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Abstract. Water demand projections are crucial for efficient management of water utilities, 

especially given the stress from socio-economic growth and supply reductions and variations 

under climate variability. Currently, many water utilities rely largely on statistical models for 

average demand incorporating socio-economic and limited climate information. Water 

managers require projections of different demand attributes such as peak demand, demand 

exceeding desired thresholds, sustained period of exceedances, etc. There is increasing 

recognition that climate plays a substantial role in demand modulation and that it needs to be 

accounted better in water demand models. Two key gaps are identified with the state of 

knowledge that motivated this research – (i) the need to incorporate all attributes of weather 

and climate and (ii) the need to provide tools to model a variety of demand attributes that are 

simple and robust and can incorporate climate and socio-economic factors. This research makes 

the following contributions. (1) A suite of weather attributes are identified that are strongly 

related to attributes of water demand, these include hot/dry and wet/cold spells and average 

precipitation and temperature; (2) A Generalized Linear Modeling (GLM) framework to model 

monthly average, monthly peak and number days of demand exceeding a threshold, 

incorporating the weather attributes; (3) Introduction of Extreme Value Analysis (EVA) to model 

monthly peak demand and demand exceeding thresholds, which also uses climate attributes to 

model nonstationarity of the water demand variability (4) demonstration of the models from 
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EVA to make projections of water demand extremes under climate change. All of these are 

developed and demonstrated for water demand data from Aurora Water, the water utility of 

Aurora, CO. These methods are simple and robust and can easily be modified to incorporate 

other covariates such as social and economic. Furthermore, they can be applied with limited 

resources and thus, provides an effective set of tools to most water utilities.  
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1 Introduction 

Successfully managing a water utility requires a careful balance of available water 

supply to meet water demand. Maintaining these skillful water demand forecasts is imperative. 

Water demand forecasts help water utility managers make decisions about additional supply 

acquisition, treatment infrastructure, water use restrictions, water conservation impacts, price 

elasticity and demand management (Billing et al. 2008). A large number of factors are known to 

impact water demand, including population, employment, technology, weather, climate, price, 

infrastructure efficiency, conservation programs, socioeconomics and water awareness. 

However, many of these variables are difficult to quantify and have high degree of uncertainty 

(Billings et al. 2008). It has been suggested that the threat of increasing water demand greatly 

outweighs other consequences of climate variability including variations in the hydrologic cycle 

in defining the status of global water systems (Vorosmarty et al., 2000). Thusly, increasing the 

skill and usability of current water demand modeling efforts is imperative. 

1.1 Water Demand Modeling 

 Water demand has been extensively studied since the 1960’s with a primary focus on 

aggregate municipal demand or residential demand (e.g., Gottlieb et al. 1963; Howe et al. 1967; 

Baumann et al. 1997). Most research on water demand uses an economic modeling approach 

that attempts to utilize water price and socio-economic variables as covariates in statistical 

models for water demand (Arbués et al. 2003). Many studies have emphasized the use of price 

elasticities and income for water demand forecasting (Katzman, 1977). Such econometric 

models have been used to forecast water demand and have been expanded to incorporate 
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price and incomes using traditional and generalized least squares technique (e.g., Katzman, 

1977; Babel et al. 2007; Malla et al., 1997). Multiple regression models to analyze sustainable 

water consumption models (Colyer et al. 2000) have been developed and recently socio-

economic indicators have been incorporated into these models (Babel et al. 2007). 

Discrete/continuous choice models have been created and found increased price elasticity 

when used (Hewitt et al. 1995). The aim of the work presented here is to expand upon the basic 

approaches to water demand modeling and incorporate modeling techniques not yet applied to 

water demand to create a nuanced picture of water demand risk due to climate change.  

Seasonal average demand has been largely the focus of modeling efforts using linear 

statistical or econometric models (McKee et al. 1995). However, there are many important 

demand attributes in addition to average demand that the utility managers desire for efficient 

management such as; seasonal, monthly peaks, number of exceedances above a certain 

threshold etc. Seasonal maximum water demand models are used for planning purposes 

related to necessary maximum capacity or storage needs for decision making (Arbués et al. 

2003). Generalized Linear Modeling of seasonal average, seasonal maximum and seasonal 

water demand exceedances is motivated in Chapter 2. This approach stands as a marked 

improvement over traditional, regression based analysis and can be applied by utilities of all 

sizes and sophistication. 

1.2 Modeling Water Demand Extremes 

A key attribute of water demand for planning and management is the extreme water 

demand events. Specifically, peak demand (either peak day and/or peak hour) is used for 

treatment plant capacity evaluation and for network design, which drives the raising of funds 
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from internal capital and/or financial markets for capacity expansion, etc. (Arbués et al. 2003, 

Billings et al., 2008); also of interest is the interval of time with elevated demand or demand 

above a critical threshold. Weather attributes also modulate water demand extremes. Current 

models are limited in their ability to model extremes and this is a major gap in demand 

management, which motivates the work in Chapter 3. The emerging field of Extreme Value 

Analysis (EVA) offers an attractive, simple and robust approach to modeling demand extremes 

that can be adapted by a wide swath of utilities regardless of economic resources. The desire to 

better model hydrologic risks was the early motivation for EVA (Gumbel, 1941). It has since 

matured and is now widely used in modeling hydrologic, meteorologic and sea level extremes 

(Fiorentino, 1984; McNeil, 1997; Swift, 1989; Beguería, 2006; Coles, 2003; Katz, 1995; Eaton, 

1994; Coles, 2001; Cooley, 2009; Smith, 1989) and financial risk estimation (e.g., Embrechts, 

1999; and for hydrological losses, McNeil, 1997).  

At the core of the EVA is the recognition that extreme events by definition occur in the 

tail of the probability density function (PDF) and that the traditional PDFs have a thin tail, 

thereby underestimating the probability of extreme events. Therefore, heavy tailed PDFs are 

necessary, which are developed from theory (Katz and Naveau, 2002; Coles, 2001). Extreme 

events also vary with time and consequently so to do the probability of their occurrences – to 

capture this variability (i.e., nonstationarity) the PDFs should also vary. To this end, EVA 

proposes modeling of the parameters of the heavy tailed PDFs as a function of covariates. In 

this research, the covariates are the weather attributes identified in Chapter 2. 

In Chapter 3, EVA for modeling water demand is introduced and the hope that this 

initiation to the field will lead to further application and expansion of this approach. EVA also 
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supplies a nuanced method for understanding the risk associated with extreme water demand 

events and can also be used for making water demand projections under climate change 

(Chapter 4).  

1.3 Projecting Water Demand Extremes Under Climate Change 

Understanding variability in water demand and being able to make skillful projections of 

its future variability is crucial for efficient water supply management and for water demand 

forecasting. Water demand forecasts enable water utilities to plan for capacity expansion, 

pricing, conservation efforts etc. (Billings et al., 2008). Water demand projections help water 

utility manages make decision about short-term operational decisions such as treatment plant 

production, balancing supply and demand, and potential water use restrictions in the event of a 

drought. Every year, water utility managers and financial staff make a prediction of how much 

water there are going to sell (water sales) and, subsequently, predict the resultant revenues as 

part of their annual budgeting process. Additionally, these demand projections help managers 

make long-term decisions about additional supply acquisition, additional treatment capacity, 

transmission mains, storage tanks, water conservation impacts, price elasticity, and demand 

management (Billings et al., 2008). Longer-term financial sustainability for the water system is 

anchored by accurate long-term demand forecasts. Accurate water demand forecasts are 

needed for both short-term (operational and financial) and long-term (planning and financial). 

The costs of being wrong can be significant. Inaccuracies in longer-term forecasts can result in 

large costs to utilities and their customers, for example, in the form of stranded capital assets, 

insufficient supply reliability, or a reduced level of service due to treatment plant capacity 

limitations.  
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All utilities use water demand projections, however, many of them are from simplified 

models and fail to incorporate nonstationarity in variability from climate and other uncertainty. 

A large number of factors are known to impact water demand, including population, 

employment, technology, weather, climate, price, infrastructure efficiency, conservation 

programs, socioeconomics and water awareness (Billings et al., 2008). Models have focused 

mainly on the social and economic variables—which are often difficult to project—resulting in 

complex models. Many of these models are outside the reach of utilities which are small in size 

with limited resources.  

Utilities are specifically interested in the high impact, low probability water demand 

events which drive infrastructure planning decisions and the need for capital to fund such 

improvements. Accurate predictions of peak hour demand and peak day demand are necessary 

for planning capital improvements such as an alternate supply of source water, treatment plant 

capacity, transmission mains, storage tanks, and booster pumping stations. The EVA models 

used for projections are developed in Chapter 3. 

1.4 Climate Change and Water Demand 

Climate plays a fairly significant role in modulating water demand – for example, 

increased temperature and reduced precipitation leads to increased water demand and vice-

versa. Recognizing this, some of the early research used precipitation during growing season to 

model agriculture water demand (e.g., Foster et al. 1979; Foster et al. 1981). Others used the 

difference between rainfall and evapotranspiration as a potential predictor variable for demand 

forecasting (e.g., Billings, 1982; Agthe et al. 1986; Nieswiadomy et al. 1988). Other 

amalgamations of climatic variables have also been used, such as a variable function of 
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temperature, minutes of sunshine, and wind speed (Al-Quanibet et al. 1985). Micro-time series 

data—which aims to predict water demand on hourly or smaller time scales—has been used in 

econometric models incorporating covariates (Danielson, 1979). Typically, climatic variables are 

represented as temporal (i.e., seasonal, monthly etc.) averages but this approach may be 

limiting in that, the effect of precipitation may be more pronounced at first, and then decrease 

with time (Maidment et al. 1986). To address this issue, and others, seasonal spell statistics 

such as rainy days have been used in water demand modeling, (        -Espiñeira, 2002). This 

idea is expanded upon and a full suite of weather attributes is created that are then used as 

covariates in water demand modeling. 

Extreme water demand events exhibit significant variability over time driven by climate 

fluctuations – for example, an increasing trend in the frequency and intensity of precipitation 

events in the US has been known for more than 15 years (Trenberth, 1998, 1999). The IPCC 

(2010) projects the same for much of the world in the coming decades due to climate change. 

Researchers in water resources and hydrology have been working on translating the climate 

change projections from the global climate models to impacts on hydrology and water 

resources. This requires downscaling climate information which is often at coarse spatial and 

temporal scales to point scale of interest and, driving them through hydrologic models to 

generate ensembles of streamflows and consequently, impacts to water resources – a body of 

literature exists on understanding water resources variability under climate change in the 

Western US (e.g. Christensen, 2004; Rajagopalan et al., 2009). Recently, joint efforts from water 

utilities have been developing tools for water supply and demand with a focus on planning 

decisions by water utilities (JFRCCVS, 2012, Ray et al., 2010). The traditional approach of 
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downscaling climate information to process models can be computationally intensive and deter 

a majority of water utilities from being able to access them due to limited resources. Simple, 

effective and flexible tools are needed that can translate coarse climate information to specific 

attributes of decision variables without having to go through computationally intensive process 

models. Towler et al. (2010) developed an extreme value analysis models to translate monthly 

precipitation and temperature projections under climate change to projections of streamflow 

extremes and consequently water quality extremes in the Northwest United States and also for 

Aurora CO (Towler et al., 2011). Such models are effective in providing projections of extreme 

events that are essential to water utility managers for planning purposes.  

Water demand is somewhat different than water supply and water resources due to the 

potential human response factoring into demand. But the same weather factors such as 

temperature and precipitation play a significant role in predicting water demand. This research 

has expanded this EVA approach to apply to projecting water demand extremes, and the 

potential impacts from climate change to those extremes.  

By introducing two novel modeling approaches—GLM modeling with weather attributes 

as covariates and Extreme Value Modeling—and then using the EVA models to project water 

demand extremes the goal is to expand general water demand modeling knowledge and 

advance the available tool set for water utilities for handling projections of water demand 

under climate change. Education is a critical component to climate change awareness and 

readiness for water utilities. The circumstances will be unique for each utility and a 

comprehensive analysis of the associated risks and potential mitigation strategies will need to 

be performed by each individual utility. The work presented here represents an expansion of 
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the approaches available and serves as an important component to successful utility 

management. 

2 Statistical Modeling of Seasonal Water Demand Attributes Using 

Climate Variables  

2.1 Abstract 

Water demand projections are crucial for efficient management of water utilities, 

especially given the stress from socio-economic growth and supply reductions and variations 

under climate variability. Traditional methods have relied on statistical models for average 

demand incorporating economic information and modest amount of climate features. 

Furthermore, they have varied significantly among utilities. We see two major gaps – (i) need 

for an approach to model a variety of demand attributes that are needed by utility managers 

such as – average demand, monthly peak and number of demand exceedances above a 

threshold and (ii) comprehensive use of climate information. We first identify a suite of climate 

variables that include high/low temperatures and wet/dry spells and the more traditional 

average temperature and precipitation. We find that these variables capture nuanced 

connections between climate and water demand, especially the lagged relationships. Second 

we propose a Generalized Linear Modeling (GLM) framework to model attributes of water 

demand by incorporating the climate variables. We demonstrate this approach to demand 

modeling for water utility in Aurora, CO. Demand attributes modeled include monthly average 

demand, monthly peak demand and monthly number of demand exceedances above a 

threshold.  
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2.2 Introduction  

Successfully managing a water utility requires a careful balance of available water 

supply to meet water demand. Maintaining these skillful water demand forecasts is imperative. 

Water demand forecasts help water utility managers make decisions about additional supply 

acquisition, treatment infrastructure, water use restrictions, water conservation impacts, price 

elasticity and demand management (Billing et al. 2008). A large number of factors are known to 

impact water demand, including population, employment, technology, weather, climate, price, 

infrastructure efficiency, conservation programs, socioeconomics and water awareness. 

However, many of these variables are difficult to quantify and have high degree of uncertainty 

(Billings et al. 2008). It has been suggested that the threat of increasing water demand greatly 

outweighs other consequences of climate variability including variations in the hydrologic cycle 

in defining the status of global water systems (Vorosmarty et al., 2000).  

Water demand has been extensively studied since the 1960’s with a primary focus on 

aggregate municipal demand or residential demand (e.g., Gottlieb et al. 1963; Howe et al. 1967; 

Baumann et al. 1997). Most research on water demand uses an economic modeling approach 

that attempts to utilize water price and socio-economic variables as covariates in statistical 

models for water demand (Arbués et al. 2003). Many studies have emphasized the use of price 

elasticities and income for water demand forecasting (Katzman, 1977). Such econometric 

models have been used to forecast water demand and have been expanded to incorporate 

price and incomes using traditional and generalized least squares technique (e.g., Katzman, 

1977; Babel et al. 2007; Malla et al., 1997). Multiple regression models to analyze sustainable 

water consumption models (Colyer et al. 2000) have been developed and recently socio-
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economic indicators have been incorporated into these models (Babel et al. 2007). 

