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Benjamin A. Weerts (M.S., Department of Civil Engineering) 

NSIDC Green Data Center Project: Coolerado and Modeling an Application of the Maisotsenko Cycle 

Thesis directed by Professor Michael J. Brandemuehl 

ABSTRACT 
The National Snow and Ice Data Center recently replaced its traditional cooling system with 

a new air conditioning system that utilizes an economizer and Coolerado air conditioning units. 

These units represent one of the first commercially available applications of the Maisotsenko 

cooling cycle. A datalogging system was installed that measured the data center’s power 

consumption before and after the cooling system was replaced. This data was organized and used 

to prove a 90% cooling energy reduction for the NSIDC. The data logging system also collected 

temperatures and humidities of inlet and outlet air of a Coolerado air conditioner. After using these 

data to validate a theoretical model developed by researchers at the National Renewable Energy 

Laboratory, the model was used to simulate slightly modified heat and mass exchanger designs of 

the Coolerado system to improve performance. Sensitivity analysis was performed and found a few 

design parameters that are important to the thermodynamic performance of the Coolerado system, 

while others were proved insignificant. Channel heights, sheet size and ambient pressure have the 

most significant impacts on the performance. Overall, it was found that the current design performs 

reasonably well and with minor modifications could perform optimally, as suggested by the 

theoretical model.  
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I. INTRODUCTION 

BACKGROUND 

This report serves as a summary of thesis research related to data center energy use and an 

application of a new, unique air conditioning product from Coolerado. This narrative briefly covers 

current issues in data center infrastructure and power monitoring systems, and the bulk of the 

report is dedicated to the explanation of how performance data was collected and compared to a 

theoretical model of the Coolerado system. Using the model, modifications to the current Coolerado 

design are proposed to increase the efficiency and performance of future designs. 

As the data industry is seeing an exponential growth in the bandwidth of data required by 

consumers in this digital age, new data centers are needed, and energy consumption in this sector is 

increasing. Larger data centers with more servers also need larger cooling systems. The 

responsibility to reduce this energy use and increase energy efficiency as much as possible falls on 

data center operators, public and private. Higher facility efficiencies translate into immediate 

energy and cost savings. However, information on how to achieve better energy performance must 

be readily available to operators. Both the federal government and private companies in the 

industry are involved in ongoing research of best practices for data center operation. 

 The National Snow and Ice Data Center (NSIDC) is a small data center that has transitioned 

from a traditional direct expansion cooling system to a new indirect evaporative system during its 

Green Data Center Project. This project has three consecutive phases: server consolidation and 

virtualization, upgrading the cooling system and installing a solar photovoltaic (PV) system on the 

roof.  Server consolidation (completed by June 2011) saves some energy and is also a sustainable 

practice from an IT management standpoint. Installing a new cooling system (completed by June 

2011) was expected to show the most effective savings, and once the PV system is in place 
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(expected by April 2012), the NSIDC may be a zero net energy data center during a clear summer 

day.  

The new cooling system utilizes the recently patented Maisotsenko cooling cycle. Coolerado, 

the Denver based developer of this technology, claims significant energy savings over a 

conventional system. The NSIDC has served as a real-world test of these claims with 8 identical 

cooling units installed and operational for nearly 8 months. This study focuses on data that was 

collected over a 22 month period that encompasses energy use before, during and after the first 

two phases of the Green Data Center Project. A monitoring network was developed to determine 

energy use of the traditional DX system and the new Coolerado system. The Coolerado system was 

officially brought online in June 2011. These data showed that the new Coolerado cooling system is 

saving about 90% of the cooling energy previously required to cool the data center.  

OBJECTIVE 

 The main purpose of this research was to use a model of the Coolerado system to explore 

design changes that may improve the system’s performance. Using a complete theoretical model 

developed by Eric Kozubal and other researchers at the National Renewable Energy Laboratory 

(NREL), various internal design changes were simulated. Through a sensitivity analysis, some were 

found to be important because they have significant effects on the performance of the Coolerado 

system. Others were found to have very little effect.  

II. MOTIVATION 

DATA CENTERS AND ENERGY CONSUMPTION 

Current expansion and the use of digital technology and communication are causing 

significant growth demands on the information technology (IT) industry. The worldwide capacity 
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for data storage and processing is increasing rapidly as more and more industries and companies 

must provide or store data for clients, as well as for internal business purposes. Examples include: 

online financial services and mobile banking; the communication and entertainment industry as 

they expand into social websites and internet access markets; and digital healthcare records. 

Almost all shipping and mail services now offer online tracking of packages. GPS technology has 

become smaller and more affordable, and a standard feature on many new vehicles. Real-time data 

processing of these geospatial data will increase exponentially. With all of these industries 

expanding their digital footprint, data center demand capacity for storage and processing will also 

grow accordingly. Data centers provide a clean, secure and stable environment for online servers 

and must be maintained physically and virtually at all hours of the day. Such facilities across the U.S. 

typically house anywhere from a few dozen to a few thousand servers and are geographically 

dispersed. 

 The data center industry has experienced trends over the past decade that can be divided 

into two periods: 2000 to 2005 and 2005 to 2011. During the beginning part of the decade, data 

center energy use in the U.S. nearly doubled [1], according to the EPA. An estimated 61 billion kWh 

of energy was consumed by data centers in 2006, which accounts for 1.5% of total U.S. energy 

consumption. In the same study, a few different projections were made based on: historical trends, 

current efficiency trends, improved operation, best practice, and state-of-the-art scenarios. Figure 1 

shows a graph of these projected energy uses. 



-4- 
 

 

Figure 1. 2007 EPA report U.S. data center energy use projections. [1] 

Note that the historical trends scenario in Figure 1 shows another doubling of energy use by 

2011. And an improved operations scenario would’ve resulted in about 35% increase in energy use 

compared to 2006. Moving up to an updated report by Jonathan Koomey in 2010, it appears that 

data center energy use has followed the improved operation scenario and U.S. data centers now use 

somewhere between 70 and 85 billion kWh/year [2]. 

Although the data show that data center energy use has followed the improved operations 

scenario, it is important to point out that the 2007 EPA scenario was based on “low-cost efficiency 

opportunities” or simple changes that operators could implement to conserve energy within a 

typical budget. However, Koomey suggests that the U.S. data center energy consumption is reduced 

from typical 2000-2005 historical trends only because of fewer additional installed servers and not 

necessarily because operators have been actively improving the efficiency of their centers. The 

slowdown reflects some energy conservation measures like virtualization and consolidation of data 

centers, but also general market trends since the 2008 financial industry crash. Many companies 

Koomey’s 

estimation [2] 



-5- 
 

were struggling to balance budgets and may not have had the resources to expand their data center 

or IT facilities as much as expected previously [2]. 

Computers consume a significant amount of electrical energy. Most of this energy is converted 

into heat within a computer that then must be exhausted to prevent damage to the electronic 

components. The American Society of Heating, Refrigeration, and Air Conditioning Engineers 

(ASHRAE) has established temperature and humidity standards that are suitable for data centers 

and computer rooms [3]. The limits on this psychrometric “envelope” are shown in Table 1 and 

Figure 2. 

Humidity control in a data center is critical to stable operation. Too much moisture in the air 

allows for condensation possibly leading to short circuits and damage to any part of the delicate 

integrated circuits, power supplies, and other hardware. Too little humidity allows for static charge 

accumulation and potential damage from a single, large discharge could be significant. Exceeding a 

certain ambient air temperature can cause thermal damage to equipment. Very low ambient 

temperatures can cause circuits and electricity flow to slow down, thus impeding the productivity 

of the computer. 

It is a vital concern of data center managers to maintain an appropriate air state using heating, 

ventilation and air conditioning (HVAC) systems. While improvements in energy efficiency are 

important, machine room environment and support systems’ reliability are also critical to these 

data centers. 

Table 1. ASHRAE recommended psychrometric envelope for data centers. 

Property Recommended Allowable 

Dry-Bulb 

Temperature 

High 80° F 90° F 
Low 64° F 59° F 

Moisture 
High 60% RH & 59° F DP 80% & 63F DP 
Low 42° F DP 20% RH 
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Figure 2. ASHRAE defined psychrometric computing environments; refers to air entering the IT equipment (at 
sea level). 

 All electronics produce heat as a byproduct. Exceeding a certain ambient air temperature 

can cause thermal damage to equipment. Very low ambient temperatures can cause bearing failures 

on disk drives leading to premature failure. 

In order to maintain an appropriate air state within the limits as described above, the type 

and control of the heating, ventilation and air conditioning (HVAC) system for a data center is of 

vital importance. Both the HVAC infrastructure and the power distribution require a substantial 

amount of energy.  

In 2006, total data center power consumption in the U.S. was estimated around 7 GW, and 

this number was closer to 9 GW in 2011 [1] as power densities increased. Power density is 

technically defined as server power per area (watts per square meter). Power densities are 

increasing as new servers use more power and require less space. A typical server in 2007 uses 251 
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W of peak power (EPA). If the peak power of a newer server is 351 W, and there are 10 servers per 

rack, then there is a 1 kW increase in peak power usage. An increase in 1 kW of power becomes 

significant when a full row of server racks is replaced. This change in server type can cause overall 

data center power efficiencies to decrease if not accompanied by a proportional change in cooling 

and power equipment. For this reason, a data center’s design power density is very important. If 

cooling and power distribution equipment is designed to handle a much higher power density (as 

would be reasonable to assume future expansion) than is actually needed, efficiency suffers 

initially, and the facility costs more to operate at part load conditions. It is important to establish a 

reasonable design power density and ensure that future changes to servers or equipment are 

appropriate and do not reduce the power efficiency of the center significantly [4]. 

All power used by servers is essentially turned into heat that needs to be removed by 

cooling equipment. If a server rack uses 20 kW of power at any given time, the data center cooling 

load is 20 kW times the number of racks. 

Another important design consideration is the peak to average power ratio [4]. A typical 

server can use up to 250 W of peak power. However, the average power use may be much lower, 

depending on the server details and its IT demands. The average power is the amount of power the 

server consumes most of the time; peak loads usually only occur for short periods. The peak to 

average power ratio is defined as the peak power use divided by the average power usage. 

                             
          

             
 (1) 

 

The cooling system must be designed and sized to handle the peak load. If the peak to 

average ratio is significantly higher than 1, then most of the time, the cooling system will be 

operating at a significantly reduced, partial load which is generally less efficient. The overall peak to 
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average ratio is also dependent on the organization and location of the different types of servers. An 

ideal rack would have servers that use peak power at different times so that the total power use of 

that rack is relatively constant. 

In terms of maintaining the ASHRAE supply air state, there are a few different types of 

layouts that work well for introducing cool supply air and expelling hot, return air from the server 

racks. Many data centers separate rows of server racks with alternating hot and cold aisles. Cold air 

is provided on the front side of the server racks and hot exhaust air is expelled from the racks on 

the back side. Front sides of racks face each other, which creates this common setup. Figure 3 below 

shows this air distribution system. 

 

Figure 3. Hot aisle / Cold aisle data center layout.  

Note the raised floor in the figure above. Most data centers use a similar system because of 

the ease of rearrangement to server rack layout and power distribution. However, the cooling 

system also utilizes this under-floor plenum to deliver conditioned air at the base of each server 

rack. Modular diffuser tiles can be moved or swapped out depending on rack layout. Hot aisles don’t 
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have any diffuser tiles because the cool conditioned air (beneath) must be kept separate from hot 

return air (above). This hot/cold system is very common in most large data centers. 

This setup can be more effective when the hot and cold aisles are physically separated by 

plastic curtain or other airflow barriers. Using physical separation eliminates unavoidable “short 

circuiting” of conditioned air over the top of the server racks and into the return air stream. Also, 

dedicated return air ducts or plenum and fans can reduce the pressure drop seen by the supply air 

fan, which would result in elevated velocities and heat transfer ratios through each rack [5].  

 

NATIONAL AND INTERNATIONAL EFFORTS OR IDEAS TO INCREASE EFFICIENCIES 

All parts of the data center system described above have room for improvements in 

efficiency and energy consumption. In the EPA report, some suggestions are made to increase data 

center efficiency. 

According to the EPA, up to 2007, the rapid expansion and evolution of the data center 

industry has not allowed for standardized performance metrics to be established. Many variations 

of power densities are used which results in different reported efficiencies [4]. More recently, the 

Green Grid, an association of IT professionals, has developed two energy use metrics to standardize 

the way data centers measure efficiency. These standard metrics provide a common base for data 

center operators to compare different centers and determine where improvements in equipment or 

operation could be implemented. The Power Usage Effectiveness (PUE) and Data Center Efficiency 

(DCE or DCE) are defined in Figure 4 below: 
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Figure 4. PUE and DCE definitions [6]. 

These data center performance metrics are becoming more standard within the IT and data 

center industry. The Green Grid has begun to engage important prominent trade organizations 

around the world to promote the use of these metrics with green initiatives and programs. The 

EPA’s Energy Star program, European Code of Conduct, Japan’s Green IT Promotion Council and 

others are involved in further developing and implementing the PUE and DCE metrics and 

calculation methods. Obviously these metrics rely on power measurements that may not be easily 

accessed. For example, if an office building has a data center inside, the data center power usage 

may be harder to determine without a submetering system. Methods and information on how to 

overcome this hurdle must be developed. For design purposes, ratings for IT equipment should also 

be established so that owner/operators can select efficient and compatible equipment for their 

facility. The efficiency of this equipment has an effect on the PUE and DCE. Note that IT Equipment 

Power is the sum of all power consumed by the servers. While Total Facility Power includes the 

servers, power conditioning and backup equipment, and cooling infrastructure. 
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 Efficiency and power effectiveness metrics can help operators establish how efficiently their 

facility is operating, and eventually organizations like the EPA could recommend or require certain 

efficiency levels as a greenhouse gas reduction technique, much like is already in effect for 

automobiles with EPA miles per gallon (MPG) ratings.  

Once standardized metrics are available, the governments (national and state or provincial 

levels) could act as a model for other government and private data centers by using the metrics and 

reporting energy consumption in their own data facilities. The government would then be in a good 

position to issue a private sector challenge to operators of data centers to improve the energy 

performance of their facility. Of course this would also require that credible, accurate information 

be available on efficiency improving techniques and how energy efficiency doesn’t necessarily 

mean less data center reliability. Many operators believe that more efficient equipment translates 

to less reliability. Information on best practices must be readily available [1]. 

In order to accomplish or meet the above mentioned suggestions, more research must be 

completed. More information on how IT hardware, power delivery, heat removal, and facility 

management are related must be developed to determine best practices and equipment types for 

data centers. Collaboration between public and private sectors would be the best way to achieve all 

of suggestions above. Public developments and advancements should be shared with the private 

industry, and vice versa so that the overall efficiency and energy savings of the growing IT industry 

can be realized across the world. The National Snow and Ice Data Center, a non-profit organization 

funded in large part by the NSF and NASA, is an active participant in the promotion of data center 

efficiency, particularly over the past two years with its Green Data Center Project. 

NSIDC POWER AND ENERGY USE 

 The National Snow and Ice Data Center (NSIDC) provides data for studying the 

“cryosphere”—those areas of the planet where snow or ice exist. The two most extensive regions of 
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study are Antarctica and the Arctic but high elevation regions are also important as they contain 

glaciers, and permanent ice and snow fields.  The Center began operations at the University of 

Colorado in 1976.   Some of the data held at NSIDC indicates dramatic changes in the cryosphere 

over the past decade and many of these changes have been attributed to global warming. NSIDC has 

operated a Distributed Active Archive Data Center (DAAC) for NASA’s Earth Observing System since 

1992. The data managed by the DAAC computer systems are distributed to scientists around the 

world. In order to deliver these cryospheric data to national and international clients, the data 

center must be available online around the clock.  

The NSIDC is located at the University of Colorado’s East Campus in Boulder. Room 376 on 

the third (top) floor in building RL-2 houses a small assortment of dedicated server racks and 

network equipment. Most of the servers are used for data storage and online availability. NASA and 

other related organizations use the satellite based climate data for simulations and other research 

applications. These servers must be online at all hours of the day. Access to this room is controlled, 

and registration is required for each visitor. 

 

OLD SYSTEM 

Traditionally, data centers have been cooled by standard (and often packaged or unitary) 

air conditioning systems that utilize a direct expansion (DX) heat removal process through a liquid 

refrigerant. This is the same type of cycle that runs the air conditioning in a car or refrigerator. 

Although a robust and mature technology, the DX cycle has been under scrutiny over the past few 

decades as other technologies capable of producing the same amount of cooling with less power 

requirement have entered the market and become economically viable. The DX cycle requires 

environmentally harmful, synthetic refrigerant (R-22) and substantial energy to run a compressor. 

Of all the parts in a DX air conditioner, the compressor requires the most energy. Up until the past 
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few years, typical data centers have been cooled by these packaged DX systems, commonly referred 

to as computer room air conditioners (CRAC), because they are very reliable. These systems have 

been economical in the past due to their off -the-shelf packaging, compact size and simple controls. 

However, as the need for energy use reduction and environmentally friendly technology becomes 

more and more prevalent, the DX systems for data centers are becoming antiquated. The NSIDC 

operated 2 CRAC (50 tons in total) units full time until April 2011. These units relied upon a typical 

raised floor for cool air and power distribution.  

To maintain the space within ASHRAE standards for data centers (see Figure 2), precision cooling equipment 
must be included in the system design. Made by Liebert, these units were part of an air conditioning system that 
has a fan, a compressor, evaporator coils and controls, and these were connected to individual condenser units 
that were located outside on the roof (directly above the room). The specifications on these non-identical units 
are summarized in 

Table 2 below. Note that since the new cooling system has been installed, the 20-ton CRAC has been 

removed and the 30-ton CRAC has been left in place for backup purposes only. 

An uninterruptible power supply (UPS) is also a major piece of equipment that provides 

conditioned power to the NSIDC servers. The UPS also charges a large array of batteries for use 

during a power outage. These batteries provide emergency power to the servers and other UPS 

connected equipment for a few hours, which is typically long enough to allow for an expedient 

shutdown of computer systems, or for repair of the external electrical problem. The UPS currently 

installed at the NSIDC is only 87.7% efficient, which leads to a loss of 12.3% to power conditioning 

and conversion from AC to DC current to charge the backup battery array. Note that this loss is 

accounted for in the PUE by the difference between IT Equipment Power and UPS Power, as in 

Equation 2 and Equation 3. 

                                               (2) 

                                             (3) 

 



-14- 
 

Table 2. Liebert CRAC Specifications (courtesy of University Facilities Management). 

Model: Nominal Capacity Rated Current Nominal Power Use 
DH300AHCA01 30 tons 171.6 A 61.8 kW 

FH245AVCOO 20 tons 142.6 A 51.4 kW 
 

The power system in the building had to be studied in order to determine the necessary 

equipment and proper method to monitor and record power usage data from the cooling and 

power subsystems of the NSIDC. The electrical system for the building is a basic three phase radial 

system. Power is delivered to the primary unit substation in the basement and transformed into 

208Y/120V for distribution. Power to both of the CRAC units and the servers is delivered in 

separate conduits from the main distribution board in the basement of the building. The CRAC units 

are supplied by 2/0 AWG (THW Cu) wires. In Room 376, power for the servers comes from the UPS 

that is also located in the room and feeds directly to the power panels and under floor distribution 

network. This UPS provides power to 15 server racks (not all are full). The UPS is supplied by 400 

MCM (THW, Cu) cables in 3” conduit. The wire sizes were important for monitoring equipment 

specification purposes. 

In 2008, the Uptime Institute said that annually, global data center CO2 emissions are poised 

to equal that of the airline industry if current trends persist, and it estimated that data center CO2 

emissions will quadruple between 2010 and 2020 [7]. The irony of the NSIDC’s situation stems 

from the fact that the use of tools (the data center) necessary to study the problem (climate change) 

are actually contributing to the problem. When it became necessary to replace and upgrade the 

existing cooling infrastructure, all options were considered, and in particular, solutions that would 

reduce energy demand and dependency on the local utility provider were given high priority.  

 

NEW SYSTEM 
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The new cooling system design includes a unique cooling system that uses both airside 

economization and a new Maisotsenko Cycle air conditioner. The major pieces of equipment in this 

system include a rooftop air handling unit (AHU) powered by a 7.5 kilowatt (10 horsepower) fan 

motor via a variable frequency drive (VFD), eight Coolerado M50 air conditioners and hot aisle 

containment. The modularity of the M50 units is a feature of this design. About 30 tons of cooling is 

required on a hot day. Each M50 unit is rated for 5 tons of cooling. Therefore, only 6 units are 

actually required to meet the full load. However, because fan power input increases as a cube of the 

airflow (according to fan affinity laws), running the M50 units at maximum capacity could use a lot 

of energy. Instead, 8 units were specified so that none of the units are ever operating at full speed 

for an extended period of time; in theory, the maximum would be about only 75% airflow capacity 

or 42% power. Including more units than necessary also allows for redundancy and the ability to 

operate the data center as designed even with 1 or 2 units out of commission. 

Airside economization is not a new technology, but does add some complexity to the control 

system. Simply put, an airside economizer is a control mode that allows the air handling unit (AHU) 

to cool the space solely with outdoor air when the outdoor air is cooler than the air in the space. 

This is commonly referred to as “free cooling”. In this mode, no air conditioning (DX or other 

process) is required, and recirculation of room air is reduced to a minimum. As stated previously, 

humidity is an issue for computers and electronic systems. And in many locations, particularly the 

Midwest and East Coast of the United States, airside economization may not be possible due to the 

hot and humid climate. However, the State of Colorado (and much of the western U.S.) is much drier 

and cool enough for about 6 months of the year, so an airside economizer is a viable option for data 

centers to maintain tight control of supply air within the ASHRAE limits. 

Because the data center operates 24 hours per day, there is a constant need for cooling; and 

without airside economization to take advantage of cold winter air, the CRAC units used to operate 

24 hours per day, at near constant load. Therefore the PUE of the CRAC system at the NSIDC didn’t 
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vary much with outdoor temperature from month to month. The new system allows the cooling 

power required to maintain the ASHRAE air state to decrease in correlation with the outdoor 

temperature. 

Note that the new cooling process does not have a compressor or condenser in its cycle. 

Using the Coolerados, air from the AHU can now cool the data center to a cool temperature using an 

average of one tenth the energy that would be required by the CRAC system. Water is used in this 

cycle, and is only used once (single pass). Based on measurements, all eight of the Coolerado units 

consume an average of 1.7 liters per minute (0.5 gallons per minute) when in humidification mode, 

which is most of the winter. Unfortunately, similar measurements were not taken of CRAC water 

use, although it is expected that the CRACs use and waste more water due to an inefficient 

humidification process; and the CRACs hsed a continuous water flow regardless of whether or not 

they were in humidification mode. 

 

 

Figure 5. Schematic of new NSIDC cooling system. 
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Figure 5 shows a schematic of this system. On a design cooling day (hot summer day), the 

AHU pulls in outdoor air around 35°C (95°F) and introduces it to the front side of the Coolerado 

units. Then the Coolerado fans force the hot air through its HMX, splitting the airstream in half and 

cooling the supply air to about 12.7°C (55°F). This cool air is directed towards the front side of the 

server racks. After being exhausted from the backside of the server racks at around 32°C (90°F), the 

air is pulled out of the hot aisles by suction pressure from the return air damper in Figure 5. This 

slight negative pressure is caused by the same AHU fan that initially pushed the air into the room. 

To ensure efficiency and prevent cool air from being pulled out of the room before cooling the 

servers (referred to as “short-circuiting”), hot aisle containment curtains were also installed during 

this project. 

 Note that the AHU is completely responsible for the airside economization by regulating the 

amount of outdoor air into the space. When the outdoor air is cool enough (late fall, winter and 

early spring months), the AHU introduces a mixture of this cool air with some hot return air from 

the backside of the server racks. This mixed air is introduced into the room and allowed to flow out 

from beneath the Coolerado air conditioners to keep the “cool” areas of the room around 22.2°C 

(72°F). The Coolerado air conditioners are only used when the AHU can no longer supply cool 

enough air to the data center, presumably because the outdoor air temperature has climbed above 

the room temperature. The Coolerados are located in the room with the servers so that cool 

product air can be delivered directly to the front side of the servers (see 3 in Figure 5). 

One CRAC unit (30-ton) was left in the room for redundancy and for dehumidification 

during occasional hot and humid periods in the summer. The new system (exclusive of the 30-ton 

CRAC) was not designed with a dehumidification mode because this is rarely necessary in 

Colorado’s climate.  
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The NSIDC computer facility meets the ASHRAE Allowable Class 1 Computing Environment 

(see Figure 2). Because the NSIDC is indirectly owned by NASA, this has always been a requirement, 

even with the old CRAC system. Internal review of manufacturer specifications revealed that all of 

the computer and IT equipment in the data center can operate safely (and under warrantee) under 

the ASHRAE Allowable and Recommended Computing Environments. 

Figure 6 shows the reduction in PUE compared to the CRAC system. The CRAC system had 

an annual average PUE of 2.03. The new system has an average PUE to date (June 2011 through 

March 2012) of 1.29. And this average is even lower in the winter months because outdoor 

temperatures in Colorado are generally cool during this time of the year. And since September 1st, 

2011, the monthly PUE has been below 1.35 due to the airside economization of cool outdoor 

temperatures. Note that the PUE in May of 2011 was actually higher than it was in 2010 because the 

CRAC system was still operational as the new system was undergoing commissioning and testing. 

During this time, the complex control sequences for the new system were being tuned. This issue 

was a single occurrence and should not happen again. 

 

Figure 6. PUE comparison of CRAC system to New system. 
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Figure 7 shows the cooling energy comparison for the same total time period. The new 

system has used less than 2.5 kilowatts of power on average each month since October 2011. 

Compared to October 2010 (during which the IT load was only 13% higher and outdoor conditions 

were very similar), the average cooling power usage is almost 95% less. The average cooling power 

during the next few winter months of November 2011 through March 2012 were similar because 

the winters in Colorado are generally very cool. Note that there was actually a slight increase in 

cooling power during the winter months of 2010 while using the CRAC system. Although it is not 

immediately clear what caused this, it was most likely due to the CRAC active humidification 

process that was necessary to maintain the low humidity limit prescribed by ASHRAE. The CRACs 

used a series of heat lamps (inside each unit) to evaporate water into the airstream. Obviously this 

is inherently inefficient because the air must be cooled further to account for the heat added by the 

heat lamps.  The new system actually produces very humid air as a byproduct (working air), and 

humidifying the space when necessary requires no additional energy. 

 

Figure 7. Monthly cooling and IT energy comparison. 
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The significant energy savings was accomplished while maintaining the 2008 ASHRAE 

standards for data center air quality, meaning warranties on servers and IT equipment are still 

valid. Additionally, maintenance costs have been reduced to only air filter changes and periodic 

check-ups on the Coolerado units. These air conditioners are very simple, without any substantial 

moving hardware other than a small fan. 

