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Isbuga, Volkan (Ph.D., Civil, Enviromental and Architectural Engineering)
Finite strain micromorphic finite element analysis of elastoplastic geomaterials

Thesis directed by Dr. Richard A. Regueiro

A three dimensional micromorphic finite strain linear isotropic elastoplastic model for
geomaterials is developed and implemented into a finite element code. First, we present the
finite element formulation and implementation for the finite strain elasticity together with
various examples to investigate the effects of the additional degrees of freedom, additional
elastic moduli, length scale, and boundary conditions on micro-displacement tensor field that
are all introduced by the micromorphic continuum. We present some findings and results
of the finite element analysis of one dimensional and three dimensional problems. Three
dimensional results demonstrate that the micromorphic contribution leads to unpredicted
behavior under three dimensional stress states, whereas a one dimensional example presents
comparatively clear trends for different cases. Examples also present length scale effects
and computational benefits of the formulation by direct finite strain elasticity by providing
a comparison with rate form of semi implicit time integration formulation in the Total
Lagrangian finite element implementation.

The work, then, is extended to finite strain micromorphic elastoplasticity by using
slightly different types of yield criteria. We assume yield functions to be in the form of
standard Drucker-Prager yield condition and a similar form of a Drucker-Prager-like yield
function. The effect of elastic length scale is investigated in a one dimensional problem,
together with the different yield functions and micro boundary conditions. We also consider
a plain strain problem as more advanced geometry compared to the one dimensional example.
The results which are obtained by Drucker-Prager-like yield criterion including micromorphic
terms for this plain strain problem are presented to compare the effect of different number

of additional degrees of freedom and the effect of the boundary conditions on the micro-



displacement tensor field as well.
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Chapter 1

Introduction

1.1 Motivation: Concurrent Multiscale Computational Modeling for Bound

and Unbound Particulate Materials

The ultimate goal of multiscale modeling is to use lower length scale analytical /nu-
merical modeling to better inform the ‘macro’-scale model of interest, and to do so in a
computationally-efficient manner. With regard to localized deformation (shear banding,
fracture, large deformation adjacent to a contacting deformable body, ...), this takes on the
additional challenge that the boundaries of the lower length scale model (we will call “grain-

scale""

,or “mesoscale”; see Figures 1.3, 1.4) must be handled carefully so as not to artificially
influence the resulting numerical simulations of localized deformation (Figures 1.1, 1.2). The
primary motivation for the research proposed for this thesis is to address such
boundary condition (BC) issues, while properly upscaling/informing/coupling to the
macroscale simulation domain. This will be done by developing a finite strain micromor-
phic elasto-plasticity model (Figure 1.6) in a coupling/overlapping/handshaking region (see
Figure 1.5 for unbound particulate material, and Figure 1.7 for penetration into bound par-
ticulate material). Because some of the classes of materials of interest are bound (Figure
1.3) and unbound particulate materials (Figure 1.4) that are frictional in nature, a pressure-
sensitive finite strain micromorphic elastoplastic model is formulated and implemented in a

research finite element code, Tahoe sourceforge.net/projects/tahoe.

The failure in bound particulate materials may be considered as the combination of



some processes such as grain and matrix deformation, intra-granular cracking, matrix crack-
ing, inter-granular cracking/debonding. The global boundary conditions on the materials
can influence the resulting failure mode. One example of that is shown in Figure 1.1 which
presents that the confinement pressure influences fragmentation and causes the micro-cracks
to coalescence and fracture. The bound particulate materials contain grains bound by a
matrix. The heterogeneous particulate structure of these materials governs their response
at grain/micro-to macro-scales especially in initial boundary value problems in which the
localized deformation may form. The cracking in the asphalt, Figure 1.3, shows the physical

problem of localized deformation in another bound particulate material.
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Figure 1.1: 2D FE/CSE dynamic simulations of inter-granular cracking (bottom) in brittle bound
particulate material Kraft et al. (2008) showing effect of BCs (top, bottom) on coalesced micro-
cracks into fracture.
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Figure 1.2: Cross-sectional views of pile penetration (showing the medium container with 4260 el-

lipsoidal particles), and force-displacement curves showing influence of boundaries on pile resistance
force Yan et al. (2010).



Figure 1.3: Grain-scale influence on fracture in asphalt: (a) road section, (b) close-up of fracture
pattern, and (c) grain-binder fracture path (no intra-granular fracture observed).



(a) Granular material like sand ~ (b) Picture is from http://geosystems.ce.gatech.edu
(image courtesy of Khalid Alshibli, /Faculty /Mayne/Research /index.html
University of Tennessee, Knoxville)

Figure 1.4: (a) Sand grains (b) Cone penetrometers

Multiscale modeling may be a way to account for the micro-structural behavior of the
bound particulate materials, in which particles/grains are connected by a binder material,
such as concrete(aggregate and cement), asphalt (aggregate and viscoelastic binder), sand-
stone (sand and clay matrix), etc., and also unbound particulate materials, in which no
binder exists, such as sand, gravel. Multiscale methods are expected to give accurate results
but with less computational cost compared to Direct Numerical Simulation (DNS) over the
whole spatial domain of interest (Fish (2006)).

Fish (2006) reviewed the methods available to bridge the grain/particle/fibers and
macro continuum scales by grouping them into two main parts as: information-passing (hi-
erarchical) methods and concurrent methods. The information-passing methods in which
discrete scale and continuum scale is modeled separately but the overall response of the dis-
crete system is transferred to the continuum scale are divided into subclasses as: Force field
calibration, generalized mathematical homogenization, quasi continuum, multiscale enrich-
ment based on the partition of unity, variational multiscale methods, heterogeneous multi-
scale method, coarse-grained molecular dynamics, discontinuous Galerkin method, equation
free method, proper orthogonal decomposition, the Kinetic Monte Carlo based information

passing methods, atomistically informed dislocation dynamics, for instance. Whereas in
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Figure 1.5: Two-dimensional illustration of the coupling between particle and micromorphic con-
tinuum regions. The purple background denotes the FE overlap region B" with underlying ghost
particles, aqua blue the FE continuum region B” with no underlying particles, and white back-
ground (with brown particles) the free particle region B UBPE. In summary, the finite element
domain B" is the union of pure continuum FE domain B”, overlapping FE domain with under-
lying ghost particles B, and overlapping FE domain with underlying free particles ff%h, such that
Bh = BhyUBPUBP. The pure particle domain with no overlapping FE domain is indicated by BPF.

concurrent methods the discrete scale and continuum scale should be simultaneously re-
solved, oftentimes involving a "handshaking" or overlapping region Liu et al. (2006). The
concurrent methods are classified as: Domain bridging based concurrent multiscale method,

local enrichment based concurrent multiscale method, multigrid based concurrent multiscale



Figure 1.6: Multiplicative decomposition of deformation gradient F' and micro-deformation tensor
Xx- Geometrical points (“macro-elements”) with centroids C, C, and c¢ live in their respective config-

urations: P € By, P € B, and p € B. Material points (“micro-elements”) with centroids C’, C’, and
. Differential vectors and deformable directors are mapped accordingly: de = FdX, de = F¢dX,

dX = FPdX, &€ = xE, £ = x°E, and B = x'E.

method.

1.1.1 A Possible Approach to Concurrent Multiscale Modeling

Discrete element method (DEM)(Cundall and Strack (1979); Scott and Craig (1980);
Bashir and Goddard (1991); Anandarajah (1994); Wren, J.R. and Borja, R.I. (1997); Luding

et al. (2001); Masson and Martinez (2001)) can treat each particle with their real physical
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Figure 1.7: 2D illustration of concurrent computational multi-scale modeling approach in the con-
tact interface region between a bound particulate material (e.g., ceramic target) and deformable
solid body (e.g., refractory metal projectile). The DE and/or FE representation of the particulate
micro-structure is intentionally not shown in order not to clutter the drawing of the micro-structure.
The grains (binder matrix not shown) of the micro-structure are ‘meshed’ using DEs and/or FEs
with cohesive surface elements (CSEs). The open circles denote continuum FE nodes that have
prescribed degrees of freedom (dofs) D based on the underlying grain-scale response, while the solid
circles denote continuum FE nodes that have free dofs D governed by the micromorphic continuum
model. We intentionally leave an ‘open window’ (i.e., DNS) on the particulate micro-structural
mesh in order to model dynamic failure. If the continuum mesh overlays the whole particulate
micro-structural region, as in Klein and Zimmerman (2006) for atomistic-continuum coupling, then
the continuum FEs would eventually become too deformed by following the micro-structural motion
during fragmentation. The blue-dashed box at the bottom-center of the illustration is a micromor-
phic continuum FE region that can be converted to a DNS region for adaptive high-fidelity material
modeling as the projectile penetrates the target.

sizes separately. The method takes into account the contacts between the particles rather
than applying a homogenization rule over the domain. Therefore, DEM may be the most

suitable approach to model the granular materials. However, DEM requires extensive com-
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putational power which does not make it very useful for many problems even for small
regions. One approach to utilize this method is to couple the DEM method with higher
order continuum models.

Although DEM is an effective approach for modeling the micro-structure, its applica-
bility is limited by the available computational power. A proposed approach by Regueiro
(2010) aims to resolve this problem by developing a concurrent multiscale model which is
coupling the region of the dry flowing particulate to the region of continuum deformation. In
this method, the total domain is simply formed by subregions shown in the figures 1.5 and
1.7; (i) the first region is consisting of only discrete particles modeled by DEM. This particle
region is including particle mechanics and assumed to go under large deformation. Thus, it
important here is to apply the higher-resolution models; (ii) the second region is the overlap
region which is bridging the particulate structure to the FE micromorphic continuum field
and it is including ghost particles whose motion is prescribed by the continuum field; (iii) the
third region is the modeled again by the FE micromorphic higher order continuum theory
but with underlying free particles. The regions, (ii) and (iii) have a lower-resolution model
compared to the part (i), although it has a better and higher-resolution approach than the
classical continuum theory; (iv) the last region is the FE micromorphic continuum region
which is assumed to not to have any underlying structure. Compared to modeling the whole
region by DE, this approach provides a computationally less expensive, thus, preferable
approximation to the problem without ignoring underlying micro-structure.

The particle-continuum coupling method is following the method called * bridging
scale decomposition” proposed by Wagner and Liu (2003) and then developed by Klein and
Zimmerman (2006). The method is known to minimize the fictitious forces which occurs due
to improper distribution of the potential energy in the overlap region for quasi-static case and
wave reflections for dynamic case. However, these two studies were based on the atomistic
structure coupling with continuum region. In the current research, the atomistic structure

is replaced by particulate structure. Besides, this approach will have a different energy
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partitioning and it will involve the only quasi-static case. The proposed approach by Regueiro
(2010) is involving the inelastic deformation modeling in both particle and continuum regions,
and providing a higher resolution over the continuum regions by introducing higher order
micromorphic continuum theory. The kinematics of the coupling may be summarized by
using the same notation of Wagner and Liu (2003); Klein and Zimmerman (2006). The

particle displacements and rotations are defined as:

Y V]

U= Uy, UG, ooy U, Ba, 06’ ,07 7avﬁ7 """ 776‘/4 (11)

where u,, is the o particle’s displacement, 6, is the a particle’s rotation and A is the set
of all particles. Likewise, the nodal displacements and micro-displacement gradient fields

assoclated with the finite element mesh are :

D=\|d, dy .., d., b, by .y ¢, | » @b .cEN (1.2)

where d,, is the displacement of the node a, ¢, is the micro-displacement gradient field at
the node a, N is the set of the all nodes. The particles shown in the overlap region in the
Figure 1.5 are called the “ghost particles” and their motions are prescribed by the continuum
displacement field. It can be written as U € fL, where U shows the prescribed particle
motions. The unprescribed particle motions are denoted by U and U € A where AUA = A
and ANA = 0. Likely, the node displacements and micro-deformation of continuum finite
element on the particle region are prescribed by the particle motion and represented as
DeNXN , and the unprescribed node displacements and micro-deformations are D € N, M
where NUN = N ,NNN = 0. The energy partitioning will follow the concept in Klein
and Zimmerman (2006) and it depends on the DE equations for particles and micromorphic
continuum FE equations for the continuum field on the overlap region.

Coupling and bridging should not be confused by each other. Coupling mentioned
above means taking part interactively between particle and micromorphic continuum region

and vice versa. Whereas, bridging between underlying particle structure and overlaying
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continuum scale is an issue accounted by micromorphic continuum theory within a finite
strain inelastic constitutive model proposed by Regueiro (2009),Regueiro (2010) (the details
on this model and its application to a soil model will be given in the next chapters).
Eringen (1999) states that if the ratio of the characteristic length associated with the
applied load to the internal characteristic length is close to one, then, the response of the
particles may change the behavior of the body dramatically. It must be noted that we have
a pure particle approach in particle region in which the particle dimensions (characteristic
length) become a very important factor. Therefore, having extra degrees of freedom, the
micromorphic continuum theory helps to define proper B.C.’s on particles in the overlap
region, thereby, it is expected to provide a smoother transition between the regions. The
standard continuum models do not have this extra kinematic property so that the BC’s
may not simulate this transition and also the shear bands in particle region. Since the
micromorphic continuum theory involves plasticity parameters, initially, the micromorphic
continuum and particle region will be assumed to overlap each other completely so that these
parameters can be obtained by inverse analysis via the particle based triaxial compression
simulation tests. For fully overlapped regions, these particle scale parameters can be related
to micromorphic continuum scale parameters via a homogenization approach with weighted
averaging integrals for each desired field. If the averaging operator is shown by (e) | for

instance, Cauchy stress tensor o and higher order stress tensor m can be obtained as:
def particle def particle
Tij = <Uij > ) Mijk = <Uij &k (1.3)

It may be summarized that the higher order continuum theories are more applicable
than the standard continuum theories in modeling (Chambon et al., 2004; Regueiro, 2009,
2010) when (i) size effects of the micro-structure becomes important under large deformation
gradient as in granular materials, (ii) strain localization which yields to failure occurs, (iii)
bridging the different scales in the multiscale modeling is needed. The theory of higher order

micromorphic continuum including balance equations and definition of the higher order stress
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tensors appearing in the balance equations will be explained in the next sections.

1.2 Background on Generalized Continuum Theories

The classical continuum theories have been applied widely to model the behavior of
physical bodies which may be subjected to some external forces, for instance: mechanical
forces such as traction forces or subjected to some body forces such as gravity and magnetism.
Generally, these bodies may be in the form of a collection of many deformable sub-bodies.
The classical continuum approaches ignore the micro continua of a body, accordingly, the
independent micro particulate motion and its contribution on the total response to the
applied forces. This kind of continua, formed by many small bodies and whose material
points are endowed with additional degree of freedoms, are referred as generalized continua
(E. Kroner, ed. (1968),Green and Naghdi (1995)). Therefore, a continuum theory which
incorporates the local motion of sub-bodies in the continuum body by introducing additional
degrees of freedom with higher derivatives of a continuum field can be shown to provide a
means for accounting for these sub-bodies’s physical response on the overall continuum body.

One important potential use for generalized continua is to bridge the length scale of
the micro-structure on mesoscale to the macro-scale engineering applications (see previous
section). The significant aspect of bridging the grain/particle/fiber micro-structure to the
macro continuum is to transfer the essential information from the micro-structure to macro
continuum response while proposing a cost efficient approach which is needed to apply to
solve problems for the region of interest.

The classical continuum theories with constitutive relations accounting for the mi-
crostructural mechanics have been applied to model the granular materials(Christoffersen
et al. (1981); Rothenburg and Selvadurai (1981); Jefferson et al. (2002); Chang et al. (1992);
Gardiner and Tordesillas (2004); Luding (2004); Nemat-Nasser (2004); Peters (2005)). These
approaches were mainly based on the particle contact interaction and aimed to infuse partic-

ulate structure into continuum theory. A wide range of study exists in the literature on the
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constitutive modeling for granular media which is not possible to review here, however, some
of the recent research give an overall idea about common assumptions for the derivations of
these approaches. For instance, Chang et al. (1992) described a model to predict the initial
moduli, secant moduli and damping ratio of the granular materials at small strain and stress
strain behavior of the material subjected to different stress paths at large strains. In the same
work for finite strain case, they introduced the term “micro-elements” which are formed by
spherical particles. In their approach, they had to idealize the material with certain number
of the micro-elements which were consisting of the same micro-elements but rotated on the
axes. They observed similar behavior for sands under different loading conditions. Jefferson
et al. (2002) presented a discrete element model for a cohesive aggregate consisting of elastic
particles. A superposition approximation was utilized to obtain the coupled force and dis-
placement on a particle due to interaction by neighbor particles within the aggregate. The
model was found capable to capture the rigid body rotations of the aggregate, however, it
was stated by the authors that the relative rotational motion between particles were ignored
and additional rotational degrees of freedom are required to capture the particle rotations
and moments. Gardiner and Tordesillas (2004) proposed a model incorporating the sliding
and non sliding particles contact as well as rolling resistance of the particles and loss of
contacts among them. It was based on homogenization for the discrete elements at small
strains. The stress tensor and the higher order stress tensor appearing in the micro-polar
theory, constitutive laws, were determined by these homogenization integrals.

Generally, these approaches are limited by rigid body rotation of elastic, small strain
response of a single particle, particle cluster or some formations including these particles
such as micro-element as aforementioned above. Often times, the main assumption made in
these models is limiting the micro-structural behavior to have only rigid rotations, although
the particles(or,rather, cluster of particles) represent not only micro-rotation but also micro-
shear and micro-dilatation/compaction(stretch). The research on the constitutive modeling

for granular media is on going and, for the readers interested in this topic, the more detailed
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reviews and the methods are available in the literature, such as Kolymbas (2000).

1.3 Summary and Comparison of Modeling Efforts on Micromorphic Con-

tinua

Generalized continua are classified into two main categories; (i) the higher grade con-
tinua in which displacement field and its higher derivatives are involved such as strain gra-
dient methods, (ii) the higher order continua in which additional independent kinematic
degrees of freedom and higher order stresses are incorporated at each material point in the
continuum (Forest and Sievert (2003)).

As aforementioned, the higher order (or generalized) continua incorporates additional
independent kinematic degrees of freedom. A higher order continuum may be called differ-
ently depending on the number of additional independent kinematic degrees of freedom it
involves. Eringen (1999) classifies the theories as: The first and the most generalized case of
the higher order continuum is the micromorphic case which has nine extra degrees of freedom
through the unsymmetric micro deformation tensor x which is actually representation of a
material point with three deformable directors. Then, the microstretch continuum is the case
of four extra degrees of freedom which are three microrotations and one microstretch. Lastly,
the micropolar continuum has three extra degrees of freedom which are only microrotations
which occurs when a material point has three rigid directors.

A wider classification of the generalized continuum theories (based on the degrees of
freedom they include) at finite strain and at infinitesimal strain cases can be summarized in

the following table:



Table 1.1: Hierarchy of the generalized continua by Forest and Sievert (2006)

Name Number DOF (inﬁ]zi?(iimal References
of DOF | (finite case)
case)
Truesdell
Cauchy 3 u u and Toupin
(1960)
Microdilation 4 u, Y u, X -
Cosserat
and
Cosserat
Cosserat 6 u,r u, (1909):
Eringen
(1968b)
Kafadar and
Microstretch 7 u,x,r u,x, P Eringen
(1971)
Incompressible 3 u,“C u, ‘e i
microstrain det(XC) =1 trace(xe) =0
Forest and
Microstrain 9 u, e u, Xe Sievert
(2006)
Incompressible 1 u, X u, X
micromorphic det(x) =1 trace(x) =0 i
Eringen and
Suhubi
Micromorphic 12 u, X u, xX° + x* (1964);
Mindlin
(1964)

In the table above, u is the displacement vector, r is the independent micro-rotation
tensor in finite strain case, ® is the independent micro-rotation tensor for infinitesimal case,

X is the scalar representing the microdilatation, x is the microdeformation tensor, C = x"x
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is the tensor with the components of the symmetric right Cauchy-Green tensor associated
with the microdeformation tensor, Yeisa symmetric tensor defined by Ye = x°—1, x® and x*
are the symmetric part and antisymmetric part of the microdeformation tensor respectively.

Efforts on modeling generalized continua may be said to start with the Cosserat broth-
ers who introduced three additional degrees of freedom to the standard Cauchy continuum
(Cosserat and Cosserat, 1909). The theory assumed that each material point is represented
by a rigid body including three additional degrees of freedom which correspond to the rigid
body rotations of particles (or sub-continuum bodies) also called microrotations. The the-
ory has been developed and generalized by the contributions of many authors by the time.
Some of these works and some kinematics relations which were used to derive the balance
equations and these resulting equations are briefly mentioned below.

Mindlin (1964) for small strain theory assumed that in each material volume V' which
has the material position vector X; and bounded by a surface S has an embedded micro
volume with material position vector X! before deformation and the spatial position vector

x} after deformation. The macro displacement u also was expressed as:

u =x; — X; (1.4)
and the micro displacement u’ was defined as:

up = — X (1.5)

Then, it was assumed that the micro displacements can be written as a function of the
specified spatial micro position vector z and an arbitrary function that depends on the

macro spatial position vector x; and time ¢ as:
w; = )i (T, t) (1.6)

The displacement gradients were assumed small so that the displacement gradients in mate-

rial and spatial coordinate system were approximately the same (small strain and rotation
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assumption).

Ou; O deg ou; 0w deg

~ 2 N 1.7
ox; " ox, M oxt T ax, — Y (.7

where the macro displacement and the micro displacement were defined, respectively, as
u; = u;(x;, t) and u; = w}(z;, 25, t). Then, the macro strain, the micro displacement gradient,

the micro deformation gradient, and the relative deformation, were obtained respectively as:

€ij = % (uij + uj) (1.8)
O’y = Py (1.9)
stijr = Oihjx (1.10)
Vig = Ohuy — Yy (1.11)

A graphical interpretation of the displacement gradient, micro displacement gradient, and

relative deformation, may be shown in Figure 1.8. The micro strain and micro rotation was
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Figure 1.8: Graphical representation of v12 component of the relative deformation by Mindlin (1964).

defined respectively by the symmetric part and antisymmetric part of ¢;; as :
1
Yy = 5 (Wig + ¥ji) (1.12)

1
Vi) = 5 (Vij — ¥ji) (1.13)
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The physical explanation of the some components of micro deformation gradient sz,
and associated higher order stress tensor p;;; appearing in Mindlin (1964) can be shown
in Figure 1.9. Following the kinematic assumptions mentioned above, Mindlin (1964) for-
mulated an approach in small strain linear elasticity with micro-structure and obtained the
stress equations of motions and constitutive equations as well. The assumed potential func-
tion, stress definitions and field equations will be mentioned here without the details in order
to point out the differences with the work proposed by Eringen and Suhubi (1964), however,

the constitutive equations and details on the formulation will not be considered. Mindlin
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Figure 1.9: Graphical interpretation of higher order stress tensor by Mindlin (1964).

assumed a potential energy function which depends on €, v and s as:
W =Wi(e,~, ) (1.14)

then, applying the Hamilton’s principle and defining the stress tensors as:

ow
Tij = de, (1.15)

B 9vij
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ow
= ——— 1.17
2 Jk a%ijk ( )
resulted in the field equations:
Oi(7ij + 035) + [ = piiy (1.18)
1 192 0
Oittiji + 0ji + Pji = gp dzﬂﬁzk (1.19)
where
dz, = dydy (0,101 kil + 0p20g2lkalia + 0p3043lksli3) (1.20)
and the boundary conditions are:
tj - ni(TZ‘j -+ Uij) (121)
Tk = nifiiji (1.22)

where p’ is the mass of the micro material per unit macro volume, d; are the edge lengths of a
parallelepiped considered as micro-volume, /;; is the direction cosines with respect to axes z,
®,; is a tensor representing body double force per unit volume which is work conjugate to 1;;,
7;; is the symmetric Cauchy stress tensor which is the work conjugate to €;;, 0;; was called
“relative stress” tensor by Mindlin and work conjugate to «;; tensor, and the higher order
stress tensor ;5 is called “double stress tensor” in which the components are interpreted as
the double forces and work conjugate to .

Eringen and Suhubi (1964) proposed a finite strain theory to provide field equations,
boundary conditions and constitutive equations for a micromorphic continuum by making
use of kinematic relations mentioned below.

They started with a representative macro volume element, dV, in the reference con-
figuration, with a differential mass dM and associated mass center X. The macro element
occupies a space after deformation in spatial coordinates with a center . The macro ele-

ments were assumed to involve micro volume elements, dV’, in the reference configuration.
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A material point in reference configuration has a position vector expressed with X’ also
occupies a unique point in spatial coordinates @’ after deformation that means a one to one

mapping which can be defined as (see Figure 1.10):
' =x(X',t), X'=X(x',t) (1.23)

It was assumed that there was a continuous mass density over the macro element. Then,
the total mass of the macro differential volume element dM was assumed to be average of

local masses of the micro volume element by some integral approximations as follows:

/ podV' = podV, / pdv' = pdv (1.24)
av dv

where pf, p' are the mass densities, respectively, at material point X' and spatial point
a’. The average mass densities of the undeformed macro differential volume dV and the
deformed macro differential volume dv are p, and p respectively. It should be noted that all
the quantities associated with the microelements are primed letters.

A point in the micro volume at undeformed and deformed configurations, respectively,
X' and x’ can be expressed in terms of the mass center point coordinates of the macro
volume X and the relative position vector with respect to the macro volume mass center =

as:

X'=X+E, =x+¢ (1.25)

where £ = (X, E,t). It was assumed that for small length of E, & can be accepted as the

analytical function of E and written as:

¢ :£(X,0,t)+g—§E+H.O.T. (1.26)

Since £(X,0,t) = 0if E = 0, and the higher order terms (H.O.T.) are ignored, this equation

reduces to

(11

fi|

(1.27)
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and a micro deformation tensor is defined as:

ef O
= 1=2=0
BO t:to
P(X,E)
R B t=t
AR C p(x, &, 1)

X3 T = o
vy
@ 1~/ Jc ¢

Figure 1.10: Deformation of macro differential volume and micro differential volume by Eringen

(1968a).

The equation (1.28) is based on the assumption of the affine transformation of macro differ-
ential volume dV (but the overall continuum body B can deform heterogeneously). Then,
with this assumption, the spatial position vector of the micro differential volume centroid

can be written as:

(X, B t)=x(X,t)+&(X,E ) (1.29)
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Then, taking time derivative of the equation (1.29) by keeping X and E fixed gave :

' =x+ xE (1.30)
=z +xx ¢ (1.31)
v =v+vE€ (1.32)
where
v=xx" (1.33)

where v’ is the velocity vector of the micro differential volume in the current configuration,
v is the mean velocity vector of the macro differential volume in the current configuration,
and v is the micro-gyration tensor. Similarly, the acceleration vector a’ for micro differential

volume was defined by taking the second time derivative of the displacement field as:
a' =& =i +Xx 6+ XX TE XX TE (1.34)
a=a+@+rv)€ (1.35)

The deformation measures which were constructed to be invariant under the rigid body

motions were defined in Cartesian coordinates as:

Ckr = Tk KTk L » VgL = Tk XkL kv = gk Xkn,m (1.36)

aZBk
0X Kk

where z;, x = . This set of deformation measures can be found by calculating the square

of the deformed arc length starting from writing the incremental form of the equation (1.29)

as (Suhubi and Eringen (1964); Eringen (1999)):
drj, = xp, kdX e + XexdZx + Xex 1 Exd X (1.37)
the square of the arc length in the current configuration is:

(dsl)z = daydz), = [T xTrr + 2Tk gk XkL + Th LXkMK)EM
+XeM K XEN,LEMEN] dX gk d X,

+2(zp,k XkL + XerXem, k=) dX kd2 L + Xex XeLd=EdEL (1.38)
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where iz = Vi Xk, and xipr v = kv Xk p. If the deformation measures defined in the

equation (1.36) are inserted in the equation (1.38), it becomes:

(ds')? = (CKL + 220 UL + EMENFPMLFRNKC;}Q) dXgdXy,
+2(VUgr + EpnUnilruxCyy) dExdX )

+ \IIMK\I’NLCJ\_/[INCZEKCZEL (139)

where CI_{lL = XgXpi It is seen from the equation (1.39) that the arc length can be
expressed in terms of the deformation measures defined in the equation (1.36). The different
deformation measures have been defined by different authors (Eringen and Suhubi (1964);
Suhubi and Eringen (1964); Sansour (1998); Forest and Sievert (2003, 2006)) for the various
constitutive assumptions. We will use the set in Suhubi and Eringen (1964) which comprise
one distinct set.

In order to obtain the local balance of momenta at mass center of the macro differential
volume at deformed configuration, Eringen and Suhubi (1964) multiplied the Cauchy’s law of
motion with the two weight functions separately and integrated it over the macro differential
volume (details about deriving the balance equations and approach will be given in section
2.2). Tt resulted in the two balance equations; (i) the well known balance of linear momentum,
and (ii) the balance of first moment of momentum. They may be given in the Cartesian

coordinate system as:

oy + p(fr —ax) =0 (1.40)
Ot — Smi + Mg + P(Nim — Wim) = 0 (1.41)

where oy, are the components of the unsymmetric Cauchy stress, p is the mass density, fi
are the components of the body force vector per unit mass, a; are the components of the
acceleration vector per unit mass, s, are the components of the symmetric micro-stress
tensor, my, are the components of the higher order couple stress, \;,, are the components

of the body force couple tensor per unit mass, wy, are the components of the micro-spin
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inertia tensor per unit mass. This research is following the method of Eringen and Suhubi
(1964) in application of the finite strain plasticity approach proposed by Regueiro (2010),
therefore, the balance equations will be visited separately in the next chapters while giving
the detail on the finite strain elasticity equations.

Germain (1973) provided a new approach in determining the balance equations of the
generalized continua by implementing the classical method of virtual work principle. The
method presented that the virtual power method can be a short way and an applicable tool
besides the conventional methods used by other researchers in the literature. He mentioned
that the significant point in constructing a continuum theory is to choose the kinematics
relations which will be used in the virtual power method. In his work, Germain assumed
that there was a continuum particle point P(M) of small extent with the mass center M,
then there exist a point M’ in the P(M). The coordinates of M and M’ were denoted by «
and ' respectively. The velocity of the M was shown by U; and the velocity of M’ was shown
by U/ . Taylor expansion of U] with respect to &’ was given for the first order approximation
as:

Ui = Ui + xi;] (1.42)

where y;; is the gradient of the relative velocities of P(M). The relative microvelocity, n;;,
and the gradient of the microdeformation tensor, s, were defined similarly by Mindlin

(1964)’s approach but in terms of gradient of the velocities as:
Mij = Uij — Xij » Hijk = Xij.k (1.43)

By choosing the independent kinematic fields as U; and yx;;, and the first gradient theory
which indicates that the first gradients of the chosen fields with their work conjugate stresses
will be also in the virtual power density, the virtual power of the internal forces, Py,
was consisting of the linear combination of the set U j,;;, 24, and their work conjugates

Oij, Sij, Viji Tespectively. Then, omitting the details, the virtual power of the internal forces
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in the domain D was expressed as:
Pty = /D {03+ 55) Usg — 81333 + vighoga} dv (1.44)
Then, the virtual power of external forces was introduced as:
Pleat) = /D (fiUi + Uyixi5) dv (1.45)

and the virtual power of the contact forces was also expressed as:
[P(cont) = / (EUZ + MZ]XZ]) dA (146)
s

where f; are the components of the body force vector, o;; are the components of the in-
trinsic part of the stress tensor, s;; are the components the microstress tensor, v;;, are the
components of the second microstress tensor, ¥,; are called the components of a volumetric
body force couple, M;; are the components of a double force traction tensor, and 7; are the
components the traction vector. The power of the internal forces should be equal to the

summation of the power of the external and the contact forces as :
iP(mt) = [P(emt) + iP(cont) (147)

For arbitrary variations of U; and x;; , one can get the equations below:

Tij = 045 + Sij (1.48)
T+ [i=0 (1.49)
Sij + Vijkp + Vi =0 or Tij — 0ij + Vijkr + iy =0 (1.50)
with boundary conditions
T, = 7ijn; (1.51)
Mij = VijkNk (1-52)

where 7 is the Cauchy stress tensor. In summary, if we compare all these three methods, we

see that although the balance equations obtained by these three authors are including the
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higher order stress tensors and/or microstress tensors as a result of accounting for micro-
continuum, the resulting balance equations are different. Mindlin (1964) applied Hamilton’s
principle to derive the governing equations and assumed a potential energy density which
depends on the deformation measures that he chose. Then, he defined the stresses as the
partial derivative of the potential energy function. However, Germain (1973) applied the
virtual power method and found different field equations depending on the different stress
tensors than those of Mindlin. On the other hand, Eringen and Suhubi (1964) wrote bal-
ance equations for microfield and applied an integral averaging method with a variational
approach to obtain the macro continuum field equations. As forementioned, the micro-stress
tensor, the higher order couple stress tensor, Cauchy stress tensor, body force per unit mass
tensor and micro spin inertia tensor were given in integral form by Eringen and Suhubi
(1964). Defining especially the macro stress tensors in integral form provides an insight for
physical meanings of these tensors which are based on the micro field parameters.

Lastly, we may summarize some of the recent research on micromorphic continua very
briefly. Sansour (1998) modified the strain measure set used by Eringen and his co-workers
to be invariant with respect to not translations but rotations only. Sansour introduced the
constitutive laws in the microstructure scale and introduced an approach for modeling finite
strain viscoplasticity. He obtained higher order stress tensors with some integral averaging
definitions of microstructure which were assumed to be computed numerically. However,
Sansour did not carry his work on a detailed formulation of micromorphic elastoviscoplastic
constitutive model.

Vernerey et al. (2007) applied a multiscale micromorphic model for hierarchical ma-
terials. They followed the approach of Mindlin (1964) and Germain (1973). The theory
considered the material in different scales depending on the variations in its inherent mi-
crostructure such as mass density variation at different I scales. The assumed virtual power
density was a linear combination of velocity of macroscale, velocity differences between macro

and microscale, and velocity gradient of microscale. The work conjugate to these measures
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were defined respectively as the macrostress, the microstress, and the microstress couple
which were defined in a statistical averaging manner. Having I different scales, the virtual
power density involves a summation of velocity differences between macro and each Ith mi-
cro scale and velocity gradient each Ith microscale. The first governing equation in which
the summation of the microstresses are subtracted from the macrostress reduces to the well
known balance of linear momentum if these microstresses are ignored. The second governing
equation was expressed as the local equilibrium between microstresses and written for each
microscale separately.

Lee and Chen (2003) formulated the constitutive equations for micromorphic thermo-
plasticity using the Eringen and Suhubi (1964)’s kinematics and balance laws. Their work
was different than that of Regueiro (2009, 2010) in a sense that they applied entropy in-
equality in Lagrangian form and used Lagrangian definitions of the strain tensors and their
time rates as well as temperature and its spatial and time derivatives rather than utilizing
multiplicative kinematics and intermediate configuration.

Forest and Sievert (2003, 2006) reviewed the models for generalized continua. Forest
and Sievert (2003) constructed a framework for elastoviscoplastic constitutive modeling of
generalized continua. They applied virtual power method in formulating the balance equa-
tions as Germain (1973). They used different invariant deformation measures than the set
proposed by Eringen (1999) and also used by Regueiro (2010, 2009) which will be followed
in this research.

The research on the generalized continuum theories in the both higher order continua
and higher grade continua is still on going. Since our interest is on the micromorphic con-
tinuum, we do not review the higher grade continuum theories here. However, for the higher
grade continua, the strain gradient methods for elastic and inelastic application have been
done by the many authors. Some examples on higher grade media can be given as Mindlin
and Eshel (1968); Ramaswamy and Aravas (1998); Zervos et al. (2001, 2009); Chambon et al.
(2004, 2001b,a); Tamagnini et al. (2001); Matsushima et al. (2000); Voyiadjis and Al-Rub
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(2005); Forest and Sievert (2006, 2003).

