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SUMMARY

Although the study of the interaction of acoustic and elastic waves with pe-

riodic surfaces and structures has a rich history dating back to Lord Rayleigh, it

has recently been attracting new research efforts due to its value in the study of

phononic crystals and in methods for ultrasonic non-destructive evaluation (NDE).

The objective of the research described in this thesis is to provide new numerical

and experimental tools capable of capturing important features that occur due to

the diffraction of ultrasound on periodic solid surfaces. These improved predicting

capabilities should be useful for the design of advanced NDE techniques and devices.

This thesis is divided into four main parts. First, the Rayleigh-Fourier (R-F)

method will be used to simulate diffracted fields generated by structures containing

multiple periodic surfaces and/or multiple solid layers. Because theoretical simula-

tions such as those performed with the R-F method are often restricted to the case of

ideal periodic surfaces having perfect periodicities rather than real surfaces with im-

perfect periodicities that would more likely be encountered in practice, the second part

of this thesis examines diffraction effects and compares ultrasonic NDE techniques for

surfaces with imperfect periodicities. The third portion of this thesis focuses on one

unusual phenomenon that has been observed on periodic surfaces, namely the lateral

backward displacement of a bounded ultrasonic beam along the surface. This effect

is currently understood to occur due to backward propagating surface waves that re-

sult from diffraction and mode conversion on the surface. However, this phenomenon

has only been observed for time-harmonic waves in reflection. Since ultrasonic NDE

methods often employ pulses, this phenomenon will be studied experimentally for the

case of ultrasonic pulses in reflection as well as in transmission. The fourth and final

xiv



part of this thesis describes the diffraction of bulk ultrasonic waves that can occur

on the surfaces of phononic crystals. A thorough understanding of this diffraction

is required in order for the transition to be made from studies of infinite phononic

crystals to the application of finite-size phononic crystals in actual devices.
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CHAPTER I

INTRODUCTION

The study of wave scattering on periodic surfaces dates back to Rayleigh’s classic work

in The Theory of Sound [1, 2] and this subject has been capturing the attention of

scientists and engineers for over 100 years. Even though research in this area has a

rich history, acoustic and elastic wave scattering on periodic surfaces and structures

continues to attract new research efforts. This has been seen especially in the last

decade due to the growing interest in sonic and phononic crystals [3].

This thesis is concentrated on one particular aspect of acoustic and elastic wave

interaction with periodic structures, namely the diffraction that occurs on periodic

surfaces in the ultrasonic regime. Periodicity of a surface can exist for many rea-

sons, including a material’s surface preparation, grain structure, lamination, or fiber

reinforcement, among others [4]. The diverse origins of surface periodicity explain

why wave interaction and diffraction effects occurring on periodic surfaces play im-

portant roles in diverse areas of acoustics, from architectural [5, 6] to underwater

acoustics [7, 8, 9]. Applications of periodic surfaces within the field of ultrasonics

include techniques such as ultrasonic diffraction grating spectroscopy [10] as well as

devices to convert bulk waves into surface waves and vice-versa [11, 12]. In particular,

it is periodic surfaces’ ability to generate surface waves that gives them significance

in the field of ultrasonic non-destructive evaluation (NDE).

Four topics concerning ultrasonic diffraction effects on periodic surfaces, espe-

cially as they relate to ultrasonic non-destructive evaluation (NDE) and the study

of phononic crystals, will be covered by this thesis. Chapter 2 will cover the use

1



of the Rayleigh-Fourier method for the simulation of ultrasonic diffraction on peri-

odic surfaces. Periodic surfaces function as acoustic diffraction gratings, generating

diffracted modes that propagate in different discrete directions as determined by the

classical grating equation [13]. Although diffraction gratings have been thoroughly

studied in optics [14], relatively little attention has been paid to them in acoustics.

Several lessons can be learned from the optical community, and one of these is that

theoretical and numerical techniques for treating diffraction on a periodic surface can

generally only accommodate cases that involve perfect periodicities [13]. Any “real”

surface that exhibits a periodic surface texture is, however, unlikely to exhibit a per-

fect periodicity. Therefore, Chapter 3 is devoted to the experimental investigation

of ultrasonic techniques that incorporate surface diffraction for the evaluation of a

thin plate with imperfectly periodic surface textures. Because ultrasonic NDE tech-

niques and the techniques employed in Chapter 3 generally employ pulses, Chapter 4

will investigate one unusual phenomenon, namely the lateral backward displacement

of an ultrasonic beam, using pulsed ultrasound. This backward beam displacement

can be attributed to the diffraction that occurs on periodic surfaces, and it has only

been observed in the past for time-harmonic waves. Finally, because the renewed

interest in periodic surfaces and structures is currently being driven by the study

of phononic crystals, Chapter 5 is dedicated to experiments to study the diffraction

of bulk ultrasonic waves that occurs on the surfaces of a two-dimensional phononic

crystal. Because these chapters are somewhat distinct, each chapter contains its own

introductory section.

This introductory chapter, then, is intended to give a general introduction to

ultrasonic diffraction on periodic surfaces, and it is divided into four sections. First,

a brief introduction to ultrasonic non-destructive testing and evaluation (NDT&E)

will be presented. Next, a brief introduction to the most common types of elastic

surface and guided waves will be given because these waves play an important role in
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ultrasonic NDT&E. The link between diffraction on periodic surfaces and surface wave

generation will also be explained. The third section contains a chronological history

of the study of ultrasonic diffraction effects on periodic surfaces in order to explain

what exactly is meant by the term “diffraction effects” and to show the directions the

field has taken in the past and where it may go in the future. The fourth and final

section will present additional motivation for the research described by this thesis as

well as its objectives.

1.1 Brief introduction to ultrasonic non-destructive evalu-
ation (NDE)

Two terms that are often used interchangeably are non-destructive testing (NDT)

and non-destructive evaluation (NDE). Generally, NDT would be defined as testing

that is used to examine an object that does not affect its future usefulness [15]. It can

include the examination of a material or object in order to detect imperfections at the

time of manufacture or those that may occur over time (fatigue cracks or corrosion,

for instance). These imperfections or defects may be internal or external. NDT can

also be used to determine characteristics of a material or object, such as its geometry,

structure, composition, or other properties, all without affecting its future usefulness.

Because NDT can be performed without compromising a product’s final use, it can

be used as part of a cost-effective quality control strategy.

Different methods of NDT exist. Several examples of testing methods that can be

considered non-destructive include visual/optical inspection, radiography, magnetic

particle testing, liquid penetrant testing, and electromagnetic testing [16]. NDT

methods that involve acoustic/elastic waves include acoustic emission testing as well

as ultrasonic inspection [17, 18]. Examples of materials or parts that may be in-

spected include railroad track, aircraft components, highway bridges, storage tanks,

and pipelines. In all of these examples, an undetected defect could grow over time

and ultimately result in mechanical failure and potentially catastrophic consequences.
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Although very similar to NDT, NDE refers to techniques and measurements that

are more quantitative in nature. NDE techniques can be used not only to locate

defects in a material or part, but they might also be used to characterize the defect

by measuring its size, shape, or orientation [19].

In general, ultrasonic NDT&E involves the use of ultrasonic transducers, and

because the field is well-developed, many different types are available commercially.

Some examples include contact, immersion, and air-coupled transducers, and these

emit ultrasonic beams that may be focused or unfocused. The transducers used in

this thesis research are commercially available immersion transducers (designed for

use underwater), and they have been used in combination with an ultrasonic scanner.

This scanning equipment includes a pulser/receiver to send and receive electrical

pulses to and from the transducers, data acquisition cards to acquire the waveforms

generated and detected by the transducers, software to analyze those waveforms, and

a robot to automate any motion of the transducers.

It is an electrical pulse from the pulser/receiver that causes a transducer to gen-

erate an ultrasonic pulse. This emitted pulse then propagates through a medium

(which in the case of this thesis is water, but the medium could be air in the case of

air-coupled transducers or a solid material in the case of contact transducers) until

it encounters some type of material discontinuity, which could be the edge of a ma-

terial or part, or a crack or defect. Whenever the pulse encounters a discontinuity,

part of its energy will be reflected, and this energy can be potentially captured by

the emitting transducer which can receive ultrasonic signals in addition to sending

them. This scenario is often referred to as pulse-echo since the same transducer is

used to send the pulse as well as receive any echoes from material discontinuities or

flaws. Based on the time-of-flight between the initial pulse and any received echo, the

distance to the discontinuity (source of the reflection) can be determined if the wave

propagation speeds in the media involved are known. Figure 1.1 shows a pulse-echo
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Figure 1.1: Diagram of pulse-echo transducer configuration along with sample wave-
forms.

configuration along with sample waveforms that might be observed due to surface

and flaw reflections. Another possibility is that a second transducer can be used as a

receiver, and this transducer can capture emitted waves that interact with a material

sample but do not return to the emitter. This arrangement may be referred to as

pitch-catch. The pitch-catch arrangement is particularly useful for the measurement

of diffracted fields as shown in Figure 1.2. Another arrangement that is possible has

the receiving transducer directly facing the emitting transducer with a sample placed

between them. The receiver captures sound that has propagated through the sample,

and the term through-transmission may be used to refer to this configuration. All of

these terms regarding transducer configurations are used commonly throughout the

ultrasonic literature, but they are introduced here as well since this thesis will employ

all three of these transducer arrangements.

Additional terms related to ultrasonic NDT&E that may be seen in this thesis
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Figure 1.2: Diagram of pitch-catch transducer configuration. (Left) Transducers
used to generate and receive a (leaky) surface wave. (Right) Emitter used to generate
a pulse incident on a periodic surface and receiver rotated through diffracted field.

include A-scan, which just refers to a waveform (often pulse-echo) obtained at a

single location on a material. The term B-scan is used when the transducer (or

transducer pair in the case of through-transmission) is translated linearly along a

material. Waveforms (or waveform properties, such as maximum amplitude) are

then stored for specific locations along the scan. The term C-scan is used when

the transducer(s) is moved such that it covers a two-dimensional area on a sample.

Like the case of a B-scan, waveforms or specific waveform properties can be acquired

and stored for discrete locations. These three types of scans are depicted graphically

in Figure 1.3. There also exists a polar scan that is only encountered in NDE. In

this case, a transducer is rotated about a sample’s surface in two angular directions.

The ultrasonic scanner at Georgia Tech Lorraine that was employed for this thesis

research is capable of A-, B-, C-, and polar scans, and it is therefore referred to as

the “polar/C-scan” equipment.

1.2 Surface and guided waves in ultrasonic NDE

Surface waves are particularly useful tools in ultrasonic NDE since they can often be

used to detect surface or near-surface defects and can propagate long distances [20].

Surface waves can be considered a subset of guided waves, since their propagation is

confined to a surface and is therefore guided. In general, however, the term guided
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Figure 1.3: Diagram of pulse-echo A-, B-, and C-scans. Discrete measurement points
indicated and scan paths shown with black arrows along sample surface. Measurement
positions not necessarily to scale with transducer size.

waves generally applies to waves that are propagating in “waveguide-like” structures

or objects such as thin plates or cylindrical shells whereas surface waves exist on

“thick” solids (i.e. solids that can be considered thick when compared to wavelength).

Sometimes surface and guided waves may be referred to as interface waves since they

require the presence of one or more interfaces to propagate. These distinctions in

terminology, however, vary across the disciplines in which these waves are studied.

Surface and guided waves are, in general, neither purely longitudinal nor purely

shear, but exhibit particle displacements that are a combination of these two polar-

izations. One of the main differences between surface and guided waves is that surface

waves (at least on isotropic and homogeneous media) are not dispersive, but guided

waves such as Lamb modes on a thin plate (even if the plate is made of an isotropic

and homogeneous material) are dispersive and their velocity will vary with frequency

and plate thickness.

There are usually several different types of surface or guided waves that can ex-

ist on a given structure, depending on the nature of the materials and interfaces in-

volved [21]. The following chapters of this thesis will mention four types of waves that

require the presence of at least one interface in order to propagate, namely Rayleigh,

Scholte-Stoneley, Stoneley, and Lamb waves. The Rayleigh and Scholte-Stoneley

waves will be discussed in the context of fluid-solid interfaces, and the Stoneley wave
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in the case of an interface between two solids. For the study of thin plates, Lamb

wave generation must be considered.

Rayleigh and Lamb waves [22] are commonly encountered in ultrasonics [23], and

although Stoneley [24] waves are more commonly encountered in geophysics, they

have been investigated in ultrasonics as well [25, 26]. Scholte-Stoneley waves [27] are

less commonly studied, but they play an important role in diffraction on periodic

surfaces.

1.2.1 Rayleigh waves

The Rayleigh wave, first predicted theoretically by Lord Rayleigh [28], is a wave

that exists on the surface of a semi-infinite isotropic elastic solid having stress-free

boundary conditions (i.e. a solid-vacuum interface). The particle motion is elliptical

since the wave is a type of coupling between longitudinal and shear waves in the solid,

and it propagates undamped along the surface. The wave experiences an exponential

decay in amplitude with distance from the surface, meaning that its energy is truly

confined to the surface. There is a tremendous body of literature that exists on

Rayleigh waves, especially since they have proven useful in the detection of surface

cracks in ultrasonic NDE. The speed of the Rayleigh wave on a solid can be determined

from the “Rayleigh equation” [21, 22, 29, 30], and the result is that its velocity is

generally slightly lower than the shear wave speed in the solid material. This velocity

is constant with frequency, as the wave is non-dispersive [31].

For the case of a fluid-solid interface (water-solid being commonly encountered

in ultrasonics), the boundary conditions at the surface are slightly different. The

surface of the solid is no longer considered stress-free was it is in the strict definition

of the Rayleigh wave. Now, normal stresses and normal particle displacements are

continuous, but the tangential stress vanishes in the fluid at the interface [21]. The

secular equation that can be solved for the wave speed(s) along the surface tends to
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the Rayleigh equation mentioned above as the density of the fluid becomes negligible

compared to the density of the solid. One of the roots of the equation corresponds

to the “generalized Rayleigh wave” on the surface. Its velocity is slightly less than

what the true Rayleigh wave speed would be on the solid (that is to say if the solid

did experience the stress-free boundary condition), and it tends towards the true

Rayleigh wave speed as the density of the fluid tends to zero. This wave decays as it

propagates along the surface because it will “leak” energy into the fluid. Therefore,

the term “leaky Rayleigh wave” or even just “Rayleigh wave” (even though it is

understood that it is not one in the strictest sense) may also be used for this wave.

There are multiple methods of generating Rayleigh waves [19, 22], and one of these

methods involves aiming a sound beam (perhaps through a fluid medium or with the

use of a solid wedge) upon the solid surface at the “Rayleigh angle” [22, 32, 33] so the

incident wave is phase-matched to the Rayleigh wave along the surface. The principle

of phase-matching is so important in acoustic and elastic wave behavior that it will

now be discussed before the other types of surface and guided waves are presented.

1.2.2 Surface wave generation: phase matching and Snell’s law

Phase-matching (which may also be called trace velocity matching) can be expressed

in the form of Snell’s law which is shown in Equation 1.1 and depicted graphically in

Figure 1.4.

c1

sin θ1

=
c2

sin θ2

(1.1)

Figure 1.4 shows a wave incident upon an interface between two media. The wave

originates in the upper medium with sound speed c1 and is transmitted into the lower

medium where its speed will be c2. The term phase-matching refers to the fact that

the phases of the incident wave and transmitted wave (or their trace wavelengths λtr)

must match along the interface separating the two media. This can be seen in the

figure where the colored bands represent wavefronts which are perpendicular to the
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Figure 1.4: Illustration of phase-matching and Snell’s Law. Phases of incident and
transmitted waves match along the interface. Wavefronts depicted as shaded bands
perpendicular to directions of propagation.

directions of propagation of the incident and transmitted waves. Mathematically this

can be expressed as λtr = λ1
sin θ1

= λ2
sin θ2

where λ1 and λ2 denote the wavelengths in each

medium, respectively. For a wave with frequency f (so that c = λf) this expression

is equivalent to c1
sin θ1

= c2
sin θ2

, the most commonly encountered form of Snell’s law.

(Another way to express Snell’s law is to say that the components of the incident and

transmitted wave vectors along the x-direction as shown in Figure 1.4 must be equal.

This statement will become more meaningful in Chapter 2 of this thesis.)

Clearly Figure 1.4 shows a simplified situation designed for the purposes of demon-

strating phase-matching. For example, if the two media are fluids and therefore only

support longitudinal waves, the incident and transmitted waves would propagate at

each medium’s respective wave speed as shown. However, if either medium is an

isotropic solid, both longitudinal wave and shear wave speeds may be involved since

mode conversion can occur between the two polarizations. In any case, mode conver-

sion between longitudinal and shear waves and between these bulk waves and surface

waves still involves phase-matching so c1 and c2 can be thought of as belonging to

any bulk or surface wave.

To apply the phase-matching principle to the generation of Rayleigh or other
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surface waves, the variable substitutions sin θ2 = 1 and c2 = csurf are made in Equa-

tion 1.1 since the “transmitted” wave is the surface wave that propagates at csurf .

This results in the expression sin θsurf = c1
csurf

[34]. The angle θsurf is the angle at

which sound must be incident from Medium 1 in order to generate a surface wave along

the positive x-direction that will propagate with speed csurf . To generate a Rayleigh

wave along a liquid-solid interface using waves incident from the liquid (which have

speed c), the expression becomes sin θR = c
cR

where cR is the Rayleigh wave speed

and θR is the angle known as the Rayleigh angle.

1.2.3 Scholte-Stoneley waves

This discussion on the generation of Rayleigh waves leads to the second type of surface

wave that can exist on a fluid-solid interface, the Scholte-Stoneley wave. Generating

this type of wave is not as straight-forward a process as in the case of the Rayleigh

wave.

An additional solution to the secular equation for the fluid-solid interface men-

tioned in the case of the Rayleigh wave belongs to a wave with a velocity less than

the velocity of sound in the fluid. (If the longitudinal and shear wave speeds in the

solid can be denoted by clong and cshear, respectively, and the velocity of sound in the

fluid by c, then in general, c < cshear < clong). This wave is the Scholte-Stoneley wave.

Referring to this wave by the name “Scholte-Stoneley” is consistent with several other

references [35, 36]. However, it should be noted that this wave is sometimes referred

to as a Scholte wave [37], a Stoneley wave [21, 30], or even a “pseudo-Stoneley”

wave [27]. These naming conventions are explained by the fact that the first exami-

nation of the possibility of waves existing at the interface of two solids is attributed

to Stoneley [24], but it was Scholte who considered the case where one of the media

is a fluid [38].

The Scholte-Stoneley wave is a surface wave that propagates without attenuation
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along the surface since its speed is lower than the speed of sound in the fluid, and it

has no counterpart in the solid-vacuum interface case since most of the energy of the

Scholte-Stoneley wave remains in the fluid (as long as the density of the fluid is much

lower than the density of the solid) [21, 39]. Generation of Scholte-Stoneley waves

has proven more difficult [39] than the generation of Rayleigh waves since based on

Snell’s law, it is clear that no phase-matching can occur between bulk waves and

Scholte-Stoneley waves, at least on a smooth surface. (If cSSt is used to denote the

Scholte-Stoneley wave velocity and θSSt to denote the incident angle necessary to

generate the wave, it is clear in the expression sin θSSt = c
cSSt

derived from phase-

matching conditions that the argument of the sin would be greater than 1.)

Some methods that have been proposed to bypass this phase-matching breakdown

include a liquid wedge technique [40] and the conversion of Rayleigh waves along a

partially submerged solid [27]. However, the diffraction and mode conversion that

occurs on periodic surfaces represents a more convenient method for the generation

of these waves [41, 42]. Because diffraction and mode conversion presents a coupling

between bulk waves and Scholte-Stoneley waves, the term “leaky” will be applied in

this case [43], and these waves will be investigated further in Chapter 4 of this thesis.

1.2.4 Stoneley waves

As mentioned above, waves that propagate at the interface of two solids are generally

termed Stoneley waves. These waves were first considered theoretically by Stoneley in

the context of geophysics [24]. He considered the problem of elastic wave propagation

at the interface between two isotropic solids with different elastic constants where the

boundary conditions across the interface consist of continuity of particle displacement

and continuity of stress.

Since Stoneley waves requires the presence of a second medium (as opposed to

the true Rayleigh wave), these waves may be more properly referred to as interface
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waves rather than surface waves. It is important to note that strict conditions on

elastic constants govern the material pairs for which Stoneley waves can exist [44, 45].

Broadly speaking, the shear wave speeds of the two solids must be nearly equal

in order for a Stoneley wave to exist. The speed of the Stoneley wave is then in

between the fastest Rayleigh wave speed and slowest shear wave speed for the two

media [45]. (For Rayleigh waves, vR < vshear and for Stoneley waves, vR|fastest <

vSt < vshear|slowest.) Like the Rayleigh and Scholte-Stoneley waves already discussed,

the particle displacements are two-dimensional (i.e. they consist of both longitudinal

and shear components) and elliptical in nature, and the wave decays rapidly with

distance from the interface.

Although Stoneley waves have been of more interest in geophysics than in ul-

trasonics, there has been some interest in Stoneley wave applications in ultrason-

ics. Some examples include the possibility of employing them in signal processing

devices in harsh environments [26] and in NDE of material bonds and laminated

structures [46]. Ultrasonic Stoneley waves have been generated by the conversion

of Rayleigh waves [26, 46] on a surface and with a wedge technique to phase-match

bulk waves to Stoneley waves [47]. However, if the interface between the two solids

is periodic, diffraction and mode conversion of bulk waves incident from one of the

solid media may present another method of generating Stoneley waves.

1.2.5 Lamb waves

Pure surface waves such as Rayleigh and Scholte-Stoneley waves cannot exist on thin

plates unless their wavelengths are sufficiently small compared to the plate thickness.

When the thickness of the plate is on the order of a wavelength for the wave frequencies

considered, the multiple reflections and interference patterns of longitudinal and shear

waves within the plate result in Lamb waves which propagate along the plate [22, 48].

Just as the Rayleigh wave is strictly defined as existing on a solid-vacuum interface,
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so Lamb waves are strictly defined as modes of vibration for a homogeneous and

isotropic thin plate in a vacuum [22]. Despite this strict definition, one can also refer

to “leaky” Lamb waves that can exist on fluid-loaded plate just as leaky Rayleigh

waves can exist on a fluid-loaded solid surface [49]. An infinite number of Lamb

modes exist, but they can be classified as being either symmetric or antisymmetric,

depending on the symmetry of the particle motion with respect to the plane of the

plate that passes through its neutral axis. Lamb waves are dispersive, and dispersion

curves can be calculated that show phase and group velocity as a function of the

product of frequency and plate thickness fd for various modes [29].

Much like Rayleigh waves, there has been intense and long-standing interest in

the investigation in both the theory and application of Lamb waves, see for example

Refs. [23] and [50], especially for NDE of structures that possess thin plate-like fea-

tures. Lamb waves are of interest in the study of diffraction on periodic surfaces in

the event that a diffracted mode generated along the surface may couple to a Lamb

mode [51].

1.3 History of ultrasonic diffraction effects on periodic sur-
faces

Although the study of diffraction on periodic surfaces was initiated by Lord Rayleigh [1],

studies within the ultrasonic regime really began to occur in the late 1970’s and early

1980’s, most likely due to a general increase in research interest in ultrasonics and

due to the increased availability of computational power to perform numerical calcu-

lations. Therefore, this discussion of the history of ultrasonic diffraction effects on

periodic surfaces will begin with this generation of researchers.

As discussed in the previous section, phase-matching considerations are one way

in which periodic surfaces differ from smooth surfaces. One additional significant dif-

ference between periodic surfaces and smooth surfaces is that certain unique features

occur in the reflection and transmission spectra obtained from periodic surfaces that
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do not appear in the spectra resulting from smooth surfaces. In particular, sharp dis-

continuities occur at certain frequencies in the spectra obtained from periodic surfaces.

These discontinuities were first observed experimentally in ultrasonics by Jungman

et al. [4] in the early 1980’s and were interpreted as being due to mode conversion

between bulk and surface waves along the surface. They were named Wood anomalies

in reference to the analogous optical phenomena introduced by Wood [52]. Although

the classical grating equation successfully described the relationship between surface

periodicity, surface wave velocities, and frequency positions of the anomalies, no other

theoretical treatment was available at the time that could predict the occurrence of

these anomalies in the spectra.

However, it was soon discovered by Claeys and Leroy [53] that the Rayleigh-Fourier

method for modeling diffraction on periodic surfaces could accurately predict ultra-

sonic reflection and transmission spectra obtained from periodic liquid-solid interfaces

[4, 54]. Anomalies in the spectra were attributed to the generation of Rayleigh or

Scholte-Stoneley waves as a result of diffraction and mode conversion on the sur-

face [55]. As discussed in the previous section, methods to generate Rayleigh waves

on most solid surfaces are well known, but phase-matching considerations generally

prevent coupling between bulk waves and Scholte-Stoneley waves on smooth surfaces.

Therefore, the diffraction parallel to the surface and consequent mode conversion on

periodic surfaces that can result in Scholte-Stoneley wave generation became recog-

nized as a potential technique to generate this type of wave in situations where it is

not possible otherwise.

Although the Rayleigh-Fourier (R-F) method was developed to model diffraction

spectra resulting from known periodic profiles, Jungman et al. [41] hypothesized that

the inverse problem could be addressed, namely the determination of a profile’s geo-

metric characteristics (periodicity and height) from experimentally determined spec-

tra, a type of ultrasonic NDE for periodic surfaces. It was shown that the value of a
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surface’s periodicity can be determined from the frequencies of the Wood anomalies in

its spectra if the velocities of the surface waves responsible for the appearance of those

anomalies are known [56]. Simulations were also performed for periodic surfaces with

identical periodicities but different profile heights, and it was shown that the depth

of the Wood anomalies increased with profile height [41]. The inspection of periodic

surfaces has been attempted using not only reflection and transmission spectra, but

also using backscatter that is generated at specific (Bragg) angles [57], and the R-F

method can be used to calculate the theoretical amplitude of this backscatter as a

function of a surface’s profile and material properties. Unfortunately, theoretical tech-

niques such as the Rayleigh-Fourier method can generally only accommodate surfaces

having perfect periodicities [13]. “Real” periodic surfaces with imperfect periodicities,

however, are more likely to be encountered in practice. Therefore, due to the limita-

tions of theoretical techniques such as the R-F method, experimental investigations

of diffraction effects such as Wood anomalies on such surfaces are preferable.

The R-F method was originally developed to accommodate time-harmonic homo-

geneous plane waves, but it was eventually extended to accommodate inhomogeneous

waves [51, 58]. When combined with a theoretical decomposition of an ultrasonic

bounded beam in terms of inhomogeneous waves [59], the diffraction resulting from

a bounded beam instead of a plane wave of infinite extent was able to be simulated.

This new simulation technique was able to address a phenomenon that had been

observed by Breazeale and Torbett [60] almost 30 years earlier in the late 1970’s,

namely a lateral backward displacement of an ultrasonic beam in reflection from a

periodically corrugated water-brass interface. Breazeale and Torbett hypothesized

that the backward displacement was caused by a backward propagating surface wave

in a manner analogous to the forward Schoch displacement that occurs as a result

of Rayleigh wave generation [61, 62], but they could not identify the type of surface

wave responsible for the displacement. By simulating bounded beam diffraction on
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a periodic surface, Declercq et al. [63] were able to attribute the phenomenon to the

generation of a backward propagating leaky Scholte-Stoneley wave [43].

To summarize this history, the Rayleigh-Fourier method has successfully been

used to theoretically predict diffraction effects including Wood anomalies and Scholte-

Stoneley wave generation on periodically corrugated surfaces. Wood anomalies have

been used to determine geometric parameters of a periodic surface, and Scholte-

Stoneley waves can potentially be used for the detection of surface defects, making

both of these diffraction effects relevant to ultrasonic NDE. These effects may also

occur on surfaces having imperfect periodicities that cannot be modeled using tech-

niques such as the R-F method.

1.4 Research motivation and objectives

In addition to the studies mentioned in the previous section, the study of periodic

surfaces has also increased recently in a number of different application areas. Surface

acoustic waves on periodic fluid-fluid interfaces have been investigated in their theo-

retical ability to assist in the collimation of sound [64]. Research in ultrasonic NDE

applications for periodic surfaces has also increased in recent years. One example is

the study of Lamb wave propagation in corrugated plates (waveguides) with appli-

cation in the NDE of non-planar surfaces [65]. The characterization of periodically

rough surfaces has also recently received attention due to the role they play in adhe-

sive bond quality [66]. The diffraction occurring on periodic surfaces has been studied

in the industrial context of the development of acoustic monitoring systems for heat

exchangers consisting of tube bundles [67] as well as in the framework of the devel-

opment of real-time ultrasonic inspection systems for machined part surfaces [68].

Periodically rough claddings on thick plates and pipes used to reduce corrosion that

are often found in the nuclear power industry are also a current area of study [69].

The applications for periodic surfaces currently observed and envisioned for the
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future are numerous and diverse, and they are the driving force behind the continued

study of acoustic and elastic wave interaction with such surfaces. However, according

to Beckmann there are at least two other reasons why scattering on periodic surfaces

merits close attention [70]. The first is that the results obtained are general enough

to give some indication of the global behavior of rough surfaces, and the second is

that if a surface is to be manufactured with the specific aim of preventing specular

reflection or preventing scattering in a certain direction, it would be easier to make

the roughness periodic than to make it random with some prescribed probability

distribution.

As stated earlier, the research presented in this thesis is focused on one particular

aspect of acoustic and elastic wave interaction with periodic surfaces, namely the

diffraction that results from the surface periodicity. In particular, the objective of this

thesis research is to advance the current state of knowledge of acoustic and elastic wave

diffraction that occurs on periodic surfaces using both theoretical and experimental

methods and increase potential applications for diffraction effects in ultrasonic NDE

methods and contribute to the body of knowledge on phononic crystals. The first step

in meeting this objective leads to Chapter 2 of this thesis, where the Rayleigh-Fourier

method will be applied to simulate ultrasonic diffraction on structures containing

multiple periodic surfaces and multiple solid materials.
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CHAPTER II

THE RAYLEIGH-FOURIER METHOD FOR THE

SIMULATION OF ULTRASONIC DIFFRACTION ON

PERIODIC SURFACES

2.1 Introduction to the Rayleigh-Fourier method

The study of wave diffraction on periodic surfaces can be traced back to Lord Rayleigh

who first considered the problem of determining the reflected field generated by a

time-harmonic plane wave normally incident on a surface having a sinusoidal rough-

ness [1, 2, 71]. Since then, much effort has been focused in both acoustics and optics

towards the development of theoretical techniques to describe and predict the scat-

tering (diffraction) that occurs on periodic surfaces.

Although multiple theoretical techniques exist, Rayleigh’s approach to the prob-

lem has proven to be so useful that it still attracts discussion and research efforts

over 100 years after Rayleigh’s first work [72]. Methods that rely in some form on his

approach are often termed “Rayleigh methods” but the particular Rayleigh method

used in this thesis, the so-called “Rayleigh-Fourier” method, stands apart since it

is straight-forward and requires a relatively short computational time compared to

other methods [13, 58]. This method carries the names of Rayleigh and Fourier since

it relies on the plane wave expansion series first used by Rayleigh which is followed

by the use of Fourier coefficients to handle the periodicity of the surface. Although

the method has sometimes appeared in the literature under different names, the

“Rayleigh decomposition” [43] for example, the use of the name “Rayleigh-Fourier”

helps distinguish the method from other Rayleigh methods [73].

A fundamental distinction should be made between the Rayleigh-Fourier method
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and Kirchoff theory that is often used to treat scattering from randomly rough sur-

faces [70, 71]. Whereas Kirchoff theory provides an approximation to the wave field

on the scattering surface that can then be used in an integral formula to calculate

the scattered field at a distance, the Rayleigh-Fourier (R-F) method functions in an

inverse manner.

In the R-F method, a known form for the scattered field at a distance from the

surface is assumed, namely a series expansion of plane waves with wave vectors that

are determined from the classical grating equation. The series expansion coefficients

are then obtained by satisfying the boundary conditions on the periodic surface.

One particular advantage of the R-F method is that the coefficients of the plane wave

series can be interpreted as reflection or transmission coefficients, or amplitudes of the

individual modes that make up the reflected field. This is in contrast to other methods

where the physical interpretation of the coefficients is not straight-forward [70].

2.1.1 Description of the problem

The physical problem of acoustic and elastic wave scattering from a single periodic

surface can be defined as follows [13]. An acoustic or elastic wave with wavelength λi

is incident at angle θi on a periodic interface that separates two semi-infinite media

as shown in Figure 2.1. Although the periodic surface shown in Figure 2.1 happens

to have a sawtooth profile (for ease of illustration), it is possible to treat other surface

profiles with the method. In general, the boundary needs to be described by z = f(x)

where f(x) = f(x + Λ) and Λ is the periodicity of the surface. Due to the surface

periodicity, the scattered field will be concentrated in certain directions, or diffraction

orders, with the specular reflection representing diffraction of order zero. The goal

is to determine the distribution of the diffracted field amongst the orders. In the

study of optical diffraction gratings, this distribution may be referred to as diffraction

efficiency.
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Figure 2.1: Diagram of diffraction on a periodic surface.

The directions of the diffraction orders are determined by the classical grating

equation shown in Equation 2.1. In this expression, ki is the component of the incident

wave vector along the surface as shown in Figure 2.1, m is the integer identifing the

diffraction order, and km is the component of the wave vector along the surface for

diffraction order m. The x- and z-components of the wave vectors are related through

Equation 2.2 where ω is the angular frequency (2πf) of the wave, v is the wave speed

for the type of wave being considered, and k and K signify the components of the

wave vectors parallel to and perpendicular to the surface, respectively.

km = ki +
2π

Λ
m (2.1)

(ω
v

)2

= k2 +K2 (2.2)

For the case shown in Figure 2.1, if “Medium 1” is a fluid, then both k2
i + K2

i and

k2
m +K2

m will be equal to
(
ω
v1

)2

where v1 is the longitudinal wave speed in the fluid.

(Throughout this chapter and in Appendices A-E, variables employing a lower-case k

will be used to signify wave vector components parallel to the surface, and variables

employing an upper-case K will refer to wave vector components perpendicular to

the surface. However, in Section 2.1.4 when the variable ~k appears, it will refer to the

wave vector itself with magnitude ω
v

and x- and z- components k and K, respectively.)
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2.1.2 The classical grating equation

Before continuing, it is appropriate to briefly discuss the classical grating equation

that has just been introduced. In this chapter, surfaces that consist of a periodic

series of grooves are being considered. These surfaces function as acoustic diffraction

gratings so the behavior of the waves that are incident on the surfaces can be described

by the so-called classical grating equation. The equation can take several different

forms, one of which is Equation 2.1.

When sound is incident on a periodically corrugated surface, each one of the

grooves on the surface becomes a small source of reflected and/or transmitted sound.

Therefore, for a given periodicity value, there exists a unique set of angles where the

sound scattered from all the grooves is in phase (i.e. does not experience destructive

interference). Figure 2.2 shows a plane wave incident on a grating surface at an

angle θi with respect to the normal to the surface (grating normal). The geometric

path length difference between the sound reflected by adjacent grooves in direction θm

is equal to Λ sin θi−Λ sin θm where Λ is equal to the groove periodicity and angle θm is

the angle of diffraction. When this path length difference is equal to the wavelength λ

or an integer multiple m of the wavelength, constructive interference will occur. At

all other angles, destructive interference will occur. Thus, the well-known ability

of gratings to diffract the incident wave into clearly identifiable directions can be

expressed by Equation 2.3. This equation can be transformed into Equation 2.1

through straight-forward algebra.

