backlog , SortieGen.

sortie_aborted

yield hold , self , 24.

The following lines of code are the main function. It initializes and calls all the other

283

modules within the code in order, and then sets the simulation to run. After the

simulation has been completed, several final outputs are printed for review.

def main():

initialize ()

if ModelVersion.PHM == 1:

for I in range(Input.num_ac):

MS = MaintenanceSchedule ()

activate(MS,MS.Run())

SB = SortieBegin ()

activate(SB,SB.Run())

SG = SortieGen ()

activate(SG,SG.Run())

FC = FlightChief ()

GC = GroundCrew ()

M = Maintenance ()

R = Runway ()

for I in range(Input.num_ac):

F = Fleet()

activate(F,F.Run())

S_Dict = {}

for I in range(len(Input.MFHBR)):

for J in range(Input.num_ac):

for K in range (1):

S_Dict[str(J*K)] = Spares(’equip’, I, J)

part_string = str(now()/24.) + ’,Part category ’ + str(I+1)

temp = 0

for J in range(Input.num_ac):

temp += len(Spares.equipped_Dict [(I,J)])

temp += len(Spares.local_transit_Dict [(I,)])

temp += len(Spares.shipping_to_depot_Dict [(I,)])

temp += len(Spares.shipping_to_base_Dict [(I,)])

temp2 = temp + len(Spares.local_inventory_Dict [(I,)]) + len(

Spares.depot_repair_Dict [(I,)])

part_string = part_string + ’,’ + str(len(Spares.

local_inventory_Dict [(I,)])) + ’,’ + str(len(Spares.

depot_repair_Dict [(I,)])) + ’,’ + str(temp) + ’,’ + str(

temp2) + ’\n’

part_file.write(part_string)

for J in range(Input.num_spares[I]):

S_Dict[str(J+Input.num_ac)] = Spares(’spare’, I, 0)

part_string = str(now()/24.) + ’,Part category ’ + str(I+1)

temp = 0

for J in range(Input.num_ac):

temp += len(Spares.equipped_Dict [(I,J)])

temp += len(Spares.local_transit_Dict [(I,)])

temp += len(Spares.shipping_to_depot_Dict [(I,)])

temp += len(Spares.shipping_to_base_Dict [(I,)])

temp2 = temp + len(Spares.local_inventory_Dict [(I,)]) + len(

Spares.depot_repair_Dict [(I,)])

284

part_string = part_string + ’,’ + str(len(Spares.

local_inventory_Dict [(I,)])) + ’,’ + str(len(Spares.

depot_repair_Dict [(I,)])) + ’,’ + str(temp) + ’,’ + str(

temp2) + ’\n’

part_file.write(part_string)

I = Inventory ()

activate(I,I.Run())

Da = Daily()

activate(Da,Da.Run())

simulate(until=Input.sim_time)

mis_prep_avg = sum(Fleet.mis_prep_avg)/len(Fleet.mis_prep_avg)

mis_prep_file.write(str(Fleet.mis_prep_min) + ’,’ + str(Fleet.

mis_prep_max) + ’,’ + str(mis_prep_avg) + ’,’ + str(Fleet.

mis_prep_max -Fleet.mis_prep_min))

print Output.num_broken , Output.num_used , Output.

part_life_wasted

print Output.negative_prediction_times , Output.

missed_prediction_times

print Fleet.maintenance_times

print Fleet.maintenance_aircraft

print SortieGen.total_missions_generated

print Fleet.total_missions_flown

print len(Fleet.maintenance_times), sum(Output.num_used)

print Fleet.maintenance_numbers

print Fleet.maintenance_numbers_after

print Fleet.num_detections

print Fleet.mission_failures

print Fleet.phm_repairs

print Fleet.flight_hours

print Fleet.low_detect

print Fleet.one_count ,Fleet.two_count

if __name__ == ’__main__ ’: main()

285

REFERENCES

[1] “Interim dod instruction 5000.02: Operation of the defense acquisition system.”

[2] Abell, J. B., Carter, G. M., Isaacson, K. E., and Lippiatt, T. F.,
“Estimating requirements for aircraft recoverable spare and depot repair,” tech.
rep., RAND, 1993.

[3] Adams, J. L., Abell, J. B., and Isaacson, K. E., “Modeling and fore-
casting the demand for aircraft recoverable spare parts,” tech. rep., RAND,
1993.

[4] Akturk, M. S. and Gurel, S., “Machining conditions-based preventive
maintenance,” International Journal of Production Research, vol. 45, pp. 1725–
1743, April 2007.

