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 Climatic and land cover changes present important uncertainties into the rates of 

streamflow and soil erosion in mountainous watersheds. Soil erosion adds constituents to 

streams, altering water chemistry and streambed morphology, which can impact drinking 

water treatment and water resources infrastructure. We applied five erosion and suspended 

sediment load algorithms within a common hydrologic framework to quantify uncertainty 

and evaluate predictability in two steep, forested catchments (> 1,000 km2). The algorithms 

were chosen from among widely used sediment models, including empirical models: 

monovariate rating curve (MRC), and the Modified Universal Soil Loss Equation (MUSLE), 

a stochastic model: the Load Estimator (LOADEST), a conceptual model: the Hydrological 

Simulation Program—Fortran (HSPF), and a physically based model: the Distributed 

Hydrology Soil Vegetation Model (DHSVM). We coupled the algorithms with the Variable 

Infiltration Capacity Model (VIC), using hydrologic and meteorological inputs and fluxes 

generated from VIC. A multi-objective calibration was applied to the algorithms. 

Performance of optimized parameter sets from the calibration were validated over an 

ancillary period, as well as in an inter-basin transfer to a separate catchment to explore 

parameter robustness. This work highlights the tradeoffs in sediment prediction across a 

range of algorithm structures and catchments. Model performance showed consistent 

decreases when parameter sets were applied to time periods with greatly differing SSL 

magnitudes than the calibration period. Solutions from a joint algorithm calibration favored 

simulated streamflow partitioning into runoff and baseflow that optimized SSL timing, 
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impacting the flexibility and robustness of the streamflow to adapt to different time 

periods. Transferability performance was highest in algorithms with lower dependence on 

streamflow performance, the HSPF and the DHSVM. We expect that these more flexible 

and robust algorithms would likely fair better in predicting future climate scenarios due to 

their inclusion of physical conditions, precipitation rates and vegetation coverage, rather 

than solely relying on streamflow as in the case of the MRC. Future work will include 

applying this multi-algorithm routine to the Western United States, covering a greater 

number of catchments across varying climate, topography and land use regimes.  
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CHAPTER 1 

INTRODUCTION 

 

 According to the 2015 Colorado Climate Change Vulnerability Study (Gordon and 

Ojima, 2015), temperatures in Colorado are projected to rise by between +1.4°C and +2.8°C 

by 2050, increasing vulnerability to droughts and wildfire, and potentially leading to higher 

rates of soil erosion (Murdoch, Baron, & Miller, 2000; Smith, Sheridan, Lane, Nyman, & 

Haydon, 2011; Whitehead, Wilby, Battabee, Kernan, & Wade, 2009) throughout the state. 

Soil erosion adds constituents to streams, altering water chemistry and streambed 

morphology, which can adversely affect aquatic life (Rice, Greenwood, & Joyce, 2001) and 

water resource infrastructure (Podolak & Doyle, 2015). This occurs through increased 

contaminant concentrations (Delpla, Jung, Baures, Clement, & Thomas, 2009) and 

sediment buildup above reservoirs (Podolak & Doyle, 2015). 

Climate extremes and human alterations to land cover have intensified erosion and 

sediment loading in streams from local to global scales (Walling, 2006). Simulating 

suspended sediment loading within a catchment is therefore an important task for water 

resources management. Many sediment modeling initiatives have computed erosion and 

transport over individual hillslopes or within small channel reaches or basins (< 50 km2). 

However, there is a gap for expanding these calculations to larger scales. In an analysis of 

global sediment fluxes between land surface and ocean interactions, Walling (2006) 

documented the importance of sediment flux connectivity in major rivers between upstream 
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and downstream locations, as well as across large, continental scopes. Furthermore, studies 

show that global erosion rates have increased due to climatic and human induced changes 

to riverine systems, and that sediment fluxes have decreased due to retention in reservoirs 

(Meybeck, Laroche, Dürr, & Syvitski, 2003; Syvitski, Peckham, Hilberman, & Mulder, 2003; 

Syvitski, Vörösmarty, Kettner, & Green, 2005).  

This work provides a quantitative inter-comparison of erosion and sediment 

transport methods under a unified hydrologic framework and a critical evaluation with real 

catchments (>1,000 km2), representing an important step in large-scale sediment modeling 

that will be integral in future water resources management. 

1.1! Summary of Chapters 

1.1.1 Chapter 2: Background 

 Chapter 2 provides background information on topics relevant to the thesis. Topics 

include the processes of soil erosion and suspended sediment loading in catchments, 

focusing on drivers and conditions that contribute to changes in erosion and loading rates. 

We discuss historical erosion and suspended sediment modeling initiatives and their 

limitations, and propose a method for applying a multi-algorithm routine inserted into a 

common hydrologic framework. 

1.1.2 Chapter 3: Methods 

 Chapter 3 describes our proposed methodology. We include information on site 

locations, data sources, and algorithms. Further, we discuss the methods for implementing 

the multi-algorithm routine under a common large-scale framework, proposing a critical 

area approach. Finally, we provide information on the multi-objective optimization routine 
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for calibrating the algorithms, and discuss the processes of validation and transfer of 

parameter sets to a neighboring catchment. 

1.1.3 Chapter 4: Results 

Chapter 4 presents the results from the multi-algorithm routine. We provide 

statistical analyses of observed streamflow, climate, and suspended sediment loading data, 

discussing differences between calibration and validation periods. We then discuss the 

calibration performance of all experiments under individual and joint algorithm 

calibrations. Further, we present the differences in validation and transferability 

performance across the experiments, and highlight the best performing algorithms. 

1.1.4 Chapter 5: Discussion, Conclusions, and Future Work 

Chapter 5 discusses the outcomes of the multi-algorithm routine, offering 

explanations for algorithm performances, larger implications of the study, and theoretical 

and practical limitations. Finally, we present conclusions and paths for expanding this 

work to greater scales. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Suspended Sediment Background 

Sediment comprises the suspended and deposited soil particles within a stream. 

Sedimentation occurs through the transport of eroded soil into streams, which is driven by 

both physical and biogeochemical processes. Soil erosion is the result of drivers such as 

raindrop impact, overland flow, gullying and mass movement (Knighton, 2014; Wicks & 

Bathurst, 1996). Though these processes are hard to quantify on large scales, overall rates 

of soil erosion and sedimentation can be inferred across climate and soil regimes by 

predictors such as vegetation cover, soil type, precipitation rates, topography, and 

catchment area (Knighton, 2014). The relationships between sediment loads, soil type, and 

vegetation were determined and validated through in-situ data collection and empirical 

analysis (Goode, Luce, & Buffington, 2012; Wolman & Miller, 1960). Climate effects on 

sediment loading were determined through reviewing climate extreme models and studies 

across land-use types and climate regimes (Moore & Demuth, 2001; Whitehead et al., 2009). 

Both topography and catchment area have also been found to impact sediment loads 

through multiple regression analysis on topographic features in 47 basins located 

throughout the Andes (Aalto, Dunne, & Guyot, 2006), and through experimental 

watersheds used to determine the effect of catchment size on erosion patterns (Lane, 

Hernandez, & Nichols, 1997). 
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Sediment can be divided into categories of bedload and suspended load. Bedload is 

the portion of sediment within a stream that is dominantly comprised of large particles 

such as sands and gravels that require more shear stress to move (Knighton, 2014). 

Suspended sediment, which is commonly termed as wash load and is generated from 

hillslopes, is mostly comprised of fine silts and clays, and is dependent on particle grain 

size, streamflow velocity, shear stress, and the resulting mobilization threshold (Wilcock & 

McArdell, 1993). This section describes the processes of erosion and sediment transport in 

catchments, highlighting key contributing drivers and conditions. 

2.2 Soil Erosion Drivers 

Spatial and temporal patterns of soil erosion are complex. Soil erosion occurs 

through complicated interactions of earth’s processes, affected by myriad climatic, physical, 

chemical and biological factors. The conditions and drivers for soil erosion have been 

studied at great length (Morgan, 2009; Toy, Foster, & Renard, 2002), and though many 

processes contribute to erosional patterns, key conditions and drivers frequently appear. 

Soil erosion depends greatly on conditions of climate, topography, soil texture, vegetation 

and land use. Broadly speaking, the key drivers for erosion are raindrop impact, overland 

flow and gullying, and mass movement (Toy et al., 2002).  

Though gullying and mass movement contribute to sediment loading, the focus of 

this study is on hillslope processes consisting of raindrop impact and overland flow. If the 

conditions are favorable for soil particle detachment, particles can be removed from the soil 

surface by the kinetic energy from raindrop impact or by the shear stress of overland flow. 

After detachment, particles are either transported downhill as suspended material by 

overland flow or deposited. Here, we discuss the conditions that favor soil detachment from 
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hillslopes and contribute to erosion. 

2.2.1 Topography 

Topography is important to consider when estimating erosion patterns in a basin 

(Aalto et al., 2006). In a global analysis of erosion rates as a function of slope, Larsen, 

Montgomery, and Greenberg (2014) found that watersheds dominated by steep terrain tend 

to produce higher sediment yields caused by extensive relief eroding the landscape. 

However, steep terrains are often supply limited, as the sheer slopes are not conducive to 

deposition and much of the material gets washed away. Landscapes that produce the most 

soil therefore tend to be mid to high angled slopes that have a balance between topographic 

relief and supply. Along with slope angle, the length and shape of a slope also affect erosion 

rates. With a longer slope, the volume and velocity of overland flow increases, thereby 

generating more potential erosional power. However, the shape of the slope can either 

compound or mitigate the effects of slope length. In a laboratory study of slope shape on 

sediment yield, Rieke-Zapp and Nearing (2005) documented higher yields from uniform and 

convex slopes than from concave slopes. Uniform slopes rarely occur in nature, whereas 

convex and concave slopes are more common. 

2.2.2 Soil type and texture 

Whether a soil particle will be detached from the land surface depends on the 

properties of the soil. Key factors that affect soil erodibility are texture, aggregation, and 

shear strength (Bryan, 2000; Middleton, 1930). Soil texture, which is the proportion of clay, 

silt and sand, is an important measure for erodibility, as the level of compaction impacts 

overland flow (Middleton, 1930). Though texture is stable through time, aggregation and 

shear strength are highly variable. Studies have shown that these temporal variations 
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directly affect erodibility, and are important for calculating the resistance of soil to erosive 

forces (Bryan, 2000; Nearing, Foster, Lane, & Finkner, 1989). Aggregation, which is the 

combination of two or more soil particles that have a stronger bond than nearby particles 

(Kemper & Chepil, 1965), alters the permeability of the soil, which affects pore space and 

infiltration rates. Furthermore, break-down of aggregates by disruptive forces is highly 

variable depending on the chemical and structural bonds of the aggregated particles. Shear 

strength, which is the ability of soil particles to resist erosive forces, is highly dependent on 

climatic conditions. Shear strength curves are developed from using frictional forces, and 

soil cohesion as an intercept term. 

2.2.3 Climate 

Erosion is affected by climate through changes in precipitation and temperature 

regimes. Precipitation frequency and intensity affect raindrop impact, whereas temperature 

affects freeze-thaw cycles and snow-melt rates. For precipitation, the kinetic energy of a 

raindrop detaches soil particles from the land surface as a function of raindrop mass and 

velocity. Though the effects of precipitation on soil detachment largely depend on soil 

texture, slope and vegetation structure, for the majority of cases, increased precipitation 

causes increased erosion (Morgan, 2009). Soils that are exposed to more frequent or more 

intense precipitation events can become weaker and more susceptible to erosion through 

time, although wetter environments are typically associated with increased vegetation 

density that limit soil erosion over the long-term (Nearing, Pruski, & O’neal, 2004). 

Temperature impacts erosion by affecting snow melt rates and freeze-thaw cycles. 

Frozen or snow-covered soils are largely impervious to erosion. However, thawing soils and 

snow-melt driven overland flow can greatly increase erosion rates and sediment 

concentrations (Glysson, 1987). Therefore, a large amount of erosion occurs in the spring in 
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mountainous regions as soils thaw and snow-melt driven overland flow increases. The 

effects of temperature on erosion rates are complex, though generally higher temperatures 

increase evaporation rates, and decrease plant biomass and soil residues, which could 

heighten erosion rates (Nearing et al., 2004). 

Climate change has the potential to intensify sediment loading (Nearing et al., 2004; 

Whitehead et al., 2009). This can occur through extreme precipitation and drought events, 

or through changes in temperature that affect freeze-thaw cycles. Furthermore, consecutive 

extreme events create compounding effects. For example, extreme precipitation following a 

prolonged drought can cause a flush of soil into streams. Whitehead et al. (2009) present a 

synthesis on the role of extreme climate events on sediment loading. Focusing on the effects 

of heightened precipitation rates and temperature on soil processes, they found that large 

fluxes of suspended sediment loads occurred during storm events following droughts. 

Climate indirectly affects soil erosion as well though disturbances to vegetation and soil 

texture by heightened wildfires and flooding. 

2.2.4 Vegetation and Wildfire 

Generally, a denser vegetation canopy reduces erosion on hillslopes (Morgan, 2009). 

This occurs through the obstruction of precipitation and overland flow, and greater root 

stability for soils. With the presence of a canopy, precipitation is either intercepted and 

evaporated, intercepted and then falls through as leaf drip or stemflow, or is not 

intercepted and proceeds to the ground as direct throughfall. In the second scenario, erosion 

rates depend on the canopy height and the leaf drip diameter. In the third scenario, erosion 

rates directly depend on the precipitation intensity and length of the precipitation event 

(Morgan, 2009). Bare ground, therefore, is much more susceptible to rainfall erosion than a 

heavily forested area with a dense canopy.  
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Wildfires can cause extreme increases in erosion and sediment loading in large part 

from reduced vegetation coverage. In a review of wildfire impacts on water supply, Smith et 

al. (2011) analyzed burned and unburned sites within forest catchments of varying sizes, 

and documented an increase to suspended sediment loading of 1-1459 times in burned 

areas compared to unburned areas. The magnitude of erosion and sediment load increase is 

often correlated with burn severity. In addition to reducing vegetation density, wildfires 

affect the soil properties as well, causing a buildup of hydrophobic residue and increasing 

the soil’s water repellency. Heightened water repellency decreases infiltration rates, which 

generates more overland flow and thereby produces more shear stress acting on the soil. 

Martin and Moody (2001) compared soil infiltration rates between two fire-impacted 

catchments in Colorado and New Mexico. They found that fires altered the composition and 

abundance of riparian vegetation and simultaneously increased the repellency of soil to 

water, thereby causing a flush of eroded soil and runoff into the system. 

2.3 Sediment Loading Drivers 

There are many factors that contribute to suspended sediment transport throughout 

a catchment. Primarily, suspended sediment transport is reliant upon the supply of eroded 

soil, catchment scale and contributing area, transport capacity of streamflow, grain size 

distribution, and connectivity of hillslopes to channels.  

2.3.1 Catchment Scale 

Total sediment loading is often correlated with catchment area, as larger drainage 

areas become sinks for more eroded material. However, analyses show that sediment yield 

normalized by catchment area often decreases after a threshold, as erosion inputs are 
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masked by in-stream processes of transport and deposition (De Vente & Poesen, 2005; Lane 

et al., 1997). Below this threshold, which is site dependent, normalized sediment yield is 

positively correlated with catchment area. 