Forest and Sievert (2006) gave some guidelines based on the previous research done
in literature to choose the proper higher order continuum or higher grade continuum in
modeling material response. According to Forest and Sievert (2006) and references therein,
use of microdilatation theory which is including only one additional degree of freedom may be
an efficient way in modeling the material in which the microvolume changes are important. If
the rotation effects are dominant, as mentioned in previous sections, the Cosserat continuum
(or Micropolar) can be applied to simulate the material behavior. The microstretch theory,
on the other hand, was found to be applicable in modeling deformations of biomaterials.
The microstrain theory was candidated in order to model the strain localization in metallic
foams where the other higher order continuum models are neither appropriate nor sufficient.

Some of the recent works are: Sansour et al. (2010) presented a formulation for the mi-
cromorphic continuum at finite strains inelasticity by following his previous work (Sansour,
1998) that is within viscoplasticity concept. In his work, he specifically mentioned the impor-
tance of choice of additional degrees of freedom; Zhang et al. (2011b) presented a small strain
micromorphic mixed hardening plasticity model to capture the size effect and Bauschinger
effect in cyclic response of thin films; Zhang et al. (2011a) used to same approach to analyze
the wedge indention of a thin film on a substrate by using elasto-plasticity;Grammenoudis
et al. (2009) and Grammenoudis et al. (2010),respectively, demonstrated the theoretical for-
mulation of finite deformation plasticity a micrmorphic continuum coupled with damage and

small deformation plasticity coupled with damage, together with the implementation.

1.4 Determining the Micromorphic Material Parameters

Apparently, one of the main issues in implementation will be the determination of the
additional micromorphic material parameters. To determine the micromorphic parameters,
it may be possible to make use of the underlying DNS domain by assuming that the mi-

cromorphic continuum FE and underlying DNS synthetic domain are initially completely
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overlapped. The material parameters of DNS domain can be determined by using existing
experimental data or some future experiments. To use this approach, various simulations on
the DNS domain may be performed and micromorphic continuum homogenization (Figure
1.11) can be utilized to calculate stresses and deformation. Then, having the stresses and
deformation, we may be able to do an inverse analysis to fit the micromorphic parameters.
The micromorphic homogenization formula is expressed below to express how to relate a
micro-scale field parameter to its corresponding micromorphic continuum field parameter by

using a weighted average of a micro-scale field given below.

1

QW,avyg

/ w (r,0,9) a™ " °dv (1.53)

maicro

where @™ is a micromorphic continuum scale field, a is the corresponding micro-scale
field, (.) shows the averaging operator, v**9 o fﬂ(wg w(r,0,9)dv is the weighted average
current volume, w (r,0,v) is the kernel function, & is the relative position vector within
the the macro-element with respect to its centroid, %9 is the micro-scale domain. In the
equation (1.53), the left hand side will be equal to the micromorphic parameter.

Another approach proposed by Vernerey et al. (2007) may be also applicable to deter-
mine these parameters. As mentioned in the previous section, they have multiple scales in
their work. In determination of the elasticity constants, they introduced also the meso-scale
in the transition of the macro-scale and micro-scale. They applied an integral averaging ap-
proach to micro-scale fields in the meso-scale domain to obtain the elasticity constants. This
approach may be utilized in DNS micro-scale domain a similar way to determine integral

averaged elasticity constants. Then, they can be assigned to the micromorphic elasticity

constants.

1.5 Novel Contributions of This Research

The main contribution of this research is that we developed a finite strain linear

isotropic elastoplastic model which is based on the most general case of the higher order
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Figure 1.11: Two-dimensional illustration of micromorphic continuum homogenization of micro-scale
response at a Gauss integration point x in the overlap region

continua (micromorphic continuum) and implemented it into the open source finite element
code “Tahoe”. These contributions will enable future researchers to resolve the issues about
the artificial boundary condition influence on the numerical simulations in the coupling /over-
lapping/handshaking region. To determine the necessary parameters appearing in the theory,
we considered the positiveness of the strain energy and related the additional elastic mod-
uli to the existing elastic Lamé parameters as proposed by other researchers in literature.
We investigated the proper boundary conditions to be used on the micro-field. Then, it is
expected to be computationally possible to make use of this higher order continuum theory
to be used in the proposed concurrent multiscale context aforementioned above. This will
allow us to model the problems in engineering science by allowing multiscale methods to

reduce the computational cost associated with attempting to predict at the grain-scale, the



32

interfacial mechanics problem (deformable solid and particulate material) and/or localized

deformation in particulate materials.
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Table 1.2: Notations used in this work
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Definitions

displacement vector

micro-displacement tensor

micro-deformation tensor

unsymmetric Cauchy stress tensor in current configuration
Second Piola Kirchhoff tensor in reference configuration
Second Piola Kirchhoff tensor in intermediate configuration
symmetric micro stress tensor in current configuration
symmetric micro stress tensor in reference configuration
symmetric micro stress tensor in intermediate configuration
higher order couple stress tensor in current configuration
higher order couple stress tensor in reference configuration
higher order couple stress tensor in reference configuration
body force vector per unit mass

acceleration vector per unit mass

body force couple tensor per unit mass

micro-spin inertia per unit mass

number of elements

number of elements nodes for u

number of elements nodes for x

number of spatial dimensions

shape functions associated with u

gradient of N" in current configuration

gradient of N" in reference configuration

shape functions associated with x

gradient of INX in current configuration

gradient of INX in reference configuration

divergence operator

variation operator

elastic material moduli in micromorphic continuum

elastic parameters in micromorphic continuum

Lamé parameters

element number

number of element degrees of freedom u

number of element degrees of freedom x



Chapter 2

Finite Strain Micromorphic Elasticity

In this chapter, we review the theory of finite strain micromorphic elasticity proposed
by the authors Eringen and Suhubi (1964) in detail. We start with kinematics, then we re-
view the balance equations and thermodynamics. Constitutive equations for material linear
isotropic elasticity at finite strain and their maps into current configuration will be presented
afterward. Then, we consider the positive definiteness of the strain energy and how this con-
dition introduces the restrictions on the elastic moduli of a micromorphic continuum. This

chapter ends with the simplification of the model to small strain micropolar elasticity.

2.1 Kinematics

In Chapter 1, we summarized the kinematics for the finite strain micromorphic elas-
ticity given by Eringen and Suhubi (1964). We go through the kinematics mentioned in the
previous section and give more details about derivation of the terms in the theory actually
proposed by the authors Eringen and Suhubi (1964); Suhubi and Eringen (1964); Eringen
(1968a, 1999).

Eringen (1999) explains the kinematics of the micromorphic continuum as follows: Let
a material point P (macroelement) have the centroid P, which have a position vector X
in a body consisting of deformable particles and some vectors attached to this point which
are accounting for the inherent structure (microelements) of the body and denoted by E,,

a=1,2,...,N. Eringen (1999) defined this medium as microcontinuum with grade N and
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he classified all the microfield theories; micromorphic, micropolar, and microstrech theories
as the microcontinuum field theories of grade 1 (o = 1). The material point P (X, E) was
defined with its centroid C' and the vectors attached to this point = in reference configu-
ration. The motion maps this material point P (X, E) and = respectively, to p (x,t) and
& (X ,E,t) and the centroid, C, to the centroid, ¢, of the deformed element in the spatial
configuration. Then, the macromotion which is mapping the macroelement in reference con-
figuration to macroelement in spatial configuration, and the micromotion which is mapping
the microelement in reference configuration into microelement in spatial configuration were

defined, respectively, as (Eringen (1999)):

X —szxz=x(X,t) (2.1)

2 €&=¢(x, Bt (2.2)

The micromotion was approximated with a linear expansion of = that is called affine (or
homogenous) deformation. This is a valid assumption considering the size of the microele-
ments which is assumed to be very small compared to that of macroelement. As mentioned
in previous chapter, this assumption yields the first degree approximation of Taylor’s ex-
pansion of E where we rewrite equation (1.28) in indicial notation and in terms of X and ¢

as:

where £ = 1,2,3 and K = 1,2,3. The relative position vectors E and £ are defined as
the relative position of the center of microelements, respectively, C" and ¢ with respect to
maco-element centroids (Figure 1.10). Then, the position vector of a point (previously given
in equation (1.29)) in the particle in deformed configuration was defined in terms of X, 2
and t as:

(X, B t)=x(X,t)+&(X,E )
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The motions given by equations (2.3) and (2.1) have unique inverse motions defined by:
X = Xk (z,t) (2.4)
Ex = Xkk (,1) & (2.5)

where k, K = 1,2,3. Having a unique inverse of the both motions indicates continuity and

no matter loss. Then, if we substitute equation (2.5) in equation (2.3), we get:

§k = Xk X1 (2.6)

then from the equation above, someone can get:

Xkkx XK1 = O (2.7)

and similarly we can find

XkrXrr = OKL (2.8)

To show the derivation of material time derivatives of the kinematic terms, we start with

the gyration tensor given in equation (1.33) as:

Vil = XkK XK1 (2.9)

Then, multiplying both sides with y;z, we get:

ViiXiL = Xk XKiXiL (2.10)
VRIXIL = XkKOKL (2.11)

it gives:
XkL = VkIXIL (2.12)

and material time derivative of the equation (2.7) is:

Xer Xk + Xex Xk =0 (2.13)
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If we multiply this equation with Xg,,, we get;
Xik E kX kcm + ok XLk Xgm = 0 (2.14)
and applying equation (2.12) gives:
VeXik XeX cm + X XpeXgm = 0 (2.15)

it can be found as:

Xim = —VemXLn (2.16)

If we take the material time derivative of (2.3) and apply the equation (2.12), we get £ as:

& = XexEx (2.17)
& = VuXikEx (2.18)

then, E can be found as:
& = vy (2.19)

The velocity and acceleration of the microfield have been already expressed in equations
(1.32) and (1.35) respectively. The mass of the macro-elements have been expressed in terms
of the integral sum of the microelements in equation (1.24) in previous chapter. The mi-
croelement and macro-element masses were assumed to be conserved during the deformation

and expressed respectively as:
podV' = pldv’, Pt dV = pdv (2.20)

and principal of conservation of mass in current configuration can be expressed by:

D (pdv)
Dt

dp
5 T (Pvr) =0 (2.21)

The relative position vectors 2 and £ also were given to satisfy the expressions below which
are the first moment of the micro-elements with respect to centroids of the macroelements,

respectively, in deformed and undeformed configurations.

/ po2dV' =0, / pédv’ =0 (2.22)
av dv
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The second moments of pydV’ and p/dv’ were given by:

p()]KLdV:/ paEKELdV/, pod’U:/ p’ﬁk&dv' (223)
av dv

The displacement field of macrocontinuum can be defined with well know definition in con-

tinuum mechanics as:

Tk = Xp g + Uk K (2.24)

ik = (0px + UL k) 6L (2.25)

Eringen (1968b) proposed a similar definition for the microdisplacement tensor, ®;x (X, 1),

and explained the details on the kinematics as follows :

Xkx = (Orx + Pri) Ok (2.26)

then, he inserted equations (2.25) and (2.26) into the deformation measures given in equation

(1.36) and obtained deformation measures in terms of macro and micro displacements as:

CKL:5KL+UK,L+UL,K+UM,KUM,L (2.27)
Vir =0kr + Prr + Uk + Uk Purr (2.28)
kv = Prrv +Un g ®nim (2.29)

Although we use finite strain measures in the analysis, it will be useful to show how they
reduce to small strain elasticity by ignoring the higher order terms that gives a linear ap-

proximation to the equations above as:

Crr ~ 0k +Uk 1 +Urk (2.30)
Vir ~ 0k + Prr + ULk (2.31)

Ukv = Prrm (2.32)
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the linearized strain tensors Fxr,Exr, and 'k may be defined based on equations from

(2.30) to (2.32) as:

1 1
EKL: i(CKL_éKL> = i(UK’L—i_UL’K) (233)
Exr = VYrr — 0k = P + ULk (2.34)
kv = Prrm (2.35)

Then, these linearized strain measures given in equations (2.33),(2.34), and (2.35) take the

forms below in current configuration.

1

€kl = 5 (W + wig) (2.36)
€kl = Pk + ULk (2.37)
Vetm = —Pkiym (2.38)

These linearized strain tensors in reference and current configuration will be used, respec-
tively, in Section 2.6 to show simplification of constitutive equations of a micromorphic small
strain elasticity to that of small strain micropolar elasticity, and in Section 2.5 to express
the restrictions on the elastic material moduli of a micromorphic continuum.

Remember the square of the arc length in current configuration was expressed in equa-

tion (1.38), the square of the arc length in reference configuration can be also found as:
(dS")* = dX'-dX' (2.39)
= (dXk + d=k) (dX i + d=2k)
(dS")? = 01 dX xd X, + 2051 dXkE) + Ox . d2xd= ), (2.40)

the difference between the squares of arc lengths in reference and current configuration follow

from equation (1.38) and equation (2.40):
(d8,)2 - (dS')2 = (2EKL + QEMFKML -+ EMENFPMLFRNKC;}%) dXKdXL
+ 2 ((CJKL + EM\IINLFRMKCK/}Q) dEMdXL

+ (YnxUniChfy — 0x1) dExdZL (2.41)
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For the linear theory, this equation reduces to :

(ds')* — (dS")* = 2 (Exr, + ST rar) dXgd X
+2(Exr + T omrEm) dEpdX

+(8KL+8LK _2EKL> d=d=1 (242)

It can be easily seen that when Fyx; = Exr = 0 and 'y = 0, it represents the rigid body

motion since no change in arc length will occur associated with the deformation.

2.2 Balance Equations and Thermodynamics

This section is devoted to balance equations of a micromorphic continuum and the
stress definitions appearing in these equations. To obtain the balance of momenta, Erin-
gen and Suhubi (1964) started with the local form of balance of momentum and angular

momentum, respectively, at a point in a micro-element in deformed configuration as:
O-;fl,k +0 (fi —a) =0 (2.43)

where o}, is the Cauchy stress tensor for micro element, f; and a] are the body force vector
per unit mass over the micro-element and acceleration respectively. They multiplied equation
(2.43) by a function ¢’ «f ¢' (x’) and integrated over the volume v. The function ¢’ (') was
assumed for special cases (1) ¢’ = 1 and (2) ¢’ = 2/, = x,, + &, as mentioned in chapter

one, choosing ¢’ =1 gave:

/ [/ O’ dv’ + /p’ (f] —a)) gp’dv/} dv =10 (2.45)
v dv v

and apply

Uél,k‘ﬂ = (U;l@/),k - Ufa‘ﬂfk (2.46)
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if equation (2.46) is inserted into (2.45), we get:

[ (- cust) av+ [ o= aiypa] aw=o (2.47)

/S [/da a;lgoln;da’} da + /v [/dv (o + 0 (fi —a) ¢') dv’} dv =0 (2.48)
/aklnkda + /p (fi—a)dv=0 (2.49)

where
/d o nyda’ “ oneda, /d o fldv' = pfidv, /d playdv’ = paydv (2.50)

Now, chose ¢’ =z =z, + &n

/ [/ Oy LV’ +/ o (f] —a) x;ndvl] dv =0 (2.51)
v dv dv

/(O’kll'm + mklm) nida + /(_Slm +p (fl — al) Ty + P ()\lm — wml)) dv =20 (2.52)

v

where the definitions below were used

Sy dv déf/ ol ,dv’ Migmnrda déf/ o Emny.da’ (2.53)
dv da

phimdv < / P flendy,  popmdv ™ / PEE v (2.54)
dv dv

The quantities; p, o1, fi, @15 Smi, Mkims Ami, and wy,; were already explained in Section 1.3. To
convert surface integrals to volume integrals Eringen and Suhubi (1964) applied Green-Gauss

theorem which is defined as:

/ Anida :/ Ak,kdv -+ /[[Ak]] nrda (255)
0T —¢ T—¢ S

where Ay is any vector, T is the volume, 07 is the surface, and ¢ is the surfaces, n, is the
normal to the discontinuity surface. The exclusion of discontinuity surface from volume and

surface are shown respectively as:

Y-y _rvne, or-c¥or-orne (2.56)
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and [[A]] denotes the jump of A, across the discontinuity surface ¢. Applying the Green-

Gauss theorem to surface integrals in (2.45) and (2.52) gave:

/(Ukl,k + 1% (fl — al)) dv — / [[Ukl]] nkda =0 (257)

v Sd

and

/{Im (ke + p (fi — a)] + Tpi = St + Mkt + P (At — W) } dv

—/ ok + Mgim]] nrda = 0 (2.58)

Sd
From (2.58) they got the local balance of momenta on volume v as previously mentioned in

chapter one:

oy + p(fr —ax) =0 (2.59)
Tt = Sl + Mtk + PN — W) = 0 (2.60)
with jump conditions on s, :
[[ox]] . = 0, [oriTm + M) e = 0 (2.61)
and the boundary conditions on s :
oy = tg (2.62)
Mtk = Lim (2.63)

They followed the same approach to derive the balance law of the micromorphic con-
tinuum. The local conservation of energy at a point in deformed configuration was given
as:

P = o+ Qg+ 07 (2.64)

where €’ is the internal energy density, r’ is the heat source per unit mass of micro-element,

qy, is the heat flux vector. Then, (2.64) was integrated over the volume v as:

/[/d p/é/dz/:/d a;lvf’kdv/—i—/d q;’kdv/—i—/d p/r'dz/} dv (2.65)



the internal energy density per unit mass of macro element was defined by:

pedv & / pedv’
dv
and the left hand side of equation (2.65) was written as:

D D
/dv pedv = D/, pedv = i (pedv) = pédv
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(2.66)

(2.67)

Note that equation (2.21) was applied in equation (2.67). Similarly, heat source average per

unit mass of macro-element was given by:

prdvdzef/ p'r'dy’
dv

and the heat flux vector of the macro-eclement is:

/(/ ql;kdv’) :/</ qén%da’) :/qknkda
v dv s ds s

def
qenpda = / qpnida’
ds

the second term in equation (2.65) can be written as:

/(/ a,'ﬁlvllvkdv') dv = / (/ (T dv') dv — / (/ U,;Lkvl'dv') dv
v dv v dv v dv
:/(/ U,’dvl’nkda’) dv—/(/ a,{chkvl’dv/) dv
v da v dv

Using equation (1.32) for microvelocity v’ gives:

/v (/dv U’;lvikdvl) dv = /v (/dv P (ay, — fi) (0 4 Vimém) dv/) dv

= /(p (ax — fr) v1 + pVim (Aim — wim)) dv

v

Then,

Applying the definitions of pfidv, pa;dv, p\p,,dv, and pa;dv results in:

/pédv = /(alkvl + MpgmVim + q) nrda

+ / (p(fi = ar) v+ p (N — wWigm)) dv

(2.68)

(2.69)

(2.70)

(2.71)

(2.72)

(2.73)
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and by converting the surface integrals to volume integrals, they got:
/ [pé — ouVLE — MpgmVim gk — Qi — pr] dv
- / Ok + pfi = par) vi — (Mt e + PAim — PWim) Vi) dv
- /[Ukﬂ}l + MpgmVim + Qi) nida = 0 (2.74)
and using equations of balance of momenta (2.59) and (2.60) balance of energy was given as:

pé = vk + (Si — o) Vik + MitmVim s + Qg + pr n v (2.75)

with jump condition:

[lokvr + MppmVim + qi)] e = 0 on sq (2.76)

Assuming discontinuous surface sy is equal to continuous surface s which gives continuity of

vk, and v, and considering equation (2.61), (2.76) reduced to:
Q& = Gn on s (2.77)

Introducing the Helmholtz free energy in terms of energy density, temperature and

entropy gives:

v =e—0n (2.78)
where 7 is entropy, 6 is the temperature. Then, 7 can be expressed as:
1=-—= — — 2.79
n= (2.79)
the second law of thermodynamics can be expressed as:

time differentiation and converting surface integral to volume integral gives:

/U [pi] - (%’“) - %] dv >0 (2.81)
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the local form of the integral is:

-(3), %

inserting equation (2.79) into equation (2.82), solving equation (2.75) for r and inserting into

equation (2.82), they obtained Clausius-Duhem inequality for the micromorphic continuum

as:
. . 0

—p (@D + 779) + ijk + ok + (Ski — k) Vike + My Vi > 0 (2.83)

2.3 Constitutive Equations for Material Linear Isotropic Elasticity at Finite

Strain

Clausius-Duhem inequality given in equation (2.83) in the previous section takes the

form given below in reference configuration by using the relation p = py/J, dv = JdV, and

@l = Qrb k5.

1 . . 11
—jpo (@D + 779) + o (Vl,k — Ulk) + SkiVik + Vi kMkim + jEQKH’K}JdV >0 (2.84)
Bo

the local form of the equation is:
. . 1
—Po <¢ + 779> + Jog (Vg — o) + Jskvw + J Vi gMgim + EQKG,K >0 (2.85)

for isothermal and homogeneous temperature problems, the Clausius-Duhem inequality in

reference configuration reduces to:
—pot) + Jog (Vg — i) + JSkvie + J Vi kMgt > 0 (2.86)

The stress tensors oy, sk, and my,, are mapped to reference configuration by the relations:

1
o = jFlLSKLFkK (2.87)
1
Sik = jFlLZKLFkK (2.88)
1
Miim = = P Fi M Ly Xmmr (2.89)

J
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Note that the first two equations (2.88) and (2.87) map to the current configuration by
well know Piola transform relation. However, equation (2.89) involves the microdeformation
tensor x in the mapping. This difference actually comes from the definition of the higher
order couple stress tensor in current configuration. The definition of the higher order stress
couple tensor may be expressed in current configuration by a volume average definition

instead of area average definition as (Regueiro (2010)):

Mgt dv déf/ O Emdr (2.90)
dv

and applying Piola transform to S}, and mapping &, to reference configuration by &, =

Xk ZK, dv' = J'dV’ give:

mklmdv déf/ O'];lfmdvlz/ F];KE/LXmMSKLEMdV/ (291)
dv av
de —_
Frox Fip Xmm Mg padV Zf/ Fy g Fl o Xmm Sk =pdV! (2.92)
av
and

My J AV = Frog Fir Xmm Mg pardV

1
Ml = ijKFlLXmMMKLM (2.93)

where F}, is the micro-element deformation gradient will be given in detail in the next
chapter. Note that micro-deformation tensor x.x can be pulled out from the integral as it
is not a function of X (Eringen and Suhubi (1964)).

Eringen and Suhubi (1964) assumed a strain energy function in terms of the defor-
mation gradient tensor Fjx, the micro-deformation tensor g, and the micro-deformation

gradient tensor xix r for a micromorphic elastic material as :

po (Frr, XkK> Xkk,L) (2.94)

Then, the strain energy function rate can be expressed as :

. (po) ; 9 (por)) . 9 (po¥)
potp = OF Fryr + Dxnk Xkx +

y 2.95
OXIK.IL XKL ( )
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where pg = 0 for a single phase solid material. Inserting this equation given above into

equation (2.86) yields:

(Po@b) a(ﬂo@b) . 0(Po¢) .
< 0F 1k i+ ik Xue + aXlK,LX

lK,L) + Jog (FIKFE
—XIKXI_&) + Jsuxix Xgp + Jmwim (Xu,LXgomF i + XlKXf(lm,LFL_kl) >0 (2.96)

after collecting the terms with the same multiplier;

(JUkzF;?,i ;;?Zf)) Fig + <J3leKk JouX gy + Jmkszf{%LFL_kl
0 0
OXix Xk, L

For this equation to hold with the stress mapping relations given from (2.87) to (2.89):

1 _ a(ﬂ(ﬂﬂ)
J| =FuuSapFip | Frot = 2.98
(J kAQ AB IB) Kk aFlK ( )
1 d(po?) 1, 9(po)
J | =Fua2XanF; F; FooF
(J kA2AB IB) XKk kC OF.. ' De IDX g T Dix
+ Frelirxma 8(ﬂ0¢) FFbl KaXaR LXRmFLkl (2-99)
1
J (_FkAFlBXmCMABC) XemFin = 9 (po¥) (2.100)
J OXiK.L

After some algebra definitions of stress tensors at reference configuration in terms of Helmholtz
free energy function per unit mass v, deformation gradient F},x, and microdeformation tensor

Xrx Wwere obtained as (Regueiro (2010)):

Skr = 7)FL—,3 (2.101)

——F (2.102)
Mgy = —Fp, (2.103)

Another approach is to express the strain energy function in terms of the invariant elastic

deformation measures given in equation (1.36) which are invariant with respect to rigid body
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motion on current configuration and proposed by Eringen and Suhubi (1964).

p(]w (C,Q/J,F), or p(ﬂﬂ (CKLawKLarKLM) (2104)

Quadratic form assumption for the Helmholtz free energy function in reference configuration

can be expressed as:

1 1

pO”vb = §EKLAKLMNEMN + §8KLBKLMN8MN

1

+ §FKLMCKLMNPQFNPQ + ExrDrrunEnn (2.105)

and the following symmetry properties of these tensor were given by:

AKLMN = AMNKL = ALKMN = ANMKL7 BKLMN = BMNKL

Ckruneq = Cnporry, Drivn = Dikun (2.106)

where elastic material moduli tensors Ax N, Brrvn, Drrvn, and Cr v pg were defined

for isotropic solids as (Suhubi and Eringen (1964); Eringen (1999)):

Arxrun = Mgrdun + 1 (0xmdrn + Sxndrm)
Brryun = (1 —7) 6xromn + (k= 0) dxmdrn + (v — 0) dxnOrm
Crrunprg =T (Okromn0pg + 6kQoLmOnp) + T2 (OxkLOMPING + Ok mdLoONP)
+ T30k LOMQONP + TaOkNOLMOPQ + T5 (Ok MOLNOPQ + Ok POLMONG)
+ 760k mOLPONG + TrOk NOLPONMG + Ts (Ok POLQOMN + Ok QOLNOMP)
+ 790k NOLQOMP + T100Kk POLNOMQ + T110KQILPOMN

Dgryn = T0xroun + 0 (OxnOrn + SrnOrar) (2.107)
where 01, is well known Kronecker delta function defined by:

if K =1, Ogp=1

otherwise dx; =0 (2.108)
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then, the constitutive equations were obtained as (Suhubi and Eringen (1964); Regueiro

(2010)):
~,0(poy) | O (po¥) -y 9 (pot) -1
Skr, =2 9C s + U rp CLA\I]AB -+ T e e CLAFABC (2109)
0 (POTP) 0 (p(ﬂp) -1 0 (p0¢) 1
> =2 2 2 T 2.11
KL 9C s + 2sym Dons Cratap| + 2sym T Cralasc (2.110)
8(P0¢)
= 2.111
KLM O vrn ( )

If the strain energy function given in equation (2.105) is inserted and after some algebra, we

get (Regueiro (2010)):

Skt = AxktunEyn + DrxpunEun
+ (DgpunEyn + BxpunEnn) [CL_}X (Ean + 5AB)}
+ CxenvpelnroCrolose
Yk = AxkrunEyn + DrxpunEun
+ 2sym{(DrxrunEvn + BepunEmn) [CL_};EAB + 5AB]
+ CxeneelnrCrolonc}

Mgy = Crrvunplnpg (2.112)

Assuming small elastic deformation cancels the quadratic terms out and inserting elastic

moduli tensors given in equations (2.107) in (2.112) gives:

Skt =AN+7)Eymorr +2(p+0) Exp +n€ymdrr + kExp + vErLk (2.113)
Y =A+27) Evymoxr +2 (1 +20) Exrp + (2n — 7) Epmdrr
+ (W +r—0)(Exr+ ELk) (2.114)
Mgy =71 (Ukrrory + UrreOxm) + 7o (UrxcrOra + Urrmdrrn) + 730 rricO L
+ 7ulLrrOK 0 + s (DrerOx M + DairrOrcr) + 76U rardkr + 7l ok

+ 78 (Cvrr + Urone) + 7ol oenr + miol'vink + 7l (2.115)
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where Sk, is the symmetric second Piola-Kirchhoff stress tensor of micro-element in refer-
ence configuration (over dV'), Xk is the symmetric second Piola-Kirchhoff micro-stress in
reference configuration, and Mg, is the higher order couple stress in reference configura-

tion.

2.4 Map to Current Configuration

The constitutive equations obtained in reference configuration in equations (2.113),
(2.114), and (2.115) can be mapped to obtain constitutive relations the current configuration

by following the stress mappings given in equations (2.87), (2.88), and (2.89).

1
O = 7 (A7) EvmFredxrFin +2 (p+0) Fax ExpFin +n€vim FrxOx L Fir

+rFyCxr b + vFyErx L

1
Sp = 7 (A +27) By Fre O LB + 2 (p+ 20) Fre Ex L Fr

+ (277 — 7') EMMFI@K(SKLF}L + (l/ + K — O') FkK (EKL + ELK) FkK] (2116)
and
1
Miim = (11 Fex Fir, (T reXme + TRRLXmK)

+ 7o (Crx R Frrc FinXme + Urrv Frr FireXmar )

+ T3 Ekx FieXmeUrrie + Tl LRrRFkk FiXmi

+ 75 (UrerFrx FipXmx + UvrrEex FiXmar)

+ Tl R R Frec i Xomar + T8 nai e Frore Fin Xom

+ T8 Fur FinXmy (Unvircr + Ukpar) + ToFer Fin Xmm Ui

710k FirXmm Uk + T P Fip Xmm Uk (2.117)

. . F1 F2 _ F3 _
introducing Yiim = Fix FioXmmUkoas v = Fexlkrr, v~ = FixUrric, V7 = FixUricrs

F3 _ 1 2 3 _
Y = FrxlUrrr Y = XmmDUrra, 757 = XmmDvrr, 757 = XmmUruMER, Y = Frrxik,

O = Frg €k F, the left Cauchy-Green strain tensor by = Fii Fii, and Eulerian-Almansi
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strain tensor e = % (5kl — b];ll) the equations above will reduce to:

1
On = 5 (A7) tr (E) by + 2 (1t + 0) brieijbjs + ntr (€) by

+r0 + Vﬁlk] (2118)

1
s =7 (A +27) tr (E) by + 2 (1 + 20) bpieibyy

+(27}—T>t7” (8) bkl—i-(V—i-FL—O') (ﬁkl‘i‘ﬁlk)] (2119)
and

1
Mkim = [71 (75’1¢lm + ’YlF’ziﬁkm) + 7y (’Yf’giﬁzm + ”yf,‘;lbkl>
+ 73%p Wt + T4V P + T (%F’gwkm + '7#[28%1) + 76X bkt + T Vimk

+ 78 (Ymkt + Vetm) + ToVkm +T10Ymik + T11Vem] (2.120)

where oy, is the unsymmetric Cauchy stress tensor, si; is the symmetric micro stress tensor,

and My, is the higher order couple stress tensor.

2.5 Positiveness of The Strain Energy Function and Constraints on Elastic

Parameters

The constitutive equations in the standard linear isotropic elastic Cauchy continuum
involves two Lamé parameters. The isotropic micromorphic elasticity approach introduces
five more elastic material moduli in unsymmetric Cauchy stress tensor, as well as in mi-
crostress tensor and eleven elastic constants in higher order couple stress tensor. In order
to achieve the positivity of quadratic energy function, the restrictions among those material
moduli were first proposed by Smith (1968) in the form of inequalities. Smith used the same
strain tensors as Suhubi and Eringen (1964) used in constructing the free energy function.
Eringen (1999) followed Smith’s method to derive the inequalities which puts restrictions on
the material moduli appearing in the constitutive equations obtained by using different set
of deformation measures than that of Smith used. In this section, we present these inequali-

ties proposed by Smith (1968) by following same notation applied in Smith (1968); Eringen
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(1999).

Smith (1968) started with splitting energy function into :
pW (e,e,v)=Ul(ee)+U () (2.121)

where ey, e, and Y, were given in equations (2.36), (2.37), and (2.38) respectively. The

strain energy is to be nonnegative for all the variations in strain measures.
Ule,e) >0 for all e;; and ¢, (2.122)

U(y) =0 for all (2.123)

where U (e, &) and U (7) are respectively given in indicial notations as:

A 1
U (ekl, Ekl) = — (6ii)2 + HEi;€j; -+ 20’6,’j€ji + = (K — 0’) Eija?ij

2 2
1 1
+ 5 (77 - 7-) (51'1')2 + 5 (V - U) Eij€5i + TE€iiEjj (2124)

and

U(v) = % (YaijVikk + Vijj Veki) +
Ty
2
78
2

T2

2

T3
2
T6 T7
5%jﬂkjk + E%jk%jk

T10 T11
77ijk7jik + T’Yijk’}/kji (2.125)

(Viij Yl + VijiVieks) + —=Viij Yik;

Ts

* 2

VijiYikk + = (YijiYeik + Yijivikk) +

To

- 2

(YijuViki + VigkYwig) + = VijkVikg +
Smith (1968) defined set of variables by considering several uncoupled, symmetric, and anti-
symmetric components of strain measures and took the second parial derivative with respect
to those components. This method can be summarized by following Eringen (1999) notation

as follows: U (e, €), and U () are decomposed into several uncoupled, symmetric quadratic

forms.

(511,522,533, €11, €22, 633) = (931,552,933,934#55,936)
(5127521, 612) = (yhyzay?,)
(5237531, 623) = (21722, 23)

(e31,€13,€31) = (&1,62,83) (2.126)
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and Eringen (1999) wrote U (e, €) in terms of these sets as :
U (e, €) = ayziz; + bayry + buzez + bue& (2.127)

we open U (e, ) to its components as :

U(es)———A +—)\ + = + = + = +
ene €9€ e33e ene €99€ €99€
) 5 C11611 T 5 €262 T 5 €33€33 F 5 C11C2 5 Ene1 T+ 5622653

+ 5 €33C22 + 5 C11¢ss + %633611 + peiienn + peigear + peisesy

+ peaieiz + [eggeor + legzess + [Leg1e13 + [esaeas + [Le33€33

+ 20eq11e11 + 20e19e91 + 20€e13e31 + 20€13€31 + 20€91€19 + 20€99€99
+ 20’631613 -+ 20’632623 + 20’623632 + T€11€11 + Te11€22 + TE€11€33

+ T€99E11 + T€22E9 + TE€922E33 + TE€33E11 -+ TE€33E99 -+ TE€33E33

+ = (KJ—O')€11€11 + 5 (KJ—O')€12812 + = (K—O') €13€13

2 2
1 1 1

-+ 5 (KJ—O')821€21 + 5 (KJ—O')EQQSQQ + 5 (K—O') £93E93
1 1 1

+ 5 (FL—O')831831 + 5 (FL— 0')632832 -+ 5 (FL—U) £33E33
1 1 1

+§(77—7')511€11+§(77—7')522€22+5(77—7')533533
1 1 1

-+ 5 (77 — ’7') €11€22 + 5 (77 — 7') £922€11 + 5 (77 — 7') £99€33
1 1 1

+ 5 (n —7)es3e2 + 5 (n —7)eness + 5 (N —7)essen
1 1 1

+ 5 (V—O')€11€11 + 5 (V—O')€12€21 + 5 (V—O')€13€31
1 1 1

+ 5 (V—O’)€21€12 + 5 (V—O’)€22€22 + 5 (V—O’)€23€32
1 1 1

-+ 5 (l/ — O') E31€13 + 5 (l/ — 0’) E39E93 1+ 5 (l/ — 0’) £33€33 (2128)

Then, a;; is found to be a 6 x 6 symmetric matrix and if we take % factor out of the matrix,

its components were obtained from equation (2.128) as:
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CL11:CL22:CL33:(H+7]+V—T—20')
a44 = ass = ags = A + 2

Q12 = A13 = Q23 = A21 = G317 = A32 = 1] — T
a14 = Qg5 = A36 = (41 = G52 = Qg3 = T + 20
Q24 = A34 = A35 = Q42 = Q43 = A53 = T

A5 = Q46 = A56 = Us4 = (g4 = A5 = A (2-129)

Smith (1968) showed by adding and subtracting some rows and columns that the conditions

on the elastic constants to have positive eigenvalues of the matrix a;; are:

>0
k+v>20
(k +v—20)u > 20?
3A+21>0
k+v+3u>3T+20

(k4 v +3n—37 —20) (3\ +2u) > (37 + 20)° (2.130)
Similarly the components of the matrix by; are:

bt =byp =rk—0
b12:b21:V—U
big = b31 = by = b3o = 20

Smith (1968) again determined the conditions on elastic constants to have positive roots of

the characteristic equation of by; which correspond to the eigenvalues of the matrix. We list
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the only different conditions than the conditions listed for the matrix a;; as:

k—v>0

dp(k+v—20)>20 (2.132)

Although Eringen (1999) followed a different constitutive model than Smith (1968) who
considered the model which is involving the strain measures in Suhubi and Eringen (1964),
the restrictions on 7;’s coming from U () are the same. Smith further introduced the two
more symmetric 6 x 6 and 7 X 7 matrices d;; and ¢;; respectively by taking the second partial

derivative of U () with respect to these sets of variables in the same order :

(71237 2315 Y312, V132, V321, 7213) = (36’1, Lo, T3, T4, Ts, %‘)

(Y111, Y122, Y133, V212, V313, V221, V331) = (Y1, Y2, Y3, Yas Uss Yes Yr) (2.133)

where U () is decomposed into two polynomials including the component of the symmetric

matrices d;; and ¢;; as:

Smith expressed the components of the matrices ¢;;, d;; and the restrictive conditions on the

constants respectively as follows:

C11 = C22 = (€33 = C44 = C55 = Co6 = T7
C12 = C13 = C23 = C45 = C46 = C56 = T8
C14 = C35 = Co6 = Ty
Coqg = C15 = C36 = T11

C34 =— Co5 = C16 — T10 (2135)
and the components of d;; :

dyy =21 + 213+ T3 + T4 + 275 + T + T + 278 + To + T10 + T11
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dip=diz=T1+7+7 dy=ds=T2+75+Ts

d16:d17:7'1+7'2+7'3 d22:d33:7'4+7'7+7'9

dog = T4 doy = d35 = 75 + T + Tio
dos = d3g = T dog = d37 = 71 + T3 + ™11
(2.136)
dor = d3g = T dyy = ds5 = 76 + 77 + 11
dys = T dag = ds7 = To + T3 + Ty
dy7 = dsg = T2 des = d77 = T3 + 7 + Tio
de7 = T3
and the restrictions on 7;’s are :
T7 + 27—8 > |7'9 + Ti0 + 7'11|
1 2 2 211/2
T —T8 > — |(Tg — T + (10— T + (711 — T
7 8 /5 }( 9 10) (T10 11) (T11 9) ‘
tr(T) > 0, tr (COT) > 0, det (T') > 0 (2.137)
2.6 Simplification to Small Strain Micropolar Elasticity

Eringen (1999) showed that constitutive equations of a micromorphic elasticity can be
simplified to microstretch and micropolar elasticities. Comparison of the constitutive equa-
tions may give us additional opinion about how to relate the material moduli of micostretch
and micropolar theories obtained from previous works. Eringen proposed that this approach
may be used to define additional inequalities among the material constant of a micromorphic
continuum as well . However, Eringen used different set of strain measures accordingly had
different constitutive equations. Here we apply his approach to provide a passage between
micromorphic and micropolar elasticities for the constitutive equations given in the section
2.3.