Λ sin θm − Λ sin θi = mλ (2.3)

2.1.3 Assumptions

Several natural assumptions have been made in the formulation of the problem so that

it can be treated using the Rayleigh-Fourier method. The incident wave is considered

to be a time-harmonic plane wave. Using a wave of a single frequency is acceptable
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Figure 2.2: Diagram showing path length difference between sound reflected off
adjacent grooves on a periodically corrugated surface.

within the regime of linear acoustics since a sound pulse containing many spectral

components will be diffracted as a linear superposition of those components. The use

of an infinite plane wave is generally acceptable for as long as the beam width exceeds

many wavelengths, the finite width of the beam can be neglected. Prior studies have

shown that results from simulations performed using infinite plane waves correspond

well with experimental results obtained using bounded beams [54]. There are some

exceptions to this, however, such as in the simulation of certain effects that are clearly

beam-width dependent, such as lateral beam displacements along the surface [43, 74].

The material properties of the media (density and Lamé constants or wave speeds)

are considered to be known and the media are assumed to be homogeneous and

isotropic. The corrugated surface is considered to be infinitely long and perfectly

periodic. The direction of incidence is considered to be perpendicular to the grooves,

so that if the grooves exist along the y-direction of the x-y plane (the y-axis would be

directed out of the page for the coordinate axes shown in Figure 2.1), the direction

of propagation of the incident wave is confined to the x-z plane. For a fluid medium,

the incident wave is longitudinal whereas for a solid medium, the incident wave may
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have one of three polarizations: longitudinal, vertical shear, or horizontal shear. For

both the longitudinal and vertical shear polarizations, the particle motion is confined

within the x-z plane whereas for the horizontal shear polarization, the particle motion

is confined to the y-direction. In general, we can expect mode conversion to occur

between longitudinal and vertical shear wave polarizations whenever a solid medium

is present, but horizontal shear waves can exist only if waves of this polarization are

initially incident on the surface [75].

One important aspect of the Rayleigh-Fourier method, or any method based on

the plane wave series first used by Rayleigh, remains to be discussed. The assumed

series expansions for the diffracted fields satisfy certain radiation conditions, namely

that only one incident wave carries energy towards the surface. Therefore, all the

reflected and transmitted diffraction orders are evanescent or propagating away from

the interface. (The z-components of the diffracted wave vectors, calculated from

Equation 2.2, are always chosen so that they propagate away from the interface.)

Although these series expansions are valid outside the corrugated region (above the

line that connects the highest points of the grooves and below the line that connects

the lowest points), the assumption that they are valid within the corrugated region

and can be used to satisfy the boundary conditions at the surface has been a subject

of debate for over 50 years [12, 76].

The use of only outgoing waves has come to be known as the “Rayleigh hypothesis”

and it was first criticized by Lippmann [77] in 1953, who argued based on intuition

that, especially for very rough corrugations, one must also consider waves traveling

towards the surface. The essence of the Rayleigh hypothesis is that the far-field

solution to the problem can beused to satisfy the boundary conditions in the near-

field. Although the R-F method is based on this long-debated hypothesis, the method

is generally accepted to be valid in its description of diffraction phenomena that occur

when the incident wavelength λi is on the order of the surface periodicity λi ≈ Λ and
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much larger than the height of the surface corrugation (max |f(x)| � λi) [58, 78].

2.1.4 Theoretical development

The solution to the diffraction problem must satisfy the wave equation (equation

of motion) within the bulk of each medium, and it must also satisfy the boundary

conditions at the periodic surface. Therefore, solution forms for the wave fields in

the media that satisfy the wave equation are assumed first, and these forms are then

used to satisfy the boundary conditions at the surface.

The derivation of the equation of motion for an infinite elastic solid has been

covered in many textbooks [29, 30, 79] so it will not be repeated here. The final

form of the equation for particle displacement in vector form ~u within a homogeneous

infinite elastic solid medium can be expressed as

ρ
∂2~u

∂t2
= (λ+ µ)∇ (∇ · ~u) + µ∇2~u (2.4)

where ρ is density, λ and µ are the Lamé constants, and t is time. By assuming

the solution to be a homogeneous plane wave (where the wavefront is of infinite

extent normal to the direction of propagation and all displacements are uniform over

the wavefront at a given instant in time), two bulk wave solutions are possible [80].

These correspond to a longitudinal wave, where the particle displacement is along

the direction of propagation, and a shear wave, where the particle displacement is

normal to the direction of propagation. (An ideal fluid medium can be considered to

be a special case of the above equation where µ = 0, and the only bulk wave that can

exist is longtudinal in nature.)

The particle displacement resulting from these solutions can be conveniently ex-

pressed in terms of derivatives of potential functions. In particular, the Helmholtz

decomposition can be used so that ~u = ∇ϕ + ∇ × ~ψ where ∇ · ~ψ = 0 [29, 79]. In

this formulation, ϕ(~x, t) is a scalar potential for the longitudinal wave and ~ψ(~x, t) is a

vector potential for the shear wave. The vector field ~u will satisfy the wave equation
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as long as ϕ and ~ψ are solutions to wave equations where the bulk wave speeds corre-

spond to the longitudinal wave speed vl and shear wave speed vs, respectively [79], as

shown in Equation 2.5. In Equation 2.5, the longitudinal and shear wave speeds are

given as a function of the Lamé constants λ and µ and the density ρ for the material.

∇2ϕ =
1

v2
l

∂2ϕ

∂2t
where vl =

√
λ+ 2µ

ρ

∇2 ~ψ =
1

v2
s

∂2 ~ψ

∂2t
where vs =

√
µ

ρ

(2.5)

The diffraction problem as it has been framed in Figure 2.1 can be considered to

exist in two-dimensions. In this case, all waves would be restricted to existence in

the x-z plane, and the shear waves can be considered to exist in two polarizations,

namely vertical and horizontal. Both types of shear waves have their propagation

direction within the x-z plane, but their particle displacements are not necessarily

confined to the plane as well. The vertical shear waves do consist of particle displace-

ment restricted to the x-z plane, but the horizontal shear waves have their particle

displacement confined to the y-direction perpendicular to the x-z plane so they would

not be considered in the problem. This is possible since the propagation of these two

types of shear waves is independent.

If a solid medium is considered in the diffraction problem as it has been defined,

longitudinal waves (with particle displacement occurring along the x- and z-directions)

incident on a periodic surface can experience mode conversion to vertical shear waves

but they will not transform into horizontal shear waves. Likewise, vertical shear waves

can experience mode conversion to longitudinal waves, but not horizontal shear waves.

Therefore, several implementations of the Rayleigh-Fourier method [51, 54, 81] have

considered only “vertical” waves, defined as being waves with particle displacement

in the x-z plane only, i.e. longitudinal and vertical shear waves. This results in the

shear waves being represented by the vector function ~ψ = ψ~ey (where ~ey is a unit

vector in the y-direction) so that the vector ∇ × ~ψ will have components in the x-
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and z-directions only. For the case when only “vertical waves” are considered, the

potential functions are assumed to be those shown in Equations 2.6 and 2.7.

ϕ = AL e
i(~k·~x−ωt) (2.6)

~ψ = ψ~ey =


0

AS e
i(~k·~x−ωt)

0

 (2.7)

In these equations, AL and AS represent amplitude and ei(
~k·~x−ωt) is the complex

exponential form of expressing the plane waves. Since the wave vector ~k has only

the components k and K in the x- and z- directions, respectively, these potential

functions result in the longitudinal and shear displacement vectors ~uL and ~uS shown

in Equation 2.8.

~uL = ∇ϕ =


ikϕ

0

iKϕ

 and ~uS = ∇× ~ψ =


−iKψ

0

ikψ

 (2.8)

If horizontal shear waves are to be included in the problem as well, an alternate

but equivalent formulation can be used where the particle displacement for the shear

waves is expressed directly in vector form [75]. This is the approach that will be

employed in this thesis. Therefore, the displacement vector used to represent shear

waves is instead

~uS =


PxAS e

~k·~x−ωt

PyAS e
~k·~x−ωt

PzAS e
~k·~x−ωt

 (2.9)

where Px, Py, and Pz are polarization factors that determine the polarization of the

shear wave. (For a vertical wave, Py = 0, and for a horizontal wave, Px = Pz = 0.)

It is then necessary to explicitly state that the shear wave direction of propagation is

perpendicular to its particle displacement, and this can be accomplished by requiring

that ~k · ~uS = 0 so then kPx +KPz = 0.
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Once the solution form has been chosen in terms of longitudinal and shear waves,

the plane wave expansion that is attributed to Rayleigh can be constructed. For

the medium containing the incident wave, the field will consist of the incident wave

along with the specular reflection (diffraction of order zero) and an infinite series of

propagating and evanescent plane waves for the other diffraction orders. For example,

if “Medium 1” in Figure 2.1 is a fluid, the particle velocity for the entire field in the

medium, ~u1 where the superscript 1 designates the medium, would be expressed as

~u1 = ∇ϕi +∇ϕR . (2.10)

Here, ϕi is the potential function for the incident wave, and ϕR is the potential for

the series of diffracted waves. They can each be expressed as

ϕi = Aie
i(kix+Kiz)

ϕR =
∞∑

m=−∞

ϕRm =
∞∑

m=−∞

Rme
i(kmx+KRmz) .

(2.11)

In the potential ϕi, Ai represents the amplitude of the wave, and ki and Ki are the

components of the wave vector in the x- and z-directions as previously discussed.

The potential ϕR consists of the sum of the potentials ϕRm associated with each

reflected diffracted order m. For each order, the wave vector component km is com-

puted from the grating equation and the corresponding KRm can then be found from

Equation 2.2. The series expansion coefficients Rm are unknown, and it is through

fulfilling the boundary conditions on the surface that they can be obtained. Because

a time-harmonic wave is assumed, there is an e−iωt dependence that is implied in the

expressions of Equation 2.11 (i.e. the full expressions have the form ei(
~k·~x−ωt)).

If one of the media in the problem is a solid, a series expansion consisting of

diffracted shear modes must be included in addition to the diffracted longitudinal

modes for that medium, even if the incident wave is longitudinal. This is due to

the mode conversion that may occur at the interface. Likewise, if the incident wave
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is shear, longitudinal diffracted modes must be considered in addition to the shear

modes.

For the problem shown in Figure 2.1, the transmitted field in “Medium 2” will

consist of propagating and evanescent diffraction orders: longitudinal if the medium

is a liquid, and longitudinal and shear for the case of a solid. The term propagating

refers to orders for which both components of the wave vector, km and Km, are

real. Evanescent modes are those which have a real km calculated from the grating

equation, but have an imaginary Km determined from Equation 2.2.

Once expressions for the velocity fields in the media are constructed, they can be

used to derive expressions for stresses and strains in the media according to linear

elasticity theory. The components εij of the small strain tensor can be expressed

according to Equation 2.12 where ~u is the particle displacement vector having com-

ponents ui, uj, and uk and the position vector ~x has components xi, xj, and xk.

εij =
1

2

[
∂ui
∂xj

+
∂uj
∂xi

]
(2.12)

Because the materials in the diffraction problem are considered to be linearly

elastic, the strain tensor and the stress tensor will be linearly related according to

Hooke’s law. Because the media are also considered to be homogeneous and isotropic,

Hooke’s law for the stress tensor components Tij ultimately reduces to Equation 2.13.

Tij =
∑
k

λεkkδij + 2µεij (2.13)

In Equation 2.13, λ and µ represent the Lamé constants for the material, and δij is the

Kronecker delta. The expressions for stresses and strains that ultimately result from

Equations 2.12 and 2.13 can then be substituted into boundary conditions that are

appropriate for the interface being considered. The boundary conditions that must

be satisfied depend on the nature of the interface (liquid-solid, solid-solid, etc.) but

they generally involve continuity of particle displacement and continuity of stress.
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For example, for a liquid-solid interface, continuity of normal particle displacement

provides the first boundary condition, and the two remaining boundary conditions

would be obtained through applying continuity of stress at the interface, with shear

stress vanishing in the liquid. The continuity of normal particle displacement can be

expressed through Equation 2.14 where the function h(x, z) = f(x) − z = 0 is used

to represent the surface profile and the superscripts 1 and 2 are used to designate

the media separated by the periodic boundary. The particle displacement vectors ~u1

and ~u2 represent the total displacement in the materials (i.e. the sum of any incident

wave and any diffracted wave fields). The continuity of stress at the boundary is

given by Equation 2.15. Although Equations 2.12 through 2.15 have been expressed

using indicial notation, it is straightforward to convert these indicies to the x-,y-, and

z-directions in which the diffraction problem has been framed.

~u1 · ∇h = ~u2 · ∇h (2.14)

3∑
j=1

T 1
ij (∇h)j =

3∑
j=1

T 2
ij (∇h)j (2.15)

To continue with the example of a liquid-solid interface, when a potential repre-

sentation is used for the diffracted shear fields generated, three sets of series expansion

coefficients are unknown (longitudinal in the liquid, and longitudinal and shear in the

solid), and three boundary conditions to solve for these coefficients are obtained (one

from the continuity of normal particle displacement and two from the continuity of

stress). When using a direct displacement representation for the shear waves, how-

ever, one set of diffracted shear waves requires two series expansions (one for Px and

the other for Pz) so an additional boundary condition must be obtained by requiring

that the direction of shear wave propagation be normal to the particle displacement

as previously discussed. Regardless of the type of representation that is employed, the

number of boundary conditions must match the number of unknown series expansions

used to represent the diffracted fields in order to obtain the solution.
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To solve for the series expansion coefficients that eventually appear in the bound-

ary condition equations, the equations are expanded in Fourier series over one period

of the surface corrugation, from 0 to Λ. The series expansion coefficients can then be

determined by equating the resulting Fourier coefficients. Although the plane wave

series used to represent the reflected and transmitted fields are technically infinite, a

truncation to a finite number of modes must be performed so that the system can be

solved numerically. Truncation to an order of 8 has been chosen based on the error

calculations found in Refs. [54] and [55]. The end result is a linear system of the form

[A] ~x = ~b that can be solved for ~x, the vector containing the unknown series expansion

coefficients. If this linear system is evaluated for many frequencies, the resulting series

coefficients for a particular order can be plotted as a function of frequency, which can

be interpreted as a reflection or transmission spectrum for that order.

2.2 Prior applications of the Rayleigh-Fourier method

When Lord Rayleigh first considered the diffraction of sound from a periodic sur-

face [1], he examined a case where the surface was perfectly reflecting, and for many

years thereafter, the Rayleigh-Fourier method was used to treat diffraction occurring

only on surfaces that were completely impenetrable to sound, either by being perfectly

rigid or pressure-release [8, 82]. The treatment of cases where the second medium

can support the transmission of waves is more complicated, and the R-F method was

first used to address such a case in the early 1980’s by Claeys and Leroy [53, 54] when

they studied the diffraction occurring at liquid-solid interfaces. The R-F method was

also examined for fluid-solid interfaces by Berman and Perkins [73]. It was later

extended by Mampaert and Leroy [55] to accommodate incident waves originating in

the solid and by Briers et al. [51, 58, 83] to accommodate incident inhomogeneous

waves. Thin plates with a single surface corrugated have also been studied using

the R-F method [51, 58, 81], and the method has also been extended by Declercq et
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Figure 2.3: Four cases to treat with the Rayleigh-Fourier method.

al. [75] to study horizontal shear waves.

The following chapter sections will address the extension of the R-F method to four

cases that have not yet been examined using the method, namely (1) a fluid-loaded-

plate with both sides periodic, (2) a periodic interface separating two semi-infinite

solid media, (3) a fluid-loaded plate consisting of two solids separated by a periodic

interface, and (4) a fluid-loaded plate consisting of two solid layers where all surfaces

are periodic. These cases are shown in Figure 2.3.

Before performing the theoretical derivations for these four new cases, it was

desired to apply the R-F method with the direct displacement representation of the

shear waves to the case of a fluid-loaded plate with one side periodic. This case has

been treated before in the literature [51, 58] but only with a potential representation

for the shear waves. A diagram of the diffracted fields present, along with the creation

of the displacement fields and the derivation of the boundary conditions for the linear

system [A] ~x = ~b can be found in Appendix A.

A brass plate with an average thickness of 2 mm is considered immersed in water

with a wave normally incident from the water upon the plate’s periodic side. The

periodic profile is considered to be sawtooth with its periodicity Λ equal to 2.2 mm

and the peak-to-peak height h equal to 50 µm. Densities and wave speeds for the

media are shown in Table 2.1.
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Table 2.1: Material properties.

Water Brass Titanium Steel

ρ (kg/m3) 1000 8100 4440 7860

vd (m/s) 1480 4840 6110 5890

vs (m/s) N/A 2270 3270 3210

The calculated spectrum for the zero-order reflection coefficient R0 is shown at

the top of Figure 2.4. A spectrum by definition is not limited to discrete values of

frequency, but for the purposes of the computations of the Rayleigh-Fourier method,

the calculations must be limited to discrete frequency samples. Just as in any physical

experiment, the sampling rate at which measurements are taken (or in this case, at

which simulations are performed) should have a sufficiently fine resolution so that im-

portant features in the spectrum are not missed. The spectrum shown in Figure 2.4

has been computed with a 500 Hz frequency resolution. The results are consistent

with those found in Refs. [51] and [58]. Large drops in the spectrum are seen at fre-

quencies of 1.21 MHz and 2.42 MHz which correspond to plate thickness resonances for

longitudinal waves normal to the plane of the plate. The plate thickness resonances

correspond to cut-off (or rather cut-on) frequencies for Lamb modes, and these two

frequencies correspond to the S2 and A3 modes, respectively. These “limiting fre-

quencies” for a plate of a given thickness d can be calculated from the expressions

shown in Equation 2.16 [19]. In these expressions, λd and λs are equal to the bulk

wave speeds vd (longitudinal) and vs (shear), respectively, divided by frequency f .

Symmetric modes Antisymmetric modes

d =
λd
2

,
3λd
2

,
5λd
2

, . . . d = λd , 2λd , 3λd , . . .

d = λs , 2λs , 3λs , . . . d =
λs
2

,
3λs
2

,
5λs
2

, . . .

(2.16)

Other than these two large drops in the spectrum, additional anomalies are visible.
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Figure 2.4: (Top) Magnitude of R0 coefficient for brass plate with d = 2 mm in
water. One side periodic with Λ = 2.2 mm and h = 50 µm. Consistent with results
in [51, 58]. (Bottom) Dispersion curves for a (smooth) 2 mm thick brass plate in
water. Velocity of diffracted modes plotted in dotted lines and intersection points
circled.
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These can be interpreted as Wood anomalies, which can occur when any one of the

diffracted waves along the periodic surface phase matches to a Lamb mode. This can

be investigated by comparing the locations of anomalies in the spectrum at the top

of Figure 2.4 with frequency locations at which the family of curves vm = fΛ
m

(plotted

in dashed lines) intersect the dispersion curves plotted with phase velocity versus

frequency. (This expression for the “diffracted mode velocity” vm along the surface

where f is frequency, Λ is the surface periodicity, and m is the order of diffraction,

can be derived from the classical grating equation for this case by setting the incident

angle θi to 0◦ and the angle of diffraction θm to 90◦.) This method of comparing

the velocity of diffracted modes along the periodic surface with the Lamb dispersion

curves was first employed in Refs. [51] and [58]. Three lines corresponding to the

first, second, and third diffracted modes are plotted with the dispersion curves for

a (smooth) brass plate at the bottom of Figure 2.4. The points of intersection with

the Lamb mode dispersion curves are indicated by circled points on the bottom of

Figure 2.4. Good agreement is seen between the frequency location of anomalies in

the spectrum and the intersection points of the diffracted and Lamb modes. It should

be noted that it may be difficult or impossible to identify anomalies that are located

close to the limiting frequencies of 1.21 MHz and 2.42 MHz.

The dispersion curves shown in Figure 2.4 were calculated using the Disperse

software developed by Imperial College, London. The computation of dispersion

curves for a thin plate is in itself not a trivial matter, and although attempts have been

made to create dispersion curves for plates (waveguides) with one or more periodic

surfaces [84], the interpretation of the results is far from straightforward. Until the

time that dispersion curves for plates with periodic surfaces can be created with

more success and in a time-efficient manner, when a small periodic roughness is being

considered, using dispersion curves calculated for smooth plates appears to result in

satisfactory agreement with the simulated spectra.
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2.3 New applications of the Rayleigh-Fourier method

Now that the R-F method with a direct displacement representation for shear waves

has been shown to be consistent with results already present in the literature for a

fluid-loaded plate with one side periodic, results from the four additional cases shown

in Figure 2.3 will be presented.

2.3.1 Fluid-loaded plate with two sides periodic

The first case to be examined is that of a fluid-loaded plate where both sides are

periodic. A diagram of the diffracted fields, the expressions for the total fields in the

fluid and solid media, and the derivation of the boundary condition expressions can

be found in Appendix B.

First, it will be assumed that the periodicities and peak-to-peak heights of both

surface profiles are equal. (If the subscripts “1” and “2” are used to denote the upper

and lower surfaces of the plate, respectively, then Λ1 = Λ2 and h1 = h2.) The only

difference then that remains between the profiles of the two surfaces is their phase

difference. Two possibilities for the phase difference will be examined. The first is

that the two profiles are exactly in-phase, and in this case the plate will be referred to

as “antisymmetric” since the two surface profiles appear antisymmetric with respect

to the mid-line of the plate. The other possibility that will be examined is that

where the two profiles are 180◦ out-of-phase. In this case, the plate will be considered

“symmetric” since the reflection of the upper surface profile across the mid-line of

the plate exactly matches the profile of the lower surface. These two possibilities are

shown in Figure 2.5.

These two types of plates will now be compared with the brass plate with one

periodic side that was examined in the previous section. All three plates are brass

immersed in water (with all material properties as stated in Table 2.1), and the

periodicities and peak-to-peak heights of the upper and lower surface profiles of the
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Figure 2.5: Illustration of symmetric and antisymmetric plates.

antisymmetric and symmetric plates are considered to be equal to 2.2 mm and 50 µm,

respectively. These are identical to the periodicity and height parameters of the

surface profile for the plate presented in the previous section that had one periodic

side. The average thickness d of each plate is 2 mm.

Spectra for the R0 coefficients for each type of plate have been calculated given a

longitudinal wave normally incident from the water on the upper side of each plate,

and these are shown in Figure 2.6. All the spectra have been computed with a 500 Hz

frequency resolution. The spectrum for the plate with one periodic side that was

originally presented in Figure 2.4 has been plotted at the top of the figure and the

antisymmetric and symmetric cases of the plate with two sides periodic have been

plotted below.

It can be seen that the spectra for the two-sided plates are nearly identical to that

of the one-sided plate. There are some noticeable differences, however, at 1.1 MHz,

2.34 MHz, and 2.68 MHz, and these are frequencies at which the velocity of diffracted

modes along the surface match phase velocities of Lamb modes for the smooth plate

as shown in Figure 2.4. Therefore, it appears that the antisymmetric and symmetric
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Figure 2.6: Magnitude of R0 coefficient for brass plates with d = 2 mm in water.
(Top) Plate with one side periodic: Λ = 2.2 mm with h = 50 µm. (Middle and
Bottom) Plate with two sides periodic: Λ1 = Λ2 = 2.2 mm and h1 = h2 = 50 µm.
Antisymmetric (middle) and Symmetric (bottom) cases shown separately.
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geometries result in slightly different Lamb wave stimulation.

The similarities between the spectra are not unexpected since once a wave of a

given frequency enters the brass plate, its wavelength is significantly longer than its

wavelength in water. The wavelength of a longitudinal wave in the brass plate will,

for example, have a wavelength over three times that in water. It is well known

that many wave behaviors, including diffraction, are sensitive to the relative size

of the wavelength with respect to any obstacles the wave encounters. The change

in wavelength that occurs upon transmission from the water to the brass results

in different ratios between the incident wavelength and the surface periodicity and

roughness height for the upper and lower surface profiles. The lower surface of the

plate, although identical to the upper surface, appears much less rough to the wave

once it is in the brass than the profile did when the wave was still in the water.

Therefore, the next question one may ask is how the spectra would change if the

roughness of the lower surface of the plate approached a more appropriate value given

the wavelengths within the brass plate. Since the longitudinal wavelengths in the plate

have scaled up by roughly a factor of three between the water and brass, the profile

height of the lower surface has been increased from 50 µm to 150 µm. The R0 spectra

for the three plates where the roughness of the lower surface of the antisymmetric and

symmetric plates has changed (the plate with one side periodic remains unchanged)

are shown in Figure 2.7. The spectra shown in the figure confirm that energy lost to

diffraction increases with the increased roughness of the lower surface. One interesting

observation is that the spectra of the antisymmetric and symmetric plates appear to

be vertical mirror images of each other in the vicinity of certain anomalies. This

appears, for example, in the frequency range 1.5 MHz-1.8 MHz.
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Figure 2.7: Magnitude of R0 coefficient for brass plates with d = 2 mm in water.
(Top) Plate with one side periodic: Λ = 2.2 mm with h = 50 µm. (Middle and
Bottom) Plate with two sides periodic: Λ1 = Λ2 = 2.2 mm with h1= 50 µm and h2 =
150 µm. Antisymmetric (middle) and Symmetric (bottom) cases shown separately.
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Figure 2.8: Illustration of plate with two sides periodic, Λ1 = 2Λ2.
.

2.3.1.1 On treating surfaces with different periodicities

The simulations developed here for plates with both sides periodic can accommodate

roughnesses of different heights for the two surfaces of the plate as discussed in Ap-

pendix B. However, it is not so straightforward to accommodate a different periodicity

for each of the two plate surfaces.

In order use the R-F method to treat the diffraction problem where surfaces with

two different periodicities are present, several conditions must be satisfied. First, the

ratio between the periodicities involved should be an integer (Λ1 = 2Λ2 as shown in

Figure 2.8 for example). Second, the wave vector components km for all diffracted

series present in the problem should be determined from the classical grating equation

where the Λ substituted in the equation is equal to the largest periodicity present in

the problem, whether or not that is the periodicity of the surface in closest proximity

to the diffracted series concerned. The periodicity over which the Fourier coefficients

are equated should also be equal to this Λ. Therefore, there will necessarily be a

complicated integration over the profile with the smaller periodicity [85].

Even if these conditions are met, the possibility of the simulations satisfactorily

predicting experimental reality remains uncertain. In general, in studies where only

one periodicity has been present and results from the R-F method have been compared

with experiments (in Ref. [41] for example), the numerically computed R0 spectra

have been compared with FFTs from pulse-echo experiments. The agreement of these
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results has been satisfactory even though the R-F method considers the problem in

terms of time-harmonic waves of infinite extent and the experiments have employed

pulsed bounded beams. However, for the case where surfaces with two different

periodicities appear in the problem, the weakness in comparing the R-F results with

experiments becomes apparent by considering a ray perspective.

If a pulse were to be employed in an experiment, and it was first incident on the

side of the plate having periodicity Λ1, a reflected diffracted field would be generated

in the fluid from which the wave was incident, and a transmitted diffracted field would

be generated in the solid plate. The wave vector components of the waves in these

fields would be dependent on the periodicity Λ1, whether or not it is larger than Λ2.

The diffracted waves that are transmitted into the plate would then propagate

towards the plate’s second periodic surface with periodicity Λ2, and upon reaching

this surface, each one of the waves in the original transmitted series would experience

diffraction and generate its own series of diffracted waves with wave vector compo-

nents dependent on Λ2. For the case where Λ1 = 2Λ2, these wave vector components

“map” onto the wave vector components created using Λ1 as shown in Table 2.2.

Table 2.2 shows wave vector components denoted by kmn where m and n are integers.

With this notation, the integer m refers to the order of diffraction on the first sur-

face encountered, which is the order from which the diffraction order n on the second

surface is generated. When the largest Λ is used to determine the wave vector compo-

nents for all the diffracted fields in the problem, all the diffracted waves generated by

the diffraction occurring due to the multiple reflections within the plate will map onto

this set. Having the wave vector components determined by the largest periodicity

present in the problem results in the finest “resolution” of km because the largest Λ

is located in the denominator of the term 2π
Λ

in the grating equation. This mapping

of wave vector components for diffracted waves originating from multiple reflections

within the plate presents no difficulty when considering the time-harmonic problem,
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and it has in fact already been used for the case of a plate with one or both sides

periodic with only one Λ present.

For the case where the incident wave originates in the fluid and is first incident on

the surface with periodicity Λ1, the wave vector components for the initial reflected

diffracted series will be consistent between theory and experiment. The only compli-

cation in comparing the simulation results with experiments employing pulses is that

the diffraction that will eventually occur on the lower surface of the plate (having

periodicity Λ2) will reflect back to the upper surface of the plate where some of the

energy will be transmitted into the original reflected field, but with a time delay and

shift along the x-axis from the original reflected diffracted waves. In addition, it is

important to remember that the wavelength λ for a wave with frequency f becomes

much longer (perhaps by as much as a factor of three) upon entering the plate from

the fluid where the wave originated. The wave will “see” the second periodic surface

as less rough even if the second surface profile is identical to the first surface pro-

file. Therefore, for the case where Λ1 = 2Λ2, the diffraction on the Λ1 surface may

dominate and treatment of this case may be trivial.

This effect, however, might be counteracted if the second periodicity is an integer

multiple of the first surface periodicity. For the case where the incident wave from

the fluid first interacts with the Λ2 surface (i.e. the wave is incident from underneath

the plate as it is shown in Figure 2.8), the longer wavelengths within the plate would

“see” the longer periodicity Λ1. Therefore, the diffraction that occurs upon interaction

with this surface may be more important than in the case where the incident wave

is incident from the fluid first upon the surface with the longer periodicity. However,

this case introduces an additional complication in terms of potentially comparing the

simulation results with experiments. In this case, the R-F method would require that

the wave vector components of the reflected diffracted series from the Λ2 surface be

expressed in terms of the longer periodicity Λ1. In an experiment, waves with these
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Table 2.2: Wave vector components km and kmn for the case of two periodic surfaces
where Λ1 = 2Λ2.

1st Surface 2nd Surface

m = 0 k0 = ki n = 0 k00 = ki → k0

n = 1 k01 = ki +
2π

Λ2

= ki +
2π

Λ1

(2) → k2

n = 2 k02 = ki +
2π

Λ2

(2) = ki +
2π

Λ1

(4) → k4

...
...

...

m = 1 k1 = ki +
2π

Λ1

n = 0 k10 = ki +
2π

Λ1

→ k1

n = 1 k11 = ki +
2π

Λ1

+
2π

Λ2

= ki +
2π

Λ1

(3) → k3

n = 2 k12 = ki +
2π

Λ1

+
2π

Λ2

(2) = ki +
2π

Λ1

(5) → k5

...
...

...

m = 2 k2 = ki +
2π

Λ1

(2) n = 0 k20 = ki +
2π

Λ1

(2) → k2

n = 1 k21 = ki +
2π

Λ1

(2) +
2π

Λ2

= ki +
2π

Λ1

(4) → k4

n = 2 k22 = ki +
2π

Λ1

(2) +
2π

Λ2

(2) = ki +
2π

Λ1

(6) → k6

...
...

...

m = 3 k3 = ki +
2π

Λ1

(3) n = 0 k30 = ki +
2π

Λ1

(3) → k3

n = 1 k31 = ki +
2π

Λ1

(3) +
2π

Λ2

= ki +
2π

Λ1

(5) → k5

n = 2 k32 = ki +
2π

Λ1

(3) +
2π

Λ2

(2) = ki +
2π

Λ1

(7) → k7

...
...

...
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wave vector components would not exist until the diffraction on the second surface of

the plate (with Λ1) had occurred. Unfortunately, the wave vector components from

the second plate surface do not map onto the set from the first surface; they are

the set to which the wave vector components from the first plate surface should be

mapped.

In the R-F method, the reflected diffracted field is assumed to already have waves

with wave vector components associated with the periodicity of the second surface

since the problem is time-harmonic (and the waves have always existed and they will

always exist). Therefore, the results of R-F simulations would less accurately resemble

the measured reflected diffracted field because the simulations includes waves in the

reflected diffracted field that do not exist until diffraction on the second plate surface

occurs. Even if the time-delayed and x-shifted contributions from diffraction occurring

on the second surface of the plate are taken into account somehow in experiment,

the R-F simulation may overestimate the contributions of these individual waves.

Therefore, should the R-F method be considered in the future to treat the problem

where each surface of the plate has a different periodicity, the simulation results may

not realistically predict the results of pulse-echo experiments. The use of a function

generator in experiments to send a sufficiently long time-harmonic wave (and this

may need to be repeated over many frequencies) may be preferable to a pulse-echo

technique.

2.3.2 Two solids separated by a periodic interface

The next case that will be studied with the Rayleigh-Fourier method is that of two

semi-infinite solid media that are separated by a periodic interface. A diagram of the

diffracted fields generated and the derivation of the boundary condition expressions

can be found in Figure 2.9 which has been duplicated from Appendix C for the reader’s

convenience. The two media of the problem have been chosen to be steel (4340) and
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Figure 2.9: Diagram of diffracted fields for two solid media separated by a periodic
interface. Diffracted wave series shown in dotted lines. Expressions for diffracted
wave series derived in Appendix C.

titanium (6Al-4V), and their properties are shown in Table 2.1. This particular pair

of materials has been chosen so that the possibility of exciting a Stoneley wave at

their interface exists. Stoneley waves can exist for a very limited range of media

pairs [45] because, broadly speaking, in order for a Stoneley wave to exist at the

interface between two solid media, the shear wave speeds in the media must be very

close. According to Ref. [25], the velocity of a Stoneley wave vSt at the (smooth)

interface between these two media is 3209 m/s.

An incident longitudinal wave from the steel is considered normally incident upon

the periodic interface with the titanium. Locations of anomalies in the reflected

D0 spectrum will be examined to determine if any anomalies are present that may

indicate diffraction as a method of generating Stoneley waves at the interface. Here,

D0 denotes the longitudinal zero-order in the steel as shown in Figure 2.9. The

interface has a sawtooth profile with a periodicity Λ = 2.2 mm and peak-to-peak

height of h = 150 µm. The frequency range that will be examined is identical to

the frequency ranges examined in the cases of the prior sections. However, since the

incident wave originates in one of the solid media, its wavelength will be longer and

therefore a larger peak-to-peak roughness height has been chosen.

By setting θi =0◦, θm = 90◦, and vm = vSt = 3209 m/s in the classical grating
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equation, the frequency at which 1st order diffraction may result in the generation

of a Stoneley wave is 1.458 MHz. Upon examining the D0 spectrum shown in Fig-

ure 2.10, an anomaly in the spectrum is clearly visible at 1.46 MHz. There is also an

additional anomaly visible in the spectrum at 2.92 MHz which is consistent with 2nd

order diffraction. There is a small feature in the spectrum visible at 2.68 MHz and

this may result from the generation of a 1st order longitudinal bulk wave along the

interface.

The top of Figure 2.10 shows the complete spectrum computed between 0.5 MHz

and 3.0 MHz computed with a 500 Hz resolution, and the bottom of the figure shows

the same spectrum at a scale which is more convenient in order to see the two anoma-

lies. Figure 2.11 shows the locations of the two anomalies in detail. The left and right

sides of Figure 2.11 show the first and second anomalies, respectively.

2.3.3 Fluid-loaded bilayered plate containing an inner periodic interface

The next case that will be treated with the R-F method is that of a fluid-loaded

bilayered plate where the interface between the two solid materials of the plate is

periodic but the interfaces between each solid and the fluid are smooth. An illustration

of the diffracted fields generated is shown in Figure 2.12, and the derivation of the

associated boundary condition expressions can be found in Appendix D. The two

solid materials will be considered to be steel and titanium with material properties

shown in Table 2.1. Each solid layer making up the plate has an average thickness of

0.8 mm. The interface between the steel and titanium is of a sawtooth form with a

periodicity Λ = 2.2 mm and peak-to-peak roughness height h = 150 µm. The steel is

considered to be the “upper” material of the plate, and it is immersed in water with

the incident wave normal upon the steel side of the plate.