III. LITERATURE REVIEW 

COOLERADO AND THE MAISOTSENKO COOLING CYCLE 

 A company named Coolerado, based out of Denver, CO, has developed a high efficiency air 

conditioner that works well in many Western climates. Coolerado claims these units are 

theoretically capable of up to 80% energy savings over 2010 standards because of their use of a 

unique cooling cycle called the Maisotsenko cycle [8]. This cycle utilizes indirect and direct 

evaporative cooling in tandem to cool supply air. Incoming return air is mixed with hot, fresh 

outside air to produce a mixed air state. Then, the air is split into two separated air streams; a 

“working air stream” is used to remove heat from the “supply air stream.” The working air is cooled 

evaporatively as it is directed through a channel with a wetted surface in a patented heat and mass 

exchanger (HMX). At the same time, the supply air is directed into an adjacent channel and is cooled 

through conduction and contact with a membrane that separates the two air streams. Working air 

is rejected to the atmosphere and supply air is retained. Theoretically, the cooling limit of the 

supply air after one iteration of this process is the wet bulb temperature of the moist, working air. 

However, if this splitting and adjacent flow process is applied again to the cooled supply air, it can 

be cooled even more, theoretically to the new wet bulb temperature of the once-cooled supply air. 

In the Coolerado units, this process is repeated 20 times and reduces the volume of supply air by 

about 38% (dependent on airflow). The theoretical limit of this entire process is the dew point 

temperature of the original supply air. See this process in Figure 8 on a psychrometric chart. 
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Figure 8. Maisotsenko process on ASHRAE psychrometric chart. 

From Figure 8 above, it is evident that this use of the Maisotsenko cycle does not add or 

remove moisture from the supply air. Moisture is added to the working air, but that air is most 

often rejected to the atmosphere. For this reason, the Coolerado works very well for spaces in arid 

climates because latent loads (moisture introduced into space, usually by occupants) can be 

decreased by simply mixing less return air and more dry, outside air. For spaces with very little 

latent load (e.g. data centers), the Coolerado works well in even more climates because there is no 

latent load from electrical or IT equipment and moisture removal is of less concern. Introduction of 

some outdoor humidity is acceptable, as long as the room air (supply air to servers) remains within 

ASHRAE limits. 
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Figure 9. Basic schematic of Coolerado HMX, the heart of the Maisotsenko process [8]. 

Figure 9 shows an overall schematic of how the Maisotsenko process works within the 

Coolerado air conditioner. Note that the split between the working and process air streams occurs 

at step 3 of Figure 9. The device that does this is referred to as a heat and mass exchanger (HMX). A 

more detailed visual and explanation of the Coolerado design is provided in Figure 10.  
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Figure 10. Exploded schematic view of Coolerado HMX (not to scale) [9]. 

The HMX actually divides the incoming airstream into the final supply air and working air 

quantities at the entrance to the HMX. The current design uses a total of 8 channels: 3 for working 

air and 5 for supply air. Note that the “sheets” (pliable, polypropylene sheets) in Figure 10 alternate 

flow directions, and each sheet has a flow direction that is perpendicular to the flow direction on 

the sheets above and below it. Input air flows lengthwise as working air is directed sideways on the 

adjacent sheet below. This configuration classifies this HMX as a crossflow exchanger. The working 

air sheets have a wicking surface on them and are saturated with a constant trickle of water from 

the V-type trough in the middle of each sheet; as working air flows over this wet surface, direct 

evaporation cools the working air, the sheet surface, and therefore the supply air flowing on the 

other side of the sheet. And as the working air travels sideways, across multiple supply air channels, 

it removes some heat from each supply airflow. The power of the Maisotsenko cycle, however, is 

realized when this process is incrementally repeated with the working air. Note that there are 

multiple holes in the working air channel, each corresponding to a different sideways channel. The 



-24- 
 

current design uses 20 of these channels. Since installation of Coolerado units at the NSIDC, 

Coolerado has made minor changes to the HMX and is now on Version 14. Because Version 6 HMX’s 

are what is in use at the NSIDC, this report will focus on the Version 6 design. 

Coolerado’s M50 unit has 5 HMX’s stacked vertically and, at least in theory, the flow front to 

back of the HMX’s should be uniform, and pressure should decrease linearly in the straight sections 

of the channels (there may be a jump in pressure one way or the other as working air moves from 

the dry side to the wet side of the sheet through the hole). 

 

THEORETICAL EQUATIONS FOR HMX DESIGN 

 In many ways, the fundamental, heat transfer in the HMX is similar to a cooling coil. In a 

cooling coil, heat is removed from the supply air stream through convection with a very cold 

surface and condensation. The heat is transferred to the refrigerant (typically flowing in a small 

tube) and absorbed into condensed water in the heat of condensation (opposite of vaporization). 

The water drips downward to be collected at the bottom of the coil and the refrigerant is pumped 

and cycled through a condenser loop to reject the heat somewhere else. The supply air leaves the 

coil at a much colder and often drier condition. This is illustrated in Figure 52 on page 105 in the 

Appendix. 

The Maisotsenko cycle and the Coolerado HMX differ from this traditional cooling method 

because the working air acts as the refrigerant (instead of a liquid substance) and the condensation 

is reversed to evaporation. This evaporation occurs on the working air (refrigerant) side, which 

leaves the product air humidity constant. See Figure 11. 
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Figure 11. Schematic view of incremental HMX cooling process, adapted from Threlkeld [10]. 

And because this process is performed repeatedly throughout the HMX, and not just in a 

single pass like a cooling coil, it is appropriate to express the governing equations using a small 

increment of one of these processes. Equations 4 through 8 define these governing relationships. 

Note that Equation 4 is the basic form of Equation 5. 

                                                     (4) 

                                                                       

           
(5) 

              
     

         
 (6) 

                                         (7) 

              
       

    
                                 (8) 
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Where: 

SA = Supply Air 

WA = Working Air 

h = enthalpy 

hconv = convection coefficient between wetted surface and working air 

hDO = evaporation mass transfer coefficient 

T = dry-bulb temperature 

Cp,a = heat capacity of air 

i, i+1 = indirect side index 

j, j+1 = direct side index 

Equation 4 is an “overview” equation simply labeling the terms in Equation 5; these 

equations are equal. Equation 6 defines the amount of water that is evaporated into the working air, 

as a fraction of total water flow. Equation 6 relates the perpendicular heat transfer from the 

product air surface to the top of the water film in the working air side (which must be sensible 

conduction only) to the sensible heat loss of the product air. Equation 8 defines the sensible heat 

gain to the working air, which would occur between the top of the waterfilm and the working air 

flowing parallel. This is in addition to evaporation (mass transfer) that also occurs. 

IV. METHODOLOGY 

ENERGY AND ENVIRONMENT MONITORING: DATA ACQUISITION SYSTEMS (DAQ) 

One of the main goals of this research is to develop baseline energy consumption for the 

previous, traditional air conditioning system for comparison to energy consumption of the current 

new, high efficiency system that was installed in April of 2011. Determining energy consumption 

involved specifying power metering devices, professionally installing them with networking cables, 

acquiring a computer to log the data, and developing code or installing software that can interpret 

the data. The NSIDC required the incorporation of a monitoring network into the new system for 

better management and control of the critical data and servers in the data center.  
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For this research project, the energy monitoring can be divided into two phases: CRAC 

system monitoring and Coolerado system monitoring. Two different data logging systems were 

used because the actual energy uses of each system were different, and it was necessary to install 

more metering devices at additional locations when the new Coolerado system was brought online. 

 

TRADITIONAL AC (CRAC) ENERGY USE: NI/LABVIEW 

In order to quantify the actual energy savings that will be achieved by the new energy 

efficient system, a monitoring system had to be developed and installed to monitor all energy used 

by the NSIDC prior to the retrofit. Because energy is power used over a specified period of time, 

measuring power at given time intervals is the best way to determine energy use.  It was 

determined that monitoring power at three locations made the most sense: at the service entrances 

to each CRAC (2 CRACs) and the UPS. With these three locations, all significant power that entered 

Room 376 was recorded. Note that lighting is not included in this calculation because the few 

flourescent fixtures that are in the room are fed from an electrical panel outside the room and 

access to those particular feeds is difficult; these fixtures are usually off, so the unaccounted energy 

should be insignificant. 

To monitor the power at each location, WattNode Advanced Pulse Output units made by 

Continental Control Systems in Boulder, CO were used in conjunction with a National Instruments 

USB-6008 data acquisition (DAQ) unit and LabVIEW software. The USB-6008 is a small device that 

can accept up to 4 differential analog inputs and 12 digital inputs/outputs. Each WattNode is 

located at the respective power entrance (CRAC or UPS) throughout the room and uses three 

current transformers to measure the current in each phase (all locations use three phase power). 

These devices were easily custom ordered; the current transformers are also made by Continental 

and are designed for use with the WattNode. Line voltage is also measured for each incoming feed. 
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Each device can derive the real time, total power consumption because voltage and current are 

known. Three phase power is commonly defined as in Equation 9: 

             (9) 

 

Where P equals phase power,    equals line voltage (~208V),    equals line current and    equals 

power factor (which is the cosine of the phase angle, nominally 0.8). The above equation is used for 

basic calculations of three phase electrical systems. The WattNode devices compute power using 

this equation internally. 

Each WattNode is equipped with a 4 Hz maximum pulse output that is scaled to represent 

the real time power input. This output (along with two more outputs from other locations in the 

room) is connected to the USB-6008 data acquisition device via shielded 4-conductor, 18 AWG Cu 

cables. These cables were routed beneath the raised floor tiles to keep them protected and out of 

sight. Note that the shielding is important because the main power feeds and networking cables for 

the servers are also located beneath the raised floor and signal interference is a likely issue. The 

USB-6008 is connected to a local computer also in the room via USB 2.0 cord. The computer used 

for this project was borrowed from the Larsen Laboratory in the Building Systems Program in the 

College of Engineering at the University of Colorado. National Instruments LabVIEW software and 

graphical programming interface was used to process the WattNode signal, interpret the real time 

power use and log the data into a text file (LabVIEW software was obtained from the Integrated 

Teaching and Learning Laboratory in the College of Engineering). On a pulse output (digital output), 

more pulses means more power is being used. Each pulse corresponds to a certain number of watt-

hours, as calibrated by Continental. WHpP is an abbreviation for Watt-Hours per Pulse. The values 

in Table 3 below were found in the WattNode Manual: 



-29- 
 

Table 3. WattNode scale factors (from WattNode product manual). 

CT Rating: WHpP 
200 A 5.0 
400 A 10.0 

 

Both CRAC units used 200A CTs and the UPS uses 400A CTs. WHpP is calculated according to 

Equation 10: 

 
 

      
                  

         
 

(10) 

 

Where: 

Phases =the number of phases included on each output (3 in this case), 

NVAC = nominal voltage (208V), 

CtAmps = Maximum rated current (Amps) for the CT, 

FSHz = Full Scale frequency (4 Hz) 

3600 converts from watt-seconds to watt-hours 

The LabVIEW programming environment was researched and a program was developed to 

handle three inputs (one for each monitoring location) from one USB-6008 device. Once the 

program has been initiated by the user clicking the “run” command, each pulse output stream is 

sampled for 10 seconds, once every minute. This data is input into the code using a Data Acquisition 

Virtual Instrument (VI). Each stream is sent to a waveform measurement VI that calculates a pulse 

frequency (number of square wave pulses per second, Hz). It is important to note that the 

frequency (Hz) is per second and the sample is 10 seconds long. So this frequency is actually an 

average from that 10 second period. This method provides a high degree of power resolution, likely 

more than was necessary to determine the overall power use of the data center over many months. 

Any change in operating conditions will be noticeable as a gradual increase in these average 

frequencies over a few minutes. The UPS load is very constant with only slight variation as server 

load fluctuates. The average frequency is then used in Equation 11 below to find power 

consumption: 
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(11) 

Where: 

P = average power use over 10 seconds (kW), 

3.6 = conversion from pulses per second to 1000s of pulses per hour (3600 s/min x 1kW/1000 W), 

WHpP = watt hours per pulse (as explained on the previous page) 

Equations 10 and 11 were given and explained in the WattNode manual [11]. With power 

calculated, the value can be displayed to the user on a cumulative chart and an indicator readout. 

Average 10 second power is recalculated every minute. The process described above is looped for 

all three pulse streams and repeated every minute. At the start of the program, the user is asked to 

define a filename and location that each data entry is written to in the following order: 20 ton CRAC, 

30 ton CRAC, UPS power. The program is terminated by the user clicking “STOP Data Acquisition.” 

After the old cooling system was removed, the power values were plotted against time using 

custom-developed MatLAB code (seen on pages 108-110 in the Appendix); the code had to be able 

to handle the data file which included over 1 year of data and 3 million data entries. The area 

underneath the power consumption curve represents the energy (kWh) used over each monthly 

time period. This energy use was calculated using trapezoidal approximation. PUE was also 

calculated using the methods described previously in this report (see Figure 4). The analysis of the 

CRAC system power and energy usage allowed the creation of Figure 6 and Figure 7. 

ISSUES WITH THE LABVIEW MONITORING SETUP: 

The LabVIEW system was acceptable for initial monitoring use on this project because it 

was free of cost and support was readily available from on-campus staff when specialize in 

technology research projects. However, there were a variety of issues with this system. National 

Instruments makes very high quality experimentation and sensor equipment for accurate 
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monitoring or control during experiments. But without substantial additional investment in many 

pieces of specialized equipment, it was evident that the combination of the USB-6008 and LabVIEW 

software is intended for real-time, manned operation. The simple USB interface is not robust 

enough for extended periods of autonomous datalogging, in part because it relies on the computer 

for data processing and storage. During the limited development time, the program was completed 

but fatal errors would often occur. Left unchecked overnight, this resulted in a loss of 1 day or more 

worth of data. The USB interface was also not ideal and sometimes caused issues as well.  

NEW SYSTEM ENERGY USE: CAMPBELL SCIENTIFIC DATALOGGER 

 Due to software instability issues, hardware limitations and the rudimentary connection 

(USB) of the NI DAQ system, an improved, more robust and reliable monitoring system was desired 

to handle monitoring of the new advanced cooling system, particularly because it is expected to be 

more permanent. And for this research, it would be important to monitor temperature and 

humidity in multiple locations, in addition to adding more WattNode devices to be sure to account 

for all power uses in the data center. In April 2011, a Campbell Scientific Instruments CR10X 

datalogger and some associated temperature and humidity sensors were acquired at no cost from 

the Cooperative Institute for Research in Environmental Science (CIRES). These types of 

dataloggers are often used on many of the NSIDC/CIRES Arctic and Antarctic research expeditions, 

although the CR1000 has now replaced the CR10X in Campbell’s current product line. This unit has 

6 differential analog inputs, 2 pulse counters and 8 digital input/output ports. These additional 

inputs will be used to monitor 5 WattNodes and 2 temperatures, 3 humidities and 1 air velocity 

within the new cooling system (see Table 4). Note that 2 more WattNodes were needed in addition 

to the original 3. Power had to be monitored at 5 locations: UPS (as before), 30-ton CRAC (as 

before), air handling unit VFD, Coolerado power panel (all of the new cooling units’ combined 

power) and Coolerado Unit 4 (CU4) individually (for coordination of localized input/output 

temperatures and humidities). 
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Table 4. Monitoring system comparison: USB-6008 vs. CR10X. 

 

 Because the WattNodes output a digital pulse signal, the analog input channels on the 

CR10X are not useful; this type of square-wave signal requires a pulse counter. There are only 2 

designated pulse inputs, but the digital control ports could be used as pulse inputs also. This 

requires some special programming steps. Unlike the USB-6008, the CR10X is a fully autonomous 

datalogging device, and all programming is best performed on a local computer and compiled onto 

the device. Once loaded, the program runs whenever the datalogger has power (which is 24/7). And 

because the CR10X is powered from the UPS, data will continue being collected in the event of a 

power failure. The datalogger is connected to the local computer via an RS-232 cable, SC-32A 

converter (available from Campbell), and a printer cable. 

 Programming the datalogger is completed using proprietary software from Campbell 

Scientific specifically designed for use with their dataloggers and associated sensors and 

equipment. LoggerNet 4.0 is used for this purpose. Although the wizard interface within this 

Description Sensor Description Sensor

Manufacturer: National Instruments Campbell Scientific

Logging unit: USB-6008 CR10X

4 differential analog inputs 6 differential analog inputs

12 digital I/O 2 pulse counters

1 USB port 8 digital I/O (control ports)

1 Serial I/O port

20-ton CRAC Power WattNode Coolerado Panel Power (Panel L3M) WattNode

30-ton CRAC Power WattNode 30-ton CRAC Power WattNode

UPS Input Power WattNode UPS Input Power WattNode

AHU VFD Power WattNode

Coolerado Unit 4 Power WattNode

Coolerado Product Temperature (°F) 

Coolerado Product Relative Humidity

Coolerado Working Temperature (°F) 

Coolerado Working Relative Humidity

AHU Supply Relative Humidity EE16-F3B56

AHU Supply Air Velocity EE65-VB5

PC Interface: USB Printer/Modem Cable SC-32A

Power: 5 V DC (provided from USB) 12 V DC

I/O = inputs/outputs

Ports:

Pre-June 2011 Post-June 2011

HMP-45C

HMP-45C

Data Points 

Monitored:
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software is appropriate for programming 2 Campbell HMP-45C Temperature and Humidity probes 

and 2 of the WattNodes on the dedicated pulse input channels, the remaining 3 WattNode pulse 

inputs require manual programming on the 3 compatible Control Ports using EdLog, Campbell’s 

basic code editor. Essentially a glorified notepad program, documentation on EdLog and the CR10X 

had to be consulted to get this to work properly. Ultimately, the datalogger is programmed to 

sample the pulse frequency of each WattNode every 30 seconds, multiply by a combined factor to 

convert to power (see Equation 11), and then write the average power use of 6 thirty second 

intervals to a simple text file every 3 minutes. Note that this is a significantly longer sampling 

interval than the previous LabVIEW system called for; a recording interval of 10 seconds resulted in 

an excessive amount of data and was not necessary to capture system trends for this research. 

Using a 3 minute recording interval also significantly reduces the size of the data files, which in turn 

reduces the computational time to calculate the energy use over a specified period. 

 Using the Campbell CR10X also allows the NSIDC to easily collect and display real-time 

energy performance and room conditions on the Internet. LoggerNet 4.0 is designed to run on a 

computer in conjunction with a datalogging system to maintain the CR10X, display real-time data 

and act as a stable storage system for the power and room condition data. Real-Time Monitor and 

Control (RTMC) Development and Run-Time programs (included in the LoggerNet 4.0 software 

package) display the data in a user-defined graphical interface. These programs allow a novice user 

to easily create a simple and effective display of live data from the datalogger. Unfortunately, these 

displays can only display data directly from the CR10X, which holds about 4 days of data if it is 

logged at 3 minute intervals (note this is also dependent on the number of data points stored at 

each timestamp). RTMC cannot display data that is stored locally on the computer for reasons 

unknown. Separately, LoggerNet is set up to download data from the CR10X to be stored every 3.5 

minutes, a period just barely longer than the 3 minute recording interval. The data is then manually 

collected and organized into one large spreadsheet file about every week. 
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 In addition to displaying the data locally, the NSIDC also desired to display the data to the 

public on its website. Fortunately, Campbell also makes an RTMC WebServer application that is 

designed to do exactly this, but this software is not included in the LoggerNet package and must be 

purchased separately. The WebServer application is relatively simple; it captures the same display 

available locally through RTMC (or another, separate user arranged display), and publishes an 

image at a user-defined interval. The NSIDC is currently publishing a new image every 2 minutes. As 

with the RTMC display, the displayed data is pulled in real-time from the CR10X, not the local 

computer. A screenshot of the RTMC display (both local and online) can be seen in Figure 12. 
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Figure 12. Screenshot of RTMC display of real-time data center performance. 
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Figure 13. Schematic of USB-6008 Monitoring System (before Coolerado installation). 

 

 

Figure 14. Schematic of Campbell CR10X monitoring system (after Coolerado installation). 
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Figure 15. Wiring diagram for CR10X datalogger; all resistor values are in Ohms, for numbered wires, see below. 

A more detailed wiring diagram for the CR10X datalogger can be seen in Figure 15. Note that some 

of wires are labeled 1, 2 or 3. Because the T/RH sensors have 6-wire leads and only 4-wire 

conductors were available, the two 6-wire leads (one from each T/RH sensor; 12 wires total) were 

divided between three 4-wire conductors for transmission to the CR10X datalogger. The wire re-

assignments are defined below: 
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Campbell HMP45C (2) – Temperature and Relative Humidity Sensors (6 wires each) 

Located on Coolerado Unit 4 (CU-4) 

Working (Exhaust) Air Sensor in the Humid Air Damper of CU-4: 

Red → 3 Red 

Blue → 3 Green 

Black → 3 Black 

Yellow → 2 Red 

White → 3 White 

Clear → 2 White 

Product Air Sensor in the back plenum of CU-4: 

Red → 1 Red 

Blue → 1 Green 

Black → 1 Black 

Yellow → 2 Green 

White → 1 White 

Clear → 2 Black 

* Numbers refer to the 3 gray, shielded, 4-conductor wires beneath the raised floor. They are 

labeled with numbers 1,2,3. There is junction box where these connections are made in front of 

CU-1 beneath the floor tiles. 

The wiring diagram was necessary because of the small space and large number of wires 

required to monitor all of the appropriate points. Figure 16 demonstrates this necessity. 
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Figure 16. CR10X datalogger fully wired (photo taken Dec. 2011, but no changes made since August 2011). 

 Note that there is a small electronics board as seen in Figure 16. This board was used to 

organize the pull-up resistors necessary for using the Control Ports as pulse inputs for 3 of the 

WattNode devices. Other voltage dividers were installed directly inline with the signal wires, as 

shown in the wiring diagram. Note that all of these are 4:1 voltage dividers to step down the 0-10V 

signal to a 0-2.5V signal, which is the maximum range the CR10X can measure. 

The data collected from the CR10X was later merged with other temperature and humidity 

data collected with a completely separate Onset HOBOnode network, arranged in the data center by 

NSIDC staff member Ron Weaver. Data points collected by this HOBO network include: East Wall 

T/RH, West Wall T/RH, AHU supply air T/RH, CU4 input temperature, north hot aisle temperature, 



-40- 
 

west hot aisle temperature, north Coolerado supply air temperature, south Coolerado supply air 

temperature, north wall temperature, and building voltage. Most of these data were only used for IT 

and data center management purposes; although CU4 input temperature is used in model 

validation. 

 All of the data from both the Campbell CR10X and the HOBO network were combined into 

one large dataset using custom MatLAB programs and a few Excel spreadsheets.  

  

ONE-TIME MEASUREMENTS 

 Some measurements can only be obtained at a single point in time due to expensive 

instrumentation or impractical permanent setup arrangement. Most of these measurements are 

only relevant to the calibration of the theoretical model and were not a requirement of nor relevant 

to the IT management team of the NSIDC.  

 The one-time measurements needed for this project were pressure differentials across CU4 

(the same unit that exhaust and product air temps and humidities are measured by the CR10X 

datalogger; see Figure 15) and airflow at the inlet to CU4 and at the supply inlet the room. Power 

consumption of the unit was also recorded manually from the datalogger display throughout the 

experiments. These on-time measurements were performed on February 17, 2012 at 11:00AM. 

Measurements were taken at 4 different fan speeds, which were manually adjusted with a built-in 

potentiometer on the new system’s control board. 

Pressure Differentials across CU4 

 The theoretical model developed by NREL requires two static pressure differentials as 

inputs: product air pressure drop and exhaust air pressure drop. Due to the unique design of the 

HMX, the two airstreams (supply and exhaust) must be measured separately. The product air 
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pressure drop is defined as the difference between the point just before the HMX (within CU4) and 

the point immediately after the HMX at the supply air outlet of CU4. The exhaust air pressure drop 

is defined as the pressure difference between the point just before the HMX and the point at the 

exhaust air exit of the HMX (within CU4). Both of these differentials are directly related to the fan 

speed of the unit, which is continuously variable. These measurements were performed with a self-

averaging setup and a Dwyer manometer borrowed from the Larsen Laboratory in the Building 

Systems Program area of the Engineering Center. 

 

Figure 17. Pressure differential measurement setup in NSIDC on CU4. 
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Because both outlets on CU4 are open to the room or the outdoor atmosphere (supply air or 

working air, respectively), the pressure differentials are very close to the same and very close to the 

fan pressure. However, because this data was to be compared with similar pressure measurements 

taken by Coolerado, the pressure measurement setup on CU4 (seen in Figure 17) was installed with 

the exact same arrangement that Coolerado used. Figure 18 shows the dimensions used for the 

same test run by Coolerado. Inlet pressure taps were placed 7” behind the front vertical seam of the 

unit. Exhaust pressure taps were placed 1.5” in front of the rear vertical seam of the unit. And 

supply air pressure taps were placed roughly in the middle of the supply plenum. Note that three 

pressure taps were installed at each location (for a total of 9). This measurement is trying to 

quantify the pressure differential across each of the two air paths within the HMX. Note that 

because the Coolerado unit has 5 HMX’s in it, these pressure measurements are an average across 

all 5 HMX’s. 
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Figure 18. Dimensioned image of pressure measurement setup on an identical Coolerado unit [photo courtesy of 

Daniel Zube, Coolerado]. 

 The pressure, airflow, and power measurements are given in Table 5 below. Note that the 

pressure drops across both airstreams were about equal for a given power. This was also the case 

in Coolerado’s test data. Although in some installations, radically different duct arrangements on 

either airstream could affect this relationship, in the NSIDC, both airstreams are released to near 

atmospheric pressure, and this explains the similarity. Product air is directed directly out the back 

of the unit and working air is directed vertically up through the roof about 10’ to the outside. The 

room pressure is kept slightly positive, but the setpoint is only 0.015” which is a very small amount 

and likely not noticeable in these measurements, at least relative to the fan pressure. 
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Airflows 

 Airflows at the inlet of CU4 and the air inlet to the room had to be measured to more 

precisely quantify the airflow profile at each location. Due to the asymmetric introduction of air to 

the inlet of all 8 Coolerado units, simply dividing the total airflow into the room (which is measured 

with the CR10X datalogger) would not provide enough accuracy for comparison to the theoretical 

model. A hot wire anemometer was used to determine the velocity profile for both of these 

measurements. Each velocity measurement must be made to represent an equal area of flow. When 

this condition is met, a simple average of all measurements will provide an accurate average 

velocity. This velocity can easily be converted to volumetric flow by multiplying by the total area of 

the inlet. A diagram of the measurement locations can be seen in Figure 19. 