Discrete/continuous choice models have been created and found increased price elasticity 

when used (Hewitt et al. 1995).  

Climate plays a fairly significant role in modulating water demand – for example, 

increased temperature and reduced precipitation leads to increased water demand and vice-

versa. Recognizing this, some of the early research used precipitation during growing season to 

model agriculture water demand (e.g., Foster et al. 1979; Foster et al. 1981). Others used the 

difference between rainfall and evapotranspiration as a potential predictor variable for demand 

forecasting (e.g., Billings, 1982; Agthe et al. 1986; Nieswiadomy et al. 1988). Other 

amalgamations of climatic variables have also been used, such as a variable function of 

temperature, minutes of sunshine, and wind speed (Al-Quanibet et al. 1985). Micro-time series 

data—which aims to predict water demand on hourly or smaller time scales—has been used in 

econometric models incorporating covariates (Danielson, 1979). Typically, climatic variables are 

represented as temporal (i.e., seasonal, monthly etc.) averages but this approach may be 

limiting in that, the effect of precipitation may be more pronounced at first, and then decrease 

with time (Maidment et al. 1986). To address this issue, and others, seasonal spell statistics 

such as rainy days have been used in water demand modeling, (        -Espiñeira, 2002).  

Seasonal average demand has been largely the focus of modeling efforts using linear 

statistical or econometric models (McKee et al. 1995). However, there are many important 

demand attributes in addition to average demand that the utility managers desire for efficient 

management such as; seasonal, monthly peaks, number of exceedances above a certain 

threshold etc. - seasonal maximum water demand models are used for planning purposes 
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related to necessary maximum capacity or storage needs for decision making (Arbués et al. 

2003).  

To summarize, water demand forecasting methods are largely simple linear models 

using socio-economic and modest climate variables – with some utilities, those with advanced 

capabilities having developed sophisticated statistical models (e.g., Hanke et al., 1982; Tampa 

Bay Water, 2010). Thus, there is a need for a simple and flexible approach that can model a 

variety of demand attributes and incorporate climate variables, which can be easily used 

regardless of the sophistication of the water utilities. Furthermore, the use of time varying 

climate variables can enable modeling nonstationarity in climate, which the traditional 

approaches do not consider at all. These important needs and gaps motivated our present 

research: We motivate the use of Generalized Linear Model (GLM) for modeling demand 

attributes – monthly average, monthly maximum (or peak) and number of days of exceeding 

desired threshold, incorporating suite of climate variables.  

The paper is organized as follows. We present our methodology with application to data 

from water utility of Aurora, CO. A description of the case study water demand and climate 

data set is first presented. This is followed by a proposing a suite of climate attributes that 

relates to water demand attributes. Next we present the GLM approach to modeling three 

water demand attributes mentioned above. Results from the proposed method followed by 

summary and discussion of utility of GLM and further potential applications conclude the paper.  
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2.2.1 Case Study Data 

For this study, daily water demand data from Aurora, CO was collected. We chose this 

location as it is water stressed with increasing growth and supply reductions. Figure 2.2 shows 

the study location along with some key water supply related statistics.  

2.2.2  Water Demand Data 

The data set used for this study is daily production data from Aurora, CO. Water is 

produced to meet the respective demand and therefore the water production data from this 

utility can be considered water demand. The data provided was in millions of gallons per day 

(MGD). The data from Aurora, CO was 21 years in length with daily data from January 1st, 1990 

to December 31st, 2010. The daily demand data is shown as boxplots for each month (boxes 

represent the interquartile range, the whiskers 5th and 95th percentiles and, points beyond) in  

                  
Figure 2.1 – Monthly boxplots of daily water demand values from 1990-2010 of a water utility at Aurora, CO – 

boxes represent the interquartile range, the whiskers are 5
th

 and 95
th

 percentiles and the points are beyond. 

Figure 2.1 (the solid line represents monthly mean). It can be seen that the critical season of 

high demand is summer, specifically the three month period of June-Aug. From each month in 
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this season, for each year, three water demand attributes were computed – they are, average 

monthly demand (averaging over all the daily demand values in a month); monthly maximum 

demand (maximum of all the daily demand values) and number of demand exceedances 

(number of days with demand exceeding 75th percentile, which is 81.3 MGD, in each month). 

These are then modeled using GLM and climate attributes as described in the following 

sections.  

2.2.3 Climate Data 

Daily meteorological data – precipitation, maximum and minimum temperatures –for 

the study location is obtained from the National Climatic Data Center (NCDC) archive of 

National Oceanic and Atmospheric Administration (NOAA) (http://www.ncdc.noaa.gov). The 

NCDC data archive is extensive, quality checked and offers a variety of meteorological and  
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Figure 2.2 – Climate information for the Aurora, CO case study. 

climate data for locations throughout the country. Location of the data closes to the study 

region can be selected from the data base and here we selected location CO-09, which is closest 

to Aurora, CO. Details of the data set can be found at the aforementioned web location.  

2.3 Climate Attributes and Water Demand 

  Climate’s impact on water supply and the associated phenomena are frequently 

studied. The correlation between water supply and climate is well understood (Milly, 1994; Wu  

Weather Statistic Thresholds 

Minimum Temperature 
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June  57°F 

July 62°F 

August 60°F 

Maximum Temperature 

June  89°F 

July 94°F 

August 89°F 

Precipitation 

June  0 in 

July 0 in 

August 0 in 

Table 2.1 – 75
th

 percentile values for weather in Aurora, CO. These values were used as threshold for developing spell 

statistics. 

et al. 1993). The implications of climate on water demand are intuitive, especially for outdoor 

water uses, and have also been studied. For example, water demand elasticity has been 

modeled as a dependent on summer precipitation for all user categories including residential, 

commercial, industrial and agricultural (Schneider et al. 1991). Urban residential water demand 

has been modeled using rainfall and temperature data (Nieswiadomy, 1992). However, 

sequences of wet/dry and high/low temperature spells events have a much stronger role in 

modulating water demand, and to this end, spell statistics provide a more nuanced insight into 

this relationship. For instance, drought has long been considered a primary influence on water 

demand and can be modeled as a dry spell and incorporated into a water demand model 

(Moncur, 1987, Arbues et al. 2003). Similarly, consecutive days of high temperatures can drive 

evapotranspiration and outdoor water demand (Smoyer-Tomic, 2003).  

 



16 
 

  

Water Demand Covariates: Definitions and Correlations 

Covariate Definition 

Correlation 
with 

Monthly 
Average 
Demand 

Correlation 
with 

Monthly 
Maximum 
Demand 

Correlation 
with 

Monthly 
Demand 

Exceedances 

Average Monthly Max 
Temperature  Daily maximum temperature values averaged over a month. 0.41 0.35 0.44 

Average Seasonal Minimum 
Temperature Daily minimum temperature values averaged over a month. 0.44 0.34 0.44 

Average Seasonal Precipitation Daily precipitation values averaged over one a. 0.06 0.04 0.05 

TIME A vector of values progressing chronologically. 0.20 -0.05 0.11 

Preceding Month Average Water 
Demand Average water demand from preceding month (lag 1). 0.50 0.55 0.46 

Average Monthly Hot Spell 
Length (in days) 

The average length in days of a spell with daily maximum 
temperatures over a given threshold for each month. 0.22 0.25 0.14 

Total Monthly Days with 
Maximum Temperature Above 

Threshold 
Total days the maximum daily temperature exceeds a given 

threshold in a month. 0.39 0.26 0.24 

Maximum Hot Spell Length 
The longest spell length of days with daily maximum 

temperatures over a given threshold in for each month. 0.26 0.25 0.15 

Average Monthly Nightly Spell 
Length 

The average length of consecutive days with daily minimum 
(i.e. nightly) temperatures above a threshold for each 

month. 0.40 0.39 0.32 

Total Monthly Nights with Low 
Temperature Above Threshold 

Total days with minimum temperature above a given 
threshold for each month. 0.55 0.48 0.44 

Maximum Monthly Nightly Low 
Hot Spell 

The longest number of consecutive days with minimum 
temperatures above a given threshold for each month. 0.53 0.50 0.47 

Average Monthly Precipitation 
Spell in Days  

The average length of consecutive days with precipitation 
above a given threshold for each month. -0.19 -0.06 -0.15 

Total Monthly Days with 
Precipitation Below Threshold 

Total number of days with precipitation above a given 
threshold each month. -0.44 -0.22 -0.35 

Maximum Monthly Precipitation 
Spell 

The longest number of consecutive days with precipitation 
above a given threshold each month. -0.18 -0.05 -0.16 

Table 2.2 – Climate Attributes and their correlation with water demand attributes shown in the last three columns. 
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Thus, we propose a suite of spell statistics for each month in addition to the average 

statistics computed from the daily meteorological data for potential modeling of water 

demand. These statistics include spells based on daily maximum temperatures, nightly low  

 

 

Figure 2.3 – Scatterplot of selected spell statistics and water demand. (a) average water demand in a month versus the same 

from previous month (antecedent conditions), (b) Longest monthly spell of minimum temperatures above each month’s 

threshold versus monthly average water demand, (c) Longest monthly spell of minimum temperatures above each month’s 

threshold versus monthly maximum water demand and (d) Total number of days with precipitation above 0 inches versus. 

number of days of water demand exceeding the 75
th

 percentile water demand value for each month. 
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temperatures and precipitation thresholds. All the climate statistics are listed in Table 2.2 along 

with their correlation to the water demand attribute. Scatterplots of selected climate attributes 

and water demand attributes are shown in Figure 2.3. There is a strong positive correlation 

between average water demands from successive month (Fig 3a) indicative of persistence of 

antecedent climate conditions. Monthly average and maximum demands have a strong 

correlation with longest spell of minimum temperatures and, intuitively, water demand 

exceedance days is negatively correlated with the number of days in a month with precipitation 

greater than zero.  

2.4  Methodology – Generalized Linear Model 

 Generalized Liner Modeling consists of a response or the dependent variable Y that can 

be assumed to be a realization from any distribution in the exponential family with a set of 

parameters (McCullagh and Nelder, 1989). A smooth and invertible link function transforms the 

conditional expectation of Y to a set of predictors (Equation 1).  

                                ,     (2.1) 

where G(..) is the link function, X is the set of predictors or independent variables, E(Y) is the 

expected value of the response variable and   is the error, which is assumed to be Normally 

distributed with a given variance. If the dependent variable is assumed to be linear—as is the 

case with standard linear regression, the function G(..) is the identity and Y is assumed to be 

Normally distributed. However, often assumptions of linearity do not hold up and depending on 

the assumed distribution (nonlinear) of Y there exist appropriate link functions (McCullagh and 

Nelder, 1989). The model parameters ( ) are estimated using an iterated weighted least 



19 
 

  

squares method that maximizes the likelihood function, as opposed to an ordinary least squares 

method in linear modeling (Myers et al., 2002).  

 

 

Figure 2.4 – Sample histogram and Probability Density Functions (shown as lines) of (a) number of days of demand exceeding 

81.3 MGD (75
th

 percentile value), (b) monthly average demand and (c) monthly maximum demand. The PDFs are based on 

kernel density estimators. 
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The GLM can be used to model a variety of response variables – for skewed variables 

with a lower bound of 0 (such as monthly maximum demand), the Gamma distribution 

assumption of Y and its associated link function is appropriate. For number of days of demand 

exceeding a threshold of 81.3 MGD (75th percentile water demand value), which is a discrete 

variable, the Poisson distribution and its associated link functions can be used. For monthly 

average demand which has less skew Normal or Gamma distributions are appropriate. If 

modeling exceedance/non-exceedance of threshold a binomial distribution and its link function 

(i.e. logistic regression) is the approach. We refer the readers to McCullagh and Nelder (1989) 

for information about variety of distributions, link functions and parameter estimation.  

 To obtain the best set of predictors for the model there are a couple of choices for the 

objective criteria such as the Akaike Information Criteria (AIC) or Bayesian Information Criteria 

(BIC). In both case, the likelihood function for the number of parameters is penalized to 

optimize the model (Venables and Ripley, 2002). In this, multiple models are fit using all 

possible subsets of predictors and also link functions. For each model, the AIC and BIC are 

computed and the model with lowest AIC or BIC is selected as the ‘best model’. Models can also 

be tested for significance against a null model or an appropriate subset model using a chi-

squared test. We used BIC in this study as it tends to be more parsimonious compared to AIC. 

As mentioned, the GLM gleans skill from its ability to address non-normality and non-

continuous features of the dependent variables by using different link functions, such as: (i) 

Normal distribution for monthly average demand; (ii) Poisson for number of days of demand 

threshold exceedances, (iii) Gamma distribution for monthly maximum (or peak) demand. To 

underscore this histogram and probability density functions (PDFs) based on nonparametric 
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smoothing of histograms (Azzalini and Bowman, 1989) of three demand attributes are shown in 

Figure 2.4. Skewed distribution can be seen for number of days of demand exceeding 81.3 MGD 

and monthly maximum demand, for which Poisson and Gamma distributions in the GLM are 

appropriate. The monthly average demand is close to Normal. 

2.5 Results  

 We applied the GLM approach to model the three monthly demand attributes with the 

suite of predictors listed in Table 2.2. In addition to the climate predictors we also use time as a 

proxy for socio-trend growth and previous month’s values for additional temporal dependency. 

Using BIC the best model, significance of the variables and R-squared for each demand attribute 

is shown in Table 2.3. Results from the models are shown in four plots; fit (scatterplots of 

observed versus predicted values), autocorrelation of the residuals, Quantile-Quantile plots of 

the residuals to test for Normality of the residuals and scatterplot of leave one out cross 

validation (LOOCV) estimates with the observed. In LOOCV each observation is dropped and the 

model fitted on the remaining data and subsequently, estimating the dropped point. While 

dropping a single point might not stress the model as much, we chose this due to limited data, 

dropping a fraction of observations and repeating a number of times to obtain distribution of 

skill measures would be much preferred when the data set is large (e.g., Zachman et al., 2007, 

Towler et al., 2007).  