2.3.2 Transport Capacity, Shear Stress and Grain Size Distribution 

Suspended sediment transport is largely dependent on the transport capacity of 

streamflow. As noted in a review of sediment transport models by Yang (2006), streamflows 

with higher velocities have a greater capacity to entrain particles. As streamflow velocity 

decreases, particles are deposited within a channel because the particle settling velocity 

exceeds that of the streamflow. Settling velocities can range from 0.198 cm/s for a 0.05 mm 

particle diameter to 46.1 cm/s for a 5mm particle diameter (Gibbs, Matthews, & Link, 

1971). Sediment transport is also connected with the grain size distribution of in-stream 

particles. Shear stress increases at higher streamflow velocities, overcoming the thresholds 

required for larger particles to move (Wilcock & McArdell, 1993). Therefore, at high 

streamflow velocities sediment loading increases due to bedload motion and a greater 

entrainment capacity of the streamflow. Despite the contribution of bedload to total 

sediment loads, in a review of grain size partitioning of suspended particles, Turowski, 

Rickenmann, and Dadson (2010) found that in large catchments the rough proportion of 

bedload in suspension ranged from 1% for gravel and rock dominated bed material, to 30-

50% in sand dominated bed material, with a general trend of 10% bed material being in 

suspension. However, the proportion of bedload in suspension also varies as a function of 

streamflow rate. 

2.3.3 Connectivity 

Though erosion occurs throughout a catchment, only a portion of the eroded soil 
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ends up in the stream channel due to hillslope and channel connectivity. Here we define 

connectivity as the movement of sediment sources to sinks, mitigated by the proximity of 

hillslopes to channels, and the contribution of tributaries to larger channels (Bracken, 

Turnbull, Wainwright, & Bogaart, 2015). Soil eroded from a hillslope adjacent to a stream 

channel will affect sediment concentrations more than soil eroded from a disconnected 

hillslope. In steep, mountainous, headwaters regions, hillslope erosion is highly correlated 

with sediment concentration, whereas in terrains with shallow relief and larger streams, 

the sediment concentration is more dependent on bank erosion and sediment transported 

from upstream (Benda, Hassan, Church, & May, 2005). Though connectivity is largely 

controlled by hydrologic processes, the buildup of in-stream sediments and woody debris 

can greatly affect sediment transport as well. For example, even in a highly connected 

system, sediment transport is hindered by landscape buffers such as vegetation or fallen 

trees, in-stream barriers such as large woody debris, or blankets such as floodplains and 

armored channel beds (Fryirs, Brierley, Preston, & Kasai, 2007). 

2.4 Existing Soil Erosion and Sediment Transport Models 

Existing erosion and sediment transport models vary in terms of spatial and 

temporal scales of application, parameter requirements, and model dimension such as one-

dimensional averages of a cross section, two-dimensional averages of cross-section and 

depth, or three-dimensional resolving of both the vertical and horizontal components. Due 

to the reliance on hydrologic inputs, erosion and sediment transport models are frequently 

coupled with hydrologic or land surface models (Arnold, Srinivasan, Muttiah, & Williams, 

1998; Doten, Bowling, Lanini, Maurer, & Lettenmaier, 2006; Nearing et al., 1989), 

requiring more extensive data inputs and computations. Numerous hydrologic models have 



 

 

12 

been developed to address the challenges of measurement limitations, and heterogeneities 

in stream characteristics (Pechlivanidis, Jackson, McIntyre, & Wheater, 2011; Singh & 

Woolhiser, 2002). Concurrently, efforts have been made to simulate soil erosion and 

sediment transport using a variety of empirical, conceptual, stochastic and physically-based 

methods.  

Empirical methods, such as the Universal Soil Loss Equation (USLE) (Wischmeier, 

Smith, & others, 1960), are computationally efficient and are derived from relationships in 

available data. However, their major shortcoming is a homogenous representation of 

catchment systems, as well as estimating outputs based on a single event or over a large 

time-step (Pechlivanidis et al., 2011). Conversely, conceptual models represent a catchment 

or hillslope through storage systems, but are limited by parametric uncertainty due to their 

lack of in-situ observations (Aksoy & Kavvas, 2005). Stochastic methods can relate multiple 

predictors to a response using regression techniques, though these methods are also reliant 

on historical data (Helsel & Hirsch, 2002). Physically-based models tend to be the most 

representative of a system, since they attempt to reconcile the physical properties and 

processes through solving mass and energy conservation equations. However, the 

complexity and data requirements for these models often exceed available information 

(Ranzi, Le, & Rulli, 2012). To date, many modeling initiatives are hybrids of the three 

model categories, combined to increase accuracy and efficiency (Kabir, Dutta, & Hironaka, 

2011; Pechlivanidis et al., 2011; Zuliziana, Tanuma, Yoshimura, & Saavedra, 2015). 

2.4.1 Existing Erosion Models 

A common model used to estimate soil loss in a catchment is the USLE. Developed 

for agricultural applications, the USLE is an empirical method that computes annual soil 

loss as a linear product of empirical factors of soil erodibility, topography, annual rainfall, 
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land cover, and land conservation practice. Because the USLE was limited to agricultural 

field scales, the equation was further developed to incorporate more rigorous parameter 

estimations in the Revised USLE (RUSLE) (Renard et al., 1997) and to exchange rainfall 

with catchment runoff in the Modified USLE (MUSLE) (Williams & Berndt, 1977). Though 

the USLE and its derivatives include local watershed characteristics, they suffer key 

limitations, most notably: the homogenization of attributes within the equation, the lack of 

spatial and temporal representation, and an assumption of linearity among predictor and 

response variables (Merritt, Letcher, & Jakeman, 2003). Because of the inherent spatial 

and temporal variability of soil erosion, models of increasing complexity have been 

developed to capture heterogeneities within a catchment. One such empirical model called 

the Sediment Delivery Distributed Model (SEDD) (Ferro & Porto, 2000), uses computations 

from USLE with an added spatial distribution component to estimate sediment delivery 

within specified morphological units. Empirical models succeed in areas where observed 

data is readily available, however, this is often cumbersome as continuously monitored 

erosion data are rare (Merritt et al., 2003). With increased complexity, the Watershed 

Erosion Prediction Project (WEPP) (Nearing et al., 1989) was developed to provide physical 

estimates of erosion from small hillslopes through rill and interill processes. Rills are 

defined as small channels or grooves within a hillslope, whereas interill areas are the 

segments of land between rills. Furthermore, a coupling scheme was developed to estimate 

WEPP hillslope erosion over larger areas by coupling the erosion computations with a 

large-scale hydrologic model (Mao, Cherkauer, & Flanagan, 2010).  

2.4.2 Existing Sediment Transport Models 

Annual soil loss estimates are useful for long-term land management practices. 

However, shorter term estimates can be more valuable for many applications and these 
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require routing the soil through a catchment to estimate in-stream sediment yield, 

involving additional computations. The relationship between soil loss and sediment yield is 

difficult to quantify, as the transport of eroded soil particles greatly depends on streamflow 

and land surface conditions. The simplest approach to numerical modeling of sediment 

loads is an empirically based sediment rating curve (Gray & Simões, 2008). This mono-

variate rating curve (MRC) fits streamflow data with suspended sediment within a given 

catchment using scalars and exponents. Though MRC estimates are predictive for long-

term loads and general trends, they are reliant upon consistent timing between sediment 

fluxes and peaks of streamflow. Therefore, the MRC is limited by its inability to capture 

heterogeneous hillslope erosion processes. 

Another weakness of the MRC is that it generates a single sediment load for 

multiple streamflow values. Therefore, adding more variables into the equation can produce 

higher explanatory power, as different variables contribute to runoff and sediment loading 

in different ways (Gray & Simões, 2008; Helsel & Hirsch, 2002). For example, the rising 

limb of a hydrograph is controlled by rainfall, whereas the falling limb is controlled by 

antecedent moisture and runoff (Park et al., 1982). Incorporating both streamflow and 

rainfall intensity into multi-variate regression can therefore further separate the sediment 

values in relation to rainfall-runoff events (Syvitski, Morehead, Bahr, & Mulder, 2000). As 

seen in a United States Geological Survey (USGS) study, Gartner, Cannon, Helsel and 

Bandurraga (2009) applied multivariate regression across catchments to calculate sediment 

yield as a function of rainfall, catchment area, topographical features, and fire burn area. 

Furthermore, the USGS developed the Load Estimator (LOADEST) (Runkel, Crawford, & 

Cohn, 2004), a multi-variate regression algorithm that estimates sediment and nutrient 

loads from streamflow magnitude and data collection times. 

With increasing complexity, numerous models have been applied for predicting both 
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soil loss and sediment loads in forested, mountainous regions. Such models include the Soil 

Water Assessment Tool (SWAT) (Arnold et al., 1998), which covers large ungauged 

drainage areas, provides continuous long-term sediment yields on a daily time-step, and 

closes the water-balance equation, albeit the sediment yield is calculated using the 

MUSLE. Similar to SWAT, the Hydrological Simulation Program—Fortran (HSPF) 

(Bicknell, Imhoff, Kittle Jr, Donigian Jr, & Johanson, 1996) estimates erosion and sediment 

transport within hydrologic units across large spatial scales. However, these erosion 

estimates are based on conceptual representations of rainfall impact and overland flow. 

Another more complex sediment delivery model is the System Hydrologique European-

Sediment (SHESED) model (Wicks & Bathurst, 1996), which is physically-based, spatially 

distributed, used at the catchment scale, and models hillslope erosion on a grid scale 

through raindrop and leaf drip impacts and overland flow. SHESED also provides the 

framework for another spatially distributed sediment model developed for the Distributed 

Hydrology-Soil-Vegetation Model (DHSVM) (Doten et al., 2006; Wigmosta, Vail, & 

Lettenmaier, 1994). DHSVM is a spatially distributed, continuous temporal model designed 

for large catchment areas, which also incorporates mass wasting and erosion from forest 

roads. Numerous other physical erosion and sediment transport models exist, each 

developed to reconcile physical processes differently using hillslope and in-channel routing 

mechanisms such as in WEPP, and complex channel geometry and the kinematic wave 

equation as seen in the Kinetic Runoff and Erosion Model (KINEROS2) (Smith, Goodrich, 

Woolhiser, & Unkrich, 1995).  

Erosion and sediment transport models have been developed to estimate soil loss 

and sediment yields over a range of hillslope and catchment sizes. As each method 

simulates processes differently, qualitative and quantitative comparisons are helpful to 

depict the most representative methods. 
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2.4.3 Model Comparisons 

In a review of soil erosion and sediment transport models, Aksoy and Kavvas (2005) 

categorized the most common physically-based sediment transport schemes into multiple 

groups: lumped versus distributed, event based versus continuous, hillslope versus 

catchment scale, 1-dimensional versus 2-dimensional, and single-size versus multi-size 

grain scale. Merritt et al. (2003) also performed a review of erosion and transport models, 

but categorized the models based on input demands, outputs and catchment scale. The 

categories defined in these reviews provide a framework for which sediment transport 

models can be evaluated. 

Though Merritt et al. (2003) and Aksoy and Kavvas (2005) reviewed sediment 

models according to different criteria, very few studies have quantitatively compared and 

analyzed the output of multiple erosion and sediment transport models over the same time 

period and catchment scale. One of the few, Jetten, De Roo, and Favis-Mortlock (1999) ran 

a soil erosion model comparison using seven field scale (0.01 ha to 10 ha) and seven 

catchment scale (40 ha) models, using empirical, conceptual and physical models in their 

study. Jetten et al. (1999) concluded that for the field scale approach, WEPP produced the 

best results, with a correlation coefficient of 0.75 for monthly soil loss and 0.84 for daily soil 

loss when compared with observational data. For the catchment scale, KINEROS2 

produced the highest correlation coefficient of 1.0 when compared with observational data. 

Overall, the study indicated better model performance over longer periods across many of 

the models, and increased skill from relative results (e.g., the ratio of simulated to 

observed) than absolute results (e.g., the absolute difference between simulated and 

observed). 
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2.4.4 Limitations to Existing Modeling Initiatives 

Though the interactions of bedload and suspended load have been accurately 

estimated on a point scale, across a channel cross section, or in a small reach (Walling, 

1983), expanding those calculations to a watershed scale requires extensive fine resolution 

data inputs, and high computational capacity (Yang, 2006). Therefore, while the 

interactions between bedload and suspended load are important, large-scale erosion and 

sediment models focus less on the bedload component. Instead, the models emphasize 

hillslope erosion, particle size distribution of the eroded soil, and the mechanism for how 

the eroded soil is either suspended or deposited in a channel by using the continuity 

equation and transport capacity of overland flow and streamflow (Arnold, Williams, & 

Maidment, 1995; Doten et al., 2006; Nearing et al., 1989). The routing of the eroded soil 

from hillslopes through a large basin remains an open issue due to a high degree of 

heterogeneity in meteorology, soil and hillslope micro-topography, and the dependency of 

sediment loads on grain size and channel geometry (Garcia & Parker, 1991; Wilcock & 

McArdell, 1993; Yang, 2006). Furthermore, the simplification of physical processes and 

input parameters often results in underestimation of sediment yields in large basins (Yang, 

2006).  

2.5 Research Objectives 

The montane forested catchments of the Colorado Front Range are susceptible to 

increased drought and wildfire occurrence by 2050 (Gordon and Ojima, 2015), potentially 

increasing rates of erosion and sediment loading throughout the area (Martin & Moody, 

2001; Smith et al., 2011). Greater sediment loads impact water resources infrastructure 

and reservoir design life, and pose threats to water quality and treatment. Modeling 
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sediment loading in the Front Range is therefore critical to inform future mitigation efforts; 

for example, knowledge of future sediment supply to water treatment plants could aid in 

decisions such as whether to increase filtration measures, add more disinfection chemicals, 

vary the water supply, or prescribe forest thinning (Khan et al., 2015). However, large-scale 

sediment modeling initiatives often contain high levels of uncertainty (Kabir et al., 2011; 

Zuliziana et al., 2015). Therefore, our study sought to advance current erosion and 

sediment transport science by:  

1.! Coupling hillslope erosion computations within a single large-scale hydrologic 

modeling framework, to explore strengths and weaknesses of each algorithm 

within a consistent structure  

2.! Calibrating each algorithm using multi-objective optimization, and applying the 

best performing parameter sets to a neighboring catchment to assess 

transferability 

3.! Providing a quantitative model inter-comparison at much larger scales than 

previous investigations and characterizing the structural uncertainty among 

model estimates 

To complete our objectives, we modeled soil loss and sediment loads in three large 

sub-basins of the Colorado Front Range using two empirical methods, one stochastic 

method, one conceptual model and one physically-based model inserted into a common 

hydrologic framework. The framework was the Variable Infiltration Capacity (VIC) model, 

which is a land surface model (LSM) that resolves both the water balance and energy 

balance (Liang, Lettenmaier, Wood, & Burges, 1994). The empirical methods were the MRC 

and an implementation of the MUSLE adapted by SWAT; the stochastic method was 

LOADEST; the conceptual model was HSPF; and the physically-based model was DHSVM. 

We hypothesized that: 
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1.! The different methods of soil erosion and sediment transport would provide a 

range of uncertainty in sediment estimates at the catchment outlet 

2.! The most predictive sediment calculations would result from the most complex, 

physically-based model 

3.! Algorithms would perform better in the calibration than the validation, and both 

would perform better than the transfer to a neighboring catchment 
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CHAPTER 3 

METHODS 

3.1 Overview 

 We tested a diverse set of model algorithms for estimating suspended sediment loads 

(SSL) within a course 1/16˚ resolution framework consisting of (i) two empirical models, (ii) 

one stochastic model, (iii) one conceptual model, and (iv) one physically-based model. The 

sediment modules from these models were embedded within a large-scale hydrologic model, 

the Variable Infiltration Capacity (VIC) model (Liang et al., 1994) to provide consistency 

and comparability between the models under a common hydrologic framework. We applied 

the algorithms to three steep, mountainous catchments in the Colorado Front Range. Model 

outputs from the first two catchments were calibrated to daily streamflow and 

instantaneous SSL using multi-objective optimization. The best performing parameter sets 

were applied to a different period within the same catchment to test validation and applied 

to the third catchment to test parameter and model transferability. The transferability test 

reflected the flexibility and robustness of parameter sets. 