 

Figure 19. CU4 inlet flow measurement diagram. 
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 Note that all flow measurements were taken perpendicularly to the inlet. And although 

there are probably some velocity vectors that are not perpendicular to the inlet plane (especially 

around the edge), these were not considered in this measurement due to time constraints and the 

number of measurements required. Nine measurements were taken at 4 different fan speeds, for a 

total of 36 measurements. Table 5 below shows all of the pressure and airflow data collected from 

CU4. 

Table 5. Summary of one-time pressure, airflow and power measurement data. 

 

The one-time pressure and airflow data collected were used to develop correlations and 

regressions between power, airflow and pressure. Pressure and airflow data was also received 

from Daniel Zube, a Test Engineer at Coolerado. Zube was able to run a similar test on the same day 

using Coolerado’s test M50 unit at their facility in Denver. Additionally, Coolerado’s test unit is 

equipped with separate Venturi flow devices for accurately measuring airflows of the product and 

working air separately. Zube’s data shows that approximately 62% of the total air flow becomes 

product air (and 38% of the total air becomes working air). This data is summarized in Figure 20. 

Power (kW) Pressure (in W.C.) Airflow (CFM)

0.033 0.05 438

0.150 0.24 1319

0.400 0.55 2144

0.500 0.68 2488
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Figure 20. Pressure drop and airflows from Daniel Zube at Coolerado for an M50 unit [12]. 

 Zube’s product and working air flows were summed to determine a total airflow for each 

pressure drop in Figure 20. It is important to note that the pressure drops across both airstreams 

were about equal for each step; this is a similar finding to what was seen on the NSIDC CU4 unit. 

Also note that the airflow in Figure 20 is in units of CFM/HMX. For comparison to the CU4 data, 

these values were multiplied by 5 because there are 5 HMX’s in the M50 units at the NSIDC. Figure 

21 below shows the data and regressions for pressure vs. airflow for the one-time measurements 

on CU4, Zube’s data, and the MatLAB model predictions. Note the error bars for the CU4 data nearly 

encompass all of Zube’s data. 
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Figure 21. Pressure vs. airflow data and regressions. 

 The model pressure and airflow predictions were based on simply running the model at 

pressure differences (Delta P) ranging from 20Pa to 180Pa in 20Pa increments. All other model 

inputs were held constant at values derived from an HMX sample sheet. It was later discovered that 

this sample sheet was from a previous HMX version and the dimensions used for model verification 

and optimization were adjusted. The adjusted model’s pressure and total airflow correlation did 

not differ more than 100 CFM from the correlations seen in Figure 21. Figure 22 shows that the 

MatLAB model is reasonably suited to predict the airflows through an HMX, even before calibration. 

Table 6. Sample HMX sheet dimensions. 
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Figure 22. Total power vs. airflow data and regressions. 

 The relationship between power and airflow can be seen in Figure 22. Note that the 

correlation between the different datasets and the model isn’t as close as it was for the pressure 

and airflow relationships in Figure 21. During Zube’s test, a slightly different fan and motor were 

used in Coolerado’s test M50 unit; hence the difference between Zube’s test data and the data from 

CU4 in the NSIDC. The model total power was calculated from model output; hydraulic power 

divided by fan and motor efficiency. For this plot, the combined fan and motor efficiency of 35% 

combined placed the model predictions reasonably between Zube and CU4 data. The model total 

power and airflow relationship exhibits a similar shape to the other datasets, but with a flatter 

curve on the top end. It is also interesting that the model airflow has a very steep slope at low 

power levels. It is evident that the methods used to measure total power are not very precise. 

However, because this report is focused of the performance of the CU4 unit at the NSIDC, the 

regression from that data could be used to predict the approximate total airflow through an M50 

unit at any point in time (if the total power is known). 
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Version 6 HMX Dimensions 

Due to limitations in Coolerado’s current manufacturing methods, the HMX sheet 

dimensions are not exact and have tolerances associated with them. The channel dividers are made 

from beads of polyethylene plastic and are attached to the sheet using a mechanical system similar 

to a hot glue gun. The flow rate of the warm polyethylene and the speed of the machine affect the 

bead thickness and height. And adjusting this device to produce a specified bead dimension is a trial 

and error process. Note that the working air sheets and product air sheets can be different heights, 

but on any one sheet, the heights are consistent. Because of significant variation in the inlet channel 

heights (visible in Figure 23), measuring this dimension would be difficult and likely inaccurate. 

However, the front face of the frame has an open height of 10.0” (254mm). This total dimension 

ultimately controls the number of sheets and therefore average channel height available in any 

given HMX block. Coolerado claims to stack somewhere between 39 and 43 product air sheets into 

an HMX frame; the exact number varies in this range because of current manufacturing tolerances. 

There are 39 product air channels in each of the top 3 HMX blocks of CU4. It is assumed that the 

bottom 2 HMX blocks also have 39 product air channels. With an open face height of 10.0”, this 

results in a combined value of 6.51mm for a product air channel, working air channel and two 

polypropylene sheets with wicking material. There is 1 working air channel for every product 

channel; and the working air channel is not open to the inlet directly because it flows sideways out 

either side of the HMX. Instead, the end working air channel dividers are sealed on the front and 

back of the HMX with hard epoxy.  See Figure 23. 
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Figure 23. Front (inlet) side of top HMX block. 

 

 

Figure 24. Front (inlet) side of HMX, close-up; Note the wide variance in open channel heights and non-uniform 

inlet shape due to epoxy sealant. 

10.0” 

(254mm) 
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This sealing process is not exact and often causes significant deformation to the otherwise 

rectangular product channel inlets. The irregular inlets may have a negative impact on the 

performance of the HMX. 

Also according to Coolerado, the sheet material and thickness has been consistent 

throughout the past few years. The average sheet thickness is 0.566mm. Because 2 sheets are 

included in the 6.51mm, the actual combined channel height of product and working air channels is 

5.38mm. As stated previously, the product air and working air channels can have different heights, 

so it is not realistic to assume a perfect split of this total value for each channel height. Coolerado 

claimed that the product and working air channels had nominal heights of 0.15” (3.81mm) and 

0.10” (2.54mm) respectively. However, if these values are used, the total height of 39 product 

channels is 11.27” which is above the maximum of 10.0”. So, rather than use those nominal values, 

the ratio between the product and working air channels is used with the 5.38mm total to determine 

product and working air channel heights respectively. The product to working air channel height 

ratio is 0.15:0.10 or 3:2. Therefore the product air channel height should be about 60% of the total 

and the working air channel height should be about 40% of the total, or 3.23mm and 2.15mm 

respectively. 

Nominal channel width is limited to 1.0” O.C. from divider to divider. According to 

Coolerado, using a channel width wider than 1.0” does not leave enough support for the pliable 

sheets and causes the HMX to lose structural rigidity. Yet for a given total width, wider channels 

result in more heat transfer surface area and therefore better performance (both thermally and 

hydraulically) in theory. So the actual channel width is the maximum 1.0” minus bead thickness, or 

about 23.4mm (assuming a channel divider width of 2.0mm). 
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DAQ SYSTEMS UNCERTAINTY 

 Each measurement taken using each different measurement system is subject to some 

degree of uncertainty. It is prudent to document the uncertainty in every measurement in order to 

attempt to quantify the accuracy of the measurement, particularly if the data will be used for in 

depth analysis or simulation. Table 7 shows the uncertainty is each measurement. These 

uncertainties were taken in to account during the calibration and modeling of the Coolerado HMX, 

as discussed in the next section. 

Table 7. Monitored data points summary table. 

 

 The uncertainty in any measurement (or group of measurements) can be determined by the 

square root of the sum of the squares of systematic error and random error, as seen in Equation 12. 

                             (12) 

 

Measurement Sensor Manufacturer Notes Sensor Output

2.0% 0-90% RH

0.05%  /°C Temp Dependence

0.20 °C  @ 20°C 

0.30 °C  @ 0 or 40°C

3.0% 90-100% RH

0.05%  /°C Temp Dependence

0.20 °C  @ 20°C

0.30 °C  @ 0 or 40°C

3.0%  @ 20°C

0.05%  /°C Temp Dependence @ 45% RH

40.0 fpm  + 3% of diff. voltage

< 3.0%  @ |Delta_alpha |< 10° (angular dependence)

WNB-3Y-208-P
Continental 

Control Systems
0.50% of voltage measurement Digital Pulse direct to CR10X

1.00% of current measurement (each CT)

2.0 ° phase angle accuracy (each CT)

INPUT Air Temp 0.21 °C 0 - 50°C

INPUT Air RH 2.5% 10-90% RH

Coolerado Unit 4 

Input Temp
ZW-001 HOBO 0.21 °C valid 0 - 50°C

(direct to HOBOnode network 

and local MacBook)

Datalogger CR10X
Campbell 

Scientific
0.05%

of FSR (for diff. voltage measurements; 

1.25mV)
Serial / RS232 to local PC

One-time CU4 Inlet 

Air Velocity
407123

Extech 

Instruments
3.0% Basic Accuracy (LED screen)

One-time CU4 

Pressure Differentials
200

Dwyer 

Instruments
2.0%

Basic Accuracy (although mostly dependent 

on user interpretation of reading)
(gage fluid level)

0-10V Diff. Voltage to hand-made 

voltage divider then to CR10X

0-.33V Diff. Voltage direct to 

WattNode

(direct to HOBOnode network 

and local MacBook)

0-2.5V Diff. Voltage direct to 

CR10X

0-2.5V Diff. Voltage direct to 

CR10X

0-2.5V Diff. Voltage direct to 

CR10X

0-2.5V Diff. Voltage direct to 

CR10X

0-10V Diff. Voltage to hand-made 

voltage divider then to CR10X

Continental 

Control Systems

HOBO

Working Air RH

Working Air Temp

AHU Supply Air 

Velocity
EE65 Airtest

CTS-0750-200

Coolerado Unit 4 

Power

AirtestEE16AHU Supply Air RH

ZW-007

Accuracy

Product Air RH
Campbell 

Scientific

Campbell 

Scientific

Campbell 

Scientific

HMP45C

HMP45C

Product Air Temp

Campbell 

Scientific
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Manufacturer’s published error bounds (seen in Table 7) typically represent systematic 

error. Random error is defined as error that is introduced due to fluctuations in the reading or 

experimenter’s interpretation. Random error is more difficult to quantify. But for a group of 

repeated measurements that should be the same, the average should represent the true value. Then 

the difference between each value and the average can be calculated. The sum of the squares of 

these differences is the random error. For error in calculated values (as in Equation 9 for power), 

the error in the calculated value is defined as seen in Equation 13. 

                                
  

   
    

  

 

  

 
 

 (13) 

 

Where    represents the input variables to the calculation and     represents the combined error 

in each variable as defined by Equation 12. Equation 14 defines this specifically for power, as 

calculated by the WattNodes. The partial derivatives are derived from Equation 9. 
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This method is used for determining the error in all power measurements taken by the WattNodes. 

This method is a basic uncertainty calculation method for “pure product form” equations, like 

Equation 9, and is documented in [13]. 
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NREL MATLAB MODEL 

MODEL DESCRIPTION 

 In 2009, an effort was made to model the Coolerado HMX cooling performance using purely 

theoretical relations and equations. Much of Coolerado’s in-house design work is currently based 

on mostly experimental data and curve fit relations. NREL had received funding to develop a 

MatLAB model. MatLAB was the chosen platform because it is very flexible as a generic 

programming language and handles iterations and matrix calculations very efficiently; both of these 

functions are critical to solving the fundamental heat and mass transfer equations within a 

Coolerado HMX described in the previous chapter. 

 The model was packaged neatly and organized with all related m-files and functions and can 

be run on any computer with MatLAB 7 or newer. It is fully equipped with a graphical user interface 

(GUI) that shows the simulated sheet designs (direct, wet side and indirect, dry side) as well as 

numeric inputs for the user to adjust this design. Input and output values are highlighted in Table 8. 
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Table 8. Input and Output variables for HMX MatLAB model. 

INPUTS: OUTPUTS: 

 Number of Ind/Dir Channels:  T_DB Process Outlet: 

 Number of Dir Channels:  T_WB Process Outlet: 

 Number of Ind Channels:  Process Humidity Ratio: 

 Width Ind/Dir Channels (mm):  Process Relative Humidity (%): 

 Width Dir Channels (mm):  Process Enthalpy (kJ/kg): 

 Width Ind Channels (mm):  Process Density (kg/m3): 

 Width Ind/Dir Sep. Wall (mm):  Process Dry Mass Flow (kg/s): 

 Width Dir Sep. Wall (mm):  T_DB Exhaust Mean: 

 Width Ind Sep. Wall (mm):  T_DB Exhaust Mixed: 

 Height Ind/Dir Sep. Wall (mm):  Exhaust Humidity Ratio: 

 Height Dir Sep. Wall (mm):  Exhaust Relative Humidity (%): 

 Height Ind Sep. Wall (mm):  Exhaust Enthalpy (kJ/kg): 

 Paper Thickness (mm):  Exhaust Density (kg/m3): 

 Waterfilm Thickness (mm):  Exhaust Dry Mass Flow (kg/s): 

 Number of Process Layers:  Water Evaporation (kg/s): 

 Number of Holes (each Ind/Dir Channel):  Cooling Power (kW): 

 Hole Dia (each Ind/Dir Channel):  Process WB Effectiveness (%): 

 Paper Conductivity (W/m-K):  Process DP Effectiveness (%): 

 Waterfilm Conductivity (W/m-K):  Exhaust WB Effectiveness (%): 

 Ambient Pressure (Pa):  Exhaust DP Effectiveness (%): 

 T_DB Process Inlet:  Process Hydraulic Power (W): 

 T_WB Process Inlet:  Exhaust Hydraulic Power (W): 

 Process DeltaP (Pa):  Hydraulic Power (W): 

 T_DB Exhaust Inlet:  COP: 

 T_WB Exhaust Inlet:  EER: 

 Exhaust DeltaP (Pa):  

  

Screenshots of the GUI can be seen in Figure 25 and Figure 26. Note the inputs seen in Table 8. 

appear on the right side of the images, and the outputs can be seen near the bottom of the images.  
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Figure 25. Screenshot of model GUI. 

 It is important to note that the model includes input pressures (Process and Exhaust DP; 

separately) and not airflow or fan power. The model does not simulate performance of the M50 unit 

as a whole, including fan power and other miscellaneous power (control board, soap pump, etc.). It 

is only designed to simulate the internal HMX performance because that is the unique centerpiece 

of the Coolerado air conditioner, and well-known understanding or correlations between fan 

efficiency and total power consumption can be used to determine the total power use of an M50 

unit. Note that the model outputs hydraulic power, which is the power defined by Equation 15 and 

Equation 16. 
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              = exhaust air flow rate (kg/s), calculated by the model 

              = density of exhaust air (kg/m3), calculated by model 

           = pressure differential (Pa) from HMX inlet to the exhaust outlet 

               = process air flow rate (kg/s), calculated by the model 

              = density of process air (kg/m3), calculated by model 

           = pressure differential (Pa) from HMX inlet to the process outlet 

Hydraulic power is the power that must be provided to the airflow by the fan in order to 

achieve the flowrate and pressure differential. Total power consumption of an M50 unit is related 

to hydraulic power through the fan and motor efficiencies as seen in Equation 17. 

 

 

            
               

                             
                 

(17) 

  

 Fan efficiency is obtained from the fan specifications and an average value of 60% is 

reasonable for this analysis. Motor efficiency is unknown. 

Miscellaneous power consumption includes the M50 internal controls, pumps and other 

equipment. See Table 9. Note that the soap pump and solenoid only run periodically; therefore they 

were not included when calculating the total instantaneous power consumption.  

Table 9. M50 Miscellaneous Power Consumption (Courtesy of Coolerado). 

 

Component Power Consumption (W)

Board 8.6

Thermostat 1.2

Fan 618.2

Soap Pump 6.5

Solenoid 14

Total 648.5

M50 Power Consumption Summary
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Figure 26. Model screenshot of GUI after simulation. 

The model interface displays most of the output conditions near the bottom of the screen; 

outputs are divided into Process Outlet Conditions, Exhaust Outlet Conditions and Performance 

Metrics (see Figure 26). As expected, Process Outlet Conditions includes information on the air 

state and flow out of the process (supply) channels. The Exhaust Outlet Conditions includes air 

state and flow information for the humid, exhaust (working) air channels out the side of the HMX. 

Performance Metrics includes efficiency (COP and EER) of the HMX unit for the given input 

conditions. It also includes wet-bulb and dewpoint effectivenesses for both Process (supply) and 
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Exhaust (working) air. Because the model has the input capability of different process inlet and 

exhaust inlet air conditions, these effectivenesses can be calculated separately; although the basic 

M50 Coolerado units that the NSIDC employs are not equipped with this capability. 

The GUI also has a few different ways to view the outputs graphically. After running a 

model, the user can use the drop-down menus to choose the type of display as well as what data to 

display (see Figure 27). The best plots to look at dry-bulb or wet-bulb temperatures are the 

“surface” plots or “filled contour”. Note that the model calculates air state properties throughout the 

HMX sheet on both the direct and indirect sides. The Process Conditions and Exhaust Conditions 

boxes on the GUI are the combined outlet values from all supply or exhaust channels, respectively. 



-60- 
 

  

Figure 27. Drop-down menus for changing graphical representations of results. 

The model GUI, in addition to simply running the model, includes buttons to save the 

current model design, load a previously saved design, or save the output data directly to a text file. 

This last feature was especially important for comparing the model predicted outputs to CU4 data 

as well as other previous simulations; it was easiest to perform the comparison with spreadsheet 

software (Microsoft Excel). Although the plots produced by the model GUI are great for visualizing 

the general temperature or humidity or heat transfer trends, for comparing small changes between 
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designs, actual performance outputs are needed because many of the changes didn’t have obvious 

or noticeable impacts on the 3D or 2D plots. 

BASIC MODEL ASSUMPTIONS 

 Before the model could be used for testing different HMX designs, it had to be validated; it 

had to be shown that appropriate assumptions were made, where necessary, and that most of the 

theoretical fluid dynamics and heat transfer phenomena are correctly simulated.  Simply inspecting 

the model code Solve.m revealed that the very same equations defined by Equations 4-8 are used in 

the model. It was relieving confirmation to see that the model was theoretically sound and included 

the right level of detail to produce realistic results.  Upon further inspection, it was evident that the 

model made a few other assumptions that may not be realistic but were necessary to allow the 

theoretical computations to work: 

1. Rigid sheet structure – In reality, the polypropylene sheet material is very thin (like 

paper) and pliable. This means that most of the structure of the HMX blocks comes from the 

outer frame (rigid polypropylene/glass material) and the polyethylene separation walls 

between each channel.  Because the actual sheets are pliable, varying flows and pressures 

would likely have an effect on the geometry of each channel; they would not be perfectly 

rectangular like the model assumes. 

2. Airflow knob factor – The developer of the model calibrated the airflows with 

experimental data that was taken at a limited number of performance points. The 

experiment was performed at NREL facilities. “knob factors” were used to adjust the 

theoretical, calculated friction factors within the model to fit this data. 

3. Hole Placement – The actual HMX design has holes in the first 2 ind/dir channels only (10 

holes each); the 2nd and 3rd ind/dir channels are connected through 2 breaks in the 

separation wall. The concept behind this is to direct more air into the last 5 holes, which 
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otherwise may be limited due to pressure resistance. The model does not have the 

capability to place breaks in the separation wall. The default model design simply has 10 

holes in the 1st ind/dir channel and 5 holes in each of the next ind/dir channels (see Figure 

25). 

4. Number of Process Layers – The model assumes that the heat and mass transfer 

phenomena that occur within an HMX block is symmetrical; each sheet has two sides that 

are asymmetrical across the trough in the middle. Version 6 HMX blocks are 39 inlet 

channels tall, and the M50 air conditioner has 5 HMX blocks in it. Therefore, the “number of 

process layers” input on the model should be 390. (39)(2 sides)(5 blocks) = 390. This also 

assumes that thermodynamic and fluid flow performance is the same for each HMX block 

stacked on top of each other. 

5. Steady-state conditions – The model can only simulate steady-state Coolerado conditions. 

It is not designed to simulate varying fan speeds or dynamic inlet conditions, although the 

actual M50 units are equipped with VFDs and are rarely maintained at a constant speed. 

Also included with the model code were basic psychrometric functions that are called upon 

by the code while it iteratively solves for air states across the HMX sheet. These functions were 

developed and written in MatLAB at the same time the Coolerado code was developed. Most of the 

psychrometric functions were derived from the 2005 ASHRAE Handbook of Fundamentals. 

 

DISCRETIZATION 

 The NREL model uses a basic discretization scheme. Although official documentation or 

information about the method used in this model is unavailable, inspecting the code reveals the 

simple method. The model selects the smaller of two dimensions as the length and width of each 

discretization square: minimum divider width or minimum channel width divided by 6. If the 
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divider widths are larger than channel width divided by 6, the model forces each channel (product 

and working) to have at least 6 cells perpendicular to the flow path to account for a temperature 

and heat transfer gradient perpendicular to the airflow path. This is expected in a cross-flow heat 

exchanger design like the Coolerado HMX. For all of the simulations and analysis performed in this 

research, the channel divider width defined the discretization size because the minimum divider 

width (1.6mm) is significantly smaller than the channel width divided by 6 (which would be about 

4.0mm). Most of the simulations have about 15 cells across each channel and 320 cells along the 

length of the product (dry) channels. This results in a 320 by 128 grid, or 40960 cells.  

V. ANALYSIS AND RESULTS 

CALIBRATION WITH CU4 DATA 

 The first step to calibrating the model and ensuring its results were reasonable was to 

adjust the model default geometry to reflect the actual Version 6 HMX in use at the NSIDC. The 

model automatically loads a default design on startup. However, these values had to be updated to 

reflect the Version 6 design and to calibrate the model.  

Some inputs had to be verified with Coolerado, like paper thickness and waterfilm 

thickness. The sheet material is made by Fiberweb and consists of two parts: impermeable 

polypropylene membrane and a poly wicking material. The membrane is about 0.003” (0.076mm) 

thick and the wicking material is about 0.49mm thick; the combined total is 0.56mm. For modeling 

purposes, it is assumed that the waterfilm is completely absorbed into the wicking material, so is 

therefore 0.49mm. The model uses the waterfilm thickness and water conductivity to calculate the 

heat transfer rate through the water, and the paper thickness and paper conductivity to calculate 

the heat transfer rate through the membrane. Note that the model doesn’t have an input for wicking 

material thickness. By assuming the wicking material is completely saturated (which is Coolerado’s 
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design intent), it is assumed that the heat transfer through the fully saturated wicking material is 

similar to heat transfer through an equal thickness of water. This may or may not be true, and the 

effect of modifying the “water conductivity” input was explored in the model sensitivity analysis. 

Essentially, as far as the model is concerned, there is a very thin, 0.076mm poly material layer that 

has a 0.49mm waterfilm on it. Heat transfer through these layers is quantified by multiplying by 

respective conductivities and a temperature difference, as solved by Equation 7. 

The number of process layers was set 390 to calculate the flow, heat transfer and power 

usage of an entire M50 unit, thereby attempting to model the performance of CU4 (see list of 

assumptions on previous page). The model simply uses this value to multiply the performance 

(heat and mass transfer) of 1 set of sheets (1 product air and 1 working air). All of these validated 

design dimensions were saved into a new default file for the model to automatically load on startup 

(default_adjusted2_40deg.mat). 

As explained in the One Time Measurements section, the combined channel height of 1 

product and 1 working air channel is 5.38mm. And according to Coolerado’s nominal design values, 

there should be a 60/40 split between product channel height and working channel height.  

Estimated channel widths, channel heights and hole diameters of the Version 6 HMX are 

given in Table 10. All dimensions except for the heights were measured from a sample HMX sheet; 

these measured values were initially assumed to be close enough to the Version 6 HMX values, 

although the sample sheet was known to be an even earlier version HMX. The channel height 

values, however, have a significant impact on the HMX performance and it would not be acceptable 

to simply use measurements from the old sample sheet. 
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Table 10. Version 6 HMX "60/40 split” design dimensions. 

 

Before optimization of HMX design could be performed, model performance should ideally 

be verified by comparing its results to CU4 data collected since late June 2011. The extensive 

amount of data collected on CU4 (from both the CR10X and the HOBO network) had to be organized 

and consolidated; this made MatLAB the preferred system for this task. (Microsoft Excel slowed 

significantly when processing and graphing datasets this size). MatLAB code was developed to 

process data and plot any or all of the different data points against time on the same plot (see this 

code on pages 118-119 in the Appendix). This was important to aid in steady-state condition 

selection. It was important to choose operating conditions that were relatively steady-state because 

the Coolerado model is not capable of simulating dynamic conditions. Steady-state conditions were 

initially selected by visual inspection of plots of the data. See below. 

 

Figure 28. Example MTC plot of steady-state conditions. 

Width (mm) Height (mm) Wall Thickness (mm) Hole Diameter (mm)

Indirect Channel 23.4 3.23 1.9 4.75

Ind/Dir Channel 23.4 3.23 1.9 4.75

Direct Channel 23.9 2.15 1.6 4.75
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 Once a point was selected visually, MatLAB was used to calculate the 1-hour average values 

around that point (± 30 minutes from the selected point). Using average values eliminates most 

inconsistencies in the pre-selected data, and allows a more accurate derivation of the power 

consumption for those given air conditions. Due to the very low pulse frequency from the 

WattNodes, the power measurements have a resolution of 0.1 kW. This often results in oscillation 

between values (0.2 and 0.3 kW, for example) if the power consumption of CU4 is between the 

values (0.25 kW, for example). Calculating 1-hour averages gives a more accurate power 

consumption value to use in the model. These steady-state conditions are referred to as Model Test 

Conditions (MTC). A total of 23 conditions were selected. A table of the MTC’s can be seen in Table 

18 on pages 106-107 of the Appendix.  Many of these conditions occurred in July or August of 2011 

because this time period exhibited high outdoor air temperatures, conditions when the Coolerados 

were needed most to cool the data center (instead of the economizer mode in which the AHU 

handles most of the cooling throughout the cooler winter months). However, to test the model over 

a full range of HMX/Coolerado operation, some MTCs in October and November and March 2012 

were included when the Coolerados were at partial load. 

As discussed previously, a power and total airflow relationship was developed using the on-

time measurement data. This relationship was then used to compare the model’s predicted total 

airflow to the actual airflow. The CU4 total power vs. airflow regression from Figure 22 was used to 

predict the airflow for each MTC from the CU4 power measurement. The pressure differentials 

across the HMX also have a direct impact on the performance, as seen in Equation 15. Recall that 

pressure differences (product and working air) are an input to the model, and to simulate the 

correct airflows, the pressure differentials had to be derived from the calculated airflow. Switching 

the axes of Figure 21 results in Figure 29. The regression shown below was used to calculate the 

pressure differential input for both product air and working air in the model. Although the model 

allows the user to input different pressure differentials for the product and working air, because 
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the one-time data showed that these values were very similar, the same pressure was used for both 

air paths. Comparisons of the model outputs to CU4 field data at each given MTC can be seen in 

Figure 53 through Figure 56 on pages 120-121 in the Appendix. 