2.5.1 Monthly Average Demand 

Monthly average demand is modeled using a Gamma distribution with its canonical link 

function; the inverse link function (McCullagh and Nelder, 1989). For monthly average longest  
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Aurora, CO 

Monthly Average Demand 

Independent Variable 
Coefficient 
Estimate 

Standard Error t Value Pr(>|t|) R2 

Y Axis Intercept 5.19E+01 5.36E+00 9.69 1.17E-13 

5.48E-01 

Longest Spell with Min Temp Above Threshold 1.72E+00 5.99E-01 2.87 5.69E-03 

Total Days with Precip Above Threshold -1.26E+00 3.05E-01 -4.13 1.18E-04 

Average Water Demand from Preceding Month 3.58E-01 8.08E-02 4.43 4.36E-05 

Monthly Maximum Demand 

Independent Variable 
Coefficient 
Estimate 

Standard Error t Value Pr(>|t|) R2 

Y Axis Intercept 2.30E+01 2.75E+01 0.84 4.07E-01 

3.36E-01 

Longest Spell with Min Temp Above Threshold 2.91E+00 7.44E-01 3.92 2.44E-04 

Monthly Average Min Temp 1.09E+00 5.17E-01 2.10 3.99E-02 

TIME -4.50E-02 2.11E-02 -2.14 3.69E-02 

Number of Days per Month with Demand Exceeding a Given Threshold 

Independent Variable 
Coefficient 
Estimate 

Standard Error z Value Pr(>|t|) R2 

Y Axis Intercept -4.20E+00 9.86E-01 -4.26 2.05E-05 

4.09E-01 

Average Spell with Max Temp Above Threshold 2.34E-01 7.90E-02 2.96 3.03E-03 

Longest Spell with Max Temp Above Threshold -2.20E-01 4.40E-02 -5.00 5.70E-07 

Total Days with Min Temp Above Threshold 6.97E-02 1.72E-02 4.06 4.82E-05 

Longest Spell with Min Temp Above Threshold 8.52E-02 3.18E-02 2.68 7.44E-03 

Average Spell with Precip Above Threshold -5.43E-01 1.59E-01 -3.41 6.43E-04 

Total Days with Precip Above Threshold -1.50E-01 2.34E-02 -6.42 1.33E-10 

Longest Spell with Precip Above Threshold 3.00E-01 6.78E-02 4.43 9.36E-06 

Monthly Average Min Temp 1.28E-01 1.84E-02 6.96 3.54E-12 

TIME -3.48E-03 8.87E-04 -3.93 8.62E-05 

Table 2.3 – Best GLM models selected using BIC for the three demand attributes. The Pr(>|t|) value notifies significance for 

the coefficient estimate.  
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spell with minimum temperature below the month’s 75th percentile value and number of days 

with precipitation above zero inches are the main climate variables, in addition to average 

demand from the previous month. The precipitation provides the moisture input while 

temperature spell provides information on losses from evaporation. The model does very well  

 

 

Figure 2.5 – Diagnostics plots for monthly average demand – (a) Scatterplot of observed vs. model estimates with the 1:1 

line, (b) autocorrelation of model residuals, (c) Q-Q plot of model residuals and (d) leave one out cross validated estimates 

versus observed values with the 1:1 line. 
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in estimating the monthly average demand with the correlation between observed and model 

estimates at 0.739 (Figure 2.5). There is a slight underestimation of higher average demand 

values. Autocorrelation of residuals at lags 1-3 are slightly significant, the time predictor could 

help but BIC optimization selected to neglect it. The Q-Q plot indicates that the residuals are 

quite Normal. The cross validated estimations also perform well, suggesting that the model has 

good predictive capability with the correlation of the cross-validated model versus observed of 

0.694.  

2.5.2 Monthly Maximum Demand 
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Figure 2.6 – Same as Figure 4 but for monthly maximum demand. 

Here too the Gamma distribution with an inverse link function is used in the GLM. For 

the monthly maximum demand average minimum temperature, time (a proxy for socio-

economic trend) and longest spell of minimum temperature below each month’s 75th percentile 

are the predictors. It is interesting to note that in addition to climate, maximum demand 

increases with growth and hence, time is selected as one of the predictors. The model 

performance (Figure 2.6) is quite similar to that of the monthly average described above. Apart 

from the over estimation of few points at the low end the model does very well. This is largely 

due to the Gamma distribution as it has a lower bound of zero and a positive tail. 

2.5.3 Number of days of exceeding threshold 

Using the Poisson distribution with the log link function in the GLM is appropriate for 

discrete variables—which this facet of water demand is. The results of this GLM are seen in 

figure 2.7. The number of days of demand exceeding a threshold of the 75th percentile value 

(81.3MGD) is somewhat of a noisy variable, hence, a number of variables are necessary to 
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model it as can be seen in Table 2.3. Note that using a Poisson distribution in the GLM the 

estimates are discrete and obviates rounding to integers as would be necessary if using 

traditional linear regression models. The model performance is quite good with low 

autocorrelation and normality of residuals. 

 

 

Figure 2.7 – Same as Figure 4 but for number of days of demand exceeding a threshold of 81.3 MGD (75
th

 percentile value). 
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2.6 Summary and Discussion 

 Using the GLM and climate attributes to model water demand provides multiple 

advantages to traditional methods. First, climate data is easily ascertained and from the data 

climate attributes can be simply calculated as opposed to socioeconomic variables, which can 

be difficult to define and the data hard to collect. Secondly, the inherent flexibility of 

Generalized Linear Modeling lends itself well to water demand modeling as the water demand 

variable of interest may be nonnormal or discrete. The GLM modeling results presented suggest 

that using climate covariates to describe monthly average and monthly maximum water 

demand is more parsimonious than using them to model monthly exceedance days. This 

shortcoming is fundamental to modeling monthly exceedance days, which is a particularly noisy 

water demand variable. Approaches to circumventing this issue are subsequently discussed.  

The developed models can be applied for short term (seasonal) management by 

incorporating seasonal climate forecasts – such applications are common in water resources 

management (e.g., Regonda et al., 2011) and recently for water quality management (Towler et 

al., 2010).  

 While the demand attributes considered in this research are relevant for utility 

managers, a more important variable is the variability of ‘extreme demand events’. In this, the 

managers would like to know the fluctuations in peak demand, threshold exceedance and 

length of exceedances. While individual components can be modeled using GLM as described 

above, extreme value analysis offers an attractive alternative to model these in an integrated 

manner incorporating predictor variables (e.g., Towler et al., 2010; Katz, 2010; Katz and 

Naveau, 2002). Future research will broach the topic of water demand extremes modeling. 
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Water demand projections are important for efficient management and planning of 

water supply. Traditionally these projections are made using statistical and econometric models 

that account for socio-economic growth and limited climatic variability. Given the sophistication 

and uncertainty in economic projections these models are accessible only to relatively well-off 

utilities. We see two major gaps – (i) need for an approach to model a variety of demand 

attributes that are needed by utility managers such as – average demand, monthly peak and 

number of demand exceedances above a threshold and (ii) comprehensive use of climate 

information. We first identify a suite of climate variables that include high/low temperature and 

wet/dry spells and the more traditional average temperature and precipitation. We find that 

these variables capture nuanced connections between climate and water demand, especially 

the lagged relationships. Second we propose a GLM framework to model attributes of water 

demand by incorporating the climate variables. We demonstrate the utility of this approach to 

demand modeling for a water utility in Aurora, CO. The various dependent variables (monthly 

average demand, monthly peak demand and monthly number of demand exceedances above a 

threshold) are modeled quite well and the models have the ability to capture a variety of water 

demand attributes and distributions. Additional socio-economic predictors can be easily 

incorporated, although here we use ‘time’ as a proxy for this. Furthermore, the GLM based 

modeling approach with climate variables provides the capability to make future water demand 

projections under climate change. In this, the climate attributes can be derived under climate 

change scenarios which can then be used with the developed GLM models to make demand 

projections. Above all, this method is simple and can run with limited computational resources; 

thus, accessible to all utilities.  
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3 Modeling Water Demand Extremes Using Extreme Value Analysis 

3.1 Abstract 

 Understanding and modeling variations in water demand extremes are important for 

efficient utility management and reliability of water supply, as inaccurate projections can lead 

to suboptimal infrastructure and management practices. Traditional methods using linear 

statistical models capture only the average demand variability, however water utilities make 

decision based on peak (or extreme) demands. We demonstrate the use of the emerging field 

of Extreme Value Analysis to model water demand extremes incorporating climate covariates. 

Two approaches in this analysis are used – (i) Generalized Extreme Value analysis to model 

monthly peak water demand and (ii) Points Over a Threshold analysis to model frequency of 

demand exceedances above a threshold and the magnitude of exceedances. Climate covariates 

can be incorporated in these models to capture nonstationarity due to climate change. We 

demonstrate the utility of this approach by applying it to model water demand extremes for 

Aurora, CO. 

3.2 Introduction 

Understanding variability in water demand and being able to make skillful projections of 

its future variability is crucial for efficient water supply management and for water demand 

forecasting. Water demand forecasts enable water utilities to plan for capacity expansion, 

pricing, conservation efforts, etc. (Billings et al., 2008). Demand is influenced by a large number 

of factors from the socio-economic realm – employment, economic activity, population, 

infrastructure efficiency, geographic constraints, and also the weather and climate realm – 
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meteorological and hydrologic variability. Most of the demand models are based on socio 

economic factors (e.g., Arbués et al. 2003; Katzman, 1977; Babel et al., 2007). Socio-economic 

projections such as population and economic growth are highly uncertain which translates into 

uncertain water demand projections (Arbués et al. 2003). Climate variability plays a strong role 

in modulating water demand and this varies with location: for example, increased temperatures 

lead to increased evapotranspiration and therefore to higher agricultural and municipal 

demand, likewise increased precipitation reduces the plant water demand and consequently 

the overall demand of the water utility (Billings, 2008). Average measures of precipitation, 

temperature, variations of these and rudimentary measures of spells such as number of rainy 

days have all been used in the past to model water demand (e.g., Smoyer-Tomic, 2003; Foster 

et al., 1981; Billings, 1982). Furthermore, seasonal or monthly average demand has largely been 

the focus of current modeling efforts (McKee et al., 1995; Hanke et al., 1982). In Chapter 2 a 

suite of weather attributes that include hot/cold and wet/dry spells was developed to model 

aspects of monthly water demand with substantial skill. The existing water demand modeling 

efforts are mainly for average demands incorporating basic weather attributes. 

A key attribute of water demand for planning and management is the extreme water 

demand events. Specifically, peak demand (either peak day and/or seasonal peak) is used for 

treatment plant capacity evaluation, network design and for securing capital for new 

infrastructure, capacity expansion, etc. (Arbués et al., 2003, Billings et al., 2008). Also of interest 

is the interval of time with elevated demand or demand above a critical threshold. Weather 

attributes do a lot to modulate the water demand extremes. Current models are limited in their 

ability to model extremes and this is a major gap in demand management, which motivates this 
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research. The emerging field of Extreme Value Analysis (EVA) offers an attractive, simple and 

robust approach to modeling demand extremes that can be adapted with a wide range of 

utilities of economic resources. The desire to better model hydrologic risks was the early 

motivation for EVA (Gumbel, 1941). It has since matured and is now widely used in modeling 

hydrologic, meteorologic and sea level extremes (Fiorentino, 1984; McNeil, 1997; Swift, 1989; 

Beguería, 2006; Coles, 2003; Katz, 1995; Eaton, 1994; Coles, 2001; Smith, 1989); financial risk 

estimation (e.g., Embrechts, 1999); and for hydrological losses (McNeil, 1997).  

Weather Statistic Thresholds 

Minimum Temperature 

June  57°F 

July 62°F 

August 60°F 

Maximum Temperature 

June  89°F 

July 94°F 

August 89°F 

Precipitation 

June  0 in 

July 0 in 

August 0 in 

Table 3.1 - 75
th

 percentile values for weather in Aurora, CO. These values were used as threshold for developing 

climate attributes. 

 At the core of the EVA is the recognition that extreme events by definition occur in the 

tail of the probability density function (PDF); that the traditional PDFs have a thin tail thereby, 

underestimating the probability of extreme events; thus heavy tailed PDFs are necessary, which 

are developed from theory (Katz and Naveau, 2002; Coles, 2001). Extreme events also vary in 

time and space and consequently the probability of their occurrences – to capture this 

variability (i.e., nonstationarity) the PDFs should also vary. To this end, EVA proposes modeling 
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of the parameters of the heavy tailed PDFs as a function of covariates. In this research, the 

covariates are the weather attributes identified in recent research (see Chapter 2). 

We introduce EVA for modeling water demand and hope that this initiation to the field 

will lead to further application and expansion of this approach. The paper is structured as 

follows: We introduce the readers briefly to the two extreme value analysis methods – block 

maxima and Points Over a Thresholds (POT) – in this we also describe the use of these methods 

with covariates to model nonstationary features. We then demonstrate the utility of these  

Weather Attributes (Covariates) Definition 

Correlation with 

Monthly 

Maximum 

Demand 

Average Monthly Max Temperature  

Daily maximum temperature values averaged 

over one month. 0.35 

Average Seasonal Minimum Temperature 

Daily minimum temperature values averaged 

over one month. 0.34 

Average Seasonal Precipitation 

Daily precipitation values averaged over one 

month. 0.04 

TIME A vector of values progressing chronologically. -0.05 

Preceding Month Average Water 

Demand 

Average water demand from preceding month 

(lag 1). 0.55 

Average Monthly Daily High Hot Spell in 

Days 

The average length in days of a spell with daily 

high temperatures over a given threshold for 

each month. 0.25 

Total Monthly Days with High 

Temperature Above Threshold 

Total days the maximum daily temperature 

exceeds a given threshold in a month. 0.26 

Maximum Monthly Daily High Hot Spell 

The longest spell with daily high temperatures 

over a given threshold in a given month. 0.25 

Average Monthly Nightly Low Hot Spell in 

Day 

The average length in days of a spell with 

nightly low temperatures above a threshold for 

each month. 0.39 

Total Monthly Nights with Low 

Temperature Above Threshold 

Total days with the nightly low temperature 

above a given threshold for each month. 0.48 

Maximum Monthly Nightly Low Hot Spell 

The longest spell in days with nightly low 

temperatures above a given threshold for each 

month. 0.50 

Average Monthly Precipitation Spell in 

Days  

The average length in days of a spell with 

precipitation above a given threshold for each -0.06 
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month. 

