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Isbuga, Volkan (Ph.D., Civil, Enviromental and Architectural Engineering)

Finite strain micromorphic finite element analysis of elastoplastic geomaterials

Thesis directed by Dr. Richard A. Regueiro

A three dimensional micromorphic finite strain linear isotropic elastoplastic model for

geomaterials is developed and implemented into a finite element code. First, we present the

finite element formulation and implementation for the finite strain elasticity together with

various examples to investigate the effects of the additional degrees of freedom, additional

elastic moduli, length scale, and boundary conditions on micro-displacement tensor field that

are all introduced by the micromorphic continuum. We present some findings and results

of the finite element analysis of one dimensional and three dimensional problems. Three

dimensional results demonstrate that the micromorphic contribution leads to unpredicted

behavior under three dimensional stress states, whereas a one dimensional example presents

comparatively clear trends for different cases. Examples also present length scale effects

and computational benefits of the formulation by direct finite strain elasticity by providing

a comparison with rate form of semi implicit time integration formulation in the Total

Lagrangian finite element implementation.

The work, then, is extended to finite strain micromorphic elastoplasticity by using

slightly different types of yield criteria. We assume yield functions to be in the form of

standard Drucker-Prager yield condition and a similar form of a Drucker-Prager-like yield

function. The effect of elastic length scale is investigated in a one dimensional problem,

together with the different yield functions and micro boundary conditions. We also consider

a plain strain problem as more advanced geometry compared to the one dimensional example.

The results which are obtained by Drucker-Prager-like yield criterion including micromorphic

terms for this plain strain problem are presented to compare the effect of different number

of additional degrees of freedom and the effect of the boundary conditions on the micro-
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displacement tensor field as well.
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Chapter 1

Introduction

1.1 Motivation: Concurrent Multiscale Computational Modeling for Bound

and Unbound Particulate Materials

The ultimate goal of multiscale modeling is to use lower length scale analytical/nu-

merical modeling to better inform the ‘macro’-scale model of interest, and to do so in a

computationally-efficient manner. With regard to localized deformation (shear banding,

fracture, large deformation adjacent to a contacting deformable body, ...), this takes on the

additional challenge that the boundaries of the lower length scale model (we will call “grain-

scale"",or “mesoscale”, see Figures 1.3, 1.4) must be handled carefully so as not to artificially

influence the resulting numerical simulations of localized deformation (Figures 1.1, 1.2). The

primary motivation for the research proposed for this thesis is to address such

boundary condition (BC) issues, while properly upscaling/informing/coupling to the

macroscale simulation domain. This will be done by developing a finite strain micromor-

phic elasto-plasticity model (Figure 1.6) in a coupling/overlapping/handshaking region (see

Figure 1.5 for unbound particulate material, and Figure 1.7 for penetration into bound par-

ticulate material). Because some of the classes of materials of interest are bound (Figure

1.3) and unbound particulate materials (Figure 1.4) that are frictional in nature, a pressure-

sensitive finite strain micromorphic elastoplastic model is formulated and implemented in a

research finite element code, Tahoe sourceforge.net/projects/tahoe.

The failure in bound particulate materials may be considered as the combination of



2

some processes such as grain and matrix deformation, intra-granular cracking, matrix crack-

ing, inter-granular cracking/debonding. The global boundary conditions on the materials

can influence the resulting failure mode. One example of that is shown in Figure 1.1 which

presents that the confinement pressure influences fragmentation and causes the micro-cracks

to coalescence and fracture. The bound particulate materials contain grains bound by a

matrix. The heterogeneous particulate structure of these materials governs their response

at grain/micro-to macro-scales especially in initial boundary value problems in which the

localized deformation may form. The cracking in the asphalt, Figure 1.3, shows the physical

problem of localized deformation in another bound particulate material.
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Figure 1.1: 2D FE/CSE dynamic simulations of inter-granular cracking (bottom) in brittle bound
particulate material Kraft et al. (2008) showing effect of BCs (top, bottom) on coalesced micro-
cracks into fracture.
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(a) 3D view (b) 2D view

(c) force-displacement curves

Figure 1.2: Cross-sectional views of pile penetration (showing the medium container with 4260 el-
lipsoidal particles), and force-displacement curves showing influence of boundaries on pile resistance
force Yan et al. (2010).
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(a)

(b)

(c)

Figure 1.3: Grain-scale influence on fracture in asphalt: (a) road section, (b) close-up of fracture
pattern, and (c) grain-binder fracture path (no intra-granular fracture observed).
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(a) Granular material like sand
(image courtesy of Khalid Alshibli,
University of Tennessee, Knoxville)

(b) Picture is from http://geosystems.ce.gatech.edu
/Faculty/Mayne/Research/index.html

Figure 1.4: (a) Sand grains (b) Cone penetrometers

Multiscale modeling may be a way to account for the micro-structural behavior of the

bound particulate materials, in which particles/grains are connected by a binder material,

such as concrete(aggregate and cement), asphalt (aggregate and viscoelastic binder), sand-

stone (sand and clay matrix), etc., and also unbound particulate materials, in which no

binder exists, such as sand, gravel. Multiscale methods are expected to give accurate results

but with less computational cost compared to Direct Numerical Simulation (DNS) over the

whole spatial domain of interest (Fish (2006)).

Fish (2006) reviewed the methods available to bridge the grain/particle/fibers and

macro continuum scales by grouping them into two main parts as: information-passing (hi-

erarchical) methods and concurrent methods. The information-passing methods in which

discrete scale and continuum scale is modeled separately but the overall response of the dis-

crete system is transferred to the continuum scale are divided into subclasses as: Force field

calibration, generalized mathematical homogenization, quasi continuum, multiscale enrich-

ment based on the partition of unity, variational multiscale methods, heterogeneous multi-

scale method, coarse-grained molecular dynamics, discontinuous Galerkin method, equation

free method, proper orthogonal decomposition, the Kinetic Monte Carlo based information

passing methods, atomistically informed dislocation dynamics, for instance. Whereas in
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continuum region (FE)

finite element nodes whose motion is prescribed 

by underlying particles

finite element nodes whose motion is unprescribed

free particles

ghost particles (particles whose motion is prescribed 

by continuum displacement and rotation fields)

overlap region

between particle

and continuum

particle region (DE)
Q

Q̂

D

D̂

B̄h

B̃h

B̂h

BDE

Figure 1.5: Two-dimensional illustration of the coupling between particle and micromorphic con-
tinuum regions. The purple background denotes the FE overlap region B̃h with underlying ghost
particles, aqua blue the FE continuum region B̄h with no underlying particles, and white back-
ground (with brown particles) the free particle region B̂h ∪ BDE. In summary, the finite element
domain Bh is the union of pure continuum FE domain B̄h, overlapping FE domain with under-
lying ghost particles B̃h, and overlapping FE domain with underlying free particles B̂h, such that
Bh = B̄h∪ B̃h∪ B̂h. The pure particle domain with no overlapping FE domain is indicated by BDE .

concurrent methods the discrete scale and continuum scale should be simultaneously re-

solved, oftentimes involving a "handshaking" or overlapping region Liu et al. (2006). The

concurrent methods are classified as: Domain bridging based concurrent multiscale method,

local enrichment based concurrent multiscale method, multigrid based concurrent multiscale
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P̄

C̄ ′
Ξ̄

F e, χe

F p, χp

dV̄ ′

dV̄

P (X ,Ξ)
p(x, ξ, t)

X1

X2

X3

C̄

C
c

C ′

c′

Ξ

ξ

X

xX ′

x′

F , χ

dV

dv

dV ′

dv′

B

B̄

B0

Figure 1.6: Multiplicative decomposition of deformation gradient F and micro-deformation tensor
χ. Geometrical points (“macro-elements”) with centroids C, C̄, and c live in their respective config-
urations: P ∈ B0, P̄ ∈ B̄, and p ∈ B. Material points (“micro-elements”) with centroids C ′, C̄ ′, and
c′. Differential vectors and deformable directors are mapped accordingly: dx = F dX, dx = F edX̄ ,
dX̄ = F pdX, ξ = χΞ, ξ = χeΞ̄, and Ξ̄ = χpΞ.

method.

1.1.1 A Possible Approach to Concurrent Multiscale Modeling

Discrete element method (DEM)(Cundall and Strack (1979); Scott and Craig (1980);

Bashir and Goddard (1991); Anandarajah (1994); Wren, J.R. and Borja, R.I. (1997); Luding

et al. (2001); Masson and Martinez (2001)) can treat each particle with their real physical
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particulate micro-structural DNS region 

(DE and/or FE/CSE)

micromorphic continuum FE region

coupling region 

(micromorphic continuum FE 

to particulate micro-structural DNS)

deformable solid body (projectile)

continuum FE mesh

bound particulate material (target)

multi-scale computational model
v

Figure 1.7: 2D illustration of concurrent computational multi-scale modeling approach in the con-
tact interface region between a bound particulate material (e.g., ceramic target) and deformable
solid body (e.g., refractory metal projectile). The DE and/or FE representation of the particulate
micro-structure is intentionally not shown in order not to clutter the drawing of the micro-structure.
The grains (binder matrix not shown) of the micro-structure are ‘meshed’ using DEs and/or FEs
with cohesive surface elements (CSEs). The open circles denote continuum FE nodes that have
prescribed degrees of freedom (dofs) D̂ based on the underlying grain-scale response, while the solid
circles denote continuum FE nodes that have free dofs D governed by the micromorphic continuum
model. We intentionally leave an ‘open window’ (i.e., DNS) on the particulate micro-structural
mesh in order to model dynamic failure. If the continuum mesh overlays the whole particulate
micro-structural region, as in Klein and Zimmerman (2006) for atomistic-continuum coupling, then
the continuum FEs would eventually become too deformed by following the micro-structural motion
during fragmentation. The blue-dashed box at the bottom-center of the illustration is a micromor-
phic continuum FE region that can be converted to a DNS region for adaptive high-fidelity material
modeling as the projectile penetrates the target.

sizes separately. The method takes into account the contacts between the particles rather

than applying a homogenization rule over the domain. Therefore, DEM may be the most

suitable approach to model the granular materials. However, DEM requires extensive com-



10

putational power which does not make it very useful for many problems even for small

regions. One approach to utilize this method is to couple the DEM method with higher

order continuum models.

Although DEM is an effective approach for modeling the micro-structure, its applica-

bility is limited by the available computational power. A proposed approach by Regueiro

(2010) aims to resolve this problem by developing a concurrent multiscale model which is

coupling the region of the dry flowing particulate to the region of continuum deformation. In

this method, the total domain is simply formed by subregions shown in the figures 1.5 and

1.7; (i) the first region is consisting of only discrete particles modeled by DEM. This particle

region is including particle mechanics and assumed to go under large deformation. Thus, it

important here is to apply the higher-resolution models; (ii) the second region is the overlap

region which is bridging the particulate structure to the FE micromorphic continuum field

and it is including ghost particles whose motion is prescribed by the continuum field; (iii) the

third region is the modeled again by the FE micromorphic higher order continuum theory

but with underlying free particles. The regions, (ii) and (iii) have a lower-resolution model

compared to the part (i), although it has a better and higher-resolution approach than the

classical continuum theory; (iv) the last region is the FE micromorphic continuum region

which is assumed to not to have any underlying structure. Compared to modeling the whole

region by DE, this approach provides a computationally less expensive, thus, preferable

approximation to the problem without ignoring underlying micro-structure.

The particle-continuum coupling method is following the method called “ bridging

scale decomposition” proposed by Wagner and Liu (2003) and then developed by Klein and

Zimmerman (2006). The method is known to minimize the fictitious forces which occurs due

to improper distribution of the potential energy in the overlap region for quasi-static case and

wave reflections for dynamic case. However, these two studies were based on the atomistic

structure coupling with continuum region. In the current research, the atomistic structure

is replaced by particulate structure. Besides, this approach will have a different energy
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partitioning and it will involve the only quasi-static case. The proposed approach by Regueiro

(2010) is involving the inelastic deformation modeling in both particle and continuum regions,

and providing a higher resolution over the continuum regions by introducing higher order

micromorphic continuum theory. The kinematics of the coupling may be summarized by

using the same notation of Wagner and Liu (2003); Klein and Zimmerman (2006). The

particle displacements and rotations are defined as:

Ŭ =

[
uα, uβ, ...., uγ , θα, θβ, ... , θγ

]T
, α, β, ....., γ ∈ Ă (1.1)

where uα is the α particle’s displacement, θα is the α particle’s rotation and Ă is the set

of all particles. Likewise, the nodal displacements and micro-displacement gradient fields

associated with the finite element mesh are :

D̆ =

[
da, db, ...., dc, φa, φb, ..., φc

]T
, a, b, ....., c ∈ N̆ (1.2)

where da is the displacement of the node a, φa is the micro-displacement gradient field at

the node a, N̆ is the set of the all nodes. The particles shown in the overlap region in the

Figure 1.5 are called the “ghost particles” and their motions are prescribed by the continuum

displacement field. It can be written as Û ∈ Â, where Û shows the prescribed particle

motions. The unprescribed particle motions are denoted by U and U ∈ A where Â∪A = Ă

and Â ∩ A = ∅. Likely, the node displacements and micro-deformation of continuum finite

element on the particle region are prescribed by the particle motion and represented as

D̂ ∈ N̂ , and the unprescribed node displacements and micro-deformations are D ∈ N,M

where N̂ ∪ N = N̆ , N̂ ∩ N = ∅. The energy partitioning will follow the concept in Klein

and Zimmerman (2006) and it depends on the DE equations for particles and micromorphic

continuum FE equations for the continuum field on the overlap region.

Coupling and bridging should not be confused by each other. Coupling mentioned

above means taking part interactively between particle and micromorphic continuum region

and vice versa. Whereas, bridging between underlying particle structure and overlaying
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continuum scale is an issue accounted by micromorphic continuum theory within a finite

strain inelastic constitutive model proposed by Regueiro (2009),Regueiro (2010) (the details

on this model and its application to a soil model will be given in the next chapters).

Eringen (1999) states that if the ratio of the characteristic length associated with the

applied load to the internal characteristic length is close to one, then, the response of the

particles may change the behavior of the body dramatically. It must be noted that we have

a pure particle approach in particle region in which the particle dimensions (characteristic

length) become a very important factor. Therefore, having extra degrees of freedom, the

micromorphic continuum theory helps to define proper B.C.’s on particles in the overlap

region, thereby, it is expected to provide a smoother transition between the regions. The

standard continuum models do not have this extra kinematic property so that the BC’s

may not simulate this transition and also the shear bands in particle region. Since the

micromorphic continuum theory involves plasticity parameters, initially, the micromorphic

continuum and particle region will be assumed to overlap each other completely so that these

parameters can be obtained by inverse analysis via the particle based triaxial compression

simulation tests. For fully overlapped regions, these particle scale parameters can be related

to micromorphic continuum scale parameters via a homogenization approach with weighted

averaging integrals for each desired field. If the averaging operator is shown by 〈•〉 , for

instance, Cauchy stress tensor σ and higher order stress tensor m can be obtained as:

σij
def
=
〈
σparticleij

〉
, mijk

def
=
〈
σparticleij ξk

〉
(1.3)

It may be summarized that the higher order continuum theories are more applicable

than the standard continuum theories in modeling (Chambon et al., 2004; Regueiro, 2009,

2010) when (i) size effects of the micro-structure becomes important under large deformation

gradient as in granular materials, (ii) strain localization which yields to failure occurs, (iii)

bridging the different scales in the multiscale modeling is needed. The theory of higher order

micromorphic continuum including balance equations and definition of the higher order stress
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tensors appearing in the balance equations will be explained in the next sections.

1.2 Background on Generalized Continuum Theories

The classical continuum theories have been applied widely to model the behavior of

physical bodies which may be subjected to some external forces, for instance: mechanical

forces such as traction forces or subjected to some body forces such as gravity and magnetism.

Generally, these bodies may be in the form of a collection of many deformable sub-bodies.

The classical continuum approaches ignore the micro continua of a body, accordingly, the

independent micro particulate motion and its contribution on the total response to the

applied forces. This kind of continua, formed by many small bodies and whose material

points are endowed with additional degree of freedoms, are referred as generalized continua

(E. Kröner, ed. (1968),Green and Naghdi (1995)). Therefore, a continuum theory which

incorporates the local motion of sub-bodies in the continuum body by introducing additional

degrees of freedom with higher derivatives of a continuum field can be shown to provide a

means for accounting for these sub-bodies’s physical response on the overall continuum body.

One important potential use for generalized continua is to bridge the length scale of

the micro-structure on mesoscale to the macro-scale engineering applications (see previous

section). The significant aspect of bridging the grain/particle/fiber micro-structure to the

macro continuum is to transfer the essential information from the micro-structure to macro

continuum response while proposing a cost efficient approach which is needed to apply to

solve problems for the region of interest.

The classical continuum theories with constitutive relations accounting for the mi-

crostructural mechanics have been applied to model the granular materials(Christoffersen

et al. (1981); Rothenburg and Selvadurai (1981); Jefferson et al. (2002); Chang et al. (1992);

Gardiner and Tordesillas (2004); Luding (2004); Nemat-Nasser (2004); Peters (2005)). These

approaches were mainly based on the particle contact interaction and aimed to infuse partic-

ulate structure into continuum theory. A wide range of study exists in the literature on the
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constitutive modeling for granular media which is not possible to review here, however, some

of the recent research give an overall idea about common assumptions for the derivations of

these approaches. For instance, Chang et al. (1992) described a model to predict the initial

moduli, secant moduli and damping ratio of the granular materials at small strain and stress

strain behavior of the material subjected to different stress paths at large strains. In the same

work for finite strain case, they introduced the term “micro-elements” which are formed by

spherical particles. In their approach, they had to idealize the material with certain number

of the micro-elements which were consisting of the same micro-elements but rotated on the

axes. They observed similar behavior for sands under different loading conditions. Jefferson

et al. (2002) presented a discrete element model for a cohesive aggregate consisting of elastic

particles. A superposition approximation was utilized to obtain the coupled force and dis-

placement on a particle due to interaction by neighbor particles within the aggregate. The

model was found capable to capture the rigid body rotations of the aggregate, however, it

was stated by the authors that the relative rotational motion between particles were ignored

and additional rotational degrees of freedom are required to capture the particle rotations

and moments. Gardiner and Tordesillas (2004) proposed a model incorporating the sliding

and non sliding particles contact as well as rolling resistance of the particles and loss of

contacts among them. It was based on homogenization for the discrete elements at small

strains. The stress tensor and the higher order stress tensor appearing in the micro-polar

theory, constitutive laws, were determined by these homogenization integrals.

Generally, these approaches are limited by rigid body rotation of elastic, small strain

response of a single particle, particle cluster or some formations including these particles

such as micro-element as aforementioned above. Often times, the main assumption made in

these models is limiting the micro-structural behavior to have only rigid rotations, although

the particles(or,rather, cluster of particles) represent not only micro-rotation but also micro-

shear and micro-dilatation/compaction(stretch). The research on the constitutive modeling

for granular media is on going and, for the readers interested in this topic, the more detailed
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reviews and the methods are available in the literature, such as Kolymbas (2000).

1.3 Summary and Comparison of Modeling Efforts on Micromorphic Con-

tinua

Generalized continua are classified into two main categories; (i) the higher grade con-

tinua in which displacement field and its higher derivatives are involved such as strain gra-

dient methods, (ii) the higher order continua in which additional independent kinematic

degrees of freedom and higher order stresses are incorporated at each material point in the

continuum (Forest and Sievert (2003)).

As aforementioned, the higher order (or generalized) continua incorporates additional

independent kinematic degrees of freedom. A higher order continuum may be called differ-

ently depending on the number of additional independent kinematic degrees of freedom it

involves. Eringen (1999) classifies the theories as: The first and the most generalized case of

the higher order continuum is the micromorphic case which has nine extra degrees of freedom

through the unsymmetric micro deformation tensor χ which is actually representation of a

material point with three deformable directors. Then, the microstretch continuum is the case

of four extra degrees of freedom which are three microrotations and one microstretch. Lastly,

the micropolar continuum has three extra degrees of freedom which are only microrotations

which occurs when a material point has three rigid directors.

A wider classification of the generalized continuum theories (based on the degrees of

freedom they include) at finite strain and at infinitesimal strain cases can be summarized in

the following table:
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Table 1.1: Hierarchy of the generalized continua by Forest and Sievert (2006)

Name
Number
of DOF

DOF
(finite case)

DOF
(infinitesimal

case)
References

Cauchy 3 u u

Truesdell
and Toupin

(1960)

Microdilation 4 u, χ u, χ -

Cosserat 6 u, r u,Φ

Cosserat
and

Cosserat
(1909);
Eringen
(1968b)

Microstretch 7 u, χ, r u, χ,Φ
Kafadar and

Eringen
(1971)

Incompressible
microstrain

8 u,
χ
C

det(
χ
C) = 1

u,
χ
ε

trace(
χ
ε) = 0

-

Microstrain 9 u,
χ
C u,

χ
ε

Forest and
Sievert
(2006)

Incompressible
micromorphic

11
u,χ

det(χ) = 1
u,χ

trace(χ) = 0
-

Micromorphic 12 u,χ u,χs + χa

Eringen and
Suhubi
(1964);
Mindlin
(1964)

In the table above, u is the displacement vector, r is the independent micro-rotation

tensor in finite strain case, Φ is the independent micro-rotation tensor for infinitesimal case,

χ is the scalar representing the microdilatation, χ is the microdeformation tensor,
χ
C = χTχ
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is the tensor with the components of the symmetric right Cauchy-Green tensor associated

with the microdeformation tensor,
χ
ε is a symmetric tensor defined by

χ
ε = χs−1, χs and χa

are the symmetric part and antisymmetric part of the microdeformation tensor respectively.

Efforts on modeling generalized continua may be said to start with the Cosserat broth-

ers who introduced three additional degrees of freedom to the standard Cauchy continuum

(Cosserat and Cosserat, 1909). The theory assumed that each material point is represented

by a rigid body including three additional degrees of freedom which correspond to the rigid

body rotations of particles (or sub-continuum bodies) also called microrotations. The the-

ory has been developed and generalized by the contributions of many authors by the time.

Some of these works and some kinematics relations which were used to derive the balance

equations and these resulting equations are briefly mentioned below.

Mindlin (1964) for small strain theory assumed that in each material volume V which

has the material position vector Xi and bounded by a surface S has an embedded micro

volume with material position vector X ′
i before deformation and the spatial position vector

x′i after deformation. The macro displacement u also was expressed as:

ui = xi −Xi (1.4)

and the micro displacement u′ was defined as:

u′i = x′i −X ′
i (1.5)

Then, it was assumed that the micro displacements can be written as a function of the

specified spatial micro position vector x′i and an arbitrary function that depends on the

macro spatial position vector xi and time t as:

u′i = x′kψki(x, t) (1.6)

The displacement gradients were assumed small so that the displacement gradients in mate-

rial and spatial coordinate system were approximately the same (small strain and rotation
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assumption).
∂ui
∂Xj

≈
∂ui
∂xj

def
= ∂jui,

∂u′i
∂X ′

j

≈
∂u′i
∂x′j

def
= ∂′ju

′
i (1.7)

where the macro displacement and the micro displacement were defined, respectively, as

ui = ui(xi, t) and u′i = u′i(xi, x
′
i, t). Then, the macro strain, the micro displacement gradient,

the micro deformation gradient, and the relative deformation, were obtained respectively as:

εij =
1

2
(ui,j + uj,i) (1.8)

∂′iu
′
j = ψij (1.9)

κijk = ∂iψjk (1.10)

γij = ∂iuj − ψij (1.11)

A graphical interpretation of the displacement gradient, micro displacement gradient, and

relative deformation, may be shown in Figure 1.8. The micro strain and micro rotation was

Figure 1.8: Graphical representation of γ12 component of the relative deformation by Mindlin (1964).

defined respectively by the symmetric part and antisymmetric part of ψij as :

ψ(ij) =
1

2
(ψij + ψji) (1.12)

ψ[ij] =
1

2
(ψij − ψji) (1.13)
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The physical explanation of the some components of micro deformation gradient κijk

and associated higher order stress tensor µijk appearing in Mindlin (1964) can be shown

in Figure 1.9. Following the kinematic assumptions mentioned above, Mindlin (1964) for-

mulated an approach in small strain linear elasticity with micro-structure and obtained the

stress equations of motions and constitutive equations as well. The assumed potential func-

tion, stress definitions and field equations will be mentioned here without the details in order

to point out the differences with the work proposed by Eringen and Suhubi (1964), however,

the constitutive equations and details on the formulation will not be considered. Mindlin

Figure 1.9: Graphical interpretation of higher order stress tensor by Mindlin (1964).

assumed a potential energy function which depends on ε, γ and κ as:

W = W (ε,γ,κ) (1.14)

then, applying the Hamilton’s principle and defining the stress tensors as:

τij =
∂W

∂εij
(1.15)

σij =
∂W

∂γij
(1.16)
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µijk =
∂W

∂κijk
(1.17)

resulted in the field equations:

∂i(τij + σij) + fj = ρüj (1.18)

∂iµijk + σjk + Φjk =
1

3
ρ′d2ljψ̈lk (1.19)

where

d2kl = dpdq (δp1δq1lk1ll1 + δp2δq2lk2ll2 + δp3δq3lk3ll3) (1.20)

and the boundary conditions are:

tj = ni(τij + σij) (1.21)

Tjk = niµijk (1.22)

where ρ′ is the mass of the micro material per unit macro volume, di are the edge lengths of a

parallelepiped considered as micro-volume, lij is the direction cosines with respect to axes x′i,

Φij is a tensor representing body double force per unit volume which is work conjugate to ψij ,

τij is the symmetric Cauchy stress tensor which is the work conjugate to εij, σij was called

“relative stress” tensor by Mindlin and work conjugate to γij tensor, and the higher order

stress tensor µijk is called “double stress tensor” in which the components are interpreted as

the double forces and work conjugate to κijk.

Eringen and Suhubi (1964) proposed a finite strain theory to provide field equations,

boundary conditions and constitutive equations for a micromorphic continuum by making

use of kinematic relations mentioned below.

They started with a representative macro volume element, dV , in the reference con-

figuration, with a differential mass dM and associated mass center X. The macro element

occupies a space after deformation in spatial coordinates with a center x. The macro ele-

ments were assumed to involve micro volume elements, dV ′, in the reference configuration.
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A material point in reference configuration has a position vector expressed with X ′ also

occupies a unique point in spatial coordinates x′ after deformation that means a one to one

mapping which can be defined as (see Figure 1.10):

x′ = x(X ′, t), X ′ =X(x′, t) (1.23)

It was assumed that there was a continuous mass density over the macro element. Then,

the total mass of the macro differential volume element dM was assumed to be average of

local masses of the micro volume element by some integral approximations as follows:

ˆ

dV

ρ′0dV
′ = ρ0dV,

ˆ

dv

ρ′dv′ = ρdv (1.24)

where ρ′0, ρ
′ are the mass densities, respectively, at material point X ′ and spatial point

x′. The average mass densities of the undeformed macro differential volume dV and the

deformed macro differential volume dv are ρ0 and ρ respectively. It should be noted that all

the quantities associated with the microelements are primed letters.

A point in the micro volume at undeformed and deformed configurations, respectively,

X ′ and x′ can be expressed in terms of the mass center point coordinates of the macro

volume X and the relative position vector with respect to the macro volume mass center Ξ

as:

X ′ =X +Ξ , x′ = x+ ξ (1.25)

where ξ = ξ(X,Ξ, t). It was assumed that for small length of Ξ, ξ can be accepted as the

analytical function of Ξ and written as:

ξ = ξ(X, 0, t) +
∂ξ

∂Ξ
Ξ+H.O.T. (1.26)

Since ξ(X, 0, t) = 0 if Ξ = 0, and the higher order terms (H.O.T.) are ignored, this equation

reduces to

ξ =
∂ξ

∂Ξ
Ξ (1.27)
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and a micro deformation tensor is defined as:

χ
def
=

∂ξ

∂Ξ

∣∣∣∣
Ξ=0

=⇒ ξ = χΞ (1.28)

x′

X ′

X

X1

X2

X3

x

x1

x2

x3

Ξ

ξ
C

C ′

c c′

P (X,Ξ)

p(x, ξ, t)
B

B0

dV

dv

dV ′

dv′

t = t0

t = t

Figure 1.10: Deformation of macro differential volume and micro differential volume by Eringen

(1968a).

The equation (1.28) is based on the assumption of the affine transformation of macro differ-

ential volume dV (but the overall continuum body B 0 can deform heterogeneously). Then,

with this assumption, the spatial position vector of the micro differential volume centroid

can be written as:

x′ (X,Ξ, t) = x (X, t) + ξ (X,Ξ, t) (1.29)
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Then, taking time derivative of the equation (1.29) by keeping X and Ξ fixed gave :

ẋ′ = ẋ+ χ̇Ξ (1.30)

= ẋ+ χ̇χ−1ξ (1.31)

v′ = v + νξ (1.32)

where

ν = χ̇χ−1 (1.33)

where v′ is the velocity vector of the micro differential volume in the current configuration,

v is the mean velocity vector of the macro differential volume in the current configuration,

and ν is the micro-gyration tensor. Similarly, the acceleration vector a′ for micro differential

volume was defined by taking the second time derivative of the displacement field as:

a′ = ẍ′ = ẍ+ χ̈χ−1ξ + χ̇χ̇−1ξ + χ̇χ−1ξ̇ (1.34)

a′ = a+ (ν̇ + νν) ξ (1.35)

The deformation measures which were constructed to be invariant under the rigid body

motions were defined in Cartesian coordinates as:

CKL = xk,Kxk,L , ΨKL = xk,KχkL , ΓKLM = xk,KχkL,M (1.36)

where xk,K = ∂xk
∂XK

. This set of deformation measures can be found by calculating the square

of the deformed arc length starting from writing the incremental form of the equation (1.29)

as (Suhubi and Eringen (1964); Eringen (1999)):

dx′k = xk,KdXK + χkKdΞK + χkK,LΞKdXL (1.37)

the square of the arc length in the current configuration is:

(ds′)
2
= dx′kdx

′
k = [xk,Kxk,L + 2(xk,Kχk,L + xk,LχkM,K)ΞM

+χkM,KχkN,LΞMΞN ] dXKdXL

+2(xk,KχkL + χkLχkM,KΞM)dXKdΞL + χkKχkLdΞKdΞL (1.38)
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where χkL = ΨKLXK,k and χkL,M = ΓKLMXK,k. If the deformation measures defined in the

equation (1.36) are inserted in the equation (1.38), it becomes:

(ds′)2 =
(
CKL + 2ΞMΓKML + ΞMΞNΓPMLΓRNKC

−1
PR

)
dXKdXL

+ 2
(
ΨKL + ΞMΨNLΓRMKC

−1
NR

)
dΞKdXL

+ΨMKΨNLC
−1
MNdΞKdΞL (1.39)

where C−1
KL = XK,kXL,k. It is seen from the equation (1.39) that the arc length can be

expressed in terms of the deformation measures defined in the equation (1.36). The different

deformation measures have been defined by different authors (Eringen and Suhubi (1964);

Suhubi and Eringen (1964); Sansour (1998); Forest and Sievert (2003, 2006)) for the various

constitutive assumptions. We will use the set in Suhubi and Eringen (1964) which comprise

one distinct set.

In order to obtain the local balance of momenta at mass center of the macro differential

volume at deformed configuration, Eringen and Suhubi (1964) multiplied the Cauchy’s law of

motion with the two weight functions separately and integrated it over the macro differential

volume (details about deriving the balance equations and approach will be given in section

2.2). It resulted in the two balance equations; (i) the well known balance of linear momentum,

and (ii) the balance of first moment of momentum. They may be given in the Cartesian

coordinate system as:

σlk,l + ρ(fk − ak) = 0 (1.40)

σml − sml +mklm,k + ρ(λlm − ωlm) = 0 (1.41)

where σlk are the components of the unsymmetric Cauchy stress, ρ is the mass density, fk

are the components of the body force vector per unit mass, ak are the components of the

acceleration vector per unit mass, sml are the components of the symmetric micro-stress

tensor, mklm are the components of the higher order couple stress, λlm are the components

of the body force couple tensor per unit mass, ωlm are the components of the micro-spin
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inertia tensor per unit mass. This research is following the method of Eringen and Suhubi

(1964) in application of the finite strain plasticity approach proposed by Regueiro (2010),

therefore, the balance equations will be visited separately in the next chapters while giving

the detail on the finite strain elasticity equations.

Germain (1973) provided a new approach in determining the balance equations of the

generalized continua by implementing the classical method of virtual work principle. The

method presented that the virtual power method can be a short way and an applicable tool

besides the conventional methods used by other researchers in the literature. He mentioned

that the significant point in constructing a continuum theory is to choose the kinematics

relations which will be used in the virtual power method. In his work, Germain assumed

that there was a continuum particle point P (M) of small extent with the mass center M ,

then there exist a point M ′ in the P (M). The coordinates of M and M ′ were denoted by x

and x′ respectively. The velocity of the M was shown by Ui and the velocity of M ′ was shown

by U ′
i . Taylor expansion of U ′

i with respect to x′ was given for the first order approximation

as:

U ′
i = Ui + χijx

′
j (1.42)

where χij is the gradient of the relative velocities of P (M). The relative microvelocity, ηij ,

and the gradient of the microdeformation tensor, κijk, were defined similarly by Mindlin

(1964)’s approach but in terms of gradient of the velocities as:

ηij = Ui,j − χij , κijk = χij,k (1.43)

By choosing the independent kinematic fields as Ui and χij , and the first gradient theory

which indicates that the first gradients of the chosen fields with their work conjugate stresses

will be also in the virtual power density, the virtual power of the internal forces, P(int),

was consisting of the linear combination of the set Ui,j, ηij,κijk and their work conjugates

σij , sij, νijk respectively. Then, omitting the details, the virtual power of the internal forces
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in the domain D was expressed as:

P(int) =

ˆ

D

{(σij + sij)Ui,j − sijχij + νijkκijk} dv (1.44)

Then, the virtual power of external forces was introduced as:

P(ext) =

ˆ

D

(fiUi +Ψijχij) dv (1.45)

and the virtual power of the contact forces was also expressed as:

P(cont) =

ˆ

S

(TiUi +Mijχij) dA (1.46)

where fi are the components of the body force vector, σij are the components of the in-

trinsic part of the stress tensor, sij are the components the microstress tensor, νijk are the

components of the second microstress tensor, Ψij are called the components of a volumetric

body force couple, Mij are the components of a double force traction tensor, and Ti are the

components the traction vector. The power of the internal forces should be equal to the

summation of the power of the external and the contact forces as :

P(int) = P(ext) + P(cont) (1.47)

For arbitrary variations of Ui and χij , one can get the equations below:

τij = σij + sij (1.48)

τij,j + fi = 0 (1.49)

sij + νijk,k +Ψij = 0 or τij − σij + νijk,k +Ψij = 0 (1.50)

with boundary conditions

Ti = τijnj (1.51)

Mij = νijknk (1.52)

where τ is the Cauchy stress tensor. In summary, if we compare all these three methods, we

see that although the balance equations obtained by these three authors are including the
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higher order stress tensors and/or microstress tensors as a result of accounting for micro-

continuum, the resulting balance equations are different. Mindlin (1964) applied Hamilton’s

principle to derive the governing equations and assumed a potential energy density which

depends on the deformation measures that he chose. Then, he defined the stresses as the

partial derivative of the potential energy function. However, Germain (1973) applied the

virtual power method and found different field equations depending on the different stress

tensors than those of Mindlin. On the other hand, Eringen and Suhubi (1964) wrote bal-

ance equations for microfield and applied an integral averaging method with a variational

approach to obtain the macro continuum field equations. As forementioned, the micro-stress

tensor, the higher order couple stress tensor, Cauchy stress tensor, body force per unit mass

tensor and micro spin inertia tensor were given in integral form by Eringen and Suhubi

(1964). Defining especially the macro stress tensors in integral form provides an insight for

physical meanings of these tensors which are based on the micro field parameters.

Lastly, we may summarize some of the recent research on micromorphic continua very

briefly. Sansour (1998) modified the strain measure set used by Eringen and his co-workers

to be invariant with respect to not translations but rotations only. Sansour introduced the

constitutive laws in the microstructure scale and introduced an approach for modeling finite

strain viscoplasticity. He obtained higher order stress tensors with some integral averaging

definitions of microstructure which were assumed to be computed numerically. However,

Sansour did not carry his work on a detailed formulation of micromorphic elastoviscoplastic

constitutive model.

Vernerey et al. (2007) applied a multiscale micromorphic model for hierarchical ma-

terials. They followed the approach of Mindlin (1964) and Germain (1973). The theory

considered the material in different scales depending on the variations in its inherent mi-

crostructure such as mass density variation at different I scales. The assumed virtual power

density was a linear combination of velocity of macroscale, velocity differences between macro

and microscale, and velocity gradient of microscale. The work conjugate to these measures
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were defined respectively as the macrostress, the microstress, and the microstress couple

which were defined in a statistical averaging manner. Having I different scales, the virtual

power density involves a summation of velocity differences between macro and each I th mi-

cro scale and velocity gradient each I th microscale. The first governing equation in which

the summation of the microstresses are subtracted from the macrostress reduces to the well

known balance of linear momentum if these microstresses are ignored. The second governing

equation was expressed as the local equilibrium between microstresses and written for each

microscale separately.

Lee and Chen (2003) formulated the constitutive equations for micromorphic thermo-

plasticity using the Eringen and Suhubi (1964)’s kinematics and balance laws. Their work

was different than that of Regueiro (2009, 2010) in a sense that they applied entropy in-

equality in Lagrangian form and used Lagrangian definitions of the strain tensors and their

time rates as well as temperature and its spatial and time derivatives rather than utilizing

multiplicative kinematics and intermediate configuration.

Forest and Sievert (2003, 2006) reviewed the models for generalized continua. Forest

and Sievert (2003) constructed a framework for elastoviscoplastic constitutive modeling of

generalized continua. They applied virtual power method in formulating the balance equa-

tions as Germain (1973). They used different invariant deformation measures than the set

proposed by Eringen (1999) and also used by Regueiro (2010, 2009) which will be followed

in this research.

The research on the generalized continuum theories in the both higher order continua

and higher grade continua is still on going. Since our interest is on the micromorphic con-

tinuum, we do not review the higher grade continuum theories here. However, for the higher

grade continua, the strain gradient methods for elastic and inelastic application have been

done by the many authors. Some examples on higher grade media can be given as Mindlin

and Eshel (1968); Ramaswamy and Aravas (1998); Zervos et al. (2001, 2009); Chambon et al.

(2004, 2001b,a); Tamagnini et al. (2001); Matsushima et al. (2000); Voyiadjis and Al-Rub
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(2005); Forest and Sievert (2006, 2003).

Forest and Sievert (2006) gave some guidelines based on the previous research done

in literature to choose the proper higher order continuum or higher grade continuum in

modeling material response. According to Forest and Sievert (2006) and references therein,

use of microdilatation theory which is including only one additional degree of freedom may be

an efficient way in modeling the material in which the microvolume changes are important. If

the rotation effects are dominant, as mentioned in previous sections, the Cosserat continuum

(or Micropolar) can be applied to simulate the material behavior. The microstretch theory,

on the other hand, was found to be applicable in modeling deformations of biomaterials.

The microstrain theory was candidated in order to model the strain localization in metallic

foams where the other higher order continuum models are neither appropriate nor sufficient.

Some of the recent works are: Sansour et al. (2010) presented a formulation for the mi-

cromorphic continuum at finite strains inelasticity by following his previous work (Sansour,

1998) that is within viscoplasticity concept. In his work, he specifically mentioned the impor-

tance of choice of additional degrees of freedom; Zhang et al. (2011b) presented a small strain

micromorphic mixed hardening plasticity model to capture the size effect and Bauschinger

effect in cyclic response of thin films; Zhang et al. (2011a) used to same approach to analyze

the wedge indention of a thin film on a substrate by using elasto-plasticity;Grammenoudis

et al. (2009) and Grammenoudis et al. (2010),respectively, demonstrated the theoretical for-

mulation of finite deformation plasticity a micrmorphic continuum coupled with damage and

small deformation plasticity coupled with damage, together with the implementation.

1.4 Determining the Micromorphic Material Parameters

Apparently, one of the main issues in implementation will be the determination of the

additional micromorphic material parameters. To determine the micromorphic parameters,

it may be possible to make use of the underlying DNS domain by assuming that the mi-

cromorphic continuum FE and underlying DNS synthetic domain are initially completely
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overlapped. The material parameters of DNS domain can be determined by using existing

experimental data or some future experiments. To use this approach, various simulations on

the DNS domain may be performed and micromorphic continuum homogenization (Figure

1.11) can be utilized to calculate stresses and deformation. Then, having the stresses and

deformation, we may be able to do an inverse analysis to fit the micromorphic parameters.

The micromorphic homogenization formula is expressed below to express how to relate a

micro-scale field parameter to its corresponding micromorphic continuum field parameter by

using a weighted average of a micro-scale field given below.

am
def
= 〈amicro〉 def

=
1

υω,avg

ˆ

υω,avg

ω (r, θ, ϑ)amicrodv (1.53)

where am is a micromorphic continuum scale field, amicro is the corresponding micro-scale

field, 〈.〉 shows the averaging operator, υω,avg def
=
´

Ωavg ω (r, θ, ϑ) dv is the weighted average

current volume, ω (r, θ, ϑ) is the kernel function, ξ is the relative position vector within

the the macro-element with respect to its centroid, Ωavg is the micro-scale domain. In the

equation (1.53), the left hand side will be equal to the micromorphic parameter.

Another approach proposed by Vernerey et al. (2007) may be also applicable to deter-

mine these parameters. As mentioned in the previous section, they have multiple scales in

their work. In determination of the elasticity constants, they introduced also the meso-scale

in the transition of the macro-scale and micro-scale. They applied an integral averaging ap-

proach to micro-scale fields in the meso-scale domain to obtain the elasticity constants. This

approach may be utilized in DNS micro-scale domain a similar way to determine integral

averaged elasticity constants. Then, they can be assigned to the micromorphic elasticity

constants.

1.5 Novel Contributions of This Research

The main contribution of this research is that we developed a finite strain linear

isotropic elastoplastic model which is based on the most general case of the higher order
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Figure 1.11: Two-dimensional illustration of micromorphic continuum homogenization of micro-scale
response at a Gauss integration point x in the overlap region

continua (micromorphic continuum) and implemented it into the open source finite element

code “Tahoe”. These contributions will enable future researchers to resolve the issues about

the artificial boundary condition influence on the numerical simulations in the coupling/over-

lapping/handshaking region. To determine the necessary parameters appearing in the theory,

we considered the positiveness of the strain energy and related the additional elastic mod-

uli to the existing elastic Lamé parameters as proposed by other researchers in literature.

We investigated the proper boundary conditions to be used on the micro-field. Then, it is

expected to be computationally possible to make use of this higher order continuum theory

to be used in the proposed concurrent multiscale context aforementioned above. This will

allow us to model the problems in engineering science by allowing multiscale methods to

reduce the computational cost associated with attempting to predict at the grain-scale, the
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interfacial mechanics problem (deformable solid and particulate material) and/or localized

deformation in particulate materials.
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Table 1.2: Notations used in this work

Notations Definitions
u displacement vector
Φ micro-displacement tensor
χ micro-deformation tensor
σ unsymmetric Cauchy stress tensor in current configuration
S Second Piola Kirchhoff tensor in reference configuration
S̄ Second Piola Kirchhoff tensor in intermediate configuration
s symmetric micro stress tensor in current configuration
Σ symmetric micro stress tensor in reference configuration
Σ̄ symmetric micro stress tensor in intermediate configuration
m higher order couple stress tensor in current configuration
M higher order couple stress tensor in reference configuration
M̄ higher order couple stress tensor in reference configuration

body force vector per unit mass
a acceleration vector per unit mass
λ body force couple tensor per unit mass
ω micro-spin inertia per unit mass
nel number of elements
nuen number of elements nodes for u
nχen number of elements nodes for χ
nsd number of spatial dimensions
Nu
a shape functions associated with u

grad (Nu) gradient of Nu in current configuration
GRAD (Nu) gradient of Nu in reference configuration
Nχ
a shape functions associated with χ

grad (Nχ) gradient of Nχ in current configuration
GRAD (Nχ) gradient of Nχ in reference configuration
div (.) divergence operator
δ (.) variation operator
λ, µ, τ, η, σ, κ, ν elastic material moduli in micromorphic continuum
τ1, τ2, τ3, τ4, τ5, τ6, τ7, τ8, τ9, τ10, τ11 elastic parameters in micromorphic continuum
λ∗, µ∗ Lamé parameters
e element number
nu,edof = nsd ∗ nuen number of element degrees of freedom u

nχ,edof = nsd ∗ nsd ∗ nχen number of element degrees of freedom χ



Chapter 2

Finite Strain Micromorphic Elasticity

In this chapter, we review the theory of finite strain micromorphic elasticity proposed

by the authors Eringen and Suhubi (1964) in detail. We start with kinematics, then we re-

view the balance equations and thermodynamics. Constitutive equations for material linear

isotropic elasticity at finite strain and their maps into current configuration will be presented

afterward. Then, we consider the positive definiteness of the strain energy and how this con-

dition introduces the restrictions on the elastic moduli of a micromorphic continuum. This

chapter ends with the simplification of the model to small strain micropolar elasticity.

2.1 Kinematics

In Chapter 1, we summarized the kinematics for the finite strain micromorphic elas-

ticity given by Eringen and Suhubi (1964). We go through the kinematics mentioned in the

previous section and give more details about derivation of the terms in the theory actually

proposed by the authors Eringen and Suhubi (1964); Suhubi and Eringen (1964); Eringen

(1968a, 1999).

Eringen (1999) explains the kinematics of the micromorphic continuum as follows: Let

a material point P (macroelement) have the centroid P1 which have a position vector X

in a body consisting of deformable particles and some vectors attached to this point which

are accounting for the inherent structure (microelements) of the body and denoted by Ξα,

α = 1, 2, ..., N . Eringen (1999) defined this medium as microcontinuum with grade N and
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he classified all the microfield theories; micromorphic, micropolar, and microstrech theories

as the microcontinuum field theories of grade 1 (α = 1). The material point P (X,Ξ) was

defined with its centroid C and the vectors attached to this point Ξ in reference configu-

ration. The motion maps this material point P (X,Ξ) and Ξ respectively, to p (x, t) and

ξ (X,Ξ, t) and the centroid, C, to the centroid, c, of the deformed element in the spatial

configuration. Then, the macromotion which is mapping the macroelement in reference con-

figuration to macroelement in spatial configuration, and the micromotion which is mapping

the microelement in reference configuration into microelement in spatial configuration were

defined, respectively, as (Eringen (1999)):

X → x = x (X , t) (2.1)

Ξ → ξ = ξ (x,Ξ, t) (2.2)

The micromotion was approximated with a linear expansion of Ξ that is called affine (or

homogenous) deformation. This is a valid assumption considering the size of the microele-

ments which is assumed to be very small compared to that of macroelement. As mentioned

in previous chapter, this assumption yields the first degree approximation of Taylor’s ex-

pansion of Ξ where we rewrite equation (1.28) in indicial notation and in terms of X and t

as:

ξk = χkK (X, t) ΞK (2.3)

where k = 1, 2, 3 and K = 1, 2, 3. The relative position vectors Ξ and ξ are defined as

the relative position of the center of microelements, respectively, C ′ and c′ with respect to

maco-element centroids (Figure 1.10). Then, the position vector of a point (previously given

in equation (1.29)) in the particle in deformed configuration was defined in terms of X ,Ξ

and t as:

x′ (X,Ξ, t) = x (X, t) + ξ (X,Ξ, t)
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The motions given by equations (2.3) and (2.1) have unique inverse motions defined by:

XK = XK (x, t) (2.4)

ΞK = XKk (x, t) ξk (2.5)

where k,K = 1, 2, 3. Having a unique inverse of the both motions indicates continuity and

no matter loss. Then, if we substitute equation (2.5) in equation (2.3), we get:

ξk = χkKXKlξl (2.6)

then from the equation above, someone can get:

χkKXKl = δkl (2.7)

and similarly we can find

XKkχkL = δKL (2.8)

To show the derivation of material time derivatives of the kinematic terms, we start with

the gyration tensor given in equation (1.33) as:

νkl = χ̇kKXKl (2.9)

Then, multiplying both sides with χlL, we get:

νklχlL = χ̇kKXKlχlL (2.10)

νklχlL = χ̇kKδKL (2.11)

it gives:

χ̇kL = νklχlL (2.12)

and material time derivative of the equation (2.7) is:

χ̇kKXLk + χkKẊLk = 0 (2.13)
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If we multiply this equation with XKm, we get;

χ̇kKXLkXKm + χkKẊLkXKm = 0 (2.14)

and applying equation (2.12) gives:

νklχlKXLkXKm + χkKẊLkXKm = 0 (2.15)

it can be found as:

ẊLm = −νkmXLk (2.16)

If we take the material time derivative of (2.3) and apply the equation (2.12), we get ξ̇ as:

ξ̇k = χ̇kKΞK (2.17)

ξ̇k = νklχlKΞK (2.18)

then, ξ̇ can be found as:

ξ̇k = νklξl (2.19)

The velocity and acceleration of the microfield have been already expressed in equations

(1.32) and (1.35) respectively. The mass of the macro-elements have been expressed in terms

of the integral sum of the microelements in equation (1.24) in previous chapter. The mi-

croelement and macro-element masses were assumed to be conserved during the deformation

and expressed respectively as:

ρ′0dV
′ = ρ′dv′, ρ0ιkldV = ρdv (2.20)

and principal of conservation of mass in current configuration can be expressed by:

D (ρdv)

Dt
= 0, or

∂ρ

∂t
+ (ρvk),k = 0 (2.21)

The relative position vectors Ξ and ξ also were given to satisfy the expressions below which

are the first moment of the micro-elements with respect to centroids of the macroelements,

respectively, in deformed and undeformed configurations.
ˆ

dV

ρ′0ΞdV
′ = 0,

ˆ

dv

ρ′ξdv′ = 0 (2.22)
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The second moments of ρ′0dV
′ and ρ′dv′ were given by:

ρ0IKLdV =

ˆ

dV

ρ′0ΞKΞLdV
′, ρ0dv =

ˆ

dv

ρ′ξkξldv
′ (2.23)

The displacement field of macrocontinuum can be defined with well know definition in con-

tinuum mechanics as:

xk,K = Xk,K + uk,K (2.24)

xk,K = (δLK + UL,K) δkL (2.25)

Eringen (1968b) proposed a similar definition for the microdisplacement tensor, ΦLK (X, t),

and explained the details on the kinematics as follows :

χkK = (δLK + ΦLK) δkL (2.26)

then, he inserted equations (2.25) and (2.26) into the deformation measures given in equation

(1.36) and obtained deformation measures in terms of macro and micro displacements as:

CKL = δKL + UK,L + UL,K + UM,KUM,L (2.27)

ΨKL = δKL + ΦKL + UL,K + UM,KΦML (2.28)

ΓKLM = ΦKL,M + UN,KΦNL,M (2.29)

Although we use finite strain measures in the analysis, it will be useful to show how they

reduce to small strain elasticity by ignoring the higher order terms that gives a linear ap-

proximation to the equations above as:

CKL ≈ δKL + UK,L + UL,K (2.30)

ΨKL ≈ δKL + ΦK,L + UL,K (2.31)

ΓKLM ≈ ΦKL,M (2.32)
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the linearized strain tensors EKL,EKL, and ΓKLM may be defined based on equations from

(2.30) to (2.32) as:

EKL =
1

2
(CKL − δKL) =

1

2
(UK,L + UL,K) (2.33)

EKL = ΨKL − δKL = ΦKL + UL,K (2.34)

ΓKLM = ΦKL,M (2.35)

Then, these linearized strain measures given in equations (2.33),(2.34), and (2.35) take the

forms below in current configuration.

ekl =
1

2
(uk,l + ul,k) (2.36)

ǫkl = φkl + ul,k (2.37)

γklm = −φkl,m (2.38)

These linearized strain tensors in reference and current configuration will be used, respec-

tively, in Section 2.6 to show simplification of constitutive equations of a micromorphic small

strain elasticity to that of small strain micropolar elasticity, and in Section 2.5 to express

the restrictions on the elastic material moduli of a micromorphic continuum.