We can derive the constitutive equations based on small strain assumption in current

configuration in a similar way presented in section 2.3 for reference configuration. There-
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fore, the constitutive equations (2.113), (2.114), and (2.115) can be expressed in current
configuration as (Suhubi and Eringen (1964)):

ok = (A +T) €mmO + 2 (1t + 0) e + NEmmO + KEw + Ve, (2.138)
St = (A +27) €m0 + 2 (0 + 20) exy + (20 — T) EmmOn
+ v+ Kk—0) (e +ew) (2.139)
Mitm = T1 (VerrOim + VrriOkm) + T2 (YekrOm + YrrmOkt) + T3VrrkOtm
+ TaVirrOkm + Ts (VrtrOkm + YmrrOkt) + T6Vrmr Okt + T Vimi

+ 78 (Ymkt + Vetm) + T9Vikm + T10Vmik + T11Vemi (2.140)

where the strain tensors were already defined in equations (2.36), (2.37), and (2.38). If
we write the unsymmetric Cauchy stress tensor in terms of displacement components and

microdeformation components, we get :
Okt = (A +7) Ut + 2 (1 + 0) U g + 0 (Dmm + Umm) Ok
+ K (Prr + wrp) + v (G + upy) (2.141)

Then, we express the unsymmetric Cauchy stress tensor and the higher order couple stress

tensor in terms of their symmetric and antisymmetric forms.
Oty = [(A 47+ 1) Umm + NPmm] Okt + (20 + 20 + K 4 V) uy)
+ KO + VD) (2.142)

oy = (2 + 20 + K) upe ) + vup g + KO + vou (2.143)
Eringen (1999) provides the passage to microstretch theory by setting:
k) = PO, lkt) = —€ktm®Pm (2.144)
where €y, is the permutation tensor. After substitution, we get:

O = [ A+T+0) Umm + B0+ K+ V)@ 0 + (21 + 20 + K) ugy

+vup + (V — K) €im®m (2.145)
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By equaling 3n+k+v = 0, we have the passage to the micropolar case. It also can be obtained

from equation (2.144) by setting ¢ = 0. Eringen (1999) gave the constitutive equation for

the higher order couple stress tensor my, associated with the its strain tensor Yim = Qrim

in terms of its symmetric and antisymmetic components. The symmetric and antisymmetic

part of the higher order stress tensor my;, are expressed below. These are different than

that of Eringen (1999) by a factor —1 due to our strain tensor definition Y, = — @k m-

and

Mi(im) = — l (1 + T2) Ger).r + T3Drr ] Otm

1 1
+ |:§ (7_4 + 2’7-5 + 7_6) ¢(lr),r + 5 (7_1 + 7_2) ¢rr,l:| 5km

1 1
+ |:§ (7_4 + 2’7-5 + 7_6) ¢(mr),r + 5 (7-1 + 7-2) ¢rr,m:| 5kl

1
+ (77 + T10) Gam)k + 5 (278 + 79 + T11) P(ki),m

1 1
t3 (278 + To + T11) Pkt + 3 (74 = 76) ir).rOkm

1
+ (Tl - T2) ¢[kr],r5lm + 5 (T4 - TG) ¢[mr},r5kl
1

T3 (11 = 79) (Gig.m + Premya) (2.146)

1
mk[lm} - - 5 [(7-4 - 7_6) ¢(lr),r + (7_1 - 7-2) ¢r7’,lj| 5km

1
- 5 |:(7_4 - 7_6) ¢(mr),r + (7_1 - 7_2) gbrr,m} 5lk
1

(11 — T9) Oktym

1
+ 5 (711 = 79) P(km)s — B

1
+ - (T4 - 27—5 + TG) ¢[lr],r5km - 5 (T4 - 27—5 + TG) ¢[mr},r5kl

2
+t3 (278 — 79 — T11) Pppapm — 3 (278 — To — T11) Dlrm)y
+ (77 = T10) Glimy & (2.147)

Eringen (1999) decomposed the myy, for microstretch continua:

1 1
Miim = gmk(slm - §€lmrmkr (2-148)



recalling equation (2.144) with (2.148), it can be reduced to microstretch case as:

my = My = ao¢,k - bOEkrj¢j,r

Mt = €mpMigpm = OPrrOp1 + Bt + YO1k + Q0€rip® p

where
ag — — (67’6 +6T2 —|—9T3 +T4 +2T5 —|—T6 —|—3T7—|—2T8 +Tg +3T10 +T11)
b() = —(37’1 —37’2+7’4—7‘6—7‘9+7'11)
ag=— (=31 +3n -1y — 76+ T9 — T11)
where
=27 —T9g—T11, B=-—T4+ 215 — T

Y =T4— 275 + Te + 277 — 278 + T9 — 2710 + T11

by setting ag = 0, by = 0, and oy = 0 , micropolar material moduli will be obtained.

99

(2.149)

(2.150)

(2.151)
(2.152)

(2.153)



Chapter 3

Finite Strain Micromorphic Elastoplasticity

In this chapter, we present the finite strain micromorphic elastoplasticity formulation
originally proposed by Regueiro (2009, 2010). It is extension of micromorphic finite strain
elasticity theory proposed by Eringen and Suhubi (1964); Suhubi and Eringen (1964); Erin-
gen (1999) to elasto-plasticity with Drucker-Prager plasticity model. The chapter starts with
the kinematics of elasto-plastic formulation such as decomposition of deformation gradient
tensor F', and micro-deformation tensor x assuming the existence of intermediate config-
uration. Then, we present Clausius-Duhem inequality and its reduced form which is used
to attain the plastic evolution equations as well as constitutive equations on intermediate
configuration. We conclude this chapter with the mapping of constitutive equations to the
current configuration and numerical time integration scheme in conjunction with the yield
function assumptions of pressure-sensitive plasticity formulation for the macro-scale plastic-

ity, micro-scale plasticity and micro-scale gradient plasticity.

3.1 Kinematics Based on Multiplicative Decomposition of Deformation

Gradient and Micro-deformation Tensor

Some materials may present elastic behavior which simply implies that after the de-
formation if the body is freed from stresses, it will return the its initial undeformed config-
uration. Contrarily, many materials which have practical use such as metals may behave

inelastically (plastically) under large loads which indicates that permanent deformations will
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remain in the body after it is relieved from stresses. If a body is deformed plastically, after
cutting out the forces and relieving all the stresses in the body, it will reach a new unloaded
configuration, and the motion between the last loaded configuration and this configuration
may be described as elastic unloading. This configuration is free of forces and called interme-
diate configuration (Lubliner (1990); Bonet and Wood (1997)). The approach of introducing
of the intermediate configuration is based on the works by Kondo (1952); Bilby et al. (1955);
Kroner (1960); E.H. Lee and D.T. Liu (1967); Lee (1969). In general, to incorporate the
plasticity within finite strain theory, the deformation gradient tensor is decomposed into its
elastic and plastic parts on intermediate configuration in which constitutive equations are
formulated. Intermediate configuration can be accepted as a elastically-unloaded reference
configuration for current configuration such that elastic deformations govern between the in-
termediate configuration B and current configuration B while the plastic deformations govern
between reference configuration By and intermediate configuration B. Therefore, the map-
ping of a differential line, dxj, in current configuration into the intermediate configuration
may be described as dx), = F, lff(dX & while same reasoning holds for a differential line, d Xk,
in reference configuration to the intermediate configuration as dXx = F Ip( de( - Note that
all the expressions with a bar on top are associated with the intermediate configuration. In
this section, we present a similar approach for a micromorphic continuum kinematics consid-
ering the multiplicative decomposition of deformation gradient tensor and micro-deformation
tensor in conjunction with the elasto-plastic formulation which was originally proposed by
Regueiro (2009); 7.

For a micromorphic continuum, the mapping of the macro element and micro element
also multiplicative decomposition of the deformation gradient and microdeformation tensor is
illustrated in the figure 1.6. The position vector of a micro element in current configuration,
xy, was expressed in equation (1.29). If we take the partial derivative of x} with respect

to the reference micro-element position vector X} by using chain rule, we get the micro-
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deformation gradient tensor Fj, as (7):

;o 81’2 o 81’2 8XL
Pl = OX). — 90X 0X) (3:1)

where
81’;6 8LL’k (X, t) 8XkL (X, t) — 8EL
= = 3.2
OXx X + OX L‘I’XkLaXK (3.2)
and
X=Xk +Zk
0X =K
=9 R .
ox, Kt ox, (3:3)
Xy Ek B Ex - Ex
=19 — = (0 — ~ | dxr — 3.4
e (v i) = (i) < (e-5E) e

also the assumption of small gradient of micro-structure over the volume,

1555
X1,

|| < 1, indicates that the quadratic terms can be ignored as:

f 2
K _
(Z5) o o5

Then, the micro-element deformation gradient tensor given in equation (3.1) can be rewritten

as

Oxkr
Fig = Fp+ 5220+ — Fyp —
kK kK X L XkA kA

OXkM — ) =4 (3.6)

X4 ) 0Xx
Similar to the deformation gradient tensor Fjx of macro-element, the micro-element defor-
mation gradient F} - maps the micro-element differential line segments dz) = F} dX}. If the
micro-element Jacobian of deformation is defined as J’ = detF’, the micro-volume element
in current configuration is related to micro-volume in reference configuration as dv’ = J'dV".
Regueiro (2010) proposed that that micro-element deformation gradient tensor can be dif-
ferent than deformation gradient tensor, however, the constitutive equations formulated at
intermediate configuration will not require the determination of F}, because they are in-

volved in mapping of the stress tensors at micro level in the integral definitions. But, macro
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level stress mappings are done by deformation gradient tensor. This is seen explicitly in
equations (3.23), (3.25), and previously (2.91).
Multiplicative decomposition of the deformation gradient tensor (Lee (1969)) and

micro-deformation tensor (Sansour (1998); Forest and Sievert (2003, 2006); Regueiro (2010))

gives
F=FF , x=xx
Fye = FOrFPri Xekx = X X KK (3.7)

The velocity gradient v, = Fl L F L_kl and the micro-gyration tensor v, = x; LXZ; can be also

decomposed in to elastic and plastic part as

- €

£ = F(F"Y) 4+ FL°(F ) =¢ 42

Uk = erA(Fe_l)Ak + FelBE%c(Fe_l)ék =L + Py, (3.8)
and
v o= (V) + x L (x¢Y) = vf + v
vie = X Dae + XBLE(E Do = Vo + Vi (3.9)
where
=P DT =000
Lo = Fp(F" Mo Lt = X0 ke (3.10)

The gradient of the micro-gyration tensor can be also split into elastic and plastic part as

follows

Vv = Vv°+Vr?

Vimgk = Vimpk + Wik (3.11)
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where

e . -e e—1 e . e e—1
Vimk = XiAxXim — YinXnD kXpm (3.12)

e . e . e TX -1 e e—1
Ve = (Xlé,kX%A + XiEXpax ~ XIFL;ggX%Ak) Xam = ViaX 36X m (3.13)

The macro differential volume in reference configuration maps to current configuration as
dv = JdV = J°JPdV = JdV (3.14)
similarly, the micro-element differential volume maps as
dv' = Jav' = J¢JdV’ = JdV’ (3.15)

where J¢ = det F¥, J? = det F¥'| J¢ = det F°, and J? = det F?. Mass conservation rule

gives the relations among the mass densities as:

po = pJ = pJJ? = pJ? (3.16)

p6 — p/J/ — p/Je/Jp/ — p/Jp/ (317)

where p’ is the mass density of micro-element at intermediate configuration, p is the mass
density of the macro-element at intermediate configuration. The volume averaging of micro-
element densities over the macro-element can be expressed as similar to equation (1.24) in

the intermediate configuration as
pdvV & / pdv’ (3.18)

av

Giving the kinematics of elasto-plastic formulation and associated decompositions of
the deformation tensors at intermediate configurations, the Clausius-Duhem inequality may
be applied to derive the constitutive equations at intermediate configuration and plastic
evolution equations. Hence, the next section focus on the expression of the Clausius-Duhem

inequality in intermediate configuration.
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The Clausius-Duhem inequality in current configuration and its form in the reference

configuration were expressed in equations, respectively, (2.83) and (2.85) for a linear isotropic

elastic micromorphic continuum. Following the same approach, we apply the Piola transform

to map stresses and ¢, from current configuration B to the intermediate configuration B

which results in similar mappings to those given in equations (2.87), (2.87), and (2.89).

Besides, we apply a volume averaging approach assumption for the higher order couple

stress tensor as given in the previous chapter to obtain the Clausius-Duhem inequality in

intermediate configuration such that

1
ouw = B Skilik

Je
1 e\ e
s = o hirribig
Mkl = EF;:KF}%M[(ZMX;M

where

1 _ _ _ _
sudo = [ o' = [ S FER S dV = P Bl Sand?
dv av
def

SgrdV = FEFe /d . FSESGSTdV!

e 1 _ _
mklmdU d:f/ O']/ﬁlé-mdvl == /_ FF];%F}%S}?E:MX;MJ,ECZV/
dv av
= Fie P Mg pan X, @V
mklmdv = mklmJed\_/ = F]:KF}%MKEManMdV

1 B
= Mg, = FFEKF}%MKEMX;M

__ _ 4l ye—1pe—1, e—1 e e Qo = _.e g1/
kvt = Fp Fo Xorm /d_ Fi 5572 4X0,44V
%

7___d_0f e—1 rne—1 e e o = _ J1//
wkim = Fiyp B - FrF5STEmdV

(3.19)
(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)
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and the Clausius-Duhem inequality in intermediate configuration takes the form

/73 (—ﬁ (12 + ﬁé> + o (Vg — vik)

1 - _
+JCsp01 + Jeylm,kmklm + JeEQKe,K) dv >0 (326)

The heat flux term in the Clausius-Duhem inequality can be obtained as follows: Remember

the heat flux term in current configuration

1 1 - 1o, - -
| gdida = [ 2@ Fg )i = [ SaNax (327)
da dA V' ——— dA
Qx
Note that Nanson’s formula njda’ = JF ['f,;lN;—{d/_l was applied in equation above to relate the

areas in current configuration and intermediate configuration that gives the Piola transform

1
e

/(Q—/K> av' e <%> % (3.28)
aw\ b ) g 0 )k

The local form of the Clausius-Duhem equation at intermediate configuration

of the flux over the micro-element as ¢, = = F; éel—(Q - Then, flux term over the macro-volume

may be expressed as:

P 1~
—ﬁ <1D + 7_]9) + JeO'kl (Vl,k - Ulk) + JeSkﬂ)lk + Jel/lm,kmklm + JGEQKH,[{ > 0 (329)
and its reduced form for isothermal and homogenous temperature problems is
—ﬁ’(/_f + Jou (Vl,k — Ulk) + Jspunm + Jel/lm7kmklm >0 (3.30)

Using the decompositions expressed in equations (3.8), (3.9), (3.12), and (3.13), the stress

power terms in equation (3.26) can be expressed in terms of elastic and plastic parts as:

Jeopury = FSpiFix (FZGA(Fe_l)Ak + Feléi%@(Fe_l)ék>

Jeonuy = SgiFg Fg + SkiCiplipg (3.31)

elastic plastic
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Jeouve = F SgiFig (Vi + X zBLX’p( - 1)ék)

Jeovn = FSgiFegvin + SerFipXis L (X NenFiw
e]eO'klI/lk = F}%S'REF]:]_{VI%_'_?KE@%E‘EE’%(XG_1>FI€F]:[_S (332)
el;s,tic plt;srtic

Jsuve = Fe S g Fin (Vlek + Xezéigg(Xe_l)ék)

e __ 1€ __1e e N _ _\s€ P _ e
J Sy = F[EZKLFM?VHE_I' YriVipLEE (X NeFir (3.33)
elastic plt;;tzc

T Vim gmkim = Fig Fip MicLir Xy (X?A,kx‘};i - anxif),kx%ﬁ
T - P - P X>p . P —1
+ B Fi Mot ((Xiowion + Xia¥as = Xir LN a ) Xam
_ Vp e e—1
1a XA kX Am
I Vi e Mk, = MKEMF& ()’(f—’[—{ 7% M}‘{)} clastic
+MgrmFy, <_leanLMK [ ze‘XPDA,[(
PP p—1
~XipLEEXEa K] XAM)

plastic

(3.34)

Note that deformation measures for micromorphic elastic solids were expressed in equation

(1.36). We give the same deformation measures for the intermediate configuration as:
Cir = FigFer » Yir = FerxXor » Trim = FegXoom (3.35)

We chose a Helmholtz Free Energy function form similar to that of given in the section 2.3

(Eringen and Suhubi (1964); Regueiro (2010))
ﬁ?/j ,0?/) ( kKaXZR’aXZK’J\ZaZI_{)Z[X(aZ;{'{’L> (336)

where Zz, Z IX{, and 7 IX{ ;, are a vector of macro-strain-like ISVs, a vector of micro-strain-like

ISVs, and derivative of micro-strain-like ISVs respectively in the intermediate configuration



B. The material time derivative of Helmholtz free energy in B.

D(pv)  opi e opY ., N op DXyg
DE OFg, MK oy UK T aye T D
opb 5 Opw opb D2y opi
oy 5 7x :
Tz R Tz kT oz, Dt o 0

The left hand side of the equation above can be also expressed as:

D (ﬁw)
where
. D(po) T JP _Jr
po=J"p ;&pz%z—m(mg =
Then, equation (3.38) can be rewritten as:
D(py) -7
DT P v
which yields
__Jjr D (p)
P = TR Tae

68

(3.37)

(3.38)

(3.39)

(3.40)

(3.41)

Coleman and Noll (1963) argued that plastic strain rate process is independent of the elastic

strain rate. If we insert equations (3.41), (3.31), (3.32), (3.33), and (3.34) into the reduced

Clausius-Duhem inequality and collect the elastic and plastic terms, from the elastic terms

we get;
Q__ __ 8 (ﬁi;) e—1
KL — 8F]§f( Lk
N . a (ﬁ'lz_f) e—1 e—1 70 (ﬁq/j) e—1
ZKL o aF]:R' FLk +FR’C cA aXaA Fia
e—1 o (ﬁ'@;) e—1
+ Fz, Xaiit, B fM,EF_f

- 3 () .

KL = G )FLkl

(3.42)

(3.43)

(3.44)
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Similiar to what we did in chapter 2 for finite strain micromorphic elasticity, we can chose the
Helmholtz free energy function with different set of invariants in intermediate configuration

as:
V(C, T, Z,Z*,VZ",0)
@E(C’%fn qj%’fn f%’i}\?ﬁ ZI_O Z;%a Z;%Ia 9) (345)

Then, the constitutive equations can be defined in the intermediate configuration as:

o_ . — 81; — al; ~e—1\_ _\Jje _
SkL = 2p86§?E+p8@§’<B(C )pa Vg
o - _
+ﬁarew B (CG_I)EA F%BC_' (346)
KBC
- b b i
SEL = 2p v + 2sym lﬁ _ (Ce—l)LA\Ife——}
aCe LoV, AB
— aw ~e—1 e
+2sym | (" )2a G50 (3.47)
) KBC
I O
MEEM = 5 (3.48)
N i

The thermodynamic stress-like conjugates ISVs of Z, ZX, ZV-X are introduced respectively
as:

_ 81; = de 81;

—

Qr = o7y QL= P@ , (Q@Y)ik = %Z%L (3.49)
The remaining terms in the reduced Clausius-Duhem inequality are:
I D(Z5,)
P — QrZk — QL 2%k — (QV)1 D T OkL (Cislk)
+ (Bkz — Skp) [P5aLER(C ) pnUiy]
+ ML { VipLhari — 2VEnskw [Le (T ) erlhg] } 20 (3.50)
where the tensor CY° " is defined as C’;%f{l = X;{;X%:-
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3.3 Constitutive Equations for Simple Elasto-plasticity of Geomaterials
To derive the constitutive equations, quadratic form of Helmhotz free energy function
was expressed in the previous chapter for micromorphic finite strain elastic formulation. We

assume the same form for the Helmholtz free energy function including quadratic form for

energy terms of ISVs as well in intermediate configurations as:

(3.51)

Agiiiy = Mgpdus + 4 Ormdisy + 0xx0rw) (3.52)
Brimy = (1—7)0gz0mn + #0gm0ry + VOgnOrm
—0(0gnOrn + Ok NOLr) (3.53)
Crimnpe = T (0rE0mn0pg + 0ra0rmdnp) + T2 (Ogidmpdng + 0ridro0np)

+730kL0nQON P + TadrNOLIOpg + T5 (Okm0LN0pg + Ok POLIIONG)
+760g 01PN + 10k NOLPONQ + s (0r POrgONN + OrQOLN O P)
+790 kg N0Lg0Np + T100k POLNONIG T+ T110kGOL PO N (3.54)

Drivin = TOri0ux +0(0rmdry + 0xnors) (3.55)



71

Then, the constitutive equations take the form by applying equations (3.46), (3.47), and

(3.48)
Sgr = ArtuvEgy + Drsuvex
+(DraunEsy + Braun€an) [(C)54 €% + 0rz)
+C’RBC‘NPQF§VPQ(66_1>EQFZ')BC (3.56)
SK’E - AKLMNE;‘JN“—DKBMNE?\ZN
+2sym {(DgrnEin + Braun€sw) [(C)ra€%5 + 015
+Crponrel 5 po(C 1ol Gae (3.57)
i = Crimnpalvpg (3.58)
Ignoring the quadratic terms and inserting the elastic moduli tensors yield:
Srr = A+7) Exiidrr +2(n+ 0) Egz + n€ymdgr + k€gr + vEix (3.59)
Ser = (A427) Expidgr +2(n+20) Egp + (20— 7) Eynidrr
+(wv+r—0)(Exr + Eik) (3.60)

also

wiir =7 (Drrrdim + Trridrir) + 7 (Crradim + Drrndrr) + 1l rredin

(3.61)
HZg (3.62)
a}ZY (3.63)
HYXZN (3.64)
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3.4 Yield Functions, Plastic Potential Functions, and Evolution Equations

Three yield functions with same forms assuming non-associative flow rule are intro-

duced for macro-scale plasticity, micro-scale plasticity and micro-scale gradient plasticity

to define the plastic deformation evolution equations. The plastic potential functions are

assumed to have the same forms with the yield functions.

3.4.1 Macro-scale Yield, Plastic Potential, and Evolution Equations

For the macro scale plasticity, we have very well known Drucker-Prager plasticity form

of yield function as follows:

F(S,e) €

|devS|| — (A% — B%p) <0

6 _ 3o b _ 3o o 2V/6
A? =p%cos¢p, B? = [%sin¢g, S BT

[devS] = y/(devS) : (devS)

(devS) : (devS) = (devS;;)(devSyy)

= (devgjj)(devgjj)
_ _ 1_ _ _
devSi; = Sr7 — (gCZBSAB> (Ce 1)17

(3.65)

(3.66)

(3.67)

(3.68)

(3.69)

(3.70)

where ¢ is the cohesion in B, ¢ the friction angle, and —1 < 3 < 1 to intersect the Mohi-

Coulomb vertices in Triaxial Compression ( = 1).

The plastic potential function with



evolution equations are:

ol

Q

where 7 is the plastic multiplier rate in B, ¢ the dilation angle.

model as of yet.

3.4.2 Micro-scale Yield, Plastic Potential, and Evolution Equations

|devS|| — (A¥¢ — B'p)

Y costp, BY = B¥siney , ¥ = 216

3+ fsine

. 0G  0G - 1, -
N ~ = N + _BYC¢-
785]@’ 0Skr KL+3 KL
devSig
|devS||

8G i

w_

Toe =A%
HZ
c
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(3.71)

(3.72)
(3.73)
(3.74)

(3.75)
(3.76)

(3.77)

There is no cap for this

The yield function and the plastic potential function with plastic evolution equations

for the micro-scale are expressed as:

FX(E — 8, E|dev(E — 8)|| — (496X — BX9pX) <0

AX® :5x7¢> cos ¢X | BX? — 5x7¢ sin X

ﬁx¢_

21/6
3 + [BXsin X

dev(37; — Sp7) =317 — Sp7) — PXC57!

(3.78)

(3.79)
(3.80)

(3.81)

(3.82)
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where ¢X is the micro-scale cohesion in B, ¢X the micro-scale friction angle, and —1 < X < 1,

and X = 1, The plastic potential function and evolution equations of the micro-scale are:

GNE— 8,8

Ax,w

= 8GX =
I(Xgr — Skr)
N¥ 45
7X
X
O

[dev(Z — 8)|| — (AXVex — BXYpX)

mw cos X | BXY — 5x,w sin X
2v/6

3 + BXsinyx
0GX

(XgL — SkL)

. 1
N¥Xgp+ 3BV CE;

fyX

dev(Zi5 — Sip)

[dev(Z - 9)]

. 0GX )
_AX — AXYAX
Y Dex Y
HXZx

EX

(3.83)
(3.84)

(3.85)
(3.86)
(3.87)
(3.88)

(3.89)
(3.90)

(3.91)

where X is the micro-scale plastic multiplier rate in B, ¥X the micro-scale dilation angle.

3.4.3

Micro-scale Gradient Yield, Plastic Potential, and Evolution Equations

Lastly, the yield function, the plastic potential function, and evolution equations of the

micro-scale gradient are:

[dev M| — (AV2[|e™| — BY*[[p™]) <0

— ﬁvx,qﬁ COS ¢Vx ’ BYx:¢ — 5Vx7¢ sin ¢Vx

2V/6

FY(M,e") €

AV —

BVX@ —

devMije =
P = %C'ZB

3+ BVXxsin pVX

Mrig = (C )17 b~

(3.92)

(3.93)

where VX is the micro-scale gradient cohesion in B, ¢VX the micro-scale gradient friction

angle, and —1 < AYX < 1, and BYX = 1, The plastic potential function and evolution
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equations are:

GVX(M,e¥Y) € ||devM|| — (AV¥|[e¥X|| — BY*¥|pX|)) (3.94)

Lé?\}[( — Q\I]%DSkW [ng(ile_l)éﬁf%]\z[_{} =7 m (395)
AV — ﬁvx,w coS ¢VX BV — 5Vx % sin ¢Vx
~V T 7VX
89‘ Y devMgrw _Bvx d}CKL (3.96)
OMg 1y [devM | HPVXH
- .o OGVX ) eYX
x e _fo_ _ AV (5Vx)_“A 597
oxX = HVXZ§5M (3.98)

where 7VX is the micro-scale gradient plastic multiplier rate in B, 1)VX the micro-scale gra-

dient dilation angle.
3.5 Map to Current Configuration and Numerical Time Integration

Mapping the constitutive equations according to stress mapping relations given in
equations (3.19), (3.20), (3.21) and then taking the material time derivatives of the stress
tensors provide objective stress rates in the current configuration B. Besides, mapping
evolutions to current configuration gives us the corresponding plastic evolution equations in

B (Eringen and Suhubi (1964); Regueiro (2009); Moran et al. (1990); Simo (1998)).

Je _
Op = ———5F o F%Sepr +
Kl (J'e)z kKTILPKL
J¢ _

S _ 1 _
Skt — Okt = — 0 )2FkKFlL (Zkz - Ri)+;Fkk i (Xkr — Ski)

1 e e o e 1ed e e
ﬁFkkFESKE + — P FiSrr + - FigFiSrr  (3.99)

1 e e (v qQ 1 e e (¥ S
+ - Fi bt (Sxn = Sin) + 5 b (zm —S,—{E> (3.100)
Mt = —WFISRE%X;MMREM + Je FI:KFE ot Mi L

1
F]:KFEX;,M KLM (3101)

1
— P FeXC Mg pr + 7

1
— FFexC Mg + 7

Je
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Note that in the mapping of the stress, the stress differences were used instead of micro-stress
itself. It is because the stress difference appears as the work conjugate to the chosen metric
strain definition in the reduced Clausius-Duhem inequality. If we implement the material
time derivatives of the terms appearing in the equations above such as F i =l and

5}@ from equation (3.60), we get;

O = —(d5;) o + L0 + orilyy + (N4 7) (di;) 0 + 2 (4 0) dy
+ n(e;)0r + Keg, + vey, (3.102)
S — ow = —(di;) (e — om) + Ly, (sa — o) + 7(d5;)0m
+20dy, + (n—7) (e5)0m + (v —0) e + (k—0) ep, (3.103)

Mrm = —(d5)Mpim + CoiMitm + Mgl + MgV, + Cklmnpq%?npq (3.104)

Cklmnpg — T1 (5k15mn6pq + 5kq61m6np) + 7 (5kl5mp5nq + 5km61q5np)
+7-35k15mq5np + 7_45kn61m5pq + 75 (5km51n5pq + 5kp51m5nq)
_I'Tﬁékmélp(an + 7-75kn51p5mq + 78 (5kp5lq5mn + 5kq51n5mp)

+T95kn5lq6mp + Tloékp(sln(smq + Tuékqélpémn (3105)

where

inpq = ;}/qu + gcezn’ygpq + f}/Zpag(ezq + %emqup (3106)

In determining the objective stress rates given above, small elastic deformation is assumed so
that the left Cauchy-Green strain tensor, its inverse, and some other strain tensors as well as
Jacobian of elastic deformation gradient tensor become heavily unit tensor when multiplied
by a deformation rate or stress (Regueiro (2009)). Mapping of the plastic evolution equations
result in following yield functions and plastic evolutions equations for, respectively, macro-
scale, micro-scale and micro-scale gradient plasticity.

For macro-scale plasticity, the yield function and plastic potential function take the
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form below

F(o,c) = J|deval| — J* (A% — B%) <0 (3.107)
[dever|| = /devoy;devay,; (3.108)
devo;; = 045 — pdij (3.109)
= %U (3.110)

The plastic potential function and map of the plastic velocity and strain-like ISV in B become

G (o,c) = J°|devo]|| — J (A%c — B%p) (3.111)
oG
b _ . 3.112
1k 7501@ ( )
0G devakl 1
= -BY 11
Joy  ||deve|| * 3 Ou (3:.113)
: oG
4 = —y— 114
15, (3.114)
c=HZ (3.115)

For micro-scale plasticity, the yield function in B is:

F(s—0,cX) = Jdev(s— o) — J° (AX?cX — BX?pX) <0 (3.116)
1
pX = 3 (8ii — 0ii) (3.117)

the plastic potential function and the plastic microgyration tensor and strain-like ISV are

G(o,c) = J||deva| — J¢ (AXYeX — BXYpX) (3.118)
: oG
0G dev (s —ow) 1
= —BXY§ 12
dow  Jdev(s—o)| T30 M (3.120)
- ., 0G
e (3.121)

X = HXZX (3.122)
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and similarly for micro-scale gradient yield function

F (m,c¥X) = J°||devml|| — J¢ (AVX?||eVX|| — BY¥?||p¥Y||) <0 (3.123)
|m|| = \/(devmijk) (devmijk) (3.124)

1
devmgjr, = myjr, — §5ijmaak (3.125)

¥ = /P pn (3.126)
1eVX|| = v/ emXemX (3.127)

1
Vi _ Sk (3.128)

and the plastic potential function also the map of the gradient plastic microgyrataion tensor

and strain-like ISV become

GVX (m,cvx) = J¢||devm|| — J¢ (AVX’chVXH — Bvx’d’HpVXH) (3.129)
Vi =77 X gg;z (3.130)
gg:; - ﬁzzgf:ﬁ + %vadkl% (3.131)
= m O oy .
o X = HYXZ)X (3.133)
3.5.1 Numerical Time Integration

The objective stress rates presented in equations (3.102), (3.103), (3.104) may be in-
tegrated with a semi implicit time integration approach such that the unsymmetric Cauchy

stress tensor, the difference of micro-stress tensor and Cauchy stress tensor, and higher order



couple stress tensor at n 4+ 1 time step can be expressed as:

O = (1—tr (AtdS,,)) o + (AL ) o+ 0 (AL, )T
+ (A +7)tr (Atd; ) 1+ 2(p+0) (Atd;,, ) + ntr (Atey, ) 1

+ ok (Atel,) + v (Atel,,)"

(8= 0)ny1 = (1—tr (Atd; 1)) (s — ) + (AL, ) (s — 0)n
+(s— o), (Ate,) + (k—0) (Atel, )"
+ (v —o) (Atel,, ) + rtr (Atd;, 1) 1

+20Atd; | + (n—7) tr (Atel ) 1

my = (1 —tr (Atd;, ) m, + (AL, ) m, +m, © (AtEZH)T

+m (A )" e (A,
where

Aty = A+ (At ) T %+ 5 (AtL) + 45 © (Ar,)
Aty = (At’/fLH) Yo — (At’/fwl)T © 7y, + AtV — AtVv;

AtVYS =V (X1 — Xn) © X1 T (Xt — Xn) X1 (VXi1) © Xt

AtV = (A’YZ—?—(I) (rvx’ﬁ)tr

Vx,tr
Vo, tr\ " _ devm lex,wl p
) = faovmi T35 O p
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(3.134)

(3.135)

(3.136)

(3.137)
(3.138)
(3.139)

(3.140)

(3.141)

Note that the terms with the subscript n in the right hand side of the equations are the terms

converged in the previous time step while the terms with the subscript n 4+ 1 are belong to

the current time step. Then we have two cases as:

(1) By using these equations above we calculate the trial stresses and then correct them

to use in the yield functions. We have the plastic yielding checks at each scale as:
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o If ' > (0 and FX*' > 0, yielding occurs at each scales. Then we solve for

Av,,41 and Ay, using Newton-Raphson for coupled equations

F(ont1, 1) = F (Avpg1, A1) =0 (3.142)

Fx ((sn-i-l —Opni1) >CZ+1> = I (A'Vn—i-la A%)f-i-l) =0 (3.143)

o If F'" > 0 and FX*' < 0, yielding occurs at macro-scale only. We solve for

Avpi1 and Ay, = 0 using Newton-Raphson
F(0nt1,Cnt1) = F (Avps1, AYY 1 =0) =0 (3.144)

o If F'" < 0 and F*!' > 0, yielding occurs only in micro-scale. Then, we solve

for AyX, | and Ay, = 0 using Newton-Raphson
Fx ((Sn+1 —Opni1) vcif-i-l) = I (A7n+1 =0, A’Vﬁf—f-l) =0 (3.145)

(2) We compute the trial yield function using the trial stress value m' and solve for

AyYX, using Newton-Raphson

FYX (mn+17 CZ-',>-<1> = FVX <A’Y§4>-<1) =0 (3.146)



Chapter 4

Finite Element Formulation of Finite Strain Micromorphic Elasticity at

Current Configuration

4.1 Weak Form and Linearization of the Balance of Linear Momentum

The local form of balance of linear momentum is :

o+ p(fe —ag) =0 (4.1)

If we multiply the weak form of (4.1) with a weight function and apply divergence theorem,

we get :

/ wi (s + p(fe — ag)) dv = /wkalknlda
1%

S

— /V [wraou + wi, (p(fie — ax))] dv =0 (4.2)

/wkalkJNKFI}lldA - / [waO'lk -+ Wy, (p(fk - CLk))] JdV =0 (43)
S %4

To linearize the balance equation, we should find the variation §(.) of the equation. The
aim of linearization is to obtain the consistent tangent matrix to apply within the Newton-

Raphson algorithm. (4.3).