[5] Allen, T. M., “Zero maintenance - definition.” Presentation.

[6] Ames, W. J., “Logistical effectiveness of two-level maintenance,” tech. rep.,
Air Command and Staff College Air University, 2000.

[7] Aronis, K.-P., Magou, I., Dekker, R., and Tagaras, G., “Inventory
control of spare parts using a bayesian approach: A case study,” European
Journal of Operational Research, vol. 154, pp. 730–739, 2004.

[8] Ayyub, B. M. and Klir, G. J., Uncertainty Modeling and Analysis in Engi-
neering and the Sciences. CRC Press, 2006.

[9] Bae, S. J., Kuo, W., and Kvam, P. H., “Degradation models and im-
plied lifetime distributions,” Reliability Engineering and System Safety, vol. 92,
pp. 601–608, 2007.

[10] Barlow, R. and Hunter, L., “Optimum preventive maintenance policies,”
Operations Research, vol. 8, pp. 90–100, Jan/Feb 1960.

[11] Bateman, J. F., “Preventive maintenance: Stand alone manufacturing com-
pared with cellular manufacturing,” Industrial Management, vol. 20, pp. 19–21,
January/February 1995.

[12] Birge, J. R. and Louveaux, F., Introduction to Stochastic Programming.
Springer-Verlag, 1997.

[13] Boggs, P. T. and Tolle, J. W., “Sequential quadratic programming,” Acta
Numerica, vol. 4, pp. 1–51, 1995.

286

[14] Boito, M., Cook, C. R., and Graser, J. C., “Contractor logistics support
in the u.s. air force,” tech. rep., RAND, 2009.

[15] Booz Allen, “Performance based logistics.” Electronic.

[16] Brown, F. T., Engineering System Dynamics: A Unified Graph-Centered Ap-
proach. Taylor & Francis Group, 2nd ed., 2007.

[17] Caramia, M. and Dell’Olmo, P., Multi-objective Management in Freight
Logistics Increasing Capacity, Service Level and Safety with Optimization Al-
gorithms, ch. 2, pp. 11–36. Springer, 2008.

[18] Chin, H. H., “Turbine engine hot section prognostics,” Applied Concept Re-
search Inc., 2003.

[19] Chinnam, R. B., “On-line reliability estimation for individual components
using statistical degradation signal models,” Quality and Reliability Engineering
International, vol. 18, pp. 53–73, 2002.

[20] Cho, P. Y., “Optimal scheduling of fighter aircraft maintenance,” Master’s
thesis, Massachusetts Institute of Technology, 2009.

[21] Chueng, K. L. and Hausman, W. H., “Joint determination of preventive
maintenance and safety stocks in an unreliable production environment,” Naval
Research Logistics, vol. 44, pp. 257–272, 1997.

[22] Cole, A., “Pentagon’s carter eyes closer industry ties,” Wall Street Journal,
Eastern edition, May 1 2009.

[23] Crocker, J. and Kumar, U., “Age-related maintenance versus reliability
centred maintenance: a case study on aero-engines,” Reliability Engineering
and System Safety, vol. 67, pp. 113–118, 2000.

[24] Danis, M., “Learning algorithms in optimization of project scheduling in mi-
crosoft project 2003,” Master’s thesis, Stockholm University, 2005.

[25] Daskilewicz, M. J. and German, B. J., “Nondomination-level coordi-
nate system for parameterizing and exploring pareto frontiers,” AIAA Journal,
vol. 51, no. 8, pp. 1946–1959, 2013.

[26] Defense Acquisition University, Performance Based Logistics: A Pro-
gram Manager’s Product Support Guide. Department of Defense, 2005.

[27] Defense Acquisition University, “Information paper on materiel avail-
ability (am), materiel reliability (rm), and operational availability (ao).” Online,
December 2008.

[28] Dekker, R., “Applications of maintenance optimization models: a review and
analysis,” Reliability Engineering and System Safety, vol. 51, pp. 229–240, 1996.

287

[29] Dekker, R. and Scarf, P. A., “On the impact of optimisation models in
maintenance decision making: the state of the art,” Reliability Engineering and
System Safety, vol. 60, pp. 111–119, 1998.

[30] Department of the Air Force, “Contract sustainment support guide,”
tech. rep., United States Air Force, 2013.

[31] Department of the Army, Department of the Army Technical Bulletin:
Phase Maintenance System for Army Aircraft. Department of the Army, May
1984.