 

Figure 29. Airflow vs. pressure regression for an M50 unit. 

 

ISSUES WITH MTC’S 

Despite efforts to verify the model by comparing to over 20 MTC’s, it became apparent that 

this was not going to be possible because of unknown, time-dependent temperature gradients in 

both the product and working air streams. (Note the very poor matches of thermodynamic 

performance in Figure 53 through Figure 56 on pages 120-121 in the Appendix). Recall that the 

product and working air temperatures are each measured at only 1 location within each outlet. The 

product air outlet is 14” wide by 40” tall. Measurement at only 1 location doesn’t accurately capture 

the average temperature of the product air if there is a gradient. In theory, all product air outlets 

would have the same temperature. However, after attempting to verify that the product air is the 
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same across all vertical points, it was discovered that a gradient exists. To make matters worse, this 

gradient seemed to be dependent on the amount of water supplied to each HMX and the 

distribution within it. This conclusion was reached after measuring the vertical temperature profile 

before and after the NSIDC Coolerado units were “soaped”. All Coolerado units use dish detergent 

as a surfactant to help the working air channels in the HMX become fully wet out so that the wicking 

material is full of water. In theory, this soaping process only needs to be applied once at the startup 

of each unit; once a surface is wet and stays wet by constant addition of water, it should never dry 

out at any point. However, after some amount of time (or cumulative airflow), the product air 

temperature starts to increase, particularly in the HMX blocks at the top of the stack. The M50 units 

can be re-soaped by cycling the unit off and back on; upon a hard reboot, the unit runs the soap 

pump for 2 minutes. Within about an hour of soaping, the product air temperature gradient is 

significantly reduced. And it was noted that a day later, the gradient was non-existent. Data from 

this no-product-gradient day (3/23/12 11:30AM MST) was used to calibrate the model, although 

the input air temperature was not an optimal design condition (it was only 22°C or 72°F). This 

corresponds to MTC22a in the MTC list. 
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Figure 30. Product air temperature gradient. 

 Note that there are 6 openings in the product air outlet damper. These each correspond to 

one of the temperature data points on in Figure 30, as shown by the arrows. The temperature also 

varies horizontally across the HMX outlet by design. The temperatures in Figure 30 were all taken 

at the same location horizontally on the outlet of the HMX. 

There was also a temperature gradient within the working air stream. CU4 is one of the 4 

Coolerado units at the NSIDC that is equipped with a humid air damper (HAD). This damper 

controls the flow of humid air to the room as needed to maintain the ASHRAE humidity limits. The 

HAD is made of sheet metal, and was therefore an easy place to install a temperature and humidity 

probe for the working air. And being about 2 feet above the topmost HMX, it was assumed that all of 

the working air from the 20 individual channels (which each have a different temperature) would 

be fully mixed by the time the air reached the sensor location. However, after measuring the 

temperature at 12 points in a horizontal plane inside the HAD, it was found that the sensor location 

was 6.0°F (3.3°C) lower than the average temperature in the plane. This data can be seen in Figure 
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31 below. Note that the working air sensor is located at the same location as the low point at Center 

and 5.5”. 

 

Figure 31. HAD temperature gradient plot. 

 To calibrate the working air temperature, 3.3°C was added to the recorded temperature 

value to account for the HAD gradient. Because the corresponding humidity measurement is a 

relative humidity (RH) value, the RH of the working air (not humidity ratio) was assumed to be the 

same with the new temperature value. 

 Unfortunately, even after adjusting for the gradient issues mentioned above, the model still 

didn’t match well with CU4 data. The 60/40 split assumption is not valid. After compression into a 

complete HMX block, the inlet face is distorted from epoxy, and the HMX’s in CU4 do not perform 

like a 60/40 split should. Two other models were simulated to determine the proper product and 

working air channel heights; a 55/45 split and a 65/35 split. The product air results from the 65/35 

split were very close to the CU4 data. The divider widths were increased to 2.2mm and 2.0mm for 

the product and working air channels respectively, as seen in Table 11. Also, the water conductivity 

was reduced from 0.60 to 0.25 W/m-K; this this was an attempt to model the actual case in the CU4 

HMX’s if the wicking material in the working channel is not fully saturated or the effective 
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conductivity of the waterfilm is reduced by the presence wicking fibers. The results of the 

calibrated simulation can be seen in Figure 32. Note the error bars around the CU4 product data. 

Table 11. Version 6 calibrated HMX design parameters; 65/35 split. 

 

 

Figure 32. Model calibration with 3/23/12 CU4 data. 

 Note that the CU4 working air data point is very close to the same temperature as the 65/35 

model (in fact the data is 16.16°C and the model predicts 16.18°C). The humidity level is not as 

close (93.5% data vs. 101.7% model). This is likely due to slight water deprivation in the CU4 unit, 

which would directly impact the achievable humidity ratio in the working air stream. The model 

assumes that there is enough water in each working air channel to fully saturate the wicking 

Width (mm) Height (mm) Wall Thickness (mm) Hole Diameter (mm)

Indirect Channel 23.2 3.5 2.2 4.75

Ind/Dir Channel 23.2 3.5 2.2 4.75

Direct Channel 23.4 1.88 2.0 4.75
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surface. In reality, controlling the water flow with that degree of accuracy is very difficult, especially 

with other influencing factors like building water pressure, filter cleanliness (each Coolerado has a 

separate water filter), variable airflow and humidity ratio of incoming air. Based on a Coolerado 

technician’s professional maintenance during the week of April 16 (nearly 3 weeks after the 

MTC22a measurements were taken), the supply water pressure to the all of the NSIDC Coolerados 

was low; new filters and minor internal controls adjustments were made to attempt to account for 

this. Other less influential but still notable factors include the relative inaccuracy of RH sensors 

(especially near saturation) and the fact that this humidity was modified from its original absolute 

value. 

 However, on the product air end, the CU4 data and 65/35 model are very close, both in 

temperature and humidity. Data and model temperatures are less than 0.1°C apart, while 

humidities are about 0.0003 kg water/kg dry air apart (10.85°C data vs. 10.76°C model and 0.0025 

data vs. 0.0028 kg water/kg dry air model). 

Table 12. MTC22a calibration comparison between CU4 data and model output. 

 

 It is apparent from Figure 32 above that the 65/35 model performance is the closest match 

to the CU4 data. For a numerical comparison, refer to Table 12 above. This suggests that the CU4 

unit operates like a 65/35 HMX. 

 It should be noted that the model pressure and airflow correlations seen in Figure 21 and 

Figure 22 were both generated using an uncalibrated 60/40 split model. Changing the channel 

heights to a 65/35 split does affect the total and individual airflow, however, these slight changes 
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are very small and in fact improve the pressure and airflow correlations closer to the CU4 data. 

Therefore, it is still valid to use the regression from Figure 29 to calculate an approximate airflow 

through the CU4 unit from the power measurement, and then use this value to compare to the total 

airflow predicted by the model, as in Table 12. Figure 33 below is the same as Figure 29 except the 

calibrated 65/35 model correlation has been added to show that it actually improves the pressure 

vs. airflow correlation, making it closer to the actual CU4 data. 

 

Figure 33. Pressure and asirflow relationships; CU4 data, initial 60-40 model, calibrated 65-35 model. 

 

SENSITIVITY PROCEDURE 

Once the model was calibrated to one point in time when CU4 operation was understood, it 

was used to determine the performance impact of adjusting different design parameters. To allow 

an equal comparison, a 40°C (104°F) design temperature and 10.1% relative humidity (17.2°C wet-

bulb temperature) was selected as an inlet air state. This air condition represents a typical design 

condition used by Coolerado in their in-house testing, which Coolerado has determined to be an 
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ideal condition for the HMX system. It allows the working air stream plenty of capacity for humidity 

absorption, which in turn drives the product air temperature down. Ten percent RH is a relatively 

low humidity, but is common in the western U.S. Temperatures in this same region can reach 40°C 

in the heat of summer, particularly in the southwest, where cooling capacity is needed most. The 

key performance indicator used was the coefficient of performance (COP) which is defined in 

Equation 18. The COP is a robust performance metric that by definition incorporates cooling power, 

product air temperature, product air flow rate and total air flow rate. If any of these variables 

change, the COP will reflect that change. Note that only the product air mass flow rate,     , can be 

counted in the cooling power. Working air is very humid, almost saturated, and would be 

uncomfortable in an occupied space; therefore it is exhausted and not used to do any useful cooling. 

 

 

    
             

               
 

                                

       
 

    
 

 

(18) 

                        
              

             
 (19) 

 

Wet bulb effectiveness is another common design comparison value, and is defined in 

Equation 19. As a measure of how close to the wet-bulb temperature a cooling system can reduce 

its supply air to, this metric is good for quantifying the temperature drop across a cooling system 

relative to the inlet condition. However, in the case of a Coolerado HMX which is purely sensible 

cooling, no humidity added or removed from the product air, wet bulb effectiveness is purely a 

function of the product air dry bulb temperature. Note that         is the only term in Equation 19 

that will change depending on what changes are made to the design. The other three values are all 

constant as they are parameters of the constant inlet condition. Therefore, it is necessary to 

consider only wet bulb effectiveness or product air temperature when comparing different 

simulations. Because wet bulb effectiveness is a cooling equipment standard, it was used in 
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conjunction with COP for comparing different design sensitivities. Capacity and total airflow are 

also considered. 

The constraints on the sensitivities that follow were employed to keep this analysis within 

some simple design considerations for Coolerado. These constraints were in effect for all 

simulations except those which specifically vary these variables. These constraints are outlined in 

Table 13. 

Table 13. Sensitivity and optimization constraints. 

 

Initially, 19 sensitivity simulations were modeled. Various values for channel heights, hole 

location, hole size, water conductivity waterfilm thickness and divider width were input for 

different simulations. As trends became apparent, it was necessary to simulate a few more cases; in 

some cases the sensitivity range had to be expanded, and in others it had to be shifted up or down. 

In total, 45 useful sensitivity simulations were performed and are outlined in Table 14. 

Constraint Reasoning

10.0" Tall, 8" Wide, 20" Deep 

Current HMX frame size; Changing this would mean 

extensive modification to Coolerado's 

manufacturing line and Coolerado design.

25.4mm (1.0") Channel Width, 

O.C. divider to divider

Reducing this value while maintaining the HMX inlet 

face area would mean adding channels and/or 

widening dividers. This would decrease the effective 

area available for heat transfer on product and 

working air sheets. Increasing the channel width 

would improve performance by increasing the heat 

transfer area, however 1.0" is a structural maximum 

according to Coolerado.

Constant 170 Pa (0.68") Fan 

Pressure

Current maixmum pressure differential acheivable 

with the fan, at least the types installed in the NSIDC.

Constant 83.3 kPa (12.8psi) 

Atmospheric Pressure

Elevation of Boulder (the location of the NSIDC) is 

5300 ft. and atmospheric pressure should be taken 

into account.
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Table 14. Sensitivity simulations 

 

 The results of the sensitivities above all seemed reasonable and can be explained. The 

channel height sensitivities were the most complex because the product and working air heights 

are interrelated when it comes to the thermal performance of the HMX. Because the current HMX 

frame design has an inlet height limit of 10.0”, changing the height of either (or both) channel 

changes the number of inlet channels available within this 10.0” limit. And although changing one 

channel height has an effect, changing both channel heights has a different effect, meaning that the 

product height ratio (percentage of total inlet channel height that the product channel takes up) 

may also be important. For instance, a 75/25 split performs differently than a 55/45 split. 

 The following sections are dedicated to showing the results of these sensitivity simulations. 

The values boxed in red on the graphs represent the base case, the 65/35 split calibrated model 

under design inlet condition 40°C and 10% RH. Although only COP and cooling capacity are 

presented here, other graphs with airflow and wet-bulb effectiveness can be seen in Figure 57 

through Figure 66 on pages 122-126 in the Appendix. 

  

Parameter changed Description Values # Simulations

Channel Heights
 ± 10%, ± 5% Height Ratio & 

±4 Inlet Channels

55, 60, 70, 75% Product Channel 

Height to Total Inlet Height
15

Divider Width  ± 1.0mm 1.0, 1.5, 2.5, 3.0 mm 4

Hole Diameter  ± 1.75mm, +2.25mm 4.0, 5.5, 6.25, 7.0 mm 4

Hole Location  ± 1 hole,  ± 2 holes, -3 holes 7, 8, 9, 11, 12 holes in first row 5

Waterfilm Thickness  ± 30% of Base Case 0.34, 0.64 mm 2

Water Conductivity   ± 50%, ± 25% of Base Case 0.3, 0.45, 0.75, 0.9 W/m-K 4

HMX Sheet Size
Adding Product and Working 

Channels

 +2,4,6 Working Channels    

+2,4,6,8 Product Channels 11
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Channel Heights 

Assuming the base case (65/35 split model, with dimensions as seen in Table 11; 39 inlet channels, 

effective inlet height of 5.38mm) as a middle ground, the product height ratio was varied from 55% 

to 75%. The results are seen in Figure 34, Figure 35 and Figure 36. The scales on each of these 

figures have been set constant for easier comparison. 

 

Figure 34. HMX performance sensitivity to product height ratio: 35 inlets 
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Figure 35. HMX performance sensitivity to product height ratio: 39 inlets 

 

Figure 36. HMX performance sensitivity to product height ratio: 43 inlets 
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Varying the product height ratio from 55% to 75% was enough to capture the maximum 

COP value for these inlet channel counts. The regressions included on each graph represent a best-

fit curve for calculating the maximum COP value in each scenario. Note that most of the curves are 

2nd order, but the 43 inlet graph (Figure 36) uses a 3rd order equation; this cubic regression has a 

better correlation (higher R2 value) than a 2nd order line.  

The interesting feature from these figures is that the maximum COP value changes 

depending on the number of channels (or total inlet height). So depending on the number of sheets 

stacked into each HMX frame, the product height ratio should be different in order to maximize 

COP. This non-constant optimum product height ratio can be seen in the 3D image in Figure 37. The 

white arrow follows the “optimal ridgeline”. 

 

Figure 37. 3D surface HMX COP sensitivity to Product Height Ratio and # Channels. 

The relationship between number of inlets and optimal product height ratio can be seen 

more clearly in Figure 38. The optimum product height ratio for maximizing COP increases linearly. 

With the design inlet condition of 40°C and 10% RH, at 35 inlets, the optimal product height ratio is 
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63%, at 39 inlets it’s 66%, and at 43 inlets it’s 69.7%. Note that the 65/35 model (which was 

calibrated using 39 inlet channels, the actual number in CU4) is reasonably close to the 66% 

optimum. These optimal ratios decrease by about 1% if the inlet air is cooler at 30°C.  

 

Figure 38. Optimal product height ratio as a function of inlets per inch. 

 

Hole Diameter 
 The hole diameter was the next most sensitive parameter. From Figure 39, it is apparent 

that a smaller hole diameter results in higher COP, although slightly reduced cooling capacity 

relative to the base case (4.75mm). Effectively, the working airflow is reduced because of this 

smaller restriction in the air path. This deceases the required working air hydraulic power, and the 

wet-bulb effectiveness because there is less working air available to carry away heat from the 

product air stream. It should be noted that at the outset of this project, according to Coolerado, it 

was believed that the holes are currently oversized. But because of manufacturing limitations and 

high tolerances in the die-punched holes, the hole size could not be relied upon as a means of flow 
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pressure drop across the working air path in the HMX, especially considering that the airflow 

resistance is likely more than is calculated in this model that assumes rigid sheet material. 

 

 

Figure 39. HMX performance sensitivity to hole diameter. 

  

Divider Width 

Varying the divider width has an approximately negative linear effect on the COP and wet-

bulb effectiveness of the HMX. A wider channel divider means that less area is available for heat 

transfer and less airflow is allowed. Therefore increasing the width decreases the COP. This 

sensitivity varied both the product and working air dividers in unison. The exact values used can be 

seen in Table 19 on page 123 in the Appendix. Although it may be possible to increase the product 

divider and decrease the working divider (which would increase airflow in the working air 

channels), this is not recommended because the heat transfer is limited by the largest divider. The 

effect of divider width on COP and cooling capacity can be seen graphically in Figure 40. Note that 

cooling capacity decreases slightly, but relatively little, and COP decreases by about 3.75% from the 

base case. 
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Figure 40. HMX performance sensitivity to divider width. 

 

Hole Location 
 The placement of the holes in the indirect/direct working air channels was found to affect 

the performance of the HMX slightly, but not significantly. The figure below shows the impact of 

moving the first hole in the second channel forward or backward from the standard 10 holes. It is 

evident that 9 holes in the first channel is the optimum. However, the 10 hole model (the base case) 

is only 0.1% worse. The cooling capacity is relatively unaffected by changing the hole location 

because the total airflow (and therefore hydraulic power) is almost unchanged (see Figure 62 on 

page 124 in the Appendix). Adding more holes to the first channel has a more significant impact as 

the COP curve drops 1.45% with 12 holes. Overall, however, hole placement does not significantly 

affect HMX performance. See these effects in Figure 41. 
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Figure 41. HMX performance sensitivity to hole placement. 

Waterfilm Thickness 
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if this were to change, it would have a direct and linear impact on the performance of the HMX, as 

seen in Figure 42.  This is expected because the heat transfer process that cools the product air 

occurs exclusively through the waterfilm, whether it is evaporated or cooled by convection with the 

working air. In the model, the waterfilm thickness is simply multiplied by the conductivity and the 

temperature difference to determine the heat transfer; this results in the direct relationship. A 

thicker waterfilm means more resistance to heat transfer. Note that the model assumes there is 

always enough water available for evaporation; this is mostly a water control and dispersion issue 

which is arguably external to the heat and mass transfer that is theoretically possible inside the 

HMX. Only 2 more sensitivity simulations were performed because the relationship is linear and not 

expected to be different outside of the ± 30% of base case waterfilm thickness range. Also note that 

like the hole location sensitivity, changing this thickness by fractions of a millimeter doesn’t do 
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much to the COP (the scale is expanded only to show the linearity). There effect is negligible on the 

cooling capacity. 

 

Figure 42. HMX performance sensitivity to waterfilm thickness. 

Water Conductivity 
Although water conductivity is simply a characteristic of the tap water that is used 

wherever the Coolerados are installed and not a parameter that could be easily actively adjusted, 

this sensitivity was performed to determine the effect of this value on the overall performance for 

two reasons. For one, the water quality may vary by location. Secondly, the exact conductivity of the 

saturated wicking material is not known, and may be less than that of just pure water. As expected, 

if the conductivity is decreased, the COP also decreases because all of the heat transfer has been 

reduced. See these effects in Figure 43. 
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Figure 43. HMX performance sensitivity to water conductivity. 

 

Elevation (Ambient Pressure) 

For all of the above design sensitivities, the inlet air condition and pressure provided by the 

fan was constant. But in reality. the Coolerado air conditioners can be installed and used in many 

locations that may have lower elevations (higher atmospheric pressures), and all of the fans are 

equipped with internal VFD’s to vary the airflow rates as necessary to meet a load. So it is necessary 

to characterize how these variables impact the performance of the HMX design. 

 

Figure 44. HMX performance sensitivity to Elevation (ambient pressure). 
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 From Figure 44, it is apparent that the elevation has a significant impact on the performance 

of the HMX. As elevation increases, the COP decreases in a nearly linear fashion. This is expected 

because the air is thinner and has less heat capacity. This is typical of many heat and mass transfer 

processes. 

 

Fan Pressure Differential 

It is obvious that the pressure differential imposed across the HMX by the fan will vary as 

the VFD controls the fan speed. Cooling capacity increases linearly as the speed increases (see 

Figure 45); and because speed is directly proportional to flow, the airflow also rises linearly. See 

this in Figure 46 below. It is interesting that the product air temperature decreases by 1°C between 

60 and 100 Pa, but then actually slightly increases again as pressure increases to 170 Pa. (See the 

reverse effect on wet-bulb effectiveness in Figure 46). 

 

Figure 45. HMX performance sensitivity to Fan pressure. 
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Figure 46. HMX airflow and product wet-bulb effectiveness sensitivity to fan pressure. 
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doesn’t change much, the wet-bulb effectiveness increases linearly with the number of channels. 

The cooling capacity doesn’t increase also because the product airflow is reduced enough to 

balance out the increased wet-bulb effectiveness with each additional working channel. 
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Figure 47. HMX performance sensitivity to additional working channels. 

 

Figure 48. Airflow and wet-bulb effectiveness sensitivity to additional working channels.. 
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more airflow, and the cooling capacity increases. The COP, however, only increases for a limited 

number of additional product channels. More product channels also results in lower wet-bulb 

effectiveness because the added channels output warmer air than the first product channels, 

thereby increasing the average product air temperature. Depending on the number of additional 

working channels, adding product channels has a different impact on the COP, as seen in Figure 49. It 

is apparent that a 10% increase in COP is achievable by adding 6 working channels and 4 product 

channels. 

 

Figure 49. HMX performance sensitivity to additional product channels. 
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This table shows a lot of data, but most importantly it points out which variables have the greatest 
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1.00 

5.00 

9.00 

13.00 

17.00 

21.00 

25.00 

29.00 

33.00 

72.0 

74.0 

76.0 

78.0 

80.0 

82.0 

84.0 

86.0 

88.0 

0 2 4 6 8 

C
o

o
li

n
g

 C
a

p
a

ci
ty

 (
k

W
) 

C
O

P
 

Number of Additional Product Air Channels 

Added Product Air Channels COP (6 
additional 
Working 
Channels) 

COP (0 
additional 
Working 
Channels) 

Cooling 
Capacity (6 
additional 
Working 
Channels 

Cooling 
Capacity (0 
additional 
Working 
Channels) 



-90- 
 

approximately realistic ranges for each variable, comparing the simulations in this manner is 

reasonable. 

 Although it’s not a design variable per se, the ambient pressure, or elevation, has the 

greatest impact on the performance, with over 11% increase at 2200 feet, and over 21% increase at 

sea level. It should be noted though, that the low channel heights sensitivity simulation ranks 

between these two elevation impacts, signifying that channel height is also a major performance 

driver. With over 14% increase in COP compared to the base case as both product and working air 

channel heights are decreased by 0.5mm (0.02”). This value was selected as a maximum change 

because Coolerado claims that changing the channel heights more than this amount requires some 

more time to dial in the proper flow and speed of the machine used in the manufacturing line. Also 

interesting to note, the Low Wet Wall simulation (reduced working air channel height) resulted in 

more than double the change that the Low Dry Wall simulation showed. This implies that it is more 

important for the working air channel height to be small and optimally sized for maximum 

evaporation rate than it is for the product channel height. 

 Adding working and product air channels also could have a significant impact on the 

performance, up to a 10% increase in COP. These simulations were performed assuming the 

channels added were the constant 25.4mm (1.0”) in width. However, improving the performance of 

the HMX by adding channels and increasing the overall size of the sheet may not be possible in the 

near future because it would require significant adjustments be made to Coolerado’s manufacturing 

process and Coolerado unit design. A feasibility analysis would need to be done that includes other 

factors such as capital costs of modifying the manufacturing line before this improvement should be 

implemented. 
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Table 15. All HMX sensitivity simulations; ordered by COP. 

  

% ΔCOP WB Effectiveness Cooling Power T_DB Product

Sea Level 1 94.0240 20.81% 95.21% 17.88 18.291

Low wet wall & low dry wall 2 88.6311 13.88% 108.59% 14.04 15.242

 + 6 WA Channels, + 4 PA Channels 3 86.2911 10.87% 98.12% 25.48 17.629

 + 6 WA Channels, + 6 PA Channels 4 86.2377 10.80% 92.11% 29.23 19.000

2200 Feet Elevation 5 86.2160 10.78% 95.19% 17.02 18.297

 + 6 WA Channels, + 8 PA Channels 6 84.7114 8.84% 86.44% 32.42 20.291

Low Wet Wall 7 84.2510 8.25% 91.75% 15.99 19.081

 + 6 WA Channels, +2 PA Channels 8 83.8784 7.77% 104.51% 21.11 16.172

4.0mm Holes 9 79.9322 2.70% 89.59% 15.04 19.574

 + 2 PA Channels 10 79.8727 2.63% 87.93% 20.67 19.951

1.0mm Divider 11 79.1313 1.67% 96.77% 16.45 17.937

 + 4 PA Channels 12 78.8274 1.28% 80.98% 24.47 21.536

Low Drywall 13 78.7079 1.13% 113.90% 13.44 14.031

1.5mm Divider 14 78.3040 0.61% 96.18% 16.27 18.071

 + 2 WA Channels 15 78.2049 0.48% 101.77% 16.17 16.797

 + 4 WA Channels 16 77.9436 0.15% 106.87% 16.14 15.633

High Water Conductivity 17 77.8640 0.05% 96.07% 16.13 18.097

0.34 waterfilm 18 77.8287 0.00% 96.02% 16.12 18.107

0.75 Water Conductivity 19 77.7240 -0.13% 95.89% 16.10 18.136

ch1-7 ch2-7 20 77.6590 -0.22% 95.90% 16.10 18.134

ch1-7 ch2-6 21 77.6480 -0.23% 95.84% 16.09 18.149

 + 5 PA Channels 22 77.6266 -0.26% 77.75% 26.11 22.272

ch1-9 ch2-6 23 77.5939 -0.30% 95.79% 16.08 18.161

ch1-8 ch2-7 24 77.5628 -0.34% 95.77% 16.08 18.164

ch1-12 ch2-3 25 77.5344 -0.38% 95.39% 16.01 18.252

ch1-7 ch2-8 26 77.5220 -0.39% 95.70% 16.07 18.181

BASE 27 77.5156  -- 95.64% 16.12 18.195

ch1-4.0 ch2-4.75 ch3-5.5 Hole Dia 28 77.4461 -0.49% 93.49% 15.69 18.684

0.64 waterfilm 29 77.2053 -0.80% 95.25% 15.99 18.282

0.45 Water Conductivity 30 77.1710 -0.85% 95.21% 15.98 18.292

 + 6 WA Channels 31 77.1539 -0.87% 111.29% 16.06 14.626

ch1-11 ch2-4 32 77.1054 -0.93% 95.04% 15.95 18.331

Low Water Conductivity 33 76.4910 -1.72% 94.37% 15.84 18.483

ch1-12 ch2-4 34 76.3930 -1.84% 94.13% 15.80 18.539

2.5mm Divider 35 75.9660 -2.39% 94.59% 15.82 18.433

2.5mm Holes 36 75.9020 -2.48% 85.89% 14.42 20.416

High drywall, Low wetwall 37 75.6445 -2.81% 76.08% 14.04 22.653

3.0mm Divider 38 74.6180 -4.13% 93.58% 15.56 18.655

5.5mm Holes 39 73.4900 -5.57% 99.42% 16.69 17.332

High drywall 40 72.8849 -6.35% 81.50% 17.12 21.418

 + 8 PA Channels 41 72.6795 -6.62% 68.94% 30.09 24.282

High wetwall 42 72.1184 -7.34% 98.55% 14.72 17.530

3.0mm Holes 43 71.4580 -8.19% 66.56% 11.17 24.825

Low drywall, High wetwall 44 70.2429 -9.75% 113.87% 12.48 14.037

8100 Feet Elevation 45 70.2170 -9.78% 96.30% 15.22 18.043

High drywall, High wetwall 46 69.2492 -11.02% 83.60% 16.59 20.940

6.25mm Holes 47 69.1810 -11.11% 101.91% 17.11 16.765

7.0mm Holes 48 65.1460 -16.30% 103.53% 17.38 16.396

10000 Feet Elevation 49 64.8340 -16.70% 96.39% 14.57 17.966

COP
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OPTIMIZED DESIGN 

 The sensitivity analysis presented above varied each design parameter separately and 

compared the result to the base case design. Once those simulations were run, an optimum design 

can be simulated using more than just one improved variable. For instance, if an HMX is designed 

with a 1.0mm divider, 3.2mm product channel height, 1.5mm working channel height (68% product 

height ratio) and 43 inlets, the COP would be 85.3. The 1.5mm is thought to be a reasonable 

minimum channel height; below this number may not be practical to manufacture or push air 

through, considering the undulating nature of the pliable sheets. 