Remember the square of the arc length in current configuration was expressed in equa-

tion (1.38), the square of the arc length in reference configuration can be also found as:

(dS ′)
2
= dX ′ · dX ′ (2.39)

= (dXK + dΞK) (dXK + dΞK)

(dS ′)
2
= δKLdXKdXL + 2δKLdXKΞL + δKLdΞKdΞL (2.40)

the difference between the squares of arc lengths in reference and current configuration follow

from equation (1.38) and equation (2.40):

(ds′)
2 − (dS ′)

2
=
(
2EKL + 2ΞMΓKML + ΞMΞNΓPMLΓRNKC

−1
PR

)
dXKdXL

+ 2
(
EKL + ΞMΨNLΓRMKC

−1
NR

)
dΞMdXL

+
(
ΨMKΨNLC

−1
MN − δKL

)
dΞKdΞL (2.41)
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For the linear theory, this equation reduces to :

(ds′)
2 − (dS ′)

2
≈ 2 (EKL + ΞMΓKML) dXKdXL

+ 2 (EKL + ΓLMKΞM) dΞMdXL

+ (EKL + ELK − 2EKL) dΞKdΞL (2.42)

It can be easily seen that when EKL = EKL = 0 and ΓKLM = 0, it represents the rigid body

motion since no change in arc length will occur associated with the deformation.

2.2 Balance Equations and Thermodynamics

This section is devoted to balance equations of a micromorphic continuum and the

stress definitions appearing in these equations. To obtain the balance of momenta, Erin-

gen and Suhubi (1964) started with the local form of balance of momentum and angular

momentum, respectively, at a point in a micro-element in deformed configuration as:

σ′
kl,k + ρ′ (f ′

l − a′l) = 0 (2.43)

σ′
kl = σ′

lk (2.44)

where σ′
kl is the Cauchy stress tensor for micro element, f ′

l and a′l are the body force vector

per unit mass over the micro-element and acceleration respectively. They multiplied equation

(2.43) by a function ϕ′ def= ϕ′ (x′) and integrated over the volume v. The function ϕ′ (x′) was

assumed for special cases (1) ϕ′ = 1 and (2) ϕ′ = x′m = xm + ξm as mentioned in chapter

one, choosing ϕ′ = 1 gave:

ˆ

v

[
ˆ

dv

σ′
kl,kϕ

′dv′ +

ˆ

v

ρ′ (f ′
l − a′l)ϕ

′dv′
]
dv = 0 (2.45)

and apply

σ′
kl,kϕ

′ = (σ′
klϕ

′),k − σ′
klϕ

′
,k (2.46)
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if equation (2.46) is inserted into (2.45), we get:

ˆ

v

[
ˆ

dv

(
(σ′

klϕ
′),k − σ′

klϕ
′
,k

)
dv′ +

ˆ

dv

ρ′ (f ′
l − a′l)ϕ

′dv′
]
dv = 0 (2.47)

ˆ

s

[
ˆ

da

σ′
klϕ

′n′
kda

′

]
da+

ˆ

v

[
ˆ

dv

(
−σ′

klϕ
′
,k + ρ′ (f ′

l − a′l)ϕ
′
)
dv′
]
dv = 0 (2.48)

ˆ

s

σklnkda+

ˆ

v

ρ (fl − al) dv = 0 (2.49)

where

ˆ

da

σ′
kln

′
kda

′ def= σklnkda,

ˆ

dv

ρ′f ′
ldv

′ def= ρfldv,

ˆ

dv

ρ′a′ldv
′ def= ρaldv (2.50)

Now, chose ϕ′ = x′m = xm + ξm

ˆ

v

[
ˆ

dv

σ′
kl,kx

′
mdv

′ +

ˆ

dv

ρ′ (f ′
l − a′l) x

′
mdv

′

]
dv = 0 (2.51)

ˆ

s

(σklxm +mklm)nkda+

ˆ

v

(−slm + ρ (fl − al) xm + ρ (λlm − ωml)) dv = 0 (2.52)

where the definitions below were used

smldv
def
=

ˆ

dv

σ′
mldv

′ , mklmnkda
def
=

ˆ

da

σ′
klξmn

′
kda

′ (2.53)

ρλlmdv
def
=

ˆ

dv

ρ′f ′
l ξmdv

′ , ρωlmdv
def
=

ˆ

dv

ρ′ξ̈lξmdv
′ (2.54)

The quantities; ρ, σkl, fk, al, sml, mklm, λml, and ωml were already explained in Section 1.3. To

convert surface integrals to volume integrals Eringen and Suhubi (1964) applied Green-Gauss

theorem which is defined as:

ˆ

∂Υ−ς

Aknkda =

ˆ

Υ−ς

Ak,kdv +

ˆ

ς

[[Ak]]nkda (2.55)

where Ak is any vector, Υ is the volume, ∂Υ is the surface, and ς is the surfaces, nk is the

normal to the discontinuity surface. The exclusion of discontinuity surface from volume and

surface are shown respectively as:

Υ− ς
def
= Υ−Υ ∩ ς, ∂Υ− ς

def
= ∂Υ− ∂Υ ∩ ς (2.56)
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and [[Ak]] denotes the jump of Ak across the discontinuity surface ς. Applying the Green-

Gauss theorem to surface integrals in (2.45) and (2.52) gave:

ˆ

v

(σkl,k + ρ (fl − al)) dv −
ˆ

sd

[[σkl]]nkda = 0 (2.57)

and

ˆ

v

{xm [σkl,k + ρ (fl − al)] + σml − sml +mklm,k + ρ (λml − ωml)} dv

−
ˆ

sd

[[σklxm +mklm]]nkda = 0 (2.58)

From (2.58) they got the local balance of momenta on volume v as previously mentioned in

chapter one:

σlk,l + ρ(fk − ak) = 0 (2.59)

σml − sml +mklm,k + ρ(λlm − ωlm) = 0 (2.60)

with jump conditions on sd :

[[σkl]]nk = 0, [[σklxm +mklm]]nk = 0 (2.61)

and the boundary conditions on s :

σlknk = tk (2.62)

mklmnk = Tlm (2.63)

They followed the same approach to derive the balance law of the micromorphic con-

tinuum. The local conservation of energy at a point in deformed configuration was given

as:

ρ′ė′ = σ′
klv

′
l,k + q′k,k + ρ′r′ (2.64)

where e′ is the internal energy density, r′ is the heat source per unit mass of micro-element,

q′k is the heat flux vector. Then, (2.64) was integrated over the volume v as:

ˆ

v

[
ˆ

dv

ρ′ė′dv′ =

ˆ

dv

σ′
klv

′
l,kdv

′ +

ˆ

dv

q′k,kdv
′ +

ˆ

dv

ρ′r′dv′
]
dv (2.65)
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the internal energy density per unit mass of macro element was defined by:

ρedv
def
=

ˆ

dv

ρ′e′dv′ (2.66)

and the left hand side of equation (2.65) was written as:

ˆ

dv

ρ′e′dv′ =
D

Dt

ˆ

dv

ρ′e′dv′ =
D

Dt
(ρedv) = ρėdv (2.67)

Note that equation (2.21) was applied in equation (2.67). Similarly, heat source average per

unit mass of macro-element was given by:

ρrdv
def
=

ˆ

dv

ρ′r′dv′ (2.68)

and the heat flux vector of the macro-element is:

ˆ

v

(
ˆ

dv

q′k,kdv
′

)
=

ˆ

s

(
ˆ

ds

q′kn
′
kda

′

)
=

ˆ

s

qknkda (2.69)

Then,

qknkda
def
=

ˆ

ds

q′kn
′
kda

′ (2.70)

the second term in equation (2.65) can be written as:

ˆ

v

(
ˆ

dv

σ′
klv

′
l,kdv

′

)
dv =

ˆ

v

(
ˆ

dv

(σ′
klv

′
l)k dv

′

)
dv −

ˆ

v

(
ˆ

dv

σ′
kl,kv

′
ldv

′

)
dv

=

ˆ

v

(
ˆ

da

σ′
klv

′
lnkda

′

)
dv −

ˆ

v

(
ˆ

dv

σ′
kl,kv

′
ldv

′

)
dv (2.71)

Using equation (1.32) for microvelocity v′ gives:

ˆ

v

(
ˆ

dv

σ′
klv

′
l,kdv

′

)
dv =

ˆ

v

(
ˆ

dv

ρ′ (a′k − f ′
k) (vl + νlmξm) dv

′

)
dv

=

ˆ

v

(ρ (ak − fk) vl + ρνlm (λlm − ωlm)) dv (2.72)

Applying the definitions of ρfldv, ρaldv, ρλlmdv, and ρaldv results in:

ˆ

v

ρėdv =

ˆ

s

(σlkvl +mklmνlm + qk)nkda

+

ˆ

v

(ρ (fl − al) vl + ρ (λlm − ωlm)) dv (2.73)
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and by converting the surface integrals to volume integrals, they got:

ˆ

v

[ρė− σlkvl,k −mklmνlm,k − qk,k − ρr] dv

−
ˆ

v

[(σkl,k + ρfl − ρal) vl − (mklm,k + ρλlm − ρωlm) νlm] dv

−
ˆ

s

[σklvl +mklmνlm + qk]nkda = 0 (2.74)

and using equations of balance of momenta (2.59) and (2.60) balance of energy was given as:

ρė = σklvl,k + (slk − σlk) νlk +mklmνlm,k + qk,k + ρr in v (2.75)

with jump condition:

[[σklvl +mklmνlm + qk]]nk = 0 on sd (2.76)

Assuming discontinuous surface sd is equal to continuous surface s which gives continuity of

vk, and νlm and considering equation (2.61), (2.76) reduced to:

qknk = qn on s (2.77)

Introducing the Helmholtz free energy in terms of energy density, temperature and

entropy gives:

ψ = e− θη (2.78)

where η is entropy, θ is the temperature. Then, η̇ can be expressed as:

η̇ =
ė

θ
− ψ̇

θ
− θ̇η

θ
(2.79)

the second law of thermodynamics can be expressed as:

d

dt

ˆ

v

ρηdv −
ˆ

ds

1

θ
qknkda−

ˆ

v

(
ρh

θ

)
≥ 0 (2.80)

time differentiation and converting surface integral to volume integral gives:

ˆ

v

[
ρη̇ −

(qk
θ

)
,k
− ρh

θ

]
dv ≥ 0 (2.81)
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the local form of the integral is:

ρη̇ −
(qk
θ

)
,k
− ρh

θ
≥ 0 (2.82)

inserting equation (2.79) into equation (2.82), solving equation (2.75) for r and inserting into

equation (2.82), they obtained Clausius-Duhem inequality for the micromorphic continuum

as:

−ρ
(
ψ̇ + ηθ̇

)
+ qk

θ,k
θ

+ σklvl,k + (skl − σkl) νlk +mklmνlm,k ≥ 0 (2.83)

2.3 Constitutive Equations for Material Linear Isotropic Elasticity at Finite

Strain

Clausius-Duhem inequality given in equation (2.83) in the previous section takes the

form given below in reference configuration by using the relation ρ = ρ0/J , dv = JdV , and

qkθ,k = QKθ,K
1
J
.

ˆ

B0

{− 1

J
ρ0

(
ψ̇ + ηθ̇

)
+ σkl (νl,k − vlk) + sklvlk + νlm,kmklm +

1

J

1

θ
QKθ,K}JdV ≥ 0 (2.84)

the local form of the equation is:

−ρ0
(
ψ̇ + ηθ̇

)
+ Jσkl (νl,k − vlk) + Jsklvlk + Jνlm,kmklm +

1

θ
QKθ,K ≥ 0 (2.85)

for isothermal and homogeneous temperature problems, the Clausius-Duhem inequality in

reference configuration reduces to:

−ρ0ψ̇ + Jσkl (νl,k − vlk) + Jsklvlk + Jνlm,kmklm ≥ 0 (2.86)

The stress tensors σkl, skl, and mklm are mapped to reference configuration by the relations:

σlk =
1

J
FlLSKLFkK (2.87)

slk =
1

J
FlLΣKLFkK (2.88)

mklm =
1

J
FkKFlLMKLMχmM (2.89)
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Note that the first two equations (2.88) and (2.87) map to the current configuration by

well know Piola transform relation. However, equation (2.89) involves the microdeformation

tensor χ in the mapping. This difference actually comes from the definition of the higher

order couple stress tensor in current configuration. The definition of the higher order stress

couple tensor may be expressed in current configuration by a volume average definition

instead of area average definition as (Regueiro (2010)):

mklmdv
def
=

ˆ

dv

σ′
klξmdv

′ (2.90)

and applying Piola transform to S ′
KL and mapping ξm to reference configuration by ξk =

χkKΞK , dv′ = J ′dV ′ give:

mklmdv
def
=

ˆ

dv

σ′
klξmdv

′ =

ˆ

dV

F ′
kKF

′
lLχmMSKLΞMdV

′ (2.91)

FkKFlLχmMMKLMdV
def
=

ˆ

dV

F ′
kKF

′
lLχmMSKLΞMdV

′ (2.92)

and

mklmJdV = FkKFlLχmMMKLMdV

mklm =
1

J
FkKFlLχmMMKLM (2.93)

where F ′
kK is the micro-element deformation gradient will be given in detail in the next

chapter. Note that micro-deformation tensor χkK can be pulled out from the integral as it

is not a function of X ′
K(Eringen and Suhubi (1964)).

Eringen and Suhubi (1964) assumed a strain energy function in terms of the defor-

mation gradient tensor FkK , the micro-deformation tensor χkK , and the micro-deformation

gradient tensor χkK,L for a micromorphic elastic material as :

ρ0ψ (FkK , χkK , χkK,L) (2.94)

Then, the strain energy function rate can be expressed as :

ρ0ψ̇ =
∂ (ρ0ψ)

∂FkK
ḞkK +

∂ (ρ0ψ)

∂χkK
χ̇kK +

∂ (ρ0ψ)

∂χlK,L
χ̇lK,L (2.95)



47

where ρ̇0 = 0 for a single phase solid material. Inserting this equation given above into

equation (2.86) yields:

−
(
∂ (ρ0ψ)

∂FlK
ḞlK +

∂ (ρ0ψ)

∂χlK
χ̇lK +

∂ (ρ0ψ)

∂χlK,L
χ̇lK,L

)
+ Jσkl

(
ḞlKF

−1
Kk

−χ̇lKχ−1
Kk

)
+ Jsklχ̇lKχ

−1
Kk + Jmklm

(
χ̇lK,Lχ

−1
KmF

−1
Lk + χ̇lKχ

−1
Km,LF

−1
Lk

)
≥ 0 (2.96)

after collecting the terms with the same multiplier;

(
JσklF

−1
Kk −

∂ (ρ0ψ)

∂FlK

)
ḞlK +

(
Jsklχ

−1
Kk − Jσklχ

−1
Kk + Jmklmχ

−1
Km,LF

−1
Lk

−∂ (ρ0ψ)
∂χlK

)
χ̇−1
lK +

(
Jmklmχ

−1
KmF

−1
Lk − ∂ (ρ0ψ)

∂χlK,L

)
χ̇lK,L ≥ 0 (2.97)

For this equation to hold with the stress mapping relations given from (2.87) to (2.89):

J

(
1

J
FkASABFlB

)
F−1
Kk =

∂ (ρ0ψ)

∂FlK
(2.98)

J

(
1

J
FkAΣABFlB

)
χ−1
Kk = FkC

∂ (ρ0ψ)

∂FaC
F−1
DaFlDχ

−1
Kk +

∂ (ρ0ψ)

∂χlK

+ FkEFlFχmG
∂ (ρ0ψ)

∂χbG,E
F−1
Fb χ

−1
KaχaR,Lχ

−1
RmF

−1
Lk (2.99)

J

(
1

J
FkAFlBχmCMABC

)
χ−1
KmF

−1
Lk =

∂ (ρ0ψ)

∂χlK,L
(2.100)

After some algebra definitions of stress tensors at reference configuration in terms of Helmholtz

free energy function per unit mass ψ, deformation gradient FkK , and microdeformation tensor

χkK were obtained as (Regueiro (2010)):

SKL =
∂ (ρ0ψ)

∂FkK
F−1
Lk (2.101)

ΣKL =
∂ (ρ0ψ)

∂FkK
F−1
Lk + F−1

KcχcA
∂ (ρ0ψ)

∂χaA
F−1
La

+ F−1
KdχdM,E

∂ (ρ0ψ)

∂χfM,E
F−1
Lf (2.102)

MKLM =
∂ (ρ0ψ)

∂χkM,K

F−1
Lk (2.103)

Another approach is to express the strain energy function in terms of the invariant elastic

deformation measures given in equation (1.36) which are invariant with respect to rigid body
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motion on current configuration and proposed by Eringen and Suhubi (1964).

ρ0ψ (C,ψ,Γ) , or ρ0ψ (CKL, ψKL,ΓKLM) (2.104)

Quadratic form assumption for the Helmholtz free energy function in reference configuration

can be expressed as:

ρ0ψ =
1

2
EKLAKLMNEMN +

1

2
EKLBKLMNEMN

+
1

2
ΓKLMCKLMNPQΓNPQ + EKLDKLMNEMN (2.105)

and the following symmetry properties of these tensor were given by:

AKLMN = AMNKL = ALKMN = ANMKL, BKLMN = BMNKL

CKLMNPQ = CNPQKLM , DKLMN = DLKMN (2.106)

where elastic material moduli tensors AKLMN , BKLMN , DKLMN , and CKLMNPQ were defined

for isotropic solids as (Suhubi and Eringen (1964); Eringen (1999)):

AKLMN = λδKLδMN + µ (δKMδLN + δKNδLM )

BKLMN = (η − τ) δKLδMN + (κ− σ) δKMδLN + (ν − σ) δKNδLM

CKLMNPQ = τ1 (δKLδMNδPQ + δKQδLMδNP ) + τ2 (δKLδMP δNQ + δKMδLQδNP )

+ τ3δKLδMQδNP + τ4δKNδLMδPQ + τ5 (δKMδLNδPQ + δKP δLMδNQ)

+ τ6δKMδLP δNQ + τ7δKNδLP δMQ + τ8 (δKP δLQδMN + δKQδLNδMP )

+ τ9δKNδLQδMP + τ10δKP δLNδMQ + τ11δKQδLP δMN

DKLMN = τδKLδMN + σ (δKNδLM + δLNδKM) (2.107)

where δKL is well known Kronecker delta function defined by:

if K = L, δKL = 1

otherwise δKL = 0 (2.108)
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then, the constitutive equations were obtained as (Suhubi and Eringen (1964); Regueiro

(2010)):

SKL = 2
∂ (ρ0ψ)

∂CKL
+
∂ (ρ0ψ)

∂ΨKB

C−1
LAΨAB +

∂ (ρ0ψ)

∂ΓKBC
C−1
LAΓABC (2.109)

ΣKL = 2
∂ (ρ0ψ)

∂CKL
+ 2sym

[
∂ (ρ0ψ)

∂ψKB
C−1
LAψAB

]
+ 2sym

[
∂ (ρ0ψ)

∂ΓKBC
C−1
LAΓABC

]
(2.110)

MKLM =
∂ (ρ0ψ)

∂ΓLMK

(2.111)

If the strain energy function given in equation (2.105) is inserted and after some algebra, we

get (Regueiro (2010)):

SKL = AKLMNEMN +DKBMNEMN

+ (DKBMNEMN +BKBMNEMN)
[
C−1
LA (EAB + δAB)

]

+ CKBCNPQΓNPQC
−1
LQΓQBC

ΣKL = AKLMNEMN +DKBMNEMN

+ 2sym{(DKLMNEMN +BKBMNEMN)
[
C−1
LAEAB + δAB

]

+ CKBCNPQΓNPQC
−1
LQΓQBC}

MKLM = CKLMNPQΓNPQ (2.112)

Assuming small elastic deformation cancels the quadratic terms out and inserting elastic

moduli tensors given in equations (2.107) in (2.112) gives:

SKL = (λ + τ)EMMδKL + 2 (µ+ σ)EKL + ηEMMδKL + κEKL + νELK (2.113)

ΣKL = (λ + 2τ)EMMδKL + 2 (µ+ 2σ)EKL + (2η − τ)EMMδKL

+ (ν + κ− σ) (EKL + ELK) (2.114)

MKLM = τ1 (ΓKRRδLM + ΓRRLδKM) + τ2 (ΓRKRδLM + ΓRRM δKL) + τ3ΓRRKδLM

+ τ4ΓLRRδKM + τ5 (ΓRLRδKM + ΓMRRδKL) + τ6ΓRMRδKL + τ7ΓLMK

+ τ8 (ΓMKL + ΓKLM) + τ9ΓLKM + τ10ΓMLK + τ11ΓKML (2.115)
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where SKL is the symmetric second Piola-Kirchhoff stress tensor of micro-element in refer-

ence configuration (over dV ), ΣKL is the symmetric second Piola-Kirchhoff micro-stress in

reference configuration, and MKLM is the higher order couple stress in reference configura-

tion.

2.4 Map to Current Configuration

The constitutive equations obtained in reference configuration in equations (2.113),

(2.114), and (2.115) can be mapped to obtain constitutive relations the current configuration

by following the stress mappings given in equations (2.87), (2.88), and (2.89).

σkl =
1

J
[(λ+ τ)EMMFkKδKLFlL + 2 (µ+ σ)FkKEKLFlL + ηEMMFkKδKLFlL

+κFkKEKLFlL + νFkKELKFlL]

skl =
1

J
[(λ+ 2τ)EMMFkKδKLFlL + 2 (µ+ 2σ)FkKEKLFlL

+ (2η − τ)EMMFkKδKLFlL + (ν + κ− σ)FkK (EKL + ELK)FkK ] (2.116)

and

mklm =
1

J
[τ1FkKFlL (ΓKRRχmL + ΓRRLχmK)

+ τ2 (ΓRKRFkKFlLχmL + ΓRRMFkKFlKχmM )

+ τ3FkKFlLχmLΓRRK + τ4ΓLRRFkKFlLχmK

+ τ5 (ΓRLRFkKFlLχmK + ΓMRRFkKFlKχmM )

+ τ6ΓRMRFkKFlKχmM + τ7ΓLMKFkKFlLχmM

+ τ8FkKFlLχmM (ΓMKL + ΓKLM) + τ9FkKFlLχmMΓLKM

+τ10FkKFlLχmMΓMLK + τ11FkKFlLχmMΓKML] (2.117)

introducing γklm = FkKFlLχmMΓKLM , γF,1k = FkKΓKRR, γF,2k = FkKΓRRK , γF,3k = FkKΓRKR,

γF,3k = FkKΓRKR,γχ,1m = χmMΓRRM , γχ,2m = χmMΓMRR, γχ,3m = χmMΓRMR, ψkl = FkKχlK ,

ϑkl = FkKEKLFlL, the left Cauchy-Green strain tensor bkl = FkKFlK , and Eulerian-Almansi
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strain tensor ekl = 1
2

(
δkl − b−1

kl

)
the equations above will reduce to:

σkl =
1

J
[(λ+ τ) tr (E) bkl + 2 (µ+ σ) bkieijbjl + ηtr (E) bkl

+κϑkl + νϑlk] (2.118)

skl =
1

J
[(λ+ 2τ) tr (E) bkl + 2 (µ+ 2σ) bkieijbjl

+ (2η − τ) tr (E) bkl + (ν + κ− σ) (ϑkl + ϑlk)] (2.119)

and

mklm =
1

J

[
τ1

(
γF,1k ψlm + γF,2l ψkm

)
+ τ2

(
γF,3k ψlm + γχ,1m bkl

)

+ τ3γ
F,2
k ψlm + τ4γ

F,1
l ψkm + τ5

(
γF,3l ψkm + γχ,2m bkl

)
+ τ6γ

χ,3
m bkl + τ7γlmk

+ τ8 (γmkl + γklm) + τ9γlkm +τ10γmlk + τ11γkml] (2.120)

where σkl is the unsymmetric Cauchy stress tensor, skl is the symmetric micro stress tensor,

and mklm is the higher order couple stress tensor.

2.5 Positiveness of The Strain Energy Function and Constraints on Elastic

Parameters

The constitutive equations in the standard linear isotropic elastic Cauchy continuum

involves two Lamé parameters. The isotropic micromorphic elasticity approach introduces

five more elastic material moduli in unsymmetric Cauchy stress tensor, as well as in mi-

crostress tensor and eleven elastic constants in higher order couple stress tensor. In order

to achieve the positivity of quadratic energy function, the restrictions among those material

moduli were first proposed by Smith (1968) in the form of inequalities. Smith used the same

strain tensors as Suhubi and Eringen (1964) used in constructing the free energy function.

Eringen (1999) followed Smith’s method to derive the inequalities which puts restrictions on

the material moduli appearing in the constitutive equations obtained by using different set

of deformation measures than that of Smith used. In this section, we present these inequali-

ties proposed by Smith (1968) by following same notation applied in Smith (1968); Eringen
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(1999).

Smith (1968) started with splitting energy function into :

ρW (e, ε,γ) = U (e, ε) + U (γ) (2.121)

where ekl, εkl, and γklm were given in equations (2.36), (2.37), and (2.38) respectively. The

strain energy is to be nonnegative for all the variations in strain measures.

U (e, ε) > 0 for all eij and εij (2.122)

U (γ) > 0 for all γijk (2.123)

where U (e, ε) and U (γ) are respectively given in indicial notations as:

U (ekl, εkl) =
λ

2
(eii)

2 + µeijeji + 2σeijεji +
1

2
(κ− σ) εijεij

+
1

2
(η − τ) (εii)

2 +
1

2
(ν − σ) εijεji + τeiiεjj (2.124)

and

U (γ) =
τ1
2
(γiijγjkk + γijjγkki) +

τ2
2
(γiijγkjk + γijiγkkj) +

τ3
2
γiijγkkj

+
τ4
2
γijjγikk +

τ5
2
(γijjγkik + γijiγjkk) +

τ6
2
γijiγkjk +

τ7
2
γijkγijk

+
τ8
2
(γijkγjki + γijkγkij) +

τ9
2
γijkγikj +

τ10
2
γijkγjik +

τ11
2
γijkγkji (2.125)

Smith (1968) defined set of variables by considering several uncoupled, symmetric, and anti-

symmetric components of strain measures and took the second parial derivative with respect

to those components. This method can be summarized by following Eringen (1999) notation

as follows: U (e, ε), and U (γ) are decomposed into several uncoupled, symmetric quadratic

forms.

(ε11, ε22, ε33, e11, e22, e33) = (x1, x2, x3, x4, x5, x6)

(ε12, ε21, e12) = (y1, y2, y3)

(ε23, ε31, e23) = (z1, z2, z3)

(ε31, ε13, e31) = (ξ1, ξ2, ξ3) (2.126)
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and Eringen (1999) wrote U (e, ε) in terms of these sets as :

U (e, ε) = aijxixj + bklykyl + bklzkzl + bklξkξl (2.127)

we open U (e, ε) to its components as :

U (e, ε) =
λ

2
e11e11 +

λ

2
e22e22 +

λ

2
e33e33 +

λ

2
e11e22 +

λ

2
e22e11 +

λ

2
e22e33

+
λ

2
e33e22 +

λ

2
e11e33 +

λ

2
e33e11 + µe11e11 + µe12e21 + µe13e31

+ µe21e12 + µe22e22 + µe23e32 + µe31e13 + µe32e23 + µe33e33

+ 2σe11e11 + 2σe12e21 + 2σe13e31 + 2σe13e31 + 2σe21e12 + 2σe22e22

+ 2σe31e13 + 2σe32e23 + 2σe23e32 + τe11ε11 + τe11ε22 + τe11ε33

+ τe22ε11 + τe22ε22 + τe22ε33 + τe33ε11 + τe33ε22 + τe33ε33

+
1

2
(κ− σ) ε11ε11 +

1

2
(κ− σ) ε12ε12 +

1

2
(κ− σ) ε13ε13

+
1

2
(κ− σ) ε21ε21 +

1

2
(κ− σ) ε22ε22 +

1

2
(κ− σ) ε23ε23

+
1

2
(κ− σ) ε31ε31 +

1

2
(κ− σ) ε32ε32 +

1

2
(κ− σ) ε33ε33

+
1

2
(η − τ) ε11ε11 +

1

2
(η − τ) ε22ε22 +

1

2
(η − τ) ε33ε33

+
1

2
(η − τ) ε11ε22 +

1

2
(η − τ) ε22ε11 +

1

2
(η − τ) ε22ε33

+
1

2
(η − τ) ε33ε22 +

1

2
(η − τ) ε11ε33 +

1

2
(η − τ) ε33ε11

+
1

2
(ν − σ) ε11ε11 +

1

2
(ν − σ) ε12ε21 +

1

2
(ν − σ) ε13ε31

+
1

2
(ν − σ) ε21ε12 +

1

2
(ν − σ) ε22ε22 +

1

2
(ν − σ) ε23ε32

+
1

2
(ν − σ) ε31ε13 +

1

2
(ν − σ) ε32ε23 +

1

2
(ν − σ) ε33ε33 (2.128)

Then, aij is found to be a 6× 6 symmetric matrix and if we take 1
2

factor out of the matrix,

its components were obtained from equation (2.128) as:



54

a11 = a22 = a33 = (κ + η + ν − τ − 2σ)

a44 = a55 = a66 = λ+ 2µ

a12 = a13 = a23 = a21 = a31 = a32 = η − τ

a14 = a25 = a36 = a41 = a52 = a63 = τ + 2σ

a24 = a34 = a35 = a42 = a43 = a53 = τ

a45 = a46 = a56 = a54 = a64 = a65 = λ (2.129)

Smith (1968) showed by adding and subtracting some rows and columns that the conditions

on the elastic constants to have positive eigenvalues of the matrix aij are:

µ > 0

κ+ ν > 2σ

(κ + ν − 2σ)µ > 2σ2

3λ+ 2µ > 0

κ+ ν + 3µ > 3τ + 2σ

(κ + ν + 3η − 3τ − 2σ) (3λ+ 2µ) > (3τ + 2σ)2 (2.130)

Similarly the components of the matrix bkl are:

b11 = b22 = κ− σ

b12 = b21 = ν − σ

b13 = b31 = b23 = b32 = 2σ

b33 = 4µ (2.131)

Smith (1968) again determined the conditions on elastic constants to have positive roots of

the characteristic equation of bkl which correspond to the eigenvalues of the matrix. We list
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the only different conditions than the conditions listed for the matrix aij as:

κ− ν > 0

4µ (κ + ν − 2σ) > 2σ (2.132)

Although Eringen (1999) followed a different constitutive model than Smith (1968) who

considered the model which is involving the strain measures in Suhubi and Eringen (1964),

the restrictions on τi’s coming from U (γ) are the same. Smith further introduced the two

more symmetric 6×6 and 7×7 matrices dij and cij respectively by taking the second partial

derivative of U (γ) with respect to these sets of variables in the same order :

(γ123, γ231, γ312, γ132, γ321, γ213) = (x1, x2, x3, x4, x5, x6)

(γ111, γ122, γ133, γ212, γ313, γ221, γ331) = (y1, y2, y3, y4, y5, y6, y7) (2.133)

where U (γ) is decomposed into two polynomials including the component of the symmetric

matrices dij and cij as:

U (γ) =

6∑

i=1

6∑

j=1

cijxixj +

7∑

k=1

7∑

l=1

dklxkxl (2.134)

Smith expressed the components of the matrices cij, dij and the restrictive conditions on the

constants respectively as follows:

c11 = c22 = c33 = c44 = c55 = c66 = τ7

c12 = c13 = c23 = c45 = c46 = c56 = τ8

c14 = c35 = c26 = τ9

c24 = c15 = c36 = τ11

c34 = c25 = c16 = τ10 (2.135)

and the components of dij :

d11 = 2τ1 + 2τ3 + τ3 + τ4 + 2τ5 + τ6 + τ7 + 2τ8 + τ9 + τ10 + τ11
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d12 = d13 = τ1 + τ4 + τ5 d14 = d15 = τ2 + τ5 + τ6

d16 = d17 = τ1 + τ2 + τ3 d22 = d33 = τ4 + τ7 + τ9

d23 = τ4 d24 = d35 = τ5 + τ8 + τ10

d25 = d34 = τ5 d26 = d37 = τ1 + τ8 + τ11

d27 = d36 = τ1 d44 = d55 = τ6 + τ7 + τ11

d45 = τ6 d46 = d57 = τ2 + τ8 + τ9

d47 = d56 = τ2 d66 = d77 = τ3 + τ7 + τ10

d67 = τ8

(2.136)

and the restrictions on τi’s are :

τ7 + 2τ8 > |τ9 + τ10 + τ11|

τ7 − τ8 >
1√
2

∣∣(τ9 − τ10)
2 + (τ10 − τ11)

2 + (τ11 − τ9)
2
∣∣1/2

tr(T ) > 0, tr (COT ) > 0, det (T ) > 0 (2.137)

2.6 Simplification to Small Strain Micropolar Elasticity

Eringen (1999) showed that constitutive equations of a micromorphic elasticity can be

simplified to microstretch and micropolar elasticities. Comparison of the constitutive equa-

tions may give us additional opinion about how to relate the material moduli of micostretch

and micropolar theories obtained from previous works. Eringen proposed that this approach

may be used to define additional inequalities among the material constant of a micromorphic

continuum as well . However, Eringen used different set of strain measures accordingly had

different constitutive equations. Here we apply his approach to provide a passage between

micromorphic and micropolar elasticities for the constitutive equations given in the section

2.3.

We can derive the constitutive equations based on small strain assumption in current

configuration in a similar way presented in section 2.3 for reference configuration. There-
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fore, the constitutive equations (2.113), (2.114), and (2.115) can be expressed in current

configuration as (Suhubi and Eringen (1964)):

σkl = (λ+ τ) emmδkl + 2 (µ+ σ) ekl + ηεmmδkl + κεkl + νεlk (2.138)

skl = (λ+ 2τ) emmδkl + 2 (µ+ 2σ) ekl + (2η − τ) εmmδkl

+ (ν + κ− σ) (εkl + εlk) (2.139)

mklm = τ1 (γkrrδlm + γrrlδkm) + τ2 (γrkrδlm + γrrmδkl) + τ3γrrkδlm

+ τ4γlrrδkm + τ5 (γrlrδkm + γmrrδkl) + τ6γrmrδkl + τ7γlmk

+ τ8 (γmkl + γklm) + τ9γlkm + τ10γmlk + τ11γkml (2.140)

where the strain tensors were already defined in equations (2.36), (2.37), and (2.38). If

we write the unsymmetric Cauchy stress tensor in terms of displacement components and

microdeformation components, we get :

σkl = (λ+ τ) um,mδkl + 2 (µ+ σ)uk,l + η (φmm + um,m) δkl

+ κ (φkl + ul,k) + ν (φlk + uk,l) (2.141)

Then, we express the unsymmetric Cauchy stress tensor and the higher order couple stress

tensor in terms of their symmetric and antisymmetric forms.

σ(kl) = [(λ+ τ + η)um,m + ηφmm] δkl + (2µ+ 2σ + κ+ ν) u(k,l)

+ κφ(kl) + νφ(lk) (2.142)

σ[kl] = (2µ+ 2σ + κ)u[k,l] + νu[l,k] + κφ[kl] + νφ[lk] (2.143)

Eringen (1999) provides the passage to microstretch theory by setting:

φ(kl) = φδkl, φ[kl] = −ǫklmφm (2.144)

where ǫklm is the permutation tensor. After substitution, we get:

σkl = [(λ+ τ + η)um,m + (3η + κ+ ν)φ] δkl + (2µ+ 2σ + κ) uk,l

+ νul,k + (ν − κ) ǫklmφm (2.145)
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By equaling 3η+κ+ν = 0, we have the passage to the micropolar case. It also can be obtained

from equation (2.144) by setting φ = 0. Eringen (1999) gave the constitutive equation for

the higher order couple stress tensor mklm associated with the its strain tensor γklm = φkl,m

in terms of its symmetric and antisymmetic components. The symmetric and antisymmetic

part of the higher order stress tensor mklm are expressed below. These are different than

that of Eringen (1999) by a factor −1 due to our strain tensor definition γklm = −φkl,m.

mk(lm) = −
[ [

(τ1 + τ2)φ(kr),r + τ3φrr,k
]
δlm

+

[
1

2
(τ4 + 2τ5 + τ6)φ(lr),r +

1

2
(τ1 + τ2)φrr,l

]
δkm

+

[
1

2
(τ4 + 2τ5 + τ6)φ(mr),r +

1

2
(τ1 + τ2)φrr,m

]
δkl

+ (τ7 + τ10)φ(lm),k +
1

2
(2τ8 + τ9 + τ11)φ(kl),m

+
1

2
(2τ8 + τ9 + τ11)φ(km),l +

1

2
(τ4 − τ6)φ[lr],rδkm

+ (τ1 − τ2)φ[kr],rδlm +
1

2
(τ4 − τ6)φ[mr],rδkl

+
1

2
(τ11 − τ9)

(
φ[kl],m + φ[km],l

) ]
(2.146)

and

mk[lm] = −
[
1

2

[
(τ4 − τ6)φ(lr),r + (τ1 − τ2)φrr,l

]
δkm

− 1

2

[
(τ4 − τ6)φ(mr),r + (τ1 − τ2)φrr,m

]
δlk

+
1

2
(τ11 − τ9)φ(km),l −

1

2
(τ11 − τ9)φ(kl),m

+
1

2
(τ4 − 2τ5 + τ6)φ[lr],rδkm − 1

2
(τ4 − 2τ5 + τ6)φ[mr],rδkl

+
1

2
(2τ8 − τ9 − τ11)φ[kl],m − 1

2
(2τ8 − τ9 − τ11)φ[km],l

+ (τ7 − τ10)φ[lm],k

]
(2.147)

Eringen (1999) decomposed the mklm for microstretch continua:

mklm =
1

3
mkδlm − 1

2
ǫlmrmkr (2.148)
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recalling equation (2.144) with (2.148), it can be reduced to microstretch case as:

mk = mkll = a0φ,k − b0ǫkrjφj,r (2.149)

mkl = ǫlmpmkpm = αφr,rδkl + βφk,l + γφl,k + α0ǫklpφ,p (2.150)

where

a0 = − (6τ6 + 6τ2 + 9τ3 + τ4 + 2τ5 + τ6 + 3τ7 + 2τ8 + τ9 + 3τ10 + τ11) (2.151)

b0 = − (3τ1 − 3τ2 + τ4 − τ6 − τ9 + τ11) (2.152)

α0 = − (−3τ1 + 3τ2 − τ4 − τ6 + τ9 − τ11) (2.153)

where

α = 2τ8 − τ9 − τ11, β = −τ4 + 2τ5 − τ6

γ = τ4 − 2τ5 + τ6 + 2τ7 − 2τ8 + τ9 − 2τ10 + τ11

by setting a0 = 0, b0 = 0, and α0 = 0 , micropolar material moduli will be obtained.



Chapter 3

Finite Strain Micromorphic Elastoplasticity

In this chapter, we present the finite strain micromorphic elastoplasticity formulation

originally proposed by Regueiro (2009, 2010). It is extension of micromorphic finite strain

elasticity theory proposed by Eringen and Suhubi (1964); Suhubi and Eringen (1964); Erin-

gen (1999) to elasto-plasticity with Drucker-Prager plasticity model. The chapter starts with

the kinematics of elasto-plastic formulation such as decomposition of deformation gradient

tensor F , and micro-deformation tensor χ assuming the existence of intermediate config-

uration. Then, we present Clausius-Duhem inequality and its reduced form which is used

to attain the plastic evolution equations as well as constitutive equations on intermediate

configuration. We conclude this chapter with the mapping of constitutive equations to the

current configuration and numerical time integration scheme in conjunction with the yield

function assumptions of pressure-sensitive plasticity formulation for the macro-scale plastic-

ity, micro-scale plasticity and micro-scale gradient plasticity.

3.1 Kinematics Based on Multiplicative Decomposition of Deformation

Gradient and Micro-deformation Tensor

Some materials may present elastic behavior which simply implies that after the de-

formation if the body is freed from stresses, it will return the its initial undeformed config-

uration. Contrarily, many materials which have practical use such as metals may behave

inelastically (plastically) under large loads which indicates that permanent deformations will
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remain in the body after it is relieved from stresses. If a body is deformed plastically, after

cutting out the forces and relieving all the stresses in the body, it will reach a new unloaded

configuration, and the motion between the last loaded configuration and this configuration

may be described as elastic unloading. This configuration is free of forces and called interme-

diate configuration (Lubliner (1990); Bonet and Wood (1997)). The approach of introducing

of the intermediate configuration is based on the works by Kondo (1952); Bilby et al. (1955);

Kröner (1960); E.H. Lee and D.T. Liu (1967); Lee (1969). In general, to incorporate the

plasticity within finite strain theory, the deformation gradient tensor is decomposed into its

elastic and plastic parts on intermediate configuration in which constitutive equations are

formulated. Intermediate configuration can be accepted as a elastically-unloaded reference

configuration for current configuration such that elastic deformations govern between the in-

termediate configuration B̄ and current configuration B while the plastic deformations govern

between reference configuration B0 and intermediate configuration B̄. Therefore, the map-

ping of a differential line, dxk, in current configuration into the intermediate configuration

may be described as dxk = F e
kK̄
dX̄K̄ while same reasoning holds for a differential line, dXK ,

in reference configuration to the intermediate configuration as dXK = F p

KK̄
dX̄K̄ . Note that

all the expressions with a bar on top are associated with the intermediate configuration. In

this section, we present a similar approach for a micromorphic continuum kinematics consid-

ering the multiplicative decomposition of deformation gradient tensor and micro-deformation

tensor in conjunction with the elasto-plastic formulation which was originally proposed by

Regueiro (2009); ?.

For a micromorphic continuum, the mapping of the macro element and micro element

also multiplicative decomposition of the deformation gradient and microdeformation tensor is

illustrated in the figure 1.6. The position vector of a micro element in current configuration,

x′k, was expressed in equation (1.29). If we take the partial derivative of x′k with respect

to the reference micro-element position vector X ′
K by using chain rule, we get the micro-
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deformation gradient tensor F ′
kK as (?):

F ′
kK =

∂x′k
∂X ′

K

=
∂x′k
∂XL

∂XL

∂X ′
K

(3.1)

where

∂x′k
∂XK

=
∂xk (X, t)

∂XK
+
∂χkL (X , t)

∂XK
ΞL + χkL

∂ΞL
∂XK

(3.2)

and

X ′
K = XK + ΞK

∂X ′
K

∂XL
= δKL +

∂ΞK
∂XL

(3.3)

∂XL

∂X ′
K

=

(
δKL +

∂ΞK
∂XL

)−1

⇒
(
δKL +

∂ΞK
∂XL

)−1

≈

(
δKL −

∂ΞK
∂XL

)
(3.4)

also the assumption of small gradient of micro-structure over the volume,

‖∂ΞK

∂XL
‖ ≪ 1, indicates that the quadratic terms can be ignored as:

(
∂ΞK
∂XL

)2

≈ 0 (3.5)

Then, the micro-element deformation gradient tensor given in equation (3.1) can be rewritten

as

F ′
kK = FkK̄ +

∂χkL
∂XK

ΞL +

(
χkA − FkA − ∂χkM

∂XA

ΞM

)
∂ΞA
∂XK

(3.6)

Similar to the deformation gradient tensor FkK of macro-element, the micro-element defor-

mation gradient F ′
kK maps the micro-element differential line segments dx′k = F ′

kKdX
′
L. If the

micro-element Jacobian of deformation is defined as J ′ = detF ′, the micro-volume element

in current configuration is related to micro-volume in reference configuration as dv′ = J ′dV ′.

Regueiro (2010) proposed that that micro-element deformation gradient tensor can be dif-

ferent than deformation gradient tensor, however, the constitutive equations formulated at

intermediate configuration will not require the determination of F ′
kK because they are in-

volved in mapping of the stress tensors at micro level in the integral definitions. But, macro
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level stress mappings are done by deformation gradient tensor. This is seen explicitly in

equations (3.23), (3.25), and previously (2.91).

Multiplicative decomposition of the deformation gradient tensor (Lee (1969)) and

micro-deformation tensor (Sansour (1998); Forest and Sievert (2003, 2006); Regueiro (2010))

gives

F = F eF p , χ = χeχp

FkK = F e
kK̄F

p
K̄K , χkK = χekK̄χ

p
K̄K (3.7)

The velocity gradient vl,k = ḞlLF
−1
Lk and the micro-gyration tensor νlk = χ̇lLχ

−1
Lk can be also

decomposed in to elastic and plastic part as

ℓ = Ḟ
e
(F e−1) + F eL̄

p
(F e−1) = ℓe + ℓp

vl,k = Ḟ e
lĀ(F

e−1)Āk + F e
lB̄L̄

p

B̄C̄
(F e−1)C̄k = ℓelk + ℓplk (3.8)

and

ν = χ̇e(χe−1) + χeL̄
χ,p

(χe−1) = νe + νp

νlk = χ̇elĀ(χ
e−1)Āk + χelB̄L̄

χ,p

B̄C̄
(χe−1)C̄k = νelk + νplk (3.9)

where

L̄
p
= Ḟ

p
(F p−1) , L̄

χ,p
= χ̇p(χp−1)

L̄p
B̄C̄

= Ḟ p

B̄K
(F p−1)KC̄ , L̄χ,p

B̄C̄
= χ̇p

B̄K
(χp−1)KC̄ (3.10)

The gradient of the micro-gyration tensor can be also split into elastic and plastic part as

follows

∇ν = ∇νe +∇νp

νlm,k = νelm,k + νplm,k (3.11)
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where

νelm,k = χ̇elĀ,kχ
e−1
Ām

− νelnχ
e
nD̄,kχ

e−1
D̄m

(3.12)

νplm,k =
(
χelC̄,kχ̇

p

C̄A
+ χelĒχ̇

p

ĒA,k
− χelF̄ L̄

χ,p

F̄ Ḡ
χp
ḠA,k

)
χ−1
Am − νplaχ

e
Ā,kχ

e−1
Ām

(3.13)

The macro differential volume in reference configuration maps to current configuration as

dv = JdV = JeJpdV = JedV̄ (3.14)

similarly, the micro-element differential volume maps as

dv′ = J ′dV ′ = Je′Jp′dV ′ = Je′dV̄ ′ (3.15)

where Je′ = detF e′, Jp′ = detF p′, Je = detF e, and Jp = detF p. Mass conservation rule

gives the relations among the mass densities as:

ρ0 = ρJ = ρJeJp = ρ̄Jp (3.16)

ρ′0 = ρ′J ′ = ρ′Je′Jp′ = ρ̄′Jp′ (3.17)

where ρ̄′ is the mass density of micro-element at intermediate configuration, ρ̄ is the mass

density of the macro-element at intermediate configuration. The volume averaging of micro-

element densities over the macro-element can be expressed as similar to equation (1.24) in

the intermediate configuration as

ρ̄dV̄
def
=

ˆ

dV̄

ρ̄′dV̄ ′ (3.18)

Giving the kinematics of elasto-plastic formulation and associated decompositions of

the deformation tensors at intermediate configurations, the Clausius-Duhem inequality may

be applied to derive the constitutive equations at intermediate configuration and plastic

evolution equations. Hence, the next section focus on the expression of the Clausius-Duhem

inequality in intermediate configuration.
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3.2 Clausius-Duhem Inequality in Intermediate Configuration

The Clausius-Duhem inequality in current configuration and its form in the reference

configuration were expressed in equations, respectively, (2.83) and (2.85) for a linear isotropic

elastic micromorphic continuum. Following the same approach, we apply the Piola transform

to map stresses and qk from current configuration B to the intermediate configuration B̄

which results in similar mappings to those given in equations (2.87), (2.87), and (2.89).

