
University of South Florida
Scholar Commons

Graduate Theses and Dissertations Graduate School

January 2014

Forecasting Corrosion of Steel in Concrete
Introducing Chloride Threshold Dependence on
Steel Potential
Andrea Nathalie Sanchez
University of South Florida, asanchez1@mail.usf.edu

Follow this and additional works at: http://scholarcommons.usf.edu/etd

Part of the Civil Engineering Commons, and the Materials Science and Engineering Commons

This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in
Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact
scholarcommons@usf.edu.

Scholar Commons Citation
Sanchez, Andrea Nathalie, "Forecasting Corrosion of Steel in Concrete Introducing Chloride Threshold Dependence on Steel
Potential" (2014). Graduate Theses and Dissertations.
http://scholarcommons.usf.edu/etd/5303

http://scholarcommons.usf.edu/?utm_source=scholarcommons.usf.edu%2Fetd%2F5303&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/?utm_source=scholarcommons.usf.edu%2Fetd%2F5303&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu?utm_source=scholarcommons.usf.edu%2Fetd%2F5303&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/etd?utm_source=scholarcommons.usf.edu%2Fetd%2F5303&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/grad?utm_source=scholarcommons.usf.edu%2Fetd%2F5303&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/etd?utm_source=scholarcommons.usf.edu%2Fetd%2F5303&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/252?utm_source=scholarcommons.usf.edu%2Fetd%2F5303&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/285?utm_source=scholarcommons.usf.edu%2Fetd%2F5303&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarcommons@usf.edu


 
 

 
 
 
 
 

Forecasting Corrosion of Steel in Concrete  
 

Introducing Chloride Threshold Dependence on Steel Potential 
 
 
 

by 
 
 
 

Andrea Nathalie Sánchez 
 
 
 
 
 

A dissertation submitted in partial fulfillment 
of the requirements for the degree of 

Doctor of Philosophy  
Department of Civil and Environmental Engineering 

College of Engineering 
University of South Florida 

 
 
 

Major Professor: Alberto Sagüés, Ph.D. 
Nathan Crane, Ph.D. 

Xiao Li, Ph.D. 
Gray Mullins, Ph.D. 

Daniel Simkins, Ph.D. 
 
 

Date of Approval: 
July 8, 2014 

 
 
 

Keywords: Marine, Forecast, Modeling,  
Macrocell, Durability 

 
Copyright © 2014, Andrea Nathalie Sánchez 



 
 

DEDICATION 

This dissertation is dedicated to four exceptional individuals who showed me 

since little how anything in life can be achieved with God, love, hard work, humbleness 

and sacrifice. These individuals are: my Father, Miguel Antonio, my Mother, Miriam 

Iraida, my oldest sister Erika Maria and my middle sister Kiki. Thank you for all your 

amazing support and prayers during these years. I could have not done it without you. I 

love you. God bless you always. 

 



 
 

 

 

ACKNOWLEDGMENTS 

This investigation was supported by the State of Florida Department of 

Transportation (FDOT). The opinions, findings, and conclusions presented here are 

those of the author and not necessarily those of the State of Florida Department of 

Transportation whose support of this investigation is thankfully acknowledged. 

The author is grateful to her advisor and mentor Professor Dr. Alberto A. Sagüés, 

for his continual guidance, support, collaboration, advice and encouragement in this 

dissertation. The author would like to thank the esteemed members of the committee: 

Dr. Crane, Dr. Li, Dr. Mullins, Dr. Simkins and Dr. Saddow, for their valuable time, 

interest, support and input in this dissertation. The author is indebted to Mr. Mario 

Paredes, Mr. Ivan Lasa and Mr. Paul Vinik from the FDOT State Materials Office for all 

their valuable guidance. The assistance of Ronald Simmons and Cody Owen in 

specimen autopsy and conducting chloride analysis tests is gratefully acknowledged. 

 The author is deeply grateful for the unconditional love, understanding, 

encouragement, and patience from Mr. Frank Charles Holz during this work. The author 

greatly appreciates the help, assistant and friendship from her former and present lab 

mates at the Corrosion Engineering Laboratory (M. Akhoondan, E. Busba, M. Dugarte, 

L. Emmenegger, J. Fernandez, S. Hoffman, M. Hutchinson, K. Lau, E. Paz, M. Walsh 

and K. Williams). The assistance of undergraduate assistants (J. Cardenas, C. 

Castañeda, R. Guillen, A. Filippi, W. Ruth, J. Scott and T. Tran) is also acknowledged. 



i 
 

 

 

TABLE OF CONTENTS 

LIST OF TABLES ............................................................................................................ v 

LIST OF FIGURES ..........................................................................................................vi 

ABSTRACT .....................................................................................................................ix 

CHAPTER 1: INTRODUCTION ....................................................................................... 1 
1.1 Background .................................................................................................... 1 
1.2 Problem Statement and Research Objectives ................................................ 9 
1.3 Research Approach ...................................................................................... 10 

1.3.1 Addressing Objective 1 ................................................................... 11 
1.3.1.2 Chapter 2: Experimental Assessment ............................... 11 

1.3.2 Addressing Objective 2 ................................................................... 11 
1.3.2.1 Chapter 3: Introducing Potential Dependent           

Threshold in Corrosion Modeling of Reinforced Concrete ....... 11 
1.3.2.2 Chapter 4: Effect of Variation in System Parameters          

on Corrosion Damage Forecast with Potential Dependent 
Threshold ................................................................................. 12 

1.3.2.3 Chapter 5: Probabilistic Corrosion Forecast with      
Potential Dependent Threshold ............................................... 12 

1.3.2.4 Chapter 6: Practical Approach to Introduce a         
Correction for Potential Dependent Threshold in a    
Practitioner-Oriented Predictive Model .................................... 13 

CHAPTER 2: EXPERIMENTAL ASSESSMENT ........................................................... 14 
2.1 First Stage – Mortar Test with Moderate Steel Surface Area........................ 14 

2.1.1 Materials and Experimental Setup .................................................. 14 
2.1.2 First Stage Results .......................................................................... 16 

2.1.2.1 Open Circuit Specimens.................................................... 16 
2.1.2.2 Cathodically Polarized Specimens .................................... 17 
2.1.2.3 Estimation of Chloride Content at the Rebar at the         

Time of Corrosion Initiation ...................................................... 18 
2.1.2.4 First Stage Potential-Dependent Threshold Findings ........ 21 

2.2 Second Stage - Concrete Tests with Large Steel Surface Area ................... 22 
2.2.1 Materials and Experimental Setup .................................................. 22 
2.2.2 Second Stage Results .................................................................... 27 

2.2.2.1 Open Circuit Specimens.................................................... 27 
2.2.2.2 Cathodically Polarized Specimens .................................... 29 



ii 
 

2.2.2.3 Estimation of Chloride Content at the Rebar at the         
Time of Corrosion .................................................................... 30 

2.2.2.4 Second Stage Potential-Dependent Threshold         
Findings ................................................................................... 32 

2.3 Discussion of First and Second Stage Experimental Findings...................... 34 
2.4 Conclusions of First Stage and Second Stage Experimental Tests      

Findings......................................................................................................... 36 

CHAPTER 3: INTRODUCING POTENTIAL DEPENDENT THRESHOLD IN 
CORROSION MODELING OF REINFORCED CONCRETE ................................... 38 

3.1 General Approach ........................................................................................ 38 
3.2 System Chosen and Main Assumptions ....................................................... 41 

3.2.1 Corrosion Distribution Module ......................................................... 45 
3.2.1.1 Accounting for Local Resistance Polarization ................... 48 

3.2.2 Chloride Transport Module ............................................................. 49 
3.2.3 Surface Damage Evaluation Module............................................... 50 

3.3 Summary of Model Inputs and Outputs ........................................................ 51 
3.4 Model Parameters ........................................................................................ 51 

3.4.1 Elevation Profiles for D, ρ, DO and CS ............................................ 52 
3.4.2 Threshold Parameters and Variations; Steel Polarization and 

Concrete Cracking Parameters .......................................................... 54 
3.4.3 Time Period .................................................................................... 55 
3.4.4 Activation Zone Size ....................................................................... 56 

3.5 Results.......................................................................................................... 58 
3.5.1 Polarization Profile Evolution .......................................................... 58 
3.5.2 Damage Profile Evolution ............................................................... 62 

3.5.2.1 Base Case: Potential-dependent Threshold (PDT) ........... 62 
3.5.2.2 Potential Independent Chloride Threshold Case (PIT) ...... 65 

3.5.3 Cumulative Damage Function Trends ............................................. 66 
3.5.3.1 Effect of Threshold Potential Dependence and of          

Value of Cathodic Prevention Slope ........................................ 66 
3.5.3.2 Effect of Activation Zone Size ........................................... 70 

3.6 Summary ...................................................................................................... 73 

CHAPTER 4:  EFFECT OF VARIATION IN SYSTEM PARAMETERS ON  
CORROSION DAMAGE FORECAST WITH POTENTIAL DEPENDENT 
THRESHOLD ........................................................................................................... 77 

4.1 General Approach ........................................................................................ 77 
4.2 Cases Examined .......................................................................................... 77 
4.3 Results and Discussion ................................................................................ 79 
4.4 Summary ...................................................................................................... 84 

CHAPTER 5: PROBABILISTIC CORROSION FORECASTING WITH           
POTENTIAL DEPENDENT THRESHOLD ............................................................... 86 

5.1 General Approach ........................................................................................ 86 
5.2 Modelled System and Investigated Cases .................................................... 86 
5.3 Results and Discussion ................................................................................ 89 



iii 
 

5.4 Summary ...................................................................................................... 94 

CHAPTER 6: PRACTICAL APPROACH TO INTRODUCE A CORRECTION             
FOR POTENTIAL DEPENDENT THRESHOLD IN A TRADITIONAL 
PRACTITIONER-ORIENTED PREDICTIVE MODEL .............................................. 95 

6.1 Overview of the Model Approach .................................................................. 95 
6.2 Probabilistic Damage Projection ................................................................... 96 
6.3 Correction Function ...................................................................................... 97 
6.4 Overall Approach ........................................................................................ 101 

CHAPTER 7: CONCLUSIONS .................................................................................... 104 
7.1 Experimental Findings ................................................................................ 104 
7.2 Modeling Findings ...................................................................................... 104 

REFERENCES ............................................................................................................ 107 

APPENDICES ............................................................................................................. 118 
Appendix A List of Symbols .............................................................................. 119 
Appendix B Review of Corrosion Processes in Concrete and Related      

Durability Forecasting Issues ...................................................................... 123 
B.1 Chloride-induced Corrosion of Reinforced Concrete ....................... 123 
B.2 Corrosion Mechanism ...................................................................... 123 
B.3 Structural Issues: The Challenge of Long-term Durability ............... 126 
B.4 Chloride Ingress in Reinforced Concrete ......................................... 127 

B.4.1 The Nature of Chloride Ions in Concrete ........................... 128 
B.4.2 The Transport of Chloride Ions in Concrete ....................... 129 

B.5 Forecasting the Service Life of Reinforced Concrete Structures ..... 130 
B.5.1 Tuutti’s Definition of Service Life ........................................ 130 
B.5.2 Initiation Stage ................................................................... 131 

B.5.2.1 Involved Parameters ............................................ 131 
B.5.2.2 Fick’s Laws of Diffusion ........................................ 132 

B.5.2.2.1 Limitations .............................................. 133 
B.6 Critical Chloride Corrosion Threshold .............................................. 134 

B.6.1 General .............................................................................. 134 
B.6.2 Measuring the Value of CT ................................................. 135 
B.6.3 Chloride Corrosion Threshold: Influencing Parameters ..... 137 

B.6.3.1 The Dependence of CT on Steel Potential          
While in Passive State ................................................ 138 

Appendix C Modeling Equations for the Corrosion Distribution Module ........... 140 
Appendix D Probabilistic Damage Projection ................................................... 145 

D.1 Principles of Probabilistic Corrosion Damage Projection ................. 145 
Appendix E Integrated Predictive Model  .......................................................... 148 

E.1 Structural Components .................................................................... 149 
E.2 Exposure Conditions ....................................................................... 149 
E.3 Concrete Properties ......................................................................... 151 
E.4 Surface Conditions .......................................................................... 154 
E.5 Chloride Threshold and Rebar Type................................................ 155 



iv 
 

E.6 Propagation Time ............................................................................ 156 
E.7 Limit State ....................................................................................... 156 

Appendix F Copyright Permissions ................................................................... 158 
F.1 Permissions to Publish Contents in Chapter 2 ................................. 158 
F.2 Permissions to Publish Contents in Chapter 3 ................................. 162 
F.3 Publishing Forms to Publish Contents in Chapter 4......................... 168 

ABOUT THE AUTHOR .................................................................................... END PAGE 
 

  



v 
 

 

 

LIST OF TABLES 

Table 1 Calculations and results for each first stage test condition. .............................. 21 

Table 2 Calculations and results for each second stage test condition. ........................ 33 

Table 3 Model parameters for base case and variations ............................................... 53 

Table 4 Cases examined ............................................................................................... 79 

Table 5 Model parameters for the randomly distributed mathematical approach .......... 88 

Table 6 Concrete and steel bar properties for modeling parameters .......................... 157 

  



vi 
 

 

 

LIST OF FIGURES 

Figure 1 Chloride threshold dependence on steel  potential compilation from the 
literature by Presuel et al. and updated by Sánchez et al. ........................... 7 

Figure 2 Damage projections in previous model calculations showing strong      
decrease in projected damage at age=60 years when comparing the     
case of a potential independent threshold (βCT = -∞) and cases            
where CT depended on potential of the passive steel .................................. 8 

Figure 3 First stage experiment specimen layout .......................................................... 15 

Figure 4 Time trends for OCP specimens.. ................................................................... 17 

Figure 5 Applied current density (anodic is >0) vs time for each polarized          
specimen at the indicated potential ............................................................ 18 

Figure 6 Side and top view of the reinforced concrete specimens ................................ 23 

Figure 7 Modeling results to find optimal position for counter electrode placement ...... 24 

Figure 8 Second stage specimens prior to concrete casting. ........................................ 25 

Figure 9 Specimen after applying a layer of epoxy and placing the pond ..................... 26 

Figure 10 Cathodically polarized specimens ................................................................. 27 

Figure 11 Evolution of the steel potential for the second stage OCP specimens. ......... 28 

Figure 12 Time progression of EIS for specimen 1 at OCP condition, indicating    
marked reduction in RP on activation at day 161. ....................................... 29 

Figure 13 Current density with respect to time for a specimen cathodically         
polarized at -200 mV .................................................................................. 30 

Figure 14 Reinforced concrete specimen after autopsy. ............................................... 31 

Figure 15 Chloride threshold vs steel potential. ............................................................ 36 

Figure 16 System modeled. .......................................................................................... 42 



vii 
 

Figure 17 Left hand side: system discretization. Right hand side: symbols    
representing the types of resistances used in the system showing a   
portion of the column near the waterline, starting at element i. .................. 47 

Figure 18 Evolution of potential- and corrosion current density-elevation profile as 
function of age, base case. ........................................................................ 61 

Figure 19 a) Base case (potential-dependent threshold, βCT= -550 mV/decade, 
elements of height L/101), showing initiation and damage declaration 
events. ....................................................................................................... 64 

Figure 20 Damage projections for all parameters with βCT slope variations from             
a) the base case (elements of height L/101) and b) for elements of      
height L/ 801. ............................................................................................. 68 

Figure 21 Effect of cathodic prevention slope (βCT) variations on the damage    
projection for age = 75 years.. ................................................................... 69 

Figure 22 Propagation stage behavior comparison of results for the a) PIT  and            
b) PDT  cases addressed in Figure 18.. ..................................................... 71 

Figure 23 Damage forecast for year 75 as a function of activation zone size.. ............. 73 

Figure 24 a) Damage projections output for cases with slow DO where ρ at each 
elevation level was varied from the base case by multiplication           
factors of 1, 1/3 and 1/10.. ......................................................................... 81 

Figure 25 Damage projection for year 75.. .................................................................... 83 

Figure 26 Combined effect on damage projection for age= 75 years of variations          
of concrete resistivity, threshold dependence slope, and oxygen      
transport (slower: open symbols, faster: filled symbols).. ........................... 84 

Figure 27 System modeled representative randomly distributed profiles for the     
surface concentration and concrete cover. ................................................ 87 

Figure 28 Evolution of the steel potential and corrosion current density with          
respect to the elevation as a function of time for the random          
distributed concrete cover with low resistivity ............................................. 90 

Figure 29 Cumulative corrosion charge density as a function of time for the       
randomly distributed Cs with high resistivity............................................... 92 

Figure 30 Damage progressions for all cases. .............................................................. 93 

Figure 31 Correction for chloride threshold dependence on steel potential in a   
traditional forecast approach .................................................................... 101 



viii 
 

Figure B 1 Theoretical conditions of corrosion, immunity and passivation of iron. ...... 125 

Figure B 2 Potential and current density change of steel embedded in concrete        
from passive to active condition ............................................................... 126 

Figure B 3 Service life diagram according to Tuutti ..................................................... 130 

Figure C 1 System model modules ............................................................................. 141 

Figure C 2 Idealized current flow and potential relationship in a concrete slab             
with steel as a flat plate on the side ......................................................... 142 

Figure C 3  Idealized current flow in a reinforced concrete column ............................. 143 

  



ix 
 

 

 

ABSTRACT 

Corrosion initiates in reinforced concrete structures exposed to marine 

environments when the chloride ion concentration at the surface of an embedded steel 

reinforcing bar exceeds the chloride corrosion threshold (CT) value. The value of CT is 

generally assumed to have a conservative fixed value ranging from 0.2% to - 0.5 % of 

chloride ions by weight of cement. However, extensive experimental investigations 

confirmed that CT is not a fixed value and that the value of CT depends on many 

variables. Among those, the potential of passive steel embedded in concrete is a key 

influential factor on the value of CT and has received little attention in the literature. The 

phenomenon of a potential-dependent threshold (PDT) permits accounting for corrosion 

macrocell coupling between active and passive steel assembly components in corrosion 

forecast models, avoiding overly conservative long-term damage projections and 

leading to more efficient design. The objectives of this investigation was to 1) expand by 

a systematic experimental assessment the knowledge and data base on how 

dependent the chloride threshold is on the potential of the steel embedded in concrete 

and 2) introduce the chloride threshold dependence on steel potential as an integral part 

of corrosion-related service life prediction of reinforced concrete structures. 

Experimental assessments on PDT were found in the literature but for a limited set of 

conditions. Therefore, experiments were conducted with mortar and concrete 

specimens and exposed to conditions more representative of the field than those 

previously available. The experimental results confirmed the presence of the PDT effect 



x 
 

and provided supporting information to use a value of -550 mV per decade of Cl- for the 

cathodic prevention slope βCT, a critical quantitative input for implementation in a 

practical model. A refinement of a previous corrosion initiation-propagation model that 

incorporated PDT in a partially submerged reinforced concrete column in sea water was 

developed. Corrosion was assumed to start when the chloride corrosion threshold was 

reached in an active steel zone of a given size, followed by recalculating the potential 

distribution and update threshold values over the entire system at each time step. 

Notably, results of this work indicated that when PDT is ignored, as is the case in 

present forecasting model practice, the corrosion damage prediction can be overly 

conservative which could lead to structural overdesign or misguided future damage 

management planning. Implementation of PDT in next-generation models is therefore 

highly desirable. However, developing a mathematical model that forecasts the 

corrosion damage of an entire marine structure with a fully implemented PDT module 

can result in excessive computational complexity. Hence, a provisional simplified 

approach for incorporating the effect of PDT was developed. The approach uses a 

correction function to be applied to projections that have been computed using the 

traditional procedures. 
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CHAPTER 1: INTRODUCTION 

1.1 Background 

Corrosion of steel in concrete is a major limitation to the durability of bridges, 

especially for those in marine service. The following is a summarized description of the 

main issues leading to the objective of this dissertation; the reader is referred to 

Appendix B for a detailed treatment of the fundamentals of corrosion processes in 

concrete. The corrosion is principally attributable to the chloride ion penetration through 

the concrete cover. The chloride ions build up at the surface of the embedded steel until 

reaching a critical chloride threshold level (designated CT) which causes breakdown of 

the protective passive film previously present at the steel surface due to the high 

alkalinity of the concrete. Passivity breakdown results in the onset of rapid steel 

corrosion with accumulation of expansive corrosion products. The accumulation of 

corrosion products at the surface of the rebar results in an expansive force on the 

surrounding concrete causing tensile stresses to form in the concrete. As a result of the 

concrete’s low tensile strength, the concrete subject to the previous conditions often 

cracks and spalls under those induced tensile stresses. Expensive maintenance repair 

and subsequent corrosion control is then necessary to extend the design service life.  

Corrosion prevention practices include the use of a very low permeability 

concrete in combination with a thicker concrete cover to retard the chloride ion 

penetration.  Within the United States, the above preventative measures are 
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implemented by private and by public transportation agencies. However, corrosion 

protection design methods represent an increased initial cost.  Thus, an  accurate 

projection of the durability gains that may be obtained for a given initial investment is 

important to tailor design for the environmental conditions present at the site of a bridge, 

and to determine the requirements to meet the specified service life for that bridge. It is 

also often necessary to obtain a quantitative projection of the remaining corrosion-

related service life of a structure for decision making on whether to build a new structure 

or maintain an existing one, or to project future maintenance needs. The projections 

should be sophisticated enough to estimate not only the structure’s age when 

substantial damage will appear but also the rate at which subsequent corrosion damage 

would develop. 

Durability models available at present (LIFE 365™, DARTS™, and fib 

(Fédération internationale du béton / International Federation for Structural Concrete) 

calculate first the time for initiation of corrosion based on how rapidly the transport of 

chloride ions (measured by the diffusion coefficient D) takes place through the concrete 

cover, thus establishing the amount of time needed to reach CT (usually assumed to be 

time-invariant) at the steel position. A separate estimate is made for the time of 

propagation involving how long after the corrosion initiation will the expansive product 

accumulate enough to induce cracking or spalling in the concrete. The sum of both 

periods (time of initiation and time of propagation) yields the time to appearance of 

corrosion damage.[1] In a reinforced structure, the concrete cover thickness XC, 

diffusion coefficient D, surface chloride content CS, and even the threshold CT vary from 

point to point in a bridge, and therefore damage appears earlier in some locations while 
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in others the damage develops gradually. In a mathematical model, a statistical 

treatment based on the variability of the data can be used to predict the cumulative 

progression of that damage, called the "damage function" of the structure.  

Although corrosion-related predictive models have significantly advanced in the 

last three decades, there is still significant room for improvement. Important challenges 

to wider application remain, stemming primarily from uncertainty or inadequacy in: (i) 

the values of the input parameters and, equally important their variability and the 

adequacy of means to measure those parameters (ii) the physical model assumptions 

and computational methods used, (iii) the degree to which interactions between different 

parts of the system mutually affect their corrosion progression, (iv) the limited amount of 

actual field data that may provide model validation, (v) the optimal balance between  

model complexity and reliability of input data and mechanistic understanding. [2, 3] 

One modeling input parameter that has wide scatter of data in the literature is CT. 

This is a key parameter for long term prediction of reinforced concrete structures.[4] As 

mentioned earlier, in predictive models the value of CT is assumed to be a time-invariant 

and fixed which selection typically ranges between 0.2-0.5% of chloride ions by weight 

of cement. The value of CT depends on many variables such as the condition of the 

steel surface and concrete properties, as well as the potential of the steel while in the 

passive state.[5] Examination of the technical literature indicated that a critical feature 

not available in practical predictive models at the beginning of this investigation, 

concerns the mutual corrosion aggravation and corrosion protection effects due to 

existing macrocell coupling between active and passive steel assembly components. 