Total Monthly Days with Precipitation 

Below Threshold 

Total days with the precipitation above a given 

threshold each month. -0.22 

Maximum Monthly Precipitation Spell 

The longest spell in days with precipitation 

above a given threshold each month. -0.05 

 Table 3.2 – Weather attributes and their correlation with monthly maximum water demand. Bolded values are 

statistically significant at 95% confidence level and, bolded rows are variables used in the nonstationary GEV as 

covariates. 

methods to modeling water demand extremes from water utility of Aurora, CO and conclude 

with a summary and discussion of the results and the methods.  

3.3 Methods for Modeling Extremes - Extreme Value Analysis 

 The approach methodologies used in this study are detailed in this section. Information 

regarding climate data collection, weather spell statistics extrapolation, correlation methods 

and an introduction to the Monthly Maxima approach and the POT approach can be found in 

this section. 

As described above, understanding the distribution of extreme events is crucial for 

efficient water resources management. There are two types of extremes that would be of 

interest to utilities – (i) the extreme demand over a certain period or block, such as a month 

(block maxima approach) and (ii) the frequency of exceeding a fixed threshold and the 

magnitude of exceedances (POT approach). Below we describe methods to model these two 

types. 

3.3.1 Modeling Block Extremes - Generalized Extreme Value Approach 

 Extreme values can be thought of as occurrences from an underlying distribution. 

However, when the maximum of a sample (or block) is considered results from extreme value 
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theory suggests that the block extremes follow a Generalized Extreme Value (GEV) distribution 

in the limit (that is in the presence of large number of observations, a sufficiently large block 

and assuming the extremes to be independent and identically distributed) (Leadbetter, 1983; 

Coles, 2001). The GEV distribution is given with the following cumulative distribution function; 

                   
   

 
 
 
 

 
          (3.1) 

where             are the location, scale and shape parameters, respectively, and   is a value 

of the seasonal monthly water demand maxima. This notation is most common in statistical 

literature; however, in hydrology it is common for the notation to include –   instead of   (Katz, 

2002). The location parameter, , indicates the center of the distribution, the scale parameter, 

 , represents the spread of the distribution, and the shape parameter,  , represents the 

behavior of the distribution in the tail. Positive value of shape parameter indicates heavy tail, a 

value of zero suggests thin tail and a negative value points to a bounded tail. Also, for the 

heavy-tailed case, it must be true that, 

     
   

 
    . 

The parameters are estimated using Maximum Log Likelihood (MLE) procedure, wherein 

parameters are obtained as those that maximizes the log likelihood function (Coles, 2001; Katz 

and Naveau, 2002). The above form of GEV is fitted to the entire data resulting in a single 

model to describe its distribution. However, the extreme values show significant variability and 

often the variability is driven by external factors including trends. This is true with many natural 

phenomena such as floods, droughts and certainly is the case with water demand. Modeling 
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such variability means obtaining an appropriate GEV for each value, also known as a 

nonstationary GEV. To achieve this in a parsimonious manner, the parameters of the GEV 

distribution are allowed to vary as a function of covariates that orchestrate the variability of the 

extremes (Katz and Naveau, 2002). The model is given as, 

                               (3.2) 

                                   (3.3) 

               (3.4) 

where the variables            are the covariates which can include ‘Time’ to consider a 

temporal trend, and the betas are the coefficients of the regression. Shape parameter is 

generally not varied as it tends to be noisy, but it too can be varied as the other two. Notice 

that the above form is reminiscent of a Generalized Linear Model (GLM, McCullagh and Nelder, 

1989). The coefficients are estimated using the maximum likelihood approach that is commonly 

used in GLM (Katz and Naveau, 2002). The best combination of covariates, if there are several 

of them, is selected using a likelihood ratio test. In this, models are fit with various 

combinations of the covariates and are then compared in pairs on their values of likelihood 

function, which selects a parsimonious model (Katz and Naveau, 2002; Coles, 2001).  

Variations of the nonstationary GEV idea have been developed for flood frequency 

modeling (Sankarasubramanian and Loll, 2003; Rajagopalan et al., 2010) and recently Towler et 

al., 2010 applied this for modeling maximum streamflow and consequently water quality 

extremes – for both seasonal time scale and multidecadal time scales under climate change. 
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The two forms of GEV modeling provide a strong capability to characterize extremes at a variety 

of time scales that will be of use in water supply planning.  

3.3.2 Model for Threshold Exceedance of Extremes - Points Over a Threshold (POT) 

Approach 

Another attribute of extremes, in addition to the extreme value in a block described in 

the previous section, is exceedances with respect to a threshold. Typically, if values exceed a 

threshold they have direct consequences – in the case of floods it is the risk to infrastructure 

and human life, in the case of insurance damage it can be risk to payouts by the insurance 

company and in the case of water demand it can be the risk to adequate water supply or 

additional expense to meet high demand. In modeling threshold exceedances there are two 

aspects – (i) the probability of exceedance or non-exceedance of the threshold described as a 

Poisson Process (PP) and (ii) the magnitude of exceedances when there is an exceedance 

described by a Generalized Pareto Distribution (GPD) – similar to the GEV (see Coles, 2001; Katz 

and Naveau, 2002).  

The GPD cumulative distribution function for values exceeding a threshold is as follows, 

                
 

 
  

 
 

 
     (3.5) 

where, similarly to the GEV distribution,   is the scale parameter and   is the shape parameter 

with the following necessarily being true, 
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The scale parameter can be allowed to vary with respect to a chosen set of covariates to 

create a non-stationary model useful for understanding evolving risks. 

The threshold can be user specified—something that might have significance in a 

decision making context—or it can be selected in a quasi-objective manner. Wherein, different 

thresholds are selected and for each the scale parameter is estimated and the region where the 

parameter remains stable is used to select the threshold. A higher threshold results in fewer 

exceedances and a lower one makes every event an extreme. Thus we suggest selecting a 

threshold based on the system requirements and the parameter sensitivity. 

To model variability in the exceedances the parameters of the GPD need to vary with 

covariates. The scale parameter can be modeled in a GLM framework, similar to the 

nonstationary GEV described in the previous section, as: 

                                  (3.6) 

            (3.7) 

where the variables            are the covariates which can include ‘Time’ as one of them to 

consider a temporal trend, and betas are the coefficients. The shape parameter is generally not 

varied as it tends to be noisy, but it too can be varied as the other two if desired.  

As mentioned above a companion procedure for the occurrence of exceedance is 

necessary to complete the model. The occurrence is typically modeled as a Poisson Process 

(Katz and Naveau, 2002; Coles, 2001). The rate parameter,  , is generally obtained as the 
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average number of occurrences. Nonstationarity in this modeled similarly using a GLM (also 

known as Poisson regression); 

                              (3.8) 

where the variables            are the covariates. 

A point process approach has also been proposed (Katz and Naveau, 2002; Coles, 2001) 

to model both, the occurrence of exceedances and the magnitudes with a GPD, simultaneously. 

This has flexibility in terms of relating to GEV and in estimating uncertainties.  

Here too Maximum Likelihood Estimation (MLE) method is used to estimate the 

parameters of the GPD and the Poisson Process. As is the case of GEV, models are fitted with 

different combinations of covariates and the pairwise comparison using likelihood ratio test is 

performed to consequently select the best model. All of these extreme value analysis methods 

can be easily implemented in the software and programming language R (Stephenson and 

Gilleland, 2006; Gilleland and Katz, 2005). 

3.4 Application and Data 

  The data set used for this study is daily production data from the city of Aurora, CO in 

millions of gallons per day (MGD). Water is produced to meet the respective demand and 

therefore the water production data from this utility can be considered water demand. The 

data covers the period from January 1st, 1990 to December 31st, 2010. The critical season of 

high demand is summer, specifically the three month period of June through August. For the 

block maxima analysis monthly maximum demand is computed from the daily data. For POT a 

threshold of 90 MGD is chosen – this threshold could be related to a specific utility’s capacity. 
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This threshold selection is reasonable for many reasons; it is well within the safe sensitivity 

range for GPD modeling and it also is sufficiently high to be of concern for the utility and will be 

described in the following section. As has been mentioned, threshold selection can be varied 

based on the particular needs of an individual utility.  

To incorporate climate attributes as covariates to model nonstationarity, daily 

meteorological data—precipitation, maximum and minimum temperatures—for the study 

location is obtained from the National Climatic Data Center (NCDC) archive of National Oceanic 

and Atmospheric Administration (NOAA) (http://www.ncdc.noaa.gov). The NCDC data archive is 

extensive, quality checked and offers a variety of meteorological and climate data for locations 

throughout the country. Location of the data closest to the study region can be selected from 

the data base. Details of the data set can be found at the aforementioned web location. We 

computed hot/cold and dry/wet spells with the thresholds shown in Table 3.1. In Chapter 2, the 

use of weather spells for modeling demand attributes is motivated. A suite of weather 

attributes are developed and their correlations with monthly maximum water demand are 

shown in Table 3.2. For computational ease variables with significant correlations are selected 

for use in modeling water demand extremes with nonstationarity. 

3.5 Results 

The results are presented for both the block maxima and the POT methods for the 

stationary and nonstationary cases.  
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3.5.1 Monthly Maximum Demand 

 A GEV model was fitted to the block maxima with the block being a month in this case. 

Monthly maximum water demand, in MGD, was computed from the daily demand data for the 

three months (June-August) over the 21 year period, thus providing 63 values (Figure 3.1). 

Given the paucity of data we chose a smaller block of a month – this was used in Towler, 2010 , 

for modeling monthly maximum of turbidity in drinking water supply. In this study they 

computed the maximum flow for each of the winter months (Nov-Mar) and fitted a GEV to 

them. Using months as a block can circumvent issues created by smaller data sets such as the 

case here.  

The stationary GEV model was fit using the methodology described in the previous section – 

see Table 3.3 for parameter values. The diagnostics of the fit (see Chapter 3) show that the 

observed quantiles are well captured by the model and corroborated by the Probability Density 

Function (PDF) fits.  

Nonstationarity in the monthly water demand extremes is quite apparent from Figure 

3.1. To model this, nonstationary GEV models have to be fitted. Following the method 

described in  

 
  

Non-Stationary Models 

Variable Stationary Model 

Varying Scale 

Parameter:  

  =  1(a) +  2(b) + 

 3(c) +  4(d)  

Varying Location 

Parameter: 

μ = β1(a) + β2(b) + 

β3(c) + β4(d)  

  =  1(a) +  2(b) +  3(c) + 

 4(d) &   =  5(a) +  6(b) + 

 7(c) +  8(d)  

 1 - -0.02 0.36 0.57 

 2 - 0.20 -1.65 -0.93 

 3 - 0.07 0.28 -0.44 

 4 - -0.10 0.40 0.37 
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 5 - 0.02 -0.02 0.17 

 6 - - - -0.02 

 7 - - - 0.51 

 8 - - - 0.05 

Location Parameter ( ) 65.27 65.53 31.41 83.10 

Scale Parameter ( ) 12.17 7.86 8.40 -38.25 

Shape Parameter ( ) -0.29 0.05 -0.42 -0.47 

Negative Log Likelihood 246.70 249.91 219.62 224.96 

Significance (p-value) - Fail (0.159) Yes (0.005) Fail (0.215) 

**Where (a) is the total monthly days with minimum temperatures above a threshold, (b) is the total monthly days with 

precipitation above the threshold, (c) is the monthly average maximum temperature and (d) is the preceding month average 

water demand. 

Table 3.3 – Generalized Extreme Value Distribution model results. The column in bold is the best fit model. 

the previous section the location and scale parameters of the GEV were allowed to each vary 

individually and then both vary simultaneously, resulting in three different non-stationary 

models with statistically significant weather attributes from Table 3.2 as covariates (Equations 

2-3). The best model was chosen based on its significance in a likelihood ratio test and the 

diagnostic plots. Here the resulting best model was one in which the location parameter varied 

with covariates, shown in bold in Table 3.3. This nonstationary model is used to compute the 

GEV parameters for each month and consequently, the various quantiles. This is shown in 

Figure 3.2 where the dotted lines correspond to the 0.05 and 0.95 quantiles, the solid line is the 

observed monthly peak demand; the dashed lines are the quantiles from the stationary GEV. 

Notice that the quantiles from the stationary model remains fixed while the nonstationary 

model captures  
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Figure 3.1 – Monthly maximum water demand (MGD) (Jun-Aug). 

 

Figure 3.2 – Quantiles from stationary and nonstationary GEV models. Solid line shows the monthly maximum 

water demand, dotted lines are the 0.05, median and 0.95 quantiles from the nonstationary GEV, and dashed 

lines are the quantiles from stationary GEV model.  
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the variability of the observed peak demand very well. This ability to capture nonstationarity 

has significant implications for realistic assessment of demand risks that can be of immense 

help in planning decisions; because water demand in not a stationary phenomenon, it is 

essential to have models that can incorporate covariates and become nonstationary. With 

seasonal climate forecasts, this modeling approach can be used to make projections of 

distribution of peak demand and therefore help in devising effective decision strategies. This 

approach and its variations have been developed for nonstationary flood frequency forecast 

(Rajagopalan et al., 2010; Arumugam and Loll, 2006). In this research we have one of the 

earliest arguments for application in water demand modeling. 