[32] Doksum, K. A. and Hyland, A., “Models for variable-stress accelerated
life testing experiments based on wiener processes and the inverse gaussian
distribution,” Technometrics, vol. 34, pp. 74–82, 1992.

[33] Ehrgott, M., Multicriteria Optimization. Springer Berlin Heidelberg New
York, 2005.

[34] Ehrgott, M. and Gandibleux, X., “A survey and annotated bibliography
of multiobjective combinatorial optimization,” OR Spektrum, vol. 22, pp. 425–
460, 2000.

[35] Ehrgott, M. and Gandibleux, X., “Approximate solution methods for mul-
tiobjective combinatorial optimization,” Top, vol. 12, no. 1, pp. 1–89, 2004.

[36] Eisenmann Sr., R. C. and C., E. J. R., Machinery malfunction diagnosis
and correction: vibration analysis and troubleshooting for the process industries.
Prentice-Hall, 1998.

[37] Elwany, A. H. and Gebraeel, N. Z., “Sensor-driven prognostic models for
equipment replacement and spare parts inventory,” IIE Transactions, vol. 40,
pp. 629–639, April 2008.

[38] Elwany, A. H., Gebraeel, N. Z., and Maillart, L. M., “Structured
replacement policies for components with complex degradation processes and
dedicated sensors,” Operations Research, vol. 59, no. 3, pp. 684–695, 2011.

[39] Faas, P. D., “Simulation of autonomic logistics system (als) sortie generation,”
Master’s thesis, Air Force Institute of Technology, 2003.

[40] Ferguson, T. S., “Linear programming: A concise introduction.” Course
notes found online.

[41] Fishman, G. S., Discrete-Event Simulation: Modeling, Programming and
Analysis. Springer, 2001.

[42] Fraser, K. F., “An overview of health and usage monitoring systems (hums)
for military helicopters,” tech. rep., Defence Science and Technology Organzia-
tion Melbourne (Australia), 1994.

288

[43] Gaguzis, M. P., “Effectiveness of condition-based maintenance in army avia-
tion,” Master’s thesis, U. S. Army Command and General Staff College, 2009.

[44] Gebraeel, N. Z. and Lawley, M. A., “A neural network degradation model
for computing and updating residual life distributions,” IEEE Transactions on
Automation Science and Engineering, vol. 5, pp. 154–163, January 2008.

[45] Gebraeel, N. Z., Lawley, M. A., and Li, Rong; Ryan, J. K., “Residual-
life distributions from component degradation signals a bayesian approach,” IIE
Transactions, vol. 37, pp. 543–557, 2005.

[46] German, R., Logothetis, D., and Trivedi, K. S., “Transient analysis
of markov regenerative stochastic petri nets: A comparison of approaches,” in
Proceedings of the Sixth International Workshop on Petri nets and Performance
Models, 1995.

[47] Gilbert, N. and Terna, P., “How to build and use agent-based models in
social science,” Mind & Society, vol. 1, pp. 57–72, 2000.

[48] Golmakani, H. R., “Condition-based inspection scheme for condition-based
maintenance,” International Journal of Production Research, vol. 50, pp. 3920–
3935, 2012.

[49] Grall, A., Brenguer, C., and Dieulle, L., “A condition-based mainte-
nance policy for stochastically deteriorating systems,” Reliability Engineering
and System Safety, vol. 76, pp. 167–180, 2002.

[50] Gurobi, Optimizing MIP Problems: A primer on the basics of mixed integer
programming.

[51] Haas, P. J., Stochastic Petri Nets: Modeling, Stability, Simulation. Springer-
Verlag, 2002.

[52] Hartzell, A. L., Da Silva, M. G., and Shea, H. R., MEMS Reliability.
Springer, 2010.

[53] Hess, A., Calvello, G., and Dabney, T., “Phm a key enabler for the
jsf autonomic logistics support concept,” in 2004 IEEE Aerospace Conference
Proceedings, pp. 3543–3550, 2004.

[54] Hill, R. R. and McIntyre, G. A., “Applications of discrete event simulation
modeling to military problems,” in Proceedings of the 2001 Winter Simulation
Conference (Peters, B. A., Smith, J. S., Medeiros, D. J., and Rohrer,
M. W., eds.), 2001.

[55] Hillier, F. S. and Lieberman, G. J., Introduction to Operations Research.
Holden-Day, 7th ed., 1967.