Recent work has shown that macrocell effects can greatly affect the projected damage 
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function for a reinforced concrete bridge.[4, 6, 7] However, the issue was until recently 

largely ignored because a sufficiently simplified approach had yet to be developed, but 

still accurate enough for use in practical models. Moreover, there has been a shortage 

of data on the CT variation with potential. Characterization of the Potential-Dependent 

Threshold (PDT) is a key item in resolving this missing feature.[8] Consequently, an 

experimental and modeling thrust in this investigation was directed to provide the 

necessary data, which was then incorporated into the predictive model prototype 

produced in the subsequent approach item.  

A literature review by Presuel-Moreno et al. on the relationship between CT and 

steel potential (E) is shown in Figure 1.[9] Despite the scatter, Presuel-Moreno et al. 

noted that the general trends from a broad set of data from multiple studies followed an 

envelope approaching the pattern recognized in the initial investigations by Alonso et al. 

(blue-dashed line in Figure 1) whereby CT increases when potentials were more 

cathodic than  the typical open circuit potential of passive steel versus Saturated 

Calomel Electrode (SCE), and is relatively independent of the potential when it is more 

anodic than that value.[9, 10] The increase in CT resulting from cathodic polarization 

followed an exponential dependence that may be described in general terms by [9,11] 

 𝑙𝑜𝑔10 �
𝜕𝑇
𝜕𝑇𝑜

�~
𝐸𝑇𝑜 − 𝐸

|𝛽𝐶𝑇|
 (1) 

 

 

where CT is the threshold expressed as percentage of cement content in the concrete, 

CT0 is the chloride threshold value at a baseline potential ET0, E is the potential of the 

steel bar (while still in the passive condition), βCT (named here the cathodic prevention 
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slope), is the slope of the straight line corresponding to Equation. (1) when plotted in an 

E-logCT representation (negative of the inverse of the slope of the dashed line in Figure 

1). The latter has been chosen here to be -100 mV in the SCE scale, which is the one 

used throughout this investigation. This chloride threshold-changing effect is the basis 

of the cathodic prevention method, whereby reinforcing steel is cathodically polarized 

while still in the passive condition to delay or prevent corrosion due to the elevation of 

the chloride threshold. [12, 13] The redundant 3-parameter line formulation was chosen 

for convenience to match the form of other ruling equations in electrochemical systems. 

[14]  

At the beginning of this investigation, the work by Alonso et al. was to the 

author’s knowledge the only experimental assessment that focused on determining the 

chloride corrosion threshold dependence on potential.[10] However, those experiments 

used small specimens with shallow mortar cover, potentially introducing uncertainties 

which were subsequently addressed. An experimental work by Li et al. found that the 

surface area of the steel is an influential parameter on the chloride corrosion threshold, 

whereby the greater the surface area, the smaller the obtained value of CT tended to 

be.[15] Those authors strongly suggested preparing test specimens that have the 

largest practical steel surface area possible. Moreover, at shallow concrete layers, 

chloride ion penetration tends to be governed mainly by rapid permeation rather than 

slower diffusion, which is the usually prevalent transport mechanism of chloride ions 

ingress in the systems of interest.[16] Corrosion initiation may in that case happen very 

fast while the chloride content of the cover layer is still evolving, leading to uncertainty in 

the value of chloride content determined by autopsy tests. Furthermore, leaching of the 
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thin mortar cover into the surrounding medium could introduce significant alterations in 

the region near the steel, possibly rendering the outcome different from that which 

would have been obtained with a thicker cover more representatives of field conditions. 

In view of those possible uncertainties and on the scarcity of data in general, a more 

systematic and sophisticated experimental assessment was deemed necessary to 

better quantify the chloride corrosion threshold dependence on steel potential. 

In addition to the experimental shortages noted above, implementation of PDT in 

predictive models had been the subject of preliminary work but some key issues needed 

further attention. A previous investigation [4] incorporated PDT in a one-dimensional 

finite difference deterministic model of a partially submerged reinforced concrete column 

by introducing Equation (1)) with the following parameter values: CT0: 0.2% Cl- by 

weight of cement, ET0: 100 mV (SCE), and βCT: - 400 mV per decade of Cl- (roughly 

approaching the dependence given by the dashed line in Figure 1).[4, 6] 

In that preliminary model, corrosion was assumed to start when CT was reached 

in a steel zone (or node) of a given size. That event resulted in activation of that zone 

and the creation of a macrocell corrosion pattern where that zone was anodic while the 

rest of the steel in the column remained passive, namely a cathodic zone. The corrosion 

macrocell pattern for that configuration was then calculated to obtain the value of the 

steel potential E at every zone in the system. The steel zones that were still passive, 

near that first activated site developed a significantly more negative value of E than the 

potential present before the first activation event. Hence, those zones were assigned 

per Equation (1)) a correspondingly larger value of CT than before. Consequently, 

corrosion initiation in those regions was delayed. As the new CT value was eventually 
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reached in other zones, the macrocell pattern was affected accordingly and corrosion 

development was delayed in nearby regions as well. The overall result was a much 

slower progression of corrosion damage in the system than if the CT would have been 

value, potential-independent value (βCT = -∞). The effect, illustrated in Figure 2, was 

found to be a dramatic decrease in the predicted amount of corrosion damage when βCT 

was a finite value compared to the case of a potential-independent threshold βCT = -∞.  

 

 

 

 

 

 

 

 

 

 

 

 
Moreover, Figure 2 shows that the amount of projected damage can be quite 

sensitive to the value of βCT, where the corrosion damage was evaluated using values 

Figure 1 Chloride threshold dependence on steel potential compilation from the 
literature by Presuel et al. and updated by Sánchez et al.  
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of |βCT| = - 100, - 200 and - 400 mV/ per decade of Cl-. Thus, for engineering forecasting 

purposes, more accurate parameter choices (especially for βCT) were desired for a 

better representation of a marine structure, further justifying the need for the additional 

experimental work indicated above. 

 

 

 

 

 

 

 

 

 

The initial predictive model incorporating PDT served to demonstrate the 

feasibility of the concept; however, in addition to the dependence on βCT the damage 

prediction was found to be highly sensitive to the assumed size of the corrosion 

activation zone (or node). As the size of the activation zones (nodes) was made smaller, 

the total predicted amount of damage at a given age decreased toward a zero limit 

value.  

Figure 2 Damage projections in previous model calculations showing strong decrease in 
projected damage at age=60 years when comparing the case of a potential independent 
threshold (βCT = -∞) and cases where CT depended on potential of the passive steel 
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As explained in Reference [4], that result was not consistent with the trends 

expected from basic considerations on the behavior of the system, and resolution of the 

major issue needed to be cleared before further developing the concept. Examination of 

the model assumptions suggested that the problem stemmed from neglecting the local 

resistance of the concrete around the steel bars. As a result, the macrocell coupling 

effect was inappropriately exaggerated as node spacing decreased leading to an 

erroneous limit condition. A solution the model was formulated by accounting for the 

local resistance polarization consistent with the size of activation zone and it is 

addressed in the following section.  

1.2 Problem Statement and Research Objectives 

Summarizing the issues discussed above, chloride corrosion threshold 

dependence on potential (PDT) has received little attention in the literature. Available 

data are scarce and subject to much experimental scatter, and restricted to a limited set 

of condition involving small steel specimens in thin mortar cover. There is the need for 

more developed and systematic experimental assessments to address and resolve the 

uncertainties introduced by other influencing parameters on CT, especially steel 

specimen size, thicker cementitious cover, actual concrete embedment, and chloride 

exposure better resembling actual service regimes, so as to obtain a more solid 

indication of the value of βCT under experimental assessments, and reduce the extent of 

uncertainty with regards to incorporating PDT in a corrosion-related predictive model 

prepared under this investigation. 
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 Current service life predictive models oriented to the practitioner do not account 

for mutual corrosion aggravation and corrosion protection effects due to macrocell 

coupling between active and passive steel assembly components. This is a critical 

modeling feature that may be solved by the incorporation of PDT in corrosion prediction 

calculations and result in substantially improved damage forecasts, as addressed in this 

investigation.  

Per the discussion above, the objectives of this investigation were the following: 

1) Expand by a systematic experimental assessment the knowledge and data base 

on how dependent the chloride threshold is on the potential of the steel 

embedded in concrete. Apply the findings toward a more solid indication of the 

value of βCT. 

2) Introduce the chloride threshold dependence on steel potential as an integral part 

of corrosion-related service life prediction of reinforced concrete structures. By 

changing model input parameters determine how macrocell coupling between 

anodic and passive regions in a marine reinforced concrete system affects 

durability projections in comparison with the traditional potential-independent 

chloride threshold treatment.  

1.3 Research Approach 

The following research approach (keyed to Chapters in this dissertation) with 

related tasks was designed to achieve the objectives. 
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1.3.1 Addressing Objective 1  

1.3.1.2 Chapter 2: Experimental Assessment 

• First Stage: conduct an initial set of experiments using specimens with moderate 

steel surface area embedded in a thick mortar cover and in a continuous 

immersion regime. 

• Second Stage: conduct an advanced set of experiments using concrete 

specimens with large steel surface area and an alternating wet-dry exposure.  

• Evaluate findings of both Stages together with previous literature data to obtain 

an updated indication of the value of βCT. 

1.3.2 Addressing Objective 2  

1.3.2.1 Chapter 3: Introducing Potential Dependent Threshold in Corrosion 

Modeling of Reinforced Concrete 

• Develop an advanced potential-dependent threshold model of corrosion damage 

of a reinforced concrete structure. The model focuses on the case of a partially 

submerged marine column and incorporates a formulation that accounts for the 

local resistance polarization consistent with the size of activation zone. The 

model parameters include the value of βCT determined as part of Objective 1. 

• Determine the sensitivity of the model output to the value of βCT, as well as to the 

size of the steel activation zone and to the fineness of the computational grid, to 

establish applicability of the model for insight in forecasting and research.  



12 
 

• Compare results with those from the traditional potential-independent chloride 

threshold treatment and establish importance of including potential-dependent 

threshold in next generation models. 

1.3.2.2 Chapter 4: Effect of Variation in System Parameters on Corrosion Damage 

Forecast with Potential Dependent Threshold 

• Simulate the partially submerged reinforced concrete column modeled in Chapter 

3 by decreasing the values of the following elevation-invariant input parameters: 

concrete resistivity, surface concentration, oxygen diffusivity and chloride 

diffusivity; to establish the sensitivity of the model output under those uniform 

conditions. 

• Establish the relevance of the results on corrosion forecasting of marine 

substructure. 

1.3.2.3 Chapter 5: Probabilistic Corrosion Forecast with Potential Dependent 

Threshold 

• Explore the potential-dependent threshold effect in a reinforced concrete column 

atmospherically exposed with random variations of the surface chloride 

concentration and concrete cover profiles; to expand previous systematic 

modeling approach (Chapter 4) 

• Compare with similar random distributed cases with traditional potential-

independent chloride threshold treatment. Evaluate the relative degree of 

conservativeness in each case with a view to establish the advantage of 

introducing potential-dependent threshold feature in regular modelling practice. 
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1.3.2.4 Chapter 6: Practical Approach to Introduce a Correction for Potential 

Dependent Threshold in a Practitioner-Oriented Predictive Model 

• Develop an approach for incorporating the effect of potential dependent 

threshold, by the use of a correction function to be applied to projections that 

have been computed using the traditional procedures. 
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CHAPTER 2: EXPERIMENTAL ASSESSMENT1 

 Per the Research Approach detailed in Chapter 1, experimental tasks were 

implemented in two stages. The First Stage consisted of preliminary tests using 

specimens with moderate steel surface area embedded in mortar and in a continuous 

immersion regime.[17] The Second Stage involved concrete specimens with large steel 

surface area and an alternating wet-dry exposure regime more representative of actual 

service conditions.[18] Both stages, each with its specific methodology, are described in 

the next sections followed by a discussion leading to the overall findings. 

2.1 First Stage – Mortar Test with Moderate Steel Surface Area 

2.1.1 Materials and Experimental Setup 

Cylindrical mortar specimens with an embedded type #5 rebar were submerged 

in a saturated NaCl (~5.33 M) solution, as shown in Figure 3.[19] Plain A-615 rebar with 

high temperature mill scale on the surface was used.[20] The top and bottom of the 

rebar was coated with an epoxy resin, to prevent corrosion initiation in these areas. 

Ordinary Portland Cement Type I/II was used with a water-to-cement ratio (w/c) of 0.6 

and a cement-sand ratio (c/s) of 1/3. The cement factor (CF) was 488 kg/m3. The 

average mortar cover thickness of the rebar was 1.6 cm and it had an exposed area of 

32 cm2. An embedded activated titanium reference electrode (RE), periodically 

                                            
1 This chapter includes previously published material from publications of which the author of this 
dissertation is the lead author [17,18, 47]. Permissions are included in Appendix F 
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calibrated with respect to SCE, was used for potential control in each specimen.[21] The 

top and the bottom of the mortar specimens were also covered with a layer of epoxy to 

avoid chloride ingress in those mortar regions. The specimens were cured for 7 days at 

high humidity before being placed in the exposure container. 

 

 

 

 

 

 

 

One set of duplicate specimens was exposed at the open circuit potential (OCP) 

and three other sets were cathodically polarized at -200, -400 and -600 mV (SCE), 

respectively, representing potentials of passive steel in string macrocell contact with 

adjacent fully corroding steel. The solution had also addition of Ca(OH)2 in excess of its 

solubility limit to maintain an average pH of ~>12 and minimize alkaline leaching from 

the mortar. A counter electrode (CE), mixed metal oxide (MMO) deposited in a titanium 

mesh, was placed under the submerged specimens. A tight lid minimized access of 

external air and CO2 to the solution, but sufficient oxygen existed in the container for the 

solution to be considered as being naturally aerated. A multiple potentiostat was used to 

adjust the potential for the polarized specimens and periodically corrected with a SCE 

Figure 3 First stage experiment specimen layout 
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as needed to stay within ±10 mV of the target value. The experiment was conducted in 

a climate controlled laboratory with an average temperature of 21ºC. While developing 

the First Stage experiment procedure, additional supplemental tests were conducted 

with a limited number of specimens made with 0.5 w/c mortar and a CF=513 kg/m3, and 

exposed to a solution with NaCl content changed stepwise from 0.5 M (day 0) to 1 M 

(day 36 on). Methodology was otherwise similar to that used for the other specimens. 

Four of the supplemental specimens experienced activation during the test period and 

the results are noted together with those of the First Stage experiments. 

2.1.2 First Stage Results 

2.1.2.1 Open Circuit Specimens 

Time of activation tA or time when corrosion starts was estimated by observation 

of the potential evolution measurements and through electrochemical impedance 

spectroscopy (EIS) trends. The Nyquist plots (Figure 4a and Figure 4b) suggest that the 

interfacial EIS behavior approximated that a simple constant phase element (CPE) – 

polarization resistance (Rp) parallel combination. At short exposure times, the value of 

Rp was large but later on there was a sharp transition to smaller values indicative of the 

onset of active corrosion.  

The potential drop progression of the OCP specimens was consistent with that 

behavior. From observation of Figure 4c, the transitions took place at around the time 

that the OCP reached -300 mV (SCE), so that exposure duration (13 and 24 days for 

specimens 7 and 8, respectively) was declared to correspond to the corrosion initiation 

event for the present purposes.  
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2.1.2.2 Cathodically Polarized Specimens 

The polarized specimens initially demanded cathodic currents commensurate 

with the extent of cathodic polarization imposed as shown in Figure 5. As time 

progressed, the absolute value of the cathodic current in the -200 and -400 mV (SCE) 

specimens decreased appreciably, indicative of the onset of diffusion-polarized regimes 

for those cases.  
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Figure 4 Time trends for OCP specimens. a),b): Nyquist diagrams (lowest frequency 
shown 1 mHz; 5 data points per frequency decade) keyed to symbols in OCP graphs. 
c): Potential evolution. 
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Current demand was very small for the specimens polarized to -200 mV (SCE), 

which are likely to have remained near activation-polarized conditions for the cathodic 

reaction. Activation was manifested for the polarized specimens by a shift in the 

polarizing current from a cathodic to an anodic regime. Reaching an anodic current 

greater than 0.2 µA/cm2 was chosen as the criterion for the onset of the active regime, 

following the criterion used by Alonso et al.[10] The transitions for the polarized 

specimens that experienced activation during the exposure period are shown in Figure 

5. 

 

 

 

 

 

 

 

2.1.2.3 Estimation of Chloride Content at the Rebar at the Time of Corrosion 

Initiation 

After demolition, a 1 cm masonry drill was used to obtain mortar samples with no 

corrosion products at the rebar trace for chloride analysis Acid-soluble chloride 

concentration of 1-gram mortar powder samples duplicates for each specimen was 

Figure 5 Applied current density (anodic is >0) vs time for each polarized specimen at 
the indicated potential 
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determined following the “Florida Method of Test for Determining Low-Levels of 

Chloride in Concrete and Raw Materials”.[22] The chloride concentration values were 

expressed in the form of total chloride content by weight of cement. Because of the 

confirmatory time lag between the time of specimen activation and that of extraction, the 

chloride content at the time of sampling of the rebar trace was usually greater than that 

upon activation. A correction procedure was developed by assuming on first 

approximation simple cylindrical diffusion governed by Equation (2), an expression of 

simple Fickian one-dimensional diffusion in cylindrical coordinates[23]: 

 𝜕𝜕
𝜕𝜕

=
1
𝑟
𝜕
𝜕𝑟
�𝑟𝑟

𝜕𝜕
𝜕𝑟
� (2) 

 

where D is the apparent chloride diffusion coefficient, which is time and space invariant, 

r is the radial dimension, and t is time. The boundary conditions assumed a constant 

surface chloride concentration (CS) at the outer cylinder wall and a zero-flux condition at 

the rebar surface, thus accounting for the rebar obstruction effect for chloride 

accumulation at the rebar trace.[24] The solution of Equation (2) was solved by the 

Finite Difference Method (FDM). The equation was formulated in terms of 

dimensionless expressions: P=Dt/α2, CTR/CS and r/α; where CTR and α are chloride 

concentration at the rebar trace at a specific time and radius of the specimen, 

respectively. The output to the problem was the numerical functional relationship 

between CTR/CS and P. A representative value of CS was obtained following a similar 

procedure as for the rebar trace, but instead sampling the outer cylinder surface. The 

chloride content measured by chemical analysis at the rebar trace (CTR) at the time of 

removal (tR) was then divided by CS to obtain CTR/CS, which in turn yielded P(tR) (P at 
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the tR) per the functional relationship determined above. With the values of tR, P(tR), and 

a, an estimate of D was obtained, which was then used to obtain P(tA) and from similarly 

obtain an estimate of CT, the concentration at time of activation, which is the reported 

threshold value. Samples of the outer surface of specimens 5 and 6 (see Table 1 for 

specimen condition) that were analyzed to determine CS yielding values respectively of 

41 kg/m3 and 40 kg/m3, respectively, with an average of 40.5 kg/m3. This value is 

generally consistent with the expected high porosity of the mortar, given its high w/c 

ratio and an assumption of pores near the surface filled with the saturated NaCl solution 

plus some extent of chloride binding by the surrounding matrix.[25, 26] For specimens 5 

and 6, as of day >170 no activation events were observed. A lower bound for rebar 

trace chloride concentration was estimated by assuming that the value of D was the 

same as the average DAVG1, 2.43 ×10-7 cm2/s, of the rest of the specimens and using 

the CTR/CS – P relationship to estimate CT at the latest exposure time. For that long 

exposure, the resulting CT value was nearly equal to the CS value.  

For the specimens from the supplemental tests (S2, S4, S7, S8), only activation 

time data were available. A rough estimate of CT was made nevertheless in those cases 

by a similar procedure as used for specimens 5 and 6. Nominal values of CS and D 

were assigned as follows. The surface concentration was assumed for simplicity 

(neglecting adjustments for porosity and chloride binding differences) as being directly 

proportional to the solution chloride content, prorating directly from the CS value used 

for the First Stage tests, and further using a constant nominal weighted value based on 

the fraction of tA spent in the 0.5 M and 1 M regimes. Since in the supplemental tests a 

0.5 w/c mixture had been used, the corresponding value of D was estimated from the 
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average value from the main test sequence, and multiplying it by the average ratio of D 

(0.5 w/c) to D (0.6 w/c) obtained from work by previous authors resulting in DAVGS1.[27-

29]  

2.1.2.4 First Stage Potential-Dependent Threshold Findings 

Table 1 summarizes the results and calculations of each test condition. The 

values for D estimated from the First Stage test sequence were generally high, 

consistent with those expected for high w/c mortar in a wet environment. [27-29] It is 

noted that the estimated value of D for specimen 4 was significantly higher than for the 

others, reflecting the high chloride content measured at the rebar trace of that specimen 

after a relatively short exposure period and the consequent early activation as well. It is 

speculated that mortar consolidation may have been poorer in that sample, although 

there was no readily visible sign of deficiency. Regardless of the early chloride buildup, 

the results for this specimen nevertheless followed the same overall trends discussed 

next. It is recognized that the results from the supplemental tests represent only rough 

estimates, provided here primarily for completeness. 

Table 1 Calculations and results for each first stage test condition. 

Specimen Potential 
(mV) 

tA 
(day) 

tR 
(day) 

CTR 
(kg m-3) 

D 
(cm2 s-1) 

CT 
(kg m-3) 

CT 
(% by wt. 

of cement) 
1 -200 34 45 9.47 1.37 × 10‒7 5.4* 1.10* 
2 -200 31 31 4.00 1.35 × 10‒7 4.0* 0.83* 
3 -400 59 60 15.31 1.40 × 10‒7 15* 3.06* 
4 -400 12 13 14.03 6.09 × 10‒7 13* 2.62* 
5 -600 >170 >170 - DAVG1 >40** >8.1** 
6 -600 >170 >170 - DAVG1 >40** >8.1** 
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Table 1 (Continued) 

7 -150 13 17 5.34 2.75 × 10‒7 2.5* 0.52* 
8 -190 24 31 6.68 1.66 × 10‒7 3.4* 0.69* 

S2 -200 117 - - DAVGS1 5** 1** 
S4 -400 152 - - DAVGS1 6** 1.1** 
S7 -120 51 - - DAVGS1 1.7** 0.3** 
S8 -90 63 - - DAVGS1 2.5** 0.5** 

Notes: 
DAVG1: Estimated diffusion coefficient 2.43 × 10‒7 cm2/s = average of values from specimens 1-3 and 7-8. 
DAVGS1: Estimated diffusion coefficient 1.56 × 10‒7 cm2/s = value obtained from the conversion of D at w/c 0.6 to D w/c 
0.5, as described in text.  
* Corrected from direct measurement to account for time lag between activation and extraction.  
** Lower bound values of CT estimated for non-activated specimens 
Roundoff applied to finished values; internal table computations conducted with additional digits. 
 

2.2 Second Stage - Concrete Tests with Large Steel Surface Area 

2.2.1 Materials and Experimental Setup 

A modified version of the ASTM G109 “Standard Test Method for Determining 

Effects of Chemical Admixtures on Corrosion of Embedded Steel Reinforcement in 

Concrete Exposed to Chloride Environments”[30] was used as a basis to prepare a set 

of twelve reinforced concrete slabs 66 cm long, 10.16 cm wide and 6.35 cm high, 

exposed to a ponding regime while under potentiostatic control. Layout of the side and 

top view of the modified standard version is shown in Figure 6  

The concrete cover thickness XC of the embedded steel rebar was 2 cm. A single 

rebar was used, size #5 plain steel ASTM A-615-09B Grade 60 with an undisturbed gray 

mill scale. A stainless steel bolt screw, with two washers and a nut were tapped to one 

end of the steel bars to later connect the steel to the potentiostat after casting and 

curing. Next, the steel bar ends (5 cm) were also coated with epoxy, similar to the First 
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Stage tests, to prevent corrosion in these regions. The uncoated steel area was ~300 

cm2, approximately an order of magnitude greater than in the First Stage.  