3.5.2 Threshold Exceedances of Water Demand 

  Often water managers would like to know the risk of demand exceeding a certain 

threshold that has operation implications. As described earlier the POT approach enables 

modeling this in a comprehensive manner. Figure 3.3 shows the time series of daily water 

demand during the months of June-August for all the years with a threshold of 90 MGD shown 

as a dotted line. The threshold can be user specified, something that might have significance in 

a decision making context, or it can be selected in a quasi-objective manner. Different 

thresholds are selected and for each selected threshold the scale parameter is estimated as 

shown in Figure 3.4, the stable region extends from 70MGD through 100MGD after which the 

scale parameter changes sharply. A higher threshold results in fewer exceedances and a lower 

one makes every event an extreme. Thus we suggest selecting a threshold based on the system 

requirements and the sensitivity plots such as Figure 3.4 – this led to the threshold of 90MGD in 

the present study.  
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We fit a GPD model to all the exceedances of 90MGD – i.e., stationary model, the 

parameter estimates of which are shown in Table 3.4. It can be seen that the model performs 

quite well in terms of capturing the distribution of the observed daily demand data. The daily 

demand data and the 0.05 and 0.95 quantiles are shown in Figure 3.5 as solid and dashed lines, 

respectively. We see that the variability of the demand over time is not well captured, which 

necessitates the nonstationary GPD model. As with the GEV, models for varying the scale 

parameter are developed with combinations of the predictor variables and using a likelihood 

ratio test the best model is selected and is shown in Table 3.3. The shape parameter is generally 

not varied, especially with short data length, because it can be quite noisy and thus change the 

GPD distribution erratically. In the nonstationary model the aim is to model each daily  

 
 

Stationary Model 

Non-Stationary Model 

Variable 
σ = β1(T) + β2(MaxT) + 

β3(P) + β4(MinT)  

 1 - 0.59 

 2 - -0.08 

 3 - 1.73 

 4 - -0.38 

Scale Parameter ( ) 9.44 86.80 

Shape Parameter ( ) -0.26 -0.10 

Negative Log Likelihood 653.16 640.50 

Significance (p-value) - Yes (0.000) 

*** (T) = Time, (MaxT) = Daily Maximum Temperature, (P) = Precipitation Days 

Below Threshold, (MinT) = Daily Minimum Temperature 

Table 3.4 – Generalized Parateo Distribution model results. The nonstationary 

model statistically significant in comparison to the stationary model and is 

shown in bold. 
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Figure 3.3 – Daily water demand during Jun-Aug of each year. The dotted line is the threshold corresponding to 

90 MGD, considered to be high enough that exceeding it would stress the water supply of the utility.  

 

Figure 3.4 – Sensitivity of the scale parameter to choice of threshold. A threshold selection of 90 MGD is in the 

stable region and an appropriate choice for GPD modeling. 
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Figure 3.5 – Quantiles from stationary and nonstationary GPD models. Solid line shows the daily water demand, dotted lines 

are the 0.05, median and 0.95 quantiles from the nonstationary GPD, and dashed lines are the quantiles from stationary GPD 

model.  

exceedance with the appropriate GPD so the diagnostics is performed on the residuals and they 

are seen to be well modeled (see 10, Chapter 3). Furthermore, the 0.05 and 0.95 quantiles from 

this are shown as dotted lines in Figure 3.5, which shows that the temporal variability of the 

demand is very well captured relative to the stationary model.  

The occurrences of exceedances are modeled as a Poisson Process. The rate parameter, 

λ, is the average number of occurrences per year over the record of the historical data and here 

it is estimated to be 10.4 per year or 3.37 per month. The monthly occurrences are shown in 

Figure 3.6. The average occurrence is shown as the dashed line and the nonstationary 

occurrences, whose derivation is shown below, are shown at the median and quantile values as 

the dotted line. To model the month-to-month variability seen in the occurrences we fitted a 

GLM (Poisson regression) to the number of occurrences each month using Equation (8) with the 
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set of covariates in Table 3.2. The 0.05 and 0.95 quantiles from this model are shown as dotted 

lines in Figure 3.6 – and it can be seen that the month to month variability of occurrences of 

exceedances is quite well captured by the nonstationary model.  

 

Figure 3.6 – Quantiles from stationary and nonstationary Poisson models. Solid line shows the monthly 

exceedances, dotted lines are the 0.05, median and 0.95 quantiles from the nonstationary Poisson model, 

dashed lines are the quantiles from stationary model.  

3.6 Discussion 

We proposed two extreme value analysis techniques for modeling water demand 

extremes – one to model maximum demand values over a block of a month (i.e., monthly 

maximum) using GEV and the other to model exceedances above a threshold using POT. They 

are complementary and together provide comprehensive insights into the variability of 

extremes. We found that the variability in extremes is modulated by climate attributes and, to 

model this nonstationary versions of these methods are proposed. These powerful and 

emerging methods offer attractive alternative approaches to modeling extremes in the face of 
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variability from climate or other sources. We demonstrated the utility of these methods by 

applying them to modeling water demand extremes from Aurora Water, a water utility in 

Aurora, CO. 

Traditional statistical methods based on linear models using Normal Distributions 

capture only the average variability and are incapable of modeling extreme events or events in 

the tail of the distributions. However, extreme water demand estimates critically are important 

for a variety of decisions made by utility managers ranging from plant operations, regulatory 

compliance, plant capacity expansion, operational viability, infrastructure updates, etc. The 

Extreme Value Analysis methods proposed here can model the high impact extreme events in a 

more robust manner than traditional, Normal methods. These methods can provide scenarios 

of water demand extremes at seasonal time scales incorporating seasonal climate forecasts for 

near term operational management and planning (e.g. Towler et al., 2010) and also at longer 

time scales incorporating climate change projections (Towler et al., 2011, Chapter 5).  

We used climate attributes as covariates but other socio-economic variables and their 

projections, when available, can also be included in the model. Moreover, any variables of 

known importance to the utility can be tested using the methods described and statistically 

significant variables should be included in the specific utility’s model. 

The EVA models can be applied generally across locations under different climate and 

socio-economic conditions. To test this we applied these approaches to water demand from 

Tampa Bay, FL. The Tampa Bay, FL utility provides a stark contrast of climate, economy, 

population growth, and overall size from Aurora, CO. Tampa Bay, FL is dominated by maritime 

climate with substantially more rain as well as a less pronounced seasonality but with much 



49 
 

  

higher population and a larger service area. The Extreme Value Analysis approach proved 

capable of modeling the water demand extremes as robustly and skillfully as they did in Aurora, 

CO and the results are described in (Chatper 3, see Appendix A for full results).  

4 Projecting Demand Extremes under Climate Change Using Extreme 

Value Analysis 

4.1 Abstract 

  Accurate projections of water demand extremes are crucial for all aspects of the 

planning process; defining target growth, securing financing, etc. The role of climate on water 

demand variability is pronounced and will likely be more so in the future due to climate change. 

Thus, a flexible approach is needed to project water demand extremes that can incorporate 

climate change scenarios. An integrated approach was developed with two components: (i) 

extreme value models for water demand maxima and threshold exceedances that are based on 

climate attributes are fitted to the historic water demand and climate data and, (ii) ensembles 

of future weather sequences conditioned on climate change projections generated using 

stochastic weather generator. Together they provide scenarios of water demand extremes 

under various climate projections. Aurora, CO was used as a case study to demonstrate the 

utility of this approach. 

4.2 Introduction    

Water demand projections help water utility managers make short-term operational 

decisions such as treatment plant production, balancing supply and demand, and potential 

water use restrictions in the event of a drought. Every year, water utility managers and financial 
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staff make a projection of how much water there are going to sell (water sales) and, 

subsequently, project the resultant revenues as part of their annual budgeting process. 

Additionally, these demand projections help managers make long-term decisions about 

additional supply acquisition, additional treatment capacity, transmission mains, storage tanks, 

water conservation impacts, price elasticity and demand management (Billings et al., 2008). 

Longer-term financial sustainability for the water system is anchored by accurate long-term 

demand forecasts. Accurate water demand forecasts are needed for both short-term 

(operational and financial) and long-term (planning and financial). The costs of being wrong can 

be significant. Inaccuracies in longer-term forecasts can result in large costs to utilities and their 

customers. For example, costs can manifest in the form of stranded capital assets, insufficient 

supply reliability, or a reduced level of service due to treatment plant capacity limitations.  

All utilities use water demand projections, however, many of them are from simplified 

models and fail to incorporate nonstationarity and variability from climate change and other 

uncertainty. A large number of factors are known to impact water demand; including 

population, employment, technology, weather, climate, price, infrastructure efficiency, 

conservation programs, socioeconomics and water awareness (Billings et al., 2008). Models 

have focused mainly on the social and economic variables—which are often difficult to 

project—resulting in complex, highly uncertain models, many of which are outside the reach of 

utilities that are small in size or have limited fiscal resources.  

Both climate and weather play a fairly significant role in modulating water demand and 

some research initiatives have used precipitation and temperatures to help model water 

demand (e.g., Foster et al. 1981; Billings, 1982; Nieswiadomy et al. 1988). Typically, climatic 
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variables are represented as temporal (i.e., seasonal, monthly, annual etc.) averages but this 

approach may be limiting in that, the effect of precipitation and temperatures may be more 

pronounced at first, and then decrease with time (Maidment et al. 1986). To address this issue, 

and others, spell statistics (i.e. droughts, heat waves, etc.) have been considered (e.g., Smoyer-

Tomic, 2003; Foster et al., 1981; Billings, 1982) and more recently in Chapter 2 for use in 

statistical demand models. 

Utilities are specifically interested in the high impact, low probability water demand 

events which drive infrastructure planning decisions and the need for capital to fund such 

improvements. Accurate projections of peak hour demand and peak day demand are necessary 

for planning capital improvements such as an alternate supply of source water, treatment plant 

capacity, transmission line upgrades, storage tanks, and booster pumping stations.  

These events, by definition, are ‘extreme events,’ and one approach that this research 

found to better model these events is the use of Extreme Value Analysis (EVA). Climate change 

and more extreme weather events will likely change peak demands and will need to be 

considered by water utilities in future planning, design, and operations. Extreme Value Analysis 

has been used in a wide variety of fields including the financial industry (e.g., Embrechts, 1999), 

civil engineering (e.g., Holmes, 1999), ecology (e.g., Eaton, 1994), water quality (Towler, 2010) 

and especially climatology (e.g., Beguería, 2006; Coles, 2003; Katz, 1995; Furer et al., 2011). EVA 

has been used in hydrology to estimate and forecast flood frequency, model financial loss 

related to flooding events and to model extreme hydrological events in water sheds of various 

sizes (Fiorentino, 1984; McNeil, 1997; Swift, 1989; Beguería, 2006; Coles, 2003; Katz, 1995, 
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Eaton, 1995; Coles, 2001; Smith, 1989). For a full discussion on EVA and hydrology, see Katz, 

2002. However, EVA has not seen employment in the water demand sector. 

Extreme events exhibit significant variability over time driven by climate fluctuations. 

For example, an increasing trend in the frequency and intensity of precipitation events in the 

US has been known for more than 15 years (Trenberth, 1998 & 1999). The International Panel 

on Climate Change (IPCC 2010) projects the same for much of the world in the coming decades 

due to climate change. Researchers in water resources and hydrology have been working on 

translating the climate change projections from the global climate models to impacts on 

hydrology and water resources. This requires downscaling climate information which is often at 

coarse spatial and temporal scales to scales of interest and driving them through hydrologic 

models to generate ensembles of streamflows and consequently, impacts to water resources. A 

body of literature exists on understanding water resources variability under climate change in 

the Western US (e.g. Christensen, 2004; Rajagopalan et al., 2009). Recently, joint efforts from 

water utilities have been developing tools for water supply and demand with a focus on 

planning decisions by water utilities (JFRCCVS, 2012, Ray et al., 2010). The traditional approach 

of downscaling climate information to process models can be computationally intensive and 

deter a majority of water utilities from being able to access them. Simple, effective and flexible 

tools are needed that can translate coarse climate information to specific attributes of decision 

variables without having to go through computationally intensive process models. Towler et al. 

(2010) developed an extreme value analysis models to translate monthly precipitation and 

temperature projections under climate change to projections of streamflow extremes and 

consequently water quality extremes in the Northwest United States and also for Aurora, CO 
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(Towler et al., 2011). Such models are effective in providing projections of extreme events that 

are essential to water utility managers for planning purposes.  

Demand is somewhat different than water supply and water resources due to the 

potential human response factoring into demand. But the same weather factors such as 

temperature and precipitation play a significant role in projecting water demand. This research 

has expanded this EVA approach to apply to projecting water demand extremes, and the 

potential impacts from climate change to those extremes.  

The paper is organized as follows. A brief description of the study application, data and 

climate change projections and impacts are first presented. The approach to generating 

ensembles of water demand extremes under climate change projections is next presented 

followed by the results and a summary.  

4.3 Study Area – Data and Climate Change Impacts 

The water utility of Aurora, CO was chosen as the study location, which is a rapidly 

growing suburb of Denver with limited water supply in a semi-arid region. Recent dry spells 

(Pielke, et al., 2005) have exacerbated the situation and climate projections portend further 

stress to the water resources for the system. They have instituted short and long term demand 

management (Kenney et al., 2008) in addition to embarking on developing a waste water reuse 

facility to augment their limited mountain water supply (see details at 

http://www.prairiewaters.org/). Climate change projections from multi-model global  

circulation models in conjunction with hydrologic models (Yates et al., 2005) show 10-25% 

reduction in the runoff in the Colorado basin and 5-10% reduction in the Arkansas basin over a 

50-year period, both sources provide water to Aurora (Ray et al., 2008). Clearly, Aurora, CO 

http://www.prairiewaters.org/
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(and potentially many other utilities) needs to minimize errors in future water demand 

projections, and also understand the potential impacts of climate change on these projections. 

Realistic projections of water demand extremes should be of immense use for all water 

managers as costly infrastructure decisions are necessarily being made, as the cost of being 

wrong could be significant. 

Weather Statistic Thresholds 

Minimum Temperature 

June  57°F 

July 62°F 

August 60°F 

Maximum Temperature 

June  89°F 

July 94°F 

August 89°F 

Precipitation 

June  0 in 

July 0 in 

August 0 in 

Table 4.1 – Threshold of daily minimum and maximum temperatures and, precipitation, to compute weather 

attributes for use as covariates in the extreme value analysis models. 

Daily water production data in million gallons per day (MGD) was available for the 

period 1990-2010. In general, water is produced to meet the respective demand and therefore 

the production data can be considered water demand. The critical season of high demand for  
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Covariate Definition 

Correlation 

with Monthly 

Maximum 

Demand 

Average Monthly Max 

Temperature  

Daily maximum temperature values averaged over 

one month. 0.35 

Average Seasonal Minimum 

Temperature 

Daily minimum temperature values averaged over 

one month. 0.34 

Average Seasonal Precipitation Daily precipitation values averaged over one month. 0.04 

TIME A vector of values progressing chronologically. -0.05 

Average Monthly Daily High Hot 

Spell in Days 

The average length in days of a spell with daily high 

temperatures over a given threshold for each 

month. 0.25 

Total Monthly Days with High 

Temperature Above Threshold 

Total days the maximum daily temperature exceeds 

a given threshold in a month. 0.26 

Maximum Monthly Daily High 

Hot Spell 

The longest spell with daily high temperatures over 

a given threshold in a given month. 0.25 

Average Monthly Nightly Low 

Hot Spell in Day 

The average length in days of a spell with nightly 

low temperatures above a threshold for each 

month. 0.39 

Total Monthly Nights with Low 

Temperature Above Threshold 

Total days with the nightly low temperature above 

a given threshold for each month. 0.48 

Maximum Monthly Nightly Low 

Hot Spell 

The longest spell in days with nightly low 

temperatures above a given threshold for each 

month. 0.50 

Average Monthly Precipitation 

Spell in Days  

The average length in days of a spell with 

precipitation above a given threshold for each 

month. -0.06 

Total Monthly Days with 

Precipitation Below Threshold 

Total days with the precipitation above a given 

threshold each month. -0.22 

Maximum Monthly Precipitation 

Spell 

The longest spell in days with precipitation above a 

given threshold each month. -0.05 

 Table 4.2 – Weather attributes and their correlation with monthly maximum water demand. Bolded values are 

statistically significant at 95% confidence level and, bolded rows are variables used in the nonstationary GEV as 

covariates.  