Besides, we apply a volume averaging approach assumption for the higher order couple

stress tensor as given in the previous chapter to obtain the Clausius-Duhem inequality in

intermediate configuration such that

σlk =
1

Je
F e
lL̄S̄K̄L̄F

e
kK̄ (3.19)

slk =
1

Je
F e
lL̄Σ̄K̄L̄F

e
kK̄ (3.20)

mklm =
1

Je
F e
kK̄F

e
lL̄M̄K̄L̄M̄χ

e
mM̄ (3.21)

where

skldv =

ˆ

dv

σ′
kldv

′ =

ˆ

dV̄

1

J̄e
F ′e
lL̄F

′e
kK̄Σ̄

′
K̄L̄dV̄

′ = F e
lL̄F

e
kK̄Σ̄K̄L̄dV̄ (3.22)

Σ̄K̄L̄dV̄
def
= F e−1

K̄k
F e−1
L̄l

ˆ

dV̄

F ′e
lJ̄F

′e
kĪΣ̄

′
Ī J̄dV̄

′ (3.23)

mklmdv
def
=

ˆ

dv

σ′
klξmdv

′ =

ˆ

dV̄

1

J ′e
F ′e
kK̄F

′e
lL̄S

′
K̄L̄ΞM̄χ

e
mM̄J

′edV̄ ′

= F e
kK̄F

e
lL̄M̄K̄L̄M̄χ

e
mM̄dV̄ (3.24)

mklmdv = mklmJ
edV̄ = F e

kK̄F
e
lL̄M̄K̄L̄M̄χ

e
mM̄dV̄

⇒ mklm =
1

Je
F e
kK̄F

e
lL̄M̄K̄L̄M̄χ

e
mM̄

M̄K̄L̄M̄
def
= F e−1

K̄k
F e−1
L̄l

χe−1
M̄m

ˆ

dV̄

F e
kĪF

e
lJ̄S

′
ĪJ̄ΞĀχ

e
mĀdV̄

′

M̄K̄L̄M̄
def
= F e−1

K̄k
F e−1
L̄l

ˆ

dV̄

F e
kĪF

e
lJ̄S

′
Ī J̄ΞM̄dV̄

′ (3.25)
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and the Clausius-Duhem inequality in intermediate configuration takes the form

ˆ

B̄

(
−ρ̄
(
˙̄ψ + η̄θ̇

)
+ Jeσkl (νl,k − vlk)

+Jesklvlk + Jeνlm,kmklm + Je
1

θ
Q̄K̄θ,K̄

)
dV̄ ≥ 0 (3.26)

The heat flux term in the Clausius-Duhem inequality can be obtained as follows: Remember

the heat flux term in current configuration

ˆ

da

1

θ
q′kn

′
kda

′ =

ˆ

dĀ

1

θ

(
q′kJ

′eF ′e−1
K̄k

)
︸ ︷︷ ︸

Q̄′

K̄

N̄ ′
K̄dĀ

′ =

ˆ

dĀ

1

θ
Q̄′
K̄N̄

′
K̄dĀ

′ (3.27)

Note that Nanson’s formula n′
kda

′ = JF ′e−1
Kk N̄ ′

K̄
dĀ was applied in equation above to relate the

areas in current configuration and intermediate configuration that gives the Piola transform

of the flux over the micro-element as q′k =
1
J ′eF

′e
kK̄
Q̄K̄ . Then, flux term over the macro-volume

may be expressed as:
ˆ

dV̄

(
Q̄′
K̄

θ

)

,K̄

dV̄ ′ def
=

(
Q̄K̄

θ

)

,K̄

dV̄ (3.28)

The local form of the Clausius-Duhem equation at intermediate configuration

−ρ̄
(
˙̄ψ + η̄θ̇

)
+ Jeσkl (νl,k − vlk) + Jesklvlk + Jeνlm,kmklm + Je

1

θ
Q̄K̄θ,K̄ ≥ 0 (3.29)

and its reduced form for isothermal and homogenous temperature problems is

−ρ̄ ˙̄ψ + Jeσkl (νl,k − vlk) + Jesklvlk + Jeνlm,kmklm ≥ 0 (3.30)

Using the decompositions expressed in equations (3.8), (3.9), (3.12), and (3.13), the stress

power terms in equation (3.26) can be expressed in terms of elastic and plastic parts as:

Jeσlkvl,k = F e
lL̄S̄K̄L̄F

e
kK̄

(
Ḟ e
lĀ(F

e−1)Āk + F e
lB̄L̄

p

B̄C̄
(F e−1)C̄k

)

Jeσklvl,k = S̄K̄L̄F
e
lL̄Ḟ

e
lK̄︸ ︷︷ ︸

elastic

+ S̄K̄L̄C̄
e
L̄B̄L̄

p

B̄K̄︸ ︷︷ ︸
plastic

(3.31)
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Jeσklνlk = F e
lL̄S̄K̄L̄F

e
kK̄

(
νelk + χelB̄L̄

χ,p

B̄C̄
(χe−1)C̄k

)

Jeσklνlk = F e
lL̄S̄K̄L̄F

e
kK̄ν

e
lk + S̄K̄L̄F

e
lL̄χ

e
lĒL̄

χ,p
ĒF̄

(χe−1)F̄ kF
e
kK̄

Jeσklνlk = F e
lL̄S̄K̄L̄F

e
kK̄ν

e
lk︸ ︷︷ ︸

elastic

+ S̄K̄L̄Ψ̄
e
L̄ĒL̄

χ,p

ĒF̄
(χe−1)F̄ kF

e
kK̄︸ ︷︷ ︸

plastic

(3.32)

Jesklνlk = F e
lL̄Σ̄K̄L̄F

e
kK̄

(
νelk + χelB̄L̄

χ,p

B̄C̄
(χe−1)C̄k

)

Jesklνlk = F e
lL̄ΣK̄L̄F

e
kK̄ν

e
lk︸ ︷︷ ︸

elastic

+ Σ̄K̄L̄Ψ̄
e
L̄ĒL̄

χ,p
ĒF̄

(χe−1)F̄ kF
e
kK̄︸ ︷︷ ︸

plastic

(3.33)

Jeνlm,kmklm = F e
kK̄F

e
lL̄M̄K̄L̄M̄χ

e
mM̄

(
χ̇elĀ,kχ

e−1
Ām

− νelnχ
e
nD̄,kχ

e−1
D̄m

)

+ F e
kK̄F

e
lL̄M̄K̄L̄M̄χ

e
mM̄

((
χelC̄,kχ̇

p

C̄A
+ χelĒχ̇

p

ĒA,k
− χelF̄ L̄

χ,p

F̄ Ḡ
χp
ḠA,k

)
χ−1
Am

− νplaχ
e
Ā,kχ

e−1
Ām

)

Jeνlm,kmklm = M̄K̄L̄M̄F
e
lL̄

(
χ̇elM̄,K̄ − νelnχ

e
nM̄,K̄

)}
elastic

+M̄K̄L̄M̄F
e
lL̄

(
−νplnχenM̄,K̄

+
[
χe
lC̄,K̄

χ̇p
C̄Ā

+ χe
lD̄
χ̇p
D̄Ā,K̄

−χe
lB̄
L̄χ,p
B̄Ē
χp
ĒA,K̄

]
χp−1

AM̄

)





plastic

(3.34)

Note that deformation measures for micromorphic elastic solids were expressed in equation

(1.36). We give the same deformation measures for the intermediate configuration as:

C̄e
K̄L̄ = F e

kK̄F
e
kL̄ , Ψ̄

e
k̄L̄ = F e

kK̄χ
e
kL̄ , Γ̄K̄L̄M̄ = F e

kK̄χ
e
kL̄,M̄ (3.35)

We chose a Helmholtz Free Energy function form similar to that of given in the section 2.3

(Eringen and Suhubi (1964); Regueiro (2010))

ρ̄ψ̄ = ρ̄ψ̄
(
F e
kK̄ , χ

e
kK̄ , χ

e
kK̄,M̄ , Z̄K̄ , Z̄

χ

K̄
, Z̄χ

K̄,L

)
(3.36)

where Z̄K̄ , Z̄χ

K̄
, and Z̄χ

K̄,L
are a vector of macro-strain-like ISVs, a vector of micro-strain-like

ISVs, and derivative of micro-strain-like ISVs respectively in the intermediate configuration
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B̄. The material time derivative of Helmholtz free energy in B̄.

D
(
ρ̄ψ̄
)

Dt
=

∂ρ̄ψ̄

∂F e
kK̄

Ḟ e
kK̄ +

∂ρ̄ψ̄

∂χe
kK̄

χ̇ekK̄ +
∂ρ̄ψ̄

∂χe
kK̄,M̄

Dχe
kK̄,M̄

Dt

+
∂ρ̄ψ̄

∂Z̄K̄

˙̄ZK̄ +
∂ρ̄ψ̄

∂Z̄χ

K̄

˙̄Zχ

K̄
+

∂ρ̄ψ̄

∂Z̄χ

K̄,M̄

DZ̄χ
K̄,M̄

Dt
+
∂ρ̄ψ̄

∂θ
θ̇ (3.37)

The left hand side of the equation above can be also expressed as:

D
(
ρ̄ψ̄
)

Dt
= ˙̄ρψ̄ + ρ̄ ˙̄ψ (3.38)

where

ρ0 = Jpρ̄ ⇒ ˙̄ρ =
D (ρ0/J

p)

Dt
= −ρ0

J̇p

(Jp)2
= −ρ̄ J̇

p

Jp
(3.39)

Then, equation (3.38) can be rewritten as:

D
(
ρ̄ψ̄
)

Dt
= −ρ̄ψ̄ J̇

p

Jp
+ ρ̄ ˙̄ψ (3.40)

which yields

ρ̄ ˙̄ψ = ρ̄ψ̄
J̇p

Jp
+
D
(
ρ̄ψ̄
)

Dt
(3.41)

Coleman and Noll (1963) argued that plastic strain rate process is independent of the elastic

strain rate. If we insert equations (3.41), (3.31), (3.32), (3.33), and (3.34) into the reduced

Clausius-Duhem inequality and collect the elastic and plastic terms, from the elastic terms

we get;

S̄K̄L̄ =
∂
(
ρ̄ψ̄
)

∂F e
kK̄

F e−1
L̄k

(3.42)

Σ̄K̄L̄ =
∂
(
ρ̄ψ̄
)

∂F e
kK̄

F e−1
L̄k

+ F e−1
K̄c

χcĀ
∂
(
ρ̄ψ̄
)

∂χaĀ
F e−1
L̄a

+ F e−1
K̄d

χdM̄,Ē

∂
(
ρ̄ψ̄
)

∂χfM̄ ,Ē

F e−1
L̄f

(3.43)

M̄K̄L̄M̄ =
∂
(
ρ̄ψ̄
)

∂χkM̄ ,K̄

F e−1
L̄k

(3.44)
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Similiar to what we did in chapter 2 for finite strain micromorphic elasticity, we can chose the

Helmholtz free energy function with different set of invariants in intermediate configuration

as:

ψ̄(C̄
e
, Ψ̄

e
, Γ̄

e
, Z̄, Z̄

χ
, ∇̄Z̄

χ
, θ)

ψ̄(C̄e
K̄L̄, Ψ̄

e
K̄L̄, Γ̄

e
K̄L̄M̄ , Z̄K̄, Z̄

χ
K̄
, Z̄χ

K̄,L̄
, θ) (3.45)

Then, the constitutive equations can be defined in the intermediate configuration as:

S̄K̄L̄ = 2ρ̄
∂ψ̄

∂C̄e
K̄L̄

+ ρ̄
∂ψ̄

∂Ψ̄e
K̄B̄

(C̄e−1)L̄Ā Ψ̄e
ĀB̄

+ρ̄
∂ψ̄

∂Γ̄e
K̄B̄C̄

(C̄e−1)L̄Ā Γ̄eĀB̄C̄ (3.46)

Σ̄K̄L̄ = 2ρ̄
∂ψ̄

∂C̄e
K̄L̄

+ 2sym

[
ρ̄

∂ψ̄

∂Ψ̄e
K̄B̄

(C̄e−1)L̄Ā Ψ̄e
ĀB̄

]

+2sym

[
ρ̄

∂ψ̄

∂Γ̄e
K̄B̄C̄

(C̄e−1)L̄Ā Γ̄eĀB̄C̄

]
(3.47)

M̄ K̄L̄M̄ = ρ̄
∂ψ̄

∂Γ̄e
L̄M̄K̄

(3.48)

The thermodynamic stress-like conjugates ISVs of Z̄, Z̄χ, Z̄∇,χ are introduced respectively

as:

Q̄K̄
def
= ρ̄

∂ψ̄

∂Z̄K̄
, Q̄χ

K̄

def
= ρ̄

∂ψ̄

∂Z̄χ

K̄

, (Q̄∇χ)L̄K̄
def
= ρ̄

∂ψ̄

∂Z̄χ

K̄,L̄

(3.49)

The remaining terms in the reduced Clausius-Duhem inequality are:

ρ̄ψ̄
J̇p

Jp
− Q̄K̄

˙̄ZK̄ − Q̄χ

K̄
˙̄Zχ
K̄ − (Q̄∇χ)L̄K̄

D
(
Z̄χ

K̄,L̄

)

Dt
+ S̄K̄L̄

(
C̄e
L̄B̄L̄

p

B̄K̄

)

+ (Σ̄K̄L̄ − S̄K̄L̄)
[
Ψ̄e
L̄ĒL̄

χ,p

ĒF̄
(C̄χ,e−1)F̄ N̄Ψ̄

e
K̄N̄

]

+ M̄K̄L̄M̄

{
Ψ̄e
L̄D̄L̄

χ,p

D̄M̄,K̄
− 2Ψ̄e

L̄D̄skw
[
L̄χ,p
D̄C̄

(Ψ̄e−1)C̄F̄ Γ̄
e
F̄ M̄K̄

]}
≥ 0 (3.50)

where the tensor C̄χ,e−1 is defined as C̄χ,e−1
K̄N̄

= χe−1
K̄k

χe−1
N̄k

.
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3.3 Constitutive Equations for Simple Elasto-plasticity of Geomaterials

To derive the constitutive equations, quadratic form of Helmhotz free energy function

was expressed in the previous chapter for micromorphic finite strain elastic formulation. We

assume the same form for the Helmholtz free energy function including quadratic form for

energy terms of ISVs as well in intermediate configurations as:

ρ̄ψ̄
def
=

1

2
Ēe
K̄L̄ĀK̄L̄M̄N̄ Ē

e
M̄N̄ +

1

2
ĒeK̄L̄B̄K̄L̄M̄N̄ Ē

e
M̄N̄

+
1

2
Γ̄eK̄L̄M̄ C̄K̄L̄M̄N̄P̄ Q̄Γ̄

e
N̄P̄ Q̄ +

1

2
Ēe
K̄L̄D̄K̄L̄M̄N̄ Ē

e
M̄N̄

+
1

2
H̄Z̄2 +

1

2
H̄χ(Z̄χ)2 +

1

2
Z̄χ

,K̄
H̄∇χZ̄χ

,K̄
(3.51)

similarly the elastic moduli tensors are expressed in the intermediate configuration as

ĀK̄L̄M̄N̄ = λδK̄L̄δM̄N̄ + µ (δK̄M̄δL̄N̄ + δK̄N̄δL̄M̄) (3.52)

B̄K̄L̄M̄N̄ = (η − τ)δK̄L̄δM̄N̄ + κδK̄M̄δL̄N̄ + νδK̄N̄δL̄M̄

−σ(δK̄M̄δL̄N̄ + δK̄N̄δL̄M̄) (3.53)

C̄K̄L̄M̄N̄P̄ Q̄ = τ1
(
δK̄L̄δM̄N̄δP̄ Q̄ + δK̄Q̄δL̄M̄δN̄P̄

)
+ τ2

(
δK̄L̄δM̄P̄ δN̄Q̄ + δK̄M̄δL̄Q̄δN̄P̄

)

+τ3δK̄L̄δM̄Q̄δN̄ P̄ + τ4δK̄N̄δL̄M̄δP̄ Q̄ + τ5
(
δK̄M̄δL̄N̄δP̄ Q̄ + δK̄P̄ δL̄M̄δN̄Q̄

)

+τ6δK̄M̄δL̄P̄ δN̄Q̄ + τ7δK̄N̄δL̄P̄ δM̄Q̄ + τ8
(
δK̄P̄ δL̄Q̄δM̄N̄ + δK̄Q̄δL̄N̄δM̄P̄

)

+τ9δK̄N̄δL̄Q̄δM̄P̄ + τ10δK̄P̄ δL̄N̄δM̄Q̄ + τ11δK̄Q̄δL̄P̄ δM̄N̄ (3.54)

D̄K̄L̄M̄N̄ = τδK̄L̄δM̄N̄ + σ(δK̄M̄δL̄N̄ + δK̄N̄δL̄M̄) (3.55)
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Then, the constitutive equations take the form by applying equations (3.46), (3.47), and

(3.48)

S̄K̄L̄ = ĀK̄L̄M̄N̄ Ē
e
M̄N̄ + D̄K̄B̄M̄N̄ Ē

e
M̄N̄

+(D̄K̄B̄M̄N̄ Ē
e
M̄N̄ + B̄K̄B̄M̄N̄ Ē

e
M̄N̄)

[
(C̄)e−1

L̄Ā
ĒeĀL̄ + δL̄L̄

]

+C̄K̄B̄C̄N̄P̄ Q̄Γ̄
e
N̄P̄ Q̄(C̄

e−1)L̄Q̄Γ̄
e
Q̄B̄C̄ (3.56)

Σ̄K̄L̄ = ĀK̄L̄M̄N̄ Ē
e
M̄N̄ + D̄K̄B̄M̄N̄

Ē
e
M̄N̄

+2sym
{
(D̄K̄L̄M̄N̄ Ē

e
M̄N̄ + B̄K̄B̄M̄N̄ Ē

e
M̄N̄)

[
(C̄e−1)L̄ĀĒ

e
ĀB̄ + δL̄B̄

]

+C̄K̄B̄C̄N̄P̄ Q̄Γ̄
e
N̄P̄ Q̄(C̄

e−1)L̄Q̄Γ̄
e
Q̄B̄C̄

}
(3.57)

M̄K̄L̄M̄ = C̄K̄L̄M̄N̄P̄ Q̄Γ̄
e
N̄P̄ Q̄ (3.58)

Ignoring the quadratic terms and inserting the elastic moduli tensors yield:

S̄K̄L̄ = (λ+ τ) ĒM̄M̄δK̄L̄ + 2 (µ+ σ) ĒK̄L̄ + ηĒM̄M̄δK̄L̄ + κĒK̄L̄ + νĒL̄K̄ (3.59)

Σ̄K̄L̄ = (λ+ 2τ) ĒM̄M̄δK̄L̄ + 2 (µ+ 2σ) ĒK̄L̄ + (2η − τ) ĒM̄M̄δK̄L̄

+ (ν + κ− σ)
(
ĒK̄L̄ + ĒL̄K̄

)
(3.60)

M̄K̄L̄M̄ = τ1
(
Γ̄K̄R̄R̄δL̄M̄ + Γ̄R̄R̄L̄δK̄M̄

)
+ τ2

(
Γ̄R̄K̄R̄δL̄M̄ + Γ̄R̄R̄M̄δK̄L̄

)
+ τ3Γ̄R̄R̄K̄δL̄M̄

+ τ4Γ̄L̄R̄R̄δK̄M̄ + τ5
(
Γ̄R̄L̄R̄δK̄M̄ + Γ̄M̄R̄R̄δK̄L̄

)
+ τ6Γ̄R̄M̄R̄δK̄L̄ + τ7Γ̄L̄M̄K̄

+ τ8
(
Γ̄M̄K̄L̄ + Γ̄K̄L̄M̄

)
+ τ9Γ̄L̄K̄M̄ + τ10Γ̄M̄L̄K̄ + τ11Γ̄K̄M̄L̄ (3.61)

also

Q̄ = H̄Z̄K̄ (3.62)

Q̄χ = H̄χZ̄χ

K̄
(3.63)

(Q̄χ)L̄ = H̄∇χZ̄χ
,L̄

(3.64)
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3.4 Yield Functions, Plastic Potential Functions, and Evolution Equations

Three yield functions with same forms assuming non-associative flow rule are intro-

duced for macro-scale plasticity, micro-scale plasticity and micro-scale gradient plasticity

to define the plastic deformation evolution equations. The plastic potential functions are

assumed to have the same forms with the yield functions.

3.4.1 Macro-scale Yield, Plastic Potential, and Evolution Equations

For the macro scale plasticity, we have very well known Drucker-Prager plasticity form

of yield function as follows:

F̄ (S̄, c̄)
def
= ‖devS̄‖ −

(
Aφc̄−Bφp̄

)
≤ 0 (3.65)

Aφ = βφ cos φ , Bφ = βφ sin φ , βφ =
2
√
6

3 + β sin φ
(3.66)

‖devS̄‖ =
√

(devS̄) : (devS̄) (3.67)

(devS̄) : (devS̄) = (devS̄Ī J̄)(devS̄Ī J̄) (3.68)

= (devS̄ĪJ̄)(devS̄ĪJ̄)

devS̄Ī J̄ = S̄Ī J̄ −
(
1

3
C̄e
ĀB̄S̄ĀB̄

)
(C̄e−1)Ī J̄ (3.69)

p̄
def
=

1

3
C̄e
ĀB̄S̄ĀB̄ (3.70)

where c̄ is the cohesion in B̄, φ the friction angle, and −1 ≤ β ≤ 1 to intersect the Mohr-

Coulomb vertices in Triaxial Compression (β = 1). The plastic potential function with



73

evolution equations are:

Ḡ(S̄, c̄)
def
= ‖devS̄‖ −

(
Aψ c̄− Bψp̄

)
(3.71)

Aψ = βψ cosψ , Bψ = βψ sinψ , βψ =
2
√
6

3 + β sinψ
(3.72)

C̄e
L̄B̄L̄

p
B̄K̄

def
= ˙̄γ

∂Ḡ

∂S̄K̄L̄
,

∂Ḡ

∂S̄K̄L̄
= ˆ̄N K̄L̄ +

1

3
BψC̄e

K̄L̄ (3.73)

ˆ̄N ĀB̄ =
devS̄ĀB̄
‖devS̄‖ (3.74)

˙̄Z
def
= − ˙̄γ

∂Ḡ

∂c̄
= Aψ ˙̄γ (3.75)

c̄ = H̄Z̄ (3.76)

Q̄
def
= c̄ (3.77)

where ˙̄γ is the plastic multiplier rate in B̄, ψ̄ the dilation angle. There is no cap for this

model as of yet.

3.4.2 Micro-scale Yield, Plastic Potential, and Evolution Equations

The yield function and the plastic potential function with plastic evolution equations

for the micro-scale are expressed as:

F̄ χ(Σ̄− S̄, c̄χ) def
=‖dev(Σ̄− S̄)‖ −

(
Aχ,φc̄χ − Bχ,φp̄χ

)
≤ 0 (3.78)

Aχ,φ =βχ,φ cosφχ , Bχ,φ = βχ,φ sin φχ (3.79)

βχ,φ =
2
√
6

3 + βχ sinφχ
(3.80)

dev(Σ̄Ī J̄ − S̄ĪJ̄) =(Σ̄Ī J̄ − S̄Ī J̄)− p̄χC̄e−1
Ī J̄

(3.81)

p̄χ
def
=
1

3
C̄e
ĀB̄

(
Σ̄ĀB̄ − S̄ĀB̄

)
(3.82)
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where c̄χ is the micro-scale cohesion in B̄, φχ the micro-scale friction angle, and −1 ≤ βχ ≤ 1,

and βχ = 1, The plastic potential function and evolution equations of the micro-scale are:

Ḡχ(Σ̄− S̄, c̄χ) def
= ‖dev(Σ̄− S̄)‖ −

(
Aχ,ψ c̄χ −Bχ,ψp̄χ

)
(3.83)

Aχ,ψ = βχ,ψ cosψχ , Bχ,ψ = βχ,ψ sinψχ (3.84)

βχ,ψ =
2
√
6

3 + βχ sinψχ
(3.85)

Ψ̄e
L̄ĒL̄

χ,p

ĒF̄
(C̄χ,e−1)F̄ N̄Ψ̄

e
K̄N̄

def
= ˙̄γχ

∂Ḡχ

∂(Σ̄K̄L̄ − S̄K̄L̄)
(3.86)

∂Ḡχ

∂(Σ̄K̄L̄ − S̄K̄L̄)
= ˆ̄Nχ

K̄L̄ +
1

3
Bχ,ψC̄e

K̄L̄ (3.87)

ˆ̄Nχ
ĀB̄ =

dev(Σ̄ĀB̄ − S̄ĀB̄)

‖dev(Σ̄− S̄)‖ (3.88)

˙̄Zχ def
= − ˙̄γχ

∂Ḡχ

∂c̄χ
= Aχ,ψ ˙̄γχ (3.89)

c̄χ = H̄χZ̄χ (3.90)

Q̄χ = c̄χ (3.91)

where ˙̄γχ is the micro-scale plastic multiplier rate in B̄, ψ̄χ the micro-scale dilation angle.

3.4.3 Micro-scale Gradient Yield, Plastic Potential, and Evolution Equations

Lastly, the yield function, the plastic potential function, and evolution equations of the

micro-scale gradient are:

F̄∇χ(M̄ , c̄∇χ)
def
= ‖devM̄‖ −

(
A∇χ,φ‖c̄∇χ‖ − B∇χ,φ‖p̄∇χ‖

)
≤ 0 (3.92)

A∇χ,φ = β∇χ,φ cosφ∇χ , B∇χ,φ = β∇χ,φ sinφ∇χ

β∇χ,φ =
2
√
6

3 + β∇χ sin φ∇χ

devM̄Ī J̄K̄ = M̄Ī J̄K̄ − (C̄e−1)ĪJ̄ p̄
∇χ

K̄

p̄∇χ
K̄

def
=

1

3
C̄e
ĀB̄M̄ĀB̄K̄ (3.93)

where c̄∇χ is the micro-scale gradient cohesion in B̄, φ∇χ the micro-scale gradient friction

angle, and −1 ≤ β∇χ ≤ 1, and β∇χ = 1, The plastic potential function and evolution
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equations are:

Ḡ∇χ(M̄ , c̄∇χ)
def
= ‖devM̄‖ −

(
A∇χ,ψ‖c̄∇χ‖ − B∇χ,ψ‖p̄∇χ‖

)
(3.94)

Ψ̄e
L̄D̄L̄

χ,p

D̄M̄,K̄
− 2Ψ̄e

L̄D̄skw
[
L̄χ,p
D̄C̄

(Ψ̄e−1)C̄F̄ Γ̄
e
F̄ M̄K̄

] def
= ˙̄γ∇χ

∂Ḡ∇χ

∂M̄K̄L̄M̄

(3.95)

A∇χ,ψ = β∇χ,ψ cosψ∇χ , B∇χ,ψ = β∇χ,ψ sinψ∇χ

∂Ḡ∇χ

∂M̄K̄L̄M̄

=
devM̄K̄L̄M̄

‖devM̄‖ +
1

3
B∇χ,ψC̄e

K̄L̄

p̄∇χ
M̄

‖p̄∇χ‖ (3.96)

˙̄Zχ
Ā

def
= − ˙̄γ∇χ

∂Ḡ∇χ

∂c̄∇χ
Ā

= A∇χ,ψ( ˙̄γ∇χ)
c̄∇χ
Ā

‖c̄∇χ‖ (3.97)

c̄∇χ
L̄

= H̄∇χZ̄χ
,Ā
δĀL̄ (3.98)

where ˙̄γ∇χ is the micro-scale gradient plastic multiplier rate in B̄, ψ̄∇χ the micro-scale gra-

dient dilation angle.

3.5 Map to Current Configuration and Numerical Time Integration

Mapping the constitutive equations according to stress mapping relations given in

equations (3.19), (3.20), (3.21) and then taking the material time derivatives of the stress

tensors provide objective stress rates in the current configuration B. Besides, mapping

evolutions to current configuration gives us the corresponding plastic evolution equations in

B (Eringen and Suhubi (1964); Regueiro (2009); Moran et al. (1990); Simo (1998)).

σ̇kl = − J̇e

(Je)2
F e
kK̄F

e
lL̄S̄K̄L̄ +

1

Je
Ḟ e
kK̄F

e
L̄S̄K̄L̄ +

1

Je
F e
kK̄Ḟ

e
L̄S̄K̄L̄ +

1

Je
F e
kK̄F

e
L̄
˙̄SK̄L̄ (3.99)

ṡkl − σ̇kl = − J̇e

(Je)2
F e
kK̄F

e
lL̄

(
Σ̄K̄L̄ − S̄K̄L̄

)
+

1

Je
Ḟ e
kK̄F

e
L̄

(
Σ̄K̄L̄ − S̄K̄L̄

)

+
1

Je
F e
kK̄Ḟ

e
L̄

(
Σ̄K̄L̄ − S̄K̄L̄

)
+

1

Je
F e
kK̄F

e
L̄

(
˙̄ΣK̄L̄ − ˙̄SK̄L̄

)
(3.100)

ṁklm = − J̇e

(Je)2
F e
kK̄F

e
lL̄χ

e
mM̄M̄K̄L̄M̄ +

1

Je
Ḟ e
kK̄F

e
L̄χ

e
mM̄M̄K̄L̄M̄

+
1

Je
F e
kK̄Ḟ

e
L̄χ

e
mM̄M̄K̄L̄M̄ +

1

Je
F e
kK̄Ḟ

e
L̄χ̇

e
mM̄M̄K̄L̄M̄ +

1

Je
F e
kK̄F

e
L̄χ

e
mM̄

˙̄MK̄L̄M̄ (3.101)
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Note that in the mapping of the stress, the stress differences were used instead of micro-stress

itself. It is because the stress difference appears as the work conjugate to the chosen metric

strain definition in the reduced Clausius-Duhem inequality. If we implement the material

time derivatives of the terms appearing in the equations above such as Ḟ e
kK̄

= ℓeklF
e
lK̄

and

˙̄SK̄L̄ from equation (3.60), we get;

σ̇kl = −(deii)σkl + ℓekiσil + σkiℓ
e
il + (λ+ τ) (deii)δkl + 2 (µ+ σ) dekl

+ η(εeii)δkl + κεekl + νεelk (3.102)

ṡkl − σ̇kl = −(deii) (skl − σkl) + ℓeki (sil − σil) + τ(deii)δkl

+ 2σdekl + (η − τ) (εeii)δkl + (ν − σ) εekl + (κ− σ) εelk (3.103)

ṁklm = −(deii)mklm + ℓekimilm +mkimℓ
e
il +mkliν

e
mi + cklmnpq

◦e
γnpq (3.104)

cklmnpq = τ1 (δklδmnδpq + δkqδlmδnp) + τ2 (δklδmpδnq + δkmδlqδnp)

+τ3δklδmqδnp + τ4δknδlmδpq + τ5 (δkmδlnδpq + δkpδlmδnq)

+τ6δkmδlpδnq + τ7δknδlpδmq + τ8 (δkpδlqδmn + δkqδlnδmp)

+τ9δknδlqδmp + τ10δkpδlnδmq + τ11δkqδlpδmn (3.105)

where

◦e
γnpq = γ̇enpq + ℓeanγ

e
apq + γenpaℓ

e
aq + γenaqν

e
ap (3.106)

In determining the objective stress rates given above, small elastic deformation is assumed so

that the left Cauchy-Green strain tensor, its inverse, and some other strain tensors as well as

Jacobian of elastic deformation gradient tensor become heavily unit tensor when multiplied

by a deformation rate or stress (Regueiro (2009)). Mapping of the plastic evolution equations

result in following yield functions and plastic evolutions equations for, respectively, macro-

scale, micro-scale and micro-scale gradient plasticity.

For macro-scale plasticity, the yield function and plastic potential function take the
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form below

F (σ, c) = Je‖devσ‖ − Je
(
Aφc− Bφp

)
≤ 0 (3.107)

‖devσ‖ =
√
devσijdevσij (3.108)

devσij = σij − pδij (3.109)

p =
1

3
σii (3.110)

The plastic potential function and map of the plastic velocity and strain-like ISV in B become

G (σ, c) = Je‖devσ‖ − Je
(
Aφc− Bφp

)
(3.111)

ℓplk = γ̇
∂G

∂σkl
(3.112)

∂G

∂σkl
=

devσkl
‖devσ‖ +

1

3
Bψδkl (3.113)

Ż = −γ̇ ∂G
∂c

(3.114)

c = HZ (3.115)

For micro-scale plasticity, the yield function in B is:

F (s− σ, cχ) = Je‖dev (s− σ) ‖ − Je
(
Aχ,φcχ − Bχ,φpχ

)
≤ 0 (3.116)

pχ =
1

3
(sii − σii) (3.117)

the plastic potential function and the plastic microgyration tensor and strain-like ISV are

G (σ, c) = Je‖devσ‖ − Je
(
Aχ,ψcχ − Bχ,ψpχ

)
(3.118)

νplk = γ̇χ
∂G

∂ (skl − σkl)
(3.119)

∂G

∂σkl
=

dev (skl − σkl)

‖dev (s− σ) ‖ +
1

3
Bχ,ψδkl (3.120)

Żχ = −γ̇χ ∂G
∂cχ

(3.121)

cχ = HχZχ (3.122)
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and similarly for micro-scale gradient yield function

F
(
m, c∇χ

)
= Je‖devm‖ − Je

(
A∇χ,φ‖c∇χ‖ − B∇χ,φ‖p∇χ‖

)
≤ 0 (3.123)

‖m‖ =
√
(devmijk) (devmijk) (3.124)

devmijk = mijk −
1

3
δijmaak (3.125)

‖p∇χ‖ =

√
p∇χm p∇χm (3.126)

‖c∇χ‖ =

√
c∇χm c∇χm (3.127)

p∇χm =
1

3
mkkm (3.128)

and the plastic potential function also the map of the gradient plastic microgyrataion tensor

and strain-like ISV become

G∇χ
(
m, c∇χ

)
= Je‖devm‖ − Je

(
A∇χ,ψ‖c∇χ‖ − B∇χ,ψ‖p∇χ‖

)
(3.129)

νplm,k = γ̇∇χ
∂G∇χ

∂mklm

(3.130)

∂G∇χ

∂mklm
=

devmklm

‖devm‖ +
1

3
B∇χ,ψδkl

p∇χm
‖p∇χ‖ (3.131)

Żχ
,a = −γ̇∇χ∂G

∇χ

∂c∇χa
= A∇χ,φ(γ̇∇χ)

c∇χa
‖c∇χ‖ (3.132)

c∇χl = H∇χZ∇χ
,l (3.133)

3.5.1 Numerical Time Integration

The objective stress rates presented in equations (3.102), (3.103), (3.104) may be in-

tegrated with a semi implicit time integration approach such that the unsymmetric Cauchy

stress tensor, the difference of micro-stress tensor and Cauchy stress tensor, and higher order
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couple stress tensor at n+ 1 time step can be expressed as:

σn+1 =
(
1− tr

(
∆tden+1

))
σn +

(
∆tℓen+1

)
σn + σn

(
∆tℓen+1

)T

+ (λ+ τ) tr
(
∆tden+1

)
1 + 2 (µ+ σ)

(
∆tden+1

)
+ ηtr

(
∆tεen+1

)
1

+ κ
(
∆tεen+1

)
+ ν

(
∆tεen+1

)T
(3.134)

(s− σ)n+1 =
(
1− tr

(
∆tden+1

))
(s− σ)n +

(
∆tℓen+1

)
(s− σ)n

+ (s− σ)n
(
∆tℓen+1

)T
+ (κ− σ)

(
∆tεen+1

)T

+ (ν − σ)
(
∆tεen+1

)
+ τtr

(
∆tden+1

)
1

+ 2σ∆tden+1 + (η − τ) tr
(
∆tεen+1

)
1 (3.135)

mn+1 =
(
1− tr

(
∆tden+1

))
mn +

(
∆tℓen+1

)
mn +mn ⊙

(
∆tℓen+1

)T

+mn

(
∆tνen+1

)T
+ c

...
(
∆t

◦
γ
e

n+1

)
(3.136)

where

∆t
◦
γ
e

n+1 = ∆tγ̇en+1 +
(
∆tℓen+1

)T
γen + γ

e
n

(
∆tℓen+1

)
+ γen ⊙

(
∆tνen+1

)
(3.137)

∆tγ̇en+1 =
(
∆tνen+1

)
γen −

(
∆tνen+1

)T ⊙ γen +∆t∇νen+1 −∆t∇νpn+1 (3.138)

∆t∇νen+1 = ∇
(
χn+1 − χn

)
⊙ χ−1

n+1 +
(
χn+1 − χn

)
χ−1
n+1

(
∇χn+1

)
⊙ χ−1

n+1 (3.139)

∆t∇νpn+1 =
(
∆γ∇χn+1

) (
r∇χ,tr

)tr
(3.140)

(
r∇χ,tr

)tr
=

devm

‖devm‖ +
1

3
B∇χ,ψ

1⊗ p∇χ,tr

‖p∇χ,tr‖ (3.141)

Note that the terms with the subscript n in the right hand side of the equations are the terms

converged in the previous time step while the terms with the subscript n + 1 are belong to

the current time step. Then we have two cases as:

(1) By using these equations above we calculate the trial stresses and then correct them

to use in the yield functions. We have the plastic yielding checks at each scale as:
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• If F tr > 0 and F χ,tr > 0, yielding occurs at each scales. Then we solve for

∆γn+1 and ∆γχn+1 using Newton-Raphson for coupled equations

F (σn+1, cn+1) = F
(
∆γn+1,∆γ

χ
n+1

)
= 0 (3.142)

F χ
(
(sn+1 − σn+1) , c

χ
n+1

)
= F χ

(
∆γn+1,∆γ

χ
n+1

)
= 0 (3.143)

• If F tr > 0 and F χ,tr < 0, yielding occurs at macro-scale only. We solve for

∆γn+1 and ∆γχn+1 = 0 using Newton-Raphson

F (σn+1, cn+1) = F
(
∆γn+1,∆γ

χ
n+1 = 0

)
= 0 (3.144)

• If F tr < 0 and F χ,tr > 0, yielding occurs only in micro-scale. Then, we solve

for ∆γχn+1 and ∆γn+1 = 0 using Newton-Raphson

F χ
(
(sn+1 − σn+1) , c

χ
n+1

)
= F χ

(
∆γn+1 = 0,∆γχn+1

)
= 0 (3.145)

(2) We compute the trial yield function using the trial stress value mtr and solve for

∆γ∇χn+1 using Newton-Raphson

F∇χ
(
mn+1, c

∇χ
n+1

)
= F∇χ

(
∆γ∇χn+1

)
= 0 (3.146)



Chapter 4

Finite Element Formulation of Finite Strain Micromorphic Elasticity at

Current Configuration

4.1 Weak Form and Linearization of the Balance of Linear Momentum

The local form of balance of linear momentum is :

σlk,l + ρ(fk − ak) = 0 (4.1)

If we multiply the weak form of (4.1) with a weight function and apply divergence theorem,

we get :
ˆ

V

wk (σlk,l + ρ(fk − ak)) dv =

ˆ

S

wkσlknlda

−
ˆ

V

[wk,lσlk + wk (ρ(fk − ak))] dv = 0 (4.2)

ˆ

S

wkσlkJNKF
−1
Kl dA−

ˆ

V

[wk,lσlk + wk (ρ(fk − ak))] JdV = 0 (4.3)

To linearize the balance equation, we should find the variation δ(.) of the equation. The

aim of linearization is to obtain the consistent tangent matrix to apply within the Newton-

Raphson algorithm. (4.3).
ˆ

S

wkσlkJNKF
−1
Kl dA−

ˆ

V

[wk,lσlk + wk (ρ(fk − ak))] JdV

δ

(
ˆ

S

wkσlkJNKF
−1
Kl dA−

ˆ

V

[wk,lσlk + wk (ρ(fk − ak))] JdV

)
= 0 (4.4)

Note that area change is :

nlda = JF−1
KlNKdA (4.5)
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and Piola transform of Cauchy’s stress tensor

PlL = JσlkF
−1
Lk (4.6)

Then, variation of equation (4.3) is:

δ

(
ˆ

S

wkTkdA

)
− δ

[
ˆ

V

[wk,lσlkJ + wk (ρ(fk − ak)) J ] dV

]
= 0 (4.7)

where Tk = PkLNL and variation of the volume integral will be:

δ

[
ˆ

V

(
∇wT : σJ +w.ρ(f − a)J

)
dV

]
= δ

(
ˆ

V

(∇w)T : σJdV

)

+ δ

(
ˆ

V

w. (ρ0(f − a)) dV
)

(4.8)

Variation of the first integrand at right hand side of equation (4.8) is:

δ (∇w)T : σJ + (∇w)T : δσJ + (∇w)T : σδ (J) = (∇w)T : δσJ

+ (∇w)T : σδ (J) (4.9)

or δ (∇w)T : σJ can be assumed as:

δ

(
∂wk
∂xl

)
σlkJ = δ

(
∂wk
∂XL

F−1
Ll

)
σlkJ =



∂δwk
∂XL︸ ︷︷ ︸

0

F−1
Ll +

∂wk
∂XL

δF−1
Ll


 σlkJ

= −wk,LF−1
Lmδum,lσlkJ (4.10)

In order to calculate the second term, (∇w)T : δσJ , the variation of δσ must be determined

as given below where σn+1 was defined in equation 3.134 as:

σn+1 =
(
1− tr

(
∆tden+1

))
σn +

(
∆tℓen+1

)
σn + σn

(
∆tℓen+1

)T

+ (λ+ τ) tr
(
∆tden+1

)
1 + 2 (µ+ σ)

(
∆tden+1

)
+ ηtr

(
∆tεen+1

)
1

+ κ
(
∆tεen+1

)
+ ν

(
∆tεen+1

)T
(4.11)
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where

∆tεen+1 = ∆tνen+1 +
(
∆tℓen+1

)T
(4.12)

∆tνen+1 =
(
∆χn+1

)
χ−1
n+1 (4.13)

⇒ ∆tεen+1 =
(
∆χn+1

)
χ−1
n+1 +

(
∆tℓen+1

)T
(4.14)

Then variation of σn+1 is found as :

δσlk = −
(
(Fn)iL F

−1
Lmδum,i

)
(σn)lk +

(
(Fn)lL F

−1
Lmδum,i

)
(σn)ik

+ (σn)li
(
(Fn)kL F

−1
Lmδum,i

)
+ (λ+ τ)

(
(Fn)iL F

−1
Lmδum,i

)
δlk

+ (µ+ σ)
(
(Fn)lL F

−1
Lmδum,k

)
+ (µ+ σ)

(
(Fn)kL F

−1
Lmδum,l

)

+ η
(
(χn)iL χ

−1
Lm (δΦmT )χ

−1
T i

)
δlk + η

(
(Fn)iL F

−1
Lmδum,i

)
δlk

+ κ
(
(χn)lL χ

−1
Lm (δΦmT )χ

−1
Tk

)
+ κ

(
(Fn)kL F

−1
Lmδum,l

)

+ ν
(
(χn)kL χ

−1
Lm (δΦmT )χ

−1
T l

)
+ ν

(
(Fn)lL F

−1
Lmδum,k

)
(4.15)

Lastly, the third term in equation (4.9) will be equal to :

(∇w)T : σδJ = (∇w)T : σ (Jdiv(δ(u)) (4.16)

Variation of the second integrand in (4.8) for quasi static case is :

δ(wfρ0) = δ(w)fρ0 +wδ(f )ρ0 +wfδ(ρ0) = 0 (4.17)

Variation of the traction term :

δ

(
ˆ

wT dA

)
=

ˆ

(δ (w)T +w.δ(T )) dA

⇒ δ

(
ˆ

w.T dA

)
=

ˆ

w.δ(T )dA (4.18)

where δ (T ) depends on application of traction load.
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4.2 Weak Form and Linearization of the Balance of First Moment of Mo-

mentum

The local form of balance of first moment of momentum is :

σml − sml +mklm,k + ρ(λlm − ωlm) (4.19)

If the same procedure is applied as we did for equation (4.3), we get ;
ˆ

V

ηml(σml − sml +mklm,k + ρ(λlm − ωlm))dv =

ˆ

S

(ηmlmklm)nkda

−
ˆ

v

ηml,kmklmdv +

ˆ

v

ηml(σml − sml + ρ(λlm − ωlm))dv (4.20)

where ηml is the wighthing function for the micro-displacement tensor φml If equation (4.6)

is applied to equation (4.20) , we get :

ηmlmklmnkda = ηmlmklmJF
−1
KkNKdA

= ηmlmklmJF
−1
Kk︸ ︷︷ ︸

MlmK

NKdA

ηmlmklmnkda = ηmlMlmKNK︸ ︷︷ ︸
̥lm

dA

ηmlmklmnkda = ηml̥lmdA (4.21)

Then, equation (4.20) will be :
ˆ

S

ηmlMlmKNKdA−
ˆ

V

ηml,kmklmJdV

+

ˆ

V

ηml(σml − sml + ρ(λlm − ωlm))JdV = 0 (4.22)

Variation of (4.22) is:
ˆ

S

ηmlMlmKNKdA−
ˆ

V

ηml,kmklmJdV

+

ˆ

V

ηml(σml − sml + ρ(λlm − ωlm))JdV + δ

(
ˆ

S

ηmlMlmKNKdA−
ˆ

V

ηml,kmklmJdV

+

ˆ

V

ηml(σml − sml + ρ(λlm − ωlm))JdV

)
= 0 (4.23)
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ˆ

S

ηmlMlmKNKdA−
ˆ

V

ηml,kmklmJdV

+

ˆ

V

ηml(σml − sml + ρ(λlm − ωlm))JdV + δ

(
ˆ

S

ηml̥lmdA

)
− δ

(
ˆ

V

ηml,kmklmJdV

)

+δ

(
ˆ

V

ηml(σml − sml + ρ(λlm − ωlm))JdV

)
= 0 (4.24)

Variation of the area integral :

δ

(
ˆ

S

ηml̥lmdA

)
=

(
ˆ

S

ηmlδ (̥lm) dA

)
(4.25)

Variation of the second integral in (4.23):

δ

(
ˆ

V

ηml,kmklmJdV

)
=

ˆ

V

δ (ηml,k)mklmJdV +

ˆ

V

ηml,kδ (mklm) JdV

+

ˆ

V

ηml,kmklmδ (J) dV (4.26)

where δ (ηml,k) can be obtained as:

δ (ηml,k)mklmJ = δ

(
∂ηml
∂XK

∂XK

∂xk

)
mklmJ = δ

(
∂ηml
∂XK

F−1
Kk

)
mklmJ

= ηml,KF
−1
Kaδua,LF

−1
Lk (4.27)

In order to calculate the variation of the second term at the right hand side of equation

(4.26), someone should calculate the δ(m) where m was expressed in equation 3.136 as :

mn+1 =
(
1− tr

(
∆tden+1

))
mn +

(
∆tℓen+1

)
mn +mn ⊙

(
∆tℓen+1

)T

+mn

(
∆tνen+1

)T
+ c

...
(
∆t

◦
γ
e

n+1

)
(4.28)

where

∆t
◦
γ
e

n+1 = ∆tγ̇en+1 +
(
∆tℓen+1

)T
γen + γ

e
n

(
∆tℓen+1

)
+ γen ⊙

(
∆tνen+1

)
(4.29)

∆tγ̇en+1 =
(
∆tνen+1

)
γen −

(
∆tνen+1

)T ⊙ γen +∆t∇νen+1 − ∆t∇νpn+1︸ ︷︷ ︸
0 for elastic case

(4.30)

∆t∇νen+1 = ∇
(
χn+1 − χn

)
⊙ χ−1

n+1 +
(
χn+1 − χn

)
χ−1
n+1

(
∇χn+1

)
⊙ χ−1

n+1 (4.31)
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Variation of the ∆t∇νen+1 is quite complicated. Therefore, it may be useful to give it in

indicial form as:

νpr,s =
[
χ̇pAχ

−1
Ar

]
,s
= χ̇pA,sχ

−1
Ar + χ̇pAχ

−1
Ar,s

Integration in time gives:

∆tνpr,s = ∆tχ̇pA,sχ
−1
Ar +∆tχ̇pAχ

−1
Ar,s

=
(
χpA,s − (χn)pA,s

)
χ−1
Ar +

(
χpA − (χn)pA

)
χ−1
Ar,s

=
(
χpA,s − (χn)pA,T

)
F−1
Ts χ

−1
Ar +

(
χpA − (χn)pA

)
χ−1
Ar,TF

−1
Ts

∆tνpr,s =
(
χpA,s − (χn)pA,T

)
F−1
Ts χ

−1
Ar +

(
χpA − (χn)pA

)
χ−1
Aa

∂χaB
∂XT

χ−1
BrF

−1
Ts (4.32)

Then, we take the varitation of the terms as :

δ (∆tνpr,s) = δ
(
χpA,T − (χn)pA,T

)
F−1
Ts χ

−1
Ar +

(
χpA,T − (χn)pA,T

)
δF−1

Ts χ
−1
Ar

+
(
χpA,T − (χn)pA,T

)
F−1
Ts δ

(
χ−1
Ar

)
+ δ

(
χpA − (χn)pA

)
χ−1
Aa

∂χaB
∂XT

χ−1
BrF

−1
Ts

+
(
χpA − (χn)pA

)
δχ−1

Aa

∂χaB
∂XT

χ−1
BrF

−1
Ts

+
(
χpA − (χn)pA

)
χ−1
Aaδ

(
∂χaB
∂XT

)
χ−1
BrF

−1
Ts

+
(
χpA − (χn)pA

)
χ−1
Aa

∂χaB
∂XT

δχ−1
BrF

−1
Ts

+
(
χpA − (χn)pA

)
χ−1
Aa

∂χaB
∂XT

χ−1
BrδF

−1
Ts

If we apply equations (A.3) and (A.9) as:

δ (∆tνpr,s) = δ

(
∂χpA
∂XT

)
F−1
Ts χ

−1
Ar −

(
χpA,T − (χn)pA,T

)
F−1
Ta δFaBF

−1
Bs χ

−1
Ar

+
(
χpA,T − (χn)pA,T

)
F−1
Ts χ

−1
AaδχaBχ

−1
Br + δ (χpA)χ

−1
Aa

∂χaB
∂XT

χ−1
BrF

−1
Ts

−
(
χpA − (χn)pA

)
χ−1
Ai δχiLχ

−1
La

∂χaB
∂XT

χ−1
BrF

−1
Ts

+
(
χpA − (χn)pA

)
χ−1
Aaδ

(
∂χaB
∂XT

)
χ−1
BrF

−1
Ts

−
(
χpA − (χn)pA

)
χ−1
Aa

∂χaB
∂XT

χ−1
Bi δχiLχ

−1
LrF

−1
Ts

−
(
χpA − (χn)pA

)
χ−1
Aa

∂χaB
∂XT

χ−1
BrF

−1
T i δFiLF

−1
Ls
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and applying equations (A.2) and (A.8) gives:

δ (∆tνpr,s) = δ (ΦpA,T )F
−1
Ts χ

−1
Ar −

(
χpA,T − (χn)pA,T

)
F−1
Ta δ (ua,s)χ

−1
Ar

+
(
χpA,T − (χn)pA,T

)
F−1
Ts χ

−1
AaδΦaBχ

−1
Br + δ (ΦpA)χ

−1
AaχaB,Tχ

−1
BrF

−1
Ts

−
(
χpA − (χn)pA

)
χ−1
Ai δΦiLχ

−1
LaχaB,Tχ

−1
BrF

−1
Ts

+
(
χpA − (χn)pA

)
χ−1
AaδΦaB,Tχ

−1
BrF

−1
Ts

−
(
χpA − (χn)pA

)
χ−1
AaχaB,Tχ

−1
Bi δΦiLχ

−1
LrF

−1
Ts

−
(
χpA − (χn)pA

)
χ−1
AaχaB,Tχ

−1
BrF

−1
T i δ (ui,s)

(4.33)

The variation of mn+1 depends on the variation of each term given in equation (3.136).