3.2 Catchment Descriptions and Data Sources 

We ran this study over three catchments on the Colorado Front Range: a sub-basin 

of the Cache La Poudre catchment delineated to USGS gage 06751490 North Fork Cache 
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La Poudre River at Livermore, CO1 (CLP-L), a larger sub-basin of the Cache La Poudre 

catchment delineated to USGS gage 06752000 Cache La Poudre River at Mouth of Canyon 

near Fort Collins, CO2 (CLP-F), and a sub-basin of the Clear Creek catchment delineated to 

USGS gage 06719505 Clear Creek at Golden, CO3 (CC) ( Figure 1). We selected these three 

catchments based on the availability of streamflow and suspended sediment data, and for 

minimal reservoir storage upstream of the gages. Reservoir storage was calculated as a 

percentage of mean annual streamflow using the GAGES-II database (Falcone, 2011). The 

USGS National Water Information System (NWIS) provides water quality data, including 

field-based measurements of depth-integrated suspended sediment concentrations (SSC) 

and SSL. NWIS suspended sediment data is scarce at each catchment, sampled at irregular 

intervals, except for 1981 in CC when daily SSC and SSL were inferred from a turbidimeter 

(Table 1). Turbidimeter estimates for SSC and SSL are calculated through regression from 

turbidity measurements, and therefore the data comes with inherent uncertainty. We 

obtained daily streamflow estimates from USGS for each of the suspended sediment periods 

for CLP-L, CLP-F, and CC. 

 The three catchments were selected for their similar climate, land use and soil 

regimes to test transferability of the suspended sediment model algorithms between 

catchments (CC and CLP-F) and from a smaller catchment located within a larger 

catchment (CLP-L and CLP-F). The catchments are dominated by snow-melt hydrology, 

with high elevation, continental dry climate prone to high snowfall in the winter, and peak 

snow-melt during the spring. The steep mountainous terrain in the area is dominantly 

alpine forests, shrubs, and grasslands, whereas the geology comprises intrusive igneous 

and sedimentary rocks that are largely granitic. 

1 https://waterdata.usgs.gov/co/nwis/uv/?site_no=06751490&agency_cd=USGS 
2 https://waterdata.usgs.gov/co/nwis/dv?referred_module=sw&site_no=06752000 
3 https://nwis.waterdata.usgs.gov/nwis/inventory/?site_no=06719505&agency_cd=USGS 
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Table 1. USGS sediment gage locations and the number of samples with available 
suspended sediment data 

USGS Gage  Latitude Longitude Catchment  
Sample 
Count 

Sample 
Range 

Sampling 
Method 

06751490* 40.788 -105.525 CLP-L 134 1987 - 1999 
Physical 

Measurement 

06752000* 40.664 -105.224 CLP-F 78 1963 - 2002 
Physical 

Measurement 

06719505* 39.753 -105.235 CC 39 1981 - 1995 
Physical 

Measurement 
06719505** 39.451 -105.141 CC 177 1981 - 1981 Turbidimeter 

* Irregular Intervals 
** Daily 
 

 

Figure 1. North Fork of Cache La Poudre at Livermore (CLP-L, USGS 06751490, 1,393 
km2), Cache La Poudre at Mouth of Canyon near Fort Collins (CLP-F, USGS 06752000, 
2,017 km2) and Clear Creek at Golden, CO (CC, USGS 06719505, 1,024 km2) catchments 
located within the Colorado Front Range overlaid by 1/16˚ resolution VIC grid cells. 
Calculated upstream reservoir storage was 35%, 25% and 8% of mean annual streamflow, 
respectively. Shaded regions indicate catchment areas, red dots indicate USGS streamflow 
and SSL gauges, and yellow dots indicate nearby cities.  
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3.3 Description of Model Algorithms  

3.3.1 The Variable Infiltration Capacity model 

 For the common hydrologic framework, we selected VIC, which is a physically-based 

land surface model that simulates hydrologic processes including baseflow, runoff, 

evapotranspiration, soil moisture, and snow water equivalent. VIC is spatially distributed, 

solves both the water and energy balance equations, and is typically applied at resolutions 

of 1/20 ̊ (~4 km) to 1 ̊ (~100km). By integrating sub-grid cell variation in vegetation, soil and 

snow elevation bands, VIC resolves a high 

degree of sub-grid variability and physical complexity.  

VIC was driven with a dataset for the conterminous United States developed at 

1/16˚ spatial resolution on a continuous daily interval (Livneh et al., 2015). This dataset 

includes meteorological forcing files for precipitation, maximum temperature, minimum 

temperature and wind speed. Livneh et al. (2015) gridded the meteorology using 

observations obtained from the National Climatic Data Center Cooperative Observer 

stations coupled with the synergraphic mapping system algorithm, and scaled the 

precipitation to match the monthly output from the Parameter-Elevation Regressions on 

Independent Slopes Model.  

 Lateral transfer between grid cells is not incorporated into VIC, therefore we used 

the RVIC routing model developed for VIC simulations. RVIC solves the linearized Saint-

Venant equations and uses a unit-hydrograph approach to route VIC model outputs to a 

user-defined location (Lohmann, Nolte-Holube, & Raschke, 1996). For each sediment 

module, we assumed constituent loads were advected with the streamflow, though future 

studies will incorporate further estimates of transport capacity and deposition. 
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3.3.2 Monovariate Rating Curve 

 The MRC, also known as a sediment rating curve, is an empirical method developed 

to estimate sediment loading from streamflow. The most common estimate for MRC is in 

the form of a power relationship, where SSL is calculated according to 

SSL = $%&''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''(1) 

where % is streamflow, $ is a coefficient for the intercept, and + is an exponent for slope 

(Gray & Simões, 2008). This method is commonly used by the USGS as a course 

representation of sediment loading throughout a catchment. To develop the coefficients, we 

minimized nonlinear least squares in the base R package. 

 Despite being simple to execute, the MRC method is limited for several reasons. The 

MRC method relies on historical observations of SSL and streamflow to develop and fit to 

observations, limiting its application to ungauged catchments. Furthermore, the MRC 

predicts SSL from a single streamflow value, assuming the SSL and streamflow timing 

align. In systems where hysteresis occurs, e.g. where sediment peaks prior to streamflow, 

the MRC approach is inadequate for capturing SSL timing (Gray & Simões, 2008). Lastly, 

studies show that the MRC method tends to underestimate SSL, as the method ignores 

important contributions from additional drivers, such as precipitation, topography, and soil 

type among other factors (Gray & Simões, 2008). 

 To integrate the MRC into VIC, we ran VIC and RVIC, and then applied the MRC to 

the routed streamflow values at the catchment outlet. For this exercise, streamflow was 

considered the sum of VIC runoff and baseflow. 

3.3.3 Modified Universal Soil Loss Equation 

 The MUSLE is an empirical method used to estimate soil loss from catchment 
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characteristics and land management factors. Adapted from the USLE, the MUSLE 

incorporates six predictors in a linear relationship as  

, = -./012''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''(2) 

where , is average soil loss, - is a runoff factor, . is a soil erodibility index, /0 is a 

topographical index for the length and steepness of a slope, 1 is a crop management factor 

representing vegetation, and 2 is a land conservation factor (Arnold et al., 1998; 

Wischmeier et al., 1960). To apply the MUSLE within VIC, we adopted a similar 

methodology to that used in SWAT. To calculate - for a given streamflow event, the SWAT 

method uses the total volume of runoff in an event (Q) and the peak streamflow rate of the 

event (qp) as  

- = 11.8' % ∗ '78
9.:;

''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''(3) 

The LS factor is determined in SWAT through using slope steepness (S, m/m) and slope 

length (=, m) as  

/0 =
=

22.1

>

(65.41 0 B + 4.565 0 + 0.65''''''''''''''''''''''''''''''''''''''''''''''''''''(4) 

where E is a function of slope: 

E = 0.6 1 − exp −35.835 0 '''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''(5) 

Soil loss is calculated through the MUSLE for each spatially explicit Hydrologic Response 

Unit using the inputs listed above and runoff generated by the SWAT model. Total SSL is 

obtained for the outlet of the catchment by routing the soil using a scheme developed by 

Arnold et al. (1995) that simulates sediment deposition based on particle fall velocity.  

 Though MUSLE is mathematically efficient, the method is limited due to the linear 

relationship among predictors. Furthermore, the predictors are indices that are not directly 

observable and hence are often hard to estimate and constrain. 

To apply the MUSLE in VIC, we incorporated the equations into the daily 



 

 

26 

computations within each VIC grid cell. Within each grid cell, we estimated % as the sum of 

the daily streamflow, and 78 as the daily peak streamflow.  

3.3.4 Load Estimator 

Developed by the USGS, the LOADEST is a stochastic method that uses single and 

multi-variate regression to predict constituent loads such as suspended sediment and 

nutrients in streams from historical data (Runkel et al., 2004). The LOADEST incorporates 

methods from Helsel and Hirsch (2002) to predict SSL using a variety of linear regression 

models incorporating streamflow, collection time, and periodicity. Because SSL data are 

often not normally distributed, the SSL and streamflow data are logarithmically 

transformed to adhere to the linear regression requirements of normally distributed data. 

In the most generalized form, the linear regression is computed as 

ln 00/ = $9 +' $LML''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''(6)

N

LOP

 

where 00/ is a vector of instantaneous loads, $9 and $L are model coefficients, ML is an 

explanatory variable, and n is the number of explanatory variables (Runkel et al., 2004). To 

convert from log space to the instantaneous load, the base e can be raised to the power of 

the regression equation, which becomes a more complex, multi-variate form of the rating 

curve. Within the LOADEST, there are eleven pre-defined models, ranging from the 

simplest mono-variate estimation using streamflow (%): 

ln 00/ = $9 +'$P ln % ''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''(7) 

to a more complex, multi-variate regression using an adjusted collection time (t) 

ln 00/ = $9 + $PRS%'+'$BRS%
B + $T sin 2WX + $Y cos 2WX + '$:X + '$;X

B'''''''''''''''''''''''(8) 

In Equations 7 and 8, ln % is calculated as 
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ln % = 'ln \X]^$_`Rab −cd^SX^]ca` ln \X]^$_`Rab '''''''''''''''''''''''''''''''''''''''''''(9) 

In Equation 8, t is calculated as  

'X = f^dg_$R'Xg_^'−cd^SX^]ca`'f^dg_$R'Xg_^''''''''''''''''''''''''''''''''''''''''''''''''(10) 

The ‘center’ of ln(streamflow) and ‘center’ of decimal time are defined through LOADEST 

using the distributions of the data. 

The models are validated by three error estimate methods over a calibration period: 

for normally distributed residuals, the methods are Maximum Likelihood Estimation 

(MLE) and Adjusted Maximum Likelihood Estimation (AMLE), and for not normally 

distributed residuals the method is Least Absolute Deviation (LAD). Selection of the best 

model occurs through analyzing the AMLE outputs based on Akaike Information Criterion 

(AIC) (Akaike, 1974). For complex systems, the user can preprocess the historical data by 

splitting it into seasons, rising or falling hydrograph limbs, or through using a threshold 

approach. In such a way, different models can be developed for various separations of the 

hydrograph, and combined to create a more robust fit. 

Though the LOADEST is frequently used by USGS and tailored to estimate 

instantaneous SSL in streams, the method is limited by its reliance on historical data. 

Simultaneously, the method is unable to predict SSL from outside of the historical data 

calibration period, making it difficult to forecast scenarios of changing climates or varying 

seasons. 

Like the MRC, to integrate the LOADEST into VIC, we ran VIC and RVIC, and then 

applied the LOADEST to the routed streamflow values at the catchment outlet. For this 

exercise, streamflow was considered the sum of VIC runoff and baseflow. 

3.3.5 Hydrological Simulation Program—Fortran  

 The HSPF is a conceptual model developed by the Environmental Protection Agency 
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to simulate hydrologic processes and the transport of contaminants in catchments for water 

quality purposes (Bicknell et al., 1996; Johanson & Davis, 1980). The HSPF is based on the 

Stanford Watershed Model, and incorporates conceptualized hydrologic storage by 

including snow, surface, upper soil, lower soil and ground-water zones. The model is 

spatially distributed, using homogenous areas characterized by pervious and impervious 

land, as well as a free-flowing reach or mixed reservoir module. The HSPF contains both a 

hillslope erosion module and a bedload transport module. However, for the purposes of this 

study we applied only the hillslope component.  

 The hillslope erosion component is divided into two main categories: detachment by 

rainfall, and wash off and scour by overland flow. The module is applied over a pervious 

land segment, as impervious segments are assumed to not generate sediment. Rainfall 

detachment (DET, tons/ac/interval) is estimated by using the kinetic energy of raindrops as  

hij = fX' 1 − 1- 2 .
k

fX

lm

'''''''''''''''''''''''''''''''''''''''''''''''''''''''(11) 

where dt is the number of hours in the time interval, CR is the fraction of snow and 

vegetation cover, P is the practice management factor adopted from the USLE, K is the 

detachment coefficient adopted from the USLE, I is the rainfall intensity (in/interval), and 

JR is the detachment exponent. HSPF further simulates the effect of rainfall by decreasing 

DET following a day without rainfall using a parameter AFFIX as  

hij = hij(1.0 − ,nnkM)'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''(12) 

Once the soil is detached by rainfall, it can either be re-deposited or transported by 

overland flow. To simulate this process, HSPF uses a conceptualized method for estimating 

transport capacity (TC, tons/ac/interval) as  

j1 = 'fX .0
0o + 0p

fX

lq

'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''(13) 
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where KS is the transport coefficient, SU is the surface water storage (in), SO is the surface 

water outflow (in/interval), and JS is the transport exponent. The HSPF has two methods 

for simulating transport capacity, with this being the primary method despite the 

dimensional non-homogeneity. The transport capacity is then related to the detached 

sediment to estimate sediment washoff (WSSD, tons/ac/interval) 

r00h =
hij0 0o

0o + 0p
'''''''''''''''g`''j1 > hij'''''''''''''''''''''''''''''''''''''''''''''''''''(14) 

r00h =
j1 0o

0o + 0p
'''''''''''''''g`''j1 < 'hij'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 

where DETS is detached sediment storage (tons/ac).  

 Scour from the soil matrix (SCR, tons/ac/interval) incorporates similar processes, 

using the overland flow as a metric for detachment: 

01- =
0o

0o + 0p
fX .u

0o + 0p

fX

lv

'''''''''''''''''''''''''''''''''''''''''''''''''''''(15) 

where KG is the scour coefficient and JG is the scour exponent. 

 The hillslope erosion component of the HSPF is simple and efficient, using 

conceptualizations of physical mechanisms to predict SSL. However, the module is 

dependent on numerous coefficients and exponents that are not directly observable and 

estimating them can result in overfitting. Furthermore, HSPF has many parameters 

requiring calibration from historical observations, which makes the model difficult to apply 

in ungauged catchments that do not have available data. 