289

[56] Iakovidis, K., “Comparing f-16 maintenance scheduling philosophies,” Mas-
ter’s thesis, Air Force Institute of Technology, 2005.

[57] Jardine, A. K. S., Banjevic, D., and Makis, V., “Optimal replacement
policy and the structure of software for condition-based maintenance,” Journal
of Quality in Maintenance Engineering, vol. 3, no. 2, pp. 109–119, 1997.

[58] Jardine, A. K. S., Joseph, T., and Banjevic, D., “Optimizing condition-
based maintenance decision for equipment subject to vibration monitoring,”
Journal of Quality in Maintenance Engineering, vol. 5, no. 3, pp. 192–202,
1999.

[59] Jardine, A. K. S., Handbook of Operations Research, ch. I-12, pp. 372–389.
Van Nostrand Reinhold Company, 1978.

[60] Jardine, A. K. S., Lin, D., and Banjevic, D., “A review on machinery
diagnostics and prognostics implementing condition-based maintenance,” Me-
chanical Systems and Signal Processing, vol. 20, pp. 1483–1510, 2006.

[61] Jardine, A. K. S., Maintenance Excellence: Optimizing Equipment Life-Cycle
Decisions, ch. 11, pp. 289–322. Marcel Dekker, 2001.

[62] Kang, K., Gue, K. R., and Eaton, D. R., “Cycle time reduction for naval
aviation depots,” in Proceedings of the 1998 Winter Simulation Conference
(Medeiros, D., Watson, E., Carson, J., and Manivannan, M., eds.),
1998.

[63] Kharoufeh, J. P. and Cox, S. M., “Stochastic models for degradation-based
reliability,” IIE Transactions, vol. 37, pp. 533–542, 2005.

[64] Kharoufeh, J. P., Solo, C. J., and Ulukus, M. Y., “Semi-markov models
for degradation-based reliability,” IIE Transactions, vol. 42, pp. 599–612, 2010.

[65] Kiebler, K. K., Dibble, G. B., Klapper, L. S., Linville, R. P., Perry,
J. H., and Zurlo, J. M., “The depot repair cycle process: Opportunities for
business practice improvement,” tech. rep., Logistics Management Institute,
2000.

[66] Klutke, G.-A., Kiessler, P. C., and Wortman, M. A., “A critical look
at the bathtub curve,” IEEE Transactions on Reliability, vol. 52, no. 1, pp. 125–
129, 2003.

[67] Koochaki, J., Bokhorst, J. A., Hans, W., and Warse, K., “The influ-
ence of condition-based maintenance on workforce planning and maintenance
scheduling,” International Journal of Production Research, vol. 51, pp. 2339–
2351, 2013.

290

[68] Koochaki, J., Bokhorst, J. A., Wortmann, H., and Klingenberg, W.,
“Condition based maintenance in the context of opportunistic maintenance,”
International Journal of Production Research, vol. 50, pp. 6918–6929, 2012.

[69] Krieg, K. J., “Dodi 3110.05,” September 2006.

[70] Kumar, U. D., “Tutorials on life cycle coscost and reliability engineering:
Course material.” Course notes provided by Dr. Schrage.

[71] Kumar, U. D., “New trends in aircraft reliability and maintenance measures,”
Journal of Quality in Maintenance Engineering, vol. 5, no. 4, pp. 287–296, 1999.

[72] Lawler, G. F., Introduction to Stochastic Processes. Chapman & Hall/CRC,
second ed., 2006.

[73] Lee, H. L., Padmanbhan, V., and Whang, S., “Information distortion
in a supply chain: The bullwhip effect,” Management Science, vol. 43, no. 4,
pp. 546–558, 1997.

[74] Lesobre, R., Bouvard, K., Brenguer, C., Barros, A., and Cocquem-
pot, V., “A maintenance free operating period policy for a multi-component
system with different information levels on the components state,” Chemical
Engineering Transactions, vol. 33, pp. 1051–1056, 2013.

[75] Liu, P. H., Makis, V., and Jardine, A. K. S., “Scheduling of the optimal
tool replacement time in a flexible manufacturing system,” IIE Transactions,
vol. 33, pp. 487–495, 2001.

[76] Lockheed Martin Aeronautics Company, “Usaf extends phase mainte-
nance interval on lockheed martin block 40/42/50/52 f-16s usaf extends phase
maintenance interval on lockheed martin block 40/42/50/52 f-16s.” Press Re-
lease, May 24 2000.