 

 

 

 

 

 

 

 

 

 

Unlike the specimen configuration in ASTM G-109, the steel bar embedded in 

each specimen was intended to be cathodically polarized (except those at the OCP 

condition) with a potentiostat, as mentioned above. For that reason, a 5 cm embedded 

activated titanium RE, frequently calibrated with respect to an external SCE, was placed 

parallel to the steel bar. The CE, same material used as in the First Stage as well, was 

placed on either side parallel to the length of the steel bar. The CE was held to 

Plexiglass rods to prevent any contact with the working electrode.  
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Figure 6 Side and top view of the reinforced concrete specimens 
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A 2D model was developed using Comsol Multiphysics® to find optimal position 

for the CE placement by minimizing the variability of the potential at the steel surface 

between the upper and lower arrowed points as illustrated in Figure 7. The modeling 

results showed that the configuration on the left-hand side of the figure, CE placed 

under the steel bar, resulted in a larger electric potential (red font numbers) difference 

between the arrowed points, compared to the CE configuration on the right hand side. 

In the latter, the CE placed in a position parallel to the embedded steel bar yielded an 

electric potential difference as little as ~0.003 V, indicating a uniform current flow along 

the steel bar. Hence, the right hand side configuration in Figure 7 was used to build the 

specimens. 

 

 

 

 

 

 

 

Casting molds were built out of wood as shown in Figure 8. Prior to casting, the 

electrodes were placed in the molds and the interior wood was covered with mineral oil, 

assuring no contact with the soon-to-be embedded electrodes. Ordinary Portland 

Cement Type I/II was used with a water-to-cement ratio (w/c) of 0.6 and a cement-to-

Figure 7 Modeling results to find optimal position for counter electrode placement 
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Steel bar
RE CE

RE

CE
Steel bar

sand ratio (c/s) of 2.2. The coarse aggregate used was #89 limestone. The cement 

factor (CF) was 455 kg/m3.  

The reinforced concrete specimens were cured for 32 days at high humidity. 

After curing, a pond built with Plexiglass and sealed with marine adhesive was placed 

on top of each slab (similarly as in Ref.[17]) to recreate wet and dry regimes. Fresh 

water was ponded continuously during the first 17 days for leak proofing and 

stabilization. During this period, the exterior faces of the specimens were coated with 

epoxy as shown in Figure 9, leaving the bottom region uncovered. Stainless steel bolt 

screws were attached to the two outer ends of the CE to subsequently connect the two 

embedded meshes with a wire. Afterwards, regular wet-dry ponding took place; during 

the wet cycle (3.5-day period) a solution of 4 M NaCl was placed in the pond, a lid was 

placed on top of the pond to prevent evaporation. The solution was removed for the dry 

cycle (3.5-days too).  

 

 

 

 

 

 

 Figure 8 Second stage specimens prior to concrete casting. RE: reference electrode. 
CE: counter electrode 
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A set of triplicate specimens were tested at the open circuit potential (OCP) and  

three additional triplicate sets were cathodically polarized at -200, -400 and -600 mV 

(SCE), respectively, as shown in Figure 10.  

The evolution of the steel potential was measured periodically for all the 

specimens using the embedded RE and a SCE. EIS tests were performed periodically 

as well, for the OCP specimens only. A frequency range of 1 mHz to 1 MHz with an 

amplitude of 0.010 V rms was used. The Echem Analyst software by Gamry Instruments 

was used to model and estimate the Polarization Resistance (Rp) value of the 

embedded steel bar. The Rp value was calculated assuming a circuit that has a solution 

resistance, a non-ideal interfacial capacitance and polarization resistance parallel 

combination.  

 

Figure 9 Specimen after applying a layer of epoxy and placing the pond 
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2.2.2 Second Stage Results 

2.2.2.1 Open Circuit Specimens 

When the salt water ponding regime exposure was initiated (day zero) the steel 

potential readings were around -80 mV (SCE) and remained so for about 150 days as it 

is shown in Figure 11. Approximating the usage for the First Stage experiments, the 

time of corrosion initiation (or activation) tA for the Second Stage experiments was 

deemed to be confirmed when a  steel potential < -200 mV (SCE) was reached. As a 

secondary confirmation of steel activation, the value of Rp was observed to have 

exhibited about one order of magnitude decrease compared to the value when the 

embedded steel was in the passive condition.  

The activation events for the OCP specimens are indicated by the arrows in 

Figure 11. The average activation time for the triplicate set was 235 days. The 

specimens were retained sometime after the activation events occurred to validate 

Figure 10 Cathodically polarized specimens 
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corrosion initiation through EIS tests. An example of Nyquist plot results is shown for 

specimen 1 in Figure 12. During the first 150 days the embedded steel bar maintained 

an Rp value of ~20,000 ohms. Twenty days later, a potential drop to -170 mV vs SCE 

was measured and a pronounced reduction of the semi-circle diameter on the Nyquist 

plot was observed with an Rp value of ~4,000 ohms. The activation time was declared 

on day 161, when the steel potential passed the -200 mV mark with a reading of -220 

mV (SCE). EIS test resulted in an Rp of ~2,000 ohms, validating the time of activation 

estimated from OCP measurements. After confirmation of the time of initiation, the 

specimen was removed from the experimental set up and the methodology described in 

section 2.2.2.3 was followed. 

 

 

 

 

 

 

 

 

 

 

Figure 11 Evolution of the steel potential for the second stage OCP specimens. Arrows 
indicate activation event declaration. 
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2.2.2.2 Cathodically Polarized Specimens 

The current demanded by the polarized specimens was initially negative 

(cathodic) when the embedded steel bar potential was set towards negative values (-

200, -.400 and -600 mV (SCE)). Following the methodology of the First Stage, the 

moment of activation was declared when the demanding current density reached a 

value greater than +0.2 μA/cm2. An example of this procedure for specimen 6, polarized 

at -200 mV (SCE) is shown in Figure 13. The red dashed line and the black arrow 

corresponds to the activation criterion and event, respectively. Fluctuations were 

observed during the cathodic-anodic current transition as shown in Figure 13, thus 

specimens were kept polarized for a period afterwards to confirm activation. 

Figure 12 Time progression of EIS for specimen 1 at OCP condition, indicating marked 
reduction in RP on activation at day 161. Nyquist representation; 5 data points per 
frequency decade.  
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2.2.2.3 Estimation of Chloride Content at the Rebar at the Time of Corrosion 

Once activation was confirmed, the specimen was removed from the 

experimental setup and sliced with a masonry saw on the sides until reaching 

approximately ~3 mm away from the rebar. A chisel and hammer were then used to 

break the specimen into two halves. The top part of the specimen was then wedged 

away from the rebar exposing the rebar trace for the concrete-rebar interface closest to 

the pond (see Figure 14). The rebar trace was milled using a masonry drill 1 cm 

diameter similar to the procedure described in the First Stage specimens. The milling 

depth was ≤ 2 mm, and normally 9 grams of concrete powder were collected avoiding 

regions where corrosion products were observed. Triplicates of 3-gram concrete powder 

sample were analyzed for chloride ion concentration following the same procedure as 

Figure 13 Current density with respect to time for a specimen cathodically polarized at -
200 mV 
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mentioned in the First Stage methodology, the results averaged for a reported result 

(Table 2).[22] 

When specimen 7 was processed, large amounts of corrosion products were 

observed along the concrete rebar trace; and as a result, an insufficient amount of 

concrete powder (only about 1/3) was collected to meet the recommendation given in 

the FDOT FM5-516.[22] Consequently, the reported result for that specimen was for a 

single (not average of triplicate tests) value and subject to corresponding uncertainty. 

That value was unusually large and suggestive of an artifact. The chloride content at the 

concrete ponding surface CS was determined for selected specimens following a similar 

procedure as that indicated above for the trace. The results were 20.2 kg/m3
 and 22.4 

kg/m3 for specimens 2 and 3, respectively. The average value, 20.2 kg/m3, was used as 

the fixed CS value for all specimens in the calculations explained in the next section. 

 

 

 

 

 

The procedure yielded the chloride ion concentration CTR at the time of specimen 

removal tR. An adjustment for time delay was conducted to estimate the concentration 

CT at the declared time of activation (tA). The adjustment was calculated assuming 

simple diffusion in a semi-infinite plane sheet with invariant CS, C0 and D (Equation (3)), 

Figure 14 Reinforced concrete specimen after autopsy. 
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but correcting for the presence of the steel bar (diameter Φr) with clear cover XC as 

described in a computational investigation by Kranc et al.[24] The domain is actually of 

finite thickness, but since it is about 3 times greater than XC, the behavior at the 

relatively early stages considered here approximates conditions in a semi-infinite 

domain. Work by Kranc et al.[24] shows that for the above conditions the concentration 

C after a time of exposure t at the point of the rebar surface, closest to the external 

surface is given by  

 𝜕 = 𝜕𝑆 �1 − 𝑒𝑟𝑓
𝑋𝐶

2�𝑟𝜕/𝑇𝑓
� (3) 

 

where Tf is a derating factor that is a function of the ratios Φr / XC and C/CS (note the 

formulation as expressed in Equation (3) is implicit on C). For the present case Φr/ XC = 

0.77, a fixed value. Processing accordingly the graphic solutions to Equation (4) given 

by Kranc for that ratio value shows that Tf can be approximated by: [24]  

 𝑇𝑓 = −0.65
𝜕
𝜕𝑆

+ 0.792 (4) 

 

Using the global values of CS and XC and taking for each specimen C=CTR and 

t=tR, the corresponding value of D was calculated by clearing it from Equation (4), with 

results shown in Table 2. 

2.2.2.4 Second Stage Potential-Dependent Threshold Findings 

Table 2 shows the results of the Second Stage experiments. Results for 

specimens 1-6 were quite consistent with each other (average 5.14 × 10‒8 cm2/s, 
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standard deviation 1 × 10‒8 cm2/s) and in the expected range for a highly permeable 

concrete as used here. Due to the uncertainty associated with the chloride content of 

specimen 7 as mentioned earlier, two alternative values of CT were presented as a 

range in Table 2. The first value was calculated using and average value of D (DAVG2) 

obtained for specimens 1-6 together with Equation (3) and Equation (4) to obtain a 

numerical estimate of CT. The second value involves no adjustment procedure, so CT 

was taken to be nominally equal to CTR. Five of the cathodically polarized specimens did 

not experience corrosion activation up to day 600, as mentioned earlier. Exposure 

continues, but a nominal bounding lower value of CT was obtained following the same 

method as that used to obtain the second alternative for specimen 7. 

Table 2 Calculations and results for each second stage test condition. 

Specimen  Potential 
 (mV) 

tA  
(day) 

tR  
(day) 

CTR  
(kg m-3) 

D  
(cm2 s-1) 

CT  
(kg m-3) 

CT  
( % by wt. of 

cement) 

1 -100 161 180 4.10 5.38 × 10‒8 3.45 0.76 
2 -100 243 250 6.20 5.34 × 10‒8 6.01 1.32 
3 -100 297 327 6.02 3.98 × 10‒8 5.37 1.18 
4 -200 335 347 6.06 3.77 × 10‒8 5.82 1.28 
5 -200 213 222 6.64 6.40 × 10‒8 6.35 1.39 
6 -200 189 222 6.18 5.99 × 10‒8 5.09 1.12 
7 -400 320 347 20.6 - 7.7*-20.6 1.7*-4.5 
8 -400 900 - - DAVG2 14.1** 3.09** 
9 -400 900 - - DAVG2 14.1** 3.09** 
10 -600 900 - - DAVG2 14.1** 3.09** 
11 -600 900 - - DAVG2 14.1** 3.09** 
12 -600 900 - - DAVG2 14.1** 3.09** 

Notes:  
DAVG2: estimated average chloride diffusion coefficient obtained from specimens 1-6 
*Value of CT estimated using average value of D from specimens 1 to 6 (DAVG2=5.14 × 10‒8 cm2/s) 
**Lower bound values of CT estimated with DAVG for specimens non-activated specimens 
Roundoff applied to finished values; internal table computations conducted with additional digits. 
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2.3 Discussion of First and Second Stage Experimental Findings 

The experimental results from the First and Second Stage are represented by the 

red symbols in Figure 15. The CT values are expressed in total chloride content by 

weight of cement in the y-axis, and the potential E of the steel is expressed in mV in the 

x-axis.  

Data previously presented in Figure 1 from other sources are reproduced here as 

well and represented by the open gray circle symbols. The open and red circles 

symbols correspond to the First Stage and Second Stage CT results, respectively, for 

those specimens that reached a confirmed corrosion activation condition during the 

duration of the tests.  

The results of the First Stage and Second Stage specimens that did not reach 

activation during the tests are indicated by the open and solid red diamonds symbols 

with an upward pointing arrow. The results for specimen 7 (Second Stage) are shown 

as a range, which were affected by added uncertainty as noted earlier. 

The present findings of both experimental stages are generally consistent with 

the overall body of evidence, and support the expectation of a substantial increase in 

threshold as the impressed potential becomes more negative.  

The obtained results, considered together with those from earlier sources still 

support a lower bound of the beneficial effect of cathodic polarization consistent with 

that identified in previous work, and summarized by the dashed blue line starting at   

E=-100 mV for CT=0.5% and βCT of ~ -550 mV/decade of Cl-.[1, 11] Those parameter 

values will consequently be used as the main base for the PDT model calculations 
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presented later in this investigation. However, it is noted that several values from the 

present experiments and other sources are present as a lower chloride concentration 

bound (especially at the more negative potentials around -400 mV to -600 mV SCE). 

Hence, it is possible that future experiments may provide the foundation for justifying a 

somewhat more optimistic βCT slope (e.g, in the order of ~400 mV/decade of Cl-), which 

may serve as a basis for more refined calculations in follow-up work.  

It is also noted that the potential effect on CT implied by Figure 15 has been 

figured generally on the actual concentration of chloride ions at the steel-concrete 

interface at the time of activation. Additional benefit could be derived from any migration 

effect that the electric field used to apply cathodic polarization through the concrete may 

have in slowing down chloride ion buildup at the steel surface.[30]  

For a given steel polarization level that extrinsic effect would vary depending on 

factors such as the electric conductivity of the concrete, and should be evaluated 

separately. Similarly, the cathodic reaction increases local alkalinity at the steel surface, 

which is expected to be a factor in elevating the effective value of the threshold.[31]  

The extent to which these factors may be responsible for the overall increase in 

threshold is likely to depend on cement composition and electrokinetic effects, and is 

currently being investigated in Florida Department of Transportation (FDOT) project 

BDV25 977-10 also for possible future refinement of model projections.  

It is noted in closing that the procedures used here to correct for the time lag 

between activation and rebar trace chloride analysis in the specimens tested ignored, 

for simplicity, any electrokinetic effects during the time lag. While the resulting 
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inaccuracy in the CT estimate is expected to be of secondary importance given the 

relatively short period involved, future analyses of the data may benefit from a refined 

treatment that would include that feature.  

 

 

 

 

 

 

 

 

 

 

 

 

2.4 Conclusions of First Stage and Second Stage Experimental Tests Findings 

• The present results tend to agree with those of previous investigations showing 

that negative polarization of several hundred mV may be needed to attain an 

increase in corrosion initiation threshold of about one order of magnitude. 

Figure 15 Chloride threshold vs steel potential. Initial compilation by Presuel-Moreno et 
al. [9]; updated by Sánchez and Sagüés (gray symbols). [7] This project: red symbols. 
See text for further details. Some symbols are slightly offset for clarity. 
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• The updated survey of the literature is consistent with the lower bound of that 

beneficial effect being approximately described by a threshold value in the order 

of 0.5% by weight of cement at E=-100 mV (SCE), with a βCT of ~-550 

mV/decade of Cl- (dashed blue line in Figure 15) of chloride content, possibly 

revisable to a less pronounced value. Extrinsic effects, such as an electro kinetic 

slowdown of chloride buildup at the steel upon cathodic polarization will require 

separate consideration in follow-up work. 

• Because of the nature of lower bound estimates with high CT values at the more 

negative potentials, and per the other considerations noted above, the use of a 

more optimistic slope (e.g. βCT = ~- 400 mV) may merit future consideration but in 

the meanwhile the value of -550 mV has been adopted for general use in the 

models detailed later in this investigation (Chapter 3 to Chapter 5).  
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CHAPTER 3: INTRODUCING POTENTIAL DEPENDENT THRESHOLD IN 

CORROSION MODELING OF REINFORCED CONCRETE2 

3.1 General Approach 

This modeling approach is described for a situation of chloride-induced concrete 

reinforcement corrosion. That application is not restrictive however, and a comparable 

treatment could be made for e.g., carbonation induced corrosion if adequate information 

on governing parameters were available. For a tractable formulation of the problem, the 

external surface of a reinforced concrete structure at corrosion risk from environmental 

attack is divided into small elements, for simplicity taken to be of equal size. All 

dimensional and material properties as well as other corrosion process ruling 

parameters are assumed to be uniform within each of those small individual elements, 

but can vary from element to element. Beneath each surface element there is concrete 

with embedded reinforcing steel bars (rebars) placed under the clear concrete cover 

specific for that element. The concrete at each element has likewise individual values of 

chloride ion surface concentration and effective chloride ion diffusivity that govern the 

transport of chloride ions penetrating through the pore network towards the rebar.  The 

concrete at each element also has individual values of effective oxygen diffusivity and 

electric resistivity. If the structure including the steel assembly were to extend 

                                            
2 This chapter includes previously published material from publications of which the author of this 
dissertation is the lead author or a principal author [7,39]. Some of that material had also appeared in 
earlier sources [4,6]. Permissions for all sources are included in Appendix F.  
.  
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significantly further beneath each surface element, a more detailed spatial assignment 

of concrete properties and steel distribution could be made depending on the degree of 

geometric complexity. 

The portion of steel beneath each surface element (assuming a simple single-

mat rebar configuration) is named the corresponding steel element; all steel elements 

are assumed to be electrically continuous forming a structure-wide rebar assembly. The 

steel in the assembly is assumed to be initially in the passive state, undergoing anodic 

dissolution at a small current density dictated by the corrosion kinetic parameters for 

each element. Once a steel element becomes active (when the chloride content of the 

concrete at the steel depth reaches the value of CT corresponding to that element, 

which is also dependent on the steel potential just before activation), anodic dissolution 

is declared to proceed at that steel element at a rate that is determined by the corrosion 

kinetic parameter values ascribed to that element and on the local post-activation steel 

potential. The cathodic reaction, assumed to be oxygen reduction, is likewise assumed 

to proceed at rates also determined by the local potential and kinetic parameters, and 

the local oxygen concentration at the steel surface which is in turn affected by the 

overall oxygen transport parameters.  

Structure service time, starting at the moment of placement in service, is 

discretized into small equal size consecutive steps. The model consists of modules that 

calculate the system condition at each consecutive time step. Those modules are 

broadly described next; simplified implementation for a specific system is presented 

afterwards. 
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For each time step, a corrosion distribution module computes the potential and 

corrosion rate of the steel elements based on their passive/active condition as 

determined in the previous time step, and solving the system of polarization equations 

and electrolyte conduction equations for the array.[31, 32] The resulting steel potential 

at each point is used to calculate an updated value of CT for each steel element, based 

on a chloride threshold dependence on steel potential function having parameters that 

are part of the model inputs.[9, 10] 

A chloride transport module calculates for the same time step the updated 

chloride concentration at the depth corresponding to each steel element, and compares 

the result with the updated value of CT just calculated with the corrosion distribution 

module.  If the updated local concentration is found to exceed the updated value of CT, 

the steel element is declared to be active effective on the next time step (for which the 

age is recorded as ti for the element), and treated accordingly when applying the 

corrosion distribution module during the next time step.  

A surface damage evaluation module integrates over the length of the time step 

the local corrosion rate calculated by the corrosion distribution module, and adds the 

value to the local integration for all previous time steps. The result is an updated value 

of the local corrosion penetration P for each steel element. This module also compares 

P with the value Pcrit that is assumed to result in concrete cover cracking/spalling for the 

geometric and environmental conditions corresponding to each element.[33, 34] When 

Pcrit is exceeded at a given steel element, the corresponding element external concrete 

surface area is declared to be damaged and the corresponding age of the element is 

recorded at its value of ts. The module keeps track of the number of elements that have 
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reached that condition. The sum of damaged concrete area for the entire system as a 

function of time, expressed as a fraction or percentage of the total external concrete 

area, was defined as the damage function of the system.  

The model includes not only the effect of the regions already undergoing 

corrosion in delaying corrosion initiation elsewhere (through the effect of potential on 

CT), but also the later effect of macrocell development in accelerating/slowing corrosion 

propagation after activation of different zones of the steel assembly, thus successfully 

integrating the initiation and propagation stages in one single predictive model. 

For simplicity, on damage declaration the entire external surface of the concrete 

for that element is assumed here to exhibit corrosion-induced distress such as cracking, 

delamination or spalling. That election is not restrictive and alternative scenarios (e.g. 

spalling affecting only a portion of the element commensurate with the steel placement 

density and the rebar cover, or the introduction of an additional period of time between 

cracking and spalling) could be implemented instead if more precise information on the 

damage modality were available.[35] 

3.2 System Chosen and Main Assumptions 

The modeling approach indicated above can be implemented in a broad range of 

applications. For simplicity, demonstration of the concept is limited here to the idealized 

representation of a partially submerged, reinforced concrete marine substructure 

column (Figure 16). The surface of the column is divided into stacked ring-shaped 

elements each of height ∆Z. Additional simplification for corrosion distribution 

calculations is made by using a straightforward one-dimensional column model, 
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comparable to that employed in related work.[12,18] As shown in that investigation, the 

one-dimensional approach captures many of the features of interest of such system with 

minimum computational effort. However, the system chosen for representation could be 

fully implemented in two or three dimensions if more detail were desired.[4, 6, 36, 37] 

Furthermore, only systematic spatial variability of system parameters is used in this 

example, leading to a distributed but deterministic model forecast. Again, that choice is 

not limiting and the approach is equally suitable to stochastically varying input 

parameter distributions if so desired.  

   

 

 

 

 

 

 

 

 

 Figure 16 System modeled. Left hand side: sketch represents the front and top view of 
the reinforced concrete column used to model. Right hand side: a plot indicating the 
variation with elevation of the resistivity ρ, oxygen diffusivity DO, and chloride ion 
surface concentration Cs. Chloride ion diffusivity D and concrete cover XC are invariant 
with elevation 
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The column has a total height L, diameter Φ, and a single rebar mat, treated for 

simplicity as a relatively fine mesh, placed at a cover depth XC from the surface. The 

rebar mat has a total surface area of steel exposed to concrete equal to the external 

lateral column surface area multiplied by a Steel Placement Factor SF, which in typical 

construction may be in the order of 1. The ends of the cylindrical column are considered 

to be isolated electrically and from the surrounding environment, and with no 

reinforcement. The column is assumed to be immersed in seawater to half its height 

(L/2). Tidal variations are considered to be negligible for simplicity in this example.  

The concrete is approximated as an effectively homogeneous electrolytic 

medium of resistivity ρ, and effective oxygen diffusivity DO, both functions of elevation, 

and an effective chloride ion diffusivity D treated here for simplicity as a constant value, 

but again this choice is not limiting.  Concrete on the lateral surface of the column is 

assumed to have developed very early a time-invariant chloride ion concentration CS 

that is a function of elevation, and a time-invariant effective oxygen concentration CSO. 