Aurora is summer, specifically the three month period of June-Aug. Monthly maximum demand 

was computed from the daily data for use in projections. Daily weather data consisting of 
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precipitation, maximum and minimum temperature were obtained from the National Climatic 

Data Center (NCDC, http://ncdc.noaa.gov/). A suite of weather attributes (hot/dry, wet/cold 

spells along with average weather variables) that have been identified to be related to average 

water demand and water demand extremes (Chapters 2, 3) were computed from the daily 

weather data (thresholds used for spells are shown in Table 4.1) for the summer months in the 

data period (the attributes used are shown in Table 1 and 2).  

Water demand variability is often more dependent on weather phenomena like 

droughts and extreme temperatures or weather spells than traditionally employed 

socioeconomic variables (Arbués, 2003). For this study, weather spell statistics (Table 4.2) were 

used as covariates in this analysis, in addition to the daily weather information ascertained 

from the NCDC. We computed hot/cold and dry/wet spells with the thresholds shown in Table 

4.1. In Chapter 2 we motivated the use of weather spells for modeling demand attributes. A 

suite of weather attributes were developed and their correlations with monthly maximum 

water demand are shown in Table 4.2. For computational ease, variables with significant 

correlations were selected for use in modeling water demand extremes with nonstationarity. 

Moreover, the spell statistics can also be calculated for projected water demand data. For more 

background on creating weather spell statistics, see Chapter 2. 

Projections of precipitation and temperature for the region under climate change 

scenarios were solicited from the Joint Front Range Climate Change Vulnerability Study 

completed in 2012 (JFRCCVS, 2012). We used two projections from the A2 middle emissions 

scenario; increasing temperatures and decreasing precipitation (warm/dry scenario) and 

http://ncdc.noaa.gov/
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increasing temperatures and increasing precipitation (warm/wet scenario). The details of these 

scenarios can be seen in Table 4.3. Change in the annual average temperature over the 30-year  

 

Scenario GCM/Ensemble 

30 Year 

Precipitation 

Change (%) 

30 Year 

Average 

Temperature 

Change (°F) 

Warm/Wet ncar_ccsm3_0.2 3.77 3.40 

Warm/Dry Micro3_2_medres.1 -8.51 3.40 

Table 4.3 – Two climate change scenarios used in stochastic weather generation.  

planning horizon (2010-2040) was used along with two different forecasted precipitation 

scenarios; wet and dry. The temperature/precipitation scenarios will henceforth be referred to 

as warm/dry and warm/wet. These projected changes are used in a stochastic weather 

generator, which is described later, to generate ensembles of daily weather sequences.  

4.4 Approach for Projecting Water Demand Extremes  

 As described above, two attributes of water demand extremes are of interest – monthly 

maximum and the number of water demand exceedance days above a threshold. We propose 

an approach to projecting these extremes attributes based on future climate projections. The 

proposed approach has two main components – (i) extreme value analysis models for the two 

water demand extreme dependent variables based on weather attributes and (ii) a model for 

generating daily weather sequences and consequently the weather attributes, which are then 

combined with the extreme value analysis models to generate projections of water demand 

extremes. The components of this approach are described below.  
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4.4.1 Extreme Value Analysis Models for Water Demand Extremes 

In Chapter 3 we describe in detail the motivation for extreme value analysis models 

along with their development for water demand extremes data for the same study location as 

in this research. However, for the benefit of the readers we provide a brief description of the 

two models and refer to the above paper and other references for details.  

Monthly maximum demand, which is the maximum of a block of a seasonal (June-

August) month, is modeled using Generalized Extreme Value (GEV) distribution. This 

distribution results from theory as the limiting distribution of the maximum of a series of 

independent and identically distributed observations (Leadbetter, 1983; Coles, 2001; Katz and 

Naveau, 2002). The cumulative distribution function of the GEV is given as: 

                  
   

 
 
 
 

 
         (4.1) 

where             are the location, scale and shape parameters, respectively, and   is the 

dependent variable, monthly maximum demand in this case. The location parameter,  , 

indicates the center of the distribution or the mean, the scale parameter,  , represents the 

spread of the distribution or the variance, and the shape parameter,  , represents the behavior 

of the distribution in the tail. The GEV better models heavy-tailed distributions compared to 

traditional probability distributions and therefore preferable for modeling extremes (Katz and 

Naveau, 2002).  

 Extremes vary with time and also are modulated by external variables - i.e. 

nonstationarity. For example, water demand extremes have been shown to be related to 

weather attributes (Table 4.2) (see Chapter 2) and streamflow extremes have been shown to be 
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modulated by large scale climate and meteorological variables (Sankarasubramanian and Loll, 

2003; Towler et al., 2010). Thus to model the nonstationarity the parameters of the GEV have 

to be related to the external variables or covariates. To this end, the GEV distribution 

parameters can be modeled as a function of covariates as follows (Katz and Naveau, 2002): 

                               (4.2) 

                                   (4.3) 

               (4.4) 

where the variables            are the covariates which can include ‘Time’ to consider a 

temporal trend, and the betas are the coefficients of the regression. Shape parameter is 

generally not varied as it tends to be noisy, but it too can be varied as the other two. Notice 

that the above form is reminiscent of a Generalized Linear Model (McCullagh et al., 1989). The 

coefficients are estimated using the maximum likelihood approach that is commonly used in 

GLM (Katz and Naveau, 2002). Best combination of covariates, if there are several of them, is 

selected using a likelihood ratio test. In this, models are fit with various combinations of the 

covariates and are then compared in pairs based on their values of the likelihood function (Katz 

and Naveau, 2002; Coles, 2001), which selects a skillful yet parsimonious model. 

Variations of the nonstationary GEV idea have been developed for flood frequency 

modeling (Sankarasubramanian and Loll, 2003; Rajagopalan et al., ,2010) and recently Towler 

et al., 2010 applied this for modeling maximum streamflow and consequently water quality 

extremes – for both seasonal time scale and multidecadal time scales under climate change. 
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The two forms of GEV modeling provide a strong capability to characterize extremes at a variety 

of time scales that will be of use in water supply planning. 

4.4.2 Threshold Exceedance Model of Water Demand 

Block extremes, as described in the previous section, are based on selecting a single 

value within a block, thus discarding large amounts of data, which can be undesirable especially 

when the data set is limited. A complimentary approach is to model threshold exceedances 

using the Points Over a Threshold (POT) method. In this, a threshold is selected, often based on 

the system application, and the probability of exceedance is modeled as a Poisson Process (PP) 

with parameter   while the magnitude of exceedance is modeled using Generalized Parateo 

Distribution (GPD) (see Coles, 2001; Katz and Naveau, 2002). The GPD is given as:  

                
 

 
  

 
 
 
  

where,   is the scale parameter and   is the shape parameter.  

To model nonstationarity, similar to the GEV described above, the dependence of the 

parameters to covariates is introduced as:  

                                   (4.5) 

                (4.6) 

                               (4.7) 

where the variables            are the covariates which can include ‘Time’ as one of them to 

consider a temporal trend, and betas are the coefficients. Shape parameter is generally not 
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varied as it tends to be noisy, but it too can be varied as the other two if desired. As with the 

case of GEV the parameters are estimated via maximum likelihood estimation and the best 

combination of covariates are selected using likelihood ratio test (Katz and Naveau, 2002; 

Coles, 2001). The Point Process approach has also been suggested as a way to model the 

threshold exceedance process in a single model (Smith, 1989, Furrer et al., 2010).  

4.4.3 Generating Daily Weather Sequences under Climate Change 

 The covariates in the extreme value models are weather attributes that are based on 

daily weather information as mentioned above (see Tables 4.1, 4.2) thus, daily weather 

sequences are necessary. There is a rich literature on stochastic weather generation – 

traditional parametric (e.g., Richardson, 1984; Parlange and Katz, 2000; Furrer and Katz, 2007) 

and recent nonparametric techniques (e.g. Rajagopalan and Loll, 1996; Yates et al., 2003; 

Apipattanavis, 2007). Nonparametric weather generator based on time series bootstrapping 

(Rajagopalan and Loll, 1996; Yates et al., 2003) are simple and robust to implement. 

Furthermore, they can easily be modified to generate weather sequences conditioned on 

climate forecasts or projections (Apipattanavis, et al., 2009). Here we propose to us a block 

bootstrapping approach (Efron and Tibshirani, 1993); in this approach blocks of historical years 

are selected at random and with it the entire daily weather sequences. Sampling blocks of 

historical data and combining them to generate a rich variety of weather sequences is akin to 

generating from the multivariate probability density function (Efron and Tibshirani, 1993). This 

captures the variability at low frequency, besides being easy to implement. In this application, 

we chose 30-year blocks. Other sampling approaches based on K-nearest neighbor bootstrap on 

a daily time scale can be employed (Apipattanavis et al., 2009), but we chose the block 



62 
 

  

bootstrap for sake of parsimony. Precipitation and temperature trends for the simulation 

horizon are obtained from climate change projections (Table 4.3) and these trends are imposed 

on to the daily weather sequences from the block bootstrap to obtain sequences conditioned 

on climate change projections. This approach is widely used in hydrologic applications, recently 

Rajagopalan et al., 2009 used this to simulate streamflow in the Colorado River Basin to 

investigate water supply risk under climate change. By executing bootstrap resampling with an 

imposed trend, water demand projections can be used to inform decisions related to water 

resource needs. 

4.5 Results 

 A planning horizon of 30-year period was considered and we chose two plausible 

scenarios suggested from the climate change report for the study region (Ray et al., 2010). The 

scenarios are warm/wet and warm/dry, and Table 4.3 shows the associated precipitation and 

temperature trends. Daily weather sequences were generated based on the methods described 

in the previous section and from it the weather attributes. Nonstationary models for maximum 

monthly demand and threshold exceedances were fitted to the historical data – they are same 

as those developed in Chapter 3 and are shown in Table 4.4. 

 4.5.1  Monthly Maximum Water Demand Projections  

We generated 100 weather ensembles each 30-years long for the two climate change 

projection scenarios and also without the climate change trends – i.e. ‘natural variability.’ Table 

4.2 shows the weather attributes from these ensembles that were used in the stationary GEV 

model to generate projections of monthly maximum water demand. Figure 4.1 (a,b,c) shows  
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Non-Stationary Model: 

Variable   =  0+ 1(a) +  2(b) +  3(c) +  4(d)  

 0 91.08 

 1 0.60 

 2 -0.97 

 3 -0.29 

 4 0.33 

Location Parameter ( ) (nonstationary) 

Scale Parameter ( ) 9.98 

Shape Parameter ( ) -0.15 

Negative Log Likelihood 238.82 

**Where (a) is the longest monthly spell with minimum temperatures above a 

threshold, (b) is the longest monthly spell with precipitation above the threshold, 

(c) is the monthly average maximum temperature and (d) is time. 

Table 4.4 – Generalized Extreme Value distribution model. 

the water demand projections for the natural variability warm/wet and warm/dry scenarios, 

respectively. Clearly, water demand trends upward for Aurora under climate change 

projections. Even under a warm/wet projection where rainfall is projected to increase, the 

 

 



64 
 

  

 

 

Figure 4.1 - Projections of monthly maximum water demand from nonstationary GEV model (a) based on natural 

climate variability (b) based on warm/wet future climate projection, (c) based on warm/dry future climate. (d) is 

the Probability density functions of monthly maximum water demand projections for warm/wet future climate 

(grey lines are from individual simulation and blue is the average) for natural climate variability (red), (e) is the 

same as (d) but for warm/dry climate projections and (f) is Boxplots of the number of monthly maximum 

demand exceedances of 85 MGD for the three scenarios. 
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increasing trend in temperature appears to negate the precipitation effect and increase the 

water demand. Increasing temperature leads to increased evaporative losses and thus creates 

demand for more water (Arbués, 2003). The probability density function (PDF) of the monthly 

maximum demand from the warm/dry scenario is shifted to the right relative to the PDF from 

natural variability (Figure 4.1d). This shift translates into increased risk of higher demands, 

which tends to stress the system and also impact infrastructure planning decisions. 

Consistently, the number of exceedances of 85 MGD for the three climate projections is shown 

in Figure 4.1f and here, too, the number of exceedances increases substantially under climate 

change relative to natural variability.  

4.5.2  Water Demand Threshold Exceedance Projections 

Here, the parameter of the Poisson Process is estimated based on the covariates and 

consequently the number of exceedances generated. The threshold for exceedance is selected  

 
 

Nonstationary GPD Model *** Nonstationary Poisson Model** 

Variable   =  0+ 1(a) +  2(b) +  3(c) +  4(d)  
λ=  0+ 1(a2) +  2(b2) +  3(c2) + 

 4(d2)  

 0 7.43 -13.119 

 1 -0.28 0.111 

 2 0.59 0.071 

 3 -1.24 3.899 

 4 -0.01 0.005 

Scale Parameter ( ) (nonstationary) - 

Shape Parameter ( ) -0.34 - 

Negative Log Likelihood 623.45 - 

*** (a) = Daily Maximum Temperature, (b) = Daily Minimum Temperature, (c) = Daily Precipitation, (d) = Time 

**Where (a2) is the longest monthly spell with minimum temperatures above a threshold, (b2) is the longest monthly spell 

with precipitation above the threshold, (c2) is the monthly average maximum temperature and (d2) is the preceding month 

average water demand. 

Table 4.5 – Generalized Parateo Distribution and Poisson models used for projections. 
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Figure 4.2 - (a) Projections of number of monthly exceedances of daily water demand over 90 MGD from the 

Poisson model (a) for natural variability, (b) for warm/wet climate projection, (c) for warm/dry climate 

projection. (d) Probability density functions of number of monthly exceedance for natural variability and 

warm/wet climate projection (dashed), its average in blue and the average from natural variability in red and (e) 

same as (d) but for warm/dry climate projection. 