The R0 spectrum has been generated between 0.5 MHz and 3.0 MHz with a 500 Hz

resolution and is shown at the top of Figure 2.13. A large decrease in the spectrum
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Figure 2.10: Magnitude of D0 coefficient for a steel-titanium interface with
Λ = 2.2 mm and h = 150 µm. (Top) Entire spectrum between 0.5 MHz and 3.0 MHz
(Bottom) Detail of spectrum between 1.36 MHz and 3.0 MHz
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Figure 2.11: Magnitude of D0 coefficient for a steel-titanium interface with
Λ = 2.2 mm and h = 150 µm. (Left) Detail of anomaly at 1.46 MHz. (Right) Detail
of anomaly at 2.92 MHz.

Figure 2.12: Diagram of diffracted fields for a fluid-loaded plate made of two solid
media separated by a periodic interface. Diffracted wave series shown in dotted lines.
Expressions for diffracted wave series derived in Appendix D.
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is seen at approximately 1.88 MHz which is likely due to a plate thickness resonance

as was the case for the brass plate treated in Section 2.2. The only other visible

feature in the spectrum is at 2.68 MHz which is the frequency that would correspond

to the generation of 1st order longitudinal bulk waves propagating along the periodic

interface between the two solids. In order to investigate this further, the D±1 and

L±1 (coefficients for the longitudinal series in each of the solid media) spectra were

examined and these are shown at the bottom of Figure 2.13. (Because the incident

wave is normal to the plate surface, the coefficients for the diffraction orders m and

−m match. This is not the case when oblique incidence is considered.) In these

spectra, peaks are visible at 2.68 MHz and this may indicate the transfer of energy

to these diffraction orders. Interestingly, there is no evidence related to the possible

generation of a Stoneley wave through diffraction at a frequency of 1.46 MHz at the

periodic interface between the media. This is the case even when the roughness height

h is increased to 300 µm, and this is shown in Figure 2.14.

2.3.4 Fluid-loaded bilayered plate with all interfaces periodic

The final case that will be considered with the R-F method is that of a fluid-loaded

bilayered plate where all the interfaces between the media are periodic. The diffracted

fields generated are shown in Figure 2.15, and the derivation of the boundary condition

expressions are shown in Appendix E. This case is identical to that of Subsection

2.3.3 except that the external surfaces of the solid media making up the plate are

now periodic as well. Again the case of a steel-titanium bilayer will be considered

immersed in water. Media properties are shown in Table 2.1 and the average thickness

of each solid layer is 0.8 mm. The periodicity of all surfaces is set to 2.2 mm and

although the option exists to consider each solid layer as symmetric or antisymmetric

as in Subsection 2.3.1, both layers will be considered antisymmetric since it was shown

in Figure 2.7 that the cases of symmetric and antisymmetric layers were very similar.
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Figure 2.13: Spectra for a water-loaded steel-titanium plate with Λ = 2.2 mm and
h = 150 µm. (Top) Magnitude of R0 coefficient. Anomaly related to lateral bulk wave
generation visible at 2.68 MHz. (Bottom) Magnitudes of D±1 and L±1 coefficients.
Anomaly related to lateral bulk wave generation visible at 2.68 MHz.
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Figure 2.14: Spectra for a water-loaded steel-titanium plate with Λ = 2.2 mm and
h = 300 µm. (Top) Magnitude of R0 coefficient. Anomaly related to lateral bulk wave
generation visible at 2.68 MHz. (Bottom) Magnitudes of D±1 and L±1 coefficients.
Anomaly related to lateral bulk wave generation visible at 2.68 MHz.
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Figure 2.15: Diffracted fields for a fluid-loaded plate made of two solid media where
all three interfaces between the various media are periodic. Diffracted wave series
shown in dotted lines. Expressions for diffracted wave series derived in Appendix E.

The incident wave originates in the water on the steel side of the plate, and is

directed normally incident on the plate surface. The magnitude of the R0 coefficient

was computed for three different values of the surface roughness height for the in-

terface between the two solids. The remaining two interfaces are considered to have

roughness heights equal to 50 µm. Although it is very simple to accommodate differ-

ent roughness heights, it can be seen in Figure 2.16 that there is very little difference

in the spectra for roughness heights equal to 50 µm, 150 µm, and 300 µm. The top of

Figure 2.17 shows the R0 spectrum for the case where the inner roughness height is

50 µm, and the bottom of the figure shows dispersion curves that have been calcu-

lated using the Disperse software for a (smooth) water-loaded steel-titanium bilayered

plate. The dispersion curves for a bilayered plate can no longer be considered classi-

fied as “symmetric” or “antisymmetric” (with the exception of the two curves labeled

“A” and “S”) as was the case for a single material plate. The curves that represent

the velocity of the diffracted modes along the surface of the plate, labeled as m = 1,
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m = 2, and m = 3, have been plotted on top of the dispersion curves. This curve

family has been plotted according to the expression vm = fΛ
m

in a manner consistent

with that of Figure 2.4.

The circled frequencies along the 1st order diffraction line that exhibit anomalous

increases in the R0 spectrum include 1.23 MHz, 2.41 MHz, and 2.69 MHz. However,

any anomaly at 1.73 MHz that might have been observed is likely obscured due to

the plate resonance feature. The anomalies at 0.67 MHz, 1.35 MHz, and 2.02 MHz

in the spectrum are consistent with 1st, 2nd, and 3rd order diffraction matching to

a Scholte-Stoneley wave velocity slightly less than the velocity of sound in water

(1480 m/s). Since the only difference between the spectra shown at the middle and

bottom of Figure 2.16 from the spectra shown at the top of Figures 2.14 and 2.13

is the presence of a periodicity on the external surfaces of the bilayered plate, it is

clear that many features in the spectra of Figure 2.16 are due to the presence of these

external periodicities. In fact, since the reflected spectra from single material plates

with both sides periodic do not differ significantly from those with only the upper

side periodic (see Figures 2.7 and 2.4), it is likely that the anomalous features in the

spectra of Figure 2.16 that do not occur in those of Figures 2.14 and 2.13 are due to

the periodicity of the uppermost surface of the bilayered plate.

2.4 Concluding remarks

This chapter has presented the extension of the Rayleigh-Fourier method for sim-

ulating diffraction on periodic surfaces to four cases that had not yet been treated

with the method. All the cases that were examined considered a longitudinal wave

normally incident on the periodic surface(s) present in the problem. The spectra of

the zero-order reflection coefficients were examined for anomalies that might indicate

the generation of surface or plate waves through diffraction.

First, a fluid-loaded plate with both sides periodic (where the periodicities of both
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Figure 2.16: Magnitude of R0 coefficient for a water-loaded steel-titanium plate
where all interfaces are periodic with Λ = 2.2 mm. Antisymmetric case. (Top) Peak-
to-peak roughness height (between solid media) h = 50 µm. (Middle) Peak-to-peak
roughness height (between solid media) h = 150 µm. (Bottom) Peak-to-peak rough-
ness height (between solid media) h = 300 µm.
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Figure 2.17: (Top) Magnitude of R0 coefficient for a water-loaded steel-titanium
plate where all interfaces are periodic with Λ = 2.2 mm and h = 50 µm. Antisym-
metric case. (Bottom) Dispersion curves for a (smooth) water-loaded steel-titanium
bilayered plate. Possible frequencies where diffracted modes may phase match to
Lamb modes shown with circles.
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surfaces are equal) was examined. The spectra of antisymmetric and symmetric plates

(classified as such based on the phase difference between their upper and lower surface

profiles) were both examined. Some differences were observed in the spectra from

the symmetric and antisymmetric plates, possibly due to differences in Lamb wave

generation. Since at this time, dispersion curves (in the form of phase velocity versus

frequency) are only available for smooth plates, it is difficult to make statements

regarding differences in the Lamb modes that are possible for the two types of plates.

The differences in the spectra become more pronounced as the roughness of the second

side of the plate is increased.

The second case that was examined was that of two semi-infinite solid media in

perfect contact at a periodic interface. Anomalies related to Stoneley wave generation

through diffraction were observed. Interestingly enough, however, when the third case

of a fluid-loaded bilayered plate with an interior periodic interface was considered,

no anomalies related to Stoneley wave generation were visible. An anomaly related

to lateral bulk wave generation along the interface was observed. The final case that

was examined was a fluid-loaded bilayered plate where all the interfaces between the

fluid and solid media were periodic. Here, features in the spectra that were related

to diffraction on the external surfaces of the plate were observed.

Since these simulations using the R-F method are only possible for surfaces having

perfect periodicities which is only an approximation of what one would encounter in

practice, the next chapter will present the result of experimental work on surfaces

that exhibit imperfect periodicities.
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CHAPTER III

DIFFRACTION EFFECTS ON IMPERFECTLY

PERIODIC SURFACES

As discussed in the introductory chapter of this thesis, the numerical simulation

of diffraction that occurs on periodic surfaces naturally leads to the inverse prob-

lem: the characterization of periodically rough surfaces using experimentally deter-

mined diffraction spectra. Unfortunately, the use of theoretical techniques such as

the Rayleigh-Fourier method is limited to “ideal” surfaces having perfect periodicities.

Therefore, the purpose of this chapter is to present the experimental investigation of

ultrasonic diffraction effects that occur on surfaces having imperfect periodicities. In

particular, the application of ultrasound for the examination of rolled stainless steel

plates having two-dimensional periodic surface textures is investigated. Experiments

have been conducted in order to compare the use of two different ultrasonic tech-

niques, namely normal incidence pulse-echo spectra and backscattered spectra, for

the characterization of the surface profiles.

This chapter is organized in the following manner. First, the motivation driv-

ing ultrasonic techniques for the characterization of surface roughness in general is

discussed. This is followed by a historical survey of ultrasonic methods that have

been used in the past to investigate periodically rough surfaces. The sample that

is investigated is then described along with the experimental setups that have been

employed. Experimental results and conclusions are then presented.
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3.1 Motivation behind ultrasonic methods for the charac-
terization of surface roughness

The characterization of surface roughness or topography is important in many fields

of science and engineering [86]. Surface roughness plays a role in the function of

manufactured components on the macroscopic scale [87], and on the nanoscale it can

influence not only bulk material properties but also chemical and biological reactions

with a material [88]. The study of methods for surface metrology is well-developed

and reviews of these methods can be found in the literature [89, 90].

Ultrasonic methods to evaluate surfaces have several advantages over other meth-

ods, especially in manufacturing environments [91]. For example, parts or surfaces

being inspected need not be stationary so inspection time and cost can be reduced.

On-line inspection is possible and therefore the collection of samples that must be

removed from the process at regular intervals may not be necessary [92]. Ultrasonic

inspection is possible to implement as a non-contact technique, which is in contrast

with the use of a mechanical contact stylus [93]. Although optical techniques are

popular, their application in a manufacturing environment can be limited. Ultrasonic

methods can be applied on wet as well as dry surfaces and they can function in opti-

cally opaque environments [92]. Examples of applications for ultrasonic methods of

surface characterization include quality control of machined parts and process control,

such as in the monitoring of tool condition [94, 95, 96]. The ultrasonic characteri-

zation of rough surfaces has also recently gained attention in the study of bonded

structures [97].

The ultrasonic characterization of rough surfaces, both periodic and random, has

been an active area of experimental research for over 30 years. Initial investigations

focused on randomly rough surfaces with the goal of determining signatures from

the ultrasonic backscattering that could be used to characterize the surface rough-

ness, and the backscattered intensity was found to increase with increasing roughness
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height [98]. Normal incidence was also investigated, and experiments showed that

random surface roughness results in the attenuation of the specularly reflected sig-

nal [99]. With this knowledge, techniques were developed to determine the heights

of randomly rough surfaces with good precision. However, the presence of even a

quasi-periodicity on the surface was found to render these techniques inaccurate [57].

Therefore, different ultrasonic techniques than those used for the characterization of

random rough surfaces must be applied when any periodicity is present in a surface’s

roughness.

3.2 Historical survey of techniques for the ultrasonic in-
vestigation of periodic surfaces

After the realization that the presence of a periodicity in a surface’s roughness would

require the development of different ultrasonic characterization techniques, the diffrac-

tion that occurs due to the periodicity was immediately identified as potentially use-

ful. It was shown by Quentin et al. [57] that when surfaces with a one-dimensional

periodicity (i.e. those with periodic grooves) are insonified with narrow-band pulses,

maxima in the backscattered intensity can be observed at very specific angles of in-

cidence [57, 100]. This was naturally due to the fact that such a periodic surface

functions as an acoustic diffraction grating, generating diffracted modes at specific

angles that can be predicted by the classical grating equation [13]. As the frequency

of the narrowband pulse used to insonify the grating increases, more backscattered

modes can be observed within a given angular range, and it was shown by Quentin

et al. that if the angular locations of these backscattered modes are examined for

several discrete frequencies, accurate predictions of the surface periodicity can be ob-

tained [57]. This technique can also be applied using broadband pulses and has been

shown to be feasible as a kind of ultrasonic spectroscopy [101]. These techniques can

only be used to characterize the spatial periodicity of the profile: no information can

be obtained regarding the profile height or form.
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Prior studies have also addressed imperfect grooved surfaces, and secondary max-

ima in the backscattered intensity were observed at angles corresponding to an integer

multiple of the surface periodicity [57]. These secondary backscattered peaks have

been referred to as subharmonics since they satisfy the classical grating equation

where the diffraction order has a fractional value (1/2, for example) rather than an

integer value. It has been hypothesized that the amplitudes of these secondary max-

ima may be related to the imperfectness of the grating. Efforts have also been made

to characterize surfaces having two-dimensional periodicity (meaning the surface’s pe-

riodicity exists in two directions) such as wire grids, or surfaces deformed with a grid

pattern [57, 101]. In these cases, depending on the orientation of the axis of rotation

of the transducer, diffraction peaks can be observed at angles corresponding to the

periodicities for both of the principal grid directions, but also for the periodicity seen

along the diagonal of the sample surface [101, 102]. The success with which these

backscattering methods were able to predict values for the periodicity of surfaces nat-

urally led to the study of techniques to determine periodic profile heights (roughness)

and/or the form of the profile for samples known to have identical spatial periodici-

ties, and a rudimentary theoretical approach was developed whereby the influence of

the form of the profile on the backscattered frequency spectra was studied [103].

Further studies on periodically rough surfaces were soon revealing the existence

of Wood anomalies in normal incidence reflection spectra obtained from pulse-echo

experiments [4]. These appeared as sharp discontinuities or valleys in the frequency

spectra, and they were interpreted as being analogous to those found in optical spec-

tra and as being due to mode conversion from bulk to surface waves on the periodic

surface [41, 104]. At the time, no theoretical analysis was available to predict the

location or depth of these anomalies for a given material and surface profile. Soon

thereafter, however, the Rayleigh-Fourier method was extended from prior cases in-

volving perfectly rigid or pressure-release profiles to the liquid-solid case, and the
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results from the method were shown to agree well with experiment [54]. With the

introduction of this extension of the Rayleigh-Fourier method, theoretical reflection

and transmission spectra could be calculated for the periodic interface separating

liquid and solid media (with sound incident from the liquid), and the presence of

anomalies could now be predicted for a given periodic surface profile. Just as the

maxima in the backscattered intensity that corresponded to propagating modes gen-

erated by a periodic surface had previously been used to determine the periodicity

of the profile, it was then shown that the frequency locations of anomalies present in

the normal incidence spectrum could be used in order to predict the periodicity of

the profile as well [55]. With the aid of this theoretical model, Mampaert et al. [55]

hypothesized that the shape of the reflection spectrum especially in the vicinity of the

anomalies was dependent on the height of the corrugation. Because analytical for-

mulas for the reflection and transmission coefficients in general cannot be computed,

numerical calculations were used to analyze the dependence of the coefficients on the

corrugation height. Using the model, it was found that the magnitude of the depths

of the anomalies in the reflection spectra increased linearly with an increase in the

corrugation height, at least in the case of surfaces with periodic sawtooth profiles. A

slight displacement of the minima with height was also found: as the profile height

increased, the frequencies of the minima were found to decrease [55].

Soon thereafter, experiments were performed by Blessing et al. [68, 105] on pre-

cision machined samples that had identical periodicities but different profile heights.

Their work showed an increase in anomaly depth with an increase in corrugation

height in normal incidence reflection spectra. However, for the smallest roughness

height they examined, no anomaly in the normal incidence reflection spectrum was vis-

ible. Therefore, as an alternate method, they examined the intensity of the (backscat-

tered) 1st order diffraction peak generated for incidence at a single Bragg angle and

found that it was possible to resolve very small surface roughness heights using this
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Bragg angle reflection amplitude when it was not possible using anomalies in the

normal incidence reflection spectra. It was also shown that the amplitude of the

diffraction peak at this Bragg angle incidence increased with increasing corrugation

height for a given periodicity. The work of Oh et al. [93] and Shin et al. [91] has

also shown that non-normal angles of incidence may be more useful in the ultrasonic

characterization of surface roughness.

The experiments described in this chapter differ from previous studies on ultra-

sonic characterization of periodic surface profiles in several ways. First, all the studies

described thus far have been towards the examination of rough surface textures on

thick solids, not thin plates. For thin plates, the wave propagation is more compli-

cated due to the generation of Lamb waves. For thin plates with periodic textures,

diffracted modes may phase-match to a Lamb mode and result in additional anomalies

observed in the reflection spectra [51, 58]. Therefore, more anomalies may be observed

in normal incidence reflection spectra from thin plates with periodic surfaces than for

thick solids with such surfaces. This presents an opportunity for the examination of

these anomalies for information on the periodic surface texture. Secondly, much of

the work on ultrasonic inspection of periodic surface roughness has involved precision

machined surfaces, not surfaces with imperfect periodic profiles such as those that

result through a rolling manufacturing process. Finally, the comparison of normal in-

cidence spectra with spectra obtained via backscattering has not yet been examined

for two-dimensional periodic surfaces, where diffraction effects can also occur due to

periodicities existing along the diagonal of the profile’s unit cell.

As described earlier, incidence at a single Bragg angle has been shown to be

promising for the examination of periodic surface profile heights for the case of pre-

cision machined samples [68]. However, the diffraction efficiencies (i.e. amplitudes

of diffracted orders) may not be equal for all Bragg angles, especially in the case

of imperfect periodic profiles. Therefore, the use of Bragg angle inspection may be
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sensitive to which angle is chosen for examination. The experiments described in

this chapter have been performed with the polar/C-scan apparatus at Georgia Tech

Lorraine that can perform rotational ultrasonic scans. In this manner, a broadband

pulse is employed and multiple Bragg angles (as well as multiple frequencies at a sin-

gle Bragg angle) can be investigated. This presents an opportunity to experimentally

determine if certain Bragg angles are more promising for the investigation of periodic

surface profiles.

Therefore, the objective of the investigation presented in this chapter is to compare

the use of normal incidence pulse-echo reflection spectra and backscattered spectra

for the characterization of surfaces of a thin plate with imperfect two-dimensional

periodic surface textures. The backscattered spectra are obtained for incidence at

multiple Bragg angles using a broadband pulse and a rotational scanning technique.

From these spectra the goal is to obtain information on the characteristics on the

periodic surface textures.

3.3 Description of the sample

The type of plate under investigation is rolled stainless steel with a thickness of

1.2 mm. Both sides of the plate contain regions with different surface textures ar-

ranged in a Penrose configuration. The regions are rhombi with a side length equal

to 2.5 cm. A photograph of the plate studied is shown in Figure 3.1. Each side of

each region is either smooth or has one of two two-dimensional periodic profiles, and

the regions labeled in the photo of Figure 3.1 are all of adequate size for inspection

and have different pairings of top and bottom surface profile types.

A surface with a two-dimensional periodicity has an “egg-crate” form rather than

a series of periodic grooves as in the case of a one-dimensional periodic surface.

The smooth surface profile will be referred to as “Profile 0” and the corrugated

profiles as “Profile 1” and “Profile 2”. Both corrugation profiles have square unit cells
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Figure 3.1: Photograph of plate with two-dimensional periodic surface regions.

Figure 3.2: Representation of Profile 1 (left) and Profile 2 (right). Not drawn to
scale.

and therefore identical periodicities in mutually perpendicular directions as shown in

Figure 3.2.

The corrugated profiles (Profiles 1 and 2) are each formed by a pattern of cir-

cular indentations with a different circle size for each profile. This can be seen in

photographs captured by a stylus profilometer (Veeco Dektak 6M) as shown in Fig-

ure 3.3. As the circular indentations are pressed into the surface during the manufac-

turing process, the surface of the plate is deformed, resulting in periodic but imperfect

profiles.

Figure 3.3: Images of the profiles captured by a stylus profilometer. (a) Profile 0,
(b) Profile 1, (c) Profile 2.
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Diffraction on periodic surfaces is sensitive to the magnitude of the incident wave-

length with respect to the value of the spatial periodicity on the surface. Therefore,

for the experiments described in this chapter, it is preferred to estimate the spatial

periodicities of the profiles in advance in order to wisely choose the ultrasonic frequen-

cies to be used. Measurements of the surface textures were performed with the stylus

profilometer and because the surfaces did not exhibit perfect periodicities, spatial

Fourier analysis was performed on the measured profiles to detect the periodicities

present. Figure 3.4 shows the measured profiles (with approximately three periods

shown) as well as the corresponding spatial FFTs.

The profilometer was used to measure the profile height along one of the principal

axes of the unit cell, and its sampling resolution was 0.33 µm. For the computation

of the spatial FFTs, 3840 measurement points were available and this resulted in

a spatial frequency resolution of 781.25 m=1. Although the “frequency bins” are

located at multiples of this resolution, the spatial periodicity is actually the reciprocal

of the frequency. Therefore, although the period-distinguishing resolution is very

poor for low spatial frequencies, it improves for higher spatial frequency values. For

example, the first two spatial frequency bins, 781.25 m=1 and 1562.5 m=1 correspond

to periodicities of 1.28 mm and 640 µm, respectively, resulting in a period resolution

of 640 µm. However, the period-distinguishing resolution decreases dramatically with

increasing spatial frequency bins. For example, the spatial frequency bins of 8593 m=1

and 9375 m=1 have a spatial period difference of 9.70 µm between them, which is much

lower than the 640 µm resolution for the first two bins of the series.

The spatial FFT for Profile 1 exhibits peaks at spatial frequencies of 3125 m=1

and 6250 m=1, which correspond to periodicities of 320 µm and 160 µm, respectively.

The spatial FFT for Profile 2 exhibits both of these same peaks as well as a peak at

9375 m=1 which corresponds to a periodicity of 106.7 µm.
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Figure 3.4: Profiles captured by the stylus profilometer (left) and the corresponding
spatial FFTs (right).
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In general, caution must be exercised when employing an FFT with a large fre-

quency resolution, as it may be possible to miss detecting a frequency if it is located

between bin frequencies. However, considering that the peaks identified in the spatial

FFTs of the profiles are associated with higher bin frequencies (and thus better pe-

riod resolution in this case since the period is the reciprocal of the frequency), it can

be said with confidence that the periodicities identified in the FFTs are accurate. In

addition, upon examination of the measured profiles (the left of Figure 3.4), it is clear

that the dominant periodicity of the profiles is between 310 µm and 330 µm, which

corresponds well with the 320 µm determined from the spatial FFTs.

It might be thought that 160 µm should be considered as the fundamental peri-

odicity (since 320 µm is simply an integer multiple), but this is complicated by the

mechanism of the formation of the profiles. In fact, 320 µm is the distance between

consecutive circular impressions on the surface and it has a higher amplitude on the

spatial FFTs for both periodic profiles, so this value may affect the spectra equally or

more than the 160 µm periodicity. The 106.7 µm periodicity for Profile 2 is very likely

due to the material that is pushed up between circular impressions in the profile.

In addition to the profile periodicity Λ, another surface parameter of interest is

the hrms (root-mean-square surface roughness height). The hrms can be calculated

using Eq. 3.1 where N is the number of measurement points along the profile, hi

is an individual height measurement, and h̄ is the mean height calculated from all

measurements.

hrms =

√√√√ 1

N

N∑
i=1

(
hi − h̄

)2
(3.1)

The hrms values calculated and the main spatial periodicities Λ identified for each

profile that were discussed above are summarized in Table 3.1.

As stated earlier, in order for diffraction to occur on a periodic surface, the wave-

length of the incident sound should be on the order of the periodicity of the surface.
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Table 3.1: Summary of hrms and Λ values obtained from stylus profilometer mea-
surements.

Profile type hrms Λ

Profile 0 (smooth) 0.372 µm None observed
Profile 1 2.294 µm 160 µm and 320 µm
Profile 2 3.688 µm 160 µm, 320 µm, and 106.7 µm

Based on the periodicities identified for the profiles and water with a sound speed

equal to 1480 m/s, the frequencies having wavelengths of 320 µm and 160 µm are

4.625 MHz and 9.25 MHz, respectively. Therefore, commercial immersion transduc-

ers with nominal center frequencies of 5 MHz and 10 MHz were used to capture the

experimental results presented in the next section.

3.4 Experimental setups

Two experimental setups have been employed, one for the normal incidence pulse-

echo measurements and the other for the Bragg scattering measurements. All mea-

surements have been performed underwater in the ultrasonic immersion tank of the

polar/C-scan apparatus at Georgia Tech Lorraine. In order to better resemble a re-

alistic inspection environment, tap water has been used with no further treatment or

purification. The velocity of sound in the water used for the experiments has been

found to be 1479.5 m/s.

For the normal incidence pulse-echo setup, one 10 MHz spherically focused trans-

ducer (Valpey-Fisher IS1003GP-SF3.0) transducer was used as both emitter and re-

ceiver and it was aimed normally at the plate surface. The incident pulse and its

frequency spectrum are shown in Figure 3.5. The frequency spectrum was obtained

with an FFT performed on 4000 time-waveform points (for a frequency resolution

of 0.05 MHz) that were zero-padded to 32000 points. The transducer specifications

indicated a nominal focal length of 3.0 inches, but the focal length was found to be
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Figure 3.5: 10 MHz incident pulse (left) and corresponding frequency spectrum
(right).

closer to 7.24 cm (2.85 inches) so this was set as the distance between the transducer

and the sample surface.

The Bragg scattering setup used a single 5 MHz unfocused transducer as both

emitter and receiver, but it was mounted in the rotating fork of the polar/C-scan

apparatus so that the transducer could rotate with respect to the sample surface.

More information on the polar/C-scan apparatus and the rotating fork can be found

in Chapter 5.

The incident pulse and its frequency spectrum are shown in Figure 3.6. The

frequency spectrum was obtained with an FFT performed on 8000 time-waveform

points (for a frequency resolution of 0.025 MHz) that were zero-padded to 32000

points. In order to modify the angle of incidence to capture the backscattered signal

at many angles, the sample was maintained stationary and the transducer was rotated

around the sample by the polar/C-scan robot. The propagation distance between this

transducer and the sample was chosen to be 45 mm in order to be compatible with

the rotation of the polar-C-scan equipment.
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Figure 3.6: 5 MHz incident pulse (left) and corresponding frequency spectrum
(right).

3.5 Experimental results

3.5.1 Ultrasonic inspection at normal incidence

The motivation behind the examination of reflection spectra obtained at normal in-

cidence as explained in section 3.2 is the well-established fact that the locations of

anomalies in the spectra exist as a function of the periodicity value and that the

depths of anomalies depend mainly on the shape or height of the profile [55]. These

anomalies can be correlated to generation of surface waves such as leaky Rayleigh or

Scholte-Stoneley waves for liquid-solid surfaces and for thin plates, additional anoma-

lies appear that are related to the generation of Lamb waves [51]. In particular,

anomalies may appear at frequencies where the phase velocity of diffracted waves

along the surface of the plate matches the phase velocity of a Lamb mode.

The reflection spectra obtained from the 10 MHz normal incidence pulse-echo mea-

surements (normalized with respect to the incident pulse) are shown in Figures 3.7

and 3.8. The regions that have been investigated are labeled by the type of profiles

they have on their surfaces. The first profile listed is the type of profile on the top

(incident) side of the plate and the second profile listed is the type of profile on the

bottom side. In Figure 3.7, the reflection spectra from three different regions are

shown. The first region has smooth surfaces on both sides and is labeled as “Profile
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Figure 3.7: Reflection spectra obtained from normal incidence pulse-echo experi-
ments for regions with two-dimensional corrugated profiles on the back side of each
region.

0 - Profile 0” and the other two regions (“Profile 0 - Profile 1” and “Profile 0 - Profile

2”) both have smooth surfaces on the top side and corrugated surfaces on the bottom

side. Three anomalies in the spectra can be seen and their locations for each region

are summarized in Table 3.2.

The fact that these anomalies appear for the 0-0 region leads us to conclude that

they are not due to diffraction effects on the surfaces. For the anomaly in the vicinity

of 9.3 MHz, the 0-0 region actually displays the deepest valley. The frequency of this

anomaly is shifted slightly higher for both the 0-1 and the 0-2 regions. The depth

of this valley is deeper for the 0-2 surface than for the 0-1 surface. Two additional

anomalies can also be seen, namely at frequencies of 9.6 MHz and 9.8 MHz. The

depths of these anomalies are not significantly different for the different regions but

the frequencies have also been shifted slightly higher for the 0-1 and 0-2 regions in

comparison with the 0-0 region.

In Figure 3.8, reflection spectra obtained for 0-0, 1-1 and 2-2 regions are shown.

The anomalies in the spectra are similar to those observed in Figure 3.7. However,

the depth of the first anomaly for the 2-2 region is noticeably larger and in general

the amplitude of this spectrum at higher frequencies is lower. A slight flattening or

72



Table 3.2: Summary of anomaly frequencies for normal incidence reflection spectra
seen in Figure 3.7.

Region Type Anomaly frequencies

Profile 0 - Profile 0 9.29 MHz 9.57 MHz 9.79 MHz
Profile 0 - Profile 1 9.32 MHz 9.60 MHz 9.83 MHz
Profile 0 - Profile 2 9.32 MHz 9.63 MHz 9.82 MHz

Figure 3.8: Reflection spectra obtained from normal incidence pulse-echo experi-
ments for regions with identical corrugation profiles on front and back sides of each
region.

peak within the valley of the second anomaly for the 2-2 region can be seen, possibly

due to diffraction effects on the surfaces.

In summary, reflection spectra have been obtained from normal incidence pulse-

echo experiments. Anomalies are observed in the spectra that are most likely due to

Lamb wave generation. However, the differences in the spectra are not appreciable

enough to gain information on the profile characteristics. Some variation in the loca-

tion of the anomalies is seen which implies an evolution in the Lamb wave dispersion

curves with the profile forms and height.

3.5.2 Ultrasonic inspection at Bragg angle incidence

According to the classical diffraction grating equation, backscattering or Bragg scat-

tering should occur for frequency and angle pairs that satisfy Equation 3.2, where
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Figure 3.9: Backscattered spectra obtained from the 0-0 region.

f is the sound frequency, m is the diffraction order, vliq is the sound velocity in the

liquid (incident medium), Λ is the periodicity along the surface, and θi is the angle

of incidence.

f =
mvliq
2Λ

1

sin θi
(3.2)

Ultrasonic scans are performed for three different regions, namely 0-0, 1-1, and

2-2 type regions, and the axis of rotation of the transducer is aligned with one of the

principal axes of the unit cell. With this technique, continuous Bragg scattering (1st

and/or 2nd order backscattered diffraction) curves should be observed, and the relative

amplitudes of these Bragg scattering curves may yield information on the surface

profile characteristics. Angular spectrograms where the normalized amplitudes of

frequencies detected as a function of angle are shown in Figures 3.9 through 3.13.

The angular resolution of all scans performed is 0.1◦.

Figure 3.9 shows the angular spectrogram obtained from the backscattered signals

for the 0-0 region. The reflection at normal incidence is visible at 0 degrees, along

with several discontinuities due to thickness resonances of the plate, but there is no

backscatter visible. The angular range of this scan is ± 30◦ around normal incidence.

In Figure 3.10 an angular spectrogram obtained from the 1-1 region is shown and
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Figure 3.10: Backscattered spectra obtained from the 1-1 region.

Figure 3.11: Close-up of backscattered spectra obtained for the 1-1 region. Bragg
scattering visible (left). Bragg scattering and theoretical frequency-angle relationship
shown by dotted line (right).

Bragg scattering is present but barely visible in a B&W color scheme. Figure 3.11

shows close-ups of the Bragg scattering curves from the right side of the scan which

makes them more easily visible. The angular range of this scan was extended to ±50◦

around normal incidence in order to capture the 2ndorder Bragg scattering curve that

appears for higher frequencies.

The left of Figure 3.11 is a close-up of the Bragg scattering shown in Figure 3.10,

and the right of Figure 3.11 is the same as the left except that theoretical frequency

and angle pairs that undergo Bragg scattering as predicted by the classical grating

equation are superimposed as shown by the dotted lines. The top theoretical curve is
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calculated using a periodicity of 320 µm and a diffraction order of 1, and the bottom

curve corresponds to a periodicity of 160 µm and a diffraction order of 1 or equiva-

lently, a periodicity of 320 µm and a diffraction order of 2.

Along the top Bragg scattering curve it can be seen that the diffraction efficiency

(amplitude) is not the same along the curve. In particular, the detected amplitude is

noticeably higher around a position of 30◦ and frequency of 4.5 MHz than for other

frequency/angle pairs on the Bragg scattering curve. However, upon further examina-

tion of the figure it can be seen that there is a vertical strip of additional frequencies

that are detected at 30◦. For a smooth steel plate with a thickness of 1.2 mm, the A0

and S0 Lamb wave modes have relatively constant phase velocities in the vicinity of

3000 m/s for the frequency range of 3-7 MHz. Therefore, at a single angle of incidence,

it would be possible to phase-match to these Lamb modes for many frequencies, and

an angle of approximately 30◦ would satisfy this requirement. Although in general one

can expect the dispersion curves for the plate under investigation to be slightly differ-

ent than those for a smooth steel plate, for purposes of this discussion one may refer

to the dispersion curves for a smooth plate in the manner of Ref. [58]. Therefore,

it can be assumed that these additional frequencies are backscattered leaky Lamb

modes that have been detected. The detection of backscattered leaky Lamb waves

at angles predicted theoretically for the generation of forward leaky Lamb waves has

been previously experimentally observed for thin plates in water [106]. Additional

strips of frequencies other than those corresponding to the Bragg curves also appear

for smaller angles of incidence/backreflection. These are most likely due to phase

velocity matching for higher-order Lamb modes with higher phase velocities, such as

A1 or S1. These modes are more dispersive in this frequency range so they will not

be generated for as many frequencies at the same angle of incidence, which accounts

for the fact that these frequencies do not appear as vertical strips.

Figure 3.12 shows the angular spectrogram obtained from a scan of the 2-2 region.
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Figure 3.12: Backscattered spectra obtained from the 2-2 region.

The Bragg scattering curve is clearly visible on the right side of the scan and is also

present but of lower amplitude on the left side. It is unknown at this time why

this backscattering appears more strongly on the right side but it may be related to

imperfections in the periodicity of the surface. Due to geometric constraints of the

polar/C-scan apparatus, this scan was performed within an angular range of ±30◦

degrees around normal incidence.

Close-ups are shown in Figure 3.13 in a similar manner to those in Figure 3.11.

The theoretical Bragg scattering curve has been superimposed with a dotted line on

the right of Figure 3.13. Compared to the backscattering observed for the 1-1 region,

the backscattering is definitely of higher amplitude over the entire range of the Bragg

scattering curve for the 2-2 region.