CSO is treated as being constant with elevation, as reflecting equilibrium between 

atmospheric oxygen and the pore water at the surface of the concrete (as well as with 

seawater). However, the effect of salinity variations on CSO is ignored for simplicity. All 

oxygen concentrations are given as those in the pore water, and the values of 

representative oxygen diffusivities were converted to be consistent with that choice.[31, 

38] 

The reinforcing steel is assumed to be the locus of an anodic metal loss reaction, 

 Fe￫ Fe2+ + 2e- (5) 
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with a corresponding current density 𝑖𝑎, under two modalities: passive dissolution at a 

fixed small current density 𝑖𝑝, or active dissolution at a potential-dependent current 

density 𝑖𝑎𝑎 so that  

 𝑖𝑎 = 𝑖𝑝     (passive) (6a) 

 

 
𝑖𝑎 = 𝑖𝑎𝑎 = 𝑖0𝑎10

(𝐸𝑠−𝐸0𝑎)
𝛽𝑎  (active) (6b) 

 

where i0a is the nominal exchange current density, E0a is the nominal equilibrium 

potential and βa is the anodic Tafel slope.  The steel is also assumed to support a single 

cathodic reaction  ic, oxygen reduction:  

 O2 +2H2O +4e- ￫ 4OH- (7) 

 

which is considered for simplicity to occur under either a fully activation-controlled or a 

fully diffusion-limited condition. Under full activation control the current density ica is  

 𝑖𝑐 = 𝑖𝑐𝑎 = 𝑖0𝑐10
(𝐸0𝑐−𝐸𝑠)

𝛽𝑐  (8) 

 

where ioc is the nominal exchange current density, 𝐸0𝑐 is the nominal equilibrium 

potential and 𝛽𝑐 is the cathodic Tafel slope. Under full diffusional control and with XC << 

Φ and SF not far from unity, the current density 𝑖𝑐𝑑 may be approximated by  
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 𝑖𝑐𝑑 = 𝑖𝑐 = 4𝑆𝜕𝑆𝑂𝑟𝑜𝑆𝐹𝑋𝑐 (9) 

 

where 4 is the number of electrons to reduce O2 and F = 96.5 103 coul/equiv is 

Faraday’s constant. The value of 𝑖𝑐 is made to switch from 𝑖𝑐𝑎 to 𝑖𝑐𝑑 when the former 

exceeds the latter, creating a working approximation in lieu of the more computationally 

intensive mixed polarization function.[12] However, there is no limitation in implementing 

the latter if desired.  

For both anodic and cathodic reactions the corresponding reverse reactions are 

ignored as the potentials of interest are assumed to be far away from the respective 

actual equilibrium potentials.  

3.2.1 Corrosion Distribution Module 

Calling z the distance along the column axis (elevation, with z=0 at the waterline), 

and treating the problem with a one-dimensional approximation  in a manner similar to 

that used  by Presuel-Moreno et al, the charge conservation condition implies that [12]:  

   𝑖𝑠 = �
∅

4 𝑆𝐹
� �

1
𝜌
𝑑2𝐸𝑐
𝑑𝑧2

+
𝑑𝜌−1

𝑑𝑧
𝑑𝐸𝑐
𝑑𝑧

� (10) 

 

where EC is the steel potential with respect to point in the concrete representative of the 

bulk of the column at position z; iS =ia-ic  is the net current density on the steel surface at 

elevation z, with ia being equal to iaa or ip depending on whether the local steel surface 

was declared active or passive if the value of C was respectively above or below the 

value of CT. The form of the equation results from the one-dimensional approximation 
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used, whereby the corrosion macrocell current travels through the concrete along the z 

axis and is progressively increased or decreased as it sinks or is sourced at the steel 

surface. The column concrete cross sectional area is πΦ2/4, and each interval dz of the 

length encloses a steel surface area of value SFπΦdz, hence resulting in the Φ/(4 SF) 

factor. The reader is referred to Presuel-Moreno et al. for further details.[12] As shown 

there, the formulation can be expressed equivalently in discretized electric circuit form 

as shown in Figure 17, where each column segment (indexed i) is of uniform length ∆z, 

has a longitudinal concrete resistance RLi  related to the local resistivity ρi by Equation 

(11): 

 𝑅𝐿𝑖 =
𝜌𝑖∆𝑧

�𝜋 ∅
2

4 �
 (11) 

 

and where the potential ESi is the local value of ES which is related to isi = iai-ici via 

polarization equations (6a), (6b), (8) and (9).  

Seawater has resistivity that is orders of magnitude smaller than that of concrete; 

in the below water segments it is then realistic to take the potential distribution at the 

external submerged portion of the column as space-invariant.[12] For the one-

dimensional model used here, all steel elements for the submerged portion of the 

column were thus assumed to share a common potential, acting in unison and thus 

behaving as if connected to the waterline steel element by a radial resistance factor Rr 

of value determined by the resistivity assumed for the waterline level and the column 
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dimensions and internodal spacing. To capture any local current concentration effect a 

local resistance term RS was also introduced. 

 

 

 

 

 

 

 

 

 

 

 

 

The potential-CT function chosen was that of Equation (1). The declaration of 

whether a steel element is in the active or passive condition is made using the value of 

the chloride ion concentration C(t) at the rebar depth XC at the step time t (see chloride 

transport module next) per Equation (3), and the local value of CT calculated at each 

steel element per Equation (1) using the value of E obtained at the end of the iterative 

Figure 17 Left hand side: system discretization. Right hand side: symbols representing 
the types of resistances used in the system showing a portion of the column near the 
waterline, starting at element i. Black resistor symbol: longitudinal resistance. Dashed 
resistor symbol: radial resistance. Gray resistor symbol: steel resistance. 
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solution process conducted in the previous time step. The array of values of CT remains 

unchanged during the iteration process. After iteration is complete the potential array is 

used as seed for the next time step potential calculations. It is noted that once the steel 

element is declared active, it is declared to remain so for all subsequent time steps. This 

is only a simplifying assumption that may be refined in future implementations of the 

modeling concept. 

3.2.1.1 Accounting for Local Resistance Polarization 

 In a crude approximation both ECi and ESi in Figure 17 could be treated as being 

equal, but such simplification would ignore the ohmic resistance associated with 

geometric current constriction around the rebar, which has a radius much smaller than 

that of the column.  

Recent work [4] showed that neglecting that resistance led to an exaggeration of 

macrocell coupling between active and passive rebar zones and to unrealistic limit 

behavior. Consequently, a local resistance term RSi was introduced by treating the rebar 

as a narrow cylindrical electrode of diameter Φr in a cylindrical medium that extended to 

an influence radius assumed to be in the order of Φ/4.  

This choice is a working assumption to capture a dimension representative of the 

radial distance between a rebar and a point halfway to other macrocell sink or source 

components. Because of the logarithmic dependence in Equation (12) the precise value 

of this choice is not critical to the overall result and it was not subject to further 

refinement. Using the equation for the resistance between concentric cylinders the 

value of RSi is given by [31, 39]  
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 𝑅𝑆𝑖 =
𝜌𝑖 𝜙𝑟

2𝜋𝑆𝐹∅∆𝑧
  𝑙𝑛 �

𝜙
2𝜙𝑟

� (12) 

 

The effect of 𝑅𝑆𝑖 is then accounted by considering it as a resistive element 

between the bulk of the concrete and the surface of the steel, so consequently  

 𝐸𝑠 = 𝐸𝑐 − 𝑖𝑠𝑅𝑠 (13) 

 

For the examples presented here, solution of Equation (10) to obtain iS and EC as 

function of z was conducted iteratively for each time t using a finite differences method 

formulation equivalent to the circuit approach shown in Figure 17. An equispaced node 

array, of 101 nodes for the base case, was used along the elevation direction of the 

column. Each node corresponds effectively to one column segment containing the 

corresponding steel element. The odd number of nodes was selected so that the 

waterline location could be centrally placed and correspond to only one steel element. 

As a check of solution convergence the percent difference between total anodic and 

cathodic currents in the column was calculated, and verified to be normally substantially 

less than 0.5% except for brief transients immediately following some of the steel 

activation events. Those transients rapidly dissipated in subsequent time steps.  

3.2.2 Chloride Transport Module 

The chloride ion concentration C at the rebar depth XC is calculated for regularly 

spaced times counting from the moment the structure is put in service. It is assumed for 

simplicity that diffusion behavior is ideally Fickian (no chloride binding or other 
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complications), initial bulk chloride contamination is zero, and cover values are chosen 

so that XC<<Φ is approximately satisfied (nearly flat wall diffusional condition), so at a 

moment t follows Equation (3). Possible macroscopic effects on chloride ion transport 

from electric fields inside the concrete associated with macrocell formation are ignored 

for simplicity. 

3.2.3 Surface Damage Evaluation Module 

The value of ia calculated by the corrosion distribution module is integrated over 

time for each steel element, to obtain a cumulative anodic charge density (qa) array. 

The anodic charge density at each steel element is Faradically converted into a 

corrosion penetration depth PC 

 𝑃𝐶 =
𝐴𝑊𝐹𝑒𝑞𝑎
2 𝑆 𝜌𝐹𝑒

 (14) 

 

where AWFe = 55.85 g/mol is the atomic weight of Fe and ρFe = 7.8 g/cm3 is the density 

of atomic iron (Fe). 

For each time t and at each steel element, the value of PC is compared with the 

critical penetration depth PCRIT that results in appearance of a crack/spall at the external 

surface of the concrete for the conditions encountered.[40] If PC>PCRIT the external 

concrete surface over the steel element is declared damaged. For the present simplified 

model, possible effects of the appearance of cracks on subsequent corrosion 

development in the column are not addressed.  Importantly, the present model (as well 

as an earlier rotational-symmetry 2-dimensional approach [36]) is limited to treat all 
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points at a given elevation equally so lateral corrosion macrocells are not addressed 

either. The crack is assumed to be associated with simultaneous delamination of size 

comparable to the steel element area projected on the external concrete surface. The 

term "spall" is used here broadly to designate a delamination or the loss of concrete that 

would result if the delaminated portion were to fall off. 

3.3 Summary of Model Inputs and Outputs 

Per the discussion above, the model inputs for this application example consist of 

the column dimensions; rebar mat depth and steel factor; concrete resistivity, oxygen 

diffusivity and chloride diffusivity elevation profiles; steel electrochemical kinetic 

parameters; surface chloride and oxygen concentration profiles; and value of critical 

corrosion penetration. Basic model outputs as function of time are the chloride content 

at the rebar depth and the steel potential elevation profile. From those are derived the 

reaction current density profiles; corresponding declarations of active/passive steel 

condition profiles, and cumulative damage profile as well as integrated column damage. 

In the terminology of Tuutti's initial corrosion damage concepts [1], the corrosion 

initiation stage at local element ends with the declaration of active condition, and the 

propagation stage starts with the activation declaration and ends with the damage 

declaration when PCRIT is exceeded. The duration of both stages varies from steel 

element to element.[40] 

3.4 Model Parameters 

The model input parameter values are listed in Table 3, corresponding to a base 

case with variations for some of the parameters whenever indicated. The corresponding 
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parameter distribution as function of elevation is shown in Figure 16. The dimensions 

chosen for the column, concrete cover and steel placement density are typical of those 

encountered in marine substructures. 

3.4.1 Elevation Profiles for D, ρ, DO and CS 

The elevation profiles of these parameters chosen for this application are 

graphically described in Figure 16. Chloride diffusivity, elevation-independent for 

simplicity as noted earlier, was assigned a value representative of a somewhat 

permeable concrete so as to result, when combined with the concrete cover used, in 

appreciable damage development during a 75-year evaluation period.  

The other parameters are considered to have elevation trends representative of 

those observed in typical marine substructure conditions.[42] Concrete resistivity was 

assumed to be constant below water, with value consistent also with a somewhat 

permeable concrete, and linearly increasing with elevation above the waterline reflecting 

the expected drier conditions there.  

Oxygen diffusivity was assumed to increase exponentially with elevation above 

water, to reflect the pronounced increase in oxygen transport in concrete that takes 

place once the pore network is no longer saturated with pore water.  

Chloride surface concentration was assumed to be greatest just above the 

waterline, where evaporative chloride accumulation on the concrete surface would be 

greatest, and to decrease linearly with elevation as seawater spray becomes less 

important.[42]   
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Table 3 Model parameters for base case and variations (refer to Figure 16 for key) 

Steel Cover  XC = 7.5 cm 
Column diameter Φ= 105 cm 
Column Length L= 1200 cm 
Concrete Resistivity ρT= 7.5 104 ohm-cm  

 
 

ρW, ρS= 1.5 104 ohm-cm  
 Oxygen Diffusivity*  DOT= 10-3 cm2/sec 

 
 DOS = 10-5 cm2/sec 

Chloride Diffusivity D= 2.5 10-8 cm2/sec 
O2 Surface Concentration CSO= 2.5 10-7 mol/cm3 (in pore water) 
Cl- Surface Concentration CST= 0 Kg/m3 

 
CSW= 20 Kg/m3 

 
CSS= 9 Kg/m3 

Chloride Threshold 
Parameters 

   
  

   
 CT0= 1.78 Kg/m3 

 
ET0= -100 mV 

 
βCT = -550 mV/decade (PDT);  

   

  

Variations: -325 mV/decade, -200 mV/decade, -
100 mV/decade (all previous ones are PDT),-
infinity (PIT). 

  
       Polarization Parameters** E0 (-V SCE) i0 (A/cm2)  

 
Tafel Slope (V) 

 Iron Dissolution -0.78 
 

3.75 10-8 
 

0.06 
  Oxygen Reduction 0.16 

 
1.40 10-10 

 
0.14 

  
 

       Steel Passive Current 
Density ip = 0.01 10-6 A/cm2 

            
Critical Corrosion 
Penetration 

       Above water PCRIT = 0.01 cm 
     Below water PCRIT = 0.02 cm 
     Activation Zone Size Corresponding to 1 element of height = L/101 

  

 

Variations : Corresponding to :  
1 element of height = L/51, L/201, L/401, L/801  
2 elements of height = L/101, L/201, L/401 and L/801. 

*Linear variation of log DO with elevation as shown in Figure 16. 
**Potentials are presented in this table and in the results section using the usual electrochemical 
convention where the rate of anodic reactions increases as the potential becomes more positive. 
Equations in the text however address potentials in the electrolyte with effectively the opposite 
convention.   
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Below the waterline the chloride surface concentration was assumed to be 

constant and of a value lesser than that just above the waterline, since there is no 

evaporative concentration effect. For the purpose of the calculations all chloride 

concentrations were expressed in terms of mass of chloride per unit volume of concrete, 

for  a nominal concrete cement factor of 354 kg/m3 (600 pounds/cubic yard). Table 3 

shows the values of the parameter pivot points ET0 and CT0 in Figure 1, chosen to be 

roughly representative of such concrete when placed in a subtropical marine 

environment.[42] 

3.4.2 Threshold Parameters and Variations; Steel Polarization and Concrete 

Cracking Parameters 

The values of ET0 and CT0 (converted to Kg/m3) in Equation (1) were chosen as 

those in the pivot point in Figure 1, per the arguments indicated in the Introduction. As 

noted there, a value of βCT = -550 mV/decade represents a lower bound estimate for 

that parameter but considerable uncertainty exists as to its effective value in other 

conditions; values as low as in the order of -100 mV/decade have been suggested 

elsewhere.[43] Since CT depends exponentially on the choice of βCT, this parameter was 

treated as a variable for examination. For the base case a threshold potential 

dependence βCT value of -550 mV/decade was assumed, reflecting an extreme 

suggested by a previous literature compilations and recent data.[9, 10, 17, 18] 

Variations on the choice of βCT were slopes of -325, -200 and -100 mV/decade reflecting 

increasingly optimistic but also uncertain scenarios. In addition to those potential-

dependent threshold (PDT) cases, a potential-independent threshold (PIT) case was 
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used as reference, implemented by making βCT = -∞ mV/decade so that per Equation 

(1). CT is fixed at the value CT0 that corresponded to cathodically unpolarized steel. 

While the above material properties and boundary conditions are loosely representative 

of some field conditions, it is emphasized that the values were chosen mainly for 

illustration of the modeling concept and not to match the behavior of a specific actual 

system. 

Polarization kinetic parameters values for the corrosion reactions are similar to 

those used in previous plausible modeling approaches.[31] See note in Table 3 for sign 

conventions. 

The value of PCRIT was chosen to be a 100 µm for elements above water, 

representative of typical values for atmospherically exposed concrete, and a nominal 

amount twice as large for submerged zones to capture the expected greater solubility of 

corrosion products in water-saturated concrete.[33, 44] As for all the other parameters, 

these choices are not limiting and can be modified as more precise information 

becomes available. 

3.4.3 Time Period 

The calculations cover the period from 0 to 75 years of age, using a 0.25 years 

time step. The time step value was found to be fine enough to avoid in most instances 

multiple activation declarations of adjacent elements in a single time step. In those few 

instances where the chloride content at the steel surface of two or more adjacent 

elements  was found to have exceeded the value of CT during a single time step, only 
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the element with the greatest excess was allowed to become active. Trial calculations 

with finer time steps provided essentially the same results. 

3.4.4 Activation Zone Size 

With uneven surface chloride distribution as in the present example, a similarly 

uneven CT-isoconcentration front penetrates into the concrete as time progresses. 

Ideally, passivity breakdown would occur first at just the point of intersection between 

that front and the surface of the steel. In reality, passivity breakdown is likely to involve 

some stabilization delay period, at the end of which the chloride content would exceed 

CT over some finite region around the initial point.  

Depending on the progression of breakdown stabilizing phenomena such as local 

pore water acidification and migration of chloride ions, the newly created anodic region 

may quickly develop a finite size area before the local potential drop is enough to 

temporarily prevent corrosion initiation in the immediately surrounding, still passive steel 

surface. That finite size area is named the activation zone size in the following 

discussion. Its value merits attention because if it is small, the effective electrolytic 

ohmic resistance for macrocell coupling with the rest of the system becomes high.[45] In 

such case, the corrosion-preventing influence would extend to only a short distance 

around the activation zone. Conversely, a larger activation zone size would have a 

lower associated electrolyte resistance and project its corrosion preventive action over a 

longer distance.  

Given uncertainty regarding what the effective activation zone size is in an actual 

structure situation, parametric calculations were made to determine trends and 



57 
 

sensitivity of the forecasted amount of corrosion damage as function of that value. For 

the system modeled here, the activation zone size was varied simply by dividing the 

constant column length into various numbers of equal segments differing from each 

other by approximate multiples of 2, and taking the activation zone size to be that of the 

steel element area in one segment.  

The resulting activation zone size was 0.38 m2 for the base case (101 steel 

elements), and ranged from 0.76 m2 (51 elements) to 0.0475 m2 (801 elements) for 

alternative cases. These values are macroscopic but, as it will be shown later, indicative 

via extrapolation of the conditions that might be reached at the vanishingly small size 

limit. 

The activation zone size variations just described imply also variations in the 

computational grid fineness, so the question would linger as to whether any change in 

the results was due merely to changes in the accuracy of the finite difference 

representation of the system.  

To verify that computational grid fineness changes did not introduce undue 

artifacts in the analysis, additional computations were made where in some of the 

element arrays the activation declaration was made to affect two adjacent segments 

instead of only one at a time. Comparison was then made with the output from the next 

coarser array, which had elements nearly twice the size but with only one activating at a 

time. The results, presented later on, showed essentially the same damage progression 

in both cases indicating that only minor artifacts came from this source. 
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3.5 Results 

3.5.1 Polarization Profile Evolution 

The computations utilizing the innovative model discussed here resulted in 

calculated potentials and corrosion current densities for the active and passive portions 

that generally approximated those encountered in actual corroding marine structures. 

However, for the methodology demonstration purposes of this investigation no further 

modification of the selection of kinetic parameters was made for direct simulation of any 

specific system. Within that generic context, incorporation of potential dependence of 

the chloride threshold was found to strongly influence the projected corrosion evolution 

of the system. Figure 18 exemplifies the steel potential- and corrosion current density- 

elevation profiles obtained by running the model for the base case (βCT = -550 

mV/decade)  to various ages representative of conditions of interest. Initially the chloride 

concentration everywhere on the steel surface was zero, so passive conditions 

prevailed. The rate of the anodic reaction over the entire rebar assembly was thus 

uniform, per the assumed value of the passive dissolution current density (0.01 µA/cm2). 

As that was everywhere below the limiting current density for oxygen reduction, under 

the simplifying assumptions used the entire assembly adopted a uniform mixed potential 

value (~-100 mV) that approached the typical values for passive steel in concrete noted 

earlier. The corresponding potential profile is shown by the dashed line in Figure 18 a). 

Since the potential was uniform along the rebar assembly, the value of CT calculated 

per Equation (1) was also the same throughout and equal to CT0, 1.78 kg/m3.  The initial 

condition was maintained until year 12.5 when the waterline steel element was the first 

to become active as a consequence of the chloride ion surface concentration, being the 
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highest there, having just exceeded  the initial value of CT, consistent with the choice of 

concrete cover and chloride diffusivity used. Upon activation, the steel element became 

a net anode, developing a high corrosion current density and a distinctly more negative 

potential than before. The active steel element and the potential and current density 

profiles changed into those indicated by the solid line in Figure 18 a).The potential 

depression extended to the nearby still passive steel elements, reflecting macrocell 

galvanic coupling. That polarization decreased above water with distance from the 

active steel element, consistent with macrocell coupling in a resistive electrolyte. At 

elevations ~>2 m above the waterline the effect vanished for the most part and the 

potential approached the initial potential. On the submerged side  the steel potential 

shifted and reached a value somewhat more negative than the initial potential, 

corresponding to the coupling of the large, still passive (effectively nearly equipotential) 

steel in the submerged zone with the newly activated waterline steel element. 

The steel at the newly active spot underwent corrosion at a high rate much as a 

consequence of the coupling with a locally weak, but overall large cathode. Chloride 

concentration built up to higher levels in the immediately surrounding passive steel 

elements, even exceeding the initial CT value, but activation did not take place in those 

elements because the CT values had increased due to the local potential depression. 

Instead, the next activation event (year 15.75), took place at a higher elevation (~1.5 m 

above the waterline) where the preventing effect from the polarization induced by the 

first anodic zone was lower. That second activation event occurred at a later date than 

the first since CS was lower at that higher elevation (and CT had become a greater 

value) than at the waterline steel element as shown in Figure 18b). The second 
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activation created a second negative peak in the potential profile, with associated 

potential depression and CT increase in the nearby passive steel elements. The 

corrosion current density was somewhat smaller than that of the waterline steel 

element, as macrocell coupling did not include the relatively large underwater cathode, 

and as concrete resistivity at higher elevations was higher. The next activation events 

included several  taking place further above the waterline as the increasing chloride ion 

concentration there exceeded the local CT value, but always some distance away from 

elements already active (as those delayed corrosion initiation around them). The result, 

for the highly simplified one-dimensional approximation used here, was the 

development of comb-like potential and corrosion current density profiles as in Figure 

18 c) for year 37.  

The corrosion current density was often greater at the higher elevation elements 

because, under the assumed parameter profiles, oxygen diffusivity was greater there so 

diffusional limitation of the cathodic reaction was less prevalent. The entire submerged 

zone became active at a later date reflecting the lower value of CS present there and 

some increase in the value of CT resulting from the cathodic polarization that had taken 

place starting with the activation of the waterline steel element in year 12.5. The 

condition with the zone below water activated is shown in Figure 18 d) for year 75 (end 

of the simulation). By that time the column potential profile had reached a mature 

pattern with multiple corroding zones above the waterline, separated by intermediate 

positions where the cathodic prevention effect delayed activation over a long time 

frame.  
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Figure 18 Evolution of potential- and corrosion current density-elevation profile as 
function of age, base case. Dashed line is initial potential profile of the all-passive 
assembly. a) 12.5 y: first activation event. b) 15.75 y: second event. c) 37 y: just before 
activation of submerged portion. d) 75 y: mature pattern. Water level at 6 m elevation 
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The uniform steel activation in the underwater region resulted in the most 

negative potentials of the system, because the cathodic reaction was fully concentration 

limited in that zone. Consequently the corrosion rates below the waterline were 

uniformly very low, at a value equal to that of the limiting current density for oxygen 

reduction (~0.01 µA/cm2), about twice the value of the passive dissolution current 

density experienced there before activation. Activation underwater also eliminated the 

large coupled cathodic region that aggravated corrosion in the waterline steel element. 

Consequently, the corrosion current density at that element dropped to a value 

commensurate with the low values prevalent where oxygen transport limitation was 

important, as noted above.  