[77] Luenberger, D. G. and Ye, Y., Linear and Nonlinear Programming.
Springer Science+Business Media LLC, 3rd ed., 2008.

[78] Malley, M. E., “A methodology for simulating the joint strike fighter’s (jsf)
prognostics and heath management system,” Master’s thesis, Air Force Institute
of Technology, 2001.

[79] Martin, L., “F-35 lightning ii: Defining the future.”

[80] Mathaisel, D. F., Cathcart, T. P., and Comm, C. L., “A framework
for benchmarking, classifying, and implementing best sustainment practices,”
Benchmarking: An International Journal, vol. 11, no. 4, pp. 403–417, 2004.

[81] Matloff, N., Introduction to Discrete-Event Simulation and the SimPy Lan-
guage. University of California, Davis, 2008.

291

[82] Mavrotas, G. and Diakoulaki, D., “A branch and bound algorithm for
mixed zero-one multiple objective linear programming,” European Journal of
Operational Research, vol. 107, pp. 530–541, 1998.

[83] Meeker, W. Q., Escobar, L. A., and Lu, C. J., “Accelerated degradation
tests: Modeling and analysis,” Technometrics, vol. 40, pp. 89–99, May 1998.

[84] Mobley, R. K., An Introduction to Predictive Maintenance. Elsevier, 2002.

[85] Muckstadt, J. A., Analysis and Algorithms for Service Parts Supply Chains.
Springer, 2005.

[86] Mullen, M., “Joint publication 3-0: Joint operations,” 2011.

[87] Neelakanteswararao, A. and Bhadury, B., “Opportunistic maintenance
of multi-equipment system: A case study,” Quality and Reliability Engineering
International, vol. 16, pp. 487–500, 2000.

[88] Nelson, W., Accelerated testing: Statistical models, test plans and data anal-
yses. Wiley-Interscience, 2004.

[89] Ng, I. C., Maull, R., and Yip, N., “Outcome-based contracts as a driver for
systems thinking and service-dominant logic in service science: Evidence from
the defence industry,” European Management Journal, vol. 27, pp. 377–387,
2009.

[90] Niazi, M. and Hussain, A., “Agent-based computing from multi-agent sys-
tems to agent-based models, a visual survey,” Scientometrics, vol. 89, pp. 479–
499, 2011.

[91] Office of the Undersecretary of Defense (Comptroller), “Opera-
tion and maintenance programs (o-1) revolving and management funds (rf-1),”
tech. rep., United States Department of Defense, 2012.

[92] Olfati-Saber, R., “Concensus and cooperation in nenetwork multi-agent sys-
tems,” in Proceedings of the IEEE, vol. 95, pp. 215–233, 2007.

[93] Randall, W. S., Nowicki, D. R., and Hawkins, T. G., “Explaining the
effectiveness of performance-based logistics: a quantitative examination,” The
International Journal of Logistics Management, vol. 22, no. 3, pp. 324–348,
2011.

[94] Relf, M. N., “Maintenance-free operating periods - the designer’s challenge,”
Quality and Reliability Engineering International, vol. 15, pp. 111–116, 1999.

[95] Robinson, S., “Discrete-event simulation: from the pioneers to the present,
what next?,” Journal of the Operational Research Society, vol. 56, pp. 619–629,
2005.

292

[96] Rushmeier, R. A. and Kontogiorgis, S. A., “Advances in the optimization
of airline fleet assignment,” Transportation Science, vol. 31, no. 2, pp. 159–169,
1997.

[97] Sadoun, B., “Applied system simulation: a review study,” Information Sci-
ences, vol. 124, pp. 173–192, 2000.

[98] Saltmarsh, E. A. and Mavris, D. N., “Simulating corrective mainte-
nance: Aggregating component level maintenance time uncertainty at the sys-
tem level,” in 2013 Conference on Systems Engineering Research (Paredis,
C. J., Bishop, C., and Bodner, D., eds.), vol. 16, pp. 459–468, Elsevier,
2013.

[99] Scarf, P. A., “On the application of mathematical models in maintenance,”
European Journal of Operational Research, vol. 99, pp. 493–506, 1997.

[100] Scheuren, W., “Safety and the military aircraft joint strike fighter prognostics
and health management,” in 34th AIAA/ASME/SAE/ASEE Joint Propulsion
Conference and Exhibit, 1998.

[101] Schrijver, A., Theory of Linear and Integer Programming. John Wiley &
Sons, Ltd., 1986.