To integrate HSPF into VIC, we computed erosion estimates within each VIC grid 

cell for the daily timestep, similar to the MUSLE. To obtain SO estimates, we used the sub-

daily VIC runoff calculations for each grid cell, as this represents overland flow. 
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3.3.6 Distributed Hydrology Soil Vegetation Model 

 The DHSVM is a physically-based, spatially distributed LSM that resolves the 

energy and water balances (Wigmosta et al., 1994). The physics routines in the DHSVM are 

largely similar to VIC, though typically applied on a much finer resolution from 10 m to 250 

m. Unlike VIC, the DHSVM incorporates a dynamic routing mechanism by redistributing 

runoff downslope based upon a DEM. Initially developed to simulate hydrology in forested 

mountainous regions, the DHSVM incorporates hydrologic components of canopy 

interception, evaporation, transpiration, subsurface saturation excess, and snow 

accumulation and melt.  

Doten et al. (2006) adapted the model to include soil loss and sediment transport, 

using components from the hydrologic model as inputs. To generate and transport 

sediment, DHSVM applies four major processes: hillslope erosion, forest road erosion, mass 

wasting, and channel routing using a discrete approximation to the kinematic wave 

equation. The hillslope erosion model was based on the System Hydrologique European 

sediment (SHESED) model (Burton & Bathurst, 1998; Wicks & Bathurst, 1996) and 

incorporates overland flow and raindrop impact. For the purposes of this study, we focused 

on the hillslope erosion processes. 

 The hillslope erosion component of the model is deterministic and estimates 

detachment from three primary mechanisms: overland flow, raindrop energy, and leaf drip 

impact. Overland flow detachment (Dof, m3/s/m) is calculated using a detachment coefficient 

(wxy), horizontal hillslope length (dy, m), settling velocity (z{, m/s) and transport capacity 

(TC, m3/m3) as  

h|} = 'wxy f~ (z{) j1 '''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''(16) 

where wxy is estimated from soil cohesion (1{, kPa) as 
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wxy = 0.79^�9.;ÄÅ'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''(17) 

Settling velocity is dependent on median particle grain size (D50, m) and is calculated 

according to 

z{ =
4

3
u

2h^S\gX~

rh^S\gX~
− 1 h50''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''(18) 

where PDensity is particle density (kg/m3), WDensity is water density (kg/m3), and G is 

gravitational acceleration (m/s2). Transport capacity is based on a unit stream power 

approach from the KINEROS model (Woolhiser, Smith, & Goodrich, 1990) using stream 

power (SP, m/s) calculated by 

02 =
\X]^$_`Rab

(f~)(ℎ)
\RaÉ^'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''(19) 

where streamflow is overland flow (m3/s), h is water depth (m), and slope is a proportion 

(m/m). SP is then used to calculate transport capacity (TC, m3 sediment / m3 water) of the 

overland flow: 

j1 = '
0.05

h50
2h^S\gX~

rh^S\gX~
− 1

B

\RaÉ^(ℎ)

u
02 − d]gXgd$R'Xℎ]^\ℎaRf '''''''''''''''''''''''(20) 

where critical threshold is a critical stream power threshold (m/s). For this study, we used a 

critical threshold of 0.004 m/s according to Doten et al. (2006). DOF is calculated as sheet 

flow, however, the dependency of wxy on soil cohesion serves to represent an empirical 

parameter for rill erosion as well. 

 Rainfall detachment is computed from the momentum squared of direct throughfall 

(MR) and of leaf drip from vegetation (MD) according to Wicks and Bathurst (1996). 

Momentum squared of direct throughfall is determined by 

 Ñm = ÖkÜ'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''(21) 

where I is rainfall intensity (mm/hr), and Ö and w are coefficients established from 
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regression studies by Wicks (1988). Momentum squared of leaf drip is determined by  

Ñá =

àâWhT

6

B

h]gÉ'h]$gS

WhT

6

''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''(22) 

where V is leaf drip fall velocity (m/s) (adapted from Epema and Riezebos (1987), â is water 

density (kg/m3), D is leaf drip diameter (m), Drip is the percentage of canopy drainage that 

falls from leaves, and Drain is drainage from the canopy (m/s). For this study, Drip is set to 

5 mm per Wicks (1988). 

 The momentum squared of direct throughfall and leaf drip is combined to estimate 

overall raindrop detachment (DR, kg/m2/s) through 

hm = .gSf^ä(`)(1 − '1v)( 1 − 1ã Ñm +'Ñá)''''''''''''''''''''''''''''''''''''''''(23) 

where Kindex is an erodibility parameter (1/J), f is a water depth correction factor, CG is 

ground cover proportion, and CC is canopy cover proportion. To determine f, the raindrop 

diameter (Dm) is related to water depth, as raindrop impact increases if raindrop diameter 

is larger than the water depth (Park, Mitchell, & Scarborough, 1982): 

` = exp 1 −
ℎ

hå
''''''g`'ℎ > hå'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 24  

` = 1'''''''''''''''''''''''''''''''g`'ℎ ≤ hå'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 

Raindrop diameter is calculated from the Laws and Parsons equation (1943) as 

hå = 0.00124k9.PéB''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''(25) 

To estimate SSC, Doten et al. (2006) integrate overland flow detachment and 

raindrop detachment in DHSVM using a modified version of the SHESED finite difference 

equations for uniform sheet flow (Wicks & Bathurst, 1996) based on the two-dimensional 

conservation of mass equation: 

è(%1)

èä
+'
è(,1)

èX
= ^ ä, X '''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''(26) 
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where Q is water volume, A is cross-sectional area of the streamflow, C is the concentration 

of sediment, x is horizontal distance, t is time, and e is erosion (area per unit time). The 

DHSVM approach assumes lateral transfer between model grid cells, and therefore 

accounts for both temporal and spatial sediment transport in the finite difference solution. 

Because VIC requires an external routing model, we adapted the equation in our 

integration to solely account for sediment concentration (SSC, m3/m3) at a single grid cell 

during the current time step as: 

SSC =
hí +'h|}'

Ö

2fX
%Ü +

ì

fä
% +'wxy(f~)(z{)'

'''''''''''''''''''''''''''''''''''''''''''''''''''''(27) 

where Q is runoff (m3/s), dx is hillslope dimension (m), dt is timestep (s), Ö is channel area 

determined by Manning’s equation, w is set to 2/3, and ì is a time weighting factor set to 

0.55 per Doten et al. (2006). The time weighting factor ranges from 0.55 to 1.0, and 

improves the stability of the finite difference equations (Wicks & Bathurst, 1996). 

 After SSC is calculated, TC is then treated as a threshold for how much sediment 

can be transported for a given streamflow. If SSC exceeds TC, SSC is set to TC and excess 

sediment is deposited in the grid cell. Therefore, final sediment outputs rely heavily on TC. 

DHSVM is the most complex model in our inter-comparison, as it simulates erosion 

and sediment yield through empirically determined and physically based methods. 

However, our adaptation of the model is limited due to the spatial upscaling of the VIC 

integration. DHSVM relies heavily on fine resolution vegetation and topography, and our 

current large-scale implementation limits the amount of detail in these physical processes. 

Furthermore, the finite difference solution to the conservation of mass equation accounts 

for changes in space and time, and our adaptation only accounts for a single timestep and a 

single distance, potentially introducing bias into our estimates by underrepresenting the 

sediment contribution from upslope grid cells and previous time steps. 
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Like the HSPF, we integrated DHSVM into VIC by computing erosion estimates 

within each VIC grid cell for the daily timestep. To obtain Q, we used the sub-daily VIC 

runoff calculations for each grid cell, as this represents overland flow. 

3.4 Proposed Methodology and Rationale 

3.4.1 Coupling of Erosion and Sediment Algorithms with VIC 

 We coupled the individual algorithms from each of the models listed above with VIC, 

thereby developing a diverse estimate of erosion processes and SSL applicable to large-scale 

catchments. Like VIC-WEPP (Mao et al., 2010), we applied the hillslope erosion 

computations using the hydrologic, soil, and vegetation components from VIC. Because the 

MRC and the LOADEST require streamflow at the catchment outlet, we used calibrated 

streamflow values to run the two modules and we calculated SSL after routing simulated 

streamflow to the catchment outlet. For the MUSLE, HSPF and DHSVM, we inserted the 

erosion computations into the VIC algorithm using a critical area approach (described in 

the next section) to calculate sediment on fine resolution hillslopes in productive regions of 

the catchment. Using the percentage of critical area in the catchment, we then scaled up to 

the native VIC resolution. Using RVIC and a multi-objective calibration routine, we routed 

the eroded soil from the MUSLE, HSPF, and DHSVM through the catchment and produced 

calibrated SSL outputs at the catchment outlet. 

3.4.2 Hillslope calculations and critical area approach 

 A difficulty in estimating catchment-scale erosion and sediment transport lies in 

spatial discretization. As erosion processes often occur on the scale of meters, implementing 

erosion equations on the scale of kilometers be computationally cumbersome and 
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inefficient. Therefore, in our study we used a critical area approach to isolate model 

computations over productive regions where soil erosion is most likely to occur. Applying 

this approach, for each VIC grid cell (~6 km resolution) we calculated erosion from the 

MUSLE, HSPF and DHSVM using the metrics of an individual hillslope (e.g., calculated 

from a 10 m resolution DEM) incorporating hydrologic inputs from the VIC grid cell but 

scaled down to the hillslope dimensions. After computing erosion estimates on the hillslope 

from each method, we then used critical area as a metric for scaling the erosion up to the 

VIC grid cell: 

SSL = îi
u]gf',]^$

îi',]^$
1]gXgd$R',]^$ ''''''''''''''''''''''''''''''''''''''''''''''''''''''(28) 

where SSL is in (kg/m2/s), Grid Area is the area of an individual VIC grid cell, HE Area is 

the hillslope area, and Critical Area is the proportion of the grid cell that is deemed to 

contribute sediment supply. 

We identified the critical area as those areas within each catchment exceeding a 

slope steepness threshold together with the intersection between specified vegetation types 

and stream proximities. For slope steepness, we used the threshold developed by Larsen et 

al. (2014), that defines 15˚ slopes and above in mountainous regions (~10% of global 

topography) to contribute >50% of the estimated global sediment (19 Gt/yr) (Figure 2a). 

Because erosion occurs most frequently on shrubs, grasslands or bare ground (SGB), we 

incorporated these land cover types into our calculations. However, to ensure adequate 

coverage, the inclusion of forested coverage into our estimates was needed (Figure 2b) 

because our catchments are largely forest-dominated. To develop an uncertainty range in 

our estimates, we applied two stream proximities into our filtering: 100 m and 500 m 

(Figure 2c) and compared them with both individual and combined land cover types. 

 Critical area was determined using the same method across all catchments, and for 
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demonstration we use CC as an example below. For CC the critical area ranged from 0.21% 

applying SGB within a 100 m stream proximity, to 3.8% applying combined forest and SGB 

within a 500 m stream proximity (Figure 2d, Figure 3). Results were similar for CLP-L with 

ranges from 0.25% to 2.3%, whereas results for CLP-F were higher with ranges from 3.2% 

to 36%. 

3.4.3 DEM and Slope Distribution Selection 

Distributed soil loss and sediment transport models account for topography on 

varying degrees depending on the grid cell resolution. However, studies show that a coarse 

grid cell resolution leads to decreased variability in slope steepness estimates and 

ultimately causes substantial underestimations in soil erosion (Aalto et al., 2006; Larsen et 

al., 2014). For example, in a study on the Back Creek catchment in the Upper Roanoke 

River Basin, Wu, Li and Huang (2005) estimated soil loss using the Universal Soil Loss 

Equation (USLE) across a range of 10 m to 250 m grid cells. Their study analyzed the 

differences in the slope length and steepness factor (LS) between grid cell sizes, and 

computed a decrease in soil erosion of 60% from the 10m grid to the 250m grid. The 

decrease in soil erosion was attributed to reduced LS values in the larger cells. Zhang and 

Montgomery (1994) completed a similar study on grid cell resolution effects at Mettman 

Ridge near Coos Bay, Oregon and Tennessee Valley in Marin County, California. Using 

digital elevation models (DEMs) gridded to 2, 4, 10, 30, and 90 m, Zhang and Montgomery 

(1994) found the distribution in mean topographical slope to vary substantially among grid 

cell resolutions. In their analysis, they documented that a 10 m resolution is adequate for 

capturing the topographical characteristics while also minimizing computation. Therefore, 

we elected to use a 10 m DEM as the resolution in our hillslope erosion estimates. 
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Figure 2. Critical areas computed for CC using (a) slope threshold of 15˚ and above, (b) 
vegetation types including shrub, grassland, bare ground (SGB), and forest, (c) and stream 
proximities of 100 m and 500 m. Critical area included four estimated regions (d). 

 

Figure 3. Range in critical area percentages of CC catchment based on varying vegetation 
types of shrubs, grassland and bare ground (SGB) and forest, and stream proximities. 

 

a) b) c) 

d) 
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We calculated slope from a 10 m DEM (Available for the US by USGS National 

Elevation Dataset4) for all pixels situated within each VIC grid cell (Figure 4a). Because our 

critical areas are dependent on slopes greater than 15˚, we generated slope distributions 

above that same threshold for each VIC grid cell (Figure 4b, Figure 4c). To incorporate a 

range of slopes into our erosion estimates, we applied the 25th, 50th and 75th percentiles and 

developed a mean SSL estimate from the three slopes for each VIC grid cell. 

3.5 Algorithm Optimizations 

3.5.1 Sensitivity Analysis 

The performance of hydrologic and SSL models are dependent on numerous 

parameters. To minimize computation and maximize efficiency, studies have isolated 

parameters that hold the largest influence on model performance. These efforts are deemed 

as sensitivity analyses and include both local and global methods. Local sensitivity analyses 

change a single parameter at a time and evaluate the model performance. Global sensitivity  

 

Figure 4. (a) Slope calculations for an example CC VIC grid cell, (b) slopes sorted to greater 
than 15˚ (c), distribution of slopes greater than 15˚.  

4 https://viewer.nationalmap.gov/basic/ 

a) b) c) 
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analyses compare performance changing multiple parameters simultaneously. While local 

methods identify individual parameter effects, global methods are more robust and 

characterize complex parameter interactions (van Werkhoven, Wagener, Reed, & Tang, 

2009). For this study, we ran a Latin Hypercube Sampling (LHS) test, which uses random 

and stratified sampling to span the entire parameter space and has been effective in 

identifying global sensitivities (Tang, Reed, van Werkhoven, & Wagener, 2007). To run 

LHS, we used 500 samples and 8 soil parameters to identify streamflow parameter 

sensitivities.  

3.5.2 Calibration, Validation and Transferability 

 We used multi-objective optimization to calibrate model outputs in the CLP-L and 

CC catchments with daily observed streamflow and observed instantaneous SSL. We ran 

one experiment in CLP-L, and two experiments in CC using different time periods in the 

calibrations. We elected to run the two CC experiments to explore the effects of large SSL 

sample sizes in 1981 (CC-Early) versus small SSL samples sizes in the 1990s (CC-Late). We 

validated CLP-L, CC-Early and CC-Late using the same catchments but over a different 

time period (Table 2). We then assessed transferability of the parameters by applying the 

top performing parameter sets in CLP-L, CC-Early and CC-Late to CLP-F. To capture 

meteorological and streamflow fluctuations in our calibrations, we selected five and six-year 

periods surrounding the dates of our suspended sediment observations. The experiments 

were designed to explore the impact of calibrating over different sample sizes, time periods, 

ranges in data magnitudes, and catchments.  

To explore differences in multi-objective optimization techniques, we ran individual 

calibrations for streamflow and each SSL algorithm, and joint calibrations of streamflow 

and each SSL algorithm. Though the two optimization methods are fundamentally different 
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and the results cannot be directly compared, the methods provide insights into how an 

individual and a joint ensemble can provide different results. The parameters and 

parameter bounds are listed in Table 3 for each method. Parameter bounds were obtained 

from the literature for each algorithm. For VIC streamflow, we incorporated eight soil 

parameters using parameter bounds from Demaria, Nijssen, and Wagener (2007), Troy, 

Wood and Sheffield (2008), and Yanto, Livneh, Rajagopalan, and Kasprzyk (2017). For 

DHSVM we incorporated three SSL parameters using parameter bounds from Doten et al. 