These terms,basically, are related to the
(
∆tℓen+1

)
,
(
∆tden+1

)
,χn+1and

(
∇χn+1

)
. Note that

variation of these terms are given in equations (A.5),(A.6),(A.8) and (A.11) respectively. Also

variation of the term ∆t∇νen+1 is given seperately in equation (4.33). Therefore, variation

of mn+1 can be obtained as:
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δmklm = −
(
(Fn)iL F

−1
Ln δun,i

)
(mn)klm +

(
(Fn)kL F

−1
Ln δun,i

)
(mn)ilm

+ (mn)kim
(
(Fn)lL F

−1
Ln δun,i

)
+ (mn)kli

(
(χn)mL χ

−1
LpδΦpTχ

−1
T i

)

+ cklmprs

[(
(χn)pL χ

−1
LnδΦnTχ

−1
T i

)
(γen)irs −

(
(χn)iL χ

−1
LnδΦnTχ

−1
Tr

)
(γen)pis

+ δ (ΦpA,T )F
−1
Ts χ

−1
Ar −

(
χpA,T − (χn)pA,T

)
F−1
Ta δ (ua,s)χ

−1
Ar

+
(
χpA,T − (χn)pA,T

)
F−1
Ts χ

−1
AaδΦaBχ

−1
Br + δ (ΦpA)χ

−1
AaχaB,Tχ

−1
BrF

−1
Ts

−
(
χpA − (χn)pA

)
χ−1
Ai δΦiLχ

−1
LaχaB,Tχ

−1
BrF

−1
Ts

+
(
χpA − (χn)pA

)
χ−1
AaδΦaB,Tχ

−1
BrF

−1
Ts

−
(
χpA − (χn)pA

)
χ−1
AaχaB,Tχ

−1
Bi δΦiLχ

−1
LrF

−1
Ts

−
(
χpA − (χn)pA

)
χ−1
AaχaB,Tχ

−1
BrF

−1
T i δ (ui,s)

+
(
(Fn)iL F

−1
Ln δun,k

)
(γen)ilm + (γen)kli

(
(Fn)iL F

−1
Ln δun,m

)

+ (γen)kim
(
(χn)iL χ

−1
LpδΦpTχ

−1
T l

)]
(4.34)

The last term at right hand side of equation (4.26) can be obtained as:

ηml,kmklmδ (J) = ηml,kmklm (Jδ(un,n)) (4.35)

The variation of the last integral term in equation (4.23) can be written as follows:

δ

(
ˆ

V

ηml(σml − sml + ρ(λlm − ωlm))JdV

)
=

ˆ

V

0︷ ︸︸ ︷
δ (ηml)(σml − sml)J

+ηmlδ(σml − sml)J + ηml(σml − sml)δ(J) +

0︷ ︸︸ ︷
δ (ηml)

ρ0︷︸︸︷
ρJ (λlm − ωlm)

+ηml

0︷ ︸︸ ︷
δ(ρ0)(λlm − ωlm) + ηmlρ0δ(λlm − ωlm)dV (4.36)
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The first term in the right hand side of equation (4.36) will be zero. To determine the second

term, δ(σml − sml) should be calculated where (sml − σml) is defined as follows:

(s− σ)n+1 =
(
1− tr

(
∆tden+1

))
(s− σ)n +

(
∆tℓen+1

)
(s− σ)n

+ (s− σ)n
(
∆tℓen+1

)T
+ (κ− σ)

(
∆tεen+1

)T

+ (ν − σ)
(
∆tεen+1

)
+ τtr

(
∆tden+1

)
1

+ 2σ∆tden+1 + (η − τ) tr
(
∆tεen+1

)
1 (4.37)

where δ(σ− s) = −δ(s− σ). Note that variation of the terms appearing in equation (4.37)

are given in Appendix (A). Variation of the third term of equation (4.36) :

ηml(σml − sml)δ(J) = ηml(σml − sml)Jδ(un,n) (4.38)

Variation of the last term in equation (4.36) :

ηmlρδ(λlm − ωlm)J = ηmlρδ (λlm)J − ηmlρδ (ωlm)J

where

ρλlmdv =

ˆ

dv

ρ′f ′
l ξ

′
mdv

′ =

ˆ

dv

ρ′f ′
lχmKΞKdv

′

ρλlmdv = χmK

ˆ

dv

ρ′f ′
lΞ

′
Kdv

′ = χmK

ˆ

dv

f ′
lΞK ρ′J ′

︸︷︷︸
ρ′
0

dV ′

︸ ︷︷ ︸
ρ0ΓlKdV

ρλlmdv = χmKρ0ΓlKdV (4.39)

⇒ ρδ (λlm) dv = δ


χmK

ˆ

dV

ρ′f ′
lΞ

′
KJ

′dV ′

︸ ︷︷ ︸
ρ0ΓlKdV


 = δ (χmK) ρ0ΓlKdV + χmK

0︷ ︸︸ ︷
δ (ρ0ΓlKdV )

ρδ (λlm) dv = ρ0ΓlKδ (ΦmK) dV (4.40)
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and

ρωlmdv =

ˆ

dv

ρ′ξ̈lξmdv
′

=

ˆ

dv

ρ′ (χ̈lK) ΞKχmLΞLdv
′

= (χ̈lK)χmL

ˆ

dV

ρ′0ΞKΞLdV
′

⇒ ρωlmdv = (χ̈lK)χmLρ0ΩKLdV, ρ0ΩKLdV =

ˆ

dV

ρ′0ΞKΞLdV
′

ρδ (ωlm) dv =
(
δ
(
Φ̈lK

)
ΦmL + Φ̈lKδ (ΦmL)

)
ρ0ΩKLdV (4.41)

By using (4.40) and (4.41), we get :

ηmlρδ (λlm) J − ηmlρδ (ωlm) J = ηmlρ0ΓlKδ (ΦmK)

− ηml

(
δ
(
Φ̈lK

)
ΦmL + Φ̈lKδ (ΦmL)

)
ρ0Ωlm (4.42)

Then, the last term for quasistatic case in equation (4.36) becomes :

δ



ˆ

ρ(λlm − ωlm)︸︷︷︸
0

dv


 =

ˆ

V

ρ0ΓlKδ (ΦmK) dV
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4.3 Finite Element Discretization

Displacement u can be discretized as:

uhi =

nu
en∑

a=1

Nu
a di(a) (4.43)

⇒ δ
(
uhi
)
=

nu
en∑

a=1

Nu
a δ
(
di(a)

)
(4.44)

{
uh
}

︸ ︷︷ ︸
nsd×1

= [Nu,e]︸ ︷︷ ︸
nsd×n

u,e
dof

. {de}︸︷︷︸
nu,e
dof

×1

(4.45)

uhi,j =

nen∑

a=1

Nu
a,jdi(a) (4.46)

{
grad(uh)

}
︸ ︷︷ ︸

(nsd∗nsd)×1

= [grad (Nu,e)]︸ ︷︷ ︸
(nsd∗nsd)×n

u,e
dof

. {de}︸︷︷︸
nu,e
dof

×1

(4.47)

uhi,i =

nel∑

a=1

Nu
a,idi(a) (4.48)

div(uh) = [div (Nu,e)]︸ ︷︷ ︸
1×nu,e

dof

. {de}︸︷︷︸
nu,e
dof

×1

(4.49)

The weight function w can be discretized as :

whk,l =

nu
en∑

a=1

Nu
a,lc

e
k(a) (4.50)

in matrix form
{
wh
}

︸ ︷︷ ︸
nsd×1

= [Nu,e]︸ ︷︷ ︸
nsd×n

u,e

dof

. {ce}︸︷︷︸
nu,e

dof
×1

(4.51)

then, grad(w) can be obtained as:

whk,l = whk,LF
−1
Ll (4.52)

{
grad(wh)

}
︸ ︷︷ ︸

(nsd∗nsd)×1

=
[
F−1

]T
w︸ ︷︷ ︸

(nsd∗nsd)×(nsd∗nsd)

.
{
GRAD(wh)

}
︸ ︷︷ ︸

(nsd∗nsd)×1

(4.53)

whk,L =

nu
en∑

a=1

Nu
a,Lc

e
k(a) (4.54)
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in matrix form

{GRAD(w)}︸ ︷︷ ︸
(nsd∗nsd)×1

= [GRAD(Nu,e)]︸ ︷︷ ︸
(nsd∗nsd)×n

u,e
dof

. {ce}︸︷︷︸
(nu,e

dof)×1

(4.55)

{GRAD(w)}T︸ ︷︷ ︸
1×(nsd∗nsd)

= {ce}T︸ ︷︷ ︸
1×(nu,e

dof)

.[GRAD(Nu,e)]T︸ ︷︷ ︸
nu,e
dof

×(nsd∗nsd)

(4.56)

{
grad(wh)

}T
︸ ︷︷ ︸

1×(nsd∗nsd)

= {ce}T︸ ︷︷ ︸
1×(nu,e

dof)

.[GRAD(Nu,e)]T︸ ︷︷ ︸
nu,e
dof

×(nsd∗nsd)

.
[
F−1

]T
w︸ ︷︷ ︸

(nsd∗nsd)×(nsd∗nsd)

(4.57)

[
ι
]
w︸︷︷︸

nu,e
dof

×(nsd∗nsd)

= [GRAD(Nu,e)]T︸ ︷︷ ︸
nu,e

dof
×(nsd∗nsd)

.
[
F−1

]T
w︸ ︷︷ ︸

(nsd∗nsd)×(nsd∗nsd)

(4.58)

Micro deformation tensor χ can be discretized as:

ΦhmL =

nχ
en∑

b=1

Nχ
b φmL(b) (4.59)

⇒ δ
(
χhmL

)
= δ

(
ΦhmL

)
=

nχ
en∑

b=1

Nχ
b δ
(
φmL(b)

)
(4.60)

in matrix form
{
Φ
h
}

︸ ︷︷ ︸
(nsd∗nsd)×1

=
[
Nχ,e

]
︸ ︷︷ ︸

(nsd∗nsd)×n
χ,e

dof

.
{
φ
}

︸︷︷︸
nχ

dof
×1

The weight function η can be discretized as :

ηhmL =

nχ
en∑

b=1

Nχ
b αmL(b) (4.61)

in matrix form
{
η
}

︸︷︷︸
(nsd∗nsd)×1

=
[
Nχ,e

]
︸ ︷︷ ︸

(nsd∗nsd)×n
χ
dof

.
{
α
}

︸︷︷︸
nχ
dof

×1

(4.62)

The gradient of the weight function η can be discretized as:

ηhml,k =

nχ
en∑

b=1

Nχ
b,kαml(b) (4.63)

in matrix form
{
grad(η)

}
︸ ︷︷ ︸
(nsd∗nsd∗nsd)×1

=
[
grad(Nχ,e)

]
︸ ︷︷ ︸
(nsd∗nsd∗nsd)×n

χ,e
dof

.
{
α
}

︸︷︷︸
nχ,e
dof

×1

(4.64)
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{
grad(η)

}
︸ ︷︷ ︸
(nsd∗nsd∗nsd)×1

=
[
F−1

]
η︸ ︷︷ ︸

(nsd∗nsd∗nsd)×(nsd∗nsd∗nsd)

.
[
GRAD(η)

]
︸ ︷︷ ︸
(nsd∗nsd∗nsd)×1

(4.65)

{
grad(η)

}T
︸ ︷︷ ︸
(nsd∗nsd∗nsd)×1

=
{
α
}

︸︷︷︸
1×nχ,e

dof

T
.
[
GRAD(Nχ,e)

]T
︸ ︷︷ ︸
nχ,e
dof

×(nsd∗nsd∗nsd)

[
F−1

]T
η︸ ︷︷ ︸

(nsd∗nsd∗nsd)×(nsd∗nsd∗nsd)

(4.66)

[
ι
]
η︸︷︷︸

nχ,e

dof
×(nsd∗nsd∗nsd)

=
[
GRAD(Nχ,e)

]T
︸ ︷︷ ︸
nχ,e

dof
×(nsd∗nsd∗nsd)

.
[
F−1

]T
η︸ ︷︷ ︸

(nsd∗nsd∗nsd)×(nsd∗nsd∗nsd)

(4.67)

4.4 Submatrices in the Matrix Form of the Balance of Linear Momentum

Equation (4.3) is separated into subintegrals as follows:

G1 = −
ˆ

V

(grad (w))T : σJdV (4.68)

If we write equation (3.134) in indicial notation as:

σlk = (1−∆tdeii) (σn)lk + (∆tℓeli) (σn)ik + (σn)li
(
∆tℓen+1

)
ki

+ (λ + τ)∆tdeiiδlk + 2 (µ+ σ) (∆tdelk) + ηt∆tεeiiδlk

+ κ∆tεelk + ν∆tεekl (4.69)

then,

(G)1 = −
ˆ

V

wk,lσlkJdV (4.70)

if the all the expressions given in Appendix (A) are inserted, Galerkin from of the Gh1 can be

obtained as:
(
Ge,h

)
1
= −
ˆ

V e

{
ce
}T

︸ ︷︷ ︸
1×(nu,e

dof)

.
[
grad(Nu,e)

]T
︸ ︷︷ ︸
nu,e
dof

×(nsd∗nsd)

.
{
G1

}
︸ ︷︷ ︸

(nsd∗nsd)×1

JdV (4.71)

{
U
e,Int
1

}

︸ ︷︷ ︸
nu,e
dof

×1

= −
ˆ

V e

[
grad(Nu,e)

]T
︸ ︷︷ ︸
nu,e
dof

×(nsd∗nsd)

.
{
G1

}
︸ ︷︷ ︸

(nsd∗nsd)×1

JdV (4.72)

{
U
e,Int
1

}

︸ ︷︷ ︸
nu,e
dof

×1

= −
ˆ

V e

[
GRAD(Nu,e)

]T
︸ ︷︷ ︸ .

nu,e
dof

×(nsd∗nsd)

[
F−1

]
w︸ ︷︷ ︸

(nsd∗nsd)×(nsd∗nsd)

.
{
G1

}
︸ ︷︷ ︸

(nsd∗nsd)×1

JdV (4.73)
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(
Gh1

)
=

nel

A
e=1

{
ce
}T

︸ ︷︷ ︸
1×nu,e

dof

.
{
U
e,Int
1

}

︸ ︷︷ ︸
nu,e
dof

×1

(4.74)

The second term:

(G)2 = −
ˆ

V

ρ0wkfkdV (4.75)

(
Ge,h
)
2
= −
ˆ

V e

{
ce
}T

.
[
Nu,e

]T
.
{
f
}
ρ0dV (4.76)

(
Ge,h
)
2
= −
ˆ

V e

ρ0
{
ce
}T

︸ ︷︷ ︸
1×(nu,e

dof)

.
[
Nu,e

]T
︸ ︷︷ ︸
nu,e

dof
×nsd

.
{
f
}

︸︷︷︸
nsd×1

dV (4.77)

{
U
e,Int
2

}

︸ ︷︷ ︸
nu,e
dof

×1

= −
ˆ

V e

ρ0
[
N u,e

]T
︸ ︷︷ ︸
nu,e
dof

×nsd

.
{
f
}

︸︷︷︸
nsd×1

dV (4.78)

(
Gh
)
2
=

nel

A
e=1

{
ce
}

︸︷︷︸
1×(nu,e

dof)

T
.
{
U
e,Int
2

}

︸ ︷︷ ︸
nu,e
dof

×1

(4.79)

and

(Gext) =

ˆ

S

ρ0w
T .T dA (4.80)

(Gext) =

ˆ

Se

ρ0wkTkdA (4.81)

(
Ghext

)
=

ˆ

Se

{
ce
}

︸︷︷︸
1×(nu,e

dof)

T
.
[
Nu,e

]T
︸ ︷︷ ︸
nu,e
dof

×nsd

.
{
T
}

︸︷︷︸
nsd×1

ρ0dA (4.82)

{
U e
ext

}
︸ ︷︷ ︸
nu,e
dof

×1

=

ˆ

Se

[
Nu,e

]T
︸ ︷︷ ︸
nu,e
dof

×nsd

.
{
T
}

︸︷︷︸
nsd×1

ρ0dA (4.83)

(
Ghext

)
=

nel

A
e=1

{
ce
}T

︸ ︷︷ ︸
1×(nu,e

dof)

.
{
U e
ext

}
︸ ︷︷ ︸
nu,e
dof

×1

(4.84)

4.5 Submatrices in the Matrix Form of the Balance of First Moment of

Momentum

The balance of first Moment of Momentum can be separated into subintegrals as fol-

lows:
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The first subintegral H1:

H1 = −
ˆ

V

ηml,kmklmJdV (4.85)

where mklm is written in indicial notation as:

mklm = (1−∆tdeii) (mn)klm + (∆tℓeki) (mn)ilm + (mn)kim (∆tℓeli)

+ (mn)kli (∆tν
e
mi) + cklmprs

(
∆t

◦
γ
e

prs

)
(4.86)

∆t
◦
γ
e

prs = ∆tγ̇eprs +
(
∆tℓeip

)
(γen)irs + (γen)pri (∆tℓ

e
is) + (γen)pis (∆tν

e
ir) (4.87)

∆tγ̇eprs =
(
∆tνepi

)
(γen)irs − (∆tνeir) (γ

e
n)pis +∆tνepr,s − ∆tνppr,s︸ ︷︷ ︸

0 for elastic case

(4.88)

∆tνepr,s =
(
χpK,s − (χn)pK,s

)
χ−1
Kr −

(
χpK − (χn)pK

)
χ−1
Ki (χiT,r)χ

−1
Ts (4.89)

∆tνepr,s =
(
χpK,S − (χn)pK,S

)
F−1
Ss χ

−1
Kr −

(
χpK − (χn)pK

)
χ−1
Ki (χiT,S)F

−1
Sr χ

−1
Ts (4.90)

H
e,h
1 = −

ˆ

V e

{
αe
}T

︸ ︷︷ ︸
1×nχ

dof

.
[
grad(Nχ,e)

]T
︸ ︷︷ ︸
nχ

dof
×(nsd∗nsd∗nsd)

.
{
H1

}
︸ ︷︷ ︸

(nsd∗nsd∗nsd)×1

JdV (4.91)

{
P
e,Int
1

}

︸ ︷︷ ︸
nχ,e
dof

×1

= −
ˆ

V e

[
grad(Nχ,e)

]T
︸ ︷︷ ︸
nχ
dof

×(nsd∗nsd∗nsd)

.
{
H1

}
︸ ︷︷ ︸

(nsd∗nsd∗nsd)×1

dV (4.92)

Hh
1 =

nel

A
e=1

{
αe
}T

︸ ︷︷ ︸
1×nχ

dof

.
{
P
e,Int
1

}

︸ ︷︷ ︸
nχ,e

dof
×1

(4.93)

The second subintegral H2:

H2 =

ˆ

V

ηml(σml − sml)JdV (4.94)

H2 = −
ˆ

V

ηml(sml − σml)JdV (4.95)

where (sml − σml) is expressed in indicial forms as:

(sml − σml) = (1−∆tdeii) (sml − σml)n + (∆tℓemi) (sil − σil)n + (smi − σmi)n (∆tℓ
e
li)

+ (κ− σ) (∆tεelm) + (ν − σ) (∆tεeml) (4.96)

+ τ∆tdeiiδml + 2σ∆tdeml + (η − τ) ∆tεeiiδml (4.97)
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H
e,h
2 = −

ˆ

V e

{
αe
}T

︸ ︷︷ ︸
1×nχ

dof

.
[
Nχ,e

]T
︸ ︷︷ ︸

nχ
dof

×(nsd∗nsd)

.
{
H2

}
︸ ︷︷ ︸

(nsd∗nsd)×1

JdV (4.98)

{
P
e,Int
2

}

︸ ︷︷ ︸
nχ,e
dof

×1

= −
ˆ

V e

[
Nχ,e

]T
︸ ︷︷ ︸

nχ
dof

×(nsd∗nsd)

.
{
H2

}
︸ ︷︷ ︸

(nsd∗nsd)×1

JdV (4.99)

Hh
2 =

nel

A
e=1

{
αe
}T

︸ ︷︷ ︸
1×nχ

dof

{
P
e,Int
2

}

︸ ︷︷ ︸
nχ,e
dof

×1

(4.100)

The third subintegral H3:

H3 =

ˆ

V

ηmlρ(λlm − ωlm)JdV (4.101)

H
e,h
3 =

ˆ

V e

{
αe
}T

︸ ︷︷ ︸
1×nχ

dof

.
[
Nχ,e

]T
︸ ︷︷ ︸

nχ

dof
×(nsd∗nsd)

.
{
H3

}
︸ ︷︷ ︸

(nsd∗nsd)×1

ρ0dV (4.102)

{
P
e,Int
3

}

︸ ︷︷ ︸
nχ,e
dof

×1

=

ˆ

V e

[
Nχ,e

]T
︸ ︷︷ ︸

nχ
dof

×(nsd∗nsd)

.
{
H3

}
︸ ︷︷ ︸

(nsd∗nsd)×1

ρ0dV (4.103)

Hh
3 =

nel

A
e=1

{
αe
}T

︸ ︷︷ ︸
1×nχ

dof

{
P
e,Int
3

}

︸ ︷︷ ︸
nχ,e
dof

×1

(4.104)

The fourth term Hext :

Hext =

ˆ

S

ηml̥kmdA (4.105)

H
e,h
ext =

ˆ

Se

{
αe
}

︸ ︷︷ ︸
1×nχ

dof

T [
Nχ,e

]T
︸ ︷︷ ︸

nχ
dof

×(nsd∗nsd)

.
{
Hext

}
︸ ︷︷ ︸

(nsd∗nsd)×1

dA (4.106)

{
P e
ext

}
︸ ︷︷ ︸
nχ,e
dof

×1

=

ˆ

Se

[
Nχ,e

]T
︸ ︷︷ ︸

nχ
dof

×(nsd∗nsd)

.
{
Hext

}
︸ ︷︷ ︸

(nsd∗nsd)×1

ddA (4.107)

Hh
ext =

nel

A
e=1

{
αe
}T

︸ ︷︷ ︸
1×nχ

dof

.
{
P e,ext

}
︸ ︷︷ ︸
nχ,e
dof

×1

(4.108)
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4.6 Submatrices in the Matrix Form of the Linearized Form of the Balance

of Linear Momentum

Linearization of the term G1:

(
δG1

)
1
=

ˆ

V

(∇w)T : δ (σ) JdV =

ˆ

V

∂wk
∂xl

δ (σlk) JdV (4.109)

(
δG1

)
1
=

ˆ

V

wk,l
(
(Fn)iL F

−1
Lmδum,i

)
(σn)lk JdV (4.110)

(
δGe,h1

)
1
=

ˆ

V e

{
ce
}T

︸ ︷︷ ︸
1×(nu,e

dof)

.
[
grad(Nu,e)

]T
︸ ︷︷ ︸
(nu,e

dof)×(nsd∗nsd)

.
[
T σ

1

]
︸ ︷︷ ︸

(nsd∗nsd)×(nsd∗nsd)

.
[
grad (Nu,e)

]
︸ ︷︷ ︸
(nsd∗nsd)×n

u,e
dof

.
{
δde
}

︸ ︷︷ ︸
nu,e
dof

×1

JdV (4.111)

[
T
e
1

]
︸︷︷︸

(nu,e
dof)×(n

u,e
dof)

=

ˆ

V e

[
grad(Nu,e)

]T
︸ ︷︷ ︸
(nu,e

dof)×(nsd∗nsd)

.
[
T σ

1

]
︸ ︷︷ ︸

(nsd∗nsd)×(nsd∗nsd)

.
[
grad (Nu,e)

]
︸ ︷︷ ︸
(nsd∗nsd)×n

u,e

dof

JdV (4.112)

(
δGh1
)
1
=

nel

A
e=1

{
ce
}T

︸ ︷︷ ︸
1×(nu,e

dof)

.
[
T
e
1

]
︸︷︷︸

(nu,e
dof)×(n

u,e
dof)

.
{
δde
}

︸ ︷︷ ︸
nu,e
dof

×1

(4.113)

For the second term in equation (4.15), we have :

(
δG1

)
2
= −
ˆ

V

wk,l
(
(Fn)lL F

−1
Lmδum,i

)
(σn)ik JdV (4.114)

(
δGe,h1

)
2
= −
ˆ

V e

{
ce
}T

︸ ︷︷ ︸
1×(nu,e

dof)

.
[
grad(Nu,e)

]T
︸ ︷︷ ︸
(nu,e

dof)×(nsd∗nsd)

.
[
T σ

2

]
︸ ︷︷ ︸

(nsd∗nsd)×(nsd∗nsd)

.
[
grad (Nu,e)

]
︸ ︷︷ ︸
(nsd∗nsd)×n

u,e

dof

.
{
δde
}

︸ ︷︷ ︸
nu,e

dof
×1

JdV (4.115)

[
T
e
2

]
︸︷︷︸

(nu,e
dof)×(n

u,e
dof)

= −
ˆ

V e

[
grad(Nu,e)

]T
︸ ︷︷ ︸
(nu,e

dof)×(nsd∗nsd)

.
[
T σ

2

]
︸ ︷︷ ︸

(nsd∗nsd)×(nsd∗nsd)

.
[
grad (Nu,e)

]
︸ ︷︷ ︸
(nsd∗nsd)×n

u,e
dof

JdV (4.116)

(
δGh1
)
2
=

nel

A
e=1

{
ce
}T

︸ ︷︷ ︸
1×(nu,e

dof)

.
[
Te

2

]
︸︷︷︸

(nu,e

dof)×(n
u,e

dof)

.
{
δde
}

︸ ︷︷ ︸
nu,e
dof

×1

(4.117)

The third term in the equation (4.15) will be :

(
δG1

)
3
= −
ˆ

V

wk,l (σn)li
(
(Fn)kL F

−1
Lmδum,i

)
JdV (4.118)
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(
δGe,h1

)
3
= −
ˆ

V e

{
ce
}T

︸ ︷︷ ︸
1×(nu,e

dof)

.
[
grad(Nu,e)

]T
︸ ︷︷ ︸
(nu,e

dof)×(nsd∗nsd)

.
[
T σ

3

]
︸ ︷︷ ︸

(nsd∗nsd)×(nsd∗nsd)

.
[
grad (Nu,e)

]
︸ ︷︷ ︸
(nsd∗nsd)×n

u,e
dof

.
{
δde
}

︸ ︷︷ ︸
nu,e
dof

×1

JdV (4.119)

[
T
e
3

]
︸︷︷︸

(nu,e
dof)×(n

u,e
dof)

= −
ˆ

V e

[
grad(Nu,e)

]T
︸ ︷︷ ︸
(nu,e

dof)×(nsd∗nsd)

.
[
T σ

3

]
︸ ︷︷ ︸

(nsd∗nsd)×(nsd∗nsd)

.
[
grad (Nu,e)

]
︸ ︷︷ ︸
(nsd∗nsd)×n

u,e

dof

JdV (4.120)

(
δGh1
)
3
=

nel

A
e=1

{
ce
}T

︸ ︷︷ ︸
1×(nu,e

dof)

.
[
T
e
3

]
︸︷︷︸

(nu,e
dof)×(n

u,e
dof)

.
{
δde
}

︸ ︷︷ ︸
nu,e

dof
×1

(4.121)

The fourth term in equation (4.15) can be found as :

(
δG1

)
4
= −
ˆ

V

wk,lδlk
(
λ+ τ

) (
(Fn)iL F

−1
Lmδum,i

)
JdV (4.122)

(
δGe,h1

)
4
= −

(
λ+ τ

) ˆ

V e

{
ce
}T

︸ ︷︷ ︸
1×(nu,e

dof)

.
[
grad(Nu,e)

]T
︸ ︷︷ ︸
(nu,e

dof)×(nsd∗nsd)

.
[
T Fn

1

]
︸ ︷︷ ︸

(nsd∗nsd)×(nsd∗nsd)

.
[
grad (Nu,e)

]
︸ ︷︷ ︸
(nsd∗nsd)×n

u,e

dof

.
{
δde
}

︸ ︷︷ ︸
nu,e

dof
×1

JdV (4.123)

[
Te

4

]
︸︷︷︸

(nu,e

dof)×(n
u,e

dof)

= −
(
λ+ τ

) ˆ

V e

[
grad(Nu,e)

]T
︸ ︷︷ ︸
(nu,e

dof)×(nsd∗nsd)

.
[
T Fn

1

]
︸ ︷︷ ︸

(nsd∗nsd)×(nsd∗nsd)

.
[
grad (Nu,e)

]
︸ ︷︷ ︸
(nsd∗nsd)×n

u,e
dof

JdV (4.124)

(
δGh1
)
4
=

nel

A
e=1

{
ce
}T

︸ ︷︷ ︸
1×(nu,e

dof)

.
[
Te

4

]
︸︷︷︸

(nu,e
dof)×(n

u,e
dof)

.
{
δde
}

︸ ︷︷ ︸
nu,e
dof

×1

(4.125)

The fifth term in equation (4.15) can be found as :

(
δG1

)
5
= −

(
µ+ σ

) ˆ

V

wk,l
(
(Fn)lL F

−1
Lmδum,k

)
JdV (4.126)

(
δGe,h1

)
5
= −

(
µ+ σ

) ˆ

V e

{
ce
}T

︸ ︷︷ ︸
1×(nu,e

dof)

.
[
grad(Nu,e)

]T
︸ ︷︷ ︸
(nu,e

dof)×(nsd∗nsd)

.
[
T Fn

2

]
︸ ︷︷ ︸

(nsd∗nsd)×(nsd∗nsd)

.
[
grad (Nu,e)

]
︸ ︷︷ ︸
(nsd∗nsd)×n

u,e
dof

.
{
δde
}

︸ ︷︷ ︸
nu,e
dof

×1

JdV (4.127)
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[
T
e
5

]
︸︷︷︸

(nu,e
dof)×(n

u,e
dof)

= −
(
µ+ σ

) ˆ

V e

[
grad(Nu,e)

]T
︸ ︷︷ ︸
(nu,e

dof)×(nsd∗nsd)

.
[
T Fn

2

]
︸ ︷︷ ︸

(nsd∗nsd)×(nsd∗nsd)

.
[
grad (N u,e)

]
︸ ︷︷ ︸
(nsd∗nsd)×n

u,e
dof

JdV (4.128)

(
δGh1
)
5
=

nel

A
e=1

{
ce
}T

︸ ︷︷ ︸
1×(nu,e

dof)

.
[
Te

5

]
︸︷︷︸

(nu,e
dof)×(n

u,e
dof)

.
{
δde
}

︸ ︷︷ ︸
nu,e
dof

×1

(4.129)

The sixth term in equation (4.15) can be found as :

(
δG1

)
6
= −

(
µ+ σ

) ˆ

V

wk,l
(
(Fn)kL F

−1
Lmδum,l

)
JdV (4.130)

(
δGe,h1

)
6
=
(
µ+ σ

) ˆ

V e

{
ce
}T

︸ ︷︷ ︸
1×(nu,e

dof)

.
[
grad(Nu,e)

]T
︸ ︷︷ ︸
(nu,e

dof)×(nsd∗nsd)

.
[
T Fn

3

]
︸ ︷︷ ︸

(nsd∗nsd)×(nsd∗nsd)

.
[
grad (Nu,e)

]
︸ ︷︷ ︸
(nsd∗nsd)×n

u,e
dof

.
{
δde
}

︸ ︷︷ ︸
nu,e
dof

×1

JdV (4.131)

[
Te

6

]
︸︷︷︸

(nu,e

dof)×(n
u,e

dof)

= −
(
µ+ σ

)ˆ

V e

[
grad(Nu,e)

]T
︸ ︷︷ ︸
(nu,e

dof)×(nsd∗nsd)

.
[
T Fn

3

]
︸ ︷︷ ︸

(nsd∗nsd)×(nsd∗nsd)

.
[
grad (Nu,e)

]
︸ ︷︷ ︸
(nsd∗nsd)×n

u,e
dof

JdV (4.132)

(
δGh1
)
6
=

nel

A
e=1

{
ce
}T

︸ ︷︷ ︸
1×(nu,e

dof)

.
[
Te

6

]
︸︷︷︸

(nu,e

dof)×(n
u,e

dof)

.
{
δde
}

︸ ︷︷ ︸
nu,e
dof

×1

(4.133)

The seventh term in equation (4.15) can be found as :

(
δG1

)
7
= −η

ˆ

V

wk,l
(
(χn)iL χ

−1
LmδΦmHχ

−1
Hi

)
δlkJdV (4.134)

where

(
δGe,h1

)
7
= −η

ˆ

V e

{
ce
}T

︸ ︷︷ ︸
1×(nu,e

dof)

.
[
grad(Nu,e)

]T
︸ ︷︷ ︸
(nu,e

dof)×(nsd∗nsd)

.
[
T
χn

1

]
︸ ︷︷ ︸

(nsd∗nsd)×(nsd∗nsd)

.
[
(Nχ,e)

]
︸ ︷︷ ︸

(nsd∗nsd)×n
χ,e

dof

.
{
δφe
}

︸ ︷︷ ︸
nχ,e

dof
×1

JdV (4.135)



100

[
T
e
7

]
︸︷︷︸

(nu,e
dof)×(n

χ,e
dof)

= −η
ˆ

V e

[
grad(Nu,e)

]T
︸ ︷︷ ︸
(nu,e

dof)×(nsd∗nsd)

.
[
T
χn

1

]
︸ ︷︷ ︸

(nsd∗nsd)×(nsd∗nsd)

.
[
(Nχ,e)

]
︸ ︷︷ ︸

(nsd∗nsd)×n
χ,e
dof

JdV (4.136)

(
δGh1
)
7
=

nel

A
e=1

{
ce
}T

︸ ︷︷ ︸
1×(nu,e

dof)

.
[
T
e
7

]
︸︷︷︸

(nu,e
dof)×(n

χ,e
dof)

.
{
δφe
}

︸ ︷︷ ︸
nχ,e
dof

×1

(4.137)

The eighth term in equation (4.15) can be found as :

(
δG1

)
8
= −η

ˆ

V

wk,l
(
(Fn)iL F

−1
Lmδum,i

)
δlkJdV (4.138)

(
δGe,h1

)
8
= −η

ˆ

V e

{
ce
}T

︸ ︷︷ ︸
1×(nu,e

dof)

.
[
grad(Nu,e)

]T
︸ ︷︷ ︸
(nu,e

dof)×(nsd∗nsd)

.
[
T Fn

4

]
︸ ︷︷ ︸

(nsd∗nsd)×(nsd∗nsd)

.
[
grad (Nu,e)

]
︸ ︷︷ ︸
(nsd∗nsd)×n

u,e
dof

.
{
δde
}

︸ ︷︷ ︸
nu,e
dof

×1

JdV (4.139)

[
Te

8

]
︸︷︷︸

(nu,e
dof)×(n

u,e
dof)

= −η
ˆ

V e

[
grad(Nu,e)

]T
︸ ︷︷ ︸
(nu,e

dof)×(nsd∗nsd)

.
[
T Fn

4

]
︸ ︷︷ ︸

(nsd∗nsd)×(nsd∗nsd)

.
[
grad (Nu,e)

]
︸ ︷︷ ︸
(nsd∗nsd)×n

u,e
dof

JdV (4.140)

(
δGh1
)
8
=

nel

A
e=1

{
ce
}T

︸ ︷︷ ︸
1×(nu,e

dof)

.
[
Te

8

]
︸︷︷︸

(nu,e

dof)×(n
u,e

dof)

.
{
δde
}

︸ ︷︷ ︸
nu,e
dof

×1

(4.141)

The ninth term in equation (4.15) will be found as :

(
δG1

)
9
= −κ

ˆ

V

wk,l
(
(χn)lL χ

−1
LmδΦmRχ

−1
Rk

)
JdV (4.142)

(
δGe,h1

)
9
= −κ

ˆ

V e

{
ce
}T

︸ ︷︷ ︸
1×(nu,e

dof)

.
[
grad(Nu,e)

]T
︸ ︷︷ ︸
(nu,e

dof)×(nsd∗nsd)

.
[
T
χn

2

]
︸ ︷︷ ︸

(nsd∗nsd)×(nsd∗nsd)

.
[
(Nχ,e)

]
︸ ︷︷ ︸

(nsd∗nsd)×n
χ,e
dof

.
{
δφe
}

︸ ︷︷ ︸
nχ,e
dof

×1

JdV (4.143)

[
T
e
9

]
︸︷︷︸

(nu,e
dof)×(n

χ,e
dof)

= −κ
ˆ

V e

[
grad(Nu,e)

]T
︸ ︷︷ ︸
(nu,e

dof)×(nsd∗nsd)

.
[
T
χn

2

]
︸ ︷︷ ︸

(nsd∗nsd)×(nsd∗nsd)

.
[
(Nχ,e)

]
︸ ︷︷ ︸

(nsd∗nsd)×n
χ,e
dof

JdV (4.144)

(
δGh1
)
9
=

nel

A
e=1

{
ce
}T

︸ ︷︷ ︸
1×(nu,e

dof)

.
[
T
e
9

]
︸︷︷︸

(nu,e
dof)×(n

χ,e
dof)

.
{
δφe
}

︸ ︷︷ ︸
nχ,e
dof

×1

(4.145)
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The tenth term in equation (4.15) will be found as :

(
δG1

)
10

= −κ
ˆ

V

wk,l
(
(Fn)kL F

−1
Lmδum,l

)
JdV (4.146)

(
δGe,h1

)
10

= −κ
ˆ

V e

{
ce
}T

︸ ︷︷ ︸
1×(nu,e

dof)

.
[
grad(Nu,e)

]T
︸ ︷︷ ︸
(nu,e

dof)×(nsd∗nsd)

.
[
T Fn

5

]
︸ ︷︷ ︸

(nsd∗nsd)×(nsd∗nsd)

.
[
grad (Nu,e)

]
︸ ︷︷ ︸
(nsd∗nsd)×n

u,e
dof

.
{
δde
}

︸ ︷︷ ︸
nu,e
dof

×1

JdV (4.147)

[
T
e
10

]
︸ ︷︷ ︸

(nu,e
dof)×(n

u,e
dof)

= −κ
ˆ

V e

[
grad(Nu,e)

]T
︸ ︷︷ ︸
(nu,e

dof)×(nsd∗nsd)

.
[
T Fn

5

]
︸ ︷︷ ︸

(nsd∗nsd)×(nsd∗nsd)

.
[
grad (Nu,e)

]
︸ ︷︷ ︸
(nsd∗nsd)×n

u,e
dof

JdV (4.148)

(
δGh1
)
10

=
nel

A
e=1

{
ce
}T

︸ ︷︷ ︸
1×(nu,e

dof)

.
[
T
e
10

]
︸ ︷︷ ︸

(nu,e
dof)×(n

u,e
dof)

.
{
δde
}

︸ ︷︷ ︸
nu,e
dof

×1

(4.149)

The eleventh term in equation (4.15) will be found as :

(
δG1

)
11

= −ν
ˆ

V

wk,l
(
(χn)kL χ

−1
LmδΦmRχ

−1
Rl

)
JdV (4.150)

(
δGe,h1

)
11

= −ν
ˆ

V e

{
ce
}T

︸ ︷︷ ︸
1×(nu,e

dof)

.
[
grad(Nu,e)

]T
︸ ︷︷ ︸
(nu,e

dof)×(nsd∗nsd)

.
[
T
χn

3

]
︸ ︷︷ ︸

(nsd∗nsd)×(nsd∗nsd)

.
[
(Nχ,e)

]
︸ ︷︷ ︸

(nsd∗nsd)×n
χ,e
dof

.
{
δφe
}

︸ ︷︷ ︸
nχ,e
dof

×1

JdV (4.151)

[
Te

11

]
︸ ︷︷ ︸

(nu,e
dof)×(n

χ,e
dof)

= −ν
ˆ

V e

[
grad(Nu,e)

]T
︸ ︷︷ ︸
(nu,e

dof)×(nsd∗nsd)

.
[
T
χn

3

]
︸ ︷︷ ︸

(nsd∗nsd)×(nsd∗nsd)

.
[
(Nχ,e)

]
︸ ︷︷ ︸

(nsd∗nsd)×n
χ,e
dof

JdV (4.152)

(
δGh1
)
11

=
nel

A
e=1

{
ce
}T

︸ ︷︷ ︸
1×(nu,e

dof)

.
[
T
e
11

]
︸ ︷︷ ︸

(nu,e
dof)×(n

χ,e
dof)

.
{
δφe
}

︸ ︷︷ ︸
nχ,e
dof

×1

(4.153)

The twelfth term is:

(
δG1

)
12

= −ν
ˆ

V

wk,l
(
(Fn)lL F

−1
Lmδum,k

)
JdV (4.154)
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(
δGe,h1

)
12

= −ν
ˆ

V e

{
ce
}T

︸ ︷︷ ︸
1×(nu,e

dof)

.
[
grad(Nu,e)

]T
︸ ︷︷ ︸
(nu,e

dof)×(nsd∗nsd)

.
[
T Fn

6

]
︸ ︷︷ ︸

(nsd∗nsd)×(nsd∗nsd)

.
[
grad (Nu,e)

]
︸ ︷︷ ︸
(nsd∗nsd)×n

u,e
dof

.
{
δde
}

︸ ︷︷ ︸
nu,e
dof

×1

JdV (4.155)

[
Te

12

]
︸ ︷︷ ︸

(nu,e

dof)×(n
u,e

dof)

= −ν
ˆ

V e

[
grad(Nu,e)

]T
︸ ︷︷ ︸
(nu,e

dof)×(nsd∗nsd)

.
[
T Fn

6

]
︸ ︷︷ ︸

(nsd∗nsd)×(nsd∗nsd)

.
[
grad (Nu,e)

]
︸ ︷︷ ︸
(nsd∗nsd)×n

u,e
dof

JdV (4.156)

(
δGh1
)
12

=
nel

A
e=1

{
ce
}T

︸ ︷︷ ︸
1×(nu,e

dof)

.
[
T
e
12

]
︸ ︷︷ ︸

(nu,e
dof)×(n

u,e
dof)

.
{
δde
}

︸ ︷︷ ︸
nu,e

dof
×1

(4.157)

the thirteenth term is:

(
δG1

)
13

= −
ˆ

V

wk,lσlkδ (J) dV = −
ˆ

V

wk,lσlkJdiv(δu)dV (4.158)

(
δG1

)
13

= −
ˆ

V

wk,lσlkδ (un,n) JdV (4.159)

(
δG1

)
13

= −
ˆ

V

wk,lσlkδun,jδjnJdV (4.160)

or
(
δG1

)
13

= −
ˆ

V

wk,lσlkδun,NF
−1
NnJdV (4.161)

(
δGe,h1

)
13

= −
ˆ

V e

{
ce
}T

︸ ︷︷ ︸
1×(nu,e

dof)

.
[
grad(Nu,e)

]T
︸ ︷︷ ︸
(nu,e

dof)×(nsd∗nsd)

. {σcurr}︸ ︷︷ ︸
(nsd∗nsd)×(nsd∗nsd)

.
[
GRAD (Nu,e)

]
︸ ︷︷ ︸

(nsd∗nsd)×n
u,e

dof

.
{
δde
}

︸ ︷︷ ︸
nu,e

dof
×1

JdV (4.162)

[
T
e
13

]
︸ ︷︷ ︸

(nu,e
dof)×(n

u,e
dof)

= −
ˆ

V e

[
grad(Nu,e)

]T
︸ ︷︷ ︸
(nu,e

dof)×(nsd∗nsd)

. {σcurr}︸ ︷︷ ︸
(nsd∗nsd)×(nsd∗nsd)

.
[
GRAD (Nu,e)

]
︸ ︷︷ ︸

(nsd∗nsd)×n
u,e
dof

JdV (4.163)

(
δGh1
)
13

=
nel

A
e=1

{
ce
}T

︸ ︷︷ ︸
1×(nu,e

dof)

.
[
Te

13

]
︸ ︷︷ ︸

(nu,e

dof)×(n
u,e

dof)

.
{
δde
}

︸ ︷︷ ︸
nu,e
dof

×1

(4.164)

contribution of variation of F−1 from ∇w:

(
δG1

)
14

= −
ˆ

V

wk,lσlkδ (J) dV = −
ˆ

V

−wk,LF−1
Lmδum,lσlkJdV (4.165)
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(
δG1

)
14

=

ˆ

V

wk,mσlkδum,lJdV (4.166)

(
δGe,h1

)
14

= −
ˆ

V e

{
ce
}T

︸ ︷︷ ︸
1×(nu,e

dof)

.
[
grad(Nu,e)

]T
︸ ︷︷ ︸
(nu,e

dof)×(nsd∗nsd)

. {V F}︸ ︷︷ ︸
(nsd∗nsd)×(nsd∗nsd)

.
[
grad (Nu,e)

]
︸ ︷︷ ︸
(nsd∗nsd)×n

u,e

dof

.
{
δde
}

︸ ︷︷ ︸
nu,e

dof
×1

JdV (4.167)

[
T
e
14

]
︸ ︷︷ ︸

(nu,e
dof)×(n

u,e
dof)

= −
ˆ

V e

[
grad(Nu,e)

]T
︸ ︷︷ ︸
(nu,e

dof)×(nsd∗nsd)

. {V F}︸ ︷︷ ︸
(nsd∗nsd)×(nsd∗nsd)

.
[
grad (Nu,e)

]
︸ ︷︷ ︸
(nsd∗nsd)×n

u,e
dof

JdV (4.168)

(
δGh1
)
14

=
nel

A
e=1

{
ce
}T

︸ ︷︷ ︸
1×(nu,e

dof)

.
[
Te

14

]
︸ ︷︷ ︸

(nu,e

dof)×(n
u,e

dof)

.
{
δde
}

︸ ︷︷ ︸
nu,e
dof

×1

(4.169)

The traction term (force term );

δGhext =

ˆ

S

wT · δT ρ0dA (4.170)

δGe,hext =

ˆ

Se

{
ce
}

︸︷︷︸
1×(nu,e

dof)

T
.
[
Nu,e

]T
︸ ︷︷ ︸
nu,e
dof

×nsd

.
{
δT
}

︸ ︷︷ ︸
nsd×1

ρ0dA (4.171)

{
G
T,e
ext

}

︸ ︷︷ ︸
nu,e
dof

×1

=

ˆ

Se

[
Nu,e

]T
︸ ︷︷ ︸
nu,e
dof

×nsd

.
{
δT
}

︸ ︷︷ ︸
nsd×1

ρ0dA (4.172)

δGhext =
nel

A
e=1

{
ce
}T

︸ ︷︷ ︸
1×(nu,e

dof)

.
{
G
T,e
ext

}

︸ ︷︷ ︸
nu,e
dof

×1

(4.173)
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4.7 Submatrices in the Matrix Form of the Linearized Form of the Balance

of First Moment of Momentum

Variation of ∇η:

(δH1)∇η = −
ˆ

V

δηml,kmklmJdV (4.174)

(δH1)∇η = −
ˆ

V

ηml,KδF
−1
KkmklmJdV (4.175)

(δH1)∇η =

ˆ

V

ηml,KF
−1
Ki δui,kmklmJdV (4.176)

(δH1)∇η =

ˆ

V

ηml,imklmδui,kJdV (4.177)

(
δHe,h

1

)
∇η

=

ˆ

V e

{
αe
}T

︸ ︷︷ ︸
1×nχ

dof

.
[
grad(Nχ,e)

]T
︸ ︷︷ ︸
nχ
dof

×(nsd∗nsd∗nsd)

.
[
Mm

∇η

]
︸ ︷︷ ︸

(nsd∗nsd∗nsd)×(nsd∗nsd)

.
[
grad (Nu,e)

]
︸ ︷︷ ︸
(nsd∗nsd)×n

u,e
dof

.
{
δde
}

︸ ︷︷ ︸
nu,e
dof

×1

JdV (4.178)

[
M

e
∇η

]
︸ ︷︷ ︸
nχ
dof

×nu,e
dof

=

ˆ

V e

[
grad(Nχ,e)