One high amplitude area is observed along the Bragg curve at a frequency and an-

gle combination of 5.18 MHz and 27◦. The second order Bragg scattering curve is not

observed in this case due to the limited angular range of scanning. The backscattered

leaky Lamb waves shown in Figure 3.11 are not visible in Figure 3.13. This is most

likely due to the low amplitude of the leaky Lamb backscatter compared to the am-

plitude of the Bragg curve as well as the limited angular range of the scan. Ref. [106]

shows that backscattered leaky Lamb wave amplitude can decrease for smaller angles
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Figure 3.13: Close-up of backscattered spectra obtained for the 2-2 region. Bragg
scattering visible (left). Bragg scattering and theoretical frequency-angle relationship
shown by dotted line (right).

of incidence (backscatter).

From these angular spectrograms several general observations can be made. Bragg

scattering is experimentally observed at many angle and frequency combinations such

that it forms a continuous Bragg scattering curve. The amplitude along the normal-

ized curves shows some variation (certain frequencies and angles exhibit noticeably

higher amplitudes) which implies that, for the purposes of ultrasonic inspection, all

Bragg angles are not equal. However, this increase in amplitude along the Bragg

curve is complicated by the fact that backscattered leaky Lamb waves are also gener-

ated for thin plates in water. The high amplitude detected at 30◦ in Figure 3.11 may

be a combination of the Bragg diffraction peak and the leaky backscattered Lamb

waves. The amplitude along the entire Bragg scattering curve was higher for the

2-2 region than for the 1-1 region, which implies that more Bragg scattering may be

observed for rougher (larger hrms) periodic surfaces, even in cases of two-dimensional

periodicity and imperfect surfaces. The classical grating equation follows the exper-

imentally determined Bragg scattering curves for periodicities calculated from the

profilometer measurements. Therefore we can say that continuous Bragg scattering

curves obtained experimentally can be used to determine surface periodicities in a

manner similar to the discrete data techniques described in section 3.2.
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Figure 3.14: Backscattered spectra obtained from a scan performed at 45◦ with
respect to the principal axes of the unit cell of the surface.

One important point regarding surfaces with two-dimensional periodicity is the

fact that the periodicity corresponding to the detected Bragg scattering curve is de-

pendent on the angle between the transducer rotation axis and the principal directions

of the unit cell on the surface. In order for the Bragg scattering corresponding to the

periodicity along one of the principal directions to be observed, the transducer rota-

tion axis must be aligned perpendicular to that direction. Therefore, an additional

application has been identified through these experiments: Bragg scattering curves

can be used as part of an ultrasonic alignment technique.

Figure 3.14 shows the angular spectrogram obtained from a scan of the 2-2 region

where the transducer rotation axis is at a 45◦ angle to each of the principal unit cell

axes. The normal incidence reflection has been omitted in order to make the Bragg

scattering curves more easily visible.

On the left side of the scan, the amplitude is not constant along the Bragg curve:

a high amplitude area is seen at 6.5 MHz and 30◦. The theoretical Bragg curves

are plotted in dotted lines. The periodicity used to calculate the dotted curves is

229 µm which is equal to 0.707×324 µm or 1.414×162 µm with a diffraction order

of 1. This value corresponds to a periodicity that exists along the 45◦ diagonal.

Therefore, the periodicity that corresponds to a detected Bragg scattering curve can
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lead to the calculation of the angle of the tranducer rotation axis with respect to the

principal axes of the unit cell and thus the alignment of the sample with respect to

the transducer.

In summary, the experimental results presented show normal incidence reflection

spectra obtained from pulse-echo measurements as well as angular spectrograms ob-

tained from angular scans. The normal incidence reflection spectra seem to be of

limited utility especially in the case studied here where the roughness is small, the

plate is thin, and the periodicity is two-dimensional and imperfect. As an alternate

method, backscattered spectra are examined in order to compare the Bragg scatter-

ing that occurs for non-normal incidence. These spectra seem more promising for the

characterization of the surfaces studied here.

3.6 Conclusions

This chapter has presented a feasibility study on the use of ultrasound for the inspec-

tion of thin plates containing regions of doubly-periodic imperfect surface textures.

Two experimental methods have been employed, namely reflection spectra obtained

from normal incidence pulse-echo experiments and backscattered spectra obtained

through rotational scans. The use of normal incidence reflection spectra has been

shown to be limited. In order to use normal incidence reflection spectra to gain in-

sight about periodic profile heights, detailed information on the dispersion curves is

needed in order to examine any shifting of anomalies in the spectra. In general, the

differences in anomaly heights are not sufficient to gain information to characterize

the profile.

An alternate method of ultrasonic inspection, namely the use of Bragg scattering

curves appears to be more sensitive to periodic profile heights. The amplitude of

the backscattering is shown to increase with the profile height. Detailed theoretical

simulations on the diffraction efficiency as a function of profile form can provide
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more information on the conditions under which this is true. The Bragg scattering

curves, however, can be used to calculate surface profile periodicities, analogous to

the discrete methods previously developed. The amplitude of the backscatter along

the Bragg curve is shown to be unequal, which implies that all Bragg angles may

not be equal for the purposes of ultrasonic inspection of imperfect periodic surfaces,

although areas of higher amplitude along the Bragg scattering curves may be due

to leaky Lamb wave backscattering. Finally, Bragg scattering curves can be used in

an alignment technique since they can be used to detect the angle between a sample

with a two-dimensional periodicity and a transducer’s axis of rotation.

A few questions remain, such as why the Bragg scattering is unequal between the

left and right sides of the regions, since theoretically it should be symmetric. This may

be due to the imperfectness of the profiles. In order to investigate this, experiments

should be performed on “perfect” profiles. Another question that remains is the origin

of the higher amplitude for certain frequencies/angles on the Bragg scattering curves

and what are the relative contributions of the diffraction and the backscattered leaky

Lamb waves to this phenomenon. Detailed theoretical simulations on the diffraction

efficiency as well as experiments on perfect profiles could shed light on this matter.
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CHAPTER IV

BACKWARD DISPLACEMENT OF PULSED

ULTRASONIC BEAMS DUE TO DIFFRACTION

EFFECTS ON PERIODIC SURFACES

Thus far, this thesis has presented results of numerical simulations of ultrasonic

diffraction as well as the results of experiments that were performed with the aim

of studying diffraction effects on imperfectly periodic surfaces. This chapter will now

focus on an unusual phenomenon that has been observed on periodically corrugated

surfaces that can be attributed to diffraction effects, namely the lateral backward

displacement of a bounded ultrasonic beam.

This chapter aims to investigate this phenomenon in three new ways. First, since

the phenomenon has only ever been observed for the case of time-harmonic ultra-

sonic beams, the experiments presented in this chapter will address the occurrence

of the phenomenon for pulsed ultrasonic beams (that are more commonly employed

in ultrasonic NDE [19]). Second, all prior observations of the backward displacement

that can be found in the literature have been performed using Schlieren imaging,

which, although extremely useful for beam visualization, is not a quantitative tool.

Therefore, the experiments presented in this chapter have employed commercial ul-

trasonic immersion transducers to quantitatively measure the diffracted ultrasonic

fields generated. Finally, the backward displacement has only ever been observed

in reflection. Therefore, this chapter will investigate the backward displacement not

only in reflection but also in transmission.

This chapter is structured in the following manner. First, an introduction to

the ultrasonic backward beam displacement will be given along with a history of its
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study. The second section is dedicated to the quantitative experiments that study the

phenomenon for pulsed beams in reflection, and the third section presents the exper-

iments performed for the transmission case. More specifically, the experiments that

address the phenomenon in reflection aim to determine whether backward displaced

frequency components can be observed for pulsed ultrasonic beams and whether these

frequency components correspond to the frequencies of backward Scholte-Stoneley

waves that can be generated through diffraction and mode conversion on the surface.

The transmission measurements aim to determine whether the phenomenon can at

all be observed in transmission.

4.1 Introduction to the ultrasonic backward beam displace-
ment

The lateral displacement of ultrasonic beams is a well-documented effect. The Schoch

effect occurs, for example, when a bounded beam experiences a forward displacement

due to the generation of forward propagating Rayleigh waves along the surface [61, 33].

However, a backward ultrasonic beam displacement has only ever been observed

on periodic surfaces. This can be attributed to the fact that the diffraction that

occurs on the surface due to its periodicity is essential to the generation of the leaky

backward surface wave that ultimately results in the lateral backward shift in the

specularly reflected beam as shown in Figure 4.1. This phenomenon was first predicted

theoretically in optics by Tamir and Bertoni [107], but the actual existence of the

phenomenon was first confirmed in acoustics by Breazeale and Torbett [60] in 1976

when they observed the phenomenon using Schlieren imaging and a time-harmonic

ultrasonic beam.

This introductory section is divided into two subsections. First, the original exper-

iments of Breazeale and Torbett that confirmed the existence of the phenomenon will

be discussed. Second, additional studies by Declercq et al. [63, 43, 74] that resulted

in the displacement being attributed to leaky backward Scholte-Stoneley waves will
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Figure 4.1: Diagram of the ultrasonic backward beam displacement on a periodically
corrugated surface. The location of the specular beam predicted geometrically is
shown by dashed lines. The backward shifted beam is shown in solid lines. The
backward propagating leaky surface wave causing the beam shift propagates in the
negative x-direction. Corrugation profile enlarged for illustration.

.

be summarized.

4.1.1 The experiments of Breazeale and Torbett

The first experimental observation of a backward beam displacement on a periodic

surface was obtained by Breazeale and Torbett [60], and the motivation behind their

work was to discover the acoustic phenomenon that would correspond to the optical

phenomenon predicted by Tamir and Bertoni [107]. Tamir and Bertoni had pre-

dicted that for light reflection at a dielectric interface where a periodic structure had

been superimposed, a leaky wave would be generated under certain conditions and it

would then propagate in the backward direction, ultimately resulting in a backward

displacement of the specularly reflected beam.

Breazeale and Torbett considered an ultrasonic bounded beam incident on a water-

brass interface where the brass had been grooved with a periodicity Λ equal to 178 µm.

The beam was incident at an angle of incidence θi (considered measured from the

normal to the interface) and was time-harmonic with a frequency f . From the classical

diffraction grating equation [13], Breazeale and Torbett formulated the expression

shown in Equation 4.1 that gives the optimum angle of incidence in order to generate

a backward propagating lateral wave along the surface with a diffraction order equal
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Figure 4.2: Schlieren image of the ultrasonic backward beam displacement as ob-
served by Breazeale and Torbett for an ultrasonic beam having a frequency of 6 MHz
at an angle of incidence equal to 22.5◦. From Ref. [63].

to −1. In this expression, vliq is the velocity of sound in water and vsurf is equal to

the velocity of the backward surface wave.

sin θi = vliq

(
1

fΛ
− 1

vsurf

)
(4.1)

Breazeale and Torbett first assumed a value of 2015 m/s (the leaky Rayleigh wave

velocity on a water-brass interface) for vsurf since they assumed the surface wave that

would be responsible for the displacement would be a leaky Rayleigh wave. For their

beam frequency f of 6 MHz and a vliq of 1490 m/s, this resulted in a prediction of 41◦

for the angle of incidence at which the backward displacement would be observed.

However, no backward displacement was observed for their 6 MHz beam at this angle

of incidence. Instead, they observed the phenomenon for a θi equal to 22.5◦ as shown

in the Schlieren image presented in Figure 4.2. This indicated that the velocity of

the backward propagating surface wave responsible for the displacement was equal

to approximately 1470 m/s, which differed considerably from the velocity of a leaky

Rayleigh wave on a water-brass interface. This suggested that either the theory

of Tamir and Bertoni did not accurately describe the backward beam displacement

or that the surface wave responsible for the phenomenon was not, in fact, a leaky

Rayleigh wave.
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Although Breazeale and Torbett made this first observation of the ultrasonic back-

ward beam displacement in 1976, the surface wave responsible for the phenomenon

would remain unknown until further study that would only occur over 20 years later.

4.1.2 Further study of the backward beam displacement and its relation
to leaky Scholte-Stoneley waves

Further study of the ultrasonic backward beam displacement would need to wait over

20 years after the original discovery until interest in the study of ultrasonic diffraction

on periodic structures would receive more attention, in part due to the success of the

development of the Rayleigh-Fourier (R-F) method (discussed in Chapter 2 of this

thesis) for simulating diffraction on liquid-solid interfaces [54]. Once the R-F method

was able to be successfully implemented to simulate the results of experiments on

liquid-solid surfaces, it underwent a number of extensions. One of these included

the use of incident inhomogeneous waves that could be used to simulate a bounded

beam [59], in contrast to prior implementations of the R-F method that used incident

plane waves of infinite extent.

This numerical technique employing imhomogeneous wave theory along with the

R-F method was first proposed by Declercq et al. [63], and it enabled the simulation

of the beam displacement. The ultimate conclusions of the simulations employing

this theoretical technique [43] were that the displacement was caused by a leaky form

of Scholte-Stoneley waves, and that the appearance of the backward displacement is

highly dependent on the beam width.

Shortly after these discoveries, experiments were conducted by Teklu et al. [74] to

investigate the agreement of experimental observations with the prior theoretical pre-

dictions concerning the influence of the beam width. These experiments that were also

conducted using Schlieren imaging showed that the backward beam shift appeared

when the negative 1st order diffracted sound beam was barely visible along the sur-

face of the sample. This observation was considered a signal of the transition of the
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negative 1st order from a bulk wave to a Scholte-Stoneley wave with decreasing angle

of incidence. Although on homogeneous, planar solid surfaces, phase matching con-

siderations prevent the coupling between bulk waves and Scholte-Stoneley waves, for

the case of a homogeneous non-planar solid surface such as a periodically corrugated

surface, a coupling between bulk waves and Scholte-Stoneley waves can exist [42].

Prior to this experimental work by Teklu et al., a numerical study on the behavior

of Scholte-Stoneley waves when they encounter the corner of a solid plate [35] revealed

that Scholte-Stoneley waves are scattered in the forward direction upon reaching the

corner and do not propagate around the corner in the manner of leaky Rayleigh

waves [108, 109]. This phenomenon has also been shown experimentally [36]. Al-

though these studies do not concern Scholte-Stoneley waves on periodic surfaces, the

observation that these waves propagate off the edge of a solid sample has relevance in

the experimental measurements of the backward displacement in reflection that will

now be presented.

4.2 Spectral analysis of the ultrasonic backward beam dis-
placement in reflection

The experiments presented in this section have been conducted with two main objec-

tives in mind. The first was to quantitatively show that the backward beam displace-

ment exists at additional frequencies and angles of incidence other than the single

frequency and angle of incidence pair (6 MHz, 22.5◦) that has been studied in the

past [60, 74] and to show that these frequency and angle pairs can be theoretically

predicted by the classical grating equation. The second objective was to show that

the backward displacement of frequency components within the pulsed beam is ac-

companied by a backward propagating Scholte-Stoneley wave, which results in the

known transmission effect upon reaching the edge of the solid sample.

Both of these objectives are realized through the analysis of frequency spectra

obtained from angular scans of the diffracted fields in water surrounding the solid

87



sample. Angular spectrograms (frequency vs. angle) and classical spectrograms (fre-

quency vs. time) are used to interpret the results. The angular scans have been

accomplished with the polar/C-scan equipment at Georgia Tech Lorraine, and the

same solid brass sample that was used in the original backward beam displacement

observations of Breazeale and Torbett in 1976 has been used in these experiments.

This section is divided into four subsections. First, the theoretical considerations

related to the experiments of Breazeale and Torbett that were discussed in the in-

troduction to this chapter will be reviewed. The following subsection will describe

the sample and the experimental setup. This will be followed by a presentation and

discussion of the experimental results, including how the quantitative measurements

confirm the original qualitative observations of Breazeale and Torbett. Finally, con-

clusions from the reflection measurements will be presented.

4.2.1 Theoretical considerations

As discussed in the subsection 4.1.1 of this chapter, Breazeale and Torbett used the

classical grating equation to derive an expression, shown in Equation 4.1, to give the

optimum angle of incidence for an ultrasonic beam to generate a backward propagat-

ing lateral wave on a periodic surface and thus experience a backward displacement

in reflection. The expression can also be inverted in order to calculate the frequency

of the backward propagating wave for a known angle of incidence.

They used the value of 2015 m/s for vsurf in Equation 4.1 since they hypothesized

that the leaky surface wave responsible for the backward displacement would be of

the Rayleigh type. However, the angle predicted by this velocity value, 41◦, did not

result in the observation of the phenomenon. Another angle, 22.5◦, was the angle of

incidence at which the backward displacement was observed for their 6 MHz beam.

It was not until the later theoretical studies revealed the cause of the backward

displacement to be a leaky Scholte-Stoneley wave that an accurate prediction of the
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optimum angle of incidence could be made. Based on Breazeale and Torbett’s original

22.5◦±0.25◦ measurement, the surface wave responsible for the backward displace-

ment would have a velocity between 1465.8 m/s and 1477.6 m/s with an average of

1471.7 m/s. Even though, in general, dispersion of Scholte-Stoneley waves on peri-

odic surfaces may be expected, this value (1471.7 m/s) may be used as a basis in

order to predict the frequency and angle of incidence pairs at which the backward

displacement may appear on the surface being studied. Thus, frequency and angle

pairs predicted by Equation 4.1, with a vsurf equal to 1471.7 m/s, will be compared

to frequency and angle pairs observed experimentally. The velocity of water used in

the experiments has been measured to be 1479.5 m/s, and this velocity will be used

as vliq in Equation 4.1.

In addition to predicting the frequency and angle of incidence combinations that

should result in the backward displacement and the generation of a backward propa-

gating Scholte-Stoneley wave, the classical grating equation also provides information

on the propagation of diffracted bulk modes that are not confined to the surface of

the sample. In the prior studies of the backward displacement, only single frequency

beams were used, so the presence of the backward propagating Scholte-Stoneley wave

was examined without the possibility of the other propagating bulk modes being

present. Since the purpose of these experiments is to study the backward displace-

ment for the case of pulsed ultrasonic beams, many frequency components will be

present simultaneously in the pulse. This can result in the presence of additional

propagating bulk modes in the fluid that are not confined to the surface of the sam-

ple. This would occur only for frequencies that are higher than the frequency of the

backward Scholte-Stoneley wave that is generated for a given angle of incidence, and

these frequencies will be present in the region of the liquid between the incident beam

and the backward surface wave as shown in Figure 4.3 for a periodic surface with an

arbitrary profile.
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Figure 4.3: Schematic of propagating modes behind incident beam for a periodic
surface with an arbitrary profile. Reflected field not shown.

The propagating bulk modes that should be observed will also be of the negative

1st order, and their angles of propagation θpm can be predicted by Equation 4.2, which

is also derived from the classical grating equation.

sin θpm =
vliq
fΛ
− sin θi (4.2)

Using Equation 4.2 for an incident pulsed beam at a given angle of incidence, the

directions of the propagating bulk modes for many frequencies can be calculated.

4.2.2 Description of the sample and the experimental setup

The sample used to perform all of the backward displacement experiments in this

chapter is the original grooved brass sample that was used by Breazeale and Torbett

in their original observation of the phenomenon in 1976. The sample consists of a

rectangular piece of brass (60 mm long, 25 mm wide, 12 mm high) with a section

25.4 mm long along its length that had been machined with periodic rectangular

grooves having a periodicity equal to 178 µm and profile height equal to 25 µm.

A single experimental setup was used to accomplish both of the objectives of the

reflection experiments. All measurements have been performed underwater in the

water tank of the polar/C-scan equipment at Georgia Tech Lorraine. The experi-

mental setup consisted of a pitch-catch transducer arrangement and two commercial

immersion transducers (Valpey-Fisher ISO504GP) with nominal center frequencies of
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Figure 4.4: Photo of the experimental setup with the sample rotated so that the
emitting transducer is directly normal to the sample’s grooved surface. Photo was
taken before submersion in the water tank.

5 MHz were used.

One transducer (the emitter) was mounted so that it was incident upon the

grooved portion of the sample, and the other transducer (the receiver) was set in

the rotating fork of the polar/C-scan equipment so that it could rotate through and

measure the diffracted fields generated from the emitted pulse’s interaction with the

periodic surface of the sample. Because the emitter was stationary, the sample was

mounted in such a way that it could be rotated in order to change the angle of inci-

dence. A photograph of the experimental setup before it was submerged in the water

tank is shown in Figure 4.4. The setup is shown with the sample rotated so that the

beam from the emitter would be normally incident on the sample surface.

The propagation distance between the incident transducer and the sample surface

was 66 mm and the beam width was approximately 12 mm. The beam used in the

original experiments of Breazeale and Torbett was 10 mm in width, and it was shown

by Teklu et al. [74] that the backward displacement is not necessarily visible for

smaller beam widths. The distance between the sample and the receiving transducer

was chosen to be 45 mm in order to be compatible with the rotation of the polar/C-

scan equipment.
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4.2.2.1 Angular scan types

Two types of scans were performed. First, in order to quantitatively observe any back-

ward shifted frequency components present in the reflected field, scans were performed

in the vicinity of the specularly reflected beam (in front of the emitting transducer).

A scan was performed each time the angle of incidence was changed (with a clock-

wise rotation of the sample as it is shown in Figure 4.4). The measurements for the

angles of incidence (i.e., the angles of rotation of the sample) were obtained with an

inclinometer and should be considered as accurate to ±1◦.

Although the scans performed by the polar/C-scan equipment appear continuous

to the naked eye, waveforms are acquired and recorded at specific locations in the scan,

determined by the scan’s angular resolution. Each scan in these experiments covered

a angular range of 70◦ with a resolution of 0.25◦ between each waveform acquisition.

The start and end points for the scans were determined by the geometrical constraints

of the setup and scanning equipment so they were identical for all angles of incidence

measured. Although a higher angular resolution may have been desirable, it was set

lower in order to better accommodate the limited memory of the PC integrated with

the polar/C-scan equipment.

The second type of scan was designed to measure the diffracted field behind the

emitting transducer, in order to quantitatively measure the field associated with the

backward propagating surface wave that should accompany the backward displaced

frequencies. It would also capture the bulk propagating modes behind the emitter

(those shown in the schematic of Figure 4.3). In order to scan this area of the

diffracted field, the sample was rotated in the counter-clockwise direction so that the

receiving transducer was now in the field behind the emitting transducer. A scan

was performed each time the sample was rotated. The angular range and resolution

of these scans were also 70◦ and 0.25◦, respectively. A diagram of the scan paths

associated with these two types of scans is shown in Figure 4.5.
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Figure 4.5: (Left) Scan path to detect the backward beam shift in reflection. (Right)
Scan path to detect the accompanying backward propagating Scholte-Stoneley wave.

4.2.2.2 Comments on the angular scanning technique

Before the experimental results are presented, it is appropriate to discuss the rota-

tional nature of the scans, namely their sensitivity to the magnitude of the backward

displacement along the surface and to the angle of incidence (and specular reflection).

The backward beam displacement is considered to be a lateral shift of a time-

harmonic beam along a periodic surface. However, since the experiments presented

here have employed a pulsed beam, only a very narrow range of frequencies within

the beam spectrum may be shifted backwards, while the other frequencies within the

pulse spectrum should remain within the specularly reflected beam.

For a given angle of incidence, as the magnitude of the lateral shift of the backward

displaced frequencies increases and they move away from the specularly reflected

beam, their detection becomes more difficult with the use of an angular scanning

technique. This is due to the fact that the backward shifted frequencies become less

normal to the receiving transducer’s surface as they increase in distance from the

specular beam. If they are too close to the specular beam (indicating a very small

backward shift), they may also be difficult to detect. Therefore, for a given angle

of incidence, backward shifts that are very large or very small could be difficult to

detect using the angular scanning technique employed here.
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Likewise, for a given magnitude of the lateral backward shift, the backward dis-

placed frequencies may be more difficult to detect for small angles of incidence since

they would be less normal to the receiving transducer’s surface than in the case of

larger angles of incidence. In general, with the use of the commercial immersion

transducers employed in these experiments, any time that the backward shifted fre-

quency components are less than normal to the receiving transducer, their measured

amplitudes will be lower than those actually present in the field and they may be

more difficult to detect. The receiving transducer in the angular scanning technique

used here only measures the projection of the backward shift on the transducer face.

This is also particularly important to consider for the measurement of large angles of

incidence, since in this case the projection of any backward shifted frequencies will

be very close to the specularly reflected beam, although it might still be possible to

identify them due to phase interference.

The conclusion of this discussion is that the use of an angular or rotational scan-

ning technique like that employed in these experiments is best restricted to a middle

range of angles of incidence. A restriction on the magnitudes of beam shifts it can ac-

commodate cannot yet be made, since the study of the magnitudes of backward beam

shifts as a function of frequency, surface periodicity, and beam width is a virtually

untouched area of research.

In spite of the restrictions mentioned above, the angular scanning technique pre-

sented here is actually an ideal tool with which to measure both the presence of

backward shifted frequencies and the accompanying backward surface wave genera-

tion and bulk propagating modes behind the emitting transducer. Because diffraction

on a periodically grooved surface results in a hemispherical field with all the diffracted

waves originating at the illuminated region of the surface, an angular technique is an

ideal tool to capture this diffraction.
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4.2.3 Experimental results

The experimental results are divided into two parts. First, the original observations of

Breazeale and Torbett (6 MHz at 22.5◦) will be confirmed using the quantitative scan-

ning technique, and then results will be presented for three additional frequency and

angle pairs. Since the experiments have used ultrasonic pulses in order to study many

frequencies simultaneously, Fourier analysis by means of the Fast Fourier Transform

(FFT) has been performed on the received waveforms after their acquisition. Results

are reported in the form of angular spectrograms which show the amplitude of fre-

quencies present in the waveforms detected by the receiving transducer as a function

of the angle of the transducer within the field. In addition, classical spectrograms,

which show frequencies present in the time waveform detected by the receiving trans-

ducer as a function of time, are presented. Classical spectrograms (sometimes called

sonograms) are encountered in other areas of acoustics and ultrasonics. However,

angular spectrograms are less commonly seen. They are amplitude plots as a func-

tion of frequency and position, and they show the measurements taken at a fixed

radius from the illuminated area of the sample. All results have been normalized

with respect to the incident signal, and its time-waveform and FFT spectrum are

shown in Figure 4.6. The spectrum was created using 8000 time-waveform points

and throughout this subsection, all time-waveforms have been sampled at 200 MHz

and are zero-padded to 32000 points. The use of 8000 time-waveform points in the

FFT results in a frequency resolution of 0.025 MHz and zero-padding to 32000 points

results in a bin resolution of 0.006 25 MHz.

4.2.3.1 Confirmation of the observations of Breazeale and Torbett

For an angle of incidence equal to 22.5◦, a scan of the region of the specularly reflected

beam results in the angular spectrogram shown in the left side of Figure 4.7. The

spectrogram was created from FFTs that were performed at each angular position

95



Figure 4.6: Time-waveform and frequency spectrum of incident signal for the 5 MHz
transducer pair.

Figure 4.7: Angular spectrograms confirming the results obtained by Breazeale and
Torbett (θi equal to 22.5◦). (Left) Spectrogram from the region of the specularly
reflected beam. (Right) Complementary spectrogram to detect the backward surface
wave. Propagating bulk modes also detected and theoretical positions are shown by
the dotted line.

using 8000 time-waveform points that were zero-padded to 32000 points.

The beam is centered at the angle of specular reflection as expected. There are

also three note-worthy features within the spectrogram, and they are numbered on

Figure 4.7. First, there is a bright zone of frequencies having higher amplitudes,

labeled as “1” and centered approximately at an angular position of 21◦ and at a

frequency of 6 MHz. If the angular spectrogram is examined closely, the maximum

amplitude within this zone is found to be at an angular position of 21◦ and at a

frequency of 5.98 MHz. Frequencies having high amplitudes (greater than 0.55 on
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the spectrogram) within the bright zone exist between 5.92 MHz and 6.08 MHz, and

frequencies within this range do not have such high amplitudes on the opposite side of

the beam. The existence of this high-amplitude bright zone indicates that the energy

from the frequency components in this range is not distributed equally from left to

right across the beam profile; these frequencies are disproportionately found on the

left side. This result can be interpreted as evidence of these frequencies having shifted

backward.

Before discussing the other noticeable features in the spectrogram, it is appropri-

ate to discuss additional evidence that indicates that these frequencies experience a

backward shift. This evidence can be found by examining classical spectrograms that

were created for the waveform acquired with the receiver positioned within the bright

zone. If the backward displacement occurs as it is currently understood, frequency

components that are shifted backward should arrive after the other non-shifted fre-

quencies in the beam. This is due to finite nature of wave propagation speeds; any

frequency that is shifted backward with respect to the specular direction must first

travel backward along the surface at the speed of the backward propagating surface

wave before re-radiating from the sample surface to the receiving transducer.

Therefore, the classical spectrograms shown in Figures 4.8 and 4.9 were created by

applying the Short-Time Fourier Transform (STFT) to the time-waveform that was

captured at the 21◦ receiver position. The left side of Figure 4.8 shows a spectrogram

created using time-windows 512 points in length with an overlap of 440 points. The

windows were each zero-padded to 32000 points. The arrival of the specularly reflected

pulsed beam can be seen as a solid vertical band of frequencies, and this specular beam

arrival is followed by a faint trail of frequencies that can be seen more clearly in the

close-up on the right side of the figure.

Upon visual inspection, the band of trailing frequencies has a bandwidth of 0.5 MHz,

and the frequency of maximum amplitude of the band is 6.17 MHz along many of the
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Figure 4.8: (Left) Classical spectrogram for a θi of 22.5◦ obtained from the time-
waveform captured at a receiver angle of 21◦. (Right) Close-up showing the trailing
frequencies arriving after the initial pulse. Time-windows are 512 points long.

initial time windows of the spectrogram. This wide bandwidth of the trailing frequen-

cies can be attributed to the size of the time-windows used to perform the STFT.

Although the time-waveform windows used to create this spectrogram result in good

time resolution (0.12 µs), the resulting frequency resolution is poor (0.39 MHz).

Therefore, larger time-windows were used to obtain the spectrograms shown in

Figure 4.9. Figure 4.9 was created from exactly the same data as Figure 4.8; the

only difference is the time-window length used for the STFT. For Figure 4.9, time-

windows 1024 points in length with an overlap of 1000 points were used. These wider

time-windows result in a lower time resolution of 0.36 µs. The longer “duration” of

the specular beam can be attributed to this lower time resolution as well as to the

large overlap value. However, a finer frequency resolution of 0.2 MHz is obtained.

Based on the close-up on the right of Figure 4.9, the frequency having the highest

amplitude within the trailing band is 6.1 MHz.

Returning to the labeled features on the left side of Figure 4.7, a null zone (with

amplitudes lower than 0.1) is labeled as “2” within the region of the specular beam.

The null zone extends between 20.75◦ and 23.75◦ with frequency decreasing from

6.15 MHz to 5.95 MHz as the receiver angle increases. The existence of this null

zone can most likely be attributed to phase cancellation between specularly reflected

sound and re-radiated (backward shifted) sound. The existence of null zones that
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Figure 4.9: (Left) Classical spectrogram for a θi of 22.5◦ obtained from the time-
waveform captured at a receiver angle of 21◦. (Right) Close-up showing the trailing
frequencies arriving after the initial pulse. Due to the increased time-waveform length,
frequency resolution is improved. Time-windows are 1024 points long.

occur due to phase cancellation in reflected fields where beam shifts have occurred

are well-documented, such as in the case of the Schoch effect [110, 62].

Finally in Figure 4.7, the presence of vertical bands that show frequencies present

to the left and right of the specular beam labeled as “3” is noted. These bands occur

at receiver angles of 19◦ and 26.5◦, and they can be attributed to deformation of the

beam that occurs upon reflection, which is not an uncommon occurrence especially

for the case of periodically corrugated surfaces. Such beam deformation and beam

widening can be seen in several references. For example, Figures 5 and 6 in the

work of Teklu et al. [74] show the deformation of an ultrasonic beam in reflection

from a periodically corrugated surface. Specular beam deformation is also seen in

the original Schlieren image of the ultrasonic backward beam displacement made by

Breazeale and Torbett in 1976 [60] that was shown in Figure 4.2.

The angular spectrogram created from the complementary scan in the region of

the backward propagating surface wave is shown at the right side of Figure 4.7.

This spectrogram was created with 8000 time-waveform points zero-padded to 32000

points for each angular position. Here a backward propagating surface wave can

be observed, and the frequency at which the amplitude is a maximum is 6.05 MHz.

Since the receiver was positioned a distance away from the sample, the waveform
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detected was that which had propagated off the surface of the sample, a behavior

one would expect from a Scholte-Stoneley wave. Higher frequency propagating bulk

orders are also visible. The dotted line plotted on the spectrogram corresponds to

the theoretical angles of the bulk modes as a function of their frequency, and they

were calculated from Equation 4.2. The presence of faint additional frequencies at

the same angular position as the backward propagating Scholte-Stoneley wave can

be explained as being evanescent waves, negative first order for frequencies below the

Scholte-Stoneley frequency or higher order for higher frequencies.

A summary of these results is the following. From the scan in the region of

the specular beam (angular spectrogram on the left of Figure 4.7), it is clear that

there is an imbalance of frequencies across the beam profile from left to right for

frequencies in the vicinity of 6 MHz (±0.08 MHz). There is also a null zone consisting

of a band of frequencies between 5.95 MHz and 6.15 MHz that varies with the angle

of the receiver. From the classical spectrograms (Figure 4.9), it can be seen that at

a receiver angle of 21◦, left of the center of the specular beam, a band of frequencies

with an amplitude maximum at 6.1 MHz continues to arrive at the receiver well after

the specular beam has passed. From the scan in the region behind the incident beam

(angular spectrogram on the right of Figure 4.7), a backward propagating surface

wave with an amplitude maximum at a frequency of 6.05 MHz was detected.

Now the experimental results will be compared with the diffraction grating the-

ory. The theoretical Scholte-Stoneley wave frequency, fSSt, calculated for an angle of

incidence of 22.5◦ is equal to 5.99 MHz. It can be seen on the left side of Figure 4.7

that this frequency is within the bright high-amplitude zone at an angle of 21◦ and is

in the null zone in the center of the specular beam. It is also a frequency contained

within the trailing frequencies in the spectrogram of Figure 4.9, and it is close to the

maximum amplitude of the detected backward propagating surface wave.

Based on the agreement among the pieces of experimental evidence as well as
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between the experiments and diffraction grating theory, it may be concluded that

that for an angle of incidence of θi equal to 22.5◦, frequencies very close to 6 MHz are

displaced backward with respect to the specular beam and that the displacement is

due to a backward propagating Scholte-Stoneley wave. For a pulse, it cannot be said

that only a single frequency experiences the backward shift, since the identification of

backward shifted frequencies is limited by the frequency resolution of the Fourier pro-

cessing techniques used. In addition, any variation in the beam directivity or surface

periodicity in the region of illumination could result in a small range of frequencies

experiencing a backward shift.

Two final interesting observations bear addressing. First, in the classical spectro-

grams of Figures 4.8 and 4.9, the frequencies that correspond to the null zone at the

21◦ receiver position (i.e. frequencies close to 6.2 MHz) initially arrive along with all

the other frequencies of the specularly reflected pulse, but they do not continue to ar-

rive for its duration. Since the magnitude of the backward displacement is a currently

unknown function of frequency, if a range of frequencies were to be shifted backwards,

there is no guarantee that they would all experience a shift of the same magnitude

and radiate to the receiver at the same position, so perhaps this null zone could be

attributed to frequencies that shift backward but arrive at an angular position where

they are more difficult to detect. However, the angular scans of the region of the

backward surface wave don’t support this explanation; the angular spectrogram on

the right of Figure 4.7 shows a backward surface wave in a very narrow frequency

range. A more likely explanation is that these frequencies experience some phase

cancellation between the specular beam and the bulk propagating modes, which are

not generated instantaneously.