 

INLET CONDITION VARIANCE 

 As shown in Figure 44 above, the ambient pressure, which is largely defined by the location 

of the Coolerado units, has a significant impact on the HMX performance. Typical climate and 

weather also has a significant impact. Figure 50Figure 50 below shows a portion of a psychrometric 

chart with a COP surface created from 20 simulations: 4 humidity ratios (0.001, 0.005, 0.009, 0.013) 

at 5 different temperatures (20°, 25°, 30°, 35° and 40°C). The humidity range minimum was 0.001 

instead of actually zero because simulations with no humidity resulted in many wet-bulb 

convergence and mass transfer errors. Practically speaking, it is reasonable to use 0.001 as a 

minimum humidity ratio because the outdoor humidity ratio in Colorado (which is one of the driest 

States) is rarely below this level (based on EPW weather data for Broomfield, CO) [14]. The 

humidity range was capped at 0.013 because above this level is typically considered outside the 

thermal comfort range, according to ASHRAE Standard 55. And because the Coolerado is an 

evaporative cooling system, humidity cannot be removed from the product airstream; product air 

has the same humidity ratio as the inlet air. The temperature range was limited by a lower limit of 
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20°C because if inlet air is below this level, not much cooling will be needed. The upper limit, 40°C 

(104°F), is the main design condition that Coolerado uses to rate their system. 

 

Figure 50. 3D HMX performance sensitivity to different inlet conditions (locations). 

 It is evident that hotter and drier inlet conditions significantly increase the COP of the HMX. 

This is reasonable because higher temperatures at the same humidity ratio have a greater vapor 

and heat carrying capacity. The HMX system relies upon the working air being able to absorb heat 

in the form of moisture and conduction. Therefore, the COP significantly decreases as temperature 

decreases. While humidity does also affect the performance, temperature has more of an effect; this 

is evident by the steeper gradient from 20 to 40°C at a constant humidity ratio (0.001) than the COP 

gradient between 0.001 and 0.013 humidity ratio at a constant temperature (20°C). This can be 

seen more clearly in Table 16. 
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Table 16. HMX performance sensitivity to different inlet conditions data. 

 

Table 16 was created from the 20 simulation outputs. In theory, it could be used to predict 

the performance of a Coolerado system based on an average inlet condition. Although there is a 

slight curvature to the surface in Figure 50, it is relatively flat, and extrapolation within one interval 

of temperature or humidity ratio should give reasonable results. Based on Figure 50, Coolerado air 

conditioners would operate most efficiently in climates with very hot and dry conditions. 

NSIDC COOLERADO SYSTEM OPERATION 

 The results of the inlet condition sensitivity simulations are applied to the NSIDC to 

determine when the Coolerado system can be used to cool the data center. As seen in Figure 

50Figure 50, the performance of the HMX degrades significantly in cooler and very humid 

conditions. This is largely due to decreased cooling power. Although the wet-bulb effectiveness is 

about the same, at higher humidity ratios, the dew-point is also higher. And because the 

Maistosenko cycle is driven by the dew-point of inlet air, this results in less available heat transfer 

and difference between product and working air enthalpies. Because of this effect, the cooling 

capacity of the Coolerados at the NSIDC is not enough to cool the constant heat load (servers) for 

some inlet air conditions. The current server load of the NSIDC is about 33 kW and is supplied 

power from the UPS. The UPS is also in the room and contributes to the heat load of the space. 

Assuming that the power consumed by the UPS efficiency is completely dissipated as heat, this also 

must be cooled by the cooling system. 33 kW of power requires 37.63 kW of input to the UPS. The 

0.001 0.005 0.009 0.013

20 45.9 33.4 22 11.6

25 55.7 44 33.4 23.7

30 66.2 55.2 45.2 36.1

35 76.9 66.6 57.2 48.7

40 88 78.3 69.4 61.3
T

em
p

. (
°C

)

Humidity Ratio
COP

Δ COP = 18.7

Δ
 C

O
P

 =
 4

9
.6
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rooftop AHU is also run off the UPS, and on a peak cooling day, the AHU fan consumes about 6 kW of 

power. This fan power accounts for 0.84 kW of power loss through the UPS. Rearranging Equation 

2, Equations 20 and 21 show this algebraically. 

                                                    (20) 

                    
        

              
                               (21) 

  
     

     
                    (22) 

                                  (23) 
 

Therefore, the total cooling load is about 40 kW. The Coolerados must be able to meet this 

load. By interpolating linearly between the inlet condition sensitivity simulations (and a few other 

simulations run just for this purpose), a line can be drawn on a psychrometric chart showing the 

limits of where the Coolerados can and can’t be exclusively used to cool the data center. Outside of 

this range, the CRAC must be used to dehumidify the space. Figure 51 shows the operation modes. 

Note that the curved line between the CRAC and Coolerado operations is steeper than the relative 

humidity lines. This is a similar trend as seen in Figure 50, and is reasonable because cooling 

capacity has a direct impact on COP. The ASHRAE allowable upper humidity limit defines the limit 

of the Coolerado use above about 27.2°C (81°F); if there is more moisture in the air than this limit 

at the inlets to the Coolerados, the CRAC must be used to dehumidify the air. The Coolerados cannot 

remove moisture from the air. If the recommended limit is the target operation for the data center, 

then the CRAC may need to be run more often. Below an AHU supply air temperature of 18.3°C 

(65°F), the economizer mode can be used exclusively to meet the cooling load. 
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Figure 51. NSIDC new system operation based on inlet conditions. 
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VI. CONCLUSION 

ENERGY USE 

Since the installation of the new cooling system in June 2011, the Coolerado units and the 

AHU have reduced the energy required to cool the data center by almost 90% in winter months and 

over 70% in hot summer months. One of Coolerado’s early projections was 80% savings in energy 

[8]; the NSIDC has certainly demonstrated that this is achievable and even beatable. These 

reductions directly impact the PUE or efficiency of the data center. The average annual PUE is now 

around 1.30, where as it used to be 2.03. The new PUE shows that the NSIDC could now be 

considered a high performance data center as it requires significantly less energy to support its IT 

infrastructure. 

The new cooling system is relatively simple and has fewer extensive maintenance 

requirements. The lower maintenance and energy savings translates to significant operational cost 

reduction for the NSIDC. This results in a very reasonable payback period. The Coolerado air 

conditioner uses a unique technology that has demonstrated savings potential, and is a great 

addition to the NSIDC’s facility to further their vision of reduced environmental impact as the 

center continues its research on climate related issues. 

 

SUGGESTED HMX DESIGN IMPROVEMENTS 

It is evident that the Coolerado system is very efficient at delivering cooling power to an 

environment with a high heat load. However, there is always room for improvement and a portion 

of this research was devoted to sensitivity analysis to better understand how the HMX performance 

relates to each of the design variables. It was found that channel heights and the ratio between 

them have a significant impact on HMX performance. Divider width was the parameter with the 
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next biggest practical impact, but the COP increase associated with decreasing divider width is very 

small. Hole diameter reduction had a greater impact, however, this design variable may not be a 

practical way to change the performance because current manufacturing tolerances limit the 

precision needed to adjust this dimension accurately. Other parameters, hole location, water 

conductivity and waterfilm thickness, were found to have insignificant effects on the performance. 

Table 17 shows some suggested design improvements, based on the sensitivity simulations as well 

as general observations of the Coolerado units at the NSIDC. Some of these items are small and may 

only account for fractional increases in performance. However, from an academic point of view, it is 

prudent to document all potential fixes and improvements to increase the theoretical performance 

of the Coolerado HMX system. It is understood that some of these issues may have already been 

addressed in newer versions of the HMX design. The theoretical MatLAB model, developed by 

NREL, has been validated at one point in time through this research, and can be applied to the 

actual design process in predicting the performance of the Coolerado units under a specified set of 

conditions. Sensitivity analysis was performed to determine which design parameters have the 

most impact on Coolerado performance. 
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Table 17. Summary of suggested design improvements. 

 

Issue Description Suggested Improvement

1) Water Flow and 

Dispersion

It is understood that for the HMX system to 

perform to its theoretical best, the working air 

channel must remain fully wet, on top and 

bottom, at all times during operation. It was 

evident that there is a connection between 

product air temperature and the time since the 

last "soaping" of the unit. Over a few months, 

product air temperature will start to rise, with 

the top HMX blocks becoming warm first. 

Although water depravation of the whole 

Coolerado unit would cause the unit to dry out, 

the temperature gradient may point to a 

different issue: water dispersion to each HMX 

block is different. The Version 6 design has 1 

water inlet in the middle of each HMX block on 

the front face. 

Put water inlet for each HMX block at the top of 

the block instead of the center, to ensure 

complete water dispersion in the vertical 

direction in each HMX.

2) Rough and Irregular 

air inlets

The epoxy used to seal the front (and back) 

faces of the HMX appears to spread out the 

sheets sometimes, which reduces the actual 

opening height for the surrounding channels. 

(See Figure 24). It is unknown how much this 

affects the overall performance, but in theory it 

would increase the fan power required to 

overcome inlet turbulence.

Consider including a little extra sheet area on the 

front side of the HMX or simply using a thinner 

adhesive between the working air sheets to seal 

the front edge of them into a wedge or point. This 

would more effectively help guide the air 

smoothly into the dry channels.

3) Channel Heights Reducing channel heights (product or working 

air) reduces the product air temperature, which 

increases the COP of the HMX.  The channel 

heights and the ratio between them have the 

greatest impact on the performance because 

they directly affect airflow and heat transfer. 

Lowering the wet channel height by 0.5mm 

(0.02") could increase the COP by 8%. 

Lowering both the working channel height and 

the product channel height could increase the 

COP by 14%.

If it is possible to more precisely control the 

number of sheets stacked in an HMX frame, use 

the Optimum Product Height Ratio chart to 

determine what the height ratio should be based 

on a given number of sheets. In general, more 

sheets results in higher efficiency. But the height 

setup should be tested to ensure the expected 

airflows are attained.  Because the model assumes 

rigid sheets, the actual pliable sheets may impede 

flow.

4) Divider Width The channel divider is required to maintian the 

structure of the HMX and the channel heights. 

However, its width directly reduces the 

available heat transfer surface area on a sheet. 

Sensitivity analysis showed that reducing the 

width from 2mm to 1mm could increase the 

COP by 2%.

If this can be done at reasonably low expense, 

refine divider bead manufacturing techniques to 

allow thinner beads of equal height to be 

deposited onto the sheet. Maybe consider other 

stiffer materials that could be formed thinner or 

come pre-shaped in a specified cross sectional 

dimension.

5) Hole Diameter Hole diameter does have a noticeable effect on 

COP. Reducing the hole diameter limits the 

flow, allowing more heat transfer into the 

working air stream, thereby increasing COP. 

However cooling capacity decreases, so a 

compromise must be made. 

None. It seems that the current (V6) value of 

4.75mm is reasonable and a good compromise 

between COP and cooling capacity. Also, it is 

understood that current manufacturing 

tolerances are too wide to accurately control hole 

diameter.

6) Hole Locations Adjusting the number of holes in the first 

working air channel does have an impact on the 

airflow and pressure drop along the working air 

paths. However, the impact is insignificant, 

increasing the COP by less than 0.2% if 9 holes 

are used in the first channel. And fewer than 9 

or greater than 10 holes performs no better 

than the base case of 10 holes.

None. The current design with 10 holes in the first 

channel performs very close to the optimal 

performance, as far as thia variable goes. 9 holes is 

optimal, however the COP is nearly the same.
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CHALLENGES 

 One challenge of this project, and is often overlooked in research, is data collection. Any 

research or experimental data can only be as good as the system that is used to collect it. In this 

project in particular, the CU4 unit was not operating as designed; and air temperatures across the 

product and working air outlets were not consistent. Therefore, the list of Model Test Conditions 

could not be used for model verification. Because the water flow and dispersion has a significant 

impact on the Coolerado unit performance and it was not constant, there was a performance 

dynamic that was independent from the fan speed dynamic. If the data logging system had multiple 

sensors in each CU4 outlet, the temperature gradient could have been captured by the system and 

conditions of high gradient could be discarded from the MTC list. 

 Another “behind the scenes” aspect of this project was the extensive amount of time and 

effort that went into developing data consolidation strategies and algorithms. The data collected is 

also only as useful as its presentation. Because multiple different types of data were collected from 

multiple different sources, the data had to be consolidated into one common file with similar 

timestamps. This was not an easy task, especially considering that over 12 months of data was used 

throughout this report. This data consolidation required more time than initially expected. 

FUTURE WORK 

 An extensive amount of time was put into this project from installing the datalogging 

system, collecting and consolidating data, validating that the model has enough theoretical detail 

and proving its relative accuracy, and using the model to simulate improved design strategies. 

However, there is still a lot of work that can be done to further the understanding of the 

applicability of the Maisotsenko Cycle and the Coolerado system to the built environment. First of 

all, although good agreement was found between simulated and actual performance at one point in 

time, the original intent of this research was to validate the model over a range of actual operating 
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conditions. Due to datalogging system limited capabilities, not enough measurements were taken at 

every point in time to properly characterize the thermal performance of the M50 units. More data 

that includes multiple sensor location in both outgoing airstreams should be collected for a range of 

inlet conditions. Once the model is more thoroughly validated, there would be more confidence in 

its results. 

A formal optimization simulation was not developed for the model. Although the sensitivity 

simulations show the effects that each individual parameter has the performance of the HMX, 

changes in more than one parameter require many more simulations to be performed. To find the 

optimum values for each parameter requires an optimization algorithm. Because the model is 

completely based in MatLAB, developing an optimization engine should be possible and within the 

scope of further graduate student work. One challenge to this will be determining how to interface 

with the complex and robust GUI that is already in use. There is a “Run DOE” option on the model 

that prompts the user to select which design parameters to vary and then how much to vary them. 

Perhaps this feature could be used as a starting point. However, the results from this parametric 

simulation were not consistent or easy to decipher, so it may take some code integration work. 

Once more completely validated, the model could be used to simulate annual performance, 

based on a given set of inlet conditions (from a weather file like TMY3) and operating times 

(occupancy schedule). Ultimately, this research may prove useful in populating equipment libraries 

of whole-building energy simulation tools with theoretically accurate and experimentally validated 

components, namely the Coolerado air conditioner. As sustainable and integrated building design 

becomes more prevalent, tools to validate low-energy systems like Coolerados are necessary for 

proof of concept.   
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APPENDIX 

 

Figure 52. Discrete portion of cooling coil; heat transfer schematic from Threlkeld [10]. 
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Table 18. MTC Spreadsheet. 

 

D
e

sc
ri

p
ti

o
n

D
at

e
/T

im
e

W
at

e
r

cu
4d

at
a_

co
n

d
e

n
se

d
 #

(6
) 

TO
TA

L 

C
FM

(1
/8

 o
r 

1/
4 

o
f 

A
H

U
 

M
y 

d
at

a:
 

p
o

w
e

r 

re
gr

e
ss

io
n

Er
ro

r 

±C
FM

(7
) 

T 

(°
F)

 T
 (

°C
)

Er
ro

r 

±T
(°

C
)

(8
) 

R
H

Er
ro

r 

±R
H

H
u

m
. 

R
at

io

(9
) 

T 

(°
F)

T 
(°

C
)

Er
ro

r 

±T
(°

C

)
(1

0)
 R

H

Er
ro

r 

±R
H

H
u

m
. 

R
at

io

(1
1)

 C
U

4 

kW

H
yd

ra
u

li
c 

P
o

w
e

r 
 L

o
w

e
r 

B
o

u
n

d

H
yd

ra
u

li
c 

P
o

w
e

r 
kW

H
yd

ra
u

li
c 

P
o

w
e

r 
 U

p
p

e
r 

B
o

u
n

d

(1
2)

 

L3
M

 k
W

L3
M

/

C
U

4

C
o

o
li

n
g 

P
o

w
e

r 

kW
C

O
P

C
O

P
/f

an
 

e
ff

ic
.

(1
3)

 

Q
T/

6m
in

(1
4)

 T
 

(°
F)

Er
ro

r 

±T
(°

C
)

T 
(°

F)
 

af
te

r 

Fa
n

R
H

H
u

m
. 

R
at

io

(1
5)

 T
 

(°
F)

Er
ro

r 

±T
(°

C
)

(1
6)

 R
H

Er
ro

r 

±R
H

1
a

H
o

tt
e

st
 IN

P
U

T 
T

19
73

6
8/

18
/2

01
1 

15
:5

1
20

92
5

26
15

.6
24

31
.3

13
5.

4
64

.4
60

18
.0

33
0.

21
0

35
.1

1%
2.

10
%

0.
00

55
66

.3
80

19
.1

00
0.

20
5

93
.8

0%
3.

05
%

0.
01

59
0.

5
0.

15
9

0.
18

5
0.

21
4

4.
80

9.
60

7.
31

14
.6

2
39

.4
8

N
A

89
.9

77
3

0.
21

90
.1

4
11

.3
4%

0.
00

41
96

.1
13

0.
21

9.
38

%
2.

50
%

1
b

8 
h

o
u

r 
st

e
ad

y 
st

at
e

 p
o

w
e

r
19

58
0:

19
82

08:
0
0
-2

0
:0

0
20

19
7

25
24

.6
24

71
.3

13
6.

6
63

.4
70

17
.4

83
0.

21
3

40
.3

7%
2.

13
%

0.
00

61
64

.6
40

18
.1

33
0.

20
9

94
.4

4%
3.

09
%

0.
01

50
0.

54
02

0.
16

6
0.

19
3

0.
22

3
4.

81
8.

91
8.

07
14

.9
3

41
.7

2
N

A
86

.1
00

0
0.

21
86

.2
8

17
.7

2%
0.

00
57

91
.0

20
0.

21
15

.1
7%

2.
50

%

1
c

 ±
 3

0 
m

in
19

72
6:

19
74

6
20

25
8

25
32

.3
24

61
.9

13
6.

4
64

.3
90

17
.9

94
0.

21
0

34
.3

2%
2.

10
%

0.
00

53
66

.2
70

19
.0

39
0.

20
5

94
.0

0%
3.

05
%

0.
01

59
0.

52
86

0.
16

5
0.

19
1

0.
22

1
4.

80
9.

07
7.

61
14

.3
9

39
.7

6
N

A
89

.6
50

0
0.

21
89

.8
2

11
.5

6%
0.

00
41

95
.6

70
0.

21
9.

59
%

2.
50

%

M
in

im
u

m
 IN

P
U

T 
R

H
/S

A
_R

H
46

44
2

11
/1

1/
20

11
 1

3:
00

84
18

21
04

.5
19

31
.7

12
0.

5
51

.8
30

11
.0

17
0.

24
5

30
.1

4%
2.

45
%

0.
00

30
58

.7
60

14
.8

67
0.

22
6

91
.8

4%
3.

26
%

0.
01

18
0.

3
0.

08
6

0.
10

1
0.

11
8

1.
70

5.
67

2.
97

9.
89

29
.3

6
12

.0
00

68
.7

84
7

0.
21

68
.9

0
7.

35
%

0.
00

13
69

.8
14

0.
21

7.
10

%
2.

50
%

2 
h

o
u

r 
st

e
ad

y 
st

at
e

 p
o

w
e

r
46

43
4:

46
45

612
:1

2-
14

:2
4

81
90

20
47

.5
17

93
.6

11
6.

3
52

.1
30

11
.1

83
0.

24
4

30
.3

8%
2.

44
%

0.
00

30
59

.3
40

15
.1

89
0.

22
4

93
.1

9%
3.

24
%

0.
01

23
0.

26
52

0.
07

0
0.

08
3

0.
09

8
1.

41
5.

31
2.

98
11

.2
2

35
.6

9
18

.0
90

69
.1

80
0

0.
21

69
.2

9
8.

38
%

0.
00

15
70

.2
80

0.
21

8.
07

%
2.

50
%

2
 ±

 3
0 

m
in

46
43

7:
46

44
7

81
72

20
43

.0
17

48
.1

11
4.

9
51

.8
82

11
.0

46
0.

24
5

29
.6

4%
2.

45
%

0.
00

29
59

.0
68

15
.0

38
0.

22
5

93
.1

7%
3.

25
%

0.
01

21
0.

25
45

0.
06

5
0.

07
8

0.
09

2
1.

41
5.

54
2.

99
11

.7
5

38
.3

2
18

.5
46

68
.9

14
9

0.
21

69
.0

3
8.

30
%

0.
00

15
69

.9
37

0.
21

8.
01

%
2.

50
%

W
ar

m
 IN

P
U

T 
T,

 h
ig

h
 R

H
12

25
9

8/
3/

20
11

 3
:0

0
19

96
0

24
95

.0
24

93
.4

13
7.

3
65

.4
50

18
.5

83
0.

20
7

79
.2

0%
2.

07
%

0.
01

29
65

.6
30

18
.6

83
0.

20
7

96
.2

0%
3.

07
%

0.
01

59
0.

6
0.

17
0

0.
19

8
0.

22
8

4.
90

8.
17

1.
63

2.
72

8.
26

N
A

72
.3

79
7

0.
21

72
.5

7
59

.4
1%

0.
01

23
70

.0
57

0.
21

64
.2

8%
2.

50
%

3
 ±

 3
0 

m
in

 (
12

25
1:

12
25

5 
D

R
Y)

12
24

9:
12

26
9

17
05

5
21

31
.9

22
67

.3
13

0.
5

67
.1

22
19

.5
12

0.
20

2
75

.7
9%

2.
02

%
0.

01
31

67
.1

88
19

.5
49

0.
20

2
94

.7
8%

3.
02

%
0.

01
65

0.
40

95
0.

13
2

0.
15

4
0.

17
8

3.
64

8.
88

1.
21

2.
97

7.
89

N
A

71
.8

73
6

0.
21

72
.0

2
62

.8
8%

0.
01

28
70

.9
65

0.
21

64
.8

5%
2.

50
%

29
58

3
9/

8/
20

11
 8

:1
2

95
43

23
85

.8
24

31
.3

13
5.

4
59

.5
18

15
.2

88
0.

22
4

69
.7

7%
2.

24
%

0.
00

92
59

.9
71

15
.5

39
0.

22
2

95
.6

2%
3.

22
%

0.
01

29
0.

5
0.

15
9

0.
18

5
0.

21
4

2.
70

5.
40

2.
89

5.
78

15
.6

2
N

A
66

.2
43

0
0.

21
66

.4
0

55
.8

6%
0.

00
93

63
.8

48
0.

21
60

.7
2%

2.
50

%

4
 ±

 3
0 

m
in

 (
29

58
9 

D
R

Y)
29

57
3:

29
59

3
12

58
5

31
46

.3
24

86
.7

13
7.

1
59

.3
38

15
.1

88
0.

22
4

71
.0

7%
2.

24
%

0.
00

93
59

.5
89

15
.3

27
0.

22
3

95
.6

6%
3.

23
%

0.
01

27
0.

56
67

0.
16

9
0.

19
7

0.
22

7
2.

70
4.

77
3.

81
6.

72
19

.3
8

N
A

65
.9

25
0

0.
21

66
.1

0
60

.1
4%

0.
00

99
65

.9
91

0.
21

60
.0

1%
2.

50
%

34
11

9
9/

21
/2

01
1 

4:
12

10
29

4
25

73
.5

24
31

.3
13

5.
4

52
.8

09
11

.5
61

0.
24

2
49

.1
9%

2.
42

%
0.

00
50

53
.5

03
11

.9
46

0.
24

0
94

.8
6%

3.
40

%
0.

01
01

0.
5

0.
15

9
0.

18
5

0.
21

4
2.

70
5.

40
3.

83
7.

66
20

.7
0

N
A

63
.0

47
7

0.
21

63
.2

1
33

.1
6%

0.
00

49
61

.9
34

0.
21

34
.4

9%
2.

50
%

5
 ±

 3
0 

m
in

34
10

9:
34

12
9

10
04

0
25

10
.0

22
07

.1
12

8.
7

53
.8

68
12

.1
49

0.
23

9
47

.2
9%

2.
39

%
0.

00
50

55
.2

59
12

.9
22

0.
23

5
95

.1
2%

3.
35

%
0.

01
08

0.
38

57
0.

12
2

0.
14

3
0.

16
6

2.
03

5.
27

3.
08

7.
99

21
.5

1
N

A
63

.0
01

3
0.

21
63

.1
4

33
.2

1%
0.

00
49

62
.1

36
0.

21
34

.2
4%

2.
50

%

H
o

tt
e

st
 C

U
4_

IN
_T

11
06

1
7/

31
/2

01
1 

14
:0

6
20

34
7

25
43

.4
24

93
.4

13
7.

3
67

.7
20

19
.8

44
0.

20
1

53
.4

6%
2.

01
%

0.
00

94
68

.4
10

20
.2

28
0.

20
1

95
.2

0%
3.

01
%

0.
01

73
0.

6
0.

17
0

0.
19

8
0.

22
8

4.
80

8.
00

9.
19

15
.3

2
46

.4
3

N
A

91
.5

27
0

0.
21

91
.7

3
24

.4
8%

0.
00

94
95

.9
36

0.
21

21
.3

6%
2.