3.5.2 Damage Profile Evolution 

3.5.2.1 Base Case: Potential-dependent Threshold (PDT)  

In an actual marine structure there would be a tidal zone instead of a fixed 

waterline, and the evaporative chloride buildup maximum would not take place precisely 

just above that zone. The first activation occurring at the waterline element in the cases 

considered here is only a result of the simplified surface chloride profile that was 

assumed per Figure 16. That assumption is not limiting however. The location for first 

activation could occur at a higher elevation if a modified profile (using for example field 

data) was used instead, but the main aspects of the damage evolution discussed here 

and in the other cases would remain relevant. 

Elevations profiles of start and end of the corrosion propagation stage (ti and ts, 

open and filled circles respectively) of the steel elements in the base case that activated 
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during the modeled period are shown in Figure 19. For steel elements that reached ts, 

the symbols are joined by a gray segment of length tp. Since PCRIT has a constant value 

above and below the waterline (see Table 3), the length of the gray segment is an 

inverse indicator of the time-averaged corrosion rate (CRAV) during the propagation 

stage. For the first element to be activated (that at the waterline) CRAV was ~33 μm/y. 

This rate is over an order of magnitude higher than the value corresponding to the 

limiting current density for oxygen reduction there, so the anodic reaction at this element 

was driven mainly by macrocell coupling with the surrounding passive elements both 

above and below water. For elements at higher elevations CRAV was in some cases 

small due to surrounding, earlier-activated elements effectively providing cathodic 

protection to the newly activated element, after they had earlier provided cathodic 

prevention by delaying corrosion initiation. The prevention effect is nevertheless 

dominant in not allowing corrosion initiation altogether in many other elements during 

the modeled period. On the other hand, CRAV was quite high for some of the elements 

that had experienced activation at the higher elevations. That outcome reflected the 

corrosion aggravation that resulted in part from providing beneficial cathodic polarization 

to the surrounding elements, but also from faster oxygen transport at the higher 

elevations that supported high corrosion rates there.  

It is noted that although the submerged zone experienced activation, no damage 

declaration occurred up to the end of the modeled period. This behavior is due in part to 

the very low oxygen diffusion-limited cathodic reaction rate prevalent there. Macrocell 

coupling that could aggravate corrosion below water is exchanged with the lower part of 

the above-water portion of the column, but the macrocell current is distributed over a 
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large submerged steel area with consequently diminished effect there (the situation is 

the opposite for the first elements above water, where the entire submerged zone effect 

coupling is concentrated). It is noted that for these simplified simulations the entire 

submerged region is treated as evolving simultaneously and that significant localized 

corrosion of small elements could take place if activation below water were not to occur 

uniformly and simultaneously.  Moreover, the extent of corrosion penetration needed to 

create cracks/spalls in the wetter concrete in the submerged zone could be greater than 

above water, and the mode of damage there may be different as well. Modeling of that 

behavior is in progress in follow-up work.[33, 45] 
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Figure 19 a) Base case (potential-dependent threshold, βCT= -550 mV/decade, 
elements of height L/101), showing initiation and damage declaration events. Lines 
joining both events (or extending to 75 years if damage occurs later) are shown for 
clarity. b) Time-invariant threshold case 
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3.5.2.2 Potential Independent Chloride Threshold Case (PIT) 

Further insight is derived from comparison with the behavior with all else as in 

the base case, but with no threshold dependence on potential. That condition was 

obtained by making βCT=-∞ so CT = CT0, same as the value at age = 0 years in the base 

case. Results are shown in Figure 19 b). 

In this condition the first activation still occurred at the waterline element, and at 

the same age as in the base case. However, unlike in the base case, activation of the 

nearby elements that are at increasingly higher elevations occurred very soon as no 

corrosion prevention was derived from the presence of the first or subsequent active 

zones. Thus a continuum of active steel tended to form, but with less macrocell action 

concentration compared with the base case.  

The element at the waterline nevertheless experienced efficient macrocell 

coupling with the still passive region below waterline, and consequently reached the 

damage condition a relatively short time after activation, at an age comparable to that of 

the base case. At the other lower elevation elements CRAV tended to become small 

(and tp consequently longer) as the cathodic reaction was more diffusion-controlled and 

less macrocell-enhanced, since activation of nearby elements followed promptly. At the 

higher elevations CRAV tended to be high and dominated by local cell action, given the 

high oxygen diffusivity and high concrete resistivity present there.  Eventually the much 

larger number of corroding elements resulted in a greater number of damage 

declarations than in the PDT cases, as is discussed next. 
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3.5.3 Cumulative Damage Function Trends 

3.5.3.1 Effect of Threshold Potential Dependence and of Value of Cathodic 

Prevention Slope  

The overall damage projection, or damage function of the system, is displayed 

for selected cases in Figure 20 as the percentage of steel elements in the column that 

reached the damage declaration point with increasing age. A 75-year evaluation period 

is covered. Because in the evaluation interval no damage declarations took place in the 

below-water elements in any of the cases addressed, the damage function had an 

upper limit of 50%.  

There was strikingly greater projected damage development at mature ages in 

the PIT case, effectively having an infinitely large value of βCT, than in the potential-

dependent chloride threshold (PDT) cases where βCT is finite. Furthermore, there was 

increasingly less projected damage in the aged system as the finite value of βCT 

decreases. For example, in Figure 20 a) the PIT condition resulted in about 90% of the 

waterline and above elements reaching damage declaration by age 75 years, while for 

the PDT cases the corresponding percentage was only 34% (βCT = -550 mV)  to 8% (βCT 

=- 100 mV) . This dependence on βCT is as expected from prior discussion on the form 

of Equation (1), since the increase in threshold (and consequent prevention of corrosion 

initiation in regions near an anode) due to a given decrease in potential should be 

greater the smaller the value of βCT. Also as expected the effect was observed but with 

a different, much smaller alternative activation zone size as illustrated in Figure 20 b) for 

the elements of height L/801 simulations. This behavior is summarized in Figure 21 



67 
 

where damage by age 75 years is plotted as function of βCT
-1 for the two values of the 

activation zone size considered, showing that  proportional behavior was roughly of the 

same order in both cases.  

In the early period shortly following the first damage declarations, the 

differentiation between PIT and PDT cases was more complicated than in the aged 

system. As shown in Figures 20 a) and Figure 20 b), damage for the PDT condition in 

that period tended to progress at a modest rate that was comparable to, and in one 

instance  (βCT = -550 mV, Figure 20 a) even faster than for PDT. Only at a later, 

intermediate age the rate for PDT began to raise clearly (and quite abruptly) above the 

PDT cases. There it is noted that in the PDT cases the waterline steel element, which is 

the one experiencing first activation, provided substantial cathodic prevention for some 

time to its surrounding steel elements.  

Those elements remained passive and acted as cathodes that increased the 

corrosion rate of the waterline steel element and resulted in earlier damage declaration 

there. As indicated previously, that macrocell corrosion rate aggravation was not as 

strong in the PIT case, so the first damage declaration there could be delayed 

compared with that in the PDT condition. It was not until later at some intermediate age, 

when the somewhat slower but much more numerous PIT damage declarations began 

to accumulate, that the long term differences in the corrosion pattern between both 

cases became well established. This issue has been explored further in work presented 

elsewhere.[49] 
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Figure 20 Damage projections for all parameters with βCT slope variations from a) the 
base case (elements of height L/101) and b) for elements of height L/ 801. 
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Further insight in the propagation stage evolution of the system is provided by 

examination of Figure 22 a) and b), which details the evolution of the corrosion 

propagation stage for the two cases addressed in Figure 19. The integrated anodic 

(corrosion) charge density is shown as function of time for each steel element that 

reaches the active condition, in the form of a line that starts at the moment of activation 

and increases with a slope that corresponds to the instantaneous corrosion current 

Figure 21 Effect of cathodic prevention slope (βCT) variations on the damage projection 
for age = 75 years. Results are shown for elements of height L /101 (triangles) and L / 
801 (squares). 
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density of that element. The damage event is declared when the charge density 

reaches the Faradaic equivalent of PCRIT (270 C/cm2 and 539 C/cm2 for above and 

below water elements respectively, per Table 3, assuming Fe+2 formation).  The curves 

are consistent with the above interpretations, showing that at early ages the fewer PDT 

activated elements tend to have a greater slope than the more numerous cases for PIT, 

per the arguments stated in the previous paragraph. At increasing service times, the 

damage accumulation for PDT overcomes that of PDT with the long-term trend 

differences noted earlier. The mostly regular propagation stage pattern of lines seen for 

the PIT case reflects the assumed uniform variation with elevation of parameters such 

as oxygen diffusivity and surface chloride concentration. Those trends result in 

gradually increasing corrosion rates and delays in activation times for elements at 

greater elevations. As discussed later on, the pattern for the PDT case appears at first 

glance to be random, but it is actually the result of a deterministic sequence dictated by 

the macrocell coupling and activation rules detailed earlier. 

3.5.3.2 Effect of Activation Zone Size 

Detailed dependence of projected damage at 75 year age on activation zone size 

is shown in Figure 23. The results are given as function of activation zone size for the 

range 1/8 to 2 times relative to that of the base case (0.38 m2 per element). Activation 

zone size should not appreciably affect the damage projection for the PITT cases, since 

corrosion initiation in an element does not affect that of the others, and indeed that was 

the outcome for that condition as evidenced by the nearly constant damage results. 

That outcome served also as a positive check of the robustness of the calculation 

procedures, since discretization of the column length in the range examined (51 to 801 
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elements) did not introduce any major artifacts in the model application for the PIT 

condition.  

 

 

 

 

 

 

 

 

 

 

 

 

In contrast to the time-invariant threshold behavior, activation zone size in PDT 

cases is expected to influence damage development. Two opposing effects are 

anticipated. As the activation zone becomes smaller, the amount of active steel created 

by an activation event is smaller too and so is the extent of later surface damage under 

the modeling assumptions used here. Simultaneously, as an activation zone becomes 
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Figure 22 Propagation stage behavior comparison of results for the a) PIT  and b) PDT  
cases addressed in Figure 18. The cumulative corrosion charge density is shown as a 
function of time.  Dotted blue lines and dashed black lines corresponds to the critical 
penetration conditions above (270 C-cm-2) and below (539 C-cm-2) water, respectively.   



72 
 

smaller, the corrosion preventing effect of that zone tends to becomes less, as the 

overall polarization of the anode becomes increasingly ohmic due to the local current 

constriction that develops around a small anode.[31]Hence, the size of the region where 

effective cathodic prevention takes place around the small anode tends to become 

smaller as well, enabling the earlier initiation of additional active spots nearby. 

Consequently, while the amount of corrosion per activation event is smaller for small 

activation zones, the number of zones is expected to increase concurrently so some 

kind of terminal behavior is expected under the two opposing effects for the vanishingly 

small activation zone limit. The modeling results shown in Figure 23 (circles, regular 

calculations) show that under PDT the damage limit under the terminal behavior is finite. 

For the system simulated here the 75-year surface damage, which was 18% of the total 

surface (36% for the portion not submerged) for the base case, tends toward an 

apparent finite limit of 8% (16% of portion not-submerged) for terminally small activation 

zone sizes. That outcome, which has been documented in more detail elsewhere, 

indicates that combined initiation-propagation modeling that incorporates PDT is not 

overly sensitive to the precise choice of the activation zone size at its low end.[39] 

Therefore, modeling using this approach could serve to obtain useful insight for a 

variety of plausible scenarios even in the absence of detailed information on the size of 

the activation zone for the systems of interest. 

As indicated earlier, the dependence of the output on activation zone size should 

not be confused with response of the calculation results to variations in the fineness of 

the computational grid. The latter dependence is only minor, as illustrated in Figure 23, 

where the trend for the PDT regular calculations (circles) is contrasted with the result 
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obtained when the activation declaration was made to affect two adjacent segments 

instead of only one at a time (crosses) in computational grids that were twice as fine. 

With the exception of the largest activation zone cases, where discretization is very 

coarse, the results with both alternative approaches, and the resulting overall trends, 

are essentially the same.  

 

 

 

 

 

 

 

 

3.6 Summary 

This novel work on introducing with proper consideration the threshold 

dependence on potential in a forecasting model demonstrates feasibility of integrating 

the corrosion initiation and propagation phases.  The calculations were enabled by an 

iterative approach that updates the system’s corrosion distribution when new regions of 

the rebar assembly become active. The approach successfully accounts for 

electrochemical interaction between different parts of the rebar assembly, no longer 

Figure 23 Damage forecast for year 75 as a function of activation zone size. Relativel 
activation zone size: [elements of height L/101]*[x] with x = 0.125, 0.25, 0.5, 1 and 2. 
Circles: regular calculations, activation of one element at a time. Crosses: activation of 
two adjacent elements simultaneously in computational grids twice as fine. 
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requiring the assumption of independent behavior of those parts. Implementation of that 

interaction, especially as it concerns the corrosion initiation events, strongly affected the 

damage projections compared to those obtained with traditional non-interacting element 

approaches. 

For an aged system condition, the innovative model projected dramatically less 

damage development than when using the traditional PIT assumption. The effect was 

strongest for hypothetical low values of βCT, but reduction in projected damage was still 

very substantial even when the cathodic prevention slope βCT was assigned a value   of 

-550 mV, at the lower envelope of known polarization influence on the corrosion 

threshold.  

Conversely, for the earliest stages of corrosion damage manifestations, the 

model projected intensification of corrosion damage where the first activations occurred 

(due to delay of corrosion initiation in the surrounding zones and consequent macrocell 

action), compared to sometimes milder projections by the traditional potential-

independent threshold assumption. 

Overall, the results indicate that traditional, PIT models may miss features in the 

damage evolution of a system that are important in decision making and design. 

Incorporation of a PDT approach may avoid exaggerated long term damage projections 

and consequently overly conservative cost estimates for the later service stages of a 

structure. Conversely, the early stages of damage development may be more 

accurately represented, better guiding design decisions that aim to delay the onset of 

serviceability limit states set at very low levels.  
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The system and conditions used in this investigation were highly simplified, as 

the main objective was to demonstrate the PDT modeling concept. The following 

observations apply noting some of the features that would merit consideration in the 

development of more realistic models with associated greater complexity.  

The damage functions exemplified in Figure 20 have, especially for the large 

activation zone size cases (elements of height L/101, Figure 20 a), an uneven and 

stepwise quality. The shape reflects the appearance of successive activation and 

propagation events at different elevations (see also Figure 22), following systematic 

trends in Cs and related variables, and the relative corrosion-preventing influence of 

each newly activated element. That influence is determined according to the local 

corrosion rate of the element and the effective resistance of the concrete path to nearby 

elements. Further variability is introduced by the development of different post-activation 

CRAV values during the individual propagation stages of different elements. However, it 

is emphasized that while the damage projection may appear to consist of random steps, 

the projection for the situations simulated here is entirely deterministic and not the result 

of a probabilistic assignment of corrosion initiation events or propagation rates, as it is 

used in other forecasting approaches.[3, 46] Ongoing work presented in Chapter 5 and 

elsewhere [49] explored the effect of random parameter variations superimposed to 

global trends, showing that the same general approach used here can also be 

successfully implemented for those more realistic cases.   

The simplified, one-dimensional model presented here does not capture the 

shape of the active zones or any radial variability - the zones might be imagined as 

being ring-shaped. Hence the comb-like periodicity of the active zones apparent in 
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Figure 18 would be replaced by a mottled pattern in a more realistic multidimensional 

realization of the model. Likewise, the device of dividing the length into segments of 

different sizes to represent corresponding active zones was only a rough approximation. 

It is also important to note that the simultaneous activation for the steel elements below 

water is a combined result of the simplifying assumption that all elements there share 

the same potential, and that CS and D are also the same on that entire zone. Those 

assumptions are clearly unrealistic, but their effect is minimized by the low limiting 

current density for oxygen reduction in that zone.  Furthermore, the findings presented 

above are relevant to the zone above water, where the manifestations of corrosion are 

most evident in actual systems. It is also observed that while concentration of corrosion 

at submerged regions of the rebar assembly could lead to significant local loss of steel 

cross section; it does not necessarily cause concrete cracking as accumulation of solid 

corrosion products may be lessened.[33] Despite those shortcomings, these 

calculations served to answer key questions regarding the effect of introducing 

potential-dependence of the corrosion threshold and resulting macrocell effects on 

durability forecasts. There is no conceptual limitation in implementing more 

sophisticated models introducing features including, but not limited to, full three 

dimensional configurations, probabilistic parameter distributions [49], and concrete 

aging effects. 
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CHAPTER 4:  EFFECT OF VARIATION IN SYSTEM PARAMETERS ON 

CORROSION DAMAGE FORECAST WITH POTENTIAL DEPENDENT THRESHOLD 

4.1 General Approach 

An expansion of the forecast model cases developed in Chapter 3 was revisited 

in this chapter with emphasis on establishing sensitivity of the model output to the 

choice of model input parameters, primarily to reveal the extent of the macrocell 

interaction between anodic and cathodic regions under various system conditions. 

Concrete parameters varied were resistivity ρ, oxygen diffusivity DO and chloride 

diffusivity D, representing values comparable to those encountered in the field plus 

some extreme conditions, especially at the low resistivity end. Additionally, the effect of 

the variations on the value of βCT was also examined, including the comparison PIT 

condition.  

4.2 Cases Examined 

The partially submerged reinforced concrete column system was modeled with 

deterministic profiles of CS, DO ρ, and D that were variations from those used in 

Chapter 3. In the cases examined, the only input parameters that remained unchanged 

with respect to the cases simulated in Chapter 3 were the profiles of XC and CS. In the 

following, the terms ρ0, DO0 and D0 mean the values that the parameters ρ, DO and D 

had at any given elevation in the cases simulated in Chapter 3. 
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A total of ninety cases were examined as listed in Table 4. Values of the input 

parameters and the linear elevation-pattern of the resistivity profile remained similar to 

that of the Chapter 3 base case but variations involved local resistivity ρ0 values that 

were three and ten times smaller than the original (base case) resulting in ρL (see Table 

4).  

Cases simulated in Chapter 3 experienced a limited amount of oxygen availability 

in atmospheric regions near the waterline after activation of the steel elements; hence, 

the rate of the cathodic reaction was smaller than in the higher elevation regions. As an 

alternative condition, a system with a much fast DO profile (linear increase with 

elevation) than the base case (exponential increase with elevation) was evaluated. 

Those conditions will be referred to in the following as “fast” and “slow” DO respectively.  

The chloride diffusion coefficient was assumed to be a time-invariant and 

constant value throughout the column in the base case. However, data obtained from 

the field indicates that there is an inversely proportional trend between the values of ρ 

and D. As a result of that, two linked variations of the diffusion coefficient with the ρ 

were evaluated: ρ linked D elevation-invariant and ρ linked D elevation-variant. In the 

former case the base case diffusion coefficient is multiplied by ρ0/ρL and would remain 

elevation-invariant, and the latter case involved a local variation of the chloride diffusion 

coefficient that would follow an inverse function of elevation- ρ profile. Variations of the 

βCT slopes of -550 (base case), -100, -200, -325  and -infinity mV/decade of Cl- were 

also evaluated to compared results with those presented in chapter 3. 
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Table 4 Cases examined (each combination includes 5 alternative values of βct) 

ρ  DO D 
ρ0 (Log DO varies linearly 

with elevation above the 
waterline as in the 
Chapter 3 cases) 

 

 𝑟0  

 

ρ0/3 

ρ0/10 

ρ0 DO below water and 
waterline same as DOS. 
DO above water varies 

linearly with elevation from 
DOS to DOT 

ρ0/3 

ρ0/10 

ρ0 (Log DO varies linearly 
with elevation above the 

waterline as in the 
Chapter 3 cases) 

  

𝑟0 × 𝜌
𝜌𝐿

  

 

ρ0/3 

ρ0/10 

ρ0 DO below water and 
waterline same as DOS. 
DO above water varies 

linearly with elevation from 
DOS to DOT 

ρ0/3 

ρ0/10 

ρ0 (Log DO varies linearly 
with elevation above the 

waterline as in the 
Chapter 3 cases) 

 

 𝑟0 × 𝜌
𝜌𝐿

× 𝑓(𝜌, 𝐿)  

 

ρ0/3 

ρ0/10 

ρ0 DO below water and 
waterline same as DOS. 
DO above water varies 

linearly with elevation from 
DOS to DOT 

ρ0/3 

ρ0/10 

 

4.3 Results and Discussion 

 The cumulative corrosion-related damage progression (given in logarithmic 

scale) for a period of 75 years and ρ variations (D not-linked with ρ) with slow (top) and 

fast (bottom) DO is shown in Figure 24. The red lines indicate the PIT (βCT= -∞) 

condition and the black lines represent the PDT (βCT= -550) condition. The thick, dotted 
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and thin lines correspond to the ρ0, ρ0/3 and ρ0/10 conditions respectively. Similar 

trends to those presented in Chapter 3 were found. The long-term outcome was, as 

expected, sensitive to the choice of βCT with a smaller damage progression rate the 

smaller the slope was. However, for the βCT variations the resulted damage at year 75 is 

lesser for the case with slow DO than for the case with fast DO. 

For the cases with fast DO (Figure 24 b) the damage progression rate was much 

more pronounced than for the cases with small DO (Figure 24 a).  

For the PIT and for the PDT conditions, the activation events of the steel 

elements near the water line took place at a much faster rate for the fast DO due to the 

abundant oxygen availability compared to the cases with slow DO. For the PIT case, the 

activation of the steel elements occurred following a sequential stepwise increase with 

elevation as a function of time. No preventive effect was developed in the steel 

elements exposed to the steel since the elements were not macrocell coupled as in the 

PDT cases.  

Not surprisingly, within a given assumed condition (PIT or PDT) the cases with 

the lower concrete ρ projected earlier damage than in those for the higher ρ, since the 

latter results in lowered macrocell action and hence slower corrosion at the active spots. 

It is noted that in all cases the first activation event occurred on the steel element 

located in the water line. Nonetheless, in some instances damage appearance occurred 

earlier for the PDT condition than for the corresponding PIT condition. The reason for 

this behavior is discussed in more detail in the following chapter.  
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The effect of the oxygen availability and variations of ρ for a long term damage 

projection at year 75 as a function of the inverse value of βCT is shown in Figure 25. It is 

noted that the case where βCT = -∞ corresponds to the value of zero in the x-axis. A 
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Figure 24 a) Damage projections output for cases with slow DO where ρ at each 
elevation level was varied from the base case by multiplication factors of 1, 1/3 and 
1/10. b) Damage projections output for cases with fast DO where ρ at each elevation 
level was varied from the base case by multiplication factors of 1, 1/3 and 1/10. 

 



82 
 

total of six cases are shown in Figure 25. The two plots at the top (Figure 25 a and b) 

correspond to the cases were D is not linked with ρ.  

The two plots in the middle (Figure 25c and d) are the results of the cases with D 

elevation-invariant but linked with ρ, and the bottom plots are for D varying with 

elevation and linked with ρ. The plots placed on the left hand side correspond to the 

cases with faster DO and plots on the right-hand side correspond to the cases with 

slower DO. In all six schemes in Figure 25, the damage projection at year 75 diminished 

as the inverse of the value of βCT increased.  Consistent with previous findings, the 

damage projected with 1/ βCT=0 (PIT) was the largest and long-term results (50% 

damage) were independent on the value of DO, ρ and D. This outcome is consistent 

with the entire above-water region having nearly reached the damage declaration 

condition under PIT relatively early in the life of the structure (with the parameters 

chosen for these simulations the below-water region did not reach the damage 

declaration condition before year 75 in any of the cases examined).  