This non-instantaneous generation of bulk propagating modes also applies to the

backward propagating surface wave, and this is the second comment that should

be made. From the classical spectrograms, it can be seen that the band of trailing
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frequencies (that were backward shifted and then re-radiated) continue to radiate

into the field to the receiving transducer over time. This reveals that the backward

displacement is an inherently time-dependent phenomenon.

4.2.3.2 Additional angles of incidence and associated frequencies

Results will now be presented for three additional angles of incidence, and these re-

sults are shown in Figures 4.10 through 4.15. All the angular spectrograms have

been processed with identical parameters to those presented previously. The clas-

sical spectrograms have been processed with identical parameters as those used for

Figure 4.9.

The results are also summarized in Table 4.1 along with the previous results

concerning the frequency and angle pair studied by Breazeale and Torbett. For each

angle of incidence, Table 4.1 shows

• the appropriate figure numbers,

• the angle of incidence θi,

• the frequency of maximum amplitude found within the bright zone in the an-

gular spectrogram in the region of the specular beam,

• the range of frequencies found in the null zone on the same spectrogram (am-

plitudes < 0.1),

• the frequency of maximum amplitude in the trailing frequency band in the

classical spectrogram created from a time-waveform obtained at a “bright zone”

receiver position,

• the frequency of maximum amplitude of the backward propagating surface wave

found in the complementary angular spectrogram of the region behind the emit-

ting transducer, and
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Figure 4.10: Angular spectrograms for a θi of 20◦. (Left) Spectrogram showing back-
ward shifted frequencies in the region of specular reflection. (Right) Complementary
angular spectrogram showing the backward propagating Scholte-Stoneley wave and
higher frequency propagating bulk modes (with theoretical locations plotted with the
dotted line.)

Figure 4.11: (Left) Classical spectrogram for a θi of 20◦ obtained from the time-
waveform captured at a receiver angle of 18.5◦.(Right) Close-up showing the trailing
frequencies arriving after the initial pulse. Time windows 1024 points long.

• the theoretical Scholte-Stoneley wave frequency fSSt.

Concerning the scans in the regions of specular reflection, the angular spectro-

grams on the left sides of Figures 4.10 and 4.12 exhibit features similar to those of

Figure 4.7, and the figures have been labeled in a similar manner.

First, a bright zone of higher amplitude frequencies exists on the left side of each

specular beam. The bright zone in the spectrogram on the left of Figure 4.14 does

not occur to the left of the specular beam, but rather inside it. This is attributed to

the fact that as the angles of incidence and specular reflection increase, the projection

of a backward displacement appears closer to the center of the receiving transducer.
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Figure 4.12: Angular spectrograms for a θi of 26.5◦. (Left) Spectrogram showing
backward shifted frequencies in the region of specular reflection. (Right) Complemen-
tary angular spectrogram showing the backward propagating Scholte-Stoneley wave
and higher frequency propagating bulk modes (with theoretical locations plotted with
the dotted line.)

Figure 4.13: (Left) Classical spectrogram for a θi of 26.5◦ obtained from the time-
waveform captured at a receiver angle of 25.75◦.(Right) Close-up showing the trailing
frequencies arriving after the initial pulse. Time windows 1024 points long.

The left of Figures 4.10 and 4.12 also show null zones of frequencies that can be

found in the higher amplitude bright zone in the left side of the specular beam. For

Figure 4.14, the null zone has a different form because higher frequencies drop off

sharply in the center of the specular beam. This may be attributed to the efficiency

with which higher frequency propagating modes are generated for these frequencies at

this angle of incidence, as well as possible destructive interference occurring between

these propagating modes and the specular beam. Therefore, the null zone for the left

side of Figure 4.14 has been considered to occur where the frequencies drop off with

amplitudes less than 0.1.
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Figure 4.14: Angular spectrograms for a θi of 30.5◦. (Left) Spectrogram showing
backward shifted frequencies in the region of specular reflection. (Right) Complemen-
tary angular spectrogram showing the backward propagating Scholte-Stoneley wave
and higher frequency propagating bulk modes (with theoretical locations plotted with
the dotted line.)

Classical spectrograms obtained from time waveforms captured during the scans

in the regions of the specular beams are shown in Figures 4.11, 4.13, and 4.15. Each

spectrogram was obtained from a time waveform captured at an angular position

to the left of the specular beam with the exception of Figure 4.15. In this case, it

appears that the measurement of the angle of incidence was at the upper limit of its

uncertainty and the classical spectrogram was obtained from a time waveform received

at an angle of 31.5◦. In all the classical spectrograms, the specular beam arrival is

seen as a vertical band of frequencies followed by trailing frequencies that may be

backward shifted frequencies since they arrive after the initial pulse. Close-ups of the

spectrograms on the right side of each figure more clearly reveal the frequencies that

trail the initial pulse and there is a definite trend: the trailing frequencies of maximum

amplitude decrease with increasing angle of incidence, and this is consistent with

the theoretical Scholte-Stoneley wave frequencies. Similar to Figure 4.9, all three of

these classical spectrograms exhibit the null zone at the end of the specular beam

arrival which could be due to destructive interference with the bulk propagating

modes generated.

Concerning the complementary scans performed in the regions of the backward
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Figure 4.15: (Left) Classical spectrogram for a θi of 30.5◦ obtained from the time-
waveform captured at a receiver angle of 31.5◦.(Right) Close-up showing the trailing
frequencies arriving after the initial pulse. Time windows 1024 points long.

propagating surface wave, shown on the right sides of Figures 4.10, 4.12, and 4.14, lat-

eral waves are indeed observed at the surface of the sample in all cases, and the waves

have propagated off the edge of the sample into the field of the receiving transducer.

This evidence, along with the fact that the experimentally observed frequencies of

this surface wave are consistent with the other experimental evidence of backward

shifted frequencies and the theoretical Scholte-Stoneley frequencies fSSt for each an-

gle of incidence, supports the claim that a backward propagating Scholte-Stoneley

wave accompanies and is responsible for backward displaced frequencies. In addition

to the backward propagating Scholte-Stoneley wave, higher order propagating bulk

modes are observed for each angle of incidence, and their locations are well-described

by theory, as shown by each dotted line.
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In summary, it can be seen from the Figures 4.10 through 4.15 and from Table 4.1

that, in general, for all the angles of incidence studied here, experimental evidence

has been observed that supports the existence of the backward beam displacement

for multiple angles of incidence and frequencies and provides more insight as to the

cause of that displacement. The frequencies of maximum amplitude found in the

bright zones of the angular spectrograms, which, for three of the four angles studied,

were observed to the left of the specular beam, are in reasonable agreement with

the theoretically predicted backward Scholte-Stoneley frequencies, fSSt. Also, the

frequency ranges of all the null zones observed in the angular spectrograms contain

the frequency of maximum amplitude observed in the bright zone and usually the

appropriate fSSt for each angle of incidence. The frequencies of maximum amplitude

observed in the trailing frequencies in the classical spectrograms were well within the

frequency ranges of the null zones and slightly higher than the theoretically predicted

fSSt. Finally, all the frequencies of maximum amplitude of the observed backward

propagating surface waves were consistent with the other experimental results and

were close to the theoretically predicted fSSt. The agreement within the experimen-

tally observed frequencies as well as between the experiments and the theory is more

than satisfactory due to the frequency resolution of the Fourier analysis. Some im-

provement could be attained with additional research into the nature of the evolution

of the Scholte-Stoneley wave velocity with frequency (dispersion) and the corrugation

periodicity and form.

These results lead to the conclusions that the backward beam displacement can be

observed for frequency components within pulsed beams, for multiple pairs of angle of

incidence and frequency, and that the cause of the displacement is a backward propa-

gating Scholte-Stoneley wave. Also, the classical grating equation is a useful tool for

predicting frequency and angle pairs that would result in the backward displacement.
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4.2.4 Conclusion of reflection results

This chapter section has presented new experiments concerning the ultrasonic back-

ward beam displacement for pulsed beams in reflection. Through the use of a pulse

instead of a time-harmonic beam, it has been possible to examine many frequencies at

once. These experiments were conducted with two objectives: first, to quantitatively

show that the backward beam displacement exists at additional frequencies and an-

gles of incidence other than the single frequency and angle of incidence pair (6 MHz,

22.5◦) studied in the past and second, to show that the backward displacement is

accompanied by a backward propagating Scholte-Stoneley wave. The experimental

method employed in these experiments was first used to verify the original obser-

vations of Breazeale and Torbett [60] and then experimental results were reported

on additional angles of incidence where backward displaced frequencies and accom-

panying backward Scholte-Stoneley waves were detected. The theory of Tamir and

Bertoni [107] and the ability of the classical grating equation to predict the backward

beam displacement as well as the propagation directions of bulk modes at multiple

frequency and angle pairs have been verified. It is possible, and highly likely, that

the backward beam displacement is a continuous phenomenon that will occur for any

frequency or angle of incidence on a periodically grooved solid as long as the classical

grating equation applies and is satisfied.

4.3 Evidence of the ultrasonic backward beam displacement
in transmission through a solid

As discussed in the introductory section to this chapter, the backward displacement

of an ultrasonic beam has only ever been observed in reflection in liquid from a solid

periodic surface. Since this backward displacement in reflection has been attributed

to the generation of a leaky Scholte-Stoneley wave along the surface, the energy of

which is mostly confined to the liquid side of the interface, the question has remained
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whether the backward displacement can also be observed in transmission through the

solid. This chapter section presents experiments that were conducted with the aim

of observing the backward displacement phenomenon in transmission.

The theoretical considerations that govern the appearance of the phenomenon are

identical to those for the reflection case that were discussed in subsection 4.2.1. The

relationship between the frequency f , angle of incidence θi, surface periodicity Λ,

sound velocity in the liquid vliq, and velocity of the Scholte-Stoneley wave vSSt, that

must be fulfilled in order for a backward beam displacement to occur is repeated here

as Equation 4.3.

f =
1

Λ

(
sin θi
vliq

+
1

vSSt

) (4.3)

The remainder of this chapter section is divided into three subsections. First,

because the experimental setup and scanning technique differs between the reflection

measurements of section 4.2 and these transmission measurements, the new exper-

imental setup will be described. Then the experimental results will be presented,

followed by conclusions.

4.3.1 Experimental setup

The same brass sample that was used by Breazeale and Torbett [60] in the original

observation of the backward beam displacement and in the reflection measurements

of section 4.2 has also been employed for the transmission measurements presented

here. The sample characteristics are repeated here for the reader’s convenience. It

consists of a rectangular piece of brass (60 mm long, 25 mm wide, 12 mm high) with a

section 25.4 mm long along its length that had been machined with periodic rectan-

gular grooves having a periodicity equal to 178 µm and profile height equal to 25 µm.

The polar/C-scan equipment at Georgia Tech Lorraine was employed to conduct

the experiments, and the velocity of sound in the water vliq was determined to be

1479.5 m/s.
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A pulsed ultrasonic beam was generated by a stationary emitter, and the reflected

and transmitted fields were measured and analyzed in order to observe any backward

shifted frequencies present. The reflection and transmission results have been com-

pared, and backward shifted frequencies evaluated with respect to those theoretically

predicted by Equation 4.3.

The commercial ultrasonic transducers with nominal center frequencies of 5 MHz

that have been employed are identical to those of section 4.2. Since transmitted results

are compared with reflection results, two experimental setups were necessary. The

transducers were arranged in a pitch-catch configuration, and the receiving transducer

was placed in the reflected field in the first setup and in the transmitted field in the

liquid on the far side of the sample in the second setup. An illustration of the two

experimental setups is shown in Figure 4.16.

One angle of incidence is studied here, namely 30◦, since it is beyond the longi-

tudinal critical angle of approximately 17.8◦ for brass. Thus, the waves transmitted

through the solid are of the shear type, and they return to longitudinal upon exiting

the solid and entering the fluid. Eliminating the presence of longitudinal waves in the

solid greatly improves the ability to isolate the specular beam in the reflected and

transmitted fields.

The emitter was stationary and aimed at the sample surface with an angle of

incidence equal to 30◦. Instead of using an angular scanning technique in the manner

of section 4.2, the receiver was kept at a constant angle with respect to the surface,

also 30◦. A scan was then performed by translating the receiver linearly along the

length of the sample. This linear scanning method is in contrast with the angular

method used in section 4.2. Since at the outset it was unknown whether the backward

displacement would exist in transmission and be observable, it was desirable to set

the receiving transducer at the angle where it would be most sensitive to the lateral

displacement and then translate it linearly within the field.
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Figure 4.16: Scan paths for measurement of backward beam displacement in trans-
mission. Specular beams shown in dotted lines and backward shifts shown in solid
lines.

Waveforms were collected at 0.1 mm intervals and Fourier analysis (Fast Fourier

Transform) was performed on the appropriately time-windowed waveforms. The fre-

quencies present in the recorded waveforms have been plotted as a function of scan

position in a spatial spectrogram in order to study the characteristics of the reflected

and transmitted fields, including the specular beam and any backward shifted fre-

quencies. All results have been normalized with respect to the frequency spectrum of

the incident pulse (Figure 4.6).

4.3.2 Experimental results

The linear spectrogram of the reflected field obtained for the 30◦ angle of incidence

is shown on the left side of Figure 4.17. The FFTs were performed using 8000 time

waveform points zero-padded to 32000 points. A narrow range of frequencies (indi-

cated by the circled area) is observed to have shifted backward several millimeters

with respect to the specular beam which is indicated by the dotted lines. The fre-

quency having maximum amplitude in this range is 5.51 MHz. This is observed to be

in good agreement with the theoretical fSSt of 5.52 MHz that can be calculated using
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Figure 4.17: Spatial spectrograms for an angle of incidence of 30◦. Backward
displaced frequencies are circled and specular beams are shown with dashed lines.
(Left) Reflected field. Backward frequencies at 5.51 MHz. (Right) Transmitted field.
Backward frequencies at 5.52 MHz

.

Equation 4.3.

Using procedures and analysis identical to those employed for the reflected field,

the spatial spectrogram showing frequencies detected as a function of position for the

transmitted field is shown on the right side of Figure 4.17. The backward displaced

frequencies are circled in the figure and the specular beam is contained within the

dotted lines. Backward displaced frequencies are observed in the vicinity of 5.52 MHz

(frequency of maximum amplitude) and this is in good agreement with the results

obtained in reflection and the theoretical fSSt.

Upon close inspection of both the reflection and transmission spectrograms, addi-

tional energy in the form of faint horizontal bands is seen to the right of the specular

beam. This is due to the inclusion of an additional specular beam reflection from the

bottom of the sample in the time windows under analysis. It is necessary to include

this additional beam reflection in the time windows used to calculate the spectrograms

because, as discussed in section 4.2, the backward displacement is time-dependent. A

large time window is required to capture the energy associated with backward shifted

frequency components since they radiate into the reflected (and transmitted) fields
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over time. The energy appears as horizontal bands due to some overlap with the de-

tection of the specular beam, which is not unexpected since beam spreading has been

observed to occur in Schlieren images of ultrasonic beams on periodic surfaces [74].

The effect of additional beam reflections from the bottom of the sample has been

minimized through the use of an angle of incidence well beyond the critical angle for

longitudinal waves in brass. This maximized the distance between any reflection and

the specular beam, and the waves within the solid are only shear so the number of

potential beam reflections is reduced by half.

In order to verify that the backward shift in transmission is in fact caused by

the backward propagating Scholte-Stoneley wave on the upper surface of the sample,

particle displacements parallel and perpendicular to the interface have been calcu-

lated for a 5.5 MHz Scholte-Stoneley wave along a water-brass interface. These are

shown in Figure 4.18 where the interface is represented by a solid line with the fluid

medium above (positive distance from interface) and the solid medium below (nega-

tive distance from interface). Expressions for the displacements [111] can be derived

according to the methods outlined by Viktorov [22], and material parameters used in

the calculation are identical to those in Ref. [43]. Since the displacement amplitudes

are dependent on an arbitrary constant, they have been normalized. It can be seen,

however, that the amplitude of the displacement drops off dramatically with increas-

ing depth in the solid so that for a depth of 0.5 mm, there is virtually no energy

from the wave present. Therefore, the backward propagating Scholte-Stoneley wave

is confined to the upper surface of the sample.

4.3.3 Conclusion of transmission results

In summary, backward shifted frequencies that are observed in reflection from a peri-

odically corrugated liquid-solid interface have also observed in transmission through

the solid for an angle of incidence equal to 30◦. These frequencies correspond very
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Figure 4.18: Particle displacement amplitudes calculated for a 5.5 MHz Scholte-
Stoneley wave propagating on a water-brass interface. Displacement perpendicular to
the interface shown with dashed lines and displacement parallel to the interface shown
with dotted lines. Displacement amplitudes are observed to decrease dramatically
with penetration depth in the solid (negative distance from interface).

closely to each other as well as to the theoretically predicted Scholte-Stoneley fre-

quency for the given experimental parameters. The shift observed in transmission

may also be attributed to the backward Scholte-Stoneley wave generation on the

upper (periodic) surface of the sample.

The agreement between theory and experiment is despite the assumption of a

constant Scholte-Stoneley wave velocity equal to that measured by Breazeale and

Torbett for the case of a 6 MHz emitting transducer and a 22.5◦ angle of incidence [60].

This assumption is based on a non-dispersive nature of such surface waves, which may

not be fully accurate and requires further study. In addition, although this study

examined transmission of shear waves through the solid sample, the insight gained

implies that a backward propagating Scholte-Stoneley wave generated for a certain

frequency on a periodically corrugated surface may result in a backward shift for that

frequency in all fields generated. Thus, ultrasonic backward beam displacements are

not only a reflection phenomenon, but may also be observed in transmission.
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CHAPTER V

AN EXPERIMENTAL STUDY OF DIFFRACTION OF

BULK ULTRASONIC WAVES ON FINITE-SIZE

PHONONIC CRYSTALS

5.1 Introduction and motivation

As mentioned in the introductory chapter of this thesis, research interest in sonic and

phononic crystals [3, 112] has increased substantially within the last two decades.

These artificial crystals are inhomogeneous materials that consist of periodic arrange-

ments of inclusions embedded within a host material, and they are the acoustical

analogs of photonic crystals in optics [113].

The interest in phononic crystals is mainly due to unique properties that stem

from their periodicity, including the existence of bands of frequencies that are unable

to propagate through the structure, usually referred to as band-gaps [114, 115]. This

phenomenon is caused by the destructive interference of waves that occurs when they

are multiply scattered from the periodic inclusions of the crystal [116]. Band-gaps

may occur only for certain propagation directions through the crystal or they can

be directionally independent. If the latter is true for a certain band-gap, it may be

referred to as a complete or absolute band-gap [117]. The term absolute has also

been used to refer to a band-gap that occurs for both longitudinal and shear wave

polarizations, especially for crystals that consist of solid inclusions within a solid

matrix [118, 119].

Several factors influence the presentation of band-gap phenomena. In general, it

is necessary that the wavelength of the incident sound be on the order of the crystal

periodicity or lattice constant [120]. Another influence is the filling fraction [121], or
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the relative size of the inclusions with respect to the lattice constant. Perhaps the

most important factor, however, is the impedance mismatch between the constituent

materials of the crystal. Many studies have already been performed in order to

determine the width and location of band-gaps in various types of phononic crystals,

and the results have revealed that the contrasts in the acoustic velocities (elastic

constants) and mass densities of the crystal materials are of critical importance [117,

122].

Phononic crystals that consist of cylindrical inclusions in a host material like

the crystal that will be examined in this chapter are considered two-dimensional

(2D) since their periodicity exists in two directions. One-dimensional (1D) crystals

can also exist as a series of material layers (superlattices) [123, 124], and three-

dimensional (3D) crystals can exist as an array of spherical scatterers within a host

medium [3]. For the 2D and 3D crystals, it is not required that the scatterers consist

of cylinders or spheres, but these geometries are beneficial since they result in more

isotropic scattering within the crystal than other geometries. Phononic crystals can be

classified not only according to the number of dimensions in which they are periodic,

but also according to the materials used in their construction. The crystal that will be

examined in this chapter consists of solid cylinders in a fluid, but other possibilities

include fluid-filled holes within a solid [125, 126], solid inclusions within another

solid [127, 128, 129], etc. Since the geometry of phononic crystals can be scaled up or

down (with a resulting change in the applicable frequency regime), physical concepts

can be demonstrated with structures that exist on a relatively large scale, and then

much smaller phononic crystals can be obtained through microfabrication techniques.

Potential applications for phononic crystals can be found in acoustic filtering and

novel transducer designs [130, 131] as well as in the creation of vibrationless envi-

ronments [132]. The introduction of line defects in phononic crystals can result in
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bent waveguides for frequencies within a complete band-gap [130]. For very high fre-

quencies, goals include the development of devices that incorporate microelectronics

and phononic crystals as well as structures that exhibit simultaneous phononic and

photonic band gaps [133].

However, in order to bridge the gap between fundamental research of phononic

crystals and the actual design of devices that may contain such crystals, a thorough

understanding of effects that occur due to the crystal’s finite size is required. It is

with this aim that this chapter will present an experimental study of the diffraction

that occurs on the surfaces of a 2D phononic crystal consisting of a triangular lattice

arrangement of steel cylinders in water.

Prior studies have observed diffraction of surface acoustic waves (SAW) on finite-

size phononic crystals [134] using heterodyne laser interferometry. Since this diffrac-

tion of incident surface waves has been observed, it is expected that diffraction will

also be observed for bulk acoustic waves and that the surface of the crystal may

behave as a diffraction grating for the bulk waves. Diffraction due to Bragg scatter-

ing from the cylinders should be expected, in both the incident half-space (reflected

waves) and the exit half-space (transmitted waves). However, in the band-gap fre-

quency ranges, transmitted waves are effectively suppressed and therefore enhanced

diffraction efficiency for reflected waves in these frequency ranges might be observable.

The aim of the experiments that will be presented in this chapter is to quantita-

tively measure the diffraction of bulk ultrasonic waves that occurs in reflection from

the surfaces of a 2D phononic crystal consisting of steel cylinders in water. The crystal

itself was fabricated in V. Laude’s laboratory at FEMTO-ST in Besançon, France,

which is an associate member of the GT-CNRS UMI 2958. Through-transmission

and diffraction measurements were then carried out using the polar/C-scan equip-

ment (that was also used for the experiments in Chapters 3 and 4 in this thesis) at

GT-Lorraine in Metz, France.
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Figure 5.1: Photograph of the 2D phononic crystal.

This chapter is organized into the following sections. First, a description of the

phononic crystal will be presented and then the experiments that were conducted will

be explained. The experimental results will then be discussed, and the final section

will contain conclusions and recommendations for future experiments.

5.2 Description of the phononic crystal

The phononic crystal under study consists of a triangular lattice arrangement of 575

steel cylinders, each having a diameter of 1.2 mm and a length of 150 mm. A photo

of the crystal is shown in Figure 5.1, and additional studies on this crystal can be

found in Ref. [135].

The cylinders were aligned using two supporting plates that had been machined

to have periodic arrays of holes and Figure 5.2 shows the triangular lattice pattern of

the cylinders as well as the directions of highest symmetry, which will be referred to in

later sections as ΓM and ΓK. The lattice constant, which for this lattice arrangement

is the distance between the centers of any two adjacent cylinders, was measured to

be 1.4 mm. The matrix of the crystal is the water that surrounds the cylinders when

the crystal is submerged in water.

Assuming a sound speed in water of 1500 m/s (the exact speed measured will
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Figure 5.2: Diagram of the triangular lattice pattern of the crystal along with
directions of highest symmetry.

be presented in the following section), incident ultrasound with a wavelength corre-

sponding to the lattice constant would have a frequency on the order of 1 MHz. Some

researchers may prefer to use the term sonic crystal or the general term acoustic band-

gap material rather than phononic crystal when the lattice constant is on the order

of the wavelengths of audible or ultrasonic frequencies, or when the host medium for

the scatterers is a fluid. However, since the term phononic crystal finds widespread

general use in the literature even for larger-scale crystals, this naming convention will

be maintained in this chapter.

Steel and water were chosen as the constituent materials of the crystal due to the

large contrast in their densities and elastic constants, as this has been shown to be

an effective approach for the formation of band-gaps in other studies on phononic

crystals [130, 136]. In order to determine whether enhanced diffraction can be ob-

served for frequencies that lie within a band-gap, it was first necessary to determine

the band-gap frequency ranges using through-transmission experiments.

5.3 Description of experiments

Two types of experiments have been performed on the crystal: through-transmission

measurements and then diffraction measurements. Both types of experiments required

a pair of transducers: one transducer to function as the emitter and the other as the

receiver. The transducers employed were commercially available ultrasonic immersion

transducers. In order to increase the frequency range under study, two pairs were used.
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Figure 5.3: Schematic for through-transmission experiments.

Figure 5.4: Photo of through-transmission experimental setup underwater.

The first pair had a nominal center frequency of 1 MHz (Valpey-Fisher IS0104GP),

and the second had a nominal center frequency of 2.25 MHz (Technisonics ISL-0203-

SP). The beam width of all the transducers was approximately 10 mm.

5.3.1 Through-transmission

For the through-transmission measurements, the transducers were mounted at normal

incidence on opposite sides of the crystal in the manner shown in Figure 5.3. (In

Figure 5.3, the transducers are shown to be aligned with the ΓM direction of the

crystal, but the transducers were also directed along the ΓK direction by rotating

the crystal 90◦.) The transducers were fixed normal to the crystal surfaces with the

aid of the transducer mounting fork that was part of the polar/C-scan equipment.

A photo of the experimental setup underwater that shows the crystal along with the

transducers in the fork is shown in Figure 5.4.

The distances between each transducer face and the crystal surfaces (rounded to
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Table 5.1: Distances between transducers and crystal surfaces.

1 MHz pair 2.25 MHz pair
ΓM direction 30 mm 26 mm
ΓK direction 28 mm 23 mm

the nearest millimeter) are shown in Table 5.1 for both transducer pairs and both crys-

tal orientation directions. The distances are not identical due to different transducer

case geometry for each pair and due to the fact that the crystal was not perfectly

square. The through-transmission measurements were taken for the region of the

crystal between the two support plates, in order to better guarantee the periodicity

of the cylinders of the crystal.

Multiple examples of this type of through-transmission measurement have been

reported in the phononic crystal literature, and most of these have been performed

using pulsed ultrasound [126, 136, 137, 138]. In order to determine attenuation (or

transmission) as a function of frequency, and thus the location and size of band-gaps,

the general procedure is to perform Fourier analysis on the pulses that are received

after they have propagated through the crystal. Most of the examples of through-

transmission experiments found in the literature employ the Fast Fourier Transform

(FFT) for this analysis. However, the use of the Short Time Fourier Transform

(STFT), which presents the received signal in the form of a spectrogram, can reveal

information on group velocity irregularities as a function of frequency in a straight-

forward manner.

Because the behavior of phononic crystals is inherently frequency-dependent, it is

desirable to have transducers with as wide a bandwidth as possible. Therefore, the

through-transmission measurements presented here have been performed not only

with pulses (sent from the pulser-receiver that was integrated with the polar/C-scan

equipment) but also with a swept frequency technique where a “long” signal consisting
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of a linear sweep in frequency over time was sent to the emitting transducer from a

function generator. Results from the through-transmission of both the pulsed and

swept ultrasound will be presented in the following section.

5.3.2 Diffraction

For the diffraction experiments, the emitting transducer was mounted so that it was

stationary and normally incident on the crystal surface. The distance between the

emitter and the crystal surface was approximately 74 mm but varied by a few mil-

limeters depending on the transducer pair and the crystal orientation. The receiving

transducer was then mounted in upper portion of the rotating fork of the polar/C-

scan robot (the bottom section of the fork was removed) so that the diffracted field

could be scanned as shown in Figure 5.5. The distances between the receiving trans-

ducer and the crystal surface were 45 mm and 40.6 mm for the 1 MHz and 2.25 MHz

transducer pairs, respectively. The receiver was aimed at the point on the crystal

surface where the emitter was incident, and the center of rotation of the receiver was

always set to be even with the crystal surface.

In Figure 5.5, the emitting transducer is shown directed along the ΓM direction

of the crystal but in a manner identical to that of the through-transmission measure-

ments, the crystal could be rotated 90◦ so that the emitter would be directed along

the ΓK direction. Figure 5.6 shows the setup for the diffraction measurements along

with the emitter before it was placed underwater.

Experiments such as these to measure the diffracted fields generated external to

the surfaces of phononic crystals are unique in the phononic crystal literature due to

the special type of scanning robot that is required. Angular scans were performed

so that waveforms could be captured at many positions within the diffracted field.

Frequency analysis was then performed in order to determine the frequencies present

in the field as a function of angle. The angular range for all the scans was 40◦, from
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Figure 5.5: Schematic for diffraction measurements.

Figure 5.6: Photo of the setup for the diffraction measurements (including emitter)
before being placed underwater.
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20◦ to 60◦ with respect to the normal to the crystal surface. The angular resolution

for the waveform acquisition was 0.1◦.

The Fourier analysis required to analyze these diffraction measurements was sim-

ilar in nature to that necessary to interpret the through-transmission experimental

results. The only difference was that the analysis had to be performed on all the

waveforms captured, and the resulting frequencies were then plotted as a function of

angle in the form of angular spectrograms.

A large quantity of data must be acquired in order to capture a diffracted ul-

trasonic field. Since the use of swept ultrasound was prohibitively costly in terms

of computer memory, pulsed ultrasound was deemed much more practical for these

diffraction measurements. Therefore, the results in the following section will consist

of those generated by pulsed ultrasound only.

5.4 Experimental results

Before conducting the through-transmission and diffraction measurements, it was

necessary to characterize the spectra of the transducer pairs using both pulsed and

swept ultrasound.

5.4.1 Transducer characterization

5.4.1.1 Characterization using pulsed ultrasound

To generate the pulsed ultrasound, the transducers were connected to the polar/C-

scan equipment with the integrated JSR pulser/receiver. The pulser/receiver was

triggered by the Winspect software that was installed on the PC that was also inte-

grated with the system. This configuration of the polar/C-scan equipment has been

employed in the work of Chapters 3 and 4 but a diagram is also included here in

Figure 5.7 in order to provide a contrast with the configuration for swept ultrasound

that is shown in Figure 5.9.

The frequency spectra obtained from pulsed transmission between the transducer
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Figure 5.7: Polar/C-scan equipment configured for pulsed ultrasound. The letters
E and R denote the emitter and receiver, respectively.

pairs are shown in Figure 5.8. These spectra were obtained from time-waveforms that

were averaged over 16 received waveforms, and for each transducer pair, 20000 points

were used in an FFT that was zero-padded to 32000 points. These time-windows,

along with the sampling frequency of 200 MHz resulted in a frequency-distinguishing

resolution of 0.01 MHz (equal to the sampling frequency divided by the number of

samples) and an FFT bin resolution of 0.006 25 MHz.

Since the through-transmission measurements were to be performed with both

transducers mounted in the fork that was part of the polar/C-scan equipment, the

transducer characterization was performed with the transducers in the same posi-

tions, only without the presence of the crystal. The transducers had slightly different

lengths, so when they were placed in the fork, the distance between the two was

90.2 mm for the 1 MHz transducer pair and 81 mm for the 2.25 MHz transducer pair.

Based on this geometry, the time-of-flight between the transducers resulted in a cal-

culated sound velocity in water, vliq, of 1456.0 m/s based on the measurement from

the 1 MHz transducer pair and 1459.5 m/s from the 2.25 MHz transducer pair.The
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Figure 5.8: Frequency spectra of pulsed transmission between tranducer pairs.
(Left) 1 MHz transducers. (Right) 2.25 MHz transducers.

difference between the two measurements can easily be attributed to uncertainties in

the measurements of the transducer distances and times-of-flight, or possibly tem-

perature fluctuations in the water tank between measurements. Due to the different

characteristics of the transducer pairs, it was necessary to acquire the time-waveform

for the 1 MHz transducer pair with 20 dB gain and the 2.25 MHz transducer pair with

0 dB gain.

5.4.1.2 Characterization using swept ultrasound

Using a function generator (Stanford Research Systems 30 MHz Synthesized Function

Generator DS345), linear frequency sweeps were sent directly to the emitting trans-

ducers. The receiving transducers were still connected to the JSR pulser/receiver

through the relays, and the trigger for the sweep was sent to the function generator

from the Acquisition Logic (AL) data acquisition (DAQ) card from the Winspect

software. This configuration of the polar/C-scan equipment is shown in Figure 5.9.

The sweeps were programmed so that they would begin upon the trigger sent

through the AL card from the Winspect software, and when the sweep was com-

pleted the output from the function generator was programmed to return to the start

frequency. The sweep performed for the 1 MHz transducers ranged from 0.5 MHz to

1.7 MHz with a sweep rate of 1 ms. For the 2.25 MHz transducers, the sweep was
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Figure 5.9: Polar/C-scan equipment configured for swept ultrasound. The letters
E and R denote the emitter and receiver, respectively.

performed between 1.4 MHz and 4.0 MHz, also with a sweep rate of 1 kHz. The start

and stop frequencies for the sweeping technique were set beyond the range of frequen-

cies detected in the pulsed transmission spectra in an effort to increase the range of

transducer response. The sweep rate is the reciprocal of the sweep duration, so the

duration was equal to 1 ms. This was the fastest sweep possible with the function

generator, and it was advantageous to use a fast sweep in order to reduce the number

of reflections that would occur between the transducers during the sweep as well as

to reduce the amount of data to be acquired. Some reflections could not be avoided

and they can be seen as faint lines parallel to the sweep spectra, only shifted in time.

At the sampling rate used throughout the experimental work in this thesis (200 MHz),

a 1 ms sweep results in the acquisition of 200000 data points. Therefore, given the

limits of the PC RAM, the DAQ card, and the Winspect software, no averaging of the

swept waveforms was possible. Figure 5.10 shows the classical spectrograms obtained

using Short-Time Fourier Transforms (STFT) for the frequency sweeps between the

1 MHz and 2.25 MHz transducer pairs. Just as in the case of pulsed ultrasound, the

signal from the 1 MHz signal was obtained with 20 dB gain and 0 dB gain from the
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Figure 5.10: Spectrograms (STFT) of swept ultrasound between tranducer pairs.
(Left) 1 MHz transducers. (Right) 2.25 MHz transducers.

2.25 MHz transducer pair. The STFTs were performed with Hamming windows con-

sisting of 10000 points (resulting in a frequency-distinguishing resolution of 0.02 MHz)

with overlaps of 8000 points. Each time-window was zero-padded to 32000 points so

the FFT bin resolution for each time-window was 0.006 25 MHz. Unfortunately, inher-

ent to the STFT is a trade-off between time resolution and frequency-distinguishing

resolution, and the STFT parameters were chosen with consideration of this trade-off.

In Figure 5.10 it can be seen that the swept frequency technique slightly increased the

ranges of the transducers’ responses, but not to a significant degree. Although there

was no apparent advantage to using the swept ultrasound technique at the conclusion

of the transducer characterization, a distinct advantage became apparent when was

it was used to measure the transmission through the crystal.

5.4.2 Through-transmission results

First, through-transmission measurements were taken using pulsed ultrasound. All

spectra have been normalized with respect to the spectra obtained in the absence of

the crystal (that were shown in Figure 5.8).

Figure 5.11 shows the spectra and spectrograms that were obtained from pulsed

ultrasound in through-transmission in the ΓM direction. The signals from both trans-

ducer pairs were obtained using 40 dB gain and 16 time-waveform averages. The
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spectra on the left of the figure were obtained using an FFT with 27700 points (for

a frequency-distinguishing resolution equal to 0.007 MHz). The spectrograms on the

right of the figure were obtained with a STFT having time-windows of 4000 point

length (for a frequency-distinguishing resolution equal to 0.05 MHz) with an over-

lap of 3600 points to obtain better time resolution. Each FFT that was performed,

including those performed for each time-window in the STFT, were zero-padded to

32000 points for a bin resolution equal to 0.006 25 MHz.