(2006) and Maidment (1993). For MUSLE we incorporated three SSL parameters using 

parameter bounds from Maidment (1993). For HSPF we incorporated seven SSL 

parameters and used parameter bounds from Donigian and Love (2003). 

Table 2. Description of the calibration, validation and transfer experiments for the Cache 
La Poudre Livermore (CLP-L) and Fort Collins (CLP-F), and Clear Creek (CC) gauges, 
including an early period “Early” and late period “Late”, used alternatively for calibration, 
validation and inter-basin transfer or parameters “Transfer”. We used two calibration 
methods: calibration of all algorithms individually “Individual Modules”, and calibration of 
all algorithms simultaneously “Joint Modules.” 

Experiment Calibration Type Calibration 
Period 

Validation 
Period 

Transfer to 
CLP-F Period 

CLP-L Joint Modules 1987 – 1993 1993 – 1999  1992 – 1997 
CC-Early Joint Modules 1980 – 1985 1992 – 1997 1992 – 1997 
CC-Late Joint Modules 1992 – 1997  1980 – 1985  1992 – 1997  
CC-Late Individual Modules 1992 – 1997  1980 – 1985  -- 

 

3.5.3 Borg-VIC Optimization 

 Single objective calibrations tend to be biased towards fitting certain parts of the 

hydrograph, for example, using a transformed root mean square error to calibrate low 

streamflow periods can cause misrepresentations of peak streamflows, whereas using a 

percent bias objective largely ignores the goodness of fit of variability and timing. To 

compensate for these errors, multi-objective evolutionary algorithms (MOEAs) have been 

developed to identify tradeoffs in performance measures and to locate Pareto optimal 
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Table 3. Parameters used in the multi-objective optimization routine for each calibration. Because sediment modules are 
dependent on streamflow (VIC Flow), we incorporated sensitive VIC soil parameters into the individual module calibrations as 
well. 

   Individual Calibrations Joint 
Calibration 

Parameter Definition Bounds VIC 
Flow  

DHSVM MUSLE HSPF All 

Binf Infiltration Capacity 0.0001 – 0.4      
Ds Fraction of DsMax where non-linear 

baseflow occurs 
0.0001 – 1.0      

DsMax Maximum baseflow velocity 0.1 – 30.0       
Ws Fraction of maximum soil moisture 

where non-linear baseflow occurs 
0.1 – 1.0      

C Baseflow curve exponent 1.0 – 2.0      
Layer 1 Soil layer depth 1 0.1 – 0.3      
Layer 2 Soil layer depth 2 0.3 – 3.0      
Layer 3 Soil layer depth 3 0.3 – 3.0      
K Factor Erodibility factor 0.02 – 0.6       
C Factor Cropping management factor 0.0001 – 0.5       
P Factor Conservation practice factor 0.0 – 1.0      
K Index Erodibility index 19.0 – 32.0      
D50 Median grain size 0.5 – 2.0       
Soil Cohesion Soil cohesion 0.00075 – 15.0      
JR Detachment exponent 1.0 – 3.0      
AFFIX Attachment fraction 0.01 – 0.50      
KS Transport coefficient 0.1 – 10.0      
JS Transport exponent 1.0 – 3.0       
KG Scour coefficient 0.0 – 10.0      
JG Scour exponent 1.0 – 5.0      
Critical Area Catchment critical area CC: 0.002 – 0.04 

CLP-L: 0.003 – 
0.02 
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solutions, which are non-dominated solutions (Gupta, Sorooshian, & Yapo, 1998). MOEAs 

are optimization methods developed for using multiple objectives, parameters, and 

constraints to accurately and efficiently calibrate complex problems. Particular MOEA 

frameworks incorporate machine learning to actively adapt to finding solutions, such as in 

the Borg MOEA (Hadka & Reed, 2012). For this study, we used the Borg MOEA to optimize 

five objective functions described below using multiple streamflow and sediment 

parameters across all modules. For each calibration initiative, we ran 20,000 – 30,000 

function evaluations depending on the complexity of the problem, and incorporated 5 

random seeds to ensure the solutions were not an artifact of the Borg parameter search. We 

used epsilons of 0.1 for all objective functions in this study, as this provides a balance 

between coarseness and ability to span the range of the data. Epsilon-dominance is a 

method to bound complex problems by setting precision values for Pareto optimal solutions 

(Kollat, Reed, & Wagener, 2012). To increase efficiency, we developed a parallelized 

program using Message Passing Interface to couple Borg and VIC to efficiently calibrate 

our problems.  

 We selected five objective functions for our calibration to capture various 

components of the hydrograph and SSL time series (Table 4). The first objective used in the 

calibration was Nash Sutcliffe Efficiency (NSE) (Nash & Sutcliffe, 1970): 

NSE = %1 −
(),+ − (,,+

-.
+/0

(,,+ − 1,
-
%.

+/0

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%(29) 

where (),+ and (,,+ are the simulated and observed values for each time step (t), n is the 

number of data points, and 1, is the mean of the observed data. An NSE value of 1 is 

considered a perfect model simulation, whereas an NSE value of less than 0 is considered to 

perform worse than using the mean of the observed data as the predictor. An NSE value ≥ 

0.50 is considered satisfactory for both streamflow and SSL model performance (Moriasi et 
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al., 2007).  

The second objective used in the calibration was Pearson’s Correlation Coefficient 

(R), which describes the linear correlation between simulated and observed values and is 

often used to characterize goodness of fit in timing between simulated and observed time 

series: 

R = %
8 (,,+(),+.

+/0 − % (,,+.
+/0 (),+.

+/0

(8 (,,+- −.
+/0 %( (,,+).

+/0
-)%(8 (),+- −.

+/0 %( (),+).
+/0

-)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%(30) 

an R value of 1 implies perfect positive correlation, -1 implies perfect negative correlation, 

and 0 implies no correlation. R2 values of > 0.5 are considered satisfactory for hydrologic 

model performance (Santhi et al., 2001). 

 The third objective used was percent bias (PBIAS) to estimate the overall simulated 

magnitude compared with observed (Gupta, Sorooshian, & Yapo, 1999): 

PBIAS = %
(,,+ − %(),+.

+/0
(,,+.

+/0
100 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%(31)% 

A PBIAS value of 0 is considered to have no magnitude bias in the model. A PBIAS value 

±%25% is considered satisfactory for streamflow, and a PBIAS value ±%55% is considered 

satisfactory for SSL (Moriasi et al., 2007). 

 The fourth objective used was relative variability (VAR), to reflect the relative range 

in values between the model and the observed data using standard deviations of the data 

(@) (Gupta, Kling, Yilmaz, & Martinez, 2009): 

VAR =
@)
@,
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%(32) 

A VAR value of 1 is considered a perfection representation of model variability. 

The final objective used in this calibration was the transformed root mean squared 

error (tRMSE) selected to target low streamflow and low SSL periods by using a Box-Cox 
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transformation (Wagener, van Werkhoven, Reed, & Tang, 2009): 

Z =
1 + ( D − 1

E
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%(33) 

tRMSE =
1
8

H),+ − H,,+
-

.

+/0

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%(34) 

where E is 0.3. A tRMSE value of 0 is indicative of good model performance, however, the 

units and magnitudes of the metric are dependent on the data. 

Table 4. Objective functions and their intervals used in this study with optimal values 
obtained from Moriasi et al. (2007) for NSE and PBIAS. 

Objective 
Function 

Reference Interval Optimal 
Value 

Moriasi et al. (2007) 
Satisfactory Value 

NSE Nash and Sutcliffe, 
1970 

-∞ to 1 1 > 0.50 

PBIAS Gupta et al., 1999 -∞ to ∞ 0 < ±25% streamflow 
< ±55% SSL 

VAR Gupta et al., 2009 0 to ∞ 1 -- 
tRMSE Wagener et al., 2009 0 to ∞ 0 -- 

R Pearson, 1920 -1 to 1 1 -- 
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CHAPTER 4 

RESULTS  

 

 A series of experiments were conducted to explore sediment and streamflow 

prediction performance in three modes: calibration, validation, and transferability of 

parameters to a neighboring basin. These experiments were carried out over three 

catchments, Cache La Poudre Livermore (CLP-L), Clear Creek (CC), and Cache La Poudre 

Fort Collins (CLP-F) with long-term streamflow observations and suspended sediment load 

(SSL) observations during multiple time periods. Five sediment transport algorithms were 

evaluated based on six objective functions in an individual algorithm calibration, and two 

objective functions in a joint algorithm calibration. The observational data are presented 

below, followed by a description of the results from the three types of experiments, 

exploring tradeoffs in performance for each. We present results from the MRC and the 

LOADEST calibrations, individual algorithm Borg calibrations, and joint algorithm Borg 

calibrations, and the validation and transferability from the joint calibrations. The different 

categories of experiments and algorithms tested are in Table 2. 

4.1 Observational Data Analysis 

Observed SSL exhibited a wide range in magnitude across the four experiments for 

calibration, validation, and transfer periods, with CC-Late having the highest range in SSL 

(Figure 5). This disparity in the relative SSL between periods could have been caused by 
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SSL collection timing, as diurnal streamflow fluxes can impact SSL (Glysson, 1987; Runkel 

et al., 2004) (Appendix A: Figure 16). Streamflow stayed more consistent across the sites 

and time periods, with CLP-F having the highest maximum and mean streamflow likely 

due to the larger basin area. 

4.1.1 Suspended Sediment Load Sample Sizes 

We tested the statistical representativeness of the SSL sample sizes in each 

experiment for the calibration, validation, and transfer periods using bootstrap sampling 

from the empirical cumulative density functions (CDFs). We generated 150 random 

samples from each empirical CDF and calculated the mean, median, standard deviation 

(SD), skew, interquartile range (IQR), and probability density function (PDF). For each 

experiment and period, the empirical measures of accuracy fell within the first and third 

quartiles of the estimated measures of accuracy (Appendix A: Figure 17 - Figure 21), 

indicating that the sample sizes were representative of the populations. 

4.1.2 Climatic Differences Between Calibration and Validation Periods 

We conducted a paired Wilcoxon Rank Sum Test on observed annual streamflow 

between the calibration and validation periods for CLP-L, and CC-Early and CC-Late, as 

the data were not normally distributed and we therefore could not use a t-test. For CLP-L, 

CC-Early and CC-Late we found that the ranks for the calibration period and the validation 

period were not statistically different (Table 5) though the ranges were qualitatively more 

variable in CLP-L (Figure 5). These findings indicate that streamflow has similar 

distributions between calibration and validation periods in both CLP-L and CC-Early. 

However, the Wilcoxon Rank Sum Test does not assess the relative magnitudes between 

the ranked data, and therefore might not be representative of the differences in variability 
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for each period. To assess differences in climate between the calibration and validation 

periods, we performed similar tests. We analyzed precipitation, maximum temperature and 

minimum temperature, and found no significant differences between the periods within 

both catchments other than for minimum temperature in CLP-L (Figure 6, Table 5).  

 

Figure 5. Bar plot of total annual streamflow separated by site into calibration, validation 
and transfer periods for a) Clear Creek (CC), b) Cache La Poudre Livermore (CLP-L), and c) 
Cache La Poudre Fort Collins (CLP-F). SSL is depicted by error bars showing the range 
over the respective period. The lowest annual streamflows occurred in CLP-L, whereas the 
highest occurred in CLP-L. The largest SSL range occurred in CC over 1992-1997, whereas 
the lowest occurred in CC over 1980-1985. There is a disparity in the relative SSL in CC 
between the two periods, which could cause poor performance in the SSL simulations as the 
streamflows have comparable volumes. 

a) 

b) 

c) 
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Figure 6. Average daily temperature and precipitation for each experiment during the a) 
calibration period, and b) validation period. Data was obtained from Livneh et al. (2015). 
CLP-L has a bias towards cold and dry years during the calibration period and towards cold 
years during validations, whereas CC-Early, CC-Late and CLP-F are more normally 
distributed with a central tendency of warmer years than CLP-L. 

Table 5. Wilcoxon Rank Sum test for differences in climate and annual streamflow between 
calibration and validation periods. Streamflow and precipitation were annual sums, 
whereas temperatures (T) were annual daily means. W is the Wilcoxon Rank Sum score, 
and the p-value denotes significance. P-values < 0.05 are considered significant and denoted 
with *. For streamflow, precipitation and Max T, the distributions and spread of the data 
were similar for both periods, whereas for Min T in CLP-L, the calibration period was 
colder. 

  Calibration 
Mean 

Validation 
Mean 

Wilcoxon 
W 

p-value  

CLP-L Streamflow 404 m3/s 706 m3/s 5 0.31 
Precipitation 370 mm/yr 430 mm/yr 9 0.47 
Min T 0.50 ˚C 1.8 ˚C 0 0.016* 
Max T 15 ˚C 15 ˚C 7 0.29 

CC-
Early 

Streamflow 2,275 m3/s 2,250 m3/s 10 1 
Precipitation 393 mm/yr 383 mm/yr 12 0.84 
Min T 0.69 ˚C 0.07 ˚C 11 1 
Max T 17 ˚C 17 ˚C 11 1 

 

a) b) 
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4.2 Calibration 

4.2.1 Monovariate Rating Curve Calibration 

 We calibrated the MRC for each experiment using historical streamflow and SSL 

observations to minimize non-linear least squares estimation (Appendix B: Table 7). The 

MRC performance ranged from R2 of 0.64 in CC-Early to R2 of 0.98 in CLP-L over the 

calibration periods. The MRC in CC-Late required a much greater b exponent than the 

other experiments to compensate for the non-linearity stemming from large SSL 

magnitudes (Figure 7). Extrapolations of the MRC for both CLP-L and CC-Early show 

comparatively smaller estimates than the MRC in CC-Late.  

 

Figure 7. The MRC for each experiment developed over the calibration period. The MRC b 
exponent was the greatest in CC-Late, causing a larger estimation of SSL than CLP-L and 
CC-Early at high streamflows.  
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4.2.2 Load Estimator Calibration 

 To develop multi-variate regression estimates, we used LOADEST and formulated 

our experiments with Adjusted Maximum Likelihood Estimates (AMLE). The model 

selection process used Akaike Information Criterion (AIC). CLP-L, CC-Early and CC-Late 

selected different models. CLP-L incorporated streamflow and date as  

ln OOP = QR + Q0S8T%+%Q-S8T- + QU sin 2XY %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%(35) 

whereas CC-Early required additional permutations of both predictors: 

ln OOP = QR + Q0S8T%+%Q-S8T- + QU sin 2XY + QZ cos 2XY + %Q]Y%%%%%%%%%%%%%%%%%%%%%%%%(36) 

CC-Late required an additional non-linear predictor for date as: 

ln OOP = QR + Q0S8T%+%Q-S8T- + QU sin 2XY + QZ cos 2XY + %Q]Y + %Q_Y-%%%%%%%%%%%%%%%%%%(37) 

For each model above, QRa_ are coefficients, S8T is the log of streamflow, and t is decimal 

time, where S8T and t are defined per Equations 9 and 10. To test normality of residuals, we 

used Probability Plot Correlation Coefficient (PPCC) (Appendix B: Table 8). The LOADEST 

performance ranged from R2 of 0.80 in CLP-L to R2 of 0.89 in CC-Late over the calibration 

periods. 