For the cases with PDT with higher ρ (open circles) the damage at year 75 was 

relatively greater than for the rest of the cases. The PDT preventive effect caused by 

the macrocell coupling became substantially less prominent in concretes with higher ρ, 

as expected. It is also noted that the projected damage at 75 years was more marked in 

cases where D elevation-invariant was linked with ρ but (plots c and d). The high values 

of the chloride diffusion coefficient and the low ρ in these cases resulted in damage 

projections that were greater than the rest of the cases. The cases with lowest projected 

damage were those when D varying with elevation was linked with ρ (Figure 25 e and f).  
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Figure 25 Damage projection for year 75. Effect of oxygen transport and concrete 
resistivity variations with 1/βCT. Left hand side plots: faster oxygen transport, right 
hand side plots: slower oxygen transport (a,b) resistivity not linked to D; (c, d) ρ 
linked D elevation-invariant (e,f) ρ linked D varying with elevation. 
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Figure 26 illustrates the projected damage at 75 years as a function of the 

choices ρ, DO, D and βCT. The left hand side corresponds to the base case modeled in 

Chapter 3 and the right hand side corresponds to the case where ρ linked D elevation-

invariant. The ρ indicated in Figure 26 corresponds to the base case and variations 

value of ρw listed in Table 3 in Chapter 3. Results are in agreement with those 

presented in Figure 25, where when the local ρ values become smaller the damage 

projected under PDT tended to decrease. The macrocell beneficial effect developed to a 

larger extent in concretes with low ρ at long terms projections. 

4.4 Summary 

Long-term damage projection with low resistivity concretes resulted in a lesser 

estimations compared with concrete with higher resistivity. The macrocell interaction 

between the active and passive steel was much more efficient in concretes with low 

Figure 26 Combined effect on damage projection for age= 75 years of variations of 
concrete resistivity, threshold dependence slope, and oxygen transport (slower: open 
symbols, faster: filled symbols). (a): Base case from Chapter 3. (b): ρ linked D varying 
with elevation. 
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resistivity. That beneficial effect prevailed in cases where the resistivity was linked with 

the chloride diffusion coefficient. 

The increase in the rate of the oxygen transport accelerated the damage 

progression during the early stages in PIT and PDT cases and slightly increased the 

long-term damage projection (year 75) compared with cases with slower diffusion 

coefficient. 

The effect in the amount of oxygen and the value of the concrete resistivity was 

minor for the long-term projections with PIT, where a near terminal regime for the above 

water region had already been reached. 
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CHAPTER 5: PROBABILISTIC CORROSION FORECASTING WITH POTENTIAL 

DEPENDENT THRESHOLD3 

5.1 General Approach 

The previous chapters demonstrated experimentally and mathematically that 

PDT leads to slower long term predicted damage development than with traditional 

potential-independent threshold (PIT) models. However, those introductory calculations 

were deterministic, with systematic but not random variation of key parameters. The 

random variation is more likely to be representative of actual systems. This chapter 

expands the previous modelling approach developed in Chapter 3 and 4 to explore the 

effect of incorporating PDT on damage projections for a system with randomly 

distributed profiles of selected corrosion determining parameters. Instances are 

revealed where PDT can also result in earlier onset of damage compared with PIT 

predictions, reverting to the previously established long term behavior later on as the 

system ages. 

5.2 Modelled System and Investigated Cases 

The system modelled is comparable to that simulating a partially submerged 

marine column described in Chapter 3 and 4 [4, 7, 39]. However, in this chapter only the 

atmospheric portion of the column was considered as illustrated in Figure 27. Using a 

                                            
3 This chapter includes previously published material from publications of which the author of this 
dissertation is the lead author [49]. Permissions are included in Appendix F  
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simplified one-dimensional approach, the column is divided into 101 elements along the 

length L of the column with diameter ϕ. Model parameters and input values are 

indicated in Table 5. The versions of this modelling approach in Chapter 3 and 4 were 

deterministic with smoothly elevation-variant concrete resistivity, surface concentration, 

DO and D. In this chapter, random pattern profiles (Figure 27) without systematic overall 

trends were implemented for the chloride surface concentration and the concrete cover. 

The profiles were created using a random number generator and modified to minimize 

short wavelengths variations. Typical average and standard deviation values found in 

Florida marine structures were assigned to each profile.[3, 42] 

 

 

 

 

 

 

 

 

 

 

Figure 27 System modeled with representative randomly distributed profiles for the 
surface concentration and concrete cover. 
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Similar to the systems modelled in Chapter 3 and 4, the entire structure is 

passive and the chloride ions ingress through the concrete pore network. Later on, 

active corrosion starts, first at regions with the most adverse combinations of chloride 

surface concentration and low cover. The corrosion evolution of the system is calculated 

at every time step by three modules described in detail Chapter 3.  

For this exploratory study random variability was limited to the values of CS and 

XC, in two case classes in which only one of each respectively was varied, and another 

case class where both varied simultaneously. 

 All other system parameters were kept constant. Each of those scenarios was 

implemented to obtain damage functions for low and high uniform concrete resistivity ρ 

situations (with consequently strong and weak macrocell coupling situations), for a total 

of six case classes each incorporating PDT, as well as similar set of control calculations 

with potential-independent threshold (PIT).  Each class calculation was replicated with 

multiple randomizations. 

Table 5 Model parameters for the randomly distributed mathematical approach 

Column diameter Φ= 105 cm    
Column Length L= 1,200 cm    
Steel Cover (average) XCavg = 8 cm    
Steel Cover (standard deviation) XCstd = 2 cm    
Cl- Surface Conc. (average) CSavg= 10.4 kg/m3   
Cl- Surface Conc.(standard 
deviation) 

CSstd= 4.5 kg/m3    

Concrete Resistivity ρHigh= 7.5 × 104 ohm-cm (Base); ×1/3, 1/10 
(Variations) 

 

ρLow= 1.5 × 104 ohm-cm (Base); ×1/3, 1/10 
(Variations) 

 

Oxygen Diffusivity DO= 2.5 × 10-5 cm2/s   
Chloride Diffusivity D= 2.5 × 10-8 cm2/s   
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Table 5 (Continued) 

O2 Surface Concentration CSO= 2.5 × 10-7 mol/cm3 (in pore water) 
Chloride Threshold Parameters CT0= 1.78 kg/m3  

ET0= -100 mV  
βCT = - 550 mV/decade of Cl-  

Polarization Parameters E0 (-mV SCE) i0 (A/cm2) Tafel Slope (mV) 
Iron Dissolution -780  1.875 × 10‒8 60 
Oxygen Reduction 160  6.25 × 10‒10 160 
Steel Passive Current Density  ip=  0.058 × 10‒6 A/cm2 
Critical Corrosion Penetration  PCRIT= 0.01 cm 
 

5.3 Results and Discussion 

Results presented are from one realization each, but representative of the trends 

obtained with multiple realizations of the random variable distributions. Figure 28 

illustrates a typical output, showing potential and corrosion current elevation profiles for 

the PDT and PIT cases with randomly distributed XC and low ρ. The first two activation 

events occurred at 12.5 years, manifested by local negative potential shifts and the 

transition from passive current density ip to a higher active iron dissolution value at each 

active spot. By year 13.5 the system with PIT had two more active spots, but no new 

activation was observed in the PDT case. By year 15 twelve activation events already 

took place for PIT compared to five activations for PDT. As expected, less activation 

events were present in the PDT case as a result of the increase of the CT by the 

negative drop of E in the passive areas adjacent to the active spots. 

For the same case described above, the corrosion charge per area of each 

active element in a 75 year period is shown in Figure 29. The top and the bottom figures 

correspond to the PIT and PDT scenarios, respectively. The horizontal dashed line 

indicates the faradaic conversion equivalent to PCRIT, which corresponds to 270 C/cm2. 
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Concrete damage is declared when the solid lines cross the dashed line. The damage 

function for the system, expressed as the total count of damaged elements (each 

corresponding to about 0.39 m2 of external column surface) as function of time is 

exemplified for all case classes examined in Figure 30. Multiple realizations with the 

same averages and variances of the distributed parameters, but with different random 

assignments, yielded damage functions not deviating much from those exemplified in 

the figure.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 28 Evolution of the steel potential and corrosion current density with respect to 
the elevation as a function of time for the random distributed concrete cover with low 
resistivity 
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The results share features seen in results from Chapter 4 with systematic instead 

of random parameter variability. Most noteworthy is the much reduced (by factors 

ranging from ~2 to ~5) damage projection for the PDT compared to the PIT cases at 

greater structure ages. That behavior is the direct result of the delay, and sometimes 

suppression, of new activation events as the potential of the remaining passive part of 

the steel becomes increasingly more negative with time with consequent elevation of CT 

there. That delay/suppression is easily observed in Figure 28, where the initial activation 

sequence does not vary much between the PDT and PIT scenarios but strong 

differentiation emerges later with much fewer activation events in the PDT case. That 

same message over a longer time frame is conveyed in Figure 29. The results further 

confirm the conclusions of the findings in Chapter 3 and 4 indicating that this 

differentiation between PIT and PDT, presently ignored in most analyses, should be 

incorporated in advanced models of damage forecasts for aged structures.  

A notable finding in this chapter is that introduction of random parameter 

fluctuations revealed some instances of significantly greater early damage projections in 

the PDT than in the corresponding PIT cases of the same resistivity. This finding was 

not readily apparent in the results obtained in Chapter 3 and 4 with systematic and 

uniform variation of parameters with elevation. As shown in Figure 30, the earlier 

damage development in PDT sometimes started as much as ~7 years earlier than for 

PIT. These instances are a propagation stage phenomenon and, paradoxically, a result 

of the delay in other activation events following the first ones. That delay enables 

sustained macrocell enhancement of the early active regions with consequent faster 

local corrosion rates for those few regions, and their early declarations of damage. In 
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contrast, for PIT the rate of appearance of new active regions is not decreased and thus 

the remaining cathodic portion of the steel assembly has to support an increasing 

number of anodes, with consequent less enhancement of their corrosion rate and 

slower arrival of the damage declarations. The corrosion charge curves in Figure 29 are 

consistent with this interpretation, showing that the fewer PDT propagation events have 

a greater slope than the more numerous cases for PIT. As time progresses, the extent 

of macrocell action per active region decreases and the system tends toward smaller, 

and increasingly diffusion-limited, cathodically controlled regimes in both cases. At 

longer service times, the damage accumulation for PIT eventually overcomes that of 

PDT with the long-term trend differences noted earlier.  

 

 

 

 

 

 

 

 

 

 

Figure 29 Cumulative corrosion charge density as a function of time for the randomly 
distributed Cs with high resistivity. Top: Potential-independent-threshold case. Bottom: 
Potential-dependent-threshold case. Dashed line corresponds to the critical penetration 
condition.   
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The increased early damage progression for PDT relative to PIT was not 

observed in all instances, and it is likely to depend on the variability of the parameters 

chosen to capture the non-uniformity of external aggressive agents and concrete cover 

and properties. The simulations with uniform systematic parameter profiles used in 

Chapter 3 tended to mask this outcome through the timing of new activation events. 

Future work is suggested to determine the sensitivity of that behavior to assumed 

parameter distributions. 

 

 

 

 

 

 

 

 

 

 

  

Figure 30 Damage progressions for all cases. a) Randomly distrbuted Xc. b)  Randomly 
distrbuted Cs.  c) Combined case   
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5.4 Summary 

An expansion of the system modelled in Chapter 3 and 4 was developed by 

implementing a probabilistically distributed chloride surface concentration and the 

concrete cover. Traditional potential-independent threshold (PIT) cases were calculated 

for comparison.  

The results were consistent with those obtained in in systems with systematic 

parameter variations (Chapter 3 and 4), showing that long-term damage was strongly 

reduced or delayed for PDT cases compared to the PIT controls. The damage reduction 

is due to the suppression or delay of corrosion initiation events due to the polarization of 

the remaining steel assembly toward more negative potentials as more active regions 

develop, thus increasing the value of the corrosion threshold.  

The probabilistic calculations revealed situations where accounting for PDT 

actually resulted in more early damage events than with PIT, with the opposite long 

term trend noted above developing later on. The finding was ascribed to a propagation 

stage phenomenon, where the fewer active regions present under PDT experience 

greater localised macrocell-induced corrosion than the more numerous regions under 

PIT.  

The results underscore the importance of considering PDT in the forecast of 

corrosion in ageing reinforced concrete structures.  
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CHAPTER 6: PRACTICAL APPROACH TO INTRODUCE A CORRECTION FOR 

POTENTIAL DEPENDENT THRESHOLD IN A TRADITIONAL PRACTITIONER-

ORIENTED PREDICTIVE MODEL4 

6.1 Overview of the Model Approach 

 This chapter illustrates how the PDT feature can be incorporated in an otherwise 

traditional corrosion-related durability prediction modeling approach (assuming time 

invariant CT). The application chosen here is a developmental customized predictive 

model developed for the needs of the Florida Department of Transportation (FDOT), 

which involved a large inventory of bridges many of which are exposed to aggressive 

marine service.  

A probabilistic corrosion damage projection was developed based on an earlier 

model approach with time and space invariant CT developed elsewhere.[3, 47, 48] 

Individual probabilistic damage projections were made for each combination of concrete 

type, structural element type, and exposure conditions (a “Class”5) present in the bridge 

to be analyzed. Each projection used corrosion development parameters that were 

assigned by the model based on the corresponding FDOT data base for each relevant 

combination of Classes in the bridge. A correction for dynamic evolution of the chloride 

corrosion threshold was then applied to the output for each individual relevant Class 

                                            
4 This chapter includes previously published material from a publication of which the author of this 
dissertation is the lead author [47].  
5 Not to be confused with a concrete class, which is identified in the following by inserting the word 
“concrete” first.  
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combination. After the correction was made, the damage results were multiplied by the 

number of elements in that Class, yielding an overall damage function for the structure 

as function of service age. That global outcome is then contrasted with the limit state 

defined by the practitioner (or user), to establish whether the durability design goal for a 

new structure (or remaining life for existing structures) is achieved or not. The model 

output is usable alternatively to establish whether specific portions of the structure can 

achieve individual goals. 

6.2 Probabilistic Damage Projection 

The principles of probabilistic corrosion damage projection have been described 

in detail elsewhere and a brief summary is presented in Appendix D .[3, 47, 48] Each 

portion of the structure of a given Class is divided into a group of multiple elements of 

equal surface footprint Ae. Each element has properties and environmental conditions 

that differ probabilistically from the group average reflecting the natural variability of 

those parameters. The parameters include the concrete cover XC, chloride diffusion 

coefficient D, chloride surface concentration CS, and the corrosion threshold CT. All 

those parameters and their variability are considered to be time-independent. In 

particular, the CT values do not vary as different elements become active, so the 

provisional calculations deal with potential-independent threshold (PIT) values for that 

parameter. The model then proceeds to calculate the time ti for corrosion initiation of 

each element (which varies from element to element depending on the particular values 

given to it by the probabilistic function assumed), adds to each a globally assumed 

value of the length of the propagation stage tp, and reports as ts = ti+tp, the time for 

damage declaration of that element. The fraction of the total number of elements that by 
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an age t satisfy the condition ts < t is the value of the provisional damage function (PDF) 

for that Class. 

6.3 Correction Function 

The basic scenario to develop the correction function was the generic reinforced 

concrete column system already described in Chapter 3 to Chapter 5. Representative 

examples of the comparative output of the scenarios explored (systematic parameter 

distributions, systematic resistivity variations and random XC, random CS and combined) 

were shown there. Examination of the shape and magnitude of the damage functions 

calculated for PDT-PIT pair combinations from the Table 3 cases showed that the long 

term (75 year) ratio of PIT to PDT damage percent ranged from ~2 to ~5. For the 

purposes of practical implementation of this effect, a value of 3 is proposed as being 

representative of a long term correction ratio CLTR.  

It is noted that the behavior differentiation described here as taking place in the 

long term is actually for an extended but intermediate time period, when chloride levels 

at the steel depth are substantial, but have not yet became so high so as to exceed the 

chloride threshold at the zones of greatest potential depression.  

At very long structure ages, and if the surface chloride concentration is high 

enough, the amount of damage in the PDT case may eventually approach the terminal 

amount of damage for the comparable PIT situation. Hence, the concept of a long term 

ratio, and the representative value adopted for it are to be considered as working 

approximations subject to update and refinement in future investigations.  
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At lower ages and lower levels of damage (e.g. a few %) the manifestations of 

early damage for PDT and PIT tended to appear at comparable times but with some 

variability, with one or the other taking the lead by a few years over the other. Instances 

where PDT took the lead at early damage levels appeared to be more evident in cases 

where the system parameters were subject to random variations, and less so when 

systematic changes with elevation dominated. As noted elsewhere the instances where 

PDT takes the lead may be explained as being the result of a propagation stage 

phenomenon and, paradoxically, a result of the delay in other activation events following 

the first ones.[49] That delay enables sustained macrocell enhancement of the relatively 

few early active regions with consequent faster local corrosion rates for those few 

regions, causing their early declarations of damage. In contrast, for PIT the rate of 

appearance of new active regions is not decreased and thus the remaining cathodic 

portion of the steel assembly has to support an increasing number of anodes, with 

consequent less enhancement of the corrosion rate in those anodes and slower onset 

of the damage declarations.  

It is noted that these simulations have been conducted with parameter choices 

that tended to result in relatively short times to corrosion initiation, in order to reduce the 

need for long computational runs while still spanning a large range of total damage 

development. Hence, the calculations tended to emphasize any effect of propagation 

period-related differentiation such as the one just discussed. That type of effect is 

expected to be relatively modest in the overall service life estimate for the structures 

commonly designed by FDOT (many decades), where highly impermeable concrete is 

often specified if the environment is aggressive. The chloride diffusion coefficients are 
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small in those cases and consequently the initiation stage is the dominant period in the 

service life of the structure and propagation stage-related phenomena tend to be less 

important. Hence, pending detailed examination in follow-up research, the differentiation 

between PDT and PIT cases in the early stages of damage is treated here as being of 

secondary importance. Based on the above and on the results of the simulations 

conducted, a working approximation is proposed whereby the damage projection for 

PDT conditions was considered to be the same as that for PIT conditions up to a 

nominal crossover value CCR = 2%. Further refinement of that value and of its underlying 

concept is pending on future investigations. 

Per the above considerations an adjustable provisional nominal values for the 

long-term correction ratio CLTR = 3, and for the crossover damage percent CCR= 2 % 

were adopted. For the entire service life forecast then the corrected damage function 

DF is obtained from the preliminary damage function PDF by: 

 𝑟𝑆 = 𝑃𝑟𝑆(𝜕) ∗ 𝛾(𝑃𝑟𝑆(𝜕))  (15) 

  

with the PDT Partial Factor γ defined by: 

𝛾 = 1 for PDF(t) < CCR (16) 

 

𝛾 =
1

1 + (𝜕𝐿𝑇𝑅 − 1) ∙ 𝑃𝑟𝑆(𝜕) − 𝜕𝐶𝑅
100% −  𝜕𝐶𝑅

 
for PDF(t) ≥ CCR (17) 
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Reflecting the previous discussions, at long ages when PDF approaches 100% in 

severe environmental exposures, γ approaches 1/CLTR. At short ages the value of γ 

becomes increasingly close to unity while approaching the crossover early regime. 

Equation (17) presupposes that within a given Class the exposure conditions are 

severe enough that given a sufficiently long service time, the PDF would reach nearly 

100% damage. It also presupposes that the distribution of times to damage declaration 

within the Class is not distinctly multimodal. It should be noted that the damage 

evolution of the cases modelled in Chapter 4 was indeed bimodal (with strong above- 

and below-water differentiation). In that case, the long term damage for the above-water 

portion dominated during much of time interval investigated, so apparent terminal 

damage was 50% instead of 100%, and the value of CLTR was evaluated via the PIT-

PDT damage ratio during that domain. Clearly for distinctly multimodal cases application 

of Equation (17) would only serve as a rough approximation. For the general intent of 

the modeling approach proposed here, where conditions within individual Classes tend 

to be somewhat regular, Equation (17) represents a working compromise pending the 

development of more sophisticated approaches in the future. 

 An example of the application of Equation (17) in a is illustrated in Figure 31, 

where the preliminary damage function (PDF) and the adjusted damage function (DF) 

are represented by the red line blue line. After the damage projection exceeds the 

crossover point (2%), the variation of γ as function (black dotted lines) of time tends to 

gradually decrease. 
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6.4 Overall Approach 

 The information developed from experimental measurements of the dependence 

of CT on steel potential (Chapter 2), and from the findings of the dynamic computer 

models that were built using the experimental results on PDT and combined Initiation-

Propagation computations (Chapter 3 - Chapter 5), was employed to refine the output of 

the main damage prediction model produced by this project. 

 The modeling approach used was to organize the functioning of the main model 

in the following steps: 

1) Conduct a provisional probabilistic damage projection for a Class. This is done 

following the overall procedure described in section 6.2, which assumes PIT 

conditions.  

Figure 31 Correction for chloride threshold dependence on steel potential in a 
traditional forecast approach 
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2) Apply a correction to the preliminary damage function (PDF), calculated for PIT 

conditions in the previous step, to account for PDT and obtain the final model 

output damage function (DF). The correction approach is used instead of a direct 

model because PDT calculations are highly computer-resource intensive and 

direct incorporation into a probabilistic model is deemed to be impractical at 

present. The approach was developed in the following manner:  

a. Computed separate simplified PDT calculations that have been made for a 

number of scenarios that capture the main characteristics of marine 

substructure conditions (Chapter 3 - Chapter 5), and a similar set of 

calculations was made with the same systems, but assuming PIT 

conditions instead.  

b. Comparison of the PDT and PIT results was then made to formulate a 

correction function that, when applied to the PDF obtained under PIT, 

results in a suitable approximation of the corresponding PDT scenario. 

The correction function was developed as a global abstraction from the 

result of computing a representative collection of the cases of interest and 

it is described in section 6.3. 

The global correction function is then applied to the PDF obtained in the previous 

step. The result is the DF that constitutes the final output of the predictive model for that 

Class. The output thus corrected for all Classes is then tallied to obtain the damage 

function for the entire system, or for selected parts as desired.  



103 
 

This approach has been recently integrated to a developmental next-generation 

corrosion forecasting model prepared by the author and collaborators for eventual use 

by the Florida Department of Transportation. The integrated model includes the 

traditional probabilistic approach as described in Appendix D, and the correction 

procedure for PDT just described. A more detailed description of the model is presented 

in Appendix E. It is cautioned that this approach is a working approximation subject to 

the qualifications noted in the first paragraph of Section 6.3, especially as what pertains 

to the designation of long term behavior. Follow up work is necessary for the 

development of a more comprehensive approach to implementation of PDT effects on 

corrosion induced damage forecasting.  
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CHAPTER 7: CONCLUSIONS  

7.1 Experimental Findings 

• Shortages in experimental data to characterize the potential-dependent chloride 

threshold (PDT) behavior were successfully addressed by experiments with 

specimens in mortar and concrete and with considerably large area of exposed 

metal. 

• The experiments on potential-dependent threshold  determinations produced 

results consistent with the lower bound of that beneficial effect being 

approximately described by a threshold value in the order of 0.5% by weight of 

cement at E=-100 mV (SCE), with a negative slope of ~-550 mV per decade of 

Cl-. That bound was incorporated in the numerical predictive models used in this 

project. Extrinsic effects, such as an electro kinetic slowdown of chloride buildup 

at the steel upon cathodic polarization merit consideration in future work. 

7.2 Modeling Findings 

• A novel approach on corrosion damage progression in a reinforced concrete 

column by implementing a chloride threshold dependence on steel potential 

function and integrating macrocell coupling during the initiation and propagation 

stages in a single model was presented. Findings reveal that neglecting the 

chloride threshold dependence on steel potential in corrosion-related forecasting 

models may result in misleading long-term damage projections. 
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• Calculations supported the validity of the hypothesis that as active zones become 

smaller their preventive throwing power would be reduced as well, resulting in the 

development of more numerous active zones that would make up for their 

individual smaller size in reaching to a finite damage terminal  condition. The 

model improvement over an earlier PDT model stems from a more realistic 

implementation of the local concrete resistance RS around the reinforcing steel 

bars. 