]T
︸ ︷︷ ︸
nχ

dof
×(nsd∗nsd∗nsd)

.
[
Mm

∇η

]
︸ ︷︷ ︸

(nsd∗nsd∗nsd)×(nsd∗nsd)

.
[
grad (Nu,e)

]
︸ ︷︷ ︸
(nsd∗nsd)×n

u,e

dof

JdV (4.179)

(
δHh

1

)
1

=
nel

A
e=1

{
αe
}T

︸ ︷︷ ︸
1×nχ,e

dof

.
[
M

e
∇η

]
︸ ︷︷ ︸
nχ
dof

×nu,e
dof

.
{
δde
}

︸ ︷︷ ︸
nu,e
dof

×1

(4.180)

The first variation term (the first term in the variation of of δmn+1);

(δH1)1 =

ˆ

V

ηml,k
(
(Fn)iL F

−1
Lp δup,i

)
(mn)klm JdV (4.181)

(
δHe,h

1

)
1
=

ˆ

V e

{grad (η)}T . [Mm
1 ] . {grad (δu)} JdV (4.182)

(
δHe,h

1

)
1
=

ˆ

V e

{
αe
}T

︸ ︷︷ ︸
1×nχ

dof

.
[
grad(Nχ,e)

]T
︸ ︷︷ ︸
nχ

dof
×(nsd∗nsd∗nsd)

.
[
Mm

1

]
︸ ︷︷ ︸

(nsd∗nsd∗nsd)×(nsd∗nsd)

.
[
grad (Nu,e)

]
︸ ︷︷ ︸
(nsd∗nsd)×n

u,e
dof

.
{
δde
}

︸ ︷︷ ︸
nu,e
dof

×1

JdV (4.183)
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[
M

e
1

]
︸ ︷︷ ︸

nχ
dof

×nu,e
dof

=

ˆ

V e

[
grad(Nχ,e)

]T
︸ ︷︷ ︸
nχ
dof

×(nsd∗nsd∗nsd)

.
[
Mm

1

]
︸ ︷︷ ︸

(nsd∗nsd∗nsd)×(nsd∗nsd)

.
[
grad (Nu,e)

]
︸ ︷︷ ︸
(nsd∗nsd)×n

u,e
dof

JdV (4.184)

(
δHh

1

)
1

=
nel

A
e=1

{
αe
}T

︸ ︷︷ ︸
1×nχ,e

dof

.
[
M

e
1

]
︸ ︷︷ ︸

nχ,e
dof

×nu,e
dof

.
{
δde
}

︸ ︷︷ ︸
nu,e
dof

×1

(4.185)

The second variation term (the second term in the variation of of δmn+1 ) ;

(δH1)2 = −
ˆ

V

ηml,k
(
(Fn)kL F

−1
Ln δun,i

)
(mn)ilm JdV (4.186)

(
δHe,h

1

)
2
= −
ˆ

V e

{grad (η)}T . [Mm
2 ] . {grad (δu)} JdV (4.187)

where

(
δHe,h

1

)
2
= −
ˆ

V e

{
αe
}T

︸ ︷︷ ︸
1×nχ,e

dof

.
[
grad(Nχ,e)

]T
︸ ︷︷ ︸
nχ,e
dof

×(nsd∗nsd∗nsd)

.
[
Mm

2

]
︸ ︷︷ ︸

(nsd∗nsd∗nsd)×(nsd∗nsd)

.
[
grad (Nu,e)

]
︸ ︷︷ ︸
(nsd∗nsd)×n

u,e
dof

.
{
δde
}

︸ ︷︷ ︸
nu,e
dof

×1

JdV (4.188)

[
M

e
2

]
︸ ︷︷ ︸

nχ,e
dof

×nu,e
dof

= −
ˆ

V e

[
grad(Nχ,e)

]T
︸ ︷︷ ︸
nχ,e
dof

×(nsd∗nsd∗nsd)

.
[
Mm

2

]
︸ ︷︷ ︸

(nsd∗nsd∗nsd)×(nsd∗nsd)

.
[
grad (Nu,e)

]
︸ ︷︷ ︸
(nsd∗nsd)×n

u,e
dof

JdV (4.189)

(
δHh

1

)
2
=

nel

A
e=1

{
αe
}T

︸ ︷︷ ︸
1×nχ,e

dof

.
[
M

e
2

]
︸ ︷︷ ︸

nχ,e
dof

×nu,e
dof

.
{
δde
}

︸ ︷︷ ︸
nu,e
dof

×1

(4.190)

The third variation term (the third term in the variation of of δmn+1 ) ;

(δH1)3 = −
ˆ

V

ηml,k (mn)kim
(
(Fn)lL F

−1
Lp δup,i

)
JdV (4.191)

(
δHe,h

1

)
3
= −
ˆ

V e

{grad (η)}T . [Mm
3 ] . {grad (δu)} JdV (4.192)

(
δHe,h

1

)
3
= −
ˆ

V e

{
αe
}T

︸ ︷︷ ︸
1×nχ

dof

.
[
grad(Nχ,e)

]T
︸ ︷︷ ︸
nχ

dof
×(nsd∗nsd∗nsd)

.
[
Mm

3

]
︸ ︷︷ ︸

(nsd∗nsd∗nsd)×(nsd∗nsd)

.
[
grad (Nu,e)

]
︸ ︷︷ ︸
(nsd∗nsd)×n

u,e
dof

.
{
δde
}

︸ ︷︷ ︸
nu,e
dof

×1

JdV (4.193)
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[
M

e
3

]
︸ ︷︷ ︸

nχ,e
dof

×nu,e
dof

= −
ˆ

V e

[
grad(Nχ,e)

]T
︸ ︷︷ ︸
nχ
dof

×(nsd∗nsd∗nsd)

.
[
Mm

3

]
︸ ︷︷ ︸

(nsd∗nsd∗nsd)×(nsd∗nsd)

.
[
grad (Nu,e)

]
︸ ︷︷ ︸
(nsd∗nsd)×n

u,e
dof

JdV (4.194)

(
δHh

1

)
3
=

nel

A
e=1

{
αe
}T

︸ ︷︷ ︸
1×nχ,e

dof

.
[
M

e
3

]
︸ ︷︷ ︸

nχ,e
dof

×nu,e
dof

.
{
δde
}

︸ ︷︷ ︸
nu,e
dof

×1

(4.195)

The fourth variation term (the fourth term in the variation of of δmn+1 ) ;

(δH1)4 = −
ˆ

V

ηml,k (mn)kli
(
(χn)mL χ

−1
LpδΦpTχ

−1
T i

)
JdV (4.196)

(
δHe,h

1

)
4
= −
ˆ

V e

{grad (η)}T . [Mm
4 ] . {δΦ} JdV (4.197)

(
δHe,h

1

)
4
= −
ˆ

V e

{
αe
}T

︸ ︷︷ ︸
1×nχ,e

dof

.
[
grad(Nχ,e)

]T
︸ ︷︷ ︸
nχ,e
dof

×(nsd∗nsd∗nsd)

.
[
Mm

4

]
︸ ︷︷ ︸

(nsd∗nsd∗nsd)×(nsd∗nsd)

.
[
Nχ,e

]
︸ ︷︷ ︸

(nsd∗nsd)×n
χ,e
dof

.
{
δφe
}

︸ ︷︷ ︸
nχ,e
dof

×1

JdV (4.198)

[
M

e
4

]
︸ ︷︷ ︸

nχ,e
dof

×nu,e
dof

= −
ˆ

V e

[
grad(Nχ,e)

]T
︸ ︷︷ ︸
nχ,e
dof

×(nsd∗nsd∗nsd)

.
[
Mm

4

]
︸ ︷︷ ︸

(nsd∗nsd∗nsd)×(nsd∗nsd)

.
[
Nχ,e

]
︸ ︷︷ ︸

(nsd∗nsd)×n
χ,e
dof

JdV (4.199)

(
δHh

1

)
4
=

nel

A
e=1

{
αe
}T

︸ ︷︷ ︸
1×nχ,e

dof

.
[
M

e
4

]
︸ ︷︷ ︸

nχ,e
dof

×nχ,e
dof

.
{
δφe

}
︸ ︷︷ ︸
nχ,e
dof

×1

(4.200)

The fifth term is :

(δH1)5 = −
ˆ

V

ηml,kcklmprs

(
(χn)pL χ

−1
LnδΦnTχ

−1
T i

)
(γen)irs JdV (4.201)

(
δHe,h

1

)
5
= −
ˆ

V e

{
αe
}T

︸ ︷︷ ︸
1×nχ,e

dof

.
[
grad(Nχ,e)

]T
︸ ︷︷ ︸
nχ,e
dof

×(nsd∗nsd∗nsd)

.
[
Mm

5

]
︸ ︷︷ ︸

(nsd∗nsd∗nsd)×(nsd∗nsd)

.
[
Nχ,e

]
︸ ︷︷ ︸

(nsd∗nsd)×n
χ,e
dof

.
{
δφe
}

︸ ︷︷ ︸
nχ,e
dof

×1

JdV (4.202)

[
Me

5

]
︸ ︷︷ ︸

nχ,e
dof

×nu,e
dof

= −
ˆ

V e

[
grad(Nχ,e)

]T
︸ ︷︷ ︸
nχ,e
dof

×(nsd∗nsd∗nsd)

.
[
Mm

5

]
︸ ︷︷ ︸

(nsd∗nsd∗nsd)×(nsd∗nsd)

.
[
Nχ,e

]
︸ ︷︷ ︸

(nsd∗nsd)×n
χ,e
dof

JdV (4.203)
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(δH1)5 =
nel

A
e=1

{
αe
}T

︸ ︷︷ ︸
1×nχ,e

dof

.
[
M

e
5

]
︸ ︷︷ ︸

nχ,e
dof

×nχ,e
dof

.
{
δφe
}

︸ ︷︷ ︸
nχ,e
dof

×1

(4.204)

The sixth term is :

(δH1)6 =

ˆ

V

ηml,kcklmprs
(
(χn)iL χ

−1
LnδΦnTχ

−1
Tr

)
(γen)pis JdV (4.205)

(
δHe,h

1

)
6
=

ˆ

V e

{
αe
}T

︸ ︷︷ ︸
1×nχ,e

dof

.
[
grad(Nχ,e)

]T
︸ ︷︷ ︸
nχ,e
dof

×(nsd∗nsd∗nsd)

.
[
Mm

6

]
︸ ︷︷ ︸

(nsd∗nsd∗nsd)×(nsd∗nsd)

.
[
Nχ,e

]
︸ ︷︷ ︸

(nsd∗nsd)×n
χ,e
dof

.
{
δφe
}

︸ ︷︷ ︸
nχ,e
dof

×1

JdV (4.206)

[
M

e
6

]
︸ ︷︷ ︸

nχ,e

dof
×nu,e

dof

=

ˆ

V e

[
grad(Nχ,e)

]T
︸ ︷︷ ︸
nχ,e

dof
×(nsd∗nsd∗nsd)

.
[
Mm

6

]
︸ ︷︷ ︸

(nsd∗nsd∗nsd)×(nsd∗nsd)

.
[
Nχ,e

]
︸ ︷︷ ︸

(nsd∗nsd)×n
χ,e

dof

JdV (4.207)

(
δHh

1

)
6
=

nel

A
e=1

{
αe
}T

︸ ︷︷ ︸
1×nχ,e

dof

.
[
M

e
6

]
︸ ︷︷ ︸

nχ,e

dof
×nχ,e

dof

.
{
δφe
}

︸ ︷︷ ︸
nχ,e

dof
×1

(4.208)

The seventh term is :

(δH1)7 =

ˆ

V

ηml,kcklmprsδ (ΦpA,T )F
−1
Ts χ

−1
ArJdV (4.209)

[
Me

7

]
︸ ︷︷ ︸

nχ,e
dof

×nχ,e
dof

=

ˆ

V e

[
grad(Nχ,e)

]T
︸ ︷︷ ︸
nχ,e
dof

×(nsd∗nsd∗nsd)

.
[
Mm

7

]
︸ ︷︷ ︸

(nsd∗nsd∗nsd)×(nsd∗nsd∗nsd)

.
[
GRAD (Nχ,e)

]
︸ ︷︷ ︸
(nsd∗nsd∗nsd)×n

χ,e
dof

JdV

(
δHh

1

)
7
=

nel

A
e=1

{
αe
}T

︸ ︷︷ ︸
1×nχ,e

dof

.
[
Me

7

]
︸ ︷︷ ︸

nχ,e
dof

×nχ,e
dof

.
{
δφe
}

︸ ︷︷ ︸
nχ,e
dof

×1

(4.210)

The eighth term is :

(δH1)8 = −
ˆ

V

ηml,kcklmprs

(
χpA,T − (χn)pA,T

)
F−1
Ta δ (ua,s)χ

−1
ArJdV (4.211)

(
δHe,h

1

)
8
=

ˆ

V e

{
αe
}T

︸ ︷︷ ︸
1×nχ,e

dof

.
[
grad(Nχ,e)

]T
︸ ︷︷ ︸
nχ

dof
×(nsd∗nsd∗nsd)

.
[
Mm

8

]
︸ ︷︷ ︸

(nsd∗nsd∗nsd)×(nsd∗nsd)

.
[
grad (Nu,e)

]
︸ ︷︷ ︸
(nsd∗nsd)×n

u,e
dof

.
{
δde
}

︸ ︷︷ ︸
nu,e
dof

×1

JdV (4.212)
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[
M

e
8

]
︸ ︷︷ ︸

nχ,e
dof

×nu,e
dof

=

ˆ

V e

[
grad(Nχ,e)

]T
︸ ︷︷ ︸
nχ,e
dof

×(nsd∗nsd∗nsd)

.
[
Mm

8

]
︸ ︷︷ ︸

(nsd∗nsd∗nsd)×(nsd∗nsd)

.
[
grad (Nu,e)

]
︸ ︷︷ ︸
(nsd∗nsd)×n

u,e
dof

JdV

(
δHh

1

)
8
=

nel

A
e=1

{
αe
}T

︸ ︷︷ ︸
1×nχ,e

dof

.
[
M

e
8

]
︸ ︷︷ ︸

nχ,e
dof

×nu,e
dof

.
{
δde
}

︸ ︷︷ ︸
nu,e
dof

×1

(4.213)

The ninth term is :

(δH1)9 =

ˆ

V

ηml,kcklmprs

(
χpA,T − (χn)pA,T

)
F−1
Ts χ

−1
AaδΦaBχ

−1
BrJdV (4.214)

(
δHe,h

1

)
9
= −
ˆ

V e

{
αe
}T

︸ ︷︷ ︸
1×nχ,e

dof

.
[
grad(Nχ,e)

]T
︸ ︷︷ ︸
nχ,e
dof

×(nsd∗nsd∗nsd)

.
[
Mm

9

]
︸ ︷︷ ︸

(nsd∗nsd∗nsd)×(nsd∗nsd)

.
[
Nχ,e

]
︸ ︷︷ ︸

(nsd∗nsd)×n
χ,e
dof

.
{
δφe
}

︸ ︷︷ ︸
nχ,e
dof

×1

JdV (4.215)

[
M

e
9

]
︸ ︷︷ ︸

nχ,e
dof

×nχ,e
dof

= −
ˆ

V e

[
grad(Nχ,e)

]T
︸ ︷︷ ︸
nχ,e
dof

×(nsd∗nsd∗nsd)

.
[
Mm

9

]
︸ ︷︷ ︸

(nsd∗nsd∗nsd)×(nsd∗nsd)

.
[
Nχ,e

]
︸ ︷︷ ︸

(nsd∗nsd)×n
χ,e
dof

JdV (4.216)

(
δHh

1

)
9
=

nel

A
e=1

{
αe
}T

︸ ︷︷ ︸
1×nχ,e

dof

.
[
Me

9

]
︸ ︷︷ ︸

nχ,e
dof

×nχ,e
dof

.
{
δφe
}

︸ ︷︷ ︸
nχ,e
dof

×1

(4.217)

The tenth term:

(δH1)10 =

ˆ

V

ηml,kcklmprsδ (ΦpA)χ
−1
AaχaB,Tχ

−1
BrF

−1
Ts JdV (4.218)

(
δHe,h

1

)
10

= −
ˆ

V e

{
αe
}T

︸ ︷︷ ︸
1×nχ,e

dof

.
[
grad(Nχ,e)

]T
︸ ︷︷ ︸
nχ,e
dof

×(nsd∗nsd∗nsd)

.
[
Mm

10

]
︸ ︷︷ ︸

(nsd∗nsd∗nsd)×(nsd∗nsd)

.
[
Nχ,e

]
︸ ︷︷ ︸

(nsd∗nsd)×n
χ,e
dof

.
{
δφe
}

︸ ︷︷ ︸
nχ,e
dof

×1

JdV (4.219)

[
Me

10

]
︸ ︷︷ ︸
nχ,e
dof

×nχ,e
dof

= −
ˆ

V e

[
grad(Nχ,e)

]T
︸ ︷︷ ︸
nχ,e
dof

×(nsd∗nsd∗nsd)

.
[
Mm

10

]
︸ ︷︷ ︸

(nsd∗nsd∗nsd)×(nsd∗nsd)

.
[
Nχ,e

]
︸ ︷︷ ︸

(nsd∗nsd)×n
χ,e
dof

JdV (4.220)

(
δHh

1

)
10

=
nel

A
e=1

{
αe
}T

︸ ︷︷ ︸
1×nχ,e

dof

.
[
Me

10

]
︸ ︷︷ ︸
nχ,e
dof

×nχ,e
dof

.
{
δφe
}

︸ ︷︷ ︸
nχ,e
dof

×1

(4.221)
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The eleventh term:

(δH1)11 = −
ˆ

V

ηml,kcklmprs

(
χpA − (χn)pA

)
χ−1
Ai δΦiLχ

−1
LaχaB,Tχ

−1
BrF

−1
Ts JdV (4.222)

(
δHe,h

1

)
11

= −
ˆ

V e

{
αe
}T

︸ ︷︷ ︸
1×nχ,e

dof

.
[
grad(Nχ,e)

]T
︸ ︷︷ ︸
nχ,e
dof

×(nsd∗nsd∗nsd)

.
[
Mm

11

]
︸ ︷︷ ︸

(nsd∗nsd∗nsd)×(nsd∗nsd)

.
[
Nχ,e

]
︸ ︷︷ ︸

(nsd∗nsd)×n
χ,e
dof

.
{
δφe
}

︸ ︷︷ ︸
nχ,e
dof

×1

JdV (4.223)

[
M

e
11

]
︸ ︷︷ ︸
nχ,e

dof
×nχ,e

dof

= −
ˆ

V e

[
grad(Nχ,e)

]T
︸ ︷︷ ︸
nχ,e

dof
×(nsd∗nsd∗nsd)

.
[
Mm

11

]
︸ ︷︷ ︸

(nsd∗nsd∗nsd)×(nsd∗nsd)

.
[
Nχ,e

]
︸ ︷︷ ︸

(nsd∗nsd)×n
χ,e

dof

JdV (4.224)

(
δHh

1

)
11

=
nel

A
e=1

{
αe
}T

︸ ︷︷ ︸
1×nχ,e

dof

.
[
M

e
11

]
︸ ︷︷ ︸
nχ,e

dof
×nχ,e

dof

.
{
δφe
}

︸ ︷︷ ︸
nχ,e

dof
×1

(4.225)

The twelfth term:

(δH1)12 = −
ˆ

V

ηml,kcklmprs

(
χpA − (χn)pA

)
χ−1
AaδΦaB,Tχ

−1
BrF

−1
Ts JdV (4.226)

(
δHe,h

1

)
12

= −
ˆ

V e

{
αe
}T

︸ ︷︷ ︸
1×nχ,e

dof

.
[
grad(Nχ,e)

]T
︸ ︷︷ ︸
nχ,e
dof

×(nsd∗nsd∗nsd)

.
[
Mm

12

]
︸ ︷︷ ︸

(nsd∗nsd∗nsd)×(nsd∗nsd∗nsd)

.
[
GRAD (Nχ,e)

]
︸ ︷︷ ︸
(nsd∗nsd∗nsd)×n

χ,e

dof

.
{
δφe
}

︸ ︷︷ ︸
nχ,e

dof
×1

JdV (4.227)

[
M

e
12

]
︸ ︷︷ ︸
nχ,e

dof
×nχ,e

dof

= −
ˆ

V e

[
grad(Nχ,e)

]T
︸ ︷︷ ︸
nχ,e

dof
×(nsd∗nsd∗nsd)

.
[
Mm

12

]
︸ ︷︷ ︸

(nsd∗nsd∗nsd)×(nsd∗nsd∗nsd)

.
[
GRAD (Nχ,e)

]
︸ ︷︷ ︸
(nsd∗nsd∗nsd)×n

χ,e

dof

JdV (4.228)

(
δHh

1

)
12

=
nel

A
e=1

{
αe
}T

︸ ︷︷ ︸
1×nχ,e

dof

.
[
M

e
12

]
︸ ︷︷ ︸
nχ,e
dof

×nχ,e
dof

.
{
δφe
}

︸ ︷︷ ︸
nχ,e
dof

×1

(4.229)

The thirteenth term:

(δH1)13 = −
ˆ

V

ηml,kcklmprs

(
χpA − (χn)pA

)
χ−1
AaχaB,Tχ

−1
Bi δΦiLχ

−1
LrF

−1
Ts JdV (4.230)
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(
δHe,h

1

)
13

= −
ˆ

V e

{
αe
}T

︸ ︷︷ ︸
1×nχ,e

dof

.
[
grad(Nχ,e)

]T
︸ ︷︷ ︸
nχ,e
dof

×(nsd∗nsd∗nsd)

.
[
Mm

13

]
︸ ︷︷ ︸

(nsd∗nsd∗nsd)×(nsd∗nsd)

.
[
Nχ,e

]
︸ ︷︷ ︸

(nsd∗nsd)×n
χ,e

dof

.
{
δφe
}

︸ ︷︷ ︸
nχ,e

dof
×1

JdV (4.231)

[
Me

13

]
︸ ︷︷ ︸
nχ,e
dof

×nχ,e
dof

= −
ˆ

V e

[
grad(Nχ,e)

]T
︸ ︷︷ ︸
nχ,e
dof

×(nsd∗nsd∗nsd)

.
[
Mm

13

]
︸ ︷︷ ︸

(nsd∗nsd∗nsd)×(nsd∗nsd)

.
[
Nχ,e

]
︸ ︷︷ ︸

(nsd∗nsd)×n
χ,e
dof

JdV (4.232)

(
δHh

1

)
13

=
nel

A
e=1

{
αe
}T

︸ ︷︷ ︸
1×nχ,e

dof

.
[
M

e
13

]
︸ ︷︷ ︸
nχ,e
dof

×nχ,e
dof

.
{
δφe
}

︸ ︷︷ ︸
nχ,e
dof

×1

(4.233)

The fourteenth term:

(δH1)14 = −
ˆ

V

ηml,kcklmprs

(
χpA (χn)pA

)
χ−1
AaχaB,Tχ

−1
BrF

−1
T i δ (ui,s) JdV (4.234)

(
δHe,h

1

)
14

= −
ˆ

V e

{
αe
}T

︸ ︷︷ ︸
1×nχ,e

dof

.
[
grad(Nχ,e)

]T
︸ ︷︷ ︸
nχ,e
dof

×(nsd∗nsd∗nsd)

.
[
Mm

14

]
︸ ︷︷ ︸

(nsd∗nsd∗nsd)×(nsd∗nsd)

.
[
gradNu,e

]
︸ ︷︷ ︸
(nsd∗nsd)×n

u,e
dof

.
{
δde
}

︸ ︷︷ ︸
nu,e
dof

×1

JdV (4.235)

[
Me

14

]
︸ ︷︷ ︸
nχ,e
dof

×nu,e
dof

= −
ˆ

V e

[
grad(Nχ,e)

]T
︸ ︷︷ ︸
nχ,e
dof

×(nsd∗nsd∗nsd)

.
[
Mm

13

]
︸ ︷︷ ︸

(nsd∗nsd∗nsd)×(nsd∗nsd)

.
[
gradNu,e

]
︸ ︷︷ ︸
(nsd∗nsd)×n

u,e
dof

JdV (4.236)

(
δHh

1

)
14

=
nel

A
e=1

{
αe
}T

︸ ︷︷ ︸
1×nχ,e

dof

.
[
Me

14

]
︸ ︷︷ ︸
nχ,e
dof

×nu,e
dof

.
{
δde
}

︸ ︷︷ ︸
nu,e
dof

×1

(4.237)

the fifteenth term

(δH1)15 = −
ˆ

V

ηml,k (Fn)iL F
−1
Ln δun,k (γn)ilm JdV (4.238)

(
δHe,h

1

)
15

= −
ˆ

V e

{
αe
}T

︸ ︷︷ ︸
1×nχ,e

dof

.
[
grad(Nχ,e)

]T
︸ ︷︷ ︸
nχ,e

dof
×(nsd∗nsd∗nsd)

.
[
Mm

15

]
︸ ︷︷ ︸

(nsd∗nsd∗nsd)×(nsd∗nsd)

.
[
grad (Nu,e)

]
︸ ︷︷ ︸
(nsd∗nsd)×n

u,e
dof

.
{
δde
}

︸ ︷︷ ︸
nu,e
dof

×1

JdV (4.239)
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[
M

e
15

]
︸ ︷︷ ︸
nχ,e
dof

×nu,e
dof

= −
ˆ

V e

[
grad(Nχ,e)

]T
︸ ︷︷ ︸
nχ,e
dof

×(nsd∗nsd∗nsd)

.
[
Mm

15

]
︸ ︷︷ ︸

(nsd∗nsd∗nsd)×(nsd∗nsd)

.
[
grad (Nu,e)

]
︸ ︷︷ ︸
(nsd∗nsd)×n

u,e
dof

JdV (4.240)

(
δHh

1

)
15

=
nel

A
e=1

{
αe
}T

︸ ︷︷ ︸
1×nχ,e

dof

.
[
M

e
15

]
︸ ︷︷ ︸
nχ,e
dof

×nu,e
dof

.
{
δde
}

︸ ︷︷ ︸
nu,e
dof

×1

(4.241)

The sixteenth term:

(δH1)16 = −
ˆ

V

ηml,k (γn)kli (Fn)iL F
−1
Ln δun,mJdV (4.242)

(
δHe,h

1

)
16

= −
ˆ

V e

{
αe
}T

︸ ︷︷ ︸
1×nχ,e

dof

.
[
grad(Nχ,e)

]T
︸ ︷︷ ︸
nχ,e
dof

×(nsd∗nsd∗nsd)

.
[
Mm

16

]
︸ ︷︷ ︸

(nsd∗nsd∗nsd)×(nsd∗nsd)

.
[
grad (Nu,e)

]
︸ ︷︷ ︸
(nsd∗nsd)×n

u,e
dof

.
{
δde
}

︸ ︷︷ ︸
nu,e
dof

×1

JdV (4.243)

[
M

e
16

]
︸ ︷︷ ︸
nχ,e
dof

×nu,e
dof

= −
ˆ

V e

[
grad(Nχ,e)

]T
︸ ︷︷ ︸
nχ,e
dof

×(nsd∗nsd∗nsd)

.
[
Mm

12

]
︸ ︷︷ ︸

(nsd∗nsd∗nsd)×(nsd∗nsd)

.
[
grad (Nu,e)

]
︸ ︷︷ ︸
(nsd∗nsd)×n

u,e
dof

JdV (4.244)

(
δHh

1

)
16

=
nel

A
e=1

{
αe
}T

︸ ︷︷ ︸
1×nχ,e

dof

.
[
Me

16

]
︸ ︷︷ ︸
nχ,e
dof

×nu,e
dof

.
{
δde
}

︸ ︷︷ ︸
nu,e
dof

×1

(4.245)

The seventeenth term:

(δH1)17 = −
ˆ

V

ηml,k (γn)kim (χn)iL χ
−1
LnδΦnTχ

−1
T l JdV (4.246)

(
δHe,h

1

)
17

= −
ˆ

V e

{
αe
}T

︸ ︷︷ ︸
1×nχ,e

dof

.
[
grad(Nχ,e)

]T
︸ ︷︷ ︸
nχ,e
dof

×(nsd∗nsd∗nsd)

.
[
Mm

17

]
︸ ︷︷ ︸

(nsd∗nsd∗nsd)×(nsd∗nsd)

.
[
Nχ,e

]
︸ ︷︷ ︸

(nsd∗nsd)×n
χ,e
dof

.
{
δφe
}

︸ ︷︷ ︸
nχ,e
dof

×1

JdV (4.247)

[
Me

17

]
︸ ︷︷ ︸
nχ,e
dof

×nχ,e
dof

= −
ˆ

V

{
αe
}T

︸ ︷︷ ︸
1×nχ,e

dof

.
[
Mm

13

]
︸ ︷︷ ︸

(nsd∗nsd∗nsd)×(nsd∗nsd)

.
[
Nχ,e

]
︸ ︷︷ ︸

(nsd∗nsd)×n
χ,e
dof

JdV (4.248)

(
δHh

1

)
17

=
nel

A
e=1

{
αe
}T

︸ ︷︷ ︸
1×nχ,e

dof

.
[
Me

17

]
︸ ︷︷ ︸
nχ,e
dof

×nχ,e
dof

.
{
δφe
}

︸ ︷︷ ︸
nχ,e
dof

×1

(4.249)
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The last term in equation (4.26)

(δH1)18 = −
ˆ

V

ηml,kmklmδ (J) dV (4.250)

(δH1)18 = −
ˆ

V

ηml,kmklmδ (un,n)JdV (4.251)

(δH1)18 = −
ˆ

V

ηml,kmklmδun,NF
−1
N,nJdV (4.252)

(
δHe,h

1

)
18

= −
ˆ

V e

{
αe
}T

︸ ︷︷ ︸
1×nχ

dof

.
[
grad(Nχ,e)

]T
︸ ︷︷ ︸
nχ
dof

×(nsd∗nsd∗nsd)

.
[
Mm

14

]
︸ ︷︷ ︸

(nsd∗nsd∗nsd)×(nsd∗nsd)

.
[
GRAD (Nu,e)

]
︸ ︷︷ ︸

(nsd∗nsd)×n
u,e
dof

.
{
δde
}

︸ ︷︷ ︸
nu,e
dof

×1

JdV (4.253)

[
Me

18

]
︸ ︷︷ ︸
nχ
dof

×nu,e
dof

= −
ˆ

V e

[
grad(Nχ,e)

]T
︸ ︷︷ ︸
nχ
dof

×(nsd∗nsd∗nsd)

.
[
Mm

14

]
︸ ︷︷ ︸

(nsd∗nsd∗nsd)×(nsd∗nsd)

.
[
GRAD (Nu,e)

]
︸ ︷︷ ︸

(nsd∗nsd)×n
u,e
dof

JdV (4.254)

(
δHh

1

)
18

=
nel

A
e=1

{
αe
}T

︸ ︷︷ ︸
1×nχ,e

dof

.
[
Me

18

]
︸ ︷︷ ︸
nχ,e
dof

×nu,e
dof

.
{
δde
}

︸ ︷︷ ︸
nu,e
dof

×1

(4.255)

The other integral term in 4.23 is;

δH2 =

ˆ

ηmlδ (σml − sml) JdV +

ˆ

ηml (σml − sml) δ (J) dV (4.256)
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The matrix form of δ (s− σ) was given in equation (3.135) where its indicial notation can

be expressed as :

−δ(s− σ)ml = δ (∆tdeii) (sml − σml)n − δ (∆tℓemi) (sil − σil)n

− (smi − σmi)n δ (∆tℓ
e
li)− (κ− σ) δ (∆tεelm)

− (ν − σ) δ (∆tεeml)− τδ (∆tdeii) δml − 2σδ (∆tdeml)

− (η − τ) δ (∆tεeii) δml (4.257)

−δ(s− σ)ml =
(
(Fn)iL F

−1
Lk δuk,i

)
(sml − σml)n −

(
(Fn)mL F

−1
Lk δuk,i

)
(sil − σil)n

− (smi − σmi)n
(
(Fn)lL F

−1
Lk δuk,i

)

− (κ− σ)
(
(χn)lT χ

−1
Tpδ (ΦpK)χ

−1
Km + (Fn)mK F

−1
Kpδup,l

)

− (ν − σ)
(
(χn)mT χ

−1
Tpδ (ΦpK)χ

−1
Kl + (Fn)lK F

−1
Kpδup,m

)

− τ
(
(Fn)iL F

−1
Lk δuk,i

)
δml

− 2σ
1

2

(
(Fn)mL F

−1
Lk δuk,l + (Fn)lL F

−1
Lk δuk,m

)

− (η − τ)
(
(χn)iT χ

−1
Tpδ (ΦpK)χ

−1
Ki + (Fn)iK F

−1
Kpδup,i

)
δml (4.258)

Then the first sub-integral is :

(δH2)1 =

ˆ

V

ηmlδ (σml − sml)JdV (4.259)

The first term in the variation of −δ (σml − sml)

(δH2)1 =

ˆ

V

ηml
(
(Fn)iL F

−1
Lmδum,i

)
(sml − σml)n JdV (4.260)

Since the most of the matrices appearing in the Hh
2 terms were found in chapter (4.6) or

similar to them,they are not going to be given here in detail.

Starting with the first terms as:

(δH2)1 =

ˆ

V

ηml
(
(Fn)iL F

−1
Lk δuk,i

)
(sml − σml)n JdV (4.261)

(
δHe,h

2

)
1
=

ˆ

V e

{
αe
}T

︸ ︷︷ ︸
1×nχ

dof

.
[
Nχ,e

]T
︸ ︷︷ ︸

nχ
dof

×(nsd∗nsd)

.
[
Ru

1

]
︸ ︷︷ ︸

(nsd∗nsd)×(nsd∗nsd)

.
[
grad (Nu,e)

]
︸ ︷︷ ︸
(nsd∗nsd)×n

u,e
dof

.
{
δde
}

︸ ︷︷ ︸
nu,e
dof

×1

JdV (4.262)
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[
Re

1

]
︸ ︷︷ ︸

nχ
dof

×nu,e
dof

=

ˆ

V e

[
Nχ,e

]T
︸ ︷︷ ︸

nχ
dof

×(nsd∗nsd)

.
[
Ru

1

]
︸ ︷︷ ︸

(nsd∗nsd)×(nsd∗nsd)

.
[
grad (Nu,e)

]
︸ ︷︷ ︸
(nsd∗nsd)×n

u,e
dof

.JdV (4.263)

(
δHh

2

)
1
=

nel

A
e=1

{
αe
}T

︸ ︷︷ ︸
1×nχ,e

dof

.
[
Re

1

]
︸ ︷︷ ︸

nχ,e
dof

×nu,e
dof

.
{
δde
}

︸ ︷︷ ︸
nu,e
dof

×1

(4.264)

The next term is :

(δH2)2 = −
ˆ

V

ηml
(
(Fn)mL F

−1
Lk δuk,i

)
(sil − σil)n JdV (4.265)

(
δHe,h

2

)
2
= −
ˆ

V e

{
αe
}T

︸ ︷︷ ︸
1×nχ

dof

.
[
Nχ,e

]T
︸ ︷︷ ︸

nχ
dof

×(nsd∗nsd)

.
[
Ru

2

]
︸ ︷︷ ︸

(nsd∗nsd)×(nsd∗nsd)

.
[
grad (Nu,e)

]
︸ ︷︷ ︸
(nsd∗nsd)×n

u,e
dof

.
{
δde
}

︸ ︷︷ ︸
nu,e
dof

×1

JdV (4.266)

[
Re

2

]
︸ ︷︷ ︸

nχ
dof

×nu,e
dof

= −
ˆ

V e

[
Nχ,e

]T
︸ ︷︷ ︸

nχ
dof

×(nsd∗nsd)

.
[
Ru

2

]
︸ ︷︷ ︸

(nsd∗nsd)×(nsd∗nsd)

.
[
grad (Nu,e)

]
︸ ︷︷ ︸
(nsd∗nsd)×n

u,e
dof

.JdV (4.267)

(
δHh

2

)
2
=

nel

A
e=1

{
αe
}T

︸ ︷︷ ︸
1×nχ,e

dof

.
[
Re

2

]
︸ ︷︷ ︸

nχ,e
dof

×nu,e
dof

.
{
δde
}

︸ ︷︷ ︸
nu,e
dof

×1

(4.268)

The third term is :

(δH2)3 = −
ˆ

V

ηml (smi − σmi)n
(
(Fn)lL F

−1
Lk δuk,i

)
JdV (4.269)

(
δHe,h

2

)
3
= −
ˆ

V e

{
αe
}T

︸ ︷︷ ︸
1×nχ

dof

.
[
Nχ,e

]T
︸ ︷︷ ︸

nχ

dof
×(nsd∗nsd)

.
[
Ru

3

]
︸ ︷︷ ︸

(nsd∗nsd)×(nsd∗nsd)

.
[
grad (Nu,e)

]
︸ ︷︷ ︸
(nsd∗nsd)×n

u,e

dof

.
{
δde
}

︸ ︷︷ ︸
nu,e

dof
×1

JdV (4.270)

[
Re

3

]
︸ ︷︷ ︸

nχ
dof

×nu,e
dof

= −
ˆ

V e

[
Nχ,e

]T
︸ ︷︷ ︸

nχ
dof

×(nsd∗nsd)

.
[
Ru

3

]
︸ ︷︷ ︸

(nsd∗nsd)×(nsd∗nsd)

.
[
grad (Nu,e)

]
︸ ︷︷ ︸
(nsd∗nsd)×n

u,e
dof

.JdV (4.271)

(
δHh

2

)
3
=

nel

A
e=1

{
αe
}T

︸ ︷︷ ︸
1×nχ,e

dof

.
[
Re

3

]
︸ ︷︷ ︸

nχ,e
dof

×nu,e
dof

.
{
δde
}

︸ ︷︷ ︸
nu,e
dof

×1

(4.272)

The fourth term is :

(δH2)4 = − (κ− σ)

ˆ

V

ηml (χn)lT χ
−1
Tpδ (ΦpK)χ

−1
KmJdV (4.273)

(
δHe,h

2

)
4
= − (κ− σ)

ˆ

V e

{
αe
}T

︸ ︷︷ ︸
1×nχ

dof

.
[
Nχ,e

]T
︸ ︷︷ ︸

nχ

dof
×(nsd∗nsd)

.
[
R
χ
1

]
︸ ︷︷ ︸

(nsd∗nsd)×(nsd∗nsd)

.
[
Nχ,e

]
︸ ︷︷ ︸

(nsd∗nsd)×n
χ,e
dof

.
{
δφe
}

︸ ︷︷ ︸
nχ,e
dof

×1

JdV (4.274)
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[
Re

4

]
︸ ︷︷ ︸

nχ
dof

×nχ,e
dof

= − (κ− σ)

ˆ

V e

[
Nχ,e

]T
︸ ︷︷ ︸

nχ
dof

×(nsd∗nsd)

.
[
R
χ
1

]
︸ ︷︷ ︸

(nsd∗nsd)×(nsd∗nsd)

.
[
Nχ,e

]
︸ ︷︷ ︸

(nsd∗nsd)×n
χ,e
dof

JdV (4.275)

(
δHh

2

)
4
=

nel

A
e=1

{
αe
}T

︸ ︷︷ ︸
1×nχ,e

dof

.
[
Re

4

]
︸ ︷︷ ︸

nχ,e
dof

×nχ,e
dof

.
{
δφe
}

︸ ︷︷ ︸
nχ,e
dof

×1

(4.276)

The fifth term is :

(δH2)5 = − (κ− σ)

ˆ

V

ηml (Fn)mK F
−1
Kkδuk,lJdV (4.277)

(
δHe,h

2

)
5
= − (κ− σ)

ˆ

V e

{
αe
}T

︸ ︷︷ ︸
1×nχ

dof

.
[
Nχ,e

]T
︸ ︷︷ ︸

nχ
dof

×(nsd∗nsd)

.
[
Ru

4

]
︸ ︷︷ ︸

(nsd∗nsd)×(nsd∗nsd)

.
[
grad (Nu,e)

]
︸ ︷︷ ︸
(nsd∗nsd)×n

u,e
dof

.
{
δde
}

︸ ︷︷ ︸
nu,e
dof

×1

JdV (4.278)

[
Re

5

]
︸ ︷︷ ︸

nχ
dof

×nu,e
dof

= − (κ− σ)

ˆ

V e

[
Nχ,e

]T
︸ ︷︷ ︸

nχ
dof

×(nsd∗nsd)

.
[
Ru

4

]
︸ ︷︷ ︸

(nsd∗nsd)×(nsd∗nsd)

.
[
grad (Nu,e)

]
︸ ︷︷ ︸
(nsd∗nsd)×n

u,e
dof

.JdV (4.279)

(
δHh

2

)
5
=

nel

A
e=1

{
αe
}T

︸ ︷︷ ︸
1×nχ,e

dof

.
[
Re

5

]
︸ ︷︷ ︸

nχ,e
dof

×nu,e
dof

.
{
δde
}

︸ ︷︷ ︸
nu,e
dof

×1

(4.280)

The sixth term is :

(δH2)6 = − (ν − σ)

ˆ

V

ηml (χn)mT χ
−1
Tpδ (ΦpK)χ

−1
KlJdV (4.281)

(
δHe,h

2

)
6
= − (ν − σ)

ˆ

V e

{
αe
}T

︸ ︷︷ ︸
1×nχ

dof

.
[
Nχ,e

]T
︸ ︷︷ ︸

nχ
dof

×(nsd∗nsd)

.
[
R
χ
2

]
︸ ︷︷ ︸

(nsd∗nsd)×(nsd∗nsd)

.
[
Nχ,e

]
︸ ︷︷ ︸

(nsd∗nsd)×n
χ,e
dof

.
{
δφe
}

︸ ︷︷ ︸
nχ,e
dof

×1

JdV (4.282)

[
Re

6

]
︸ ︷︷ ︸

nχ
dof

×nχ,e
dof

= − (ν − σ)

ˆ

V e

[
Nχ,e

]T
︸ ︷︷ ︸

nχ
dof

×(nsd∗nsd)

.
[
R
χ
2

]
︸ ︷︷ ︸

(nsd∗nsd)×(nsd∗nsd)

.
[
Nχ,e

]
︸ ︷︷ ︸

(nsd∗nsd)×n
χ,e
dof

JdV (4.283)

(
δHh

2

)
6
=

nel

A
e=1

{
αe
}T

︸ ︷︷ ︸
1×nχ,e

dof

.
[
Re

6

]
︸ ︷︷ ︸

nχ,e
dof

×nχ,e
dof

.
{
δφe
}

︸ ︷︷ ︸
nχ,e
dof

×1

(4.284)
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The seventh term is:

(δH2)7 = − (ν − σ)

ˆ

V

ηml (Fn)lK F
−1
Kpδup,mJdV (4.285)

(
δHe,h

2

)
7
= − (ν − σ)

ˆ

V e

{
αe
}T

︸ ︷︷ ︸
1×nχ

dof

.
[
Nχ,e

]T
︸ ︷︷ ︸

nχ
dof

×(nsd∗nsd)

.
[
Ru

5

]
︸ ︷︷ ︸

(nsd∗nsd)×(nsd∗nsd)

.
[
grad (Nu,e)

]
︸ ︷︷ ︸
(nsd∗nsd)×n

u,e
dof

.
{
δde
}

︸ ︷︷ ︸
nu,e
dof

×1

JdV (4.286)

[
Re

7

]
︸ ︷︷ ︸

nχ

dof
×nu,e

dof

= − (ν − σ)

ˆ

V e

[
Nχ,e

]T
︸ ︷︷ ︸

nχ

dof
×(nsd∗nsd)

.
[
Ru

5

]
︸ ︷︷ ︸

(nsd∗nsd)×(nsd∗nsd)

.
[
grad (Nu,e)

]
︸ ︷︷ ︸
(nsd∗nsd)×n

u,e

dof

JdV (4.287)

(
δHh

2

)
7
=

nel

A
e=1

{
αe
}T

︸ ︷︷ ︸
1×nχ,e

dof

.
[
Re

7

]
︸ ︷︷ ︸

nχ,e

dof
×nu,e

dof

.
{
δde
}

︸ ︷︷ ︸
nu,e

dof
×1

(4.288)

The eighth term is:

(δH2)8 = −τ
ˆ

V

ηml
(
(Fn)iL F

−1
Lk δuk,i

)
δmlJdV (4.289)

(
δHe,h

2

)
8
= −τ

ˆ

V e

{
αe
}T

︸ ︷︷ ︸
1×nχ

dof

.
[
Nχ,e

]T
︸ ︷︷ ︸

nχ
dof

×(nsd∗nsd)

.
[
Ru

6

]
︸ ︷︷ ︸

(nsd∗nsd)×(nsd∗nsd)

.
[
grad (Nu,e)

]
︸ ︷︷ ︸
(nsd∗nsd)×n

u,e
dof

.
{
δde
}

︸ ︷︷ ︸
nu,e
dof

×1

JdV (4.290)

[
Re

8

]
︸ ︷︷ ︸

nχ
dof

×nu,e
dof

= −τ
ˆ

V e

[
Nχ,e

]T
︸ ︷︷ ︸

nχ
dof

×(nsd∗nsd)

.
[
Ru

6

]
︸ ︷︷ ︸

(nsd∗nsd)×(nsd∗nsd)

.
[
grad (Nu,e)

]
︸ ︷︷ ︸
(nsd∗nsd)×n

u,e
dof

JdV (4.291)

(
δHh

2

)
8
=

nel

A
e=1

{
αe
}T

︸ ︷︷ ︸
1×nχ,e

dof

.
[
Re

8

]
︸ ︷︷ ︸

nχ,e

dof
×nu,e

dof

.
{
δde
}

︸ ︷︷ ︸
nu,e

dof
×1

(4.292)

The ninth term is:

(δH2)9 = −σ
ˆ

V

ηml
(
(Fn)mL F

−1
Lk δuk,l

)
JdV (4.293)

(
δHe,h

2

)
9
= −σ

ˆ

V e

{
αe
}T

︸ ︷︷ ︸
1×nχ

dof

.
[
Nχ,e

]T
︸ ︷︷ ︸

nχ

dof
×(nsd∗nsd)

.
[
Ru

7

]
︸ ︷︷ ︸

(nsd∗nsd)×(nsd∗nsd)

.
[
grad (Nu,e)

]
︸ ︷︷ ︸
(nsd∗nsd)×n

u,e

dof

.
{
δde
}

︸ ︷︷ ︸
nu,e

dof
×1

JdV (4.294)

[
Re

9

]
︸ ︷︷ ︸

nχ
dof

×nu,e
dof

= −σ
ˆ

V e

[
Nχ,e

]T
︸ ︷︷ ︸

nχ
dof

×(nsd∗nsd)

.
[
Ru

7

]
︸ ︷︷ ︸

(nsd∗nsd)×(nsd∗nsd)

.
[
grad (Nu,e)

]
︸ ︷︷ ︸
(nsd∗nsd)×n

u,e
dof

JdV (4.295)
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(
δHh

2

)
9
=

nel

A
e=1

{
αe
}T

︸ ︷︷ ︸
1×nχ,e

dof

.
[
Re

9

]
︸ ︷︷ ︸

nχ,e
dof

×nu,e
dof

.
{
δde
}

︸ ︷︷ ︸
nu,e
dof

×1

(4.296)

the tenth term is:

(δH2)10 = −σ
ˆ

V

ηml
(
(Fn)lL F

−1
Lk δuk,m

)
JdV (4.297)

(
δHe,h

2

)
10

= −σ
ˆ

V e

{
αe
}T

︸ ︷︷ ︸
1×nχ

dof

.
[
Nχ,e

]T
︸ ︷︷ ︸

nχ

dof
×(nsd∗nsd)

.
[
Ru

8

]
︸ ︷︷ ︸

(nsd∗nsd)×(nsd∗nsd)

.
[
grad (Nu,e)

]
︸ ︷︷ ︸
(nsd∗nsd)×n

u,e

dof

.
{
δde
}

︸ ︷︷ ︸
nu,e

dof
×1

JdV

(4.298)
[
Re

10

]
︸ ︷︷ ︸
nχ
dof

×nu,e
dof

= −σ
ˆ

V e

[
Nχ,e

]T
︸ ︷︷ ︸

nχ
dof

×(nsd∗nsd)

.
[
Ru

8

]
︸ ︷︷ ︸

(nsd∗nsd)×(nsd∗nsd)

.
[
grad (Nu,e)

]
︸ ︷︷ ︸
(nsd∗nsd)×n

u,e
dof

JdV (4.299)

(
δHh

2

)
10

=
nel

A
e=1

{
αe
}T

︸ ︷︷ ︸
1×nχ,e

dof

.
[
Re

10

]
︸ ︷︷ ︸
nχ,e
dof

×nu,e
dof

.
{
δde
}

︸ ︷︷ ︸
nu,e
dof

×1

(4.300)

The eleventh term is:

(δH2)11 = − (η − τ)

ˆ

V

ηml
(
(χn)iT χ

−1
Tpδ (ΦpK)χ

−1
Ki

)
δmlJdV (4.301)

(
δHe,h

2

)
11

= − (η − τ)

ˆ

V e

{
αe
}T

︸ ︷︷ ︸
1×nχ

dof

.
[
Nχ,e

]T
︸ ︷︷ ︸

nχ
dof

×(nsd∗nsd)

.
[
R
χ
3

]
︸ ︷︷ ︸

(nsd∗nsd)×(nsd∗nsd)

.
[
Nχ,e

]
︸ ︷︷ ︸

(nsd∗nsd)×n
χ,e

dof

.
{
δφe
}

︸ ︷︷ ︸
nχ,e

dof
×1

JdV (4.302)

[
Re

11

]
︸ ︷︷ ︸
nχ

dof
×nχ,e

dof

= − (η − τ)

ˆ

V e

[
Nχ,e

]T
︸ ︷︷ ︸

nχ

dof
×(nsd∗nsd)

.
[
R
χ
3

]
︸ ︷︷ ︸

(nsd∗nsd)×(nsd∗nsd)

.
[
Nχ,e

]
︸ ︷︷ ︸

(nsd∗nsd)×n
χ,e

dof

JdV (4.303)

(
δHh

2

)
11

=
nel

A
e=1

{
αe
}T

︸ ︷︷ ︸
1×nχ,e

dof

.
[
Re

11

]
︸ ︷︷ ︸
nχ,e
dof

×nχ,e
dof

.
{
δφe
}

︸ ︷︷ ︸
nχ,e
dof

×1

(4.304)

the twelfth term is:
(
δHe,h

2

)
12

= − (η − τ)

ˆ

V

ηml (Fn)iK F
−1
Kpδup,iδmlJdV (4.305)

(
δHh

2

)
12

= − (η − τ)

ˆ

V e

{
αe
}T

︸ ︷︷ ︸
1×nχ

dof

.
[
Nχ,e

]T
︸ ︷︷ ︸

nχ

dof
×(nsd∗nsd)

.
[
Ru

9

]
︸ ︷︷ ︸

(nsd∗nsd)×(nsd∗nsd)

.
[
grad (Nu,e)

]
︸ ︷︷ ︸
(nsd∗nsd)×n

u,e
dof

.
{
δde
}

︸ ︷︷ ︸
nu,e
dof

×1

JdV (4.306)



118

[
Re

12

]
︸ ︷︷ ︸
nχ
dof

×nu,e
dof

= − (η − τ)

ˆ

V e

[
Nχ,e

]T
︸ ︷︷ ︸

nχ
dof

×(nsd∗nsd)

.
[
Ru

9

]
︸ ︷︷ ︸

(nsd∗nsd)×(nsd∗nsd)

.
[
grad (Nu,e)

]
︸ ︷︷ ︸
(nsd∗nsd)×n

u,e
dof

JdV (4.307)

(
δHh

2

)
12

=
nel

A
e=1

{
αe
}T

︸ ︷︷ ︸
1×nχ,e

dof

.
[
Re

12

]
︸ ︷︷ ︸
nχ,e
dof

×nu,e
dof

.
{
δde
}

︸ ︷︷ ︸
nu,e
dof

×1

(4.308)

The thirtheenth term is :

(δH2)13 = −
ˆ

V

ηml (sml − σml) δun,nJdV (4.309)

(δH2)13 = −
ˆ

V

ηml (sml − σml) δun,TF
−1
TnJdV (4.310)

(δH2)13 = −
ˆ

V

ηml (sml − σml)F
−1
Tn δun,TJdV (4.311)

(
δHe,h

2

)
13

= −
ˆ

V e

{
αe
}T

︸ ︷︷ ︸
1×nχ

dof

.
[
Nχ,e

]T
︸ ︷︷ ︸

nχ
dof

×(nsd∗nsd)

.
[
Rs−σ

]
︸ ︷︷ ︸

(nsd∗nsd)×(nsd∗nsd)

.
[
GRAD(Nu,e)

]
︸ ︷︷ ︸

(nsd∗nsd)×n
u,e
dof

.
{
δde
}

︸ ︷︷ ︸
nu,e
dof

×1

JdV (4.312)

[
Re

13

]
︸ ︷︷ ︸
nχ

dof
×nu,e

dof

= −
ˆ

V e

[
Nχ,e

]T
︸ ︷︷ ︸

nχ

dof
×(nsd∗nsd)

.
[
Rs−σ

]
︸ ︷︷ ︸

(nsd∗nsd)×(nsd∗nsd)

.
[
GRAD(Nu,e)

]
︸ ︷︷ ︸

(nsd∗nsd)×n
u,e

dof

JdV (4.313)

(
δHh

2

)
13

=
nel

A
e=1

{
αe
}T

︸ ︷︷ ︸
1×nχ,e

dof

.
[
Re

13

]
︸ ︷︷ ︸
nχ,e
dof

×nu,e
dof

.
{
δde
}

︸ ︷︷ ︸
nu,e
dof

×1

(4.314)

The last integral term is:

δ (H3) =

ˆ

V

ηmlρ0ΓlKδ (ΦmK) dV (4.315)

δ
(
H
e,h
3

)
=

ˆ

V

{
αe
}T

︸ ︷︷ ︸
1×nχ

dof

.
[
Nχ,e

]T
︸ ︷︷ ︸

nχ
dof

×(nsd∗nsd)

.
[
RΓ
]

︸ ︷︷ ︸
(nsd∗nsd)×(nsd∗nsd)

.
[
Nχ,e

]
︸ ︷︷ ︸

(nsd∗nsd)×n
χ,e
dof

.
{
δφe
}

︸ ︷︷ ︸
nχ,e
dof

×1

dV (4.316)

[
ReΓ,e

]
︸ ︷︷ ︸
nχ,e
dof

×nχ,e
dof

=

ˆ

V e

[
Nχ,e

]T
︸ ︷︷ ︸

nχ
dof

×(nsd∗nsd)

.
[
RΓ
]

︸ ︷︷ ︸
(nsd∗nsd)×(nsd∗nsd)

.
[
Nχ,e

]
︸ ︷︷ ︸

(nsd∗nsd)×n
χ,e
dof

dV (4.317)

δ
(
Hh

3

)
=

nel

A
e=1

{
αe
}T

︸ ︷︷ ︸
1×nχ,e

dof

.
[
ReΓ,e

]
︸ ︷︷ ︸
nχ,e
dof

×nχ,e
dof

.
{
δφe
}

︸ ︷︷ ︸
nχ,e
dof

×1

(4.318)
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Variation of the force term :

δ (Hext) =

ˆ

S

ηml̥lmdA

δ
(
H
e,h
ext

)
=

ˆ

S

{
αe
}

︸ ︷︷ ︸
1×nχ

dof

T [
Nχ,e

]T
︸ ︷︷ ︸

nχ

dof
×(nsd∗nsd)

.
{
̥
}

︸︷︷︸
(nsd∗nsd)×1

dA

[
N
e
]
ext︸ ︷︷ ︸

nχ
dof

×1

=

ˆ

S

[
Nχ,e

]T
︸ ︷︷ ︸

nχ
dof

×(nsd∗nsd)

.
{
̥
}

︸︷︷︸
(nsd∗nsd)×1

dA

Hh
ext =

nel

A
e=1

{
αe
}T

︸ ︷︷ ︸
1×nχ

dof

[
Ne
]
ext︸ ︷︷ ︸

nχ
dof

×1

(4.319)

4.8 Summary of the Finite Element Model in the Equation Kδx = −R

Since the α and c are the arbitrary constants, the matrice equations will hold for all α

and c. Therefore, they can be romoved from the quations and total system of the equations

reduce to: 

Kdd Kdφ

Kφd Kφφ


 .