/wkalkJNKF[}lldA — / (w0 + wi (p(fr — ax))] JdV
s 1%

) (/ 'LUkO'IkJNKF[;lldA — / [waO'lk + wg (p(fk — ak))] JdV) =0 (44)
S \4

Note that area change is :

mda = JFg} NgdA (4.5)
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and Piola transform of Cauchy’s stress tensor
PlL = JO’lkFL_kl (46)
Then, variation of equation (4.3) is:

J (/S wkadA) -0 {/v (Wi o +wi (p(frx — ax)) J] dV} =0 (4.7)

where T}, = P, Ny, and variation of the volume integral will be:
B U (Vw” : o +w.p(f —a)J) dv} = (/ (Vw)" : aJdV)
1% 1%

+6 </Vw.(po(f—a))dV) (4.8)

Variation of the first integrand at right hand side of equation (4.8) is:

§(Vw)' o+ (Vw) :d6] + (Vw)" 106 (J) = (Vw)" : doJ

+(Vw)" a6 (J) (4.9)

or 6 (Vw)" : o] can be assumed as:

Jwy, Owy dowy, 8
\\,./

0

= —wk7LFEn115um7lO'lkJ (410)

In order to calculate the second term, (V'w)T : 0o .J, the variation of do must be determined

as given below where 0,1 was defined in equation 3.134 as:

T = (1—tr (AtdS,,)) o + (AL, ) 0 + 0, (A1)

+ A+ 7)tr (AtdS, ) 1+ 2 (pn+ o) (Atd ) +ntr (Atel ) 1

T

+ r (Ates ) + v (Atel ) (4.11)



where

Atel = At + (AL, +1)
AtV = (AXi1) Xntt

= Atel = (Axp) Xok + (Atee,)"

Then variation of o, is found as :

dou = — ((Fn)ip, FrpOtm,i) (00)y, + ((Fn)y Frndtim,i) (00),
+ (0n)y; (Fn)ip FrmOtm) + N+ 7) (Fn)yp FrmOtim;) 6
+ (u+0) (B FromOums) + (4 0) (Fu)pp, FrmOtim,)
+ 1 ((Xn) i Xz (0Prr) X7 ) Ok + 1 ( )it EpmOtmi) Ou

+ 5 (Xn)ip X 6Ponr) X7) + 5 (Fn) o, FrmOtim,1)

1)+

+v ((Xn)kL XLm (0@mr) X7 ( L FLmdum k)

Lastly, the third term in equation (4.9) will be equal to :

(Vw)" : 06J = (Vw)" : o (Jdiv(5(u))

Variation of the second integrand in (4.8) for quasi static case is :

d(wfpo) =6(w)fpo+wd(f)po+wfd(po) =0

Variation of the traction term :

5 (/wTdA) :/(5 (w) T + w.5(T)) dA
=0 (/w.TdA) - /w.é(T dA

where 0 (T") depends on application of traction load.
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(4.12)
(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)
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4.2 Weak Form and Linearization of the Balance of First Moment of Mo-

mentum
The local form of balance of first moment of momentum is :

Ot — St + Mt e + P(Nim — Wi

If the same procedure is applied as we did for equation (4.3), we get ;

/ Nt (Omi — Smi + Mgk + PN — Win) )dv = / (Dt Moketm) nda
v

S

— /nml,kmklmdv + /ﬁmz(aml — Syt + PN — W) )dv

v v

(4.19)

(4.20)

where 7,,,; is the wighthing function for the micro-displacement tensor ¢,,; If equation (4.6)

is applied to equation (4.20) , we get :

Dot Mt A = Ny Mt J Frep Nicd A

= Nyt Mtm ] Frep Nicd A
————

Miymk

Nt Mokt MA@ = Ny My N d A
—

Fim

Dt Mt A = Ny F A
Then, equation (4.20) will be :
/nmlemKNKdA - / N e Mokt J AV
s v
+/ T]ml(O'ml — Syl T+ p(>\lm — wlm))JdV =0
1%
Variation of (4.22) is:

/UmlMlmKNKdA—/nml,kmkldeV
s v

(4.21)

(4.22)

+/ Nt (Tt — Spt + PPN — Win) ) JdAV + 6 </ Dot My Ngd A — / Dol kMot J AV
1% 5 1%

+/ Nt (Ot — Smi + P(Atm — wlm))JdV) =0
v

(4.23)
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/nmlemKNKdA—/Umz,kmkldeV
s v

+/ Nt (Omi — St + PN — Wig)) JdV + 6 (/ UszzmdA> -0 </ ﬁmz,kmkzmjdv)
v s v
=0

+0 (/V Nt (Ot = St + P(Ntm — Wlm))JdV) (4.24)

Variation of the area integral :

5 ( /S nmlFlmdA) _ < /S oot (F ) dA) (4.25)

Variation of the second integral in (4.23):

o (/ Umz,kmkzmjdv) = / O (M) Mgt J AV +/ Nt k0 (Mgtm) JdV
1% v v

+ / Nt kgm0 (J) AV (4.26)
v

where § (7,,,) can be obtained as:

8nml 8XK anml _
O (Mini k) Mgty ] =0 <8XK o, ) Mpimd = 0 <EFK}£ MgimJ

= Dot & FrgOta, . Fr, (4.27)

In order to calculate the variation of the second term at the right hand side of equation

(4.26), someone should calculate the 6(m) where m was expressed in equation 3.136 as :

Mnt1 = (1 —tr (Atdz‘f‘l)) m, + (Atei-i-l) m, +m, ©® (Atefﬁ-l)T

+m, (At H)T + ¢ (Atf’yi +1) (4.28)
where
Aty = A+ (A ) A5 +~5 (A, ) +75 © (A, (4.29)
A = (A ) 7S — (Ae,) 08 + AtVVS | — AIVLE,, (4.30)
——

0 for elastic case

AtV =V (X1 — Xn) © X1 + (X1 = X)) X1 (VXp1) © X (4.31)
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Variation of the AtVwvy, | is quite complicated. Therefore, it may be useful to give it in
indicial form as:
Vpr.s = [XpAX;xﬂ 5 = XpA,sX,Zi + XpAX;xig
Integration in time gives:
Atvprs = AtXpasXar + AtXpaX s
= (XPA75 - (XN)pA,s> X.Zi _l_ (XPA - (X”)pA) X;has
= (Xpas = (Xa) FriXar + ~ (Xn)pa ) Xarr Frs
pAs — \Xn)par ) F'rs XAr XpA = \Xn)pa ) Xar 415

1 1 OXaB 4 o
Atvy, s = (XpA7s - (Xn)pA7T> Frlxil + (XpA (Xn)pA> il aXB P (4.32)

Then, we take the varitation of the terms as :

8 (Atrs) = 0 (o = Codparr) Frixat + (Xoar = (lpar ) 0P G

OXa _
+ (XPA,T - (X“)pA,T) FYTSI(S (XA’I‘) + 6 <XPA - (XTL) ) XZ(:ILL 8>§(B XBIF

_ aXaB _ _
+ (pr - (xn)pA> Nau g, XorFrs
15 [ WXa e
+ <XpA — (Xn), ) X0 ( B) X5 Frs
— XaB —
+ (XpA pA> XAé e BiFTsl
_ 8XaB _
+ (XpA pA> XA; X1 B11"6FT51
If we apply equations (A.3) and (A.9) as

OXpa\ o1 - _
5 (i) =0 (P21) Pty - (pr,T - (lyar) FrlSFan

_ _ _ — aXaB — _
+ (Xoar = Otn)pair) FrixasdXanXar +0 (o) Xan s X, XorEr

_ aXaB — _
XpA — Xn pA) XAZ 5XZLXL; 8X 1FT51

aXaB _ _
( ) XBiFTsl

1)
) 1XaB 4
)

_|_

XpA — Xn

Xpa = (tn)pa ) Xan gy XX Xr Frd

~
(
-
-

XpA — Xn pA X;i (r;;gB _1F 15FLFL31
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and applying equations (A.2) and (A.8) gives:

Xpa — (Xn pA> XaaXaBTX 5 0Pir X1, Fry

5 (Atrs) = 0 (Dpar) Frixat = (Xoar = Oonpar) Frld () X3!
- (prT (Xn)pa, T) FryXaa0®anXp + 0 (Ppa) XaoXaB X5 Fr
(pr (Xn ,,A> X1 0Pir X Lo XaB T X5 P
+ (XpA — (Xn pA) X0 Pan X5 Fry
-
-

Xpa = (Xn ,,A> XaaXaB,TX 0 Fry 0 (i 5)

(4.33)

The variation of m,; depends on the variation of each term given in equation (3.136).
These terms,basically, are related to the (At€5,,) , (Atd;_ ;) . xpp1and (Vx,.1). Note that
variation of these terms are given in equations (A.5),(A.6),(A.8) and (A.11) respectively. Also
variation of the term AtVv_, is given seperately in equation (4.33). Therefore, variation

of m,, ;1 can be obtained as:
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OMpim = — ((Fn)w FL_nléun,i) (M) g + ((Fn>kL FL_n15“n7i> (M) i1
+ (M) ki ((F")IL Fljnléu"vi> + (M) i ((Xn)mL XZ;MDPTXC?})

o Ctamprs | (00 XEEI®uz X! ) (06)ins — (000 XEA0ParT)) ()i

+ 6 (Ppar) Fry XAr <XpA,T - (Xn);;A,T) FT_alé (Ua,s) XZ:

+ (Xpar — (Xn)pa, T) FriXaa0PanXp + 6 (Ppa) XaaXaB X5 Frs

Xpa — (Xn pA) Xai OPirX 1o XaB.T X 5 s

+

1

)
(XPA Xn pA) XAa(S(I)aB TXBT’FTsl
<XpA - Xn pA) XAaXaB TXBZ 5<I>1LXL1F

Xpa = (Xn) pA) XaaXaB,rXp Pt 0 (uis)

+ ((Fo)i, Frn0tnk) () iim + (Vi) ks (Fu)ip, Frp 0tinm)
+ (

Vo) ki ((Xn)zL XLpé(I)pTXTl )] (4.34)

The last term at right hand side of equation (4.26) can be obtained as:

Nind kMmO (J) = Dot Mok, (S (U, 1)) (4.35)

The variation of the last integral term in equation (4.23) can be written as follows:
0
—~
) </ nml(aml — Sml + p(>\lm - Wlm)>Jdv) = / ) (nml>(0ml - 3ml>J
1% v

0 PO

—~
+77m15(0-ml - Sml)J + nml(o-ml - Sml)(s(t]) + 5 (nml) PJ ()\lm - wlm)
0

~ =
1m0 (00) (N, — Wimn) + it P00 (N, — Wi )dV (4.36)
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The first term in the right hand side of equation (4.36) will be zero. To determine the second
term, §(0,y — Syu) should be calculated where (s,,; — o) is defined as follows:
(8= 0)py1 = (1 —tr (Atdy 1)) (s — ) + (AL, 1) (s — 0)n
+(s— o), (At ) + (k—0) (Ates,,)"
+ (v — o) (Ateg, ) +7ir (Atd;, ) 1
+ 20Atd;, + (n— 1) tr (Atel ) 1 (4.37)

where 0(o — s) = —d(s — o). Note that variation of the terms appearing in equation (4.37)

are given in Appendix (A). Variation of the third term of equation (4.36) :

Nt (Tt — Smi)0(J) = Nt (Oomi — Smi) SO (U ) (4.38)

Variation of the last term in equation (4.36) :
nmlpé()\lm - Wlm>J = nmlp(s ()\lm> J — nmlp5 (Wlm) J

where

pAimdv = / P f&,dv = / O fixmrxExdv’
dv dv

Pundo = o | PHEdt’ = oune | fiZic g V"
dv dv \,"J
Po

- -

pol' i dV

p)\lmdv = XprorleV (439)

0

Ittt
= p5 ()\lm) dv =19 XmK/ p fl‘:K‘] dV'| =0 (XmK) pOPleV + XmK5 (pOFleV)
dVv

pol'1cdV

p5 ()\lm) dv = pQFlK5 ((I)mK) 1% (440)



and

pPWmdv = / p'élﬁmdv/
dv
= / 0 (Xikx) Ex XmrErdv'
dv
= (XlK)XmL/ o=k ELdV’
av
= pwimdv = (Xik) XmrPolxLdV, poSlxrdV = / PoErELdV’
av
6 (i) dv = (8 (Busc) B, + b (@) ) poSscrdV
By using (4.40) and (4.41), we get :
MmO (Nim) J — M pd (Wim) J = Do poli 6 (Prnic)

= Nmi (5 (‘EK) D1 + 16 ((I)mL)> P08,

Then, the last term for quasistatic case in equation (4.36) becomes :

5 / o — ) | = / poTiscd (o) dV
S~~~ v
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(4.41)

(4.42)



4.3 Finite Element Discretization

Displacement u can be discretized as:

{u"} = [N"].{d}
—_— = =~

ngg X1 nsdxnsff ng X1

Nen

U = ZN
a=1

{grad(uh)}J = [grad (N“’E)J. \:iji

~” WV
(nsd*nsd)xl (nsd*nsd)xnngf n;(’:}Xl

Nel

a=1
in matrix form
{'wh} = [N*“°] . {c‘}
—— =~ =
Ngg X1 nsdxngff nZéefxl
then, grad(w) can be obtained as:
= vl P
{grad(w")} = [F_lﬁ; {GRAD(w")}
—— —— -~ —
(nSd*nSd)Xl (nsd*"sd) ( sd*nsd) (nsd*”sd)><1

wk L= E Lck(a
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(4.43)

(4.44)

(4.45)

(4.46)

(4.47)

(4.48)

(4.49)

(4.50)

(4.51)

(4.52)

(4.53)

(4.54)



in matrix form

(GRAD(w)} = [GRAD(N")]. {¢'}

~
(nsd*nsq)x1 (nsa*msa) Xng) (n’jff)xl

{GRAD(w)}" = {c} [GRAD(N“)]T

J/

DX (nagenaa) 1 (ndof) % (g sa)
{g'rad('wh)} {c I [GRAD(N“ 7. [F~]
———— - ——

lx(nsd*nsd) lx(ndof) ndofx(nsd*nsd) (nsd*nsd)x(nsd*nsd)
], =[GRADN"". [F'’
~~ — -
g0 X (Nsd*nsa) Moy X (Nsd*nsa) (nsaxnsa) X (Nsaxnsa)

Micro deformation tensor x can be discretized as:

nen

(I)?nL ZN ¢mL(b

=0 (xXpr) =0 (Ph,,) = ZN?(; (émLw))

in matrix form

{z
=
—~ 1
<
—

{®"} =
——
(nsaxnsq)x1 (nsd*nsd)xnzi(:} "goﬂd

The weight function 1 can be discretized as :

nan
oo X
M = Y Nyt
b=1
in matrix form

ny = [N¥] {a}
~ N—— —~——
(nsg*ngsqg) X1 (nsd*nsd)xnzof nffole

The gradient of the weight function 1 can be discretized as:

nen

77mz k= ZNb )

in matrix form

{graii }J [gravaXe ligi

€ €
(Nsq*nsg*nsg) X 1 (nsd*nsd*nsd)xndof nx%x1
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(4.55)

(4.56)

(4.57)

(4.58)

(4.59)

(4.60)

(4.61)

(4.62)

(4.63)