• The PDT effect in the damage projections was stronger when the cathodic 

prevention slope was smaller. The damage forecast decreased as the active 

zone size became smaller, but resulted in the development of more numerous 

active zones that would make up for their individual smaller size in reaching to a 

finite damage terminal condition. 

• For concretes with low resistivity the long-term damage projection with PDT 

tended to be much smaller than for comparable PIT cases, which may be 

ascribed to more efficient macrocell coupling between anodic and cathodic sites.  

• In contrast, the probabilistic calculations revealed some situations, less evident in 

work with the deterministic approach, where accounting for PDT actually resulted 

in more early damage events than with PIT. The opposite long term trend, noted 

above, developed only later on. This finding was ascribed to a propagation stage 

phenomenon (important at relatively young ages), where the fewer active regions 

present under PDT experience greater localized macrocell-induced corrosion 

than the more numerous regions under PIT.  
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• Integration of a full probabilistic corrosion forecasting approach and a PDT 

feature was developed and provisionally achieved via a correction function that 

links both modalities. The corrosion factor was abstracted from comparative 

calculations using representative marine corrosion scenarios.  
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Appendix A List of Symbols  

A atmospheric zone 

Ae surface area 

B buried sub-exposure 

C chloride concentration at time t and distance x expressed as mass per unit 
volume of concrete 

CE counter electrode 

CF cement Factor 

CCR nominal PDT-PIT crossover damage percent 

CLTR nominal long-term correction ratio 

Cl- chloride ion concentration 

CSli lowest value of chloride surface concentration 

CShi highest value of chloride surface concentration 

C0 initial chloride concentration of the bulk 

CR chloride concentration at rebar trace at time t 

CTA chloride concentration at rebar trace at time tA  

CTR chloride concentration at rebar trace at time tR  

CS chloride surface concentration 

CSavg chloride surface concentration – average 

CSHT chloride surface concentration – high tide 

CST chloride surface concentration – top  

CSstd chloride surface concentration – standard deviation 

CSS chloride surface concentration – submerged  

CSO oxygen surface concentration or oxygen concentration in the pore water at the 
external concrete surface 

CT critical chloride threshold 

CT0 baseline chloride threshold value at ET0 

c/s cement-sand ratio 

D apparent diffusion coefficient (cm2/s) 

DAVG1 average diffusion coefficient (cm2/s) of First Stage specimens 1-3 and 7-8 
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DAVG2 
estimated average chloride diffusion coefficient (cm2/s)  of Second Stage 
specimens 1-6 

DAVGS1 
estimated chloride diffusion coefficient (cm2/s)   of secondary specimens in 
First Stage experiment  

Dli lowest value of chloride diffusion coefficient 

Dhi highest value of chloride diffusion coefficient 

DF damage function (%) 

DO oxygen diffusion coefficient 

DOT oxygen diffusion coefficient – top 

DOS oxygen diffusion coefficient – submerged (cm2/s) 

DRCM rapid chloride ion migration coefficient (cm2/s) 

E steel electric potential (mV vs. SCE) 

E0 nominal equilibrium potential (mV vs. SCE) 

E0a nominal equilibrium potential for the anodic reaction (mV vs. SCE) 

E0c nominal equilibrium potential for the cathodic reaction (mV vs. SCE) 

ET0 baseline steel potential value at CT0 

ESCE steel electric potential vs. SCE 

EIS electrochemical impedance spectroscopy 

erf error function 

F Faraday constant 

GS galvanized steel 

i0 nominal exchange current density (µA/cm2) 

i0a nominal exchange current density for the anodic reaction (µA/cm2) 

i0c nominal exchange current density for the cathodic reaction (µA/cm2) 

ia anodic current density (µA/cm2) 

iaa active dissolution at a potential-dependent current density (µA/cm2) 

ic cathodic current density (µA/cm2) 

icd current density under diffusional control (µA/cm2) 

ip steel passive current density (µA/cm2) 

is net current density on the steel surface at elevation x (µA/cm2) 

IS structural components in soil 
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IW structural components in water 

L column length 

M molar concentration (mol/L) 

Nd(t) number of elements in the entire bridge reaching damage declaration at age t 

N total number of elements in the bridge 

Ni number of elements in Class j 

Nj number of elements within each region j 

OCP OCP 

P dimensionless expression equal to Dt/a2 

Pcum cumulative probability for variable n  

PCRIT critical local corrosion penetration for each steel element 

PDF provisional damage function 

PDT potential-dependent threshold  or chloride threshold dependence on steel 
potential 

PIT potential-independent threshold  or chloride threshold independent on steel 
potential 

Pki probability distribution function for variable Vk 

PS plain steel bar 

r radial direction 

RE reference electrode 

Rp linear polarization resistance 

S submerged zone 

S(t) damaged  surface area at age t 

SCE saturated calomel electrode 

SE splash evaporation zone 

SF steel factor 

SS stainless steel 

T tidal zone 

t Time 

tA time of activation 

Tf correction factor for rebar obstruction effect 
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ti time of initiation 

tp time of propagation 

tR: time of removal 

tS: time to spall 

V1 variable 1 

V2 variable 2 

V3 variable 3 

V4 variable 4 

Vs variable 5 

Vk variable k 

Vn variable n 

w/c water-to-cement ratio 

X distance along the column axis 

XC concrete cover 

XCavg concrete cover – average 

XCstd concrete cover – standard deviation 

Y side dimension of square piles 

Α radius of First Stage specimens 

βa anodic Tafel slope 

βc cathodic Tafel slope 

βCT slope of the straight line corresponding to Eq.(1) when plotted in an E-logCT 
representation. Also called the cathodic prevention slope 

ɣ PDT partial factor 

Φ column diameter  

Φr steel bar or rebar diameter 

ρ  concrete resistivity 

ρT concrete resistivity – top of the column 

ρS concrete resistivity – submerged portion of the column 

ρHigh concrete resistivity – highest value  

ρLow concrete resistivity – lowest 
  



123 
 

Appendix B Review of Corrosion Processes in Concrete and Related Durability 

Forecasting Issues  

B.1 Chloride-induced Corrosion of Reinforced Concrete 

 The high alkalinity of the concrete pore water (typically with a pH greater than 13) 

develops a protective passive film against corrosion on the surface of the embedded 

steel. Passive film breakdown of the embedded steel bar in concrete exposed to 

chloride-laden environments occurs when the chloride ion concentration on the steel 

surface exceeds the value of chloride corrosion threshold (CT). 

Chloride ions penetrate through the concrete’s pore network. Chloride ions build 

up at the steel bar surface and when chloride concentration reaches a minimum 

amount, known as the chloride corrosion threshold (CT), breakdown of the passive film 

occurs and corrosion initiates. Another factor the causes the breakdown of the passive 

film on steel is the carbonation of concrete due to the ingress of carbon dioxide (CO2) 

and consequent pore water pH decrease. In marine environments chloride-induced 

depassivation typically occurs earlier so that mechanism receives the most attention, 

and it is the focus of this dissertation.   

B.2 Corrosion Mechanism 

 Corrosion is defined as the destructive oxidation of metals/alloys as a result of 

the electrochemical reactions with the exposed environment. The four electrochemical 

components that are present in the corrosion process are: (i) the anode, where the 

anodic reaction takes place, (ii) the cathode, where the cathodic reaction occurs, (iii) the 

electrolyte and (iv) the electronic path.[50] In concrete (where pore water is the 
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electrolyte), iron is dissolved by the anodic reaction, generating cations and electrons as 

shown in Equation (18). The electrons flow to the cathodic regions through an electronic 

path (the metal) and are consumed (cathodic reaction, Equation (19) whether by: 

oxygen (O2), water (H2O) and/or hydrogen ions (H+). The current is also transported by 

the ions in the pore network of the concrete from the anodic regions to the cathodic 

regions. High pH and chloride content increases the ion transport. 

 Anodic reaction (iron oxidation): Fe    Fe+2  +  2e-  
(18) 

   

 Cathodic reaction (oxygen reduction): O2 + 2H2O +  4e-   4OH-   
(19) 

 

 The electric potential (E)-pH diagram, widely known as the Pourbaix diagram is 

shown in Figure B 1 .[51] The diagram, based on thermodynamic stability calculations, 

illustrates the pH and potential regimes where the passive film is stable (passivation 

region), the solid reduced metal is stable (immunity), and the metal oxidized as ions is 

the stable form (hence resulting in corrosion). The diagram is calculated for conditions 

without contamination by chloride ions. If chloride ion concentrations exceeding the 

value of CT are present, the passive film experiences breakdown resulting in corrosion 

even in regions that corresponded to passivity in the Pourbaix diagram. 

The process by which the potential change occurs is schematically showed in 

Figure B 2. The solid black line corresponds to a typical anodic polarization curve of 

steel (an active-passive metal) in the passive state condition, when embedded in 
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Per the mixed-potential theory the steady state regime is given by the 

intersection of both lines, where Ep and ip correspond to the electric potential and the 

anodic current density of the steel, respectively when corroding in the passive state. 

When the chloride ion content C exceeds CT, passivity breakdown ensues and in a 

simplified view the steel polarization curve changes to that corresponding to the active 

state condition (black-dashed line). A new mixed potential develops to the steady state 

Figure B 1 Theoretical conditions of corrosion, immunity and passivation of iron. 
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potential shifts towards a more negative value (Ea) and the anodic current density 

increases (ia>>ip), which means a substantially higher value of CR.[50, 52]  

 

 

 

 

 

 

 

 

 

B.3 Structural Issues: The Challenge of Long-term Durability  

In marine and coastal environments, as in many bridges in the state of Florida, 

corrosion of reinforced concrete represents a major issue in the infrastructure. FHWA 

(Federal Highway Administration) requires a minimum bridge design service life of 75 

years, representing a challenge when bridges are exposed to severe environments. A 

recent study from the National Bridge Inventory (NBI) indicates a bridge population of 

~600,000 in the U.S., where approximately 15% are categorized as structurally deficient 

due to corrosion. The direct cost of corrosion for highway bridges in the US represents 

Figure B 2 Potential and current density change of steel embedded in concrete from 
passive to active condition 
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0.09% ($8.3 billion) of the Gross Domestic Product (GDP); this includes the 

replacement of structurally deficient bridges. Indirect costs are in the order of 10 times 

greater. [53-55] In Florida about one half of the state’s bridges are exposed to salt 

water, which highlights the importance of corrosion control in the region. 

 Long term durability plays a significant role on the design and construction of 

bridges, since structural reliability, safety and serviceability is needed for extended 

periods of time.[56] Mathematical predictive models are used to forecast the corrosion 

damage progression of a structure. Some of the factors that affect the durability of 

bridges are: 1) chloride presence, relative humidity, and temperature of the site, 2) the 

quality, permeability, cover, water-to-cement ratio (w/c), types of aggregates, 

supplementary cementitious materials, presence of chloride ions of the concrete used, 

and 3) the exposure type (marine, freeze-thaw, de-icing salts, etc.), among others. 

 Once a structure is placed in service, service life models are still needed to 

manage maintenance and usage decisions. Quantitative projection of the remaining 

corrosion-related service life of a structure is necessary for decision making on whether 

to build a new structure or continue using the existing one.  The projections should be 

sophisticated enough to estimate not only the structure age when substantial damage 

will appear, but also the rate at which subsequent corrosion damage would develop. 

B.4 Chloride Ingress in Reinforced Concrete 

Chloride ions accumulate on the surface of the steel to an extent related to  the 

chloride ion build up at the external concrete surface. In structures exposed in marine 

service, structural elements located near the sea water (tidal zone and splash-
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evaporation zone) are more susceptible to corrosion. Chloride build up there occurs due 

to frequent wet and dry event on the concrete surface, during the wet cycle the concrete 

is moistened and during the dry cycle the sea water evaporates but chloride ions remain 

and concentrate on the concrete surface. 

B.4.1 The Nature of Chloride Ions in Concrete 

 Chloride ions can be found in concrete due to initial additions to the concrete mix 

(chloride ions present in mixing water or in aggregates) or by the ingress from an outer 

and highly concentrated chloride environment such as marine exposure or deicing salts. 

Chloride ions in concrete are subjected to physical adsorption and chemical binding.[57-

59] In the concrete matrix, the total chloride ion content is the sum of the free and bound 

chloride contents. Free chloride content is that  found in the pore water and bound 

chloride content is that  present in the solid phase as a product of the reaction between 

the chloride ions and some compounds  from the cement paste, typically C3A and C4AF 

generating Friedel’s salts. [56, 60]  

It is noted that only a small portion of the C3A and C4AF react with the chloride 

ions, due to separate reactions such as that of C3A with gypsum to form ettringite and 

its transformation to monosulfoaluminate.[61] The relationship between the free chloride 

and bound chloride content is neither linear nor constant with time, as it depends on 

factors such as type of cement (content of C3A and C4AF), mineral admixtures or 

cement replacements, curing period, water-to-cement ratio, and use of super-

plasticizers, among others. 
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B.4.2 The Transport of Chloride Ions in Concrete 

 The transport of chloride ions in concrete is governed by various mechanisms. 

Diffusion occurs due to the presence of a chloride concentration gradient between the 

outer and the inner parts of the concrete causing an inward transport of the chloride 

ions through the pore network. Permeation is based on a hydraulic pressure gradient in 

different parts of the concrete. Migration of chloride is driven by an electric potential 

gradient from lower to higher electrical potential. Capillary absorption takes place when 

a moisture content difference in the concrete is present.  

 Of the above, chloride ingress by diffusion is the most dominant process from the 

point of view of corrosion progression in major structures where considerably thick clear 

concrete cover over the steel exists.[50, 57, 62]  

Concrete deficiencies at an early stage, such as microcracks, provide paths in 

which chloride ions can penetrate faster than through bulk diffusion into the concrete. 

Microcracks are developed by the gradients of temperature and humidity while the 

concrete is still in the early hydrating stage, generating deformation processes such as 

shrinkage, bleeding and alkali-silica reactions, which leads to induced stresses into the 

concrete and intensifies with external loads. Samaha and Hover determined the effect 

of microcracks in the transport of ions in concrete while applying  uniaxial compression 

loads. [50, 63, 64]Results showed that subjecting concrete to loads lower than 75% of 

the compressive strength does not have a negative impact in durability. However, drying 

shrinkage has a greater effect than compressive stress. During a bridge survey Lau et 

al. found that chloride ingress in minor cracks was most notable in structures with low 
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permeability concrete, and was relatively less marked in high permeability concrete due 

to the higher rates of bulk chloride diffusivity, as expected.[65] 

B.5 Forecasting the Service Life of Reinforced Concrete Structures 

B.5.1 Tuutti’s Definition of Service Life 

 In the early 80’s Tuutti divided the length of service life in two stages, initiation 

and propagation as shown in Figure B 3. [1, 66] The initial stage starts when the 

structure is placed in service, the steel bar is in its passive state and it ends when the 

CT value is exceeded. At this point, the propagation stage takes place and expansive 

corrosion products (volume typically three times or more than that of the steel that 

originated them) accumulate at the steel surface,  leading to the generation of tensile 

stresses that cause cracks and spall to the concrete, affecting the durability of the 

structure. 

 

 

 

 

 

 Tuutti’s diagram is a simplistic description of the propagation stage, since it 

assumes a constant corrosion rate, hence other researchers [62, 67, 68] such as Li et 

Figure B 3 Service life diagram according to Tuutti 
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al., have modified the description by adding a more detailed progress of the propagation 

stage.  

B.5.2 Initiation Stage 

The stage that has received more attention in the literature is the initiation stage, 

which in many bridges is found to have longer duration (periods of decades) than the 

propagation stage, which tends to be much shorter (in the order of only a few years) 

[69]. Although that situation is not always the case, it is nevertheless common for 

marine bridges in Florida to be built with plain reinforcing steel in sound concrete of low 

permeability, so as to maximize the duration of the initiation stage while not explicitly 

addressing the propagation stage duration.[70] 

B.5.2.1 Involved Parameters 

 Considerable emphasis has therefore been given to the factors that are mainly 

responsible for the length of the initiation stage in chloride rich environments. Foremost 

in those factors are the rate of transport of chloride ions in concrete (usually by a 

predominantly diffusional mechanism, quantified by the chloride diffusion coefficient D) 

and the value of CT.  

Extensive research work has been conducted on the process of chloride diffusion 

in concrete and on establishing the chloride threshold value.[5, 71-74] However, the 

results on the latter are subject to considerable scatter and key issues, such as the 

dependence of the threshold value on steel potential have remained largely unexplored. 

The work proposed here focusses on resolving some of those issues.  
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B.5.2.2 Fick’s Laws of Diffusion 

The phenomenon of diffusion generally follows the mathematical models 

developed by Adolph E. Fick (1829-1901).[57] The transport of chloride ions in concrete 

is through the pore water network. Fick’s first law of diffusion states that the mass of 

chloride ions diffusing through a unit area of a section of the concrete per unit time, 

defined as flux (J), is proportional to the concentration gradient of chloride ions, as it is 

shown in Equation (20), where the minus sign denotes a mathematical convention since 

the chloride ingress occurs in the opposite direction (from high concentration to low 

concentration). The constant of proportionality D, is the chloride diffusion coefficient. 

 𝐽 = −𝑟 ∙ ∇𝜕 (20) 
 

 

In Equation (21) Fick’s second law of diffusion expresses the time-dependent 

evolution 

 𝜕𝜕
𝜕𝜕

= ∇ ∙ J = ∇ ∙ (D∇𝜕) (21) 
 

 

In practice D is obtained from acid-soluble chloride concentration measurements 

of chloride-exposed  laboratory or field samples at different depths, thus yielding a 

concentration profile that can be mathematically fitted to a solution of Equation (3) using 

the value of D as a fit parameter. Implicit in that process is the simplifying assumption 

that D is time- and space-invariant. D is frequently considered to be a material property 

that is an inverse indicator of the concrete’s resistance to the penetration by chloride 
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ions.[50, 71] Fick’s second law of diffusion is widely used to model and analyze the 

chloride transport in concrete. One of the first pioneers in modeling chloride diffusion in 

concrete was Collepardi et al in 1970, where the model was based on Crank’s error 

function solution of Fick’s second law for the one dimensional case with constant 

chloride surface concentration (CS) , shown in Equation (22).[32, 75] There the diffusion 

coefficient  is considered as a constant parameter, C0 is the initial (native) chloride 

content in the concrete (also treated as constant)  and erf is the error function. 

 
𝜕 − 𝜕0
𝜕𝑠 − 𝜕0

= 1 − 𝑒𝑟𝑓 �
𝑥

√4𝑟𝜕
� (22) 

 

 

B.5.2.2.1 Limitations 

More sophisticated chloride transport approaches than those considered above 

exist. Previous investigations have found that concrete evolves with time, often resulting 

in a less-interconnected pore network as hydration and pozzolanic reactions progress. 

The diffusion process changes accordingly, becoming slower. Authors including 

Takewaka, Mangat and Molloy, Tang, [62] and others suggest the incorporation of a 

time dependent diffusion coefficient to develop less conservative damage forecasts.[29, 

76-78].  

Some authors disagree with the use of the analytical solution of Fick’s second 

law of diffusion to approximate the chloride transport in concrete, mainly because it 

neglects the effects of moisture, the presence of other ionic species (eg. Na+, OH-) and 

of chloride binding. Saetta, Marchand, Samson, Johannesson, along with many other 
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authors, have published models where chloride binding, multi-ionic interaction, 

temperature, humidity are addressed.[79-83] However, these advanced and 

sophisticated models reach to a point where they can become impractical due to the 

complexity and the relative lack of precise input data for the many parameters involved.  

B.6 Critical Chloride Corrosion Threshold 

B.6.1 General 

The selection of the best chloride content expression to quantify the chloride 

threshold has been the subject of significant discussion in the technical literature. Most 

authors recognize that CT should be expressed as a fraction of the cementitious content 

of the concrete.[84, 85] Some have proposed that only the free chloride content (that in 

the pore water) represents a corrosion risk to the steel, so that CT values should be 

reported in terms of the free chloride content in the concrete. In such cases, the 

threshold may be alternatively expressed as a ratio of chloride to hydroxide ion content 

in the pore water.[86, 87] In contrast, Glass and Buenfeld concluded that the effect of 

the bound chloride content cannot be neglected, since it can be released by local 

acidification in an incipient corroding region that helps to stabilize the corrosion process 

there.[85] These authors and others have noted too that free chloride content is subject 

to variations due to the moisture content of the medium and that the chloride to 

hydroxide ion ratio is dependent on the pH. Hence, presenting CT as the total chloride 

content mass by mass of cement seems at present to be the best approach since it 

includes free and bound chloride content and the inhibitive nature of cement matrix. 

 



135 
 

B.6.2 Measuring the Value of CT 

 Various experimental methods to determine the value of CT can be found in the 

literature. These include assessment of mortar, concrete and simulated pore water. The 

ionic transport may be through diffusion, capillary suction (wet and dry cycles), and 

migration. In all these methods, it is essential to establish the precise moment in which 

corrosion initiation has taken place. 

 Transient electrochemical techniques tend to provide a more accurate detection 

of the moment of corrosion initiation than half-cell potential transitions. The most 

common techniques of this type are linear polarization resistance (LPR) and 

electrochemical impedance spectroscopy (EIS). These techniques are essentially non-

disruptive as they involve only small potential deviations from the steady state condition. 

The techniques allow for highly sensitive estimation of the corrosion rate (CR) increase 

associated with the corrosion initiation event. Typically a steel specimen is declared to 

be in the actively corroding condition when CR > 0.2µA/cm2.[10] 

 Time of corrosion initiation can be also detected by measuring macro-cell 

currents.  ASTM (American Society for Testing Materials) G109 “Standard Test Method 

for Determining Effects of Chemical Admixtures on Corrosion of Embedded Steel 

Reinforcement in Concrete Exposed to Chloride Environments” is a test method that 

uses concrete slabs exposed to saltwater wet and dry cycles near the top with one 

embedded steel bar near the top surface and two steel bars embedded near the bottom 

(in a chloride-free region). The bars are interconnected  and the corrosion macro-cell 

current is monitored as function of time.[30] A sharp increase in the current indicates 
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that the bar near the top has experienced passivity breakdown and entered active 

corrosion.  In an investigation by Hartt et al. where G-109 specimens were assessed, 

active corrosion was deemed to have occurred when the macrocell current exceeded 

10µA. The concurrent drop of potential (to < -280 mV versus saturated calomel 

electrode (SCE)) served as a parallel indicator of activation.[88]  

 Another method to detect corrosion initiation is through monitoring the impressed 

current between the steel bar and an auxiliary electrode, a method mostly used to 

determine the onset of active corrosion when the steel embedded in concrete is under 

potentiostatic control, meaning that the steel bar is polarized at a fixed potential. This 

method is used in research aimed to determine the extent to which CT varies with steel 

potential. When the steel is in its passive state and cathodically polarized (more 

negative potential), the impressed current density is found to shift upon activation to a 

lesser cathodic amount or to a distinct anodic regime, clearly defining the activation 

event in either case. 

 As soon as the onset of active corrosion has been confirmed by the methods 

mentioned above, the next step is demolition of the specimen for a visual inspection to 

confirm the existence of corrosion. Immediately afterwards, concrete powder collection 

is made, by grinding, drilling or crushing the trace of the rebar on the surrounding 

concrete to depths < 1 to 2 mm.[10] Since concrete is a heterogeneous medium 

(hydrated cement paste, fine and coarse aggregate), it is important to  ensure that of the 

proportion of  cement paste to aggregate in all samples collected is nearly the same.[10]  
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The final step is to perform the determination of the chloride content by a suitable 

assaying method depending on the desired form of expressing the value of CT. Since 

this investigation will focus on total chloride content by weight of cement, the focus will 

be on chloride analysis methods applicable for that expression. 