Good agreement exists between the FFT and STFT results, which is as expected

since they come from the same time-waveform data. A lack of transmission can be

observed between 0.9 MHz and 1.1 MHz as well as above 1.4 MHz. Drops in trans-

mission also occur for frequencies between 1.8 MHz and 2.0 MHz and for those just

above 2.2 MHz. These ranges of reduced transmission are all defined by dotted lines

and shaded regions in Figure 5.11.

The through-transmission experiments in the ΓM direction were then repeated

with the swept ultrasound technique, and the resulting spectrograms are shown in

Figure 5.12. The signals from both the transducer pairs were obtained with 40 dB

gain, and the STFT was performed with Hamming windows of 10000 points (for

a frequency-distinguishing resolution of 0.02 MHz) that were zero-padded to 32000

points. For the 1 MHz frequency range, the results are in good agreement with the

pulsed measurement: a drop in transmission is seen between 0.9 MHz and 1.1 MHz

as well as above 1.4 MHz. Some agreement is also seen with the pulsed measurement

for the 2.25 MHz transducer results: there is a drop in transmission for frequencies

between 1.8 MHz and 2.0 MHz and another drop beginning around 2.2 MHz. However,

frequencies in the vicinity of 2.6 MHz to 2.8 MHz, which do not arrive in the pulsed

measurement are in fact observed with the use of swept ultrasound. These frequencies,

however, experience a delay in their arrival time, and this is indicated by the horizontal

shift from the line of the frequency sweep. The time delay that can be measured from
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Figure 5.11: Through-transmission results from pulsed ultrasound in the ΓM direc-
tion. (Left) Spectra obtained using the FFT. (Right) Spectrograms obtained using
the STFT.
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Figure 5.12: Through-transmission results from swept ultrasound in the ΓM direc-
tion. (Left) 1 MHz range. (Right) 2.25 MHz range.

the figure is approximately 170 µs.

The discrepancies between the pulsed and swept results can be seen more clearly

in Figure 5.13 where the pulsed results are plotted on the left side of the figure, and

the swept results (with frequency axes matching those of the pulsed ultrasound) are

plotted on the right side. The frequencies that appear in the 2.25 MHz swept results

that do not appear in the pulsed results are circled in the figure. Because only 200 µs

of data was collected with the pulsed ultrasound, it was not possible to detect these

late arriving frequencies.

Based on the observation of the late arriving frequencies in the swept results,

a longer time window for the pulsed 2.25 MHz transducer pair was then used to

measure the through-transmission (again with 40 dB gain and averaged over 16 time-

waveforms). If only a pulsed technique had been used, the deduction might have been

made that these frequencies are within a band-gap. The resulting spectrogram is

shown in Figure 5.14. On the left of the figure is the STFT that has not been

normalized, and on the right is the same spectrogram but normalized with respect to

the pulsed signal between the transducers without the crystal present. The frequencies

that were detected with the swept ultrasound can in fact be detected with the pulse

but only if the time-window of data acquisition is long enough. The time-window

used to acquire the data for Figure 5.14 was 500 µs long in contrast with the 200 µs
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Figure 5.13: Comparison of pulsed and swept through-transmission results in the
ΓM direction. (Left) Spectra obtained from FFT on pulsed ultrasound. (Right)
Spectra obtained from STFT on swept ultrasound.
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Figure 5.14: Extended spectrogram from 2.25 MHz pulsed ultrasound in through-
transmission in the ΓM direction. (Left) As measured. (Right) Normalized with
respect to spectrum without crystal present.

used in the earlier measurements. The time-delay that can be measured off of these

spectrograms is approximately 180 µs which is in good agreement with the delay

of 170 µs that was observed in the swept ultrasound results. It should be noted

that there is an uncertainty associated with these measurements of the time-delays

taken from spectrograms due to the time-resolutions of the STFTs (which must be

reduced in order to increase the frequency resolution). For the swept ultrasound, the

time-resolution of the spectrogram in Figure 5.12 was 10 µs whereas it was 2 µs for

the spectrogram of the extended pulse through-transmission measurement shown in

Figure 5.14.

After the through-transmission measurements were performed using both pulsed

and swept ultrasound for the ΓM direction, the crystal was rotated and identical

measurements were performed in the ΓK direction of the crystal. Figure 5.15 shows

the FFT and STFT results from pulsed ultrasound in the ΓK direction. Band-gaps

are observed for frequencies below 1.1 MHz, between 1.3 MHz and 1.4 MHz, between

1.8 MHz and 2.0 MHz, and above 2.4 MHz. The band-gap between 1.3 MHz and

1.4 MHz is not easily visible on the STFT results, but this is most likely due to the

very low amplitude of the waveform that successfully propagated through the crystal.

All signals were averaged over 16 received time-waveforms, and the 1 MHz results
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Figure 5.15: Through-transmission results from pulsed ultrasound in the ΓK direc-
tion. (Left) Spectra obtained using the FFT. (Right) Spectrograms obtained using
the STFT.

were obtained using 40 dB gain and the 2.25 MHz were obtained using 26 dB gain.

All time-window lengths for the FFT and STFT were identical to those for the ΓM

direction. The through-transmission measurements for the ΓK direction were then

performed using swept ultrasound, and the results, which are consistent with the

pulsed results in Figure 5.15 are shown in Figure 5.16. Both signals were obtained

with 40 dB gain as in the ΓM swept case and all the same parameters were used for

the STFTs.

There are no time-delays observed in the spectrograms of Figure 5.16 that would

indicate the presence of late arriving frequencies that could be missed by only acquir-

ing 200 µs of pulsed-transmission data. The spectrogram of an additional measure-

ment of the 2.25 MHz through-transmission over a longer time duration revealed no

additional frequency arrivals, in contrast with the case of the ΓM direction.
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Figure 5.16: Through-transmission results from swept ultrasound in the ΓK direc-
tion. (Left) 1 MHz range. (Right) 2.25 MHz range.

In summary, the through-transmission measurements (both pulsed and swept)

showed several band-gap regions in the frequency ranges under study. In addition,

the swept ultrasound technique was shown to reveal a band of frequencies that would

have been assumed to be in a band-gap if only a pulsed technique had been used. In

fact, the swept ultrasound technique can reveal bands of frequencies that may have

slow group velocity, and this should be investigated in the future with theoretical

techniques as well.

After the through-transmission measurements were completed, the measurements

of the diffracted fields generated in reflection from the crystal surfaces were con-

ducted.

5.4.3 Diffraction results

The results obtained from the angular scans of the diffracted fields will now be

presented. After the through-transmission experiments were performed, the lower

portion of the fork on the polar/C-scan equipment was removed and the upper

transducer was connected to the input of the transducer relays (that connect to the

pulser/receiver) so that it could function as the receiver. The emitting transducer

that was mounted stationary to the crystal was connected to the output of the trans-

ducer relays so it would receive the outward traveling pulse from the pulser/receiver.
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Because the aligning plates of the crystal were large relative to the size of the rotating

fork, it was necessary to take the diffraction measurements for a portion of the crystal

that was not between the two plates. Although this allowed the measurement of a

larger angular range than otherwise would have been possible, the ideal region of the

crystal in which to take measurements is between the two alignment plates.

All results presented here were obtained with pulsed ultrasound (averaged over

16 time-waveforms) and have been normalized with respect to the pulsed transmis-

sion spectra obtained from the transducer pairs without the presence of the crystal.

The 1 MHz and 2.25 MHz signals were obtained with 10 dB gain and 26 dB gain,

respectively. All the FFTs performed used at least 20000 points for a frequency-

distinguishing resolution of 0.01 MHz. Figure 5.18 shows the angular spectrograms

(frequency detected as a function of angle within the field) created from the scans of

the diffracted fields for incidence in both the ΓM and ΓK directions. The left side of

the figure shows the results of the frequency analysis for the diffraction that occurs

when the emitter was directed along the ΓM direction and the right side is reserved

for the ΓK direction. The frequencies that were detected appear to follow Bragg

scattering curves associated with the periodicity of the first layer of cylinders on the

crystal surface.

In order to confirm this observation, dotted lines corresponding to the theoretical

Bragg scattering curves were superimposed on Figure 5.18. The relation to theo-

retically predict the angle of the diffracted orders as a function of frequency can be

derived from the classical diffraction grating equation, a form of which is shown in

Equation 5.1, when the angle of incidence θi is equal to 0. In this equation, θm is equal

to the angle of diffraction for diffraction order m (and for the frequency range and

periodicity being considered, m would be equal to 1 or 2) of a particular frequency

having wavelength λ. The periodicity of the first layer of cylinders that the incident

sound encounters is Λ.
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Figure 5.17: Periodicities of the phononic crystal surfaces.

sin θm = sin θi +
mλ

Λ
(5.1)

Therefore, the frequency and angle pairs of the theoretical curves can be found

from Equation 5.2, where the wavelength λ is expressed in terms of the sound speed

in the surrounding water vliq and frequency f . The value of vliq that was used in the

theoretical computations was 1459.5 m/s.

sin θm =
vliqm

fΛ
(5.2)

The values of Λ change according to the direction of incidence, as shown in Fig-

ure 5.17. For incidence in the ΓM direction, Λ corresponds to a value of 1.4 mm,

but for incidence in the ΓK direction, the periodicity of the first layer of cylinders is

no longer equal to the distance between the centers of two adjacent cylinders. It is

instead equal to 1.4
√

3 or 2.42 mm.

For the ΓM direction, the 1st order Bragg scattering curve nicely follows the ob-

served diffraction detected with the 1 MHz transducer pair, and both the 1st and

2nd order Bragg scattering curves are visible in the field detected with the 2.25 MHz

transducer pair. In particular, there is continuity of the 1st order curve between the
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Figure 5.18: Diffraction results for both the ΓM and ΓK directions. All results
obtained with pulsed ultrasound. Bragg scattering curves shown in dotted lines.
(Left) ΓM direction. (Right) ΓK direction.
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two frequency ranges. The diffraction does contain some disturbances but it is essen-

tially continuous, so it cannot be said that enhanced diffraction for frequencies in the

experimentally-determined band-gap regions has been observed.

For the ΓK direction, the 1st and 2nd order Bragg scattering curves are visible

in the 1 MHz range and both the curves continue into the 2.25 MHz range, but only

the 2nd order diffraction is easily visible due to the frequency and angle ranges mea-

sured. Much like the ΓM direction, enhanced diffraction for the frequency ranges

of the band-gaps determined experimentally through the through-transmission mea-

surements can’t be clearly observed. However, the Bragg curves do exhibit some

disturbance around 0.9 MHz and again between 1.2 MHz and 1.3 MHz which might

be related to these frequencies being near the edges of band-gaps. Some disturbance

is also seen at 2 MHz and 2.4 MHz, although it is too early to consider these related

to band-gap phenomena.

Because the theoretical Bragg scattering curves closely follow the experimentally

detected diffracted frequencies in the incident half-space of the crystal, it can be said

that the surface of the crystal is functioning as an acoustic diffraction grating.

5.5 Conclusions

5.5.1 Summary of results

This chapter has presented through-transmission and diffraction experiments of bulk

ultrasonic waves on a 2D phononic crystal consisting of a triangular lattice of steel

cylinders in water. The through-transmission experiments were performed with both

pulsed and swept ultrasound. The pulsed measurements were processed using both

the FFT and STFT whereas the swept results were analyzed using the STFT. Al-

though the use of the FFT is entirely possible for the swept ultrasound, an extremely

large number of data points is required, and this can result in a great deal of “noise”

appearing in the spectrum.
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The results of the pulsed and swept techniques were consistent, with the exception

of late-arriving frequencies that were more easily detected with the swept ultrasound

technique. Frequencies experiencing time-delays of this nature may be subject to slow

group velocities in the crystal, and this is certainly a matter for future theoretical

investigation. The swept ultrasound may detect these frequencies when they might

otherwise be missed in a pulsed measurement, and this has implications for the study

of band-gap phenomena in phononic crystals using pulsed ultrasound.

Diffraction measurements were then performed using pulsed ultrasound. The

diffraction that was observed to occur on the surface in the incident half-space was

followed closely by theoretical Bragg scattering curves. Some discontinuities and re-

gions of higher amplitude of the diffraction were observed, and these might be due

to the location of these frequencies with respect to the band-gaps for the crystal but

this requires additional research.

It is clear, however, that the surfaces of the phononic crystal can be said to

function as an acoustic diffraction gratings. This has implications for the application

of phononic crystals in actual devices, since any bulk wave incident upon the crystal

will diffract on the surface and thus lose energy and create a diffracted field that could

span the entire half-space.

5.5.2 Suggestions for future work

One issue that may have contributed to the lack of clarity in the diffraction results

is the fact that the crystal aligning plates had not originally been designed to ac-

commodate diffraction measurements with the polar/C-scan equipment. Therefore,

it was impossible to access the diffracted field generated by the portion of the crystal

between the support plates, and the periodicity of the cylinders may have been less

than perfect. One area for future research is the sensitivity of band-gap phenomena
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to imperfections in the periodicity of phononic crystals. This may be less of a con-

cern for crystals that can be manufactured using microfabrication techniques or for

crystals on the acoustic wavelength scale (since hopefully the periodicities involved

would be much larger than potential imperfections in the lattice spacing), it may be

an issue for crystals that operate in the ultrasonic regime.

Another possible change that could be made for future diffraction experiments

involves the size of the transducers used as the emitter and the receiver. The hous-

ing or case diameter of the transducers used in these experiments was equal to 1/2

inch (12.7 mm), and they had an element size just slightly smaller than the hous-

ing. Therefore, the incident beam covered a relatively small number of periods on

the crystal, especially for incidence in the ΓK direction. Since diffraction depends

on multiple “facets” of the surface being illuminated with incident sound, the beam

width clearly plays an important role in the observation of diffraction phenomena.

Therefore, future diffraction experiments should employ larger diameter transducers,

especially for the emitter.

In terms of the receiver, the transducers that were employed in these experiments

actually have the advantage of being very sensitive to sound that is normally incident

upon their surfaces but much less sensitive to sound that is not normally incident

upon them. Therefore, they are well-suited to measure diffracted fields as a function

of angle since they detect sound that is propagating in the direction along which

the transducer is directed. It might be interesting to use a needle hydrophone as a

receiver since its small size would reduce the effect of its presence in the diffracted

field.

Finally, some of the disturbances in the diffraction that were observed in these

experiments may have been due to beam edge effects. For example, some beam

spreading has been observed in Schlieren images of reflection on periodically grooved

surfaces [74]. For the experiments presented in this chapter, the angular scans for the
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diffraction measurements were performed at a fixed distance from the crystal surfaces

due to the geometric constraints of the transducer mounting fork on the polar/C-

scan equipment. One option for future experiments is to change the geometry of the

polar/C-scan equipment (essentially construct another mounting fork) to increase

the distance between the crystal surface and the receiver so that some of this beam

spreading would sufficiently attenuate before reaching the receiving transducer.
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CHAPTER VI

CONCLUDING SUMMARY

The objective of the research presented in this thesis has been to provide new nu-

merical and experimental tools that are capable of capturing important features that

occur due to the diffraction of ultrasound on periodic solid surfaces. Although this

interaction between ultrasound and periodic surfaces has many different potential

areas of exploration, this thesis has focused on four main areas including

• the use of the Rayleigh-Fourier method for the simulation of reflection spectra

from periodic surfaces,

• the ultrasonic characterization of imperfectly periodic surfaces,

• the analysis of the backward beam displacement which occurs due to ultrasonic

diffraction, and

• the study of diffracted bulk waves on a 2D phononic crystal.

This brief chapter will summarize the scientific contributions made in these four areas

and present opportunities that exist for future work.

First, in Chapter 2, simulations employing the Rayleigh-Fourier(R-F) method

have been derived and used to study Wood anomalies in diffracted reflection spectra

in order to identify frequencies at which surface and/or plate waves may be generated

due to diffraction. Four new cases of structures containing one or more periodic

surfaces were treated with the method. The first case studied was that of a fluid-

loaded-plate with both sides periodic, and it was discovered that the reflection spectra

this structure differs only somewhat from that obtained from a plate with only side

periodic (when the incident wave originates in the fluid on the periodic side of the
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plate). It is likely that differences in the spectra are due to different Lamb wave

generation on the two types of plates. When both sides of a plate are periodic, a

phase difference between the two surface profiles may exist. In this thesis, the cases

of symmetric and antisymmetric plates were studied, and the differences that exist

between these spectra are also likely due to frequencies at which or efficiency with

which Lamb waves are generated in these plates. In addition, the assumption was

made that the periodicities of the two surfaces were identical. A discussion was

presented on the feasibility of incorporating two surfaces with different periodicities

into the Rayleigh-Fourier method, and this is an area in which future work with the

Rayleigh-Fourier method might be conducted.

The second case studied in Chapter 2 was that of two solid surfaces in perfect

contact with a periodic interface between them. The R-F simulations showed the

existence of a Wood anomaly at the frequency for which a 1st order Stoneley wave may

be generated along a steel-titanium interface. Based on these results, the examination

of Wood anomalies determined using the Rayleigh-Fourier method may be a technique

for the prediction of Stoneley wave generation.

The third and fourth cases treated with the R-F method were those of fluid-loaded

bilayered plates (i.e. plates consisting of two layers of solid materials). The first bi-

layered plate considered was smooth over its exterior surfaces but with an interior

periodic interface. The reflection spectra revealed that plate resonances dominated

over diffraction effects. The second bilayered plate had all of its interfaces periodic,

and it was shown that the diffraction occurring due to periodicities present on the ex-

ternal plate surfaces dominated over the diffraction occurring at the interface between

the two solids of the plate.

Recommendations for future work include the comparison of simulation with ex-

periment. Because current manufacturing techniques at the length scale which would

be appropriate for ultrasonic frequencies involves microfabrication techniques, it may
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be worthwhile to extend the use of the Rayleigh-Fourier method to anisotropic mate-

rials (single crystal silicon for example) so that any samples manufactured could be

compared with experiment.

However, since the Rayleigh-Fourier method can really only be applied to surfaces

which possess a perfect periodicity, the next area studied was the use of ultrasonic

diffraction in the examination of surfaces that have imperfect periodicities, and this

was presented in Chapter 3. Two techniques for the ultrasonic characterization of

a thin plate with regions of imperfectly periodic surface textures were compared. A

normal incidence pulse-echo technique, where anomalies in the reflection spectra may

be a function of surface periodicity and height, was compared with a backscattering

(or Bragg scattering) technique, where the backscattered -1st order diffraction may be

measured. The anomalies detected by the pulse-echo technique were most likely due

to Lamb wave generation on the plate, and the backscattering method was found to

be more promising, especially for the determination of surface periodicity. The Bragg

curves that were obtained from the backscattering results show at least a qualitative

difference for profiles with different roughness heights. Therefore, in situations where

an optical inspection of a periodic surface may not be possible, ultrasound can be

used to give some indication of periodic surface parameters.

One possibility for future work in this area includes the study of the same tech-

niques on a thick solid with the same type of surface textures. It is important to

study this case so that the diffraction occurring on the surface can be isolated from

the Lamb wave generation. Of course, the long-standing search to quantitatively

characterize a periodic surface’s profile height with an experimentally measurable

quantity remains. This problem remains to this day due to the very complex nature

of quantifying diffraction efficiency on periodic surfaces.

Because the examination of surfaces like those examined in Chapter 3 often em-

ploys bounded beams, it is very important to understand diffraction effects on periodic
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surfaces which are sensitive to beam width, such as the backward beam displacement.

This phenomenon was studied in Chapter 4. Until now, the backward beam displace-

ment had only ever been observed (1) qualitatively using schlieren imaging, (2) at one

frequency and angle of incidence (6 MHz at 22.5◦), and (3) in reflection. However,

it has now been quantitatively shown (through the use of immersion transducers)

that the ultrasonic backward beam displacement exists at multiple frequency and

incident angle combinations and in transmission as well as reflection. This has im-

plications whenever a bounded beam is used as part of an inspection technique for a

periodic surface. A definitive link between the backward displacement and backward

Scholte-Stoneley wave generation has now also been shown. Possibilities for future

work include simulation and measurement of the magnitude of the beam shift as a

function of frequency, angle, and beam width.

Finally, since much of the current interest in periodic surfaces is being driven by

the study of phononic crystals, a study on the diffraction that occurs on the sur-

faces of a two-dimensional crystal was presented in Chapter 5. Many studies have

addressed phononic crystals under the assumption that they are of infinite size. How-

ever, if phononic crystals are ever to be successfully implemented in actual devices,

the diffraction that will occur on their exterior surfaces must be taken into account.

It has now been shown that bulk ultrasonic waves diffract on the exterior surfaces of a

2D phononic crystal much as they would on a solid periodic surface (diffraction grat-

ing). It is hypothesized that enhanced diffraction may be observable for frequencies

within the crystal’s band-gap. Although diffraction following Bragg curves was clearly

observed, it is recommended that additional diffraction experiments be performed be-

cause it was found that the use of a immersion transducer (which has the advantage

of being very directionally dependent) with a relatively large face size to measure the

diffracted field does not yield the best resolution (in terms of frequency as a function

of position within the diffracted field) that might be obtained, for example, with a
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needle hydrophone. In addition, it is recommended that additional experiments on

diffraction on phononic crystals employ larger transducers as emitters. However, it

is unknown at this time how diffraction on the surface of phononic crystals may be

affected by beam width, and this is another area for future investigation.

One particularly interesting but accidental discovery occurred with the comparison

of pulsed and swept ultrasound for the measurement of the crystal band-gaps in trans-

mission. Most experimental studies on phononic crystals employ pulsed ultrasound

and then use Fourier analysis to determine which frequencies are not transmitted

through the crystal. However, it has now been shown that if a sufficiently long time

window of transmission data is not collected, it may be possible to declare certain

frequencies as belonging to a band-gap, when in fact, they may just be experiencing

slow group velocity. This is a very important opportunity for future work, as it has

implications regarding how experimental studies on phononic crystals should be con-

ducted so that they can be accurately compared to the band-structures computed by

theoreticians.

It is expected that research interest in acoustic and elastic wave interaction with

periodic surfaces and structures such as phononic crystals will continue in the years

to come. The research presented in this thesis has made distinct contributions within

this broad field, in the study of diffraction in the ultrasonic frequency regime in

particular. The results and suggestions for future work presented here should help

scientists and engineers as they continue to develop advanced NDE techniques and

devices that incorporate periodic structures.
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APPENDIX A

DERIVATION OF BOUNDARY CONDITIONS FOR A

FLUID-LOADED PLATE WITH ONE SIDE PERIODIC

This appendix contains the derivation of the boundary condition expressions for the

case of a fluid-loaded plate that has one periodically corrugated side. A diagram

of the possible incident waves along with the diffracted wave series is shown in Fig-

ure A.1. The three media can be characterized by their densities as well as their

Lamé constants. The bulk wave speeds are a function of these parameters, and the

notation used for these quantities is shown in Table A.1. The second Lamé constant

µ is equal to 0 for the two fluid media since they cannot support shear stress, and

the only bulk waves possible are longitudinal. For the solid medium, the subscripts

d and s are used to indicate the longitudinal and shear wave speeds, respectively.

The boundary conditions derived here will eventually form the matrix [A] in the

linear system [A] ~x = ~b. The vector ~b will contain information regarding the inci-

dent wave and the vector ~x will contain the unknown coefficients for the diffracted

wave series. Although several possibilities for incident waves are shown in Figure A,

the MATLAB code that will be written to perform the ~x = [A]−1~b calculation will

accomodate only one incident wave.

Table A.1: Notation for media properties.

Density Lamé constants Bulk wave speed(s)

Upper fluid (medium 1) ρ1 λ1 v

Solid plate (medium 2) ρ2 λ2, µ2 vd, vs

Lower fluid (medium 3) ρ3 λ3 vt
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Figure A.1: Diagram of diffracted fields for a fluid-loaded plate having one side
periodically corrugated. Diffracted wave series shown in dotted lines. Sound rays not
drawn to scale with respect to wave number ω

v
.

This appendix consists of three sections. First, the field equations will be presented

for the three media in the problem. Because the boundary conditions that must

be satisfied at the plate surfaces are in terms of both displacement and stress, the

second section will present preliminary derivations for stress components in the media.

Finally, the third section will present the substitution of the displacement and stress

components into the boundary conditions, the equating of Fourier coefficients, and

the collection of terms per diffracted series.

A.1 Field equations

A.1.1 Field in the upper fluid (medium 1)

The total displacement field in the upper fluid (medium 1) can be expressed as the

sum of the field due to the incident wave and the field due to a series of diffracted

waves.

~u1 = ~uiA + ~uR

The subscript iA is used for the incident longitudinal wave, and the subscript R

represents the diffracted wave series. The letter R is used in convention with prior
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studies [51, 81] that examined diffraction occuring due to waves incident on the pe-

riodic side of the plate. Since this series of waves represented the reflected field, the

letter R was used. Because all the waves in the fluid are longitudinal, they can be

expressed via scalar potentials.

ϕiA = Aince
i(kiAx+KiAz)

ϕR =
∑
ϕRm =

∑
Rme

i(kmx+KRmz)

Therefore, the total displacement field in the upper fluid (medium 1) is given by the

following expression.

~u1 = ∇ϕiA +∇ϕR =


ikiAϕiA

0

iKiAϕiA

+
∑


ikmϕRm

0

iKRmϕRm

 (A.1)

A.1.2 Field in the solid plate (medium 2)

The displacement field in the solid plate (medium 2) can be expressed as the sum

of the fields created by an incident longitudinal or shear wave (if one of these is

present) and four series of diffracted waves. The subscripts iB and iC are used

for the incident longitudinal and shear waves, respectively. The subscripts D and

S represent the diffracted longitudinal and shear wave series, respectively. Because

the plate is of finite thickness, the diffracted wave series that are generated by the

periodic surface will reflect off the smooth side of the plate, and the contribution of

these reflections to the field within the plate must be included, so these are denoted

by the asterisk superscripts.

~u2 = ~uiB + ~uiC + ~uD + ~u∗D + ~uS + ~u∗S

The fields due to longitudinal waves can be expressed via scalar potentials just as

they were in the upper fluid (medium 1). However, fields due to shear waves will be

expressed directly in vector form. The polarization factors Px, Py, and Pz are used
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in the vectors to specify whether the polarization is vertical (Py = 0) or horizontal

(Px = Pz = 0). The scalar potentials for the longitudinal wave fields ~uiB, ~uD, and ~u∗D

are given by the following expressions.

ϕiB = Bince
i(kiBx+KiBz)

ϕD =
∑
ϕDm =

∑
Dme

i(kmx+KDmz)

ϕ∗D =
∑
ϕ∗Dm =

∑
D∗me

i(kmx+K∗
Dmz)

The vectors for the shear wave fields ~uiC , ~uS, and ~u∗S are expressed as

~uiC =


PxCψiC

PyCψiC

PzCψiC

 , ~uS =
∑


PxmψSm

PymψSm

PzmψSm

 , and ~u∗S =
∑


P ∗xmψ

∗
Sm

P ∗ymψ
∗
Sm

P ∗zmψ
∗
Sm



where ψiC = Cince
i(kiCx+KiCz)

ψSm = Sme
i(kmx+KSmz)

ψ∗Sm = S∗me
i(kmx+K∗

Smz).

Combining the longitudinal and shear waves results in

~u2 = ∇ϕiB +


PxCψiC

PyCψiC

PzCψiC

+∇ϕD +∇ϕ∗D +
∑


PxmψSm

PymψSm

PzmψSm

+
∑


P ∗xmψ

∗
Sm

P ∗ymψ
∗
Sm

P ∗zmψ
∗
Sm


which gives the final expression for the field in the solid plate.

~u2 =


ikiBϕiB

0

iKiBϕiB

+


PxCψiC

PyCψiC

PzCψiC

+
∑


ikmϕDm

0

iKDmϕDm

 (A.2)

+
∑


ikmϕ

∗
Dm

0

iK∗Dmϕ
∗
Dm

+
∑


PxmψSm

PymψSm

PzmψSm

+
∑


P ∗xmψ

∗
Sm

P ∗ymψ
∗
Sm

P ∗zmψ
∗
Sm



152



A.1.3 Field in the lower fluid (medium 3)

The total field in the lower fluid (medium 3) can be expressed in a manner identical to

that of the upper fluid. The subscript iE is used to indicate an incident longitudinal

wave and the subscript T is used for the diffracted wave series. All the waves in the

fluid are longitudinal and can therefore be represented via scalar potential functions.

The field equation and the potential functions are shown below.

~u3 = ~uiE + ~uT = ∇ϕiE +∇ϕT =


ikiEϕiE

0

iKiEϕiE

+
∑


ikmϕTm

0

iKTmϕTm

 (A.3)

ϕiE = Eince
i(kiEx+KiEz)

ϕT =
∑
ϕTm =

∑
Tme

i(kmx+KTmz)

A.2 Stress Components

The stress tensor components can now be calculated from the fields in the three

media.

A.2.1 Upper Fluid (medium 1)

The fluid cannot support shear stress (µ1 = 0) so all that remains is the calculation

of the normal stress components which are given in the following expression.

T 1
xx = T 1

zz = λ1
(
∂u1x
∂x

+
∂u1z
∂z

)
= λ1

[
−(kiA)2ϕiA −

∑
(km)2ϕRm − (KiA)2ϕiA −

∑
(KRm)2ϕRm

]
= λ1

[
−
(ω
v

)2

ϕiA +
∑
−
(ω
v

)2

ϕRm

] (A.4)

153



A.2.2 Solid Plate (medium 2)

Because the field within the plate is more complicated than those of the fluid media,

some preliminary expressions are derived before the stress components.

∂u2x
∂x

= − (kiB)2ϕiB + ikiCPxCψiC

−
∑

k2
mϕDm −

∑
k2
mϕ
∗
Dm

+
∑

ikmPxmψSm +
∑

ikmP
∗
xmψ

∗
Sm

∂u2y
∂y

= 0 (A.5)

∂u2z
∂z

= − (KiB)2ϕiB + iKiCPzCψiC

−
∑

(KDm)2ϕDm −
∑

(K∗Dm)2ϕ∗Dm

+
∑

iKSmPzmψSm +
∑

iK∗SmP
∗
zmψ

∗
Sm

Combining these yields the following expression.(
∂u2x
∂x

+
∂u2y
∂y

+
∂u2z
∂z

)
=

[
−
(
ω

vd

)2
]
ϕiB + ikiCPxCψiC + iKiCPzCψiC (A.6)

+
∑[

−
(
ω

vd

)2
]
ϕDm +

∑[
−
(
ω

vd

)2
]
ϕ∗Dm

+
∑

ikmPxmψSm +
∑

iKSmPzmψSm

+
∑

ikmP
∗
xmψ

∗
Sm +

∑
iK∗SmP

∗
zmψ

∗
Sm

Also needed to calculate the stress components are the following derivatives.

∂u2x
∂z

= −kiBKiBϕiB + iKiCPxCψiC

+
∑
−kmKDmϕDm +

∑
−kmK∗Dmϕ∗Dm

+
∑

iKSmPxmψSm +
∑

iK∗SmP
∗
xmψ

∗
Sm

∂u2z
∂x

= −kiBKiBϕiB + ikiCPzCψiC

+
∑
−kmKDmϕDm +

∑
−kmK∗Dmϕ∗Dm

+
∑

ikmPzmψSm +
∑

ikmP
∗
zmψ

∗
Sm

(A.7)
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Then, the stress tensor components are equal to the following three expressions.

T 2
xx = λ2

(
∂u2x
∂x

+
∂u2y
∂y

+
∂u2z
∂z

)
+ 2µ2

(
∂u2x
∂x

)
= λ2

[
−
(
ω

vd

)2

ϕiB + ikiCPxCψiC + iKiCPzCψiC

]

+λ2

[∑
−
(
ω

vd

)2

ϕDm +
∑
−
(
ω

vd

)2

ϕ∗Dm

]
+λ2

[∑
ikmPxmψSm +

∑
iKSmPzmψSm

]
+λ2

[∑
ikmP

∗
xmψ

∗
Sm +

∑
iK∗SmP

∗
zmψ

∗
Sm

]
+2µ2

[
−(kiB)2ϕiB + ikiCPxCψiC

]
+2µ2

[
−
∑

k2
mϕDm −

∑
k2
mϕ
∗
Dm

]
+2µ2

[∑
ikmPxmψSm +

∑
ikmP

∗
xmψ

∗
Sm

]

(A.8)

T 2
xz = T 2

zx = 2µ21

2

(
∂u2x
∂z

+
∂u2z
∂x

)
= µ2

(
∂u2x
∂z

+
∂u2z
∂x

)
= µ2 [−2kiBKiBϕiB + iKiCPxCψiC + ikiCPzCψiC ]

+µ2
[∑

−2kmKDmϕDm +
∑
−2kmK

∗
Dmϕ

∗
Dm

]
+µ2

[∑
iKSmPxmψSm +

∑
ikmPzmψSm

]
+µ2

[
+
∑

iK∗SmP
∗
xmψ

∗
Sm +

∑
ikmP

∗
zmψ

∗
Sm

]
(A.9)

T 2
zz = λ2

(
∂u2x
∂x

+
∂u2y
∂y

+
∂u2z
∂z

)
+ 2µ2

(
∂u2z
∂z

)
= λ2

[
−
(
ω

vd

)2

ϕiB + ikiCPxCψiC + iKiCPzCψiC

]

+λ2

[∑
−
(
ω

vd

)2

ϕDm +
∑
−
(
ω

vd

)2

ϕ∗Dm

]
+λ2

[∑
ikmPxmψSm +

∑
iKSmPzmψSm

]
+λ2

[∑
ikmP

∗
xmψ

∗
Sm +

∑
iK∗SmP

∗
zmψ

∗
Sm

]
+2µ2

[
−(KiB)2ϕiB + iKiCPzCψiC

]
+2µ2

[
−
∑

(KDm)2ϕDm −
∑

(K∗Dm)2ϕ∗Dm

]
+2µ2

[∑
iKSmPzmψSm +

∑
iK∗SmP

∗
zmψ

∗
Sm

]

(A.10)
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A.2.3 Lower Fluid (medium 3)

The (normal) stress components in the lower fluid can be derived in a manner identical

to that of the upper fluid.

T 3
xx = T 3

zz = λ3
(
∂u3x
∂x

+
∂u3z
∂z

)
= λ3 [−(kiE)2ϕiE +

∑
−(km)2ϕTm − (KiE)2ϕiE +

∑
−(KTm)2ϕTm]

= λ3

[
−
(
ω

vt

)2

ϕiE +
∑
−
(
ω

vt

)2

ϕTm

] (A.11)

A.3 Boundary Conditions

The expressions for the stress components that were obtained in the previous section

will now be substituted into the boundary conditions for the plate surfaces. A total of

six boundary conditions (three for the upper surface and three for the lower surface)

will be presented in this section.

The first boundary conditions to be derived will be those associated with the

upper (periodic) surface of the plate. One will be associated with the continuity of

particle displacement normal to the periodic surface and the remaining two will be

associated with the continuity of stress.