4.2.3 Individual Algorithm Borg Calibrations  

Using Latin Hypercube Sampling (LHS) with 500 function evaluations, we 

conducted a sensitivity analysis for VIC streamflow parameters (Appendix C: Figure 22) in 

which we simultaneously modified all parameters within specified ranges. Through visual 

assessment of the LHS, we saw general trends in streamflow response to the parameters 

binf, Ds, DsMax, and Soil Layer 2 and incorporated these parameters into the optimization 

of each SSL algorithm, excluding insensitive parameters. 

 To explore the initial range of values that can be obtained from individual algorithm 
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calibrations, we used the multi-objective evolutionary algorithm, Borg. We calibrated the 

streamflow, and each SSL algorithm separately using CC-Late in the experiment using 

20,000 function evaluations and 5 random seeds. We used 5 objective functions for 

streamflow: Nash Sutcliffe Efficiency (NSE), percent bias (Bias), correlation (Cor), 

variability (Var) and transformed root mean squared error (tRMSE); and 6 objective 

functions for each SSL algorithm: NSE streamflow, NSE SSL, Bias, Cor, Var, and tRMSE. 

The suite of objective functions showed tradeoffs for each algorithm (Appendix C: Figure 23 

- Figure 25), with the DHSVM algorithm highlighted as an example below (Figure 8). 

Parameters varied from the lower to the upper bounds across each calibration. To produce 

the highest SSL NSE, the DHSVM algorithm favored VIC streamflow parameters being 

small binf, large DsMax, and small Soil Depth 2. The DHSVM SSL parameters were less 

sensitive, as the greatest SSL NSE showed a spread across the parameter ranges for K 

Index, d50, Soil Cohesion (Soil Cosn), and Critical Area. For a description of each 

parameter, see Table 3. The SSL algorithms showed different patterns in the VIC soil 

parameters for greatest SSL NSE, indicating that the SSL mechanisms within each 

algorithm preferred different streamflow characteristics. Within each SSL calibration, 

there was a tradeoff between SSL NSE and Streamflow NSE. 

4.2.4 Joint Algorithm Borg Calibrations 

 To develop SSL estimates from the algorithms simultaneously, we ran calibration 

experiments using joint algorithm parameter optimizations together with streamflow 

optimization. For each joint experiment, we simultaneously calibrated streamflow, the 

DHSVM, the MUSLE, and the HSPF, using VIC soil parameters and the algorithm specific 

SSL parameters. We used a subset of the original objective functions in the joint calibration 

to minimize problem complexity, using NSE and Bias for performance measures across  
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Figure 8. Individual DHSVM SSL algorithm calibration for CC-Late during 1992-1997 with 
a spin-up period in 1991. There were tradeoffs between the objectives, as well as the VIC 
soil parameters. DHSVM SSL parameters were less sensitive than VIC soil parameters, as 
the best performing solutions spanned the ranges of the SSL parameters. Solutions are 
sorted by NSE SSL, and blue solutions are better performing. Similar plots exist for other 
algorithms in Appendix C: Figure 23 - Figure 25. 

each SSL algorithm and streamflow. We chose these two objective functions to target 

timing with NSE and magnitude with Bias. We ran the calibrations for 30,000 function 

evaluations using 5 random seeds and saw that performance was minimally increased after 

roughly 20,000 evaluations through visual inspection (Appendix D: Figure 26). To generate 

Pareto optimal solutions, which are non-dominated solutions, we used a combined process 

of epsilon-dominance and filtering.  

 Across all algorithms and joint experiments, there were tradeoffs between NSE and 

Bias (Appendix D: Figure 27 - Figure 29). Our selection process for the best parameter set 

was the same for all joint experiments, and we describe the procedure below using CC-Late 

as an example. Each joint experiment had more than 1,000 Pareto optimal solutions, which 

are too numerous for straightforward selection. To reduce the solutions to a more tractable 
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number, we used filtration measures for the relative performance of each objective function. 

For the first filter, we selected the top 50% NSE values across all algorithms (Figure 9). For 

the second filter, we selected the top 50% Bias values across all algorithms using the 

previously generated filtered set. In CC-Early and CC-Late, this filtration technique yielded 

three final solutions. For CLP-L, we identified the three final solutions from the top 

performing NSE values in the filtered set. The coarse filtration measure of 50% was 

necessary to generate top solutions that balanced performance measures across algorithms, 

as the tradeoffs between and within the algorithms were so great. 

For the results shown below, we followed the guidelines of Moriasi et al. (2007) by 

depicting satisfactory performance in daily streamflow estimates as NSE > 0.50 and Bias < 

± 25%, and satisfactory performance in daily SSL estimates as NSE > 0.50 and Bias < ± 

55%. Overall, the algorithms in the joint calibrations performed worse in NSE and Bias 

 

Figure 9. Parallel coordinate plot of Pareto optimal solutions from Borg for CC-Late 
computed over the calibration period 1992 – 1997 for the joint algorithm calibration with a 
spin-up year in 1991. Colored solutions indicate the highest performances across the 
ensemble, with blues and greens representing the final selected solutions. Colored solutions 
are sorted by streamflow NSE (Flow NSE). The parameter sets from selected solutions were 
used to run validation and transferability analyses. 
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than the individual calibrations. This could be attributed to the dynamic dependence of SSL 

on streamflow, as different equilibrium states with streamflow were optimal for different 

algorithms. Further, the quantity and type of objective functions varied between methods, 

and caution should be taken when directly comparing the two calibrations. 

 We calculated the mean daily streamflow from the top three parameter sets and 

visually compared the hydrographs with the observed data from the calibration periods for 

each experiment showing CC-Late as an example below (Figure 10, Appendix D: Figure 31 - 

Figure 34). We repeated this procedure for SSL (Figure 11, Appendix D: Figure 32 - Figure 

35), and also estimated kernel densities for each SSL algorithm to assess distributions 

(Appendix D: Figure 36, Figure 33, Figure 30).  

For CC-Late, the VIC streamflow was flashier than observed and did not capture the 

peak magnitudes, but the timing was largely captured (Figure 10). The large SSL 

magnitudes in 1995 biased the algorithms towards higher peak SSL, making them 

overestimate smaller peaks earlier in the period (Figure 11). From visually assessing the 

kernel density estimations, LOADEST was best able to capture the distribution of the 

observed SSL, whereas the HSPF and the DHSVM favored larger magnitudes, the MRC 

had a flatter distribution, and the MUSLE favored mid-range magnitudes (Appendix D: 

Figure 30). 

For CC-Early, the VIC streamflow overestimated the falling limbs of the hydrograph 

for 1982 – 1985, but captured the overall shape during 1981 (Appendix D: Figure 31), which 

is when the observed SSL was also being calibrated. Calibrating the SSL for only one year 

of the streamflow calibration period therefore could have impacted the streamflow 

estimates in subsequent years. The algorithms varied in the SSL calibration, as the MRC 

and the MUSLE maintained a flat behavior and underestimated peaks, whereas the HSPF 

and the DHSVM were much flashier and captured the peak magnitude (Appendix D: Figure 
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32). The LOADEST algorithm was unable to capture the observed data during this period, 

and greatly underestimated the SSL by orders of magnitude. The kernel density 

estimations showed that the MUSLE and the MRC favored mid-range magnitudes, whereas 

the HSPF and the DHSVM favored the peaks and the low values and underestimated the 

mid-range magnitudes (Appendix D: Figure 33). 

For CLP-L, the observed streamflow had a large range in magnitudes, and had a 

prolonged peak in 1993 and multiple peaks in 1990. This could be caused by the 35% 

reservoir storage upstream. The VIC streamflow, therefore, was unable to capture these 

fluctuations, and tended to create a flashier system with underestimated peak flows 

(Appendix D: Figure 34). The large range in observed SSL values impacted the algorithms, 

as the algorithms favored the three high peaks and overestimated the lower SSL (Appendix 

D: Figure 35). The kernel density estimations showed that the algorithms favored large 

magnitudes (Appendix D: Figure 36). 

 
Figure 10. Hydrograph for CC-Late with VIC streamflow computed over the calibration 
period 1992 – 1997 for the joint algorithm calibration with a spin-up year in 1991. The 
plotted estimates were calculated from the mean of the VIC streamflow values from the top 
three performing parameter sets. VIC streamflow was flashier than observed but the 
timing was largely captured.  

St
re
am

flo
w
+(m

3 /
s)
+



 

 

56 

 
Figure 11. Time series of suspended sediment load (SSL) for CC-Late with each SSL 
algorithm computed over the calibration period 1992 – 1997 for the joint algorithm 
calibration with a spin-up year in 1991. The plotted SSL estimates were calculated from the 
mean of the SSL values from the top three performing parameter sets. 

4.3 Validation of the Joint Calibration 

 Application of the three best performing calibration parameter sets to the validation 

periods yielded varying results across the experiments and algorithms (Figure 12, Appendix 

E: Figure 37 - Figure 38). All algorithms generally performed better during the calibration 

period than the validation period, possibly because the joint calibration did not find the 

optimal solutions for each catchment system. There were a few exceptions in NSE for the 

DHSVM and the MUSLE algorithms in CLP-L and streamflow in CC-Early (Figure 12, 

Appendix E: Table 9 - Table 14). NSE and Bias had similar patterns across algorithms and 

experiments during the calibration and validation periods. Overall, CC-Late performed best 

in both NSE and Bias during the calibration. The validation performance, however, was 

generally poorest in CC-Late for both NSE and Bias. This could be due to the relative 

variability in streamflow and SSL between the calibration and validation periods. The 
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performance between the top three parameter sets for each experiment showed a range, 

though the range was minimal and the three sets generally performed similarly. 

4.4 Transferability of the Joint Calibration to Cache La Poudre Fort Collins  

 We applied the top three calibration solutions from each of CLP-L, CC-Early and 

CC-Late to the CLP-F catchment to test parameter transferability. Because our filtration 

technique identified three solutions in two of the basins, we elected to use three solutions 

for all experiments to represent uncertainty. Streamflow NSE and Bias performance was 

best in CC-Late, with NSE greater than 0.70 and Bias less than 25%, which we attribute to 

the fact that the calibration spanned the same period, and hence a similar climate to the 

CLP-F analysis (Figure 12 - Figure 13). CLP-L had the second-best performance in 

streamflow NSE and Bias, with NSE greater than 0.50 and Bias less than 50%, which could 

indicate a connection between streamflow parameters and physical mechanisms in the sub-

basin and the larger CLP-F catchment.  

 Performance of SSL algorithm transferability varied across the sites, though there 

was a clear trend of poor results coming from the CC-Late transfer across all SSL 

algorithms and both objectives (Figure 12 - Figure 13). Overall, the DHSVM and the HSPF 

algorithms had the best NSE performance from the CLP-L and CC-Early transfers 

(Appendix E: Table 9 - Table 14), with top NSE values exceeding 0.50. In CLP-L, the 

MUSLE, the LOADEST, and the HSPF algorithms had the best Bias performance, with top 

values below 50%. In CC-Early, the MUSLE, the HSPF, and the DHSVM algorithms had 

the best Bias performance, with top values below 50%. 

We counted the number of runs per algorithm that met the satisfactory performance 

criteria of NSE > 0.50 and absolute value of Bias < ±25% for streamflow and < ±55% for 
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SSL to assess patterns across the experiments and modes (Figure 14). To meet the 

satisfactory performance criteria, we selected algorithms where one or more runs exceeded 

the thresholds for both NSE and Bias simultaneously. The clearest signals from the 

visualization show the criteria were met during calibration for the HSPF in CLP-L, and for 

calibration of all algorithms in CC-Late. HSPF could have performed best in CLP-L due to 

its conceptual nature, which lends itself to calibration. For validation, performance criteria 

were not met in any of the experiments other than the MRC for CC-Late. For transfer, 

performance criteria were met for the HSPF in CLP-L, the HSPF and the DHSVM in CC-

Early, and streamflow in CC-Late. 

 

Figure 12. NSE performance for calibration, validation and transfer periods for all 
algorithms in CLP-L, CC-Early, and CC-Late. Calibration runs used the top three solutions 
from the joint calibration from each experiment, and validation runs used the same 
solutions over a different period within the same catchment. Transfer runs applied the top 
three solutions from each experiment to the CLP-F catchment. Error bars represent the 
range in performance of the three solutions. Values of NSE < -1.0 are plotted as -1.0 for 
visualization purposes. 
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Figure 13. Absolute value of Bias performance for calibration, validation and transfer 
periods for all algorithms in CLP-L, CC-Early, and CC-Late. Calibration runs used the top 
three solutions from the joint calibration from each experiment, and validation runs used 
the same solutions over a different time within the same catchment. Transfer runs applied 
the top three solutions from each experiment to the CLP-F catchment. Error bars represent 
the range in performance of the three solutions. Values of |Bias| > 200% are plotted as 
200% for visualization purposes. 

To determine the role of high SSL magnitudes on objective function performance 

between the CLP-L calibration and validation periods, we removed the year 1999 from the 

validation period, as the observed SSL magnitudes exceeded 1,000 tons/day, and was high 

compared with other years. To compare the ranges in SSL magnitudes in CC-Early and CC-

Late, we removed the year 1995 from the CC-Early validation period, as the observed SSL 

magnitudes exceeded 5,000 tons/day and were high compared with other years. For both 

removals, the bias of all algorithms decreased, except for LOADEST in CC-Early. We ran a 

paired t-test for CLP-L before and after the removal of 1999, and followed the same 
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methodology for 1995 in CC-Early. Both t-tests showed significant differences between the 

samples, with p-values of 0.03 and 0.02, respectively (Table 6). 

 

Figure 14. Counts of the top three solutions for each experiment and mode exceeding the 
performance criteria for NSE, Bias, and NSE and Bias combined. For NSE and Bias 
individually, a count of 3 indicates that all three solutions were satisfactory, whereas for 
NSE and Bias combined, a count of 6 indicates that all three solutions were satisfactory in 
both NSE and Bias. Black boxes indicate an algorithm was satisfactory in both NSE and 
Bias for at least one solution.   

Table 6. Bias estimates for the validation periods of CLP-L and CC-Early with individual 
years removed to assess the objective performance with and without large SSL. Bias 
performance increased significantly after the removal of high SSL, with p-values of 0.03 in 
CLP-L and 0.02 in CC-Early. 

 Year Data Pts 
Removed 
/ Total 

Flow 
(%) 

MRC 
(%) 

MUSLE 
(%) 

LOADEST 
(%) 

HSPF 
(%) 

DHSVM 
(%) 

CLP-L, 
Validation 

1999 
Kept -- 60 94 46 97 78 70 

1999 
Removed 9 / 74 55 88 15 93 45 29 

CC-Early, 
Validation 

1995 
Kept -- 39 94 90 100 91 82 

1995 
Removed 10 / 39 29 31 0.97 100 29 9.7 
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4.5 Future Applications  

We ran the algorithms over the period of 1950 to 2013 in CC-Late to assess the ability of 

the ensemble to capture uncertainty within each year and to show long-term variability. We 

normalized the SSL by the catchment area to represent annual sediment yield. Comparing the 

sediment yield estimates with historical trends in sediment yield (Jansson, 1988), we saw that the 

estimates fell within the range of 0 – 100 tons/km2/year for the Colorado Front Range other than 

in years with large storm events such as the early 1980s. We demonstrated that the multi-

algorithm technique can be used as a forecasting tool by extrapolating the algorithms to periods 

outside of the calibration and validation periods. 