(4.64)
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{grad(n)} = [F‘l}n (GRAD(n)] (4.65)
—_—— \ ) —_—
(nsaxnsq*nsa)x1 (Nea*Msq*Nsq) X (Nsgknsq#ngg) (Tsd*Msa*Msd) X1
T e 11T
{grad(n)}’ = {a} " [GRAD(NX )] [F], (4.66)
N——_— ——— ~—— —_——
(nsd*nsd*nsd)><1 1><nzl<(ff ndof (nsd*nsd*nsd) ( sd*nsd*nsd)X(nsd*nsd*nsd)
4], — [GRAD(N**)]". [P (4.67)
~~~ B g - S——
ngffx(nsd*nsd*nsd) ng,;fX(nsd*nsd*nsd) (Nsq*nsq*nsq) X (Nsg*Ngg*Nsq)
4.4 Submatrices in the Matrix Form of the Balance of Linear Momentum
Equation (4.3) is separated into subintegrals as follows:
G = — / (grad (w))" : oJdV (4.68)
1%
If we write equation (3.134) in indicial notation as:
o = (1= Atdy) (00) + (AG) (00)y + (0n)y; (ALl 4)
+ (AN +7) Atd;;0n + 2 (10 + o) (Atdy,) + ntAteson
+ kAte], + vAtey, (4.69)
then,
(9), = —/ wy 1ok JdV (4.70)
v

if the all the expressions given in Appendix (A) are inserted, Galerkin from of the §% can be

obtained as:

Seh / {c grad N“e} . {Gl} JdV
~——

(ndof) ndofx(néd*n.sd) (nsd*nsd)xl

i} = - /V [grad(N“e]J. (G Jav

€ -

TLd f><1 ndof (nsd*nsd) (nsd*nsd)X1
(o}

- N———

nduv‘}xl "Z&?X(nsd*nsd) (nsa*nsa) X (Nsa*nsd) (nsa*nsq)x1
(o}

{s} = - / e[GRADV(N“’E)}T. L R (A

(4.71)

(4.72)

(4.73)
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(g = A {CG}T.{UT,Int} -
e=1\ : ,
1><n;éef n;(’)efxl
The second term:
(g1, = / {c NU6:| AF} podV (4.76)
(Se,h)2 = _/ Po {ce}T [NU@]T{f}dV (477)
Ve \\,_/ H’—/v
lx("gé?) Ny XMsg Msd X1
{U;Jﬂt} — _/ 00 [Nu,e}T{f}dV (478)
— e
Mgor X1 Ny Xnsa Msd X1
("), = TK {C} .{U;W} (479)
———
1 ("dof) i x1
and
(Seat) = / pow” TdA (4.80)
S
(Geat) = / powyTidA (4.81)
ext / {C Nu e:| {T}deA (482)
"dof) ndofxnsd "aXm
(UL = [ v (Thmaa s
N—— §e e
Mgof X1 Mgy Xnsq MsaX1
(95:) = A {7 W} (4.84)
\\,_/
1X(ndof) g x1
4.5 Submatrices in the Matrix Form of the Balance of First Moment of

Momentum

The balance of first Moment of Momentum can be separated into subintegrals as fol-

lows:



The first subintegral H;:

H, = —/ Nl e Mgt J AV
v

where my,,, is written in indicial notation as:

Mt = (1= Abdg) (M) g, + (A) (M) i+ (100) i (ALE)

ilm kim

+ (M) s (Atvy;) + Chimprs (At%pr8>

Aty = A+ (AL,) (V)i + (V)i (AL + (7)1 (A7)

AL, = (Atg) (10)is — (AW (10, + Atug,  — A2

pT,?S pT,?S

0 for elastic case
Atvy, = <XpK,s — (Xn)pK,S) XKr — (pr — (xn)pK> Xis (T ) X

-1

Atl/;r,s = (XpK,S - (Xn)pK,S) FLSTng]_{:L - (XpK - (Xn)pK) Xl_{i (XiT,S) FS
Wt =~ | {a)} [grad(N¥9)]". {H\} Jav
Ve ss——" ~~ - ~——

lxngof nil(of X (ngg*nsg*nsg) (Msa*nsa*ngg)x1

{P‘;J"t}:— /V [grad(N*)]". @ dv

€ =
né"'}xl nzl(ofx(nsd*nsd*nsd) (Nsq*nsg*nsg) X 1
(o}
Nel
h _ e\ T e,Int
3 = Afac}’ {Pi]
e=1
" —_——
X
Doy miex1

The second subintegral Hs:
J{2 = / nml(gml - Sml>Jdv
v

:}(2 = _/ nml(sml - Uml)JdV
\%

where (s,,; — 0,) is expressed in indicial forms as:

r XTS
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(4.85)

(4.86)

(4.87)

(4.88)

(4.89)
(4.90)

(4.91)

(4.92)

(4.93)

(4.94)

(4.95)

(Sml — Uml) = (1 — Atd;) (Sml — Uml)n -+ (Atﬁz“) (Sil — Uil)n + (Smi — Umi)n (Atﬁfl)

+ (k — o) (Atey,) + (v — o) (Ates,)

+ TALd 00y + 20Atd;,, + (7 — T) Atel; 00y

(4.96)

(4.97)
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5" =~ | {a} [N {HL) Jav (4.98)
Ve N — N—— ——
1X”Zi(of n?j(ofx(nsd*nsd) (nsd*nsd)X1
{Pg,lnt} —_ _/ [NX,e:|T . {H2} JdV (499)
—— Ve  SNe—— ——

n?j'?xl ”gofx(”sd*nsd) (nsa*nsq)x1
o

A {af) {P@ " (4.100)

1X"dof X1

The third subintegral Hs:
Hy = / Nt PN — Wi ) JdV (4.101)
1%

weh = [ o} [N {H3s) pedV (4.102)
Ve N’ N— N’

Ixny, o ny, % (nsa*nsa) (Msa*nsa) X1

{P?W}I / (N1 {H3} podV (4.103)
W Ve N N———r

x1 ”zofx(nsd*nsd) (nsa*nsq) X1

~A {ae}T{pg’f"t} (4.104)
=1~

X
lxndof

ndof

ndof><1

The fourth term H,,; :

j{ext - /nmlemdA (4105)
S

emt

{a VOOINe]  {H.) dA (4.106)
—— ——
1><ndof né‘ofx(nsd*nsd) (nsq*xngsg)x1

e:ct} / NX@ . {Hext} ddA (4107)
——

"dOf "dof ( sd*nsa) (Nsa*nsa)x1

Hyy = A{a} {P”“} (4.108)

1X"dof "dofX1
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4.6 Submatrices in the Matrix Form of the Linearized Form of the Balance

of Linear Momentum

Linearization of the term Gi:

(591)1:/(V'w)T:5(a) JdV = %6(%)JW (4.109)
v v Oy
(591)1 - / Wk, ((Fn)zL FL_nlzéumZ) (on) e JAV (4.110)
%
(59§’h) = | {c} [gradN+)”. 7] [grad(N"")].{od"}JdV (4.111)
1 Ve S — ~ / N~ ~- N —
1><(n;?!;ef) (n’j&?)x(nsd*nsd) (nSd*nSd)X(nSd*nSd) (nSd*nSd)Xndof ndofX1
73] :/ [grad(N"*)]". T7] |grad (N*)]Jdv (4.112)
e Ve~ ~ — ~—— — ~
(n;z;ef>><(n;¢;ef) (n;z;ejf)x(nsd*nsd) (nSd*nSd)X(nSd*nSd) (nsd*"sd)xn;;;}
Nel
(651), = A {ce}T. [‘.Tﬂ {6d°} (4.113)
e=1 = —

1x(ngs7) ("Zoef)x nisy) Mo

For the second term in equation (4.15), we have :

(061), = —/ Wiy (Fo)yg, FromOtim) (04) 4 JdV (4.114)
1%
59§h / {c grad (N™ e)} [Tfﬂ
~ —~—
1x (ndof) (ndof) X(nsd*"sd) (Nsa*nsa) X (Nsa*Nsd)
Jgrad (N"“*)].{6d°} JdV (4.115)
~ ~ ~ ——
(nsd*nsd)ang} ns(’;}xl
T3] =- / [grad(N")]". T3] [grad (N"°)]JdV (4.116)
~— Ve S ~ - ~—— -~ ~
(mao ) * (mo5) (nie5 )X (neaxneg) (Msa*nsa) X (Msa*nisa)  (nsa*nsa) Xnggy
Nel
(61), = A {e}' - [75]  {od} (4.117)
e=1 ~—~— ~~~ S~——

1x(n55) (i) x(ni) Moy x1

The third term in the equation (4.15) will be :

(591)3 = _/ W1 (Un)lz‘ ((Fn)kL F[Tnlqéum,i) JdV (4.118)
|4



59§h / {c grad N“e)}

-~

)

1><(”dof) (ndof)x(n A*Nsd) (Nsa*nsd) X (Nsa*Nsd)

[grad (N*)].{éd°} JdV
7 N~

~~

u,e u,e
("sd*nsd)xndof ndofX1

e u,e T

7] = / grad(N**)]".

~~ e ~ ~
(ni5) < (ni5) (n:5 )% (naaxnsa)  (Msa*nsa) X (nsaxnsa) — (n

(1] |grad (N"°)]Jadv
~—~— ~ >

'

u,e
sd*nsd) Xndof

Le(niay) (nias) > (misy) maop?t

The fourth term in equation (4.15) can be found as :

(69,), = — / Wb N+ 7) ((Fa)yy FrhSums) JAV
\%4

<59§h Nl )\—i-T/ {c gradN“e)]J

(”dof) (”dof) (nsa*nsa)

(nsd*nsd) X (nsd*nsd)

grad (N"°) } {6d°}Jav
N

~~

(ngg*ns d)XnZ:f
T == (A7) / grad(Nv)]". [T
—~— ve ~ - =
(ni5)x (ni5) (ns5 ) X (neaxnsg)  (Msa*nsa) X (Nsa*nsa)

ndof

[grad (N")]JdV

~~
(nsd*nsd) X n;;)ef

T ix(ny) (mls ) x (i) i1

The fifth term in equation (4.15) can be found as :

(69)), = — (u+ o) / Wit (), FrhSums) JAV
1%

(59§h =—(u+o / {c*}" [grad N“e)} (T3]
~ N~——
1x(nd0f) (ni5) (n aknsq)  (Msa*nisd) X (Nsg*nsa)
[grad (N*™9) } {5de}JdV
~ ~ N—~—
(nsg*ns d)Xndof ndofxl
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(4.119)

(4.120)

(4.121)

(4.122)

(4.123)

(4.124)

(4.125)

(4.126)

(4.127)
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73] =—(u+o) / [grad(N"9)]". (T3] |grad (N*)]JdV (4.128)
v Ve ~- / ~ ~ 4
(mas7)x (niis) (1) % (naqtngg)  (Msansd) X (aaxnsa)  (ngarna) xni
Nel
(051, = A {e}' . [7E]  fodr} (4.129)

e=1 S—— M~ H/—/
x(nagy) (masy)*(masy) Paor 1

The sixth term in equation (4.15) can be found as :

[y

(651)s=—(u+o0) /V Wiy (Fo) gy FrmOtm) JAV (4.130)

(05"), = (o) | (e} fgraavee]”. 1]

1><(ndof) (ndof)x(néd*n d) (TL d*nsd)x(nsd*nsd)

[g'rad (N™°) } {6d°}Jdv (4.131)
o ——

'

(ns d*néd)xndof ndofX1

7)) = (u+o) [ [gradNe)”. (]
~~ ve ~ o ——
(nzo"})x(nzo"}) (ns(’)‘})x(nsd*nsd) (nsaxnsa) X (nsa*nsa)
|grad (N")]Jav (4.132)
(nsd*n:;)xnsg}
(651, = A {e}" . [7]  fod) (4.133)
o] ~——— N~ N——"

Ux (ngoy) (naop)x (nao) maor <t

The seventh term in equation (4.15) can be found as :

(651), = —n / Wit (Xn)iz, Xim 0P X i) O T AV (4.134)
1%
where
596fh = —77/ {c grad (N™ e)} (TY"]
— N——"
1><<ndof> (ndof)x(néd*"é‘d) (Nsa*nsa) X (Nsa*Nsd)
[Ny ] {setadv (4.135)

X.e . X.e
(nsd*nsd)xndof ndofxl



7 = / grad(N")]".  [T¥] . [(IN%)] Jav
—~— ve ~ - —— —_——
(n;oef)x(n?;;ff) (nsff)x(nsd*nsd) (nsa*nsa) X (Nsa*nsa) (nsd*nsd)x%ﬂﬁ

I’ € T e e

(051), = A {3 - [77] {997}
- €

e (nisf) (misy) (misy) maor<t

The eighth term in equation (4.15) can be found as :

(691)8 = —77/ Wi, 1 ((Fn)zL anll(;um,l) 5ldeV
|4

59§h = —77/ {c grad(N™ e)} . [T
1X(ndo ) () X (naanag) (Mo s) X (Rod M)

[grad (N“)].{6d°} JdV
2\ ,

~
u,e u,e
(nsd*nsd)xndof ndofxl

T =y / lgrad(N“)|".  [TP]  .[grad(N"%)]JdV
~~ Ve -~ - —— N - 2
(s ) (mis7) (%) X (agwmag)  (Padnsa)X (Maasnad)  (maasnaa)xnfy’

Nel T . .
051)s= A {c} - [Te]  fod}
1 N=—— N~ \E,_/

1x (%) (ni5 )< (nig) masx1

The ninth term in equation (4.15) will be found as :

(692), = =+ [ 00 ()i X 0P t) TV

(59§’h>9 = {c } [grad(N™ e)} ) E%‘:l

1><(ndof) (ndof)x(néd*n sd) (nsa*nsa) X (Nsa*nsd)

(N ] {dtadv
—— —

X.e . Xe
(nsd*nsd)xndof ndofX]‘

e IR ) S v N e
(ngg})x<n§;}> (TLZ(’;})X(nSd*nSd) (nsa*nsa) X (Nsa*nsa) (nsd*nsd)anl%‘}
el AT . .
(051), = A {} - [T7] -{5¢ }
e=1 =~ ~

1 (niggy) (o) x (w525) "dofx1
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(4.136)

(4.137)

(4.138)

(4.139)

(4.140)

(4.141)

(4.142)

(4.143)

(4.144)

(4.145)



The tenth term in equation (4.15) will be found as :

(591)10 = —ff/ Wk, ((Fn)kL FL_nlqéum,l) Jdv
%4

(5), == ()" oroanolt 12

1><(”dof) (ndof)x(n atnsg)  (Msd*Msd) X (Nsa*nsa)

[g'rad (N™9) ] {5de}JdV
~ o N —

(nsq*ns d)xndof ndofxl

7] =« / grad(N*)|".  [T]  [grad(N")]Jdv
\\,./ Ve ~ - \\,_/ - ~ =
(n:5) % (ni5) (n:5 )} (neasneg)  (Msa*nsa) X (Msa*nsa)  (nsaxnsa) Xngyy

Tel T . .
(091) = A e} - [Th] {od°}
e=1 N N~ \Ef—/

Dx(ngss) (niy)x(niss) maoyx

The eleventh term in equation (4.15) will be found as :

(591)11 = —V/Vwk,l ((Xn)kL XZrlné(I)mRXRl) Jdv

<59§’h)11 = {c } [gradi\f“ 6)] ) Eg:j/

lx(ndof) (”dof) (nsq*nsq) (nsa*nsa) X (nsa*nsq)

C[(N*)] {o¢tJdv
—_—— —

e e
(nsa*nsq) ani(of nffof x1

R
—— . -~ ,
(ngé?)x(nzl(étgf) (”Z&?)X(nsd*nsd) (nsa*nsq) X (Nsa*nsq) (nsd*nsd)Xnijff

(691, = A {c} . 75 -{5¢e}
e=1 \,—/ \N/‘/
D¢ (ngo) (naoy)x (ndof) “dofx1

The twelfth term is:

(69,),, = —v / Wit (Fa)ug, Fr0um i) JdV
|4
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(4.146)

(4.147)

(4.148)

(4.149)

(4.150)

(4.151)

(4.152)

(4.153)

(4.154)



(59§’h)12 = {c } [gradi\f“ 6)} . E@

lx(ndof) (”dof) (nsq*nsq) (nsa*nsa) X (nsa*nsq)

[grad N™° } {5de}JdV
N —

~
(nsd*"sd)xndof ndofX1

%] = v / grad(N“)|". [T [grad(N"%)]JdV
N—— Ve s ~~ o N—— ~~ o
(ni5) < (ni) (n45 ) X (egineg) (Msd*nsa) X (sa*nsa) — (nsaxnsa) Xngys

Nel e T o .
(59?)12 - A {c } : [712} ‘{5d }
o] ~—~— ~—— ——

1x(ng5) (nig) < (nig) masyx1

the thirteenth term is:
(591)13 = —/ waO'lk(s (J) dV = —/ wk,laldez'v(éu)dV
\%4 \%4
((591)13 = — wk,lalké (unm) JdV

((591)13 = — wk,lalkéuwéjnjdv

—

or

(591)13 = —/Vwk,lalkdun,NF]@lLJdV

(597) == [ g} Jlorad ). (o)

1x (ndof) (ndof) X (Nsq*nsq) (Msd*nsa) X (Nsd*nsd)

[GRAD N")] {dd} JdV
— ——

(néd*néd)xndof "dofX1
[7%] =- / [grad(N“)]".  {own} [GRAD(N"“%)]JdV
N——— Ve N~ ~ e N’ P —
(nsg}> X (nsg}> (ngé)?) X (nsd*nsd) (nsd*nsd) X (nsd*nsd) (nsd*nsd) Xn;&?

Nel e T o .
(59?)13 - A {c } : [713] '{5d }
o] ~—~— ~—— Te/d

1x(ng5) (nig)x(nig) maorx1

contribution of variation of F~! from Vw:

(591)14 = —/ wk,lalké (J) dV = —/ —wk,LFL_nlméum,laldeV
\%4 \%4
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(4.155)

(4.156)

(4.157)

(4.158)

(4.159)

(4.160)

(4.161)

(4.162)

(4.163)

(4.164)

(4.165)



(591) /wk MO0 Up, 1 J AV
v

59§h / {c grad N“e)} B {Vr}

1x (ndof) (ndof) X(néd*néd) (Msd*nsa) X (Nsd*nsd)

[gfrad N™° } {5de}JdV
N —

~
(nsd*nsd)xndof "dofX1

e u,eN1T u,e
(79 =- / [grad(N“9)]".  {Vy}  .[grad(N"“)]JdV
v e\ ~ J/ W_/ ~ 4
(n;ff)x(n;oef) (nséef)x(nsd*”sd) (nsaxnsa) X (nsaxnsa) (nsd*nsd)xnsff

Nel e T o .
(59?)14 - A {c } : [714] '{5d }
o] ~—~— ~—— Te/d

1x(ng5) (nig)x(nig) maorx1

The traction term (force term );

emt / wT 5TPO dA

m_/ (€} "IN {5

1>< ndof) ndOanéd nggx1

{GZ;;} - / [N {61} pod A
5 N e N —

u,e
u,e n e XNgq Ngg X1
ndofX1 dof

o= A L} {6l

1x ("dof) n;;ffxl
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(4.166)

(4.167)

(4.168)

(4.169)

(4.170)

(4.171)

(4.172)

(4.173)
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4.7 Submatrices in the Matrix Form of the Linearized Form of the Balance

of First Moment of Momentum

Variation of Vn:

(6H1)g, = —/ Nt kMot J AV
14
_ —1
vn ml, m
(55’(1) n /T} leFKkmkl JdV
14
(5%1)%7:/nml,KF;}}(SUi,kmkldeV
|4

(59'(1)v,7:/Umz,zmk1m5uz,kjdv
1%

(Mc?h) {a }' [grad NX@)} (M ]
— ~——
1><ndof "dof ("sd*" sd*Nsq) (Msa*Nsqa*Nsq) X (Nsd*Nsq)

[grad (N™9) ] {5de}JdV
o N —

'

(nsd*nsd)xndof ndofxl

My, ] = / grad(N<)]".  [Mz]  [grad(N"¢)]JaV
H,—/ Ve ~ - H/_/ - ~ =/
o XM Ny X (Nsa*nsaxnsq) (Nsa*Nsd*Msa) X (Nsa*Nsa)  (Nsd*Msd) X g

03), = Ao} e o)

IX”dof "dofX"dof ”dof

The first variation term (the first term in the variation of of dm,,,1);

(636,), = /V i ((F)y Fr20uy3) (), JAV

(m;h) = | Agrad 0T [M™] . {grad (6u)} JdV

(55}{?}’) = {a} [grad( NXE)}J %

1><ndof ndof ( sd*néd*nsd) (nsd*nsd*nsd)x(nsd*nsd)

[grad (IN™9) } {5de}JdV
e

g

(nsd*nsd)xndof ndofX]‘

(4.174)
(4.175)
(4.176)

(4.177)

(4.178)

(4.179)

(4.180)

(4.181)

(4.182)

(4.183)



M) = / lgrad(N*)]". My [grad(N")]JdV
~—— e~ ~ . ~ ~
nzi(ofxn;;)ef nficofx(nsd*nsd*nsd) (Msd*nsa*nsa) X (Nsd*Nsd) (nsd*nsd)xnsg}

Ne]
(076), = Afer} . [mi] {od)
e ~N— N~ ——
1><n§é? nzojpxngo? nsg}xl

The second variation term (the second term in the variation of of dm,, 41 ) ;

(63,), = / Mt (Fa)r Fit0tns) ()i, JAV

(5%?)2 —— [ {grad(n)}”.[MZ].{grad (5u)} JdV
Ve
where
((mi’ﬁ) - {a V' [grad(N)]". (M)
— N——"
1><ndof ndofx(néd*n.sd*néd) (nsd*nsd*nsd)x(nsd*nsd)
[g'rad (N™9) ] {5de}JdV
— 2
(nsaxnsa)xng)s  ngex1
M = - / grad(N*)]".  [My]  [grad(N"%)]JdV
v Ve ~~ 7 N e’ - ~ v}
"fi(ojfxn(bibz)ef "Q(;?X(nsd*nsd*nsd) (nsaxnsaxnsa) X (Nsa*nsa) (nsd*nsd)xn;(’ff

Nel
(096), = Afe} . M) {od)
el ——~— N~ N —
lxnfi(é? nzgoefxnd;; nsg}xl

The third variation term (the third term in the variation of of dm,,; ) ;

(55{1)3 = /V Tk (mn)k‘zm ((Fn)lL FL_pl5up7i) Jdv

(59@)3 =— | Agrad mNT . (M7 {grad (5u)} JdV
(5}(?}‘) = {a} [gfrad NXE)} (M7
. \Sg)

1><ndof ndof X(néd*néd*néd) (Msd*nsa*nsq) X (Nsq*nsq)

[g'rad (N™9) } {5de}JdV
N —

v~

(n Sd*nsd)xndof ndofX1
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(4.184)

(4.185)

(4.186)

(4.187)

(4.188)

(4.189)

(4.190)

(4.191)

(4.192)

(4.193)



[M;] = - / [grad(N**)]". [MY] [grad (N"“*)]JdV
N——" e ~- / N—— . ~ _
nffojcxn;ff ngofx(nsd*nsd*nsd) (nsq*nsa*nsq) X (Nsq*nsq) (nsd*nsd)xn;(’ff

s e T e e

(09¢1), = A{a b v {ods)
e=1 N~ Y~

1><ndof "dofxnjoef ndofxl

The fourth variation term (the fourth term in the variation of of dm,, 41 ) ;

(69600, = = [ o ) (00 X230%71) TV
|4

(5%?")4 = | {grad (N [MT. {6®) JdV
6}(8 h / {a [grad(NX 6)] (M
~ 4 ——

1><ndof ndofx(nsd*nsd*”sd) (Msd*nsa*nsq) X (Nsq*nsq)
INY] {6¢}dv
~—— =

e e
(nsa*nsq) Xn?i(of n?i(of x1

T
(M) = - /V elgrad(NX’e)} y (M . [NXE] Jav
nffojcxn;ff nzi((')efx(n;;knsd*nsd) (Nsa*nsq*nsg) X (Msq*nsq) (nsd*nsd)xn?jff

' eI e e
9), = Afect. ] (oo}
e=1 ——~— \/—/

1><n§(;f ndofxndof ndofxl

The fifth term 1is :

(55{1>5 = _/ Ml kCllmprs ((Xn)pL XZvlzé(I)nTX;il) (W )irs JAV
1%

5{}(5" / {a [grad(NX 6)] ) [M']

IXTLdOf ndofx(nsd*nsd*nsd) (nsd*nsd*nsd)x(nsd*nsd)
INY] {sg°) TV
—— =
(néd*néd)xndof ndofxl
™) = [ fgrado) [My] NN Jav
~—— Ve~

~ v ~—— ~——

nf;:)jc anéef n?i((;ef X (Ngd*Nsq*Nsq) (Msd*nsa*nsa) X (Nsd*nsd) (nsa*nsa) ani((;ef
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(4.194)

(4.195)

(4.196)

(4.197)

(4.198)

(4.199)

(4.200)

(4.201)

(4.202)

(4.203)
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(61)5 A{a} : [Mg] {do°} (4.204)
1><ndof ndojcxnffojc né‘éxl

The sixth term is :

(55{1)6 = /Vnml,kcklmprs ((Xn)iL XZvlz(S(I)nTXEyl«) (’Yri)pis JdV (4.205)
ﬂ-CEh / {a [grad Nxe)} (M
_ R ,
1><"dof nys X (ns d*nsd*nsd) (Rsd*Nsa*nsa) X (Nsd*Nsd)
[NX’E] .{5¢6}Jdv (4.206)
——  ——
(nsaxnsq) xny)s nyGx1
(MG] = / [g'f‘ad(N " (M ] . [NY] Jav (4.207)
—— e _ —— ——
ngffxnzoef ndofx(n AN sqgxngq) (Msd¥Nsq¥nsq) X (Nsg*nsq) (nsd*”sd)xniﬂ;
el
(o6), = Afer) - ) - {o0') (4.208)
——

X;e X,e X;€e
lxndof ndofxndof ndof><1

The seventh term is :

(631), = / it kChtmprs® (Ppar) Frd Xoap JAV (4.209)
14
ve] = / [grad(N**)]". (M7 [GRAD (N**)]Jav
SN——" Ve ~~ 7 N—— ~ ~ vz
TLZ;;}XTL?;;;} TLg;}X(TLSd*nSd*TLSd) (nsd*nsd*nsd)x(nsd*nsd*nsd) (nsd*nsd*nsd)xnfi((’)?
Nel
(69¢7), = AL} . M) {oo°) (4.210)
e=1 ——~—" Y~~~ ——~—~

X;e X;e X.e . X,e
1><ndof ”dofX”dof ndof><1

The eighth term is :

(0H1)g = — / Tl kChimprs <XpA,T - (Xn)pA,T) Fr, 0 (ta,s) X3, JdV (4.211)
%4
5:}{” / {a}" [grad( NX@)] (M7
- N /

1X"dof "dof (ns d*néd*n sd) (Msd¥nsq¥ngq) X (Nsa*nsq)

[grad (IN™9) } {5de}JdV (4.212)
> —

g

(nsg*ns d)Xndof ndofX]‘



(V] = / [grad(N**)]". (M7 [grad (N"¢)]JdV
N——" Ve ~- / —— ~ ~ _
nffojcxn;ff ngéefx(nsd*nsd*nsd) (nsa*nsg*nsq) X (Nsq*nsq) (nsd*nsd)xn;(’ff

Nel
(090 = A {a} . [vg] {od7}
e=1 "~ S~~~ ~——
1><n§(’)€f nffojcxn;éf n;(’ffxl

The ninth term is :

(5:}(1)9 = / Nl kCklmprs <XpA,T - (Xn)pA,T> Ffslxg%@an;JdV
14

6%”‘ / {a [grad(NX 6)] ) [M7]

1><ndof ndofx(n AN sq*nsq) (Med¥Nsq¥Nsq) X (Nsd*Nsq)

INXe] {6t Jav

y€ y€
(Nsa*nsd) Xn?i(of n?i(of x1

T
(Mg = - /V e lgrad(NX’e)} y (M . [NXE] Jav
nfi(;)jcxnfi(:)j‘ n?j(éefx(ns;,*nsd*nsd) (Msa*nsq*nsq) X (Nsd*nsq) (nsd*nsd)xn?jff

(5%?)9:§{QE}T. b (o)

X,€ X,€ X e
1X"dof Mot X Mo f ndofxl

1

z{

The tenth term:

(55{1)10 = / nml,kcklmprsé (q)pA> XAaXaB TXBTFTSIJdV
1%

55—Ceh / {a grad (NX e)} J [M’fé]

1><ndof ”dof (n AN sqg*nsq) (Msd¥Nsq¥Nsq) X (Nsg*Nsq)
IN©]  {5¢¢)Jdv

e e
(nsd*nsd)xnffof nffofxl

i) = [ fgradvl’s gl [NV Jav
SN—— Ve ~ - ~—— ——
nficojcxnfi(ojc ”dof (Msq*nsa*nsg) (Nsa*Nsa*nsg) X (Nsa*Nsq) (nsd*nsd)xnzi(;}
Nel
(63¢1) o = A e} [M5] {o9°)

1 ——— Y—— Y——

X;e X,€ Xe X,
1><ndof ndofxndof ndof><1

0]
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(4.213)

(4.214)

(4.215)

(4.216)

(4.217)

(4.218)

(4.219)

(4.220)

(4.221)



The eleventh term:

(59{1)11 = —/ Nl kCklmprs (XpA - (Xn)pA> XL‘IM)zLXLaXaB TXBTFTsljdV
1%

(0967), == | {e} [gradveo). [y

lxndof nyx (nsd*nsd*nsd) (nsaxnsa*nsa) X (Nsd*nsa)
INY]  {5¢¢) Jdv
—_—— N —

e e
(nsq*nsq) ani(of nffof x1

™G] = [ frad ]’ ] [N
N y p gy’ —
nil‘ofxnil‘oef nz;ffx(nsd*nsd*nsd) (nsa*nsg*nsq) X (Nsd*nsq) (”sd*nsd)xngff
CEA A{a } ] 1097
~——

X;e X;e
lxndof ndofxndof ndof><1

The twelfth term:

(0H1)15 = _/‘/nml,kcklmm’s (XpA - (Xn)pA> XZ;(S(banTXB}“FJTSIJdV

( ﬂ-CEh / {a grad NXE)]J w

lxndof ndofx(nsd*nsd*nsd) (nsd*nsd*nsd)X(nsd*nsd*nsd)

[GRAD (N*)]. {5} JdV
- ——

X X.e
(nsd*nsd*nsd)xndof ndofxl

(M5, = — / (grad(N**)]". (M) [GRAD (N**)].Jav
~—— Ve ~ —— ~ ~ -
nyxXnX 30 % (Nsaxnsa*nsa) (Nsa*nsd*Nsd) X (Nsd*Nsd*Nsa) — (Nsg*Nsa*nsa) XNy

(931),, A{a v, {0}
~—— N —
lxndof nd(’,‘; anﬁ ”31(0? x1

The thirteenth term:

(0H1)y3 = — / Ml Chtmprs (XpA - (Xn)pA> XasXaBI X5 6Pir X1 Fri JAV
1%
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(4.222)

(4.223)

(4.224)

(4.225)

(4.226)

(4.227)

(4.228)

(4.229)

(4.230)



(1), = = | fe Y fgraacv)’, o)

1X"dof ndof (nsa*nsa*nsq) (Msa*nsa*nsq) X (Nsq*nsq)
INY] {57} v
N—— N —

x.e x.e
(nsd*nsd)xndof "dofX1

™M = [ frad ]yl [N g
~—— Ve ~ — ~—— ~——
nﬁ(’:}xnzl((’:} ndof (Msq*nsa*nsg) (Nsa*Nsqa*nsd) X (Nsa*nsq) (71Sd>|<nsd)><n(>§éjc
Nel
(651, = A fo} . [V5s] {09}

A ——— Y—— Y——

X;e X;e X.e . X.e
1><ndof Mo X Mo f ndof><1

0]

The fourteenth term:

(5:}{1)14 == /V Tl k Cllmprs <XpA (Xn)pA> X;&;XGBvTXE%iFT_il(S (ULS) JdV

j—(” / {a grad (N e)} B [MT]

lxndof ndof (n A*Nsqgxnsq) (Msd¥Nsq¥Nsq) X (Nsg*Nsq)

. [gradN“’e} .{5de}JdV
—_——— ——

u,e u,e
(nsd*nsd)xndof ndof><1

M| = - / gradN )" [M7]  [gradNv<]Jdv
~—— Ve ~~ o ~—— —
R X B X (Mg T #1ind) (Pt ) X (Ma¥Tid) (i) X

(031),, A{a} [M5,] {od7}
—— ——
1X"dof nd(’,fxnd(’,f nZS}Xl

the fifteenth term

(59{1)15 = - / Ml k (Fn)zL FL_nl(sunk (%L)ilm JdV
1%

(55}{57}’) = {a } [gfrad NY e)}J &WE

1X"dof ndof (néd*n sd*Nsq) (Msd*Nsd¥ngq) X (Nsq*nsq)

[g'rad (N*™9) } {5de}JdV
7

v~

(ns d*néd)xndof ndofxl
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(4.231)

(4.232)

(4.233)

(4.234)

(4.235)

(4.236)

(4.237)

(4.238)

(4.239)



M) = - / grad(N*)]".  [M7]  [grad(N"¢)]JdV
W—/ Ve ~~ 7 W—/ - ~ v}
X% e % (Nsa*nsaxnsa) (Msa*nsa*nsd) X (Nsa*nsd) — (Nsa*nsd) Xng)s

)= R D] 00

, e u.e
1><ndof ndofxndof ndofxl

The sixteenth term:

(63,), = — / ot (0 (F) g, Pttt AV
1%

5%” / {a [grad(N* e)} ) [M ]

1><ndof ”dof (n AN sq*Nsq) (Med¥Nsq¥Nsq) X (Nsd*Nsq)

[gfrad N™° } {5de}JdV
N —

~
(nsq*ns d)X"dof "dofX1

M| = - / grad(N*)]". M3 [grad(N"¢)]JdV
W—/ Ve ~~ 7 W—/ - ~ v}
X% e % (Nsa*nsa*nsa) (Msa*nsa*nsd) X (Nsa*nsd) — (Nsa*nsq) Xng)s

- ALy 06 ()

X;e u, u,e
1><ndof Mo XMt ndofxl

1

i{

The seventeenth term:

(55{1>17 = - / i ke (Vn)mm (X“)iL XZrlLéq)TLTXTl JdV
174

55—[”‘ / {a grad (NX e)} . [M77]

1><ndof ”dof (n AN sqg*nsq) (Msd¥Nsq¥Nsq) X (Nsg*Nsq)
IN©]  {5¢¢)Jdv

e e
(nsd*nsd)xnffof nffofxl

M§7 = /{a : (M o [Nee] Jdv
S~—— ~——
”dofX”dof Ixng% (Msa*nsa*nsd) X (Nsa*nsd) (Nsa*nsa)Xny)s
Mel

09, = Afec)”. P o0}

X;e X.e . X.e
1><ndof Mo X Mo f ndof><1

o
Il
-
Iy
o
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(4.240)

(4.241)

(4.242)

(4.243)

(4.244)

(4.245)

(4.246)

(4.247)

(4.248)

(4.249)



The last term in equation (4.26)
(0H1)yg = —/ T kim0 () AV
1%

(5:}(1)18 = _/ nml,kmklmé (un,n) JdV
1%

(0H1)5 = —/ Umz,kmklm5un,NF]§,1anV
%

(5%” / {a [grad(N* e)} ) [i/l,@

lxndof o X (nsd*nsd*nsd) (nsaxnsa*nsa) X (Nsa*nsq)

[GRAD N")] {dd"} JdV
o N —

(n d*néd)xndof ndofxl
MG = - / grad(N*)]".  [M7] . [GRAD (N")]Jdv
—— Ve s ~ v —— ~— ~
nffofxnsff ngofx(nsd*nsd*nsd) (Msd*nsa*nsa) X (Nsd*Nsd) (nsd*nsd)XNZ,;?

(@9), = R (o). ] (o)

) u,e u,e
1><ndof ndofxndof ndof><1

The other integral term in 4.23 is;

(55‘(2 = /nml5 (Uml - Sml) JdV + /Uml (Uml - 8ml) 0 (J) av
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(4.250)

(4.251)

(4.252)

(4.253)

(4.254)

(4.255)

(4.256)
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The matrix form of § (s — o) was given in equation (3.135) where its indicial notation can

be expressed as :

—0(5 = 0)pu = 0 (ALS;) (St — Tit),, — 0 (AL ) (i — oat),,

— (Smi — Omi),, 0 (Atl],) — (k — o) 6 (Atey,,)

— (v —0)d (Ates,) — 7 (AtdS,) 6y — 206 (AtdS,;)

— (n—71) 3 (Ates;) Oy (4.257)
~0(s = )i = ((Fo)p, Frp 0uni) (st = o),y — ((Fn)yp, Frp Ouni) (50 — o),

— (Smi = Omi)y (Fn)yp, Fryy i)

= (k= o) ((tn)ir X0 (Ppc) X + (Fn) i Ficp0t)

— (V= 0) () X0 (Ppic) X5z + (Fn) e FicpOttpm)

(( n)iL FL_kléuk,i) Ormi

=205 ((Fa)yns Frdugs + (Fu)y FL_kléuk,m)

DN | —

— (0= 7) ()i X700 (Pprc) Xics + (F)ie Frendtip) O (4.258)
Then the first sub-integral is :
(0Hs), = /Vnmlé (Ot — Spt) JAV (4.259)
The first term in the variation of —¢ (0, — Syu)
(6Hy), = /V Mot (Fp) i, FromOtmi) (Smt — Oat),, JAV (4.260)

Since the most of the matrices appearing in the H% terms were found in chapter (4.6) or
similar to them,they are not going to be given here in detail.

Starting with the first terms as:

(632), = / Mot (Fn)ip FrpOwns) (Smi — o), JAV (4.261)
(9965") = / {a}" [N (R [grad(N")] {6d}Jav (4.262)
1 Ve N N——— S——— ~ ~ N——

lxnzl(of nzl(ofx(nsd*nsd) (nsa*nsa) X (Nsa*nsa) (nsd*nsd)xndof ndofXI



[Rey] = / [N*e]t [R}] [grad (N"%)].JdV
~—— e N — —— N ~— >
oo X Moy 5, X (nsa*nsa) (Nsaxnsa) X (Nsaxnsa)  (nsaxnsa) Xng)s
Nel
(036), = A{e}'. [R] {od)
] —~— N~ e —
1><n§(’)€f nffojcxn;éf n;(’ffxl
The next term is :
(6Hs), = —/ Mot (Fn)r, Fpi Ot s) (s — 0a),, JAV
1%
(5J{§’h) =— / {as}. [N¥]" . [RY]  .[grad(N"°)].{sd}JdV
2 Ve N N —r N ~ A N
1><7l§of nffofx(nsd*nsd) (nsq*nsq) X (Nsa*nsq) (nsd*nsd)XnZ&'} ngé‘}xl
ey = / N L R [grad(N*9)].Jdv
SN—~— Ve Se—e—e—— SN~~~ = ~ ~
Mo XNt 13y X (Nsa¥nsa) (Msa*nsd) X (Nsa*nsa) — (Nsa*nsa) Xng)s
' e T e e
(0363), = A {e} . [R] {od"}
] e~ N e —
1><n§;} nzg;}xngo'} ngg}xl
The third term is :
(53{2)3 = _/ Mmi (sz’ - Umi)n ((Fn)lL FL_kl(suk,z) JdV
1%
(s965), / {as}" [N 6] - [R] Jgrad(N"9)] {sd}Jav
S~ ~~ ' N——
IX”dof ”dofx(” a*1sa) (Msa*Nsa) X (Nsd*nsa)  (Nsaxnsa)xng)y  ngpx1
[R5 = — / [Nxe]” [RY] [grad (N*)].JdV
N——— Ve N — ——— N -~ =
Ny X0 N3y X (Nsa*nsa) (Mea*nsd) X (Nsa*nsa)  (Nsa*nsa) Xng)s
e e T e e
(0363), = A {e} - [R%] {od"}
] ——~— N~ N —
lxnfi(;} nzg;}xngo'} ngg}xl
The fourth term is :
(39€:), = — () / ot ()i X8 (By) X JAV
(965"), =~ (=0 [ {o}" V)T [RY]
4 ~— ~——
1><ndof o % (Nsa*nsa) (Nsd*nsd) X (Nsd*nsd)
[NX’E} .{5¢6}JdV
N—— N —

X x.e
(nsd*nsd)xndof ndofxl
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(4.263)

(4.264)

(4.265)

(4.266)

(4.267)

(4.268)

(4.269)

(4.270)

(4.271)

(4.272)

(4.273)

(4.274)



] =m0 [ [T R [N v
~—— Ve  Se——r ~—— ~——
nffofxn?i(ff ngofx(nsd*nsd) (nsaxnsq) X (Nsa*sd) (nsd*nsd)ani((’)jc

Mel
(0365), = A{e}'. [R] {997
I N—~— S~ N —
1><nfi(£c n?i(;efxng;ff ngéefxl

The fifth term 1is :

14

(09" = ,{_g/{a . Nxe} )

1><nd of ”d f><(n A*MNsd) (nsa*nsq) X (Nsa*nsq)

[grad (N*)].{éd°} JaV
2\ ,

~
u,e u,e
(nsd*nsd)xndof ndofxl

[Res] = — (k- o) / NelT (R [grad (NU)].JdV
\/—/ Ve w_/ W—/ ~ ~ _
nffofxnsff né‘ofx(nsd*nsd) (Nsaxnsq) X (Nsd*Msd) (nsd*nsd)XNZ,;?

(63¢1), = A {a}". [Re5] {od°)
el ~N— S~ ——
1><n§(’)€f nffojcxn;ff n;(’;}xl

The sixth term is :

(63€2)y = — (v — o) / ot () X208 (i) Xi AV
1%

(5{]—(5’}‘)6:—(1/—0)/‘/6{&6/}_7; M : LRE}/

1 X"ffof n?iof X (nsa*nsq) (Rsa*Nsd) X (Nsd*Nsd)
[NX’E] .{&be}JdV

e e
(nsa*nsq) ani(of n?i(of x1

[R%] = —(v—0) / [Nt [R}] . [Nx] gav
—— Ve Se—— ~—— ——
WY X 0% X (o 0q) (Roa¥1sa) X (Moaaq) (nsqsmiod) XTAS

X;e X;e X.e . Xe
1><ndof ”dofX”dof ndof><1
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(4.275)

(4.276)

(4.277)

(4.278)

(4.279)

(4.280)

(4.281)

(4.282)

(4.283)

(4.284)
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The seventh term is:

(63y), = — (v —0) / Dt (F) 15 FrepOtpmJdV (4.285)
1%
(396") = (w0 / {a)". NX@} - [RY
~——
1><nd ;o MNos (n a*1sq) (Nsd¥Nsq) X (Nsg*nsq)
[grad (N"°) } {od°}Jav (4.286)
~ ~ ~—~—
(nsaxnsa)xng)y  ng)x1
[Re7] =—(v— U)/ [Nx’e]T . [RY] |grad (N")]Jav (4.287)
\,—/ Ve w_/ v . _/
Ny X 3, X (Nsa*nsa) (Msa*nsa) X (Msa*nsa)  (Rsa¥nsa)Xng);
(09¢)), = A {a}". [Re] {od°} (4.288)
] e~ N e —

X,€ X,e u,e u,e
1><ndof ndofxndof ndof><1

The eighth term is:

(53{2)8 = _T/ Mmi ((Fn),[, F[jkléuk,z’) O JdV (4.289)
\%
(5365") = / (o} T [R] Jgrad (V)] fod )y (1.290)
——— ~ \\,_/
1><nd f nd f><(n d*Nsq) (nsa*nsa) X (nsa*nsd) (nsa*ns d)Xndof ndof
[Res] =—7 / [NX‘}T . [R¢] grad (N")]Jdv (4.291)
N—— Ve  Nm—— —— ~ - -
X, XN Ngog X (Nsa#nisq) (Msansa) X (Nsaxnisa) — (nsa*nsa) Xngly
(03)), = A {e}". [Re] {od°) (4.292)
e=1 =~ Y~~~ Y~~~

X,€ X,€ u,e u,e
1><ndof Mo X Mo f ndofxl

The ninth term is:

(5:}(2)9 = _U/ TImi ((Fn>mL Fljkléuk,l) JdV (4293)
1%
(996") =0 / {a}' [N R [grad(N)] {od}JdV (4.294)
9 Ve SNmm—— N—— N—— ~- \,—/
1X"§of ”fi(ofx(”sd*nsd) (Rsa*nsa) X (Nsa*nsa) — (nsa*ng d)xndof ndof
[Ré] =—0 / [N*e]" [RY] [grad (N"¢)]Jav (4.295)
N——" Ve Ne—— ~—— ~ >

ngofxngcff "iz(ofx("sd*”sd) (nSd*nSd)X(nsd*nSd) (nsd*nsd)xnsg}



117

(03)), = A {e )" [R%] {od°) (4.296)
e=1 ——~—" Y~~~ Y~~~
1><n§(’)€f nffojcxn;éf n;(’ffxl

the tenth term is:

(0Hz)yg = —0 / Nt (B, Fr 0w m) JdV (4.297)
1%
(96") =0 | {o}" [N]" . [R  [grad(N“)] {od"}JaV
10 Ve N N—— N——— - N —
1X"§of "ﬁofx("sd*"sd) (Nsa*nsa) X (Nsa*Nsa) — (Nga¥ng d)Xndof ndofxl
(4.298)
[Ry] = —0 / [N*e]" [RY] [grad (N")]Jadv (4.299)
SN—— ve Se—e—— N~~~ ~ -
nzgofxngé‘} nzgofx(n a*Nsq) (Msa*nsa) X (Nsa*nsa) (”sd*nsd)xngg}
(635) A {a Vo [Re] {od) (4.300)
W N——
1><ndof ndofxndof ndof><1
The eleventh term is:
(0Hz)y = —(n—7) /V Mt (Xn) iz X6 (Ppic) X)) S JAV (4.301)
(1967) = —t=m [ {a}" v (R
11 Ve N — N — N~
Ixnd, o ny, X (nsaxnsa) (Rsa*nsa)X (nsa*nsa)
[N¥<] {9} JdV (4.302)
—— =
(nsd*nsd)xnil(of ndofxl
[Reu] =—(m—1) / (Nt . [RY] . [N¥] Jav (4.303)
S~—— Ve SNee—— ~—~— ~——
nzi(oani’;} nzofx(néd*n d) (n.ﬁd*n d)X("sd*nsd) (nsd*"sd)xn?j(;;}
(691, A (o) [®eu] {59) (4.304)
—— N — ——
lxndof nd(’)fxndéf nficg}xl
the twelfth term is:
(6:}{;7}1) 12 == (77 - 7_) / mi (Fn)zK F[;;(sup,z(smljdv (4305)
1%
(63) , = —(n—7 / {a}" NX@} . [RY
——
1><ndof ndofx(n sd*nsq) (Msa*nsq) X (Nsq*nsq)
[grad (IN™9) } {5de}JdV (4.306)
~ ~ N —

(nsg*ns d)Xndof ndofX]‘



[Re] = — (g 7) / Nel” L [RY [grad (N"9)]JdvV
~—— e Ne—— ~—— ~ ~ _
nficof anéef nficofx(nsd*nsd) (nsa*nsa) X (Nsa*nsa) (nsd*nsd)xngff

(0365) A{a} [R°12] -{od}
V ——
1><ndof ndofxndof ndof><1

The thirtheenth term is :
(0H2),5 = —/ Nt (Smi — Omi) Oty JAV
174

63, Sl — 1) Oy 7 Fpt JAV

(636a)sy = [ )
(55’(2)13 = —/ Tmi (Sml - Uml) FT_nléumTJdV
\4

(5965 /{a LA L)

1X"dof ndofx(n sd*nsq) (Msa*nsq) X (Nsq¥nsq)

[GRAD N")].{od"} JdV
7 N —

(nsq*mns d)Xndof ndofxl
[Re13] =— / [(N©]" . [R°°] . [GRAD(N"“®)]|JdV
N—— Ve Ne——rt N—— -
Ry X1 5o p X (Nsa#sa) (Nsa¥nsa) X (Nsaxnsa) — (nsa*nsa) Xngy;

)= R 0] 00

, e u.e
1><ndof ndofxndof ndofxl

The last integral term is:

§(Hs) = / Nt Pol 10 (L) AV
v

9(@" / {ac}". NXe . [RT) . [N¥] {e¢tlav
~—— —— =
1><ndof ndofx(n a*Nsq) (Msa*nsqd) X (Nsa*nsq) (nsd*nsd)xnfi‘é "ff[)ifXI
R - [N R ] v
N—— Ve N — —— ———
n xS W X (Mo sa) (Raa¥misa) X (Maaniaa) (nsasmisa) X3

0(36G) = A{a} (R {00}

1><ndof ndofxndof ndofxl
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(4.307)

(4.308)

(4.309)

(4.310)

(4.311)

(4.312)

(4.313)

(4.314)

(4.315)

(4.316)

(4.317)

(4.318)
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Variation of the force term :

0 (Hear) :/nmlFlmdA
S

5(9{:;;;):[9@T (Ne]T iy aa

Ixny, e nyy X (Nsaxnsg) (Nsa*nsa)x1

N= [ ) gy i

g, X1 % (Nsd*nsa) (Msa*nsa) X1

5, = A e} [N, (4.319)
o] S~ A——

X
Ixny, ¢ nfi‘ofxl

4.8 Summary of the Finite Element Model in the Equation Kix = — R

Since the av and ¢ are the arbitrary constants, the matrice equations will hold for all a
and c. Therefore, they can be romoved from the quations and total system of the equations

reduce to:
Kdd Kd¢ od —Rd
. - (4.320)
Ky Ky o -R,



where

1=14

> [T

1 [i=1,i#£79,11 )
i (niasr) % (nas)

Tl
(Ka] = o+ [T o+ [0
e=1 N~ ~V v
(nior ) (mic) () (nio7)  (nao) < (miss)  (niioy) < (i)
(Ko = A | M5,] + M;]
e . e=1 m i=1,i#4,5,6,7,9,10,11,12,13,17 e\/'/e
(n3a%) < (n357) | "dog X Maof (n5)x(nxe5)
i=13
2
i=1,i#4,6,11 6\"/ .
(m5a7 )% (7357
- i=17
Kol = > (M)
e e e=1 14=1,i#1,2,3,8,14,15,16 6\/'/ .
(miior) < (n325) (m5a7 )% (n357)

& I I

{Ra} = A [{UT"} +{U"") - (U}

u,e €= u,e u,e u,e
ndéfxl i ndéfxl ndéfxl ndéfxl

R . " Pe,Int Pe,Int Pe,Int Pc

{Ry} = (P} +{Py "} +{P5 "} — {P,}
~—— e—1 —— ——— N N~
nf;;?xl | ngéefxl ngéefxl né‘éxl né‘éxl
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(4.321)

(4.322)

(4.323)

(4.324)

(4.325)

(4.326)



Chapter 5

Finite Element Formulation of Finite Strain Micromorphic Elasticity at

Reference Configuration

5.1 Linearization of the Balance Equations at Reference Configuration

Previously in Chapter 4, we presented the weak forms of balance equations and their
linearizations together with finite element equations at current configuration B. This sec-
tion presents the mapping of the balance equations to the reference configuration and their

linearizations at reference configuration By.

5.1.1 Linearization of Balance of Momenta at Reference Configuration

Applying the method of weighted residuals (Hughes, 1987) and integration by parts
to the balance of linear momentum and balance of first moment of momentum give us the
variational equations. We use the Piola transforms and volume transformation to map the
balance of linear momentum to reference configuration. First, after integration by parts in

the current configuration, we have

/ Wi [Ulk,l -+ p(fk — CLk)] dv = / wkalknlda — / [wk,lalk + wkp(fk — ak)] dv = 0 (51)
\% A \%

If we also apply Piola transforms of the Cauchy stress tensor P, = JalkFL_kl, o = FipSrx Fri/J,
and Nanson’s formula n;da = JF [;llN xdA for area change, we obtain in the reference con-

figuration

/ ’kakKNKdA — / [wk,lELSLKFkK + wk,oo(fk - ak)] dV =0 (52)
A \%4
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where P,x is the first Piola-Kirchhoff stress tensor. If we define a traction 1), = P, Ny,

equation (5.2) can be written as

/ wiTRdA — / (Wi FioSpi Frek + wipo(fr — ax)]dV =0 (5.3)
A v

Application of the Newton-Raphson method requires linearization of the balance equations
to construct a consistent tangent, where linearization of the balance of linear momentum

may be expressed as

/ wiTdA — / (Wi FirSei Freg + wiepo(fr — ar)] dV
A v

-+ ) (/ wkadA - / [wk,lELSLKFkK -+ wkpo(fk - ak)] dV) =0 (54)
A \%

where ¢(e) is the increment operator within a linearization procedure. Ignoring the boundary

term, the body force vector, and the acceleration vector, the equation above reduces to:

/ Wi FinSpx FregdV + 0 (/ wk,zeLSLKFdeV) =0 (5.5)
v v

Carrying the linearization operator over the terms gives:

/ d (wiy) FiLSpx FrgdV + /
%

w10 (Fir) Spx FredV + / Wi F106 (Spi) FrxdV
%

\%4

+/ Wi F1LSkd (Frr) dV = —/ Wi B Spx FrrdV (5.6)
v v

Similarly, we follow the same method for the balance of first moment of momentum. Multi-
plying the residual form of (2.60) with the weight function 7,, and applying integration by
parts together with Piola transforms and area change relations expressed above, we obtain
in the reference configuration

/ Nt [Fmnt S Fir — Fonr 2 Fin + po(Nim — wim)] dV — / Mot kLl 10 Mk g Xomar AV
% v

+ [ nudundA =0 (5.7)
A
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where M, is the traction couple tensor, defined as My, = Jmypn F [},iN . Then, linearization

of (5.7) is expressed as
/ Nt [Frnt S Fir — Fonr2mn Fin + po(Nim — wim)| AV — / Nt ko Eric Fir Mg v Xmar dV
v v
+ / N M d A + 6 </ Nt [Frane SvnFir — FromrEnmn i + po(Nim — wi)] dV
A v

—/ nml,kaKELMKLMXdeV+/UszzmdA> =0 (5.8)
v A

Ignoring the boundary term, the body couple, and the micro-spin inertia tensors gives:
/ Dot e Xne Fir, — Frone Sy FindV +/ Mot ke Freic F1 Mg e X dV
1% 1%

+0 (/ Nnt [ Famt 2L Frr, — Froar Sy Fin] dV + / Umz,kaKFzLMKLMXdeV) =0 (5.9
v v

Similary, carrying the linearization operator over the terms gives:
/V??ml5 (Foar) (Enr — Sur) FipdV + /V??mlFmM(S (Xmr — Swur) FirdV
+ /VTImlFmM (XprL — Sur)o (Fip)dV + /‘/5 (k) Frere Frr M g Xma dV
+ /V??ml,k5 (Frr) FiL Mg parXmmdV + /Vnml,kaK(; (Fin) Mg parXmmdV
+ /‘/Uml,kaKFlL5(MKLM)XdeV + /Vﬂml,kaKFlLMKLM5 (Xmar) AV

= —/ Nt e (Enrr, — Swr) FindV — / Dot e E e Fir M par Xmms AV (5.10)
v v

In the finite element implementation, the terms in the right hand side of (5.6) and (5.10) will
yield the residual vectors Ry and R, respectively. The terms involving du and 6® in (5.6)
result in the associated consistent tangent matrices Kgq and K44, respectively. Similarly,
in (5.10) the associated consistent tangent matrices are, respectively, K4, and Ky, We
have the following coupled finite element system of equations to solve for nodal displacement
increments 0d and nodal micro-displacement tensor increments d¢ at each iteration in a

Newton-Raphson algorithm:

K, Ky od —R,
- (5.11)
Ko Ky Yo -R,
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The sub-matrices constructing the matrices K44, K gy, K44, and Ky in a same way de-

scribed in Section 4.8 are presented in the next section.

5.1.2 Submatrices in the Matrix Form of the Balance of Linear Momentum