 Standardized procedures to determine the total chloride content developed by 

ASTM and RILEM (International Union of Laboratories and Experts in Construction 

Materials, Systems and Structures, acronym in French) can be found in the literature 

FDOT (Florida Department of Transportation) follows its own method based on 

potentiometric titration using ion selective electrodes.[22, 89, 90]. This later 

methodology was chosen for much of the research proposed here. 

B.6.3 Chloride Corrosion Threshold: Influencing Parameters 

 In the literature there is wide scatter of data on values of reported CT. In some 

cases that variation is by more than two orders of magnitude. Part of that scatter reflects 

that the experimental work regarding CT has been neither systematic nor consistent, 

with most of the experimental assessments following methodology that departs to some 

extent from the others. Consequently much uncertainty exists when attempting to 

comparing data from different studies. Hence nominal, conservative values of CT tend to 

be adopted for design purposes. For example, a CT value of 0.2% by weight of cement 

for carbon steel bars was proposed in a study performed by Clear in 1976, for the 

design phase and for durability forecast of reinforced structures [91], but the range of 

0.2% to 0.5% is also often considered. Despite the scatter, some general trends have 

been identified indicating that the value of CT depends on many parameters. In addition 
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to the type and amount of cement in the mix such parameters include: condition of the 

steel surface, exposed area of the steel, concrete properties, oxygen availability at the 

steel surface temperature, pore solution composition, w/c ratio, type of chloride salt and 

chloride source, as well as the potential of the steel while in the passive state.[5] This 

last factor in particular has received little attention in the literature. As it is shown 

elsewhere in this Dissertation consideration of that dependence can strongly affect the 

projected extent of damage in a structure, and has been chosen for detailed study in the 

proposed dissertation work. 

B.6.3.1 The Dependence of CT on Steel Potential While in Passive State 

 There is increasing evidence that the chloride corrosion threshold increases 

substantially when the still passive steel is polarized to potential values more cathodic 

than the typical open circuit potential in atmospherically exposed concrete. The latter is 

in the order of ~-100 mV (SCE).[83] As a result of that increase, when corrosion starts 

at a given location in a reinforced concrete structure and  the potential of the steel drops 

towards more negative values, macrocell coupling with nearby steel lowers the potential 

there as well. Consequently the local value of CT increases in adjacent regions which 

delays corrosion initiation of the passive steel there.  

Previous investigators have shown that a negative polarization of several 

hundred mV may be needed to attain an increase in corrosion initiation threshold of 

about one order of magnitude. However, much of the available data in the literature 

shows a large scatter on the values of CT since experimental assessment was not 

conducted specifically to investigate the chloride threshold dependence on potential in 
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steel embedded in concrete, instead, other issues were investigated such as: stability of 

the passive layer in alkaline solutions, [86] CT of the steel submerged in alkaline 

solutions with salt (NaCl or KCl), [92, 93] CT of steel embedded in concrete with ordinary 

Portland cement (OPC) varying the potential to determine depassivation, among 

others.[94, 95] Consequently, the functional relationship between CT and potential was 

affected by much uncertainty.  

An experimental investigation that focused on determining the chloride corrosion 

threshold dependence on potential was first made by Alonso et al. Their results 

indicated that CT increased when potentials were more cathodic than -200±50 mV 

(SCE) and was relatively independent of the potential when it is more anodic than that 

value.[9, 10]. They identified a functional relationship (see Equation (1)) with tentatively 

identified parameters. However, the trends from Alonso et al. were obtained from limited 

test conditions involving a small area of steel (6 cm2) beneath a thin mortar cover (0.5 

cm.), conditions that tend to add uncertainty to the values of CT obtained.[10] A 

systematic investigation that addresses the issues and uncertainties of the latter 

investigation was needed to confirm and validate the dependence of CT on steel 

potential, resulting in some of the work presented here.  
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Appendix C Modeling Equations for the Corrosion Distribution Module 

As introduced in Chapter 2 the modeling process involves several key tasks that 

can be stated as follows: 

• Build a model that determines the time dependent ingress of chloride ions, the 

locations and times where the chloride threshold is exceeded, and the resulting 

distribution of potentials and corrosion currents over an entire structure. 

• At each time step, the model needs to recalculate the potential pattern based on 

which regions just became active, and reevaluate the local chloride threshold of 

the adjacent passive regions. This task effectively addresses a moving target. 

• With that reevaluated chloride threshold, determine which new locations will 

become active in the next time step, and what will be the new potential pattern 

for the subsequent step. 

• The model also has to keep track of the accumulated degree of corrosion at each 

location to establish where and when the propagation stage of corrosion has 

been completed, so that a damage function tally is updated as the structure 

ages.  

The tasks were addressed in three modules that are described in Chapter 2 and 

summarized in Figure C 1. The chloride concentration at the rebar surface, determined 

at every time step, is denoted by CCl. As mentioned in Chapter 3, each module 

determines the system’s conditions at each time step.  
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The chloride transport part of the transport/activation module is straightforward 

with the simple conditions indicated in Section 3.2.2 so no it will not be addressed here, 

other than noting that more refined versions of the model could include the effect of 

changes in the electric field within the concrete (from the corrosion distribution module) 

as an additional term. The Surface damage evaluation module was described in Section 

3.2.3. 

This Appendix presents additional details on the Corrosion Distribution Module. 

For this module the potential distribution within the concrete was evaluated as follows 

under a 1-dimensional scheme. A simple rectangular section system with a single 

lateral flat steel surface is considered first. Per Figure C 2, using the principles of 

conservation of charge and assuming that the corrosion macrocell current travels 

through the area of concrete Ac along axis z and is progressively increased or 

Figure C 1 System model modules 
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decreased as it sinks or is sourced at area of steel As,   the net current density on the 

steel surface at elevation z is expressed in Equation (23). 
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(23) 

 
 

where σ: electric conductivity of the concrete. 

 Extending the concept to the case of a concrete column where the steel is no 

longer a flat plate but instead is the external surface of a rebar assembly yields the 

situation described in Figure C 3 and resulting in Equation (24). 

 𝑖𝑆 =
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(24) 

 

Figure C 2 Idealized current flow and potential relationship in a concrete slab with steel 
as a flat plate on the side 
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The equation for iS was solved using finite difference method with the following 

formulations: 
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Figure C 3  Idealized current flow in a reinforced concrete column 
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Equations,(29), (30), (31) were then implemented by relating iS to the local 

potential (with additional accounting for local resistance polarization) as described  

under sections 3.2.2 of the main body of this dissertation.  
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Appendix D Probabilistic Damage Projection6 

D.1 Principles of Probabilistic Corrosion Damage Projection 

 As a preamble to this Appendix, the reader is referred to the introductory remarks 

given in Section 6.2 prior to the start of Section 6.3.  

 As detailed in Ref [3] from which part of the following is extracted, ts for a given 

element in a Class may be viewed as a function of parameters such as XC, D, CS, CT, 

etc.: 

 𝜕𝑠 = 𝑓(𝑋𝐶 ,𝑟,𝜕𝑆,𝜕𝑇 … ) (28) 

 

 If the values of all the parameters other than XC were kept the same, then the 

value XC’ of XC that results in damage appearing at time ts ≤ tp could be expressed as a 

function of the other parameters such as: 

 𝑋𝐶′ = 𝑓(𝜕𝑠,𝑟,𝜕𝑆,𝜕𝑇 … ) (29) 

 

 For generality, a series of variables XC,V2...Vn can be considered where V2,...,Vn 

represent all the relevant factors other than XC. Thus a more general form of Equations. 

(34) and (35) is: 

 𝜕𝑠 = 𝑓(𝑋𝐶′ ,𝑉2, … ,𝑉𝑛) (30) 

 

                                            
6 This appendix includes previously published material from a publication of which the author of this 
dissertation is the lead author [47].  
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 𝑋𝐶′ = 𝑓(𝜕𝑠,𝑉2, … ,𝑉𝑛) (31) 

 

In an actual structure these parameters are subject to variability that can be both 

systematic (for example changes with elevation) and probabilistic (such as changes in 

batch-to-batch of concrete). It will be assumed that the structure can be divided into 

separate Classes such that within each range the values of variables XC’, V2...Vn obey 

independent probability distributions. In the following, Classes will be numbered 

1,2,...i....Nr, and elements within each region will be numbered 1,2,...j...Ni.  

 Calling Pki the probability distribution function for variable Vk in region i and 

Pcum1i(XCs), the cumulative probability for XCs, the PDF takes the form  

 Nd(t)/N = (1/∑i Ni) ∑i Ni ∫ ∫
2V Vn

... Pcum1i(F(t, V2,..Vn)) P2i(V2)...Pni(Vn) dV2...dVn  (32) 

 

where Nd(t) is the number of elements in the entire bridge reaching damage declaration 

at age t, N is the total number of elements in the bridge, and Ni is the number of 

element in Class i. 

 For the model implementation addressed in this report, the relevant variables 

have been chosen as V2= CS; V3=D; V4=CT; V5=tp, of which only XC, V2 and V3 are 

distributed while V4 and V5 are constants within each Class. Variability in CT, however 

will be implemented explicitly via the dynamic evolution models, and implicitly via 

variability in CS as noted later (Appendix E). Because in the cases of interest tp tends to 

be small compared with ti, variability in tp will not be addressed but that choice is 
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deemed to be of little impact on the model output. Assuming simple Fickian chloride 

diffusion, time-invariant chloride diffusion coefficient and surface concentration results in 

ts being given by  
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where Dli, CSli and Dhi, CShi represent the lowest and highest values, respectively, of D 

and CS, in Class i. The total projected damaged surface area S(t) in the substructure at 

age t is then: 

 𝑆(𝜕) = 𝑁𝑑(𝜕) ∙ 𝐴𝑒 (35) 

 

 The choice of parameters defining the probability distributions of XC, CS and D as 

well as the integration limits for each Class is addressed in Appendix E. 
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Appendix E Integrated Predictive Model7 

An Integrated Predictive Model was developed as part of a project conducted for 

the Florida Department of Transportation (FDOT) to create a prototype next-generation 

model that incorporates both probabilistic parameter distributions, the effect of PDT, and 

other advanced features reflecting the state of the art in this type of application.[47]  

The model version is intended to serve as a working prototype for evaluation and 

subsequent adaptation by FDOT into user-compatible platforms that may include 

versions for internal FDOT use, and versions for incorporation in the Structures Design 

Manual and related documentation for a broader audience. Internal default values for 

parameters in the alpha model include provisional entries (see Table 6) that are 

updatable as new information or improved interpretation of existing data becomes 

available.  

Eventual use of the model for decision making purposes is contingent on 

subsequent finalized adoption of an appropriate set of parameter values as well as 

updated simplifying assumptions as needed. The model receives user input on the 

makeup of a bridge substructure (highest corrosion risk region) including for each type 

of component, the structural configuration, materials of construction and service 

environment, and develops an output consisting of the corrosion-related damage 

function for a long period (e.g. 100 years) for each Class of structural/environmental 

combinations and for the structure as a whole. The following functionalities are 

incorporated. 

                                            
7 This chapter includes previously published material from a publication of which the author of this 
dissertation is the lead author [47].  
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E.1 Structural Components 

The model addresses three types of structural components: square piles, 

rectangular footings, and round columns, each having type-specific external dimensions 

and steel clear cover. The clear cover can be either as prescribed by the SDG 

according to the environmental classification of the service environment (see next item), 

or user-selected if the effect of variations from prescribed values is to be explored. The 

rebar size is selectable as well. Based on the type and size of the component, a fraction 

of its surface is assigned to one of four chloride penetration regimes: flat wall, 2-way 

corner, 3-way corner and round.[96]  For square piles of side dimension Y the perimeter 

of the cross section is 4Y, of which a fraction 8*(XC) /4Y (where XC is the steel cover) is 

deemed to correspond to the length of the perimeter representative of a 2-way corner 

exposure geometry, and the rest (4Y-8*(XC)) /4Y to the flat wall exposure geometry. A 

comparable assignment based on rebar cover and dimensions is made for the 

parallelepiped footing geometry to assign fractions representative of  flat wall, 2-way 

and 3-way corners. For round columns, the entire surface is assigned a round condition.  

E.2 Exposure Conditions  

Each component type can be distributed (by specifying number of components in 

each) into two main types of exposure conditions: in water (IW), and in soil (IS).  For the 

IW type there are 4 sub-exposure types: submerged near surface, tidal zone, splash-

evaporation, and atmospheric (S, T, SE and A, respectively). The model does not 

require user entry for the total absolute elevation range at-corrosion-risk, which has 

been internally set at 16 ft starting 2 ft below the bottom of the T condition region, as a 
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placeholder to represent typical conditions in marine substructure. However, user input 

for that range size as well as for the fraction assignations given next can be easily 

implemented in new model versions if desired. The sub-exposure type fractions of the 

total elevation range are assigned as 1/8, 1/8, 3/8 and 3/8 of the total for S, T, SE and 

A, respectively. Square piles and columns are assumed to be of uniform cross section 

and exposed laterally to the entire range, so the corresponding at-corrosion-risk area 

fractions are given by the same values. Footings are assumed to be exposed only to the 

S,T and SE regimes, laterally as well as on the top surface for the SE regime, with the 

corresponding surface area fractions calculated accordingly by simple geometry. For 

the IS type there are two sub-exposures types: buried and atmospheric (B and A, 

respectively), each spanning a nominal height of 8 ft for piles and columns and 

assigning each ½ of the at-risk area. For the footings the B and A elevation ranges are 

assumed to be 5 ft each, with area fractions obtained by appropriate calculations.  More 

complicated structural member geometries, including for example columns on top of 

footings can be incorporated for each of the exposure condition types at the discretion 

of the Florida Department of Transportation following the same procedures. 

For the IW and IS components, three environmental classifications (Extremely 

Aggressive, Moderately Aggressive and Slightly Aggressive) can be selected by the 

user. By selecting an environmental aggressiveness, default values for the chloride 

concentration in water, chloride concentration in soil, and concrete cover are assigned 

in accordance to the SDG. Those default values can be modified by the user as well. 
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E.3 Concrete Properties 

Each component type is assigned an FDOT concrete class ranging from 

concrete class I to concrete class VI. In the present model implementation, for simplified 

generic calculations each concrete class is assigned a time- and space-invariant value 

of chloride ion diffusion coefficient, with a baseline provisionally abstracted from the 

present body of properties information from FDOT reports and related data. The 

baseline values for the concrete classes are listed in Table 6. As a first alternative to 

default values, user-selected values of the diffusion coefficient can be directly entered in 

the worksheet to replace the baseline value. As a second alternative, the user can have 

the program obtain an estimate of the diffusion coefficient based on concrete cement 

factor, percentage of pozzolanic or slag cement replacement and water-to cement ratio. 

The calculation is performed using the relationship developed under FDOT project 

BA502 [39] to estimate concrete chloride diffusion coefficients, based on regression of 

field data from a group of bridges about 10-years old and built with modern concrete 

formulations. That estimate is best applicable to the higher concrete class types. 

Once the diffusion coefficient is set, a multiplier is assigned based on the ratio of 

rebar diameter Φr to concrete cover XC to reflect the increased rate of chloride 

accumulation due to the obstruction presented by the rebar. The value of that multiplier 

(1/Tf), related to the ratios of Φ/XC and the CT/CS, has been abstracted from work 

developed in prior FDOT projects assuming a flat wall regime with the presence of a 

single rebar. [24,32] Additionally, the value of the chloride diffusion coefficient is further 

conditioned (to obtain a fictitious equivalent value) by adopting a multiplying factor to 

correct for the geometric regime effects (2-way corner, 3-way corner and round) based 
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on characteristic correction factors developed in an earlier FDOT project.[38] For the 

case of the round columns, the factor is a function of the ratio CT/CS and the ratio of the 

radius r of the column to concrete cover XCobs corrected for the rebar obstruction effect. 

Reference [39] reported values only for XCobs/r = to 0.1, 0.2, and 0.3; therefore the 

correction in the present version is constrained to those values. Cases with XCobs/r 

values less than 0.1 or greater than 0.3, are approximated as  having a value of 0.1 or 

0.3, respectively. All these geometric adjustments are slated for more refined treatment 

in future versions of the model. 

The same FDOT project that developed a Tf adjustment to correct for rebar 

presence in a flat wall also investigated the case of a 2-way corner with a single rebar 

presence.[32] Results were comparable with those obtained assuming a 2-way corner 

geometry without correction for rebar obstruction effect, likely because the corner 

geometry already incorporated a strong multi-dimensional aggravation of chloride 

ingress. Therefore, in the present model chloride penetration in a 2-way corner 

geometry regime was not adjusted for rebar presence. For the case of a 3-way corner 

there is no available information at present on the effect of rebar presence, but by 

analogy with the 2-way case no correction for rebar presence was made in this situation 

either, it is suggested that the rebar presence effect in 3-way corner geometry should be 

examined in follow-up investigations. 

Following practice from previous probabilistic model realizations in FDOT-

sponsored modeling efforts, the chloride diffusion coefficient distribution was 

represented by a normal distribution with an average value equal to the baseline after 



153 
 

being modified for the appropriate adaptations indicated above, and with a coefficient of 

variation and upper and lower limits values as listed in Table 6.  

 Notably, the present modeling approach does not include time-variability of the 

chloride diffusion coefficient, whereby some reduction in value would be projected as 

the structure ages.[98] That feature is not included because much on the information on 

chloride diffusion coefficient developed by FDOT has been obtained from cores 

extracted from its structures at mature ages (e.g. typically >10 years [42]), in the form of 

effective long-term diffusion coefficient values. It is those diffusion coefficient values, 

rather than values extrapolated from very short term laboratory tests, that are primarily 

intended to be used in the model developed under this investigation. This choice of 

time-independent diffusion coefficient is somewhat conservative, especially for concrete 

with pozzolanic and slag additions where the most pronounced further decreases in the 

diffusion coefficient might be expected as a structure ages [76, 97, 98].  

It is noted that scarcity of long term data introduces uncertainty in the validity of 

expecting a sustained decline in diffusion coefficient in the long term. Indeed, in the Life-

365 program [97] credit for beneficial aging is suspended for that reason for periods 

beyond about 3 decades of service. Hence, the extent of conservativeness introduced 

by using the present approach is limited as it concerns a relatively short relative time 

period before other uncertainty sets in. The potential beneficial reduction in diffusion 

coefficient would be limited as well due to its dependence being expected to follow only 

a fractional power law.[97] 
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Nonetheless, additional features for future development have been included in 

the model as placeholders. These include: a) the use of the rapid chloride migration 

coefficient (DRCM) obtained through the Nordtest NT Build 492 procedure [99] to convert 

it into an effective chloride diffusion coefficient, and b) the expansion to admit user input 

to obtain chloride diffusion coefficient based on concrete resistivity or laboratory 

permeability data, which can potentially be incorporated with the availability of the 

output just published from FDOT Project BDK79-977-02.[100] In those cases, provision 

to account for an age factor in the value of the chloride diffusion coefficient will be 

necessary in future versions of the model. 

 At present, the model assigns for simplicity the same chloride diffusion coefficient 

(representative of the more severe conditions prevalent at the lowest elevations) to all 

the elevations within a structural element. The resulting conservativeness may be 

reduced as more data documenting lower diffusion coefficients at higher elevations [42] 

become available, by implementing user entry for elevation-dependent values. That 

implementation is in principle straightforward in new model versions. Likewise, the 

model does not make provision for input on local average temperature. Should precise 

enough data on chloride diffusion coefficient variation with temperature (within the 

relatively limited range existing in Florida) become available, a temperature correction 

factor can also be included in future versions.  

E.4 Surface Conditions 

Each of the exposure types and sub-exposure types noted above has been 

assigned a specific value of CS as listed in Table 6. Those values are provisionally 
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abstracted from the present body of properties information from FDOT reports and 

related data and capture trends of decreasing chloride accumulation with elevation for 

evaporative regimes, and chloride concentration below water. Similar to the treatment of 

concrete properties, following practice from previous probabilistic model realizations in 

FDOT-sponsored modeling effort, the surface chloride distribution was represented by a 

normal distribution with a standard deviation (conservatively selected as noted below) 

and upper and lower limits values listed in Table 6. As an alternative, the user can enter 

a preferred value of CS for each sub-exposure condition. 

E.5 Chloride Threshold and Rebar Type 

For its PDF calculations described in Appendix C, the program has plain steel 

(PS) as the default rebar material, and as alternatives options: galvanized steel (GS), 

“MMFX” (ASTM A1035) and a generic austenitic stainless steel (SS). The assumed 

value of CT for PS is a value equal to 0.04% of the nominal CF of each of the concrete 

classes, which is listed in Table 6. For the other materials the default value of CT is 

adjusted by a respective multiplier also listed on Table 6. All those values have been 

provisionally abstracted from the information available from FDOT previous 

investigations and other literature sources, but are included primarily as placeholders for 

future development and do not constitute an endorsement of specific products and 

materials.  

The defaults can be overridden by the user if alternative scenarios are to be 

explored. Variability in CT for the PDF calculation is implemented implicitly to some 

degree via the amount of variability conservatively assumed for CS, since the time to 
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corrosion initiation is not a function of CT by itself but, per Equation (33), of the ratio 

CT/CS, so variability in CS results in variability in the ratio even if CT is constant. The 

program introduced additional, time-variable dispersion in CT via the subsequent 

conversion of the PDF into the PF by the procedures described in Chapter 6. 

E.6 Propagation Time 

A default flat value of 5 years has been assigned to the value of propagation time 

tp, representative of the choice used in previous FDOT projects for the development of 

predictive models, and per the arguments for limited need to capture variability of this 

parameter. However, the default can be overridden by the user if alternative scenarios 

are to be explored, especially for the case of SS rebar, where there are indications in 

the literature that much longer corrosion propagation times may develop.[101] 

E.7 Limit State 

A corrosion related damage limit state of 2.3% surface damage (that may be 

viewed as being comparable to the limit value adopted by LNEC, an European agency 

[102]) has been incorporated as a default for rapid informal contrasting of results 

against an assumed durability goal, either for specific structural/environmental Classes 

or for the entire bridge. That default value is presented only as an example, as the 

development of a corrosion related damage limit state, which may have different values 

for specific Classes and a different meaning if applied to the entire structure,  is an open 

issue to be decided by FDOT in future discussions. The default value can be overridden 

by the user to explore alternative scenarios. 

 



157 
 

Table 6 Concrete and steel bar properties for modeling parameters 

Notice: These values are provisional selections intended primarily to establish model functionality. Subject to update 
and modification pending subsequent data evaluation, and decision on implementation of the program  

Chloride Diffusion Coefficient, D 
D / in2 y-1 1 0.3 0.1 0.025 0.01 0.0075 

Concrete class I II III IV V VI 

Distribution formulation mean µ standard deviation 
sd 

lower 
limit 

upper 
limit   

 D 25% 3 ˣ sd 10 ˣ sd   
Chloride Surface Concentration, Cs 

   CS / pcy  Cl- Concentration in Water / 
ppm: >6000  

Sq. 
Piles Footings Columns  

  Submerged 15 15 15  
  Tidal 40 40 40  
  Splash-Evap. 40 40 40  
  Atmospheric 15  15  Cl- Concentration in Water / 

ppm: ≤6000      

  Submerged 7.5 7.5 7.5  
  Tidal 20 20 20  
  Splash-Evap. 40 40 40  
  Atmospheric 10  10  Cl- Concentration in Soil / 

ppm: >2000      

  Buried 10 10 10  
  Atmospheric 10 10 10  Cl- Concentration in Soil / 

ppm: >2000      

  Buried 7.5 7.5 7.5  
  Atmospheric 7.5 7.5 7.5  

Distribution formulation mean µ standard 
deviation sd lower limit upper 

limit   

 CS 25% 3 ˣ sd 3 ˣ sd   
Chloride Threshold, CT 

Type of rebar Plain Steel Galvanized MMFX 316L 316L-clad - 
Multiplier 1 2 4 10 10 - 

Concrete class 1 2 3 4 5 6 
CF / pcy 544 575 600 650 700 752 
CT / pcy 2.18 2.30 2.40 2.60 2.80 3.01 
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