A.3.1 Periodic (upper) surface boundary conditions

The periodically grooved surface of the plate can be defined by Equation A.12 which

is shown graphically in Figure A.2. In this equation, h represents the peak-to-peak

height of the profile and Λ is the periodicity.

f(x) =


2h

Λ
x− h

2
for 0 ≤ x ≤ Λ

2
3h

2
− 2h

Λ
x for

Λ

2
≤ x ≤ Λ

(A.12)

Since the surface is described by h1(x, z) = f(x)− z = 0, the vector ∇h1 represents

a vector normal to the surface. Therefore, the continuity of normal particle displace-

ment between the upper fluid (medium 1) and the solid plate (medium 2) can be
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Figure A.2: Sawtooth profile function.

expressed as

~u1 · ∇h1 = ~u2 · ∇h1 where ∇h1 =


f ′(x)

0

−1

 . (A.13)

From Equation 2.15, the two boundary conditions representing continuity of stress at

the surface are

T 1
xxf

′(x) = T 2
xxf

′(x)− T 2
xz (A.14)

−T 1
zz = T 2

zxf
′(x)− T 2

zz (A.15)

A.3.1.1 Derivation of Boundary Condition 1

Substituting the fields for media 1 and 2 into the first boundary condition given in

Equation A.13 results in the following equation.(
ikiAϕiA +

∑
ikmϕRm

)
f ′(x)−

(
iKiAϕiA +

∑
iKRmϕRm

)
(A.16)

=
[
ikiBϕiB + PxCψiC +

∑
(ikmϕDm + ikmϕ

∗
Dm + PxmψSm + P ∗xmψ

∗
Sm)
]
f ′(x)

−
[
iKiBϕiB + PzCψiC +

∑
(iKDmϕDm + iK∗Dmϕ

∗
Dm + PzmψSm + P ∗zmψ

∗
Sm)
]

In order to equate Fourier coefficients, the equation is multiplied by
Λ∫
0

e−iknx and

integrated over dx. This results in certain terms in the above expression being of the

form ∫ Λ

0

ei[(km−kn)x+Kσmf(x)]f ′(x) dx
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where σ may represent any one of the diffracted wave series (Rm, Dm, D∗m, Sm, or

S∗m) . Integration by parts (
∫
u dv = uv−

∫
v du) must be performed where u, v, and

their derivatives are equal to the following.

u = ei(km−kn)x

du = i(km − kn)ei(km−kn)x

dv = f ′(x)eiKσmf(x)

v =
1

iKσm

eiKσmf(x)

The result of this procedure is that∫ Λ

0

ei[(km−kn)x+Kσmf(x)]f ′(x)dx = −(km − kn)

Kσm

∫ Λ

0

ei[(km−kn)x+Kσmf(x)] dx

= −(km − kn)Iσmn .

This expression has introduced the variable Iσmn which is defined as

Iσmn =
1

Kσm

∫ Λ

0

ei[(km−kn)x+Kσmf(x)]dx . (A.17)

Therefore, ∫ Λ

0

ei[(km−kn)x+Kσmf(x)] dx = KσmI
σ
mn

This integration process ultimately transforms Equation A.16 into Equation A.18.

− ikiA(kiA − kn)IAincAinc +
∑
−ikm(km − kn)IRmnRm (A.18)

− i(KiA)2IAincAinc +
∑
−i(KRm)2IRmnRm

= −ikiB(kiB − kn)IBincBinc − (kiC − kn)ICincPxCCinc

+
∑
−ikm(km − kn)IDmnDm +

∑
−ikm(km − kn)ID∗mnD

∗
m

+
∑
−(km − kn)ISmnPxmSm +

∑
−(km − kn)IS∗mnP

∗
xmS

∗
m

− i(KiB)2IBincBinc −KiCI
C
incPzCCinc

+
∑
−i(KDm)2IDmnDm +

∑
−i(K∗Dm)2ID∗mnD

∗
m

+
∑
−KSmI

S
mnPzmSm +

∑
−K∗SmIS∗mnP ∗zmS∗m
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Substituting Equation A.12 for f(x) in Equation A.17 ultimately results in

Iσmn = ihΛe−iKσm
h
2

[
1− (−1)m−n eihKσm

]
(hKσm)2 − (π(m− n))2 . (A.19)

Likewise, the variable Iτinc in Equation A.18 where τ may refer to any one of the

incident waves (Ainc, Binc, or Cinc) is given by

Iτinc = ihΛe−iKiτ
h
2

[
1− (−1)−n eihKiτ

]
(hKiτ )

2 − (πn)2 . (A.20)

Collecting terms by diffracted series results in Equation A.21, the final form of the

first boundary condition.

∑
i

[
kmkn −

(ω
v

)2
]
IRmnRm (A.21)

+
∑

i

[(
ω

vd

)2

− kmkn

]
IDmnDm +

∑
i

[(
ω

vd

)2

− kmkn

]
ID∗mnD

∗
m

+
∑

(km − kn)ISmnPxmSm +
∑

KSmI
S
mnPzmSm

+
∑

(km − kn)IS∗mnP
∗
xmS

∗
m +

∑
K∗SmI

S∗
mnP

∗
zmS

∗
m

= i

[(ω
v

)2

− kiAkn
]
IAincAinc − i

[(
ω

vd

)2

− kiBkn

]
IBincBinc

− (kiC − kn)ICincPxCCinc −KiCI
C
incPzCCinc
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A.3.1.2 Derivation of Boundary Condition 2

Substituting the stress tensor components for media 1 and 2 into the second boundary

condition given in Equation A.14 results in the following equation.

λ1
[
−
(ω
v

)2

ϕiA +
∑
−
(ω
v

)2

ϕRm

]
f ′(x) (A.22)

= λ2

[
−
(
ω

vd

)2

ϕiB + ikiCPxCψiC + iKiCPzCψiC

]
f ′(x)

+ λ2

[∑
−
(
ω

vd

)2

ϕDm +
∑
−
(
ω

vd

)2

ϕ∗Dm

]
f ′(x)

+ λ2
[∑

ikmPxmψSm +
∑

iKSmPzmψSm

]
f ′(x)

+ λ2
[∑

ikmP
∗
xmψ

∗
Sm +

∑
iK∗SmP

∗
zmψ

∗
Sm

]
f ′(x)

+ 2µ2
[
−(kiB)2ϕiB + ikiCPxCψiC −

∑
k2
mϕDm −

∑
k2
mϕ
∗
Dm

]
f ′(x)

+ 2µ2
[∑

ikmPxmψSm +
∑

ikmP
∗
xmψ

∗
Sm

]
f ′(x)

− µ2 [−2kiBKiBϕiB + iKiCPxCψiC + ikiCPzCψiC ]

− µ2
[∑

−2kmKDmϕDm +
∑
−2kmK

∗
Dmϕ

∗
Dm

]
− µ2

[∑
iKSmPxmψSm +

∑
ikmPzmψSm

]
− µ2

[
+
∑

iK∗SmP
∗
xmψ

∗
Sm +

∑
ikmP

∗
zmψ

∗
Sm

]
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Multiplying by
Λ∫
0

e−iknx and integrating over dx in a manner identical to that of

the first boundary condition results in the following equation. The variables Iσmn and

Iτinc are those that have been defined in Equations A.19 and A.20.

∑
ρ1(km − kn)IRmnRm (A.23)

+
∑
−ρ2

[
km − kn + 2

(vs
ω

)2

(KDm)2kn

]
IDmnDm

+
∑
−ρ2

[
km − kn + 2

(vs
ω

)2

(K∗Dm)2kn

]
ID∗mnD

∗
m

+
∑

iρ2
[(vd

ω

)2

km(km − kn) +
(vs
ω

)2

(KSm)2

]
ISmnPxmSm

+
∑

iρ2
[(vd

ω

)2

km(km − kn) +
(vs
ω

)2

(K∗Sm)2

]
IS∗mnP

∗
xmS

∗
m

+
∑

iρ2KSm

[(vd
ω

)2

(km − kn)−
(vs
ω

)2

(km − 2kn)

]
ISmnPzmSm

+
∑

iρ2K∗Sm

[(vd
ω

)2

(km − kn)−
(vs
ω

)2

(km − 2kn)

]
IS∗mnP

∗
zmS

∗
m

= −ρ1(kiA − kn)IAincAinc + ρ2
[
kiB − kn + 2

(vs
ω

)2

(KiB)2kn

]
IBincBinc

− iρ2
[(vd

ω

)2

kiC(kiC − kn) +
(vs
ω

)2

(KiC)2

]
ICincPxCCinc

− iρ2KiC

[(vd
ω

)2

(kiC − kn)−
(vs
ω

)2

(kiC − 2kn)

]
ICincPzCCinc
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A.3.1.3 Derivation of Boundary Condition 3

Substituting the stress tensor components for media 1 and 2 into the third boundary

condition given in Equation A.15 results in the following equation.

λ1
[
−
(ω
v

)2

ϕiA +
∑
−
(ω
v

)2

ϕRm

]
f ′(x) (A.24)

= λ2

[
−
(
ω

vd

)2

ϕiB + ikiCPxCψiC + iKiCPzCψiC

]
f ′(x)

+ λ2

[∑
−
(
ω

vd

)2

ϕDm +
∑
−
(
ω

vd

)2

ϕ∗Dm

]
f ′(x)

+ λ2

[∑
−
(
ω

vd

)2

ϕDm +
∑
−
(
ω

vd

)2

ϕ∗Dm

]
f ′(x)

+ λ2
[∑

ikmPxmψSm +
∑

iKSmPzmψSm

]
f ′(x)

+ λ2
[∑

ikmP
∗
xmψ

∗
Sm +

∑
iK∗SmP

∗
zmψ

∗
Sm

]
f ′(x)

+ 2µ2
[
−(kiB)2ϕiB + ikiCPxCψiC −

∑
k2
mϕDm −

∑
k2
mϕ
∗
Dm

]
f ′(x)

+ 2µ2
[∑

ikmPxmψSm +
∑

ikmP
∗
xmψ

∗
Sm

]
f ′(x)

− µ2 [−2kiBKiBϕiB + iKiCPxCψiC + ikiCPzCψiC ]

− µ2
[∑

−2kmKDmϕDm +
∑
−2kmK

∗
Dmϕ

∗
Dm

]
− µ2

[∑
iKSmPxmψSm +

∑
ikmPzmψSm

]
− µ2

[∑
iK∗SmP

∗
xmψ

∗
Sm +

∑
ikmP

∗
zmψ

∗
Sm

]
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Upon performing the integration and collecting terms, the result is the following

expression.∑
ρ1KRmI

R
mnRm (A.25)

+
∑
−ρ2KDm

[
1− 2

(vs
ω

)2

kmkn

]
IDmnDm

+
∑
−ρ2K∗Dm

[
1− 2

(vs
ω

)2

kmkn

]
ID∗mnD

∗
m

+
∑

iρ2KSm

[(vd
ω

)2

km −
(vs
ω

)2

(km + kn)

]
ISmnPxmSm

+
∑

iρ2K∗Sm

[(vd
ω

)2

km −
(vs
ω

)2

(km + kn)

]
IS∗mnP

∗
xmS

∗
m

+
∑

iρ2
[(vs

ω

)2

(km)2 −
(vs
ω

)2

kmkn +
(vd
ω

)2

(KSm)2

]
ISmnPzmSm

+
∑

iρ2
[(vs

ω

)2

(km)2 −
(vs
ω

)2

kmkn +
(vd
ω

)2

(K∗Sm)2

]
IS∗mnP

∗
zmS

∗
m

= −ρ1KiAI
A
incAinc

+ ρ2KiB

[
1− 2

(vs
ω

)2

kiBkn

]
IBincBinc

− iρ2KiC

[(vd
ω

)2

kiC −
(vs
ω

)2

(kiC + kn)

]
ICincPxCCinc

− iρ2
[(vs

ω

)2

(kiC)2 −
(vs
ω

)2

kiCkn +
(vd
ω

)2

(KiC)2

]
ICincPzCCinc

A.3.2 Smooth (lower) surface boundary conditions

The diffraction problem has been defined such that the x-axis crosses the periodic

profile of the upper surface halfway between its highest and lowest points. Therefore,

the smooth lower surface of the plate is located at z = d where d is the average plate

thickness as shown in Figure A.1. The surface can be defined by h2(z) = z − d = 0.

Therefore, the continuity of normal particle displacement between the solid plate

(medium 2) and the lower fluid (medium 3) can be expressed as

~u2 · ∇h2 = ~u3 · ∇h2 where ∇h2 =


0

0

1

 . (A.26)
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From Equation 2.15, the two boundary conditions representing continuity of stress

along the surface are the following.

T 2
xz = 0 (A.27)

T 2
zz = T 3

zz (A.28)

A.3.2.1 Derivation of Boundary Condition 4

Substituting the fields for media 2 and 3 into the fourth boundary condition given in

Equation A.26 results in the following equation.

iKiBϕiB + PzCψiC

+
∑

iKDmϕDm +
∑

iK∗Dmϕ
∗
Dm +

∑
PzmψSm +

∑
P ∗zmψ

∗
Sm

= iKiEϕiE +
∑

iKTmϕTm

Upon multiplying each term by e−iknx, integrating from 0 to Λ, and then collecting

terms, the following expression is the result.∑
iKDmJ

D
mnDm +

∑
iK∗DmJ

D∗
mnD

∗
m (A.29)

+
∑

JSmnPzmSm +
∑

JS∗mnP
∗
zmS

∗
m +

∑
−iKTmJ

T
mnTm

= −iKiBJ
B
incBinc +−JCincPzCCinc + iKiEJ

E
incEinc

In this expression Jσmn is equal to
Λ∫
0

ei[(km−kn)+Kσmz] dx . However, instead of the

z-coordinate being equal to the sawtooth periodic profile f(x), it is equal to the

z-coordinate of the lower surface, d. The final result from that integration is the

following expression, where δmn is the Kronecker delta.

Jσmn = eiKσmd Λ δmn (A.30)

For the incident waves, the integral is equal to

Jτinc =


eiKiτdΛ for n = 0

0 for all other n

(A.31)

where τ can represent any one of the incident waves.
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A.3.2.2 Derivation of Boundary Condition 5

Substituting the fields for media 2 and 3 into the fifth boundary condition given in

Equation A.27 results in the following equation.

µ2 [−2kiBKiBϕiB + iKiCPxCψiC + ikiCPzCψiC ]

+ µ2
[∑

−2kmKDmϕDm +
∑
−2kmK

∗
Dmϕ

∗
Dm

]
+ µ2

[∑
iKSmPxmψSm +

∑
ikmPzmψSm

]
+ µ2

[
+
∑

iK∗SmP
∗
xmψ

∗
Sm +

∑
ikmP

∗
zmψ

∗
Sm

]
= 0

Upon integration and collection of terms, the boundary condition expression becomes

∑
−2kmKDmJ

D
mnDm +

∑
−2kmK

∗
DmJ

D∗
mnD

∗
m (A.32)

+
∑

iKSmJ
S
mnPxmSm +

∑
ikmJ

S
mnPzmSm

+
∑

iK∗SmJ
S∗
mnP

∗
xmS

∗
m +

∑
ikmJ

S∗
mnP

∗
zmS

∗
m

= 2kiBKiBJ
B
incBinc − iKiCJ

C
incPxCCinc − ikiCJCincPzCCinc.
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A.3.2.3 Derivation of Boundary Condition 6

Substituting the fields for media 2 and 3 into the sixth boundary condition given in

Equation A.27 results in the following equation.

λ2

[
−
(
ω

vd

)2

ϕiB + ikiCPxCψiC + iKiCPzCψiC

]

+ λ2

[∑
−
(
ω

vd

)2

ϕDm +
∑
−
(
ω

vd

)2

ϕ∗Dm

]

+ λ2
[∑

ikmPxmψSm +
∑

iKSmPzmψSm

]
+ λ2

[∑
ikmP

∗
xmψ

∗
Sm +

∑
iK∗SmP

∗
zmψ

∗
Sm

]
+ 2µ2

[
−(KiB)2ϕiB + iKiCPzCψiC −

∑
(KDm)2ϕDm −

∑
(K∗Dm)2ϕ∗Dm

]
+ 2µ2

[∑
iKSmPzmψSm +

∑
iK∗SmP

∗
zmψ

∗
Sm

]
= λ3

[
−
(
ω

vt

)2

ϕiE +
∑
−
(
ω

vt

)2

ϕTm

]

Upon integration and collection of terms, the boundary condition expression becomes

∑
−ρ2

[
1− 2

(vs
ω

)2

(km)2

]
JDmnDm (A.33)

+
∑
−ρ2

[
1− 2

(vs
ω

)2

(km)2

]
JD∗mnD

∗
m

+
∑

iρ2
[(vd

ω

)2

km − 2
(vs
ω

)2

km

]
JSmnPxmSm

+
∑

iρ2
[(vd

ω

)2

km − 2
(vs
ω

)2

km

]
JS∗mnP

∗
xmS

∗
m

+
∑

iρ2
(vd
ω

)2

KSmJ
S
mnPzmSm +

∑
iρ2
(vd
ω

)2

K∗SmJ
S∗
mnP

∗
zmS

∗
m

+
∑

ρ3JTmnTm

= ρ2
[
1− 2

(vs
ω

)2

(kiB)2

]
JBincBinc − ρ3JEincEinc

− iρ2
[(vd

ω

)2

kiC − 2
(vs
ω

)2

kiC

]
JCincPxCCinc

− iρ2
(vd
ω

)2

KiCJ
C
incPzCCinc.
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A.3.3 Conditions of shear waves

The boundary condition derivations that have just been presented considered the

case of shear waves of arbitrary polarization by accounting for the shear wave fields

directly through displacement vectors. Instead, if only a vertical shear polarization is

to be examined, the shear waves in the initial field expressions can be represented by

∇ × ~ψ where ~ψ is a vector function equal to ψ(x, z)~ey. This reduces the number of

unknown shear wave series coefficients by half and a total of six boundary conditions

(for six diffracted series Rm, Dm, D∗m, Sm, S∗m, and Tm) would be sufficient to solve

the system.

However, the approach employed here has created a total of eight diffracted se-

ries that must be accomodated by the system. The particle motion that would have

been accounted for through Sm and S∗m as mentioned above is instead represented

by PxmSm, P ∗xmS
∗
m, PzmSm, and P ∗zmS

∗
m. Therefore, two additional conditions are

necessary to solve the system. These two additional conditions do not come from the

continuity of normal particle displacement or continuity of stress conditions. They

consist of requiring that the propagation directions of the shear waves be perpen-

dicular to the particle displacement vectors. They can be expressed in the following

manner.

kmPxmSm +KSmPzmSm = 0

kmP
∗
xmS

∗
m +K∗SmP

∗
zmS

∗
m = 0

(A.34)

(More information on the approach that accomodates vertical shear waves only

can be found in Refs. [51, 54, 55, 75, 81]. In general, it is not necessary to write

the simulation to accomodate shear waves of arbitrary polarization, i.e. horizontal

as well as vertical, unless it is specifically desired to examine horizontally polarized

waves. This is due to the fact that the propagation of horizontally polarized waves is

independent of the vertically polarized waves [30].)
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APPENDIX B

BOUNDARY CONDITIONS FOR A FLUID-LOADED

PLATE WITH TWO SIDES PERIODIC

This appendix contains the derviation of the boundary condition expressions for the

case of a fluid-loaded plate where both sides are periodic. A diagram of the possible

incident waves along with the resulting diffracted fields is shown in Figure B.1. This

situation is identical to that of Appendix A except that the lower surface of the plate

is now periodic. The material properties (densities, Lamé constants, and bulk sound

speeds) use identical notation to that of Appendix A.

The first three boundary conditions are identical to those shown in Appendix A.

However, the three boundary conditions associated with the (formerly) smooth side

of the plate must now be satisfied along a periodic profile. There are two possibilities

that will be considered here. The profile that separates the solid plate (medium 2)

from the lower fluid (medium 3) will either be “symmetric” to that of the upper profile

so that it is a mirror image of the upper profile across z = d
2
, as shown in Figure B.1,

or it will be “antisymmetric” so that it appears just like the upper profile, only shifted

by a distance of z = d, where d is the average plate thickness. For the symmetric

case, the lower boundary is defined by

gs(x) =


hg
2
− 2hg

Λ
x+ d for 0 ≤ x ≤ Λ

2
−3hg

2
+

2hg
Λ
x+ d for

Λ

2
≤ x ≤ Λ

(B.1)
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Figure B.1: Diagram of diffracted fields for a fluid-loaded plate having both sides
periodically corrugated. Symmetric profile case shown. Diffracted wave series shown
in dotted lines.

which is the mirror image of the upper profile across the line z = d
2
. For the antisym-

metric case, the lower boundary is defined by

ga(x) =


2hg
Λ
x− hg

2
+ d for 0 ≤ x ≤ Λ

2
3hg
2
− 2hg

Λ
x+ d for

Λ

2
≤ x ≤ Λ.

(B.2)

The profiles of the upper and lower surfaces have been considered to have the

same periodicity Λ, but it is not necessary to require the profile heights to be the

same. Therefore, the peak-to-peak height h of the lower periodic profile g(x) has

been represented with hg.

The boundary condition equations are in fact the same for the symmetric and

antisymmetric cases. The difference will be seen in the value for the integral term

analogous to Iσmn that was derived in Equation A.17 and appeared in the first three

boundary conditions.

The boundary conditions for the lower surface can be derived in a manner identical

to that employed for the upper surface. The displacement fields and stress components

for this case are identical to those derived in Appendix A. The displacement fields

and stress components for the solid plate (medium 2) and lower fluid (medium 3) can
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then be substituted into the boundary conditions for the lower periodic profile.

The fourth boundary condition (and first associated with the lower surface) comes

from continuity of normal particle displacement between the solid plate (medium 2)

and the lower fluid (medium 3) and can be expressed as

~u2 · ∇h2 = ~u3 · ∇h2 where ∇h2 =


g′(x)

0

−1

 (B.3)

and where the function g(x) may refer to either gs(x) or ga(x). From Equation 2.15,

the two boundary conditions representing continuity of stress along the surface are

T 2
xxg
′(x)− T 2

xz = T 3
xxg
′(x) (B.4)

T 2
zxg
′(x)− T 2

zz = −T 3
zz . (B.5)

After substituting the fields and stress components for media 2 and 3 into Equa-

tions B.3 - B.5, each expression was multiplied by
Λ∫
0

e−iknx and integrated over dx.

The resulting equations have had their terms collected by diffracted wave series. The

final form of the fourth boundary condition is shown below.

∑
−i

[(
ω

vd

)2

− kmkn

]
QD
mnDm +

∑
−i

[(
ω

vd

)2

− kmkn

]
QD∗
mnD

∗
m (B.6)

+
∑
−(km − kn)QS

mnPxmSm +
∑
−(km − kn)QS∗

mnP
∗
xmS

∗
m

+
∑
−KSmQ

S
mnPzmSm +

∑
−K∗SmQS∗

mnP
∗
zmS

∗
m

+
∑

i

[(
ω

vt

)2

− kmkn

]
QT
mnTm

= i

[(
ω

vd

)2

− kiBkn

]
QB
incBinc

+ (kiC − kn)QC
incPxCCinc +KiCQ

C
incPzCCinc

− i

[(
ω

vt

)2

− kiEkn

]
QE
incEinc
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In this equation, the variable Qσ
mn is analogous to Iσmn in the first three boundary

conditions. The only difference is that instead of the z-coordinate in the exponent

being equal to f(x), the profile of the upper periodic surface, it is equal to g(x), the

periodic profile of the lower surface. For the symmetric case, Qσ
mn is as follows.

Qσ
mn =

1

Kσm

∫ Λ

0

ei[(km−kn)x+Kσmgs(x)] dx

= eiKσmdihgΛ
(
−eiKσm

hg
2

) [1− (−1)m−n e−ihgKσm
]

(hgKσm)2 − (π(m− n))2

(B.7)

For the antisymmetric case, because g(x) is identical to f(x) but shifted by z = d,

Qσ
mn is equal to Iσmn multiplied by a constant eiKσmd.

Qσ
mn =

1

Kσm

∫ Λ

0

ei[(km−kn)x+Kσmga(x)] dx

=
1

Kσm

∫ Λ

0

ei[(km−kn)x+Kσm(f(x)+d)] dx

=
eiKσmd

Kσm

∫ Λ

0

ei[(km−kn)x+Kσmf(x)] dx = eiKσmdIσmn

Then,

Qσ
mn = eiKσmdihgΛe

−iKσm
hg
2

[
1− (−1)m−n eihgKσm

]
(hgKσm)2 − (π(m− n))2 . (B.8)

Likewise, the variable Qτ
inc where τ represents one of the incident waves is

Qτ
inc = eiKiτdihgΛ

(
−eiKiτ

hg
2

) [1− (−1)−n e−ihgKiτ
]

(hgKiτ )
2 − (πn)2 (B.9)

for the symmetric case, and for the antisymmetric case it is

Qτ
inc = eiKiτdihgΛe

−iKiτ
hg
2

[
1− (−1)−n eihgKiτ

]
(hgKiτ )

2 − (πn)2 . (B.10)
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After substituting the fields for the solid plate and lower fluid into the boundary

conditions given in Equations B.4 and B.5 and equating the Fourier coefficients, the

final forms of the fifth and sixth boundary conditions are the following two expressions.

∑
ρ2
[
km − kn + 2

(vs
ω

)2

(KDm)2kn

]
QD
mnDm (B.11)

+
∑

ρ2
[
km − kn + 2

(vs
ω

)2

(K∗Dm)2kn

]
QD∗
mnD

∗
m

+
∑
−iρ2

[(vd
ω

)2

km(km − kn) +
(vs
ω

)2

(KSm)2

]
QS
mnPxmSm

+
∑
−iρ2

[(vd
ω

)2

km(km − kn) +
(vs
ω

)2

(K∗Sm)2

]
QS∗
mnP

∗
xmS

∗
m

+
∑
−iρ2KSm

[(vd
ω

)2

(km − kn)−
(vs
ω

)2

(km − 2kn)

]
QS
mnPzmSm

+
∑
−iρ2K∗Sm

[(vd
ω

)2

(km − kn)−
(vs
ω

)2

(km − 2kn)

]
QS∗
mnP

∗
zmS

∗
m

+
∑
−ρ3(km − kn)QT

mnTm

= −ρ2
[
kiB − kn + 2

(vs
ω

)2

(KiB)2kn

]
QB
incBinc

+ iρ2
[(vd

ω

)2

kiC(kiC − kn) +
(vs
ω

)2

(KiC)2

]
QC
incPxCCinc

+ iρ2KiC

[(vd
ω

)2

(kiC − kn)−
(vs
ω

)2

(kiC − 2kn)

]
QC
incPzCCinc

+ ρ3(kiE − kn)QE
incEinc
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∑
ρ2KDm

[
1− 2

(vs
ω

)2

kmkn

]
QD
mnDm (B.12)

+
∑

ρ2K∗Dm

[
1− 2

(vs
ω

)2

kmkn

]
QD∗
mnD

∗
m

+
∑
−iρ2KSm

[(vd
ω

)2

km −
(vs
ω

)2

(km + kn)

]
QS
mnPxmSm

+
∑
−iρ2K∗Sm

[(vd
ω

)2

km −
(vs
ω

)2

(km + kn)

]
QS∗
mnP

∗
xmS

∗
m

+
∑
−iρ2

[(vs
ω

)2

km(km − kn) +
(vd
ω

)2

(KSm)2

]
QS
mnPzmSm

+
∑
−iρ2

[(vs
ω

)2

km(km − kn) +
(vd
ω

)2

(K∗Sm)2

]
QS∗
mnP

∗
zmS

∗
m

+ ρ3
∑
−KTmQ

T
mnTm

= −ρ2KiB

[
1− 2

(vs
ω

)2

kiBkn

]
QB
incBinc

+ iρ2KiC

[(vd
ω

)2

kiC −
(vs
ω

)2

(kiC + kn)

]
QC
incPxCCinc

+ iρ2
[(vs

ω

)2

kiC(kiC − kn) +
(vd
ω

)2

(KiC)2

]
QC
incPzCCinc

+ ρ3KiEQ
E
incEinc

The final two boundary conditions that are required to solve the system are those

that require the propagation direction of the shear waves to be perpendicular to the

particle displacement. These were presented in Section A.3.3 of Appendix A.
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APPENDIX C

BOUNDARY CONDITIONS FOR TWO SOLID MEDIA

SEPARATED BY A PERIODIC INTERFACE

This appendix contains the derivation of the boundary condition expressions for the

case of two solids that are separated by a periodic interface. A diagram of the possible

incident waves along with the resulting diffracted fields is shown in Figure C.1. The

two media can be characterized by their densities and Lamé constants. The bulk

wave speeds are a function of these parameters. The variables used to designate

these parameters are shown in Table C.1.

C.1 Field equations

The displacement fields in the two media can be constructed by summing the diffracted

fields with any of the incident waves that may be present.

The field in the upper solid (medium 1) can be expressed as the sum of the fields

created by an incident longitudinal or shear wave and two series of diffracted waves.

The subscripts iB and iC are used for the incident longitudinal and shear waves,

Figure C.1: Diagram of diffracted fields for two solid media separated by a periodic
interface. Diffracted wave series shown in dotted lines.
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Table C.1: Notation for media properties.

Density Lamé constants Bulk wave speeds
longitudinal shear

Upper solid (medium 1) ρ1 λ1, µ1 vd vs

Lower solid (medium 2) ρ2 λ2, µ2 vl vv

respectively. The subscripts D and S represent the diffracted longitudinal and shear

wave series, respectively. The fields due to longitudinal waves can be expressed via

scalar potentials. However, fields due to shear waves will be expressed directly in

vector form. The polarization factors Px, Py, and Pz are used in the vectors to

specify whether the polarization is vertical (Py = 0) or horizontal (Px = Pz = 0).

~u1 = ∇ϕiB + ~uiC +∇ϕD + ~uS

The potential functions for the longitudinal waves are given in the following expres-

sions.

ϕiB = Bince
i(kiBx+KiBz)

ϕD =
∑
ϕDm =

∑
Dme

i(kmx+KDmz)

The vectors used to represent the shear waves directly are given by

~uiC =


PxCψiC

PyCψiC

PzCψiC

 and ~uS =
∑


Pxm,SψSm

Pym,SψSm

Pzm,SψSm


where

ψiC = Cince
i(kiCx+KiCz)

ψSm = Sme
i(kmx+KSmz).

Then, the complete expression for the field in the upper solid is as follows.

~u1 =


ikiBϕiB

0

iKiBϕiB

+


PxCψiC

PyCψiC

PzCψiC

+
∑


ikmϕDm

0

iKDmϕDm

+
∑


Pxm,SψSm

Pym,SψSm

Pzm,SψSm

 (C.1)
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The field in the lower solid (medium 2) can be created in a manner identical to

that of the upper solid. The field consists of incident longitudinal and shear waves

(either one or none may be present) along with two diffracted series, one longitudinal

and one shear.

~u2 = ∇ϕiF + ~uiG +∇ϕL + ~uV

The potential functions for the longitudinal waves are given in the following expres-

sions.

ϕiF = Fince
i(kiF x+KiF z)

ϕL =
∑
ϕLm =

∑
Lme

i(kmx+KLmz)

The vectors used to represent the shear waves directly are given by

~uiG =


PxGψiG

PyGψiG

PzGψiG

 and ~uV =
∑


Pxm,V ψV m

Pym,V ψV m

Pzm,V ψV m


where

ψiF = Fince
i(kiF x+KiF z)

ψV m = Vme
i(kmx+KVmz).

Then, the complete expression for the field in the lower solid is as follows.

~u2 =


ikiFϕiF

0

iKiFϕiF

+


PxGψiG

PyGψiG

PzGψiG

+
∑


ikmϕLm

0

iKLmϕLm

+
∑


Pxm,V ψV m

Pym,V ψV m

Pzm,V ψV m

 (C.2)
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C.2 Stress Components

The stress tensor components can now be calculated from the fields in the two solid

media. These are shown in Equations C.3- C.8.

T 1
xx = λ1

(
∂u1x
∂x

+
∂u1y
∂y

+
∂u1z
∂z

)
+ 2µ1

(
∂u1x
∂x

)
(C.3)

= λ1

[
−
(
ω

vd

)2

ϕiB + ikiCPxCψiC + iKiCPzCψiC

]

+ λ1

[∑
−
(
ω

vd

)2

ϕDm +
∑

ikmPxm,SψSm +
∑

iKSmPzm,SψSm

]

+ 2µ1
[
−(kiB)2ϕiB + ikiCPxCψiC −

∑
k2
mϕDm +

∑
ikmPxm,SψSm

]

T 1
xz = T 1

zx = µ1

(
∂u1x
∂z

+
∂u1z
∂x

)
(C.4)

= µ1 [−2kiBKiBϕiB + iKiCPxCψiC + ikiCPzCψiC ]

+ µ1
∑
−2kmKDmϕDm

+ µ1
[∑

iKSmPxm,SψSm +
∑

ikmPzm,SψSm

]

T 1
zz = λ1

(
∂u1x
∂x

+
∂u1y
∂y

+
∂u1z
∂z

)
+ 2µ1

(
∂u1z
∂z

)
(C.5)

= λ1

[
−
(
ω

vd

)2

ϕiB + ikiCPxCψiC + iKiCPzCψiC

]

+ λ1

[∑
−
(
ω

vd

)2

ϕDm +
∑

ikmPxm,SψSm +
∑

iKSmPzm,SψSm

]

+ 2µ1
[
−(KiB)2ϕiB + iKiCPzCψiC

]
+ 2µ1

[
−
∑

(KDm)2ϕDm +
∑

iKSmPzm,SψSm

]
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T 2
xx = λ2

(
∂u2x
∂x

+
∂u2y
∂y

+
∂u2z
∂z

)
+ 2µ2

(
∂u2x
∂x

)
(C.6)

= λ2

[
−
(
ω

vl

)2

ϕiF + ikiGPxGψiG + iKiGPzGψiG

]

+ λ2

[∑
−
(
ω

vl

)2

ϕLm +
∑

ikmPxm,V ψV m +
∑

iKV mPzm,V ψV m

]

+ 2µ2
[
−(kiF )2ϕiF + ikiGPxGψiG −

∑
k2
mϕLm +

∑
ikmPxm,V ψV m

]

T 2
xz = T 2

zx = µ2

(
∂u2x
∂z

+
∂u2z
∂x

)
(C.7)

= µ2 [−2kiFKiFϕiF + iKiGPxGψiG + ikiGPzGψiG]

+ µ2
[∑

−2kmKLmϕLm +
∑

iKV mPxm,V ψV m +
∑

ikmPzm,V ψV m

]

T 2
zz = λ2

(
∂u2x
∂x

+
∂u2y
∂y

+
∂u2z
∂z

)
+ 2µ2

(
∂u2z
∂z

)
(C.8)

= λ2

[
−
(
ω

vl

)2

ϕiF + ikiGPxGψiG + iKiGPzGψiG

]

+ λ2

[∑
−
(
ω

vl

)2

ϕLm +
∑

ikmPxm,V ψV m +
∑

iKV mPzm,V ψV m

]

+ 2µ2
[
−(KiF )2ϕiF + iKiGPzGψiG −

∑
(KLm)2ϕLm +

∑
iKV mPzm,V ψV m

]
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C.3 Boundary Conditions

The first two boundary conditions associated with the interface come from continuity

of displacement across the interface. Since perfect contact between the two solids is

assumed, the conditions can be written in the following manner.

u1x = u2x (C.9)

u1z = u2z (C.10)

It should be noted that it is also possible to equate the components of displacement

normal to the periodic surface through the use of ~u ·∇h as has been the case for fluid-

solid interfaces. The components of velocity parallel to the periodic surface could be

stated by using ~u · ∇h⊥, where ∇h⊥ is a vector perpendicular to ∇h, that is to say,

parallel to the surface. However, these two conditions are algebraically equivalent to

the two expressions shown in Equations C.9 and C.10.

The third and fourth boundary conditions are obtained from continuity of stresses

along the interface according to Equation 2.15.

T 1
xxf

′(x)− T 1
xz = T 2

xxf
′(x)− T 2

xz (C.11)

T 1
zxf
′(x)− T 1

zz = T 2
zxf
′(x)− T 2

zz (C.12)

The surface profile f(x) has appeared, and it takes the form of the profile in Appendix

A. Therefore, the variable Iσmn that will eventually appear in the boundary conditions

that follow is equal to the expression given in Equation A.19.