at Reference Configuration

This section provides the submatrices coming from the individual terms appearing in

the linearization of the balance of linear momentum. Since the dimensionalizing and putting

into Galerkin form were presented in detail in Chapter 4, we present only the final form of

the submatrices in the linearized form balance equations in this section and hereafter. All

the submatrices denoted by (JCZ;L)Z, and (JCZd))Z are the contributions to consistent tangent

coming from the linearized form of the balance of linear momentum.

The first term in the linearization of the balance of linear momentum:

/ 0 (wrt) FioSpx FerdV = / Wi, 10 (Fr)") FiSpi FrgdV
fBo BO

= —/ wi. L Fr FipSpg Feg0up dV
(5, = / A{e}" - [GRAD (N"))" - [I,] - [GRAD (N**)] - {6d°} dV
9] = [ [GRAD (N")" (L) [GRAD (N"*)|dV

(Kha), = A{c - [95,] - {6d°}

The second term in the linearization of the balance of linear momentum:
/B Wi, F7'0 (Fip) Spi FrgdV = /B wi 1 Fr ' S Frrcouy 1 dV
(5i0), = [ (e} [GRAD(N"*)" (1] -[GRAD (N"*)] - {sd'} aV
9= [ [GRAD (N")" (L) [GRAD ()] aV

(K), = A{C [J] - {047}

(5.12)

(5.13)

(5.14)

(5.15)

(5.16)

(5.17)

(5.18)

(5.19)
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The third term is the first term coming from the linearization the second Piola-Kirchhoff

tensor 0S5 k:

(A+T7) / wi L F Find (Fiar) FingOrx FredV = (A + 1) / wi L Fr Fin Fing O Froe O prdV
‘Bo BO
(5.20)
(K, =(A+7) [ {c} - [GRAD (N"9)|" - [I5] - [GRAD (N"°)] - {od°}dV (5.21)
B§

(953 = (A + 7')/B [GRAD (N")|" . [I,3] - [GRAD (N"“°)] dV (5.22)

(Ki) 5 = A{c [95] - {6} (5.23)

The fourth term is:

(A+T7) / Wy LFLl FiLFiné (Finr) Opg FredV = (A +7) / wk,LFL_llFlLFiM(SLKFkK(SUi,MdV
fBo BO
(5.24)
(K, =N +7) [ {c} [GRAD (N"9)|" - [I4]- [GRAD (N"*)] - {6d°} dV  (5.25)
B3

J5]=A+7) / [GRAD (N")]" - [I,,] - [GRAD (N")| dV (5.26)

(%), = A{c [95,] - {6} (5.27)

The fifth term is:

2 (,u + O')/ W LFLI FlLé( ) ZKFdeV =2 (,u -+ O') / wk,LFE;F’lLFiKFkK(sUi,LdV
BO BO
(5.28)
(K5, =2(u+0) {c*}" - [GRAD (N“%)|" . [I5] - [GRAD (N“*)]-{6d°}dV (5.29)
Bg

e

95 =2 (u+0) / (GRAD (N**)|" - [Is] - [GRAD (N“*)|dV  (5.30)

(Ko) 5 = A{C - [95] - {6d°} (5.31)

The sixth term is:

2(pn+ U)/ W L FirFird (Fir) FygdV =2 (i + o) / wy 1 Fr Fip Fip Frcou; gdV
Bo BO
(5.32)
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(Kol =2(n+0) / {c*}" - [GRAD (N"°)" - [I,4] - [GRAD (N"°)] - {6d°} dV (5.33)

il =2(p-+0) [ [GRAD (N L] [@RAD (N v
(Ku)s = A{c - [9%] - {od°}

The seventh term is:

77/ Wi 2 Fr i (Fiar) XinOrx FredV = 77/ Wi 2 B X O i B ug ardV
Bo B

0

(%) = / (¢} [GRAD (N")|" - [I.7] - [GRAD (N"*)| - {5d°} dV
9= | [GRAD (N“]"- L] [GRAD (N““) v

(9); = A{c (957 {9d°}

The eighth term is:

77/ wk,LFL_llFlLFz'MCS (Xim) Ok FrdV = 77/ wk,LFL_llFlLFiM(SLKFkK(S(I)iMdV
B B

0

(562), =0 [ ()" [GRAD (N (2] [N {36} v

350 =0 [ [GRAD (N")]" - [La) - [N*"] 0V

(Kh), = A{c [95,] - {097}

The ninth term is:

fﬁ/ wi, 1. Fr Fid (Fig) Xz FredV = fﬁ/ wi, 1 Fr Bl Xin FrrcOui g dV
Bo B

0

(:Kiﬁ)g =K {ce}T . [GRAD (Nu,e)]T . [I18] . [GRAD (Nu,e)] . {(5d6} AV

9] =k / (GRAD (N")|" - [I,¢] - [GRAD (N"*)] - {5} dV

B

(%K) = A Le)” - [95] - {0}

e=1

(5.34)

(5.35)

(5.36)

(5.37)

(5.38)

(5.39)

(5.40)

(5.41)

(5.42)

(5.43)

(5.44)

(5.45)

(5.46)

(5.47)



The tenth term is:

fi/ wi L F Fin Fird (Xiz) FexdV = fi/ Wi Fr Fip Fig Frg @i dV
Bo B

0

(scct) = / ()" - [GRAD (N*)|" - (L) [N*] - {56°} dV
9 = [ [GRAD (N")" - [Lus] [N*)aV

(Kio)y = A{c - [95] - {007}

The eleventh term is:

V/ wi . Fr Find (Fir) Xik FrxdV = V/ wi . Fr Fio ik Frxcdus pdV
Bo

(%), = v / ()" . [GRAD (N"*)|" - [Is] - [GRAD (N"*)] - {5d°} dV
9 =v [ [GRAD(N*)" - (1] [GRAD (N")] - (3} v

(L), = ALe" - 193] - fod)

The twelfth term is:

V/ wk,LFL_llFlLFiL(S (Xik) FrrdV = V/ wk,LFL_llFlLFiLFkK(S‘I%KdV
Bo B

0

(xi2),=v [ ()7 [GRAD (N")]" - (L) [N {66} v

95 =v [ [GRAD (N")" - [Lui) - [N*aV
(L), = A} 95 {60}

The thirteenth term is:
/ wkl’F[jllF’lLSLK(; (FkK) dV — / wk,LF[TllF}LSLK6Uk7KdV
B 3
(szlo = {c'}" - [GRAD (N**)]" - [I1/10] - [GRAD (N™“)] - {6d°} dV
B§

Fi) = | [GRAD(N")]" - [Is] - [GRAD (N")] 0V

0

(L) = AV [9500] -0}
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(5.48)
(5.49)
(5.50)

(5.51)

(5.52)
(5.53)
(5.54)

(5.55)

(5.56)
(5.57)
(5.58)

(5.59)

(5.60)
(5.61)
(5.62)

(5.63)
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5.1.3 Submatrices in the Matrix Form of the Balance of First Moment of

Momentum at Reference Configuration

Similar to previous section, (Xgu)l, (ng))i, (KM, ),;,and (JCM%)Z are the contribu-
tions to the consistent tangent coming from the linearized form of the balance of first moment

of momentum. The first term is:
/ im0 (Einr) By — Sear) FrnpdV = / Mim (ELn — Sear) Frnaroug aprdV (5.64)
BO BO
(5c5) / (0} - [NV - [J1] - [GRAD (N"9)] - {sd} &V (5.65)

9] = /B (IN¥|T . [J,,] - [GRAD (N*)] dV (5.66)

(K%.), A {af}” |- {6d°} (5.67)

The second term which is the first term of (X5 — Spas) is:

T/ mmﬂM5(FiK)FiK5LMFdeV:7'/ Mim Fing Firc O Fonpr 0w e dV (5.68)
Bo B

0

(%50), =7 | A} INYTE- [Jig] - [GRAD (N)) - {0dydV - (5.69)

)= [ NV (7 [GRAD ()] av (5.70)
0
(XKEa), = Afe} - [35,) - {6d} (5.71)
e=1
The third term is:
T/ Mim i Find (Fix) Opn FpgdV = 7‘/ M EFinr Fi O par a0 e dV (5.72)
Bo By

(c5) =~ | A} NV ] [GRAD (N)] - {5}V (5.73)
)= [ NV (7 [GRAD ()] av (5.74)

(L), = A fey" (5] (o) (5.75)
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The fourth term is:

% /B Do Fingd (Fir) Fing FyongdV = 20 /93 Vo Fint Fort FongSuidV - (5.76)
(chg)4 — 2 ; {a)”  [IN*9)" . [J 1] - [GRAD (N*“*)] - {6d°} dV (5.77)
9, = 20 /B N7 1] [GRAD (N*)] av (5.78)

(65, = Ate) 3] (50} (5.79)

The fifth term 1is:

20’/ M Fiv Fird (Fing) FruprdV = 20/ M Fing Fip Frnnr 0 prdV (5.80)
Bo Bo
(s58), =20 [ ey NV 9] [GRAD (V) o av G
3 =20 [ (N7 7] - [GRAD (N*)]av (5.52)
B35

Tel
(KEa); = Afe} - [35] - {d°) (5.83)

e=1

The sixth term is:

(n—r1) / M Finrd (Fire) XircOpa FrnprdV = (9 — 7) / M F10a Xik O rvs Frnr 0 e dV
Bo Bo

(5.84)

(%52), = (0=7) | {@}" - [NV 0sa]- [GRAD (N - o'} aV (589

)= (=) [ [N 17 [GRAD (N*) av (5.56)
(K5u)g = ,né {a}" - [356) - {0d°} (5.87)

The seventh term is:

(n— 7')/ M Fin Fi 6 (Xix ) Opns FrnprdV = (1 — 7')/ M Finr Fixc O st Frnns 6@iredV (5.88)
fBo BO



JC”‘ —(n—r1 / {a}"  [INXT . [Ty] - [N*] - {0¢°}dV

350 = (- 7) / NV [Ty - [N aV

e
0

(K%)= A{a}" - [35] - {60}

e=1

The eight term is:
(V—U)/ 77lmFlM5( zL) Xiv FrnpdV = (V—U)/ nlmFlMXiMFmM(;ui,LdV
Bo BO
(5c) =0 / (a}T - [INYT - [J1] - [GRAD (N9 - {5d°} dV

95 = (v — o) / INY" . [J,1] - [GRAD (N"*)] dV

(:Kgu) A {a -[3%7] - {6d°}

The ninth term is:
(V - U)/ nlmFlMFiL (XiM) FopdV = (V - U)/ nlmF}MﬂLFmM(S(I)iMdV
Bo BO
Jce " (v—o / {a " [INXT . [Tg] - [NY€] - {0p°} dV

[d5) = (v — o) /Be [NX’E] - [Jaa] - [NX€] dV
(JCZ¢)2 - 3 {ae}T ’ [352] ’ {5¢e}

The tenth term is:
(k — a)/B M F1010 (Fing) Xir FrnardV = (k — 0) /73 Mim Fiaa Xin Fonns i prdV
0 0
Jce B (k—o / {a}" - [N¥" . [J1s] - [GRAD (N™“°)] - {6d°} dV
) = (=) [ NV 7] [GRAD ()] av

e
0

(3C%,) A {oc}" - [355) - {0d°}

130

(5.89)

(5.90)

(5.91)

(5.92)

(5.93)

(5.94)

(5.95)

(5.96)

(5.97)

(5.98)

(5.99)

(5.100)

(5.101)

(5.102)

(5.103)



The eleventh term is:

(5 — U)/ Nim Fine Fine (Xiz) FrnmdV = (K — U)/ M Fing Fing Frnpg 6P dV
Bo Bo
(s50), = (=) [ @) NS ) [N (5 v

) = (=) [ ANV -] [NV

(520), = A ) - [35] - (96

The twelfth term is:

/ MmmFir (Epar — Sear) 6 (Frar) dV = / MmFrr (Epn — Soar) Ot pdV
‘Bo BO

(55), = [ AeYT - INYT (D] [GRAD (N™)] - {5} av
95,] = / INYJT (T3] - [GRAD (N")] dV

e
0

(K8, = ALac}” - [35] - {od°)

e=1

The thirteenth term is:

/ Mk Frercd (F1n) Mg parXmmdV = / NimAF i Fred (Fin) My parXmardV
Bo

Bo

:/ TIzm,K5 (FlL)MKLMXdeV:/ TIzm,KMKLMXmM5Ul,LdV
‘Bo BO

(:KMeu) 1 -
] = / (GRAD (N*9)]" - [M,] - [GRAD (N"*)] dV

e
0

(9033,), = Aday” - V] o)

{a}" - [GRAD (N*9)|" . [M,] - [GRAD (N“°)] - {0d°} dV
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(5.104)

(5.105)

(5.106)

(5.107)

(5.108)

(5.109)

(5.110)

(5.111)

(5.112)

(5.113)

(5.114)

(5.115)

The examples given in the next chapters uses only one parameter 77 in the definition of higher

order couple stress tensor. Hence, we present the linearization of only one term related to



77. Then, the fourteenth term is:

/Ulm,KFlL(S(MKLM)XdeVZ/ Mim, ik F10.0 (Mg ar) XmardV
fBo BO

= 7'7/ Nim, KFIL(S( ZK) XiL, MXmmdV = 7'7/ ﬁlm,KﬂLXiL,MXmM5Ui,KdV
Bo B

0

(XM;u)Q = T7 {ae}T : [GRAD (Nx’e)]T . [Mz] . [GRAD (Nu,e>] . {(5de} dV

M = 77 / (GRAD (N*)]" . [M3] - [GRAD (N"*)] dV

(XM, A {a}" - V5] - {od°}

The fifteenth term is:

T7/ Mim, ik F1 Fixc 0 (Xin, ) XmamdV = 7'7/ Mo, 5k F1o Fire X 0P ardV
Bo B

0

(©05,), =70 [ (@} [GRAD (N¥) - [M,] - [GRAD (N*)] - (5"} 4

M) = 7 / ([GRAD (N*)[" - [My] - [GRAD (N**)|dV

(M), A{a |- {09}

The sixteenth term is:

/ﬁmeFlLMKLMCS(XmM)dV:/ nlm,KFlLMKLM(;(I)deV

Bo

(90Ms,), / (a}T - [GRAD (N*)|” - [M] - [NX9] - {5¢°} dV
M) = / (GRAD (N*9)" . [M.] - [N*“] 4V’

(IMGs), A {o}" |- {69°}
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(5.116)

(5.117)

(5.118)

(5.119)

(5.120)

(5.121)

(5.122)

(5.123)

(5.124)

(5.125)

(5.126)

(5.127)

These matrices determined above are constructing the global consistent tangent, in a

same way presented in the section 4.8, to be used in the Newton-Raphson algorithm. To avoid

repeating it, we omit those details here. The next chapter demonstrates the convenience of

use of reference configuration in the implementation, together with examples.



Chapter 6

Finite Element Implementation and Numerical Examples of Finite Strain

Micromorphic Elasticity

Previous Chapters 4 and 5 presented the finite element formulation together with the
linearizations of the balance equations at current configuration and reference configuration
respectively. In numerical examples, firstly, we provide a three dimensional finite strain
micromorphic materially linear isotropic elastic model formulated in two ways for finite
element implementation (Isbuga and Regueiro (2011), Regueiro and Isbuga (2011)): (i)
direct finite strain elasticity , and (ii) rate form with semi-implicit time integration. The
model is based upon the finite strain isotropic micromorphic elasticity model proposed by
Eringen and Suhubi (1964); Suhubi and Eringen (1964). For (i), the direct formulation,
the constitutive equations are calculated in the reference configuration, and the resulting
stresses are mapped to the current configuration as shown in Chapter 5. For (ii), the rate
formulation, the constitutive equations are integrated in time in the current configuration
using the Truesdell objective stress rates as presented in Chapter 4. The comparison of
two implementation shows the computational effectiveness of direct implementation and the
following numerical examples present the applications of the formulation.

Three dimensional numerical examples are analyzed to compare the two formulations
(i) and (ii) for standard finite strain isotropic elasticity, and the formulation (i) is used to
demonstrate the elastic length scale effects that come through the higher order couple stress

in the micromorphic theory (Regueiro and Isbuga (2011), Isbuga and Regueiro (2011)). The
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following examples also provide the boundary condition effects as well as insights about three

dimensional micromorphic continuum.

6.0.4 Element Used in Finite Element Implementation

We use a mixed 27 node hexahedral element for finite element implementation (Fig.6.1):
27 nodes for u” and 8 vertex nodes for ®”" (Q27P8), where h is the discretization parameter.
For the rate form (ii) of the model, (4.4) and (4.23) are written in Galerkin form (Hughes,
1987), and the time-integrated stress equations (3.134), (3.136), and (4.37) are used. The
mixed formulation is employed in recognition that ®" is a micro-displacement tensor (no
gradient is calculated on a micro-displacement ", but ®" is analogous to du” /0X when
comparing F" and x"), where the gradient of a quadratic interpolation is linear, such that
Vau" and ®" would be of approximate same order interpolation. Such mixed methods are
shown to be convergent (Hughes, 1987) for the small strain case, but no formal proof of
convergence is presented here; i.e., we do not show in a proof that u = %Lzﬁg u" and ® =
élilz% ®". One of the numerical examples (Section 6.2.4) will provide a mesh refinement study
to demonstrate the convergence of the mixed FE solution. The global nodal displacement
vector is d and the nodal micro-displacement tensor in vector form is ¢. Displacement vector

h

ul is interpolated at each node shown by solid dots, and the micro-displacement tensor ®7 -

is interpolated only at the vertices shown by open circles in Fig.6.1, such that

¢

up (8) =D NXE)df » (€)= D NP (©) i (6.1)

a=1 b=1
where & = [£ n (] are the natural coordinates, N*(&) the tri-quadratic interpolation func-
tions, N2 (&) the tri-linear interpolation functions, dZ(a) the displacement vector at node a

of element e, and ¢f K(®) the micro-displacement tensor at node b in element e.
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(O micro-displacement
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Figure 6.1: Mixed 27 node hexahedral element: quadratic in displacement and linear in micro-
displacement tensor interpolations. Node numbering and geometry shown in the natural coordinate
space (Hughes, 1987). The number of element nodes for displacement and micro-displacement

tensor, respectively, are n, = 27 and nfn =8.

6.1 One-dimensional (1D) micromorphic uniaxial strain in compression
formulation and FE implementation for ‘verification’ of 3D micromorphic

FE model

As a form of verification for our three-dimensional finite strain coupled micromorphic

finite element implementation in an opensource C++ code Tahoe, we formulate and imple-
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ment a simpler one-dimensional uniaxial strain compression problem. It entails an assumed
displacement only in the X3 direction, and likewise only a component of ® in the X3 direc-

tion. The resulting kinematics are as follows:

0 00 0
u= |0, =100 0 (6.2)
U 00 &

where ug = u(X3) and @33 = ¢(X3). The resulting deformation measures are as follows:

10 0 10 0
F=|0 1 0 . X=1]01 0 (6.3)
ou
00 1+2 00 1+@
0 0 0
E=(C-1)/2=]0 0 0 (6.4)
ou ou
00 12 (2+2)
0 0 0
E=100 0 (6.5)
ou ou
|00 @+ + o5 |
0D ou
Tagg = —— (14 —— 6.6
2 (1 2) o

When substituting these deformation measures in (6.4)-(6.6) into the constitutive equations
(2.113)-(2.115), and in turn the linearized variational equations in (4.4) and (4.23), a one-
dimensional coupled finite element formulation results. We use a mixed element formulation
similar to the 3D hexahedral element in Fig.6.1, where axial displacement u"(X3) is interpo-
lated quadratically and axial micro-displacement tensor component ®"(X3) is interpolated
linearly. This is the same as the column compression problem in Section 6.2.4, where the

two models (3D and 1D) are compared in Section 6.2.3.
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6.2 Numerical examples

6.2.1 Choice of elastic parameters

In the Cauchy continuum, the constitutive equations involve two Lamé parameters for
linear isotropic elasticity, which we call here A* and p*, to distinguish from the micromorphic
elastic parameters A and p. The isotropic micromorphic elasticity approach introduces seven
elastic moduli (A, i1, m, 7, Kk, v, 0) in the unsymmetric Cauchy stress tensor o and the symmet-
ric microstress tensor s, and eleven elastic constants (7, ...,71;) in the higher order couple
stress tensor m, for a total of eighteen micromorphic linear isotropic elastic parameters. For
the form of our constitutive equations in (2.113)-(2.115), (Smith, 1968) proposed restrictions
among the elastic parameters in the form of inequalities to achieve the positive definiteness
of a quadratic strain energy function in Section 2.5. Only the results are provided here. The
numerical values may be chosen by a set of relations between Lamé parameters, A\* and p*,
and the micromorphic elastic parameters given below. The set of relations in (6.7) and (6.8)
satisfy the positive definiteness of strain energy for numerical values of Lamé parameters
A* = 6400 MPa and p* = 6400 MPa for Nuozhadu granite (Zhou et al., 2010), and will be

used in the numerical examples.

7 = 0.15\* (2 o~ 1.15u% (2
=1 =025\ Tw=79 == 085"l
T~ 0.2750"(; Tio & 0.70u%03, (6.7)
T R 0I3NE oy =085,
To A 0.345)°(2
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and
n 2\ ko= 1.4u*
7 = 0.33\* v = 1.15p*
(6.8)
A =067\ o =0.70u*
woo=0.7u"
where ¢; (i =1,...,11) are elastic length scale parameters. Numerical values for the elastic

parameters were calculated by relations given in (6.7) and (6.8) and are reported in Tables

6.1 and 6.2. In this paper, we do not attempt to relate the micromorphic elastic parameters

to microstructural elastic parameters used in the analysis of a representative volume element

(RVE) of the material, as in (Neff and Forest, 2007) for a metallic foam. Instead, we choose

micromorphic elastic parameters that satisfy positive definiteness of the strain energy, as

determined by (Smith, 1968) for the linearized form of our constitutive equations in (2.113)-

(2.115).

Table 6.1: Isotropic micromorphic elastic parameters. Stress in MPa and length in micrometers

(pm).

4267

4480

12800

7360

8960

2133

1920

Table 6.2: Isotropic micromorphic elastic parameters for m. Stress 7; in MPa and length ¢; in pm,

where 7; = %Z-EZZ.

T1 T2 T3 T4 Ts5 T6 T7 78 Ty T10 T11
1600 | 1600 | 1600 | 1760 | 864 | 2208 7360 5440 | 5440 | 4480 | 5440
4 Lo l3 4y s lg 47 (3 12 lio | Ll
0 0 0 0 0 0 0.1,1,10 0 0 0 0

In Table 6.2, we assume that the micromorphic elastic parameters 7; may have different

length scales than each other. It maybe also assumed that they all have the same length

scales as in the future examples.
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d/2

(a)

Figure 6.2: (a) Plane strain compression with prescribed boundary displacements for non-rotating
case. Front and back faces have zero normal displacements to generate a plane strain condition
using a hexahedral element. (b) Plane strain compression with prescribed boundary displacements
for rotating case through angle 8 = 0 — 90°.

6.2.2 Small strain compression with large rotation

The first example provides a comparison of the (i) direct and (ii) incremental rate for-
mulations of standard (not micromorphic) finite strain materially linear isotropic elasticity
for a small strain compression, large rotation problem. The purpose of this example is to
compare how the two formulations and FE implementations perform for a large rotation
example, for future finite strain elasto-plastic micromorphic constitutive model implementa-
tion. We already know that the materially linear elasticity assumption is valid only for small
elastic strains, where we expect large plastic strains to develop for the problems of interest
to us (e.g., coupling to particulate mechanics models in a multiscale framework). A single
1 x 1 x 1m cube tri-quadratic hexahedral element is used in the simulation, with a plane
strain condition imposed three-dimensionally (out-of-plane), and large rotation prescribed
to the boundary displacements, as shown in Fig.6.2. The Lamé parameters used in the anal-
ysis are A* = 29MPa and p* = 7TMPa (for a geomaterial), and the applied displacement is
d = 0.002m.

Because of the semi-implicit time integration in (3.134), (3.136), and (4.37), it is ob-
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—€3 %

Figure 6.3: For large rotation example in Fig.6.2(b), the plots provide a comparison of the third
principal Cauchy stress o3 versus the third principal Almansi strain es obtained by (i) direct finite
strain elasticity (FSE), and (ii) semi-implicit incremental FSE formulation, with different number
of time steps, n. It shows that as the time steps are refined, the incremental formulation (ii) result
approaches the direct formulation (i) result.

served in Fig.6.3 that during the large rotation example, we need many more time steps
(i.e., smaller time increments) to achieve a proper level of accuracy for the incremental rate
formulation of the model than compared to the direct formulation. In Fig.6.4, the minor
principal stress-strain curve shows a good comparison between direct and incremental rate
formulations of the standard elasticity model for same number of time steps for no rotation,
and also a comparison with the rotation example to show that the principal stress values
are the same. The advantage to using the incremental rate formulation (ii) for micromor-
phic elasto-plasticity (Regueiro, 2009) is when it is implemented within an explicit solution
method, whether quasi-static or dynamic. For these solution methods, small time steps are

used to ensure stability, and thus a semi-implicit time integration of a rate formulation of
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micromorphic elasto-plasticity would be more computationally efficient than the direct for-
mulation. For implicit solution methods (Regueiro and Ebrahimi, 2010), however, the direct

formulation is better suited because time steps can be larger.

0.06 T T
—O— wirot. direct FSE
—— wi/o rot. direct FSE
—HB— wi/rot. incr. FSE
0.051 —s¢— wjo rot. incr. FSE ]
0.04f .
o]
ol
=
0.03f R
™
&)
|
0.02 B
0.01 i
0.02 0.04 0.06 0.08 0.1 0.12

—€3 %

Figure 6.4: Comparison of the third principal Cauchy stress o3 vs. Almansi strain plots for small
strain es with large rotation, and small strain without rotation cases obtained by both (i) direct
FSE, and (ii) semi-implicit incremental FSE formulations.

6.2.3 1D ‘verification’ example

We compare our 1D finite element model presented in Section 6.1 to the 3D model
results in Section 6.2.4. We assume same elastic parameters, and an eight element mesh in
the X3 direction, with uz = —1um at X3 = 100um. We consider three cases: (1) @4, free
along X3; (2) @4, = 0 at X3 = 0, with ¢; = 0; (3) 4 = 0 at X3 = 0, with ¢; = 10um.
The results are reported in Figs.6.5-6.7. We see nearly exact agreement between our one-

dimensional micromorphic FE results and the 3D results. Thus, our 3D micromorphic FE
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results are verified against a separate 1D micromorphic FE formulation and implementation.
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Figure 6.5: (1) For ®%; free along X3: (a) Comparison of [|devS|| for 3D and 1D column compression.
(b) Comparison of ||dev(X — S)|| for 3D and 1D column compression.
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Figure 6.6: (2) For ®%, = 0 at X3 = 0 and ¢; = 0: (a) Comparison of ||devS|| for 3D and 1D column
compression. (b) Comparison of ||dev(% — S)|| for 3D and 1D column compression.
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Figure 6.7: (3) For ®% = 0 at X3 = 0 and ¢; = 10um: (a) Comparison of ||[devS|| for 3D and 1D
column compression. (b) Comparison of ||dev(X — S)|| for 3D and 1D column compression. (c)
Comparison of ||[devM || for 3D and 1D column compression.
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6.2.4 Finite strain column compression with length scale effects

ug = —10um

100pm

Figure 6.8: A 100 pm long col-
umn with a 156.25 (um)? cross
sectional area compressed with a
displacement loading ug = —10um

assuming different length scales ¢7.

Figure 6.8 shows a column compression example,
with coarsest eight Q27P8 element mesh, which will
demonstrate the length scale effect in the higher order
stress term, and also be used for a mesh refinement study.
This example is like a one-dimensional version of the cu-
bical microindentation test in Section 6.2.6. The displace-
ment boundary condition uz = —10pm is applied to the
top surface at X3 = 100um. The displacement bound-
ary conditions were chosen to provide a uniaxial strain
compression problem: u; = 0 on +X; faces, us = 0 on
+X, faces, and us = 0 on —Xj3 face. All the micro-
displacement tensor components ®;; are set = 0 except
the micro-displacement tensor component ®33 in the X3
direction, where ®33 = 0 at X3 = 0.

Figure 6.9, for a 32 element column mesh, shows
the variation over quasi-static loading time of the devi-
atoric stress norms ||deve||, ||dev (s — o) ||, and ||devm||
and traces tro and tr (s — o), and norm of trace ||trm||
for the unsymmetric Cauchy stress tensor o, the relative
stress tensor (s — o), and the higher order couple stress
tensor m, respectively, at X3 = 2.773 um where we have a
gradient in ®%, values which generates higher order stress

tensor components due to the definition M = 7 I'. Figure

6.9 also provides a comparison of these invariants for the three choices of length scale ¢

in Table 6.2. Figures 6.10, 6.11, and 6.12 provide comparisons of the stress invariants with
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different number of elements along the column length in X3 at different heights from the

bottom surface in Fig.6.8. Definitions of these stress invariant measures are

||deve || = \/(devaij)(devaij)

ldev (s — o) || = /[dev(sy; — 05)][dev(si; — 03;)]

|[devm|| = \/(devimji,)(devm;i)
tro = o
tr(s—o)= (Sgx— okk)

| |trm| | = MaakMbk

where

1
deva,-j = Uz’j — (gO’kk) 5@'

1
dev (si; — 0ij) = (855 — 03j) — <§ (Skk — Ukk)) 0ij
1
devm,-jk = Myjk — géijmaak

Note that based on its definition, devm,jj is traceless:

trace(devmyji) = devmy, = My, — g(B)mmk =0

Recall the definition of the higher order stress m;j;; (Eringen, 1999), equation (2.1.5):

def / 17l
mijknida:/ aijgknida
da

(6.9)

(6.10)

(6.11)

(6.12)

where n; is the unit normal vector to macro-element differential area da in the current

configuration B, 7, is the micro-element symmetric Cauchy stress, & is the relative position

vector of the micro-element centroid with respect to the macro-element centroid, n} is the

unit normal vector to micro-element differential area da’ in the current configuration B.

Based on the definition of m;j;; through (6.12), since we plan to implement a pressure-

sensitive micromorphic elasto-plasticity model (Regueiro, 2009), we need a “higher order
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mean-couple-stress” and “deviatoric stress” definition. Equation (6.10), based on (6.12),
satisfies this definition, where we see the micro-element mean Cauchy stress is p’ = o/,/3,
such that the higher order mean-couple-stress is pr = Mmgar/3-

In Fig.6.9, for all the invariants, the effect of increasing length scale ¢; is what we expect
for all plots except Fig.6.9(a): as the length scale increases, the stress response is higher,
which is consistent with a larger value of 7, = 77¢2. This is a compression problem with
shear, where only ®%, # 0, but we will see for the cubical microindentation test next that

when three-dimensional stress effects are enabled, the trends are not as simple to interpret.
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32 element column compression example and different length scale values of /7, a

Figure 6.9: For
comparison of deviatoric stress invariants (a) ||deve||, (b) ||dev (s — o) ||, and (¢) ||devm||, and also

the first stress invariants (d) tro, (e) tr (s — o), and (f) |[trm|| at X3 = 2.773um.
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Figure 6.10: Comparison of stress invariants at X3 = 0 with different number of elements in the X3

direction for ¢y = 1um.
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Figure 6.12: Comparison of stress invariants at X3 = 6.25 pm with different number of elements in

the X3 direction for 7 = 1um.
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As evident in Figs.6.10-6.12, as the column mesh in Fig.6.8 is refined in the X3 direction,
the results converge to a unique solution. In Fig.6.10(c) and (f), the convergence is not so
obvious because these higher order stress m invariants are plotted at the boundary node
at X3 = 0 where the gradient V®” is highest. In Fig.6.13, the convergence trend is more
clear. Figure 6.13 shows comparisons of ul and ®%, profiles with different number of elements
together with one additional boundary condition for ®%, which is fixed at X5 = 100um. It
is clear that, for 8 elements and 16 elements meshes, there are oscillations at the proximity
of the boundary where we have high gradients in ®%,. Although this behavior seems to be
related to a coarse mesh, this influence of the boundary is seen when ¢; = 1um. Figure 6.14

(a) shows that the oscillations disappear with a higher length scale ¢; = 10um.
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Figure 6.14: Comparison of ®%, profile: different number of elements with £7 = 10um.
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6.2.5 Comparison of full and quarter microindentation to evaluate boundary

conditions on ®"

Before conducting the microindentation simulations in Section 6.2.6, we investigate
the boundary condition on ®". For a coarse mesh indentation considering the full 4 (pm)?
indentation area in Fig.6.15(a) and one quarter area 1(um)? of the indentation area in
Fig.6.15(b), we compare the results in Table 6.3 for the node at the center of the punch area
indicated in Fig.6.15. We see that displacement w” boundary conditions between full and
quarter indent areas match (i.e., zero in X; and X, directions at the center node), whereas
the BCs for micro-displacement tensor ®" do not match (i.e., % = ®k, = 0 for quarter
indent area, and ®F = ®5, = 0.72956 for full indent area). Thus the microindentation
simulations in Section 6.2.6 are what we will call corner indentation simulations rather

than assuming quarter symmetry, which does not hold for the BCs we choose in Fie.6.16 for

d".

P N

(a) (b)

Figure 6.15: (a) Whole domain is considered with a 4 (um)? square indent area with a magnitude of
ug = —0.5 pm at the middle of the top surface of the cube domain with dimensions of 4 x 4 x 2 um,
(b) quarter model of the whole domain is considered with a 1 (um)? square indent area with the
same magnitude on the corner of the top surface of the cube domain with dimensions of 2 x2x 2 pum.
Results are reported in Table 6.3 at the nodes marked by black squares, respectively, at the center
of the indent area of the whole domain and at the corner of the indent area of the quarter domain.
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Table 6.3: Comparison of values at nodes indicated by black squares in Fig.6.15 for full and quarter
indent areas. Quarter symmetry holds for w” but not for ®",

quarter indent area | full indent area
on, 0 0.72956
oL, 0 0.72956
Ph, 0.37 0.35649
ult 0 0
ul 0 0
ull —0.5um —0.5um
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6.2.6 Finite strain cubical corner microindentation with length scale effects

This example is a three dimensional cor-
ner square microindentation problem to demon-
strate the three dimensionality of the finite
element implementation as well as the elas-
tic length scale effects through the higher or-
der stress tensor m when three-dimensional
stress effects are enabled. It is a 100um cube
with 25um square area loaded with downward
prescribed displacement uz = —10um (see
Fig.6.16). Note that all simulations were run
to finite strains (= 10%) where the assumption

that elastic strains are small in equations (2.113)

ug = —10um
E ¢
: Y 100pm
5 x 25pum
: 25m
X g
S C T
X
d 100pm
100pm

Figure 6.16: Cubical microindentation exam-

ple geometry and loading configuration.

and (2.114) (but rotations can still be large) would be invalid. But this implementation

will eventually be used as a precursor to a finite strain elasto-plastic micromorphic model

implementation, where plastic strains can be large for such materials like soil, rock, con-

crete, metals, etc., where elastic strains are typically small. We assumed that only three

micro-displacement tensor components ®F, ®%, and ®% are free, and all the shear terms

®h = 0(i # I). The boundary conditions on micro-displacement tensor are chosen as:

dh =0 at X; = 0and 100um, ®%, = 0 at X, = Oand 100um, and ®%, = 0 at X3 = 0.

Micromorphic elastic parameters given in Tables 6.1 and 6.2 were used in the analysis. An

8*8*8=512 Q27P8 element mesh is used.

Figure 6.17 shows the variation over quasi-static loading time and comparison for vari-

ous length scale values ¢7 of the deviatoric stress invariant measures ||deve||, ||dev (s — o) ||,

and ||devml||, and first stress invariant measures tro, tr (s — o), and |[trm|| at the Gauss

point near node A underneath the indent area.
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Figure 6.17: For corner punch problem and different length scale values of /7, a comparison of the

deviatoric stress invariants (a) ||dever||, (b) ||[dev (s — o) ||, and (c) ||devml]]|, also the first stress
invariants (d) tro, (e) tr (s — o), and (f) ||[trm|| at Gauss point near node A under the indent area.
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Figure 6.18: For the corner punch problem with <I>§3 = 0 under the punch area, and different length
scale values of {7, a comparison of the deviatoric stress invariants (a) ||dever||, (b) ||dev (s — o) ]|,
and (c) ||devm||, also the first stress invariants (d) tro, (e) tr(s — o), and (f) |[trm|| at Gauss
point near node A under the indent area.
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Figure 6.17, which is plotted for the Gauss point nearest node A under the corner of the
square indent area, shows that the highest values for the deviatoric stress invariant ||deve|| is
for the smallest length scale value ¢7 = 0.1um, whereas the next highest is ¢ = 1um, and the
lowest values for /; = 10um. Because the variation over loading time is not as smooth as for
the column compression result in Fig.6.9(a) (there is an apparent oscillation), the fact that
the ¢7 = 0.1pm result is more higher than with ¢; = 1um and ¢; = 10um can be attributed
to the three-dimensionality of the simulation, development of shear at the indent area, and
possibly the resolution of the mesh. Conversely, in Fig.6.17(d), the first stress invariant