δd

δφ





=





−Rd

−Rφ





(4.320)
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where

[Kdd]︸ ︷︷ ︸
(nu,e

dof)×(n
u,e
dof)

=
nel

A
e=1




i=14∑

i=1,i 6=7,9,11

[
T
e
i

]
︸︷︷︸

(nu,e
dof)×(n

u,e
dof)


 (4.321)

[Kdφ]︸ ︷︷ ︸
(nu,e

dof)×(n
χ,e
dof)

=
nel

A
e=1




[
T
e
7

]
︸︷︷︸

(nu,e
dof)×(n

χ,e
dof)

+
[
T
e
9

]
︸︷︷︸

(nu,e
dof)×(n

χ,e
dof)

+
[
T
e
11

]
︸ ︷︷ ︸

(nu,e
dof)×(n

χ,e
dof)


 (4.322)

[Kφd]︸ ︷︷ ︸
(nχ,e

dof)×(n
χ,e

dof)

=
nel

A
e=1



[
Me

∇η

]
︸ ︷︷ ︸
nχ,e
dof

×nχ,e
dof

+
i=18∑

i=1,i 6=4,5,6,7,9,10,11,12,13,17

[
Me

i

]
︸ ︷︷ ︸

(nχ,e

dof)×(n
χ,e

dof)

+

i=13∑

i=1,i 6=4,6,11

[
R
e
i

]
︸︷︷︸

(nχ,e
dof)×(n

χ,e
dof)


 (4.323)

[Kφφ]︸ ︷︷ ︸
(nχ,e

dof)×(n
χ,e
dof)

=
nel

A
e=1




i=17∑

i=1,i 6=1,2,3,8,14,15,16

[
M

e
i

]
︸ ︷︷ ︸

(nχ,e
dof)×(n

χ,e
dof)

+
[
R
e
4

]
︸︷︷︸

(nχ,e
dof)×(n

χ,e
dof)

+
[
R
e
6

]
︸︷︷︸

(nχ,e
dof)×(n

χ,e
dof)

+
[
R
e
11

]
︸ ︷︷ ︸

(nχ,e
dof)×(n

χ,e
dof)

+
[
R

Γ,e
]

︸ ︷︷ ︸
(nχ,e

dof)×(n
χ,e
dof)


 (4.324)

The right hand side is:

{Rd}︸ ︷︷ ︸
nu,e
dof

×1

=
nel

A
e=1


{U e,Int

1 }︸ ︷︷ ︸
nu,e
dof

×1

+ {U e,Int
2 }︸ ︷︷ ︸

nu,e
dof

×1

− {U e
ext}︸ ︷︷ ︸

nu,e
dof

×1


 (4.325)

{Rφ}︸ ︷︷ ︸
nχ,e

dof
×1

=
nel

A
e=1


{P e,Int

1 }︸ ︷︷ ︸
nχ,e
dof

×1

+ {P e,Int
2 }︸ ︷︷ ︸

nχ,e
dof

×1

+ {P e,Int
3 }︸ ︷︷ ︸

nχ,e
dof

×1

− {P e
ext}︸ ︷︷ ︸

nχ,e
dof

×1


 (4.326)



Chapter 5

Finite Element Formulation of Finite Strain Micromorphic Elasticity at

Reference Configuration

5.1 Linearization of the Balance Equations at Reference Configuration

Previously in Chapter 4, we presented the weak forms of balance equations and their

linearizations together with finite element equations at current configuration B. This sec-

tion presents the mapping of the balance equations to the reference configuration and their

linearizations at reference configuration B0.

5.1.1 Linearization of Balance of Momenta at Reference Configuration

Applying the method of weighted residuals (Hughes, 1987) and integration by parts

to the balance of linear momentum and balance of first moment of momentum give us the

variational equations. We use the Piola transforms and volume transformation to map the

balance of linear momentum to reference configuration. First, after integration by parts in

the current configuration, we have

ˆ

V

wk [σlk,l + ρ(fk − ak)] dv =

ˆ

A

wkσlknlda−
ˆ

V

[wk,lσlk + wkρ(fk − ak)] dv = 0 (5.1)

If we also apply Piola transforms of the Cauchy stress tensor PlL = JσlkF
−1
Lk , σlk = FlLSLKFkK/J ,

and Nanson’s formula nlda = JF−1
KlNKdA for area change, we obtain in the reference con-

figuration
ˆ

A

wkPkKNKdA−
ˆ

V

[wk,lFlLSLKFkK + wkρ0(fk − ak)] dV = 0 (5.2)
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where PkK is the first Piola-Kirchhoff stress tensor. If we define a traction Tk = PkLNL,

equation (5.2) can be written as

ˆ

A

wkTkdA−
ˆ

V

[wk,lFlLSLKFkK + wkρ0(fk − ak)] dV = 0 (5.3)

Application of the Newton-Raphson method requires linearization of the balance equations

to construct a consistent tangent, where linearization of the balance of linear momentum

may be expressed as

ˆ

A

wkTkdA−
ˆ

V

[wk,lFlLSLKFkK + wkρ0(fk − ak)] dV

+ δ

(
ˆ

A

wkTkdA−
ˆ

V

[wk,lFlLSLKFkK + wkρ0(fk − ak)] dV

)
= 0 (5.4)

where δ(•) is the increment operator within a linearization procedure. Ignoring the boundary

term, the body force vector, and the acceleration vector, the equation above reduces to:

ˆ

V

wk,lFlLSLKFkKdV + δ

(
ˆ

V

wk,lFlLSLKFkKdV

)
= 0 (5.5)

Carrying the linearization operator over the terms gives:

ˆ

V

δ (wk,l)FlLSLKFkKdV +

ˆ

V

wk,lδ (FlL)SLKFkKdV +

ˆ

V

wk,lFlLδ (SLK)FkKdV

+

ˆ

V

wk,lFlLSLKδ (FkK) dV = −
ˆ

V

wk,lFlLSLKFkKdV (5.6)

Similarly, we follow the same method for the balance of first moment of momentum. Multi-

plying the residual form of (2.60) with the weight function ηml and applying integration by

parts together with Piola transforms and area change relations expressed above, we obtain

in the reference configuration

ˆ

V

ηml [FmMSMLFlL − FmMΣMLFlL + ρ0(λlm − ωlm)] dV −
ˆ

V

ηml,kFkKFlLMKLMχmMdV

+

ˆ

A

ηmlMlmdA = 0 (5.7)
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where Mlm is the traction couple tensor, defined as Mlm = JmklmF
−1
KkNK . Then, linearization

of (5.7) is expressed as
ˆ

V

ηml [FmMSMLFlL − FmMΣMLFlL + ρ0(λlm − ωlm)] dV −
ˆ

V

ηml,kFkKFlLMKLMχmMdV

+

ˆ

A

ηmlMlmdA+ δ

(
ˆ

V

ηml [FmMSMLFlL − FmMΣMLFlL + ρ0(λlm − ωlm)] dV

−
ˆ

V

ηml,kFkKFlLMKLMχmMdV +

ˆ

A

ηmlMlmdA

)
= 0 (5.8)

Ignoring the boundary term, the body couple, and the micro-spin inertia tensors gives:
ˆ

V

ηmlFmMΣMLFlL − FmMSMLFlLdV +

ˆ

V

ηml,kFkKFlLMKLMχmMdV

+ δ

(
ˆ

V

ηml [FmMΣMLFlL − FmMSMLFlL] dV +

ˆ

V

ηml,kFkKFlLMKLMχmMdV

)
= 0 (5.9)

Similary, carrying the linearization operator over the terms gives:
ˆ

V

ηmlδ (FmM ) (ΣML − SML)FlLdV +

ˆ

V

ηmlFmMδ (ΣML − SML)FlLdV

+

ˆ

V

ηmlFmM (ΣML − SML) δ (FlL) dV +

ˆ

V

δ (ηml,k)FkKFlLMKLMχmMdV

+

ˆ

V

ηml,kδ (FkK)FlLMKLMχmMdV +

ˆ

V

ηml,kFkKδ (FlL)MKLMχmMdV

+

ˆ

V

ηml,kFkKFlLδ (MKLM)χmMdV +

ˆ

V

ηml,kFkKFlLMKLMδ (χmM ) dV

= −
ˆ

V

ηmlFmM (ΣML − SML)FlLdV −
ˆ

V

ηml,kFkKFlLMKLMχmMdV (5.10)

In the finite element implementation, the terms in the right hand side of (5.6) and (5.10) will

yield the residual vectors Rd and Rφ respectively. The terms involving δu and δΦ in (5.6)

result in the associated consistent tangent matrices Kdd and Kdφ, respectively. Similarly,

in (5.10) the associated consistent tangent matrices are, respectively, Kφd and Kφφ. We

have the following coupled finite element system of equations to solve for nodal displacement

increments δd and nodal micro-displacement tensor increments δφ at each iteration in a

Newton-Raphson algorithm:


Kdd Kdφ

Kφd Kφφ








δd

δφ





=





−Rd

−Rφ





(5.11)
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The sub-matrices constructing the matrices Kdd, Kdφ, Kφd, and Kφφ in a same way de-

scribed in Section 4.8 are presented in the next section.

5.1.2 Submatrices in the Matrix Form of the Balance of Linear Momentum

at Reference Configuration

This section provides the submatrices coming from the individual terms appearing in

the linearization of the balance of linear momentum. Since the dimensionalizing and putting

into Galerkin form were presented in detail in Chapter 4, we present only the final form of

the submatrices in the linearized form balance equations in this section and hereafter. All

the submatrices denoted by
(
Ke,h
uu

)
i
, and

(
Kh
uφ

)
i
are the contributions to consistent tangent

coming from the linearized form of the balance of linear momentum.

The first term in the linearization of the balance of linear momentum:

ˆ

B0

δ (wkl)FlLSLKFkKdV =

ˆ

B0

wk,Lδ
(
F−1
Ll

)
FlLSLKFkKdV

= −
ˆ

B0

wk,LF
−1
Ll FlLSLKFkKδul,LdV (5.12)

(
K
e,h
uu

)
1
=

ˆ

Be
0

{ce}T · [GRAD (Nu,e)]T · [I11] · [GRAD (Nu,e)] · {δde} dV (5.13)

[Ie11] =

ˆ

Be
0

[GRAD (Nu,e)]T · [I11] · [GRAD (Nu,e)] dV (5.14)

(
K
h
uu

)
1
=

nel

A
e=1

{ce}T · [Ie11] · {δde} (5.15)

The second term in the linearization of the balance of linear momentum:

ˆ

B0

wk,LF
−1
Ll δ (FlL)SLKFkKdV =

ˆ

B0

wk,LF
−1
Ll SLKFkKδul,LdV (5.16)

(
Ke,h
uu

)
2
=

ˆ

Be
0

{ce}T · [GRAD (Nu,e)]T · [I12] · [GRAD (Nu,e)] · {δde} dV (5.17)

[Ie12] =

ˆ

Be
0

[GRAD (Nu,e)]T · [I12] · [GRAD (Nu,e)] dV (5.18)

(
Kh
uu

)
2
=

nel

A
e=1

{ce}T · [Ie12] · {δde} (5.19)
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The third term is the first term coming from the linearization the second Piola-Kirchhoff

tensor δSLK :

(λ+ τ)

ˆ

B0

wk,LF
−1
Ll FlLδ (FiM)FiMδLKFkKdV = (λ+ τ)

ˆ

B0

wk,LF
−1
Ll FlLFiMδLKFkKδui,MdV

(5.20)
(
Ke,h
uu

)
3
= (λ+ τ)

ˆ

Be
0

{ce}T · [GRAD (Nu,e)]T · [I13] · [GRAD (Nu,e)] · {δde} dV (5.21)

[Ie13] = (λ+ τ)

ˆ

Be
0

[GRAD (Nu,e)]T · [I13] · [GRAD (Nu,e)] dV (5.22)

(
Kh
uu

)
3
=

nel

A
e=1

{ce}T · [Ie13] · {δde} (5.23)

The fourth term is:

(λ+ τ)

ˆ

B0

wk,LF
−1
Ll FlLFiMδ (FiM ) δLKFkKdV = (λ+ τ)

ˆ

B0

wk,LF
−1
Ll FlLFiMδLKFkKδui,MdV

(5.24)
(
Ke,h
uu

)
4
= (λ+ τ)

ˆ

Be
0

{ce}T · [GRAD (Nu,e)]T · [I4] · [GRAD (Nu,e)] · {δde} dV (5.25)

[Ie4] = (λ+ τ)

ˆ

Be
0

[GRAD (Nu,e)]T · [I14] · [GRAD (Nu,e)] dV (5.26)

(
K
h
uu

)
4
=

nel

A
e=1

{ce}T · [Ie14] · {δde} (5.27)

The fifth term is:

2 (µ+ σ)

ˆ

B0

wk,LF
−1
Ll FlLδ (FiL)FiKFkKdV = 2 (µ+ σ)

ˆ

B0

wk,LF
−1
Ll FlLFiKFkKδui,LdV

(5.28)
(
Ke,h
uu

)
5
= 2 (µ+ σ)

ˆ

Be
0

{ce}T · [GRAD (Nu,e)]T · [I15] · [GRAD (Nu,e)] · {δde} dV (5.29)

[Ie15] = 2 (µ+ σ)

ˆ

Be
0

[GRAD (Nu,e)]T · [I15] · [GRAD (Nu,e)] dV (5.30)

(
K
h
uu

)
5
=

nel

A
e=1

{ce}T · [Ie15] · {δde} (5.31)

The sixth term is:

2 (µ+ σ)

ˆ

B0

wk,LF
−1
Ll FlLFiLδ (FiK)FkKdV = 2 (µ+ σ)

ˆ

B0

wk,LF
−1
Ll FlLFiLFkKδui,KdV

(5.32)
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(
Ke,h
uu

)
6
= 2 (µ+ σ)

ˆ

Be
0

{ce}T · [GRAD (Nu,e)]T · [I16] · [GRAD (Nu,e)] · {δde} dV (5.33)

[Ie16] = 2 (µ+ σ)

ˆ

Be
0

[GRAD (Nu,e)]T · [I16] · [GRAD (Nu,e)] dV (5.34)

(
Kh
uu

)
6
=

nel

A
e=1

{ce}T · [Ie16] · {δde} (5.35)

The seventh term is:

η

ˆ

B0

wk,LF
−1
Ll FlLδ (FiM)χiMδLKFkKdV = η

ˆ

B0

wk,LF
−1
Ll FlLχiMδLKFkKδui,MdV (5.36)

(
Ke,h
uu

)
7
= η

ˆ

Be
0

{ce}T · [GRAD (Nu,e)]T · [I17] · [GRAD (Nu,e)] · {δde} dV (5.37)

[Ie17] = η

ˆ

Be
0

[GRAD (Nu,e)]T · [I17] · [GRAD (Nu,e)] dV (5.38)

(
Kh
uu

)
7
=

nel

A
e=1

{ce}T · [Ie17] · {δde} (5.39)

The eighth term is:

η

ˆ

B0

wk,LF
−1
Ll FlLFiMδ (χiM) δLKFkKdV = η

ˆ

B0

wk,LF
−1
Ll FlLFiMδLKFkKδΦiMdV (5.40)

(
K
e,h
uφ

)
1
= η

ˆ

Be
0

{ce}T · [GRAD (Nu,e)]T · [I21] · [Nχ,e] · {δφe} dV (5.41)

[Ie21] = η

ˆ

Be
0

[GRAD (Nu,e)]T · [I21] · [Nχ,e] dV (5.42)

(
Kh
uφ

)
1
=

nel

A
e=1

{ce}T · [Ie21] · {δφe} (5.43)

The ninth term is:

κ

ˆ

B0

wk,LF
−1
Ll FlLδ (FiK)χiLFkKdV = κ

ˆ

B0

wk,LF
−1
Ll FlLχiLFkKδui,KdV (5.44)

(
Ke,h
uu

)
8
= κ

ˆ

Be
0

{ce}T · [GRAD (Nu,e)]T · [I18] · [GRAD (Nu,e)] · {δde} dV (5.45)

[Ie18] = κ

ˆ

Be
0

[GRAD (Nu,e)]T · [I18] · [GRAD (Nu,e)] · {δde} dV (5.46)

(
Kh
uu

)
8
=

nel

A
e=1

{ce}T · [Ie18] · {δde} (5.47)
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The tenth term is:

κ

ˆ

B0

wk,LF
−1
Ll FlLFiKδ (χiL)FkKdV = κ

ˆ

B0

wk,LF
−1
Ll FlLFiKFkKδΦiLdV (5.48)

(
K
e,h
uφ

)
2
= κ

ˆ

Be
0

{ce}T · [GRAD (Nu,e)]T · [I22] · [Nχ,e] · {δφe} dV (5.49)

[Ie22] = κ

ˆ

Be
0

[GRAD (Nu,e)]T · [I22] · [Nχ,e] dV (5.50)

(
Kh
uφ

)
2
=

nel

A
e=1

{ce}T · [Ie22] · {δφe} (5.51)

The eleventh term is:

ν

ˆ

B0

wk,LF
−1
Ll FlLδ (FiL)χiKFkKdV = ν

ˆ

B0

wk,LF
−1
Ll FlLχiKFkKδui,LdV (5.52)

(
Ke,h
uu

)
9
= ν

ˆ

Be
0

{ce}T · [GRAD (Nu,e)]T · [I19] · [GRAD (Nu,e)] · {δde} dV (5.53)

[Ie19] = ν

ˆ

Be
0

[GRAD (Nu,e)]T · [I19] · [GRAD (Nu,e)] · {δde} dV (5.54)

(
Kh
uu

)
9
=

nel

A
e=1

{ce}T · [Ie19] · {δde} (5.55)

The twelfth term is:

ν

ˆ

B0

wk,LF
−1
Ll FlLFiLδ (χiK)FkKdV = ν

ˆ

B0

wk,LF
−1
Ll FlLFiLFkKδΦiKdV (5.56)

(
K
e,h
uφ

)
4
= ν

ˆ

Be
0

{ce}T · [GRAD (Nu,e)]T · [I24] · [Nχ,e] · {δφe} dV (5.57)

[Ie24] = ν

ˆ

Be
0

[GRAD (Nu,e)]T · [I24] · [Nχ,e] dV (5.58)

(
Kh
uφ

)
4
=

nel

A
e=1

{ce}T · [Ie24] · {δφe} (5.59)

The thirteenth term is:
ˆ

B0

wk,LF
−1
Ll FlLSLKδ (FkK) dV =

ˆ

B0

wk,LF
−1
Ll FlLSLKδuk,KdV (5.60)

(
Ke,h
uu

)
10

=

ˆ

Be
0

{ce}T · [GRAD (Nu,e)]T ·
[
I1/10

]
· [GRAD (Nu,e)] · {δde} dV (5.61)

[
Ie1/10

]
=

ˆ

Be
0

[GRAD (Nu,e)]T ·
[
I1/10

]
· [GRAD (Nu,e)] dV (5.62)

(
K
h
uu

)
10

=
nel

A
e=1

{ce}T ·
[
I
e
1/10

]
· {δde} (5.63)
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5.1.3 Submatrices in the Matrix Form of the Balance of First Moment of

Momentum at Reference Configuration

Similar to previous section,
(
Kh
φu

)
i
,
(
Kh
φφ

)
i
, (KMφu)i,and

(
KM

h
φφ

)
i
are the contribu-

tions to the consistent tangent coming from the linearized form of the balance of first moment

of momentum. The first term is:

ˆ

B0

ηlmδ (FlM) (ΣLM − SLM)FmMdV =

ˆ

B0

ηlm (ΣLM − SLM)FmMδul,MdV (5.64)

(
K
e,h
φu

)
1
=

ˆ

Be
0

{αe}T · [Nχ,e]T · [J11] · [GRAD (Nu,e)] · {δde} dV (5.65)

[Je11] =

ˆ

Be
0

[Nχ,e]T · [J11] · [GRAD (Nu,e)] dV (5.66)

(
Kh
φu

)
1
=

nel

A
e=1

{αe}T · [Je11] · {δde} (5.67)

The second term which is the first term of (ΣLM − SLM) is:

τ

ˆ

B0

ηlmFlMδ (FiK)FiKδLMFmMdV = τ

ˆ

B0

ηlmFlMFiKδLMFmMδui,KdV (5.68)

(
K
e,h
φu

)
2
= τ

ˆ

Be
0

{αe}T · [Nχ,e]T · [J12] · [GRAD (N u,e)] · {δde} dV (5.69)

[Je12] = τ

ˆ

Be
0

[Nχ,e]T · [J12] · [GRAD (Nu,e)] dV (5.70)

(
Kh
φu

)
2
=

nel

A
e=1

{αe}T · [Je12] · {δde} (5.71)

The third term is:

τ

ˆ

B0

ηlmFlMFiKδ (FiK) δLMFmMdV = τ

ˆ

B0

ηlmFlMFiKδLMFmMδui,KdV (5.72)

(
K
e,h
φu

)
3
= τ

ˆ

Be
0

{αe}T · [Nχ,e]T · [J13] · [GRAD (N u,e)] · {δde} dV (5.73)

[Je13] = τ

ˆ

Be
0

[Nχ,e]T · [J13] · [GRAD (Nu,e)] dV (5.74)

(
Kh
φu

)
3
=

nel

A
e=1

{αe}T · [Je13] · {δde} (5.75)
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The fourth term is:

2σ

ˆ

B0

ηlmFlMδ (FiL)FiMFmMdV = 2σ

ˆ

B0

ηlmFlMFiMFmMδui,LdV (5.76)

(
K
e,h
φu

)
4
= 2σ

ˆ

Be
0

{αe}T · [Nχ,e]T · [J14] · [GRAD (Nu,e)] · {δde} dV (5.77)

[Je14] = 2σ

ˆ

Be
0

[Nχ,e]T · [J14] · [GRAD (Nu,e)] dV (5.78)

(
Kh
φu

)
4
=

nel

A
e=1

{αe}T · [Je14] · {δde} (5.79)

The fifth term is:

2σ

ˆ

B0

ηlmFlMFiLδ (FiM )FmMdV = 2σ

ˆ

B0

ηlmFlMFiLFmMδui,MdV (5.80)

(
K
e,h
φu

)
5
= 2σ

ˆ

Be
0

{αe}T · [Nχ,e]T · [J15] · [GRAD (Nu,e)] · {δde} dV (5.81)

[Je15] = 2σ

ˆ

Be
0

[Nχ,e]T · [J15] · [GRAD (Nu,e)] dV (5.82)

(
Kh
φu

)
5
=

nel

A
e=1

{αe}T · [Je15] · {δde} (5.83)

The sixth term is:

(η − τ)

ˆ

B0

ηlmFlMδ (FiK)χiKδLMFmMdV = (η − τ)

ˆ

B0

ηlmFlMχiKδLMFmMδui,KdV

(5.84)

(
K
e,h
φu

)
6
= (η − τ)

ˆ

Be
0

{αe}T · [Nχ,e]T · [J16] · [GRAD (Nu,e)] · {δde} dV (5.85)

[Je16] = (η − τ)

ˆ

Be
0

[Nχ,e]T · [J16] · [GRAD (Nu,e)] dV (5.86)

(
Kh
φu

)
6
=

nel

A
e=1

{αe}T · [Je16] · {δde} (5.87)

The seventh term is:

(η − τ)

ˆ

B0

ηlmFlMFiKδ (χiK) δLMFmMdV = (η − τ)

ˆ

B0

ηlmFlMFiKδLMFmMδΦiKdV (5.88)
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(
K
e,h
φφ

)
1
= (η − τ)

ˆ

Be
0

{αe}T · [Nχ,e]T · [J21] · [Nχ,e] · {δφe} dV (5.89)

[Je21] = (η − τ)

ˆ

Be
0

[Nχ,e]T · [J21] · [Nχ,e] dV (5.90)

(
Kh
φφ

)
1
=

nel

A
e=1

{αe}T · [Je21] · {δφe} (5.91)

The eight term is:

(ν − σ)

ˆ

B0

ηlmFlMδ (FiL)χiMFmMdV = (ν − σ)

ˆ

B0

ηlmFlMχiMFmMδui,LdV (5.92)

(
K
e,h
φu

)
7
= (ν − σ)

ˆ

Be
0

{αe}T · [Nχ,e]T · [J17] · [GRAD (Nu,e)] · {δde} dV (5.93)

[Je17] = (ν − σ)

ˆ

Be
0

[Nχ,e]T · [J17] · [GRAD (Nu,e)] dV (5.94)

(
Kh
φu

)
7
=

nel

A
e=1

{αe}T · [Je17] · {δde} (5.95)

The ninth term is:

(ν − σ)

ˆ

B0

ηlmFlMFiL (χiM) FmMdV = (ν − σ)

ˆ

B0

ηlmFlMFiLFmMδΦiMdV (5.96)

(
K
e,h
φφ

)
2
= (ν − σ)

ˆ

Be
0

{αe}T · [Nχ,e]T · [J22] · [Nχ,e] · {δφe} dV (5.97)

[Je22] = (ν − σ)

ˆ

Be
0

[Nχ,e]T · [J22] · [Nχ,e] dV (5.98)

(
Kh
φφ

)
2
=

nel

A
e=1

{αe}T · [Je22] · {δφe} (5.99)

The tenth term is:

(κ− σ)

ˆ

B0

ηlmFlMδ (FiM )χiLFmMdV = (κ− σ)

ˆ

B0

ηlmFlMχiLFmMδui,MdV (5.100)

(
K
e,h
φu

)
8
= (κ− σ)

ˆ

Be
0

{αe}T · [Nχ,e]T · [J18] · [GRAD (Nu,e)] · {δde} dV (5.101)

[Je18] = (κ− σ)

ˆ

Be
0

[Nχ,e]T · [J18] · [GRAD (Nu,e)] dV (5.102)

(
Kh
φu

)
8
=

nel

A
e=1

{αe}T · [Je18] · {δde} (5.103)
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The eleventh term is:

(κ− σ)

ˆ

B0

ηlmFlMFiM (χiL) FmMdV = (κ− σ)

ˆ

B0

ηlmFlMFiMFmMδΦiLdV (5.104)

(
K
e,h
φφ

)
3
= (κ− σ)

ˆ

Be
0

{αe}T · [Nχ,e]T · [J23] · [Nχ,e] · {δφe} dV (5.105)

[Je23] = (κ− σ)

ˆ

Be
0

[Nχ,e]T · [J23] · [Nχ,e] dV (5.106)

(
Kh
φφ

)
3
=

nel

A
e=1

{αe}T · [Je23] · {δφe} (5.107)

The twelfth term is:

ˆ

B0

ηlmFlL (ΣLM − SLM) δ (FmM) dV =

ˆ

B0

ηlmFlL (ΣLM − SLM) δum,MdV (5.108)

(
K
e,h
φu

)
9
=

ˆ

Be
0

{αe}T · [Nχ,e]T · [J19] · [GRAD (Nu,e)] · {δde} dV (5.109)

[Je19] =

ˆ

Be
0

[Nχ,e]T · [J19] · [GRAD (Nu,e)] dV (5.110)

(
Kh
φu

)
9
=

nel

A
e=1

{αe}T · [Je19] · {δde} (5.111)

The thirteenth term is:

ˆ

B0

ηlm,kFkKδ (FlL)MKLMχmMdV =

ˆ

B0

ηlm,AF
−1
Ak FkKδ (FlL)MKLMχmMdV

=

ˆ

B0

ηlm,Kδ (FlL)MKLMχmMdV =

ˆ

B0

ηlm,KMKLMχmMδul,LdV (5.112)

(
KM

e
φu

)
1
=

ˆ

Be
0

{αe}T · [GRAD (Nχ,e)]T · [M 1] · [GRAD (Nu,e)] · {δde} dV (5.113)

[Me
1] =

ˆ

Be
0

[GRAD (Nχ,e)]T · [M 1] · [GRAD (Nu,e)] dV (5.114)

(
KM

h
φu

)
1
=

nel

A
e=1

{αe}T · [Me
1] · {δde} (5.115)

The examples given in the next chapters uses only one parameter τ7 in the definition of higher

order couple stress tensor. Hence, we present the linearization of only one term related to
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τ7. Then, the fourteenth term is:
ˆ

B0

ηlm,KFlLδ (MKLM)χmMdV =

ˆ

B0

ηlm,KFlLδ (MKLM)χmMdV

= τ7

ˆ

B0

ηlm,KFlLδ (FiK)χiL,MχmMdV = τ7

ˆ

B0

ηlm,KFlLχiL,MχmMδui,KdV (5.116)

(
KM

e
φu

)
2
= τ7

ˆ

Be
0

{αe}T · [GRAD (Nχ,e)]T · [M 2] · [GRAD (Nu,e)] · {δde} dV (5.117)

[Me
2] = τ7

ˆ

Be
0

[GRAD (Nχ,e)]T · [M 2] · [GRAD (Nu,e)] dV (5.118)

(
KM

h
φu

)
2
=

nel

A
e=1

{αe}T · [Me
2] · {δde} (5.119)

The fifteenth term is:

τ7

ˆ

B0

ηlm,KFlLFiKδ (χiL,M)χmMdV = τ7

ˆ

B0

ηlm,KFlLFiKχmMδΦiL,MdV (5.120)

(
KM

e
φφ

)
1
= τ7

ˆ

Be
0

{αe}T · [GRAD (Nχ,e)]T · [M 3] · [GRAD (Nχ,e)] · {δφe} dV (5.121)

[Me
3] = τ7

ˆ

Be
0

[GRAD (Nχ,e)]T · [M 3] · [GRAD (Nχ,e)] dV (5.122)

(
KM

h
φφ

)
1
=

nel

A
e=1

{αe}T · [Me
3] · {δφe} (5.123)

The sixteenth term is:

ˆ

B0

ηlm,KFlLMKLMδ (χmM ) dV =

ˆ

B0

ηlm,KFlLMKLMδΦmMdV (5.124)

(
KM

e
φφ

)
2
=

ˆ

Be
0

{αe}T · [GRAD (Nχ,e)]T · [M 4] · [Nχ,e] · {δφe} dV (5.125)

[Me
4] =

ˆ

Be
0

[GRAD (Nχ,e)]T · [M 4] · [Nχ,e] dV (5.126)

(
KM

h
φφ

)
2
=

nel

A
e=1

{αe}T · [Me
4] · {δφe} (5.127)

These matrices determined above are constructing the global consistent tangent, in a

same way presented in the section 4.8, to be used in the Newton-Raphson algorithm. To avoid

repeating it, we omit those details here. The next chapter demonstrates the convenience of

use of reference configuration in the implementation, together with examples.



Chapter 6

Finite Element Implementation and Numerical Examples of Finite Strain

Micromorphic Elasticity

Previous Chapters 4 and 5 presented the finite element formulation together with the

linearizations of the balance equations at current configuration and reference configuration

respectively. In numerical examples, firstly, we provide a three dimensional finite strain

micromorphic materially linear isotropic elastic model formulated in two ways for finite

element implementation (Isbuga and Regueiro (2011), Regueiro and Isbuga (2011)): (i)

direct finite strain elasticity , and (ii) rate form with semi-implicit time integration. The

model is based upon the finite strain isotropic micromorphic elasticity model proposed by

Eringen and Suhubi (1964); Suhubi and Eringen (1964). For (i), the direct formulation,

the constitutive equations are calculated in the reference configuration, and the resulting

stresses are mapped to the current configuration as shown in Chapter 5. For (ii), the rate

formulation, the constitutive equations are integrated in time in the current configuration

using the Truesdell objective stress rates as presented in Chapter 4. The comparison of

two implementation shows the computational effectiveness of direct implementation and the

following numerical examples present the applications of the formulation.

Three dimensional numerical examples are analyzed to compare the two formulations

(i) and (ii) for standard finite strain isotropic elasticity, and the formulation (i) is used to

demonstrate the elastic length scale effects that come through the higher order couple stress

in the micromorphic theory (Regueiro and Isbuga (2011), Isbuga and Regueiro (2011)). The
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following examples also provide the boundary condition effects as well as insights about three

dimensional micromorphic continuum.

6.0.4 Element Used in Finite Element Implementation

We use a mixed 27 node hexahedral element for finite element implementation (Fig.6.1):

27 nodes for uh and 8 vertex nodes for Φh (Q27P8), where h is the discretization parameter.

For the rate form (ii) of the model, (4.4) and (4.23) are written in Galerkin form (Hughes,

1987), and the time-integrated stress equations (3.134), (3.136), and (4.37) are used. The

mixed formulation is employed in recognition that Φ
h is a micro-displacement tensor (no

gradient is calculated on a micro-displacement u′h, but Φ
h is analogous to ∂uh/∂X when

comparing F h and χh), where the gradient of a quadratic interpolation is linear, such that

∇uh and Φ
h would be of approximate same order interpolation. Such mixed methods are

shown to be convergent (Hughes, 1987) for the small strain case, but no formal proof of

convergence is presented here; i.e., we do not show in a proof that u = lim
h→0

uh and Φ =

lim
h→0

Φ
h. One of the numerical examples (Section 6.2.4) will provide a mesh refinement study

to demonstrate the convergence of the mixed FE solution. The global nodal displacement

vector is d and the nodal micro-displacement tensor in vector form is φ. Displacement vector

uhk is interpolated at each node shown by solid dots, and the micro-displacement tensor ΦhkK

is interpolated only at the vertices shown by open circles in Fig.6.1, such that

uh
e

k (ξ) =

nu
en∑

a=1

Nu
a (ξ)d

e
k(a) , Φ

he

kK(ξ) =

nφ
en∑

b=1

NΦ
b (ξ)φ

e
kK(b) (6.1)

where ξ = [ξ η ζ ] are the natural coordinates, Nu
a (ξ) the tri-quadratic interpolation func-

tions, NΦ
b (ξ) the tri-linear interpolation functions, dek(a) the displacement vector at node a

of element e, and φekK(b) the micro-displacement tensor at node b in element e.
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Figure 6.1: Mixed 27 node hexahedral element: quadratic in displacement and linear in micro-
displacement tensor interpolations. Node numbering and geometry shown in the natural coordinate
space (Hughes, 1987). The number of element nodes for displacement and micro-displacement

tensor, respectively, are nuen = 27 and nφen = 8.

6.1 One-dimensional (1D) micromorphic uniaxial strain in compression

formulation and FE implementation for ‘verification’ of 3D micromorphic

FE model

As a form of verification for our three-dimensional finite strain coupled micromorphic

finite element implementation in an opensource C++ code Tahoe, we formulate and imple-
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ment a simpler one-dimensional uniaxial strain compression problem. It entails an assumed

displacement only in the X3 direction, and likewise only a component of Φ in the X3 direc-

tion. The resulting kinematics are as follows:

u =




0

0

u



, Φ =




0 0 0

0 0 0

0 0 Φ




(6.2)

where u3 = u(X3) and Φ33 = Φ(X3). The resulting deformation measures are as follows:

F =




1 0 0

0 1 0

0 0 1 + ∂u
∂X3



, χ =




1 0 0

0 1 0

0 0 1 + Φ




(6.3)

E = (C − 1)/2 =




0 0 0

0 0 0

0 0 1
2
∂u
∂X3

(
2 + ∂u

∂X3

)




(6.4)

E =




0 0 0

0 0 0

0 0 Φ + ∂u
∂X3

+ Φ ∂u
∂X3




(6.5)

Γ333 =
∂Φ

∂X3

(
1 +

∂u

∂X3

)
(6.6)

When substituting these deformation measures in (6.4)-(6.6) into the constitutive equations

(2.113)-(2.115), and in turn the linearized variational equations in (4.4) and (4.23), a one-

dimensional coupled finite element formulation results. We use a mixed element formulation

similar to the 3D hexahedral element in Fig.6.1, where axial displacement uh(X3) is interpo-

lated quadratically and axial micro-displacement tensor component Φh(X3) is interpolated

linearly. This is the same as the column compression problem in Section 6.2.4, where the

two models (3D and 1D) are compared in Section 6.2.3.
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6.2 Numerical examples

6.2.1 Choice of elastic parameters

In the Cauchy continuum, the constitutive equations involve two Lamé parameters for

linear isotropic elasticity, which we call here λ∗ and µ∗, to distinguish from the micromorphic

elastic parameters λ and µ. The isotropic micromorphic elasticity approach introduces seven

elastic moduli (λ, µ, η, τ, κ, ν, σ) in the unsymmetric Cauchy stress tensor σ and the symmet-

ric microstress tensor s, and eleven elastic constants (τ1, . . . , τ11) in the higher order couple

stress tensor m, for a total of eighteen micromorphic linear isotropic elastic parameters. For

the form of our constitutive equations in (2.113)-(2.115), (Smith, 1968) proposed restrictions

among the elastic parameters in the form of inequalities to achieve the positive definiteness

of a quadratic strain energy function in Section 2.5. Only the results are provided here. The

numerical values may be chosen by a set of relations between Lamé parameters, λ∗ and µ∗,

and the micromorphic elastic parameters given below. The set of relations in (6.7) and (6.8)

satisfy the positive definiteness of strain energy for numerical values of Lamé parameters

λ∗ = 6400 MPa and µ∗ = 6400 MPa for Nuozhadu granite (Zhou et al., 2010), and will be

used in the numerical examples.

τ1 ≈ 0.15λ∗ℓ21 τ7 ≈ 1.15µ∗ℓ27

τ2 = τ3 ≈ 0.25λ∗ℓ22 τ8 = τ9 ≈ 0.85µ∗ℓ28

τ4 ≈ 0.275λ∗ℓ24 τ10 ≈ 0.70µ∗ℓ210

τ5 ≈ 0.135λ∗ℓ25 τ11 ≈ 0.85µ∗ℓ211

τ6 ≈ 0.345λ∗ℓ26

(6.7)
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and

η ≈ 2λ∗ κ ≈ 1.4µ∗

τ ≈ 0.33λ∗ ν ≈ 1.15µ∗

λ ≈ 0.67λ∗ σ ≈ 0.70µ∗

µ ≈ 0.7µ∗

(6.8)

where ℓi (i = 1, . . . , 11) are elastic length scale parameters. Numerical values for the elastic

parameters were calculated by relations given in (6.7) and (6.8) and are reported in Tables

6.1 and 6.2. In this paper, we do not attempt to relate the micromorphic elastic parameters

to microstructural elastic parameters used in the analysis of a representative volume element

(RVE) of the material, as in (Neff and Forest, 2007) for a metallic foam. Instead, we choose

micromorphic elastic parameters that satisfy positive definiteness of the strain energy, as

determined by (Smith, 1968) for the linearized form of our constitutive equations in (2.113)-

(2.115).

Table 6.1: Isotropic micromorphic elastic parameters. Stress in MPa and length in micrometers
(µm).

λ µ η ν κ τ σ

4267 4480 12800 7360 8960 2133 1920

Table 6.2: Isotropic micromorphic elastic parameters for m. Stress τ̃i in MPa and length ℓi in µm,
where τi = τ̃iℓ

2
i .

τ̃1 τ̃2 τ̃3 τ̃4 τ̃5 τ̃6 τ̃7 τ̃8 τ̃9 τ̃10 τ̃11
1600 1600 1600 1760 864 2208 7360 5440 5440 4480 5440

ℓ1 ℓ2 ℓ3 ℓ4 ℓ5 ℓ6 ℓ7 ℓ8 ℓ9 ℓ10 ℓ11
0 0 0 0 0 0 0.1,1,10 0 0 0 0

In Table 6.2, we assume that the micromorphic elastic parameters τ̃i may have different

length scales than each other. It maybe also assumed that they all have the same length

scales as in the future examples.
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Figure 6.2: (a) Plane strain compression with prescribed boundary displacements for non-rotating
case. Front and back faces have zero normal displacements to generate a plane strain condition
using a hexahedral element. (b) Plane strain compression with prescribed boundary displacements
for rotating case through angle θ = 0− 90◦.

6.2.2 Small strain compression with large rotation

The first example provides a comparison of the (i) direct and (ii) incremental rate for-

mulations of standard (not micromorphic) finite strain materially linear isotropic elasticity

for a small strain compression, large rotation problem. The purpose of this example is to

compare how the two formulations and FE implementations perform for a large rotation

example, for future finite strain elasto-plastic micromorphic constitutive model implementa-

tion. We already know that the materially linear elasticity assumption is valid only for small

elastic strains, where we expect large plastic strains to develop for the problems of interest

to us (e.g., coupling to particulate mechanics models in a multiscale framework). A single

1 × 1 × 1m cube tri-quadratic hexahedral element is used in the simulation, with a plane

strain condition imposed three-dimensionally (out-of-plane), and large rotation prescribed

to the boundary displacements, as shown in Fig.6.2. The Lamé parameters used in the anal-

ysis are λ∗ = 29MPa and µ∗ = 7MPa (for a geomaterial), and the applied displacement is

d = 0.002m.

Because of the semi-implicit time integration in (3.134), (3.136), and (4.37), it is ob-
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Figure 6.3: For large rotation example in Fig.6.2(b), the plots provide a comparison of the third
principal Cauchy stress σ3 versus the third principal Almansi strain e3 obtained by (i) direct finite
strain elasticity (FSE), and (ii) semi-implicit incremental FSE formulation, with different number
of time steps, n. It shows that as the time steps are refined, the incremental formulation (ii) result
approaches the direct formulation (i) result.

served in Fig.6.3 that during the large rotation example, we need many more time steps

(i.e., smaller time increments) to achieve a proper level of accuracy for the incremental rate

formulation of the model than compared to the direct formulation. In Fig.6.4, the minor

principal stress-strain curve shows a good comparison between direct and incremental rate

formulations of the standard elasticity model for same number of time steps for no rotation,

and also a comparison with the rotation example to show that the principal stress values

are the same. The advantage to using the incremental rate formulation (ii) for micromor-

phic elasto-plasticity (Regueiro, 2009) is when it is implemented within an explicit solution

method, whether quasi-static or dynamic. For these solution methods, small time steps are

used to ensure stability, and thus a semi-implicit time integration of a rate formulation of
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micromorphic elasto-plasticity would be more computationally efficient than the direct for-

mulation. For implicit solution methods (Regueiro and Ebrahimi, 2010), however, the direct

formulation is better suited because time steps can be larger.
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Figure 6.4: Comparison of the third principal Cauchy stress σ3 vs. Almansi strain plots for small
strain e3 with large rotation, and small strain without rotation cases obtained by both (i) direct
FSE, and (ii) semi-implicit incremental FSE formulations.

6.2.3 1D ‘verification’ example

We compare our 1D finite element model presented in Section 6.1 to the 3D model

results in Section 6.2.4. We assume same elastic parameters, and an eight element mesh in

the X3 direction, with u3 = −1µm at X3 = 100µm. We consider three cases: (1) Φh33 free

along X3; (2) Φh33 = 0 at X3 = 0, with ℓ7 = 0; (3) Φh33 = 0 at X3 = 0, with ℓ7 = 10µm.

The results are reported in Figs.6.5-6.7. We see nearly exact agreement between our one-

dimensional micromorphic FE results and the 3D results. Thus, our 3D micromorphic FE
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results are verified against a separate 1D micromorphic FE formulation and implementation.
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Figure 6.5: (1) For Φh33 free alongX3: (a) Comparison of ‖devS‖ for 3D and 1D column compression.
(b) Comparison of ‖dev(Σ− S)‖ for 3D and 1D column compression.
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Figure 6.6: (2) For Φh33 = 0 at X3 = 0 and ℓ7 = 0: (a) Comparison of ‖devS‖ for 3D and 1D column
compression. (b) Comparison of ‖dev(Σ− S)‖ for 3D and 1D column compression.
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Figure 6.7: (3) For Φh33 = 0 at X3 = 0 and ℓ7 = 10µm: (a) Comparison of ‖devS‖ for 3D and 1D
column compression. (b) Comparison of ‖dev(Σ − S)‖ for 3D and 1D column compression. (c)
Comparison of ‖devM‖ for 3D and 1D column compression.
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6.2.4 Finite strain column compression with length scale effects

u3 = −10µm

12.5µm
12.5µm

100µm

X1

X2

X3

Figure 6.8: A 100 µm long col-

umn with a 156.25 (µm)2 cross

sectional area compressed with a

displacement loading u3 = −10µm

assuming different length scales ℓ7.