[102] Schweitzer, P. J., “Optimal replacement policies for hyperexponentially and
uniformly distributed lifetimes,” Operations Research, vol. 15, pp. 360–362,
March 1967.

[103] Seibers, P.-O., “Simulation: A key technique in operational research.” On-
line, February 2006. Research seminar presentation.

[104] Shah, J., Supply Chain Management: Text and Cases. Pearson Education,
2009.

[105] Swanson, D. C., “A general prognostic tracking algorithm for predictive main-
tenance,” in Proceedings in IEEE Aerospace Conference, vol. 6, pp. 62971–
62977, 2001.

[106] Swanson, L., “Linking maintenance strategies to performance,” International
Journal of Production Economics, vol. 70, pp. 237–244, 2001.

[107] Tako, A. A. and Robinson, S., “The application of discrete event simula-
tion and system dynamics in the logistics and supply chain context,” Decision
Support Systems, vol. 52, pp. 802–815, 2012.

[108] Tompkins, M. F., “Optimization techniques for task allocation and scheduling
in distributed multi-agent operations,” Master’s thesis, Massachusetts Institute
of Technology, 2003.

293

[109] Tripp, R. S., McGarvey, R. G., Van Roo, B. D., Masters, J. M.,
and Sollinger, J. M., “A repair network concept for air force maintenance:
Conclusions from analysis of c-130, f-16, and kc-135 fleets,” tech. rep., RAND,
2010.

[110] United States Air Force, Aircraft and Equipment Maintenance Manage-
ment. United States Air Force, October 2013.

[111] United States Air Force Scientific Advisory Board, “Sustaining air
force aging aircraft into the 21st century,” tech. rep., United States Air Force,
2011.

[112] United States Department of Defense, “Dod weapon system acquisition
reform product support assessment,” tech. rep., November 2009.

[113] United States Department of Defense, “Contract..” Press Release, De-
cember 2012.

[114] United States Government Accountability Office, “Inventory man-
agement: The army could reduce logistics costs for aviation parts by adopting
best practices,” tech. rep., United States Government Accountability Office,
1997.

[115] United States Government Accountability Office, “Defense inven-
tory: Defense logistics agency needs to expand on efforts to more effectively
manage spare parts,” Tech. Rep. GAO-10-496, United States Government Ac-
countability Office, May 2010.

[116] United States Government Accountability Office, “Joint strike
fighter: Dod actions needed to further enhance restructuring and address af-
fordability risks,” tech. rep., United States Government Accountability Office,
2012.

[117] United States Under Secretary of Defense, “Performance based lo-
gistics: Purchasing under performance based criteria,” 2004.

[118] Vanderplaats, G. N., Numerical Optimization Techniques for Engineering
Design: With Applications. McGraw-Hill Companies, 1984.

[119] Wiseman, M., Maintenance Excellence: Optimizing Equipment Life-Cycle De-
cisions, ch. 12, pp. 323–366. Marcel Dekker, 2001.

[120] Wood, B., “Intelligent building care,” Facilities, vol. 17, pp. 189–194, 1999.

[121] Wu, S.-j., Gebraeel, N., Lawley, M. A., and Yih, Y., “A neural network
integrated decision support system for condition-based optimal predictive main-
tenance policy,” IEEE Transactions on Systems, Man and Cybernetics–Part A:
Systems and Humans, vol. 37, pp. 226–236, March 2007.

294

[122] Xia, T., Xi, L., Zhou, X., and Lee, J., “Condition-based maintenance for
intelligent monitored series system with independent machine failure modes,”
International Journal of Production Research, vol. 51, pp. 4585–4596, 2013.

[123] Yager, N. A., “Models for sortie generation with autonomic logistics capabil-
ities,” Master’s thesis, Air Force Institute of Technology, 2003.

[124] Zhou, M. and Venkatesh, K., Modeling, Simulation, and Control of Flexible
Manufacturing Systems: A Petri Net Approach. World Scientific Publishing
Co., 1999.

295

VITA

Elizabeth Saltmarsh grew up in North Pole, Alaska where she attended North Pole

High School, graduating in 2004. She completed her Bachelor of Science in Aerospace

Engineering at Georgia Institute of Technology in 2008. After graduating, she be-

gan working at the Aerospace Systems Design Laboratory as a research assistant

during which time she completed her Master of Science in Aerospace Engineering in

2010. After completing her Doctor of Philosophy, she will begin working for Northrop

Grumman as part of their Future Technical Leaders program.

296