50
%

6
 ±

 3
0 

m
in

11
05

1:
11

07
1

20
26

0
25

32
.5

24
69

.8
13

6.
6

67
.7

23
19

.8
46

0.
20

1
52

.8
0%

2.
01

%
0.

00
93

68
.3

59
20

.1
99

0.
20

1
94

.7
0%

3.
01

%
0.

01
72

0.
53

81
0.

16
6

0.
19

3
0.

22
3

4.
76

8.
84

8.
59

15
.9

6
44

.4
9

N
A

90
.7

39
9

0.
21

90
.9

2
24

.4
3%

0.
00

91
94

.9
32

0.
21

21
.4

5%
2.

50
%

M
e

d
iu

m
 C

U
4_

IN
_T

 &
 lo

w
 R

H
42

14
7

10
/2

4/
20

11
 1

6:
18

87
64

10
95

.5
14

94
.2

10
7.

3
57

.1
18

13
.9

54
0.

23
0

39
.2

6%
2.

30
%

0.
00

47
65

.0
44

18
.3

58
0.

20
8

89
.9

3%
3.

08
%

0.
01

45
0.

2
0.

04
3

0.
05

2
0.

06
2

1.
10

5.
50

3.
15

15
.7

5
60

.4
6

20
.0

00
78

.1
94

0
0.

21
78

.3
0

12
.0

4%
0.

00
30

79
.9

19
0.

21
11

.3
8%

2.
50

%

7
 ±

 3
0 

m
in

42
13

7:
42

15
7

11
16

5
13

95
.6

16
75

.6
11

2.
8

57
.2

20
14

.0
11

0.
23

0
37

.8
5%

2.
30

%
0.

00
46

65
.2

03
18

.4
46

0.
20

8
92

.2
7%

3.
08

%
0.

01
50

0.
23

81
0.

05
8

0.
07

0
0.

08
3

2.
27

9.
52

3.
39

14
.2

5
48

.5
3

22
.0

95
77

.6
68

3
0.

21
77

.7
8

11
.7

1%
0.

00
28

79
.7

54
0.

21
10

.9
3%

2.
50

%

37
92

7
10

/7
/2

01
1 

2:
12

89
66

22
41

.5
14

94
.2

10
7.

3
52

.5
45

11
.4

14
0.

24
3

41
.3

8%
2.

43
%

0.
00

42
58

.7
51

14
.8

62
0.

22
6

93
.7

2%
3.

26
%

0.
01

21
0.

2
0.

04
3

0.
05

2
0.

06
2

0.
90

4.
50

2.
81

14
.0

5
53

.9
3

48
.0

00
65

.0
73

3
0.

21
65

.1
7

25
.0

6%
0.

00
40

64
.4

46
0.

21
25

.6
2%

2.
50

%

8
 ±

 3
0 

m
in

37
91

7:
37

93
7

91
54

22
88

.5
12

41
.9

99
.8

52
.5

59
11

.4
22

0.
24

3
42

.1
6%

2.
43

%
0.

00
43

58
.9

56
14

.9
75

0.
22

5
92

.7
7%

3.
25

%
0.

01
20

0.
15

24
0.

02
6

0.
03

3
0.

04
0

0.
80

5.
22

2.
13

14
.0

0
65

.5
0

14
.4

76
64

.6
44

2
0.

21
64

.7
3

25
.1

7%
0.

00
39

63
.9

29
0.

21
25

.8
0%

2.
50

%

43
26

7/
17

/2
01

1 
14

:2
1

20
18

4
25

23
.0

24
31

.3
13

5.
4

70
.2

00
21

.2
22

0.
20

6
68

.5
3%

2.
06

%
0.

01
32

70
.5

00
21

.3
89

0.
20

7
95

.8
0%

3.
07

%
0.

01
88

0.
5

0.
15

9
0.

18
5

0.
21

4
4.

70
9.

40
6.

62
13

.2
5

35
.7

7
N

A
88

.2
44

0
0.

21
88

.4
1

37
.5

2%
0.

01
30

92
.1

82
0.

21
33

.1
7%

2.
50

%

9
 ±

 3
0 

m
in

43
16

:4
33

6
20

22
4

25
28

.0
24

73
.3

13
6.

7
70

.0
34

21
.1

30
0.

20
6

67
.4

9%
2.

06
%

0.
01

29
70

.4
00

21
.3

33
0.

20
7

95
.5

8%
3.

07
%

0.
01

87
0.

54
29

0.
16

7
0.

19
4

0.
22

4
4.

76
8.

76
6.

36
11

.7
1

32
.8

2
N

A
87

.5
09

2
0.

21
87

.6
9

37
.3

2%
0.

01
27

91
.1

06
0.

21
33

.3
3%

2.
50

%

63
51

7/
21

/2
01

1 
18

:3
6

19
81

0
24

76
.3

24
31

.3
13

5.
4

66
.2

00
19

.0
00

0.
20

5
63

.7
9%

2.
05

%
0.

01
07

66
.7

50
19

.3
06

0.
20

3
95

.7
0%

3.
03

%
0.

01
64

0.
5

0.
15

9
0.

18
5

0.
21

4
4.

80
9.

60
5.

47
10

.9
4

29
.5

4
N

A
82

.1
74

3
0.

21
82

.3
4

36
.0

1%
0.

01
03

83
.8

84
0.

21
34

.0
8%

2.
50

%

1
0

 ±
 3

0 
m

in
63

41
:6

36
1

19
86

8
24

83
.5

24
65

.9
13

6.
5

66
.3

59
19

.0
88

0.
20

5
63

.7
9%

2.
05

%
0.

01
07

66
.8

82
19

.3
79

0.
20

3
95

.6
3%

3.
03

%
0.

01
65

0.
53

33
0.

16
5

0.
19

2
0.

22
2

4.
18

7.
85

5.
50

10
.3

2
28

.6
3

N
A

82
.1

77
6

0.
21

82
.3

5
36

.2
5%

0.
01

03
83

.8
36

0.
21

34
.3

6%
2.

50
%

64
71

7/
22

/2
01

1 
0:

36
14

94
0

18
67

.5
14

94
.2

10
7.

3
61

.3
90

16
.3

28
0.

21
8

58
.5

9%
2.

18
%

0.
00

82
62

.9
30

17
.1

83
0.

21
4

94
.7

0%
3.

14
%

0.
01

42
0.

2
0.

04
3

0.
05

2
0.

06
2

1.
70

8.
50

3.
54

17
.7

0
67

.9
4

N
A

76
.0

28
0

0.
21

76
.1

3
35

.6
6%

0.
00

83
76

.1
29

0.
21

35
.5

4%
2.

50
%

1
1

 ±
 3

0 
m

in
64

61
:6

48
1

15
53

9
19

42
.4

14
94

.2
10

7.
3

60
.9

00
16

.0
55

0.
22

0
56

.4
2%

2.
20

%
0.

00
78

62
.5

04
16

.9
47

0.
21

5
95

.0
8%

3.
15

%
0.

01
40

0.
2

0.
04

3
0.

05
2

0.
06

2
1.

77
8.

86
3.

59
17

.9
3

68
.8

5
N

A
76

.8
30

9
0.

21
76

.9
3

31
.8

7%
0.

00
76

77
.2

54
0.

21
31

.4
3%

2.
50

%

14
19

7/
11

/2
01

1 
12

:0
0

20
02

0
25

02
.5

24
31

.3
13

5.
4

67
.8

40
19

.9
11

0.
20

0
70

.4
0%

2.
00

%
0.

01
25

68
.3

10
20

.1
72

0.
20

1
95

.8
0%

3.
01

%
0.

01
74

0.
5

0.
15

9
0.

18
5

0.
21

4
4.

80
9.

60
4.

77
9.

53
25

.7
5

N
A

81
.7

01
3

0.
21

81
.8

7
43

.1
5%

0.
01

22
83

.1
98

0.
21

41
.1

1%
2.

50
%

1
2

 ±
 3

0 
m

in
14

09
:1

42
9

19
95

2
24

94
.0

24
76

.5
13

6.
8

67
.7

56
19

.8
64

0.
20

1
69

.5
2%

2.
01

%
0.

01
23

68
.1

64
20

.0
91

0.
20

0
95

.8
1%

3.
00

%
0.

01
73

0.
54

76
0.

16
7

0.
19

4
0.

22
4

4.
19

7.
65

5.
00

9.
12

25
.7

0
N

A
81

.8
49

2
0.

21
82

.0
3

42
.3

6%
0.

01
20

83
.4

17
0.

21
40

.2
7%

2.
50

%

24
87

9
8/

29
/2

01
1 

9:
00

19
93

3
24

91
.6

24
31

.3
13

5.
4

66
.4

32
19

.1
29

0.
20

4
75

.1
6%

2.
04

%
0.

01
27

66
.5

59
19

.1
99

0.
20

4
95

.3
1%

3.
04

%
0.

01
63

0.
5

0.
15

9
0.

18
5

0.
21

4
5.

00
10

.0
0

3.
14

6.
28

16
.9

7
N

A
74

.8
41

7
0.

21
75

.0
1

56
.1

2%
0.

01
26

74
.9

72
0.

21
55

.8
8%

2.
50

%

1
3

 ±
 3

0 
m

in
 in

te
rm

it
te

n
t 

D
R

Y
24

86
9:

24
88

9
19

75
4

24
69

.3
24

82
.1

13
7.

0
66

.5
97

19
.2

21
0.

20
4

74
.9

6%
2.

04
%

0.
01

27
66

.6
28

19
.2

38
0.

20
4

95
.3

9%
3.

04
%

0.
01

63
0.

55
71

0.
16

8
0.

19
6

0.
22

6
4.

92
8.

83
3.

23
5.

81
16

.5
4

N
A

74
.7

70
9

0.
21

74
.9

5
56

.7
3%

0.
01

27
74

.8
10

0.
21

56
.6

5%
2.

50
%

25
29

3
8/

30
/2

01
1 

5:
42

15
76

3
19

70
.4

93
1.

5
90

.4
57

.4
51

14
.1

39
0.

22
9

51
.7

0%
2.

29
%

0.
00

63
59

.5
12

15
.2

84
0.

22
4

93
.0

0%
3.

24
%

0.
01

23
0.

1
0.

01
2

0.
01

6
0.

02
0

1.
20

12
.0

0
2.

19
21

.8
8

13
7.

95
N

A
72

.0
64

0
0.

21
72

.1
4

31
.0

5%
0.

00
63

71
.9

49
0.

21
31

.1
7%

2.
50

%

1
4

 ±
 3

0 
m

in
25

28
3:

25
30

3
15

75
5

19
69

.4
14

94
.2

10
7.

3
57

.9
78

14
.4

32
0.

22
8

52
.9

8%
2.

28
%

0.
00

66
59

.9
80

15
.5

44
0.

22
2

92
.7

0%
3.

22
%

0.
01

25
0.

2
0.

04
3

0.
05

2
0.

06
2

1.
74

8.
71

3.
20

16
.0

0
61

.4
2

N
A

72
.2

47
3

0.
21

72
.3

5
31

.2
1%

0.
00

64
72

.2
40

0.
21

31
.2

2%
2.

50
%

30
21

8
9/

9/
20

11
 1

5:
57

13
97

1
17

46
.4

14
94

.2
10

7.
3

58
.7

00
14

.8
33

0.
22

6
44

.9
0%

2.
26

%
0.

00
57

61
.6

98
16

.4
99

0.
21

8
93

.6
5%

3.
18

%
0.

01
34

0.
2

0.
04

3
0.

05
2

0.
06

2
1.

30
6.

50
4.

64
23

.1
9

89
.0

1
N

A
76

.8
98

3
0.

21
77

.0
0

25
.1

9%
0.

00
60

77
.5

67
0.

21
24

.6
4%

2.
50

%

1
5

 ±
 3

0 
m

in
30

20
8:

30
22

8
14

47
6

18
09

.5
15

41
.1

10
8.

7
59

.0
94

15
.0

52
0.

22
5

46
.5

4%
2.

25
%

0.
00

60
61

.2
50

16
.2

50
0.

21
9

92
.5

5%
3.

19
%

0.
01

30
0.

20
95

0.
04

7
0.

05
6

0.
06

7
1.

93
9.

23
4.

26
20

.3
4

75
.5

6
N

A
76

.5
99

3
0.

21
76

.7
0

25
.3

3%
0.

00
60

77
.5

33
0.

21
24

.5
6%

2.
50

%

35
53

0
9/

27
/2

01
1 

2:
18

16
19

0
40

47
.5

22
44

.1
12

9.
8

61
.1

93
16

.2
18

0.
21

9
32

.1
9%

2.
19

%
0.

00
45

59
.0

10
15

.0
06

0.
22

5
85

.0
3%

3.
25

%
0.

01
10

0.
4

0.
12

8
0.

15
0

0.
17

4
1.

90
4.

75
3.

11
7.

77
20

.7
5

N
A

69
.9

00
0

0.
21

70
.0

4
23

.6
4%

0.
00

44
69

.9
57

0.
21

23
.5

9%
2.

50
%

16
 ±

 3
0 

m
in

 A
LL

 D
R

Y
35

52
0:

35
54

0
15

04
2

37
60

.5
22

44
.1

12
9.

8
61

.0
68

16
.1

49
0.

21
9

32
.5

5%
2.

19
%

0.
00

45
58

.9
65

14
.9

81
0.

22
5

83
.7

1%
3.

25
%

0.
01

08
0.

4
0.

12
8

0.
15

0
0.

17
4

1.
77

4.
43

3.
09

7.
72

20
.6

1
N

A
69

.6
69

2
0.

21
69

.8
1

24
.0

4%
0.

00
45

69
.7

20
0.

21
24

.0
0%

2.
50

%

36
60

2
10

/1
/2

01
1 

12
:3

6
15

98
5

19
98

.1
24

31
.3

13
5.

4
60

.6
42

15
.9

12
0.

22
0

35
.5

3%
2.

20
%

0.
00

48
62

.6
43

17
.0

24
0.

21
5

98
.0

8%
3.

15
%

0.
01

46
0.

5
0.

15
9

0.
18

5
0.

21
4

4.
30

8.
60

8.
51

17
.0

3
45

.9
8

32
.0

00
82

.2
18

7
0.

21
82

.3
8

17
.5

9%
0.

00
50

85
.5

32
0.

21
15

.8
1%

2.
50

%

1
7

 ±
 3

0 
m

in
36

59
2:

36
61

2
16

00
1

20
00

.1
23

90
.6

13
4.

2
60

.5
00

11
.9

33
0.

24
0

38
.1

4%
2.

40
%

0.
00

52
62

.2
73

16
.8

19
0.

21
6

98
.1

0%
3.

16
%

0.
01

44
0.

47
14

0.
15

2
0.

17
7

0.
20

5
3.

96
8.

40
8.

04
17

.0
6

45
.4

3
27

.8
10

82
.2

30
2

0.
21

82
.3

9
17

.9
4%

0.
00

51
85

.3
21

0.
21

16
.2

4%
2.

50
%

36
63

8
10

/1
/2

01
1 

16
:1

2
16

01
1

20
01

.4
22

44
.1

12
9.

8
61

.2
33

16
.2

41
0.

21
9

47
.2

0%
2.

19
%

0.
00

66
62

.7
01

17
.0

56
0.

21
5

96
.6

8%
3.

15
%

0.
01

44
0.

4
0.

12
8

0.
15

0
0.

17
4

3.
60

9.
00

6.
59

16
.4

9
44

.0
3

24
.0

00
79

.8
17

0
0.

21
79

.9
6

25
.0

4%
0.

00
66

81
.5

98
0.

21
23

.6
3%

2.
50

%

1
8

 ±
 3

0 
m

in
36

62
8:

36
64

8
15

33
5

19
16

.9
22

32
.0

12
9.

5
60

.7
46

12
.0

70
0.

24
0

46
.2

1%
2.

40
%

0.
00

63
62

.6
44

17
.0

25
0.

21
5

96
.8

3%
3.

15
%

0.
01

44
0.

39
52

0.
12

6
0.

14
8

0.
17

1
3.

64
9.

21
6.

14
15

.5
4

41
.5

9
24

.9
52

79
.6

86
7

0.
21

79
.8

3
22

.9
0%

0.
00

60
81

.6
52

0.
21

21
.4

8%
2.

50
%

36
68

9
10

/1
/2

01
1 

21
:1

8
12

72
3

15
90

.4
14

94
.2

10
7.

3
60

.7
92

15
.9

96
0.

22
0

51
.1

5%
2.

20
%

0.
00

70
65

.4
48

18
.5

82
0.

20
7

84
.6

7%
2.

07
%

0.
01

38
0.

2
0.

04
3

0.
05

2
0.

06
2

2.
90

14
.5

0
1.

93
9.

65
37

.0
6

15
.0

00
73

.5
73

0
0.

21
73

.6
8

28
.0

2%
0.

00
60

73
.1

55
0.

21
28

.4
1%

2.
50

%

1
9

 ±
 3

0 
m

in
36

67
9:

36
69

9
12

15
1

15
18

.9
14

21
.4

10
5.

1
60

.6
51

12
.0

17
0.

24
0

49
.4

1%
2.

40
%

0.
00

67
65

.2
71

18
.4

84
0.

20
8

89
.9

8%
2.

08
%

0.
01

46
0.

18
57

0.
03

8
0.

04
6

0.
05

5
2.

66
14

.3
1

1.
88

10
.1

4
41

.0
7

17
.9

05
73

.7
31

8
0.

21
73

.8
3

26
.5

0%
0.

00
57

73
.3

75
0.

21
26

.8
2%

2.
50

%

2
0

1
0
1
,2

0
1
2
,8

0
,1

3
3
0
,2

2
.6

3
5
,7

7
8
1
.3

,5
2
.7

7
2
,4

7
.3

0
4
,5

8
.5

5
6
,9

2
.5

5
1
,.5

,.4
,3

9
,1

.7
,.1

,4
1
4
.9

6
3/

20
/2

01
2 

13
:3

0
77

81
19

45
.3

22
44

.1
12

9.
8

52
.7

72
11

.5
40

0.
24

2
47

.3
0%

2.
42

%
0.

00
48

58
.5

56
14

.7
53

0.
22

6
92

.5
5%

3.
26

%
0.

01
18

0.
4

0.
12

8
0.

15
0

0.
17

4
0.

5
1.

25
0.

46
1.

16
3.

1
63

.1
76

0
0.

21
63

.3
1

18
.9

5%
0.

00
28

62
.4

90
0.

21
19

.4
1%

2.
50

%

 ±
 3

0 
m

in
82

94
20

73
.5

14
94

.2
10

7.
3

52
.1

83
8.

21
3

0.
25

9
44

.9
7%

2.
59

%
0.

00
45

57
.5

65
14

.2
03

0.
22

9
92

.6
5%

3.
29

%
0.

01
14

0.
2

0.
04

3
0.

05
2

0.
06

2
0.

70
9

3.
55

1.
78

8.
88

34
.1

0
64

.4
70

0
0.

21
64

.5
7

21
.8

4%
0.

00
34

63
.9

20
0.

21
22

.2
6%

2.
50

%

2
1

1
0
1
,2

0
1
2
,8

1
,1

3
3
0
,2

0
.1

8
4
,8

6
4
4
.8

,5
2
.5

8
6
,3

8
.9

7
7
,6

0
.1

2
2
,7

4
.0

5
3
,.7

,.3
,3

9
.4

,1
.7

,0
,4

1
4
.8

1
3/

21
/2

01
2 

13
:3

0
86

44
21

61
.0

19
31

.7
12

0.
5

52
.5

86
11

.4
37

0.
24

3
38

.9
8%

2.
43

%
0.

00
40

60
.1

22
15

.6
23

0.
22

2
74

.0
5%

2.
22

%
0.

01
00

0.
3

0.
08

6
0.

10
1

0.
11

8
0.

7
2.

33
3.

32
11

.0
7

32
.8

4
67

.2
42

0
0.

21
67

.3
6

17
.8

8%
0.

00
31

67
.1

99
0.

21
17

.9
1%

2.
50

%

 ±
 3

0 
m

in
85

51
21

37
.8

19
31

.7
12

0.
5

52
.6

11
8.

45
1

0.
25

8
39

.8
9%

2.
58

%
0.

00
41

59
.5

48
15

.3
04

0.
22

3
75

.4
9%

2.
23

%
0.

01
00

0.
3

0.
08

6
0.

10
1

0.
11

8
0.

71
8

2.
39

2.
43

8.
11

24
.0

7
67

.1
10

0
0.

21
67

.2
3

15
.0

5%
0.

00
26

61
.1

59
0.

21
18

.5
4%

2.
50

%

2
2

1
0
1
,2

0
1
2
,8

3
,1

2
0
6
,1

3
.4

4
9
,1

3
4
2
4
,5

1
.5

3
8
,2

7
.1

3
7
,5

5
.0

6
9
,9

3
.4

1
3
,2

.3
,.5

,4
1
,3

.3
,0

,4
1
4
.8

9
N

O
 G

R
A

D
IE

N
T

!
3/

23
/2

01
2 

12
:0

6
12

13
9

30
34

.8
24

31
.3

13
5.

4
51

.5
38

10
.8

54
0.

24
6

25
.9

7%
2.

46
%

0.
00

25
61

.0
86

16
.1

59
0.

21
9

93
.4

8%
3.

19
%

0.
01

31
0.

5
0.

15
9

0.
18

5
0.

21
4

1.
8

3.
60

8.
60

17
.2

0
46

.4
6

73
.0

00
0

0.
21

73
.1

6
12

.8
3%

0.
00

27
75

.0
00

0.
21

12
.0

0%
2.

50
%

W
o

rk
in

g 
A

ir

A
ct

u
al

 D
at

a 
fr

o
m

 C
am

p
b

el
l:

A
H

U
 S

u
p

p
ly

 A
ir

A
ir

fl
o

w
P

o
w

e
r

C
U

4 
In

p
u

t 
A

ir
P

ro
d

u
ct

 A
ir

C
O

P



-106- 
 

 
  

D
e

sc
ri

p
ti

o
n

D
at

e
/T

im
e

W
at

e
r

cu
4d

at
a_

co
n

d
e

n
se

d
 #

(6
) 

TO
TA

L 

C
FM

(1
/8

 o
r 

1/
4 

o
f 

A
H

U
 

M
y 

d
at

a:
 

p
o

w
e

r 

re
gr

e
ss

io
n

Er
ro

r 

±C
FM

(7
) 

T 

(°
F)

 T
 (

°C
)

Er
ro

r 

±T
(°

C
)

(8
) 

R
H

Er
ro

r 

±R
H

H
u

m
. 

R
at

io

(9
) 

T 

(°
F)

T 
(°

C
)

Er
ro

r 

±T
(°

C

)
(1

0)
 R

H

Er
ro

r 

±R
H

H
u

m
. 

R
at

io

(1
1)

 C
U

4 

kW

H
yd

ra
u

li
c 

P
o

w
e

r 
 L

o
w

e
r 

B
o

u
n

d

H
yd

ra
u

li
c 

P
o

w
e

r 
kW

H
yd

ra
u

li
c 

P
o

w
e

r 
 U

p
p

e
r 

B
o

u
n

d

(1
2)

 

L3
M

 k
W

L3
M

/

C
U

4

C
o

o
li

n
g 

P
o

w
e

r 

kW
C

O
P

C
O

P
/f

an
 

e
ff

ic
.

(1
3)

 

Q
T/

6m
in

(1
4)

 T
 

(°
F)

Er
ro

r 

±T
(°

C
)

T 
(°

F)
 

af
te

r 

Fa
n

R
H

H
u

m
. 

R
at

io

(1
5)

 T
 

(°
F)

Er
ro

r 

±T
(°

C
)

(1
6)

 R
H

Er
ro

r 

±R
H

1
a

H
o

tt
e

st
 IN

P
U

T 
T

19
73

6
8/

18
/2

01
1 

15
:5

1
20

92
5

26
15

.6
24

31
.3

13
5.

4
64

.4
60

18
.0

33
0.

21
0

35
.1

1%
2.

10
%

0.
00

55
66

.3
80

19
.1

00
0.

20
5

93
.8

0%
3.

05
%

0.
01

59
0.

5
0.

15
9

0.
18

5
0.

21
4

4.
80

9.
60

7.
31

14
.6

2
39

.4
8

N
A

89
.9

77
3

0.
21

90
.1

4
11

.3
4%

0.
00

41
96

.1
13

0.
21

9.
38

%
2.

50
%

1
b

8 
h

o
u

r 
st

e
ad

y 
st

at
e

 p
o

w
e

r
19

58
0:

19
82

08:
0
0
-2

0
:0

0
20

19
7

25
24

.6
24

71
.3

13
6.

6
63

.4
70

17
.4

83
0.

21
3

40
.3

7%
2.

13
%

0.
00

61
64

.6
40

18
.1

33
0.

20
9

94
.4

4%
3.

09
%

0.
01

50
0.

54
02

0.
16

6
0.

19
3

0.
22

3
4.

81
8.

91
8.

07
14

.9
3

41
.7

2
N

A
86

.1
00

0
0.

21
86

.2
8

17
.7

2%
0.

00
57

91
.0

20
0.

21
15

.1
7%

2.
50

%

1
c

 ±
 3

0 
m

in
19

72
6:

19
74

6
20

25
8

25
32

.3
24

61
.9

13
6.

4
64

.3
90

17
.9

94
0.

21
0

34
.3

2%
2.

10
%

0.
00

53
66

.2
70

19
.0

39
0.

20
5

94
.0

0%
3.

05
%

0.
01

59
0.

52
86

0.
16

5
0.

19
1

0.
22

1
4.

80
9.

07
7.

61
14

.3
9

39
.7

6
N

A
89

.6
50

0
0.

21
89

.8
2

11
.5

6%
0.

00
41

95
.6

70
0.

21
9.

59
%

2.
50

%

M
in

im
u

m
 IN

P
U

T 
R

H
/S

A
_R

H
46

44
2

11
/1

1/
20

11
 1

3:
00

84
18

21
04

.5
19

31
.7

12
0.

5
51

.8
30

11
.0

17
0.

24
5

30
.1

4%
2.

45
%

0.
00

30
58

.7
60

14
.8

67
0.

22
6

91
.8

4%
3.

26
%

0.
01

18
0.

3
0.

08
6

0.
10

1
0.

11
8

1.
70

5.
67

2.
97

9.
89

29
.3

6
12

.0
00

68
.7

84
7

0.
21

68
.9

0
7.

35
%

0.
00

13
69

.8
14

0.
21

7.
10

%
2.

50
%

2 
h

o
u

r 
st

e
ad

y 
st

at
e

 p
o

w
e

r
46

43
4:

46
45

612
:1

2-
14

:2
4

81
90

20
47

.5
17

93
.6

11
6.

3
52

.1
30

11
.1

83
0.

24
4

30
.3

8%
2.

44
%

0.
00

30
59

.3
40

15
.1

89
0.