Figure 6.8 shows a column compression example,

with coarsest eight Q27P8 element mesh, which will

demonstrate the length scale effect in the higher order

stress term, and also be used for a mesh refinement study.

This example is like a one-dimensional version of the cu-

bical microindentation test in Section 6.2.6. The displace-

ment boundary condition u3 = −10µm is applied to the

top surface at X3 = 100µm. The displacement bound-

ary conditions were chosen to provide a uniaxial strain

compression problem: u1 = 0 on ±X1 faces, u2 = 0 on

±X2 faces, and u3 = 0 on −X3 face. All the micro-

displacement tensor components ΦiI are set = 0 except

the micro-displacement tensor component Φ33 in the X3

direction, where Φ33 = 0 at X3 = 0.

Figure 6.9, for a 32 element column mesh, shows

the variation over quasi-static loading time of the devi-

atoric stress norms ||devσ||, ||dev (s− σ) ||, and ||devm||

and traces trσ and tr (s− σ), and norm of trace ||trm||

for the unsymmetric Cauchy stress tensor σ, the relative

stress tensor (s− σ), and the higher order couple stress

tensor m, respectively, at X3 = 2.773 µm where we have a

gradient in Φh33 values which generates higher order stress

tensor components due to the definition M = τ7Γ. Figure

6.9 also provides a comparison of these invariants for the three choices of length scale ℓ7

in Table 6.2. Figures 6.10, 6.11, and 6.12 provide comparisons of the stress invariants with
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different number of elements along the column length in X3 at different heights from the

bottom surface in Fig.6.8. Definitions of these stress invariant measures are

||devσ|| =
√

(devσij)(devσij)

||dev (s− σ) || =
√

[dev(sij − σij)][dev(sij − σij)]

||devm|| =
√

(devmijk)(devmijk)

trσ = σkk

tr (s− σ) = (skk − σkk)

||trm|| = √
maakmbbk

(6.9)

where

devσij = σij −
(
1

3
σkk

)
δij

dev (sij − σij) = (sij − σij)−
(
1

3
(skk − σkk)

)
δij

devmijk = mijk −
1

3
δijmaak (6.10)

Note that based on its definition, devmijk is traceless:

trace(devmijk) = devmiik = miik −
1

3
(3)maak = 0 (6.11)

Recall the definition of the higher order stress mijk (Eringen, 1999), equation (2.1.5):

mijknida
def
=

ˆ

da

σ′
ijξkn

′
ida

′ (6.12)

where ni is the unit normal vector to macro-element differential area da in the current

configuration B, σ′
ij is the micro-element symmetric Cauchy stress, ξk is the relative position

vector of the micro-element centroid with respect to the macro-element centroid, n′
i is the

unit normal vector to micro-element differential area da′ in the current configuration B.

Based on the definition of mijk through (6.12), since we plan to implement a pressure-

sensitive micromorphic elasto-plasticity model (Regueiro, 2009), we need a “higher order
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mean-couple-stress” and “deviatoric stress” definition. Equation (6.10), based on (6.12),

satisfies this definition, where we see the micro-element mean Cauchy stress is p′ = σ′
aa/3,

such that the higher order mean-couple-stress is pk = maak/3.

In Fig.6.9, for all the invariants, the effect of increasing length scale ℓ7 is what we expect

for all plots except Fig.6.9(a): as the length scale increases, the stress response is higher,

which is consistent with a larger value of τ7 = τ̃7ℓ
2
7. This is a compression problem with

shear, where only Φh33 6= 0, but we will see for the cubical microindentation test next that

when three-dimensional stress effects are enabled, the trends are not as simple to interpret.
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Figure 6.9: For 32 element column compression example and different length scale values of ℓ7, a
comparison of deviatoric stress invariants (a) ||devσ||, (b) ||dev (s− σ) ||, and (c) ||devm||, and also
the first stress invariants (d) trσ, (e) tr (s− σ), and (f) ||trm|| at X3 = 2.773µm.
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Figure 6.10: Comparison of stress invariants at X3 = 0 with different number of elements in the X3

direction for ℓ7 = 1µm.
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Figure 6.11: Comparison of stress invariants at X3 = 3.125 µm with different number of elements
in the X3 direction for ℓ7 = 1µm.
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Figure 6.12: Comparison of stress invariants at X3 = 6.25 µm with different number of elements in
the X3 direction for ℓ7 = 1µm.
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Figure 6.13: Comparison of uh3 and Φh33 profiles versus X3, for different number of elements in the
X3 direction for ℓ7 = 1µm.
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As evident in Figs.6.10-6.12, as the column mesh in Fig.6.8 is refined in theX3 direction,

the results converge to a unique solution. In Fig.6.10(c) and (f), the convergence is not so

obvious because these higher order stress m invariants are plotted at the boundary node

at X3 = 0 where the gradient ∇Φ
h is highest. In Fig.6.13, the convergence trend is more

clear. Figure 6.13 shows comparisons of uh3 and Φh33 profiles with different number of elements

together with one additional boundary condition for Φh33 which is fixed at X3 = 100µm. It

is clear that, for 8 elements and 16 elements meshes, there are oscillations at the proximity

of the boundary where we have high gradients in Φh33. Although this behavior seems to be

related to a coarse mesh, this influence of the boundary is seen when ℓ7 = 1µm. Figure 6.14

(a) shows that the oscillations disappear with a higher length scale ℓ7 = 10µm.
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Figure 6.14: Comparison of Φh33 profile: different number of elements with ℓ7 = 10µm.
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6.2.5 Comparison of full and quarter microindentation to evaluate boundary

conditions on Φ
h

Before conducting the microindentation simulations in Section 6.2.6, we investigate

the boundary condition on Φ
h. For a coarse mesh indentation considering the full 4 (µm)2

indentation area in Fig.6.15(a) and one quarter area 1 (µm)2 of the indentation area in

Fig.6.15(b), we compare the results in Table 6.3 for the node at the center of the punch area

indicated in Fig.6.15. We see that displacement uh boundary conditions between full and

quarter indent areas match (i.e., zero in X1 and X2 directions at the center node), whereas

the BCs for micro-displacement tensor Φ
h do not match (i.e., Φh11 = Φh22 = 0 for quarter

indent area, and Φh11 = Φh22 = 0.72956 for full indent area). Thus the microindentation

simulations in Section 6.2.6 are what we will call corner indentation simulations rather

than assuming quarter symmetry, which does not hold for the BCs we choose in Fig.6.16 for

Φ
h.

(a) (b)

Figure 6.15: (a) Whole domain is considered with a 4 (µm)2 square indent area with a magnitude of
u3 = −0.5 µm at the middle of the top surface of the cube domain with dimensions of 4×4×2 µm,
(b) quarter model of the whole domain is considered with a 1 (µm)2 square indent area with the
same magnitude on the corner of the top surface of the cube domain with dimensions of 2×2×2 µm.
Results are reported in Table 6.3 at the nodes marked by black squares, respectively, at the center
of the indent area of the whole domain and at the corner of the indent area of the quarter domain.
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Table 6.3: Comparison of values at nodes indicated by black squares in Fig.6.15 for full and quarter
indent areas. Quarter symmetry holds for uh but not for Φh.

quarter indent area full indent area

Φh11 0 0.72956

Φh22 0 0.72956

Φh33 0.37 0.35649

uh1 0 0

uh2 0 0

uh3 −0.5µm −0.5µm
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6.2.6 Finite strain cubical corner microindentation with length scale effects

x

A

u3 = −10µm

25µm
25µm

100µm

100µm

100µm

X1

X2

X3

Figure 6.16: Cubical microindentation exam-

ple geometry and loading configuration.

This example is a three dimensional cor-

ner square microindentation problem to demon-

strate the three dimensionality of the finite

element implementation as well as the elas-

tic length scale effects through the higher or-

der stress tensor m when three-dimensional

stress effects are enabled. It is a 100µm cube

with 25µm square area loaded with downward

prescribed displacement u3 = −10µm (see

Fig.6.16). Note that all simulations were run

to finite strains (≈ 10%) where the assumption

that elastic strains are small in equations (2.113)

and (2.114) (but rotations can still be large) would be invalid. But this implementation

will eventually be used as a precursor to a finite strain elasto-plastic micromorphic model

implementation, where plastic strains can be large for such materials like soil, rock, con-

crete, metals, etc., where elastic strains are typically small. We assumed that only three

micro-displacement tensor components Φh11, Φ
h
22, and Φh33 are free, and all the shear terms

ΦhiI = 0 (i 6= I). The boundary conditions on micro-displacement tensor are chosen as:

Φh11 = 0 at X1 = 0 and 100µm, Φh22 = 0 at X2 = 0 and 100µm, and Φh33 = 0 at X3 = 0.

Micromorphic elastic parameters given in Tables 6.1 and 6.2 were used in the analysis. An

8*8*8=512 Q27P8 element mesh is used.

Figure 6.17 shows the variation over quasi-static loading time and comparison for vari-

ous length scale values ℓ7 of the deviatoric stress invariant measures ||devσ||, ||dev (s− σ) ||,

and ||devm||, and first stress invariant measures trσ, tr (s− σ), and ||trm|| at the Gauss

point near node A underneath the indent area.
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Figure 6.17: For corner punch problem and different length scale values of ℓ7, a comparison of the
deviatoric stress invariants (a) ||devσ||, (b) ||dev (s− σ) ||, and (c) ||devm||, also the first stress
invariants (d) trσ, (e) tr (s− σ), and (f) ||trm|| at Gauss point near node A under the indent area.
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Figure 6.18: For the corner punch problem with Φh33 = 0 under the punch area, and different length
scale values of ℓ7, a comparison of the deviatoric stress invariants (a) ||devσ||, (b) ||dev (s− σ) ||,
and (c) ||devm||, also the first stress invariants (d) trσ, (e) tr (s− σ), and (f) ||trm|| at Gauss
point near node A under the indent area.
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Figure 6.17, which is plotted for the Gauss point nearest node A under the corner of the

square indent area, shows that the highest values for the deviatoric stress invariant ||devσ|| is

for the smallest length scale value ℓ7 = 0.1µm, whereas the next highest is ℓ7 = 1µm, and the

lowest values for ℓ7 = 10µm. Because the variation over loading time is not as smooth as for

the column compression result in Fig.6.9(a) (there is an apparent oscillation), the fact that

the ℓ7 = 0.1µm result is more higher than with ℓ7 = 1µm and ℓ7 = 10µm can be attributed

to the three-dimensionality of the simulation, development of shear at the indent area, and

possibly the resolution of the mesh. Conversely, in Fig.6.17(d), the first stress invariant

trσ shows a consistently higher stress values in compression result with increasing length

scale ℓ7. In Figs.6.17(b) and (e), for the relative stress s − σ, the invariants show trends

with varying length scale ℓ7 that are consistent: higher stress values with increasing length

scale ℓ7. Again, this can be attributed to the three-dimensionality of the problem, an effect

that is oftentimes missed in many strain-gradient elasticity models formulated only for 1D

and 2D problems. This effect comes in naturally through the 3D micromorphic FE model.

The question then becomes how to fit these elastic parameters (and in the future, plastic

parameters) to experimental data to have physically meaningful results. We envision using

multiscale techniques, whereby an underlying grain-scale model (like the discrete element

method (Cundall and Strack, 1979)) is used to upscale to the micromorphic continuum

model through an overlapping region (Regueiro and Yan, 2011). In Figs.6.17(c) and (f),

for the higher order couple stress m, the invariant trends follow a higher stress values with

increasing length scale, a result that is likely due to the decoupling of m from σ and s− σ

through the constitutive equations (2.113)-(2.115); note that the stresses are still coupled

through the balance of linear momentum and balance of first moment of momentum. The

stress state and deformation is three dimensional, so unlike the previous simpler example of

column compression, the combination of deformation and micromorphic elastic parameters

can lead to unexpected trends in stress.

In Fig.6.18, the trends for increasing length scale ℓ7 are similar as in Fig.6.17, except
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in Fig.6.18(b), which shows an opposite trend: smallest ℓ7 leads to the highest values of

||dev (s− σ) || result. Because the results in Figs.6.18 and 6.17 are plotted at a Gauss point

beneath the punch area, the boundary condition Φh33 = 0 under the punch area influences

the results reported in Fig.6.18 at this Gauss point more significantly than at a Gauss point

further from the punch area.

These results signify the importance of the selection of elastic micromorphic length

scale parameters ℓi in addition to micro-displacement tensor Φ
h boundary conditions.

The stress invariant measures ||devσ||, ||dev (s− σ) ||, ||devm||, trσ, tr (s− σ), and

||trm|| used in this work will provide a basis for a future implementation of the three di-

mensional micromorphic finite strain elasto-plastic pressure sensitive model in which three

yield functions are defined for macro-scale, micro-scale, and micro-scale gradient plasticity

concept (Regueiro, 2009, 2010).

6.2.7 Boundary condition effect on uniaxial cube compression

This example is a one element 2m cube uniaxial stress in compression analysis, al-

lowing one free micro-displacement tensor degree of freedom Φh33 with various combinations

of micromorphic isotropic elastic material parameters. As mentioned in Section 6.2.1, the

numerical values may be chosen by a set of relations between Lamé parameters λ∗ and µ∗

and the other micromorphic elastic parameters. The following set of relations satisfy the

positive definiteness of strain energy for specific values of λ∗ = 39 MPa and µ∗ = 12 MPa

for a geomaterial as:

τ1 ≈ 0.111λ∗L2
c τ7 ≈ 0.670µ∗L2

c λ ≈ 0.7435λ∗ µ ≈ 0.583µ∗

τ2 = τ3 ≈ 0.185λ∗L2
c τ8 = τ9 ≈ 0.495µ∗L2

c τ ≈ 0.256λ∗ ν ≈ 0.667µ∗

τ4 ≈ 0.204λ∗L2
c τ10 ≈ 0.408µ∗L2

c η ≈ 1.53λ∗ σ ≈ 0.4167µ∗

τ5 ≈ 0.1λ∗L2
c τ11 ≈ 0.495µ∗L2

c κ ≈ 0.833µ∗

τ6 ≈ 0.256λ∗L2
c

(6.13)
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As mentioned before, we assume in this example and the next following two examples that

only one length scale Lc ( not ℓ7) exists that is associated with the elastic parameter τ7.
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Figure 6.19: (a) 2x2x2 m cube compression example with a one element mesh. (b) Comparison
of Cauchy stress tensor component σ33 obtained by standard finite strain elasticity (FSE) and
finite strain micromorphic elasticity with various combinations of micromorphic elastic material
parameters as well as different BCs.

Numerical values for the micromorphic elastic material parameters are then calculated as
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λ = 29.103 kPa µ = 7.103 kPa η = 60.103 kPa

ν = 8.103 kPa κ = 10.103 kPa τ = 10.103 kPa σ = 5.103 kPa (6.14)

Note that to simplify the computations from the set of relations which satisfy the positive

definiteness of strain energy expressed in (6.13), we take

τ1 = τ2 = τ3 = τ4 = τ5 = τ6 = τ8 = τ9 = τ10 = τ11 = 0 , τ7 = 8.103 kPa.m2 (6.15)

where the characteristic length is assumed to be Lc = 1 m.

Figure 6.19(a) shows the compression example 1 element mesh. The displacement

boundary condition u3 = −0.5 m is applied to the top surface in the negative X3 direction.

The displacement boundary conditions were chosen to constrain the rigid body motions

as: u1 = 0 on −X1 face, u2 = 0 on −X2 face, and u3 = 0 on −X3 face. We considered

two different sets of boundary conditions for Φ
h: (1) all the micro-displacement tensor

components ΦhiI are set = 0 except the component Φh33 in the X3 direction as boundary

condition type 1 (BC1); (2) Φh33 is free on the top surface of the cube (X3 = 2m), and

Φh33 = 0 at X3 = 0 for boundary condition type 2 (BC2). The different BCs will show the

effect of the gradient of Φh33 in the X3 direction. Another example in Fig.6.20 illustrates a

boundary layer effect.

Figure 6.19(b) is the comparison of Cauchy stress tensor component σ33 obtained by

standard finite strain elasticity (FSE) with the same stress component in micromorphic

finite strain elasticity calculated by equations (2.87) and (2.113). Figure 6.19(b) shows that

the micromorphic approach may result in lower stress for BC1 as compared to BC2. In

Fig.6.19(b), for BC1, all the Φh33 are the same which, in turn, gives zero gradient of micro-

displacement tensor ∇Φ = 0 between the top and the bottom surfaces of the cube. For

BC2, there is a gradient of Φh33 between the top and bottom surfaces of the cube element

that generates a non-zero higher order stress tensor m which results in different relative
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stress s − σ, and different Cauchy stress σ in the first moment of momentum balance due

to the coupling between the two balance equations. Figure 6.19(b) shows an increase in σ33

by including additional parameters η, κ, ν, τ, and σ where for BC1, no contribution from the

parameter τ7 is expected due to zero gradient of Φ.
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6.2.8 Boundary condition effect on finite strain column compression

In this example, we consider a similar geometry and boundary conditions with that of

the previous column example but with different dimensions and parameters. The effect of

boundary conditions on the micro-displacement tensor Φ may be presented more clearly in

this example in which a 10m column with a 1×1 m2 cross section is loaded on the +X3 surface

(top surface) with a prescribed displacement, u3 = −1m. Similar boundary conditions to

the one element cube example (BC1 and BC2) are employed, except displacements in X1

and X2 directions are zero. Figure 6.20(a) shows the boundary effect on micro-displacement

tensor where we have slightly lower values of Φh33 near the bottom surface that is causing a

gradient in micro-displacement tensor which results in different values of the higher order

stress tensor m at different heights of the column as shown in Figs.6.20 (c) and (d). We

see higher values for invariants of the higher order stress tensor at locations where we have

a higher gradient of Φh33 near X3 = 0 (see Fig.6.20(b)) which is expected because of the

definition of the higher order stress tensor in the reference configuration, for this specific

example, M = τ7Γ where Γ = F T
∇χ. We do not see a similar behavior for BC1 in which

∇Φ = 0, that makes the higher order stress tensor zero; therefore, for BC1, stress invariants

given in Figs.6.20 (c), (d), (e), and (f) are the same at different heights along the column

(i.e., the stress is uniform along the height of the column for BC1).

6.2.9 Boundary condition effect on square corner punch problem

The third example is a three dimensional square corner punch problem to demonstrate

the three dimensionality of the finite element implementation.This example also considers a

similar geometry and the same boundary conditions with that of the previous corner punch

example; however, it uses different parameters as well as dimensions. It is a 10m cube with

different li×lim2 square areas loaded with downward prescribed displacement u3 = −1m (see

Fig.6.21). We assumed that only three micro-displacement tensor components Φh11, Φ
h
22, and
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Figure 6.20: (a) Variation of norm of micro-displacement tensor, ||Φ||, through the column height
that shows the boundary effect on Φ, (b) norm of gradient of micro-displacement tensor, ||∇Φ||,
that generates non-zero m, (c) norm of deviatoric higher order stress ||dev (m) ||, which is largest
where the highest gradient is observed, (d) norm of trace of m, ||tr (m) ||, (e) norm of deviatoric
Cauchy stress, ||dev (σ) ||, (f) norm of deviatoric relative stress, ||dev (s− σ) || .
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Φh33 are free, and all the other shear components ΦhiI = 0 (i 6= I). The boundary conditions

on micro-displacement tensor are chosen as: Φh11 = 0 on ±X1 faces, Φh22 = 0 on ±X2 faces,

and Φh33 = 0 on −X3 face according to Fig.6.21. Elastic parameters given in (6.14) and

(6.15) were used in the analysis.

A
x

X1

X2

X3

li
li

u3 = −1 m

10 m

10 m

10 m

Punch area label (si) Punch area (li × li in m2)

s1 3× 3
s2 2.5× 2.5
s3 2× 2
s4 1.5× 1.5
s5 1× 1

Iteration number Relative error
1st 7.293805× 10−02

2nd 5.935305× 10−04

3rd 9.067026× 10−07

4th 3.401397× 10−09

5th 1.186506× 10−11

Figure 6.21: (left) 10x10x10 m cube with various square punch areas, si (top right), showing Gauss
point as X near nodal point A where stresses are plotted in Fig.6.22. Convergence profile obtained
by Newton-Raphson algorithm at the first time step for the largest punch area (bottom right). The
time step is ∆t = 0.025 and total time = 1. There are 10 ∗ 10 ∗ 10 = 1000 mixed Q27P8 hexahedral
elements in the mesh.

Figure 6.22 shows the variation over loading of the norms of deviatoric stress ||devσ||,

||dev (s− σ) ||, and ||devm|| and traces trσ, tr (s− σ), and ||trm|| for the unsymmetric

Cauchy stress tensor σ, the relative stress tensor (s− σ), and the higher order couple stress

tensor m, respectively, at the Gauss point near the node A underneath the punch area.

Figures 6.22(a) and (b) show the deviatoric stress norms for various combinations of elastic

parameters λ, µ, η, κ, ν, τ, σ, τ7. Upon including terms with τ and σ, ||devσ|| and ||dev (s− σ) ||

decrease until the end of loading, when they increase. The stress state and deformation

is three dimensional, so unlike the previous simple examples of uniaxial compression, the

combination of deformation and micromorphic elastic parameters can lead to unexpected

trends in stress. Upon introducing τ7 to include the effect of higher order stress tensor

m, the relative deviatoric stress norm ||dev (s− σ) || tends to decrease, whereas ||devσ||
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Figure 6.22: Deviatoric stress norms (a) ||devσ||, (b) ||dev (s− σ) ||, and (c) ||devm||, and traces
(d) trσ, (e) tr (s− σ), and norm of trace of m (f) ||trm|| at the Gauss point closest to the node A
under the punch area. Plots (c) and (f) show the results under five different punch areas.

increases. For ||dev (s− σ) ||, this behavior is also observed in the column compression ex-

ample: ||dev (s− σ) || is smaller where higher gradient of Φh33 is seen that causes higher

values of higher order stress tensor. Figures 6.22 (c) and (f) agree with results shown in

Figs6.20 (c) and (d) regarding the effect of the gradient of micro-displacement tensor ∇Φ

which leads to an increase in magnitude of higher order stress tensor m that in turn induces

a change in relative and Cauchy stress tensors, s− σ and σ, respectively. Figures 6.22(d-f)

show the first invariants of σ, (s− σ), and m. Figure 6.22(d) shows decreased first invari-
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ant (increasing compressive stress, which is negative) for trσ, while tr (s− σ) in Fig.6.22(e)

goes into tension when τ and σ are introduced. Because of the definition ||trm||, it is always

positive, a measure that must be changed to reflect the sign of trm (tension or compres-

sion) when used in a pressure-sensitive plasticity model (Regueiro, 2009). Recall that only

τ7 is nonzero in (6.15), so that the higher order stress is mklm = τ7FkKFlLΓLMKχmM/J ,

ΓLMK = FiLχiM,K . The stress measures ||devσ||, ||dev (s− σ) ||, ||devm||, trσ, tr (s− σ),

and ||trm|| used in this work will provide a basis for a future implementation of the three

dimensional micromorphic finite strain elasto-plastic pressure sensitive model in which three

yield functions are defined for macro-scale, micro-scale, and micro-scale gradient plasticity

concept (Regueiro, 2009, 2010). Figures 6.22(a) and (d) also include the comparison of

||devσ|| and trσ for the standard finite strain symmetric Cauchy stress tensor with those

of micromorphic finite strain unsymmetric Cauchy stress tensor with the various combina-

tions of micromorphic isotropic elastic parameters. The micromorphic results, depending on

the deformation history, show either higher values or lower values of stresses than standard

elasticity. These results signify the importance of the selection of micromorphic elastic pa-

rameters in addition to micro-displacement tensor Φ
h boundary conditions. The table in

Fig.6.21 illustrates the global convergence profile at time the first time step for the large

deformation punch problem, with parameters λ, µ, η, κ, ν, τ, σ and τ7.

6.3 Conclusions from micromorphic finite strain elasticity FE implementa-

tion

We have implemented a three dimensional finite element model for finite deformation

micromorphic materially linear isotropic elasticity into an open source finite element code

Tahoe via two formulations: (i) direct finite elasticity, and (ii) rate form with semi-implicit

time integration (ignoring the micromorphic contribution). This chapter compared the two

implementations for standard elasticity (no micromorphic terms) for a small strain compres-

sion, large rotation example. The incremental rate form required many more time steps to
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be accurate enough to handle the large rotation, whereas the direct implementation con-

verged quickly and was accurate with relatively few time steps. The advantage to using the

incremental rate formulation in the future will become apparent when implementing a mi-

cromorphic elasto-plasticity model (Regueiro, 2009) within an explicit time solution method,

whether quasi-static or dynamic. For these solution methods, small time steps are used to

ensure stability, and thus a semi-implicit time integration of a rate formulation of micromor-

phic elasto-plasticity would be more computationally efficient than a direct formulation. For

implicit solution methods (Regueiro and Ebrahimi, 2010), however, the direct formulation is

warranted and will give accurate results for larger time steps.

In the numerical examples, the effect of one of the elastic length scale parameters

ℓ7 is not so transparent. For some cases, increasing ℓ7 leads to higher values of stresses,

whereas in other cases increasing ℓ7 can lead to lower values of stresses. Further study

on using multiscale techniques to up-scale underlying grain-scale simulation results to the

micromorphic continuum finite element implementation will likely help to interpret how

the elastic micromorphic parameters are calibrated. Currently, these elastic parameters are

chosen to satisfy positive definiteness of elastic strain energy following Smith1968.

With regard to nanomechanics, we envision relating the micromorphic elastic param-

eters of our 3D FE model to an underlying microstructural representative volume element

(RVE) of a material (composed of grains and/or platelets) subjected to nanoindentation, such

as nacre (Barthelat et al., 2006) or porous nanocomposite cementitious materials (Bobko and

Ulm, 2008; Bobko et al., 2009).

This chapter also presented preliminary results of the model applied to three 3 dimen-

sional examples. These results motivate further study of the meaning of certain micromor-

phic isotropic elastic parameters and boundary conditions on micro-displacement tensor Φ,

as well as their influence on the simulations. In the numerical examples, micromorphic elastic

parameters have been chosen to satisfy the positive definiteness of strain energy that obey

the inequalities proposed by Smith (1968). Numerical values have been chosen in a similiar
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way followed by Neff and Forest (2007) and Zervos et al. (2009). The boundary conditions

on Φ may not be explicitly anticipated from the physical problem as discussed by Eringen

(1968a). In addition, we noticed from several analyses that Φ boundary conditions together

with the associated micromorphic elastic parameters play an important role in convergence

of the nonlinear Newton-Raphson solution algorithm. Even for the comparatively simple

example of uniaxial compression, specification of the boundary conditions on Φ and the

choice of micromorphic elastic parameters may affect the numerical results. A square corner

punch problem demonstrated the full three dimensionality of the finite element implemen-

tation and some interesting trends in stress response at a Gauss point beneath the punch

with various combinations of micromorphic elastic parameters, and the length scale effect

for various punch areas.



Chapter 7

Extension of Finite Element Formulation and Implementation to

Drucker-Prager Plasticity

This section shows the extension of finite strain micromorphic isotropic elasticity to

Drucker-Prager plasticity formulated in the intermediate configuration B̄ (Fig. 1.6), assum-

ing a multiplicative decomposition of deformation gradient F and micro-deformation tensor

χ.

Kinematics, governing equations, and mapping of the balance of momenta equations,

and thermodynamic equations into intermediate configuration, and outline of the theory

to extend to plasticity were presented in Chapter 4. This section presents detailed for-

mulation, developed and implemented, for Drucker-Prager plasticity with some numerical

examples. Different than anticipated formulation given in Chapter 4, we also introduce an-

other approach for yield function and plastic potential function formulations which involve

combination of the stress tensors together with cohesion, friction angle, dilation angle, micro-

scale cohesion, micro-scale friction angle, and micro-scale dilation angle. This will be called

“combined plasticity” formulation to distinguish from the three-scale plasticity formulation in

Chapter 4. We first present the three-scale plasticity formulation and implementation which

was previously mentioned in Chapter 4. Then, we show combined plasticity formulation and

implementation.

The three different scale yield functions presented in Chapter 4 express that plasticity

may govern at these scales separately and/or at the same time. The first case may include the
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plasticity in macro-scale which is already different than classical plasticity due to additional

terms appearing in classical stress tensor. Here, we call it “macro-plasticity” which aims to

express the micro-continuum effects considered, but plasticity governs at macro-scale which

in turns mean only macro-scale plasticity function yielded. Similarly, if only the micro-scale

plasticity function yields, it will be called “micro-plasticity”. It may be the case that these

two scales may yield at the same time which will require to solve for two different plastic

multipliers solved in a coupled way that will be called “coupled plasticity”.

7.0.1 Solving for macro-plastic multiplier locally for three scale approach

To solve for macro-scale plastic multiplier ∆γ̄, we solve the yield function at current

time step tn+1

F̄n+1 (∆γ̄n+1) = 0,∆γ̄χn+1 = 0 (7.1)

F̄ k +

(
∂F̄

∂∆γ̄

)k
δ (∆γ̄)k = 0, δ (∆γ̄) = − F̄ k

(
∂F̄
∂∆γ̄

)k (7.2)

∆γ̄k+1 = ∆γ̄k + δ (∆γ̄)k (7.3)

which from the discrete Kuhn-Tucker conditions, F̄n+1∆γ̄n+1 = 0 ⇒ F̄n+1 = 0,∆γ̄n+1 > 0

for plasticity loading, where (•)k denotes the previous iteration values and (•)k+1 denotes

updated value. The subscript (•)n+1 is dropped for these terms assumed to be at the current

time step tn+1. To determine the local consistent tangent ∂F̄ /∂∆γ̄ where yield and plastic

potential functions were defined in Section 3.4, we start to derive the derivative of each term

with respect to ∆γ̄ as:



174

∂S̄

∂∆γ̄
= (λ+ τ) tr

(
∂Ē

e

∂∆γ̄

)
1+ 2 (µ+ σ)

(
∂Ē

e

∂∆γ̄

)
+ ηtr

(
∂Ē

e

∂∆γ̄

)
1

+ κ

(
∂Ē

e

∂∆γ̄

)
+ ν

(
∂Ē

e

∂∆γ̄

)T
(7.4)

(
∂Ē

e

∂∆γ̄

)
=

1

2

((
∂F e

∂∆γ̄

)T
F e + F eT ∂F

e

∂∆γ̄

)
(7.5)

(
∂Ē

e

∂∆γ̄

)
=

(
∂F e

∂∆γ̄

)T
χe + F eT

(
∂χe

∂∆γ̄

)
(7.6)

(
∂F e

∂∆γ̄

)
= −F e

(
∂F p

∂∆γ̄

)
F p−1 (7.7)

where
(
∂F p

∂∆γ̄

)
= C̄

e−1
n

(
∂Ḡ

∂S̄

)T

n

F p
n (7.8)

and F p is defined in Section 7.0.7. Here, we have only macro-scale plasticity; hence,

∂χp/∂∆γ̄ = 0 and ∂χe/∂∆γ̄ = 0. When we have micro-scale plasticity in combined plastic-

ity approach, this condition will change. Furthermore, we have the derivatives

∂||devS̄||
∂∆γ̄

=
∂devS̄
∂∆γ̄

:
devS

||devS̄|| (7.9)

∂devS̄
∂∆γ̄

=
∂S̄

∂∆γ̄
− ∂p̄

∂∆γ̄
1 (7.10)

∂p̄

∂∆γ̄
=

1

3

(
1 :

∂S̄

∂∆γ̄

)
(7.11)

(
∂Ḡ

∂S̄

)

n

=

(
devS̄

||devS̄||

)

n

+
1

3
Bψ

1 (7.12)
(

∂c̄

∂∆γ̄

)
= Hchcn (7.13)

where

hcn = −
(
∂Ḡ

∂c̄

)

n

= Aψ (7.14)

Then, the local consistent tangent can be found as:

∂F̄

∂∆γ̄
=
∂||devS̄||
∂∆γ̄

−
(
Aφ

∂c̄

∂∆γ̄
− Bφ ∂p̄

∂∆γ̄

)
(7.15)

where all the terms in equation 7.15 were determined above.
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7.0.2 Solving for micro-plastic multiplier locally for three scale approach

Similar to the previous section, we form the local consistent tangent ∂F̄ χ/∂∆γ̄χ for

micro-scale plasticity as

F̄ χ
n+1

(
∆γ̄χn+1

)
= 0,∆γ̄n+1 = 0 (7.16)

∂
(
Σ̄− S̄

)

∂∆γ̄χ
= (η − τ) tr

(
∂Ē

e

∂∆γ̄χ

)
1+ (ν − σ)

(
∂Ē

e

∂∆γ̄χ

)
+ (κ− σ)

(
∂Ē

e

∂∆γ̄χ

)
(7.17)

If we have only micro-scale plasticity, we have ∂F e/∂∆γ̄ = 0, and for separate scale plasticity

∂F e/∂∆γ̄χ = 0. Then,
∂Ē

e

∂∆γ̄χ
= F eT

(
∂χe

∂∆γ̄χ

)
(7.18)
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= −χe

(
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n χ

p
nχ

p−1 (7.20)

∂||dev
(
Σ̄− S̄

)
||

∂∆γ̄χ
=
∂dev

(
Σ̄− S̄

)

∂∆γ̄χ
:

dev
(
Σ̄− S̄

)

||dev
(
Σ̄− S̄

)
|| (7.21)

∂dev
(
Σ̄− S̄

)

∂∆γ̄χ
=
∂
(
Σ̄− S̄

)

∂∆γ̄χ
− ∂p̄χ

∂∆γ̄χ
1 (7.22)

∂p̄χ

∂∆γ̄χ
=

1

3

(
1 :

∂
(
Σ̄− S̄

)

∂∆γ̄χ

)
(7.23)

(
∂Ḡχ

∂
(
Σ̄− S̄

)
)

n

=
dev

(
Σ̄− S̄

)

||dev
(
Σ̄− S̄

)
|| +

1

3
Bψ,χ

1 (7.24)

∂c̄χ

∂∆γ̄χ
= Hc,χhc,χn (7.25)

where

hc,χn = −
(
∂Ḡ

∂c̄

)

n

= Aψ,χ (7.26)
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Then, the local consistent tangent for the micro scale can be found as:

∂F̄ χ

∂∆γ̄χ
=
∂||dev

(
Σ̄− S̄

)
||

∂∆γ̄χ
−
(
Aφ,χ

∂c̄χ

∂∆γ̄χ
− Bφ,χ ∂p̄χ

∂∆γ̄χ

)
(7.27)

7.0.3 Solving for plastic multipliers locally for coupled plasticity for three

scale approach

The last two sections presented the formulation to solve for plastic multipliers when

macro-scale and micro-scale plasticity exist separately. This section considers to solve for

plastic multipliers in case of these two scales are coupled which means that plastic multipliers

will be obtained in a coupled way as follows,

F̄n+1

(
∆γ̄n+1,∆γ̄

χ
n+1

)
= 0,∆γ̄n+1 > 0 (7.28)

F̄ χ
n+1

(
∆γ̄n+1,∆γ̄

χ
n+1

)
= 0,∆γ̄χn+1 > 0 (7.29)

F̄ k +

(
∂F̄

∂∆γ̄

)k
δ (∆γ̄)k +

(
∂F̄

∂∆γ̄χ

)k
δ (∆γ̄χ)k = 0 (7.30)

F̄ χk +

(
∂F̄ χ

∂∆γ̄

)k
δ (∆γ̄)k +

(
∂F̄ χ

∂∆γ̄χ

)k
δ (∆γ̄χ)k = 0 (7.31)

To solve for δ (∆γ̄) and δ (∆γ̄χ), we create the local consistent tangent as:




∂F̄
∂∆γ̄

∂F̄
∂∆γ̄χ

∂F̄χ

∂∆γ̄
∂F̄χ

∂∆γ̄χ




k


δ (∆γ̄)

δ (∆γ̄χ)





k

=





−F̄

−F̄ χ





k

(7.32)

Definitions of ∂F̄
∂∆γ̄

and ∂F̄χ

∂∆γ̄χ
were already given in equations 7.15 and 7.27, where the off

diagonal terms can be found as:

∂S̄

∂∆γ̄χ
= ηtr

(
∂Ē

e

∂∆γ̄χ

)
1+ κ

(
∂Ē

e

∂∆γ̄χ

)
+ ν

(
∂Ē

e

∂∆γ̄χ

)T
(7.33)
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where

∂||devS̄||
∂∆γ̄χ

=
∂devS̄
∂∆γ̄χ

:
devS

||devS̄|| (7.34)

∂devS̄
∂∆γ̄χ

=
∂S̄

∂∆γ̄χ
− ∂p̄

∂∆γ̄χ
1 (7.35)

∂p̄

∂∆γ̄χ
=

1

3

(
1 :

∂S̄

∂∆γ̄χ

)
(7.36)

(
∂c̄

∂∆γ̄χ

)
= 0 (7.37)

then, we get
∂F̄

∂∆γ̄χ
=
∂||devS̄||
∂∆γ̄χ

+Bφ ∂p̄

∂∆γ̄χ
(7.38)

also

∂
(
Σ̄− S̄

)

∂∆γ̄
= τtr

(
∂Ē

e

∂∆γ̄

)
1+ 2σ

(
∂Ē

e

∂∆γ̄

)
+ (η − τ) tr

(
∂Ē

e

∂∆γ̄

)
1

+ (ν − σ)

(
∂Ē

e

∂∆γ̄

)
+ (κ− σ)

(
∂Ē

e

∂∆γ̄

)T
(7.39)

and

∂||dev
(
Σ̄− S̄

)
||

∂∆γ̄
=
∂dev

(
Σ̄− S̄

)

∂∆γ̄
:
dev

(
Σ̄− S̄

)

||devS̄|| (7.40)

∂dev
(
Σ̄− S̄

)

∂∆γ̄
=
∂
(
Σ̄− S̄

)

∂∆γ̄
− ∂p̄χ

∂∆γ̄
1 (7.41)

∂p̄χ

∂∆γ̄
=

1

3

(
1 :

∂
(
Σ̄− S̄

)

∂∆γ̄

)
(7.42)

(
∂c̄χ

∂∆γ̄

)
= 0 (7.43)

which gives
∂F̄ χ

∂∆γ̄
=
∂||dev

(
Σ̄− S̄

)
||

∂∆γ̄
+Bφ,χ ∂p̄

χ

∂∆γ̄
(7.44)

7.0.4 Solving for plastic multipliers globally for separate plasticity

In this section, we present the formulation to construct the global consistent tangent.

We show how to obtain the global δ (∆γ̄) and δ (∆γ̄χ) in terms of δu and δΦ by applying a
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variational approach in the context of a linearization of the weak form of the coupled balance

of linear momentum and balance of first moment of momentum.

For macro-scale plasticity:

δF̄
(
S̄, c̄

)
=
∂F̄

∂S̄
: δS̄ +

∂F̄

∂c̄
δc̄ = 0 (7.45)

where

δS̄ = (λ+ τ) tr
(
δĒ

e)
1+ 2 (µ+ σ) δĒ

e
+ ηtr

(
δĒ

e)
1+ κδĒe + νδĒ

eT
(7.46)

where

δĒ
e
=

1

2

[
BT −AT δ (∆γ̄) +B −Aδ (∆γ̄)

]
(7.47)

δĒ
e
=MT −Nδ (∆γ̄) + P −Dδ (∆γ̄χ) (7.48)

A = F eTF eC̄
e−1
n

(
∂Ḡ

∂S̄

)T

n

F p
nF

p−1 (7.49)

B = F eTGRAD (δu)F p−1 (7.50)

M = χeTGRAD (δu)F p−1 (7.51)

N = χeTF eC̄
e−1
n

(
∂Ḡ

∂S̄

)T

n

F p
nF

p−1 (7.52)

P = F eT δΦχp−1 (7.53)

D = F eTχeΨ̄
e−1
n

(
∂Ḡχ

∂
(
Σ̄− S̄

)
)T

n

Ψ̄
e−T
n C̄

χ,e
n χ

p
nχ

p−1 (7.54)

If we insert equations 7.47 and 7.48 into 7.46, we get

δS̄ = (λ+ τ) tr (B)1− (λ+ τ) tr
(
AT
)
1δ (∆γ̄)

+ (µ+ σ)
(
BT +B

)
− (µ+ σ)

(
AT +A

)
δ (∆γ̄)

+ ηtr
(
MT

)
1− ηtr

(
NT

)
1δ (∆γ̄)

+ ηtr (P ) 1− ηtr (D) 1δ (∆γ̄χ)

+ κMT − κNT δ (∆γ̄) + κP − κDδ (∆γ̄χ)

+ νM − νNδ (∆γ̄) + νP T − νDT δ (∆γ̄χ) (7.55)
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and

δc̄ = Hchcnδ (∆γ̄) (7.56)

∂F̄

∂c̄
= −Aφ (7.57)

where hcn = −Aψ. If equations 7.56,7.57, and 7.55 are inserted in equation 7.45 and collect

the terms δ (∆γ̄) and δ (∆γ̄χ) on one side, we get:

C1δ (∆γ̄) + C2δ (∆γ̄
χ) = F1 (δu, δΦ) (7.58)

where

F1 (δu, δΦ) = (λ+ τ)

(
∂F̄

∂S̄
: 1

)
tr
(
BT
)
+ (µ+ σ)

∂F̄

∂S̄
:
(
BT +BT

)
+ η

(
∂F̄

∂S̄
: 1

)
tr
(
MT

)

+ η

(
∂F̄

∂S̄
: 1

)
tr (P ) + κ

∂F̄

∂S̄
:MT + κ

∂F̄

∂S̄
: P + ν

∂F̄

∂S̄
:M + ν

∂F̄

∂S̄
: P T (7.59)

C1 =

[
(λ+ τ)

(
∂F̄

∂S̄

)
tr
(
AT
)
+ (µ+ σ)

∂F̄

∂S̄
:
(
AT +A

)
+ η

(
∂F̄

∂S̄
: 1

)
tr
(
NT

)

+κ
∂F̄

∂S̄
:NT + ν

∂F̄

∂S̄
:N − ∂F̄

∂c̄
Hchcn

]
(7.60)

C2 =

[
η

(
∂F̄

∂S̄
: 1

)
tr (D) + κ

∂F̄

∂S̄
:D + ν

∂F̄

∂S̄
:DT

]
(7.61)

For micro-scale plasticity:

F̄ χ
((
Σ̄− S̄

)
, c̄χ
)
=

∂F̄ χ

∂
(
Σ̄− S̄

) : δ
(
Σ̄− S̄

)
+
∂F̄ χ

∂c̄χ
δc̄χ = 0 (7.62)

where

δ
(
Σ̄− S̄

)
= τtr

(
BT
)
1− τtr

(
AT
)
1δ (∆γ̄) + σ

(
BT +B

)
− σ

(
AT +AT

)
δ (∆γ̄)

+ (η − τ) tr
(
MT

)
1− (η − τ) tr (N) 1δ (∆γ̄) + (η − τ) tr (P )1− (η − τ) tr (D) 1δ (∆γ̄χ)

+ (ν − σ)MT − (ν − σ)NT δ (∆γ̄) + (ν − σ)P − (ν − σ)Dδ (∆γ̄χ)

+ (κ− σ)M − (κ− σ)Nδ (∆γ̄) + (κ− σ)P T − (κ− σ)DT δ (∆γ̄χ) (7.63)

and

δc̄χ = Hc,χhc,χn δ (∆γ̄χ) (7.64)

∂F̄ χ

∂c̄χ
= −Aφ,χ (7.65)
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where hc,χn = −Aψ,χ. Again, if we insert 7.64, 7.65, and 7.63 into equation 7.62 and collect

the terms multiplied by δ (∆γ̄) and δ (∆γ̄χ) on one side, we get:

C3δ (∆γ̄) + C4δ (∆γ̄
χ) = F2 (δu, δΦ) (7.66)

where

F2 (δu, δΦ) = τ

(
∂F̄ χ

∂
(
Σ̄− S̄

) : 1

)
tr (B) + σ

∂F̄ χ

∂
(
Σ̄− S̄

) :
(
BT +B

)

+ (η − τ)

(
∂F̄ χ

∂
(
Σ̄− S̄

) : 1

)
tr
(
MT

)
+ (η − τ)

(
∂F̄ χ

∂
(
Σ̄− S̄

) : 1

)
tr (P )

+ (ν − σ)
∂F̄ χ

∂
(
Σ̄− S̄

) :MT + (ν − σ)
∂F̄ χ

∂
(
Σ̄− S̄

) : P

+ (κ− σ)
∂F̄ χ

∂
(
Σ̄− S̄

) :M + (κ− σ)
∂F̄ χ

∂
(
Σ̄− S̄

) : P T (7.67)

C3 =

[
τ

(
∂F̄ χ

∂
(
Σ̄− S̄

) : 1

)
tr
(
AT
)
+ σ

∂F̄ χ

∂
(
Σ̄− S̄

) :
(
AT +A

)

+ (η − τ)

(
∂F̄ χ

∂
(
Σ̄− S̄

) : 1

)
tr
(
NT

)
+ (ν − σ)

∂F̄ χ

∂
(
Σ̄− S̄

) :NT

+ (κ− σ)
∂F̄ χ

∂
(
Σ̄− S̄

) :N

]
(7.68)

C4 =

[
(η − τ)

(
∂F̄ χ

∂
(
Σ̄− S̄

) : 1

)
tr (D) + (ν − σ)

∂F̄ χ

∂
(
Σ̄− S̄

) :D

+ (κ− σ)
∂F̄ χ

∂
(
Σ̄− S̄

) :DT − ∂F̄ χ

∂c̄χ
Hc,χhc,χn

]
(7.69)

Here, we consider three different cases. When we have only macro-scale plasticity, micro-scale

plasticity, and coupled plasticity. When we have only macro-scale plasticity δ (∆γ̄χ) = 0,

then from 7.58 we find:

C1δ (∆γ̄) + C2δ (∆γ̄
χ) = F1 (δu, δΦ)

δ (∆γ̄) =
1

C1

F1 (δu, δΦ) (7.70)
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Similarly, when we have only micro-scale plasticity δ (∆γ̄) = 0.

C3δ (∆γ̄) + C4δ (∆γ̄
χ) = F2 (δu, δΦ)

δ (∆γ̄χ) =
1

C4

F2 (δu, δΦ) (7.71)

When we have coupled plasticity, we get:



C1 C2

C3 C4








δ (∆γ̄)

δ (∆γ̄χ)





=





F1 (δu, δΦ)

F2 (δu, δΦ)





(7.72)

Then,

δ (∆γ̄) = A1F1 (δu, δΦ) +A2F2 (δu, δΦ) (7.73)

δ (∆γ̄χ) = A3F1 (δu, δΦ) +A4F2 (δu, δΦ) (7.74)

where

A1 =
C4

C1C4 − C2C3
, A2 = − C2

C1C4 − C2C3
,

(7.75)

A3 = − C3

C1C4 − C2C3

, A4 =
C1

C1C4 − C2C3

,

Even though we proposed a yield function for the micro-scale gradient plasticity in previous

chapters, we will assume that micro-scale gradient will stay elastic in this work, for now.

The formulation for its contribution to plasticity as well as global consistent tangent will be

given in the next sections.

7.0.5 Solving for plastic multiplier locally for combined plasticity

In combined plasticity, we have one yield function including the terms shown in separate

scale plasticity. Having one plastic multiplier for F p and χp actually dictates that they

plastify at the same time; they evolve plastically the same and there is only one intermediate
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configuration at which these two variables evolve. The combined yield function can be

expressed as:

F̄ (S̄, c̄,
(
Σ̄− S̄

)
, c̄χ)

def
=
[
devS̄ : devS̄ + dev(Σ̄− S̄) : dev(Σ̄− S̄)

] 1

2

−
(
Aφc̄−Bφp̄+ Aχ,φc̄χ − Bχ,φp̄χ

)
≤ 0 (7.76)

and combined plastic potential function

Ḡ(S̄, c̄,
(
Σ̄− S̄

)
, c̄χ)

def
=
[
devS̄ : devS̄ + dev(Σ̄− S̄) : dev(Σ̄− S̄)

] 1

2

−
(
Aψ c̄− Bψp̄+ Aχ,ψc̄χ − Bχ,ψp̄χ

)
(7.77)

To obtain local consistent tangent ∂F̄ /∂ (∆γ̄), we first determine the relations given below.

Different than the definitions given in previous sections, we define some derivatives as:

Let’s call

||N || =
[
devS̄ : devS̄ + dev(Σ̄− S̄) : dev(Σ̄− S̄)

] 1

2 (7.78)

Then,

∂||N ||
∂∆γ̄

=
1

||N ||

(
devS̄ :

∂devS̄

∂∆γ̄
+ dev(Σ̄− S̄) : ∂dev(Σ̄− S̄)

∂∆γ̄

)
(7.79)

(
∂Ē

e

∂∆γ̄

)
=

(
∂F e

∂∆γ̄

)T
χe + F eT

(
∂χe

∂∆γ̄

)
(7.80)

(
∂χe

∂∆γ̄

)
= −χe

(
∂χp

∂∆γ̄

)
χp−1 (7.81)

∂χp

∂∆γ̄
= −F eTχeΨ̄

e−1
n

(
∂Ḡ

∂
(
Σ̄− S̄

)
)T

n

Ψ̄
e−T
n C̄

χ,e
n χ

p
nχ

p−1 (7.82)

where ∂devS̄/∂∆γ̄ was defined before in equation (7.10) and ∂dev(Σ̄ − S̄)/∂∆γ̄ can be
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expressed as:

∂
(
Σ̄− S̄

)

∂∆γ̄
= τtr

(
∂Ēe

∂∆γ̄

)
1 + 2σ

(
∂Ēe

∂∆γ̄

)
+ (η − τ) tr

(
∂Ē

e

∂∆γ̄

)
1+ (ν − σ)

(
∂Ē

e

∂∆γ̄

)

+ (κ− σ)

(
∂Ē

e

∂∆γ̄

)
(7.83)

∂dev(Σ̄− S̄)
∂∆γ̄

=
∂
(
Σ̄− S̄

)

∂∆γ̄
− ∂p̄χ

∂∆γ̄
1 (7.84)

∂p̄χ

∂∆γ̄
=

1

3

∂tr(Σ̄− S̄)
∂∆γ̄

(7.85)

∂c̄χ

∂∆γ̄
= Hc,χAψ,χ (7.86)

The other derivatives ∂p̄/∂∆γ̄ and ∂c̄/∂∆γ̄ were defined previously in equations (7.11) and

(7.13).