tro shows a consistently higher stress values in compression result with increasing length
scale 7. In Figs.6.17(b) and (e), for the relative stress s — o, the invariants show trends
with varying length scale ¢; that are consistent: higher stress values with increasing length
scale f7. Again, this can be attributed to the three-dimensionality of the problem, an effect
that is oftentimes missed in many strain-gradient elasticity models formulated only for 1D
and 2D problems. This effect comes in naturally through the 3D micromorphic FE model.
The question then becomes how to fit these elastic parameters (and in the future, plastic
parameters) to experimental data to have physically meaningful results. We envision using
multiscale techniques, whereby an underlying grain-scale model (like the discrete element
method (Cundall and Strack, 1979)) is used to upscale to the micromorphic continuum
model through an overlapping region (Regueiro and Yan, 2011). In Figs.6.17(c) and (f),
for the higher order couple stress m, the invariant trends follow a higher stress values with
increasing length scale, a result that is likely due to the decoupling of m from o and s — o
through the constitutive equations (2.113)-(2.115); note that the stresses are still coupled
through the balance of linear momentum and balance of first moment of momentum. The
stress state and deformation is three dimensional, so unlike the previous simpler example of
column compression, the combination of deformation and micromorphic elastic parameters
can lead to unexpected trends in stress.

In Fig.6.18, the trends for increasing length scale ¢; are similar as in Fig.6.17, except
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in Fig.6.18(b), which shows an opposite trend: smallest ¢; leads to the highest values of
||dev (s — o) || result. Because the results in Figs.6.18 and 6.17 are plotted at a Gauss point
beneath the punch area, the boundary condition ®%, = 0 under the punch area influences
the results reported in Fig.6.18 at this Gauss point more significantly than at a Gauss point
further from the punch area.

These results signify the importance of the selection of elastic micromorphic length
scale parameters ¢; in addition to micro-displacement tensor ®" boundary conditions.

The stress invariant measures ||deve||, ||dev (s — ) ||, ||devm||, tro, tr(s — o), and
||trm|| used in this work will provide a basis for a future implementation of the three di-
mensional micromorphic finite strain elasto-plastic pressure sensitive model in which three
yield functions are defined for macro-scale, micro-scale, and micro-scale gradient plasticity

concept (Regueiro, 2009, 2010).

6.2.7 Boundary condition effect on uniaxial cube compression

This example is a one element 2m cube uniaxial stress in compression analysis, al-
lowing one free micro-displacement tensor degree of freedom ®%, with various combinations
of micromorphic isotropic elastic material parameters. As mentioned in Section 6.2.1, the
numerical values may be chosen by a set of relations between Lamé parameters A\* and u*
and the other micromorphic elastic parameters. The following set of relations satisfy the
positive definiteness of strain energy for specific values of \* = 39 MPa and p* = 12 MPa

for a geomaterial as:

o~ 0.111\*L2 7 &~ 0.670p L2 N ~0.7435\° u == 0.583u*

=73 ~0.18NL} =79 =~049%u*L? T =~0256\* v =~0.667u"
7y~ 0.204\* L2 o ~ 0408 L? 1 =153\ o =~04167u° (6.13)
5 A~ 0.1N*L2 1~ 0.495u* L

=

~ 0.833*
75 A 0.256)\* L2
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As mentioned before, we assume in this example and the next following two examples that

only one length scale L. ( not ¢;) exists that is associated with the elastic parameter 7;.
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Figure 6.19: (a) 2x2x2 m cube compression example with a one element mesh. (b) Comparison
of Cauchy stress tensor component o33 obtained by standard finite strain elasticity (FSE) and
finite strain micromorphic elasticity with various combinations of micromorphic elastic material
parameters as well as different BCs.

Numerical values for the micromorphic elastic material parameters are then calculated as
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A=29.10° kPa p =7.10°kPa 7 = 60.10° kPa

v=23810"kPa &k =10.10°kPa 7 =10.10°kPa o =5.10° kPa (6.14)

Note that to simplify the computations from the set of relations which satisfy the positive

definiteness of strain energy expressed in (6.13), we take

THI =T =T3=T4 =T5 =Tg =T8 = Tg = T10 = T11 = 0 , T7 = 8103 kPa.m2 (615)

where the characteristic length is assumed to be L. =1 m.

Figure 6.19(a) shows the compression example 1 element mesh. The displacement
boundary condition uz = —0.5 m is applied to the top surface in the negative X3 direction.
The displacement boundary conditions were chosen to constrain the rigid body motions
as: u; = 0 on —X; face, up = 0 on —X, face, and us3 = 0 on —X3 face. We considered
two different sets of boundary conditions for ®": (1) all the micro-displacement tensor
components @/, are set = 0 except the component ®% in the X3 direction as boundary
condition type 1 (BC1); (2) ®%; is free on the top surface of the cube (X3 = 2m), and
Pl = 0 at X3 = 0 for boundary condition type 2 (BC2). The different BCs will show the
effect of the gradient of ®%, in the X3 direction. Another example in Fig.6.20 illustrates a
boundary layer effect.

Figure 6.19(b) is the comparison of Cauchy stress tensor component o33 obtained by
standard finite strain elasticity (FSE) with the same stress component in micromorphic
finite strain elasticity calculated by equations (2.87) and (2.113). Figure 6.19(b) shows that
the micromorphic approach may result in lower stress for BC1 as compared to BC2. In
Fig.6.19(b), for BC1, all the ®!, are the same which, in turn, gives zero gradient of micro-
displacement tensor V® = 0 between the top and the bottom surfaces of the cube. For
BC2, there is a gradient of ®%, between the top and bottom surfaces of the cube element

that generates a non-zero higher order stress tensor m which results in different relative
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stress s — o, and different Cauchy stress o in the first moment of momentum balance due
to the coupling between the two balance equations. Figure 6.19(b) shows an increase in o33
by including additional parameters n, x, v, 7, and ¢ where for BC1, no contribution from the

parameter 77 is expected due to zero gradient of ®.
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6.2.8 Boundary condition effect on finite strain column compression

In this example, we consider a similar geometry and boundary conditions with that of
the previous column example but with different dimensions and parameters. The effect of
boundary conditions on the micro-displacement tensor ® may be presented more clearly in
this example in which a 10m column with a 1x 1 m? cross section is loaded on the + X3 surface
(top surface) with a prescribed displacement, u3 = —Im. Similar boundary conditions to
the one element cube example (BC1 and BC2) are employed, except displacements in X,
and X, directions are zero. Figure 6.20(a) shows the boundary effect on micro-displacement
tensor where we have slightly lower values of ®%, near the bottom surface that is causing a
gradient in micro-displacement tensor which results in different values of the higher order
stress tensor m at different heights of the column as shown in Figs.6.20 (¢) and (d). We
see higher values for invariants of the higher order stress tensor at locations where we have
a higher gradient of ®2, near X3 = 0 (see Fig.6.20(b)) which is expected because of the
definition of the higher order stress tensor in the reference configuration, for this specific
example, M = 7T where I' = FTVx. We do not see a similar behavior for BC1 in which
V& = 0, that makes the higher order stress tensor zero; therefore, for BC1, stress invariants
given in Figs.6.20 (c), (d), (e), and (f) are the same at different heights along the column

(i.e., the stress is uniform along the height of the column for BC1).

6.2.9 Boundary condition effect on square corner punch problem

The third example is a three dimensional square corner punch problem to demonstrate
the three dimensionality of the finite element implementation.This example also considers a
similar geometry and the same boundary conditions with that of the previous corner punch
example; however, it uses different parameters as well as dimensions. It is a 10m cube with
different I; x [;m? square areas loaded with downward prescribed displacement uz = —1m (see

Fig.6.21). We assumed that only three micro-displacement tensor components ®f,, ®4, and
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Figure 6.20: (a) Variation of norm of micro-displacement tensor, ||®||, through the column height
that shows the boundary effect on ®, (b) norm of gradient of micro-displacement tensor, ||V ®||,
that generates non-zero m, (c) norm of deviatoric higher order stress ||dev (m) ||, which is largest
where the highest gradient is observed, (d) norm of trace of m, ||tr (m) ||, (¢) norm of deviatoric
Cauchy stress, ||dev (o) ||, (f) norm of deviatoric relative stress, ||dev (s — o) ]| .



167

®h. are free, and all the other shear components ® = 0 (i # I). The boundary conditions
on micro-displacement tensor are chosen as: ®F, = 0 on +X faces, ®4, = 0 on +X, faces,
and ®%, = 0 on —Xj3 face according to Fig.6.21. Elastic parameters given in (6.14) and

(6.15) were used in the analysis.

Punch area label (s;) Punch area (I; x [; in m?)

us = —1 S1 33
S9 2.5 x 2.5
| % ¢ / 10 m S3 2% 2
B i Sy 1.5 x 1.5
X ! S5 1x1
Xo b Iteration number Relative error
X 18 7.293805 x 10792
10 m ond 5.935305 x 107
3rd 9.067026 x 1077
Ath 3.401397 x 1079
10m Bt 1.186506 x 10~

Figure 6.21: (left) 10x10x10 m cube with various square punch areas, s; (top right), showing Gauss
point as X near nodal point A where stresses are plotted in Fig.6.22. Convergence profile obtained
by Newton-Raphson algorithm at the first time step for the largest punch area (bottom right). The
time step is At = 0.025 and total time = 1. There are 10 x 10 * 10 = 1000 mixed Q27P8 hexahedral
elements in the mesh.

Figure 6.22 shows the variation over loading of the norms of deviatoric stress ||deve||,
||dev (s — o) ||, and ||devm|| and traces tro, tr(s — o), and |[trm|| for the unsymmetric
Cauchy stress tensor o, the relative stress tensor (s — o), and the higher order couple stress
tensor m, respectively, at the Gauss point near the node A underneath the punch area.
Figures 6.22(a) and (b) show the deviatoric stress norms for various combinations of elastic
parameters A, f1, 1, K, v, 7, o, 77. Upon including terms with 7 and o, ||dever|| and ||dev (s — o) ||
decrease until the end of loading, when they increase. The stress state and deformation
is three dimensional, so unlike the previous simple examples of uniaxial compression, the
combination of deformation and micromorphic elastic parameters can lead to unexpected
trends in stress. Upon introducing 7; to include the effect of higher order stress tensor

m, the relative deviatoric stress norm ||dev (s — o) || tends to decrease, whereas ||dever|]
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Figure 6.22: Deviatoric stress norms (a) ||deve]|, (b) ||dev (s — o) ||, and (c) ||devm||, and traces
(d) tre, (e) tr (s — o), and norm of trace of m (f) ||[trm|| at the Gauss point closest to the node A
under the punch area. Plots (c) and (f) show the results under five different punch areas.

increases. For ||dev (s — o) ||, this behavior is also observed in the column compression ex-
ample: ||dev (s — o) || is smaller where higher gradient of ®%, is seen that causes higher
values of higher order stress tensor. Figures 6.22 (c¢) and (f) agree with results shown in
Figs6.20 (c¢) and (d) regarding the effect of the gradient of micro-displacement tensor V&
which leads to an increase in magnitude of higher order stress tensor m that in turn induces
a change in relative and Cauchy stress tensors, s — o and o, respectively. Figures 6.22(d-f)

show the first invariants of o, (s — o), and m. Figure 6.22(d) shows decreased first invari-
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ant (increasing compressive stress, which is negative) for tre, while tr (s — o) in Fig.6.22(e)
goes into tension when 7 and o are introduced. Because of the definition |[trml], it is always
positive, a measure that must be changed to reflect the sign of trm (tension or compres-
sion) when used in a pressure-sensitive plasticity model (Regueiro, 2009). Recall that only
77 is nonzero in (6.15), so that the higher order stress is myu, = T Fux Firl oy X /s
Uik = Fipxiv . The stress measures ||deve||, ||dev (s — o) ||, ||devm||, tro, tr (s — o),
and ||trm|| used in this work will provide a basis for a future implementation of the three
dimensional micromorphic finite strain elasto-plastic pressure sensitive model in which three
yield functions are defined for macro-scale, micro-scale, and micro-scale gradient plasticity
concept (Regueiro, 2009, 2010). Figures 6.22(a) and (d) also include the comparison of
||dever|| and tro for the standard finite strain symmetric Cauchy stress tensor with those
of micromorphic finite strain unsymmetric Cauchy stress tensor with the various combina-
tions of micromorphic isotropic elastic parameters. The micromorphic results, depending on
the deformation history, show either higher values or lower values of stresses than standard
elasticity. These results signify the importance of the selection of micromorphic elastic pa-
rameters in addition to micro-displacement tensor ®" boundary conditions. The table in
Fig.6.21 illustrates the global convergence profile at time the first time step for the large

deformation punch problem, with parameters A, u,n, k, v, 7,0 and 7.

6.3 Conclusions from micromorphic finite strain elasticity FE implementa-

tion

We have implemented a three dimensional finite element model for finite deformation
micromorphic materially linear isotropic elasticity into an open source finite element code
Tahoe via two formulations: (i) direct finite elasticity, and (ii) rate form with semi-implicit
time integration (ignoring the micromorphic contribution). This chapter compared the two
implementations for standard elasticity (no micromorphic terms) for a small strain compres-

sion, large rotation example. The incremental rate form required many more time steps to
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be accurate enough to handle the large rotation, whereas the direct implementation con-
verged quickly and was accurate with relatively few time steps. The advantage to using the
incremental rate formulation in the future will become apparent when implementing a mi-
cromorphic elasto-plasticity model (Regueiro, 2009) within an explicit time solution method,
whether quasi-static or dynamic. For these solution methods, small time steps are used to
ensure stability, and thus a semi-implicit time integration of a rate formulation of micromor-
phic elasto-plasticity would be more computationally efficient than a direct formulation. For
implicit solution methods (Regueiro and Ebrahimi, 2010), however, the direct formulation is
warranted and will give accurate results for larger time steps.

In the numerical examples, the effect of one of the elastic length scale parameters
{7 is not so transparent. For some cases, increasing ¢; leads to higher values of stresses,
whereas in other cases increasing ¢; can lead to lower values of stresses. Further study
on using multiscale techniques to up-scale underlying grain-scale simulation results to the
micromorphic continuum finite element implementation will likely help to interpret how
the elastic micromorphic parameters are calibrated. Currently, these elastic parameters are
chosen to satisfy positive definiteness of elastic strain energy following Smith1968.

With regard to nanomechanics, we envision relating the micromorphic elastic param-
eters of our 3D FE model to an underlying microstructural representative volume element
(RVE) of a material (composed of grains and/or platelets) subjected to nanoindentation, such
as nacre (Barthelat et al., 2006) or porous nanocomposite cementitious materials (Bobko and
Ulm, 2008; Bobko et al., 2009).

This chapter also presented preliminary results of the model applied to three 3 dimen-
sional examples. These results motivate further study of the meaning of certain micromor-
phic isotropic elastic parameters and boundary conditions on micro-displacement tensor ®,
as well as their influence on the simulations. In the numerical examples, micromorphic elastic
parameters have been chosen to satisfy the positive definiteness of strain energy that obey

the inequalities proposed by Smith (1968). Numerical values have been chosen in a similiar
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way followed by Neff and Forest (2007) and Zervos et al. (2009). The boundary conditions
on ® may not be explicitly anticipated from the physical problem as discussed by Eringen
(1968a). In addition, we noticed from several analyses that ® boundary conditions together
with the associated micromorphic elastic parameters play an important role in convergence
of the nonlinear Newton-Raphson solution algorithm. Even for the comparatively simple
example of uniaxial compression, specification of the boundary conditions on ® and the
choice of micromorphic elastic parameters may affect the numerical results. A square corner
punch problem demonstrated the full three dimensionality of the finite element implemen-
tation and some interesting trends in stress response at a Gauss point beneath the punch
with various combinations of micromorphic elastic parameters, and the length scale effect

for various punch areas.



Chapter 7

Extension of Finite Element Formulation and Implementation to

Drucker-Prager Plasticity

This section shows the extension of finite strain micromorphic isotropic elasticity to
Drucker-Prager plasticity formulated in the intermediate configuration B (Fig. 1.6), assum-
ing a multiplicative decomposition of deformation gradient F' and micro-deformation tensor
X-

Kinematics, governing equations, and mapping of the balance of momenta equations,
and thermodynamic equations into intermediate configuration, and outline of the theory
to extend to plasticity were presented in Chapter 4. This section presents detailed for-
mulation, developed and implemented, for Drucker-Prager plasticity with some numerical
examples. Different than anticipated formulation given in Chapter 4, we also introduce an-
other approach for yield function and plastic potential function formulations which involve
combination of the stress tensors together with cohesion, friction angle, dilation angle, micro-
scale cohesion, micro-scale friction angle, and micro-scale dilation angle. This will be called
“combined plasticity” formulation to distinguish from the three-scale plasticity formulation in
Chapter 4. We first present the three-scale plasticity formulation and implementation which
was previously mentioned in Chapter 4. Then, we show combined plasticity formulation and
implementation.

The three different scale yield functions presented in Chapter 4 express that plasticity

may govern at these scales separately and /or at the same time. The first case may include the
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plasticity in macro-scale which is already different than classical plasticity due to additional
terms appearing in classical stress tensor. Here, we call it “macro-plasticity” which aims to
express the micro-continuum effects considered, but plasticity governs at macro-scale which
in turns mean only macro-scale plasticity function yielded. Similarly, if only the micro-scale
plasticity function yields, it will be called “micro-plasticity”. It may be the case that these
two scales may yield at the same time which will require to solve for two different plastic

multipliers solved in a coupled way that will be called “coupled plasticity”.

7.0.1 Solving for macro-plastic multiplier locally for three scale approach

To solve for macro-scale plastic multiplier A%, we solve the yield function at current

time step 41

Foy1 (A%41) = 0,A%5,, =0 (7.1)

_ OF \" *

F'f+<—) S(AF =0, §(A7) = — 7.2
9A7

AT = AFF 46 (A7) (7.3)

which from the discrete Kuhn-Tucker conditions, Fl, 1A%, = 0 = Fyp = 0, A9, > 0
for plasticity loading, where (o)k denotes the previous iteration values and (o)k+1 denotes
updated value. The subscript (e), ., is dropped for these terms assumed to be at the current
time step t,.1. To determine the local consistent tangent OF /0A5 where yield and plastic
potential functions were defined in Section 3.4, we start to derive the derivative of each term

with respect to A5 as:
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0
o (%) v (%)T (7.4
(35) = (gfv)TF”Tgfv) (7.5)

5 o e
(%) N (giv) “+F (azy) (7.6)
(55) = (585 7 .
where
() =2+ (g—g)TF g (7.9

and F? is defined in Section 7.0.7. Here, we have only macro-scale plasticity; hence,
Ox?/0Ay = 0 and 0x°/0AY = 0. When we have micro-scale plasticity in combined plastic-

ity approach, this condition will change. Furthermore, we have the derivatives

d||devS||  ddevS  devS

0AY  0AY T |devS]| (7.9)
83225 B 3857 _38; (7.10)
8%1)7‘_: % (1 : a&TS?) (7.11)
<g_§) ) <ﬁ) FyB (7.12)
(8@;7) = Hh, (7.13)
where

"= (%f)n = A (7.14)

Then, the local consistent tangent can be found as:
aﬁfv _ 8||§Zv75|| B (A(b@icv _ B¢86Apy) (7.15)

where all the terms in equation 7.15 were determined above.
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7.0.2 Solving for micro-plastic multiplier locally for three scale approach

Similar to the previous section, we form the local consistent tangent OFX/OA~X for

micro-scale plasticity as

Fyy (A7) = 0,49, =0

9(S - §) oE*
T’?X_(U_T)tr<aA§/X)1+(y

0E* 0E*
~)\aax ) T ga

(7.16)

(7.17)

If we have only micro-scale plasticity, we have 0F°/0A% = 0, and for separate scale plasticity

OF°/0A~X = 0. Then,
OE*
OAX

where

e

ox®
OAFX

_ ~€

and

aXp el .. eq,e—1
oAy~ X <

dl|dev (X —8) ||  Odev

I(=-5)

ox°
o eT
- <8Av><)

aXp p—1
X <6A7><) X

a(;x —= e—T ~X,e
= —) R O

(5-8) dev(E-8)

DAFX B DAFX
I(x-S8) op~

ddev (S — 8)

dev (2= 9) |

OAAX T 0AFx

OAX 3

DA

~ OAFX

o J(LM)

( oG ) L dev(3-5) 1.

I(=—5)
ocx
DAY

||dev (

— X HEX
_H? hn7

where

5-5) 3

(7.18)

(7.19)

(7.20)

(7.21)
(7.22)

(7.23)

(7.24)

(7.25)

(7.26)
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Then, the local consistent tangent for the micro scale can be found as:

Fx  J||dev(Z - S cx pX

OF _ Dlldev (B=S)Il _ (on 02 _ o 0P (7.27)
OA~X OA~X OA~X OA~X

7.0.3 Solving for plastic multipliers locally for coupled plasticity for three

scale approach

The last two sections presented the formulation to solve for plastic multipliers when
macro-scale and micro-scale plasticity exist separately. This section considers to solve for
plastic multipliers in case of these two scales are coupled which means that plastic multipliers

will be obtained in a coupled way as follows,

Fn+1 (A’VTH_l, A’77>§+1) - 0, A’_yn+1 > O (728)

Fer (Mg, A% ) = 0,A%%, >0 (7.29)

_ aF \" oF \"

FFy [ = A7) A7) — ‘
+<8A7) J (A7) +<amx> 0 (AY)" =0 (7.30)

_ O\ " OFx \*

kg (20 5 At AFXYF — a1
+(8Aﬂ‘y) d( 7)+(8Aﬁx) 5 (A" =0 (7.31)

To solve for § (A%) and 6 (A¥X), we create the local consistent tangent as:

k k k
oF  oF _ -
oL _ (A —F
087 oAy (B0 (7.32)
OFX OFX = n
985 DAGX d (AYY) — X

Definitions of E;?Ti and % were already given in equations 7.15 and 7.27, where the off

diagonal terms can be found as:

08 DE* D€ 9\
IA = ntr (8A7X)1+K(8A7X)+V(8A7X) (7.33)




where

then, we get

also
0 (2 __S) = Ttr
0AY
DE®
v (555
and

d||devS|| ddevS  devS
OAFX  OAYX " ||devS]|

ddevS 08 op
OAFX — OAFX  OAFX

o _1( o8
OAvx 3\ T OAAX

oc
<0A7X> =0

OF  O||devS||

op

+ B?

OAFX DA DA

||dev (£ - 8) || _ ddev (£ - S) : dev (£ - S5)

OAY 0AY

ddev(2-S) 0(2-8) op

oAy 0Ay  OAy
o _;(l.a@—a)
0Ny 3 - 0AN
ocX
(8M) -
which gives

OFX _ d||dev (£ - 8) || L pox
0AY OAY

7.0.4

||dev S|

o
0A%

Solving for plastic multipliers globally for separate plasticity
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(7.34)
(7.35)
(7.36)

(7.37)

(7.38)

(7.39)

(7.40)
(7.41)
(7.42)

(7.43)

(7.44)

In this section, we present the formulation to construct the global consistent tangent.

We show how to obtain the global 6 (A%) and ¢ (A3X) in terms of Ju and J® by applying a
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variational approach in the context of a linearization of the weak form of the coupled balance

of linear momentum and balance of first moment of momentum.

For macro-scale plasticity:

e OF OF

§F (S,¢) = 95 :5S+E(55:O
where
68 =(A+7)tr (6E°) 142 (u+0)SE" +ntr (0€°) 1 4+ kSE® + vs €
where
SE° = % [B" — A"6 (Ay) + B — AS (A9)]
6E = M" — N6 (AY) + P — D6 (A7)
A=FTFC; (g—g):Fng—l

B = F'"GRAD (6u) F'!
M = x"GRAD (6u) F'!

o1 (OGN
N=x"FC" (=2 ) FrFr!
X (aS)n "

P =FT5®yr!

OGX

D — FeT e\ile_l -
X (a(z =y

)T R O S
If we insert equations 7.47 and 7.48 into 7.46, we get ”

658 = (A +7)tr (B)1— (A +7)tr (A7) 16 (A7)
+(p+0)(B"+B)—(u+0) (AT + A)§ (A%)
+tr (M7) 1 —ntr (NT) 16 (A9)
+ntr (P) 1 —ntr (D) 16 (A5Y)

+ kM?T — kNT6 (A7) + kP — kDJ (AFY)

+vM —vN§ (A7) + vPT —vD'6 (A7)

(7.45)

(7.46)

(7.47)

(7.48)
(7.49)

(7.50)

(7.51)
(7.52)

(7.53)

(7.54)

(7.55)



and
d¢ = Hh$o (A5)
OF
o — _AY
oe
where h{ =

the terms 6 (A¥) and 0 (A%X) on one side, we get:
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(7.56)

(7.57)

—AY. If equations 7.56,7.57, and 7.55 are inserted in equation 7.45 and collect

C10 (A7) + €26 (AFY) = T (6u, 6®) (7.58)

where
F1 (0u,6®) = (A +7) <§ : 1) tr (B”) +(,u+a)% :(B"+B") +1 <% : 1) tr (M")
+n<g—§ 1)tr(P)+/€g—§:MT+ng—§:P+ug—§:M+1/§—§:PT (7.59)
C = {(AJFT) (g—g) tr (A7) +(,u+a)g—§ (AT +A) 49 (g—g : 1) tr (N7)
+m% . NT y% ' N — gH%g] (7.60)
G, {n (g—g : 1) tr (D) + Kg—g : D + ug—g : DT} (7.61)
For micro-scale plasticity:

Fx((i_S),cx):ang) 58 8)+ e (7.6

where

§(2-8)=rtr (B")1—r1tr (A") 16 (A7) + 0 (B" + B) —g (A" + AT) 6 (A5)

—l—(n—T)tr(MT)l—(n—T)tr(N)lé(Aﬁ)jL(n—T)tr(P)l—(n—T)tr(D)lé(AﬁX)

—I—(I/—O’)MT—(V—U)NTé(A7)+(V—U)P—(V—O’)D(S(A’?X)

+(k—0)M — (k—0) N§ (AF) + (k — o) PT — (k —

and

56X = HOXREXS (AFY)

— _APX

dex

o) DT (A5X) (7.63)

(7.64)

(7.65)
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where hoX = —A¥X. Again, if we insert 7.64, 7.65, and 7.63 into equation 7.62 and collect

the terms multiplied by ¢ (A¥) and 0 (A%X) on one side, we get:

C30 (AF) + €48 (AFY) = T (u, 6D) (7.66)
where

F, (5u, 0®) — 7 <a (gFjS) 1) tr (B) + o (gFjS) . (B" + B)
+(n—7) (a(gﬁf_) 1) tr (M7 + (n — 1) (a(gFjg) ;1> tr (P)
+(V—o—)aéffg) :MT+(V—U)8(gFj<S):
+(k—0 a(gpjs):Mﬂn—U)&(gp_XS) r (7.67)
€ — [ (a(gp_"s) :1>tr(AT) +08(ZF_XS) (AT 4 A)
+ (1 )(a(gpjs) i1>tf(NT)+(V—0)a(gFjS) ’
+(k—0) a(gFfs) ] (7.68)
Cy= [(77—’7‘) <(9(§]7F_XS):1> tr(D)+(u—a)a(37FfS):
+(k—0) a(giﬁfs) : D" — %—}ZHC’Xh;’X] (7.69)

Here, we consider three different cases. When we have only macro-scale plasticity, micro-scale
plasticity, and coupled plasticity. When we have only macro-scale plasticity § (A5X) = 0,
then from 7.58 we find:

C10 (AF) + €26 (AFY) = T (6u, 6@)

5 (A7) = eilffl (5u, 6) (7.70)
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Similarly, when we have only micro-scale plasticity 6 (A¥) = 0.

C30 (A7) + C40 (AYY) = F (du, IP)

5 (AFY) = eifz (Gu, 0%) (7.71)

When we have coupled plasticity, we get:

G, € O (A5 F, (0w, 0P
1 2 ( 7) _ 1 ( ) (7.72)
eg 64 0 (A’?X) ?2 (5’(1,, (S'i’)
Then,
where
_ Cy . Co
M= C.C, — CyCy A2 = C.Cy — Gyl
(7.75)
_ Cs o Cy
Ay = C.C, — CoCs’ A= €., — CoCs’

Even though we proposed a yield function for the micro-scale gradient plasticity in previous
chapters, we will assume that micro-scale gradient will stay elastic in this work, for now.
The formulation for its contribution to plasticity as well as global consistent tangent will be

given in the next sections.

7.0.5 Solving for plastic multiplier locally for combined plasticity

In combined plasticity, we have one yield function including the terms shown in separate
scale plasticity. Having one plastic multiplier for F” and x? actually dictates that they

plastify at the same time; they evolve plastically the same and there is only one intermediate
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configuration at which these two variables evolve. The combined yield function can be

expressed as:

F(8,6 (2 - 8),6) Y [devS : devS + dev(E — §) : dev(S — §)]?

— (A% — B?p + A¥%eX — BX9pX) <0 (7.76)

and combined plastic potential function

G(S, (2 — S’) , %) def [devg devS +dev(EZ — 8) : dev(Z — S')}

o
=

— (AY¢ — BYp+ AXVeX — BYVpX) (7.77)

To obtain local consistent tangent F /9 (A%), we first determine the relations given below.

Different than the definitions given in previous sections, we define some derivatives as:

Let’s call
[IN]| = [devS : devS + dev(E — §) : dev(S — §)] (7.78)
Then,
OIN| 1 _ 9devS . ddev(E—8)
- g o5 &= .
o7 | devS 97 + dev( S) oA (7.79)
OB (0T o per (OX (7.80)
oay )~ \oay ) X Ay '
8X6 _ e aXp p—1
(f‘mv) - (f‘mv) X T
_ T
axp T = e—1 oG —= e—T =/x,e -1
B Ve — | W CxPX? 7.82

where ddevS/OAY was defined before in equation (7.10) and ddev(E — S)/0A% can be
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expressed as:

78(2_5) = Ttr OF 1+ 20 OF +(n—7)tr —aée 1+ (v—o) —aée
oAy \9As aay ) TV A5 A5

0E*
+(k—0) (—8Aﬁ) (7.83)
> — 5 x-S pX

8dev(2_ S) _ d( - ) B 8p_1 (7.84)

0A% 0A% 0A%
op*  1otr(X - S)
oAy 3 0A¥ (7.85)
0 _ pexqvn (7.86)
0Ny

The other derivatives dp/0A%y and 0¢/0AY were defined previously in equations (7.11) and
(7.13).

7.0.6 Solving for plastic multiplier globally for combined plasticity

We presented the plasticity contribution into the global consistent tangent in separate
plasticity assumption. Now, we follow a similar approach to determine ¢ (A%¥) in combined

plasticity formulation. We start with

_ 9F __, OF OFX _ .\ OFX
= — . —0C —_— . — ——icX = .
oF 95 58 + 8650+8(2—S) 6(X—-8)+ aéxéc 0 (7.87)

with updated definitions for

@ B devS 1

95~ N + gB¢’1 (7.88)

g—g = ﬁ%‘i + %BM (7.89)
2 dev(Z—-S

a(z‘?ﬁi 5 - ev|(|N|| )4 %B¢’><1 (7.90)
§ dev (X - S

T - N g o

If we carry out the calculations similar to the separate plasticity, we can see that we can use

the same expressions defined for separate scale plasticity approach. In this case F = FX,
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5 (A5) = 6 (A%)X, and €, €y, C3, and €4 are already defined in equations (7.60), (7.61),
(7.68), and (7.69).

_ _ F1+ 5%
5 (A7) =0 (Ay)* = 7.92
(A7) = 6(aD = gg o (7.92)
7.0.7 Forming global consistent tangent for different plasticity assumptions

In this part, we like to present the contribution to global consistent tangent for different
scale plasticity and combined plasticity assumptions due to linearization of the balance of
momenta equations. Based on the previous chapters, we have the linearization of the balance
equations already presented, in addition to that, we just show the effect of the § (A¥) and
d (A¥X) for separate scale plasticity and just 6 (AY) = 0 (AX) for the combined plasticity.
We follow the semi-implicit numerical integration algorithm outlined in (Regueiro, 2010) as:

Given: Fopr, X1, Con W0 F X5 Za, 2, 6, Y, (0G08) | (96Y/0 (S - §)),

(1) Calculate trial values and yield functions

Fet?“ — Fn-i—lF;Z_l
Cre“" — FetrTFetr
Eetr _ (C,etr N 1)
X" = X X0
‘I,etr — FetrTXetr
Eetr — \Iletr -1

Calculate S’tr, (f}tr — Sw)
For separate plasticity:

Ftr _ F (S,tr7 l—;,etr7 éetr’ En)

Fx’tr _ FX <<2tr i S,tr) ’Eetr’ éetr7 5%)
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For combined plasticity:
Ftr — F (Str’ (2157* i S,tr) 7i;,etr7 getr’ En, Eg)

(2) Integrate plastic part of deformation gradient F? , and micro deformation tensor

X1t

o G \"

CnFn—l—lFIr)L P = In+1 (W)n (793)
~\T

Fo. = |Fh+M9C ( 8857) Fﬁ] (7.94)

_ s . OGx
TP AP 10T — 4x i 7.95
nXn+1Xn n n Tn+1 ) (E o S) ) . ( )

- _ T
e 0GX = e—T Fx,e
Xoi = X0+ AT (m) L ol ¥

(7.96)

(3) Update elastic deformation:
Fi . =F..F, C.,=FLF,, E.=(C.5 -1)/ (7.97)
Xnt1 = Xn+1XZ:rll> o =F X, &a=",-1 (7.98)

(4) Update stresses:

Sn+1 =S (Efz—i—lv EZH) ) (2 - (2 - S) (Efz—i—lv EZH) (7.99)

(5) Integrate strain-like ISVs, then update stress-like ISVs ¢ and ¢X:

For separate plasticity:

Cni1 = Cn + (AY) HCRS (7.100)

Onyr = 5+ (AF) H by (7.101)
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For combined plasticity:
Cn+1 = Cn + (AY) H°Rs, (7.102)
Oy = Cf + (A7) H by (7.103)

As expressed previously, in intermediate configuration assumption, we have F' = F°F”
and x = x°x?.

For separate plasticity assumption, if we linearize these expressions, we get:

F¢=FFr! (7.104)
§F°=0FF" "'+ F¢ (F") (7.105)
= 0FF" ' — FF''§(F?)FP! (7.106)
where
~e—1 86 ’
SFP =C. (=] F?5 (A7) (7.107)
o8 )
then,
o o1 (OGN .
SF¢= ——Fr'—FC. (=) F'Fr'5(Ay 7.1
o T (58) FEiay (7.108)
Similarly,
X =xx"" (7.109)
ox° = xx" '+ x0 (X' ) (7.110)
=oxx" ' —x e (X)) xP! (7.111)
where
o\
NP =0 [ | BT CNNES (A 7.112
X n <a(2—s)> n Cn xnd (AYY) (7.112)
then,

_ X _ _
X" = 6@ X" — x° T, <5(L) WO XX (AFY) (7.113)
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7.0.8 Contribution to global consistent tangent from plasticity

In addition to the terms which were previously determined in the global consistent
tangent, we just give the additional terms which will contribute to the global consistent
tangent when plasticity is introduced. Hence, the additional terms will be from the terms
including 0 (A%) and/or 6 (A5X). Starting with the balance of linear momentum, if we write
the constitutive equation in intermediate configuration and apply linearization process with
respect to reference configuration, and also if we ignore the boundary term, the body force

vector, and the acceleration vector, we get:
| rvw (rsET) v+ ( [ v (pesE) dv)
Bo Bo
_ / I’V : (F*SFT) dv
Bo

+ / JP (6 (Vw) : (FSFT) +6(J°) Vw : (F°SF) + J'Vw : (6 (F°) SF)

+JPVw : (F5 (S) F) + J'Vw : (F°S§ (F)))dV =0 (7.114)
where