22
4

93
.1

9%
3.

24
%

0.
01

23
0.

26
52

0.
07

0
0.

08
3

0.
09

8
1.

41
5.

31
2.

98
11

.2
2

35
.6

9
18

.0
90

69
.1

80
0

0.
21

69
.2

9
8.

38
%

0.
00

15
70

.2
80

0.
21

8.
07

%
2.

50
%

2
 ±

 3
0 

m
in

46
43

7:
46

44
7

81
72

20
43

.0
17

48
.1

11
4.

9
51

.8
82

11
.0

46
0.

24
5

29
.6

4%
2.

45
%

0.
00

29
59

.0
68

15
.0

38
0.

22
5

93
.1

7%
3.

25
%

0.
01

21
0.

25
45

0.
06

5
0.

07
8

0.
09

2
1.

41
5.

54
2.

99
11

.7
5

38
.3

2
18

.5
46

68
.9

14
9

0.
21

69
.0

3
8.

30
%

0.
00

15
69

.9
37

0.
21

8.
01

%
2.

50
%

W
ar

m
 IN

P
U

T 
T,

 h
ig

h
 R

H
12

25
9

8/
3/

20
11

 3
:0

0
19

96
0

24
95

.0
24

93
.4

13
7.

3
65

.4
50

18
.5

83
0.

20
7

79
.2

0%
2.

07
%

0.
01

29
65

.6
30

18
.6

83
0.

20
7

96
.2

0%
3.

07
%

0.
01

59
0.

6
0.

17
0

0.
19

8
0.

22
8

4.
90

8.
17

1.
63

2.
72

8.
26

N
A

72
.3

79
7

0.
21

72
.5

7
59

.4
1%

0.
01

23
70

.0
57

0.
21

64
.2

8%
2.

50
%

3
 ±

 3
0 

m
in

 (
12

25
1:

12
25

5 
D

R
Y)

12
24

9:
12

26
9

17
05

5
21

31
.9

22
67

.3
13

0.
5

67
.1

22
19

.5
12

0.
20

2
75

.7
9%

2.
02

%
0.

01
31

67
.1

88
19

.5
49

0.
20

2
94

.7
8%

3.
02

%
0.

01
65

0.
40

95
0.

13
2

0.
15

4
0.

17
8

3.
64

8.
88

1.
21

2.
97

7.
89

N
A

71
.8

73
6

0.
21

72
.0

2
62

.8
8%

0.
01

28
70

.9
65

0.
21

64
.8

5%
2.

50
%

29
58

3
9/

8/
20

11
 8

:1
2

95
43

23
85

.8
24

31
.3

13
5.

4
59

.5
18

15
.2

88
0.

22
4

69
.7

7%
2.

24
%

0.
00

92
59

.9
71

15
.5

39
0.

22
2

95
.6

2%
3.

22
%

0.
01

29
0.

5
0.

15
9

0.
18

5
0.

21
4

2.
70

5.
40

2.
89

5.
78

15
.6

2
N

A
66

.2
43

0
0.

21
66

.4
0

55
.8

6%
0.

00
93

63
.8

48
0.

21
60

.7
2%

2.
50

%

4
 ±

 3
0 

m
in

 (
29

58
9 

D
R

Y)
29

57
3:

29
59

3
12

58
5

31
46

.3
24

86
.7

13
7.

1
59

.3
38

15
.1

88
0.

22
4

71
.0

7%
2.

24
%

0.
00

93
59

.5
89

15
.3

27
0.

22
3

95
.6

6%
3.

23
%

0.
01

27
0.

56
67

0.
16

9
0.

19
7

0.
22

7
2.

70
4.

77
3.

81
6.

72
19

.3
8

N
A

65
.9

25
0

0.
21

66
.1

0
60

.1
4%

0.
00

99
65

.9
91

0.
21

60
.0

1%
2.

50
%

34
11

9
9/

21
/2

01
1 

4:
12

10
29

4
25

73
.5

24
31

.3
13

5.
4

52
.8

09
11

.5
61

0.
24

2
49

.1
9%

2.
42

%
0.

00
50

53
.5

03
11

.9
46

0.
24

0
94

.8
6%

3.
40

%
0.

01
01

0.
5

0.
15

9
0.

18
5

0.
21

4
2.

70
5.

40
3.

83
7.

66
20

.7
0

N
A

63
.0

47
7

0.
21

63
.2

1
33

.1
6%

0.
00

49
61

.9
34

0.
21

34
.4

9%
2.

50
%

5
 ±

 3
0 

m
in

34
10

9:
34

12
9

10
04

0
25

10
.0

22
07

.1
12

8.
7

53
.8

68
12

.1
49

0.
23

9
47

.2
9%

2.
39

%
0.

00
50

55
.2

59
12

.9
22

0.
23

5
95

.1
2%

3.
35

%
0.

01
08

0.
38

57
0.

12
2

0.
14

3
0.

16
6

2.
03

5.
27

3.
08

7.
99

21
.5

1
N

A
63

.0
01

3
0.

21
63

.1
4

33
.2

1%
0.

00
49

62
.1

36
0.

21
34

.2
4%

2.
50

%

H
o

tt
e

st
 C

U
4_

IN
_T

11
06

1
7/

31
/2

01
1 

14
:0

6
20

34
7

25
43

.4
24

93
.4

13
7.

3
67

.7
20

19
.8

44
0.

20
1

53
.4

6%
2.

01
%

0.
00

94
68

.4
10

20
.2

28
0.

20
1

95
.2

0%
3.

01
%

0.
01

73
0.

6
0.

17
0

0.
19

8
0.

22
8

4.
80

8.
00

9.
19

15
.3

2
46

.4
3

N
A

91
.5

27
0

0.
21

91
.7

3
24

.4
8%

0.
00

94
95

.9
36

0.
21

21
.3

6%
2.

50
%

6
 ±

 3
0 

m
in

11
05

1:
11

07
1

20
26

0
25

32
.5

24
69

.8
13

6.
6

67
.7

23
19

.8
46

0.
20

1
52

.8
0%

2.
01

%
0.

00
93

68
.3

59
20

.1
99

0.
20

1
94

.7
0%

3.
01

%
0.

01
72

0.
53

81
0.

16
6

0.
19

3
0.

22
3

4.
76

8.
84

8.
59

15
.9

6
44

.4
9

N
A

90
.7

39
9

0.
21

90
.9

2
24

.4
3%

0.
00

91
94

.9
32

0.
21

21
.4

5%
2.

50
%

M
e

d
iu

m
 C

U
4_

IN
_T

 &
 lo

w
 R

H
42

14
7

10
/2

4/
20

11
 1

6:
18

87
64

10
95

.5
14

94
.2

10
7.

3
57

.1
18

13
.9

54
0.

23
0

39
.2

6%
2.

30
%

0.
00

47
65

.0
44

18
.3

58
0.

20
8

89
.9

3%
3.

08
%

0.
01

45
0.

2
0.

04
3

0.
05

2
0.

06
2

1.
10

5.
50

3.
15

15
.7

5
60

.4
6

20
.0

00
78

.1
94

0
0.

21
78

.3
0

12
.0

4%
0.

00
30

79
.9

19
0.

21
11

.3
8%

2.
50

%

7
 ±

 3
0 

m
in

42
13

7:
42

15
7

11
16

5
13

95
.6

16
75

.6
11

2.
8

57
.2

20
14

.0
11

0.
23

0
37

.8
5%

2.
30

%
0.

00
46

65
.2

03
18

.4
46

0.
20

8
92

.2
7%

3.
08

%
0.

01
50

0.
23

81
0.

05
8

0.
07

0
0.

08
3

2.
27

9.
52

3.
39

14
.2

5
48

.5
3

22
.0

95
77

.6
68

3
0.

21
77

.7
8

11
.7

1%
0.

00
28

79
.7

54
0.

21
10

.9
3%

2.
50

%

37
92

7
10

/7
/2

01
1 

2:
12

89
66

22
41

.5
14

94
.2

10
7.

3
52

.5
45

11
.4

14
0.

24
3

41
.3

8%
2.

43
%

0.
00

42
58

.7
51

14
.8

62
0.

22
6

93
.7

2%
3.

26
%

0.
01

21
0.

2
0.

04
3

0.
05

2
0.

06
2

0.
90

4.
50

2.
81

14
.0

5
53

.9
3

48
.0

00
65

.0
73

3
0.

21
65

.1
7

25
.0

6%
0.

00
40

64
.4

46
0.

21
25

.6
2%

2.
50

%

8
 ±

 3
0 

m
in

37
91

7:
37

93
7

91
54

22
88

.5
12

41
.9

99
.8

52
.5

59
11

.4
22

0.
24

3
42

.1
6%

2.
43

%
0.

00
43

58
.9

56
14

.9
75

0.
22

5
92

.7
7%

3.
25

%
0.

01
20

0.
15

24
0.

02
6

0.
03

3
0.

04
0

0.
80

5.
22

2.
13

14
.0

0
65

.5
0

14
.4

76
64

.6
44

2
0.

21
64

.7
3

25
.1

7%
0.

00
39

63
.9

29
0.

21
25

.8
0%

2.
50

%

43
26

7/
17

/2
01

1 
14

:2
1

20
18

4
25

23
.0

24
31

.3
13

5.
4

70
.2

00
21

.2
22

0.
20

6
68

.5
3%

2.
06

%
0.

01
32

70
.5

00
21

.3
89

0.
20

7
95

.8
0%

3.
07

%
0.

01
88

0.
5

0.
15

9
0.

18
5

0.
21

4
4.

70
9.

40
6.

62
13

.2
5

35
.7

7
N

A
88

.2
44

0
0.

21
88

.4
1

37
.5

2%
0.

01
30

92
.1

82
0.

21
33

.1
7%

2.
50

%

9
 ±

 3
0 

m
in

43
16

:4
33

6
20

22
4

25
28

.0
24

73
.3

13
6.

7
70

.0
34

21
.1

30
0.

20
6

67
.4

9%
2.

06
%

0.
01

29
70

.4
00

21
.3

33
0.

20
7

95
.5

8%
3.

07
%

0.
01

87
0.

54
29

0.
16

7
0.

19
4

0.
22

4
4.

76
8.

76
6.

36
11

.7
1

32
.8

2
N

A
87

.5
09

2
0.

21
87

.6
9

37
.3

2%
0.

01
27

91
.1

06
0.

21
33

.3
3%

2.
50

%

63
51

7/
21

/2
01

1 
18

:3
6

19
81

0
24

76
.3

24
31

.3
13

5.
4

66
.2

00
19

.0
00

0.
20

5
63

.7
9%

2.
05

%
0.

01
07

66
.7

50
19

.3
06

0.
20

3
95

.7
0%

3.
03

%
0.

01
64

0.
5

0.
15

9
0.

18
5

0.
21

4
4.

80
9.

60
5.

47
10

.9
4

29
.5

4
N

A
82

.1
74

3
0.

21
82

.3
4

36
.0

1%
0.

01
03

83
.8

84
0.

21
34

.0
8%

2.
50

%

1
0

 ±
 3

0 
m

in
63

41
:6

36
1

19
86

8
24

83
.5

24
65

.9
13

6.
5

66
.3

59
19

.0
88

0.
20

5
63

.7
9%

2.
05

%
0.

01
07

66
.8

82
19

.3
79

0.
20

3
95

.6
3%

3.
03

%
0.

01
65

0.
53

33
0.

16
5

0.
19

2
0.

22
2

4.
18

7.
85

5.
50

10
.3

2
28

.6
3

N
A

82
.1

77
6

0.
21

82
.3

5
36

.2
5%

0.
01

03
83

.8
36

0.
21

34
.3

6%
2.

50
%

64
71

7/
22

/2
01

1 
0:

36
14

94
0

18
67

.5
14

94
.2

10
7.

3
61

.3
90

16
.3

28
0.

21
8

58
.5

9%
2.

18
%

0.
00

82
62

.9
30

17
.1

83
0.

21
4

94
.7

0%
3.

14
%

0.
01

42
0.

2
0.

04
3

0.
05

2
0.

06
2

1.
70

8.
50

3.
54

17
.7

0
67

.9
4

N
A

76
.0

28
0

0.
21

76
.1

3
35

.6
6%

0.
00

83
76

.1
29

0.
21

35
.5

4%
2.

50
%

1
1

 ±
 3

0 
m

in
64

61
:6

48
1

15
53

9
19

42
.4

14
94

.2
10

7.
3

60
.9

00
16

.0
55

0.
22

0
56

.4
2%

2.
20

%
0.

00
78

62
.5

04
16

.9
47

0.
21

5
95

.0
8%

3.
15

%
0.

01
40

0.
2

0.
04

3
0.

05
2

0.
06

2
1.

77
8.

86
3.

59
17

.9
3

68
.8

5
N

A
76

.8
30

9
0.

21
76

.9
3

31
.8

7%
0.

00
76

77
.2

54
0.

21
31

.4
3%

2.
50

%

14
19

7/
11

/2
01

1 
12

:0
0

20
02

0
25

02
.5

24
31

.3
13

5.
4

67
.8

40
19

.9
11

0.
20

0
70

.4
0%

2.
00

%
0.

01
25

68
.3

10
20

.1
72

0.
20

1
95

.8
0%

3.
01

%
0.

01
74

0.
5

0.
15

9
0.

18
5

0.
21

4
4.

80
9.

60
4.

77
9.

53
25

.7
5

N
A

81
.7

01
3

0.
21

81
.8

7
43

.1
5%

0.
01

22
83

.1
98

0.
21

41
.1

1%
2.

50
%

1
2

 ±
 3

0 
m

in
14

09
:1

42
9

19
95

2
24

94
.0

24
76

.5
13

6.
8

67
.7

56
19

.8
64

0.
20

1
69

.5
2%

2.
01

%
0.

01
23

68
.1

64
20

.0
91

0.
20

0
95

.8
1%

3.
00

%
0.

01
73

0.
54

76
0.

16
7

0.
19

4
0.

22
4

4.
19

7.
65

5.
00

9.
12

25
.7

0
N

A
81

.8
49

2
0.

21
82

.0
3

42
.3

6%
0.

01
20

83
.4

17
0.

21
40

.2
7%

2.
50

%

24
87

9
8/

29
/2

01
1 

9:
00

19
93

3
24

91
.6

24
31

.3
13

5.
4

66
.4

32
19

.1
29

0.
20

4
75

.1
6%

2.
04

%
0.

01
27

66
.5

59
19

.1
99

0.
20

4
95

.3
1%

3.
04

%
0.

01
63

0.
5

0.
15

9
0.

18
5

0.
21

4
5.

00
10

.0
0

3.
14

6.
28

16
.9

7
N

A
74

.8
41

7
0.

21
75

.0
1

56
.1

2%
0.

01
26

74
.9

72
0.

21
55

.8
8%

2.
50

%

1
3

 ±
 3

0 
m

in
 in

te
rm

it
te

n
t 

D
R

Y
24

86
9:

24
88

9
19

75
4

24
69

.3
24

82
.1

13
7.

0
66

.5
97

19
.2

21
0.

20
4

74
.9

6%
2.

04
%

0.
01

27
66

.6
28

19
.2

38
0.

20
4

95
.3

9%
3.

04
%

0.
01

63
0.

55
71

0.
16

8
0.

19
6

0.
22

6
4.

92
8.

83
3.

23
5.

81
16

.5
4

N
A

74
.7

70
9

0.
21

74
.9

5
56

.7
3%

0.
01

27
74

.8
10

0.
21

56
.6

5%
2.

50
%

25
29

3
8/

30
/2

01
1 

5:
42

15
76

3
19

70
.4

93
1.

5
90

.4
57

.4
51

14
.1

39
0.

22
9

51
.7

0%
2.

29
%

0.
00

63
59

.5
12

15
.2

84
0.

22
4

93
.0

0%
3.

24
%

0.
01

23
0.

1
0.

01
2

0.
01

6
0.

02
0

1.
20

12
.0

0
2.

19
21

.8
8

13
7.

95
N

A
72

.0
64

0
0.

21
72

.1
4

31
.0

5%
0.

00
63

71
.9

49
0.

21
31

.1
7%

2.
50

%

1
4

 ±
 3

0 
m

in
25

28
3:

25
30

3
15

75
5

19
69

.4
14

94
.2

10
7.

3
57

.9
78

14
.4

32
0.

22
8

52
.9

8%
2.

28
%

0.
00

66
59

.9
80

15
.5

44
0.

22
2

92
.7

0%
3.

22
%

0.
01

25
0.

2
0.

04
3

0.
05

2
0.

06
2

1.
74

8.
71

3.
20

16
.0

0
61

.4
2

N
A

72
.2

47
3

0.
21

72
.3

5
31

.2
1%

0.
00

64
72

.2
40

0.
21

31
.2

2%
2.

50
%

30
21

8
9/

9/
20

11
 1

5:
57

13
97

1
17

46
.4

14
94

.2
10

7.
3

58
.7

00
14

.8
33

0.
22

6
44

.9
0%

2.
26

%
0.

00
57

61
.6

98
16

.4
99

0.
21

8
93

.6
5%

3.
18

%
0.

01
34

0.
2

0.
04

3
0.

05
2

0.
06

2
1.

30
6.

50
4.

64
23

.1
9

89
.0

1
N

A
76

.8
98

3
0.

21
77

.0
0

25
.1

9%
0.

00
60

77
.5

67
0.

21
24

.6
4%

2.
50

%

1
5

 ±
 3

0 
m

in
30

20
8:

30
22

8
14

47
6

18
09

.5
15

41
.1

10
8.

7
59

.0
94

15
.0

52
0.

22
5

46
.5

4%
2.

25
%

0.
00

60
61

.2
50

16
.2

50
0.

21
9

92
.5

5%
3.

19
%

0.
01

30
0.

20
95

0.
04

7
0.

05
6

0.
06

7
1.

93
9.

23
4.

26
20

.3
4

75
.5

6
N

A
76

.5
99

3
0.

21
76

.7
0

25
.3

3%
0.

00
60

77
.5

33
0.

21
24

.5
6%

2.
50

%

35
53

0
9/

27
/2

01
1 

2:
18

16
19

0
40

47
.5

22
44

.1
12

9.
8

61
.1

93
16

.2
18

0.
21

9
32

.1
9%

2.
19

%
0.

00
45

59
.0

10
15

.0
06

0.
22

5
85

.0
3%

3.
25

%
0.

01
10

0.
4

0.
12

8
0.

15
0

0.
17

4
1.

90
4.

75
3.

11
7.

77
20

.7
5

N
A

69
.9

00
0

0.
21

70
.0

4
23

.6
4%

0.
00

44
69

.9
57

0.
21

23
.5

9%
2.

50
%

16
 ±

 3
0 

m
in

 A
LL

 D
R

Y
35

52
0:

35
54

0
15

04
2

37
60

.5
22

44
.1

12
9.

8
61

.0
68

16
.1

49
0.

21
9

32
.5

5%
2.

19
%

0.
00

45
58

.9
65

14
.9

81
0.

22
5

83
.7

1%
3.

25
%

0.
01

08
0.

4
0.

12
8

0.
15

0
0.

17
4

1.
77

4.
43

3.
09

7.
72

20
.6

1
N

A
69

.6
69

2
0.

21
69

.8
1

24
.0

4%
0.

00
45

69
.7

20
0.

21
24

.0
0%

2.
50

%

36
60

2
10

/1
/2

01
1 

12
:3

6
15

98
5

19
98

.1
24

31
.3

13
5.

4
60

.6
42

15
.9

12
0.

22
0

35
.5

3%
2.

20
%

0.
00

48
62

.6
43

17
.0

24
0.

21
5

98
.0

8%
3.

15
%

0.
01

46
0.

5
0.

15
9

0.
18

5
0.

21
4

4.
30

8.
60

8.
51

17
.0

3
45

.9
8

32
.0

00
82

.2
18

7
0.

21
82

.3
8

17
.5

9%
0.

00
50

85
.5

32
0.

21
15

.8
1%

2.
50

%

1
7

 ±
 3

0 
m

in
36

59
2:

36
61

2
16

00
1

20
00

.1
23

90
.6

13
4.

2
60

.5
00

11
.9

33
0.

24
0

38
.1

4%
2.

40
%

0.
00

52
62

.2
73

16
.8

19
0.

21
6

98
.1

0%
3.

16
%

0.
01

44
0.

47
14

0.
15

2
0.

17
7

0.
20

5
3.

96
8.

40
8.

04
17

.0
6

45
.4

3
27

.8
10

82
.2

30
2

0.
21

82
.3

9
17

.9
4%

0.
00

51
85

.3
21

0.
21

16
.2

4%
2.

50
%

36
63

8
10

/1
/2

01
1 

16
:1

2
16

01
1

20
01

.4
22

44
.1

12
9.

8
61

.2
33

16
.2

41
0.

21
9

47
.2

0%
2.

19
%

0.
00

66
62

.7
01

17
.0

56
0.

21
5

96
.6

8%
3.

15
%

0.
01

44
0.

4
0.

12
8

0.
15

0
0.

17
4

3.
60

9.
00

6.
59

16
.4

9
44

.0
3

24
.0

00
79

.8
17

0
0.

21
79

.9
6

25
.0

4%
0.

00
66

81
.5

98
0.

21
23

.6
3%

2.
50

%

1
8

 ±
 3

0 
m

in
36

62
8:

36
64

8
15

33
5

19
16

.9
22

32
.0

12
9.

5
60

.7
46

12
.0

70
0.

24
0

46
.2

1%
2.

40
%

0.
00

63
62

.6
44

17
.0

25
0.

21
5

96
.8

3%
3.

15
%

0.
01

44
0.

39
52

0.
12

6
0.

14
8

0.
17

1
3.

64
9.

21
6.

14
15

.5
4

41
.5

9
24

.9
52

79
.6

86
7

0.
21

79
.8

3
22

.9
0%

0.
00

60
81

.6
52

0.
21

21
.4

8%
2.

50
%

36
68

9
10

/1
/2

01
1 

21
:1

8
12

72
3

15
90

.4
14

94
.2

10
7.

3
60

.7
92

15
.9

96
0.

22
0

51
.1

5%
2.

20
%

0.
00

70
65

.4
48

18
.5

82
0.

20
7

84
.6

7%
2.

07
%

0.
01

38
0.

2
0.

04
3

0.
05

2
0.

06
2

2.
90

14
.5

0
1.

93
9.

65
37

.0
6

15
.0

00
73

.5
73

0
0.

21
73

.6
8

28
.0

2%
0.

00
60

73
.1

55
0.

21
28

.4
1%

2.
50

%

1
9

 ±
 3

0 
m

in
36

67
9:

36
69

9
12

15
1

15
18

.9
14

21
.4

10
5.

1
60

.6
51

12
.0

17
0.

24
0

49
.4

1%
2.

40
%

0.
00

67
65

.2
71

18
.4

84
0.

20
8

89
.9

8%
2.

08
%

0.
01

46
0.

18
57

0.
03

8
0.

04
6

0.
05

5
2.

66
14

.3
1

1.
88

10
.1

4
41

.0
7

17
.9

05
73

.7
31

8
0.

21
73

.8
3

26
.5

0%
0.

00
57

73
.3

75
0.

21
26

.8
2%

2.
50

%

2
0

1
0
1
,2

0
1
2
,8

0
,1

3
3
0
,2

2
.6

3
5
,7

7
8
1
.3

,5
2
.7

7
2
,4

7
.3

0
4
,5

8
.5

5
6
,9

2
.5

5
1
,.5

,.4
,3

9
,1

.7
,.1

,4
1
4
.9

6
3/

20
/2

01
2 

13
:3

0
77

81
19

45
.3

22
44

.1
12

9.
8

52
.7

72
11

.5
40

0.
24

2
47

.3
0%

2.
42

%
0.

00
48

58
.5

56
14

.7
53

0.
22

6
92

.5
5%

3.
26

%
0.

01
18

0.
4

0.
12

8
0.

15
0

0.
17

4
0.

5
1.

25
0.

46
1.

16
3.

1
63

.1
76

0
0.

21
63

.3
1

18
.9

5%
0.

00
28

62
.4

90
0.

21
19

.4
1%

2.
50

%

 ±
 3

0 
m

in
82

94
20

73
.5

14
94

.2
10

7.
3

52
.1

83
8.

21
3

0.
25

9
44

.9
7%

2.
59

%
0.

00
45

57
.5

65
14

.2
03

0.
22

9
92

.6
5%

3.
29

%
0.

01
14

0.
2

0.
04

3
0.

05
2

0.
06

2
0.

70
9

3.
55

1.
78

8.
88

34
.1

0
64

.4
70

0
0.

21
64

.5
7

21
.8

4%
0.

00
34

63
.9

20
0.

21
22

.2
6%

2.
50

%

2
1

1
0
1
,2

0
1
2
,8

1
,1

3
3
0
,2

0
.1

8
4
,8

6
4
4
.8

,5
2
.5

8
6
,3

8
.9

7
7
,6

0
.1

2
2
,7

4
.0

5
3
,.7

,.3
,3

9
.4

,1
.7

,0
,4

1
4
.8

1
3/

21
/2

01
2 

13
:3

0
86

44
21

61
.0

19
31

.7
12

0.
5

52
.5

86
11

.4
37

0.
24

3
38

.9
8%

2.
43

%
0.

00
40

60
.1

22
15

.6
23

0.
22

2
74

.0
5%

2.
22

%
0.

01
00

0.
3

0.
08

6
0.

10
1

0.
11

8
0.

7
2.

33
3.

32
11

.0
7

32
.8

4
67

.2
42

0
0.

21
67

.3
6

17
.8

8%
0.

00
31

67
.1

99
0.

21
17

.9
1%

2.
50

%

 ±
 3

0 
m

in
85

51
21

37
.8

19
31

.7
12

0.
5

52
.6

11
8.

45
1

0.
25

8
39

.8
9%

2.
58

%
0.

00
41

59
.5

48
15

.3
04

0.
22

3
75

.4
9%

2.
23

%
0.

01
00

0.
3

0.
08

6
0.

10
1

0.
11

8
0.

71
8

2.
39

2.
43

8.
11

24
.0

7
67

.1
10

0
0.

21
67

.2
3

15
.0

5%
0.

00
26

61
.1

59
0.

21
18

.5
4%

2.
50

%

2
2

1
0
1
,2

0
1
2
,8

3
,1

2
0
6
,1

3
.4

4
9
,1

3
4
2
4
,5

1
.5

3
8
,2

7
.1

3
7
,5

5
.0

6
9
,9

3
.4

1
3
,2

.3
,.5

,4
1
,3

.3
,0

,4
1
4
.8

9
N

O
 G

R
A

D
IE

N
T

!
3/

23
/2

01
2 

12
:0

6
12

13
9

30
34

.8
24

31
.3

13
5.

4
51

.5
38

10
.8

54
0.

24
6

25
.9

7%
2.