 

Figure 15. Extension of the model ensemble in CC from 1950 to 2013 using one of the top 
performing parameter sets from CC-Late. The error bars represent the differences between 
algorithm estimates, providing a range of uncertainty for each year. The highlighted green 
box indicates a historical range in sediment yields for the Colorado Front Range visually 
estimated from maps developed by Jansson (1988).   
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CHAPTER 5 

DISCUSSION, CONCLUSIONS, AND FUTURE WORK 

5.1 Discussion 

We developed a method for estimating SSL using five algorithms coupled with VIC 

in three experiments: CLP-L, CC-Early, and CC-Late. The algorithms produced a range in 

uncertainty across the three modes: calibration, validation, and transfer to CLP-F. 

Differing performance of each experiment across different modes can be attributed to 

ranges in SSL observations, static parameterizations, and compromises between 

preferences for streamflow characteristics among other factors as discussed below. Within 

each experiment and mode, streamflow and SSL algorithms varied greatly, largely 

producing no consistent patterns in performance. HSPF and DHSVM reached the 

satisfactory criteria during the transferability, though, which could indicate a higher level 

of algorithm flexibility and robustness. We found that the variability in observed SSL 

magnitudes across calibration, validation, and transfer periods had a large effect on the 

algorithm performances. In this section, we present a discussion into the performances of 

the experiments, implications of the study, theoretical and practical limitations. Further, 

we include future work and conclusions. 

5.1.1 Streamflow Performance 

 Streamflow performance was below the satisfactory criteria from Moriasi et al. 
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(2007) throughout many of the experiments. This indicates that our joint algorithm 

calibration did not find optimal solutions, which can be attributed to tradeoffs between 

streamflow and SSL algorithm partitioning of the hydrograph. Streamflow met the 

performance criteria during the CC-Late calibration and transfer periods. For CC-Late, the 

climate and observed annual streamflow between the calibration and validation periods 

were similar, with ranges in annual streamflow from 1,360 m3/s – 3,320 m3/s in calibration 

and 1,130 m3/s – 3,260 m3/s in validation. However, there was a negative bias in the CC-

Late validation period, which indicates that the simulated streamflow was greater than the 

observed streamflow. From Table 5 there were no statistical differences in the observed 

streamflow and climate between CC-Early and CC-Late. Therefore, we infer that the joint 

calibration with SSL algorithms could have affected the partitioning of runoff and baseflow, 

impacting the flexibility and robustness of the streamflow to adapt to different time 

periods. 

 CLP-L and CC-Early did not meet the satisfactory performance criteria for 

streamflow calibration, validation or transfer. This could be because observed streamflow 

had a high storage ratio upstream of the gauge in CLP-L, which could have impacted the 

results. Furthermore, in CC-Early we only had SSL data for one of the years of streamflow 

calibration, and therefore the calibration could have been biased towards that year. 

However, there were apparent tradeoffs between NSE and Bias for CLP-L in the calibration 

and transfer periods, where Bias performance was satisfactory in calibration, and NSE 

performance was satisfactory in transfer. As discussed in more depth below, possible 

reasons for poor streamflow performance could be due to timing discrepancies between 

streamflow and SSL peaks. Snowmelt dominated systems are susceptible to hysteresis 

during spring melts, as noted by Syvitski et al. (2000), having high suspended sediment 

concentrations on the rising limb of the hydrograph. If the SSL algorithms were improved 
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by a premature streamflow peak to simulate hysteresis effects, the streamflow performance 

would therefore be compromised.  

5.1.2 Suspended Sediment Load Performances 

 The magnitude and timing of observed SSL was captured by few algorithms across 

the experiments. Since streamflow performance was poor under most modes in the joint 

calibration, the errors could have propagated into SSL estimates as well, thereby causing 

poor SSL performance.  

The MRC was directly impacted by the performance of VIC streamflow, as was the 

LOADEST, though the LOADEST is also affected by the date of the model simulation. 

Furthermore, though the MUSLE is linearly dependent on erosion parameters, it also has a 

nonlinear dependency on total streamflow. In contrast, the HSPF and the DHSVM produce 

SSL from both precipitation and runoff, as the algorithms incorporate detachment from 

rainfall and detachment from overland flow.  

Of the algorithms, the MRC, the LOADEST, and the MUSLE have a greater reliance 

on total streamflow performance (combining both runoff and baseflow), making them more 

susceptible to errors from total streamflow simulations than the HSPF and the DHSVM. 

Conversely, precipitation rates and VIC partitioning between runoff and baseflow more 

greatly affect the HSPF and the DHSVM than the MUSLE, the MRC, or the LOADEST.  

The HSPF and the DHSVM algorithms had the best performance in the transfer to 

CLP-F from CLP-L and CC-Early. This could be due to the algorithms’ incorporation of both 

precipitation and runoff (rather than total streamflow). Further, the two algorithms were 

less correlated with site-specific streamflow and were therefore not as hindered by poor 

streamflow performance in the transfer process. Additionally, the conceptual and 

physically-based structure of the HSPF and the DHSVM allowed for diverse 
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parameterizations and processes, indicating less of a reliance on a single equation 

generated from empirical data.  

Due to the complexity of the HSPF and the DHSVM mechanisms, these algorithms 

are more robust in their ability to handle various climate and streamflow alterations when 

compared with the static nature of the MRC and the LOADEST. For example, Glysson et 

al. (1987) documented how the MRC parameters varied annually within a catchment due to 

changes in extreme events, implying that one formulation of the MRC is not flexible enough 

to capture annual differences. Furthermore, applications of the LOADEST are numerically 

dependent on the dates of the calibration period (Bicknell et al., 1996), thereby affecting 

transfers to other time periods and limiting flexibility. In contrast, using the DHSVM 

erosion module, Doten et al. (2006) applied a wildfire scenario to the Rainy Creek 

catchment, and saw an increase in erosion due to changes in root cohesion and increased 

surface runoff. 

Though the calibration of each SSL algorithm was dependent on streamflow to 

varying degrees, the calibrations were also affected by the observed SSL magnitudes. CC-

Late had the highest SSL magnitudes and the widest range in SSL of the experiments, 

ranging from ~ 0 tons/day to > 5,000 tons/day. Because we used NSE and Bias as our 

primary objective functions, the algorithms could have favored the high peak in CC-Late, as 

under simulation of that peak would cause poor performance. For example, the MRC 

exponent was ~ 2 times greater in CC-Late than in CLP-L or CC-Early to capture the peak 

SSL. In the multi-objective optimization for CC-Late, the VIC binf parameter was optimized 

towards the highest value, indicating that the system required greater runoff. As higher 

runoff increases SSL estimates from the MUSLE, the HSPF, and the DHSVM, the 

optimization could have been generating more runoff to reach the peak SSL in the observed 

data.  
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The calibration performance for CC-Late was satisfactory for all algorithms for both 

NSE and Bias despite the large range in SSL magnitudes during the calibration period. 

However, we saw a reduction in performance during the validation and transfer periods, 

which is to be expected. SSL in both the validation and transfer periods was smaller in 

magnitude than in the calibration periods, and we saw consistent negative Bias in the 

MUSLE, the HSPF, and the DHSVM for the validation period, and for all SSL modules in 

the transfer period. A negative Bias implies that the simulated SSL was greater than the 

observed SSL, as our Bias calculation subtracted simulated from observed. The parameter 

sets were overestimating runoff and SSL in the validation and transfer periods, as the CC-

Late calibration was biased towards high runoff and therefore high SSL peaks. 

5.1.3 Implications of this Study 

 By comparing multiple sites across different time periods, we explored the flexibility 

of SSL algorithms. A key outcome from this study is the comparison of multiple sediment 

algorithms within a consistent modeling framework. We added well-known hillslope erosion 

algorithms into VIC similar to the VIC-WEPP model developed by Mao et al. (2010), and 

also applied a quantitative multi-model comparison akin to Jetten et al. (1999). We 

improved SSL predictions at large-scales by combining the incorporation of erosion 

estimates into VIC with the use of a multi-algorithm routine and multi-objective 

optimization.  

Transferability of parameter sets from a neighboring catchment was explored, in 

addition to transfer from a sub-catchment into a larger catchment, with the finding that the 

HSPF and the DHSVM produced satisfactory results in CC-Early and HSPF in CLP-L 

during the transfer mode. This highlights the potential for transferring calibrated 

parameter sets to ungauged catchments with similar climatic and land use characteristics. 
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Future work could also test transferability across climate and land cover gradients. 

 We found little correlation between calibration, validation and transfer performance. 

However, by analyzing ranges in the observed SSL data, we suspect the cause being 

differences in observed magnitudes across time periods and catchments. In experiments 

with similar ranges of SSL across calibration, validation and transfer, the algorithms 

performed better. The multi-algorithm routine, therefore, did not validate well over a high 

SSL period if the calibration was over a low SSL period, and we found the converse to be 

true as well. This finding has implications for predictions of future climate scenarios (e.g. 

flooding, droughts, and wildfires) as SSL is known to increase non-linearly with extreme 

events. Therefore, the most flexible and robust algorithms, the HSPF and the DHSVM, 

would likely fair better due to their physical inclusion of precipitation rates and vegetation 

coverage, rather than reliance purely on streamflow as in the MRC. 

5.1.4 Theoretical and Practical Limitations 

 Due to the complexity of erosion and sediment transport processes, we identify the 

following limitations. First, physical erosion occurs on the order of meters, whereas our 

implementation of erosion equations is on the order of kilometers. Therefore, our grid cells 

assume a high degree of landscape homogeneity, inherently underestimating fine scale 

erosion controls such as channel geometry and heterogeneous soil characteristics. 

Second, we assumed SSL was supplied from rainfall and overland flow detachment 

on hillslopes in the MUSLE, the HSPF and the DHSVM, whereas we ignored the 

contribution from bedload or mass wasting events. Though the contribution of bedload to 

suspended load has been found to be smaller than hillslope erosion in mountainous regions, 

we acknowledge that our algorithms are inherently underestimating total SSL loads. 

Third, a tradeoff was evident in streamflow performance between the MUSLE, the 
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HSPF and the DHSVM for both the individual and joint calibrations. Though it was 

expected that the performance of streamflow and SSL should align, our model makes a key 

assumption of an infinite sediment supply, which affects peak timing and performance. In 

catchments where hysteresis occurs (meaning the peak in SSL comes before the peak in 

streamflow), the system is often supply limited. However, our infinite supply assumption 

causes our algorithms to rely on streamflow timing for peak SSL. To compensate for this 

timing issue, an accounting of sediment supply limitation should be imposed, thereby 

allowing the peak SSL timing to occur asynchronously with streamflow. However, in the 

current setting, the streamflow and SSL performances exhibited a tradeoff.  

Importantly, the HSPF and the DHSVM algorithms were affected by the 

partitioning of streamflow into runoff and baseflow. To compensate for a lack of sediment 

supply from processes such as mass wasting or bedload transport, the HSPF and the 

DHSVM could compensate by increasing the portion of streamflow that comes from 

overland flow. However, from our multi-objective optimization and filtering method, we 

selected solutions that had a balance between the algorithms and the objectives, thereby 

minimizing the biases from an algorithm’s preferences for streamflow partitioning and peak 

timing. Further, it would be difficult to get reasonable streamflow performance if the HSPF 

and the DHSVM had extensively altered the hydrograph separation into runoff and 

baseflow. 

Fourth, our joint algorithm calibration method was lacking diversity in objective 

functions, though we adequately calibrated the NSE and Bias performance of streamflow, 

the MUSLE, the HSPF and the DHSVM using Borg. The method was more of a multi-

model, double objective calibration, though we used eight objective functions in the joint 

calibration. Our selection of the number and type of objective functions therefore could have 

impacted our results. We also acknowledge a discrepancy in the manner for which we 
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calibrated the algorithms, though the MRC and the LOADEST are commonly formulated 

through statistical regression. However, the MRC and the LOADEST estimate SSL 

directly, whereas the MUSLE, the HSPF, and the DHSVM estimate grid cell erosion and 

require routing. 

Fifth, the individual calibrations had better overall performance than the joint 

calibrations. Though this could be an artifact of our parameter and objective function 

selection, it also implies that there are tradeoffs between the algorithms. Therefore, to get 

maximum performance from an individual module, one could argue that an individual 

calibration with more objective functions is preferred. However, this would limit a key 

novelty of the multi-model technique, allowing for exploration of algorithm structure with 

consistent settings. We can also directly compare algorithm outputs to see how intertwined 

they are with streamflow performance, and to identify patterns among the algorithms 

through application to validation periods and a transfer catchment. Importantly, the multi-

algorithm setup allows us to develop ranges of uncertainty from a single VIC simulation.  

5.2 Conclusions 

We developed a multi-algorithm routine for estimating SSL in mountainous regions 

from empirical, stochastic, conceptual and physically-based methods. We coupled five 

erosion and sediment transport algorithms with the VIC model at a resolution of 1/16˚. 

Using Borg, we performed multi-objective optimizations with individual and joint algorithm 

calibrations to identify optimal parameter sets in three experiments using two catchments 

over three time periods. Using the top solutions from each calibration, we applied the 

parameter sets to validation periods within the same catchments, and to transfer periods 

within a neighboring catchment.  



 

 

70 

 Algorithm performance varied across the experiments and periods. We found that 

the more complex algorithms, the HSPF and the DHSVM, were best able to perform well in 

the transfer, though further testing of the algorithms in a greater number of catchments is 

required. We conclude that while we generated satisfactory results among the various 

experiments and modes, our multi-algorithm method was unable to calibrate over periods of 

low SSL and validate over periods of high SSL and vice versa. Future work will incorporate 

a greater number of catchments and more diverse SSL data to more broadly evaluate 

performance of the method. 

5.3 Future Work 

 This study analyzed SSL and streamflow performance in three catchments across 

varying time periods in the Colorado Front Range. However, to more greatly assess trends 

in algorithm performance across spatial and temporal scales, future work will include 

expanding the experiments to the Western United States across varying climate, 

topography and land use regimes. The SSL algorithms will be evaluated against long-term 

sediment records from reservoirs, providing larger sample sizes with greater variability. 

Future work will address limitations in the current study by incorporating a greater 

number of objective functions, VIC soil parameters, and catchments. 
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Appendix 

Appendix A: Analysis of Observed SSL 

 
Figure 16. Boxplots of observed streamflow in CC-Late during 1992 – 1997 separated by 
time of day showing suspended sediment concentration (SSC) sampling times. Streamflow 
shows a diurnal flux. Therefore, the SSC samples might not be representative of the wave 
celerity in the catchment, as the samples were not taken during peak streamflow hours. 
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Figure 17. Bootstrap sampling with 150 evaluations of randomly selected samples from the 
CLP-L calibration period in 1987 – 1993. Results suggest the sample size adequately 
represents the population, with a slight deviation in skew. 

 
Figure 18. Bootstrap sampling with 150 evaluations of randomly selected samples from the 
CLP-L validation period in 1993 – 1999. Results suggest the sample size adequately 
represents the population, with a slight deviation in skew. 
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Figure 19. Bootstrap sampling with 150 evaluations of randomly selected samples from the 
CC-Early calibration period in 1980 – 1985. Results suggest the sample size adequately 
represents the population. 

 
Figure 20. Bootstrap sampling with 150 evaluations of randomly selected samples from the 
CC-Late calibration period in 1992 – 1997. Results suggest the sample size adequately 
represents the population. 
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Figure 21. Bootstrap sampling with 150 evaluations of randomly selected samples from the 
CLP-F transfer period in 1992 – 1997. Results suggest the sample size adequately 
represents the population. 
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Appendix B: MRC and LOADEST Calibrations 

Table 7. MRC parameter estimation for each experiment using non-linear least squares. 
Levels of significance were ‘***’ for p-value < 0.001.  