7.0.6 Solving for plastic multiplier globally for combined plasticity

We presented the plasticity contribution into the global consistent tangent in separate

plasticity assumption. Now, we follow a similar approach to determine δ (∆γ̄) in combined

plasticity formulation. We start with

δF̄ =
∂F̄

∂S̄
: δS̄ +

∂F̄

∂c̄
δc̄+

∂F̄ χ

∂
(
Σ̄− S̄

) : δ
(
Σ̄− S̄

)
+
∂F̄ χ

∂c̄χ
δc̄χ = 0 (7.87)

with updated definitions for

∂F̄

∂S̄
=

devS̄
||N || +

1

3
Bφ

1 (7.88)

∂Ḡ

∂S̄
=

devS̄
||N || +

1

3
Bψ

1 (7.89)

∂F̄

∂
(
Σ̄− S̄

) =
dev

(
Σ̄− S̄

)

||N || +
1

3
Bφ,χ

1 (7.90)

∂Ḡ

∂
(
Σ̄− S̄

) =
dev

(
Σ̄− S̄

)

||N || +
1

3
Bψ,χ

1 (7.91)

If we carry out the calculations similar to the separate plasticity, we can see that we can use

the same expressions defined for separate scale plasticity approach. In this case F̄ = F̄ χ,
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δ (∆γ̄) = δ (∆γ̄)χ, and C1, C2, C3, and C4 are already defined in equations (7.60), (7.61),

(7.68), and (7.69).

δ (∆γ̄) = δ (∆γ̄)χ =
F1 + F2

C1 + C2 + C3 + C4
(7.92)

7.0.7 Forming global consistent tangent for different plasticity assumptions

In this part, we like to present the contribution to global consistent tangent for different

scale plasticity and combined plasticity assumptions due to linearization of the balance of

momenta equations. Based on the previous chapters, we have the linearization of the balance

equations already presented, in addition to that, we just show the effect of the δ (∆γ̄) and

δ (∆γ̄χ) for separate scale plasticity and just δ (∆γ̄) = δ (∆γ̄χ) for the combined plasticity.

We follow the semi-implicit numerical integration algorithm outlined in (Regueiro, 2010) as:

Given: F n+1, χn+1, C̄
e
n, Ψ̄

e
n, F

p
n, χ

e
n, Z̄n, Z̄

χ
n , c̄n, c̄χn,

(
∂Ḡ/∂S̄

)
n
,
(
∂Ḡχ/∂

(
Σ̄− S̄

))
n

(1) Calculate trial values and yield functions

F etr = F n+1F
p−1
n

C̄
etr

= F etrTF etr

Ē
etr

=
(
C̄
etr − 1

)

χetr = χn+1χ
p−1
n

Ψ
etr = F etrTχetr

Eetr = Ψ
etr − 1

Calculate S̄
tr
,
(
Σ̄
tr − S̄tr

)

For separate plasticity:

F̄ tr = F̄
(
S̄
tr
, Ē

etr
, Ē

etr
, c̄n

)

F̄ χ,tr = F̄ χ
((

Σ̄
tr − S̄tr

)
, Ē

etr
, Ē

etr
, c̄χn

)
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For combined plasticity:

F̄ tr = F̄
(
S̄
tr
,
(
Σ̄
tr − S̄tr

)
, Ē

etr
, Ē

etr
, c̄n, c̄

χ
n

)

(2) Integrate plastic part of deformation gradient F p
n+1 and micro deformation tensor

χ
p
n+1:

C̄
e
nḞ

p

n+1F
p−1
n = ˙̄γn+1

(
∂Ḡ

∂S̄
tr

)T

n

(7.93)

F
p
n+1 =

[
F p
n +∆γ̄C̄

e−1
n

(
∂Ḡ

∂S̄
tr

)T

n

F p
n

]
(7.94)

Ψ̄
e
nχ̇

p
n+1χ

p−1
n C̄

χ,e
n Ψ̄

eT
n = ˙̄γχn+1

(
∂Ḡχ

∂
(
Σ̄− S̄

)
)T

n

(7.95)

χ
p
n+1 =


χpn +∆γ̄χΨ̄

e−1
n

(
∂Ḡχ

∂
(
Σ̄− S̄

)
)T

n

Ψ̄
e−T
n C̄

χ,e
n χ

p
n




(7.96)

(3) Update elastic deformation:

F e
n+1 = F n+1F

p−1
n+1, C̄

e
n+1 = F

eT
n+1F

e
n+1, Ē

e
n+1 =

(
C̄
e
n+1 − 1̄

)
/2 (7.97)

χen+1 = χn+1χ
p−1
n+1, Ψ̄

e
n+1 = F

eT
n+1χ

e
n+1, Ē

e
n+1 = Ψ̄

e
n+1 − 1̄ (7.98)

(4) Update stresses:

S̄n+1 = S̄
(
Ē
e
n+1, Ē

e
n+1

)
,
(
Σ̄− S̄

)
n+1

=
(
Σ̄− S̄

) (
Ē
e
n+1, Ē

e
n+1

)
(7.99)

(5) Integrate strain-like ISVs, then update stress-like ISVs c̄ and c̄χ:

For separate plasticity:

c̄n+1 = c̄n + (∆γ̄)Hchcn (7.100)

c̄χn+1 = c̄χn + (∆γ̄)χHc,χhc,
χ

n (7.101)
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For combined plasticity:

c̄n+1 = c̄n + (∆γ̄)Hchcn (7.102)

c̄χn+1 = c̄χn + (∆γ̄)Hc,χhc,
χ

n (7.103)

As expressed previously, in intermediate configuration assumption, we have F = F eF p

and χ = χeχp.

For separate plasticity assumption, if we linearize these expressions, we get:

F e = FF p−1 (7.104)

δF e = δFF p−1 + F δ
(
F p−1

)
(7.105)

= δFF p−1 − FF p−1δ (F p)F p−1 (7.106)

where

δF p = C̄
e−1
n

(
∂Ḡ

∂S̄

)T

n

F p
nδ (∆γ̄) (7.107)

then,

δF e =
∂δu

∂X
F p−1 − F eC̄

e−1
n

(
∂Ḡ

∂S̄

)T

n

F p
nF

p−1δ (∆γ̄) (7.108)

Similarly,

χe = χχp−1 (7.109)

δχe = δχχp−1 + χδ
(
χp−1

)
(7.110)

= δχχp−1 − χχp−1δ (χp)χp−1 (7.111)

where

δχp = Ψ̄
e−1
n

(
∂Ḡχ

∂
(
Σ̄− S̄

)
)T

n

Ψ̄
e−T
n C̄

χ,e
n χ

p
nδ (∆γ̄

χ) (7.112)

then,

δχe = δΦ χp−1 − χeΨ̄e−1
n

(
∂Ḡχ

∂
(
Σ̄− S̄

)
)T

n

Ψ̄
e−T
n C̄

χ,e
n χ

p
nχ

p−1δ (∆γ̄χ) (7.113)



187

7.0.8 Contribution to global consistent tangent from plasticity

In addition to the terms which were previously determined in the global consistent

tangent, we just give the additional terms which will contribute to the global consistent

tangent when plasticity is introduced. Hence, the additional terms will be from the terms

including δ (∆γ̄) and/or δ (∆γ̄χ). Starting with the balance of linear momentum, if we write

the constitutive equation in intermediate configuration and apply linearization process with

respect to reference configuration, and also if we ignore the boundary term, the body force

vector, and the acceleration vector, we get:

ˆ

B0

Jp∇w :
(
F eS̄F eT

)
dV + δ

(
ˆ

B0

Jp∇w :
(
F eS̄F eT

)
dV

)

=

ˆ

B0

Jp∇w :
(
F eS̄F eT

)
dV

+

ˆ

B0

Jp
(
δ (∇w) :

(
F eS̄F eT

)
+ δ (Jp)∇w :

(
F eS̄F eT

)
+ Jp∇w :

(
δ (F e) S̄F eT

)

+Jp∇w :
(
F eδ

(
S̄
)
F eT

)
+ Jp∇w :

(
F eS̄δ

(
F eT

)))
dV = 0 (7.114)

where

δ (∇w) = (∇0w) δF−1 = − (∇0w)F−1δFF−1 (7.115)

δ (detF p) = detF ptr
(
F p−1δF p

)
= Jptr

(
F p−1δF p

)
(7.116)

where ∇0 (•) = GRAD (•) =
[
(•),K

]
and we used the Piola transform as:

σ =
1

Je
F eS̄F eT , dv = JedV̄ (7.117)
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Then, we employ equations 7.107, 7.108, and 7.113 also insert them into equation 7.114 as:

ˆ

B0

[
(∇0w)F−1

]
: JpF eS̄F eTdV +

ˆ

B0

(
−
[
(∇0w)F−1

(
∂δu

∂X

)
F−1

]
:
(
JpF eS̄F eT

)

+
[
(∇0w)F−1

]
:

(
Jptr

(
F p−1C̄

e−1
n

(
∂Ḡ

∂S̄

)T

n

F p
n

)
F eS̄F eT δ (∆γ̄)

)

+
[
(∇0w)F−1

]
:

(
Jp

(
∂δu

∂X
F p−1 − F eC̄

e−1
n

(
∂Ḡ

∂S̄

)T

n

F p
nF

p−1

)
S̄F eT δ (∆γ̄)

)

+
[
(∇0w)F−1

]
:
(
JpF eδ

(
S̄
)
F eT

)

+
[
(∇0w)F−1

]
:


JpF eS̄

(
∂δu

∂X
F p−1 − F eC̄

e−1
n

(
∂Ḡ

∂S̄

)T

n

F p
nF

p−1

)T

δ (∆γ̄)




 dV = 0

(7.118)

where δS̄ was defined in equation 7.55. Similarly, for the balance of first moment of momen-

tum if we ignore the boundary term, the body couple, and the micro-spin inertia tensors, we

have:

ˆ

B0

η :
(
F e

Σ̄F eT − F eS̄F eT
)
JpdV +

ˆ

B0

(∇η)
...
(
F e
(
F e ⊙ M̄χeT

)
Jp
)
dV

+ δ

(
ˆ

B0

η :
[
F e

Σ̄F eT − F eS̄F eT
]
JpdV +

ˆ

B0

(∇η)
...
(
F e
(
F e ⊙ M̄χeT

)
Jp
)
dV

)
= 0

(7.119)

carrying over the calculations gives:

ˆ

B0

η :
(
F e

Σ̄F eT − F eS̄F eT
)
JpdV +

ˆ

B0

(∇η)
...
(
F e
(
F e ⊙ M̄χeT

)
Jp
)
dV

ˆ

B0

(
η :
(
δF e

(
Σ̄− S̄

)
F eTJp

)
+ η :

(
F eδ

(
Σ̄− S̄

)
F eTJp

)
+ η :

(
F e
(
Σ̄− S̄

)
δF eTJp

)

+ η :
(
F e
(
Σ̄− S̄

)
F eT

)
δ (Jp)

)
dV +

ˆ

B0

(
δ (∇η)

...
(
F e
(
F e ⊙ M̄χeT

))
Jp

+ (∇η)
...
(
δF e

(
F e ⊙ M̄χeT

))
Jp + (∇η)

...
(
F e
(
δF e ⊙ M̄χeT

))
Jp

+ (∇η)
...
(
F e
(
F e ⊙ δM̄χeT

))
Jp + (∇η)

...
(
F e
(
F e ⊙ M̄δχeT

))
Jp

+ (∇η)
...
(
F e
(
F e ⊙ M̄χeT

))
δJp
)
dV = 0 (7.120)
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Again, if we apply equations 7.108, 7.113, and 7.107 in equation 7.120, we get:

ˆ

B0

η :
(
F e

Σ̄F eT − F eS̄F eT
)
JpdV +

ˆ

B0

(∇η)
...
(
F e
(
F e ⊙ M̄χeT

))
JpdV

+

ˆ

B0

(
η :

((
∂δu

∂X
F p−1 − F eC̄

e−1
n

(
∂Ḡ

∂S̄

)T

n

F p
nF

p−1

)
(
Σ̄− S̄

)
F eT

)
Jpδ (∆γ̄)

+ η :
(
F eδ

(
Σ̄− S̄

)
F eT

)
Jp

+ η :


F e

(
Σ̄− S̄

)
(
∂δu

∂X
F p−1 − F eC̄

e−1
n

(
∂Ḡ

∂S̄

)T

n

F p
nF

p−1

)T

 Jpδ (∆γ̄)

+ η :

(
F e
(
Σ̄− S̄

)
F eTJptr

(
F p−1C̄

e−1
n

(
∂Ḡ

∂S̄

)T

n

F p
n

))
δ (∆γ̄)

)
dV

+

ˆ

B0

(
−
(
(∇0η)F

−1∂δu

∂X
F−1

)
...
(
F e
(
F e ⊙ M̄χeT

))
Jp

+
(
(∇0η)F

−1
) ...

((
∂δu

∂X
F p−1 − F eC̄

e−1
n

(
∂Ḡ

∂S̄

)T

n

F p
nF

p−1

)
(
F e ⊙ M̄χeT

)
)
Jpδ (∆γ̄)

+
(
(∇0η)F

−1
) ...

(
F e

((
∂δu

∂X
F p−1 − F eC̄

e−1
n

(
∂Ḡ

∂S̄

)T

n

F p
nF

p−1

)
⊙ M̄χeT

))
Jpδ (∆γ̄)

+
(
(∇0η)F

−1
) ...
(
F e
(
F e ⊙ δM̄χeT

))
Jp

+
(
(∇0η)F

−1
) ...


F e


F e ⊙ M̄


δΦ χp−1 − χeΨ̄e−1

n

(
∂Ḡχ

∂
(
Σ̄− S̄

)
)T

n

Ψ̄
e−T
n C̄

χ,e
n χ

p
nχ

p−1
)T))

Jpδ (∆γ̄χ)

+
(
(∇0η)F

−1
) ...
(
F e
(
F e ⊙ M̄χeT

))
Jptr

(
F p−1C̄

e−1
n

(
∂Ḡ

∂S̄

)T

n

F p
n

)
δ (∆γ̄)

)
dV = 0

(7.121)

where δ
(
Σ̄− S̄

)
was defined in equation 7.63. Definition of δM̄ requires to determine

δ
(
∇̄χe

)
which can be found as:

χeiĀ,L̄ = χiK,LF
p−1

LL̄
χp−1

KĀ
− χeiR̄χ

p

R̄B,L
F p−1

LL̄
χp−1

BĀ
(7.122)

The constitutive assumption which considers the gradient of the micro-deformation tensor

∇0χ
p as a separate variable results in very complicated linearization process; therefore, we
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will assume that ∇0χ
p = 0 and derive the relations based on this assumption. Then, the

equation above reduces to:

∇̄χe = ∇0χF
p−1χp−1

δ
(
∇̄χe

)
= ∇0δΦF

p−1 χp−1 − (∇0χ)F
p−1C̄

e−1
n

(
∂Ḡ

∂S̄

)T

n

F p
nF

p−1χp−1δ (∆γ̄)

− (∇0χ)F
p−1χp−1

Ψ̄
e−1
n

(
∂Ḡχ

∂
(
Σ̄− S̄

)
)T

n

Ψ̄
e−T
n C̄

χ,e
n χ

p
nχ

p−1δ (∆γ̄χ) (7.123)

This gives us the simplified definition of δM̄ as:

δM̄ = τ7δF
eT
∇̄χe + τ7F

eT δ
(
∇̄χe

)
(7.124)

where δF e and δ
(
∇̄χe

)
were defined in equations 7.108 and 7.123 respectively.

As mentioned above, additional contribution to the global consistent tangent will come

from the terms which include δ (∆γ̄) and/or δ (∆γ̄χ). The definitions δ (∆γ̄) and δ (∆γ̄χ)

depend on which plasticity approach we use. If we use separate scale plasticity, these defi-

nitions will be obtained as described in Section 7.0.4, and if we use combined plasticity we

obtain those definitions as described in Section 7.0.6.

7.1 Numerical Examples

In this section, we present some examples to demonstrate the micromorphic Drucker-

Prager plasticity and Drucker-Prager-like plasticity. We chose different yield functions as well

as plastic potential functions accordingly to account for the behavior of geomaterials. As

mentioned in detail above, we assumed three different yield criteria: (1) Standard Drucker-

Prager (DP) yield function which involves no micromorphic terms ( Φ
h = 0 in governing

equations, and balance of first moment of momentum is not solved); (2) Macro-scale DP yield

function (MDP) which has the same form of DP yield criterion but involves the second Piola-

Kirchhoff stress tensor S̄ including additional micromorphic elastic terms; (3) Combined DP

like yield function (CDP) that involves the combination of the second Piola-Kirchhoff stress
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tensor S̄ and the relative stress tensor
(
Σ̄− S̄

)
measures, along with micromorphic elastic

terms.

7.2 Finite Strain Column Compression with Different Yield Criteria

We start with a one dimensional column example: uniaxial strain in compression. The

column geometry considered in this section was previously described in detail in Section 6.2.4

shown in Fig 6.8. We use a similar geometry with the boundary conditions and present a

comparison of the results obtained by using different yield functions on this one dimensional

example and also investigate the effect of elastic length scale on this geometry as well as the

influence of micromorphic boundary conditions on the simulations. The elastic parameters

used in this column example are chosen as

λ = 29.103 kPa µ = 7.103 kPa η = 40.103 kPa

ν = 8.103 kPa κ = 10.103 kPa τ = 10.103 kPa σ = 5.103 kPa (7.125)

Discussion of the results regarding this example is given in Section 7.2.4.

7.2.1 Case 1

In the first case, the column has a height of 10 m and a cross section of 1.25×1.25 m2.

A displacement boundary condition u3 = −1 m is applied to the top surface at X3 = 10m.

The displacement boundary conditions were chosen to provide a uniaxial strain compression

problem: u1 = 0 on ±X1 faces, u2 = 0 on ±X2 faces, and u3 = 0 on −X3 face. All the

micro-displacement tensor components ΦhiI are set = 0 except the micro-displacement tensor

component Φh33 in the X3 direction. In figures 7.2, 7.5, and 7.8 , we show the stress paths

which were obtained by the different yield function assumptions. We demonstrate the initial

yield surface with F0 and final yield surface with F . We plot using the stress measures Sc,
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Sm, and Ss versus pressure terms p̄c, p̄m, and p̄ respectively. These terms are defined as:

Sc =
(
devS̄ : devS̄ + dev(Σ̄− S̄) : dev(Σ̄− S̄)

) 1

2 (7.126)

Sm = Ss = ‖devS̄‖ (7.127)

p̄c = Bφp̄+Bφ,χp̄χ (7.128)

p̄χ =
tr(Σ̄− S̄)

3
(7.129)

p̄m = p̄ =
trS̄
3

(7.130)

(a) (b)

Figure 7.1: Case 1: Contour plots of (a) ||devσ|| (Pa) and (b) cohesion c (Pa) distribution along
the column height. Gauss point values extrapolated to nodes were obtained by using CDP yield
criterion.

and other yield and plastic potential function parameters were chosen in Table 7.1.

Table 7.1: Parameters used in yield and plastic potential functions for column example.

φ (rad.) ψ (rad.) Hc (Pa) c (Pa) φχ (rad.) ψχ (rad.) Hc,χ (Pa) cχ (Pa) τ7 (Pa. m2)

0.15 0.1 1× 103 1× 104 0.0 0.0 10 1× 102 1× 107
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Figure 7.2: Case 1: Comparison of (a) stress paths obtained by using different yield criteria, (b)
the initial parts of the stress paths that shows the different behaviors with different yield function
assumptions.
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Figure 7.3: Case 1: Comparison of (a) the norm of the deviatoric part of unsymmetric Cauchy
stress tensor ||devσ|| in current configuration, (b) the first invariant of the unsymmetric Cauchy
stress tensor trσ, (c) the deviatoric part of relative stress tensor measure ||dev (s− σ) || in current
configuration, (d) the first invariant of the relative stress tensor tr (s− σ).
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7.2.2 Case 2

In the second case, we consider the case where Φh33 = 0 at X3 = 0 that creates a

gradient in micro-displacement tensor Φh33 values as shown in Figure 7.4 (a); however, τ7 = 0

so that the higher order couple stress tensor will disappear due to one term approach that

is explained already in Chapter 6.

(a) (b)

Figure 7.4: Case 2: Contour plot of (a) ||Φh|| and (b) ||∇Φ
h|| values at nodes obtained by using

CDP yield criterion.
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Figure 7.5: Case 2: Comparison of (a) stress paths obtained by using different yield criteria, (b)
the initial parts of the stress paths that shows the different behaviors with different yield function
assumptions at X3 = 0.14m, (c) the initial parts of the stress at X3 = 1.10m.
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Figure 7.6: Case 2: Comparison of (a) the deviatoric part of unsymmetric Cauchy stress tensor mea-
sure ||devσ|| in current configuration, (b) the first invariant of the unsymmetric Cauchy stress tensor
trσ, (c) the deviatoric part of relative stress tensor norm ||dev (s− σ) || in current configuration,
(d) the first invariant of the relative stress tensor tr (s− σ) at X3 = 0.14m.
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7.2.3 Case 3

In the last case, we consider the same boundary condition used above but we also

include the elastic length scale parameter ℓc = 1m which is introduced by τ7. Note that, as

in previous examples, we used one parameter approach for the higher order stress tensor as

M = τ7Γ. We employed the Preconditioned Conjugate Gradient method explained in A.2.2.

(a) (b)

Figure 7.7: Case 3: Contour plot of (a) ||trm|| in Pa and (b) tr (s− σ) in Pa values at nodes
obtained by using CDP yield criterion.
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Figure 7.8: Case 3: Comparison of (a) stress paths obtained by using different yield criteria, (b)
the initial parts of the stress paths that shows the different behaviors with different yield function
assumptions at X3 = 0.14m, (c) the initial parts of the stress at X3 = 1.10m.
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Figure 7.9: Case 3: Comparison of (a) the deviatoric part of unsymmetric Cauchy stress tensor norm
||devσ|| in current configuration, (b) the first invariant of the unsymmetric Cauchy stress tensor
trσ, (c) the deviatoric part of relative stress tensor measure ||dev (s− σ) || in current configuration,
(d) the first invariant of the relative stress tensor tr (s− σ) at X3 = 0.14m.
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7.2.4 Discussion of the results

Figure 7.1 shows that when additional micromorphic degree of freedom Φh33 is involved

and there is no boundary effect, we have the homogeneous distribution of the norm of

unsymmetric Cauchy stress tensor ||devσ|| and cohesion c as expected in the standard DP

model.

Figure 7.4 shows the boundary effect for Case 2. Since we do not have τ7 for this case,

the gradient in Φh33 values will not generate any value for the higher order couple stress tensor

m. One may think that for the region in which Φh33 is close to zero, the model should reduce

to standard DP model. However, micromorphic models should present different results due

to the additional micromorphic elastic moduli appearing in the constitutive equations. Note

that even if there is no Φh33 involved, the micro-deformation tensor χe = 1. Since Ee = F eTχe

and F e 6= 0, then Ee 6= 0. This shows that due to coupling in strain tensors even if we set

all the additional degrees of freedom to zero but involve the additional micromorphic elastic

moduli, we will have different results from the standard plasticity approach as long as we

have non zero F e.

Figures 7.2(a), 7.5(a), and 7.8(a) show the total stress paths comparison of all the

models. A closer look at the initial parts of these paths in sections (b) and (c) of the same

figures will give more insights. Figures 7.5(b) and 7.8(b) show that in the vicinity of the

bottom surface boundary X3 = 0.14m, the difference between CDP model and DP model

vanish. However, this is valid for the stress path plots which does not necessarily indicate that

models present the same behavior. Note that we plot the stress paths with Sc, Sm, and Ss vs.

their associated pressure values, respectively, p̄c, p̄m, and p̄ where the definitions were given

in equations (7.128) and (7.130). If we look at the unsymmetric deviatoric Cauchy stress

tensor norm ||devσ|| as well as the relative stress tensor norm ||dev (s− σ) ||, respectively,

in Figures 7.10 and 7.11 in the same region, we see a noticeable difference in the behaviors.

Stress path comparison in Figures 7.2(b), 7.5(c), and 7.8(c) show that at X3 = 1.10 m
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as we go further from the boundary where Φh33 = 0, micromorphic contribution in MDP and

CDP models causes different stress path compared to DP model. The difference between

MDP and CDP models is because of the evolution of χp which is assumed to evolve with

same plastic multiplier ∆γ̄ with F p in CDP model. Note that MDP model does not include

the evolution of χp but only F p. Figure 7.7 shows the opposite trend of the contour plots

of the stress measures ||tr (m) || and tr (s− σ) throughout the column length such that

tr (s− σ) value is higher where ||tr (m) || is lower for Case 3. Note that these two stress

tensors (s− σ) and ∇m appear in the balance of first moment of momentum that they

should balance each other.

Comparison of the three cases

Figures 7.10 and 7.11 show the difference in stresses, and Figure 7.12 shows different

stress paths that are obtained by CDP criterion for the three different cases mentioned

above: (1) no boundary effect (homogeneous distribution of Φh33 value throughout the column

height), (2) boundary effect (gradient in micro displacement ∇Φh33 but without the higher

order couple stress tensor), and (3) boundary effect together with the length scale effect

which is introduced by the higher order couple stress tensor. Although the deviatoric stress

norms ||devσ|| and ||dev (s− σ) || in Figures 7.3, 7.6, and 7.9 obtained by same models show

similar behaviours to each other for all the cases, closer comparisons provided in Figures 7.10

and 7.11 (obtained by CDP model) show that they differ in values. For the Figures 7.10

and 7.11, we may say that introducing τ7 causes higher values of the deviatoric stress norms

||devσ|| and ||dev (s− σ) || obtained by CDP model in the vicinity of the boundary, and

different stress paths as shown in Figure 7.12. In Section 6.2.8, we saw a trend for the

stress norms, that is, higher the gradient of Φh, lower the values of these stress norms. Here,

neither the deviatoric relative stress tensor norm ||dev (s− σ) ||, nor unsymmetric deviatoric

Cauchy stress norm ||devσ|| present similar trend in the vicinity of the bottom boundary. In

the absence of τ7, the unsymmetric Cauchy stress tensor has lower values of ||devσ||, likewise
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for the relative stress tensor measure ||dev (s− σ) ||. However, this effect is reversed when

τ7 is introduced.
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Figure 7.10: Comparison of the deviatoric stress norms ||devσ|| obtained by CDP model at (a)
X3 = 0.14m, (b) X3 = 1.10m for all the cases in column example.
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Figure 7.11: Comparison of the deviatoric relative stress norms ||dev (s− σ) || obtained by CDP
model at (a) X3 = 0.14m, (b) X3 = 1.10m for all the cases in column example.
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Figure 7.12: Comparison of the stress paths at (a) X3 = 0.14m, and (b) X3 = 1.10m for all the
cases in column example.
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7.3 Plane Strain Example

In this section, we consider a 3D geometry under plain strain condition with different

number of additional degrees of freedom through Φ
h. The height of the sample is chosen as

0.08 m and the width is 0.04m ( the geometry is given in Figure 7.13). Confining pressures of

σc = 0.1 MPa and σc = 0.2 MPa are applied on the side surfaces for the different examples,

and displacement boundary condition is applied on the top surface. The parameters chosen

in this analysis are given in Tables 7.2 and 7.3. We consider four different cases: (i) only

two additional degrees of freedom are chosen which are in plane dilation/stretch degrees

of freedom Φh22,Φ
h
33; (ii) three additional degrees of freedom which are one out of plane

degree of freedom Φh11, and two in plane degrees of freedom Φh22,Φ
h
33; (iii) we turn on the

in plane degrees of freedom in Z- Y plane as well to see the effect of those degrees of

freedom, and the total degrees of freedom are four that are: Φh22,Φ
h
33,Φ

h
23,Φ

h
32 ; (iv) we

consider the most general case and have nine additional degrees of freedom, whole micro-

displacement tensor Φ
h involved to investigate the contribution of all degrees of freedom

introduced by micromorphic theory. For this example, we initially applied 10% of initial

height which is 0.08m as a displacement boundary condition u = 0.008m, but some analysis

and standard plasticity could not complete the entire analysis because of Newton-Raphson

algorithm convergence problems. Since we use semi implicit time integration method, using

smaller time steps may solve the problem. However, we constrain our attention to the

effect of micromorphic theory and postpone the convergence problems which are due to

computational power limitations to a future time.

In Figure 7.14, we show the stages of the applied loads. The first stage, the region

between the points “a” and “b”, shows the application of the confining pressure. The con-

fining pressure is chosen to be small enough not to cause yielding at this initial stage to

better observe the differences in the stress paths. The lateral confining pressure is applied

incrementally till point “b” where it reaches its maximum, and kept constant till the end
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Figure 7.13: plane strain example.

of the analyses. The second stage, the region between two points marked by “b” and “c”,

demonstrates the beginning of the application of displacement boundary condition on the

top surface. It initially causes a decreases in deviatoric stress norms; however, due to plane

strain conditions together with increasing applied displacement on top surface, the stress

norms increase and touch the yield surface at the point “d”. The last state shows that stress

paths touch the yield surface and stay on the yield surface as expected. Similar patterns can

be seen in the plots 7.16, 7.17, and 7.18 which include the stress norms as well.

From Figures 7.14, 7.15, and 7.16 , we see that micromorphic plasticity results present

different behavior compared to standard plasticity as expected; however, we may say that

there is no noticeable difference between cases with different numbers of degrees of freedom.

We can easily say that the shear degrees of freedom are found to have no significant effect on

the simulations; therefore, for the future examples these degrees of freedom can be neglected

to gain more computational power in plane strain examples. In Figure 7.15, we see that the

effect of micromorphic degrees of freedom is that micromorphic continuum tends to provide
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a less stiff behavior at a Gauss point in an element at the top surface. Note that we have

the coupled strain tensor Ē
e

which is defined as Ē
e
= F eTχe − 1 that means the effect

of the micro-structure is coupled with the macro-structure, and it does not represent the

micro-structural response purely. This coupled micro strain tensor effect is amplified when

multiplied by higher values of micromorphic elastic moduli η, κ, and ν. Here, we again express

the importance of the choice of micromorphic elastic material moduli that will be the most

significant point to model the material response. Since we have not considered a real physical

material, this behavior can be more meaningful when a homogenization procedure is applied

to determine the micromorphic elastic parameters in a completely overlapped coupled region

with an underlying microstructural model like the discrete element for granular materials.

To investigate further the additional degrees of freedom with the plane strain condi-

tions, we increase the confining pressure to σc = 0.2 MPa (and elastic parameters are given

for this case in Table 7.4) so that we may activate the out of plane degree of freedom Φh11

more under a higher pressure. We choose only the cases which include only the micro dila-

tion/ stretch degrees of freedom. For the case (i) we consider only Φh22,Φ
h
33 and for case (ii)

we have only Φh11,Φ
h
22,Φ

h
33.

Figures 7.17, and 7.18 show that increasing confining pressure changes the response,

and now a clear difference between these two cases is seen compared to the previous example

which was under less confining pressure. From these figures, we may conclude that the out

of plane degree of freedom Φh11 actually does have an effect on the results, and it caused a

different stress path as in Figure 7.17 as well as mostly lower values of ||devS̄|| at initial part

of Figure 7.18.

Table 7.2: Micromorphic elastic parameters used in plane strain problem with confining pressure
σc = 0.1 MPa .

λ (MPa) µ (MPa) η (MPa) ν (MPa) κ (MPa) τ (MPa) σ (MPa) τ7 (Pa. m2)

19 5 40 8 10 10 2 1× 102
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Table 7.3: Parameters used in plane strain example.

φ (rad.) ψ (rad.) Hc (Pa) c (Pa) φχ (rad.) ψχ (rad.) Hc,χ (Pa) cχ (Pa)
0.15 0.1 0.0 1× 104 0.0 0.0 0.0 10

Table 7.4: Micromorphic elastic parameters used in plane strain problem with confining pressure
σc = 0.2 MPa.

λ (MPa) µ (MPa) η (MPa) ν (MPa) κ (MPa) τ (MPa) σ (MPa) τ7 (Pa. m2)

29 7 40 8 10 10 5 1× 102
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Figure 7.14: Comparison of stress paths of the different cases for plane strain example for confining
pressure σc = 0.1 MPa.
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Figure 7.17: Comparison of stress paths of the two different cases for plane strain example for
confining pressure σc = 0.2 MPa.
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In this study, we developed and implemented a model for nonlinear finite element

analysis for finite strain micromorphic elastoplastic geomaterials to be used in a multiscale

approach explained in the beginning of this work. These numerical examples conclude this

study. More exciting problems such as strain softening, localizations, etc. as well as overlap

coupling micro-structural model can be investigated by using micromorphic theory. The

results, challenges, findings, targets in conjunction with the suggestions for a future study

are summarized in the next Chapter.



Chapter 8

Conclusions and Future work

We investigated the various aspects of the micromorphic continuum within the context

of finite strain isotropic elasticity and elastoplasticity. Results indicate that the micromor-

phic contribution causes different behaviors depending on number of additional degrees of

freedom Φ
h, length scale, and boundary conditions on micro-displacement tensor. Three

dimensional stress state with the combination of deformation and additional micromorphic

elastic parameters, together with the different plasticity criteria, and plasticity parameters

lead to different trends. Influences of micro-displacement tensor Φh boundary conditions and

length scale on results were found to be very significant factors on convergence and results

of the simulations as well. It is possible to have convergence issues if proper Φ
h boundary

conditions together with micromorphic elastic moduli are not chosen. We proved that sym-

metry conditions are not applicable on Φ
h in this approach that requires considering whole

domain that means additional computational work.

Based on the findings and results obtained by the analyses, extending micromorphic

FE implementation to current configuration, and including inertia terms will possibly elim-

inate the convergence issues with regard to plasticity since we will plan to use an explicit

formulation and implementation. The constitutive assumption which has been made to con-

sider the plastic part of the gradient of micro-deformation tensor ∇χp as a separate internal

variable rather than taking the derivative of the plastic part of the micro-deformation tensor

χp is found to be one point to be improved and to be changed to make it dependent to
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the plastic part of the micro-deformation tensor χp due to the convergence difficulties. It is

because when the gradient of the plastic part of the micro-deformation tensor ∇χp is treated

as a separate internal variable, and assuming micro-scale gradient plasticity did not occur

(micro-scale gradient stayed elastic ∇χp = 0), but when we have plasticity in micro-scale

which indicates χ = χeχp ,then, for this case χp will exist, and the gradient of the plastic

part of the micro-deformation tensor ∇χp may not be zero as it was assumed. Therefore,

assuming ∇χp = 0 will cause non compatible values of the gradient of the elastic part of

the micro-deformation ∇χe, hence, ∇χe = ∇ (χχp−1) that affects the global consistent

tangent. One way to add this property is to introduce the gradient of the plastic part of

micro-deformation tensor ∇χp as additional degrees of freedom at the nodes of elements

such as micro-displacement tensor Φ
h. This approach will bring more computational cost

compared to the current approach; however, it will possibly increase the effectiveness of

the implementation and help to further analyze the length scale related problems such as

strain localization problems. The additional convergence problems resulting from the use of

semi-implicit time integration algorithm and introducing additional Φh degrees of freedom

will need to be further investigated. To resolve the problem caused by semi implicit time

integration, it may be possible to use very small time steps. The additional computational

power can be addressed by parallel processing which can be a useful tool to overcome the

necessity of more computational power. Although we had some convergence issues with the

rigid punch example given in Chapter 6 when we turned on all additional degrees of freedom

Φ
h, a mesh refinement study shown in the same chapter showed that the element used in

finite element analysis is convergent. The reason that caused non-convergent results with re-

spect to Newton-Raphson solver (not spatial discretization) may be caused by the additional

shear degrees of freedom in the shear dominated region. To better involve the micromorphic

additional degrees of freedom, one can use a finer mesh in the shear dominated region. Note

that, we were able to involve all the additional degrees of freedom in the example consid-

ered in Section 7.3. Coupling of lower length scale region modeled by DEM (or FEM for
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bound particulate materials) with the micromophic continuum region modeled by FEM as

a multi-scale approach will be the ultimate aim of the future work of this study to address

the artificial influence of boundaries of the lower length scale on the simulations.

In coupling of these two scales, the influence of the boundary conditions on micro-

displacement tensor Φ
h may be important. In this work, we only considered one type of

essential boundary condition on the micro-displacement tensor which is Φh33 = 0. However,

the motion of the underlying particles in the region where FE mesh is extended in the DE

region may be supplied by DEM, and it will be introduced by the micro-displacement tensor

Φ
h that may require to apply prescribed values dictated by DEM to the micro-displacement

tensor Φh. To capture the inherent behavior of micro-structure, it may be the best to turn on

all the micro-displacement degrees of freedom in a three dimensional problem so that overall

response of the micro-field such as microdilation/stretch, microrotations, and microshear

can be represented by the micromorphic theory. The spatial variation of the values of Φh

will always create a gradient in the field in which the length scale effect will be taken into

account by the higher order couple stress tensor m that will be an interesting problem

to investigate in this multiscale approach between DEM and FEM. Currently, the couple

traction boundary condition is not implemented, and that will also have an influence on the

boundary conditions. Further investigation of essential boundary conditions through Φ
h, and

natural boundary conditions through the couple traction are required, with coupling between

DEM and FEM helping to interpret the physical meaning of these boundary conditions.
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Appendix A

Variations of Representative Terms Appearing in the Balance Equations

Variation of some terms which are used in linearization of balance equations are given

below.

(1) Variation of J :

δ(J) = Jdiv (δu) (A.1)

(2) Variation of F : In matrix form :

δ (F ) = grad(δu)F (A.2)

In indicial form :

xi = Xi + ui

∂xi
∂XI

=
∂Xi

∂XI
+

∂ui
∂XI

FiI = δiI + ui,I

δ (FiI) = δ

(
∂ui
∂XI

)
=
∂δui
∂XI

δ (FiI) = δ (ui,j)FjI

(3) Variation of F−1 :

δ(F−1) = −F−1δ(F )F−1 = −F−1grad(δu) (A.3)
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(4) Variation of ∇w:

∇w =
∂w

∂x
=
∂w

∂X

∂X

∂x
=
∂w

∂X
F−1

⇒ δ∇w = δ

(
∂w

∂X
F−1

)

= δ

(
∂w

∂X

)
F−1 +

∂w

∂X
δ
(
F−1

)

δ∇w = δ

(
∂w

∂X

)
F−1 − ∂w

∂X
F−1grad(δu) (A.4)

(5) Variation of ∆tℓn+1 :

ℓn+1 = Ḟ n+1F
−1
n+1

∆tℓn+1 = ∆tḞ n+1F
−1
n+1

∆tℓn+1 = (F n+1 − F n)F
−1
n+1

δ(∆tℓn+1) = F nF
−1grad(δu) (A.5)

(6) Variation of ∆tdn+1 :

δ(∆tdn+1) =
1

2
δ
(
∆tℓen+1 +∆tℓeTn+1

)

δ(∆tdn+1) =
1

2

(
F nF

−1grad(δu) +
(
F nF

−1grad(δu)
)T)

(A.6)

(7) Variation of tr (∆tdn+1) :

tr (δ (∆tdn+1)) = tr (δ (∆tℓn+1))

tr (δ (∆tdn+1)) = tr
(
F nF

−1grad(δu)
)

(A.7)

(8) Variation of the micro deformation tensor χ for micro motion:

χ = 1 +Φ

⇒ δ (χ) = δ (1) + δ (Φ)

δ (χ) = δ (Φ) (A.8)
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(9) Variation of the inverse of the micro deformation tensor χ for micro motion:

δ
(
χ−1

)
= χ−1 (δχ)χ−1 (A.9)

δ
(
χ−1

)
= χ−1 (δΦ)χ−1 (A.10)

(10) Variation of ∇χ :

∇χn+1 =
∂χ

∂x
=

∂χ

∂X

∂X

∂x
=

∂χ

∂X
F−1

δ (∇χ) =
∂δ (χ)

∂X
F−1 +

∂χ

∂X
δ
(
F−1

)

δ (∇χ) = GRAD (δΦ)F−1 −GRAD (χ)F−1grad(δu) (A.11)

(11) Variation of ∆tνen+1 :

∆tεen+1 = ∆tνen+1 +
(
∆tℓen+1

)T

∆tνen+1 = ∆tνn+1 −∆tνpn+1

∆tνpn+1 = 0 for elastic case

∆tνn+1 =
(
∆χn+1

)
χ−1
n+1 =

(
χn+1 − χn

)
χ−1
n+1

δ (∆tνn+1) = δ
(
χn+1 − χn

)
χ−1
n+1 +

(
χn+1 − χn

)
δ
(
χ−1
n+1

)

δ (∆tνn+1) = δ
(
χn+1

)
χ−1
n+1 +

(
χn+1 − χn

)
δ
(
χ−1
n+1

)

δ (∆tνn+1) = δ (Φn+1)χ
−1
n+1 −

(
χn+1 − χn

)
χ−1
n+1δ (Φn+1)χ

−1
n+1

δ (∆tνn+1) = δ (Φn+1)χ
−1
n+1 −

(
χn+1 − χn

)
χ−1
n+1δ (Φn+1)χ

−1
n+1

δ (∆tνn+1) = δ (Φn+1)χ
−1
n+1 −

1︷ ︸︸ ︷
χn+1χ

−1
n+1δ (Φn+1)χ

−1
n+1 + χnχ

−1
n+1δ (Φn+1)χ

−1
n+1

δ (∆tνn+1) = χnχ
−1
n+1δ (Φn+1)χ

−1
n+1 (A.12)

(12) Variation of ∆tεen+1 :

∆tεen+1 = ∆tνen+1 +∆tℓeTn+1

δ
(
∆tεen+1

)
= χnχ

−1
n+1δ (Φn+1)χ

−1
n+1 +

(
F nF

−1
n+1grad(δun+1)

)T
(A.13)

δ
(
∆tεen+1

)
= χnχ

−1δ (Φ)χ−1 +
(
F nF

−1grad(δu)
)T

(A.14)
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(13) The indicial notation of some of these expressions can be given as:

∆tℓelk = δlk − (Fn)lK F
−1
Kk

(∆tdlk) =
1

2
(∆tℓlk +∆tℓkl)

∆tdelk =
1

2

(
δlk − (Fn)lK F

−1
Kk + δkl − (Fn)kK F

−1
Kl

)

∆tνelk = ∆tνlk −∆tνplk

∆tνlk = (∆χlL)χ
−1
Lk = (χlL − (χn)lL)χ

−1
Lk

∆tεelk = ∆tνelk +∆tℓekl

∆tεelk = (χlL − (χn)lL)χ
−1
Lk + δlk − (Fn)lK F

−1
Kk

A.1 Algorithm to form element stiffness matrix for each term

Linearization procedure of individual terms and determining the element stiffness ma-

trix contribution to form global consistent tangent matrix can be very time consuming and

maybe impossible to implement for the most of the terms presented in this work. This small

algorithm given below, as an example, for the specific term shows how to form the element

stiffness matrix for that term. Let’s consider the term given in equations 5.28-5.30

2 (µ+ σ)

ˆ

B0

wk,LF
−1
Ll FlLδ (FiL)FiKFkKdV = 2 (µ+ σ)

ˆ

B0

wk,LF
−1
Ll FlLFiKFkKδui,LdV

(A.15)
(
Ke,h
uu

)
5
= 2 (µ+ σ)

ˆ

Be
0

{ce}T · [GRAD (Nu,e)]T · [I15] · [GRAD (Nu,e)] · {δde} dV (A.16)

[Ie15] = 2 (µ+ σ)

ˆ

Be
0

[GRAD (Nu,e)]T · [I15] · [GRAD (Nu,e)] dV (A.17)

To calculate the matrix
(
Ke,h
uu

)
5

at a Gauss point for each element, we use this portion of

the code

fTemp_matrix_nudof_x_nudof .MultATBC( fShapeDisplGrad , I1_5 , fShapeDisplGad ) ;

s c a l e = sca le_const ∗( fMaterial_Params [kMu]+fMaterial_Params [ kSigma_const ] ) ;

fTemp_matrix_nudof_x_nudof ∗= s c a l e ;

fKu_5 += fTemp_matrix_nudof_x_nudof ;
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and [I15] is obtained by the algorithm used in the given function below.

void FSMicromorphic3DT : : Form_I1_5( )

{

i n t row ;

i n t c o l =0;

I1_5=0.0 ;

f o r ( i n t K=0;K<3;K++)

{

f o r ( i n t i =0; i <3; i++)

{

row=K∗3 ;

f o r ( i n t l =0; l <3; l++)

{

f o r ( i n t L=0;L<3;L++)

{

I1_5 ( row , c o l)+=fDeformation_Gradient ( l , L)

∗ fDeformation_Gradient ( i , L ) ;

}

row++;

}

co l++;

}

}

A.2 Finite element matrices

A.2.1 Notations in Chapter 4

It is a very time consuming to show all the matrices in open form with their components.

Here we present some of them, other matrices can be obtained in a similar way. Note that
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some of these matrices may have a different order in components in Chapter 5.

{GRAD(w)}T =

{
w1,1 w1,2 w1,3 w2,1 w2,2 w2,3 w3,1 w3,2 w3,3

}
(A.18)

{GRAD(δu)}T =

{
δu1,1 δu2,1 δu3,1 δu1,2 δu2,2 δu3,2 δu3,1 δu3,2 δu3,3

}
(A.19)

[Nu,e]T =




Nu
1 (ξ) 0 0

0 Nu
1 (ξ) 0

0 0 Nu
1 (ξ)

Nu
2 (ξ) 0 0

0 Nu
2 (ξ) 0

0 0 Nu
2 (ξ)

...
...

...

Nu
nu
en
(ξ) 0 0

0 Nu
nu
en
(ξ) 0

0 0 Nu
nu
en
(ξ)




nu,e
dof

×nsd

(A.20)

[GRAD (Nu,e)]T =



Nu
1,1 (ξ) 0 0 Nu

1,2 (ξ) 0 0 Nu
1,3 (ξ) 0 0

0 Nu
1,1 (ξ) 0 0 Nu

1,2 (ξ) 0 0 Nu
1,3 (ξ) 0

0 0 Nu
1,1 (ξ) 0 0 Nu

1,2 (ξ) 0 0 Nu
1,3 (ξ)

...
...

...
...

...
...

...
...

...

Nu
nu
en,1

(ξ) 0 0 Nu
nu
en,2

(ξ) 0 0 Nu
nu
en,3

(ξ) 0 0

0 Nu
nu
en,1

(ξ) 0 0 Nu
nu
en,2

(ξ) 0 0 Nu
nu
en,3

(ξ) 0

0 0 Nu
nu
en,1

(ξ) 0 0 Nu
nu
en,2

(ξ) 0 0 Nu
nu
en,3

(ξ)




n

(A.21)
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[GRAD (Nχ,e)] =



Nχ
1,1 (ξ) 0 . . . Nχ

2,1 (ξ) 0 . . . Nχ
nχ
en,1

(ξ) 0 . . . . . .

Nχ
1,2 (ξ) 0 . . . Nχ

2,2 (ξ) 0 . . . Nχ
nχ
en,2

(ξ) 0 . . . . . .

Nχ
1,3 (ξ) 0 . . . Nχ

2,3 (ξ) 0 . . . Nχ
nχ
en,3

(ξ) 0 . . . . . .

...
. . .

...
...

. . .
...

...
. . .

...

0 0 . . . Nχ
1,1 (ξ) 0 . . . . . . 0 . . . Nχ

nχ
en,1

(ξ)

0 0 . . . Nχ
1,2 (ξ) 0 . . . . . . 0 . . . Nχ

nχ
en,1

(ξ)

0 0 . . . Nχ
1,3 (ξ) 0 . . . . . . 0 . . . Nχ

nχ
en,1

(ξ)




(nsd∗nsd∗nsd)×n
χ,e
dof

(A.22)

[Nχ,e] =




Nχ
1 (ξ) 0 . . . Nχ

2 (ξ) 0 . . . Nχ
8 (ξ) 0 . . . 0

0
. . .

...
...

. . .
...

...
. . .

...

0 0 . . . Nχ
1 (ξ) 0 . . . . . . 0 . . . Nχ

8 (ξ)



(nsd∗nsd)×n

χ,e
dof

(A.23)
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A.2.2 Preconditioned Conjugate Gradients

Shewchuk (1994) gives a very brief summary of preconditioned conjugate gradient

method which is used in Section 7.2.3.

i⇐ 0

r ⇐ b−Ax

d⇐M−1r

δnew ⇐ rTd

δ0 ⇐ δnew

While i < imax and δnew > ǫ2δ0

q ⇐ Ad

α⇐ δnew
dT q

x⇐ x+ αd

If i is divisible by 50

r ⇐ b−Ax

else

r ⇐ r − αq

s⇐M−1r

δold ⇐ δnew

δnew ⇐ rT s

β ⇐ δnew
δold

d⇐ s+ βd

i⇐ i+ 1 (A.24)
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where A, b are inputs, M is preconditioner, and x is a starting value. Shewchuk (1994) states

that the perfect preconditioner is M = A.
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