46
%

0.
00

25
61

.0
86

16
.1

59
0.

21
9

93
.4

8%
3.

19
%

0.
01

31
0.

5
0.

15
9

0.
18

5
0.

21
4

1.
8

3.
60

8.
60

17
.2

0
46

.4
6

73
.0

00
0

0.
21

73
.1

6
12

.8
3%

0.
00

27
75

.0
00

0.
21

12
.0

0%
2.

50
%

W
o

rk
in

g 
A

ir

A
ct

u
al

 D
at

a 
fr

o
m

 C
am

p
b

el
l:

A
H

U
 S

u
p

p
ly

 A
ir

A
ir

fl
o

w
P

o
w

e
r

C
U

4 
In

p
u

t 
A

ir
P

ro
d

u
ct

 A
ir

C
O

P



-107- 
 

% EnergyCalc_CRAC 
% Ben Weerts 
% Calculates Energy Used over specified period. 
% (Pre 6/2011) 
% 
% IMPORT CRAC_data.dat! 

  
% CRACdata: 
% 1 20 ton Liebert CRAC 
% 2 30 ton Liebert CRAC 
% 3 UPS Power 

  
% textdata: 
% 1 Date (mm/dd/yyyy) 
% 2 Time (HH:MM PM) 

  
format long 

  
% r=1; 
L20_Energy = zeros(13,1); 
L30_Energy = zeros(13,1); 
UPS_Energy = zeros(13,1); 

  
% % To convert date to datenum: 
% year_month_day = zeros(3030784,6); 
% time = zeros(3030784,6); 
% temp = zeros(3030784,6); 
% timestamp = zeros(3030784,1); 
%  
% year_month_day = datevec(textdata(:,1)); 
% time = datevec(textdata(:,2)); 
%  
% temp = [year_month_day(:,1:3),time(:,4:6)]; 

  
% j = 0; 
% for j = 1:3030784 
%     timestamp(j,1) = datenum(temp(j,:)); 
% end 

  

  

% % Annual Energy Consumption: 
% for i = 53852:2821848 
%     L20_temp = (data(i,1)+data(i+1,1))/2*(timestamp(i+1,1)-

timestamp(i,1))*24; 
%     L20_Energy = L20_temp + L20_Energy; 
%     L30_temp = (data(i,2)+data(i+1,2))/2*(timestamp(i+1,1)-

timestamp(i,1))*24; 
%     L30_Energy = L30_temp + L30_Energy; 
%     UPS_temp = (data(i,3)+data(i+1,3))/2*(timestamp(i+1,1)-

timestamp(i,1))*24; 
%     UPS_Energy = UPS_temp + UPS_Energy; 
% end 

  
% Monthly Energy Consumption 
for i = 53852:3030783 
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    L20_temp = (data(i,1)+data(i+1,1))/2*(timestamp(i+1,1)-timestamp(i,1))*24; 
    L30_temp = (data(i,2)+data(i+1,2))/2*(timestamp(i+1,1)-timestamp(i,1))*24; 
    UPS_temp = (data(i,3)+data(i+1,3))/2*(timestamp(i+1,1)-timestamp(i,1))*24;  

     
    % June 2010 
    if timestamp(i,1) < 734320 
        if timestamp(i,1) > 734290 
            L20_Energy(1,1) = L20_temp + L20_Energy(1,1); 
            L30_Energy(1,1) = L30_temp + L30_Energy(1,1); 
            UPS_Energy(1,1) = UPS_temp + UPS_Energy(1,1); 
        end 
    end 
    % July 2010 
    if timestamp(i,1) < 734351 
        if timestamp(i,1) > 734320 
            L20_Energy(2,1) = L20_temp + L20_Energy(2,1); 
            L30_Energy(2,1) = L30_temp + L30_Energy(2,1); 
            UPS_Energy(2,1) = UPS_temp + UPS_Energy(2,1); 
        end 
    end 
    % August 2010 
    if timestamp(i,1) < 734382 
        if timestamp(i,1) > 734351 
            L20_Energy(3,1) = L20_temp + L20_Energy(3,1); 
            L30_Energy(3,1) = L30_temp + L30_Energy(3,1); 
            UPS_Energy(3,1) = UPS_temp + UPS_Energy(3,1); 
        end 
    end 
    % September 2010 
    if timestamp(i,1) < 734412 
        if timestamp(i,1) > 734382 
            L20_Energy(4,1) = L20_temp + L20_Energy(4,1); 
            L30_Energy(4,1) = L30_temp + L30_Energy(4,1); 
            UPS_Energy(4,1) = UPS_temp + UPS_Energy(4,1); 
        end 
    end 
    % October 2010 
    if timestamp(i,1) < 734443 
        if timestamp(i,1) > 734412 
            L20_Energy(5,1) = L20_temp + L20_Energy(5,1); 
            L30_Energy(5,1) = L30_temp + L30_Energy(5,1); 
            UPS_Energy(5,1) = UPS_temp + UPS_Energy(5,1); 
        end 
    end 
    % November 2010 
    if timestamp(i,1) < 734473 
        if timestamp(i,1) > 734443 
            L20_Energy(6,1) = L20_temp + L20_Energy(6,1); 
            L30_Energy(6,1) = L30_temp + L30_Energy(6,1); 
            UPS_Energy(6,1) = UPS_temp + UPS_Energy(6,1); 
        end 
    end 
    % Decemebr 2010 
    if timestamp(i,1) < 734504 
        if timestamp(i,1) > 734473 
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            L20_Energy(7,1) = L20_temp + L20_Energy(7,1); 
            L30_Energy(7,1) = L30_temp + L30_Energy(7,1); 
            UPS_Energy(7,1) = UPS_temp + UPS_Energy(7,1); 
        end 
    end 
    % January 2011 
    if timestamp(i,1) < 734535 
        if timestamp(i,1) > 734504 
            L20_Energy(8,1) = L20_temp + L20_Energy(8,1); 
            L30_Energy(8,1) = L30_temp + L30_Energy(8,1); 
            UPS_Energy(8,1) = UPS_temp + UPS_Energy(8,1); 
        end 
    end 
    % February 2011 
    if timestamp(i,1) < 734563 
        if timestamp(i,1) > 734535 
            L20_Energy(9,1) = L20_temp + L20_Energy(9,1); 
            L30_Energy(9,1) = L30_temp + L30_Energy(9,1); 
            UPS_Energy(9,1) = UPS_temp + UPS_Energy(9,1); 
        end 
    end 
    % March 2011 
    if timestamp(i,1) < 734594 
        if timestamp(i,1) > 734563 
            L20_Energy(10,1) = L20_temp + L20_Energy(10,1); 
            L30_Energy(10,1) = L30_temp + L30_Energy(10,1); 
            UPS_Energy(10,1) = UPS_temp + UPS_Energy(10,1); 
        end 
    end 
    % April 2011 
    if timestamp(i,1) < 734624 
        if timestamp(i,1) > 734594 
            L20_Energy(11,1) = L20_temp + L20_Energy(11,1); 
            L30_Energy(11,1) = L30_temp + L30_Energy(11,1); 
            UPS_Energy(11,1) = UPS_temp + UPS_Energy(11,1); 
        end 
    end 
    % May 2011 
    if timestamp(i,1) < 734655 
        if timestamp(i,1) > 734624 
            L20_Energy(12,1) = L20_temp + L20_Energy(12,1); 
            L30_Energy(12,1) = L30_temp + L30_Energy(12,1); 
            UPS_Energy(12,1) = UPS_temp + UPS_Energy(12,1); 
        end 
    end 
     % June 2011 ( 
    if timestamp(i,1) < 734685 
        if timestamp(i,1) > 734655 
            L20_Energy(13,1) = L20_temp + L20_Energy(13,1); 
            L30_Energy(13,1) = L30_temp + L30_Energy(13,1); 
            UPS_Energy(13,1) = UPS_temp + UPS_Energy(13,1); 
        end 
    end 
end 

% End EnergyCalc_CRAC.m 
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% EnergyCalc_CR10X 

% Ben Weerts 
% Calculates Energy Used over specified period. 
% (Post 9/16/2011) 
% 
% IMPORT EnergyCalc_CR10X.csv! (using MatLAB 2011b spreasheet importer which 
% automatically converts date/time field to datenum) 

  
% CR10X_power:  
% 1 datenum 
% 2 AHU Power 
% 3 CU4 Power 
% 4 UPS Power 
% 5 L3M Power 
% 6 CRAC Power 

  
format long 

  
AHU_Energy = zeros(8,1); 
L3M_Energy = zeros(8,1); 
UPS_Energy = zeros(8,1); 
L30_Energy = zeros(8,1); 

  
for i = 1:98861 

     
    % The 2 IF statements below account for midnight format discrepency 
    % (24:00 became 00:00 when shifting between 102 and CR10X program 

versions on the datalogger) 
    if CR10X_power(i+1,1)-CR10X_power(i,1) > 0 
        AHU_temp = 

(CR10X_power(i,2)+CR10X_power(i+1,2))/2*(CR10X_power(i+1,1)-

CR10X_power(i,1))*24; 
        UPS_temp = 

(CR10X_power(i,4)+CR10X_power(i+1,4))/2*(CR10X_power(i+1,1)-

CR10X_power(i,1))*24; 
        L3M_temp = 

(CR10X_power(i,5)+CR10X_power(i+1,5))/2*(CR10X_power(i+1,1)-

CR10X_power(i,1))*24; 
        L30_temp = 

(CR10X_power(i,6)+CR10X_power(i+1,6))/2*(CR10X_power(i+1,1)-

CR10X_power(i,1))*24; 
    end 
    if CR10X_power(i+1,1)-CR10X_power(i,1) > .00694444 
        AHU_temp = (CR10X_power(i-

1,2)+CR10X_power(i+1,2))/2*(CR10X_power(i+1,1)-CR10X_power(i-1,1))*24; 
        UPS_temp = (CR10X_power(i-

1,4)+CR10X_power(i+1,4))/2*(CR10X_power(i+1,1)-CR10X_power(i-1,1))*24; 
        L3M_temp = (CR10X_power(i-

1,5)+CR10X_power(i+1,5))/2*(CR10X_power(i+1,1)-CR10X_power(i-1,1))*24; 
        L30_temp = (CR10X_power(i-

1,6)+CR10X_power(i+1,6))/2*(CR10X_power(i+1,1)-CR10X_power(i-1,1))*24; 
    end     
    if CR10X_power(i+1,1)-CR10X_power(i,1) < 0 
        AHU_temp = 

(CR10X_power(i,2)+CR10X_power(i+1,2))/2*(CR10X_power(i+2,1)-

CR10X_power(i,1))*24; 
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        UPS_temp = 

(CR10X_power(i,4)+CR10X_power(i+1,4))/2*(CR10X_power(i+2,1)-

CR10X_power(i,1))*24; 
        L3M_temp = 

(CR10X_power(i,5)+CR10X_power(i+1,5))/2*(CR10X_power(i+2,1)-

CR10X_power(i,1))*24; 
        L30_temp = 

(CR10X_power(i,6)+CR10X_power(i+1,6))/2*(CR10X_power(i+2,1)-

CR10X_power(i,1))*24; 
    end    

     
    % September 2011 (ONLY FROM 9/16-9/30!) 
    if CR10X_power(i,1) < 734777 
        if CR10X_power(i,1) > 734747 
            AHU_Energy(1,1) = AHU_temp + AHU_Energy(1,1); 
            L3M_Energy(1,1) = L3M_temp + L3M_Energy(1,1); 
            UPS_Energy(1,1) = UPS_temp + UPS_Energy(1,1); 
            L30_Energy(1,1) = L30_temp + L30_Energy(1,1); 
        end 
    end 

     
    % October 2011 
    if CR10X_power(i,1) < 734808 
        if CR10X_power(i,1) > 734777 
            AHU_Energy(2,1) = AHU_temp + AHU_Energy(2,1); 
            L3M_Energy(2,1) = L3M_temp + L3M_Energy(2,1); 
            UPS_Energy(2,1) = UPS_temp + UPS_Energy(2,1); 
            L30_Energy(2,1) = L30_temp + L30_Energy(2,1); 
        end 
    end 

     
    % November 2011 
    if CR10X_power(i,1) < 734838 
        if CR10X_power(i,1) > 734808 
            AHU_Energy(3,1) = AHU_temp + AHU_Energy(3,1); 
            L3M_Energy(3,1) = L3M_temp + L3M_Energy(3,1); 
            UPS_Energy(3,1) = UPS_temp + UPS_Energy(3,1); 
            L30_Energy(3,1) = L30_temp + L30_Energy(3,1); 
        end 
    end 

     

    % December 2011 
    if CR10X_power(i,1) < 734869 
        if CR10X_power(i,1) > 734838 
            AHU_Energy(4,1) = AHU_temp + AHU_Energy(4,1); 
            L3M_Energy(4,1) = L3M_temp + L3M_Energy(4,1); 
            UPS_Energy(4,1) = UPS_temp + UPS_Energy(4,1); 
            L30_Energy(4,1) = L30_temp + L30_Energy(4,1); 
        end 
    end 

     
    % January 2012 
    if CR10X_power(i,1) < 734900 
        if CR10X_power(i,1) > 734869 
            AHU_Energy(5,1) = AHU_temp + AHU_Energy(5,1); 
            L3M_Energy(5,1) = L3M_temp + L3M_Energy(5,1); 
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            UPS_Energy(5,1) = UPS_temp + UPS_Energy(5,1); 
            L30_Energy(5,1) = L30_temp + L30_Energy(5,1); 
        end 
    end 

     
    % February 2012 
    if CR10X_power(i,1) < 734929 
        if CR10X_power(i,1) > 734900 
            AHU_Energy(6,1) = AHU_temp + AHU_Energy(6,1); 
            L3M_Energy(6,1) = L3M_temp + L3M_Energy(6,1); 
            UPS_Energy(6,1) = UPS_temp + UPS_Energy(6,1); 
            L30_Energy(6,1) = L30_temp + L30_Energy(6,1); 
        end 
    end 

     
    % March 2012 
    if CR10X_power(i,1) < 734960 
        if CR10X_power(i,1) > 734929 
            AHU_Energy(7,1) = AHU_temp + AHU_Energy(7,1); 
            L3M_Energy(7,1) = L3M_temp + L3M_Energy(7,1); 
            UPS_Energy(7,1) = UPS_temp + UPS_Energy(7,1); 
            L30_Energy(7,1) = L30_temp + L30_Energy(7,1); 
        end 
    end     

  
    % April 2012 
    if CR10X_power(i,1) < 734990 
        if CR10X_power(i,1) > 734960 
            AHU_Energy(8,1) = AHU_temp + AHU_Energy(8,1); 
            L3M_Energy(8,1) = L3M_temp + L3M_Energy(8,1); 
            UPS_Energy(8,1) = UPS_temp + UPS_Energy(8,1); 
            L30_Energy(8,1) = L30_temp + L30_Energy(8,1); 
        end 
    end 
end 

     
% End EnergyCalc_CR10X.m 
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% cu4data_creation.m 
% Ben Weerts 
% 
% IMPORT cu4data_monthly.mat FIRST!!! 
% 
% cu4data_monthly:  
% 1 datenum 
% 2 year 
% 3 day 
% 4 time 
% 5 SA_RH 
% 6 CFM 
% 7 Product Air Temp 
% 8 Product Air RH 
% 9 Working Air Temp 
% 10 Working Air RH 
% 11 CU4 Power 
% 12 L3M Power 
% 13 Water 
% 14 CU4_IN_T 
% 15 INPUT-T 
% 16 INPUT-RH 
% 17 S-COOL-T 
% 18 INPUT-DP 

  
cu4data = zeros(417422,18); 

  
for i = 1:417423 
    if i < 33776 
        cu4data(i,:) = CU4_Jul(i,:); 
    end 

     
    if i < 78416 
        if i > 33775 
            cu4data(i,:) = CU4_Aug(i-33775,:); 
        end 
    end 

     
    if i < 121616 
        if i > 78415 
            cu4data(i,:) = CU4_Sep(i-78415,:); 
        end 
    end 

     
    if i < 166256 
        if i > 121615 
            cu4data(i,:) = CU4_Oct(i-121615,:); 
        end 
    end 

     
    if i < 209456 
        if i > 166255 
            cu4data(i,:) = CU4_Nov(i-166255,:); 
        end 
    end 
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    if i < 254096 
        if i > 209455 
            cu4data(i,:) = CU4_Dec2(i-209455,:); 
        end 
    end 

     
    if i < 298736 
        if i > 254095 
            cu4data(i,:) = CU4_Jan(i-254095,:); 
        end 
    end 

     
    if i < 340496 
        if i > 298735 
            cu4data(i,:) = CU4_Feb(i-298735,:); 
        end 
    end 

     

    if i < 385135 
        if i > 340495 
            cu4data(i,:) = CU4_Mar2(i-340495,:); 
        end 
    end 

     
    if i < 417422 
        if i > 385134 
            cu4data(i,:) = CU4_Apr(i-385134,:); 
        end 
    end 

  
end 

  

for i = 1:417422 
    if cu4data(i,5) < 0 
        cu4data(i,5) = 0; 
    end 
    if cu4data(i,6) < 0 
        cu4data(i,6) = 0; 
    end 
    if cu4data(i,8) < 0 
        cu4data(i,8) = 0; 
    end 
    if cu4data(i,10) < 0 
        cu4data(i,10) = 0; 
    end 
    if cu4data(i,16) < 0 
        cu4data(i,16) = 0; 
    end 
end 

  

  

  
cu4data_condensed = zeros(85772,18); 
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r = 1; 

  
for j = 2:417422 
    if j == 2 
        cu4data_condensed(r,1:5) = cu4data(j,1:5); 
        cu4data_condensed(r,6) = mean(cu4data(j-1:j,6)); 
        cu4data_condensed(r,7:10) = cu4data(j,7:10); 
        cu4data_condensed(r,11) = mean(cu4data(j-1:j,11)); 
        cu4data_condensed(r,12) = mean(cu4data(j-1:j,12)); 
        cu4data_condensed(r,13) = sum(cu4data(j-1:j,13)); 
        cu4data_condensed(r,14) = mean(cu4data(j-1:j,14)); 
        cu4data_condensed(r,15) = mean(cu4data(j-1:j,15)); 
        cu4data_condensed(r,16) = mean(cu4data(j-1:j,16)); 
        cu4data_condensed(r,17) = mean(cu4data(j-1:j,17)); 
        cu4data_condensed(r,18) = mean(cu4data(j-1:j,18)); 
        r = r + 1; 
    end 

     
    if j > 2 
        if cu4data(j,2) > 2000 
            if cu4data(j,14) > 0 
                if cu4data(j-1,14) > 0 
                    cu4data_condensed(r,1:5) = cu4data(j,1:5); 
                    if cu4data(j-1,6) > 0 
                        cu4data_condensed(r,6) = mean(cu4data(j-2:j,6)); 
                        cu4data_condensed(r,11) = mean(cu4data(j-2:j,11)); 
                        cu4data_condensed(r,12) = mean(cu4data(j-2:j,12));                         
                    elseif cu4data(j-1,6) == 0 
                        cu4data_condensed(r,6) = cu4data(j,6); 
                        cu4data_condensed(r,11) = cu4data(j,11); 
                        cu4data_condensed(r,12) = cu4data(j,12);                         
                    end 
                    cu4data_condensed(r,7:10) = cu4data(j,7:10); 
                    cu4data_condensed(r,13) = sum(cu4data(j-2:j,13)); 
                    cu4data_condensed(r,14) = mean(cu4data(j-2:j,14)); 
                    cu4data_condensed(r,15) = mean(cu4data(j-2:j,15)); 
                    cu4data_condensed(r,16) = mean(cu4data(j-2:j,16)); 
                    cu4data_condensed(r,17) = mean(cu4data(j-2:j,17)); 
                    cu4data_condensed(r,18) = mean(cu4data(j-2:j,18)); 
                    r = r + 1; 
                end 
                if cu4data(j-1,14) == 0 
                    cu4data_condensed(r,1:5) = cu4data(j,1:5); 
                    if cu4data(j-1,6) > 0 
                        cu4data_condensed(r,6) = mean(cu4data(j-2:j,6)); 
                        cu4data_condensed(r,11) = mean(cu4data(j-2:j,11)); 
                        cu4data_condensed(r,12) = mean(cu4data(j-2:j,12)); 
                    elseif cu4data(j-1,6) == 0 
                        cu4data_condensed(r,6) = cu4data(j,6); 
                        cu4data_condensed(r,11) = cu4data(j,11); 
                        cu4data_condensed(r,12) = cu4data(j,12);                    
                    end                     
                    cu4data_condensed(r,7:10) = cu4data(j,7:10); 
                    cu4data_condensed(r,13) = sum(cu4data(j-5:j,13)); 
                    cu4data_condensed(r,14) = mean([cu4data(j,14),cu4data(j-

2,14),cu4data(j-4,14)]); 
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                    cu4data_condensed(r,15) = mean([cu4data(j,15),cu4data(j-

2,15),cu4data(j-4,15)]); 
                    cu4data_condensed(r,16) = mean([cu4data(j,16),cu4data(j-

2,16),cu4data(j-4,16)]); 
                    cu4data_condensed(r,17) = mean([cu4data(j,17),cu4data(j-

2,17),cu4data(j-4,17)]); 
                    cu4data_condensed(r,18) = mean([cu4data(j,18),cu4data(j-

2,18),cu4data(j-4,18)]); 
                    r = r + 1;                 
                end 
            end 
        end 
    end 

     
end 
 

 

% End cu4data_creation.m 
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% cu4plot.m 
% Ben Weerts 
% 
% IMPORT cu4data4.mat FIRST!!! 
% 
% cu4data_condensed:  
% 1 datenum 
% 2 year 
% 3 day 
% 4 time 
% 5 SA_RH 
% 6 CFM 
% 7 Product Air Temp 
% 8 Product Air RH 
% 9 Working Air Temp 
% 10 Working Air RH 
% 11 CU4 Power 
% 12 L3M Power 
% 13 Water 
% 14 CU4_IN_T 
% 15 INPUT-T 
% 16 INPUT-RH 
% 17 S-COOL-T 
% 18 INPUT-DP 

  
% INPUT START AND STOP DATES FOR PLOT (must be between 7/8/2011 13:06 and 
% 4/23/2012 10:06): 
Start = '7/20/2011'; 
Stop = '4/23/2012'; 

  
% Search cu4data_condensed for the above timestamps: 
temp1 = datenum(Start); 
temp2 = datenum(Stop); 

  
for i = 1:85771 
    if cu4data_condensed(i+1,1) < temp1 
        beg = i; 
    end 
    if cu4data_condensed(i+1,1) < temp2 
        finish = i; 
    end 
end 

  
% beg = 35520; 
% finish = 35540; 

  
hold off 
figure(1) 
hold on 

  
% COMMENT (Ctrl+R) or UNCOMMENT (Ctrl+T) for whichever variables you want 
% to plot: 

  
% % Supply Air Relative Humidity 
% plot(cu4data_condensed(beg:finish,1),cu4data_condensed(beg:finish,5),'k') 
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% % CFM (airflow) 
% plot(cu4data_condensed(beg:finish,1),cu4data_condensed(beg:finish,6),'k') 
%  
% CU4 Product Air Temperature (F) 
plot(cu4data_condensed(beg:finish,1),cu4data_condensed(beg:finish,7),'b') 
%  
% % CU4 Product Air Relative Humidity 
% plot(cu4data_condensed(beg:finish,1),cu4data_condensed(beg:finish,8),'k') 
%  
% CU4 Working Air Temperature (F) 
plot(cu4data_condensed(beg:finish,1),cu4data_condensed(beg:finish,9),'r') 
% 
% % Difference between Product and Working air temperatures (F) (requires 
% % dryout.m to be run beforehand) 
% plot(cu4data_condensed(beg:finish,1),dryout(beg:finish,2),'g') 
% plot(cu4data_condensed(beg:finish,1),0,'g') 
%  
% % CU4 Working Air Relative Humidity 
% plot(cu4data_condensed(beg:finish,1),cu4data_condensed(beg:finish,10),'g') 
%  
% CU4 Power 
plot(cu4data_condensed(beg:finish,1),cu4data_condensed(beg:finish,11)*20,'m') 
%  
% % L3M (Coolerado Panel) Power 
% 

plot(cu4data_condensed(beg:finish,1),cu4data_condensed(beg:finish,12)*10,'b') 
%  
% % Water Use (all Coolerados) (quarts/6min interval) 
% plot(cu4data_condensed(beg:finish,1),cu4data_condensed(beg:finish,13)) 

  
% CU4 Input Temperature (F) 
plot(cu4data_condensed(beg:finish,1),cu4data_condensed(beg:finish,14),'k') 

  
% % AHU Supply Air Temperature (F) 
% plot(cu4data_condensed(beg:finish,1),cu4data_condensed(beg:finish,15),'c') 

  
% % AHU Supply Air Relative Humidity 
% plot(cu4data_condensed(beg:finish,1),cu4data_condensed(beg:finish,16),'g') 

  
% % South Cool Aisle Temperature (CU8) (F) 
% plot(cu4data_condensed(beg:finish,1),cu4data_condensed(beg:finish,17),'g') 

  
% % AHU Supply Air Dewpoint (calculated) (F) 
% plot(cu4data_condensed(beg:finish,1),cu4data_condensed(beg:finish,18),'k') 

  
datetick('x','mm/dd HH:MM','keepticks') 
% set(figure(1),'Position',[10,500,1110,437]) 

  
% End cu4plot.m 
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Figure 53. Model vs. Field Data Comparison: MTC 1-5 

 

 

Figure 54. Model vs. Field Data Comparison: MTC 6-10 
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Figure 55. Model vs. Field Data Comparison: MTC 11-15 

 

Figure 56. Model vs. Field Data Comparison: MTC 16-22 
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Figure 57. Airflow and wet-bulb effectiveness sensitivity to product height ratio; 35 inlets. 

 
Figure 58. Airflow and wet-bulb effectiveness sensitivity to product height ratio; 39 inlets. 
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Figure 59. Airflow and wet-bulb effectiveness sensitivity to product height ratio; 43 inlets. 

 
Figure 60. Airflow and wet-bulb effectiveness sensitivity to hole diameter. 
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Figure 61. Airflow and wet-bulb effectiveness sensitivity to divider width. 

Table 19. Divider widths used for sensitivity simulations. 

 
 

 
Figure 62. Airflow and wet-bulb effectiveness sensitivity to hole location. 
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Figure 63. Airflow and wet-bulb effectiveness sensitivity to waterfilm thickness. 

 
Figure 64. Airflow and wet-bulb effectiveness sensitivity to water conductivity. 
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Figure 65. Airflow and wet-bulb effectiveness sensitivity to elevation. 

 

 
Figure 66. Airflow and wet-bulb Effectiveness sensitivity to additional product channels. 
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