§ (Vw) = (Vow) 6F ' = — (Vow) F'6FF™! (7.115)

§ (detF?) = detFPtr (F*~'6F?) = J'tr (F*~'0F") (7.116)

where Vi (¢) = GRAD (o) = [(Q)K] and we used the Piola transform as:

1 _ _
o= ;FESFJ, dv = JedV (7.117)
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Then, we employ equations 7.107, 7.108, and 7.113 also insert them into equation 7.114 as:

/BO [(Vow) F'] JpFeS'FerVjL/BO (— [(Vow) F! (g(S_Xu) F—l} . (JPFSFT)

~\ T
+ [(Vow) F7] (thr (Fp—lc;‘l <g—§) Fﬁ) F¢SF§ (m)>
B u o1 [0G\" 1) e _
17 . p | 27 pp—1 e et p p—1 eT
+ [(Vow) F7'] (J (aXF FeC; (ag>nFnF >SF 5(m)>

+ [(Vow) F~'] : (JPF*5 (S) F°")

+ [(Vow) F- (JPF (‘9‘5“ (2—(;) FF) 5<m>)>dvo

(7.118)

where S was defined in equation 7.55. Similarly, for the balance of first moment of momen-

tum if we ignore the boundary term, the body couple, and the micro-spin inertia tensors, we

have:
/ n: (F°SF" — FCSF") JPdV + / (Vn): (F°(F° o MxT) J?)dV
‘Bo BO
+4 ( / n: [F°EFT — F°SF] JPdV + / (V) (F° (F°© Mx") J?) dV)
fBo BO

(7.119)

carrying over the calculations gives:

/ n: (FEF — FSFT) JPdV + / (Vn): (F° (F°® Mx") J?) dV
Bo

Bo

/B (n: (5F° (S~ 8) FT) 4+ n: (F6 (S — 5) FTJ7) + - (F° (S — §) 6F )

F s (FC (2= 8) FT) 6 (7)) dv +/

(59w (7 (5 naxT))

+ (V)i (0F° (F° o Mx ™)) J*+ (Vn): (F° (6F° © Mx")) J*
+(Vn): (F°(FCodMxT)) J* + (Vn): (F° (F°© MéxT)) JP

+(Vn) i (F° (F°o MxT)) 6Jp) dV =0 (7.120)
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Again, if we apply equations 7.108, 7.113, and 7.107 in equation 7.120, we get:

/ n: (FSFT — FPSFT) J7dv + / (V)i (F* (F° @ MxT)) J7dv
Bo

Bo

=\ T
+ /B <n : ((?—;F”‘l _pee! (%) F;;Fp—1> (£-8) F6T> 75 (M%)
0 n

+n: (FO(X—8)F")J

_ T
+n: (F (2-19) (gi?F —FC! <a_§) FPFP- 1) )Jpé(A )

+n: (F (£ - §) FT e (Fp—lc;—l (8_G)T )) )) %

+/( (( n) —85—“1«“ ) (F°(F°o MxT)) J?

+ ((Von) F <<85u c! (—g) FPFr- 1) Fe@z\_/IxeT)> JP8 (A7)
+((Von) F <F ((85“ (—g) FPFr- 1) @MX6T>> JP6 (A7)
+ ((Von) F7Y) i (F° (F°©sMx")) J?

+((Von) F7Y) i | F° (F ©M (5@ X't X (&)j

Te—T ~x.e_p_  p—1 T _
T, CLxax ) S (A7)
ac\"
((Vom) FY): (F* (F* © Mx™)) s (w—léf;l (a_s) Ff;;> 5 (M)) v =0
(7.121)

where 0 (E_) — S’) was defined in equation 7.63. Definition of M requires to determine
) (vxe) which can be found as:

Xiip = Xik.LF7 L 1XKA XfRX%B e 1XI])3A1 (7.122)

The constitutive assumption which considers the gradient of the micro-deformation tensor

Vox? as a separate variable results in very complicated linearization process; therefore, we
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will assume that Vyx?” = 0 and derive the relations based on this assumption. Then, the

equation above reduces to:

VX© = VoxFrix’

~\ T
5§ (Vx°) = Vod®Fr~! x?~1 — (Vox) FP1CL (g_g) FP P 1yP=15 (A7)
o\
I (m) OV XTI (M) (T.123)

This gives us the simplified definition of M as:
M = 70 F "V X + 7 F6 (Vx©) (7.124)

where 0 F° and ¢ (vxe) were defined in equations 7.108 and 7.123 respectively.

As mentioned above, additional contribution to the global consistent tangent will come
from the terms which include ¢ (A%) and/or 6 (A%X). The definitions 6 (A%) and § (AFX)
depend on which plasticity approach we use. If we use separate scale plasticity, these defi-
nitions will be obtained as described in Section 7.0.4, and if we use combined plasticity we

obtain those definitions as described in Section 7.0.6.

7.1 Numerical Examples

In this section, we present some examples to demonstrate the micromorphic Drucker-
Prager plasticity and Drucker-Prager-like plasticity. We chose different yield functions as well
as plastic potential functions accordingly to account for the behavior of geomaterials. As
mentioned in detail above, we assumed three different yield criteria: (1) Standard Drucker-
Prager (DP) yield function which involves no micromorphic terms ( ®" = 0 in governing
equations, and balance of first moment of momentum is not solved); (2) Macro-scale DP yield
function (MDP) which has the same form of DP yield criterion but involves the second Piola-
Kirchhoff stress tensor S including additional micromorphic elastic terms; (3) Combined DP

like yield function (CDP) that involves the combination of the second Piola-Kirchhoff stress
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tensor S and the relative stress tensor (E_] - S ) measures, along with micromorphic elastic

terms.

7.2 Finite Strain Column Compression with Different Yield Criteria

We start with a one dimensional column example: uniaxial strain in compression. The
column geometry considered in this section was previously described in detail in Section 6.2.4
shown in Fig 6.8. We use a similar geometry with the boundary conditions and present a
comparison of the results obtained by using different yield functions on this one dimensional
example and also investigate the effect of elastic length scale on this geometry as well as the
influence of micromorphic boundary conditions on the simulations. The elastic parameters

used in this column example are chosen as

A=29.10°kPa p =7.10°kPa 7 = 40.10° kPa

v =2810°kPa  =10.10°kPa 7 =10.10°kPa o = 5.10° kPa (7.125)

Discussion of the results regarding this example is given in Section 7.2.4.

7.2.1 Case 1

In the first case, the column has a height of 10 m and a cross section of 1.25 x 1.25 m2.
A displacement boundary condition ug = —1 m is applied to the top surface at X3 = 10m.
The displacement boundary conditions were chosen to provide a uniaxial strain compression
problem: u; = 0 on +X; faces, us = 0 on £X, faces, and uz = 0 on —Xj3 face. All the
micro-displacement tensor components ®7 are set = 0 except the micro-displacement tensor
component ®% in the X3 direction. In figures 7.2, 7.5, and 7.8 , we show the stress paths
which were obtained by the different yield function assumptions. We demonstrate the initial

yield surface with Fy and final yield surface with F'. We plot using the stress measures S,
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Sm, and S versus pressure terms p., P, and p respectively. These terms are defined as:

Se = (devS : devS + dev(X — S) : dev(E — 9))

N

S = S, = ||devS]|

. tr(Z2-8)
X
Pt = 3
o us
Pm =P = 3
[332748 0084.54
233274.8 10084.54

(a) (b)

(7.126)
(7.127)

(7.128)
(7.129)

(7.130)

Figure 7.1: Case 1: Contour plots of (a) ||deve|| (Pa) and (b) cohesion ¢ (Pa) distribution along
the column height. Gauss point values extrapolated to nodes were obtained by using CDP yield

criterion.

and other yield and plastic potential function parameters were chosen in Table 7.1.

Table 7.1: Parameters used in yield and plastic potential functions for column example.

¢ (rad.)

¥ (rad.)

° (Pa)

c (Pa)

¢X (rad.)

WYX (rad.)

X (Pa)

cX (Pa)

77 (Pa. m?)

0.15

0.1

1x 103

1 x 10%

0.0

0.0

10

1 x 102

1x 107
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Case 1: Comparison of (a) the norm of the deviatoric part of unsymmetric Cauchy

stress tensor ||dever|| in current configuration, (b) the first invariant of the unsymmetric Cauchy
stress tensor tro, (c) the deviatoric part of relative stress tensor measure ||dev (s — o) || in current
configuration, (d) the first invariant of the relative stress tensor tr (s — o).
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7.2.2 Case 2

In the second case, we consider the case where ®%, = 0 at X3 = 0 that creates a
gradient in micro-displacement tensor ®%, values as shown in Figure 7.4 (a); however, 77 = 0
so that the higher order couple stress tensor will disappear due to one term approach that

is explained already in Chapter 6.

0.216495

0.173196
FO-Z Eo.m
0,12
50.1 -0.08

E Eo.cm

0 0

(a) (b)

Figure 7.4: Case 2: Contour plot of (a) ||®"|| and (b) ||V ®”"|| values at nodes obtained by using
CDP yield criterion.
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Figure 7.6: Case 2: Comparison of (a) the deviatoric part of unsymmetric Cauchy stress tensor mea-
sure ||dever|| in current configuration, (b) the first invariant of the unsymmetric Cauchy stress tensor
tro, (c) the deviatoric part of relative stress tensor norm ||dev (s — o) || in current configuration,
(d) the first invariant of the relative stress tensor tr (s — o) at X3 = 0.14m.
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7.2.3 Case 3

In the last case, we consider the same boundary condition used above but we also
include the elastic length scale parameter ¢. = 1m which is introduced by 7;. Note that, as
in previous examples, we used one parameter approach for the higher order stress tensor as

M = 7»T". We employed the Preconditioned Conjugate Gradient method explained in A.2.2.

237812.5 86308.6
:800000 Eo

2600000 %-1 e+06
400000 “2e+06
E2000OO Es o
432.175 3873777

(a) (b)

Figure 7.7: Case 3: Contour plot of (a) |[trm|| in Pa and (b) tr (s — o) in Pa values at nodes
obtained by using CDP yield criterion.
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Figure 7.8: Case 3: Comparison of (a) stress paths obtained by using different yield criteria, (b)
the initial parts of the stress paths that shows the different behaviors with different yield function
assumptions at X3 = 0.14m, (c) the initial parts of the stress at X3 = 1.10m.
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Figure 7.9: Case 3: Comparison of (a) the deviatoric part of unsymmetric Cauchy stress tensor norm
||dever|| in current configuration, (b) the first invariant of the unsymmetric Cauchy stress tensor
tro, (c) the deviatoric part of relative stress tensor measure ||dev (s — o) || in current configuration,
(d) the first invariant of the relative stress tensor tr (s — o) at X3 = 0.14m.
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7.2.4 Discussion of the results

Figure 7.1 shows that when additional micromorphic degree of freedom ®%, is involved
and there is no boundary effect, we have the homogeneous distribution of the norm of
unsymmetric Cauchy stress tensor ||deve|| and cohesion ¢ as expected in the standard DP
model.

Figure 7.4 shows the boundary effect for Case 2. Since we do not have 7; for this case,
the gradient in ®%, values will not generate any value for the higher order couple stress tensor
m. One may think that for the region in which ®%; is close to zero, the model should reduce
to standard DP model. However, micromorphic models should present different results due
to the additional micromorphic elastic moduli appearing in the constitutive equations. Note
that even if there is no ®%, involved, the micro-deformation tensor x¢ = 1. Since £° = F*'x*
and F° # 0, then €° # 0. This shows that due to coupling in strain tensors even if we set
all the additional degrees of freedom to zero but involve the additional micromorphic elastic
moduli, we will have different results from the standard plasticity approach as long as we
have non zero F°.

Figures 7.2(a), 7.5(a), and 7.8(a) show the total stress paths comparison of all the
models. A closer look at the initial parts of these paths in sections (b) and (c) of the same
figures will give more insights. Figures 7.5(b) and 7.8(b) show that in the vicinity of the
bottom surface boundary X3 = 0.14m, the difference between CDP model and DP model
vanish. However, this is valid for the stress path plots which does not necessarily indicate that
models present the same behavior. Note that we plot the stress paths with S., S,,, and Sy vs.
their associated pressure values, respectively, p., p,,, and p where the definitions were given
in equations (7.128) and (7.130). If we look at the unsymmetric deviatoric Cauchy stress
tensor norm ||deve|| as well as the relative stress tensor norm ||dev (s — o) ||, respectively,
in Figures 7.10 and 7.11 in the same region, we see a noticeable difference in the behaviors.

Stress path comparison in Figures 7.2(b), 7.5(c), and 7.8(c) show that at X3 = 1.10 m
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as we go further from the boundary where ®%, = 0, micromorphic contribution in MDP and
CDP models causes different stress path compared to DP model. The difference between
MDP and CDP models is because of the evolution of x” which is assumed to evolve with
same plastic multiplier Ay with F” in CDP model. Note that MDP model does not include
the evolution of x? but only F?. Figure 7.7 shows the opposite trend of the contour plots
of the stress measures ||tr (m)|| and tr (s — o) throughout the column length such that
tr (s — o) value is higher where ||tr (m) || is lower for Case 3. Note that these two stress
tensors (s — o) and Vm appear in the balance of first moment of momentum that they

should balance each other.

Comparison of the three cases

Figures 7.10 and 7.11 show the difference in stresses, and Figure 7.12 shows different
stress paths that are obtained by CDP criterion for the three different cases mentioned
above: (1) no boundary effect (homogeneous distribution of ®%, value throughout the column
height), (2) boundary effect (gradient in micro displacement V®%, but without the higher
order couple stress tensor), and (3) boundary effect together with the length scale effect
which is introduced by the higher order couple stress tensor. Although the deviatoric stress
norms ||deve || and ||dev (s — o) || in Figures 7.3, 7.6, and 7.9 obtained by same models show
similar behaviours to each other for all the cases, closer comparisons provided in Figures 7.10
and 7.11 (obtained by CDP model) show that they differ in values. For the Figures 7.10
and 7.11, we may say that introducing 7 causes higher values of the deviatoric stress norms
||dever|| and ||dev (s — o) || obtained by CDP model in the vicinity of the boundary, and
different stress paths as shown in Figure 7.12. In Section 6.2.8, we saw a trend for the
stress norms, that is, higher the gradient of ®", lower the values of these stress norms. Here,
neither the deviatoric relative stress tensor norm ||dev (s — o) ||, nor unsymmetric deviatoric
Cauchy stress norm ||dever|| present similar trend in the vicinity of the bottom boundary. In

the absence of 77, the unsymmetric Cauchy stress tensor has lower values of ||deve||, likewise
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for the relative stress tensor measure ||dev (s — o) ||. However, this effect is reversed when

77 18 introduced.
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Figure 7.10: Comparison of the deviatoric stress norms ||deve|| obtained by CDP model at (a)
X3 =0.14m, (b) X3 = 1.10m for all the cases in column example.
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cases in column example.
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7.3 Plane Strain Example

In this section, we consider a 3D geometry under plain strain condition with different
number of additional degrees of freedom through ®". The height of the sample is chosen as
0.08 m and the width is 0.04m ( the geometry is given in Figure 7.13). Confining pressures of
o. = 0.1 MPa and o, = 0.2 MPa are applied on the side surfaces for the different examples,
and displacement boundary condition is applied on the top surface. The parameters chosen
in this analysis are given in Tables 7.2 and 7.3. We consider four different cases: (i) only
two additional degrees of freedom are chosen which are in plane dilation/stretch degrees
of freedom ®, ®h.: (ii) three additional degrees of freedom which are one out of plane
degree of freedom ®F, and two in plane degrees of freedom @4, ®h: (iii) we turn on the
in plane degrees of freedom in Z- Y plane as well to see the effect of those degrees of
freedom, and the total degrees of freedom are four that are: ®h, ®h &L &L . (iv) we
consider the most general case and have nine additional degrees of freedom, whole micro-
displacement tensor ®" involved to investigate the contribution of all degrees of freedom
introduced by micromorphic theory. For this example, we initially applied 10% of initial
height which is 0.08m as a displacement boundary condition v = 0.008m, but some analysis
and standard plasticity could not complete the entire analysis because of Newton-Raphson
algorithm convergence problems. Since we use semi implicit time integration method, using
smaller time steps may solve the problem. However, we constrain our attention to the
effect of micromorphic theory and postpone the convergence problems which are due to
computational power limitations to a future time.

In Figure 7.14, we show the stages of the applied loads. The first stage, the region
between the points “a” and “b”, shows the application of the confining pressure. The con-
fining pressure is chosen to be small enough not to cause yielding at this initial stage to
better observe the differences in the stress paths. The lateral confining pressure is applied

incrementally till point “b” where it reaches its maximum, and kept constant till the end
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Figure 7.13: plane strain example.

of the analyses. The second stage, the region between two points marked by “b” and “c”,
demonstrates the beginning of the application of displacement boundary condition on the
top surface. It initially causes a decreases in deviatoric stress norms; however, due to plane
strain conditions together with increasing applied displacement on top surface, the stress
norms increase and touch the yield surface at the point “d”. The last state shows that stress
paths touch the yield surface and stay on the yield surface as expected. Similar patterns can
be seen in the plots 7.16, 7.17, and 7.18 which include the stress norms as well.

From Figures 7.14, 7.15, and 7.16 , we see that micromorphic plasticity results present
different behavior compared to standard plasticity as expected; however, we may say that
there is no noticeable difference between cases with different numbers of degrees of freedom.
We can easily say that the shear degrees of freedom are found to have no significant effect on
the simulations; therefore, for the future examples these degrees of freedom can be neglected
to gain more computational power in plane strain examples. In Figure 7.15, we see that the

effect of micromorphic degrees of freedom is that micromorphic continuum tends to provide
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a less stiff behavior at a Gauss point in an element at the top surface. Note that we have
the coupled strain tensor € which is defined as € = F“x¢ — 1 that means the effect
of the micro-structure is coupled with the macro-structure, and it does not represent the
micro-structural response purely. This coupled micro strain tensor effect is amplified when
multiplied by higher values of micromorphic elastic moduli 7, x, and v. Here, we again express
the importance of the choice of micromorphic elastic material moduli that will be the most
significant point to model the material response. Since we have not considered a real physical
material, this behavior can be more meaningful when a homogenization procedure is applied
to determine the micromorphic elastic parameters in a completely overlapped coupled region
with an underlying microstructural model like the discrete element for granular materials.

To investigate further the additional degrees of freedom with the plane strain condi-
tions, we increase the confining pressure to o, = 0.2 MPa (and elastic parameters are given
for this case in Table 7.4) so that we may activate the out of plane degree of freedom ®%
more under a higher pressure. We choose only the cases which include only the micro dila-
tion/ stretch degrees of freedom. For the case (i) we consider only ®4, ®%, and for case (ii)
we have only % @k, @k

Figures 7.17, and 7.18 show that increasing confining pressure changes the response,
and now a clear difference between these two cases is seen compared to the previous example
which was under less confining pressure. From these figures, we may conclude that the out
of plane degree of freedom ®7, actually does have an effect on the results, and it caused a
different stress path as in Figure 7.17 as well as mostly lower values of ||devS|| at initial part
of Figure 7.18.

Table 7.2: Micromorphic elastic parameters used in plane strain problem with confining pressure

o. = 0.1 MPa .

A (MPa) | u (MPa) | n (MPa) | v (MPa) | x (MPa) | 7 (MPa) | o (MPa) | 77 (Pa. m?)
19 5 40 8 10 10 2 1 x 10




Table 7.3: Parameters used in plane strain example.

¢ (rad.)

Y (rad.)

H¢ (Pa)

c (Pa)

X (rad.)

X (rad.)

Hex (Pa)

X (Pa)

0.15

0.1

0.0

1 x 104

0.0

0.0

0.0
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Table 7.4: Micromorphic elastic parameters used in plane strain problem with confining pressure

o. = 0.2 MPa.
A (MPa) | p (MPa) | n (MPa) | v (MPa) | x (MPa) | 7 (MPa) | o (MPa) | 77 (Pa. m?)
29 7 40 8 10 10 5 1 x 102
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Figure 7.14: Comparison of stress paths of the different cases for plane strain example for confining
pressure o. = 0.1 MPa.
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Figure 7.15: Comparison of stress strain plots for different cases with standard Drucker-Prager (DP)
plasticity result for plane strain example for confining pressure . = 0.1 MPa .
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Figure 7.16: Comparison of deviatoric stress norms ||devS|| for different cases for plane strain

example for confining pressure o, = 0.1 MPa.
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Figure 7.17: Comparison of stress paths of the two different cases for plane strain example for
confining pressure o, = 0.2 MPa.



213

0.091

0.08
0.07F -
0.06 ’
|%0.05 : e
2 '
30.04 Fo
0.03F
0.02r
0017 --- P Bl

h @h
! m— DYy, D5y, D3y

0 1 1 1 1 1 1 1 1 1 J
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

time

Figure 7.18: Comparison of deviatoric stress norms of ||devS]|| for two different cases for plane strain

example for confining pressure o, = 0.2 MPa.



214

In this study, we developed and implemented a model for nonlinear finite element
analysis for finite strain micromorphic elastoplastic geomaterials to be used in a multiscale
approach explained in the beginning of this work. These numerical examples conclude this
study. More exciting problems such as strain softening, localizations, etc. as well as overlap
coupling micro-structural model can be investigated by using micromorphic theory. The
results, challenges, findings, targets in conjunction with the suggestions for a future study

are summarized in the next Chapter.



Chapter 8

Conclusions and Future work

We investigated the various aspects of the micromorphic continuum within the context
of finite strain isotropic elasticity and elastoplasticity. Results indicate that the micromor-
phic contribution causes different behaviors depending on number of additional degrees of
freedom ®", length scale, and boundary conditions on micro-displacement tensor. Three
dimensional stress state with the combination of deformation and additional micromorphic
elastic parameters, together with the different plasticity criteria, and plasticity parameters
lead to different trends. Influences of micro-displacement tensor ®" boundary conditions and
length scale on results were found to be very significant factors on convergence and results
of the simulations as well. It is possible to have convergence issues if proper ®" boundary
conditions together with micromorphic elastic moduli are not chosen. We proved that sym-
metry conditions are not applicable on ®" in this approach that requires considering whole
domain that means additional computational work.

Based on the findings and results obtained by the analyses, extending micromorphic
FE implementation to current configuration, and including inertia terms will possibly elim-
inate the convergence issues with regard to plasticity since we will plan to use an explicit
formulation and implementation. The constitutive assumption which has been made to con-
sider the plastic part of the gradient of micro-deformation tensor Vx? as a separate internal
variable rather than taking the derivative of the plastic part of the micro-deformation tensor

x? is found to be one point to be improved and to be changed to make it dependent to
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the plastic part of the micro-deformation tensor x? due to the convergence difficulties. It is
because when the gradient of the plastic part of the micro-deformation tensor Vx? is treated
as a separate internal variable, and assuming micro-scale gradient plasticity did not occur
(micro-scale gradient stayed elastic Vx? = 0), but when we have plasticity in micro-scale
which indicates x = x®x? ,then, for this case x? will exist, and the gradient of the plastic
part of the micro-deformation tensor Vx? may not be zero as it was assumed. Therefore,
assuming Vx? = 0 will cause non compatible values of the gradient of the elastic part of
the micro-deformation V¢, hence, Vx¢ = V (xx?~!) that affects the global consistent
tangent. One way to add this property is to introduce the gradient of the plastic part of
micro-deformation tensor Vx” as additional degrees of freedom at the nodes of elements
such as micro-displacement tensor ®". This approach will bring more computational cost
compared to the current approach; however, it will possibly increase the effectiveness of
the implementation and help to further analyze the length scale related problems such as
strain localization problems. The additional convergence problems resulting from the use of
semi-implicit time integration algorithm and introducing additional ®" degrees of freedom
will need to be further investigated. To resolve the problem caused by semi implicit time
integration, it may be possible to use very small time steps. The additional computational
power can be addressed by parallel processing which can be a useful tool to overcome the
necessity of more computational power. Although we had some convergence issues with the
rigid punch example given in Chapter 6 when we turned on all additional degrees of freedom
®" a mesh refinement study shown in the same chapter showed that the element used in
finite element analysis is convergent. The reason that caused non-convergent results with re-
spect to Newton-Raphson solver (not spatial discretization) may be caused by the additional
shear degrees of freedom in the shear dominated region. To better involve the micromorphic
additional degrees of freedom, one can use a finer mesh in the shear dominated region. Note
that, we were able to involve all the additional degrees of freedom in the example consid-

ered in Section 7.3. Coupling of lower length scale region modeled by DEM (or FEM for
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bound particulate materials) with the micromophic continuum region modeled by FEM as
a multi-scale approach will be the ultimate aim of the future work of this study to address
the artificial influence of boundaries of the lower length scale on the simulations.

In coupling of these two scales, the influence of the boundary conditions on micro-
displacement tensor ®" may be important. In this work, we only considered one type of
essential boundary condition on the micro-displacement tensor which is ®%, = 0. However,
the motion of the underlying particles in the region where FE mesh is extended in the DE
region may be supplied by DEM, and it will be introduced by the micro-displacement tensor
®" that may require to apply prescribed values dictated by DEM to the micro-displacement
tensor ®". To capture the inherent behavior of micro-structure, it may be the best to turn on
all the micro-displacement degrees of freedom in a three dimensional problem so that overall
response of the micro-field such as microdilation/stretch, microrotations, and microshear
can be represented by the micromorphic theory. The spatial variation of the values of ®"
will always create a gradient in the field in which the length scale effect will be taken into
account by the higher order couple stress tensor m that will be an interesting problem
to investigate in this multiscale approach between DEM and FEM. Currently, the couple
traction boundary condition is not implemented, and that will also have an influence on the
boundary conditions. Further investigation of essential boundary conditions through ®", and
natural boundary conditions through the couple traction are required, with coupling between

DEM and FEM helping to interpret the physical meaning of these boundary conditions.
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Appendix A

Variations of Representative Terms Appearing in the Balance Equations

Variation of some terms which are used in linearization of balance equations are given

below.

(1) Variation of J :
d(J) = Jdiv (du) (A1)

(2) Variation of F' : In matrix form :

) (F)=grad(u)F (A.2)
In indicial form :
= +

0X; 0X; 0X;
Fir = 0ir + i1

6 (Fir) = 0 (ui;) Fj

(3) Variation of F~* :

S(F Y =—-F'%(F)F'=—-F 'grad(ju) (A.3)



(4) Variation of Vw:

ow OJwoiX Ow -l

VU= 0z T 0X 0x  0X
ow
= o0Vw =9 <8X )
ow ow
_(5<0X)F + 005
ow . Ow
Vw =9 <8X) F 8XF 'grad(su)
(5) Variation of Atf,, . :
b =F, F, !
Atl, ) = AtF,  F 1
Aten—i—l = (Fn+1 - Fn) Fy_Hl_l
§(Atl, 1) = F,F'grad(éu)
(6) Variation of Atd, 1 :
§(Atd,11) = %5 (Ate; |+ Ate )
1
I(Atd, 1) = 5 (FnF_lgrad(é'u,) + (FnF_lgrad(éu))T>

(7) Variation of tr (Atd,41) :

tr (6 (Atdyi1)) = tr (6 (Atlyy1))

tr (6 (Atd,.1)) = tr (F,F~'grad(du))

(8) Variation of the micro deformation tensor x for micro motion:

x=1+&
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(A4)

(A.5)

(A7)
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(9) Variation of the inverse of the micro deformation tensor x for micro motion:
d(x7) =x""ox)x (A.9)
d(x ) =x""(0®)x " (A.10)

(10) Variation of Vi :

_Ox  Ox0X  Ox .,
VX1 = 50 T oX 02 X T
~ 94 (x) ox

-1 -1

§(Vx) =GRAD (6®) F' — GRAD (x) F'grad(éu) (A.11)

(11) Variation of Atv¢_ :

Atel, = At + (At )"
Atvy | = Atv,y — Atv)
AtvP =0  for elastic case
Atvnir = (AXpi1) Xot1 = (Xas1 = Xa) Xt

0 (A1) = 0 (X1 = Xa) X1 + (X1 = Xa) 6 (ta)

0 (Atvp) =6 (Xn+1) X;}d + (Xn—‘,—l - Xn) 0 (X;—ll—l)

0 (Atvpyr) = 6 (Prpa) X;-',l-l - (Xn+1 - Xn) X;Jlrl(S (®ny1) X;-',l-l

6 (Atvpyr) = 6 (Prt) Xv_wld - (Xn+l - Xn) Xv_wlrﬂs (®rt1) X;}d
1

1 /_/T -1 -1 -1
§ (Atvpyr) = 6 (Prga) Xn+1 — Xn+1Xn410 (®ny1) Xni1 T XnXni10 (®ny1) Xnt1
0 (Atvni) = XnX;-il-l(S (Pr+1) X;}rl (A.12)
(12) Variation of Atef,,, :
Atel = At + At
. _ _ _ T
0 (Atsn—i-l) = Xanilé ((I)n+1) Xnil + (FnFn-il-lgrad((Sun+1)) (A13>

0 (Atel, ) = xox 0 (®)x "+ (FnF_lgrad(éu))T (A.14)
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(13) The indicial notation of some of these expressions can be given as:
Atglek = O — (Fn)zK Fz?zi
(Atdy) = % (Atly + Atly)

Atdlek = (5lk - (Fn)zK Flei + Okt — (Fn)kK Flel)

N —

Aty = Atyy, — Aty

Atvye = (Axac) Xp = (e — (Xn) 1) X2

Atel, = At + AtLE,

Atef = (xir — (Xn)ip) Xz + 0 — (Fo) i Fren
Al Algorithm to form element stiffness matrix for each term

Linearization procedure of individual terms and determining the element stiffness ma-
trix contribution to form global consistent tangent matrix can be very time consuming and
maybe impossible to implement for the most of the terms presented in this work. This small
algorithm given below, as an example, for the specific term shows how to form the element

stiffness matrix for that term. Let’s consider the term given in equations 5.28-5.30

2(p+o) / wk,LFL_llFlL(S (Fip) Fik FegdV =2 (u+ o) / wk,LFL_llF’lLFiKFkK(SULLdV
Bo BO
(A.15)
(X!, =2(u+o0) . {c*}" - [GRAD (N“®)" . [I5]-[GRAD (N"°)]-{0d°} dV (A.16)

i) =20+ ) [ [GRAD(N*)"-(1,i]- [GRAD (N**)] av (A1)

To calculate the matrix (5(%)5 at a Gauss point for each element, we use this portion of

the code

fTemp matrix nudof x nudof. MultATBC(fShapeDisplGrad ,I1 5, fShapeDisplGad);
scale = scale constx(fMaterial Params [kMu|+{fMaterial Params |[kSigma const]);
fTemp matrix nudof x nudof x= scale;

fKu 5 += fTemp matrix nudof x nudof;
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and [I15] is obtained by the algorithm used in the given function below.

void FSMicromorphic3DT :: Form I1 5()

{
int row;
int col=0;
I1_5-0.0;
for (int K=0;K<3;K++)
{
for (int 1=0;i <3;i++)
{
row=Kx3;
for (int 1=0;1<3;1++)
{
for (int L=0;L<3;L++)
{
I1 5(row, col)+=fDeformation Gradient (1,L)
xfDeformation Gradient (i,L);
}
row--+;
}
col++;
}
}
A.2 Finite element matrices

A.2.1 Notations in Chapter 4

It is a very time consuming to show all the matrices in open form with their components.

Here we present some of them, other matrices can be obtained in a similar way. Note that
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some of these matrices may have a different order in components in Chapter 5.

{GRAD(w)}" = (A.18)

{w1,1 Wi W13 W1 W22 W23 W31 W32 w3,3}

{GRAD(CS’UI)}T:{ Ouy Ougy Ouzy Ours Ougs Ouss Ousy Ouss 5U3,3} (A.19)

Ny (€) 0 0
0 N (€) 0

0 0 N (§)
N3 (€) 0 0
[N = ! N () ! (A.20)
0 0 Ny(€)
Ny (€) 0 0
0 Ny (& 0
0 0 Ny () | ..
- —nd(;fxnsd
[GRAD (N“*)|" =
N © 0 0 NLE) 0 0 N 0
0 Nt (€) 0 0 Nty (€) 0 0 Ni'5 (&)
0 0 N, (€) 0 0 Nty () 0 0
Npu 1 () 0 0 Npu 5 () 0 0 Nyu 5() 0
0 N 1 (€) 0 0 N 5 (€) 0 0 N 5(€)
0 0 Ny 1 (€) 0 0 N 5 (€) 0 0

(A.21)

ens




[GRAD (N**)] =

[N ()
N3, (€)
N3, (€)

N =

0
0
0

Ny (§)

- N3 (8)
- N3 (§)
- Nos(8)

- NI (8)
- N2 (8)
. N5 (8)

0

- N3 (§)

- N (§)

. NX
. NX
. N

X
Nen, 1

X
Nen,2

X
Nen,3
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0... N% (&
0... N% (&
0... N% (&

X:e
4 (ngg*ngg*nsq) Xngs

(A.22)

L NX(E) 0. 0

0... NX(&)

(nsa*nsd) an)i(;)jf

(A.23)
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A.2.2 Preconditioned Conjugate Gradients

Shewchuk (1994) gives a very brief summary of preconditioned conjugate gradient

method which is used in Section 7.2.3.

1<=0

r<b— Ax

d< M 1'r

Onew <= r1d

0o <= Onew

While i < ipge and Opew > €200

q < Ad

6”61[)

o <=
dTq

r &=+ ad

If 7 is divisible by 50
r<b— Ax

else
r<r—aq

s < M r

dold < Onew

Orew <= 115

/6 <: 6716’!1}

dold

d<= s+ pd

i=it1 (A.24)
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where A, b are inputs, M is preconditioner, and x is a starting value. Shewchuk (1994) states

that the perfect preconditioner is M = A.
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