 

as 90MGD, then the magnitude of exceedances are generated from the GPD model. Figure 

4.2(a,b,c) show the generated number of exceedances for the three projection scenarios – 

natural variability, warm/wet and warm/dry, respectively. As expected, the exceedances 

increase over time for the warm/wet and warm/dry case relative to natural variability. The PDF 

of exceedances from warm/wet and warm/dry scenarios (Figure 4.2d,e) is shifted to the right 

relative that from natural variability, indicating higher probability of increased exceedances. As 

mentioned above, the magnitude of exceedances is generated from the GPD model while the 

probability of experiencing an exceedance is generated from the Poisson Process model. Figure 

4.3a shows the PDF of generated magnitude for the warm/wet climate projections and Figure 
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4.3b shows the same for warm/dry scenario. It can be seen that in both cases the PDF from 

climate change projections are shifted to the right relative to natural variability, indicative of 

higher exceedances. The impact of climate change is more clearly experienced on the frequency 

of  

 

 

Figure 4.3 - (a) Probability density functions of the magnitude of exceedances for warm/wet climate projection 

(in gray), the average PDF is shown in blue and the average from natural variability in red, (b) same as (a) but for 
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warm/dry climate projection and (c) boxplots of average exceedances for natural variability, warm/wet and 

warm/dry climate projections. 

exceedances than the magnitude of exceedances. This is clearly seen in Figure 4.3c which 

shows the boxplots of average magnitude of exceedances for the three climate scenarios and 

for the warm/wet and warm/dry case the average exceedances and variability is around 1MGD 

higher than that of natural variability.  

4.6 Summary and Discussion 

 We proposed an integrated approach to projection of water demand extremes under 

climate change scenarios. The approach has two main components – (i) extreme value models 

for water demand maxima and threshold exceedances that are based on climate attributes are 

fitted to historic water demand data and weather attributes and, (ii) ensembles of future 

weather sequences and, consequently, weather attributes are generated conditioned on 

climate change projections using bootstrapping technique, which is combined with the extreme 

value models to generate ensembles of water demand extremes. We demonstrated this 

approach on water demand extremes data from water utility in Aurora, CO. Two climate change 

scenarios determined from Emissions path A2 (the middle path, IPCC, 2010) for this region – 

warm/wet and warm/dry (Ray et al., 2010) were used to conditionally generate daily weather 

sequences. Monthly maximum water demand and demand exceedances above 90MGD were 

modeled using extreme value analysis. The results for Aurora, CO suggest that both the 

frequency and intensity of extreme water demand events is likely to increase and, moreover, 

that the probability of experiencing more extreme events and even greater extreme events 

than have been previously experienced is increasing under climate change. 
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 This methodology for projecting water demand extremes under climate change should 

be of immense use to water utility planners and water managers. The proposed approach 

provides a framework to translate uncertainties in climate projections to uncertainties in water 

demand extremes. Such a robust quantification enables better risk-based decision making of 

operational and infrastructure planning.  

Furthermore, additional social and economic variables and their projections can be 

incorporated in the modeling framework, thus providing flexibility to integrate any other 

knowledge of the system. Sophisticated methods for stochastic weather generation (Yates et 

al., 2003; Apipattanavis et al., 2010) can be employed to generate a rich variety of daily 

sequences and add further nuance to the approach presented here. Other simulation 

techniques for threshold exceedances such as those developed by Furrer et al., (2010) for heat 

wave spells can also be employed to add skill to these modeling techniques. 

5 Conclusion 

 The current state of water demand modeling is very limited; only a cursory use of 

climate or other covariates are used and water demand models are either oversimplified linear 

regression models (as is the case with small utilities) or vastly complex models created by 

consultants who only deliver a single number (as is the case with large utilities). Either way, 

current water demand models lack the ability to incorporate climate information and do not 

carry a capacity to understand the risks and uncertainties associated with climate change. 

The impacts of climate change on water supplies are extensively studied. However, 

water demand drives the need for supply and supply projections are not meaningful without a 
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comprehensive understanding of water demand. The research presented here seeks to create a 

methodology and a framework for understanding the risk of climate change to residential water 

demand. The framework and modeling approach detailed gives an understanding of the 

uncertainty associated with climate change and how that uncertainty translates into 

uncertainty in water demand. An effort was made to show that the probability of seeing more 

extreme water demand events and greater water demand events than have been historically 

experienced. With that knowledge, one can be better informed to make decisions about utility 

operations, infrastructure updating, personnel management and additional supply acquisition.  

 The modeling results are useful for planning purposes and were created in an effort to 

add to the existent tools available to water utility managers. The modeling approach detailed 

can be modified, added to or subtracted from based on the particular needs, data and capacity 

of a specific utility. The real power of the outlined approach is the ability to modify according to 

specific situation at each individual utility. The results presented were of a single case study 

(with another case study in Appendix A) and illustrate the skill of the modeling approach. 

Discussions of the results from each chapter are subsequently presented. 

5.1 Generalized Linear Modeling 

 It was shown how climate covariates can be easily incorporated into water demand 

projections using readily accessible tools and relatively simple methods using the Generalized 

Linear Modeling (GLM) framework. Using the GLM and climate attributes to model water 

demand provides multiple advantages to traditional methods. First, climate data is easily 

ascertained and from the data climate attributes can be simply calculated as opposed to 

socioeconomic variables, which can be difficult to define and the data hard to collect. Secondly, 
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the inherent flexibility of Generalized Linear Modeling lends itself well to water demand 

modeling as the water demand variable of interest may be nonnormal or discrete. The GLM 

modeling results presented suggest that using climate covariates to describe monthly average 

and monthly maximum water demand is more parsimonious than using them to model monthly 

exceedance days. This shortcoming is fundamental to modeling monthly exceedance days, 

which is a particularly noisy water demand variable. Approaches to circumventing this issue are 

subsequently discussed.  

The developed models can be applied for short term (seasonal) management by 

incorporating seasonal climate forecasts – such applications are common in water resources 

management (e.g., Regonda et al., 2011) and recently for water quality management (Towler et 

al., 2010).  

 While the demand attributes considered in this research are relevant for utility 

managers, a more important variable is the variability of ‘extreme demand events’. In this, the 

managers would like to know the fluctuations in peak demand, threshold exceedance and 

length of exceedances. While individual components can be modeled using GLM as described 

above, extreme value analysis offers an attractive alternative to model these in an integrated 

manner incorporating predictor variables (e.g., Towler et al., 2010; Katz, 2010; Katz and 

Naveau, 2002). Future research will broach the topic of water demand extremes modeling. 

Water demand projections are important for efficient management and planning of 

water supply. Traditionally these projections are made using statistical and econometric models 

that account for socio-economic growth and limited climatic variability. Given the sophistication 

and uncertainty in economic projections these models are accessible only to relatively well-off 
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utilities. We see two major gaps – (i) need for an approach to model a variety of demand 

attributes that are needed by utility managers such as – average demand, monthly peak and 

number of demand exceedances above a threshold and (ii) comprehensive use of climate 

information. We first identify a suite of climate variables that include high/low temperature and 

wet/dry spells and the more traditional average temperature and precipitation. We find that 

these variables capture nuanced connections between climate and water demand, especially 

the lagged relationships. Second we propose a GLM framework to model attributes of water 

demand by incorporating the climate variables. We demonstrate the utility of this approach to 

demand modeling for a water utility in Aurora, CO. The various dependent variables (monthly 

average demand, monthly peak demand and monthly number of demand exceedances above a 

threshold) are modeled quite well and the models have the ability to capture a variety of water 

demand attributes and distributions. Additional socio-economic predictors can be easily 

incorporated, although here we use ‘time’ as a proxy for this. Furthermore, the GLM based 

modeling approach with climate variables provides the capability to make future water demand 

projections under climate change. In this, the climate attributes can be derived under climate 

change scenarios which can then be used with the developed GLM models to make demand 

projections. Above all, this method is simple and can run with limited computational resources; 

thus, accessible to all utilities.  

5.2 Extreme Value Analysis for Modeling Water Demand Extremes 

We proposed two extreme value analysis techniques for modeling water demand 

extremes – one to model maximum demand values over a block of a month (i.e., monthly 

maximum) using GEV and the other to model exceedances above a threshold using POT. They 
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are complementary and together provide comprehensive insights into the variability of 

extremes. We found that the extremes are modulated by climate attributes resulting in 

substantial temporal variability, to model this nonstationary versions of these methods are 

proposed. These powerful and emerging methods offer an elegant approach to modeling 

extremes in the face of variability from climate or other sources. We demonstrated the utility of 

these methods by applying them to water demand extremes from Aurora Water, a water utility 

in Aurora, CO. 

The use of extreme value analysis to model water demand is motivated by the reality of 

the extreme nature of water demand events. That is, traditional modeling techniques—

regression analysis or even Generalized Linear Modeling (see Chapter 2)—result in a thin tail 

and an underestimation of both the magnitude and the frequency of extreme water demand 

events. For this research, Extreme Value Analysis was used to specifically model the high impact 

or extreme events, resulting in substantially more robust estimation of the critical tail of the 

water demand distribution. 

The utility of the Extreme Value Analysis approach extends beyond its ability to better 

model the tail of the water demand distribution; it is also particularly useful for water utility 

managers because it better addresses the questions that are pertinent to the planning process. 

For example, by using Extreme Value Analysis and the Points Over a Threshold approach, 

information about how often a critically important threshold may be exceeded can be easily 

ascertained. Similarly, information about how the frequency and magnitude of extreme water 

demand events is best determined from Extreme Value Analysis and the Block Maxima 

approach, which models specifically the water demand extremes. 
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 Predictions of weather attributes can be translated to predictions of water demand 

extremes using these models. Furthermore, projections of weather attributes under climate 

change will enable the projection of water demand extremes directly – similar to the approach 

of Towler et al. (2011) – which is a powerful tool. 

 We used weather attributes as covariates but others such as socio-economic variables 

can also be include in the mix, enabling their integration with other modeling approaches. 

5.3 Projecting Water Demand Extremes under Climate Change 

We proposed an integrated approach to projection of water demand extremes under 

climate change scenarios. The approach has two main components – (i) extreme value models 

for water demand and threshold exceedances that are based on climate attributes are fitted to 

the historic data of water demand and weather attributes and, (ii) ensembles of future weather 

sequences and consequently, weather attributes are generated conditioned on climate change 

projections using bootstrapping technique, which is combined with the extreme value models 

above to generate ensembles of water demand extremes. We demonstrated this approach on 

water demand extremes data from water utility in Aurora, CO. Two climate change scenarios 

determined from Emissions path A2 (the middle path, IPCC, 2010) for this region – warm/wet 

and warm/dry (Ray et al., 2010) were used to conditionally generate daily weather sequences. 

Monthly maximum water demand and demand exceedances above 90MGD were modeled 

using extreme value analysis.  

 This methodology for projecting water demand extremes under climate change should 

be of immense use to water utility planners and water managers. Current approaches for water 

demand forecasting are full of uncertainties inherent in these forecasts, and climate change will 
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likely add another layer of uncertainty to those forecasts. EVA is one approach to better 

understand the additional uncertainty, and then appropriately plan for future investments in 

new sources of supply, treatment plant capacity, transmission mains, storage tanks, and 

booster pumping stations. The potential costs for being wrong with future demand forecasts 

can be substantial.  

Furthermore, additional covariates such as social and economic variables can be 

incorporated in the modeling framework, thus providing flexibility. Sophisticated methods for 

weather generation (Yates et al., 2003; Apipattanavis et al., 2010) can be employed to generate 

more variety on daily time scales. Other simulation techniques for threshold exceedances such 

as those developed by Furrer et al., (2010) for heat wave spells can also improve the 

simulations. Our aim here was to develop an integrated approach that can is flexible to future 

enhancements.  

5.4 Future Work 

 Climate change science is still in its infancy and the quality of models, projections and 

information from climate models is getting better with time. For this reason among others, 

there is a substantial amount of uncertainty that exists in climate change projections and, 

therefore, water demand projections under climate change. As climate modeling techniques 

improve it may be possible to used downscaled Global Climate Model (GCM) data at the 

specific utility location. Furthermore, more nuanced weather generation techniques can be 

employed to further bolster the weather projections. Extreme Value Analysis is a relatively new 

statistical tool to many fields, and this marks its first appearance in water demand modeling. 
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The tool is tremendously useful for modeling water demand extremes and the concepts 

introduced in this work should be built upon in the field of water demand modeling. 
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7 Appendix A – Additional Case Study 

Appendix A consists of modeling results for Tampa Bay, FL using the same techniques 

that are used on the Aurora, CO case study in Chapters 2, 3 and 4. Appendix A illustrates that 

the presented approaches can be applied to widely ranging areas. 

A.1 Tampa Bay, FL Modeling Results: Statistical Modeling of Seasonal Water 

Demand Attributes Using Climate Variables  
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Figure A.1.1 – Monthly boxplots of daily water demand values from 1992-2010 of a water utility at Tampa Bay, 

FL – boxes represent the interquartile range, the whiskers are 5
th

 and 95
th

 percentiles and the points are beyond.  

Weather Statistic Thresholds 

Minimum Temperature 

June  68°F 

July 73°F 

August 76°F 

Maximum Temperature 

June  85°F 

July 90°F 

August 92°F 

Precipitation 

June  0 in 

July 0 in 

August 0 in 

Table A.1.1 – 75
th

 percentile values for weather in Tampa Bay, FL. These values were used as threshold for 

Figure 2 – Geographic location and climatological/demographic context for Aurora, CO.  
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developing spell statistics. 