Experiment Parameter Estimate Standard 
Error 

t-value p-value  R2 

CLP-L a 0.88 0.21 4.3 5.5e-05 *** 0.98 
CLP-L b 1.8 0.075 25. < 2.0e-16 *** 

CC-Early a 2.0 0.52 3.9 0.00013 *** 0.64 
CC-Early b 1.5 0.095 15. < 2.0e-16 *** 
CC-Late a 0.0080 0.015 0.52 0.60  0.90 
CC-Late b 3.3 0.48 6.9 3.9e-08 *** 

 
 
Table 8. LOADEST parameter estimation for each experiment using AMLE with residual 
variance, PPCC and PPCC significance. 

Experiment QR Q0 Q- QU QZ Q] Q_ Res. 
Var 

PPCC Sig R2 

CLP-L 6.8 1.4 0.09 -0.09 -- -- -- 0.65 0.99 6.9e-01 0.80 
CC-Early 10.

2 
1.9 -0.40 2.1 -

0.81 
-14.5 -- 0.26 0.99 3.9e-01 0.84 

CC-Late 7.1 1.8 0.12 0.04 0.54 -0.03 0.06 0.82 0.99 3.7e-01 0.89 
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Appendix C: Individual Algorithm Calibrations 

 
Figure 22. Demonstration of the sensitivity analysis completed in CC using NSE and LHS 
with 500 function evaluations. Though NSE performance is frequently below the 
satisfactory criteria, the intention is to show the spread in model performance from the 
various parameters. We performed similar analyses using correlation, bias and variability. 

 
Figure 23. Individual streamflow calibration for CC-Late during 1992 – 1997 with a spin-up 
period in 1991. There were tradeoffs between the objectives, as well as the values of the VIC 
soil parameters. Solutions are sorted by streamflow NSE (NSE Flow), and present better 
performance than in the joint calibration. 
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Figure 24. Individual MUSLE SSL algorithm calibration for CC-Late during 1992 – 1997 
with a spin-up period in 1991. There were tradeoffs between the objectives, as well as the 
VIC soil parameters. MUSLE SSL parameters K and P were less sensitive, and covered the 
parameter bounds, there were tradeoffs with the C parameter. Solutions are sorted by SSL 
NSE, and present better performance than in the joint calibration. 

 
Figure 25. Individual HSPF SSL algorithm calibration for CC-Late during 1992 – 1997 with 
a spin-up period in 1991. There were tradeoffs between the objectives, as well as the VIC 
soil parameters. HSPF SSL parameters were generally less sensitive, except for JR, KG 
and JG. Solutions are sorted by SSL NSE, and present better performance than in the joint 
calibration.  
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Appendix D: Joint Algorithm Calibrations 

 
Figure 26. Minimum objective function performance as a measure of the number of Borg 
function evaluations. The daily NSE and Bias estimates met our satisfactory criteria of 
NSE > 0.50, and Bias < ±25% for streamflow and Bias < ±55% for SSL.

 

Figure 27. Parallel coordinate plot of Pareto optimal solutions from Borg for CLP-L 
computed over the calibration period 1987 – 1993 for the joint algorithm calibration with a 
spin-up year in 1986. Colored solutions indicate the highest performances across the 
ensemble, with blues and greens representing the final selected solutions. Colored solutions 
are sorted by Flow NSE. The parameter sets from selected solutions were used to run 
validation and transferability analyses. 
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Figure 28. Parallel coordinate plot of Pareto optimal solutions from Borg for CC-Early 
computed over the calibration period 1980 – 1985 for the joint algorithm calibration with a 
spin-up year in 1979. Colored solutions indicate the highest performances across the 
ensemble, with blues and greens representing the final selected solutions. Colored solutions 
are sorted by Flow NSE. The parameter sets from selected solutions were used to run 
validation and transferability analyses. 

 
Figure 29. Parallel coordinate plot of Pareto optimal solutions from Borg for CC-Late 
computed over the calibration period 1992 – 1997 for the joint algorithm calibration with a 
spin-up year in 1991. Colored solutions indicate the highest performances across the 
ensemble, with blues and greens representing the final selected solutions. Colored solutions 
are sorted by Flow NSE. The parameter sets from selected solutions were used to run 
validation and transferability analyses. 
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Figure 30. Histogram of observed data for CC-Late with kernel density estimation for each 
SSL algorithm computed over the calibration period 1992 – 1997 for the joint algorithm 
calibration with a spin-up year in 1991. The kernel density distributions were calculated 
from the mean of the SSL values from the top three performing parameter sets. 

 
Figure 31. Hydrograph for CC-Early with VIC streamflow computed over the calibration 
period 1980 – 1985 for the joint algorithm calibration with a spin-up year in 1979. Falling 
limbs of the hydrograph were overestimated other than in 1981 when SSL was calibrated. 



 

 

89 

 
Figure 32. Time series of suspended sediment load (SSL) for CC-Early with each SSL 
algorithm computed over the calibration period 1980 – 1985 for the joint algorithm 
calibration with a spin-up year in 1979. The plotted SSL estimates were calculated from the 
mean of the SSL values from the top three performing parameter sets. 

 
Figure 33. Histogram of observed data for CC-Early with kernel density estimation for each 
SSL algorithm computed over the calibration period 1980 – 1985 for the joint algorithm 
calibration with a spin-up year in 1979. The kernel density distributions were calculated 
from taking the mean of the SSL values from the top three performing parameter sets. 
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Figure 34. Hydrograph for CLP-L with VIC streamflow computed over the calibration 
period 1987 – 1993 for the joint algorithm calibration with a spin-up year in 1986. Observed 
streamflow was impacted by 35% reservoir storage upstream, which could be impacting the 
results. 

 
Figure 35. Time series of suspended sediment load (SSL) for CLP-L with each SSL 
algorithm computed over the calibration period 1987 – 1993 for the joint algorithm 
calibration with a spin-up year in 1986. The plotted SSL estimates were calculated from the 
mean of the SSL values from the top three performing parameter sets. 
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Figure 36. Histogram of observed data for CLP-L with kernel density estimation for each 
SSL algorithm computed over the calibration period 1987 – 1993 for the joint algorithm 
calibration with a spin-up year in 1986. The kernel density distributions were calculated 
from taking the mean of the SSL values from the top three performing parameter sets. 
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Appendix E: Joint Algorithm Validations and Transfers 

 
Figure 37. One-to-one plots for calibration periods in CLP-L, CC-Early, and CC-Late for the 
top three selected parameter sets indicated by shape. CC-Late had the best overall 
performance in NSE of all modules compared with CLP-L and CC-Early. 

 
Figure 38. One-to-one plots for validation periods in CLP-L, CC-Early, and CC-Late for the 
top three selected parameter sets indicated by shape. The best performances in NSE were 
the DHSVM and HSPF algorithms in CLP-L, and MRC in CC-Late. 
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Figure 39. One-to-one plot of simulated versus observed streamflow for the transfer of the 
top three selected parameter sets indicated by shape from P1: CLP-L, P2: CC-Early, and 
P3: CC-Late to CLP-F. P1 and P3 met the satisfactory criteria for NSE. P2 performed 
poorly, potentially due to the joint calibration scheme where SSL and streamflow 
performances had a tradeoff, and therefore a balance between objectives required a 
compromise.  

 
Figure 40. (top) Transferability test for SSL from P1: CLP-L, P2: CC-Early, and P3: CC-
Late to CLP-F using the top three calibrated Borg parameter sets for P1, P2 and P3, 
(bottom) with P3 removed to emphasize performance of P1 and P2. 

 



 

 

94 

 

Table 9. NSE scores for CLP-L calibration, validation, and transfer to CLP-F for all 
algorithms and the top three selected parameter sets (Runs). 

Experiment Run Module Calibration Validation Transfer 
CLP-L 1 DHSVM 0.32 0.42 0.68 
CLP-L 2 DHSVM 0.37 0.53 0.16 
CLP-L 3 DHSVM 0.40 0.58 -0.21 
CLP-L 1 Flow 0.31 0.23 0.58 
CLP-L 2 Flow 0.31 0.27 0.63 
CLP-L 3 Flow 0.26 0.22 0.53 
CLP-L 1 HSPF 0.48 0.52 0.32 
CLP-L 2 HSPF 0.45 0.49 0.38 
CLP-L 3 HSPF 0.54 0.46 0.62 
CLP-L 1 LOADEST 0.09 0.01 0.24 
CLP-L 2 LOADEST 0.09 0.02 0.10 
CLP-L 3 LOADEST 0.06 0.00 0.39 
CLP-L 1 MRC 0.13 0.08 -0.59 
CLP-L 2 MRC 0.14 0.09 -1.26 
CLP-L 3 MRC 0.08 0.05 0.06 
CLP-L 1 MUSLE 0.15 0.45 0.21 
CLP-L 2 MUSLE 0.08 0.15 0.15 
CLP-L 3 MUSLE 0.09 0.17 0.21 
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Table 10. Percent bias scores for CLP-L calibration, validation, and transfer to CLP-F for 
all algorithms and the top three selected parameter sets (Runs). 

Experiment Run Module Calibration Validation Transfer 
CLP-L 1 DHSVM -26.6 79.3 -59.6 
CLP-L 2 DHSVM -62.2 73.4 -104.0 
CLP-L 3 DHSVM -78.1 70.8 -124.4 
CLP-L 1 Flow -1.1 63.7 39.7 
CLP-L 2 Flow -8.3 60.7 36.4 
CLP-L 3 Flow -8.2 60.4 35.0 
CLP-L 1 HSPF -10.5 77.8 69.7 
CLP-L 2 HSPF 0.8 79.7 66.0 
CLP-L 3 HSPF 8.1 82.9 45.0 
CLP-L 1 LOADEST 63.7 97.3 -19.7 
CLP-L 2 LOADEST 59.6 96.9 -43.1 
CLP-L 3 LOADEST 63.5 97.0 -2.6 
CLP-L 1 MRC 58.3 95.2 -113.7 
CLP-L 2 MRC 52.8 94.4 -153.1 
CLP-L 3 MRC 58.9 94.9 -89.4 
CLP-L 1 MUSLE -66.5 46.2 -41.1 
CLP-L 2 MUSLE 49.5 83.5 55.9 
CLP-L 3 MUSLE 25.8 75.3 39.1 
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Table 11. NSE scores for CC-Early calibration, validation, and transfer to CLP-F for all 
algorithms and the top three selected parameter sets (Runs). 

Experiment Run Module Calibration Validation Transfer 
CC-Early 1 DHSVM 0.27 0.04 0.83 
CC-Early 2 DHSVM -0.15 0.13 0.74 
CC-Early 3 DHSVM 0.17 -0.02 0.54 
CC-Early 1 Flow 0.12 0.40 0.11 
CC-Early 2 Flow 0.28 0.16 0.08 
CC-Early 3 Flow 0.28 0.37 0.12 
CC-Early 1 HSPF 0.28 0.01 0.84 
CC-Early 2 HSPF 0.11 -0.09 -0.55 
CC-Early 3 HSPF 0.11 -0.09 -0.54 
CC-Early 1 LOADEST -1.1E+86 -0.10 -0.15 
CC-Early 2 LOADEST -4.7E+85 -0.10 -0.15 
CC-Early 3 LOADEST -7.4E+85 -0.10 -0.15 
CC-Early 1 MRC 0.14 -0.08 -0.08 
CC-Early 2 MRC 0.02 -0.08 0.07 
CC-Early 3 MRC 0.13 -0.07 0.03 
CC-Early 1 MUSLE 0.15 -0.06 -0.10 
CC-Early 2 MUSLE 0.03 -0.06 0.13 
CC-Early 3 MUSLE 0.13 -0.05 0.09 
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Table 12. Percent bias scores for CC-Early calibration, validation, and transfer to CLP-F for 
all algorithms and the top three selected parameter sets (Runs). 

Experiment Run Module Calibration Validation Transfer 
CC-Early 1 DHSVM 27.3 88.9 8.1 
CC-Early 2 DHSVM -22.2 81.6 -51.5 
CC-Early 3 DHSVM 60.2 94.0 50.4 
CC-Early 1 Flow -51.4 42.5 60.0 
CC-Early 2 Flow -50.9 38.8 53.9 
CC-Early 3 Flow -50.0 42.7 58.6 
CC-Early 1 HSPF 30.5 91.0 -6.6 
CC-Early 2 HSPF 9.8 94.8 -13.5 
CC-Early 3 HSPF 9.9 94.8 -13.1 
CC-Early 1 LOADEST -1.1E+45 100.0 100.0 
CC-Early 2 LOADEST -7.9E+44 100.0 100.0 
CC-Early 3 LOADEST -9.1E+44 100.0 100.0 
CC-Early 1 MRC 32.1 94.2 67.1 
CC-Early 2 MRC 45.9 95.4 64.9 
CC-Early 3 MRC 38.7 95.0 67.5 
CC-Early 1 MUSLE 2.1 90.4 18.1 
CC-Early 2 MUSLE 34.5 92.6 29.5 
CC-Early 3 MUSLE 24.1 92.4 31.3 
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Table 13. NSE scores for CC-Late calibration, validation, and transfer to CLP-F for all 
algorithms and the top three selected parameter sets (Runs). 

Experiment Run Module Calibration Validation Transfer 
CC-Late 1 DHSVM 0.74 -46.02 -55.56 
CC-Late 2 DHSVM 0.75 -37.96 -44.02 
CC-Late 3 DHSVM 0.75 -58.20 -67.37 
CC-Late 1 Flow 0.76 -0.57 0.79 
CC-Late 2 Flow 0.69 -0.14 0.76 
CC-Late 3 Flow 0.67 -0.04 0.74 
CC-Late 1 HSPF 0.75 -45.84 -107.82 
CC-Late 2 HSPF 0.75 -43.50 -100.39 
CC-Late 3 HSPF 0.75 -28.44 -62.36 
CC-Late 1 LOADEST 0.65 -0.86 -19.35 
CC-Late 2 LOADEST 0.40 0.33 -3.97 
CC-Late 3 LOADEST 0.60 -0.88 -6.85 
CC-Late 1 MRC 0.73 0.50 -852.72 
CC-Late 2 MRC 0.42 0.15 -135.74 
CC-Late 3 MRC 0.71 0.32 -447.81 
CC-Late 1 MUSLE 0.56 -3.96 -30.81 
CC-Late 2 MUSLE 0.62 -7.83 -44.70 
CC-Late 3 MUSLE 0.65 -6.20 -31.82 
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Table 14. Percent bias scores for CC-Late calibration, validation, and transfer to CLP-F for 
all algorithms and the top three selected parameter sets (Runs). 

Experiment Run Module Calibration Validation Transfer 
CC-Late 1 DHSVM -14.4 -552.9 -845.7 
CC-Late 2 DHSVM -5.6 -490.1 -751.4 
CC-Late 3 DHSVM -27.0 -618.7 -930.0 
CC-Late 1 Flow 6.2 -79.1 15.2 
CC-Late 2 Flow 7.5 -78.3 17.0 
CC-Late 3 Flow 3.5 -81.6 11.0 
CC-Late 1 HSPF -20.0 -597.8 -1180.3 
CC-Late 2 HSPF -15.8 -596.1 -1149.0 
CC-Late 3 HSPF -0.1 -422.4 -882.6 
CC-Late 1 LOADEST 45.0 -111.7 -474.9 
CC-Late 2 LOADEST 67.7 -48.4 -243.9 
CC-Late 3 LOADEST 51.3 -94.7 -299.5 
CC-Late 1 MRC 25.5 52.1 -2018.8 
CC-Late 2 MRC 66.0 75.6 -837.6 
CC-Late 3 MRC 42.4 61.2 -1290.3 
CC-Late 1 MUSLE 15.7 -307.6 -833.7 
CC-Late 2 MUSLE -2.3 -451.8 -1073.0 
CC-Late 3 MUSLE 5.6 -388.6 -912.4 
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