C.3.1 Boundary Condition 1

Substituting the fields for the two media into Equation C.9 results in the following

expression.

ikiBϕiB + PxCψiC +
∑

ikmϕDm +
∑

Pxm,SψSm

= ikiFϕiF + PxGψiG +
∑

ikmϕLm +
∑

Pxm,V ψV m
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After multiplying the terms by
Λ∫
0

e−iknx, integrating over dx, and collecting terms,

the final expression is the following.∑
ikmKDmI

D
mnDm +

∑
KSmI

S
mnPxm,SSm

+
∑
−ikmKLmI

L
mnLm +

∑
−KV mI

V
mnPxm,V Vm

= −ikiBKiBI
B
incBinc −KiCI

C
incPxCCinc

+ikiFKiF I
F
incFinc +KiGI

G
incPxGGinc

(C.13)

C.3.2 Boundary Condition 2

Substituing the fields for the two media into Equation C.10 results in the following

expression.

iKiBϕiB + PzCψiC +
∑

iKDmϕDm +
∑

Pzm,SψSm

= iKiFϕiF + PzGψiG +
∑

iKLmϕLm +
∑

Pzm,V ψV m

(C.14)

The final expression after equating Fourier coefficients is shown below.∑
i(KDm)2IDmnDm +

∑
KSmI

S
mnPzm,SSm

+
∑
−i(KLm)2ILmnLm +

∑
−KV mI

V
mnPzm,V Vm

= −i(KiB)2IBincBinc −KiCI
C
incPzCCinc

+i(KiF )2IFincFinc +KiGI
G
incPzGGinc

(C.15)
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C.3.3 Boundary Condition 3

Substituting the fields for the two media into Equation C.11 results in the following

expression.

λ1

[
−
(
ω

vd

)2

ϕiB + ikiCPxCψiC + iKiCPzCψiC

]
f ′(x) (C.16)

+ λ1

[∑
−
(
ω

vd

)2

ϕDm +
∑

ikmPxm,SψSm +
∑

iKSmPzm,SψSm

]
f ′(x)

+ 2µ1

[
−(kiB)2ϕiB + ikiCPxCψiC −

∑
k2
mϕDm +

∑
ikmPxm,SψSm

]
f ′(x)

− µ1
[
−2kiBKiBϕiB + iKiCPxCψiC + ikiCPzCψiC

]
− µ1

[∑
−2kmKDmϕDm +

∑
iKSmPxm,SψSm +

∑
ikmPzm,SψSm

]
= λ2

[
−
(
ω

vl

)2

ϕiF + ikiGPxGψiG + iKiGPzGψiG

]
f ′(x)

+ λ2

[∑
−
(
ω

vl

)2

ϕLm +
∑

ikmPxm,V ψV m +
∑

iKV mPzm,V ψV m

]
f ′(x)

+ 2µ2
[
−(kiF )2ϕiF + ikiGPxGψiG −

∑
k2
mϕLm +

∑
ikmPxm,V ψV m

]
f ′(x)

− µ2
[
−2kiFKiFϕiF + iKiGPxGψiG + ikiGPzGψiG

]
− µ2

[∑
−2kmKLmϕLm +

∑
iKV mPxm,V ψV m +

∑
ikmPzm,V ψV m

]
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Upon equating Fourier coefficients and collecting terms, the final form of the third

boundary condition becomes the equation shown below.

∑
ρ1
[
(km − kn) + 2

(vs
ω

)2

(KDm)2kn

]
IDmnDm (C.17)

+
∑
−iρ1

[(vd
ω

)2

km(km − kn) +
(vs
ω

)2

(KSm)2

]
ISmnPxm,SSm

+
∑
−iρ1KSm

[(vd
ω

)2

(km − kn)−
(vs
ω

)2

(km − 2kn)

]
ISmnPzm,SSm

+
∑
−ρ2

[
(km − kn) + 2

(vv
ω

)2

(KLm)2kn

]
ILmnLm

+
∑

iρ2
[(vl
ω

)2

km(km − kn) +
(vv
ω

)2

(KV m)2

]
IVmnPxm,V Vm

+
∑

iρ2Kvm

[(vl
ω

)2

(km − kn)−
(vv
ω

)2

(km − 2kn)

]
IVmnPzm,V Vm

= −ρ1
[
kiB − kn + 2

(vs
ω

)2

(KiB)2kn

]
IBincBinc

+ iρ1
[(vd

ω

)2

kiC(kiC − kn) +
(vs
ω

)2

(KiC)2

]
ICincPxCCinc

+ iρ1KiC

[(vd
ω

)2

(kiC − kn)−
(vs
ω

)2

(kiC − 2kn)

]
ICincPzCCinc

+ ρ2
[
kiF − kn + 2

(vv
ω

)2

(KiF )2kn

]
IFincFinc

− iρ2
[(vl
ω

)2

kiG(kiG − kn) +
(vv
ω

)2

(KiG)2

]
IGincPxGGinc

− iρ2KiG

[(vl
ω

)2

(kiG − kn)−
(vv
ω

)2

(kiG − 2kn)

]
IGincPzGGinc
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C.3.4 Boundary Condition 4

Substituting the fields for the two media into Equation C.12 results in the following

expression.

µ1 [−2kiBKiBϕiB + iKiCPxCψiC + ikiCPzCψiC ] f ′(x) (C.18)

+ µ1
[∑

−2kmKDmϕDm +
∑

iKSmPxm,SψSm +
∑

ikmPzm,SψSm

]
f ′(x)

− λ1
[
−
(
ω

vd

)2

ϕiB + ikiCPxCψiC + iKiCPzCψiC

]

− λ1
[∑

−
(
ω

vd

)2

ϕDm +
∑

ikmPxm,SψSm +
∑

iKSmPzm,SψSm

]

− 2µ1
[
−(KiB)2ϕiB + iKiCPzCψiC −

∑
(KDm)2ϕDm +

∑
iKSmPzm,SψSm

]
= µ2 [−2kiFKiFϕiF + iKiGPxGψiG + ikiGPzGψiG] f ′(x)

+ µ2
[∑

−2kmKLmϕLm +
∑

iKV mPxm,V ψV m +
∑

ikmPzm,V ψV m

]
f ′(x)

− λ2
[
−
(
ω

vl

)2

ϕiF + ikiGPxGψiG + iKiGPzGψiG

]

− λ2
[∑

−
(
ω

vl

)2

ϕLm +
∑

ikmPxm,V ψV m +
∑

iKV mPzm,V ψV m

]

− 2µ2
[
−(KiF )2ϕiF + iKiGPzGψiG −

∑
(KLm)2ϕLm +

∑
iKV mPzm,V ψV m

]
Upon equating Fourier coefficients and collecting terms, the final form of the fourth

boundary condition equation is obtained.
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∑
ρ1KDm

[
1− 2

(vs
ω

)2

kmkn

]
IDmnDm (C.19)

+
∑
−iρ1KSm

[(vd
ω

)2

km −
(vs
ω

)2

(km + kn)

]
ISmnPxm,SSm

+
∑
−iρ1

[(vs
ω

)2

km(km − kn) +
(vd
ω

)2

(KSm)2

]
ISmnPzm,SSm

+
∑
−ρ2KLm

[
1− 2

(vv
ω

)2

kmkn

]
ILmnLm

+
∑

iρ2KV m

[(vl
ω

)2

km −
(vv
ω

)2

(km + kn)

]
IVmnPxm,V Vm

+
∑

iρ2
[(vv

ω

)2

km(km − kn) +
(vl
ω

)2

(KV m)2

]
IVmnPzm,V Vm

= −ρ1KiB

[
1− 2

(vs
ω

)2

kiBkn

]
IBincBinc

+ iρ1KiC

[(vd
ω

)2

kiC −
(vs
ω

)2

(kiC + kn)

]
ICincPxCCinc

+ iρ1
[(vs

ω

)2

kiC(kiC − kn) +
(vd
ω

)2

(KiC)2

]
ICincPzCCinc

+ ρ2KiF

[
1− 2

(vv
ω

)2

kiFkn

]
IFincFinc

− iρ2KiG

[(vl
ω

)2

kiG −
(vv
ω

)2

(kiG + kn)

]
IGincPxGGinc

− iρ2
[(vv

ω

)2

kiG(kiG − kn) +
(vl
ω

)2

(KiG)2

]
IGincPzGGinc

C.3.5 Additional shear wave conditions

A total of four boundary conditions have just been derived for the case of two solids

separated by a periodic interface. However, there are a total of six unknowns in

the system: Dm, Pxm,SSm, Pzm,SSm, Lm, Pxm,V Vm, and Pzm,V Vm. Therefore, two

additional conditions are necessary to solve the system, and these conditions are

associated with the polarization of the shear waves. These conditions are shown

below.

kmPxm,SSm +KSmPzm,SSm = 0

kmPxm,V Vm +KV mPzm,V Vm = 0
(C.20)
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APPENDIX D

BOUNDARY CONDITIONS FOR A FLUID-LOADED

PLATE CONSISTING OF TWO SOLID MEDIA

SEPARATED BY A PERIODIC INTERFACE

This appendix contains the boundary conditions associated with a fluid-loaded plate

consisting of two solid media that are separated by a periodic interface. This case is

shown in Figure D.1. The variables used to indicate material properties are shown in

Table D.1.

The possible incident waves and diffracted wave series are indicated by variables

that are consistent with those of Appendices A, B, and C. Because the derivation

of the boundary conditions is performed in a manner identical to that of the prior

appendices, not all the details will be repeated here. Essentially, the displacement

fields in each one of the media have been expressed as summations of the diffracted

wave series present along with with the applicable incident wave(s). Then stress

components are derived and substituted into the appropriate boundary conditions.

Integration is performed in order to equate Fourier coefficients and terms are then

Table D.1: Notation for media properties.

Density Lamé constants Bulk wave speeds
longitudinal shear

Upper fluid (medium 1) ρ1 λ1 v

Upper solid (medium 2) ρ2 λ2, µ2 vd vs

Lower solid (medium 3) ρ3 λ3, µ3 vl vv

Lower fluid (medium 4) ρ4 λ4 vt
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Figure D.1: Diagram of diffracted fields for a fluid-loaded plate made of two solid
media separated by a periodic interface. Diffracted wave series shown in dotted lines.

collected with respect to the unknown coefficient series. The boundary conditions in

their final forms are presented in the sections that follow.

D.1 Interface between upper fluid (medium 1) and upper
solid (medium 2)

For the upper surface, there is one boundary condition associated with continuity of

normal particle displacement. Two other boundary conditions come from continuity

of normal stress and the vanishing of shear stress in the fluid. These three conditions

are the following.

u1z = u2z (D.1)

T 1
zz = T 2

zz (D.2)

T 2
xz = 0 (D.3)
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The final forms of these three boundary conditions are as follows.∑
iKRmH

R
mnRm

+
∑
−iKDmH

D
mnDm +

∑
−iK∗DmHD∗

mnD
∗
m

+
∑
−HS

mnPzmSm +
∑
−HS∗

mnP
∗
zmS

∗
m

= −iKiAH
A
incAinc + iKiBH

B
incBinc +HC

incPzCCinc

(D.4)

∑
−2kmKDmH

D
mnDm +

∑
−2kmK

∗
DmH

D∗
mnD

∗
m

+
∑

iKSmH
S
mnPxmSm +

∑
ikmH

S
mnPzmSm

+
∑

iK∗SmH
S∗
mnP

∗
xmS

∗
m +

∑
ikmH

S∗
mnP

∗
zmS

∗
m

= 2kiBKiBH
B
incBinc − iKiCH

C
incPxCCinc − ikiCHC

incPzCCinc

(D.5)

∑
−ρ1HR

mnRm

+
∑

ρ2
[
1− 2

(vs
ω

)2

(km)2

]
HD
mnDm

+
∑

ρ2
[
1− 2

(vs
ω

)2

(km)2

]
HD∗
mnD

∗
m

+
∑
−iρ2

[(vd
ω

)2

km − 2
(vs
ω

)2

km

]
HS
mnPxmSm

+
∑
−iρ2

[(vd
ω

)2

km − 2
(vs
ω

)2

km

]
HS∗
mnP

∗
xmS

∗
m

+
∑
−iρ2

(vd
ω

)2

KsmH
s
mnPzmSm

+
∑
−iρ2

(vd
ω

)2

K∗smH
s∗
mnP

∗
zmS

∗
m

= ρ1HA
incAinc − ρ2

[
1− 2

(vs
ω

)2

(kiB)2

]
HB
incBinc

+iρ2
[(vd

ω

)2

kiC − 2
(vs
ω

)2

kiC

]
HC
incPxCCinc

+iρ2
(vd
ω

)2

KiCH
C
incPzCCinc

(D.6)

In Equations D.4- D.6, the variables Hσ
mn and Hτ

inc appear. These are analogous

to the Jσmn and Jτinc in Equations A.30 and A.31 of Appendix A. However, since the H

variables are for the smooth surface of the plate located at z = −d, they are instead

equal to

Hσ
mn = e−iKσmd Λ δmn and (D.7)
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Hτ
inc =


e−iKiτdΛ for n = 0

0 for all other n.

(D.8)

D.2 Interface between upper solid (medium 2) and lower
solid (medium 3)

The interface between the two solid media requires four boundary conditions.

u2x = u3x (D.9)

u2z = u3z (D.10)

T 2
xxf

′(x)− T 2
xz = T 3

xxf
′(x)− T 3

xz (D.11)

T 2
zxf
′(x)− T 2

zz = T 3
zxf
′(x)− T 3

zz (D.12)

The final forms of these boundary conditions are shown in Equations D.13- D.16.

∑
ikmKDmI

D
mnDm +

∑
ikmK

∗
DmI

D∗
mnD

∗
m

+
∑

KSmI
S
mnPxmSm +

∑
K∗SmI

S∗
mnP

∗
xmS

∗
m

+
∑
−ikmKLmI

L
mnLm +

∑
−ikmK∗LmIL∗mnL∗m

+
∑
−KV mI

V
mnPxm,V Vm +

∑
−K∗V mIV ∗mnP ∗xm,V V ∗m

= −ikiBKiBI
B
incBinc −KiCI

C
incPxCCinc

+ikiFKiF I
F
incFinc +KiGI

G
incPxGGinc

(D.13)

∑
i(KDm)2IDmnDm +

∑
i(K∗Dm)2ID∗mnD

∗
m

+
∑

KSmI
S
mnPzmSm +

∑
K∗SmI

S∗
mnP

∗
zmS

∗
m

+
∑
−i(KLm)2ILmnLm +

∑
−i(K∗Lm)2IL∗mnL

∗
m

+
∑
−KV mI

V
mnPzm,V Vm +

∑
−K∗V mIV ∗mnP ∗zm,V V ∗m

= −i(KiB)2IBincBinc −KiCI
C
incPzCCinc

+i(KiF )2IFincFinc +KiGI
G
incPzGGinc

(D.14)
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∑
ρ2
[
(km − kn) + 2

(vs
ω

)2

(KDm)2kn

]
IDmnDm (D.15)

+
∑

ρ2
[
(km − kn) + 2

(vs
ω

)2

(K∗Dm)2kn

]
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∗
m

+
∑
−iρ2

[(vd
ω
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ω

)2
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+
∑
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)2
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(vs
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]
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∗
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∗
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+
∑
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[(vd
ω

)2
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ω

)2
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]
ISmnPzmSm

+
∑
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[(vd
ω

)2
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(vs
ω

)2

(km − 2kn)

]
IS∗mnP

∗
zmS

∗
m

+
∑
−ρ3

[
(km − kn) + 2

(vv
ω

)2

(KLm)2kn

]
ILmnLm

+
∑
−ρ3

[
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(vv
ω

)2

(K∗Lm)2kn

]
IL∗mnL

∗
m

+
∑
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ω

)2

km(km − kn) +
(vv
ω

)2

(KV m)2

]
IVmnPxm,V Vm

+
∑
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ω

)2
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ω
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(K∗V m)2

]
IV ∗mnP

∗
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∗
m

+
∑

iρ3KV m

[(vl
ω

)2
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(vv
ω

)2

(km − 2kn)

]
IVmnPzm,V Vm

+
∑

iρ3K∗V m

[(vl
ω

)2

(km − kn)−
(vv
ω

)2

(km − 2kn)

]
IV ∗mnP

∗
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∗
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= −ρ2
[
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(vs
ω

)2

(KiB)2kn

]
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+ iρ2
[(vd

ω

)2
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(vs
ω

)2

(KiC)2

]
ICincPxCCinc

+ iρ2KiC

[(vd
ω

)2

(kiC − kn)−
(vs
ω

)2
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]
ICincPzCCinc

+ ρ3
[
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(vv
ω

)2

(KiF )2kn

]
IFincFinc

− iρ3
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ω

)2
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(KiG)2
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IGincPxGGinc

− iρ3KiG
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ω

)2
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(vv
ω

)2
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]
IGincPzGGinc
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∑
ρ2KDm

[
1− 2

(vs
ω

)2

kmkn

]
IDmnDm (D.16)

+
∑

ρ2K∗Dm

[
1− 2

(vs
ω

)2

kmkn

]
ID∗mnD

∗
m

+
∑
−iρ2KSm
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ω

)2
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(vs
ω

)2
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]
ISmnPxmSm

+
∑
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ω
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ω
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∗
xmS

∗
m

+
∑
−iρ2
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ω

)2

km(km − kn) +
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ω

)2

(KSm)2

]
ISmnPzmSm

+
∑
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ω

)2

km(km − kn) +
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ω
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(K∗Sm)2

]
IS∗mnP

∗
zmS

∗
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+
∑
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[
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(vv
ω
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]
ILmnLm

+
∑
−ρ3K∗Lm

[
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ω
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]
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∗
m

+
∑

iρ3KV m

[(vl
ω
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(vv
ω
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]
IVmnPxm,V Vm

+
∑

iρ3K∗V m

[(vl
ω

)2
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(vv
ω
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]
IV ∗mnP

∗
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∗
m

+
∑

iρ3
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ω

)2

km(km − kn) +
(vl
ω

)2

(KSm)2

]
IVmnPzm,V Vm

+
∑

iρ3
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ω

)2

km(km − kn) +
(vl
ω
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(K∗Sm)2

]
IV ∗mnP

∗
zm,V V

∗
m

= −ρ2KiB

[
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(vs
ω

)2

kiBkn

]
IBincBinc

+ iρ2KiC

[(vd
ω

)2

kiC −
(vs
ω

)2
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]
ICincPxCCinc

+ iρ2
[(vs

ω

)2

kiC(kiC − kn) +
(vd
ω

)2

(KiC)2

]
ICincPzCCinc

+ ρ3KiF

[
1− 2

(vv
ω

)2

kiFkn

]
IFincFinc

− iρ3KiG

[(vl
ω

)2

kiG −
(vv
ω

)2

(kiG + kn)

]
IGincPxGGinc

− iρ3
[(vv

ω

)2

kiG(kiG − kn) +
(vl
ω

)2

(KiG)2

]
IGincPzGGinc
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In these equations the variables Iσmn and Iτinc appear. These are based on the

periodic profile f(x) that was shown in Appendix A, and the values of these variables

are given by Equations A.19 and A.20, respectively.

D.3 Interface between lower solid (medium 3) and lower
fluid (medium 4)

The interface between the lower solid and the lower fluid has three boundary condi-

tions associated with it, just as there were three associated with the interface between

the upper fluid and the upper solid.

u3z = u4z (D.17)

T 3
xz = 0 (D.18)

T 3
zz = T 4

zz (D.19)

After substituting in the field and stress tensor components, equating Fourier co-

efficients, and collecting terms, the final boundary condition expressions are Equa-

tions D.20- D.22. The variables Jσmn and Jτinc are identical to those in Equations A.30

and A.31 since the smooth surface that separates the lower solid from the lower fluid

is located at z = −d.∑
iKLmJ

L
mnLm +

∑
iK∗LmJ

L∗
mnL

∗
m (D.20)

+
∑

JVmnPzm,V Vm +
∑

JV ∗mnP
∗
zm,V V

∗
m +

∑
−iKTmJ

T
mnTm

= −iKiFJ
F
incFinc − JGincPzGGinc + iKiEJ

E
incEinc

∑
−2kmKLmJ

L
mnLm +

∑
−2kmK

∗
LmJ

L∗
mnL

∗
m (D.21)

+
∑

iKV mJ
V
mnPxm,V Vm +

∑
ikmJ

V
mnPzm,V Vm

+
∑

iK∗V mJ
V ∗
mnP

∗
xm,V V

∗
m +

∑
ikmJ

V ∗
mnP

∗
zm,V V

∗
m

= 2kiFKiFJ
F
incFinc +−iKiGJ

G
incPxGGinc − ikiGJGincPzGGinc
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∑
−ρ3

[
1− 2

(vv
ω

)2

(km)2

]
JLmnLm (D.22)

+
∑
−ρ3

[
1− 2

(vv
ω
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(km)2

]
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∗
m

+
∑
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[(vl
ω
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ω
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]
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+
∑

iρ3
[(vl
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ω

)2
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]
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∗
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∗
m

+
∑

iρ3
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ω
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KV mJ
V
mnPzm,V Vm

+
∑

iρ3
(vl
ω

)2

K∗V mJ
V ∗
mnP

∗
zm,V V

∗
m

+
∑

ρ4JTmnTm

= ρ3
[
1− 2

(vv
ω

)2

(kiF )2

]
JFincFinc

− iρ3
[(vl
ω

)2

kiG − 2
(vv
ω

)2
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]
JGincPxGGinc

− iρ3
(vl
ω

)2

KiGU
G
incPzGGinc − ρ4JEincEinc

A total of ten boundary conditions have been presented. However, there are a

total of fourteen unknown coefficient series in the system. Therefore, four additional

conditions are required. These are given by the shear wave conditions shown below.

kmPxm,SSm +KSmPzm,SSm = 0

kmP
∗
xm,SS

∗
m +K∗SmP

∗
zm,SS

∗
m = 0

kmPxm,V Vm +KV mPzm,V Vm = 0

kmP
∗
xm,V V

∗
m +K∗V mP

∗
zm,V V

∗
m = 0

(D.23)
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APPENDIX E

BOUNDARY CONDITIONS FOR A FLUID-LOADED

PLATE CONSISTING OF TWO SOLID MEDIA WHERE

ALL INTERFACES ARE PERIODIC

This appendix contains the boundary conditions associated with a fluid-loaded plate

that consists of two solid media where all the interfaces are periodic. This case is

shown in Figure E.1. The variables used to indicate material properties are identical

to those shown in Table D.1. Since the field equations and stress components for the

media are identical to those of Appendix D, they will not be repeated here. Only

the initial and final forms of the boundary conditions for the three interfaces will be

presented here.

E.1 Interface between upper fluid (medium 1) and upper
solid (medium 2)

These boundary conditions and the variables Iσmn and Iτmn are identical to those for

the periodic interface in Appendix A. In terms of displacement and stress tensor

components, the boundary conditions are the following three equations.

~u1 · ∇h1 = ~u2 · ∇h1 (E.1)

T 1
xxf

′(x) = T 2
xxf

′(x)− T 2
xz (E.2)

−T 1
zz = T 2

zxf
′(x)− T 2

zz (E.3)
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Figure E.1: Diffracted fields for a fluid-loaded plate made of two solid media where
all three interfaces between the various media are periodic. Diffracted wave series
shown in dotted lines.

The final forms in terms of unknown series coefficients are shown in Equations E.4-

E.6.

∑
i

[
kmkn −

(ω
v

)2
]
IRmnRm (E.4)

+
∑

i

[(
ω

vd

)2

− kmkn

]
IDmnDm +

∑
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ω
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− kmkn

]
ID∗mnD

∗
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+
∑

(km − kn) ISmnPxm,SSm +
∑

KSmI
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mnPzm,SSm

+
∑

(km − kn) IS∗mnP
∗
xm,SS

∗
m +

∑
K∗SmI
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mnP

∗
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∗
m

= i

[(ω
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]
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ω
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)2

− kiBkn

]
IBincBinc

− (kiC − kn)ICincPxCCinc −KiCI
C
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∑
ρ1(km − kn)IRmnRm (E.5)
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∑
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∑
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∑
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∑
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+
∑
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∑
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∗
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∗
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ω
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]
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− iρ2
[(vd

ω

)2
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ω
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ω
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ω
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]
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∑
ρ1KRmI

R
mnRm (E.6)

+
∑
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[
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]
IDmnDm

+
∑
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+
∑
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+
∑
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]
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∗
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+
∑
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+
∑
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IS∗mnP

∗
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∗
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= −ρ1KiAI
A
incAinc + ρ2KiB

[
1− 2
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ω
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− iρ2KiC

[(vd
ω

)2
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ω

)2

(kiC + kn)

]
ICincPxCCinc
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ω
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)2

kiCkn +
(vd
ω
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]
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E.2 Interface between upper solid (medium 2) and lower
solid (medium 3)

These boundary conditions are essentially identical to those that exist between the

two solid media in Appendix D. However, the periodic profile between the solids is

defined by the g(x) given in Appendix B, and it may be either symmetric or anti-

symmetric to that of the first interface. The variables Qσ
mn and Qτ

inc that appear

in the final expressions (instead of the Iσmn and Iτinc in Appendix D) are given in

Equations B.7 (symmetric Qσ
mn), B.8 (antisymmetric Qσ

mn), B.9 (symmetric Qτ
inc),

and B.10 (antisymmetric Qτ
inc) . The four boundary conditions in terms of displace-

ment and stress tensor components that must be satisfied at the interface are shown

below.
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u2x = u3x (E.7)

u2z = u3z (E.8)

T 2
xxg
′(x)− T 2

xz = T 3
xxg
′(x)− T 3

xz (E.9)

T 2
zxg
′(x)− T 2

zz = T 3
zxg
′(x)− T 3

zz (E.10)

The final forms of these expressions in terms of the unknown series coefficients are

shown in Equations E.11- E.14.∑
ikmKDmQ

D
mnDm +

∑
ikmK
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DmQ

D∗
mnD

∗
m

+
∑

KSmQ
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∑
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∑
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∑
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∑
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(E.11)

∑
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∑
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∑
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∑
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∑
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∑
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(E.12)
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∑
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+
∑
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∑
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∑
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∑
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∑
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∑
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∑
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∑
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+ ρ3
[
kiF − kn + 2

(vv
ω

)2

(KiF )2kn
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]
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198



∑
ρ2KDm

[
1− 2

(vs
ω

)2

kmkn

]
QD
mnDm (E.14)

+
∑

ρ2K∗Dm

[
1− 2
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ω
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]
QD∗
mnD

∗
m

+
∑
−iρ2KSm
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]
QS
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+
∑
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+
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+
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]
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+
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ω
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]
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mnLm

+
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m

+
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(km + kn)

]
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+
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+
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+
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ω
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E.3 Interface between lower solid (medium 3) and lower
fluid (medium 4)

The boundary conditions between the lower solid and the lower fluid take a similar

form to those for the second interface of the plate with two periodic sides (Appendix

B), but with the diffracted series Lm and Vm instead of Dm and Sm and with no-

tation for the incident waves consistent with Figure E.1. In addition, the integral

terms for this interface are represented by the variables W σ
mn and W τ

inc (analogous to

their respective Q terms with the same considerations regarding the symmetry of the

profile).

The periodic profile associated with the interface between the lower solid and

lower fluid will be referred to as w(x), and it can be symmetric or antisymmetric

with respect to uppermost profile, f(x). The interface can be defined by the function

h3(x, z) = w(x) − z = 0. The W integral terms will be identical to the Q integral

terms but multiplied by a constant eiKσm(d1+d2) to account for the profile’s average

z-coordinate being d1 + d2.

The boundary conditions that must be satisfied at the interface in terms of dis-

placements and stress tensor components are shown in the following three equations.

~u3 · ∇h3 = ~u4 · ∇h3 (E.15)

T 3
xxw

′(x)− T 3
xz = T 4

xxw
′(x) (E.16)

T 3
zxw

′(x)− T 3
zz = −T 4

zz (E.17)
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Upon substituting field quantities and stress components, equating Fourier coeffi-

cients, and collecting terms, the final boundary condition expressions become Equa-

tions E.18-E.20.

∑
−i

[(
ω

vl

)2

− kmkn

]
WL
mnLm +

∑
−i

[(
ω

vl

)2

− kmkn

]
WL∗
mnL

∗
m (E.18)

+
∑
−(km − kn)W V

mnPxm,V Vm +
∑
−(km − kn)W V ∗

mnP
∗
xm,V V

∗
m

+
∑
−KV mW

V
mnPzm,V Vm +

∑
−K∗V mW V ∗

mnP
∗
zm,V V

∗
m

+
∑

i

[(
ω

vt

)2

− kmkn

]
W T
mnTm

= i

[(
ω

vl

)2

− kiFkn

]
W F
incFinc − i

[(
ω

vt

)2

− kiEkn

]
WE
incEinc

+ (kiG − kn)WG
incPxGGinc +KiGW

G
incPzGGinc

∑
ρ3
[
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(vv
ω
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]
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+
∑
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∑
ρ3KLm
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∑
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W F
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ω
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E
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Finally, four additional expressions are required in order to solve the system for

the coefficients of the fourteen diffracted series. These are the conditions that govern

the propagation and polarization of the shear waves, and they have been presented

at the conclusion of Appendix D.
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[40] Luppé, F. and Doucet, J., “Experimental study of the stoneley wave at
a plane liquid-solid interface,” Journal of the Acoustical Society of America,
vol. 83, no. 4, pp. 1276–1279, 1988.

205



[41] Jungman, A., Leroy, O., Quentin, G., and Mampaert, K., “Theoretical
and experimental study of ultrasonic surface modes at a solid-fluid periodic
interface,” Journal of Applied Physics, vol. 63, no. 10, pp. 4860–4871, 1988.

[42] Every, A. G., Vines, R., and Wolfe, J., “Observation of scholte-like
waves on the liquid-loaded surfaces of periodic structures,” Ultrasonics, vol. 38,
pp. 761–766, 2000.

[43] Declercq, N. F., Degrieck, J., Briers, R., and Leroy, O., “Theory of
the backward beam displacement on periodically corrugated surfaces and its
relation to leaky scholte-stoneley waves,” Journal of Applied Physics, vol. 96,
no. 11, pp. 6869–6877, 2004.

[44] Ginzbarg, A. and Strick, E., “Stoneley wave velocities for a solid-solid
interface,” Bulletin or the Seismological Society of America, vol. 48, pp. 51–63,
1958.

[45] Owen, T., “Surface wave phenomena in ultrasonics,” Progress in Applied Ma-
terials Research, vol. 6, pp. 69–87, 1964.

[46] Hsieh, T., Lindgren, E., and Rosen, M., “Effect of interfacila properties
on stoneley wave propagation,” Ultrasonics, vol. 29, pp. 38–44, 1991.

[47] Claus, R. O. and Palmer, C. H., “Optical measurements of ultrasonic waves
on interfaces between bonded solids,” IEEE Transactions on Sonics and Ultra-
sonics, vol. SU-27, no. 3, pp. 97–103, 1980.

[48] Laude, V., Wilm, M., Benchabane, S., and Khelif, A., “On waves in an
elastic plate,” Proceedings of the Royal Society of London: Series A, vol. 93,
no. 648, pp. 114–128, 1917.

[49] Pitts, L. E., Plona, T. J., and Mayer, W. G., “Theoretical similiarities
of rayleigh and lamb modes of vibration,” Journal of the Acoustical Society of
America, vol. 60, no. 2, pp. 374–377, 1976.

[50] Su, Z., Ye, L., and Lu, Y., “Guided lamb waves for identification of damage
in composite structures: A review,” Journal of Sound and Vibration, vol. 295,
pp. 753–780, 2006.

[51] Briers, R., Contributions to the study of acoustic scattering and conversion
phenomena in discontinuous structures by introducing a mode theory and by
applying the inhomogeneous wave theory. PhD thesis, Katholieke Universiteit
Leuven, Kortrijk, Belgium, 1995.

[52] Wood, R., “On a remarkable case of uneven distribution of light in a diffraction
grating spectrum,” Philosophical Magazine, vol. 4, pp. 396–402, 1902.

[53] Claeys, J. and Leroy, O., “Diffraction of plane waves by periodic surfaces,”
Revue du Cethedec, vol. 72, pp. 183–193, 1982.

206



[54] Claeys, J. and Leroy, O., “Diffraction of ultrasonic waves from periodically
rough liquid-solid surface,” Journal of Applied Physics, vol. 54, no. 10, pp. 5657–
5662, 1983.

[55] Mampaert, K. and Leroy, O., “Reflection and transmission of normally
incident ultrasonic waves on periodic solid-liquid interfaces,” Journal of the
Acoustical Society of America, vol. 83, no. 4, pp. 1390–1398, 1988.

[56] Jungman, A., Adler, L., Achenbach, J., and Roberts, R., “Reflection
from a boundary with periodic roughness: Theory and experiment,” Journal of
the Acoustical Society of America, vol. 74, no. 3, pp. 1025–1032, 1983.

[57] Quentin, G., de Billy, M., Cohen-Ténoudji, F., Doucet, J., and
Jungman, A., “Experimental results on the scattering of ultrasound by ran-
domly or periodically rough surfaces in the frequency range 2 to 25 mhz,” in
Proceedings of the 1975 IEEE Ultrasonics Symposium, pp. 102–106, 1975.

[58] Van Den Abeele, K., Briers, R., and Leroy, O., “Inhomogeneous plane-
wave scattering and mode stimulation on periodic rough surfaces,” Journal of
the Acoustical Society of America, vol. 99, no. 5, pp. 2883–2897, 1996.

[59] Declercq, N. F., Degrieck, J., and Leroy, O., “The representation of
3d gaussian beams by means of inhomogeneous waves,” Ultrasonics, vol. 42,
pp. 273–276, 2004.

[60] Breazeale, M. and Torbett, M. A., “Backward displacement of waves
reflected from an interface having superimposed periodicity,” Applied Physics
Letters, vol. 29, no. 8, pp. 456–458, 1976.

[61] Neubauer, W. G., “Ultrasonic reflection of a bounded beam at rayleigh and
critical angles for a plane liquid-solid interface,” Journal of Applied Physics,
vol. 44, no. 1, pp. 48–55, 1973.

[62] Neubauer, W. G. and Dragonette, L. R., “Measurement of rayleigh phase
velocity and estimates of shear speed by schlieren visualization,” Journal of
Applied Physics, vol. 45, no. 2, pp. 618–622, 1974.

[63] Declercq, N. F., Degrieck, J., Briers, R., and Leroy, O., “Theoreti-
cal verification of the backward displacement of waves reflected from an inter-
face having superimposed periodicity,” Applied Physics Letters, vol. 82, no. 15,
pp. 2533–2534, 2003.

[64] Christensen, J., Fernandez-Dominguez, A., de Leon-Perez, F.,
Martin-Moreno, L., and Garcia-Vidal, F., “Collimation of sound as-
sisted by acoustic surface waves,” Nature Physics, vol. 3, pp. 851–852, 2007.

[65] Kundu, T., Banerjee, S., and Jata, K. V., “An experimental investigation
of guided wave propagation in corrugated plates showing stop bands and pass

207



bands,” Journal of the Acoustical Society of America, vol. 120, no. 3, pp. 1217–
1226, 2006.

[66] Leduc, D., Morvan, B., Hladky, A.-C., Pareige, P., and Izbicki, J.,
“Lamb wave propagation in a plate with a grooved surface with several spatial
periodicities,” Ultrasonics, vol. 44, pp. e1359–e1363, 2006.

[67] Heckl, M. A. and Mulholland, L., “Some recent developments in the the-
ory of acoustic transmission in tube bundles,” Journal of Sound and Vibration,
vol. 179, no. 1, pp. 37–62, 1995.

[68] Blessing, G. V., Slotwinski, J. A., Eitzen, D. G., and Ryan, H. M.,
“Ultrasonic measurements of surface roughness,” Applied Optics, vol. 32, no. 19,
pp. 3433–3437, 1993.
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