Water Demand Covariates: Definitions and Correlations 

Covariate Definition 

Correlation 

with 

Monthly 

Average 

Demand 

Correlation 

with 

Monthly 

Maximum 

Demand 

Correlation 

with 

Monthly 

Demand 

Exceedances 

Average Monthly Max 

Temperature  

Daily maximum temperature values averaged over one 

month. 0.38 0.20 0.36 

Average Seasonal Minimum 

Temperature 

Daily minimum temperature values averaged over one 

month. 0.33 0.13 0.30 

Average Seasonal Precipitation Daily precipitation values averaged over one month. 0.06 -0.16 0.03 

TIME A vector of values progressing chronologically. 0.23 0.00 0.19 

Preceding Month Average Water 

Demand Average water demand from preceding month (lag 1). 0.55 0.63 0.53 

Average Monthly Daily High Hot 

Spell in Days 

The average length in days of a spell with daily high 

temperatures over a given threshold for each month. 0.05 -0.02 0.02 

Total Monthly Days with High 

Temperature Above Threshold 

Total days the maximum daily temperature exceeds a given 

threshold in a month. 0.20 0.23 0.19 

Maximum Monthly Daily High 

Hot Spell 

The longest spell with daily high temperatures over a given 

threshold in a given month. 0.12 0.11 0.11 

Average Monthly Nightly Low Hot 

Spell in Day 

The average length in days of a spell with nightly low 

temperatures above a threshold for each month. 0.26 0.13 0.25 

Total Monthly Nights with Low 

Temperature Above Threshold 

Total days with the nightly low temperature above a given 

threshold for each month. 0.16 0.08 0.16 

Maximum Monthly Nightly Low 

Hot Spell 

The longest spell in days with nightly low temperatures 

above a given threshold for each month. 0.27 0.17 0.27 

Average Monthly Precipitation 

Spell in Days  

The average length in days of a spell with precipitation 

above a given threshold for each month. -0.32 -0.19 -0.27 

Total Monthly Days with 

Precipitation Below Threshold 

Total days with the precipitation above a given threshold 

each month. -0.49 -0.28 -0.44 

Maximum Monthly Precipitation 

Spell 

The longest spell in days with precipitation above a given 

threshold each month. -0.44 -0.27 -0.40 

Table A.1.2 – Climate Attributes for Tampa Bay, FL; the correlation with water demand attributes shown in the 

last three columns. 
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Figure A.1.2 – Scatterplot of selected spell statistics and water demand. (a) average water demand in a month 

versus total days with precipitation, (b) previous month water demand (antecedent conditions) versus monthly 

average water demand, (c) Longest monthly precipitation spell versus monthly maximum water demand and (d) 

Average spell in days with nightly low temperatures above the threshold versus number of days of water 

demand exceeding 250 MGD water demand value for each month. 

Tampa Bay, FL 

Monthly Average Demand 

Independent Variable 
Coefficient 

Estimate 
Standard Error t Value Pr(>|t|) R2 
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Y Axis Intercept 6.15E-03 2.35E-04 26.12 2.00E-16 

7.80E-01 
Longest Spell with Min Temp Above Threshold -2.06E-05 6.84E-06 -3.01 4.01E-03 

Total Days with Precip Above Threshold 6.82E-05 1.08E-05 6.33 5.85E-08 

Average Water Demand from Preceding Month -9.77E-06 9.48E-07 -10.30 3.73E-14 

Monthly Maximum Demand 

Independent Variable 
Coefficient 

Estimate 
Standard Error t Value Pr(>|t|) R2 

Y Axis Intercept 5.10E-03 2.40E-04 21.25 2.00E-16 

6.55E-01 

Average Spell with Max Temp Above Threshold 7.33E-05 2.97E-05 2.72 8.84E-03 

Total Days with Max Temp Above Threshold -2.31E-05 6.81E-06 -3.39 1.35E-03 

Total Days with Precip Above Threshold 2.49E-05 4.89E-06 5.09 4.95E-06 

Average Water Demand from Preceding Month -7.72E-06 9.50E-07 -8.12 8.11E-11 

Number of Days per Month with Demand Exceeding a Given Threshold 

Independent Variable 
Coefficient 

Estimate 
Standard Error z Value Pr(>|t|) R2 

Y Axis Intercept -3.53E-01 3.58E-01 -0.99 3.24E-01 

6.27E-01 

Average Spell with Max Temp Above Threshold -1.27E-01 4.63E-02 -2.74 6.08E-03 

Total Days with Max Temp Above Threshold 2.63E-02 1.18E-02 2.23 2.55E-02 

Longest Spell with Min Temp Above Threshold 3.06E-02 1.26E-02 2.44 1.49E-02 

Total Days with Precip Above Threshold -7.31E-02 7.79E-03 -9.39 2.00E-16 

Average Water Demand from Preceding Month 1.42E-02 1.38E-03 10.32 2.00E-16 

Table A.1.3 – Best GLM models selected using BIC for the three demand attributes. The Pr(>|t|) value notifies 

significance for the coefficient estimate.  
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Figure A.1.3 – Diagnostics plots for monthly average demand – (a) Scatterplot of observed vs. model estimates 

with the linear fit line, (b) autocorrelation of model residuals, (c) Q-Q plot of model residuals and (d) leave one 

out cross validated estimates versus observed value. 
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Figure A.1.4 – Same as Figure 5 but for monthly maximum demand. 
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Figure A.1.5 – Same as Figure 5 but for number of days of demand exceeding a threshold of 81.3 MGD (75
th

 

percentile value). 
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A.2 Tampa Bay, FL Modeling Results: Modeling Water Demand Extremes Using 

Extreme Value Analysis 

 

Figure A.2.1 –Monthly maximum water demand (MGD) (Jun-Aug). 

Generalized Extreme Value Model 

  
Non-Stationary Models 

Variable Stationary Model 
  =  0+ 1(a) +  2(b) + 

 3(c) +  4(d)  

μ = β0+β1(a) + β2(b) 

+ β3(c) + β4(d)  

  =  0+ 1(a) +  2(b) +  3(c) + 

 4(d) &   =  5+ 6(a) +  7(b) 

+  8(c) +  9(d)  

 0 
 

18.66 294.92 289.54 

 1 - 0.27 0.78 1.45 

 2 - -0.85 0.34 -0.54 

 3 - -0.61 -1.44 0.01 

 4 - 0.09 - 21.47 

 5 - 
 

- 0.06 

 6 - - - -0.71 

 7 - - - -1.30 

 8 - - - 0.19 

 9 
 

- - - 

Location Parameter ( ) 288.16 283.16 - - 

Scale Parameter ( ) 24.47 - 23.91 - 

Shape Parameter ( ) -0.33 -0.04 -0.40 -0.95 

Negative Log Likelihood 261.99 260.89 257.97 
 

Significance (p-value)   Fail Yes Fail 



94 
 

  

**Where (a) is the longest monthly spell with maximum temperatures above a threshold, (b) is the longest monthly spell with minimum temperatures above 

a threshold, (c) is the total days with precipitation above a threshold and (d) is TIME. 

Table A.2.1 – Generalized Extreme Value Distribution model results. The column in bold is the best fit model. 

 

Figure A.2.2 - Diagnostics for the stationary GEV model include (a) probability plot showing empirical and model 

probabilities with the 1:1 line, (b) quantile plot showing observed and model quantiles with the 1:1 line, (c) 

water demands of various return periods from the data (shown as dots), model (solid line) and the confidence 

intervals (dotted) and (d) histogram of the data with the fitted GEV probability density function.  
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Figure A.2.3 – Quantiles from stationary and nonstationary GEV models. Solid line shows the monthly maximum 

water demand, dotted lines are the 0.05 and 0.95 quantiles from the nonstationary GEV, and dashed lines are 

the quantiles from stationary GEV model.  

 

Figure A.2.4 – Daily water demand during Jun-Aug of each year. The dotted line is the threshold corresponding 

to 90 MGD, considered to be high enough that exceeding it would stress the water supply of the utility.  
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Figure A.2.5 – Sensitivity of the scale parameter to choice of threshold. A threshold selection of 90 MGD is in the 

stable region and an appropriate choice for GPD modeling. 

 
Stationary Model 

Non-Stationary Model 

Variable 
σ = β0+β1(a) + β2(b) + 

β3(c) + β4(d)  

 0 - 29.60 

 1 - -0.15 

 2 - 0.06 

 3 - -11.53 

 4 - 0.01 

Scale Parameter ( ) 28.73 - 

Shape Parameter ( ) -0.36 -0.39 

Negative Log Likelihood 2037.37 2024.16 

Significance (p-value) - Yes 

*** (a) = Daily Maximum Temperature, (b) = Daily Minimum Temperature, (c) = Daily Precipitation, 

(d) = Time 
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Table A.2.2 – Generalized Parateo Distribution model results. The column in bold is the best fit model. 

 

Figure A.2.6 - Same as Figure 2 but for the GPD model. 
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Figure A.2.7 – Quantiles from stationary and nonstationary GPD models. Solid line shows the daily water 

demand, dotted lines are the 0.05 and 0.95 quantiles from the nonstationary GPD, and dashed lines are the 

quantiles from stationary GPD model.  

A.3 Tampa Bay, FL Modeling Results: Projecting Demand Extremes under 

Climate Change Using Extreme Value Analysis 

Weather Statistic Thresholds 

Minimum Temperature 

June  68°F 

July 73°F 

August 76°F 

Maximum Temperature 

June  85°F 

July 90°F 

August 92°F 

Precipitation 

June  0 in 

July 0 in 

August 0 in 

 

Table A.3.1 –Threshold of daily minimum and maximum temperatures and, precipitation, to compute weather 

attributes for use as covariates in the extreme value analysis models. 

Water Demand Covariates: Definitions and Correlations 

Covariate Definition 

Correlation 
with 

Monthly 
Average 
Demand 

Correlation 
with 

Monthly 
Maximum 
Demand 

Correlation 
with 

Monthly 
Demand 

Exceedances 

Average Monthly Max 
Temperature  

Daily maximum temperature values averaged 
over one month. 0.38 0.20 0.36 

Average Seasonal 
Minimum Temperature 

Daily minimum temperature values averaged 
over one month. 0.33 0.13 0.30 

Average Seasonal 
Precipitation 

Daily precipitation values averaged over one 
month. 0.06 -0.16 0.03 

TIME A vector of values progressing chronologically. 0.23 0.00 0.19 
Preceding Month Average 

Water Demand 
Average water demand from preceding month 

(lag 1). 0.55 0.63 0.53 
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Average Monthly Daily 
High Hot Spell in Days 

The average length in days of a spell with daily 
high temperatures over a given threshold for 

each month. 0.05 -0.02 0.02 
Total Monthly Days with 
High Temperature Above 

Threshold 
Total days the maximum daily temperature 

exceeds a given threshold in a month. 0.20 0.23 0.19 
Maximum Monthly Daily 

High Hot Spell 
The longest spell with daily high temperatures 

over a given threshold in a given month. 0.12 0.11 0.11 

Average Monthly Nightly 
Low Hot Spell in Day 

The average length in days of a spell with 
nightly low temperatures above a threshold 

for each month. 0.26 0.13 0.25 
Total Monthly Nights with 
Low Temperature Above 

Threshold 
Total days with the nightly low temperature 

above a given threshold for each month. 0.16 0.08 0.16 

Maximum Monthly Nightly 
Low Hot Spell 

The longest spell in days with nightly low 
temperatures above a given threshold for 

each month. 0.27 0.17 0.27 

Average Monthly 
Precipitation Spell in Days  

The average length in days of a spell with 
precipitation above a given threshold for each 

month. -0.32 -0.19 -0.27 
Total Monthly Days with 

Precipitation Below 
Threshold 

Total days with the precipitation above a 
given threshold each month. -0.49 -0.28 -0.44 

Maximum Monthly 
Precipitation Spell 

The longest spell in days with precipitation 
above a given threshold each month. -0.44 -0.27 -0.40 

 Table A.3.2 – Weather attributes and their correlation with monthly maximum water demand. Bolded values 

are statistically significant at 95% confidence level and, bolded rows are variables used in the nonstationary GEV 

as covariates.  

Scenario GCM/Ensemble 

30 Year 

Precipitation 

Change (%) 

30 Year 

Average 

Temperature 

Change (°F) 

Warm/Wet ncar_ccsm3_0.2 3.77 3.40 

Warm/Dry Micro3_2_medres.1 -8.51 3.40 

Table A.3.3 – Two climate change scenarios used in stochastic weather generation.  

Generalized Extreme Value Model 

  
Non-Stationary Models 
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Variable Stationary Model 
  =  0+ 1(a) +  2(b) + 

 3(c) +  4(d)  

μ = β0+β1(a) + β2(b) 

+ β3(c) + β4(d)  

  =  0+ 1(a) +  2(b) +  3(c) + 

 4(d) &   =  5+ 6(a) +  7(b) 

+  8(c) +  9(d)  

 0 
 

18.66 294.92 289.54 

 1 - 0.27 0.78 1.45 

 2 - -0.85 0.34 -0.54 

 3 - -0.61 -1.44 0.01 

 4 - 0.09 - 21.47 

 5 - 
 

- 0.06 

 6 - - - -0.71 

 7 - - - -1.30 

 8 - - - 0.19 

 9 
 

- - - 

Location Parameter ( ) 288.16 283.16 - - 

Scale Parameter ( ) 24.47 - 23.91 - 

Shape Parameter ( ) -0.33 -0.04 -0.40 -0.95 

Negative Log Likelihood 261.99 260.89 257.97 
 

Significance (p-value)   Fail Yes Fail 

**Where (a) is the longest monthly spell with maximum temperatures above a threshold, (b) is the longest monthly spell with 
minimum temperatures above a threshold, (c) is the total days with precipitation above a threshold and (d) is TIME. 

Table A.3.4 – Generalized Extreme Value distribution model  

 
Stationary Model 

Non-Stationary Model 

Variable 
σ = β0+β1(a) + β2(b) + 

β3(c) + β4(d)  

 0 - 29.60 

 1 - -0.15 

 2 - 0.06 

 3 - -11.53 

 4 - 0.01 

Scale Parameter ( ) 28.73 - 

Shape Parameter ( ) -0.36 -0.39 

Negative Log Likelihood 2037.37 2024.16 

Significance (p-value) - Yes 

*** (a) = Daily Maximum Temperature, (b) = Daily Minimum Temperature, (c) = 
Daily Precipitation, (d) = Time 

Table A.3.5 – Generalized Parateo Distribution and Poisson models used for projections. 
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Figure A.3.1 - Projections of monthly maximum water demand from nonstationary GEV model (a) based on 

natural climate variability (b) based on warm/wet future climate projection, (c) based on warm/dry future 

climate. (d) is the Probability density functions of monthly maximum water demand projections for warm/wet 

future climate (grey lines are from individual simulation and blue is the average) for natural climate variability 

(red), (e) is the same as (d) but for warm/dry climate projections and (f) is Boxplots of the number of monthly 

maximum demand exceedances of 85 MGD for the three scenarios. 
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Figure A.3.2 - (a) Projections of number of monthly exceedances of daily water demand over 90 MGD from the 

Poisson model (a) for natural variability, (b) for warm/wet climate projection, (c) for warm/dry climate 

projection. (d) Probability density functions of number of monthly exceedance for natural variability and 

warm/wet climate projection (dashed), its average in blue and the average from natural variability in red and (e) 

same as (d) but for warm/dry climate projection. 
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Figure A.3.3 - (a) Probability density functions of the magnitude of exceedances for warm/wet climate 

projection (in gray), the average PDF is shown in blue and the average from natural variability in red, (b) same as 

(a) but for warm/dry climate projection and (c) boxplots of average exceedances for natural variability, 

warm/wet and warm/dry climate projections. 
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